

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

E N H A N C I N G P R O D U C T I V I T Y A N D P E R F O R M A N C E

P O RTA B I L I T Y O F O P E N C L A P P L I C AT I O N S O N

H E T E R O G E N E O U S S Y S T E M S U S I N G R U N T I M E

O P T I M I Z AT I O N S

thibaut lutz

Doctor of Philosophy

School of Informatics

Institute of Computing Systems Architecture

University of Edinburgh

2015

Copyright © Thibaut Lutz 2014

Enhancing Productivity and Performance Portability of OpenCL Applications on Heterogeneous

Systems Using Runtime Optimizations

A B S T R A C T

Initially driven by a strong need for increased computational performance in science and

engineering, heterogeneous systems have become ubiquitous and they are getting increas-

ingly complex. The single processor era has been replaced with multi-core processors,

which have quickly been surrounded by satellite devices aiming to increase the throughput

of the entire system. These auxiliary devices, such as Graphics Processing Units, Field Pro-

grammable Gate Arrays or other specialized processors have very different architectures.

This puts an enormous strain on programming models and software developers to take full

advantage of the computing power at hand. Because of this diversity and the unachievable

flexibility and portability necessary to optimize for each target individually, heterogeneous

systems remain typically vastly under-utilized.

In this thesis, we explore two distinct ways to tackle this problem. Providing automated,

non intrusive methods in the form of compiler tools and implementing efficient abstrac-

tions to automatically tune parameters for a restricted domain are two complementary

approaches investigated to better utilize compute resources in heterogeneous systems.

First, we explore a fully automated compiler based approach, where a runtime system

analyzes the computation flow of an OpenCL application and optimizes it across multiple

compute kernels. This method can be deployed on any existing application transparently

and replaces significant software engineering effort spent to tune application for a particu-

lar system. We show that this technique achieves speedups of up to 3x over unoptimized

code and an average of 1.4x over manually optimized code for highly dynamic applications.

Second, a library based approach is designed to provide a high level abstraction for

complex problems in a specific domain, stencil computation. Using domain specific tech-

niques, the underlying framework optimizes the code aggressively. We show that even in

a restricted domain, automatic tuning mechanisms and robust architectural abstraction are

necessary to improve performance. Using the abstraction layer, we demonstrate strong scal-

ing of various applications to multiple GPUs with a speedup of up to 1.9x on two GPUs

and 3.6x on four.

iii

iv

L AY S U M M A RY
In recent years, the diversity and complexity of processing units embedded in electronic

devices have grown considerably. Any system now contains a central component composed

of multiple processing units – so called multi-core processors –, and a multitude of complex

satellite co-processors specialized for specific tasks – such as graphics processing; such

systems are called heterogeneous.

Each type of device has a very different architecture and typically a very different interface

for software developers to interact with. This puts an enormous strain on programmers

and considerably increases the complexity of the application source code.

Recently, new programming models have been developed to tackle portability issues. They

present a unified interface for programmers, who can develop applications regardless of

the hardware executing it. However these new models are hard to reason about and can-

not fully exploit the intricacies of complex hardware. This leads to two common misuse

patterns of these programming models in practice: underutilization and overutilization.

Underutilization is characterized by the exploitation of only a small subset of features

available in the programming models, either because programmers think their application

or hardware will not benefit from more advanced features, or because it increases the

complexity of the code, which in turn impairs the development process. The programmer

is trading decreased performance for improved productivity.

Overutilization is the reverse: expert programmers are trading decreased productivity and

portability for better performance. Knowing the hardware components of the targeted sys-

tem enables specialization of many aspects of the implementation, some of which improve

performance but degrade performance when transferred to other systems.

The work presented in this thesis reconciles productivity and performance by tackling the

identified misuse patterns. Underutilization of heterogeneous programming models is ad-

dressed with a transparent, self optimizing framework, allowing programmers to focus

on productivity without sacrificing performance. At the other end of the spectrum, mis-

uses are replaced with portable techniques, which automatically bridge the gap between

what the programming models can express and hardware specific behaviors, preventing

programmers from painstakingly tuning their code for specific systems.

v

D E C L A R AT I O N

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified. Some of

the material used in this thesis has been published in the following papers:

• Thibaut Lutz, Christian Fensch, and Murray Cole “PARTANS: An Autotuning Frame-

work for Stencil Computation on Multi-GPU Systems”. In: ACM Transactions on Ar-

chitecture and Code Optimization (TACO), 2013

• Thibaut Lutz, Vinod Grover “LambdaJIT: A Dynamic Compiler for Heterogeneous

Optimizations of STL Algorithms”. In: Proceedings of the 3rd ACM SIGPLAN Workshop

on Functional High-Performance Computing (FHPC’14), 2014

• Thibaut Lutz, Christian Fensch, and Murray Cole “Helium: a Transparent Inter-kernel

Optimizer for OpenCL”. In: Proceedings of the 8th Workshop on General Purpose Process-

ing Using GPUs (GPGPU 8), 2015

Thibaut Lutz, May 22, 2015

C O N T E N T S

1 introduction 1

1.1 Ubiquity of Heterogeneous Systems . 1

1.2 Implications for Programmability . 3

1.3 Contributions . 5

1.4 Thesis Outline . 6

1.5 Summary . 7

2 background 9

2.1 Evolution of Parallel Computer Systems . 9

2.1.1 From Single to Multi to Many Cores . 9

2.1.2 General-Purpose Computing on GPUs 10

2.1.3 Other Parallel Systems and Accelerators 11

2.2 Comparison of CPU and GPU Architectures 12

2.2.1 Architecture Overview . 12

2.2.2 Memory Layout . 15

2.2.3 Optimization Challenges on GPUs . 19

2.3 Parallel Frameworks and Languages . 22

2.3.1 Parallel Programming Concepts . 23

2.3.2 Parallelism on Multi-Core CPUs . 24

2.3.3 Languages and Frameworks for Accelerators 25

2.4 Heterogeneous Computing with OpenCL . 27

2.4.1 A Portable Programming Model . 28

2.4.2 Architecture Agnostic Compute Kernels 30

2.4.3 Managing Data and Computation . 31

2.4.4 Limitations of the OpenCL Model . 33

2.5 Towards Portable Intermediate Languages . 34

2.5.1 Standardization of Intermediate Representations 34

2.5.2 A Closer Look at LLVM and SPIR . 36

2.6 Stencil Computations . 36

2.6.1 Stencil Pattern . 37

2.6.2 Distributed Stencils . 39

2.7 Summary . 40

ix

x contents

3 related work 41

3.1 Heterogeneous System Optimizations . 42

3.1.1 Abstraction Frameworks . 42

3.1.2 GPGPU Optimization Techniques & Insights 44

3.2 Compiler and Dynamic Optimizations . 47

3.2.1 Compiler Analysis & Profilers . 47

3.2.2 Compilers for Heterogeneous Systems 48

3.2.3 Dynamic Optimization & Staging . 48

3.2.4 Limitations of Prior Work and Discussion 50

3.3 Stencil Computation . 52

3.3.1 Stencil Optimization Techniques . 53

3.3.2 Frameworks, Code Generators & Compilers 57

3.3.3 Limitations of Prior Work and Discussion 61

3.4 Summary . 62

4 dynamic interkernel optimizations 63

4.1 Motivation . 64

4.2 Dynamic Kernel Sequence Optimizations . 65

4.2.1 Scheduling Optimizations . 67

4.2.2 Code Specialization . 69

4.2.3 Kernel Fusion . 70

4.2.4 Task Elimination . 73

4.2.5 Transformation Applicability . 74

4.3 Helium Optimizer Overview . 75

4.4 Helium Implementation . 76

4.4.1 Delay and Analysis . 76

4.4.2 Task Graph Optimizer . 87

4.4.3 Replay Mechanism . 96

4.5 Limitations . 101

4.6 Evaluation Methodology . 102

4.6.1 Experimental Setup . 102

4.6.2 Evaluation Methodology . 102

4.7 Experimental Results . 104

4.8 Summary . 107

5 auto-tuning multi-gpu stencil computation 109

5.1 Motivation . 110

contents xi

5.2 Optimization Strategies . 112

5.3 The Partans Framework . 116

5.3.1 API Concepts . 116

5.3.2 Internal implementation strategy . 118

5.3.3 Optimization space . 121

5.4 Experimental Setup . 122

5.4.1 Benchmarks . 122

5.4.2 Architectures . 124

5.4.3 Evaluation Methodology . 126

5.5 Experimental Evaluation . 126

5.5.1 Overview . 126

5.5.2 Single GPU performance . 127

5.5.3 Halo Size Impact . 128

5.5.4 Data Placement and PCIe Layout . 131

5.5.5 Autotuning . 137

5.6 Summary . 141

6 conclusion 143

6.1 Contributions . 143

6.1.1 Transparent Dynamic Optimizations with Helium 143

6.1.2 Multi-GPU Stencil Computation with Partans 144

6.2 Critical Analysis . 145

6.2.1 Dynamic Optimizations of Data Flow in OpenCL 145

6.2.2 Distributed Stencil Computations on Heterogeneous Systems 147

6.2.3 Combining Helium and Partans . 148

6.3 Future Work . 149

6.3.1 Optimizing Tasking Model for OpenCL 149

6.3.2 Distributed Stencil Computation . 150

6.4 Final Remarks . 151

a example of opencl application 153

bibliography 155

L I S T O F F I G U R E S

Figure 1.1 Example of heterogeneous system . 2

Figure 2.1 Comparison of CPU and GPU die and microarchitecture 13

Figure 2.2 Concurrency Models exploited by CPUs and GPUs 14

Figure 2.3 Examples of Memory Access Patterns 16

Figure 2.4 SIMT model and divergent code . 20

Figure 2.5 Multi-threaded Program Chrestomathy for SAXPY 25

Figure 2.6 GPGPU Program Chrestomathy for SAXY 26

Figure 2.7 OpenCL Platform and Memory Abstract Model 28

Figure 2.8 OpenCL Execution Model . 29

Figure 2.9 Example of OpenCL host program . 31

Figure 2.10 Example of command queue strategies in OpenCL 32

Figure 2.11 Device Program Compilation Using SPIR 35

Figure 2.12 SPIR representation of SAXPY . 36

Figure 2.13 Example of stencil computation: Edge detection 37

Figure 2.14 Example of stencil shapes . 38

Figure 2.15 Examples of boundary condition for stencil computation 39

Figure 2.16 Halo consumption and swapping in a 2D domain 40

Figure 3.1 Cache Oblivious and Time Skewing Optimizations 53

Figure 3.2 Tiling methods for parallelism . 54

Figure 3.3 3D heat equation Chrestomathy . 58

Figure 4.1 Manual Optimization Example: Task Parallelism 67

Figure 4.2 Manual Optimization Example: Task Reordering 68

Figure 4.3 Manual Optimization Example: Constant Propagation 69

Figure 4.4 Manual Optimization Example: Alias Resolution 70

Figure 4.5 Manual Optimization Example: Horizontal Fusion 71

Figure 4.6 Manual Optimization Example: Vertical Fusion 72

Figure 4.7 Manual Optimization Example: Task Elimination 73

Figure 4.8 Overview of Helium . 75

Figure 4.9 OpenCL function call dispatch . 77

xii

Figure 4.10 Static Device Code Analysis . 78

Figure 4.11 OpenCL Vendor Objects . 80

Figure 4.12 OpenCL Context Runtime Analysis . 81

Figure 4.13 Overview of Profiler architecture in Helium 84

Figure 4.14 Details of the Delay Process in Helium 85

Figure 4.15 Example of dynamic multi-kernel application 88

Figure 4.16 Task Graph Edge Optimization . 89

Figure 4.17 Task Graph Node Optimizations . 92

Figure 4.18 Optimized Task Graph Depending on Runtime Value 96

Figure 4.19 Constant propagation Process in Helium 98

Figure 4.20 OpenCL Code Equivalent to Optimized Execution 100

Figure 4.21 Helium Performance Overview . 104

Figure 5.1 Decomposition of a 2D domain . 113

Figure 5.2 Tile Decomposition Strategies . 114

Figure 5.3 Example of volume declaration and interaction 116

Figure 5.4 Example of Jacobi Stencil in Partans 117

Figure 5.5 Multi-field Allocations Strategies . 119

Figure 5.6 Different Communication Strategies 120

Figure 5.7 Overview the Evaluation Systems . 124

Figure 5.8 Partition Placements on Four GPU System 125

Figure 5.9 Absolute single GPU performance . 127

Figure 5.10 Impact of halo size on performance 128

Figure 5.11 Sensibility Study for Tuning: Problem Size 130

Figure 5.12 Sensibility Study for Tuning: Device Architecture 130

Figure 5.13 Data Placement Impact in Multi-GPU Systems 132

Figure 5.14 PCIe layout impact for Redge on GTX 590 GPU 133

Figure 5.15 PCIe layout impact for Hyperthermia on GTX 590 GPU 133

Figure 5.16 PCIe layout impact for Tricubic on GTX 590 GPU 133

Figure 5.17 Sensibility Study for Data Placement: Input Size 135

Figure 5.18 Sensibility Study for Data Placement: Device Architecture 136

Figure 5.19 Data Placement impact for four GPU 136

Figure 5.20 Performance Result for Partans Autotuner 138

Figure 6.1 Examples of problems derived from stencil computation 150

xiii

L I S T O F TA B L E S

Table 2.1 Memory statistics for CPUs and GPUs 15

Table 3.1 Comparison of stencil computation frameworks 57

Table 4.1 Summary of interkernel dynamic optimizations 66

Table 4.2 Performance impact of Helium optimizer 105

Table 5.1 Summary of benchmark characteristics 123

Table 5.2 Performance of various search strategies. 139

A C R O N Y M S

API Application Programming Interface . 6

APU Accelerated Processing Unit. 11

CPU Central Processing Unit . 1

DLP Data Level Parallelism . 14

FPGA Field-Programmable Gate Array . 11

GPGPU General-Purpose computing on Graphics Processing Unit 2

GPU Graphics Processing Unit . 2

ILP Instruction Level Parallelism . 14

ISA Instruction Set Architecture . 10

LLVM Low Level Virtual Machine . 35

MIMD Multiple Instruction, Multiple Data. 13

SIMD Single Instruction, Multiple Data . 13

SIMT Single Instruction, Multiple Threads . 13

SPIR Standard Portable Intermediate Representation. 35

TLP Thread Level Parallelism. 14

xiv

1 I N T R O D U C T I O N

Nowadays, heterogeneous systems are all around us – from the largest supercomputers to

low end mobile phones. This section introduces how these systems arose and what benefits

but also challenges they bring. The contributions of this thesis to tackle these problems are

then described and an overview of this document is provided.

1.1 ubiquity of heterogeneous systems

The desire and need to process a growing amount of data at ever-increasing speed put

enormous pressure on industries to produce more performant hardware. However, the

increasing operational frequency of Central Processing Units (CPUs) at each hardware gen-

eration, which had for decades been the main focus of chip manufacturers and a gift for

programmers wanting more performance effortlessly, was not able to cope with expecta-

tions anymore. It was the end of Dennard scaling [Den+74].

Dennard’s scaling prediction states that by reducing the size and electrical characteristics

of transistors, a proportional gain in density and operating frequency is achievable. This

effect is known as process scaling. It applied from the early days of microprocessors in the

seventies to the beginning of the twenty-first century: every two or three years the amount

of transistors in microprocessors doubled, as foreseen by Moore [Moo65] in the sixties, and

in the meantime the frequency was increasing by 40%.

However, in the aughts, manufacturers started to hit physical limitations in scaling down

the transistor size. Leakage, heat dissipation and quantum effects meant that higher fre-

quencies were no longer safe for reliable chips.

Nonetheless, Moore’s law was still true and the number of available transistors kept

increasing. Rather than making the size of the chip larger to increase the frequency, manu-

facturers started to duplicate the design of the microprocessor on a single die: this was the

beginning of the multi-core processor era.

1

2 introduction

GDRAM

GPUGPU

GDRAM

DRAM

DRAM

GDRAM

GPUGPU

GDRAM

PCI
CPUCPU

PCI

Figure 1.1: Example of system used in this thesis. The system is composed of a dual socket mother-
board with two Intel Xeon E5-2620 processors and two dual GPU Nvidia Titan Z graphics
cards. It supports a total of 24 parallel CPU threads and 11,520 parallel GPU threads.

This trend quickly gained increasing momentum. From a single core to two, two to four,

and to eight. Some chips known as many-core processors now provide hundreds of cores

on a single die [Pol; Phi].

In parallel, manufacturers developed more specialized hardware running alongside the

main processor to lighten its workload. These single-purpose chips typically have a much

simpler core design and better power efficiency compared to multicore processors; and

often provide better performance for the tasks they are intended for. Digital Signal Proces-

sors were early example of such devices; they have been used since the eighties to improve

efficiency of analog signal measurement and filtering.

More recently, Graphics Processing Units (GPUs) were developed to facilitate image pro-

cessing and rendering. Driven by the needs of gaming and engineering industries, they

picked up a very fast evolution since their introduction in the early eighties. The last decade

has seen the emergence of a new type of computing technique known as General-Purpose

computing on Graphics Processing Unit (GPGPU), where processing normally performed

on CPUs is offloaded to a graphics processor.

Compute systems are now composed of a plethora of chips with varied architectures,

each having widely different application domains and performance. Nowadays, any com-

puter or embedded system, such as a mobile phone, contains at least one multi-core CPU,

several GPUs and multiple single purposed accelerators, with a tremendous raw compute

power. Figure 1.1 shows an example of a larger heterogeneous system composed of a to-

tal of two CPU chips and four GPUs. A vast amount of parallelism is available, with two

dozen concurrent CPU threads and thousands of GPU threads. The combined compute

power of these devices amounts to 16.5 Tera FLOPs, or the equivalent of over two thou-

sands Intel Pentium 4 processors. However, this performance is very hard to tame in a

single application.

1.2 implications for programmability 3

1.2 implications for programmability

The accelerating trend towards increasingly heterogeneous systems outpaces our ability to

develop efficient software development methods. The gap between theoretical performance

and actual utilization is growing rapidly due to the strain put on programmability.

the three p 's Software programmability can be gauged as a combination of three

factors: performance, portability and productivity.

Achieving good performance implies efficient utilization of the resources at hand – in

terms of compute power or energy. For recent architectures, this goal can only be achieved

through parallelism, for which scalability is also an important performance measure.

Portability is a key issue for heterogeneous systems. Execution portability allows the same

program to adapt to different systems, either via programming languages or binaries, while

performance portability should guarantee an efficient utilization of any device.

Of the three factors, productivity is the most affected by the emergence of heterogeneous

systems – partly because it drives the other two. Software design should produce simple,

concise, reusable and maintainable code. Implementing such code should require only a

reasonable amount of expertise and hardware should not be a consideration.

Sadly, increasing the system heterogeneity stretches these principles to the point where

they cannot all be considered. Worse, they all seem to contradict each other. Performance

is inherently tied to hardware features, which immediately rules out performance porta-

bility. Achieving either portability or performance requires tremendous engineering efforts

and highly specialized skills, which are considerable impediments to productivity. Hence

increasingly heterogeneous systems are the cause of an impending software crisis.

salvation by abstraction New programming models have been developed to ad-

dress some aspects of these programmability issues. In particular, similarities across soft-

ware or hardware patterns lead to the implementation of common software methods and

principles aiming to reconcile the three Ps. These guidelines can be turned into languages

and frameworks, which aim to tame heterogeneity by design. OpenCL is an example of

such advances. As the first widely adopted solution for heterogeneous development, it is a

giant leap towards improved programmability. Yet, in spite of providing reliable execution

portability, these models are not very easy to use and still have limitations.

4 introduction

Disparities between the optimization strategies across devices prevent universal perfor-

mance portability in the models mentioned above. Programmers still need to resort to

substantial engineering efforts to use heterogeneous systems efficiently. This last point is

aggravated by the typically low level abstraction, which re-introduces a dichotomy between

productivity and performance, leading to different uses of the portable models.

uses of portable models Prioritizing productivity and using only a subset of the

available features is largely observed in practice. Programmers do not need to understand

the intricacies of the model; and they can manage to harness some power from the devices

on hand. While this approach offers good productivity, it is largely suboptimal in terms of

performance. This pattern characterizes a model under-utilization.

Efficient utilization of the model requires more effort to understand it. Reasonable pro-

ductivity is achievable but limited by the set of skills required. Well exploited programming

models allow graceful scaling to all available resources, which improves performance. How-

ever, this skillful utilization is very reliant on the model to adapt to any device and system.

This expectation is unrealistic and, frustratingly, the model alone can only utilize a fraction

of the achievable performance.

This situation leads programmers to misuse the programming model. A deep understand-

ing of a particular device architecture is used to steer the optimization process. In extreme

cases, programmers purposefully violate the model and rely on specific hardware charac-

teristics to avoid undefined behavior, breaking execution portability – which is arguably

an abuse of the model. This approach considerably deteriorates productivity and destroys

portability. Sadly, it is necessary to achieve the best possible performance.

productivity and performance challenges The different usages of portable

models described above are far apart on both the productivity and the performance spec-

trum. Yet, they are all using the exact same tool. Arguably, none of these approaches is

ideal, since they are all based on a tradeoff between productivity or performance.

Improving productivity and performance together is necessary to enhance programma-

bility of heterogeneous systems. To this end, automated and portable techniques are critical

to exploit these models more efficiently.

1.3 contributions 5

1.3 contributions

Despite breakthroughs in the development of portable programming models, heteroge-

neous programming remains extremely complex. The previous section established that

productivity and performance are in conflict. This paradox leaves heterogeneous systems

largely underutilized and causes significant waste of human or computing resources. This

thesis provides solutions to reconcile productivity and performance within a portable pro-

gramming model. The main contributions are summarized below.

First, we demonstrate that a more efficient use of the model – specifically, OpenCL –

is achievable transparently and systematically. By implementing the optimizations within

the model itself, this solution is non-intrusive and can be deployed over any application.

Using profiling and compiler analysis, our runtime system can dynamically optimize a

set of tasks delegated to an accelerator. Transformations like task parallelization, fusion and

reordering – which are programmatically delicate and intrusive – are applied dynamically.

This approach dramatically improves productivity and allows programmers to write mod-

ular, reusable code and reason about sequential task execution without having to give up

any performance. We validate our technique by showing that the self-optimizing model not

only replaces expensive manual code transformation but also outperforms human experts

in dynamic and complex applications. This work is presented in Chapter 4.

Second, we developed new portable techniques to tap into hardware specific optimiza-

tions. Striving for performance above all, programmers painstakingly incorporate hardware

knowledge into their application, destroying portability and productivity along the way.

We show that the same results can be achieved in an automated and portable fashion.

Even though they are not expressible directly in the model, artifacts of the underlying

hardware have noticeable side effects. These observations are synthesized to guide adaptive

optimization strategies. We demonstrate this on a specific domain: stencil computations.

We show that PCI buses introduce heterogeneity in a seemingly homogeneous system.

While this information is not programmatically available, we can implement an autotuner

discovering and exploiting it. The data placement and communication patterns are opti-

mized to reduce contention for shared resources, without requiring any explicit hardware

information. These techniques are described in Chapter 5.

6 introduction

1.4 thesis outline

This thesis is organized as follows:

Chapter 2 describes the state of the art in parallel programming and heterogeneous

systems, in terms of the hardware architectures involved and their programming models.

It focuses on GPUs, which are a relatively new type of compute architecture largely con-

tributing to the heterogeneity of modern systems.

Chapter 3 provides an overview of prior work on abstraction and optimization tech-

niques for heterogeneous systems. Works relevant to the two chapters below are then listed.

First, the areas of JIT compilation and dynamic optimizations are discussed. Second, work

related to high performance stencil computations is explored.

Chapter 4 describes transparent optimization techniques for the OpenCL model. A

dynamic optimizer, named Helium, intercepts the Application Programming Interface

(API) calls before they reach the vendor implementation. Through a mechanism of delay-

optimize-replay, the commands are postponed and collectively optimized. Aggressive trans-

formations, guided by a combination of dynamic profiling and static code analysis, replace

considerable human efforts. The new technique is shown to match and even outperform

manual optimizations on a set of benchmarks. This chapter is based partially on the work

published in [LG14] and [LFC15].

Chapter 5 investigates portable autotuning techniques implementing hardware sensi-

tive optimizations. Specifically, these techniques analyze and mitigate the impact of PCIe

topology on communication in a multi-device setup. This approach is demonstrated by im-

plementing Partans, a framework for high-performance distributed stencil computation.

The integrated optimizer automatically adjusts for hardware artifacts, which are not pro-

grammatically available, without any explicit knowledge about the hardware. The findings

of this chapter have been presented in [LFC13].

Chapter 6 concludes with a summary of the main findings from the new optimizations

described above. The contributions are critically analyzed, and possible future extensions

are discussed.

1.5 summary 7

1.5 summary

This chapter introduced heterogeneous systems and their origins. Their inherent complex-

ity requires a completely new approach to software development. Maximizing performance

and productivity while preserving portability is a great challenge which calls for innovative

optimization techniques. The contributions listed in this chapter introduced new solutions

towards this goal. The outline of the thesis was provided.

The next chapter provides more detailed background information necessary to under-

stand the problems and appreciate the contributions exposed in this thesis.

2 B A C K G R O U N D

This chapter presents the background of parallel and heterogeneous computing, and in-

troduces the technical terms and specifications necessary to understand the contributions

detailed in the following chapters.

Section 2.1 provides a quick survey and a brief history of the most common compo-

nents present in heterogeneous systems. Section 2.2 compares the architectures of CPUs

and GPUs, which are the two main device categories used in our research. Their respec-

tive strengths and weaknesses are highlighted in the same section. Section 2.3 presents the

main parallel programming concepts created to facilitate software development on hetero-

geneous systems. In particular, OpenCL is the framework used in our work. It is described

in more detail in Section 2.4. Section 2.5 introduces the emerging trend of low level lan-

guages for heterogeneous systems, which is a key element for some of the work presented

in Chapter 4. Finally, stencil computation, an application domain well suited for heteroge-

neous computing and studied in Chapter 5, is detailed in Section 2.6.

2.1 evolution of parallel computer systems

This section provides a brief history of parallel systems and the evolution of CPU and GPU

architectures. It then depicts a broader view of the heterogeneous computing landscape by

mentioning other types of prevalent devices.

2.1.1 From Single to Multi to Many Cores

Chapter 1 introduced multi-core processors as a response from manufacturers to the end

of Dennard scaling despite the continuity of Moore’s law. The original multicore chip was

introduced by IBM in 2001 and was meant for the high end server ranges. Intel then de-

veloped the first dual core for home use, the Pentium Extreme Edition, in early April 2005.

AMD followed two weeks later with the release of two products: the Opteron 800 Series

and Athlon X2 processors.

9

10 background

Since then, multi-core processors have completely replaced single core chips in all areas

of computing, from high performance to embedded systems. They are also a powerful

marketing tool in the competition between the main processor manufacturers.

Today, most commodity CPUs have four to eight cores. Their number is still increas-

ing: the newest Intel Xeon processors [Int14] released in Q4 2014 provide between six and

eighteen cores at a frequency of up to 3.40 GHz.

2.1.2 General-Purpose Computing on GPUs

Graphics processing has always been an important duty of computers. More elaborated

user interfaces, quickly followed by fast growing game and scientific visualization indus-

tries, meant that a non negligible part of computation time was spent in rendering graphics.

Specialized hardware components were added to computers as early as the late eighties

to lighten the rendering load: the Video Graphics Arrays (VGA) controllers. They started

as simple memory and display controllers coupled together to do basic image transforma-

tions and rendering the output on monitors. VGA controllers then gradually increased in

complexity, adding richer features and more compute power at each generation. In 1999,

Nvidia released a new product, the GeForce 256, and for the first time used the term Graphics

Processing Unit [NVI99].

Despite their rapid evolution, GPU devices remained very domain specific. For a long

time, they could only handle a very restricted set of tasks, mainly rasterization and rendering-

related operations like texture mapping, transformations and lighting. This was reflected in

the architecture of these chips, which contained separate vertex units and pixel processors.

However, the research community started to investigate the usability of these chips for gen-

eral purpose computation in 2002 [Pur+02]. New programming models were adapted to the

streaming processors used in GPUs as early as 2004 [Buc+04]. This marked the beginning

of General-Purpose computing on GPUs (GPGPU).

In 2006, Nvidia released the GeForce 8800, the first GPU with a unified architecture and

the same Instruction Set Architecture (ISA) for the vertex and pixel processors. The chip

only has 128 stream processors – compared to thousands on the current generation – but

its architecture is still fundamentally the same as modern GPUs.

2.1 evolution of parallel computer systems 11

More recently, a new type of processor has emerged: Accelerated Processing Units (APUs).

APUs are hybrid chips containing a CPU and an accelerator on the same die. The embed-

ded accelerator can be either a GPU, a Field-Programmable Gate Array (FPGA) or any

other type of specialized processor. The goal of this design is ultimately to improve data

locality by sharing the main memory or even some caches. All main GPU manufacturers

are considering APU design: AMD provides several generations of APUs, Intel embeds a

GPU in its Intel HD Graphics chips and Nvidia is developing a similar project codenamed

Denver [Den].

2.1.3 Other Parallel Systems and Accelerators

While our research focuses primarily on systems composed of CPUs and GPUs, it is worth

nothing that the heterogeneous system landscape is far more diverse.

In 2010, Intel released a new family of Many Integrated Core (MIC) products targeted

to the HPC community, the Xeon Phi [Phi]. It provides over fifty cores with an X86 ar-

chitecture and supports over a hundred concurrent threads. It is based on the Larrabee

microarchitecure and – like GPU chips – it has a very wide vector unit (16 single precision

floats). However, it remains a general-purpose processor and runs an operating system. The

design of the cores is simpler than current CPUs. For example the first generations do not

support out of order execution, but it is fully cache coherent.

FPGAs are integrated circuits containing programmable logic. Because of the difficulty

in producing efficient hardware description languages and the complexity of software syn-

thesis, they were traditionally used for hardware prototyping. However, recent advances in

compiler technology and programming models for heterogeneous systems, like OpenCL,

enables specialized frameworks to generate general-purpose code for FPGAs.

Finally, computation can be distributed amongst a large number of interconnected com-

puters. Scheduling and synchronization are enforced through message passing protocols.

This is how the first large-scale parallel machines were created, sparking a need for paral-

lel programming. Today’s largest supercomputers are still made of clusters of nodes, each

composed of CPUs and accelerators [Top14]. Distributed computing is not explored in

more detail in the remaining chapters: the techniques presented focus on optimizing single

CPU systems. Distributing the computation to several nodes is an independent problem

complementary to this research.

12 background

2.2 comparison of cpu and gpu architectures

GPUs are prevalent in heterogeneous computing. Their relative performance, cost and

power efficiency compared to CPUs allowed them to be present in all niches of computer

science, from embedded systems to the largest supercomputers. This section describes their

architecture in more detail and highlights the pitfalls of GPU programming.

Section 2.2.1 compares the architectures of CPUs and GPUs and Section 2.2.2 discusses

their memory models. Finally, Section 2.2.3 enumerates their optimization challenges.

2.2.1 Architecture Overview

CPUs and GPUs have radically different architecture due to their different application do-

mains. On the one hand, CPUs must be optimized for latency – they have to run multiple

applications and the operating system smoothly. On the other hand, GPUs are optimized

for throughput – they are used primarily for simple data parallel tasks such as image pro-

cessing. This section discusses how these two strategies are reflected in their architecture.

While their description uses a similar terminology, oftentimes the underlying hardware

implementation and the purpose of the elements sharing the same name are completely

different. These misnomers often lead to unfair comparisons. For example, the number of

cores is several orders of magnitude greater on GPUs, typically thousands versus two to

six. However, the functionality and design of these cores are fundamentally different.

On a CPU chip, most of the surface area is reserved for caches, controllers and sophisti-

cated logic, as shown on the die representation in Figure 2.1a. Each CPU core has its own

cache and a complex pipelined execution mechanism. They are able to reorder indepen-

dent operations on the fly (out-of-order execution), or to evaluate execution paths ahead

of time in order to keep the deep pipelines filled (branch prediction). This gives the CPU

great flexibility for multi-tasking and general-purpose applications.

GPU chips pack thousands of much simpler cores, which are primarily intended for

simple compute tasks. This results in a very high number of execution units at the expense

of sophistication, as seen on the GPU die of the Kepler architecture in Figure 2.1b. The

GPU "cores" have no register, no cache, no complex execution engine and no out-of-order

execution. On Kepler, the GPU chip is divided into 15 Streaming Multi-Processors (SMX).

2.2 comparison of cpu and gpu architectures 13

Mem. Controller

Queue & IO

Core

Core

Core

Core

Core

L3
Cache
(15MB)

Core

CPU die representation µarchitecture (memory & execution units)

550mm2

L1D Cache (32KB) LDST

L2 Cache (256KB)

VI MULALU ALU

ALU JMP

VI MUL

VI ADD

VI Shuf

VI Shuf

AVX FP MUL AVX FP ADD

AVX FP Shuf AVX FP Bool

LDST

(a) Intel Sandy Bridge-E (i7-3960X) Architecture

SM SM SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

L2
(1.5MB)

GPU die representation µarchitecture (memory & execution units)

435mm2

R
eg

. F
ile

L1 Cache (64KB)

Data Cache (48KB)

DPU

LDST SFU

DPU
Core Core

Core

Core

Core

Core

FP
Unit

Int
Unit

(b) Nvidia Kepler (GK110) Architecture

Figure 2.1: Comparison of CPU and GPU. A larger area of the GPU die is dedicated to execution
units compared to CPUs. CPUs have a lower number of cores, here 6 compared to 3840,
but their cores have a more sophisticated design.

Each SMX has 192 single precision CUDA cores and 64 double precision CUDA cores. The

SMX also holds the caches and most of the execution logic, instead of the core.

This design reflects the principal difference between CPUs and GPUs: their implementa-

tion of different execution programming models. CPUs exploit Multiple Instruction, Mul-

tiple Data (MIMD) and Single Instruction, Multiple Data (SIMD) parallelism while GPUs

use a Single Instruction, Multiple Threads (SIMT) model. These models are represented in

Figure 2.2.

MIMD is the most widely used technique to achieve parallelism on multi-core systems.

There are a variety of sub-classifications for MIMD machines, but the common key idea

is that independent processors, cores or execution units function asynchronously, inde-

pendently and in parallel. At any time, several units of data are processed by potentially

distinct instructions. In the case of multi-core processors, the different types of MIMD

machines are distinguished by the underlying memory models. The principal classes are

UMA (Uniform Memory Access), COMA (Cache Only Memory Access) and NUMA (Non-

Uniform Memory Access).

14 background

O

O

O

O

T0

I X OT0
I X OT1
I X OT2
I X OT3

X

X

X

X

T0
T1 I
T2

X

X

X

XT3

I Instruction
X Execution
O Output

MIMD SIMD SIMT

I

O

O

O

O

Figure 2.2: Concurrency models exploited by CPUs and GPUs. CPUs use a combination of MIMD
and SIMD: each thread executes different instructions on data vectors. GPUs use a SIMT
model: threads are grouped in batches executing the same instruction within a group.

SIMD is an execution strategy where one instruction is performed on a vector of operands

at a time. Originally designed for supercomputers, vector processor units in CPUs have

been around since the seventies. The concept is to maximize the throughput by decoding

a single instruction, but executing it on multiple ALUs at the same time. Several data ele-

ments are then processed at once. Dedicated accelerators have used a similar design since

their early days. For example, the Intel i750 video processor, released in 1990, could store

two 8 bit values in one 16 bit register and perform the same operation on both in parallel.

In 1996, this technology was integrated to the Pentium MMX, which added vector integer

operations on 64 bit wide registers. AMD then introduced floating-point operations support

in 1998 with 3DNow to accelerate graphics rendering. Intel increased the width of the

vector to 128 bits in 1999 with a new instruction set, called SSE, which was first integrated

in the Pentium 3. The latest generation of Intel processors integrate a newer technology,

AVX, which has up to 512-bit wide registers and can operate on 8 single precision or 4

double precision float values in parallel.

Modern multi-core CPUs exploit Data Level Parallelism (DLP) and Thread Level Par-

allelism (TLP) by combining MIMD and SIMD. They also implement Instruction Level

Parallelism (ILP) via pipelining, branch prediction, speculation and other methods.

By contrast, GPUs have a hybrid execution model, called SIMT 1. It behaves like a MIMD

programming model combined with SIMD hardware. Threads are grouped in batches: each

batch can process a different instruction, but all threads within a batch execute the same

instruction in lockstep. Binary programs for GPUs are scalar; however, their execution is

implicitly SIMD. Nvidia terminology defines a block as a warp which has a fixed size of 32

threads in all of their architectures to date. AMD defines a block as a wavefront, where 64

1 Not all GPUs use the SIMT model. For example, ARM’s Mali GPU uses barrel threaded execution and Intel
integrated graphics support multiple models. Larger dedicated GPU chips are at present all using the SIMT
model.

2.2 comparison of cpu and gpu architectures 15

Size (KB) Size/Thread1 (KB) Bandwidth (GB/s)

CPU GPU CPU GPU CPU GPU

L1 6x64 15x64 32 8 Bytes 50-100 2.5TB/s

L2 6x256 1,536 128 50 Bytes 30-50 1KB/cycle

L3 15,360 n/a 1,280 n/a 20-30 n/a

DRAM2 1-24GB 6GB >1GB 2184.5 30-50 200-300

Note: 1 – considering the total number of in-flight threads supported by the hardware
2 – on a system with DDR3 1,600MHz and GDDR5 7GHz

Table 2.1: On-chip and off-chip memory statistics for the i7-3960X CPU and the GK110 GPU.

threads operate in lockstep. The remainder of this section describes an Nvidia GPU as an

example of GPU architecture and uses the Nvidia terminology.

2.2.2 Memory Layout

The memory structure and availability are also very important differences between CPUs

and GPUs. In both cases, the memory is composed of small local caches, larger ones shared

amongst threads and the main off-chip memory. While the hierarchy is roughly the same,

the hardware implementation gives each layer very different features for both device types.

Similarly to the compute cores, the memory is optimized for latency on CPUs and for

throughput on GPUs. This leads to different – and sometimes opposite – optimization

strategies. Table 2.1 summarizes the main characteristics of these caches for both devices.

2.2.2.1 Main Memory Description

The main memory, also called primary memory, is a critical resource for manipulating

large data structures. Most applications require more storage space than the registers and

caches can provide. The main memory provides this extra space, at a cost of lower band-

width. However, this memory serves different purposes on CPUs and GPUs. Again, their

hardware implementations differ.

CPUs usually use Double Data Rate (DDR) synchronous dynamic random-access mem-

ory as their primary memory. It is a very modular solution, allowing the amount of main

memory to vary between a few gigabytes to several dozens. DDR3 has a peak transfer rate

of 12 GB/s per module. However, this bandwidth does not scale linearly with the num-

ber of modules in the system. The principal limiting factor is number of channels and the

16 background

Thr
ea

d
ID

Add
re

ss

0 31

0 31

(a) Aligned & contiguous
Thr

ea
d

ID

Add
re

ss

0 31

0 31

(b) Strided

Thr
ea

d
ID

Add
re

ss

0 31

0 31

(c) Random
Thr

ea
d

ID

Add
re

ss

0 31

0 31

(d) Non-sequential

Thr
ea

d
ID

Add
re

ss

0 31

0 31

(e) Conflicting
Thr

ea
d

ID

Add
re

ss

0 31

0 31

(f) Misaligned

Figure 2.3: Examples of memory access Patterns. Each thread within a warp issues a memory re-
quest which maps a memory address. The memory addresses in these figures can either
be an address in memory or a bank number.

bandwidth of the main bus. It varies on different systems and configurations, but the two

most commonly used technologies – Hypertransport and Intel’s Quickpath – have a main

bus bandwidth limit of around 25 GB/s.

GPUs use synchronous Graphics Double Data Rate (GDDR) random access memory,

which provides a high bandwidth at the expense of latency. The transfer rate for individual

GDDR5 modules is 48 GB/s and the total main memory bandwidth for GPUs is about

an order of magnitude higher than the CPU memory – with data rate around 230 GB/s.

However, peak bandwidth is only achievable under very specific circumstances.

The strategy used by GPUs to amortize the memory latency and maximize the band-

width is based on two factors. First, a large number of threads should be running in parallel

to generate a sufficient amount of memory requests. Second, these threads should access

memory in a very specific pattern. This last point is often the limiting factor since GPUs

typically deal with large problem sizes – at least a few thousand threads – so they have

enough concurrency. Hence a key optimization is improving memory access patterns.

This requirement is explained by the architectural features of graphics memory. Each

memory bank is 128 bytes – or 32 words –, which corresponds to the granularity of a fetch

operation. On Nvidia GPUs, memory requests are issued at a warp level. Hence, the total

2.2 comparison of cpu and gpu architectures 17

bandwidth – provided enough requests are generated – is limited by the amount of words

in a bank used by all threads in a warp. Optimizing this ratio is a process known as memory

coalescing.

Figure 2.3 illustrates some examples of coalesced and uncoalesced memory access pat-

terns. When every thread within a warp accesses a perfectly aligned and contiguous mem-

ory space (see Figure 2.3a), a single bank is fetched. This pattern gives the maximum possi-

ble throughput since every byte in the bank is used, and all the requests from the warp are

satisfied at once. If the access is contiguous but falls between two banks (see Figure 2.3f),

two transactions are necessary. Only 128 bytes will be used but 256 bytes are fetched, effec-

tively halving the useful bandwidth. When the accesses are larger than a word or strided

(see Figure 2.3b), the utilization of bandwidth decreases as the number of banks increases.

For example, if the stride is two, every other four byte word in a bank will not be used.

The number of memory transactions is then multiplied by two. If the gap between each

address is larger than 128 bytes, there are as many transactions as requests, and the utiliza-

tion drops to three percent – one word per bank. This also occurs when the addresses are

scattered in memory (see Figure 2.3c).

Some devices provide hardware support for other types of operations such as broadcast

for conflicting accesses (see Figure 2.3e), or shuffle for non-sequential patterns (Figure 2.3d).

2.2.2.2 Cache Hierarchies

Data caches hold the temporary runtime data necessary for computation. They are orga-

nized in a hierarchy: typically the closer they are to the core, the faster but also smaller

they are. When a memory request is issued, it is redirected to the closest data cache. If the

cache holds a valid and coherent reply to the request, the data is sent and the memory

request is satisfied, this is a cache hit. If the data is not present, it is a cache miss; the request

is forwarded to the next level in the hierarchy, until it is satisfied.

Most current CPUs have three levels of fully coherent on-chip caches. Their names re-

flect their conceptual distance to the core. L1 is a very low latency cache composed of an

instruction and a data cache. It is designed to maximize the hit rate. L2 is a larger cache

shared between several L1 caches. It is designed to minimize miss penalty. On the i7 3960x

presented in Figure 2.1, both L1 and L2 cache are private to each core, and have a size of

64 KB and 256 KB respectively. The L3 cache is a much larger cache shared amongst all

18 background

cores. Its purpose varies depending on the chip, but its most common usage is to reduce

delays in multi-threaded environments.

GPUs on the other hand do not have any caches or registers physically present in each

core; they are instead located on each streaming processor. Modern Nvidia GPUs have a

single non-coherent L1 cache per SMX and some data cache. The L2 cache is coherent and

shared amongst all SMXs. While its size is significantly smaller than a CPU’ L2 or L3 cache,

its bandwidth is much higher. The Kepler architecture presented in Figure 2.1 packs 15

SMXs, each having 64 KB of configurable cache, all sharing 1.5 MB of off-chip L2 cache.

If one compares the size of the available caches and the amount of parallelism offered by

each device, there is a striking difference in terms of resources per thread. Table 2.1 shows

the distribution for the i7-3960X CPU and the Kepler GK110 GPU, whose architectures are

compared in Figure 2.1. On the CPU, each thread has hundreds of kilobytes of available

cache while on the GPU the smaller caches and the higher number of threads shrinks the

size per thread to a couple of bytes. While this measure has little meaningful impact in

practice, it highlights the contrasting execution strategies and the different roles played by

memory caches on the two devices.

The reason why GPUs do not need a large cache per core lies in the way they handle

memory requests. CPU caches are implemented to offer multiple advantageous cache ef-

fects to boost performance in a multi-tasking, multi-threaded environment. GPUs, on the

other hand, are optimized for regular accesses in a lockstep execution environment. The

GPU caches use the same bank size as the main memory. If the memory requests are co-

alesced, the number of transactions can be minimized with a large cache line, and all the

bytes of the cache line will be used. For this reason, the L1 cache is used only to satisfy coa-

lesced transactions from a single request originating from multiple threads from one warp.

By contrast, the L1 cache on the CPU is used as a scratchpad space to optimize transactions

temporally within and across threads. Thus, the caches have to be larger to increase the

probably of a hit, and the cache line granularity has to be smaller.

2.2.2.3 PCIe Interconnect

While the Peripheral Component Interconnect Express bus (PCIe) is not directly part of

the memory for neither the CPU nor the GPU, it plays an important communication role

between the two. PCIe is currently the de facto standard to connect expansion cards, such

2.2 comparison of cpu and gpu architectures 19

as GPUs, to the CPU and memory in a system. The bandwidth of these buses depends

on many factors. Unlike its predecessor PCI, PCIe is not a shared parallel bus architecture.

Instead, it uses a star-shaped topology with point-to-point links that connect devices to the

PCIe root complex. Each link is composed from 1 to 32 full duplex PCIe lanes, determining

the bandwidth of the link or slot. The number of lanes is usually given as a factor when

one refers to the slot, e.g., PCIe x8 slot or PCIe x16 slot. However, this is not the only

information required to reason about the available bandwidth to communicate with a GPU.

Most systems have multiple PCIe root complexes. For example, one is embedded in the

chipset, and another one is integrated to the I/O hub of the processor. These hubs are then

linked by other means. QPI (Quick Path Interconnect) and DMI (Direct Media Interface)

are some of the most common technologies. Motherboard and graphics card manufactures

might use PCIe multiplexers or switches to increase the number of devices that can be

physically connected to one PCIe link. The overhead introduced by these multiplexers is

poorly understood, and their specifications are not available.

2.2.3 Optimization Challenges on GPUs

Optimization strategies for GPU applications are very different from those of multi-threaded

programming. Unspecialized developers are not familiar with them, and they are not nec-

essarily intuitive. This disparity is caused by the radically different execution models and

memory mechanisms between devices found in a heterogeneous system. This section ex-

plains the main performance pitfalls and optimization strategies of GPU programming.

2.2.3.1 Balancing Computation and Memory Bandwidth

Because of its scale and execution model, high utilization is much harder to obtain on a

GPU compared to a CPU. To maximize the efficiency of the device, computation and mem-

ory transactions have to be carefully balanced, which is not achievable for all applications.

For example, each SMX of a Kepler GPU can support 1,700 single precision math opera-

tions before saturating the instruction bandwidth, and the memory bandwidth saturates at

100 transactions of 128 byte lines per SMX. Problems are compute bound when they saturate

the instruction bandwidth and under-utilize the memory bandwidth. One the other hand,

a problem is memory bound if the number of requests saturate the memory bandwidth, in

20 background

T0

T1 a<0
T2

X

T3

X

X

X

X

0

1

0

0

X

X

X

1

0

1

1

b=1 b=2

1

0

1

1

0

1

0

0

0

1

0

0

1

1

1

1

b=a<0?1:2; Execution Mask

Figure 2.4: SIMT model and divergent code. Since threads operate in lockstep, divergent regions of
code have to be evaluated sequentially, introducing a waste of compute resources. An
execution mask is set at the beginning of the divergent region, holding the evaluation
condition for each thread. The mask is then negated to evaluate the alternate path and
reset after convergence.

which case compute resources are wasted. Uncoalesced memory accesses easily saturate

the bandwidth with a high number of threads. For this reason memory bound problems

are more common than compute bound problems on dedicated GPUs.

Scalability is also impaired by limited resources threads have to share, which define the

occupancy of the device. Registers and local memory, for example, are resources shared

by all threads on one SMX. If each thread requires a large amount of registers, or if a

thread group requires a large amount of shared memory, the number of in-flight threads

or concurrent groups will decrease to satisfy the dependencies. This decreases the amount

of parallelism and makes it harder to reach peak performance.

2.2.3.2 Thread Synchronization

Parallel programming inherently introduces synchronization and collaboration issues be-

tween the concurrent compute units. Critical shared resources are exposed to races and

have to be protected with locks and other exclusion mechanisms in order to ensure cor-

rectness. Fine-grained synchronization – like independent threads – makes concurrency

management relatively easy on multi-threaded CPU applications.

This is however more complicated on GPUs using the SIMT execution model, since all

threads in a block execute in lockstep, synchronization primitives are implemented in such

a way that all threads in the block must take part. Adding a barrier in a divergent block of

code results in a deadlock. Furthermore, there is no hardware support for synchronization

across all threads in the device, making the implementation of some algorithms and data

structures impossible on the GPU.

2.2 comparison of cpu and gpu architectures 21

2.2.3.3 Divergent Code

Another impact of the lockstep execution is the overhead introduced by divergent code.

Figure 2.4 shows an example of ternary statement executed by a SIMT model. Because

they operate in lockstep, threads cannot independently execute both paths in parallel and

converge afterwards. Instead, every thread in a warp executes all control flow paths taken

by any other thread. In the example presented in Figure 2.4, all threads first evaluate the

condition. Since at least one thread satisfies the predicate, the then branch is taken. Again,

this is done by all threads. Because the control flow is divergent, execution masks are used

to flag active threads. Inactive threads will remain idle instead of evaluating the instructions.

In a second step, since not all threads executed the then block, the else path must also be

executed. The execution mask is negated, and the alternative path is evaluated in the same

fashion. Finally, the execution mask is reset once the control flow converged, and all threads

proceed to evaluate the next instruction.

This lockstep evaluation introduces significant waste of resources for highly divergent

code. The control flow is essentially evaluated sequentially, which is why GPUs typically

suffer very poor performance for this type of applications.

2.2.3.4 Data Layout

Neighboring GPU threads should access consecutive memory locations in order to max-

imize bandwidth. This might require the programmer to change the data layout in the

entire application, or to implement additional transformation steps before offloading the

computation to a GPU.

A classical example of layout transformation is array-of-structure (AoS) versus structure-

of-arrays (SoA) layout when using type aggregates [SLH12]. As established earlier, AoS

introduces padding between elements and creates uncoalesced memory accesses, which

considerably degrades performance. SoA packs elements of the same type contiguously,

which increases effective bandwidth when accessing a single field but introduces a stride

between the fields.

Another limitation caused by data layout is poor performance when using irregular data

structures. Again, random memory accesses impair coalescing and decreases the effective

memory bandwidth. Because of this, graph based applications or applications using hash

tables or lists are hard to efficiently port to GPUs.

22 background

Counter-intuitively, it might be beneficial on the GPU to increase the overall amount

of operations to improve performance. This is the case, for example, in a matrix-matrix

multiply application: rotating one of the input matrices improves coalescing during the

multiply phase at the expense of two additional memory accesses per element and extra

computation for index computation. Since it is a memory bound problem, the additional

complexity is largely amortized by the resulting bandwidth gains.

2.2.3.5 Distributed memory Overheads

The host application has to explicitly exchange data back and forth with the device. This is

typically done through the PCI bus for dedicated GPUs.

Even considering the maximum achievable bandwidth – 1 GB/s per lane for PCIe 3.0 –,

it is considerably lower than the bandwidth of the global memory on most GPU devices,

which entails non-negligible communication overheads. This might become a bottleneck

and outweigh the performance gain achieved by the GPU. Optimizing communication

patterns and preserving data locality on the device is a crucial part of GPU programming.

2.3 parallel frameworks and languages

Parallel programming was once a domain restricted to the elite of software developers.

Only they possessed the extensive knowledge required to operate exotic architectures. Par-

allelism was the realm of the first supercomputers and extended to a small niche of high-

performance computing. Since then, parallel programming has become mainstream and

needs to be accessible to all programmers, expert or novice. New concepts and program-

ming models had to be created to confront this challenge.

This section presents the main frameworks and language extensions developed to achieve

better utilization of parallel systems. The relevant terminology and concepts are introduced.

A brief survey of the most commonly used frameworks demonstrates the different ap-

proaches for developing applications on multi-core CPUs and accelerators.

2.3 parallel frameworks and languages 23

2.3.1 Parallel Programming Concepts

Parallel programming is an extensively studied concept because of its importance in mod-

ern computing. This section provides a brief overview of the main categories of parallelism,

programming idioms and classes of parallel programming abstractions.

parallelism taxonomy Parallelism can be expressed in three main categories: task

parallelism, data parallelism and hybrid parallelism. Task parallelism – also called

functional decomposition – consists in dividing a program in a number of indepen-

dent tasks, which can be executed in parallel. Data parallelism – or domain decom-

position – splits data in distinct subsets on which the same task can be applied inde-

pendently. Task and data parallelism can be combined to offer better scalability.

concurrency models Parallel programs are categorized according to two concurrency

models: shared memory (SM) and message passing (MP). In the SM model, data and

states are shared amongst the different workers. In the MP model, however, each

worker has its own private data and they communicate amongst themselves using

a messaging protocol. Heterogeneous systems often combine SM and MP models;

where devices are organized in a hierarchy and communicate using MP, but a finer

grain parallelism on each device allows a pool of workers to run concurrently on a

shared memory. For example, a CPU and a GPU often have distinct main memory,

but both devices can run multiple threads, which share their respective memory.

abstraction levels There are three main levels of abstractions for parallel program-

ming frameworks: high-level, reduced abstraction and low-level. The highest level of ab-

straction is achieved when the programmer does not require any knowledge about

parallelism because it is entirely inferred – typically by compilers or code translators.

Reduced abstractions provide a simplified view of the parallel architectures. Program-

mers need to be aware of parallel programming pitfalls and need to state concurrency

in their application explicitly and carefully. While enabling reasonable scaling, these

approaches do not achieve peak performance because of their limited and simplified

model. To achieve peak performance, it is necessary to have a deep understanding

of the targeted architecture and to use a low-level programming model to take full

advantage of all the architectural features available.

24 background

algorithmic skeletons Software engineering often involves solving recurring prob-

lems to meet similar requirements. A concept of algorithmic templates called design

patterns has been developed to provide simple, efficient and robust solutions to these

fixed problems. High-order templates were developed to incorporate a functional as-

pect in the patterns, called algorithmic skeletons [Col04]. They are used extensively in

parallel programming as a solution to integrate scalability in the design phase while

being very flexible. Some of them expose task parallelism, like task farms, divide and

conquer or pipelines. Others expose data parallelism, like map, reduce or scan. Well struc-

tured programs using skeletons are much easier to optimize and to map to parallel

and heterogeneous architectures since the semantics of the algorithm is decoupled

from the implementation.

2.3.2 Parallelism on Multi-Core CPUs

The previous section introduced the three levels of abstraction: high level, reduced and

low-level abstractions. This section lists the main frameworks in each of these categories

to give an overview of how the parallel programming concepts are applied in practice on

multi-core CPUs.

The highest level is automatic parallelization [SL05]. While a lot of research has been

done on this field, it remains mainly an academic subject. Finding and exploiting a large

amount of the available parallelism automatically is extremely difficult. A provably correct

usage of critical resources without user intervention requires complex static analysis and

must be very conservative about dependencies. Some compilers like Intel’s C++ Compiler

and GNU’s C++ compiler have automatic parallelization features. Sadly, they are mainly

limited to simple loops.

To achieve better performance, user input is necessary to hint parallelism to the compiler

and provide guarantees which cannot be statically checked, like the absence of data race.

This can be done in a non-intrusive way using compiler directives. OpenMP (Figure 2.5b)

is an example of compiler directive framework allowing programmers to express both data

and task parallelism.

2.3 parallel frameworks and languages 25

void saxpy(int n,float a,float *x,float *y){
for(int i=0; i<n; ++i)
y[i] = a*x[i]+y[i];

}

(a) Sequential version

void saxpy(int n,float a,float *x,float *y){
#pragma omp para l l e l for
for(int i=0; i<n; ++i)
y[i] = a*x[i]+y[i];

}

(b) OpenMP

void saxpy(int n,float a,float *x,float *y){
vector<thread> pool; pool.reserve(n);
for(int i=0; i<n; ++i)
pool.emplace_back(thread{
[=](){y[i] = a*x[i]+y[i];}

});
for(auto &t : pool) t.join();

}

(c) C++11

void saxpy(int n,float a,float *x,float *y){
tbb::parallel_for(

tbb::blocked_range<int>(0,n),
[&](tbb::blocked_range<int> &r) {
for(int i : r) y[i] = a*x[i]+y[i];

}
}

}

(d) TBB

Figure 2.5: Multi-threaded program chrestomathy for SAXPY(a). User annotations like OpenMP(b)
guide compiler auto-parallelization. Threads are natively expressed in C++11(c). Many
libraries, like Intel’s TBB(d), provides high-level abstraction for complex tasking model.

Some languages expose concurrent structures and concepts as a core feature. This is es-

pecially the case of modern computing languages. These concepts are taking much longer

to be integrated to older languages like C++ or Fortran. The concepts of threads and con-

currency have been added to the C++ standard recently, in 2011.

A low-level API (Figure 2.5c) is provided and programmers still have to implement most

of the tasking model.

High level APIs have been developed in an effort to abstract the complexity of the low-

level details of concurrent programming. In addition to simplify the code, they often pro-

vide a much more advanced tasking model and tuned heuristics to improve performance.

The most commonly used libraries are Apple’s Grand Central Dispatch [SF12] and Intel’s

Threading Building Blocks [Rei07] (Figure 2.5d), which provide both task and data paral-

lelism and a collection of algorithmic skeletons.

2.3.3 Languages and Frameworks for Accelerators

While most concurrency libraries and frameworks for multi-core CPU aim primarily to im-

prove performance and productivity, tools for accelerators are also concerned with porta-

bility. Some programming paradigms focus on a single type of device. Alternatively, they

26 background

kernel
void saxpy(float a, float4 x<>, float4 y<>,

out float4 res<>)
{ res = a * x + y; }

(a) Brook

__global__

void saxpy(int n,float a,float *x,float *y) {
const int i = blockIdx.x * blockDim.x +

threadIdx.x;
if (i < n) y[i] = a*x[i]+y[i];

}

(b) CUDA

kernel
void saxpy(float a, global float* x,

global float* y) {
const int i = get_global_id (0);
y[i] = a*x[i]+y[i];

}

(c) OpenCL

void saxpy(int n,float a,float *x,float *y){
#pragma acc kernels
for(int i=0; i<n; ++i)
y[i] = a*x[i]+y[i];

}

(d) OpenACC

thrust::device_vector x, y;
thrust::transform(

x.begin(), x.end(),
y.begin(), y.begin(),
a * _1 + _2);

(e) CUDA/Thrust

vector<float> x, y;
bolt::transform(

begin(x), end(x), begin(y), end(y),
[=] (float _x, float _y) restrict (cpu,amp)
{ return a*_x+_y; });

(f) C++AMP/Bolt

Figure 2.6: GPGPU programming is usually expressed using specific languages matching the ex-
ecution model. These languages include Brook(a), CUDA(b) and OpenCL(c). In these
models, the iteration space control (not shown) is decoupled from the compute kernels.
Compiler frameworks, such as OpenAcc(d), provide non-intrusive support. Finally, high
level libraries like Thrust(e) or Bolt(f) offer increased productivity.

factorize and generalize common properties of classes of hardware and propose a generic

abstraction

Libraries and frameworks for accelerators take the same form as those for multi-core

CPUs: compilers tools, abstraction libraries and languages. The first sound development

kit for GPGPU programming was a framework called Brook [Buc+04], providing all three:

a new language (Figure 2.6a), an abstraction API and a compiler. It defined the modern

concept of streaming programming style and a new compute target: graphics processors.

In 2007, Nvidia released a software development kit for parallel computing on GPUs

called Compute Unified Device Architecture (CUDA) [Cud]. It extended the programming

model provided by Brook and was based on the same types of tools: a language (Fig-

ure 2.6b) and a compiler. Since then, CUDA has had an increasing number of features as

GPU architectures are becoming more complex, but it remained restricted to Nvidia GPUs

and does not support any other platform.

2.4 heterogeneous computing with opencl 27

In an effort to improve code base portability across CPUs and GPUs, Apple, along with

AMD, IBM, Intel, Qualcomm and Nvidia proposed a new approach called Open Com-

pute Language (OpenCL). It was standardized by the industry consortium Khronos in

2008 [Gro08] and representatives from CPU, GPU, embedded-processor, and software com-

panies were involved in its specifications [Opeb]. It defines a portable language (Figure 2.6c)

– based closely on the programming model offered by CUDA. A dynamic runtime enables

portability at a program binary level. The work described in this thesis is mainly based on

the OpenCL framework, and its model is discussed in more detail in Section 2.4.

Just as TBB provided high level abstractions for multi threaded applications, many

libraries have been implemented to improve the productivity of these new languages.

Thrust [HB10] provides high level functions for data access patterns and operations (Fig-

ure 2.6e), based on an API similar to the C++ Standard Template Library. Bolt [HR10]

provides a similar abstraction (Figure 2.6f) for C++AMP.

Finally, some approaches bring portability to existing languages. OpenACC [Opea] is

a standard for compiler annotations in C++ (Figure 2.6d), which provide a non-intrusive

syntax similar to OpenMP.

2.4 heterogeneous computing with opencl

OpenCL is the first widely adopted standard for heterogeneous computing. At last, the

same code base can reliably compile and run on multi-core processors, graphics cards,

FPGAs and other accelerators. An increasing number of hardware vendor provide OpenCL

support for their devices, allowing its coverage to span even further. Since its first iteration

in 2008, the standard went through three minor revisions and one major, each time improv-

ing portability and providing a richer set of features.

The programming model proposed by OpenCL and its core implementation has re-

mained the same since the original version. Section 2.4.1 presents the execution model and

explains how it is portable across many architectures. Sections 2.4.2 and 2.4.3 detail the API

of the host and device code respectively. Finally Section 2.4.4 discusses the limitations of

the OpenCL framework.

28 background

Processing
Element

Local Memory

Private
Memory

Compute Unit
Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Compute Device

Global Memory Constant Memory

Compute
Unit

Compute
Unit

Compute
Unit

Host

Host Memory

Processing
Element

Private
Memory

Figure 2.7: OpenCL Platform and Memory Abstract Model. A heterogeneous system is composed of
devices, each has a set of compute units which can process multiple elements in parallel.
Each component has its associated memory with a conceptual cost for each level.

2.4.1 A Portable Programming Model

The programming model of OpenCL is composed of conceptual representations for device

architecture, memory model and computation. These generic concepts are then mapped to

specific hardware in different ways, which is oblivious to the application built against the

model. This is the key of the execution portability offered by OpenCL. The three concepts

are detailed below.

platform model OpenCL provides an abstract hardware architecture by aggregating

properties common to multiple devices. Figure 2.7 shows the resulting platform model. The

host application contains the non-OpenCL part of the program as well as the interaction

with the model itself. It can query properties about the available platforms, which contain a

list of compute devices. Each compute device has multiple independent compute units (CU),

and each of those has local parallelism with multiple processing elements (PE).

This model can accommodate both CPU and GPU architectures. On a CPU, CUs can be

mapped to cores, while on the GPU they can be mapped to stream processors. PEs can be

thought of as a thread; they are independent workers which all run concurrently within a

compute unit.

memory model The OpenCL model also provides an abstract memory hierarchy –

which does not necessarily have to be implemented in hardware. The conceptual cost of

accessing these memories increases the further they are from the PEs, but their conceptual

size increases. Each PE contains some private memory, which is not accessible by other PEs.

PEs on the same CU share some local memory, which is not accessible from outside the CU.

2.4 heterogeneous computing with opencl 29

Compute Grid

global_id = (7,1)
local_id = (3,1)

global_size = (8,8)
num_groups = 4
work_dim = 2

Work Item

group_id = (1,0)
local_size = (4,4)

Workgroup

4,0 5,0 6,0 7,0

4,1 5,1 6,1 7,1

4,2 5,2 6,2 7,2

4,3 5,3 6,3 7,3

7,1

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6

0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7

Figure 2.8: OpenCL execution model. Computation is expressed as functions mapped to a multi-
dimensional domain called compute grid. This grid is divided in sub-domains called
workgroups. Each level has a set of properties about the domain and the position of the
element in the domain which can be queried though the API.

Finally, the device has some global memory and constant memory, which is shared amongst

all the CUs of the device.

On the GPU, this maps well to the actual architecture. Private memory corresponds to

register files, local memory is part of the L1 cache located on the SM, while global and

constant memories are located on off-chip RAM. Some GPUs provide hardware support to

improve the efficiency of the constant memory compared to the global memory.

On the other hand, CPUs do not have the same hardware hierarchy. Private memory is

still mapped to register files but all other levels are mapped to the main memory. However,

the same visibility and accessibility rules apply; and it is encouraged to use the abstract

model to express data locality whenever possible. While there is no hardware advantage

in doing this, the compiler might use semantic information from the OpenCL model to

perform more aggressive optimizations and also improve performance on the CPU.

execution model The OpenCL execution model, presented in Figure 2.8 explicitly

exposes data parallelism. A function is instantiated for each point of a multi-dimensional

domain called the compute grid. The domain is divided in sub-domains of equal size called

work groups. Each element of the work group is a work item.

The model also provides guarantees in terms of parallelism and synchronization: all

work items within a work group must execute in parallel, but the work groups themselves

are not guaranteed to be processed concurrently. This means work items within a work

30 background

group can be synchronized; but multiple work groups, and by extension the entire grid,

cannot be synchronized.

2.4.2 Architecture Agnostic Compute Kernels

The device code represents the core of an OpenCL program written in an OpenCL specific

language. Recent versions of OpenCL support OpenCL-C and OpenCL-C++, which are

based respectively on a limited subset of C99 and C++14 with some restrictions and some

extensions.

A device program is composed of a list of function definitions. It may contain several

entry points, which are functions annotated with the kernel keyword. The body of a kernel

function is very similar to a C function, with a few limitations, which are mainly due to a

lack of support for I/O, recursion and dynamic allocation.

However, the device languages provide an API for geometry processing, a comprehen-

sive set of mathematical functions and support for vector types and operations. A ker-

nel function is instantiated for each element of the compute domain, as explained in the

OpenCL execution model description. The instance can query its position in the global in-

dex space and the local block shown in Figure 2.8 by using the API functions get_global_id

and get_local_id respectively. It can also query the size of the index space, the size of a block

and the block index of the current element.

A kernel instance is computed by a PE in the OpenCL platform model, while the local

block is processed on a single CU. The abstract memory hierarchy of the model states

that CUs can share local memory, which can be used from the device code by qualifying

pointers as local. Similarly, global memory is qualified with the global keyword and constant

memory with constant.

A kernel instance also corresponds to a work item in the execution model: instances

within a work group can be synchronized using a barrier functions, but different work

groups cannot be synchronized. Only termination of a kernel function guarantees synchro-

nization across all work items in the domain.

Figure 2.6c shows an example of OpenCL-C code for SAXPY. The kernel function takes

a scalar value and two global arrays as argument. The function accesses the arrays at the

index of the current instance and performs computation for a single point in the domain.

2.4 heterogeneous computing with opencl 31

SAXPY host code in Python
1 import numpy as np
2 import pyopencl as cl
3 # Input data
4 x_np = np.random.rand(50000).astype(np.float32)
5 y_np = np.random.rand(50000).astype(np.float32)
6 # Create context and queue
7 ctx = cl.create_some_context()
8 queue = cl.CommandQueue(ctx)
9 # Allocate device buffers

10 mf = cl.mem_flags
11 x_g = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=x_np)
12 y_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=y_np)
13 # Load and build OpenCL-C program
14 prg = cl.Program(ctx, open("kernel.cl", "r").read()).build()
15 # Start kernel
16 prg.saxpy(queue, x_np.shape, None, np.float32(10), x_g, y_g)
17 # Read result
18 cl.enqueue_copy(queue, x_np, x_g)

Figure 2.9: Example of OpenCL host program in Python. The host code is in charge of allocating
memory on the device (l11-12), dispatching computation (l16) and ensuring memory
consistency between host and device (l18).

Finally, the device languages offer a collection of features for image processing and ren-

dering. A built-in image type supports common image formats and an interoperability

layer with OpenGL for rendering. These features are not used in this work and will not be

described in detail.

2.4.3 Managing Data and Computation

While the core computation is expressed in a separate device program, it is necessary to

delegate computation to the appropriate accelerator and to manage the memory coherency

of the data across host and device programs. This is the role of the host application.

The host application can be written in many different languages having an OpenCL

binding, but the original OpenCL standard provides a list of functions as a C API. This

API allows the application to list and set up devices at runtime in a platform independent

way, thus ensuring portability of the application. Figure 2.9 is an example of host program

written in Python showing the different components of a host application.

The host code is centered around execution contexts, which ensures consistency amongst

the various OpenCL runtime objects. Those objects can be devices, allocated memory or kernels.

Memory buffers can be allocated and attached to a context. Often, these buffers mirror

existing data structures of the host application, which are used to initialize data on the

32 background

(a) Single In-Order Queue (b) Out-of-Order Queue (c) Multiple Queues

Figure 2.10: Example of command queue strategies in OpenCL. 2.10a is the simplest model, where
all the actions will be executed in the order they are enqueued. 2.10b exploits task
parallelism, but it requires users to explicitly define the dependencies between tasks.
2.10c is an hybrid model where IO is processed in order and computation out of order.

device or manipulate data from the host side. The consistency between the host memory

and device buffers is explicit: data is either written to or read from the device.

Device programs are also tied to a context. They contain a collection of OpenCL kernels

used by the application. Programs can be JIT compiled at runtime from OpenCL-C/C++

source, and the resulting binary run on all the devices sharing the same execution context.

Kernel objects can be created from a program using the name of the kernel function.

OpenCL-C kernels do not contain any information about the domain they will be applied

to; this has to be specified in the host application. When starting a kernel, the API describes

the shape of the grid and blocks, and an offset in this domain.

Memory communication and kernel launches are managed by command queues, which are

specific to a single device. While OpenCL is used primarily for data parallel programs, its

execution model supports both data parallelism and task parallelism, since most OpenCL

actions are asynchronous. Data parallelism is expressed at a kernel level through grid

processing, and task parallelism is expressed using command queues.

Task parallelism can be achieved by creating multiple queues. If the device supports con-

current tasks, they will be executed in parallel. Another way to express task parallelism is

to use out-of-order queues instead of the default in-order queues. Out-of-order queues en-

2.4 heterogeneous computing with opencl 33

able the runtime to re-order actions and execute them in parallel if possible (Figure 2.10b).

While it does not guarantee parallelism, it relaxes the constraints of in-order queues, which

behave as First-In First-Out queues and guarantee completion of a task before starting

another (Figure 2.10a). In-order and out-of-order queues can be combined to define com-

plex pipelines. Figure 2.10c shows an example of application using three command queues.

The input and output data are fed sequentially in separate in-order queues to guarantee.

Computation uses an out-of-order command queue to exploit task parallelism.

To avoid data races and incoherent results, conflicting tasks in multiple queues or out-

of-order queues must be carefully scheduled in the host code. This can be expressed either

using a dependency mechanism or synchronization primitives.

The dependency mechanism is expressed through event objects. Every action pushed in a

command queue creates an event representing it. The command can also be given a list of

events representing previously enqueued tasks. It can only start once all its dependencies

have finished. This allows programmers to build complex task graphs of dependent actions

to expose task parallelism while ensuring the coherency of the scheduling.

It is also possible to manage asynchronous tasks using synchronization primitives. They

can be expressed either by launching a blocking action in a command queue or using

an explicit wait for a list of events. Both will block the execution of the host program

until completion of the operation. A synchronizing command might implicitly synchronize

other pending operations, for example precedent tasks in an in-order queue. Therefore it

is important to keep track of the synchronization points between the host and the device

when moving data from one to the other in order to maintain coherency of the data.

Using a mix of task and data parallelism is complex. An incorrect scheduling is difficult

to spot, since it does not generate an error in the program, but rather introduces wrong

output. For this reason, very few programs take advantage of task parallelism.

2.4.4 Limitations of the OpenCL Model

While OpenCL provides a good hardware agnostic architecture, some aspects of the pro-

gramming model still prevent programmers from writing high-performance code efficiently.

This is because the optimizations required to achieve peak performance on a particular de-

vice are inherently architecture specific. Section 2.2.3 listed some of these differences in

34 background

the context of CPU versus GPU optimizations, but similar differences might exist between

devices of the same type also.

An example of such optimization is choosing an appropriate data layout, as presented

in Section 2.2.3.4. There are many ways of representing type aggregates in memory, either

by changing their ordering, or changing their type altogether, and this can affect perfor-

mance by an important factor. For instance, an efficient representation of matrices on the

CPU is row major, because it improves intra-thread data locality. However, on the GPU,

a column major representation, prioritizing inter-thread locality, allows adjacent threads

in a group to access consecutive data in memory to maximize the bandwidth utilization.

For applications using type aggregates, it is also common to switch between structures-of-

arrays and arrays-of-structures depending on the type of computation being applied. For

image processing, for example, a color image can be represented either with interleaved or

independent channels.

Such optimizations have side effects beyond the compute kernels and require a substan-

tial re-writing of the host program, introducing additional scatter-gather steps to shuffle

the data, which might or might not be beneficial. Thus, these transformations are often not

considered, and more effort is spent on optimizing computation kernels.

2.5 towards portable intermediate languages

Section 2.3.3 listed high level programming tools for heterogeneous systems, and Sec-

tion 2.4 provided a more detailed description of the OpenCL framework, which is con-

sidered as a low-level programming model by the community. In this section, we describe

even lower level languages, typically embedded in compiler frameworks, which also start

to accommodate heterogeneous systems.

2.5.1 Standardization of Intermediate Representations

To improve portability, frameworks like OpenCL use just-in-time compilation of the code

executed on the accelerator. However, this compilation has a non negligible cost, since all

steps of the compilation have to be performed, from frontend to optimization to backend.

To reduce the overheads, some lower level alternatives have been proposed.

2.5 towards portable intermediate languages 35

OpenCL-C
Source Code

Frontend

LLVM
Backend

SPIR

OpenCL
Vendor

Implementation

LLVM
Optimizer LLVM-IR

Managed Compilation OpenCL Vendor JIT Compilation

clCreateProgramWithSource

clCreateProgramWithBinary

OpenCL
Device

Figure 2.11: OpenCL device program compilation alternatives. OpenCL-C sources can either be
loaded and compiled directly through the OpenCL API. Alternatively, users can im-
plement their own compiler and load the program as a binary form using SPIR.

Nvidia has been using a low-level intermediate language for the CUDA framework,

called Parallel Thread eXecution (PTX). This was an effort to improve compatibility across

generations of devices with a slightly different Instruction Set Architecture (ISA). PTX is

the target of the CUDA compiler, and a separate backend compiles PTX code to the actual

target ISA.

In order to bring similar functionalities to OpenCL, the Khronos group introduced the

Standard Portable Intermediate Representation (SPIR) specifications [Spi]. SPIR is a much

lower level code than OpenCL-C, based on Low Level Virtual Machine (LLVM)’s interme-

diate representation. SPIR code can be loaded into an OpenCL implementation as a device

binary program containing kernel functions. Most of the OpenCL vendor implementations

are already based on LLVM, making the adoption of this new standard straightforward.

However, it allows other languages and frameworks also based on LLVM to benefit from

the OpenCL runtimes.

Another low-level language specification has been developed as part as AMD’s Hetero-

geneous System Architecture (HSA) initiative: HSAIL. This provides a virtual ISA and an

intermediate translation language which it mapped at runtime to a vendor ISA. Its goal is

to provide a common ISA to allow existing languages to offset computation to multi-core

CPUs, GPUs and other devices.

36 background

define spir_kernel void @saxpy(float %a,float addrspace(1)* nocapture %x,
float addrspace(1)* nocapture %y) {

entry:
%call = tail call cc75 i32 @_Z13get_global_idj(i32 0) nounwind readnone
%arrayidx = getelementptr inbounds float addrspace(1)* %x, i32 %call
%0 = load float addrspace(1)* %arrayidx, align 4, !tbaa !8
%arrayidx1 = getelementptr inbounds float addrspace(1)* %y, i32 %call
%1 = load float addrspace(1)* %arrayidx1, align 4, !tbaa !8
%2 = tail call float @llvm.fmuladd.f32(float %a, float %0, float %1)
store float %2, float addrspace(1)* %arrayidx1, align 4, !tbaa !8
ret void

}

Figure 2.12: SPIR representation of SAXPY. Using a low level representation enables compilers to
decouple computation from high level languages and architecture specific backends.

2.5.2 A Closer Look at LLVM and SPIR

Low Level Virtual Machine (LLVM) is a compiler toolchain. It is combined with Clang to

provide a three-phase compiler. Clang is a frontend for C based languages; it supports C,

C++, Objective-C and OpenCL. The frontend generates an Intermediate Representation (IR),

called LLVM-IR. LLVM provides a set of passes in the middleend to transform and optimize

the IR. Finally, LLVM provides a collection of backends to generate binaries from the IR.

The backends can be used as part of the compilation pipeline but also at runtime using a JIT

compiler API. Amongst the many backends, LLVM can generate X86, PTX and Standard

Portable Intermediate Representation (SPIR) code.

SPIR is a recent standardization of a subset of LLVM-IR. Similarly to PTX for CUDA,

SPIR is a compiler oriented middleware representation providing a platform agnostic low-

level code which can be compiled by a vendor specific compiler. SPIR can be used by any

OpenCL 2.0 device – as opposed to Nvidia devices only for PTX. While it does not address

the technical limitations of OpenCL discussed in Section 2.4.4, SPIR has several advantages

and aims to widen the use of OpenCL. By providing a standard middleware, SPIR decou-

ples the device code from OpenCL-C and allows other frontends to generate code usable

by the OpenCL runtimes. An example of SPIR program is shown in Figure 2.12.

2.6 stencil computations

Stencil computation [MRR12] is a frequent computational pattern present in many domains,

such as image processing, algebra or continuous and discrete physics simulations. It is used

2.6 stencil computations 37

Figure 2.13: Example of stencil computation: simple Edge detection filter using a 9 point stencil. A
function defined in the stencil specification is instantiated for each element of the input
domain in to the output domain.

as a case study in Chapter 5 to explore hardware specific optimization techniques. This

section introduces the properties and terminology of this compute pattern, and exposes

the challenges of distributed stencil computation.

2.6.1 Stencil Pattern

Every point of a domain is updated, often iteratively, as a function of its surrounding

elements. An example of a simple edge detection algorithm is shown in Figure 2.13. It can

be defined by three characteristics: its domain, the stencil operator and the boundary conditions.

stencil domain The computation domain of a stencil, also called volume, can take

many forms. For regular stencils, it is expressed as a multi-dimensional Cartesian grid,

where the computation is carried out at each point. The dimensionality of the volume de-

pends on the application: signal processing typically uses one-dimensional volumes, image

processing two-dimensional images and physics simulations are often three or four dimen-

sional.

stencil operator The stencil operator represents the point-wise computational pat-

tern which is mapped to each element of the domain. It is characterized by an access pattern

of adjacent elements, known as the stencil shape, and a function computing the value of the

domain at the next time step.

Stencil shapes have very varied forms; they are usually defined by the number of neigh-

boring points accessed. Figure 2.14 shows various examples of stencil operators, from a

single-point computation without spatial dependency, to a 64-point 3D stencil.

38 background

Input Element Output Element

Figure 2.14: Example of stencil shapes in 1, 2 and 3 dimensions. Stencil shapes represent the location
of the neighboring elements accessed from the stencil kernel with respect to the element
being processed. The same access pattern is applied across the entire domain but it does
not have to be regular or symmetrical.

The maximum offset in any dimension defines the space-order of the stencil. The operators

from Figure 2.14 have space orders between 0 and 2. Similarly, the time dimension is asso-

ciated to time-order. Operators reaching further than one timestep are called high time-order

stencils.

boundary condition The spatial dependencies of the operator cannot be satisfied

at the boundaries of the domain. Some applications avoid this problem by only computing

the inner parts of the domain, ignoring the edges. Others define a specialized behavior to

dictate how the value of the neighbors falling outside the domain should be computed.

These different strategies are called boundary conditions.

The most common, represented in Figure 2.15, are:

• Mirror and bounce: the distance vector outside the domain is reversed, respectively

including and excluding the last elements. For multi-dimensional overflow, the vector

can be reverted using by symmetry or antisymmetry.

• Periodic wrap-around: the distance overflowing the domain in each dimension is trans-

lated to the opposite side, creating an n-dimensional torus.

• Clamp: the elements outside the domain are ignored. This strategy often involves a

specialized version of the stencil operator to account for the missing elements.

• Fixed and interpolate: use either a constant value or an interpolation function to com-

pute elements outside the domain.

• Extend: the closest element from the domain is used.

2.6 stencil computations 39

A B C F F E

F E D

F A B F F F

F

F 0 0

F f()

D E

A B C D E

A B C D E A B C D E

A B C D E

A B C D E

A B C D E

A B C D E F

Mirror

Bounce

Extend
Interpolate

Fixed

Wrap-around

Clamp

f()

Domain

Stencil Shape

Figure 2.15: Examples of boundary condition. A five point stencil is applied on the edge of a 1D
domain. The spatial dependencies outside the domain can be retrieved using different
strategies, called boundary conditions.

2.6.2 Distributed Stencils

Since stencil patterns are very regular, computing time and memory traffic tend to grow

rapidly and linearly with the number of elements. This dramatically impacts performance,

especially for volumes with a high dimensionality. For this reason, and because stencil

computation is a fundamental algorithm in many domains, parallel implementations of

stencil computations are necessary to process large domains in a reasonable time frame.

Despite being embarrassingly parallel, stencil computations are not easy to map to a

distributed memory model. Since each element has spatial dependencies to other elements

of the volume, the domain cannot be split in independent sub-domains without breaking

these dependencies at the boundaries.

To distribute a stencil computation, the sub-domains must overlap to satisfy spatial de-

pendencies at the boundaries. This creates redundant parts of the domain called halo regions.

The coherence of the halos has to be carefully maintained, which adds considerable com-

plexity to the code. Furthermore, elements at the boundaries are loaded multiple times by

different sub-domains, which introduces redundancies and impairs scalability.

For iterative stencils, extra complexity is introduced by the fact that there is also tem-

poral dependency combined with spatial dependencies. At each iteration, the elements at

the boundaries of the sub-domains cannot be computed, which shrinks the sub-domains

after each timestep. In order to compute multiple timesteps, the amount of overlap can be

increased.

Figure 2.15 shows an example of halo consumption with different stencil shapes for a

halo size of 2. The stencil used at the right-hand side uses a single neighbor, but the tiles

overlap by two elements, hence two timesteps can be computed. The same halo size with

40 background

Halo Partition

T
im

es
te

p

i

i+1

i+2

Computed elements

Consumed elements
i

i+1
Halo elements

Halo Partition

Skipped elements

x
y

x
y

T
im

es
te

p

Figure 2.16: Halo consumption in a 2D domain. When decomposing a stencil, the tiles have to
overlap to satisfy the spatial dependencies at the edges. The halo has to be at least
as large as the stencil shape (size 2 on the left). Oversized halo allows for multiple
timesteps to be computed before the halo is consumed (right).

a larger stencil share – shown on the left-hand side – consumes the entire halo at once, so

only a single timestep can be computed.

Once a halo region has been consumed, it must be updated with the fresh values from the

neighboring sub-domains. This process is called halo swapping. It requires a synchronization

and data exchange between the devices, which impairs performance and limit scalability.

To reduce the frequency of these swaps, the size of the halo can be increased, which allows

multiple timesteps to be independently computed.

However, increasing the amount of overlap has two negative consequences. First, the ele-

ments in the halo regions are effectively processed multiple times by different tiles, which

introduces memory access and computation redundancies. Second, the cost of the commu-

nication themselves is greater, since the size of the halos to swap has increased.

Therefore, there is a trade-off between the benefits from processing sub-domains in par-

allel and the overheads it introduces.

2.7 summary

This chapter has provided background information about the main architectures encoun-

tered in heterogeneous systems, and the programming models used to abstract them. In

particular, the OpenCL model has been described in detail and its limitations exposed.

More focused background work was presented to define the terminology and techniques

used in the following chapters.

The next chapter describes research related to improving programmability of heteroge-

neous systems.

3 R E L AT E D W O R K

This chapter introduces the state-of-the-art research which influenced our work. There is

a significant body of related work in the field of heterogeneous computing. However this

chapter focuses mainly on GPU programmability and its evolution since the development

of the programming language Brook [Buc+04] in 2004. The use of GPGPU programing has

become increasingly popular since then, and a wide variety of tools and techniques have

been developed.

Section 3.1 presents the prior work investigating generic solutions to the issues of pro-

grammability and performance portability for heterogeneous systems, and on GPUs in

particular. The section covers a range of optimization techniques and abstraction frame-

works; illustrating the impact of the required transformations on the user code and how

this can be mitigated by libraries.

Section 3.2 introduces the work related to Helium – the dynamic OpenCL optimizer

presented in Chapter 4. The section covers dataflow analysis using the OpenCL model and

compiler-based optimizations techniques applied on classical and heterogeneous systems.

Some influential insights about JIT compilation and staging are also discussed in the same

section.

In Section 3.3, we discuss research relevant to stencil computations and the Partans

framework. The section presents general optimization techniques for this particular pat-

tern on various architectures. We present existing efforts towards improving performance

on single and multiple devices. The main stencil computation abstraction frameworks, com-

pilers and code generators are then presented and compared.

Sections 3.2 and 3.3 each discuss the limitations of prior works and the contributions of

Helium and Partans are presented in their state-of-the-art contexts.

41

42 related work

3.1 heterogeneous system optimizations

Heterogeneous systems present a considerable programming challenge on all fronts: pro-

ductivity, performance and portability. The knowledge of complex architecture, level of

expertise required and abstraction necessary to reconcile often contradictory optimization

strategies have been hinted in Section 2.2.3. This section presents recent research providing

general insights and techniques used to remedy this situation.

Section 3.1.1 lists abstraction frameworks and non intrusive techniques improving pro-

ductivity or providing a simplified and unified interface to software developers. Section 3.1.2

presents prior work on GPGPU optimization techniques. Both provide a complementary

approach to improve programmability for heterogeneous systems.

3.1.1 Abstraction Frameworks

Low-level optimizations can be hidden from the users, either by proposing high level APIs,

or by providing transparent software stacks. These approaches decouple the core seman-

tics of the program from the optimization process, improving productivity and achieving

reliable performance. This section discusses both techniques.

high level libraries Many libraries try to hide the complexity of heterogeneous

systems by providing a very high level interface to the user. These are usually based on al-

gorithmic skeletons, which provide convenient semantic building blocks without being tied

to a specific implementation, giving the underlying framework a high degree of freedom in

the optimization and tuning space. SkePU [EK10], SkelCL [SKG11] and Muesli [EK12] are

three similar skeleton based libraries where users can combine algorithmic patterns such

as Map, Zip, Reduce or Scan to create more complex applications.

The three libraries adopt comparable abstraction concepts. Each pattern requires an ele-

ment function, which is a unary or binary operator. It is specified as a plain text string

in SkelCL, defined using a macro based DSL in SkePU or written directly in CUDA

for Muesli. The libraries then combine specific high level knowledge about the skeletons

and the element functions to generate optimized code. Muesli and SkePU can generate

OpenMP and CUDA code; Muesli additionally provides MPI support, which allows the

distribution of the computation on GPU clusters. SkelCL is based solely on OpenCL.

3.1 heterogeneous system optimizations 43

Data consistency and communication between the host and the device is achieved auto-

matically in SkePU and SkelCL using special parallel container types, and the process is

partially automated in Muesli using user-defined container types and explicit communica-

tion strategies. Domain-specific knowledge about the skeletons allows the three libraries to

split input arrays safely and distribute the computation amongst multiple devices with a

minimal impact on the application source code despite the underlying complexity.

opencl implementations Some research efforts aim to extend the functionality of

existing OpenCL applications automatically, without modifying the source code. These ap-

proaches provide alternative OpenCL implementations, seamlessly substituting the vendor

implementations. The customized runtimes exploit some characteristics of the OpenCL

model to transparently distribute computation.

SnuCL [Lee+10; Kim+11; Lee+11] automatically distributes computation written for a

single device to all available devices on the same host or even on a cluster. It also performs

load balancing amongst the devices by profiling a sample run. The framework extracts se-

mantic information from the OpenCL features. A source-to-source translator then generates

an optimized program in a different paradigm – in this case C and CUDA.

FluidiCL [PG14] also provides an OpenCL runtime to distribute single-device applica-

tion between a CPU and a GPU. Optimizations and compiler transformations automatically

improve performance and communication between the host and the device. The main lim-

itation of FluidiCL is that kernels cannot execute asynchronously.

dOpenCL [KSG13] exposes all devices in a cluster as a single unified host platform.

Multi-device OpenCL application scale seamlessly to multiple hosts, without the burden

of writing complex code to handle the multiple communication layers. The framework

automatically generates MPI communication between the hosts to emulate the OpenCL

memory operations as if it were happening on a single host.

These high-level abstraction frameworks leverage a collection of optimizations, and

present a common interface to hide their complexity. As such, this approach is easily ex-

tended by integrating novel techniques or targeting new devices. The applications built on

top of the abstraction are oblivious to these changes, and enjoy better performance trans-

parently as the underlying frameworks are becoming more advanced. The next section

describes the most common optimization techniques used for GPU programming.

44 related work

3.1.2 GPGPU Optimization Techniques & Insights

New optimization techniques have to be developed for each architecture in order to achieve

peak performance. This is especially the case for GPUs, where the architecture is radically

different from traditional CPU hardware. This work is also motivated by observations that

the performance gap between optimized and unoptimized code is several orders of magni-

tude. The main optimization techniques are described below.

memory coalescing Optimizing memory access patterns is of primordial impor-

tance on most GPU architectures. The architectural reasons for this requirement and the

concept of memory coalescing have been introduced in Section 2.2.2. A lot of research ex-

plored ways to guarantee memory coalescing, either enabling it by construction through

abstraction or introducing it in non-coalesced code via compiler transformations.

Sung, Stratton, and Hwu [SSH10] explored different multidimensional volume flattening

strategies for structured grids. A code analysis pass extracts the memory accesses for each

array in a kernel function and expresses them in an affine form. If the access patterns match

some predetermined criterion, an optimized flattening function is generated by combining

rotation and padding transformations. The resulting layout is compared to structure-of-

array (SoA) and array-of structure (AoS) layouts, achieving a speedup of up to 30% over

the best of the two in their evaluation. For matrices, the generated code also outperforms

both row-major and column-major representations by a slight margin.

The same authors performed a careful analysis of SoA versus AoS layouts in terms of

memory bandwidth [SLH12]. The authors propose an alternative layout strategy called

Array-of- Structure-of-Tiled-Array (ASTA), which preserves memory coalescing, like SoA,

while limiting the distance between multiple fields in complex datastructures, which is

the strength of AoS. This is achieved by slicing an AoS representation and using a SoA

layout within the tiles. The transformation is done on-the-fly at runtime while the data is

transparently marshaled to be sent to the GPU, at a much lower overhead than AoS to SoA

transformation. The proposed layout achieved roughly the same performance as SoA on

the device but is substantially faster when factoring in the communication costs.

Jang et al. [Jan+11] investigated similar data layout optimizations to improve memory

coalescing for loop nests. They implemented rotation, shift and strided access as generic

compiler transformation rules. The optimizer is free to generate multiple versions of the

3.1 heterogeneous system optimizations 45

same array and apply a distinct optimization set to each copy in order to improve dif-

ferent accesses. In addition to layout transformation, global memory can be promoted to

a more specialized space like texture or constant memories whenever possible to further

increase performance. In the same paper, the authors show that vectorization is also a

very effective transformation to improve memory usage by avoiding thread stalls. The two

transformations target different types of accelerators: improving data layout is more effi-

cient for scalar-based architectures like Nvidia GPUs, while vectorization is more effective

on vector-based architectures like AMD GPUs.

thread coarsening GPU kernels routinely launch hundreds of thousands of threads.

This is necessary to exploit a high degree of parallelism. However, it might be inefficient in

terms of resource utilization. Some kernels exhibit a large amount of redundancies across

threads. It is the case, for example, of common memory requests, or a high control-flow

to floating-point ratio in the case of fine grained computation. An optimization known as

thread coarsening [USQ12] consists of evaluating multiple work items within a single thread.

auto-tuning The optimal set of parameters is hard to find for any problem. However,

they are necessary to maximize device occupancy. Many factors impact performance, and

they are not necessarily intuitive even for expert programmers. Automated techniques are

an efficient solution to avoid manually navigating in a complex space.

Auto-tuning can be used to adapt the OpenCL model automatically to a given architec-

ture. For example, Magni et al. [MDO13; MDO14] developed a thread coarsening compiler

transformation coupled with a machine learning based auto-tuning mechanism to choose

the best thread coarsening factor. This approach leads to an average performance improve-

ment of 33% for a wide range of benchmarks across different device types.

The same techniques can be applied to algorithm parameters, which can be explicitly

provided by the user or automatically discovered through profiling.

GADAPT [LZS09] is an auto-tuning framework for CUDA applications. It predicts near-

optimal configuration for a range of pragma-annotated parameters. A model is trained to

recognize performance critical patterns in the code and their tuning parameters as well as

their sensitivity to compiler transformations such as tiling and loop unrolling for a range of

inputs. The result of the optimizer is an input-adaptive program which uses a performance

predictor to select optimal parameters for a yet-unseen input.

46 related work

Auto-tuners can also be integrated to high level abstraction libraries. This provides a

non-intrusive way to improve performance for applications using these APIs.

Seo et al. [Seo+13] investigated a profiling-based tuner integrated to SnuCl to select an

optimal workgroup size on multicore CPUs. Choosing efficient index space decompositions

allows an improved data locality and enhances the effect of other transformations like

thread coarsening. Memory accesses gathered during a profiling stage are represented in a

polyhedral model. This information is then used to assess cache usage and load balancing,

which are optimized for a particular architecture. A code generator can produce different

variants of the code with distinctive characteristics. A heuristic-based algorithm simplifies

the search space, and the remaining versions of the code are exhaustively explored in order

to find the optimal optimization set.

Dastgeer, Enmyren, and Kessler [DEK11] investigated an auto-tuning framework for

SkePU using machine learning and performance prediction. Communication costs and

kernel runtimes are estimated using micro-benchmarks. An off-line tuner then predicts the

optimal domain decomposition on GPUs or the optimum OpenMP parameters accurately.

distributed computation Using multiple devices in a single application is advan-

tageous when the computation can be divided into independent tasks. However, schedul-

ing strategies must be implemented to choose the devices, determine an efficient mapping

and dispatch computation.

Augonnet et al. [Aug+10] integrated a data-aware scheduler to the StarPU framework.

The authors developed a data transfer overhead predictor which impacts the scheduling

decisions: since data transfer to and from a dedicated accelerator might overshadow the

performance benefits, the ability of assessing these costs in a complex task graph can dra-

matically improve performance. The task scheduler also exploits the information from a

task graph to overlap a task execution with memory operations required by a subsequent

task, overlapping computation and communication.

Alexandre, Marques, and Paulino [AMP14] developed a dynamic scheduler support-

ing multiple GPUs based on the skeleton library Marrow [Mar+13]. They rely on micro-

benchmarking to estimate the relative performance of each device in a heterogeneous sys-

tem in order to guide the work distribution and domain decomposition. The authors report

that the PCIe bus, used as the de-facto interconnect medium between multiple dedicated

accelerators is the main scalability bottleneck for distributed computing.

3.2 compiler and dynamic optimizations 47

3.2 compiler and dynamic optimizations

The previous section presented generic optimization techniques and frameworks for het-

erogeneous systems. These mechanism show promising results. However, they are highly

intrusive and not easy to put in place. Other approaches try to integrate these optimiza-

tions into existing code via compilers or automated translation. The Helium framework,

presented in Chapter 4, is an example of a dynamic OpenCL optimizer which applies op-

timizations in a non-intrusive way by building a task graph at runtime and using a JIT

compiler to generate staged optimized device code. This section presents the most relevant

work in the areas of JIT compilation, dynamic optimizations and code staging.

3.2.1 Compiler Analysis & Profilers

Languages like OpenCL and CUDA lack a unified view of the entire execution flow. The

device and host codes are compiled and executed in isolation, creating an information gap.

Some frameworks address this by performing a system-wide program analysis.

Mistry et al. [Mis+11] developed a profiling technique for analyzing data flow in multi-

kernel OpenCL applications. The output is a timeline where the start and end time of

each kernel invocation is plotted, as well as the time it was pushed in the queue. Their

framework does not automatically improve performance but allows programmers to iden-

tify bottlenecks by manually inspecting a profiling trace. One of the examples they provide

highlighted the different behaviors of a single application on various architectures. The

exact same sequence of OpenCL commands has different bottleneck depending on the

device.

Jablin et al. [Jab+11] explored a CPU-GPU communication framework to track buffer us-

age and manage memory allocation and transfers between host and devices automatically

for CUDA programs. Explicit communication is removed from the applications and their

framework infers the communication patterns from the kernel invocations and optimize

them. This scheme unwinds complex cyclic communication patterns into acyclic schemes,

improving data locality and decreasing the number of memory transfers between host and

device.

48 related work

3.2.2 Compilers for Heterogeneous Systems

Some research projects investigated the possibility to use source-to-source compilers to

adapt existing parallel paradigms to heterogeneous systems automatically. This is a very

difficult task since all paradigms are slightly different and exploit different aspects of par-

allelism. A common approach to this problem is to extract a high level representation of

the code to transform it without modifying the semantics of the application.

Lee, Min, and Eigenmann [LME09] described a compiler framework for automatic source-

to-source translation of OpenMP code to CUDA. It uses model similarities between loop

level parallelism from OpenMP and the CUDA grid parallelism. The translation is divided

into two phases: the first stage optimizes the OpenMP annotations and transforms the

blocks into equivalent constructs which are friendlier to common GPU architectures. The

second phase translates the annotated blocks into CUDA by generating kernel functions.

Grewe, Wang, and O’Boyle [GWO13] explored a similar approach for OpenMP to OpenCL

transformations. Their compiler translates the annotated regions of code to OpenCL and

integrates it to the OpenMP implementation. A runtime system coupled to a performance

predictor makes the decision to run either the OpenMP or the OpenCL code at runtime,

depending on the runtime context of the application. They also investigated automatic

compiler optimizations of translated OpenMP code to match the GPU architecture more

efficiently. The transformations proposed include loop rotation, memory indexing optimiza-

tions and local memory prefetching.

3.2.3 Dynamic Optimization & Staging

Optimizing code at runtime leads to better performance than any statically optimized code.

The transformations take advantage of runtime values and invariants which cannot be

exploited statically. This process is called dynamic optimization and relies on dynamic

compilation, which can be divided into two categories. The first category is just-in-time

compilation, where the compilation from source code is performed ahead of the initial exe-

cution but delayed until then. The second is selective dynamic transformation. It is a form

of staged compilation where only a subset of code – usually delimited by user annotations

– is iteratively compiled. The work presented in Chapter 4 is based on techniques borrowed

from both approaches, for which the related work is described below.

3.2 compiler and dynamic optimizations 49

jit compilation Compilation can be delayed until the code has to be executed. It

can then use the execution context which was not accessible statically for optimizations.

OpenCL and the forthcoming CUDA 7 [Har15] embed a just-in-time compiler to generate

device code at runtime, improving portability across devices. Just-in-time compilers have

been used in other contexts and languages and have been extensively studied.

Adl-Tabatabai et al. [AT+98] and Krall and Grafl [KG97] independently implemented JIT

compilers integrated into the Java Virtual Machine (JVM). They both generate native code

from Java Bytecode after a single linear traversal of the instructions. They implement the

same optimizations: efficient register allocation, common subexpression elimination and

static predicate evaluation.

Dubach et al. [Dub+12] proposed Lime, an extension to the Java array notation allowing

a JVM compiler to offload computation to an accelerator. It uses properties of the Java lan-

guage such as immutability and strong isolation in order to prove the absence of side effect

in a code fragment, hence the legitimacy of decoupling the computation. The annotated

source code is analyzed and used by a static compiler to generate OpenCL code and the

Java code required for interoperability. Data layout transformations and communication

with the accelerator are fully automated and optimized.

selective dynamic transformation & staging Re-compiling the same region

of code in specific contexts allows a different set of optimizations to be applied. Switching

between several specialized version of a code fragment typically outperforms any static or

JIT optimizations. This technique is generally used to accelerate languages where compute

intensive parts of an application can be isolated or marked for optimization.

Recent JVMs use complex dynamic optimization frameworks in order to identify fre-

quently executed sections of Java Bytecode, or “hot spots” and specialize them or generate

native code. Jalapeño [Arn+00] and Graal [Gra] are the most recent compiler extensions for

the JVM. Jalapeño performs relatively safe transformations using flow insensitive optimiza-

tions while Graal applies more aggressive speculative optimizations and must implement

a cautious fallback mechanism in case the specialization is not applicable.

Project Lancet [Rom+13] is a framework for interacting with the Java JIT compiler though

a high level API. Instead of automatically inferring dependencies and optimizations, the

Lancet compiler relies on user annotations and explicit specialization, allowing users to

50 related work

control the transformations. For example, variables can be “frozen” to indicate that they

become invariant and are strong candidates for optimization.

Beckmann et al. [Bec+04] presented a multi-stage programming framework for C++.

Users invoke a JIT compiler explicitly to partially specialize specific regions of code. This

enables compiler optimizations such as constant propagation, loop unrolling or vectoriza-

tion to make use of runtime values. It also allows users to define task graphs where the

actions are collectively optimized, generating cross-action optimizations like loop fusion.

3.2.4 Limitations of Prior Work and Discussion

The works described in this section tend towards a common goal, which it to increase the

applicability of compiler transformations, either offline or at runtime. Each technique has

distinct strengths and weaknesses, which are discussed in this section. We also introduce

some of the contributions made by Helium, the dynamic OpenCL optimizer described in

Chapter 4. in order to position it in the vast landscape of existing tools and techniques and

distinguish it from prior work.

While source-to-source translators are attractive since they don’t require any code base

change, they have limited applicability and success. This is due to the difficulty in efficiently

translating concepts from one paradigm to another. Furthermore, they are heavy transfor-

mations which can be error prone and slow. Thus, source-to-source compilers are not well

suited to improve adaptability of dynamic or complex applications. However, since they

have to extract high level semantic information from the input code in order to translate

it, they can perform very aggressive optimizations and transformations, like restructuring

large parts of the code. These optimizations are rarely achieved using other techniques

since they require a global analysis and a high level understanding of the code which is

not present and very difficult to recover from a lower level.

JIT compilation is a much more efficient technique to improve adaptability of the code,

as demonstrated by OpenCL and CUDA. Delaying computation can take advantage of

runtime knowledge such as runtime code invariants or even the type of device targeted

to guide compiler optimizations in a way that outperforms any static optimization. How-

ever, the high overhead introduced by integrating the full compilation pipeline makes it

impractical for staging. This limits the applicability of one-off ahead-of-time compilation

3.2 compiler and dynamic optimizations 51

for highly dynamic applications where specializing the code at different points of the exe-

cution would result in much more efficient optimization sets due to the specific contexts.

Selective dynamic optimizations and staging provide an answer to this problem: they are

strategies complementary to ahead of time compilation (either static or runtime), where the

same transformations are applied multiple times, creating specialized variants of the code.

By operating at a low level, they are typically more lightweight than JIT compilation. How-

ever, these techniques often require users to hint the optimizations, either by instrumenting

the code or by taking control of the JIT compiler, which severely limits applicability and

efficiency. Optimization candidates can be discovered automatically using trace profiling,

but it creates a high overhead phase. The other major drawback of profile-driven staging is

that the code is often speculatively optimized, which entails two limitations: specializing a

region of code is only beneficial if it is executed again after the optimization and a number

of safeguards have to be in place to ensure a safe fallback in case the optimization does not

fully match the planned execution, which introduces overheads.

In contrast to the existing approaches, we combine techniques from all three levels to

develop a dynamic OpenCL optimizer, Helium.

Similarly to a source-to-source compiler, Helium reconstructs a very high level repre-

sentation of the program semantics to guide the optimization process and guarantee the

validity of aggressive transformations such as kernel fusion. Instead of implementing com-

plex and fragile static analysis to recover the program semantics, Helium uses the discrete-

memory and kernel-based OpenCL model to build the task and dataflow graphs during

the program execution. This information can be taken into account during the runtime

compilation phase.

OpenCL device code can be optimized against runtime information using the JIT compi-

lation. However, Helium pushes this model further by keeping a low-level representation

of the device program in its embedded compiler.

This intermediate representation is used throughout the application to implement light-

weight staging. Each execution site is further optimized, using the runtime knowledge

available then. Performing the transformations at a low-level presents several advantages.

First, it introduces negligible overheads compared to full-blown compilation – which is the

main strength of dynamic optimizations. Second, high-level runtime information is used

to guide the optimization process and avoid profiling and speculation overheads.

52 related work

By packaging the optimizer as an OpenCL runtime, it can be readily deployed over

existing OpenCL binaries to significantly and transparently improve performance, in the

same way SnuCL, FluidiCL and dOpenCL can easily be deployed.

Abstraction frameworks like SkePU and SkelCL enable very efficient optimizations and

are a good solution for boxing underlying heterogeneity and hiding implementation de-

tails. Most of them are built on top of core parallel paradigms like OpenCL and CUDA

instead of defining their own model, which makes them more versatile. Hence any trans-

parent optimization targeting the underlying mechanism is orthogonal to the high level

optimizations. This makes Helium not only beneficial for application using directly the

OpenCL API but also complementary to any OpenCL abstraction library.

Helium is the first dynamic optimizer to our knowledge to combine high-level informa-

tion – like task graph representation – and low-level techniques – like iterative compilation

and staging – to optimize a widely used heterogeneous parallel programming paradigm

like OpenCL transparently. Its implementation and evaluation are described in Chapter 4.

3.3 stencil computation

Stencil computation is a fundamental compute-pattern in many domains and has been

extensively studied. Section 2.6 presented some of its characteristics and challenges. This

section presents some of the existing optimization techniques for heterogeneous systems.

State-of-the-art tools and abstraction layers improving programmability of stencil code are

introduced.

Since Partans – our high-performance stencil computation framework presented in

Chapter 5 – targets primarily multi-GPU systems, this section focuses more on distributed

stencil optimizations rather than single-device convolution optimizations.

A comprehensive survey of existing abstraction frameworks for stencil computation is

provided in order to compare their features and interface. Their strengths and limitations

are discussed and the contributions of Partans are put into this context.

3.3 stencil computation 53

T
im
e

Space

(a) Cache Oblivious Tiling

T
im
e

Space

(b) Time Skewing

Figure 3.1: Cache Oblivious(a) and Time Skewing(b) optimizations: the 1D-time 1D-space spacetime
domain can be recursively decomposed by cutting either along the space or time dimen-
sions. This transformation is always correct as long as dependencies between tiles (left
to right and top to bottom) and temporal dependencies (dark to light) are respected.

3.3.1 Stencil Optimization Techniques

This section focuses on background research on general optimization techniques for various

architectures and distributing stencil computation across multiple devices.

The common goal of these techniques is to maximize data locality. The generally low

computation to memory access ratio makes most stencil problems memory-bound. While

convolution is a very simple compute pattern in its naive form, most optimizations require

substantial transformations.

tiling In its most naïve form, stencil computations are essentially an element func-

tion applied within a loop nest. Hence it can be optimized using general-purpose loop

compiler transformations like rotation [MCT96], skewing [WL91], fusion [KM94; Dar99] or

tiling [IT88; GAK03]. These techniques by themselves are shown to enhance performance

considerably by improving data locality.

Advanced iteration-space decomposition schemes can take advantage of domain-specific

knowledge to further improve performance. Tiling in both the spatial and temporal dimen-

sions opens up additional opportunities for cache reuse across iterations.

Cache oblivious methods [FS05] increase cache reuse in an architecture-independent way

by recursively cutting the spacetime domain. The domain can be split along the time di-

mension and space dimensions. Note that the space cut needs to be skewed in the time

dimension as well to satisfy the dependencies of the boundary elements. These two cuts

can be applied recursively until a tile fits into a cache or the minimum space and time

dimensions dictated by the stencil operator are met. Figure 3.1a illustrates a possible de-

54 related work

Space

S
pa
ce

(a) 2.5D cut in 2D space

T
im
e

Space

(b) Split tiling in 2D spacetime

T
im
e

Space

(c) Hexagonal cut in 2D spacetime

Figure 3.2: Tiling methods maximizing parallelism: these spacetime cuts aim to increase the degree
of parallelism while maintaining good data locality. While there are still some spatio-
temporal dependencies between the tiles, all tiles at the same level in the spacetime
domain are independent and all the elements within a tile can be processed in parallel
at a given timestep.

composition resulting from applying multiple cuts. Horizontal slices are time cuts while

vertical divisions represent cuts in the space dimension. While the time cut does not im-

prove locality directly, it allows the space cut to be applied a greater number of times in

cases where the tile spans many elements in time but not in space.

Time skewing [Won00], is a similar approach but the cuts are precisely controlled. Identi-

cal space cuts are applied with a stride. This creates regular tiles, except at the edges. Like

the space cut in the cache oblivious optimization, the first and last ones are irregular due to

time skewing. However, all the tiles in between are typically identical when applying con-

trolled time skewing. This approach allows multiple iterations to be computed by a block.

In order to satisfy dependencies at the edges of the tiles, the number of iterations is limited

to the height of the first. A time cut then resets the cycle. A time skewing decomposition is

shown in Figure 3.1b

The Circular Queue optimizations [Yan+12] consist of prefetching as many slices of a

volume tile as necessary to satisfy the stencil shape and storing them in a sliding window

structure. This allows computation of one slice of the output volume. The first input slice is

then discarded from the local buffer, but only the next slice needs to be fetched to compute

the following output slice. The rest of the buffer is re-used across iterations. This method

introduces task parallelism since there is no space dependency between the tiles, unlike

time skewing. However, the elements at the tile boundaries are processed by multiple tiles,

introducing redundant computations.

The tiling techniques described thus far are primarily intended to enhance data locality

in a restricted level of parallelism, which suits CPU architectures well. On GPUs however,

3.3 stencil computation 55

the level of parallelism is tremendously higher and other tiling methods taking advantage

of that fact were developed. These strategies are presented in Figure 3.2.

2.5D and 3.5D tilings [Ngu+10] combine spatial decomposition into independent tiles

which can be computed in parallel and a wavefront pattern within each tile to enable

reuse of fetched elements. Adding several wavefronts and increasing the amount of over-

lap between tiles enables the computation of multiple timesteps using time tiling with an

implicit time cut between each iteration. However, this increases the amount of redundant

computation at the tile boundaries. Figure 3.2a shows an example of 2D space cut along

one dimension with a 1D wavefront across two space iteration: this is 1.5D space, 1D time

decomposition – called a 2.5D blocking scheme using the author’s terminology.

Hyperplane cuts [BPB12; Gro+13] or hexagonal cuts [Gro+14] allow all tiles and timesteps

to be independent for a limited number of iterations. All elements of the domain are com-

puted in parallel, but it requires careful synchronization at the tile boundaries. Maintain-

ing coherent data is achieved by enforcing an ordering in the tile computation. In Fig-

ures 3.2b and 3.2c, they should be processed from the bottom to the top. Alternatively, a

time cut is inserted between each time step to synchronize the tiles. Some hybrid system

combine both space and time cut to create complex tiling patterns.

Tiling methods can also be adapted to take advantage of the underlying architecture.

Meng and Skadron [MS11] explore a warp-aware tiling implementation for Nvidia GPUs.

Knowledge about the device and the stencil properties can be used to predict efficient

decompositions which maximize resource utilization. While this technique nearly reaches

the theoretical peak performance, it is very hardware dependent and creates code for which

not only the performance but also the correctness is tied to a particular device.

distributed stencil computation The presence of spatial and temporal depen-

dencies makes distributed stencil computation an engineering challenge. This complex de-

pendency pattern requires careful synchronization and communication between the partic-

ipating actors. Domains can be decomposed using essentially the same single-device tiling

techniques described above, but this introduces hierarchical communication, which easily

become a bottleneck.

Micikevicius [Mic09] describes a distributed stencil computation on multi-GPU systems

to solve the 3D finite difference problem. Their system uses MPI to communicate between

56 related work

multiple hosts. Each device prioritizes computation at the edges of the tiles and initiates

communication with their neighbor while computing the inner part of the tiles in order

to overlap computation and communication. The authors report superlinear speedups for

two and four GPUs due to a decreased pressure on the Translation Lookaside Buffer (TLB)

buffers when the data is distributed. They also claim to entirely amortize the communica-

tion overheads between the GPUs after manually tuning the global and local tile sizes and

the amount of overlap between tiles.

Zhang and Mueller [ZM12] is another GPU cluster implementation based on MPI. The

authors observe that communication pressure is the bottleneck and is highly sensitive to

stencil characteristics, in particular the order of the stencil shape which directly affects the

computation to communication ratio. They observe quasi-linear speedup for a first order

27 point 3D stencil on up to 15 GPUs. The performance degrades significantly for a higher

number of GPUs, a higher order or a smaller shape.

Göddeke et al. [Göd+08] also uses a MPI-based communication layer to extent paral-

lelism to multiple hosts. The authors report the PCIe bus as the primary bottleneck for

single-host systems and an impediment to scalability, in the same way network communi-

cation across hosts is a limiting factor for stencil computation distributed on clusters.

auto-tuning The tuning space of any stencil computation is enormous since many

optimization strategies described so far have several parameters each. In particular, choos-

ing a data layout or the tiling strategy and size for distributed and local decomposition is

not trivial. Auto-tuners can automatically navigate and in some cases prune this space in

order to determine optimal values.

Datta et al. [Dat+08] performed a very thorough evaluation of a multitude of optimiza-

tions on various CPU and GPU architectures. The authors discuss the strengths and weak-

nesses for each device depending on the stencil characteristics. Their experiments show

that stencil computations exhibiting enough parallelism benefit more from a large num-

ber of simpler processors, rather than a small number of more complex cores. The study

also shows that auto-tuners are critically important to reach good performance for stencil

computation. Manual performance improvement is very difficult since most of the space is

largely and uniformly sub-optimal, leading programmers to believe that they reached peak

performance on the targeted device prematurely.

3.3 stencil computation 57

Programming Language Parallelism Scale

Framework Frontend Backend Cluster CPU GPU Multi-GPU*

Cactus [RIF01] DSL C/CUDA X X X ×
STELLA[Fuh+14] Fortran CUDA X X X X

Forma [RHG15] DSL C++/CUDA × X X ×
OverTile [HPS12] DSL CUDA/OpenCL × X X ×
PADS [Han+11] OpenMP CUDA × × X ×
PATUS [MC11] DSL OMP/CUDA × X X ×
Physis [Mar+11] DSL CUDA X × X ×
Pochoir [Tan+11] C++ Cilk × X × ×
SBLOCK [BP10] DSL C/CUDA X X X ×

* Multi-GPU support within a single process (i.e. not distributed).

Table 3.1: Comparison of frameworks for stencil computation on heterogeneous systems. For each
framework, we report the input language used for the stencil specifications and the code
generated by each compiler. The target for each framework is also specified.

Zhang and Mueller [ZM12] implemented an auto-tuner to exhaustively search the de-

composition space for single device tiling. This generates profiling estimation which is

used by a multi-node tuner to balance communication and computation efficiently based

on the performance of each individual device. Their optimizer hides communication la-

tency, allowing them to scale to multiple GPUs almost linearly until the communication

overheads overtake the computation time.

3.3.2 Frameworks, Code Generators & Compilers

Abstraction layers have been successfully designed to decouple optimizations from the es-

sential semantic specification of a program. Examples of general-purpose skeleton-based

libraries for heterogeneous systems have been described earlier. This section focuses on

similar frameworks and tools for stencil computation. Most of these abstractions use re-

sembling interfaces. The user only defines the essential properties of the stencil, such as

the element function and the domain specification. The optimizations are then automated

using code generators or compilers. The main frameworks for stencil computation on het-

erogeneous systems are listed in Table 4.1. Their input languages are compared, as well as

the underlying paradigms used to express the optimized code. They target different scale of

parallelism, from multi-core CPUs to cluster of accelerators. This section briefly describes

each of them and hints some details of their implementation.

58 related work

stencil heat3d
{
domainsize = (1 .. x_max, 1 .. y_max, 1 .. z_max);
t_max = 1;
operation(float grid u,float param a,float param b)
{
u[x, y, z; t+1] = a*u[x,y,z;t] + b*(

u[x-1,y,z;t] + u[x+1,y,z;t] +
u[x,y-1,z;t] + u[x,y+1,z;t] +
u[x,y,z-1;t] + u[x,y,z+1;t]);

}
}

(a) Patus [MC11]

Pochoir<float,3,1> fd_3D ;
Pochoir_Array<float,3,1> u (Nx,Ny,Nz);
Pochoir_Shape<3> fd_shape_3D [] = {
{1,0,0,0},{0,0,0,0},
{0,-1,0,0},{0,+1,0,0},{0,0,-1,0},
{0,0,+1,0},{0,0,0,-1},{0,0,0,+1}};

Pochoir_Kernel_3D(lap,t,x,y,z)
u(t+1,x,y,z) = a*u(t,x,y,z) + b*(

u(t,x-1,y,z) + u(t,x+1,y,z) +
u(t,x,y-1,z) + u(t,x,y+1,z) +
u(t,x,y,z-1) + u(t,x,y,z+1));

Pochoir_Kernel_End

(b) Pochoir [Tan+11]

input scalars = ["a", "b"]
input arrays = ["u"]
output arrays = ["v"]
inner loop = [{
"lvalue": "v",
"rvalue": a*u[0][0][0] + b*(
u[-1][0][0] + u[1][0][0] +
u[0][-1][0] + u[0][1][0] +
u[0][0][-1] + u[0][0][1])

}]

(c) SBLOCK [BP10]

program heat3d is
grid 3
field u float inout

u[1:1][1:1][1:1] =
0.12*Eu[0][0][0] + 0.45*(
u[-1][0][0] + u[1][0][0] +
u[0][-1][0] + u[0][1][0] +
u[0][0][-1] + u[0][0][1])

(d) OverTile [HPS12]

stencil head3d(float a, float b, vector#3 float u) {
return a*u + b*(u@[-1,0,0] + u@[1,0,0] + u@[0,-1,0] +
u@[0,1,0] + u@[0,0,-1] + u@[0,0,1]);

}
parameter a,b,Nx,nY,nZ;
vector#3 float u[Nx,Ny,nZ];
v = head3d(a,b,u:constant(0));
return v;

(e) Forma [RHG15]

Figure 3.3: Example of 3D heat equation element function written in existing frameworks for stencil
computation on heterogeneous systems. Most frameworks decouple the stencil operator
and the specifications for the domain and the iterations (not shown).

3.3 stencil computation 59

Christen et al. developed a domain-specific language named Parallel AutoTUned Stencils

(PATUS) [CSB11; MC11]. A code generator coupled with an auto-tuning infrastructure

enables the translation of high level stencil specifications into highly optimized architecture

specific code. Optimizations such as tiling and vectorization are applied automatically, and

the generated parallel code can be executed on multi-core CPUs or GPUs using either

an OpenMP or a CUDA backend respectively. An auto-tuning mechanism automatically

explores a parameter space determined by an execution strategy to optimize its parameters.

Users-defined strategies can be implemented to guide the auto-tuning phase.

Pochoir [Tan+11] is a framework and a compiler for stencil computation. It provides

a C++ API which allows code to be compiled and executed by any compiler. The same

code can be translated by their compiler to a highly optimized Cilk version, automatically

introducing tiling and cache-oblivious optimizations.

Holewinski developed a similar approach for GPUs. A compiler translates high-level

specifications, written in a special stencil language called OverTile [HPS12], into optimized

CUDA code.

Halide [RK+12; RK+13] is a domain specific language, a compiler and a runtime system

targeting mainly image processing applications. Stencil operators are defined using their

DSL as functions over an infinite, unbounded domain; this forms an independent intrinsic

algorithm. Separately, schedules can be defined to map algorithms to materialized domains

and create pipelines. The optimization process is semi-automatic: the user defined sched-

ules define partial transformations and their compiler generates the required low level code.

Because schedules are expressed at a very high level and independent from the algorithm

specification, changes that would require a near complete re-write of a C implementation

can be contained to a couple of lines in the schedule specification.

SBLOCK [BP10] is a stencil-based PDE solver library. It targets CPUs, clusters of multi-

cores and GPUs. The library is divided into two parts: the run-time library and the source

code generator. The run time library is in charge of inter-node communication using MPI

and more fine grained scheduling. It provides an interface in C for the user to define

the volume description and highlight an optimization strategy. The source code generator

translates at the user-defined kernels written in Python to an architecture specific optimized

code which will be further compiled. The framework has built-in support for reduction

operations and complex volume definition.

60 related work

Cactus [RIF01] is a divide and conquer framework supporting different classes of scien-

tific tightly coupled applications, including stencil computations. It relies on grid comput-

ing to do massively parallel jobs on a large scale. It is using a domain-specific language to

define operators, volume description and boundary behavior for stencil computations.

PADS [Han+11] is an OpenMP to CUDA translator and a code generator using pre-

implemented optimized templates. It uses a pattern-matching technique to identify stencil

patterns in C++ code, which can be further enhanced by providing special annotations

defined as a superset of OpenMP directives. The generated code is automatically parame-

terized and an auto-tuning framework explores the search space for the optimal values.

Solar-Lezama et al. [SL+07] explored automated optimizations using software synthesis.

With the language and compiler SKETCH, the user provides two versions of the program:

the first baseline version defines a naïve behavioral specification of the algorithm and the

second outlines an optimized version with the possibility to express missing parts of the

algorithms such as predicates and indexes using a ’??’ notation. A solver will try to im-

plement the partially optimized version to be semantically equivalent to the baseline. By

manually unrolling multiple iterations of a stencil computation, it is possible to derive op-

timizations such as time-skewing and cache-oblivious implementation at a fraction of the

development cost and with high degree of code reuse.

Kamil et al. [Kam+10] implemented a source to source compiler allowing unoptimized

stencil computation in Fortran to be automatically optimized and translated to C or CUDA.

A target-specific auto-tuner optimizes the execution strategy to further enhance perfor-

mance. The search space is pruned according to pre-defined heuristics to keep only the

most likely optimization set for the given target and an automated optimizer exhaustively

generates and executes all the candidates to find the best version.

Some libraries provide problem specific stencil-based framework. The most advanced

are Chombo [Kam+05; VS+09], a set of tools to solve Partial Differential Equations, and the

weather forecasting toolkit COSMO developed a high-performance stencil computation

library called Stella [Fuh+14].

Finally, general-purpose heterogeneous programming libraries can be extended to sup-

port stencil computation. Steuwer et al. [Ste+14] investigated an extension of SkelCL to

support distributed stencil computation. They added two patterns: a space-aware map pat-

tern called MapOverlap and a specialized skeleton Stencil for iterative stencils. Most of the

3.3 stencil computation 61

low-level details are hidden from the user by the library’s distributed container and code

generator mechanisms. However, optimization parameters – like the amount of overlap be-

tween tiles – have to be set manually. SkelPU also provides a MapOverlap skeleton, but they

do not provide high level support for stencils for further optimizing iterative stencils.

3.3.3 Limitations of Prior Work and Discussion

This section presented some of the considerable amount of research aiming to improve pro-

grammability of stencil computations, either by developing low-level optimization strate-

gies or crafting high level interfaces to hide the implementation details and lift the pro-

gramming burden from the programmers. We summarize the state-of-the-art below and

introduce the design decisions and contributions of Partans in terms of abstraction and

optimization strategies.

abstraction The most efficient optimization techniques introduced above require

a substantial modification of the naïve versions. Implementing tiling strategies and time

skewing methods is a long and error-prone task which leaves the original stencil specifica-

tions changed beyond recognition, leading to degraded maintainability and reusability of

the code. However, these optimizations are crucial for performance and need to be carefully

adapted to the targeted device.

Encapsulating stencil specifications in a domain-specific language gives more freedom to

a dedicated compiler. This choice was made by the majority of the abstraction frameworks

described in this section. Optimizations can be integrated into the code generation process

independently, and new backends can be created to adapt to new targets. Conversely, DSLs

are often over-specialized for a narrow domain. They suffer from limited applicability and

are difficult to adopt due to the lack of interoperability with other languages.

The abstraction layer developed in Partans relies on an existing paradigm instead – in

this case OpenCL. The general-purposed language is not restricted, extending the appli-

cability of the framework. The optimizations are decoupled from the interface using data

abstraction and a high-level skeleton library. This approach demonstrates that the complex-

ity of the code can be managed. However, the main contributions of Partans come from

the optimization strategies implemented.

62 related work

optimization strategies Although many GPU implementations of stencil compu-

tation exist, little research has been done to scale the computation to multiple GPUs. The

frameworks supporting both distributed computation via MPI and GPU implementations

on single nodes could use multiple GPUs implicitly. However, having one MPI process

per sub-domain impairs communication [ZM12]. Data exchanges have to pass through two

levels: across nodes and then from the host application to the device1. COSMO is the

only library providing an optimized multi-GPU implementation: their custom GPU aware

MPI implementation recognizes GPU memory buffers and eliminates additional copies.

The authors report performance benefits for MPI processes on the same physical machine.

However, they did not quantify them or described the technique further. In a similar ap-

proach, Ji et al. [Ji+12] explored the impact of another GPU aware MPI implementation on

halo swapping for a 2D stencil application and reported bandwidth improvement of up to

2x and an additional speedup of 5% compared to non GPU aware implementation.

Partans investigate this problem further by systematically exploring the tuning space

generated by the presence of multiple accelerators within a single system. New tuning

parameters, such as balancing the usage of communication over PCI buses as discussed

in [AMP14], present an interesting challenge with potentially far-reaching benefits for the

community as systems are getting increasingly heterogeneous. We develop search tech-

niques to navigate this space and automatically optimize an application to increase the

overall throughput of the system. Partans demonstrates how to apply these optimizations

without affecting the high level abstraction. This work is described in Chapter 5.

3.4 summary

This chapter has presented prior work aiming to tame the optimization complexity and

programmability issues encountered on heterogeneous systems. It detailed techniques de-

veloped to improve performance on such systems, and proposals for abstracting these op-

timizations in the form of high level libraries, frameworks and compilers. The limitations

of existing solutions have been discussed.

The following chapter introduces the first contribution: automatically optimizing OpenCL

applications using dataflow analysis, code staging and dynamic optimizations.

1 Due to lack of interoperability between the standard implementations, it is impossible to use the same pinned
memory for MPI and CUDA or OpenCL host buffers, requiring additional memory copy within the host.

4
D Y N A M I C I N T E R K E R N E L

O P T I M I Z AT I O N S

This chapter presents a new approach to optimize multi-kernel applications transparently

by combining static compiler analysis and dynamic runtime information. The separation of

concerns between host and device code in OpenCL prevents either the host or device com-

piler from having a complete picture of the execution flow. This in turn prevents aggressive

inter-kernel optimizations which, like interprocedural optimizations, could greatly improve

data locality across kernels or minimize the use of intermediate storage. As a consequence,

these optimizations are often implemented by hand despite the great effort required for

refactoring the code, and at the cost of decreased kernel modularity and programmability.

This is addressed by our OpenCL overlay and runtime optimizer, called Helium. Com-

piler analyses of the device code and runtime profiling of the host application are combined

to optimize the dataflow of the application. Using a delay-optimize-replay mechanism, the

execution strategy of OpenCL commands is switched from eager to lazy evaluation. This

allows the runtime system to apply a set of optimizations which could not be performed

by hand or would negatively impact code maintainability and portability. The transforma-

tions performed are provably safe by preserving the dependencies in the data flow across

operations and avoiding the introduction of data races.

Helium implements most functions of the OpenCL API and is interposed between any

OpenCL application and the underlying vendor implementation, acting as a mediator and

an optimizer for the command queues. Hence it can be deployed over existing OpenCL

application binaries without the need for modifying or re-compiling the source code.

This chapter is structured as follows: Section 4.1 motivates this work by presenting the

benefits and challenges of inter-kernel optimizations. Section 4.2 describes the optimiza-

tions opportunities in multi-kernel applications and how they are typically performed by

hand. An overview of the framework is provided in Section 4.3. Its implementation is de-

tailed in Section 4.4, where the mechanisms allowing the delay-optimize-replay strategy

and the optimization algorithms are presented. The methodology used for evaluation is

described in Section 4.6 and the results discussed in Section 4.7.

63

64 dynamic interkernel optimizations

4.1 motivation

Section 2.4 presented the OpenCL programming model and its limitations. Performance

portability was put forward as the main challenge. A great architectural diversity requires

individual kernels in the device code to be manually optimized in isolation for a particular

architecture. Their performance may vary when executed in a different context. However,

this problem does not only affect single kernels. The combination of multiple kernels in

a compute sequence creates new optimization opportunities, which are equally hard to

implement in a portable and efficient way.

Inter-kernel optimizations, like interprocedural optimizations, aim to optimize a specific

call sequence. This can be done by inlining multiple kernels, simplifying computation or

exposing nested parallelism, which improve many aspects of the applications, in particular:

• synchronization delays: synchronization with the device is required in OpenCL since

computation and memory operations are asynchronous. Reducing their frequency

decouples host and device applications, leading to a more efficient parallelism. This

can be achieved by reordering calls or executing independent tasks in parallel.

• efficient computation: compiler transformations like propagating constant values or

merging similar control flow from different kernels decrease the amount of computa-

tion performed by the device by eliminating redundancies.

• memory bandwidth: identical memory accesses across multiple kernels can be factor-

ized to decreases the overall number of transactions, increasing the useful bandwidth.

• memory usage: merging kernels generating data and kernels reading from it not only

improves locality but also eliminates temporary storage, decreasing the memory foot-

print of the application.

These transformations are usually performed by a compiler in programming languages

like C, where the compiler has a complete picture of the dataflow in the application; hence

programmers are oblivious to these optimizations. Sadly, this does not apply to OpenCL,

where the separation between device code, containing only the compute intensive frag-

ments of an application, and the host, which orchestrate the computation without knowing

how data is being manipulated by the kernels, prevents either the offline host compiler or

the runtime device compiler from performing a global dataflow analysis.

4.2 dynamic kernel sequence optimizations 65

However, because they might provide a significant gain in performance, these optimiza-

tions are highly desirable, and are often applied by hand. Manual tuning of complex

OpenCL applications presents many challenges and is a very expensive process in terms

of engineering efforts. First, identifying potential optimization candidates is very difficult

or even impossible, since the programmer has to cross reference device and host code

constantly to find the dataflow paths and the kernel sequence might be highly dynamic.

Second, even in the case where some candidates can be found manually, applying the trans-

formations is a very time-consuming and error-prone process. In many cases, it requires

a modification of both the host and device code, which might affect the entire application.

Furthermore, ad-hoc specializations of kernels to optimize specific instances create code

redundancies since the generic kernel must be kept alongside the specialized variants in

case the optimizations are not applicable. This considerably impairs testability and main-

tainability of the application and threatens code portability by running radically different

versions of the program depending on runtime parameters.

In contrast, to eliminate that burden from the development process, Helium analyzes and

optimizes any OpenCL application dynamically. The same transformations are applied au-

tomatically, allowing a systematic optimization process at no additional engineering cost.

The original application can remain simple and modular, preserving testability and main-

tainability without sacrificing performance.

The next section further motivates this work by describing some interkernel transforma-

tions in more detail and demonstrating their benefits as well as the impact on the code.

4.2 dynamic kernel sequence optimizations

This section describes inter-kernel optimizations applicable on programs involving more

than a single compute kernel invocation. These optimizations are often implemented man-

ually and incrementally after the application has been developed and tested, in order to

improve performance.

Throughout the section, each transformation is illustrated by a simple example. The

original and optimized versions are compared side by side and differences are highlighted.

To demonstrate the performance benefit of each optimization, the provided examples

are tested on an Nvidia GTX 780 GPU. Table 4.1 summarizes the speedup obtained and

the main characteristics of each transformation and classes of optimizations. The required

66 dynamic interkernel optimizations

Required Refactoring Potential Performance Gain

Optimization Host

Code

Device

Code

Sync.

Delay

Compute

Time

Memory

Trans.
Speedup

Scheduling Optimizations 4 7 4 7 7

Parallelization X × X × × 1.78x

Reordering X × X × × 1.42x

Code Specialization 7 4 7 4 4

Constant Propagation × X × X × 1.53x

Alias Resolution × X × × X 1.87x

Kernel Fusion 4 4 7 4 4

Horizontal Fusion X X × X X 1.71x

Vertical Fusion X X × X X 2.11x

Task Elimination 4 4 4 4 4

Dead Invocation X × X × × 1.72x

Dead Store X X × X X 1.13x

Table 4.1: Summary of the dynamic optimizations. Each optimization affects the host and the device
code differently and optimizes different aspects of the application.

modifications affect either the host code or the device code or both – as indicated by the

same table.

Each optimization improves the overall performance. However, the potential performance

gain depends on the type of transformations. As described in the previous sections, there

are three main sources of overall speedup:

• Synchronization Delay: the compute time on the devices is unchanged but the time

spent in the host application waiting for synchronization primitive is reduced. This

transformation is particularly effective if the host application manages multiple de-

vices or overlaps computation on the host and the device.

• Compute Time: the total amount of compute time on the devices decreases, by reducing

the number of arithmetic and control-flow instructions, or improving their efficiently.

Compute bound kernels would benefit most from this type of optimization.

• Memory Transactions: the overall number of load and store instructions decreases, ei-

ther by factorizing common loads or eliminating dead stores. Reducing the number

of transactions is the most efficient optimization for memory bound problems.

These optimizations are described in more detail in the remainder of this section. Code

examples demonstrate the extent of the modifications for each of them. Transformations

affecting only the host application are first described. Device code alterations are then

presented and finally optimizations affecting both together.

4.2 dynamic kernel sequence optimizations 67

for(int i = 0; i < 100; ++i) {
clEnqueueWriteBuffer(queue,in1,true,
0,size,v,0,NULL,NULL);

clEnqueueWriteBuffer(queue,in2,true,
0,size,v,0,NULL,NULL);

clEnqueueNDRangeKernel(queue,ker,
1,NULL,&g,&l,0,NULL,NULL);

clEnqueueNDRangeKernel(queue,ker,
1,&g,&g,&l,0,NULL,NULL);

clEnqueueReadBuffer(queue,out1,true,
0,size,res,0,NULL,NULL);

clEnqueueReadBuffer(queue,out2,true,
0,size,res,0,NULL,NULL);

}

(a) Unoptimized Host Code

cl_event ec1,ec2,ew1,ew2,er1,er2;
ec1 = ec2 = er1 = er2 = NULL;
for(int i = 0; i < 100; ++i) {
clEnqueueWriteBuffer(q_write,in1,false,
0,size,v,(ec1?1:0),&ec1,&ew1);

clEnqueueWriteBuffer(q_write,in2,false,
0,size,v, (ec2?1:0),&ec2,&ew2);

cl_event dep_comp1[] = {ew1, er1 };
clEnqueueNDRangeKernel(q_comp,ker,
1,NULL,&g,&l,(er1?2:1),dep_comp1,&ec1);

cl_event dep_comp2[] = {ew2, er2 };
clEnqueueNDRangeKernel(q_comp,ker,
1,&g,&g,&l,(er2?2:1),dep_comp2,&ec2);

clEnqueueReadBuffer(q_read,out1,false,
0,size,res,1,&ec1,&er1);

clEnqueueReadBuffer(q_read,out2,false,
0,size,res,1,&ec2,&er2);

}

(b) Hand Optimized Host Code

Figure 4.1: Hand optimization introducing task parallelism using multiple command queues and
events, allowing computation and communication to happen simultaneously.

4.2.1 Scheduling Optimizations

Programmers can maximize parallelism using fine-grained task management. Taking con-

trol of the dependency specification between tasks, or queuing them in a very specific

order enables a better cooperation between host and device programs. These optimizations

exploit the task parallelism model exposed in OpenCL.

task parallelism carefully synchronized tasks in out-of-order or multiple queues

can be evaluated simultaneously. However, the efficiency of this optimization is dependent

on the device since concurrency is merely suggested by the model, not enforced.

The task parallelism in OpenCL exploits kernel concurrency and communication-computation

overlap. The first evaluates multiple distinct kernel instances simultaneously. The second

performs independent memory operations and computation at the same time. Read, write

and compute all execute in parallel on devices supporting full duplex communication.

In order to exploit this optimization, an application must manage dependencies between

actions explicitly to avoid data races. Figure 4.1 demonstrates the necessary changes to

introduce task parallelism as presented in the copy-compute overlap example of the Nvidia

SDK. The optimized application uses multiple command queues to differentiate read, write

and compute operations. Events are attached to each action to represent the dependencies.

This transformation achieves a 78% speedup.

68 dynamic interkernel optimizations

1 q.enqueueNDRangeKernel(CompB1, {0 }, {g }, {l });
2 q.enqueueReadBuffer(b1,true,0,size,res_b1);
3 CrossValidate(res_b1);
4 q.enqueueNDRangeKernel(CompB2, {0 }, {g }, {l });
5 q.enqueueReadBuffer(b2,true,0,size,res_b2);
6 CrossValidate(res_b2);

(a) Unoptimized Host Code

1 q.enqueueNDRangeKernel(CompB1, {0 }, {g }, {l });
2 q.enqueueNDRangeKernel(CompB2, {0 }, {g }, {l });
3 q.enqueueReadBuffer(b1,true,0,size,res_b1);
4 CrossValidate(res_b1);
5 q.enqueueReadBuffer(b2,true,0,size,res_b2);
6 CrossValidate(res_b2);

(b) Hand Optimized Host Code

Figure 4.2: Hand optimization reordering tasks in the command queue. Computation on the accel-
erator and cross validation on the host are interleaved and execute in parallel.

However, this is a very intrusive optimization which requires substantial modifications.

The transformation is also delicate since an error in the dependencies will not cause a fatal

error at runtime but introduce a silent data race corrupting the result. This modification

also has important side effects to the rest of the application if the properties of the command

queue are changed to out-of-order, and used throughout the application.

task reordering A specific execution order between independent commands is en-

forced; either by swapping the order in which they are pushed in an in-order queue, or

adding explicit dependencies. Task reordering maximizes the potential of task parallelism

and decreases the synchronization delays between host and device.

In the example shown in Figure 4.2a, the unoptimized code repeats two sequences with

different buffers. A computation is enqueued (lines 1 and 4), the result is read (lines 2

and 5) and cross-validated on the host (lines 3 and 6). The optimized version shown in

Figure 4.2a simply moves the second kernel execution immediately after the first one (line

2). In this case, it has two advantages. First, both kernel invocations are now being side-

by-side, exposing task parallelism – which was not available before since they were on

either side of a blocking read. Second, computation on the host and the device overlaps:

the first cross validation now proceeds while the device is computing the other output. In

the original application, either the host or the device was idle at any point. This one liner

produced a 42% performance boost.

However, this transformation requires knowledge about the dataflow between kernels:

the code fragment does not specify the definitions of the kernels and their parameters. If

the second kernel instance also modifies the buffer b1, then this transformation is not valid

since it introduces a data race. As a consequence, while the actual modifications to the

code are trivial, proving the validity of the transformation is difficult and requires a careful

analysis of the dataflow and all the synchronization points.

4.2 dynamic kernel sequence optimizations 69

kernel void MM(const global float* a,
const global float* b,

global float* c,
const int w, const int h) {

const uint
off = get_global_id (0) / (w*h)*(w*h),
row = get_global_id (0) % w,
col = get_global_id (0) / w % h;

float acc = 0.0f;
for(uint k=0; k<w; ++k)

acc += a[off+row+k*w]*b[off+k+col*w];
c[get_global_id (0)] = acc;

}

(a) Unoptimized Device Code

kernel void MM(const global float* a,
const global float* b,

global float* c,
const int w, const int h) {

const uint
off = get_global_id (0) / 16*16,
row = get_global_id (0) % 4,
col = get_global_id (0) / 4 % 4;

c[get_global_id (0)] =
a[off+row+0] * b[off+0+col*4] +
a[off+row+4] * b[off+1+col*4] +
a[off+row+8] * b[off+2+col*4] +
a[off+row+12] * b[off+3+col*4];

}

(b) Hand Optimized Device Code

Figure 4.3: Hand optimization propagating runtime constants. Here the generic matrix multiplica-
tion code has been specialized for 4× 4 matrices.

4.2.2 Code Specialization

Code specialization integrates runtime knowledge about the execution context into the

device code in order to increase performance. The specialization propagates information

either about runtime constants or pointer analysis information.

constant propagation Scalar variables which are passed as kernel parameters can

be replaced by their actual value prior to program compilation to optimize the device

code. Constant values can be a very effective source of optimization, particularly if they

determine part of the control flow, like loops or branches. Figure 4.3 shows a matrix-matrix

multiplication application for two linearized matrix arrays; where each matrix of the first

array is multiplied by the corresponding matrix in the second. The height and width of the

matrices are unknown statically, so they are defined as kernel parameters. The optimized

code presented in Figure 4.3b assumes the matrices have a dimension of 4× 4. The code is

specialized accordingly. In addition to simplifying the algebraic expressions, in this case the

loop from the unoptimized code can be fully unrolled and the store can be done in-place.

This optimization leads to a 1.53x speedup over the original code.

The specialized kernel, however, is only usable under very specific circumstances. If the

application uses several matrix dimensions, it will require different specializations. This sig-

nificantly increases code redundancy. Furthermore, the prototype of all the specialization

is the same, making mistakes in the host code easy to make and hard to debug.

70 dynamic interkernel optimizations

kernel void add(const global float* a,
const global float* b,

global float* c) {
const uint i = get_global_id (0);
c[i] += a[i] + b[i];

}

(a) Unoptimized Device Code

kernel void add(const global float* a,
const global float* b,

global float* c) {
c[get_global_id (0)] *= 3;

}

(b) Hand Optimized Device Code

Figure 4.4: Hand optimization using knowledge about the host program to optimize aliasing mem-
ory accesses. Here the programmer assumes that the pointers a, b and c alias.

alias analysis Programmers use knowledge about the runtime values to solve pointer

aliasing. Compilers cannot eliminate redundant reads if the base pointers are different, and

static analysis is helpless for unknown kernel parameters. Only specific knowledge about

the runtime values can simplify these memory accesses. The add kernel in Figure 4.4 is a

generic function where each element of an array is incremented by the sum of two other

arrays. If a programmer knows that arrays a, b and c alias for a particular invocation, the

kernel can be re-written as an in-place multiplication, resulting in two fewer load instruc-

tions. In order to isolate changes from the host code, the unused parameters can remain

and will simply be ignored. This modification results in a 87% performance improvement.

While this optimization is effective, it is very difficult to apply in practice, since it leads

to several versions of the kernel with identical signatures but different behaviors, and the

OpenCL runtime cannot enforce the validity of the transformation.

4.2.3 Kernel Fusion

Manually fusing two or more kernels into one is a common optimization when there is

either code or data access redundancy between the kernels. This is a very efficient opti-

mization if the number of reused resources is high enough, since it reduces memory traffic,

which is a frequent application bottleneck, especially on GPUs.

For this transformation to be applied, one must first cross reference host and device

codes to identify the fusion candidates. The host code contains the dataflow paths linking

allocated memory objects to computation and memory operations, and the device code

contains information about how each individual input is used and whether it is read from

or written to. Analyzing the dependency patterns can identify two categories of fusion can-

didates: data independent (or horizontal) fusion and data-dependent (or vertical) fusion.

4.2 dynamic kernel sequence optimizations 71

// Device Code
kernel void WS(global float *w, global float *s)
{ const uint i = get_global_id (0);
s[i]+=w[i]; }

kernel void WM(global float *w, global float *v,
global float *m)

{ const uint i = get_global_id (0);
m[i]+=w[i]*v[i]; }

// Host Code
cl::Kernel S {p,"WS" },M {p,"WM" };
S.setArg(0,w);S.setArg(1,s);
M.setArg(0,w);M.setArg(1,v);M.setArg(2,b);
queue.enqueueNDRangeKernel(S, {0 }, {g }, {l });
queue.enqueueNDRangeKernel(M, {0 }, {g }, {l });

(a) Unoptimized Code

// Device Code
kernel void WSM(global float *w,

global float *s,
global float *v,
global float *m)

{ const uint i = get_global_id (0);
s[i]+=w[i];
m[i]+=w[i]*v[i]; }

// Host Code
cl::Kernel S {p,"WMS" };
S.setArg(0,w);S.setArg(1,s);
S.setArg(2,v);S.setArg(3,w);
queue.enqueueNDRangeKernel(S, {0 }, {g }, {l });

(b) Hand Optimized Code

Figure 4.5: Example of data-independent (horizontal) fusion. The two kernels have distinct outputs,
so their code can be merged to factorize the inputs.

horizontal fusion Data independent fusion arises when the input and output sets

of multiple kernels do not overlap. Since there is no dependency between outputs and

inputs, the relative ordering of the operations does not matter, or they can execute simulta-

neously; hence they can be merged into a single invocation. The benefit of horizontal fusion

depends on the amount of shared operations between the kernels being merged. Read op-

erations to the same address are simplified to a single transaction, making it a very efficient

transformation when the input sets overlap. Traditional compiler optimization passes can

also simplify computation. Similar loops and branches can be fused to reduce the control

flow graph and decrease the number of predicate evaluations; common expressions can be

eliminated. Code vectorization also has greater potential on larger kernels.

Figure 4.5 shows a simple example of data independent kernel fusion. A weighted sum of

multiple arrays is computed using two kernels. The first sums the weights and the second

sums the weighted contribution. Both kernels use the same weight array but they write

to two different arrays representing the total weight and total contributions. Since the two

outputs are disjoint, the two kernels can be merged into one. In the fused kernel, the weight

is read only once by each thread instead of twice, improving performance by 71%.

This is a heavy transformation. It requires the implementation of a new kernel, and a

modification of all the kernel invocations using this particular call sequence in the host

code. It introduces redundancies in the device program if both original and fused versions

are used. The maintainability and reusability of the code is also greatly impaired.

72 dynamic interkernel optimizations

// Device Code
kernel void AX(const float a,

global float *x)
{ x[get_global_id (0)] *= a; }

kernel void PY(global float *x,
const global float *y)

{ const uint i = get_global_id (0);
x[i] += y[i]; }

// Host Code
cl::Kernel AX {p, "AX" },PY {p, "PY" };
AX.setArg(0,a); AX.setArg(1,b1);
PY.setArg(0,b1); PY.setArg(1,b2);
queue.enqueueNDRangeKernel(AX, {0 }, {g }, {l });
queue.enqueueNDRangeKernel(PY, {0 }, {g }, {l });

(a) Unoptimized Code

// Device Code
kernel void AXPY(const float a,

global float *x,
const global float *y) {

const uint i = get_global_id (0);
x[i] = x[i] * a + y[i];

}

// Host Code
cl::Kernel AXPY {p, "AXPY" };
AXPY.setArg(0,a); AXPY.setArg(1,b1);
AXPY.setArg(2,b2);
queue.enqueueNDRangeKernel(AXPY, {0 }, {g }, {l });

(b) Hand Optimized Code

Figure 4.6: Example of data-dependent (vertical) fusion. The ouput of the first kernel AX is used as
input of a second kernel PY Each kernel load and store the same element. Merging them
into a single kernel AXPY performs the same computation but reduces the number of
memory transactions by half.

vertical fusion Vertical fusion results from detecting particular algorithmic pat-

terns which guarantees the safety of the transformation. When the output of a kernel is

consumed as an input of another kernel, it might be beneficial to merge the kernels and

avoid using the global memory to store the temporary values. However, the lack of global

synchronization in OpenCL means that this transformation is only valid if the data is pro-

duced and consumed within the same thread or workgroup. This is only known by com-

bining knowledge about the kernel arguments and the domain from the host application,

and the memory access patterns from the device code.

In the example shown in Figure 4.6, it is easy to verify this assumption: the kernel AX

stores the value at address global_id(0) and the kernel PY reads from an identical offset.

An inspection of the host code shows that both kernels are invoked within the exact same

range, hence each store from the first kernel exactly corresponds to a load in the second

kernel. Because there are no other dependencies, the two kernels can be fused into one.

The resulting kernel contains one fewer load from x and one fewer store. Removing the

temporary array altogether is very effective in this case, with a speedup of 2.11x.

Like horizontal fusion, this is a very intrusive transformation which requires extensive

refactoring of the host and device code. Maintainability and reusability of the kernels is

also considerably decreased, and code duplication increases.

4.2 dynamic kernel sequence optimizations 73

// device code
kernel void DBL(global float *x,

global float *y)
{ const int gid = get_global_id (0);
x[gid] = 2*y[gid]; }

// host code
cl_mem b1 = /*...*/, b2 = /*...*/;
cl::Kernel DBL = /*...*/;
DBL.setArg(0,b1); DBL.setArg(1,b2);
q.enqueueNDRangeKernel(DBL, {0 }, {g }, {l });
q.enqueueNDRangeKernel(DBL, {0 }, {g }, {l });
q.enqueueReadBuffer(b2,true,0,size,res_b2);
q.enqueueNDRangeKernel(DBL, {0 }, {g }, {l });
clReleaseMemObject(b2);

(a) Unoptimized Code

// device code
kernel void DBL(global float *x,

global float *y)
{ const int gid = get_global_id (0);
x[gid] = 2*y[gid]; }

// host code
cl_mem b1 = /*...*/, b2 = /*...*/;
cl::Kernel DBL = /*...*/;
DBL.setArg(0,b1); DBL.setArg(1,b2);
q.enqueueNDRangeKernel(DBL, {0 }, {g }, {l });
q.enqueueReadBuffer(b2,true,0,size,res_b2);
clReleaseMemObject(b2);

(b) Hand Optimized Code

Figure 4.7: Example of task elimination. Computation is sometimes performed needlessly when the
output is overridden or released. These artifacts are hard to find in complex code since
the required information is scattered.

4.2.4 Task Elimination

Knowing the complete dataflow path of an application by tracking the lifetime and usage of

allocated memory allows for some simple yet efficient optimizations. For example, a kernel

invocation for which the output is never used by any subsequent invocations nor read from

the host program is an obvious waste of compute resources. However, these are hard to find

in practice, since memory management and computation are scattered in the source code

and tracing the dataflow paths is complicated. Moreover, these dead invocations might

arise as an artifact of the development or optimization processes in a highly complex code,

like reading temporary buffers in the host code for debugging purposes or enqueueing

unecessary operations in command batches.

Figure 4.7 shows an example containing two dead tasks. Spotting them requires cross-

referencing the kernel arguments, the iteration domains, the lifetime of the objects, the

other commands, the synchronization points and the device code – all at once and for each

command. The first instance is immediately overwritten by the second one since all the

aforementioned properties are equal. The last instance is also never used and the buffer is

immediately released. Both of these instances can be removed in the optimized version.

Note that this is an extremely precarious transformation. For example, changing the

kernel to write to the first argument would invalidate the first deletion. Also, since memory

74 dynamic interkernel optimizations

objects are explicitly reference counted, retaining b2 anywhere in the code would break the

second deletion because the buffer would still be reachable.

A more fine-grained version of this transformation consists of removing dead stores in a

kernel invocation. This is applicable whenever a kernel has multiple outputs, but a subset

of these is never subsequently read. In this case, the kernel invocation cannot be eliminated,

but the dead store operations can be removed by specializing the kernel. This process is

similar to the alias analysis specialization described earlier.

4.2.5 Transformation Applicability

The dynamic optimizations presented in this section increase the performance of a se-

quence of commands in OpenCL. They are all intrusive and require modifications of the

host or device code, or even both. The source code resulting from the optimization process

is precarious, since it relies on a set of assumptions defined by the programmer and not

enforced by the runtime. It often leads to code duplication, where the optimized variant

lives alongside the generic version – one providing performance and the other portability

if the specialization is not applicable. This decreases the overall maintainability of the code.

In isolation, all these optimizations have typically shown a roughly equal performance

benefit. However, on much more complex applications, the best optimization set is not well-

defined. Implementing them incrementally using an arbitrary ordering is far from optimal

and requires a constant refactoring of the same code. The complexity of the optimization

also increases everytime the code is modified. For instance, fusing two kernels which have

several specializations each requires implementing all specialization combinations by hand.

Moreover, since these optimizations affect different types of bottlenecks (as shown in

Table 4.1), the optimization process is often subjective and only considers the particular set

of architectures used for development, decreasing the performance portability of the code.

To replace fragile hand optimizations, we present Helium, a transparent OpenCL op-

timizer which applies all the transformations presented in this section automatically and

dynamically. Helium traces an application at runtime, finds the minimal set of dependen-

cies between OpenCL actions and optimizes the task sequence before it is transparently

executed by the vendor implementation. New kernels are created on the fly from the ini-

tial set of kernels to improve data locality, and tasks are parallelized automatically to take

advantage of the task parallelism provided by the OpenCL model.

4.3 helium optimizer overview 75

Ta
rg

et

A
pp

lic
at

io
n

OpenCL Profiler Dependency Analyzer Task Graph Optimizer

Kernels

Kernel Invocations

Device Buffers

Communication

Parallelizing Scheduler

O
pe

nC
L

A
P

I

O
pe

nC
L

A
P

I

V
en

do
r

O
pe

nC
L

Im
p

le
m

en
ta

tio
n

I/O
Queue

Compute
Queue

Delay Optimization Replay

Figure 4.8: Overview of Helium. OpenCL function calls from a target application are intercepted to
gather profile information. This information is then analyzed and combined to build a
task graph, which is optimized before being executed by the vendor implementation.

4.3 helium optimizer overview

The Helium optimizer uses a delay-optimize-replay mechanism; all non-blocking OpenCL

commands are postponed and executed lazily in order to gather and exploit as much run-

time information as possible and depict a broader execution plan spanning multiple kernel

invocations. The optimizer then improves these execution plans before replaying them.

Figure 4.8 shows an overview of the framework and its mechanism. A target application

invokes functions from the OpenCL API. These calls are intercepted by the framework,

which dynamically optimizes the execution flow before forwarding the calls to the vendor

implementation. Because this process takes place between the host program and the vendor

implementation, it can be deployed transparently over any existing application without any

code refactoring. The main steps of Helium’s internal optimization process are:

1. Delay: each OpenCL function invoked by the host application is silently intercepted

and transparently converted into a self-contained asynchronous task.

2. Analysis: The tasks are linked together to create a task graph. Their dependencies are

minimized by combining static device code and host runtime analyses.

3. Optimization: The task graph is then optimized dynamically in order to improve the

performance of a sequence of operations. The transformations described in Section 4.2

are automated and a guided optimization process iteratively applies them.

4. Scheduling: the task graph is replayed in topological order using a parallelizing sched-

uler, exploiting task parallelism. The host program is blocked until completion of all

the actions required to restore consistency in the target application.

The following section describes the implementation of these components in more detail.

76 dynamic interkernel optimizations

4.4 helium implementation

This section presents the implementation of the general principles behind Helium. The de-

lay mechanism is first described in Section 4.4.1; the soundness of the technique is demon-

strated by analyzing the OpenCL model and showing that enough information can be

extracted to guarantee the safety of a delayed execution for a sequence of OpenCL com-

mands. This phase produces a task graph which is then optimized by combining static and

runtime information and applying the transformations described in Section 4.4.2. Finally

the optimized schedule can be executed by the vendor implementation using the scheduler

presented in Section 4.4.3.

4.4.1 Delay and Analysis

The delay mechanism allows Helium to be transparently interposed between the host ap-

plication and the vendor implementation. We present here the techniques used to intercept

the calls from the host application and create a synthetic OpenCL execution context within

Helium to force the host program to process as far as possible before synchronizing with

the device. This process creates an asynchronous task graph which is critical to implement

the optimizations described in the following subsection.

4.4.1.1 Intercepting OpenCL API Calls

Conforming OpenCL implementations must define all the API functions and provide a set

of additional functions interfacing with the Khronos Installable Client Driver (ICD). This

enables multiple implementations of the same library to co-exist on a single system using

an common layer called an ICD loader. The ICD loader gathers all the available platforms

from all vendors using a dynamic linker API, and presents them to the host application.

Once the host has chosen a platform, the subsequent OpenCL calls are forwarded by the

ICD loader to the corresponding vendor implementation using a dispatch table. Because it

is a very thin layer with a simple indirection, the ICD loader and the vendor implementa-

tion are referred to interchangeably in the remainder of this section.

Helium also implements the full OpenCL API but does not rely on the ICD loader.

Instead, it is explicitly pre-loaded when executing an application. This adds an additional

4.4 helium implementation 77

Installable Client Driver Loader

Helium

Vendor
Implementation

Vendor
Implementation

OpenCL Application

(a) ICD dispatch Block Diagram

(b) Normal and alternative call sequences

Figure 4.9: OpenCL function call dispatch. The vendor implementations are managed by an ICD
loader to provide a unified interface to the client application. Helium is inserted between
the application and the loader (a) and takes control of the call forwarding (b).

layer between the host application and the loader, as shown in Figure 4.9a. The function

execution use case in Figure 4.9b shows the modified sequence of an OpenCL call. It is

intercepted before it reaches the loader and Helium takes control of its execution or can

insert any callback. By dispatching the calls to the ICD loader, Helium can invoke the

underlying vendor implementation to execute the device program.

Helium reserves the right to prevent or alter any OpenCL call from the running applica-

tion or initiate spontaneous calls to the vendor implementation at any time, as long as the

program semantics are preserved. These guarantees are provided by the analysis described

in this and the following subsections.

4.4.1.2 Static Analysis of the device code

To take full advantage of the portability offered by OpenCL, most applications provide the

device program as OpenCL-C source code, which is then compiled at runtime for the tar-

geted device using the compiler provided by the selected vendor. This process is triggered

explicitly through the API in a three-stage process where the source code is first registered

(clCreateProgramWithSource), compiled (clCompileProgram) and linked (clLinkProgram) or di-

rectly built (clBuildProgram). Helium intercepts these calls to initiate a compilation in its

embedded OpenCL-C compiler.

78 dynamic interkernel optimizations

1 kernel
2 void MM(global float * C,
3 global float * A,
4 global float * B ,
5 int wA, int wB) {
6 int x= g e t _ g l o b a l _ i d (0) ; // gid0

7 int y= g e t _ g l o b a l _ i d (1) ; // gid1

8

9 float value =0 ;
10 for (int k =0 ; k<wA;++k) // loop1({0,+,1}wA−1

k)
11 {
12 float a=A[y *wA+k] ; // LDglob({(sizeoffloat ∗wA ∗gid1 +A),+,sizeoffloat}

wA - 1)
13 float b=B [k *wB+x] ; // LDglob({(sizeoffloat ∗gid0 +B),+, (sizeoffloat ∗wB)}wA - 1)
14 value += a * b ;
15 } // end_loop1
16

17 C[y *wA+x] = value ; // STglob(sizeoffloat ∗ (gid0 +gid1 ∗wA)+C)
18 }

Figure 4.10: Static device code analysis: the source code of the device application (left) is intercepted
by Helium and compiled in its internal compiler. An analysis pass examines pointer us-
age and generates partially evaluated PADs expressions for each memory access (right).

memory access analysis The code is analyzed to gather characteristics of the ker-

nels which are later used by the runtime to drive the optimizations. The source code is first

compiled to an intermediate representation and multiple optimization and analysis passes

are applied. Each memory access is examined, and a Pointer Access Description (PAD)

representation [EG01] is generated. By following the control flow of the program and inter-

preting arithmetic instructions, a partially evaluated expression can be incrementally built

up until it is used by a load or store instruction. For example, the last line of the program

in Figure 4.10 is an assignment to C[y ∗wA+ x], and each of component in this expression

can be traced across the kernel. In this case, C and wA are kernel parameters, and x and

y are coordinates in the index space assigned to the global index at dimensions 0 and 1

respectively. The analyzer performs a context-sensitive analysis and can translate the call

to builtin OpenCL functions to special markers in the expression, here gid0 and gid1 sym-

bolize the global index. The store is to global memory since the pointer was annotated with

this address space, so it is noted as STglob. The datatypes and their size can also be deduced

from the kernel prototype. Putting everything together gives the following representation

for this particular store:

STglob︸ ︷︷ ︸
Global Store

(

Type size︷ ︸︸ ︷
sizeoffloat ∗ (

Index Space︷ ︸︸ ︷
gid0 + gid1 ∗

Parameters︷ ︸︸ ︷
wA)︸ ︷︷ ︸

Offset

+ C︸︷︷︸
Base

)

4.4 helium implementation 79

loop analysis A slightly more complex representation is used for partially evalu-

ated loops. PAD uses chains of recurrences (Chrec) to represent a polynomial or exponen-

tial function over a multidimensional index space [Zim93; Zim95]. Their general form is

{init,�, stride}, where init is the initial value when entering the loop, stride is a loop invari-

ant value iteratively applied to init using the operator �. For example, a loop computing

the affine function 2 ∗ i+ 10, where i is the iteration count, can be noted as {10,+, 2}i.

Most compilers use this analysis to optimize loops with unknown or large trip counts

by applying loop strength reduction or loop restructuring. However, static compilers can-

not use unknown loop trip count for their transformations, and the analysis is discarded.

On the other hand, Helium preserves the analysis and builds expressions for backedge

evaluation. We introduce the additional superscript notation trip, where trip is a partially

evaluated loop trip count. In Figure 4.10, the for statement at line 10 is a simple loop of

k from 0 to wA, with an increment of 1 and a trip count of wA− 1, noted {0,+, 1}wA−1
k .

Inside this loop, the load B[k ∗wB+ x] in line 13 can be expressed using the previously

described notation as:

(k ∗ sizeoffloat ∗wB+ gid0 ∗ sizeoffloat +B)

This can be combined to the loop notation by adding the loop independent values to the

initial value of the Chrec notation and multiplying the loop dependent expression by the

stride to give the final notation:

LDglob︸ ︷︷ ︸
Global Load

(
{
(sizeoffloat ∗ gid0 +B)︸ ︷︷ ︸

Start Value

,+, (sizeoffloat ∗wB)︸ ︷︷ ︸
Stride

}
wA−1︸ ︷︷ ︸

Trip Count

These expressions are a compact form for collecting information for each kernel to rep-

resent its properties. For example, if a pointer appears in an LD PAD and none of the ST

PADs, like A and B, then it is read-only. Likewise, write-only, read-write and no-access can

be easily derived, as well as an estimate of the number of accesses. Helium builds a lookup

table of all PADs for each compiled kernel when the device code is compiled and retains it

throughout the program execution.

80 dynamic interkernel optimizations

Figure 4.11: Overview of the OpenCL vendor objects and their relationships as described in the stan-
dard. The standard does not specify the definition of these objects, the API manipulates
them using opaque pointer types called object handles.

4.4.1.3 OpenCL Runtime Analysis

Helium gathers high-level information from observing the interaction between the appli-

cation and the vendor implementation. This execution profile is used to derive properties

which validate the safety of the delay mechanism presented later in this section. For the

sake of simplicity, the analysis mechanism described in this subsection assumes that every

call from the host application intercepted by Helium is immediately executed by the vendor

implementation. This behavior is represented by the function execution case in Figure 4.9b,

which is the same functional behavior as if the application was running without Helium.

When the call returns from the implementation, it goes through Helium again and at this

point information about the OpenCL execution context can be gathered to mirror the in-

ternal state of the vendor implementation. The following subsection uses this analysis as a

foundation of the delay mechanism.

objects & handles Every OpenCL implementation is based on a set of objects rep-

resenting entities in the OpenCL model. The relationships between these objects, presented

in Figure 4.11, are provided by the OpenCL standard as well as a set of properties that

they must contain. Their definition, however, is vendor specific. To decouple the API and

the vendor implementation, the underlying objects are obfuscated from the users who only

manipulate opaque pointers in the OpenCL API, called object handles. However, accessing

the underlying objects is essential for understanding the execution context of the applica-

tion and how commands relate to each other. Hence Helium has to re-create this context.

4.4 helium implementation 81

1 cl_context ctx=/*...*/;
2 cl_command_queue queue=/* in order queue*/;
3 cl_program prog=/* ... */;
4 cl_kernel saxpy=clCreateKernel(
5 prog,"add",NULL);
6 cl_mem dx=clCreateBuffer(
7 ctx,CL_MEM_READ_ONLY,bufsize,NULL,NULL);
8 cl_mem dy=clCreateBuffer(
9 ctx,CL_MEM_READ_ONLY,bufsize,NULL,NULL);

10 cl_mem res=clCreateBuffer(
11 ctx,CL_MEM_WRITE_ONLY,bufsize,NULL,NULL);
12

13 clEnqueueWriteBuffer(
14 queue,dx,CL_FALSE,0,bsize,x,0,NULL,NULL);
15 clEnqueueWriteBuffer(
16 queue,dy,CL_FALSE,0,bsize,y,0,NULL,NULL);
17

18 clSetKernelArg(saxpy,0,sizeof(cl_mem),&dx);
19 clSetKernelArg(saxpy,1,sizeof(cl_mem),&dy);
20 clSetKernelArg(saxpy,2,sizeof(cl_mem),&res);
21

22 clEnqueueNDRangeKernel(
23 queue,saxpy,1,NULL,&glb,NULL,0,NULL,NULL);
24 clSetKernelArg(saxpy,2,sizeof(cl_mem),&dx);
25 clEnqueueReadBuffer(
26 queue,dy,CL_TRUE,0,bsize,y,0,NULL,NULL);

(a) Input Code
(b) OpenCL Context after execution

Figure 4.12: Runtime Analysis of the OpenCL Context: by intercepting all API call in an application,
Helium can re-create an internal view of the OpenCL context and establish relation-
ships between Object Handles and Commands.

The API is used to instantiate OpenCL entities implicitly, change their properties or

create relationships. However, the information is sparse and difficult to recover. Figure 4.12a

shows an example of application creating three buffers and computing the sum of the first

two into the third array. In isolation, any command carries very little information about

its execution context. For example, the kernel invocation at line 22 only uses two handles:

one for the queue and one for the kernel. However, after reading the entire program, it is

clear that the kernel uses some memory buffers, which are also used in other parts of the

application. Knowing the relations between this command and the surrounding memory

operations requires a deeper analysis.

object associations Helium implements the same model as the vendor implemen-

tation and maintains the same set of objects and their state throughout the program exe-

cution. Objects are instantiated explicitly – generally when invoking a clCreate* function –,

and tracked using their handle. Specific functions create associations between objects: for

example, setting a kernel argument binds a memory object to a kernel argument, as shown

in lines 18-20. Similarly, event objects can be linked to commands; and commands are as-

82 dynamic interkernel optimizations

sociated to queues. This creates a network of interconnected objects and commands with

their properties, capturing the entire execution context. This is visualized in Figure 4.12b.

command dependencies The relationships between the objects can in turn be used

to infer the dependencies between asynchronous command queue actions. This is used

to detect order independent commands, which are commands that could be re-ordered with-

out any observable effect on the device program – since they do not interfere with each

other. This analysis is objective and autonomous from the explicit dependencies provided

by the user. For instance, using an in-order queue creates explicit temporal dependencies

between every commands. However, these dependencies are usually over-specified since

some commands might actually be independent. By contrast, the object-flow approach pro-

vides fine-grained minimized dependencies.

If two command queue actions are pushed in the same queue and use unrelated objects

(except from sharing a common OpenCL context, as they must for the program to be cor-

rect), they are order-independent. This is valid since the model guarantees strong isolation

between the different entities: an object cannot possibly alter the state of any other object

unless they have been explicitly bound through the API. In the example of Figure 4.12a,

the first two writes are independent since they use distinct and unrelated memory objects.

Hence the order of the two commands could be swapped without compromising program

semantics. This proves that the temporal dependency introduced by the in-order queue is

not necessary for correct execution and too restrictive.

Conversely, if any two commands share related objects, there is a dependency deter-

mined by the order they were pushed in the queue. Note that this can be an indirect associ-

ation. In the example, the kernel instance uses the kernel object, which has been associated

to the same two buffers objects used for the write commands. Hence the write operations

have to be executed before the kernel.

temporal consistency For this technique to be robust over time, the context of

each command must be the same as it was when it was delayed. This presents a problem

since objects might change during an asynchronous execution. In the example, the third

argument of the kernel is changed at line 24, which is after its instantiation but before the

read is enqueued at line 25. By the time the context is examined for the read command, the

4.4 helium implementation 83

kernel is no longer associated with the buffer being read, thereby missing a crucial ordering

dependency. To avoid introducing these data races, the full context of each command must

be preserved.

This is done by copying the objects associated with the command: the original objects

represent the up-to-date context, and the private copies store the properties of the objects at

the time the command was instantiated. Helium distinguishes between immutable objects,

which cannot be modified through the OpenCL API, and the mutable objects, which can.

Memory objects are immutable and hence are not copied, but kernel objects are mutable

so the instantiation creates a private copy of the state of the kernel and its associations, as

shown in Figure 4.12b. This re-establishes the dependency between the read command and

the kernel execution, avoiding the data race.

This analysis shows that the dependencies between a chain of asynchronous commands

in an arbitrary OpenCL application can be derived from observing the interactions between

the application and the vendor implementation. This dependency specification is more fine

grained than what the user originally expressed, allowing the detection of time indepen-

dent commands, which can safely be reordered. The state of the OpenCL model objects at

any point during the execution is known and a representation of any command context

can be stored. The next section introduces the delay mechanism, which takes advantage of

these observations to create delayed task graphs transparently.

4.4.1.4 Delay Implementation

The delay mechanism decouples the host and device programs and introduces command

batching without compromising program semantics. In other words: the host application

believes all issued commands are getting executed by the vendor implementation, even

when they are not; and the vendor implementation will eventually execute something se-

mantically equivalent – but not necessarily identical – to the intended execution. This pro-

cess is undetectable from the application and from the vendor implementation, but opens

a new scope for collective optimizations.

The key underlying concept consists of creating two isolated execution contexts and

maintaining two copies of the OpenCL objects: one representing the view of the OpenCL

objects as intended by the host application and the other containing the profiling informa-

tion of the actual execution in the vendor implementation. Helium can manipulate the two

84 dynamic interkernel optimizations

Figure 4.13: Overview of Helium’s command objects and their relation to OpenCL objects. The de-
lay phase consists of generating functor objects wrapping OpenCL commands instead
of invoking the vendor implementation.

views independently as long as it provides two guarantees: the first is that Helium creates

a synthetic observable context for the host application which is identical to what it would

have been if the vendor implementation executed the commands; and the second is that

synchronization points between the host and the device programs restore a fully consistent

state in the host application. These guarantees are defined and described below.

functor objects When the host application calls an OpenCL function, Helium in-

tercepts it and generates an object representation of the command. A set of functor objects

are defined to represent each API function and integrated as an extension of the OpenCL

objects. The main functor objects and their relations to the OpenCL objects are presented in

Figure 4.13. Each function call triggers the instantiation of the corresponding functor and

the call parameters are deeply copied. Together with its complete execution context, the

command can be executed independently from the host application.

The functor is pushed in an internal command queue, and the call is not forwarded to

the vendor implementation: it is a delayed command. The obvious issue is that return values,

which depended on the vendor implementation, are undefined but necessary for the host

program to execute correctly. Hence, Helium has to create a synthetic context to replace

the vendor implementation.

4.4 helium implementation 85

(a) After Error Code Override
(b) After Handle Override

Figure 4.14: Details of the delay process: to force an synchronous evaluation of OpenCL commands,
Helium can override the return code of queue commands (a), or override all the
OpenCL Handles (b) without any impact on the host application.

virtual contexts Most commands in OpenCL are asynchronous and have limited

immediate side effect on the host application. The only two synchronous interactions are

error codes - which are either returned or stored in pointer arguments –, and object handles.

For Helium to be undetectable, is has to preserve the observable behavior for both.

Since Helium assumes the commands will always execute successfully1, it overrides the

error code to the success flag for the delayed commands. This enables all asynchronous

command queue actions to be freely reordered until another OpenCL function is called,

which is the task graph presented in Figure 4.14a.

This is still fairly limiting since asynchronous commands are often interleaved with other

OpenCL commands which modify the context, like kernel object creation or buffer allo-

cation. These functions return OpenCL handles, which are used to define relationships

between other commands. The previous section described how Helium can track these ob-

jects to build a valid and complete execution context, capturing all relationships between

them. The delay mechanism uses this internal model in the same way a vendor imple-

mentation would and overrides the returned OpenCL handles with pointers to its internal

representation.

Helium can then delay any command in the OpenCL API while preserving enough

information to guarantee a correct execution when they are later evaluated. As shown in

Figure 4.14b, all commands from the code example are delayed and none of them were

1 Implications of faulty commands, error handling and other side effects are discussed in Section 4.5.

86 dynamic interkernel optimizations

actually executed by the vendor implementation. The buffers are not allocated and nothing

is pushed in the queue. However, Helium captured all these commands and produced the

same context from the host application point of view.

Commands cannot be delayed indefinitely, since the host application might use the out-

put of the device. The final stage of the delay mechanism is to identify when commands

have to be executed. Creating so-called synchronization points.

synchronization points Any computation offloaded to the device in OpenCL, and

most of the communication, is executed asynchronously; allowing host and device pro-

grams to make independent progress in parallel. However, this model requires the host

application to explicitly initiate synchronization with the device before it can safely acquire

the state of an asynchronous output. OpenCL provides many ways of synchronizing host

and device: users can either wait for all pending actions in a queue to execute (clFinish),

or a specific set of asynchronous tasks (clWaitForEvents), or enqueue a blocking memory

operation, which guarantee all previous operations or its user-defined dependencies will

also complete. These synchronizations are necessary to ensure correctness of the program,

but in the same way in-order queues are often introducing over-specified dependencies,

user defined synchronization is often overly conservative. This decreases performance by

preventing host and device programs from executing in parallel and impairs the applicabil-

ity of inter-command optimizations by generating short task graphs. Fortunately, Helium

can override user-specified synchronization to enforce it only when strictly needed.

Although it has not been formally proven, synchronization is only necessary in two cases:

to avoid data races in multiple unsequenced kernels or to acquire and release memory

states in the host application. Since the analysis performed in Helium can automatically

detect data races between asynchronous kernel executions, as explained earlier, this leaves

only acquire and release operations. These are characterized by a pending operation involv-

ing any exchange between the host application memory space and the OpenCL managed

memory space, followed by an explicit user-defined synchronization request. At this point,

because Helium cannot know how the host application uses the data in its own memory

space, the command must be executed to restore coherency. In the example in Figure 4.12a,

the write operations satisfy half of the requirements: they involve a pointer from the host

application, but they are asynchronous, so they can still be delayed. The final read, however,

4.4 helium implementation 87

is blocking. Therefore it becomes a true synchronization point. The consistency between the

host and the device program must be restored at that point, since the host application is

free to use the data at any point after this operation.

Helium pauses the execution of the host program when a synchronization point is en-

countered. The coherency between the host and the device applications can be restored

by executing the list of delayed commands. The function then returns after coherency is

restored, and the cycle restarts until the next synchronization point is reached. This in-

troduces command batching where all commands between synchronization points are col-

lected and their execution delayed without corrupting the host program.

4.4.1.5 Delay Phase Summary

This section presented the delay mechanism implemented in Helium. Helium can trans-

parently and safely prevent OpenCL function calls from being immediately executed by

the vendor implementation. The actions are instead turned into self-contained functor ob-

jects, creating a task graph which can be executed in a delayed fashion without any impact

on the host application. This allows Helium to take full control of clCreate* and clEnqueue*

functions. The dependencies between commands are deduced by combining their basic

semantic information and their used of object handles. The synchronization points are au-

tomatically detected and interrupt the delay mechanism to restore consistency. Before being

executed, the task graphs are sent to Helium’s optimizer.

4.4.2 Task Graph Optimizer

The previous subsection demonstrated that an OpenCL application can be safely decou-

pled from the vendor implementation by encapsulating and delaying commands until a

synchronization point is reached. We also described how Helium uses its embedded com-

piler to gather static information about the device code. The information gathered is very

incomplete on both sides: command dependencies in the generated task graph are overly

cautious since the runtime does not specify how the data is used and the static analysis of

the device code provides little information on its own. The task graph optimizer combines

both the runtime and static information to optimize the edges and the nodes in the graph.

88 dynamic interkernel optimizations

1 int n = computeN () ; // ’n ’ i s computed at runtime
2

3 // Compile device source code
4 std : : s t r i n g c = R" (
5 #define ID g e t _ g l o b a l _ i d (0)
6 #define buf g loba l i n t *
7 kernel void A(buf a , buf b)
8 { b [ID] = 2 * a [ID] ; }
9 kernel void B (buf t , buf u)

10 { u [ID] = t [ID−1] − 1 ; }
11 kernel void C(buf x , buf y , buf z , i n t n)
12 { y [ID+n] += x [ID−n] + z [ID−n] ; }) " ;
13 Program p { cx , { { c . data () , c . s i z e () } } } ; p . bui ld (devs) ;
14

15 // Memory a l l o c a t i o n
16 auto mf = CL_MEM_READ_WRITE;
17 Buf fer b1 { cx , mf , s i z } , b2 { ctx , mf , s i z } , b3 { ctx , mf , s i z } ;
18

19 // Kernel c r e a t i o n and argument binding
20 Kernel A{ p , "A" } ; A. setArgs (b1 , b2) ;
21 Kernel B { p , "B" } ; B . setArgs (b1 , b3) ;
22 Kernel C{ p , "C" } ; C . setArgs (b2 , b1 , b3 , n) ;
23

24 // Enqueue non−blocking operat ions
25 q . enqueueWriteBuffer (b1 , CL_FALSE , 0 , s iz , data) ;
26 q . enqueueNDRangeKernel (A, { 0 } , { 100 } , { l }) ;
27 q . enqueueNDRangeKernel (B , { 1 } , { 100 } , { l }) ;
28 if (n > 1) { // dynamic computation
29 q . enqueueReadBuffer (b2 , CL_FALSE , 0 , s iz , tmp) ;
30 q . enqueueNDRangeKernel (C, { n } , { 100−n } , { l }) ;
31 n = 0 ;
32 C. setArg (3 ,n) ; C . setArg (0 , b3) ; A. setArg (0 , b2) ;
33 }
34 q . enqueueNDRangeKernel (A, { 0 } , { 100 } , { l }) ;
35 q . enqueueNDRangeKernel (C, { n } , { 100−n } , { l }) ;
36

37 // Blocking operat ion
38 q . enqueueReadBuffer (b1 , CL_TRUE, 0 , s iz , r e s u l t) ;
39 if (n > 1) { b2 = Buffer () ; }

Figure 4.15: Example of dynamic multi-kernel application and the associated task graph generated
by Helium’s delay mechanism for the value n = 2.

The example shown in Figure 4.15 will be used throughout the section to demonstrate

the optimizations. It contains seven asynchronous commands, two of which are enqueued

conditionally, and one blocking read at line 38. Helium delays all commands using the

mechanism described in Section 4.4.1, which produces the task graph shown on the right-

hand side. Because all commands use the same pool of objects, they are inter-dependent.

However, it can be improved, first by optimizing the dependencies between the nodes and

then the nodes themselves.

4.4.2.1 Dependency Optimizations

The dependency optimizer deletes or creates edges in the task graph to represent the mini-

mal set of data-dependency between the nodes. It uses a much more fine-grained approach

4.4 helium implementation 89

(a) Kernel-flow Simplification

(b) Command-flow Simplification (c) Task Postponement

(d) Edge-Optimized Graph

Figure 4.16: Task Graph Edge Optimization: Helium uses the device code analysis to break unnec-
essary dependencies between kernel instances (a) or with other commands (b). It can
also create additional dependencies to enforce a particular ordering between the com-
mands (c). The resulting task graph (c) is much wider and exposes task parallelism.

than the delay mechanism and inspects how each memory object is used throughout the

graph and where it can be shared by multiple actions instead of assuming each command

takes ownership of the object. This results in a wider graph, presented in Figure 4.16d. Each

edge optimization is described below.

task parallelization The edges of the task graph are later translated directly into

OpenCL dependencies during the replay stage. Hence it is crucial that these dependencies

are minimal to expose a maximum amount of task parallelism. This can be measured

by the width of the graph: the optimizer aims to increase the width and decrease the

length of the critical path. The delay mechanism avoids conflicts between actions in a very

conservative way by preventing them to use conflicting objects at the same time. However,

a producer/consumer approach, allowing multiple actions to share read-only objects is a

much more precise dependency management and also provides the same guarantees. Each

action is classified as a consumer, which only reads data, or a producer, which creates

or modifies data. Doing this requires more information about the kernels than is available

from the runtime alone. Hence, Helium combines the runtime information with static code

analysis.

90 dynamic interkernel optimizations

kernel-aware dependency analysis Much more contextual information is known

about each kernel instance during the optimization stage compared to ahead-of-time compi-

lation. As seen in the analyzer, the command functor knows the iteration domain definition

and all the kernel parameters.

This information is combined with the PADs generated during the static analysis of the

example shown in Figure 4.15. In the example, the PADs for kernels A and B and their

parameters are represented as:

PAD(A) = ∀gid0 ∈ [0..100[

LDglob(a+ sizeofint ∗ gid0), with a = b1

STglob(b+ sizeofint ∗ gid0), with b = b2

PAD(B) = ∀gid0 ∈ [1..100[

LDglob(t+ sizeofint ∗ (gid0 − 1)), with t = b1

STglob(u+ sizeofint ∗ gid0), with u = b3

From this, the optimizer deduces that b1 is only read from both kernels since it only

appears in LD PADs. As the ST PAD sets are disjoint for both kernels, there is no data

dependency between them and they can execute in parallel. The optimizer deletes the edge

to disconnect the two commands, as shown in Figure 4.16a.

In addition to performing comparison between read and write sets, the optimizer also

performs a range-based comparison over the iteration domain to allow multiple writers

to modify the same data in parallel if they operate on disjoint data ranges. This does not

necessarily mean that the iteration domains must be disjoint since the domain does not

necessarily correlate to the memory accesses. Instead Helium uses symbolic execution of

the PADs to detect eventual conflicts.

task-aware dependency analysis After each memory object that is manipulated

by the kernel instances has been marked with read-only or read-write access, this informa-

tion is used to eliminate dependencies with non-compute nodes. Memory operations can

easily be classified as consumers, like a read or a copy source, or a producer, like a write

or a copy destination. The same technique is used to delete the edges between multiple

readers. However, a writer must acquire the state of the object to perform the operation:

dependencies are created between a writer and all the precedent readers to avoid data

4.4 helium implementation 91

races. In the example the buffer b2 is produced by the invocation of A, and subsequently

consumed by the read operation and an instance of C. Since they are both readers, the

dependency between them is deleted. They are both connected to the last producer of b2,

which was the instance of A. This allows parallel execution of the memory operations and

the compute operations.

task postponement While the normal execution of common synchronizations prim-

itive like clFinish or a blocking operation on an in-order queue would force the execution

of all pending commands, Helium lazily evaluates individual commands. If a command is

not a dependency of a command having a side effect on the host application, it will not be

executed before the synchronization point. This effectively postpones all kernel instances

as much as possible, until they have to be evaluated, which reduces the synchronization

delays and allows for more optimizations by aggregating more tasks. In the example, the

second instance of A produces b2, which is not a dependency of any memory operation.

Therefore, it can be delayed until after the synchronization, as shown in Figure 4.16c.

explicit dependency elimination Finally, the dependency analyzer refines the

user provided dependencies, if there are any. The delay mechanism already removes the

implicit dependencies of in-order queues. However, the host application might be using

multiple queues, or an out-of-order queue, in which case an event-based synchronization

must be used. Since the analyzer in Helium guarantees that data races will be avoided

even across queues, the user-specified dependencies can be deleted most of the time and

replaced with a minimal set computed by the optimizer. They are only used to solve rare

conflicts, like multiple unsequenced writers.

4.4.2.2 Task Optimizations

The task optimizer reduces the number of nodes, by combining or deleting them. This pro-

vides a high level abstraction over the compiler transformations: instead of generating code

incrementally, Helium uses properties of the nodes and performs lightweight transforma-

tions on the task graph. This produces the final schedule shown in Figure 4.17d.

Helium employs a greedy optimization strategy where all the transformations are con-

sidered for each action as soon as it is delayed, in the order listed in this section. To guide

92 dynamic interkernel optimizations

(a) Horizontal Fusion (b) Vertical Fusion

(c) Task Elimination

(d) Task-Optimized Graph

Figure 4.17: Task Graph Node Optimizations: Helium uses the optimized dependencies and the
static analysis of the device code to merge data independent nodes (a) or data-
dependent kernels (b) whenever it is possible and beneficial. Tasks are also removed
from the graph whenever the host application cannot use their outputs (c).

the optimization process, simple heuristics are put in place to estimate the benefits of a

transformation. These heuristics are listed alongside the optimization description.

data independent fusion The task graph generated by the delay phase and opti-

mized by the dependency analyzer provides the guarantee by construction that there is no

data race between any two unconnected nodes. Independent nodes can therefore be exe-

cuted in any order, or even evaluated at the same time, by fusing multiple kernel instances

into one.

However, some restrictions of the OpenCL model limit the applicability of horizontal fu-

sion. Since every thread in a workgroup can be synchronized using a barrier, the semantics

of this barrier, and hence the size of the workgroup, must be preserved. Two kernels can

still be fusable even with different workgroup sizes if at least one of them does not use

any barrier. In this case Helium will override the provided workgroup size and generate

functions to compute the local size and index within the fused kernels.

While it would be safe to fuse any two fusable nodes in the graph, Helium uses the

PADs built during device code analysis to estimate the performance benefits of merging

the kernels.

In order to identify good fusion candidates, the memory accesses are compared across

kernel instances. A small constant difference between two PADs expressions using the same

4.4 helium implementation 93

base pointer indicates neighboring accesses which can be optimized. In this case, both

instances access an address of sizeofint bytes apart within each thread:

(b1 + sizeofint ∗ gid0) − (b1 + sizeofint ∗ (gid0 − 1)) = −sizeofint

Since this is small enough for most hardware to optimize against, the two nodes in the

graph are fused and their edges merged, as shown in Figure 4.17a.

vertical fusion An edge in the graph always represents a producer/consumer de-

pendency between two actions. However, the second task does not always have to wait

for the first task to complete entirely before starting: streaming data from one task to the

other can be implemented at a more fine-grained level. The OpenCL model does not pro-

vide synchronization between any two threads, so this transformation is only applicable

under very strict circumstances: there must be no concurrent memory accesses to the same

address within or across the kernel instances at a thread level.

Concurrent accesses within each instance are fairly rare since reading and writing differ-

ent positions of the same buffer can easily lead to race conditions if not carefully imple-

mented. The absence of dependency can be verified by comparing load and store PADs in

each instance. In the example, the execution context can be injected into the PADs for the

two instances of C, note C1 and C2:

PAD(C1) = ∀gid0 ∈ [2..98[

LDglob(b1 + sizeofint ∗ (gid0 + 2))

LDglob(b2 + sizeofint ∗ (gid0 + 2))

LDglob(b3 + sizeofint ∗ (gid0 − 2))

STglob(b1 + sizeofint ∗ (gid0 + 2))

PAD(C2) = ∀gid0 ∈ [0..100[

LDglob(b1 + sizeofint ∗ gid0)

LDglob(b3 + sizeofint ∗ gid0)

STglob(b1 + sizeofint ∗ gid0)

94 dynamic interkernel optimizations

The only load and store PAD using the same base pointers is for b1 in both kernels, and

they are to the same address within both instances, so there is no spatial dependency. The

stores from the producer and the loads from the consumer are compared across kernels to

check for dependency. In this case, there is a conflict:

STglob(b1 + sizeofint ∗ (gid0 + 2)) , with gid0 ∈ [2..98[

LDglob(b1 + sizeofint ∗ gid0) , with gid0 ∈ [0..100[

This introduces a spatial dependency: for example, the first thread of C1 executes a

store operation at the fourth element of the array, which is loaded by the fourth thread of

C2. Since the threads would execute in parallel when fusing, this would introduce a race.

However, the applicability of this optimization can be extended by performing further

analysis.

Using a technique similar to loop alignment [FHM99], the iteration domain can be trans-

lated and compensated by a constant in the PADs. A translation factor in introduced in the

producer domain to align conflicting loads and try to solve the system of (one) equation in

this case:

{b1 + sizeofint ∗ (gid0 + 2) = b1 + sizeofint ∗ (gid0 + trans)}⇒ {trans = 2}

Since the system has a solution, there exist a translation which solves the spatial depen-

dency. The translation is applied to the domain of C1 and compensated in its PAD:

PAD(C1 ◦C2) = ∀gid0 ∈ [0..100[

LDglob(b1 + sizeofint ∗ gid0)

LDglob(b3 + sizeofint ∗ gid0)

LDglob(b2 + sizeofint ∗ (gid0 − 4)), if gid0 > 4

LDglob(b3 + sizeofint ∗ (gid0 − 4)), if gid0 > 4

STglob(b1 + sizeofint ∗ gid0)

After the translation removed the dependency, the two kernels can now be fused since

there is no data race between individual threads. The transformation is represented in

4.4 helium implementation 95

Figure 4.17b. The PADs of the fused kernel C1 ◦C2 contains one fewer load and one fewer

store than the sequence C1 7→ C2.

task elimination Executing only the tasks which have side effects on the host ap-

plication accumulates all the tasks that do not. Some of these tasks, however, might never

have any side effect; these are called dead tasks. This artifact occurs when the output of a

task is overwritten by a subsequent task, or when it is no longer accessible from the host

application and not used by any other task. Dead tasks are difficult to spot in the code

since they might result from highly dynamic and complex flow, or emerge as an unwanted

consequence of the optimization process.

Dead tasks are never executed in Helium, since all tasks are lazily instantiated. However,

they have undesirable side effects, like preventing de-allocation of the objects they are

associated with, or clobbering the task graph. Hence they have to be eliminated.

Helium spots when a task becomes dead by tracking the use and lifetime of each memory

object. When the reference count on a buffer becomes zero, or when a buffer is overridden

by a subsequent action, the edge from the last producer of this object in the task graph is

marked as defunct. When all outgoing edges of an action are defunct, it can no longer have

any side effect and can safely be evicted from the task graph.

In the example, b2 is released after the synchronization point and was last produced by

an instance of A enqueued before the synchronization point. Since b2 is the only output

of this instance, it can be eliminated and is removed from the task graph, as shown in

Figure 4.17c.

4.4.2.3 Final Optimized Graph

optimization summary This subsection presented the task graph optimizer and the

transformations applied to refine the dependencies and reduce the number of commands.

Although the optimizer makes use of the low-level compiler analysis to validate the legit-

imacy of the optimizations, the transformations themselves are applied using a very high

level representation. All transformations consist only in manipulating nodes and edges.

This is a lightweight process which relies on the sound abstraction model to introduce con-

cepts which are hard to implement correctly by hand, like task parallelism and data-race

avoidance.

96 dynamic interkernel optimizations

Figure 4.18: Optimized task graphs depending on the runtime value n. Implementing all the vari-
ations by hand would require a complex control flow in the host optimization and
duplications in the device code.

context sensitivity Combining these optimizations incrementally creates a highly

runtime specific task graph which takes into account the actual dataflow path. Figure 4.18

shows the three possible optimization sets depending on the value of n in the example

application. If it had been optimized manually, the application would have required four

additional specialized kernels: A ◦ B, C ◦ C, A ◦ B ◦ C and A ◦ A ◦ B ◦ C, with high code

redundancy. This would have also considerably increased the complexity of the host appli-

cation since each dataflow path must be implemented in distinct control flow path, which

may extend beyond this code fragment to the rest of the application.

Once the task graph has been optimized, it is executed by the OpenCL vendor imple-

mentation during the replay phase.

4.4.3 Replay Mechanism

The delay mechanism is in charge of restoring the coherency between the host and device

programs. After a synchronization point is reached and the task graph has been optimized,

it has to be translated into OpenCL function calls and executed by the vendor implemen-

tation. Before executing the commands, the high level transformations need to be material-

ized and the code is further optimized. The commands are then efficiently dispatched.

4.4 helium implementation 97

4.4.3.1 Materialization of the Optimizations

Before the task graph is executed, the transformations applied by the optimizer have to be

generated. This involves generating and compiling new kernels on the fly. Helium’s com-

piler is based on LLVM and generates either SPIR or PTX binaries, which are loaded back

into the vendor implementation. Since compilation is relatively expensive, Helium only

generates code after the optimization stage, and uses the same lazy evaluation technique to

materialize the transformation only for the nodes which have to be immediately replayed.

The JIT optimizations and the code staging mechanism are described in this subsection.

constant propagation At this stage, variables such as the kernel arguments or the

global and local domain sizes are known and can be used by the compiler to simplify the

code. However, Helium tries not to over-specialize the code by only applying constant

propagation if it yields good potential for optimizations. Only scalar values controlling

loop trips and branches are propagated, since these are the most aggressive optimizations.

Helium uses the type information contained in the IR to emulate reflection and undo the

type erasure introduced by binary argument storage in OpenCL. This allows the optimizer

to decompose any user-defined type into primitive types and fetch individual members if

necessary to propagate as few variables as possible.

alias analysis In the same way that constant propagation can retrieve values of

primitive types from the argument list, the optimizer can extract pointer arguments and

compare their values. If multiple arguments match the same buffer handle within a kernel

instance, the pointers will alias on the device.

The compiler explicitly replaces all uses of aliased pointers with a unique argument,

and applies redundant and dead load elimination passes to reduce the amount of memory

requests. This transformation must respect memory fences: it assumes any unknown func-

tion manipulating a pointer might clobber memory and identifies direct calls to mem_fence.

Memory accesses are not reordered or eliminated across these points.

kernel fusion The “fused” nodes from the task graphs simply contain the subgraph

of all the fused kernel instances and their dependencies. This is used by the compiler to

generate specialized functions by inlining the calls.

98 dynamic interkernel optimizations

a b c w h

1 0 0 0
1 0 0 00 0

0 0

1 10 0 0

E F 3 1 07 63 1 0

K
e
rn

e
l
O

b
je

ct

Arguments
Specializations

a
b
c
w
h 1 0 0 00 0

1 0 0 00 0
D 4B E 3 0

64
64
64
32
32

F 8B F 7 0
1 6B F C 0

Mask

Hash

%0:
%1 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 0) #2
%2 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 1) #2
%3 = shl nsw i32 %2 , 1
%4 = sext i32 %3 to i64
%5 = sext i32 %1 to i64
%6 = get el eme nt pt r inbounds float * %A, i64 %4
%7 = load float * %6 , al ign 4, !tbaa !3
%8 = get el eme nt pt r inbounds float * %B , i64 %5
%9 = load float * %8 , al ign 4, !tbaa !3
%1 0 = fmu l float %7 , %9
%1 1 = fadd float %1 0, 0. 000000e+00
%1 2 = or i64 %4 , 1
%1 3 = get el eme nt pt r inbounds float * %A, i64 %1 2
%1 4 = load float * %1 3, al ign 4, !tbaa !3
%1 5 = add nsw i64 %5 , 2
%1 6 = get el eme nt pt r inbounds float * %B , i64 %1 5
%1 7 = load float * %1 6, al ign 4, !tbaa !3
%1 8 = fmu l float %1 4, %1 7
%1 9 = fadd float %1 1, %1 8
%2 0 = add nsw i32 %3 , %1
%2 1 = sext i32 %2 0 to i64
%2 2 = get el eme nt pt r inbounds float * %C , i64 %2 1
stor e float %1 9, float * %2 2, al ign 4, !tbaa !3
ret voi d

Program

%0:
%1 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 0) #2
%2 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 1) #2
%3 = shl nsw i32 %2 , 1
%4 = sext i32 %3 to i64
%5 = sext i32 %1 to i64
%6 = get el eme nt pt r inbounds float * %A, i64 %4
%7 = load float * %6 , al ign 4, !tbaa !3
%8 = get el eme nt pt r inbounds float * %B , i64 %5
%9 = load float * %8 , al ign 4, !tbaa !3
%1 0 = fmu l float %7 , %9
%1 1 = fadd float %1 0, 0. 000000e+00
%1 2 = or i64 %4 , 1
%1 3 = get el eme nt pt r inbounds float * %A, i64 %1 2
%1 4 = load float * %1 3, al ign 4, !tbaa !3
%1 5 = add nsw i64 %5 , 2
%1 6 = get el eme nt pt r inbounds float * %B , i64 %1 5
%1 7 = load float * %1 6, al ign 4, !tbaa !3
%1 8 = fmu l float %1 4, %1 7
%1 9 = fadd float %1 1, %1 8
%2 0 = add nsw i32 %3 , %1
%2 1 = sext i32 %2 0 to i64
%2 2 = get el eme nt pt r inbounds float * %C , i64 %2 1
stor e float %1 9, float * %2 2, al ign 4, !tbaa !3
ret voi d

%0:
%1 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 0) #2
%2 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 1) #2
%3 = icmp sgt i32 %wA, 0
%4 = mu l nsw i32 %2 , %wA
br i1 %3 , label %. lr.ph, label %. _cr it_edge

T F

.lr.ph:
%5 = sext i32 %4 to i64

%x t rai ter = and i32 %wA, 1
%l cmp . mo d = icmp ne i32 %x t rai ter , 0
%l cmp . over flow = icmp eq i32 %wA, 0
%l cmp . or = or i1 %l cmp . over flow, %l cmp . mo d
br i1 %l cmp . or , label %6 , label %. lr.ph. spl it

T F

._crit_edge:
%value.0.lcssa = phi float [0.000000e+00, %0], [%.lcssa,

... %._crit_edge.loopexit]
%4 2 = add nsw i32 %4 , %1
%4 3 = sext i32 %4 2 to i64
%4 4 = get el eme nt pt r inbounds float * %C , i64 %4 3
stor e float %v al ue. 0. lcssa, float * %4 4, al ign 4, !tbaa !3
ret voi d

%6:

%7 = add nsw i64 0, %5
%8 = get el eme nt pt r inbounds float * %A, i64 %7
%9 = load float * %8 , al ign 4, !tbaa !3
%1 0 = trunc i64 0 to i32
%1 1 = mu l nsw i32 %1 0, %wB
%1 2 = add nsw i32 %1 1, %1
%1 3 = sext i32 %1 2 to i64
%1 4 = get el eme nt pt r inbounds float * %B , i64 %1 3
%1 5 = load float * %1 4, al ign 4, !tbaa !3
%1 6 = fmu l float %9 , %1 5
%1 7 = fadd float 0. 000000e+00, %1 6
%i ndvars. iv. next .unr = add nuw nsw i64 0, 1
%l ftr.wi dei v. unr = trunc i64 %i ndvars. iv. next .unr to i32
%e xi tcond. unr = icmp eq i32 %l ftr.wi dei v. unr , %wA
br label %. lr.ph. spl it

.lr.ph.split:
%.lcssa.unr = phi float [0.000000e+00, %.lr.ph], [%17, %6]
%i ndvars. iv. unr = phi i64 [0, %. lr.ph], [%i ndvars. iv. next .unr , %6]
%v al ue. 01. unr = phi float [0. 000000e+00, %. lr.ph], [%1 7, %6]
%1 8 = icmp ul t i32 %wA, 2
br i1 %1 8, label %. _cr it_edge. loopexi t, label %. lr.ph. spl it.spl it

T F

._crit_edge.loopexit:
%.lcssa = phi float [%.lcssa.unr, %.lr.ph.split], [%.lcssa.ph,
... %._crit_edge.loopexit.unr-lcssa]
br label %. _cr it_edge

.lr.ph.split.split:
br label %19

%19:

%i ndvars. iv = phi i64 [%i ndvars. iv. unr , %. lr.ph. spl it.spl it], [
... %indvars.iv.next.1, %19]
%v al ue. 01 = phi float [%v al ue. 01. unr , %. lr.ph. spl it.spl it], [%4 1, %1 9]
%2 0 = add nsw i64 %i ndvars. iv, %5
%2 1 = get el eme nt pt r inbounds float * %A, i64 %2 0
%2 2 = load float * %2 1, al ign 4, !tbaa !3
%2 3 = trunc i64 %i ndvars. iv to i32
%2 4 = mu l nsw i32 %2 3, %wB
%2 5 = add nsw i32 %2 4, %1
%2 6 = sext i32 %2 5 to i64
%2 7 = get el eme nt pt r inbounds float * %B , i64 %2 6
%2 8 = load float * %2 7, al ign 4, !tbaa !3
%2 9 = fmu l float %2 2, %2 8
%3 0 = fadd float %v al ue. 01, %2 9
%i ndvars. iv. next = add nuw nsw i64 %i ndvars. iv, 1
%l ftr.wi dei v = trunc i64 %i ndvars. iv. next to i32
%3 1 = add nsw i64 %i ndvars. iv. next , %5
%3 2 = get el eme nt pt r inbounds float * %A, i64 %3 1
%3 3 = load float * %3 2, al ign 4, !tbaa !3
%3 4 = trunc i64 %i ndvars. iv. next to i32
%3 5 = mu l nsw i32 %3 4, %wB
%3 6 = add nsw i32 %3 5, %1
%3 7 = sext i32 %3 6 to i64
%3 8 = get el eme nt pt r inbounds float * %B , i64 %3 7
%3 9 = load float * %3 8, al ign 4, !tbaa !3
%4 0 = fmu l float %3 3, %3 9
%4 1 = fadd float %3 0, %4 0
%i ndvars. iv. next .1 = add nuw nsw i64 %i ndvars. iv. next , 1
%l ftr.wi dei v. 1 = trunc i64 %i ndvars. iv. next .1 to i32
%e xi tcond. 1 = icmp eq i32 %l ftr.wi dei v. 1, %wA
br i1 %e xi tcond. 1, label %. _cr it_edge. loopexi t.unr -lcssa, label %1 9

T F

._crit_edge.loopexit.unr-lcssa:
%.lcssa.ph = phi float [%41, %19]

br label %. _cr it_edge. loopexi t

1 10 0 0 1 1 00 330

%0:
%1 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 0) #2
%2 = tai l cal l i32 (i32, ...)* bi tcast (i32 (. ..)* @g et _gl obal _i d to i32
... (i32, ...)*)(i32 1) #2
%3 = icmp sgt i32 %wA, 0
%4 = mu l nsw i32 %2 , %wA
br i1 %3 , label %. lr.ph, label %. _cr it_edge

T F

.lr.ph:
%5 = sext i32 %4 to i64

%x t rai ter = and i32 %wA, 1
%l cmp . mo d = icmp ne i32 %x t rai ter , 0
%l cmp . over flow = icmp eq i32 %wA, 0
%l cmp . or = or i1 %l cmp . over flow, %l cmp . mo d
br i1 %l cmp . or , label %6 , label %. lr.ph. spl it

T F

._crit_edge:
%value.0.lcssa = phi float [0.000000e+00, %0], [%.lcssa,

... %._crit_edge.loopexit]
%4 2 = add nsw i32 %4 , %1
%4 3 = sext i32 %4 2 to i64
%4 4 = get el eme nt pt r inbounds float * %C , i64 %4 3
stor e float %v al ue. 0. lcssa, float * %4 4, al ign 4, !tbaa !3
ret voi d

%6:

%7 = add nsw i64 0, %5
%8 = get el eme nt pt r inbounds float * %A, i64 %7
%9 = load float * %8 , al ign 4, !tbaa !3
%1 0 = trunc i64 0 to i32
%1 1 = mu l nsw i32 %1 0, %wB
%1 2 = add nsw i32 %1 1, %1
%1 3 = sext i32 %1 2 to i64
%1 4 = get el eme nt pt r inbounds float * %B , i64 %1 3
%1 5 = load float * %1 4, al ign 4, !tbaa !3
%1 6 = fmu l float %9 , %1 5
%1 7 = fadd float 0. 000000e+00, %1 6
%i ndvars. iv. next .unr = add nuw nsw i64 0, 1
%l ftr.wi dei v. unr = trunc i64 %i ndvars. iv. next .unr to i32
%e xi tcond. unr = icmp eq i32 %l ftr.wi dei v. unr , %wA
br label %. lr.ph. spl it

.lr.ph.split:
%.lcssa.unr = phi float [0.000000e+00, %.lr.ph], [%17, %6]
%i ndvars. iv. unr = phi i64 [0, %. lr.ph], [%i ndvars. iv. next .unr , %6]
%v al ue. 01. unr = phi float [0. 000000e+00, %. lr.ph], [%1 7, %6]
%1 8 = icmp ul t i32 %wA, 2
br i1 %1 8, label %. _cr it_edge. loopexi t, label %. lr.ph. spl it.spl it

T F

._crit_edge.loopexit:
%.lcssa = phi float [%.lcssa.unr, %.lr.ph.split], [%.lcssa.ph,
... %._crit_edge.loopexit.unr-lcssa]
br label %. _cr it_edge

.lr.ph.split.split:
br label %19

%19:

%i ndvars. iv = phi i64 [%i ndvars. iv. unr , %. lr.ph. spl it.spl it], [
... %indvars.iv.next.1, %19]
%v al ue. 01 = phi float [%v al ue. 01. unr , %. lr.ph. spl it.spl it], [%4 1, %1 9]
%2 0 = add nsw i64 %i ndvars. iv, %5
%2 1 = get el eme nt pt r inbounds float * %A, i64 %2 0
%2 2 = load float * %2 1, al ign 4, !tbaa !3
%2 3 = trunc i64 %i ndvars. iv to i32
%2 4 = mu l nsw i32 %2 3, %wB
%2 5 = add nsw i32 %2 4, %1
%2 6 = sext i32 %2 5 to i64
%2 7 = get el eme nt pt r inbounds float * %B , i64 %2 6
%2 8 = load float * %2 7, al ign 4, !tbaa !3
%2 9 = fmu l float %2 2, %2 8
%3 0 = fadd float %v al ue. 01, %2 9
%i ndvars. iv. next = add nuw nsw i64 %i ndvars. iv, 1
%l ftr.wi dei v = trunc i64 %i ndvars. iv. next to i32
%3 1 = add nsw i64 %i ndvars. iv. next , %5
%3 2 = get el eme nt pt r inbounds float * %A, i64 %3 1
%3 3 = load float * %3 2, al ign 4, !tbaa !3
%3 4 = trunc i64 %i ndvars. iv. next to i32
%3 5 = mu l nsw i32 %3 4, %wB
%3 6 = add nsw i32 %3 5, %1
%3 7 = sext i32 %3 6 to i64
%3 8 = get el eme nt pt r inbounds float * %B , i64 %3 7
%3 9 = load float * %3 8, al ign 4, !tbaa !3
%4 0 = fmu l float %3 3, %3 9
%4 1 = fadd float %3 0, %4 0
%i ndvars. iv. next .1 = add nuw nsw i64 %i ndvars. iv. next , 1
%l ftr.wi dei v. 1 = trunc i64 %i ndvars. iv. next .1 to i32
%e xi tcond. 1 = icmp eq i32 %l ftr.wi dei v. 1, %wA
br i1 %e xi tcond. 1, label %. _cr it_edge. loopexi t.unr -lcssa, label %1 9

T F

._crit_edge.loopexit.unr-lcssa:
%.lcssa.ph = phi float [%41, %19]

br label %. _cr it_edge. loopexi t

1

2

3

4

Figure 4.19: Specialization process for constant propagation: a specialization key is generated from
the argument (1). If a specialization lookup (2) does not find an existing specialized
version of the code, it is compiled (3) and registered (4).

The same mechanism is used for both horizontal and vertical fusion: a new kernel func-

tion from aggregating the arguments and inlining the bodies of each instance into a new

function. Helium does not attempt to re-use local memory across fused instances: the

amount of local memory used by the fused kernel will be equal to the sum of the local

allocations in the fused instances.

The kenels can be inlined in any order for horizontal fusion while vertical fusion must

preserve the execution ordering and inlines them in topological order. The compiler then

generates the necessary code for the kernels to execute correctly: if the domains are not

identical, compiler guards are generated around the body of each kernel to prevent execu-

tion outside the original iteration space. Additional code is generated to compensate for

domain translation introduced by the vertical fusion and to re-adjust the local workgroup

size and index if it has been overridden.

code staging In order to reuse the specialized code multiple times during an execu-

tion, the output of each transformation is stored in a compile cache. To improve the chance

of reuse, the compiler generates generic code to avoid overspecialization.

In order to find whether a specialization already exists in the compile case, the kernels

are fused in a predictable way to allow a lookup by name. Kernels are inlined in alphabet-

ical order whenever possible, and the name of the fused kernel is an aggregation of the

original kernel names. A unique identifier is generated from propagating constants and

pointers to guarantee that the specialization is an exact match. Figure 4.19 illustrates the

process for scalar expansion of two arguments in the original matrix-matrix multiply exam-

4.4 helium implementation 99

ple shown in Figure 4.3. The first three arguments are distinct pointers and are not used for

optimization. The last two arguments, w and h are used to control the nested loops: they

are good candidates for specialization. The compiler creates a mask to flag which values

are to be propagated, and a unique hash is generated from their aggregation (step 1).

Both the mask and the hash are used to do a lookup in the specialization cache (step 2).

If an optimized version already exists with the same attributes, it can be used directly. Oth-

erwise, the JIT compiler is invoked to create a new version of the kernel (step 3) which

is then registered using the mask and hash (step 4). Subsequent calls using the same

specialization identifier can use the pre-compiled version of the code.

4.4.3.2 Scheduling and dispatch

Translating the final optimized task graph into OpenCL functions and invoking the vendor

implementation is the last step necessary to restore coherency at a synchronization point.

This process is straight forward since the graph itself contains all the information needed in

terms of command context and dependencies. We briefly describe the dispatch mechanism

and conclude this section by comparing the original and optimized executions.

command dispatch At the start of the program, Helium creates three out-of-order

queues for each device in order to maximize the chance of task parallelism: one is used

for the kernel invocations and the other two for memory operations, read and write re-

spectively. The scheduler traverses the list of pending tasks: the dependencies of each read

operation are pushed in the corresponding queue in topological order. Each command

function is able to generate the original function call with the appropriate parameters. This

might transparently trigger additional calls, like restoring the state of the arguments for a

kernel before invoking it. A cl_event is attached to each command in the queue: it is used

to translate the edges in the graph. The events of all the connected nodes are first gathered

before the command is pushed in the queue with these as dependencies. This exposes the

maximum amount of task parallelism since the queues are out-of-order2 and the dependen-

cies are optimized. Finally, the scheduler waits for all three queues to complete all actions

by calling clFinish. The coherency between host and device is now fully restored and the ex-

2 Helium still uses three separate queues since some vendors have been experimentally shown to serialize
communication when using a single out-of-order queue.

100 dynamic interkernel optimizations

1 c l : : Event e1 , e2 , e3 , e4 , e5 ;
2 std : : s t r i n g c = R" (
3 #define ID g e t _ g l o b a l _ i d (0)
4 #define buf g loba l i n t *
5 kernel void AoB(buf at , buf b , buf u)
6 { b [ID] = 2 * a t [ID] ;
7 i f (ID >0) { u [ID] = at [ID−1] − 1 ; } }
8 kernel void CoC(buf x , buf y , buf z)
9 { i f (ID >= 4) y [ID] += x [ID−4] + z [ID−4] ;

10 y [ID] += 2 * z [i] ; }) " ;
11 Program p { cx , { 1 { c . data () , c . s i z e () } } } ; p . bui ld (devs) ;
12

13 Buf fer b1 { cx , f , s i z } ;
14 qo . enqueueWriteBuffer (b1 , f a l s e , 0 , s iz , data ,NULL,& e1) ;
15

16 Buf fer b2 { cx , f , s i z } , b3 { cx , f , s i z } ;
17 Kernel AoB { p , "AoB" } ; AoB . setArgs (b1 , b2 , b3) ;
18 qc . enqueueNDRangeKernel (AoB, { 0 } , { 100 } , { l } , { e1 } ,&e2) ;
19

20 qi . enqueueReadBuffer (b2 , f a l s e , 0 , s iz , tmp , { e2 } , &e3) ;
21

22 Kernel CoC { p , "CoC" } ; CoC . setArgs (b2 , b1 , b3) ;
23 qc . enqueueNDRangeKernel (CoC, { 0 } , { 100 } , { l } , { e2 } , &e4) ;
24

25 qi . enqueueReadBuffer (b1 , true , 0 , s iz , r e i s , { e3 , e4 }) ;

Figure 4.20: OpenCL representation of the code form Figure 4.15 as executed by the vendor im-
plementation. Helium transparently reduced the number of commands, exposed task
parallelism though fine grained event synchronization and generated a specialized ver-
sion of the device code.

ecution is semantically identical to the original command sequence. The cycle then restarts

until the next synchronization point is reached.

the replayed program The result of the replay phase is transparent to the target

application but is able to perform very aggressive transformations. Figure 4.20 represents

an equivalent OpenCL program to Figure 4.15 as seen and executed by the vendor imple-

mentation. The optimized code contains fewer OpenCL commands and uses fine grained

synchronization. The device code has been entirely re-written in this instance since the orig-

inal kernels are not needed for execution but replaced with specialized versions. Coding

these optimizations by hand would require explicitly implementing all the possible control

flow in separate branches along with the exact preconditions necessary for each optimized

flow. This would lead to a high amount of code redundancy and very poor maintainability.

4.5 limitations 101

4.5 limitations

While the delay-replay mechanism is entirely transparent and the correctness of the com-

putation is guaranteed by avoiding data races, Helium can nonetheless have undesirable

side effects which can negatively impact the host application. This section briefly lists the

limitations of the delay-replay model, which cannot be solved by extending the framework.

error handling Most OpenCL commands either return an error code or take a

pointer on an error flag as a parameter in order to check whether the command executed

successfully from the host program. However, since the delayed actions are not executed by

the vendor implementation, it is not always possible to detect an error. Helium emulates

some of the error checking – like verifying that the handles are valid – but it cannot spot

runtime errors. In this case, the error code is forced to the success value when the command

is delayed. During the replay phase, the error code is always automatically checked and

the program will be aborted on error. However, this may impair debugging as tracking the

origin of the error might be difficult.

application profiling It is possible to get profiling information from some com-

mands using event objects. Many applications use this as a mean of benchmarking compute

performance of the accelerator. However, there might be a mismatch between delayed and

replayed events. In some cases, the framework can automatically detect this problem and

avoid it: for example, getting profiling information about a task which has been eliminated

returns zero in all fields. While it might look inconsistent from the host application, it al-

lows profiling calculations to be accurate. Another problem is caused by kernel fusion: the

host program has several event handles on multiple kernel instances, but they all corre-

spond to a unique real invocation. In this case, one of the events will hold the profiling

information, and the others will be initialized to zero. This might cause issues if the host

compares the values to detect an eventual overlap for example. The last timing issue arises

if the application is profiled in distinct stages separated by a synchronization operation.

Since the optimizer can move individual commands across synchronization points, the

time measured might not be representative of the list of actions enqueued between them.

host device overlap Delaying the OpenCL commands might cause some overheads

since it prevents host and device from performing computation in parallel. However, in

102 dynamic interkernel optimizations

practice most applications delegating computation to an accelerator actively wait for the

result shortly after issuing a chain of commands in order to proceed further, and so this

does not cause significant delays.

These limitations do not affect the correctness of the application, and in most cases they

do not affect performance measurement either. However, these slight behavioral changes

prevent Helium from being implemented as a default behavior for a vendor implementa-

tion, since they might impair programmability during the development phase.

Note that the transformations have not been formally proven to be correct, as the cur-

rent implementation is a prototype of delay-optimize-replay scheduling. Implementing this

strategy as part of the OpenCL model would require this verification stage.

4.6 evaluation methodology

4.6.1 Experimental Setup

The machine used for the test has an Intel Core i7-4770K CPU with 16 GB of RAM and an

Nvidia GeForce GTX 780 GPU connected via PCI-E 3.0. The OpenCL 1.1 implementation is

provided by Nvidia’s Linux driver 331.79. Since Helium’s backend relies on Nvidia’s open

source PTX backend, only the performance on the GPU can be measured.

4.6.2 Evaluation Methodology

Helium is evaluated on a collection of applications available in both raw (baseline) and

hand-optimized forms. The baseline version prioritizes code simplicity and modularity,

while the hand-optimized versions apply the transformation described in Section 4.2 it-

eratively as much as possible on the static parts of the applications. This enables us to

evaluate the benefits Helium brings directly against hand-optimization and the benefits it

brings when applied after hand-optimization. As explained in Section 4.2, opportunities for

hand-optimization of dynamic applications are quite restricted because of the difficulty of

verifying the validity of the transformations, and the latter comparison demonstrates that

they may even be counter-productive when a powerful, automated system such as Helium

is available. The four benchmarks in the test suite are:

4.6 evaluation methodology 103

• CCO: a simplified version of the Copy-Compute Overlap benchmark from the Nvidia

benchmark suite. Two buffers are written to the device, read by a compute kernel

which stores its output in a third buffer, and the result is copied back. This compute

sequence is repeated for a given number of iterations. The optimized implementation

fragments the computation in by splitting the input and output buffers in half. The

commands are then pushed in two in-order queues in a very specific order such

that computation and communication may overlap across iterations. The baseline

implementation is a simplified version of the code where all actions are pushed in a

single in-order queue.

• Sobel: The Sobel filter is a discrete differentiation operator commonly used for image

processing applications like edge detection. In its general form, two gradient convo-

lution operators are applied to the input, generating two temporary values, which

are combined by a third operation. In this case, the code can be hand-optimized but

in more complex applications these operators are created by composition of simple

filters, resulting in a number of combinations that are impossible to optimize by hand.

• geoMatrix: computes the entrywise geometric mean of n matrices by computing n-1

Hadamard products and a pointwise division. This process is present in many signal

and image processing applications, such as lossy image compression algorithms. The

baseline implementation composes the operations using generic binary functions. The

hand-optimized version uses specialized kernels for processing multiple matrices in-

place and defines a tree reduction for the multiplication stage.

• ExpFusion: This application fuses several images taken with different exposure times

into one to increase the dynamic range by using a Laplacian decomposition and a

Gaussian pyramid [MKR07]. The depth of the pyramids, number of input images

and their properties are not known statically, making the application highly dynamic.

The hand-optimized version makes some assumptions about the input to fuse some

static parts of the pipeline (which can only apply to a subset of possible inputs).

Each application is tested with two different input sizes. The large input size is 4 times

larger than the small one for all input and output buffers. CCO is tested with input arrays of

20K and 80K elements. Sobel and ExpFusion use input images of 2K× 2K and 4K× 4K pixels.

geoMatrix uses matrices of 4K× 4K and 8K× 8K elements. For geoMatrix and ExpFusion, we

104 dynamic interkernel optimizations

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

CCO Sobel geoMatrix ExpFusion

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Unoptimized

Unopt. + Helium

Hand Optimized

Hand Opt. + Helium

Figure 4.21: Helium performance for to non- and hand-optimized code. We report the speedup over
the unoptimized version across input sizes and its 99% confidence intervals with and
without Helium.

also increase the number of inputs: geoMatrix is tested with 16 and 32 input matrices;

ExpFusion with 4 and 12 input images and a pyramid depth of 4 and 8 respectively.

Each benchmark is executed ten times with and without pre-loading our framework,

measuring the total wall clock time on the host between the first OpenCL action pushed

in a command queue to the termination of the last synchronization or blocking operation.

We report the analysis for the interquartile mean across sixteen runs. As both the Nvidia

driver and Helium use a persistent compiler cache, most of the compilation overhead is

excluded from the measurements. The overhead of the analysis and task graph transforma-

tion, however, are still present since the trace is regenerated with each execution.

4.7 experimental results

Figure 4.21 summarizes the effect of Helium on the four applications across different prob-

lem sizes. Helium improves performance over the unoptimized version in all cases, and

over hand-optimized version in all but one case – where manually changing implementa-

tion strategy outperforms Helium. It never has a harmful effect.

Table 4.2 summarizes the experimental results in more detail. For each application and

input, we report the number of OpenCL commands pushed in the command queue for the

baseline application and how many of those were kernel invocations. We then compare to

three alternative executions: the same baseline binary with Helium preloaded, a manually

hand-optimized version and lastly Helium with the hand-optimized binary. For each al-

ternative execution we report the performance relative to the baseline application and the

number of commands actually executed by the vendor implementation. The findings for

each application are discussed below.

4.7 experimental results 105

Baseline Baseline + Helium Hand Opt Hand Op + Helium

Tasks

Enqueued

Tasks

Replayed
Speedup

Tasks

Enqueued
Speedup

Tasks

Replayed
Speedup

CCO 1.14 1.49 1.63

small 40 (10) 40 (10) 1.14 80 (20) 1.50 80 (20) 1.63

large 40 (10) 40 (10) 1.15 80 (20) 1.49 80 (20) 1.63

Sobel 1.98 1.98 1.98

small 5 (3) 3 (1) 1.78 3 (1) 1.80 3 (1) 1.79

large 5 (3) 3 (1) 2.17 3 (1) 2.17 3 (1) 2.17

geoMatrix 3.06 1.68 2.45

small 19 (18) 2 (1) 3.05 10 (9) 1.68 2 (1) 2.47

large 35 (34) 2 (1) 3.06 18 (17) 1.68 2 (1) 2.44

ExpFusion 1.36 1.04 1.36

small 446 (441) 298 (293) 1.32 339 (334) 1.05 298 (293) 1.31

large 2198 (2185) 820 (807) 1.41 1727 (1714) 1.02 820 (807) 1.41

Table 4.2: Performance impact of Helium on non-optimized baseline and hand-optimized version.
For each application we report how many commands are issued, and how many of those
are kernel invocations in parenthesis. All speedups are relative to the non-optimized code
and include profiling and compilation overheads.

cco Helium is able to introduce task parallelism from the baseline using its paralleliz-

ing scheduler. While the device only has one DMA engine, the out-of-order queues reduce

the delays between commands, resulting in a speedup of 1.15x. The hand-optimized version

does a better job by fragmenting the computation in smaller units, increasing the scope for

copy-compute overlap, achieving 1.49x. However, when combining Helium and the hand-

optimized version, we get the best performance at 1.63x. Helium also takes advantage of

the fragmented tasks but dispatches the tasks more efficiently. Note that if the device had

two DMA engines, Helium would automatically exploit duplex communication for both

the hand-optimized and baseline versions. Doing so manually would require a complete

re-write of the already hand-optimized code.

This shows that while Helium is able to improve the performance of existing code, it

may also benefit from hand-transformations exposing more optimization opportunities.

sobel The first two stages being data independent and their output being processed

by a map function, the three kernels can safely be merged into one, resulting in two fewer

store instructions per point (for each temporary buffer) and three fewer load per point (two

for the temporary and one redundant read). When isolating this pattern in a single appli-

cation, the same conclusion can easily be reached by a programmer, who applied the same

optimization strategies in the hand-optimized version. All implementations generated the

106 dynamic interkernel optimizations

same code and achieve the same speedup of 1.98x. However, if this pattern is part of a

larger image application, or if it the result of dynamically composing from operators at

runtime, it would become increasingly difficult to optimize by hand.

This application shows that Helium performs the same transformations as an expert

programmer, without bloating the code base with specialized versions of the code.

geomatrix Because the number of input matrices is not known statically, it is not pos-

sible to implement a specialized version of the kernel. The hand-optimized implementation

achieves a speedup of 1.68x using in-place operations and creating specialized operators

to multiply three matrices at once. Helium also generated specialized kernels, but combin-

ing all the matrices at once since their number is known at runtime. For both input sizes,

Helium generated a single kernel, improving performance by over 3x.

While opting for a reasonable strategy of parallelizing tasks in the multiply stage, the

manual transformations did not result in an important performance improvement. Task

parallelism is not exploited by the GPU in this case because both inputs generate enough

threads to occupy the entire device. However, this optimization considerably increases the

complexity of the dataflow paths, resulting in poorer performance gains by Helium com-

pared to Helium operating on the baseline. In both cases, our system performs the same

optimizations: all kernels are fused into a single specialized kernel, and the amount of com-

putation is roughly the same in both cases. The difference comes from the use of memory.

By optimizing a composition in the baseline, the optimized version resulted in a single load

per input matrix element and a single write for the result. The hand-optimized version uses

writes to temporary buffers to speed up the reduction tree stage. These writes cannot be

eliminated, as they are not released until after reading the final result. Hence, their side

effect cannot be predicted and Helium cannot eliminate the dead store operations.

This demonstrates that partial hand-optimization can actually be counter-productive if it

is attempted prior to automatic techniques.

expfusion Exposure fusion is a highly dynamic application and very little can be

known statically. First, the pre-processing step depends on the image format, which is

unknown at compile time. Second the number of images is unknown. A Laplacian Pyramid

of an arbitrary depth is then built by recursively blurring and down-sampling the images,

4.8 summary 107

and the final image is reconstructed using a Gaussian pyramid. Despite the complexity

of the pipeline, the host program only requires less than a hundred lines of code, but it

contains complex control flow and requires a very modular design code to be maintainable.

The number of kernels executed varies depending on the input parameters, making man-

ual optimizations very difficult, even with the help of a profiler. The small input size used

4 RGB input images and a pyramid depth of 4, which generated over 400 kernel instances.

The larger input used 12 images and a depth of 8, invoking more than 2000 kernels.

The hand-optimized version cloned and specialized a large part of the code for three-

channels images, leaving the original generic application as a fallback if this assumption

is not met at runtime. By specializing (hence duplicating) kernels, the overall number of

invocations decreased by 20%. However, the performance gain was less than 5%, since most

of the time is spent in combining across images rather than across image channels.

Helium can take advantage of runtime specialization to achieve the same speedup of

1.36x from either the baseline or the hand-optimized code. It generates specialized code

which combines all the images at once, leaving only the convolution steps in between,

which cannot be merged due to spatial and temporal dependencies.

As the pyramid gets wider and deeper with the larger input size, Helium shows bet-

ter scalability than hand-optimized code, achieving a speedup of 1.4x while the hand-

optimized version did not improve. This shows that even with more versions of the spe-

cialized kernels in the hand-optimized implementation, Helium will always stay ahead by

generating them at runtime, allowing it to adapt to new inputs.

This last application demonstrates the applicability of Helium on large and dynamic

workloads where hand-optimizations are not applicable or not efficient.

4.8 summary

This section has presented Helium, a transparent OpenCL overlay for automatically com-

puting and optimizing task graphs in OpenCL applications. It is based on a delay-optimize-

replay mechanism, allowing the scheduler to chain OpenCL commands together according

to their dependencies and compute only what is necessary in the host application. The

optimizer also performs other types of transformations on the task graph, such as task re-

108 dynamic interkernel optimizations

ordering and kernel fusion, which improve the overall performance by increasing device

occupancy and simplifying memory transactions across kernels.

We evaluated this framework on multiple benchmarks to assess both the efficiency of

Helium’s compiler transformations and its parallelizing scheduler. We found that in most

cases Helium can replicate the performance of hand-optimized code without the expense

of refactoring. For highly dynamic applications Helium can outperform hand-optimized

code by taking advantage of runtime information. Finally, we showed that over-engineered

and over-complicated code not only impairs maintainability but may also harm automated

optimization processes, which could achieve better results with simpler code.

This method demonstrates the strength of lazy evaluation as an alternative execution

model for OpenCL command queues. The existing standard concepts of JIT compilation

and tasking model are combined as a powerful iterative compilation and staging framework

without any modification of the source code.

5
A U T O - T U N I N G M U LT I - G P U

S T E N C I L C O M P U TAT I O N

In the previous chapter, we showed that applications can be automatically optimized within

the OpenCL model to enhance productivity and performance. However, properties of the

underlying hardware exhibit behaviors and artifacts which cannot be expressed directly

in this model; and yet have a great impact on performance. Programmers usually bridge

this gap by implementing ad-hoc optimizations for a particular system, baking hardware

knowledge into their optimization strategy. This process considerably degrades productiv-

ity, and the resulting applications are not performance portable.

This chapter investigates automated hardware specific optimizations and how they can

be related to the OpenCL model. More specifically, we analyze the impact of intercon-

nect mediums on data communication in a multi-device context. The growing number of

devices in a single system and their increasing compute power are saturating the data

bandwidth on shared communication channels and limiting scalability. We demonstrate

this by exploring a particular application domain: stencil computations. We implement a

high level framework for stencil computation with an embedded auto-tuner to optimize

data placement and communication patterns. An exploration of the space reveals that PCIe

buses, despite their uniform appearance, exhibit heterogeneous characteristics. While this

information is not accessible programmatically, our auto-tuner can discover it and exploit

it to improve performance by up to 23%.

This chapter is organized as follows: Section 5.1 motivates the importance of multi-device

optimization and how this affects stencil computations. Section 5.2 presents some opti-

mization strategies for distributing stencil computations and their parameters. Section 5.3

describes Partans, a high-performance and high-productivity distributed stencil compu-

tation framework. Section 5.4 introduces our experimental setup and Section 5.5 discusses

the results of our evaluation.

109

110 auto-tuning multi-gpu stencil computation

5.1 motivation

Heterogeneous systems are getting increasingly complex; not only in the microarchitecture

making up each device but also as entire systems. The number of devices, like the number

of cores on them, is increasing. Most commodity computers provide up to four PCI slots

hosting accelerators; and more specialized hardware like the TYAN FT72B7015 or the Dell

PowerEdge C410x can provide up to 8 and 16 slots respectively. Graphics cards like the

AMD 5970 or the Nvidia GTX 590 integrate multiple GPUs on the same PCIe slot. Hence,

complex systems can be built with a large number of devices, and a tremendous theoreti-

cal compute power. For such systems, relying solely on OpenCL will simply not scale well,

since other parts of the system which are not expressed in the model will hit hardware lim-

itations. Thus, even approaching peak performance in a single application remains elusive

in practice.

Knowledge about the underlying system allows the implementation of hardware spe-

cific optimizations, which utilize the resources in a more efficient way. However, these

optimizations are applied manually on an ad-hoc basis, after a thorough investigation of

the bottlenecks in a given system. Hence they require a lot of effort, and the result is not

performance-portable. While the OpenCL model alone does not provide enough informa-

tion to implement hardware specific optimizations in a non-intrusive way like Helium, this

chapter establishes that abstraction layers can nonetheless be implemented with hardware

sensitive optimization strategies. We demonstrate this technique on a particular domain:

stencil computations.

The stencil computation pattern is fundamental in many domains. Its characteristics have

been introduced in Section 2.6 and some of the extensive research on optimizing this partic-

ular skeleton was presented in Section 3.3. Since stencil computations are embarrassingly

parallel, memory intensive and very regular, they have been shown to be a good match for

GPUs, which offer a powerful and energy-efficient solution for these problems.

However, many stencil applications are trying to solve problem sizes that could not fit

on any existing GPU. Complex quantum physics simulations, for example, require four-

dimensional structures with a large amount of data at each point in the domain. A single

GPU in this case cannot simulate more than a handful of particles at a time, which is a

severe limitation. This class of applications generally aims towards weak scaling, and will

5.1 motivation 111

try to make use of the entire system to solve a problem as large as possible. Hence the ability

to distribute the computation across all available resources is of paramount importance in

this domain.

Section 2.6 showed that distributing stencil computation is a complex task. The spatial

dependencies between each point in the domain create overlapping inter-dependent sub-

domains. The communication between the sub-domains has to be carefully balanced with

redundant computation to optimize performance. In any case, a lot of traffic is generated,

which can easily saturate the PCI buses interconnecting the GPUs for a large enough num-

ber of devices. The hardware specific implementation presented in this chapter exposes

the non-uniformity of this communication channel and exploits it to improve performance.

More specifically, the goals of this work are:

• to develop a high-productivity framework which preserves the portability of the

OpenCL model and provides enough plasticity to implement known heterogeneous

system optimizations. This shows that the hardware specific optimization techniques

presented later in this chapter are orthogonal to existing optimization approaches and

do not restrict the OpenCL model in any way.

• to understand, by experimental exploration, the influence of the inter-device commu-

nication structure upon the optimization space. In particular, how it affects the com-

munication/redundant computation ratio. In order to address this rigorously, we gen-

erate synthetic, highly parameterizable kernels, informed by our analysis of a range

of real examples. This makes our work robust in the face of future, and essentially

orthogonal, improvements in the areas of single GPU optimizations and hardware

performance, and also with respect to future variation in multi-GPU communication-

computation ratios.

• to devise an autotuning heuristic, informed by our initial search space exploration,

which is capable of selecting hardware specific settings for the various tuning pa-

rameters relevant to our chosen factors. Specifically, the heuristic will automatically

determine the number of GPUs to use, the configuration of these GPUs with respect

to the underlying system architecture, and the amount of overlap between the parti-

tions of the domain.

The next section details the optimization strategies applicable to distributed stencil com-

putation and their parameters.

112 auto-tuning multi-gpu stencil computation

5.2 optimization strategies

This section presents optimization strategies for distributed stencil computation and the

different application characteristics affecting them. The key to efficient scaling lies in bal-

ancing the computation and communication overheads across the entire system. However,

this ratio is affected by many factors, which have to be collectively optimized in order to

achieve the best performance. To this end, the definition of stencil computation given in Sec-

tion 2.6 is refined and some techniques inspired from prior works described in Section 3.3

are presented in more detail.

stencil patterns Stencil computation is a well-recognized algorithmic skeleton in

and of itself. However, the definition is broad and represents any nearest neighbor compu-

tation. We refine this definition here and present the different classes of stencil operators,

which have distinct optimization strategies:

• regular stencil: this is the most common operator. It accesses neighbors in all dimen-

sions of the domain.

• irregular stencil: a stencil operator is called irregular if it does not access any neighbor

in at least one dimension.

• composite stencil: stencil computations are often defined as a sequence of individual

operators. For example the sobel operator used for image detection is composed of

two regular gradient operators combined by an irregular stencil.

• iterative stencils: many applications like physics simulations apply the same operator

over and over again. Knowing how many iterations are applied in advance enables

multiple timesteps to be computed in quick optimized succession.

• converging stencils: A variation of the iterative stencil does not have a known number

of iterations, but provides a convergence function to stop the computation when a

given criterion is met. These usually allow multiple timesteps to be computed be-

tween convergence tests.

Stencil computations can be defined as combinations of these patterns. The combined

characteristics guide the choice of domain decomposition strategy.

5.2 optimization strategies 113

Domain Sub-domain 1 Sub-domain 2 Sub-domain 3

O
ut

er
 H

al
o

O
ut

er
 H

al
o

Core

In
ne

r
H

al
o

In
ne

r
H

al
o

Partition

Figure 5.1: Example of decomposition of a 2D domain with warp-aound boundaries in 3 partitions.
The tiles have to overlap to satisfy the dependencies at the edges of the partitions. This
creates halo regions: the outer halo is the part duplicated from another tile and the inner
halo is the part another tile depends on.

domain decomposition Since computing each point in the space depends on neigh-

boring values, cutting the domain in partitions creates broken dependencies at the bound-

aries. This can be resolved by creating overlapping tiles, as shown in Figure 5.1. The over-

lapping regions are called halos: the outer halo is a region from the edge of a neighboring

partition which has been duplicated and the inner halo is the region from the tile which is

copied by a neighboring partition, which is symmetrical to the outer regions along the cuts.

The center part of the partition between the inner halos is called the core of the partition.

The minimal amount of overlap is the maximum stencil distance reached along the cut di-

mension in a single timestep; though increasing the amount of overlap enables the compu-

tation of multiple timesteps independently from the neighboring sections, thus decreasing

synchronization and communication frequency. However, a greater overlap also introduces

higher communication costs and redundant computation since the elements within the in-

ner and outer halos are computed multiple times by independent partitions. Hence the

size of the halo region has to be finely controlled: it has to be large enough to allow com-

munication to be amortized by the core computation, but small enough so that it does not

introduce excessive computation overheads.

data layout Arranging data in memory also plays an important role towards in-

creased performance. Since communication between host and device is typically much

slower than the memory bandwidth of the device, it can easily become the bottleneck.

Exchanging only the halo regions between devices, as opposed to update the entire sub-

domains on the host, reduces the amount of data exchanged. However, it requires the halo

114 auto-tuning multi-gpu stencil computation

T
im
e

Space

(a) Minimal Synchronization

T
im
e

Space

(b) Independent Halos

T
im
e

(c) Maximum Overlap

Figure 5.2: Example of Domain decomposition strategies. Only cutting in the time dimension gen-
erates the least amount of synchronization (a). Space cuts need to be skewed to satisfy
the dependencies in the middle of the tile (b). A higher priority can be given to the inner
halos to maximize the chances of compute/swap overlap (c).

regions to be consecutive in memory. This can be achieved in two ways: either the cut is

performed in the dimension used for linearization, since each slice is already consecutive,

or the halos can be marshaled to a temporary communication buffer and unmarshaled

after the swap. However, since we are targeting GPUs, scatter and gather operations to

non-consecutive memory generates uncoalesced accesses which considerably increase the

cost of these operations.

Data layout optimizations also have to take into account characteristics of the stencil op-

erator. Many problems use distinct properties for each point in the domain, called fields.

This introduces the array-of-structures (AoS) versus structure-of-arrays (SoA) dilemma in-

troduced in Section 2.2.3.4, with the added complexity that different fields might get con-

sumed at a different rate. SoA allows for fine grained control over each individual field

to renew it only when it runs out. However, this generates a lot of communication and

might introduce synchronization in a greater number of timesteps. AoS packs all the fields

consecutively in memory and allows swapping to renew all of them at once, generating

less frequent communication at the cost of a larger size. The drawback of this layout is that

it also renews fields which were not entirely consumed, or fields which are not going to be

read by the stencil operator.

local tiling & communication strategies The decomposition of the domain

into tiles allows for computation of multiple timesteps until the halo region cannot satisfy

the spatial dependencies anymore. The halos then need to be swapped with neighboring

tiles. Figure 5.2 shows different strategies, which can be implemented by cutting the do-

main in the space and time dimensions. The three main strategies are:

5.2 optimization strategies 115

• Minimal synchronization: Cutting only along the time dimension enables computation

of the entire tile until the halo is consumed. The computation is then paused, and the

outer halo is renewed. This triggers a synchronization every h/s iterations, where h is

the halo size and s the maximum stencil distance along the dimension used for the cut.

It also requires all devices to synchronize at the same timestep. This is the minimal

number of synchronizations possible. However, the computation and communication

never overlap.

• minimal synchronization with independent halos: splitting the tile in half enables compu-

tation and communication overlap: for example, the left-hand side of the tile can be

computed first, then the left halo exchanged while computing the right tile. Alternat-

ing these schemes between each device spreads the communication over time since

each half depends only on one neighbor. However, the center of the tile cannot be

computed at the same time since it requires each side to be computed first. Four addi-

tional space cut spanning two swaps solves this dependency, so this scheme requires

6 synchronizations every 2h/s timesteps, which the minimal number of synchroniza-

tion with independent halo possible.

• Maximum Overlap: a higher priority can be given to communication by computing

the dependencies first. A space cut on either side of the tile, just wide enough to

compute the inner halos, enables the swap to be initiated after a minimal amount of

computation and amortize its cost with the core computation. This scheme gives the

highest chance of copy/compute overlap since the minimum amount of computation

is performed for the inner halos. However, it requires more frequent synchronization

between each swap: the core of the tile depends on the inner halos and the time cut

creates additional dependencies, generating 5 synchronizations every h/s timesteps.

Since these communication strategies have distinct properties, they could be different for

different fields in the domain, creating many possible combinations.

The sheer amount of optimization combination makes implementing them by hand

and exploring their parameter space highly impractical. The following section introduces

Partans, a high performance and high-productivity distributed stencil computation frame-

work abstracting these optimizations and automating their parameter tuning.

116 auto-tuning multi-gpu stencil computation

1 // Host/device structure definition
2 PARTANS_STRUCT(Pair, float f1; float f2;);
3

4 // Type aggregate definition
5 using TupFields = PARTANS_FIELDS((Pair, a),(Pair, b),(float, err));
6

7 // Volume allocation
8 Volume<TupFields> *volume = new Volume<TupFields>(800,600);
9

10 // Modifying a field in the volume at position (0,0)
11 volume->get<TupFields::a>(0,0).f1 = 0.5;
12

13 // Getting an element from the volume at position (5,0)
14 Pair t = volume->get<TupFields::b>(5,0);

Figure 5.3: Volume API in Partans. Line 2 declares a user-defined structure. Line 5 defines the type
of each element of the volume, in this case two Pairs and a float. Line 8 creates a 2D
volume of 800× 600 elements. Line 11 and 14 demonstrate type safe element accesses.

5.3 the partans framework

The Partans framework is designed to abstract away the low-level implementation details

that are required to perform stencil computation on multiple GPUs. It is implemented as

a template library in C++. This language provides easy access to the OpenCL runtime

– which is in C –, and enforces type-safety, in contract to the void* style used in the

OpenCL runtime library. In addition, the template mechanism turns many customizations

into compile-time decisions, as opposed to runtime overhead.

In this section, we describe the high level API, give an overview of the internal imple-

mentation strategy and present an overview of the tuning possibilities exposed by this

design.

5.3.1 API Concepts

A stencil computation in Partans is characterized by three elements: a description of the

volume representing the domain, a definition of an element function, which is the stencil

operator, and a schedule definition controlling the mapping between the stencil operator

and the domain.

5.3 the partans framework 117

1 void mult (global const Tuple * x ,
2 global Tuple *y ,
3 global float * e r r) {
4 const float old = y [ORIGIN] . f1 ;
5 y [ORIGIN] . f1 =
6 (x [N_1P_0] . f1+x [N_1N_0] . f1+
7 x [N_0_1P] . f1+x [N_0_1N] . f1) / 4 . ;
8 e r r [ORIGIN] = old − y [ORIGIN] . f1 ;
9 }

(a) Stencil Operator

N_1N_2P_0_1P

Offset in 4th dimension
Offset in 3rd dimension
Offset in 2nd dimension
Offset in 1st dimension

no offset

Number of steps
Direction (Positive/Negative)

(b) Neighbor macro definition

1 Stencil<TufField > s t e n c i l { volume ,
2 S : : Converging|S : : Composite } ;
3

4 s t e n c i l . addStenc i l (
5 cl_code , // element funct ion
6 " mult " , // entry point
7 /* read : */ { Tuple : : a } ,
8 /* wri te : */ { Tuple : : b , Tuple : : e r r }) ;
9

10 s t e n c i l . addStenc i l (cl_code , " mult " ,
11 /* read : */ { Tuple : : b } ,
12 /* wri te : */ { Tuple : : a , Tuple : : e r r }) ;
13

14 s t e n c i l . addConvTest (20 ,
15 R(" bool t e s t (g loba l f l o a t * e r r) {
16 re turn e r r [ORIGIN] < 0 . 0 1 ; }) " ,
17 " t e s t " ,
18 /* read : */ { Tuple : : e r r }) ;
19

20 // apply a t most 1000 i t e r a t i o n s
21 s t e n c i l (1 0 0 0) ;

(c) Stencil object usage

Figure 5.4: Example of a stencil computation performing a Jacobi operator on one Tuple and storing
the variation in the third field. The stencil operator (a) is defined as a plain text string
and uses special macros (b) to access the neighbors. It is mapped to a volume using a
stencil skeleton (c).

volume definition The volume represents an aggregation of fields in a multidi-

mensional domain. Each field can be a primitive type or a user defined type. Figure 5.3

shows an example of a volume definition. Line 2 is a declaration of a user-defined struc-

ture named Pair and containing two floats. Line 4 defines the type of the volume, which is

a tuple containing a list of anonymous or named types. Line 8 shows an allocation of a two-

dimensional volume of 800× 600 elements. Each field can be accessed through a strongly

typed getter by specifying the field name or index and the coordinates of the element in

the volume.

stencil operator The stencil functor represents the computation at a single point in

space. It is defined as a function operating over any number of fields, listing the readonly

fields first and the writeonly fields second. Figure 5.4a shows an example of operator com-

puting a blur function by averaging the four neighboring values of field x.f1 and storing

the output in y.f1. The functor uses special macros to navigate in the space. These macros,

described in Figure 5.4b, are composed of the prefix N_ followed by a list of positive or

negative offsets in each dimension. For example, the macro x[N_1P_0] is equivalent to the

2D access x[1][0]. A special macro ORIGIN represents a null offset in all dimensions.

118 auto-tuning multi-gpu stencil computation

stencil schedule The mapping between the operator and the volume is controlled

by a stencil skeleton. An example of stencil object declaration and usage is shown in Fig-

ure 5.4c. Users provide the main characteristics of the desired operation: in this case, the

stencil will be applied to the volume volume and is a composite converging stencil, so mul-

tiple operators will be applied in succession and repeatedly until a condition is met.

Lines 4 and 10 add operators to the stencil computation. Similar to the OpenCL syntax,

each operator is composed of a program, which is the operator function definition in a

string, and the entry point of the function. The operator also takes a list of field masks rep-

resenting the elements read from and written to by the operator. To avoid race conditions,

an operator should never read and write at the same time, unless it is at the the origin, so

the same field appearing on both sides triggers an error.

This syntax allows operators to be applied to a subset of the fields in the domain and

decouples the stencil operators from the volume layout, allowing a high degree of operator

reuse. In this case, both operators added in lines 4 and 10 apply the same functions, but

with different parameters: the first call computes from a to b and the second from b to a,

representing a double-buffered operation.

The convergence operator added in line 14 takes an integer representing the number of

timesteps between tests, here the test will be applied every 20 iterations, and the rest of the

parameters are similar to the stencil operators, except that a test function cannot modify

any field.

Finally, the computation is invoked in line 21, with a limit of 1000 timesteps. Both opera-

tors will be applied iteratively and the convergence test will be evaluated every 20 iterations,

until the tested values converge or the maximum number of iterations is reached.

This high level interface allows Partans to have full control over the memory layout,

the generated device code, the decomposition and the communication; without being re-

strictive to the user in terms of expressiveness. Some underlying implementation details

are briefly hinted in the next section and the tuning parameters they expose are described.

5.3.2 Internal implementation strategy

Partans performs a lot of low-level optimizations to improve performance, especially for

generating the kernel functions and neighbor macros in an efficient manner. For example,

5.3 the partans framework 119

Volume API Internal Allocation GPU Partition Allocation

Partition Halo Buffer

Halo Size

GPU Buffer

Figure 5.5: The Partans API provides an abstract interface for defining complex domains. Internally
the fields can be interleaved or distinct. Each partition is copied to an oversized buffer,
where the padding on either side enables halo to be resized dynamically.

modulo operations in index functions are replaced with bitmasks whenever possible to

reduce arithmetic intensity and volumes are rotated according to the stencil shape to maxi-

mize memory coalescing. However, since the exploration focuses on multi-device commu-

nication, the single-device optimizations will not be described further. This section presents

the implementation of the volume decomposition and the communication strategies affect-

ing multi-device performance.

volume allocation & transformations While programmers normally have to

define a memory layout for data structures in C++, the type list used in Partans does not

have this restriction. Decoupling types from layouts provides a strongly typed interface and

lets the framework decide between SoA and AoS without affecting the codebase. Volumes

are allocated lazily, using the information about the stencil operations applied to it.

A set of high level transformations such as padding and rotation can also be applied

transparently since Partans controls all memory accesses in the stencil operator and the

volume interaction. In Figure 5.5 for example, the original volume is switched to SoA and

rotated 90 degrees to align the largest dimension. When the volume is rotated, all coordi-

nates will be transparently transposed. This can be used to optimize the decomposition or

make use of stencil operator properties such as irregular stencils.

dynamic halo resizing Memory buffers in OpenCL do not support dynamic resiz-

ing. However, we argued that finding the optimal halo depends on many factors and might

change over the course of the application. To allow for more plasticity, the buffers on each

device are allocated as large as possible, up to twice their original size, which creates a

full duplication of the computation. As shown on Figure 5.1, the tile is copied at the center

of this buffer, creating padding on either side called halo buffers. The framework can then

120 auto-tuning multi-gpu stencil computation

Read

Write

Compute
ILOL IR ORC

Tile Core

Outer/Inner
Left Halo

Inner/Outer
Right Halo

GPU 1

ILOR

C

OR

IR IL

IL

OL

IR

GPU 0

IL OR

C

OR

IRIL

IL

OL

IR

(a) Minimal Dependency

GPU 0 GPU 1

C C

IRIL

IR

OL

IR

ORIL IR

IL

OL

IL

IL

IR

IR

IR

IL

(b) Device Duplex

GPU 0 GPU 1

IL

C

C

IR

IR IL IR

IL

ILOR

IR OL IR

ILOL

IL OR

IR

(c) System Duplex

Figure 5.6: Different communication strategies: by adding edges in the graph, Partans controls the
communication parallelism. The memory operations can be independent (a), or limited
to one read and write operation per device (b) or across the entire system (c).

dynamically change the size of the halo region within these buffers without affecting the

tile itself.

task graph To expose task parallelism, Partans generates task graphs to represent

computation. For each volume partition, a set of inter-dependent kernels are enqueued for

each tile to compute multiple timesteps, equivalent to each colored segment in each line

for the strategies presented in Figure 5.2. Using dependencies between actions in OpenCL

can express synchronization between devices implicitly: a swap is represented as a read

operation on one device followed by a dependent write on another device.

Figure 5.6a shows an example of a simplified task graph for a single field using the

maximum overlap strategy on two devices. When the outer halo runs out, the inner halos

are read on either sides of the two tiles and written on the outer halo of the other device,

after its inner computation finishes. These graphs get considerably more complicated for

multi-field volumes with a SoA allocation or more devices, highlighting once again the

importance of abstracting this from the user.

The swapping strategies can be fine-tuned by adding extra dependencies. While the task

graph used in Helium aimed to generate the minimal number of dependencies, Partans

introduces redundant dependencies to enforce an evaluation order. The insight of Partans

5.3 the partans framework 121

is that since underlying hardware resources are shared (here PCIe buses), exposing too

much data parallelism might result in a congestion and be sub-optimal.

Figure 5.6a presents a task graph with the minimal set of dependencies for a single

field. Extra dependencies are added to the graph in to enforce duplex communication at

a device level (Figure 5.6b), or in the entire system (Figure 5.6c). These different strategies

affect the strain put on the communication channels and their efficiency depends on system

resources.

5.3.3 Optimization space

The optimization process within Partans sets out to exploit hardware specific behavior

to enhance throughput in a multi-device system. To preserve portability, this process is

completely oblivious of explicit hardware specifications and user intervention. The method

implemented in the optimizer uses direct observation of the hardware interference on the

tunable parameter space. Hence, it is essential that Partans controls and explores as many

tuning parameters as possible to identify hardware bottlenecks.

The vast majority of the factors affecting performance are abstracted by the high level

API. Its design successfully decouples the specifications of a stencil computation from the

internal implementation. This in turns creates a clear separation of concern between the

user, who can focus on expressing the problem at a high level, and the framework, which

implements application independent optimization strategies. More specifically, the main

parameters under Partans’ control are:

• halo size: the best halo size may vary at runtime. Using the halo buffers, a dynamic

search can be performed for each phase, without re-allocating and initializing buffers.

• data layout: the memory representation of a domain can take many forms. Fields can

be independent or interleaved. Transformations such as padding or rotation can be

applied transparently to data placement: the framework is free to decide how many

times the domain should be divided and how tiles are mapped to devices.

• communication strategies: tweaking communication dependencies between the tiles en-

forces specific patterns which control the amount of parallel communication. This

technique can be used to implement a strategic ordering or limit the contention.

122 auto-tuning multi-gpu stencil computation

All of these parameters are sensitive to communication/computation ratios, hence they

are all interdependent. Establishing the interference between these parameters through

exploration is necessary before synthesizing them in an automatic tuner. The following

section introduces the setup used for the experimentations.

5.4 experimental setup

To explore the impact of hardware artifacts on the scalability of stencil computation, a test

suite comprising a variety of application domains was implemented. These benchmarks

are evaluated on different multi-device systems, in which all devices are programmatically

indistinguishable but subtle architectural differences exist. The benchmarks and systems

are presented in this section.

5.4.1 Benchmarks

Real world stencils involve highly diverse dimensionalities, shapes and volumes. As the

investigation focus is on communication optimization, the chosen set of six applications

all apply stencils iteratively, meaning that halo swapping is necessary to complete the

computation. Our benchmark suite consists of the following programs:

• Game of life is a cellular automaton implementing Conway’s Game of Life. Every it-

eration represents a new generation of the simulation. The application uses double

buffering, meaning that each element of the volume is composed of two chars.

• ReverseEdge is an image-processing application using a Jacobi operator. A one-way

function, edge detect, is applied on an image, and a Jacobi operator is used to approx-

imate the original image.

• Swim is a fluid dynamics kernel used for weather prediction. It is adapted from the

SPEC OMP 2001 benchmark suite. The fields are composed of complex structures and

there are three different operators involved in the computation.

• Himeno is a fluid dynamics application computing a Jacobi-variant converging stencil.

It uses complex fields to represent the main operator of the Poisson equation used in

mechanical engineering and theoretical physics.

• Hyperthermia is a simulation of the temperature diffusion in human bodies during

hyperthermia cancer treatment.

• Tricubic is a 64-point stencil used in numerical analysis for tri-cubic interpolation.

5.4 experimental setup 123

Benchmark Dimensions Stencil points Fields Reads Writes Flops/Point

Game of Life 2D 9 2 9 1 n/a

Reverse Edge 2D 5 3 5 1 5

Hyperthermia 3D 6 11 17 1 16

Himeno 3D 27 15 25 2 33

Swim 2D 9 13 28 11 63

Tricubic 3D 64 5 64 1 132

Note: Game Of Life uses only bit masking on integer type.

Table 5.1: Summary of benchmark characteristics. The dimensionality define the volume. The other
properties apply to the stencil operator. Each property is given in number of fields rather
than their size in bytes.

Table 5.1 presents the stencil characteristics of each application. The operators are de-

fined by the dimensionality of the volume, the stencil shape, the number of fields (total,

read from and updated) and the number of floating point operation in the element func-

tion. The boundary condition has been set to wrap-around for all the benchmarks, which

forces halo consumption on both sides of the partition and creates a homogeneous amount

of computation across all tiles. A simpler boundary policy, like Dirichlet boundaries, ef-

fectively halves the communication in the case of two partitions, as there is only a single

dependency instead of two.

The net impact of communication optimizations on a whole application evaluation is

affected by the performance of the computational phases between synchronizations. Faster

execution of computation magnifies the relative importance of fast communication. In the

context of GPU implementation of stencils, quicker computation phases could arise from

local computational optimizations, or simply from larger or more powerful GPUs. For

example, speedups of orders of magnitude have been reported in the literature using single

GPU optimization strategies, and compute power of GPUs currently increases at a faster

rate than their communication capabilities 1.

In order to extend the value of the analysis against such developments, the test suite is

augmented with virtual variants of each benchmark. The consumption rate of each halo

is preserved, but the actual computation is replaced by synthetic workload for which the

granularity is accurately controlled. This enables the exploration of a fuller space, with

kernel execution time ranging from that of the original application, to faster versions that

may emerge as a result of the trends above.

1 In the same time that PCIe bandwidth has doubled (PCIe 2.0 to PCIe 3.0), the average compute power of GPUs
has tripled.

124 auto-tuning multi-gpu stencil computation

i7-2600K

NF200PCIe x16

i7-2600K

PCIe x8

PCIe x16PCIe x16

PCIe x8

i7-3820

PCIe x16

NF/PEX

G0 G1 G# GPU

PCIe multiplexer

PCIe bus

core i7 Processor

NF/PEX

G2 G3

NF/PEX

G0 G1

NF/PEX

G2 G3 NF/PEX

G0 G1

NF/PEX

G2 G3

X79 P67-NFP67-nat

Figure 5.7: Overview the four evaluation systems. The P67 system offers two different layouts for
dual GPU configuration: either two PCIe x8 in native mode or two PCIe x16 via a NF200

multiplexer. Both the Nvidia GTX 590 and AMD Radeon 5970 are dual GPUs graphics
cards that include a PCIe multiplexer on their PCBs.

5.4.2 Architectures

This section describes the hardware used to carry out the experiments. Since the commu-

nication is being investigates, the PCIe layout is more relevant than the compute power

characteristics of the GPUs. PCIe was introduced briefly in Section 2.2.2.3, which explained

that the number of GPUs in a system can be increased by introducing multiple PCI root

complexes and multiplexers. This creates a network where the end points have identical

characteristics, for example 16 lanes, but the underlying topology might be irregular. This

layout is defined by the motherboard chipset and the graphics cards’ design and is com-

pletely transparent to the user. However, our experimentation shows that it affects perfor-

mance.

motherboards & systems Three different systems are used. Our first system uses

an Intel X79 motherboard chipset with an Intel core i7-3820 CPU, which supports two

native PCIe x16 slots. The system runs Linux with a 3.1.10 kernel. This setup is referred

to as X79. The second system uses an Intel P67 motherboard chipset with an Intel core i7-

2600K CPU, which supports two native PCIe x8 slots. The system runs Linux with a 2.6.37.6

kernel. This setup is referred to as P67-nat. The third system is identical to the second one,

except that the two PCIe x16 slots that are connected to the core i7 processor via an Nvidia

NF200 PCIe multiplexer, offering two PCIe x16 slots. This setup is referred to as P67-NF.

Partans always uses pinned memory in the host in order to optimize transfer time over

PCI.

5.4 experimental setup 125

Graphics card 0

GPU 0

Partition 0

GPU 1

Partition 1

Graphics card 1

GPU 2

Partition 2

GPU 3

Partition 3

Graphics card 0

GPU 0

Partition 0

GPU 1

Partition 2

Graphics card 1

GPU 2

Partition 1

GPU 3

Partition 3

Blocking Placement Circular Placement

Halo dependencies between partitions

Figure 5.8: Different partition dispatching strategies for a four GPU setup. The arrows represent
semantic dependencies between neighboring partitions.

graphics cards Our setup uses two dual GPU cards. The AMD Radeon 5970 has

two TeraScale 2 GPUs sharing a single PCIe slot through a PEX multiplexer. The Nvidia

GTX 590 has two Fermi based GPUs and uses an Nvidia NF200 multiplexer. The OpenCL

runtimes are provided by CUDA SDK 4.1.28 and AMD APP SDK 2.6.

The three different configuration types with the attached graphics cards are shown in

Figure 5.7. The bottom multiplexers are found on the PCB of the Nvidia and AMD graph-

ics cards, and the multiplexer splitting the PCIe lanes is located on the motherboard. No

processor or graphics card are overclocked. In total, the three systems and two GPU types

provide six different setups to evaluate. Since the evaluation focuses on seemingly homoge-

neous systems, the configurations using graphics cards from different vendors in the same

system were not investigated

dual gpu placement When distributing data to two GPUs, the setups offer two

possible configurations. The data can be assigned to GPUs on the same PCB (e.g. G0 and

G1 in Figure 5.7). This configuration is called Single Card. Alternatively, the data can be

assigned to GPUs on different PCBs (e.g. G0 and G2). This configuration is called Dual

Cards. Unlike CUDA, OpenCL currently does not support direct device-to-device copy,

thus all the communication is centralized and has to go through the host memory.

four gpu placement When using all the available GPUs, there is still a choice to

be made on data placement. Figure 5.8 illustrates the two strategies: blocking placement or

circular placement. Blocking placement first assigns partitions to one dual GPU, and then

moves on to the next one. This configuration is called Blocking. Circular placement assigns

partitions in an alternating way. This configuration is called Circular. The figure also shows

the difference between the dependencies. The arrows in this case indicate the dependencies

between the partitions, not the actual communication.

126 auto-tuning multi-gpu stencil computation

5.4.3 Evaluation Methodology

In all experiments, the runtime is measured using wall-clock timers in the host program.

Only the main stencil loop is timed for 10,000 iterations. This values is used to compute

the average time for one iteration. Because the GPU measurements can be noisy, due to

frequency scaling or shared resource utilization, multiple sampling techniques are used

to ensure the stability of the results. For each sample, the main iterative stencil loop is

applied 16 times in a row with the same number of iterations. If the margin of error for the

95% confidence interval in the interquartile range is below 5%, the sample is considered

successful and the truncated mean of the set is stored. When exploring a parameter range,

the space is sampled in random order until five samples are accumulated for each point.

This guarantees sampling of similar parameters will be scattered in time to reduce temporal

variation of the GPU performance due to external parameters. The final result is the median

value of the five interquartile means.

5.5 experimental evaluation

5.5.1 Overview

This brief summary highlights the main findings, which are discussed in greater detail

in the subsequent sections. Section 5.5.2 investigates the absolute performance obtained

by the single GPU implementation, which acts as a baseline for the subsequent speed-up

results. The single device performance shown to be competitive with previously published

work on similar applications and devices. For example, Partans obtains around 70% of the

performance of the highly tuned PATUS framework [CSB11].

Turning to the multi-GPU implementation evaluation, Section 5.5.3 shows that the re-

lationship between halo size and performance has a regular bitonic form across all cases.

This creates an identifiable sweet spot, whose precise location varies with application and

system. Similarly, problem size has a relatively simple relationship to performance (larger

problems have a greater potential), while halo shapes which go beyond trivial nearest

neighbor can produce less intuitive effects. Finding the correct settings can result in im-

provements in speed-up of the order of 50%, compared to other points which are quite

close in the optimization space.

5.5 experimental evaluation 127

0

10

20

30

40

50

0

10

20

30

40

50

Reverse Edge Swim

G
F

lo
p

/s
1024² 2048² 4096²

(a) 2D Stencils

0

20

40

60

80

100

0

20

40

60

80

100

Hyperthermia Himeno Tricubic

G
F

lo
p

/s

64³ 128³ 256³

(b) 3D Stencils

Figure 5.9: Absolute single GPU performance on an Nvidia GTX 590 in GFlop/s for different vol-
ume sizes. The graph also shows 99% confidence intervals, however these are so small
that they are almost invisible.

Section 5.5.4 explores the impact of the underlying communication technology on other-

wise homogeneous systems. For situations in which a subset of devices is selected, speedup

variations up of up to 33% can be observed in regions of the search space at or close to the

optimal settings for halo size. A correct selection of devices also varies with problem gran-

ularity – with a performance improvement of up to 13% at stake. For experiments using

all four available GPUs, the optimal allocation of partitions to devices is dependent upon

halo size and compute granularity – with discrepancies of up to 21% and 13% in favor of

Blocking and Circular respectively, at different points in the space. These findings all serve

to emphasize the challenge involved in the full autotuning problem.

The autotuning strategies are evaluated in Section 5.5.5. These behave impressively, typi-

cally obtaining over 90% of the performance improvements found by an exhaustive search

of the space.

5.5.2 Single GPU performance

Figure 5.9 presents the raw performance for each application using a single GPU on the

GTX 590 card. These results are comparable to those obtained by Phillips and Fatica [PF10],

who implemented an optimized version of the Himeno benchmark on Nvidia Tesla C1060,

and Matthias Christen [MC11] who implemented Hyperthermia and Tricubic benchmarks

using their own PATUS framework on an Nvidia Tesla C2050. In direct comparison to

the Tesla C2050
2, our naïve implementation achieves about 70% of the performance of the

highly optimized PATUS. We did not try to close this gap any further, as the focus of

Partans’ evaluation is multiple GPU optimizations – which PATUS does not offer.

2 The Tesla uses the same GF110 graphics chip as the GTX 590, but clocked about 5% slower.

128 auto-tuning multi-gpu stencil computation

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

●

S
p

e
e

d
u

p

Halo size

● Game of Life

Reverse Edge

Swim

(a) 2D Stencils - problem size: 4096 × 4096

0.0

0.5

1.0

1.5

2.0

5 10 15 20 25 30

●

S
p

e
e

d
u

p

Halo size

● Hyperthermia

Himeno

Tricubic

(b) 3D Stencils - problem size: 256 × 256 × 256

Figure 5.10: Impact of halo size on performance. The problem size is in all programs is 2
24 grid

points and is distributed across 2 GPUs. On each graph, we mark the optimal halo size
that obtains the best performance.

The figure also shows that raw performance for each application is not constant across

volume sizes. In order to point out trends and application independent observations, the

remainder of the experimentation reports speedup over single GPU performance instead

of raw performance.

5.5.3 Halo Size Impact

Section 5.3.2 described how varying the halo size affects the balance between data commu-

nication and redundant computation. We now explore which application parameters have

an impact on the optimal halo size. The platform used in this subsection is the P67-NF

setup with one GTX 590 dual graphics card. The speedup measured is compared to the

performance obtained by using only a single GPU of the GTX 590 cards.

volume dimensionality Figure 5.10 shows the impact of the halo size for several

applications in two and three-dimensional space. Both spaces have the same number of

grid points (224) spanning a square or cube, respectively. We observe for all curves two

distinct stages: an ascending and a descending phase. When the halo size is small, the

swapping frequency is increased and the latency induced by initiating the swap plus the

communication cost itself cannot be hidden by the computation of the core. As the halo size

increases, the swapping frequency decreases, leading to less overhead and thus an increase

in performance. With increasing halo size, the amount of computation also increases to

compute the elements in the outer halo, leading to a steady slowdown. This effect is more

noticeable for 3D applications (see Figure 5.10b), because each increment in halo size adds

5.5 experimental evaluation 129

an additional plane that needs to be computed, in contrast to a vector for 2D problems.

The sweet point between the two phases is the optimal halo size. This spot is marked on

each graph. In general, we notice that the dimensionality of the application affects the basic

shape of the halo performance curve and location of the best halo. The benchmark Game of

Life has an optimal halo considerably larger than the other 2D applications. This benchmark

uses a single 8 bit field, requiring much less space and allowing faster exchange.

problem size The second investigation evaluates the impact of the problem size on

the optimal halo size. Figure 5.11 shows that the optimization space becomes more com-

plex as the input size varies. The speedup is around 100% for large problem sizes in all

applications. However, for smaller problem sizes, the scalability is not as good. The small-

est problem size (1024 × 1024) for 2D applications only has a speedup of 27% on average.

The curve just shows the increasing phase, indicating that the bottleneck is still communica-

tion despite very large halo regions. 3D applications show the weakest scalability for small

problem sizes, as communication is even more expensive. Furthermore, for a cubic input

of size 64, the maximum halo possible is too small for the communication to be amortized.

stencil shape Tricubic shows an interesting impact of the stencil shape. All other

applications have stencil shapes that access only the nearest neighbors. However, Tricubic

also accesses neighboring points with a distance of two. Thus increasing the halo size from

an even number to an odd number results in an increase of redundant computation, but

still requires the data exchange to happen at the same frequency as before. This creates the

sawtooth pattern visible in Figure 5.11d, particularly for problem sizes of 64
3 and 128

3.

device capabilities Figure 5.12 shows the impact of the hardware performance on

both the halo size and the scalability for a selected range of applications. The overall capabil-

ities of the Radeon card are lower than the GTX in terms of compute power and bandwidth.

The scalability of each problem is completely different across the two devices: all three ap-

plications scale linearly on the GTX, but only Game of Life exceeds a 75% speedup on the

Radeon. Tricubic even suffers a considerable slowdown on the Radeon. For all applications,

the optimal halo sizes are considerably larger on the Radeon than the GTX.

130 auto-tuning multi-gpu stencil computation

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

●

S
p

e
e

d
u

p

Halo size

● 1024²

2048²

4096²

8192²

(a) Game of Life

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

●

S
p

e
e

d
u

p

Halo size

● 1024²

2048²

4096²

8192²

(b) Reverse Edge

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

●

S
p

e
e

d
u

p

Halo size

● 1024²

2048²

4096²

(c) Swim

0.0

0.5

1.0

1.5

2.0

5 10 15 20 25 30

●
S

p
e

e
d

u
p

Halo size

● 64³

128³

256³

(d) Tricubic

0.0

0.5

1.0

1.5

2.0

5 10 15 20 25 30

●

S
p

e
e

d
u

p

Halo size

● 64³

128³

256³

(e) Hyperthermia

0.0

0.5

1.0

1.5

2.0

5 10 15 20 25 30

●

S
p

e
e

d
u

p

Halo size

● 64³

128³

256³

(f) Himeno

Figure 5.11: Impact of the problem size on the optimal halo size. The legend shows the number
of grid points in the total volume. On each graph, we mark the optimal halo size that
obtains the best performance. For the 3D application, the small volumes are too small
to investigate larger halos.

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

●

S
p

e
e

d
u

p

Halo size

● Game of Life 4096²

Reverse Edge 4096²

Tricubic 256³

(a) Nvidia GTX 590

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50

●

S
p

e
e

d
u

p

Halo size

● Game of Life 4096²

Reverse Edge 4096²

Tricubic 256³

(b) AMD Radeon 5970

Figure 5.12: Comparison of hardware performance between Nvidia GTX 590 and AMD
Radeon 5970. The devices do not have enough memory to support a larger halo size
than 32 for Tricubic.

5.5 experimental evaluation 131

5.5.4 Data Placement and PCIe Layout

This section presents an experimental exploration of the influence of the partition mapping

to multiple GPUs in seemingly homogeneous systems. This experiment demonstrates that

the underlying PCIe layout has an influence on the performance in various aspects, includ-

ing the optimal halo size and scalability. Therefore, it is an important tuning parameter.

We first explore the impact of the device choice for applications using a subset of avail-

able GPUs, and then measure the impact of data locality when using all available resources.

5.5.4.1 Dual GPU exploration

Utilizing all the GPUs available is not necessarily the optimal solution. For example, the

problem size may be too small to be decomposed into many parts, or the communication

costs involved may make applications unable to scale efficiently to more than two GPUs.

This section presents the performance impact of choosing different device subsets in se-

tups providing four GPUs split over two cards, as described in Section 5.4.2. In order to

explore the space fully, and because the ratio between compute and communication per-

formance of future GPUs is hard to predict, it is explored by artificially shrinking the time

of the compute operation from the time taken by our naïve implementation to virtually

nothing. The compute granularity is defined as a fraction of the naïve runtime, where 100%

is the time taken by our unoptimized version and 0% represents an instantaneous computa-

tion. This allows us to investigate the space generated by applications which have had their

single GPU kernels more highly optimized or which are running on more powerful hard-

ware. As in the previous section, the impact of the halo size is explored for each compute

granularity to see the impact of the compute time on the communication overhead.

difference maps Figure 5.13 shows the direct comparison of two different configura-

tions running on the same system, the P67-NF with two dual GPU GTX 590 graphics cards,

but using different PCIe layouts. The left graph shows the Single Card configuration, while

the right graph shows the Dual Cards configuration. In both cases, two PCIe multiplexers

(one on the motherboard and one on the graphics card) need to be traversed in order to

communicate with a GPU. Both plots show the Himeno synthetic kernel with an input size

of 256
3 grid points. The lines plotted on each of these graphs represent the optimal halo

size, which is the halo size giving the highest speedup for a given granularity.

132 auto-tuning multi-gpu stencil computation

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a

lo
 S

iz
e

Single Card

0.3 0.5 0.7 0.9 1.1 1.4 1.6 1.8 2.0

Speedup

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a

lo
 S

iz
e

Difference Map

−1.8 0.4 2.6 4.8 7.0 9.2 11.4 13.6 15.8 18.0

Performance difference in %

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a

lo
 S

iz
e

Dual Cards

0.3 0.5 0.7 0.9 1.1 1.4 1.6 1.8 2.0

Speedup
Halo size that obtains the best performance for Single Card Halo size that obtains the best performance for Dual Cards

Figure 5.13: Comparison of PCIe layouts. A synthetic kernel is run using two GPUs in a four GPU
system (using two GTX 590). The left graph shows the speedup achieved using the
Single Card configuration when varying the halo size and compute granularity. The
right graph shows the speedup using the Dual Cards configuration. The middle heatmap
represents the speedup difference between the second and the first configurations.

The middle graph shows the performance difference of speedup between the two config-

urations. This plot highlights the performance difference in the full space; note that while

both speedup graphs look very similar, the difference map reveals a performance differ-

ence of up to 18%. The optimal halo lines on the difference map are identical to the ones

on the left and right plot. They illustrate whether the optimal halo size traverses regions

with high differences in performance. In this case, the two configurations show a speedup

difference of up to 16% for an optimized halo size in favor of the Dual Cards strategy.

In the rest of this section, we only use difference maps to visualize the difference between

the Single Card and Dual Cards configurations. We summarize the speedup information as a

line plot above the difference map (see Figure 5.14a for example), which shows the best ob-

tainable speedup for a given compute granularity. All evaluations are performed using the

Nvidia GTX 590 graphics cards unless stated otherwise – since they have better hardware

performance than the AMD Radeon 5970 and hence exarcebate the communication pres-

sure. Figures 5.14 to 5.16 show the difference maps for different synthetic kernels running

on our three evaluation systems.

operator impact For the 2D synthetic kernel Reverse Edge (see Figure 5.14), there

is very little difference between the Single Card and Dual Cards configuration. For small

compute granularities, the Single Card configuration tends to consistently obtain about 1.5%

higher speedup than the Dual Cards configuration. The similarity between the three systems

is caused by the high scalability of the two-dimensional problem. The speedup achieved

5.5 experimental evaluation 133

1.90

1.95
O

p
t.

 H
a

lo

S
p

e
e

d
u

p
Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

10

20

30

40

50

H
a
lo

 S
iz

e

−1.8 −1.6 −1.3 −1.1 −0.9 −0.6 −0.4 −0.2

Performance difference in %

(a) X79

1.90

1.95

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

10

20

30

40

50

H
a
lo

 S
iz

e

−1.9 −1.7 −1.5 −1.3 −1.1 −0.8 −0.6 −0.4 −0.2

Performance difference in %

(b) P67-nat

1.90

1.95

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

10

20

30

40

50

H
a
lo

 S
iz

e

−2.2 −1.7 −1.2 −0.8 −0.5 0.0

Performance difference in %

(c) P67-NF

Figure 5.14: Impact of the PCIe layout on different systems using the GTX 590 GPUs for Reverse
Edge with an input size of 40962 grid points.

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a
lo

 S
iz

e

−2.1 1.8 5.7 9.6 13.5 17.4 21.3 25.2 29.1 33.0

Performance difference in %

(a) X79

1.0

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a
lo

 S
iz

e

−0.8 2.6 6.1 9.5 12.9 16.3 19.7 23.2 26.6 30.0

Performance difference in %

(b) P67-nat

1.0

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a
lo

 S
iz

e

−2.7 −0.3 2.1 4.5 6.9 9.4 11.8 14.2 16.6 19.0

Performance difference in %

(c) P67-NF

Figure 5.15: Impact of the PCIe layout on different systems using the GTX 590 GPUs for Hyperther-
mia with an input size of 2563 grid points.

1.0

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a
lo

 S
iz

e

−1.0 2.8 6.6 10.4 14.1 17.9 21.7 25.5 29.2 33.0

Performance difference in %

(a) X79

0.5

1.0

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a
lo

 S
iz

e

−3.5 0.6 4.6 8.7 12.7 16.8 20.8 24.9 28.9 33.0

Performance difference in %

(b) P67-nat

0.5

1.0

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a
lo

 S
iz

e

−1.8 0.4 2.6 4.8 7.0 9.2 11.4 13.6 15.8 18.0

Performance difference in %

(c) P67-NF

Figure 5.16: Impact of the PCIe layout on different systems using the GTX 590 GPUs for Tricubic
with an input size of 2563 grid points.

134 auto-tuning multi-gpu stencil computation

by using two GPUs over one GPU tends towards 100%, and the lower limit for the entire

space is above 90%. We find similar results for the other 2D synthetic kernels.

Figure 5.15 shows the same experiment for the Hyperthermia synthetic kernel. This space

is very different. For the X79 and P67-nat systems (see Figures 5.15a and 5.15b), which

are both using native PCIe connections, the overhead of the multiplexer is clearly visible

for small compute granularities using the Single Card configuration. The rest of the space

shows little difference between the two configurations: this corresponds to the area where

the communication is completely amortized by computation. The communication overhead

starts taking over gradually as the granularity decreases. This happens either when the ha-

los are too small and have to be swapped too often to be amortized by the computation, or,

when they are too large and the swap takes too long to be hidden by the core computation.

This explains the round shape of the lightly colored area along the left side.

For the two first systems, we can clearly observe the gain of avoiding the multiplexer. For

the Single Card configuration, communication has to go through the on-GPU multiplexer.

In the Dual Cards configuration, both GPUs are accessed through the on-GPU multiplexer.

However, as the second GPU on each card is idle, the overhead is negligible or null. The

Dual Cards configuration obtains higher speedups for lower compute granularity. This dif-

ference is accentuated in the P67-nat system that only provides PCIe x8 links, compared to

the PCIe x16 links found in the X79 system.

The multiplexer becomes unavoidable in the P67-NF system for both configurations. In

total, there are three multiplexers: one on the motherboard and one on each graphics card.

For the Single Card configuration, one graphics card is not being used but the multiplexer

on the other one is used to access both GPUs. For the Dual Cards configuration, one GPU

on each PCB is idle, but the multiplexer on the motherboard is being used to access both

graphics cards. Our experimental exploration shows that in this case using both cards is

still beneficial, with a gain of up to 22.69% along the optimal paths.

Figure 5.16 shows the same experiment for the Tricubic synthetic kernel. We observe a

similar behavior as for Hyperthermia. However, the larger stencil shape in Tricubic results in

more communication and increases the difference between the two configurations further.

problem size Figure 5.17 shows the impact of the problem size on the performance

difference for Hyperthermia running on the X79 system. As established in Section 5.5.3,

modifying the problem size changes the communication pressure. This extra pressure on

5.5 experimental evaluation 135

1.0

1.5

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

H
a

lo
 S

iz
e

−8.8 −5.6 −2.4 0.8 4.0 7.2 10.4 13.6 16.8 20.0

Performance difference in %

(a) Hyperthermia 128

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a

lo
 S

iz
e

−2.1 1.8 5.7 9.6 13.5 17.4 21.3 25.2 29.1 33.0

Performance difference in %

(b) Hyperthemia 256

Figure 5.17: The impact of the PCIe layout depends on the problem size. (a) presents the Hyper-
thermia synthetic kernel on the X79 chipset with a problem size of 128

3. (b) shows the
performance difference for the same conditions but a problem size of 256

3.

the smaller volume translates into a performance difference across the entire space, in

contrast to no difference for most of the space when using a larger volume.

device Figure 5.18 shows a selected result comparing the performance difference us-

ing different GPUs. Figure 5.18a shows the difference map for Tricubic running on the

X79 system using the GTX 590 graphics cards. Figure 5.18b shows the difference map for

the same setup, except that we replaced the graphics cards with AMD Radeon 5970. Be-

sides the scalability difference, which is caused by the inferior compute performance of the

Radeon 5970, we notice that the optimal configuration depends on the compute granularity.

For most of the presented results, the Single Card configuration is the best choice for the

Nvidia GTX 590 GPUs. For the Radeon 5970, the Dual Cards configuration performs best for

small compute granularities, while the Single Card configuration performs consistently bet-

ter for larger compute granularities. Choosing to use a single card leads to a performance

improvement of up to 13.2% along the optimal path.

5.5.4.2 Data Placement for Full System Utilization

Figure 5.19 is similar to Figure 5.13, but this time all the available GPUs are being used.

Both configurations show a similar speedup, up to 3.85x for high compute granularities.

However, the maximum observed slowdown also increases compared to using just two

136 auto-tuning multi-gpu stencil computation

1.0

1.5

2.0

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a

lo
 S

iz
e

−1.0 2.8 6.6 10.4 14.1 17.9 21.7 25.5 29.2 33.0

Performance difference in %

(a) Nvidia GTX 590

1.0

1.5

O
p

t.
 H

a
lo

S
p

e
e

d
u

p

Single Card
Dual Cards

0 20 40 60 80 100

Compute Granularity

5

10

15

20

25

30

H
a

lo
 S

iz
e

−16.0 −10.9 −5.7 −3.2 −0.6 2.0 4.5 7.1

Performance difference in %

(b) AMD Radeon 5970

Figure 5.18: Impact of the PCIe layout on the X79 system using different graphics cards for the
Tricubic synthetic kernel with an input size of 256

3 grid points.

20 40 60 80 100

Compute Granularity

2

4

6

8

10

H
a

lo
 S

iz
e

Blocking

0.3 0.7 1.1 1.5 1.9 2.3 2.6 3.0 3.4 3.8

Speedup

20 40 60 80 100

Compute Granularity

2

4

6

8

10

H
a

lo
 S

iz
e

Difference Map

−21.0 −13.2 −9.3 −5.4 −1.6 2.3 6.2 10.1 14.0

Performance difference in %

20 40 60 80 100

Compute Granularity

2

4

6

8

10

H
a

lo
 S

iz
e

Circular

0.3 0.7 1.1 1.5 1.9 2.3 2.6 3.0 3.4 3.8

Speedup
Halo size that obtains the best performance for Blocking Halo size that obtains the best performance for Circular

Figure 5.19: Data placement impact when using four GPUs. The left plot shows speedup when
four partitions have one dependency on the same card and the right hand side shows
another placement where partitions have both dependencies on the other card.

5.5 experimental evaluation 137

GPUs. Having four partitions increases the pressure on the swapping cost, and all the

communication involved is harder to amortize by the core computation.

Even though the full system is utilized, the difference map shows some inequalities be-

tween the configurations for lower compute granularity. Over the complete space, Blocking

is up to 21% faster than Circular. At other points in the space, Circular is up to 13% faster

than Blocking. The optimal path for both configurations crosses this space, meaning the best

partition mapping decision depends on the compute cost in this case.

5.5.5 Autotuning

Our results so far confirm the non-trivial nature of the stencil optimization space, and

hence the need for an automated approach to its navigation. In this section, we describe

and evaluate our autotuning strategies. Our strategies combine offline and online phases.

The first offline decision concerns the volume orientation, as explained in Section 5.2. This

optimization simply requires examination of the volume and stencil shape. In the case of an

asymmetric stencil, the volume is aligned to minimize the swapping frequency. Otherwise,

the volume is aligned to be cut along the largest dimension, which allows a broader range

of halo sizes to be considered and minimizes the cut area.

In the next offline step, we select a swapping strategy from a pool of predefined strategies

(presented in Section 5.2). Our experiments so far indicate that prioritizing computation of

the inner halos is optimal in all cases; hence we select and implement it offline. However,

our framework can easily switch this into an online decision should the need arise.

The framework then tunes the GPU selection and partitioning, which is an offline decision.

It determines how many, and which GPUs to use, and in the case of full system utilization,

how to assign partitions to GPUs. To achieve this, all stencil operators used in the applica-

tion are automatically extracted and profiled independently offline. Using a fine grained

granularity allows Partans to measure the communication interference between the lay-

outs. A medium granularity is used to assess the scalability of the stencil independently of

the optimum halo size. The results are combined, weighted by the complexity and usage

of each stencil in the case of multi-operator applications, to make an overall decision.

Finally, the halo size is adapted online. As the application runs, we vary the halo size

and gather performance data. The data is used to refine the halo adjustments. We have

experimented with a range of adjustment strategies. The search is always informed by the

138 auto-tuning multi-gpu stencil computation

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Exhaustive

Hill Climbing

Dichotomic

2048²

2 GPUs

4096²

4 GPUs

2048²

4 GPUs

4096²

4 GPUs

128³

1 GPU

256³

4 GPUs

128³

1 GPU

256³

2 GPUs

Game of Life Swim Himeno Hyperthermia

S
p

e
e

d
u

p

Figure 5.20: Speedup over single GPU using autotuning for two input sizes and 100,000 iterations,
including online tuning overheads. The autotuner decides how many and which de-
vices to use and performs an online search for the optimal halo size using several
search strategies.

(application specific) shape of the stencils to prune part of the search space. This avoids the

oscillating performance for applications like Tricubic (discussed in Section 5.5.3).

The simplest is an exhaustive search: try all feasible halo sizes in order and eventually pick

the best. The second strategy is inspired by the observation that performance has a simple

bitonic relationship to halo size. The hill climbing search increases the halo size linearly, from

the minimum, until performance degrades for several consecutive points.

These two strategies are linear searches, resulting in poor performance if the optimal halo

is in the middle of the range or at the opposite end. To guarantee reasonable convergence

time, we also implemented a dichotomic search. We sample the average time per iteration at

five regularly spaced halo-sizes, and recurse within the best interval.

Figure 5.20 shows the efficiency of the autotuning for eight applications and two input

sizes each. Each bar represents the final speedup obtained across the given number of

GPUs when accounting for the overhead of the online search phase and the outcome of

each search strategy. Each application executes 100,000 iterations. The average speedup for

applications running on two GPUs is 1.83x, and on four GPUs is 2.86x. Speedup increases

with problem size, which indicates that communication is the limiting factor to scalability.

3D applications with an input size of 128
3 are not worth distributing across several devices,

since the communication dominates over the gain of parallel computation.

For the online tuning, we observe that the overall performance is similar for the three

searches. In most cases, hill climbing and the dichotomic search perform a little better than

the exhaustive search. In particular, this is the case for larger problem sizes.

5.5 experimental evaluation 139

Game Of Life Swim Himeno Hyper

20482 40962 20482 40962 1283 2563 1283 2563

Offline Search Parameters
Number of GPUs 2 4 4 4 1 4 1 2

Data Placement B/D C/D C/D C/D n/a C/D n/a B/D

Exhaustive Search Speedup
Search Phase Perf. (%) 94.43 95.44 90.67 87.26 n/a 91.83 n/a 91.13

Post Search Perf. (%) 100.00 100.00 100.00 100.00 n/a 100.00 n/a 100.00

Iterations to converge 36,550 145,350 18,490 72,250 n/a 550 n/a 2,100

Hill Climbing Search Speedup
Search Phase Perf. (%) 71.11 94.96 89.12 90.63 n/a 92.41 n/a 98.34

Post Search Perf. (%) 83.19 99.98 100.00 95.35 n/a 100.00 n/a 100.00

Iterations to converge 2,300 2,750 7,280 23,030 n/a 540 n/a 90

Dichotomic Search Speedup
Search Phase Perf. (%) 97.90 95.53 91.24 87.93 n/a 94.02 n/a 91.67

Post Search Perf. (%) 99.36 96.78 93.69 95.35 n/a 100.00 n/a 100.00

Iterations to converge 4,260 9,400 5,510 8,430 n/a 380 n/a 540

Notes: Data Placement Abbreviations : (B) Blocking, (C) Circular, (D) Dual Cards, (S) Single Card
Search Phase Perf.: percentage of oracle performance obtained during the online tuning phase.

Post Search Perf.: percentage of oracle performance obtained after the online tuning phase.

Table 5.2: Performance of various search strategies.

In order to compare the searches more accurately, we break down the performance im-

pact of the halo refinement phase and the outcome of the search in Table 5.2. We evaluate

the quality and online performance overhead of our strategies with respect to the per-

formance of an idealized oracle strategy. The oracle performance corresponds to the best

performance found for the given application across the full optimization space, excluding

tuning overheads. For each application, input size and search strategy, we report:

• the percentage of oracle performance obtained during the online tuning phase. This

figure reflects the overhead introduced by our online scheme and the sub-optimal

halos with which it experiments.

• the percentage of oracle performance obtained after the online tuning phase. This

figure reflects the quality of the tuning outcome.

• the number of iterations to convergence. This captures the minimum number of iter-

ations necessary for the search to converge. To increase the accuracy of the measure-

ment and reduce the noise, each swapping is sampled ten times, making it expensive

in terms of iterations for large halos.

140 auto-tuning multi-gpu stencil computation

The exhaustive search guarantees to find the optimal halo size eventually, which gives per-

fect post-tuning performance. It requires a very expensive search phase, but as the number

of iteration increases, this search phase is amortized, giving this strategy a good overall

performance. However, when the number of iterations is not high enough, the search does

not have time to sample the entire space, and the overhead is much higher. This is the

case for Game Of Life with a volume size of 4096, which we allowed to overrun beyond the

standard 100,000 iterations in order to fully measure convergence. This effect is increased

by an important performance difference across the full range of possible halo sizes, which

increases the full search time, as shown in Section 5.5.3.

Hill climbing converges faster and is more efficient than the exhaustive search in most

cases. For Hyperthermia with a volume size of 256, the convergence is achieved twenty

times faster. However, for Himeno, it is almost as expensive as the exhaustive search because

the optimal halo is large. Therefore, the high-quality result is not surprising in this case.

Furthermore, it cannot cope well with bumpy search spaces. For example, with Game of Life

and a volume of 2048, hill climbing stopped in a local minimum, missing the true optimal

halo. Despite a fast convergence, the overall performance converges to the outcome of the

search phase, which is in this case worse than performing a complete search.

Dichotomic search is the fastest to converge, but gives merely an approximation of the

best halo size. As it recursively samples only a few points and makes a search using the

extremities of each range, the result of the search could be quite far from the value of the

optimal halo size. However, it does not stop on the first local minima like the hill climbing

strategy. For applications with a sizable input data, this strategy is essential to navigate

through the large parameter space in a small number of iterations. The number of iterations

necessary to sample a halo size is relative to its size, as it affects the swapping frequency,

which is why non iterative searches are more performant for large ranges. Furthermore, as

demonstrated by the synthetic benchmarks, the optimal halo size tends to increase as the

compute time decreases, making non linear searches like the dichotomic search well adapted

to explore large parameter spaces with a small overhead at the cost of having only an

approximation of the optimal halo.

For the 3D applications, Himeno and Hyperthermia, there is little difference between the

three searches. This is due to the high number of iterations and the relatively small range

of possible halo sizes. All three searches perform well and find a point close to the opti-

5.6 summary 141

mal halo size in a small number of iterations. The overall speedup converges to this value,

amortizing the search overhead. For larger problem sizes, the same differences as the 2D ap-

plications would arise with a greater magnitude, as the amount of redundant computation

increases much faster when the dimensionality of the cut increases.

5.6 summary

The main contribution of this chapter is the discovery of the heterogeneous nature of seem-

ingly homogeneous systems. Even when resources seem evenly distributed from a pro-

grammatic point of view, the hardware implementation can introduce imbalance, which

can be adjusted by an auto-tuning mechanism to improve performance. This has been

demonstrated with respect to the PCI bus connecting multiple GPUs.

This chapter also presented Partans, a framework for distributed stencil computation.

By restricting the domain to a specific computational pattern, it is possible to look in detail

at the main tuning parameters of a heterogeneous system and devise optimization strate-

gies. This can be abstracted from a novice user by hiding the complexity and even the

parallel nature of the underlying system.

The following chapter concludes this thesis by providing a summary of the contributions

and a critical analysis, as well as future work.

6 C O N C L U S I O N

This thesis has introduced two complementary techniques to tackle programmability chal-

lenges for heterogeneous systems. More specifically, the newly developed methods reduce

the paradoxical disparity between productivity and performance in the OpenCL program-

ming model. Chapter 4 provided a transparent solution for under-utilization of the model.

A self-optimizing extension is added to OpenCL to replace costly manual optimizations

and extend its applicability. The other extreme – abusing the model for performance –

was addressed in Chapter 5. While not expressible within the model, hardware sensitive

optimizations are uncovered and exploited within it.

The main contributions of these two approaches are summarized in Section 6.1. They are

critically analyzed in Section 6.2. Section 6.3 discusses future developments of this work.

Section 6.4 concludes by putting the contributions in the context of the overall problem

they addressed.

6.1 contributions

This section summarizes the main contributions presented in the previous two chapters.

Helium and Partans both provide new insights on heterogeneous system optimization

and implement complementary schemes to address the programmability of such systems

in terms of productivity, portability and performance. Their individual contributions are

further detailed below.

6.1.1 Transparent Dynamic Optimizations with Helium

Chapter 4 presented and evaluated the delay-optimize-replay strategy implemented in He-

lium. Deployed as a transparent layer between any OpenCL application and the vendor

implementation, an optimizer combining static and dynamic analysis techniques can per-

143

144 conclusion

form aggressive compute-flow sensitive transformations, like merging computation across

kernels or parallelizing independent tasks. This not only replaces an extremely tedious and

error-prone manual optimization process but also extends the applicability of the OpenCL

model by dramatically increasing performance of highly dynamic applications.

We demonstrated this technique on a set of benchmarks, comparing generic and unopti-

mized applications running with Helium to the same application manually optimized by

an expert. We showed that this technique is lightweight enough to preserve performance

on non-optimizable applications, sound enough to perform the same static optimizations

as a human expert, and adaptive enough to take advantage of a dynamic context to surpass

human experts by up to 80%.

6.1.2 Multi-GPU Stencil Computation with Partans

Most high-level and portable optimization techniques, including Helium, optimize against

the model rather than the underlying hardware features. However, by restricting the do-

main to do a careful parameter space exploration, performance can be further enhanced in

an equally portable way by taking advantage of the architecture. Partans was developed

as a high productivity and high-performance framework for distributed stencil computa-

tion. A clean high-level interface allows the user to specify only the stencil specifications,

and our automatic optimizer can fine-tune the optimization parameters.

Well known computation and communication tradeoffs can be balanced at runtime with

low overhead for a multi-GPU system using auto-tuning techniques. The space was further

explored using synthetic benchmarks, focusing purely on communication. The findings

highlight that subtle architectural differences introduce heterogeneity in a seemingly ho-

mogeneous system. Across multiple benchmarks, the topology of the PCIe interconnecting

four indistinguishable GPUs was shown to impair communication for certain configura-

tions. Integrating this knowledge in an auto-tuner further improved performance by 25%

compared to a non-aware optimizer.

Together, Helium and Partans provide complementary approaches to optimize an ap-

plication against an abstract model to make good use of a parallel paradigm like OpenCL;

and against hidden architectural artifacts introduced by increasingly complex systems.

6.2 critical analysis 145

They both contributed in distinct ways to improve performance, portability and produc-

tivity for heterogeneous systems.

6.2 critical analysis

While the contributions presented significantly improve the programmability of hetero-

geneous systems, some aspects and methods of the research need to be scrutinized and

critically analyzed. This section lists and discusses these issues.

6.2.1 Dynamic Optimizations of Data Flow in OpenCL

optimization overheads The delay-optimize-replay mechanism used by Helium

allows it to perform efficient runtime optimizations resulting in a clear performance gain.

However, this technique might introduce overheads. First, executing commands lazily in-

stead of eagerly might prevent the host and the device applications to perform computation

in parallel. However, in practice, most of the time the host actively waits for the device af-

ter issuing a set of commands. Second, the complexity of the graph based optimizations

applied on the graph might not scale to very large graphs. While Helium has been bench-

marked on a few thousand delayed commands in the largest benchmark, scheduling tens of

thousands of nodes might expose the overhead of the scheduler. This could be addressed by

dividing the task graph in manageable schedules and improving the optimization heuris-

tics.

different architectures The experiments presented in Chapter 4 only evaluated

a large scale dedicated GPU architecture. While the optimization set presented in the frame-

work are applicable to any architecture, their efficiency would certainly vary depending on

the target. Eliminating global memory accesses is a particularly efficient optimization on

GPUs, but cache effects would lessen the benefits on CPUs, where other optimizations such

as vectorization might be more efficient. A careful comparative study would allow each op-

timization to be prioritized for each architecture and enable a more portable and adaptive

optimizer.

146 conclusion

host program analysis Performing a static analysis of the host program as well as

the device code would allow fine grained analysis of the memory accesses. While pointer

and escape analysis are undecidable problems, a restricted analysis as described by Jablin et

al. [Jab+11] is enough to determine the synchronization points and communication patterns

in an OpenCL application. This could be used to simplify the task graphs, remove spurious

synchronization and optimize communication between the host and the device. However,

this would break the interoperability of Helium with pre-compiled binaries and change

the optimization strategy from purely dynamic to a two-stage optimization.

limits of kernel fusion The optimizer in Helium has primitive heuristics to deter-

mine whether kernels are fusable, and always merges them if they share neighboring data.

While this approach generates good performance improvement in most cases, it might also

dramatically degrade it for some kernels. for example, Increasing the amount of local mem-

ory required by aggregating local buffers might impact the scheduler on GPUs and result

in a much lower number of concurrent threads. This can also be observed for kernels using

a high amount of registers: the load elimination pass is forcibly applied but is known to

cause extended live ranges and increase the overall number of registers. On some GPUs

it might cause the same resource contention effects as the increased usage of local mem-

ory and decrease the number of concurrent workgroups. Predicting these effects in the

optimizer to prevent overeager fusion would have to be investigated.

reusability of specialized code The JIT compiler in Helium maintains a code-

cache to store specialized code in order to reuse it whenever possible, thereby lowering

compilation overheads. However, the heuristics used for code staging are too simplistic:

like kernel fusion, the optimizer always specializes the code if it might yield good perfor-

mance. There is an important tradeoff which it not being considered: sacrificing a bit of

performance for the sake of re-usability. Overly specialized code is less likely to be used

again, and some transformations less intrusive than others. This is a common problem for

many runtime staging platforms, and existing solutions could be adapted and integrated

to Helium to improve its performance.

6.2 critical analysis 147

6.2.2 Distributed Stencil Computations on Heterogeneous Systems

single device optimizations The evaluation of Partans primarily investigated

communication optimization. The framework implements some optimizations to carry out

the computation efficiently but does not implement most of the optimizations investigated

by prior work and described in Section 3.3. The space was explored thoroughly using

synthetic loads to account for shortened compute time. However, some conflicts might

arise between optimizing the distribution across devices and localized optimizations, such

as different volume transformations or data layout. The auto-tuner would have to take this

into account and mitigate all parameters collectively.

higher time-order stencils The experimentation explored stencils of multiple

space orders but did not investigate multiple time orders. Maintaining the representation

for several timesteps would dramatically change the communication patterns and shift the

computation to communication ratios. This would probably exacerbate the heterogeneous

nature of the interconnect mediums and strengthen the claims. However, high time-order

stencils are not well suited to GPUs since global memory is a very limited resource. The

current investigation with a single order in time is already reaching this limit. A higher

order would have considerably shrunk the research space.

multidimensional cuts The slicing investigated in Partans is limited to a single

dimension. This approach is unrealistic, particularly for large volumes with a low dimen-

sionality. Existing distributed stencil applications generally adopt a multi-dimensional cut,

which generates considerably more complex dependency graphs since a tile might depend

on more than two neighbors. Implementing this would neither contradict nor reinforce the

current findings: the data placement would still have an impact on performance and an

auto-tuner would still need to investigate this. However, the search techniques would have

to be adapted.

heterogeneous communication The parameter space explored by Partans proves

that seemingly homogeneous systems like dedicated accelerators sharing the same PCI bus

can be heterogeneous. However, it did not investigate heterogeneous interconnect in the

148 conclusion

first place. Technology has already changed dramatically since this evaluation was per-

formed. Accelerators can now share the same die as the CPU and use the same memory

bus, newer motherboards support of mix of PCIe 2.0 and PCIe 3.0 slots, and vendors inves-

tigate high efficiency interconnect buses for peer-to-peer GPU communication like NVLink.

These new technologies only increase the impact of data placement on performance. A care-

ful investigation and benchmarking of the different communication channels would allow

the implementation of a more complete machine learning algorithm deciding the optimal

placement in a highly heterogeneous system.

6.2.3 Combining Helium and Partans

Paradoxically, Partans and Helium use the very same feature of the OpenCL model – the

ability to manipulate tasks – to achieve exact opposite goals, yet both improve productivity

and performance in complementary ways.

Helium showed that fusing tasks and eliminating all non-critical dependencies between

them maximizes the parallelism inherent to the model and improve performance. Partans

is doing the exact contrary: dividing tasks and adding non-critical dependencies to decrease

the amount of parallelism in order to exploit hardware features.

Thus, in effect, applying Helium to Partans would counteract most of the optimization

process and considerably degrade performance. More specifically, the range-aware hori-

zontal fusion in Helium would undo the domain decomposition so carefully performed by

Partans; and the dependency optimizations in Helium would quash Partans’s efforts to

regulate communication.

This dichotomy does not make the two approaches incompatible – just their current

implementation. There is a delicate balance for the optimal amount of parallelism in a

system. Not enough under-utilizes the resources. Too much inevitably creates congestions.

Helium implements techniques to increase parallelism, Partans demonstrates how and

when it should be harnessed. Hence these optimizations are complementary to balance

heterogeneous system utilization. Finding this sweet spot, however, is a more difficult task

akin to the phase ordering problem encountered by compilers.

6.3 future work 149

6.3 future work

This section discusses how the two frameworks, Partans and Helium, could be extended

in the future to provide additional features and explore new optimizations.

6.3.1 Optimizing Tasking Model for OpenCL

task fission In order to maximize the optimization potential of fusion, it would be

necessary to first split existing kernels into indivisible units. This would allow our current

optimization technique to reassemble only the parts of the kernel maximizing the benefits

of kernel fusion. A similar strategy is already implemented in StreamIt [Gor+02], where

they define vertical fission as splitting an operator and horizontal fission as splitting the do-

main.

integrating compiler transformations Since the delay-optimize-replay consid-

erably decouples the host and device applications, a plethora of existing compiler trans-

formations could be transparently applied with very low overheads. Some, like thread

coarsening [MDO14], have shown to be very effective to optimize single kernels. Because

Helium combines static and runtime analysis, much more is known about the execution

context of each kernel instance, which can be used to drive aggressive optimizations like

introducing local memory caches.

dynamic re-targeting For large task graphs with independent sub-graphs, it is

be possible to split a large graph and dispatch the computation to multiple devices. The

additional communication operations between the devices could be inferred automatically

from the dataflow graph analyzed by Helium. Scheduling heuristics like the one described

by Grewe, Wang, and O’Boyle [GWO13] can be used to determine which device is best

suited for any given task; or to distribute the computation across multiple devices.

150 conclusion

(a) Non-Cartesian grids (b) Adaptive Mesh Refinement

(c) Multi-Grid (d) Wavefront

Figure 6.1: Problems derived from the stencil computation pattern. The domain can be non-
Cartesian(a). The grid can also dynamically adapt to computation(b) or reduce at each
iteration(c). Other patterns use only a subset of the domain, like the wavefront pattern(d).

6.3.2 Distributed Stencil Computation

multi-level parallelism Stencil computations have been parallelized on various

systems: existing research explored multi-node clusters using MPI and multi-processor

devices such as CPUs and GPUs; and we explored multi-device distribution. Combining

all these approaches at once for a cluster of nodes composed of multiple parallel devices

would prove very challenging since the layers cannot be optimized and tuned in isolation

but together since they are not independent.

compute domain extensions There are many other forms of stencil computations

which are not explored in Chapter 5. Figure 6.1 shows other types of problems also using a

nearest computation pattern. Figure 6.1a shows examples of non-Cartesian domains: they

can be expressed using triangular, rectilinear or curvilinear volumes, or even unstructured

grids. Grids can also be non-uniform, which is used for optimization of sparse problems

where only a small subset of the domain yields interesting computation. This process,

shown in Figure 6.1b, is called adaptive mesh refinement.

derived skeletons The output and input domains may be of different size, and

iteratively repeating the computation lowers the resolution and solves a more coarse prob-

lem; these are known as multi-grid methods(Figure 6.1c). Finally, the stencil operator can

be mapped to a subset of the domain in a structured way, like the wavefront pattern (Fig-

ure 6.1d). While stencil optimizations can be applied in this case, other tuning parameters

specific to this problem must be taken into consideration and integrated to the auto-tuner.

6.4 final remarks 151

6.4 final remarks

Heterogeneous systems are here to stay, and will only grow in diversity and complexity.

The emerging abstraction models which set out to tackle the resulting programmability

challenges show contrasted results. On the one hand, the accessible portability they provide

by-design lifts a considerable burden. On the other hand, their genericity cannot quite profit

from all intricacies of the hardware. Programmers either take it upon themselves to bridge

this gap, or overly rely on the models to do it for them. Either way, they resort to all sorts of

under/mis/ab-uses of portable programming models – causing an abyssal chasm between

productivity and performance.

The techniques presented in this thesis demonstrate that this need not be – or at least

not anywhere near the current extent. Under-utilization of the heterogeneous program-

ming model is addressed with a safe, transparent self-optimizing layer. At the other end

of the spectrum, misuses are replaced with a portable auto-tuner. In both cases, these new

methods considerably enhance performance and productivity, and preserve portability.

Unfortunately, they cannot reach the best possible performance on most systems – and

neither would any other optimization technique in the same context. The reason is simply

because this point is not within reach for the current programming models. Programmers

knowing this routinely violate model requirements to squeeze a bit more performance –

abandoning productivity and portability altogether.

In conclusion, programmability of heterogeneous systems is still a challenge. However,

we are closer than ever before to reconciling productivity, portability and performance.

Time will tell if the key to finally tame heterogeneity lies in better programming models or

better ways to use of them – or both.

A
E X A M P L E O F O P E N C L

A P P L I C AT I O N

Canny Edge Detection in OpenCL

1 #define __CL_ENABLE_EXCEPTIONS
2 #include <CL/cl.hpp>
3 #include <vector>
4

5 // Device source code
6 const std::string code = R"CODE(
7 #define IDX(X,Y,WIDTH) ((X) + ((Y) * (WIDTH)))
8 #define off(y,x) (in[IDX(tid0+(x), tid1+(y), n0)])
9 #define PREAMBLE \

10 const int tid0 = get_global_id(0), tid1 = get_global_id(1);\
11 const int n0 = get_global_size(0), n1 = get_global_size(1);\
12 const int idx = IDX(tid0, tid1, n0)
13

14 kernel void gaussian(const global float * in, global float * out) {
15 PREAMBLE;
16 out[idx] = (tid0 > 1 && tid0 < n0-2 && tid1 > 1 && tid1 < n1-2) ?
17 (off(-1,-1) + 2*off(-1,+0) + off(-1,+1) +
18 2*off(+0,-1) + 4*off(+0,+0) + 2*off(+0,+1) +
19 off(+1,-1) + 2*off(+1,+0) + off(+1,+1)) / 16.0f : 0.0f;
20 }
21

22 kernel void gradient_x(const global float * in, global float * out) {
23 PREAMBLE;
24 out[idx] = (tid0 > 0 && tid0 < n0-1 && tid1 > 0 && tid1 < n1-1) ?
25 off(-1,1)-off(-1,-1)+2*(off(0,1)-off(0,-1))+off(1,1)-off(1,-1) : 0.0f;
26 }
27

28 kernel void gradient_y(const global float * in, global float * out) {
29 PREAMBLE;
30 out[idx] = (tid0 > 0 && tid0 < n0-1 && tid1 > 0 && tid1 < n1-1) ?
31 off(-1,-1)-off(1,-1)+2*(off(-1,0)-off(1,0))+off(-1,1)-off(1,1) : 0.0f;
32 }
33

34 float retabs(const float f) { return f < 0 ? -f : f; }
35

36 kernel void magnitude(const global float * in1,
37 const global float * in2,
38 global float * out) {
39 PREAMBLE; out[idx] = retabs(in1[idx]) + retabs(in2[idx]);
40 }
41)CODE";
42

153

154 example of opencl application

43 int main() {
44 try {
45 using namespace cl;
46 cl_int err = CL_SUCCESS;
47

48 // parameters
49 constexpr ::size_t width = 8000, height = 6000;
50 constexpr ::size_t pixels = width * height;
51 constexpr ::size_t buf_size = pixels * sizeof(float);
52

53 NDRange none {NullRange }, range {width, height }; // grid size and offsets
54 std::vector<float> img(pixels), res(pixels); // host side data
55

56 // Initialize the device
57 std::vector<Platform> plats;
58 Platform::get(&plats);
59 if (plats.size() == 0) return -1;
60

61 cl_context_properties properties[] =
62 { CL_CONTEXT_PLATFORM, cl_context_properties(plats[0] ()), 0 };
63 Context ctx {CL_DEVICE_TYPE_ALL, properties };
64 auto devices = ctx.getInfo<CL_CONTEXT_DEVICES>();
65

66 CommandQueue queue(ctx, devices[0], 0, &err); // Create a command queue
67

68 Program program {ctx, {1,std::make_pair(code.data(),code.size()) } };
69 program.build(devices); // Create and build the program
70

71 Kernel // Create Kernel Objects
72 k_gaussian {program, "gaussian", &err },
73 k_gradient_x {program, "gradient_x", &err },
74 k_gradient_y {program, "gradient_y", &err },
75 k_magnitude {program, "magnitude", &err };
76 KernelFunctor // Create Kernel functors
77 f_gaussian {k_gaussian, queue, none, range, none },
78 f_gradient_x {k_gradient_x, queue, none, range, none },
79 f_gradient_y {k_gradient_y, queue, none, range, none },
80 f_magnitude {k_magnitude, queue, none, range, none };
81 Buffer // allocate the device memory
82 b_img {ctx, CL_MEM_READ_WRITE, buf_size, nullptr, &err },
83 b_gaussian {ctx, CL_MEM_READ_WRITE, buf_size, nullptr, &err },
84 b_gradx {ctx, CL_MEM_READ_WRITE, buf_size, nullptr, &err },
85 b_grady {ctx, CL_MEM_READ_WRITE, buf_size, nullptr, &err },
86 b_mag {ctx, CL_MEM_READ_WRITE, buf_size, nullptr, &err };
87

88 // enqueue the kernels
89 f_gaussian(b_img, b_gaussian);
90 f_gradient_x(b_gaussian, b_gradx);
91 f_gradient_y(b_gaussian, b_grady);
92 f_magnitude(b_gradx, b_grady, b_mag);
93

94 // read the result
95 queue.enqueueReadBuffer(b_mag, CL_TRUE, 0, buf_size, &res[0]);
96 } catch (cl::Error err) { return err.err(); }
97 }

B I B L I O G R A P H Y

[AMP14] Fernando Alexandre, Ricardo Marques, and Hervé Paulino. “On the Support
of Task-parallel Algorithmic Skeletons for multi-GPU Computing.” In: Proc. of
the 29th Annual ACM Symp. on Applied Computing. SAC ’14. Gyeongju, Republic
of Korea: ACM, 2014 (Cited on pages 46 and 62).

[Arn+00] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
“Adaptive Optimization in the JalapeNO JVM.” In: Proc. of the 15th ACM SIG-
PLAN Conf. on Object-oriented Programming, Systems, Languages, and Applications.
OOPSLA ’00. Minneapolis, Minnesota, USA: ACM, 2000 (Cited on page 49).

[AT+98] Ali-Reza Adl-Tabatabai, Michał Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh,
and James M. Stichnoth. “Fast, Effective Code Generation in a Just-in-time Java
Compiler.” In: Proc. of the 19th ACM SIGPLAN Conf. on Programming Language
Design and Implementation. PLDI ’98. Montreal, Quebec, Canada: ACM, 1998

(Cited on page 49).

[Aug+10] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst. “Data-Aware Task
Scheduling on Multi-accelerator Based Platforms.” In: Proc. of 16th Int. Conf. on
Parallel and Distributed Systems. ICPADS. Dec. 2010 (Cited on page 46).

[Bec+04] Olav Beckmann, Alastair Houghton, Michael Mellor, and PaulH.J. Kelly. “Run-
time Code Generation in C++ as a Foundation for Domain-Specific Optimisa-
tion.” English. In: Domain-Specific Program Generation. Ed. by Christian Lengauer,
Don Batory, Charles Consel, and Martin Odersky. Vol. 3016. Lecture Notes in
Computer Science. 2004 (Cited on page 50).

[BP10] Tobias Brandvik and Graham Pullan. “SBLOCK: A Framework for Efficient
Stencil-Based PDE Solvers on Multi-core Platforms.” In: Proc. of the 2010 10th
IEEE Int. Conf. on Computer and Information Technology. CIT ’10. Washington, DC,
USA: IEEE Computer Society, 2010 (Cited on pages 57, 58, and 59).

[BPB12] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. “Tiling Stencil
Computations to Maximize Parallelism.” In: Proc. of the 2012 ACM/IEEE Conf.
on Supercomputing. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press,
2012 (Cited on page 55).

[Buc+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. “Brook for GPUs: Stream Computing on Graphics
Hardware.” In: Proc. of the 31th Annual Conf. on Computer Graphics and Interac-
tive Techniques. SIGGRAPH ’04. Los Angeles, California: ACM, 2004 (Cited on
pages 10, 26, and 41).

[Col04] Murray Cole. “Bringing Skeletons out of the Closet: A Pragmatic Manifesto for
Skeletal Parallel Programming.” In: Parallel Comput. 30.3 (Mar. 2004) (Cited on
page 24).

155

156 Bibliography

[CSB11] Matthias Christen, Olaf Schenk, and Helmar Burkhart. “Automatic code gener-
ation and tuning for stencil kernels on modern shared memory architectures.”
In: Computer Science - Research and Development (2011) (Cited on pages 59 and
126).

[Cud] CUDA Specifications. NVIDIA Corporation. 2014. url: http://docs.nvidia.
com/cuda/ (Cited on page 26).

[Dar99] Alain Darte. “On the Complexity of Loop Fusion.” In: Proc. of the 1999 Int. Conf.
on Parallel Architectures and Compilation Techniques. PACT ’99. Washington, DC,
USA: IEEE Computer Society, 1999 (Cited on page 53).

[Dat+08] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. “Stencil com-
putation optimization and auto-tuning on state-of-the-art multicore architec-
tures.” In: Proc. of the 2012 ACM/IEEE Conf. on Supercomputing. SC ’08. Austin,
Texas: IEEE Press, 2008 (Cited on page 56).

[DEK11] Usman Dastgeer, Johan Enmyren, and Christoph W. Kessler. “Auto-tuning
SkePU: A Multi-backend Skeleton Programming Framework for multi-GPU
Systems.” In: Proceedings of the 4th International Workshop on Multicore Software
Engineering. IWMSE ’11. Honolulu, HI, USA: ACM, 2011 (Cited on page 46).

[Den] Project Denver processor to usher in a new era of computing. NVIDIA Corporation.
2011. url: http://blogs.nvidia.com/blog/tag/project-denver/ (Cited on
page 11).

[Den+74] Robert H. Dennard, Fritz H. Gaensslen, Hwa nien Yu, V. Leo Rideout, Ernest
Bassous, Andre, and R. Leblanc. “Design of ion-implanted MOSFETs with very
small physical dimensions.” In: IEEE J. Solid-State Circuits (1974) (Cited on
page 1).

[Dub+12] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen
J. Fink. “Compiling a High-level Language for GPUs: (via Language Support
for Architectures and Compilers).” In: Proc. of the 33rd ACM SIGPLAN Conf.
on Programming Language Design and Implementation. PLDI ’12. Beijing, China:
ACM, 2012 (Cited on page 49).

[EG01] Robert A. van Engelen and Kyle A. Gallivan. An Efficient Algorithm for Pointer-
to-Array Access Conversion for Compiling and Optimizing DSP Applications. 2001

(Cited on page 78).

[EK10] Johan Enmyren and Christoph W. Kessler. “SkePU: A Multi-backend Skeleton
Programming Library for multi-GPU Systems.” In: Proceedings of the Fourth In-
ternational Workshop on High-level Parallel Programming and Applications. HLPP
’10. Baltimore, Maryland, USA: ACM, 2010 (Cited on page 42).

[EK12] Steffen Ernsting and Herbert Kuchen. “Algorithmic Skeletons for Multi-core,
multi-GPU Systems and Clusters.” In: Int. J. High Perform. Comput. Netw. 7.2
(Apr. 2012) (Cited on page 42).

http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
http://blogs.nvidia.com/blog/tag/project-denver/

Bibliography 157

[FHM99] Antoine Fraboulet, Guillaume Huard, and Anne Mignotte. “Loop Alignment
for Memory Accesses Optimization.” In: Proceedings of the 12th International
Symposium on System Synthesis. ISSS ’99. Washington, DC, USA: IEEE Computer
Society, 1999 (Cited on page 94).

[FS05] Matteo Frigo and Volker Strumpen. “Cache Oblivious Stencil Computations.”
In: Proceedings of the 19th Annual International Conference on Supercomputing. ICS
’05. Cambridge, Massachusetts: ACM, 2005 (Cited on page 53).

[Fuh+14] Oliver Fuhrer, Carlos Osuna, Xavier Lapillonne, Tobias Gysi, Ben Cumming,
Mauro Bianco, Andrea Arteaga, and Thomas Schulthess. “Towards a perfor-
mance portable, architecture agnostic implementation strategy for weather and
climate models.” In: Supercomputing frontiers and innovations 1.1 (2014) (Cited on
pages 57 and 60).

[GAK03] Georgios Goumas, Maria Athanasaki, and Nectarios Koziris. “An Efficient Code
Generation Technique for Tiled Iteration Spaces.” In: IEEE Transactions on Par-
allel and Distributed Systems 14 (2003) (Cited on page 53).

[Gor+02] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,
Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze,
and Saman Amarasinghe. “A Stream Compiler for Communication-exposed
Architectures.” In: Proc. of the 10th Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems. ASPLOS. San Jose, California, 2002

(Cited on page 149).

[Gra] Graal project. http://openjdk.java.net/projects/graal. OpenJDK. 2013 (Cited
on page 49).

[Gro+13] Tobias Grosser, Albert Cohen, Paul H. J. Kelly, J. Ramanujam, P. Sadayappan,
and Sven Verdoolaege. “Split Tiling for GPUs: Automatic Parallelization Using
Trapezoidal Tiles.” In: Proc. of the 6th Workshop on General Purpose Processor Us-
ing Graphics Processing Units. GPGPU-6. Houston, Texas: ACM, 2013 (Cited on
page 55).

[Gro+14] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Ver-
doolaege. “Hybrid Hexagonal/Classical Tiling for GPUs.” In: Proc. of Annual
IEEE/ACM Int. Symp. on Code Generation and Optimization. CGO ’14. Orlando,
FL, USA: ACM, 2014 (Cited on page 55).

[Gro08] Khronos Group. Khronos Launches Heterogeneous Computing Initiative. June 2008.
url: http://www.khronos.org/news/press/releases/khronos_launches_
heterogeneous_computing_initiative/ (Cited on page 27).

[GWO13] D. Grewe, Zheng Wang, and M.F.P. O’Boyle. “Portable mapping of data paral-
lel programs to OpenCL for heterogeneous systems.” In: Code Generation and
Optimization (CGO), 2013 IEEE/ACM Int. Symp. on. 2013 (Cited on pages 48 and
149).

[Göd+08] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick McCormick,
Hilmar Wobker, Christian Becker, and Stefan Turek. “Using GPUs to Improve

http://www.khronos.org/news/press/releases/khronos_launches_heterogeneous_ computing_initiative/
http://www.khronos.org/news/press/releases/khronos_launches_heterogeneous_ computing_initiative/

158 Bibliography

Multigrid Solver Performance on a Cluster.” In: Int. Journal of Computational
Science and Engineering (IJCSE) 4.1 (2008) (Cited on page 56).

[Han+11] Dongni Han, Shixiong Xu, Li Chen, and Lei Huang. “PADS: A Pattern-Driven
Stencil Compiler-Based Tool for Reuse of Optimizations on GPGPUs.” In: Par-
allel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on.
2011 (Cited on pages 57 and 60).

[Har15] Mark Harris. CUDA 7 Release Candidate Feature Overview. 2015. url: http://
devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-

overview/ (Cited on page 49).

[HB10] Jared Hoberock and Nathan Bell. Thrust: A Parallel Template Library. 2010. url:
http://thrust.github.io (Cited on page 27).

[HPS12] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. “High-performance
Code Generation for Stencil Computations on GPU Architectures.” In: Proc. of
the 26th ACM Int. Conf. on Supercomputing. ICS ’12. San Servolo Island, Venice,
Italy: ACM, 2012 (Cited on pages 57, 58, and 59).

[HR10] A. Hilton and A. Roth. “BOLT: Energy-efficient Out-of-Order Latency-Tolerant
execution.” In: High Performance Computer Architecture (HPCA), 2010 IEEE 16th
Int. Symp. on. 2010 (Cited on page 27).

[Int14] Intel. Intel Xeon Processor E7 v2 Family Product Brief. 2014. url: www.intel.com/
xeonE7 (Cited on page 10).

[IT88] F. Irigoin and R. Triolet. “Supernode Partitioning.” In: Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’88. San Diego, California, USA: ACM, 1988 (Cited on page 53).

[Jab+11] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.
Beard, and David I. August. “Automatic CPU-GPU Communication Manage-
ment and Optimization.” In: Proc. of the 32nd ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation. PLDI ’11. San Jose, California, USA,
2011 (Cited on pages 47 and 146).

[Jan+11] Byunghyun Jang, D. Schaa, P. Mistry, and D. Kaeli. “Exploiting Memory Ac-
cess Patterns to Improve Memory Performance in Data-Parallel Architectures.”
In: Parallel and Distributed Systems, IEEE Transactions on 22.1 (2011) (Cited on
page 44).

[Ji+12] Feng Ji, A.M. Aji, J. Dinan, D. Buntinas, P. Balaji, Wu chun Feng, and Xiaosong
Ma. “Efficient Intranode Communication in GPU-Accelerated Systems.” In: Par-
allel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012
IEEE 26th International. 2012 (Cited on page 62).

[Kam+05] Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shalf, and Katherine Yelick.
“Impact of modern memory subsystems on cache optimizations for stencil com-
putations.” In: Proc. of the 2005 workshop on Memory system performance. MSP ’05.
Chicago, Illinois: ACM, 2005 (Cited on page 60).

http://devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-overview/
http://devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-overview/
http://devblogs.nvidia.com/parallelforall/cuda-7-release-candidate-feature-overview/
http://thrust.github.io
www.intel.com/xeonE7
www.intel.com/xeonE7

Bibliography 159

[Kam+10] S. Kamil, Cy Chan, L. Oliker, J. Shalf, and S. Williams. “An auto-tuning frame-
work for parallel multicore stencil computations.” In: Parallel Distributed Pro-
cessing (IPDPS), 2010 IEEE Int. Symp. on. 2010 (Cited on page 60).

[KG97] Andreas Krall and Reinhard Grafl. “CACAO - A 64-bit JavaVM just-in-time
compiler.” In: Concurrency: Practice and Experience 9.11 (1997). url: http://dx.
doi.org/10.1002/(SICI)1096-9128(199711)9:11<1017::AID-CPE347>3.0.CO;

2-0 (Cited on page 49).

[Kim+11] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. “Achieving a
Single Compute Device Image in OpenCL for Multiple GPUs.” In: Proc. of the
16th ACM Symp. on Principles and Practice of Parallel Programming. PPoPP ’11.
San Antonio, TX, USA: ACM, 2011 (Cited on page 43).

[KM94] Ken Kennedy and Kathryn S. McKinley. “Maximizing Loop Parallelism and
Improving Data Locality via Loop Fusion and Distribution.” In: Proceedings of
the 6th International Workshop on Languages and Compilers for Parallel Computing.
London, UK, UK: Springer-Verlag, 1994 (Cited on page 53).

[KSG13] Philipp Kegel, Michel Steuwer, and Sergei Gorlatch. “dOpenCL: Towards Uni-
form Programming of Distributed Heterogeneous Multi-/Many-core Systems.”
In: J. Parallel Distrib. Comput. 73.12 (Dec. 2013) (Cited on page 43).

[Lee+10] Jaejin Lee, Jungwon Kim, Sangmin Seo, Seungkyun Kim, Jungho Park, Hong-
gyu Kim, Thanh Tuan Dao, Yongjin Cho, Sung Jong Seo, Seung Hak Lee, Seung
Mo Cho, Hyo Jung Song, Sang-Bum Suh, and Jong-Deok Choi. “An OpenCL
Framework for Heterogeneous Multicores with Local Memory.” In: Proc. of the
19th Int. Conf. on Parallel Architectures and Compilation Techniques. PACT ’10. Vi-
enna, Austria: ACM, 2010 (Cited on page 43).

[Lee+11] Jun Lee, Jungwon Kim, Junghyun Kim, Sangmin Seo, and Jaejin Lee. “An
OpenCL Framework for Homogeneous Manycores with No Hardware Cache
Coherence.” In: Parallel Architectures and Compilation Techniques (PACT), 2011 Int.
Conf. on. 2011 (Cited on page 43).

[LFC13] Thibaut Lutz, Christian Fensch, and Murray Cole. “PARTANS: An Autotuning
Framework for Stencil Computation on multi-GPU Systems.” In: ACM Trans-
actions on Architecture and Code Optimization. TACO 9.4 (Jan. 2013) (Cited on
page 6).

[LFC15] Thibaut Lutz, Christian Fensch, and Murray Cole. “Helium: A Transparent
Inter-Kernel Optimizer for OpenCL.” In: Proc. of Workshop on General Purpose
Processing Using GPUs. GPGPU-8. San Francisco, CA, USA: ACM, 2015 (Cited
on page 6).

[LG14] Thibaut Lutz and Vinod Grover. “LambdaJIT: A Dynamic Compiler for Hetero-
geneous Optimizations of STL Algorithms.” In: Proc. of the 8th Workshop on Gen-
eral Purpose Processor Using Graphics Processing Units. FHPC ’14. Gothenburg,
Sweden: ACM, 2014 (Cited on page 6).

[LME09] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. “OpenMP to GPGPU: A
Compiler Framework for Automatic Translation and Optimization.” In: Proc. of

http://dx.doi.org/10.1002/(SICI)1096-9128(199711)9:11<1017::AID-CPE347>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1096-9128(199711)9:11<1017::AID-CPE347>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1096-9128(199711)9:11<1017::AID-CPE347>3.0.CO;2-0

160 Bibliography

the 14th ACM Symp. on Principles and Practice of Parallel Programming. PPoPP ’09.
Raleigh, NC, USA: ACM, 2009 (Cited on page 48).

[LZS09] Yixun Liu, E.Z. Zhang, and Xipeng Shen. “A cross-input adaptive framework
for GPU program optimizations.” In: Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on. 2009 (Cited on page 45).

[Mar+11] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. “Physis: An implicitly par-
allel programming model for stencil computations on large-scale GPU-accelerated
supercomputers.” In: High Performance Computing, Networking, Storage and Anal-
ysis (SC), 2011 International Conference for. 2011 (Cited on page 57).

[Mar+13] Ricardo Marques, HervÃ© Paulino, Fernando Alexandre, and PedroD. Medeiros.
“Algorithmic Skeleton Framework for the Orchestration of GPU Computations.”
English. In: Euro-Par 2013 Parallel Processing. Ed. by Felix Wolf, Bernd Mohr,
and Dieter an Mey. Vol. 8097. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013. url: http://dx.doi.org/10.1007/978-3-642-40047-
6_86 (Cited on page 46).

[MC11] Helmar Burkhart Matthias Christen Olaf Schenk. “Patus: A Code Generation
and Autotuning Framework For Parallel Iterative Stencil Computations on
Modern Microarchitectures.” In: IPDPS. 2011 (Cited on pages 57, 58, 59,
and 127).

[MCT96] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. “Improving Data Local-
ity with Loop Transformations.” In: ACM Trans. Program. Lang. Syst. 18.4 (July
1996) (Cited on page 53).

[MDO13] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. “A Large-scale
Cross-architecture Evaluation of Thread-coarsening.” In: Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis. SC ’13. Denver, Colorado: ACM, 2013 (Cited on page 45).

[MDO14] Alberto Magni, Christophe Dubach, and Michael O’Boyle. “Automatic Opti-
mization of Thread-coarsening for Graphics Processors.” In: Proc. of the 23rd Int.
Conf. on Parallel Architectures and Compilation. PACT. Edmonton, AB, Canada,
2014 (Cited on pages 45 and 149).

[Mic09] Paulius Micikevicius. “3D finite difference computation on GPUs using CUDA.”
In: Proc. of 2nd Workshop on General Purpose Processing on Graphics Processing
Units. GPGPU-2. Washington, D.C.: ACM, 2009 (Cited on page 55).

[Mis+11] Perhaad Mistry, Chris Gregg, Norman Rubin, David Kaeli, and Kim Hazel-
wood. “Analyzing Program Flow Within a Many-kernel OpenCL Application.”
In: Proc. of the 4th Workshop on General Purpose Processing on Graphics Processing
Units. GPGPU-4. Newport Beach, California, 2011 (Cited on page 47).

[MKR07] Tom Mertens, Jan Kautz, and Frank Van Reeth. “Exposure Fusion.” In: Proc. of
Pacific Conf. on Computer Graphics and Applications. 2007 (Cited on page 103).

[Moo65] Gordon E. Moore. “Cramming more components onto integrated circuits.” In:
Electronics 38.8 (1965) (Cited on page 1).

http://dx.doi.org/10.1007/978-3-642-40047-6_86
http://dx.doi.org/10.1007/978-3-642-40047-6_86

Bibliography 161

[MRR12] Michael McCool, James Reinders, and Arch Robison. Structured Parallel Pro-
gramming: Patterns for Efficient Computation. 1st. pp. 89-90. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2012 (Cited on page 36).

[MS11] Jiayuan Meng and Kevin Skadron. “A Performance Study for Iterative Stencil
Loops on GPUs with Ghost Zone Optimizations.” In: Int. Journal of Parallel
Programming 39 (1 2011) (Cited on page 55).

[Ngu+10] A. Nguyen, N. Satish, J. Chhugani, Changkyu Kim, and P. Dubey. “3.5-D Block-
ing Optimization for Stencil Computations on Modern CPUs and GPUs.” In:
High Performance Computing, Networking, Storage and Analysis (SC), 2010 Int.
Conf. for. 2010 (Cited on page 55).

[Opea] The OpenACC Application Programming Interface, Version 1.0. OpenACC Working
Group. 2011. url: http://www.openacc-standard.org/ (Cited on page 27).

[Opeb] The OpenCL Specification version 1.2. 19th ed. Khronos OpenCL Working Group.
Nov. 2012. url: http://www.khronos.org/registry/cl/specs/opencl-1.2.
pdf (Cited on page 27).

[PF10] Everett H. Phillips and Massimiliano Fatica. “Implementing the Himeno Bench-
mark with CUDA on GPU clusters.” In: Proc. of the 24th IEEE Int. Parallel and
Distributed Processing Symp. Apr. 2010 (Cited on page 127).

[PG14] Prasanna Pandit and R. Govindarajan. “Fluidic Kernels: Cooperative Execution
of OpenCL Programs on Multiple Heterogeneous Devices.” In: Proc. of Annual
IEEE/ACM Int. Symp. on Code Generation and Optimization. CGO ’14. Orlando,
FL, USA: ACM, 2014 (Cited on page 43).

[Phi] Intel Xeon Phi Coprocessor. Intel Corporation. url: http://software.intel.com/
en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

(Cited on pages 2 and 11).

[Pol] Intel Research Advances ’Era Of Tera’. Intel Corporation. url: http://www.intel.
com/pressroom/archive/releases/2007/20070204comp.htm (Cited on page 2).

[Pur+02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. “Ray Trac-
ing on Programmable Graphics Hardware.” In: Proc. of the 29th Annual Conf.
on Computer Graphics and Interactive Techniques. SIGGRAPH ’02. San Antonio,
Texas: ACM, 2002 (Cited on page 10).

[Rei07] James Reinders. Intel Threading Building Blocks. First. Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 2007 (Cited on page 25).

[RHG15] Mahesh Ravishankar, Justin Holewinski, and Vinod Grover. “Forma: A DSL for
Image Processing Applications to Target GPUs and Multi-core CPUs.” In: Pro-
ceedings of the 8th Workshop on General Purpose Processing Using GPUs. GPGPU
2015. San Francisco, CA, USA: ACM, 2015 (Cited on pages 57 and 58).

[RIF01] Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. “Cactus Application: Per-
formance Predictions in Grid Environments.” In: In Proc. of European Conf. on
Parallel Computing (EuroPar) 2001. 2001 (Cited on pages 57 and 60).

http://www.openacc-standard.org/
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://www.intel.com/pressroom/archive/releases/2007/20070204comp.htm
http://www.intel.com/pressroom/archive/releases/2007/20070204comp.htm

162 Bibliography

[RK+12] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, and Frédo Durand. “Decoupling Algorithms from Schedules for
Easy Optimization of Image Processing Pipelines.” In: ACM Trans. Graph. 31.4
(July 2012) (Cited on page 59).

[RK+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. “Halide: A Language and Compiler for Op-
timizing Parallelism, Locality, and Recomputation in Image Processing Pipelines.”
In: Proc. of the 34th ACM SIGPLAN Conf. on Programming Language Design and Im-
plementation. PLDI ’13. Seattle, Washington, USA: ACM, 2013 (Cited on page 59).

[Rom+13] Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Hassan
Chafi, and Kunle Olukotun. “Surgical Precision JIT Compilers.” In: Proc. of the
35th ACM SIGPLAN Conf. on Programming Language Design and Implementation.
PLDI ’14. Edinburgh, United Kingdom: ACM, 2013 (Cited on page 49).

[Seo+13] Sangmin Seo, Jun Lee, Gangwon Jo, and Jaejin Lee. “Automatic OpenCL Work-
group Size Selection for Multicore CPUs.” In: Proc. of the 22nd Int. Conf. on
Parallel Architectures and Compilation Techniques. PACT ’13. Edinburgh, Scotland,
UK: IEEE Press, 2013 (Cited on page 46).

[SF12] Kazuki Sakamoto and Tomohiko Furumoto. “Grand Central Dispatch.” En-
glish. In: Pro Multithreading and Memory Management for iOS and OS X. Apress,
2012 (Cited on page 25).

[SKG11] M. Steuwer, P. Kegel, and S. Gorlatch. “SkelCL - A Portable Skeleton Library for
High-Level GPU Programming.” In: IEEE Int. Symp. on Parallel and Distributed
Processing Workshops and Phd Forum. IPDPSW. 2011 (Cited on page 42).

[SL+07] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay
Saraswat, and Sanjit Seshia. “Sketching Stencils.” In: Proc. of the 28th ACM SIG-
PLAN Conf. on Programming Language Design and Implementation. PLDI ’07. San
Diego, California, USA: ACM, 2007 (Cited on page 60).

[SL05] John Paul Shen and Mikko H. Lipasti. Modern processor design : fundamentals
of superscalar processors. Index. Boston: McGraw-Hill Higher Education, 2005

(Cited on page 24).

[SLH12] I-Jui Sung, G.D. Liu, and W.-M.W. Hwu. “DL: A data layout transformation
system for heterogeneous computing.” In: Innovative Parallel Computing. inPar.
2012 (Cited on pages 21 and 44).

[Spi] The SPIR Specification version 1.2. 1st ed. Khronos SPIR Working Group. Jan.
2014. url: http: //www .khronos.org /registry/ spir/specs /spir_spec-

1.2.pdf (Cited on page 35).

[SSH10] I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. “Data Layout Transforma-
tion Exploiting Memory-level Parallelism in Structured Grid Many-core Appli-
cations.” In: Proceedings of the 19th International Conference on Parallel Architec-
tures and Compilation Techniques. PACT ’10. Vienna, Austria: ACM, 2010 (Cited
on page 44).

http://www.khronos.org/registry/spir/specs/spir_spec-1.2.pdf
http://www.khronos.org/registry/spir/specs/spir_spec-1.2.pdf

Bibliography 163

[Ste+14] Michel Steuwer, Michael Haidl, Stefan Breuer, and Sergei Gorlatch. “High-
Level Programming of Stencil Computations on Multi-GPU Systems Using the
SkelCL Library.” In: Parallel Processing Letters 24.03 (2014) (Cited on page 60).

[Tan+11] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk,
and Charles E. Leiserson. “The Pochoir Stencil Compiler.” In: Proc. of the Twenty-
third Annual ACM Symp. on Parallelism in Algorithms and Architectures. SPAA ’11.
San Jose, California, USA: ACM, 2011 (Cited on pages 57, 58, and 59).

[Top14] Top500. TOP500 supercomputing sites. 2014. url: http://www.top500.org (Cited
on page 11).

[USQ12] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. “Automatic Restruc-
turing of GPU Kernels for Exploiting Inter-thread Data Locality.” In: Proceed-
ings of the 21st International Conference on Compiler Construction. CC’12. Tallinn,
Estonia: Springer-Verlag, 2012 (Cited on page 45).

[VS+09] Brian Van Straalen, John Shalf, Terry Ligocki, Noel Keen, and Woo-Sun Yang.
“Scalability challenges for massively parallel AMR applications.” In: Proc. of the
2009 IEEE Int. Symp. on Parallel&Distributed Processing. Washington, DC, USA:
IEEE Computer Society, 2009 (Cited on page 60).

[WL91] Michael E. Wolf and Monica S. Lam. “A Data Locality Optimizing Algorithm.”
In: Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation. PLDI ’91. Toronto, Ontario, Canada: ACM, 1991

(Cited on page 53).

[Won00] D. Wonnacott. “Using time skewing to eliminate idle time due to memory band-
width and network limitations.” In: Parallel and Distributed Processing Sympo-
sium, 2000. IPDPS 2000. Proceedings. 14th International. 2000 (Cited on page 54).

[Yan+12] Yang Yang, Hui-Min Cui, Xiao-Bing Feng, and Jing-Ling Xue. “A Hybrid Cir-
cular Queue Method for Iterative Stencil Computations on GPUs.” English. In:
Journal of Computer Science and Technology 27.1 (2012). url: http://dx.doi.org/
10.1007/s11390-012-1206-3 (Cited on page 54).

[Zim93] Eugene V. Zima. “Recurrent Relations and Speed-up of Computations Using
Computer Algebra Systems.” In: Proceedings of the International Symposium on
Design and Implementation of Symbolic Computation Systems. DISCO ’92. London,
UK, UK: Springer-Verlag, 1993 (Cited on page 79).

[Zim95] Eugene V. Zima. “Simplification and Optimization Transformations of Chains
of Recurrences.” In: Proceedings of the 1995 International Symposium on Symbolic
and Algebraic Computation. ISSAC ’95. Montreal, Quebec, Canada: ACM, 1995

(Cited on page 79).

[ZM12] Yongpeng Zhang and Frank Mueller. “Auto-generation and Auto-tuning of
3D Stencil Codes on GPU Clusters.” In: Proc. of the 10th Int. Symp. on Code
Generation and Optimization. CGO ’12. San Jose, California: ACM, 2012 (Cited
on pages 56, 57, and 62).

http://www.top500.org
http://dx.doi.org/10.1007/s11390-012-1206-3
http://dx.doi.org/10.1007/s11390-012-1206-3

164 Bibliography

[NVI99] NVIDIA Corporation. GeForce 256: The World’s First GPU. 1999. url: http://
www.nvidia.co.uk/page/geforce256.html (Cited on page 10).

http://www.nvidia.co.uk/page/geforce256.html
http://www.nvidia.co.uk/page/geforce256.html

	cover sheet
	lutz-2015
	Abstract
	Lay Summary
	Declaration
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Ubiquity of Heterogeneous Systems
	1.2 Implications for Programmability
	1.3 Contributions
	1.4 Thesis Outline
	1.5 Summary

	2 Background
	2.1 Evolution of Parallel Computer Systems
	2.1.1 From Single to Multi to Many Cores
	2.1.2 General-Purpose Computing on GPUs
	2.1.3 Other Parallel Systems and Accelerators

	2.2 Comparison of CPU and GPU Architectures
	2.2.1 Architecture Overview
	2.2.2 Memory Layout
	2.2.3 Optimization Challenges on GPUs

	2.3 Parallel Frameworks and Languages
	2.3.1 Parallel Programming Concepts
	2.3.2 Parallelism on Multi-Core CPUs
	2.3.3 Languages and Frameworks for Accelerators

	2.4 Heterogeneous Computing with OpenCL
	2.4.1 A Portable Programming Model
	2.4.2 Architecture Agnostic Compute Kernels
	2.4.3 Managing Data and Computation
	2.4.4 Limitations of the OpenCL Model

	2.5 Towards Portable Intermediate Languages
	2.5.1 Standardization of Intermediate Representations
	2.5.2 A Closer Look at LLVM and SPIR

	2.6 Stencil Computations
	2.6.1 Stencil Pattern
	2.6.2 Distributed Stencils

	2.7 Summary

	3 Related Work
	3.1 Heterogeneous System Optimizations
	3.1.1 Abstraction Frameworks
	3.1.2 GPGPU Optimization Techniques & Insights

	3.2 Compiler and Dynamic Optimizations
	3.2.1 Compiler Analysis & Profilers
	3.2.2 Compilers for Heterogeneous Systems
	3.2.3 Dynamic Optimization & Staging
	3.2.4 Limitations of Prior Work and Discussion

	3.3 Stencil Computation
	3.3.1 Stencil Optimization Techniques
	3.3.2 Frameworks, Code Generators & Compilers
	3.3.3 Limitations of Prior Work and Discussion

	3.4 Summary

	4 Dynamic Interkernel Optimizations
	4.1 Motivation
	4.2 Dynamic Kernel Sequence Optimizations
	4.2.1 Scheduling Optimizations
	4.2.2 Code Specialization
	4.2.3 Kernel Fusion
	4.2.4 Task Elimination
	4.2.5 Transformation Applicability

	4.3 Helium Optimizer Overview
	4.4 Helium Implementation
	4.4.1 Delay and Analysis
	4.4.2 Task Graph Optimizer
	4.4.3 Replay Mechanism

	4.5 Limitations
	4.6 Evaluation Methodology
	4.6.1 Experimental Setup
	4.6.2 Evaluation Methodology

	4.7 Experimental Results
	4.8 Summary

	5 Auto-tuning Multi-GPU Stencil Computation
	5.1 Motivation
	5.2 Optimization Strategies
	5.3 The Partans Framework
	5.3.1 API Concepts
	5.3.2 Internal implementation strategy
	5.3.3 Optimization space

	5.4 Experimental Setup
	5.4.1 Benchmarks
	5.4.2 Architectures
	5.4.3 Evaluation Methodology

	5.5 Experimental Evaluation
	5.5.1 Overview
	5.5.2 Single GPU performance
	5.5.3 Halo Size Impact
	5.5.4 Data Placement and PCIe Layout
	5.5.5 Autotuning

	5.6 Summary

	6 Conclusion
	6.1 Contributions
	6.1.1 Transparent Dynamic Optimizations with Helium
	6.1.2 Multi-GPU Stencil Computation with Partans

	6.2 Critical Analysis
	6.2.1 Dynamic Optimizations of Data Flow in OpenCL
	6.2.2 Distributed Stencil Computations on Heterogeneous Systems
	6.2.3 Combining Helium and Partans

	6.3 Future Work
	6.3.1 Optimizing Tasking Model for OpenCL
	6.3.2 Distributed Stencil Computation

	6.4 Final Remarks

	A Example of OpenCL Application
	Bibliography

