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Abstract 

Homogeneous alignment of liquid crystal (LC) molecules is fundamental to the fabrication 

and optimum operation of LC devices. As a consequence of employing alignment layers 

with directional properties, the alignment of LC molecules is promoted. The most commonly 

used technique to fabricate LC alignment layers is by mechanically rubbing polymer films. 

However, reductions in production costs and further advancements in LC technology are 

now being hindered by the rubbing technique and so either a new technique or monitoring of 

the current technique is required. In these studies, a monitor of the rubbing technique and of 

the potential replacement techniques is demonstrated. 

By constructing a surface sensitive technique, traditionally a monitor of semiconductor 

growth, and applying it to alignment layers, the first uses of reflection anisotropy 

spectroscopy (RAS) to monitor the fabrication of LC alignment layers are presented. This 

technique, in conjunction with atomic force microscopy (AFM), has been successfully used 

to study a number of variables of the rubbing technique and as a real-time monitor of the 

photoalignment and atomic beam etching techniques. Of these, the latter has shown the most 

potential to replace mechanical rubbing yet it is probably the least understood. The results 

are interpreted using stratified media simulations and molecular alignment models 

An interesting by-product of these alignment layer studies has been the introduction of an 

extension to the normal RAS technique. By using examples such as doubly rubbed alignment 

layers and double sided rubbed alignment layers, angular dependent RAS (ADRAS) has 

been shown to be capable of isolating and monitoring optical anisotropy from multiple 

sources within a single system. 

To increase understanding of the etching technique, the complex polymer surfaces were 

replaced by a model system: a copper single crystal. The complexity of these studies was 

later increased by the introduction of vicinal surfaces and the adsorption of chiral molecules 

onto the Cu (110) surface. Both of these changes alter the characteristic spectra but the latter 

also has potential to allow further uses of ADRAS as the chiral molecule is known to lie at a 

specific angle to the rows of copper atoms. 

To further the understanding of the interactions between LC molecules, polymer layers and 

surfaces, an AFM study of a model system, dodecane on highly ordered pyrolytic graphite, 

was carried out, from which observations about the dewetting of surfaces have been made. 
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Chapter 1: Introduction 

'Anyone who has never made a 
mistake has never tried 
anything new' 
Albert Einstein (1879 - 1955) 

Summary 

The motivation of this project concerns liquid crystal displays and so in this first 

chapter a general introduction into the construction and operation of liquid crystal 

displays is given. Also included is a brief overview of the project, highlighting the 

areas studied, the motivation for the work and the some of the results. 



Liquid Crystal Displays 

Historical View of Liquid Crystal Displays 

For many decades now, flat panel displays have been developed with the ultimate 

goal of replacing cathode ray tube (CRT) displays. The development of rival 

technologies has been limited over the years due to the exceptional success of the 

CRT which provides high performance at a relatively low cost. However, for large 

displays (over 40 inches diagonally), the CRT becomes too bulky, heavy and 

expensive for many applications. Similarly for portable applications, the size and 

power consumption of the CRT has prevented it from being widely used [1.1]. 

In the last decade or so, liquid crystal displays (LCDs) have begun to reduce the 

market share of the CRT. In particular, the LCD now dominates both large scale (e.g. 

projection displays) and small scale (e.g. watches, calculators and portable 

computers) applications. Although recent advances in LCD technology have resulted 

in relatively large, high resolution displays with a colour quality exceeding that of 

CRTs, the CRT has retained the bulk of the displays market. A major factor in this is 

the higher selling price of LCDs, resulting from increased manufacturing cost caused 

by high levels of waste created during the fabrication process. Commercially, the 

fabrication process of LCDs includes a rubbing procedure used to create alignment 

layers. It is this process which is responsible for the majority of the waste and needs 

to be replaced, possibly by non-contact techniques, or to be monitored more 

effectively. Either of these options will reduce the level of waste and help to lower 

the cost of producing LCDs [1.2]. The ideal solution would be to have an effective 

monitor of a non-contact technique. 

The future of the display industry, and in particular LCDs, seems to be tending 

towards flexible displays. Unless the limitations created as a result of the alignment 

process are solved, future technologies will suffer from exactly the same problems. 
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Introduction to Liquid Crystal Displays 

Liquid Crystals 

There are many different types of liquid crystals (LCs) and it is their unique 

properties which enable LCDs to operate. By definition, as well as having fluid 

properties, LCs also posses long range order similar to that in a crystalline solid. 

These molecules appear elongated (rod shaped) and can align parallel to each other, 

gaining anisotropic electrical and optical properties, enabling applications to displays 

[1.3]. For display purposes it is the cyanobiphenyl compound, shown in Figure /. 1, 

which is normally used. To help describe the orientation of the LC molecules a unit 

vector, called the director (n), is defined in the direction of the long axis of the 

molecule. 

n 
Figure 1.1 	The cyanobiphenyl compound commonly used in LCDs. 

Classes of Liquid Crystals [1.41 

LCs are characterised by their properties when in physical states between the 

crystalline and liquid phases. The crystalline phase (K) has a regular structure and 

posses both long range positional and long range orientational order. The liquid or 

isotropic phase (I) has random atomic or molecular positioning and orientation. In 

the liquid phase, the position and orientation of one molecule provides no 

information about other molecules in that phase, unlike a crystal. The phases of LCs 

which are of importance to LCDs are described below. 

The nematic phase (N), shown in Figure 1.2 (a), is similar to the isotropic phase in 

that the molecules have a random position. In the ideal N phase, which excludes 

thermal fluctuations, the shape of the molecules cause a layered structure in which 

the directors of the molecules lie parallel. 
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The cholesteric or chiral nematic phase (Ch or N*),  shown in Figure 1.2 (b), like the 

N phase, has random molecular positioning, with the directors aligned parallel 

forming layers parallel to the plane of the director. Unlike the nematic phase 

however, the directors have a spiral structure as they rotate from layer to layer in the 

bulk. The N phase can be considered a special case of the Ch phase. 

The smectic A phase (SA), shown in Figure 1.2 (c), is similar to the N phase as it is 

characterised by parallel alignment of the molecular director. In this case though, 

there is also some positional order, resulting in the molecules forming layers with the 

director parallel to the layer normal. 

The smectic C (Sc) phase is similar in structure to the SA phase. The difference is 

that the molecular directors are tilted at a constant angle to the layer normal. In the 

chiral smectic C (Sc*) phase, shown in Figure 1.2 (d), the presence of chiral 

(optically active) molecules causes the director to rotate from layer to layer. 

Figure 1.2 	The (a) nematic, (b) cholesteric, (c) smectic A and (d) 
chiral smectic C phases of liquid crystals. 



Twisted Nematic Liquid Crystal Displays [1.1] 

The most commonly used LCDs are made using the twisted nematic (TN) cell as 

shown in Figure 1.3. The cells are made from two glass plates which are coated with 

a transparent conductor on one side, usually indium tin oxide (ITO). The ITO layer is 

coated with a thin layer of polymer which is then treated, usually by rubbing, to 

encourage the LC molecules to align parallel to the rubbing direction. The cell is 

constructed with the polymer layers facing inwards and with the alignment directions 

perpendicular. The LC molecules, which are sandwiched between these layers, 

undergo a 900  twist from one plate to the next. Polarisers are applied to the top and 

bottom surfaces of the cell, with the polarisation directions parallel to the alignment 

direction. 

Potariser 

Colour Filters 
Alignment Layer 

Alignment Layer 

Polariser 

Glass 

Transparent Conductor 

Liquid Crystal 

Transparent Conductor 

Glass 

Figure 1.3 	Construction of Twisted Neinatic LCDs. 

These cells are non-emissive and normally use a back-light. An alternative lighting 

arrangement is to construct the cells using a reflective silicon back plate and a single 

glass plate on top. In this case a light source is directed into the cell from the side and 

is reflected back out of the front of the cell. LC cells modulate the incident light and 

use colour filters to enable full colour images. When unpolarised light is incident on 

the cell it becomes linearly polarised. As it is transmitted through the LC layer, when 

in the undriven and relaxed state, the light undergoes a 90° rotation in polarisation 

and leaves the cell through the exit polariser (Figure 1.4 (a)). When a high enough 

electric field is applied across the cell (the driven state), the LC molecules align 

themselves in the direction of the field. Light incident on the cell in this state does 

not undergo a rotation and is absorbed by the exit polariser (Figure 1.4 (b)). These 

cells are 'switched' between states by an AC voltage applied across the cell and have 

a typical response time of 30 ms. Higher resolution displays are possible but at the 
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(b) 
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Glass 

Liquid Crystal 

GI ass 
Polariser 

H 

cost of the response time. This is done using a 'super twisted nematic' cell, which 

uses a twist of 180° 2700  instead of 0° 900. 

Figure 1.4 	Twisted nematic liquid crystal cells in (a) the on state and 
(b) the off state. 

Ferroelectric Liquid Crystal Displays [1.5] 

Some Sc'  phases exhibit ferroelectric properties, they have domains which are 

electrically polarised in specific directions, and so can be used in LCDs. The 

construction of ferroelectric LCDs is similar to a TN cell except that the cells are 

thinner and the rubbing directions of the polymer alignment layers lie parallel instead 

of perpendicular to each other as before. The ferroelectric liquid crystals (FLCs) fill 

the cell with their molecular directors in planes parallel to the glass plates and at an 

angle to the plane of the layer. These molecules are bistable and can be switched 

between the two states by applying a DC pulse of the correct polarity. The use of 

crossed polarisers gives these devices bright and dark appearances respectively due 

to the birefringence of the LC, as shown in Figure 1.5. 

13 



2 

Figure 1.5 	Ferroelectric liquid crystal cells in (a) the on state and 
(h) the off state. 

To make ferroelectric LCDs, a polariser is placed on the front surface of the cell with 

its optical axis parallel to the molecular axis of one of the FLC states. Another 

polariser is placed behind the cell with its optical axis perpendicular to the Optical 

axis of the first polariser. If the directors of the molecules within the cell are parallel 

to the first polariser, no light will pass (Figure 1.5 (b)). If the directors of the 

molecules are switched to the other direction, any light transmitted through the first 

polariser will have its polarisation changed as it passes through the liquid crystals. 

Therefore, the polarisation of the light as it exits the cell is not aligned 

perpendicularly to the second polariser and so some is transmitted (Figure 1.5 (a)). 

As the FLC pixels are bistable, each responds only to its most recent voltage pulse 

and does not decay over time as with the TN pixels. This allows ferroelectric LCDs 

to be operated in a simpler manner than the TN display which reduces production 

costs. Additionally, switching times of a few microseconds can be achieved (which is 

a hundred to a thousand times faster than the TN cell) allowing other applications, 

such as fast optical shutters. 
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Project Scope 

As previously mentioned, the commercial development of LCDs is being hindered 

by problems associated with the polymer alignment layer. The technique most 

commonly used to create these alignment layers is a dirty and somewhat unreliable 

technique which results in large amounts of waste, thus increasing the fabrication 

costs of LCDs. The aim of this project is to investigate alignment layers using novel 

techniques with the goal of understanding more about these layers and the possible 

introduction of a suitable monitoring technique. 

Chapter 2 gives background information regarding the main experimental techniques 

used throughout the project and Chapter 3 contains a full description of the 

construction and operation of the apparatus used. The first experimental results are 

presented in Chapter 4 which gives details of a study of polymer alignment layers by 

reflection anisotropy spectroscopy (RAS) and atomic force microscopy (AIM). A 

range of different materials and techniques has been examined to obtain a complete 

study of the alignment layer fabrication process. In general, it was found that the 

information obtained by RAS, and in some cases backed up by AFM, could be used 

to monitor the fabrication of the alignment layers. Simulations based upon a 

molecular alignment model have been used to understand the origin of the optical 

anisotropy induced by the rubbing process. Ion beam etching has been shown to be a 

suitable non-contact alternative to rubbing for the production of alignment layers, 

this technique has also been monitored by RAS. The use of RAS in these ways is a 

novel application of the technique and an interesting by-product of these studies, 

angular dependent RAS (ADRAS), is discussed in Chapter 5. 

The results of the alignment layer studies have shown the creation of alignment layer 

to be an extremely complicated situation which could not be fully explained. The 

same techniques were therefore applied to simpler systems from where it may be 

possible to build towards an understanding of the complex systems of before. In 

Chapter 6, details of experiments on the well understood Cu (110) surface are given. 

This surface, as well as more complex vicinal surfaces, is studied by RAS under a 
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variety of surface processing techniques. Of particular interest, after considering the 

findings of the previous chapters, is the etching of the surfaces using an ion beam. 

Chapter 7 studies the effect of evaporating molecules on the copper surfaces and is a 

further step towards the initial system involving the polymer alignment layers. By 

studying a chiral molecule on the copper surface it has been possible to extend the 

applications of ADRAS (the angular technique first introduced in Chapter 5). The 

earlier chapters have shown the necessity of having a uniform surface to aid the LC 

alignment. Even prior to any processing some structure can be found on the polymer 

surfaces which probably results from drying. The final experimental chapter, 

Chapter 8, is an AFM study of dodecane on highly ordered pyrolytic graphite 

(HOPG). In a similar way to the previous RAS measurements, this system is used as 

a simplified version of the alignment layer and allows a study of the structures 

formed as a result of the dewetting and drying mechanisms. Chapter 9 is the final 

chapter and gives a summary of the conclusions of the work and suggestions for 

further work in these areas. 
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Chapter 2: Experimental Techniques 

'There are three prmcipal 
means of acquiring 
knowledge... observation of 
nature, reflection and 
experimentation. Observation 
collects facts, reflection 
combines them; 
experimentation verifies the 
results of that combination' 
Denis Diderot (1713 - 1784) 

Summary 

This is a descriptive chapter used to give an introduction into the main experimental 

techniques used in this project. The techniques covered in this chapter are scanning 

tunnelling microscopy (STM), atomic force microscopy (AFM), low energy electron 

diffraction (LEED) and reflection anisotropy spectroscopy (RAS). Of these, AFM 

and RAS are the most frequently used. 
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Scanning Tunnelling Microscopy 

Historical View of the Scanning Tunnelling Microscope 

Scanning tunnelling microscopy (STM) is probably the most basic technique of the 

selection of scanning probe microscopy (SPM) technologies currently available. It is 

also the oldest, the one that gives the highest resolution with least effort and is 

therefore very commonly used. The technique was first introduced by Gerd Binnig 

and Heinrich Rohrer in 1981 at IBM Zurich [2.1]. Their discovery earned them a 

Nobel prize five years later in 1986. 

Introduction to the Scanning Tunnelling Microscope [2.2 - 2.4] 

The STM is operated by moving a sharpened conducting tip over the surface of a 

conducting sample. A bias is applied to both the tip and sample to create a potential 

difference across the gap between them. When the size of the gap between the tip 

and sample is brought below -I nm, a current will flow. As the tip rasters the surface 

of the sample, a two dimensional map of the surface is constructed using the values 

of current at each point of the surface. Using an exponential relationship between the 

current and the relative height of the tip, a topographical image with very high 

sensitivity in the z-direction can be formed. 

The movement of the tip in the x, y and z directions is controlled by piezoelectric 

crystals. Use of this method allows very accurate movement of the tip with relatively 

low hysteresis. As the scan proceeds it may be necessary to alter the distance 

between the tip and sample. To allow this, the z-piezo is connected to a feedback 

loop that responds to the topography of the surface. If the tunnelling current exceeds 

a pre-set value (indicating the tip is too close to the sample), the z-piezo is activated 

to retract the tip until the tunnelling current returns below a pre-set value. Similarly if 

the tip becomes too far from the sample, the piezo will move the tip closer. 

Figure 2.1 illustrates the situation, in terms of energy, when the distance between the 

tip and sample is large (greater than —I nm). The air gap between the tip and sample 

acts as a dielectric and does not allow electrons to pass through. Any electrons in the 
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tip travelling towards the sample are either reflected back from the boundary or are 

transmitted into the air but will decay after a short time prior to reaching the sample. 

Figure 2.2 illustrates the situation when the distance between the two metals is small 

enough (less than -4 nm) to allow quantum mechanical tunnelling. As before, 

electrons travelling through the tip towards the sample are either reflected back or 

transmitted into the air gap. Now the gap is small enough such that the electrons can 

reach the other side before they decay away. In general, if the gap between the tip 

and sample is too big, the barrier between the metals is too large for electrons to 

overcome and so no electrons will be able to tunnel through. 

Energy 
Penetrates barrier and decays 

Reflection from barrier 

Electron wavelike 
behaviour 

Metal 1 	Air 	Metal 2 
(Sample) (Barrier) (Tip) 

Figure 2.1 	Energy diagram showing the behaviour of electrons when 
the distance between the tip and sample is large. 

Energy 	
Penetrates barrier and 

tunnels through 

(Sample) (Barrier) (Tip) 

Figure 2.2 	Energy diagram showing the behaviour of electrons when 
the distance between the tip and sample is small. 

To briefly summarise the two available modes of operation, constant height mode 

has a high scan speed and should not be used to image rough surfaces. Constant 

current mode is suitable to be used on rough surfaces but has a lower scan speed. 
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Atomic Force Microscopy [2.3, 2.5, 2.6] 

Historical View of the Atomic Force Microscope 

In 1986, Binnig and Quate developed the atomic force microscope (AFM) as a 

method to measure forces as small as 1018  N [2.7]. This technique is, in the words of 

Binnig and Quate, 'a combination of the principles of the scanning tunnelling 

microscope and the stylus profilometer' [2.7]. The original application of the AFM 

was to study the surfaces of insulators on an atomic scale, something that STM could 

not do. A little over a year later, the first images of a non-conductor were published 

[2.8], these images showed monatomic steps of NaCl and was followed shortly by 

the first atomic resolution image of a non-conductor [2.9]. Since then the use of 

AFM and the number of applications has increased dramatically. With the addition of 

intermittent contact imaging techniques to the AFM, applications involving 

biological and polymer samples have become commonplace. 

Introduction to the Atomic Force Microscope 

The AFM probes surfaces using a sharp tip mounted on a flexible reflective 

cantilever. As the cantilever is rastered over the surface, Van der Waals forces cause 

it to deflect following the topography of the sample. The deflection of the cantilever 

is detected optically by reflecting a laser beam off the top surface of the cantilever 

into a four-segment photodiode, as shown in Figure 2.3. The use of a four-segment 

detector allows twists in the cantilever, as a result of friction, to be detected as well. 

The voltage output from the photodiode is converted into topographic data by the 

SPM controller and SPM software. 
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Atomic Force Microscope Cantilevers 

The cantilevers are part of a larger holder, as shown in Figure 2.4 and are 

microfabricated from a Si (110) single crystal or from Si3N4. A full description of the 

microfabrication technique is given in [2.10]. A typical cantilever has a length of 100 

200 jim and a tip diameter of 10 nm, although these values vary depending on the 

particular type of cantilever; therefore allowing many different applications. By 

increasing the sharpness of the tip it is possible to obtain higher resolution images. 

The number of applications can be increased further by varying the dimensions of the 

cantilevers to obtain a range of spring constants (C) and resonant frequencies (f) 

which can be found using Equations 2.1 & 2.2 (which exclude the mass of the tip). T, 

W & L are the thickness, width and length of the cantilever, E is the modulus of 

elasticity (Young's modulus) and p is the density of the material used to make the 

cantilevers. 

E WT 3  
Eq. 2.1 

4L3  

f0.l62. 2 	 Eq.2.2 

Forces 

The AFM operates by measuring the forces between the cantilever and sample. 

These forces are mainly dependent on the separation between the tip and sample, any 

contamination, the type of sample and the type of tip. The relationship between the 
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separation and the force felt by the cantilever can be seen in Figure 2.5. At high 

separation the net force is attractive but is relatively weak as it is mainly due to long 

range Van der Waals forces. As the atoms of the tip and sample are brought closer 

together, the attractive force grows until the electron clouds of the atoms repel each 

other and cancel out the attractive force. With further reduction in separation the 

repulsive force becomes dominant. 

Force 

Repulsive 

Attractive )istance 

Figure 2.5 	The ftrces between the tip and sample as afunction of 
separation. 

Modes of Operation 

Contact Mode 

The main mode of operation of the AFM is contact mode, in which the tip is held a 

few Angstroms above the surface of the sample. In this mode the AFM operates in 

the repulsive regime, the steep part of the curve shown in Figure 2.5, and generally 

uses cantilevers which have relatively low spring constants (lower than the effective 

spring constant between the atoms of the sample). As there is a strongly repulsive 

force between the tip and sample, any pressure on the tip results in a bend of the 

cantilever rather than reducing the separation between the tip and sample. By 

monitoring the deflection of the cantilever as it passes over a surface, it is possible to 

build up a topographic image of the sample. If a force large enough to overcome the 

repulsive force is applied to the sample via a stiff cantilever, nanolithography of the 

sample will result. 
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The deflection of the cantilever and therefore the force felt by the cantilever as a 

function of distance from the surface can be seen in Figure 2.6. Point A shows the 

repulsive force on the tip due to the close proximity of the tip to the sample. At point 

B, where the tip begins to feel the repulsive force of the sample, the attractive long 

range force is beginning to be neutralised by the repulsive atomic force. Also at point 

B, when the cantilever is retracted from the sample, a capillary force is felt by the tip 

due to the contamination (water) layer on the surface of the sample. The apparent 

size of the adhesion shown on force-distance curves will depend on the stiffness of 

the cantilever and the amount of contamination. Point C shows the attractive long 

range force from the sample felt by the cantilever 

Deflection 

Distance 

Figure 2.6 	A 'Force - Distance' curve. 

Intermittent Contact Mode 

A disadvantage of contact mode AFM occurs when trying to image soft samples or 

samples which are loosely bound to the substrate as these may be damaged during 

imaging. These problems occur frequently when imaging biological samples and 

cannot be solved by simply using softer cantilevers. 

One solution is to use an alternative imaging technique in which the cantilever 

contacts the surface intermittently. Instead of being dragged along the surface as in 

contact mode, the tip bounces over the surface. The result is an imaging technique 

which applies less force to the surface and therefore causes less damage. This 

technique has several names such as 'Tapping mode' and 'Acoustic mode' and it 

operates by forcing the cantilever to resonate (the resonant frequency of the 

cantilever can be determined using Equation 2.2). This is normally done using a 
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transducer, which when supplied with a voltage, vibrates the cantilever at the desired 

frequency and amplitude. An alternative method is to resonate a magnetically coated 

cantilever in an AC magnetic field. 

All intermittent contact techniques operate using the same basic principles. Figure 

2.7 shows the motion of the cantilever and how topographical information is 

extracted whilst in intermittent contact mode. As the cantilever is oscillated at its 

resonant frequency, the tip softly contacts (taps) the surface on the bottom part of the 

oscillation. The amplitude of the cantilevers oscillation varies depending on the tip to 

sample distance and therefore on the surface topography. By comparing the 

measured oscillation with the vibrational movement applied to cantilever, it is 

possible to extrapolate the surface topography. 

Cantilever movement 

>=.-• Vibration 

Feedback 
Scan direction 

~%WP%WAWM% 
Detected cantilever 
deflection 

M\/WVVMW1WMWV Vibrational movement 

Topographic impression 
of sample 

Figure 2.7 	Motion of cantilever in intermittent contact mode. 
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Low Energy Electron Diffraction [2.12, 2.13] 

Historical View of Low Energy Electron Diffraction 

The primary developments in the technique of low energy electron diffraction 

(LEED) date back over a century to 1897. In this year, J. J. Thomson discovered 

cathode rays were comprised of electrons. Some 30 years later Davisson and Germer 

performed the first electron diffraction experiment to confirm the de Broglie 

hypothesis of electrons behaving like waves. 

For this technique, the usual definition of 'low energy' is between 1 and 1000 eV. At 

low energies such as these, the penetration of the incident electrons through crystals 

is limited to the first few atomic layers of the surface. It is for this reason that the 

state of the surface strongly modifies the diffraction process. To overcome this 

problem and to allow electrons to probe further into samples, higher energies were 

used. It took about another 30 years, until the 1960's, before LEED was developed 

much more. At this time, techniques had been developed to clean (ion bombardment) 

and anneal samples plus the advent of ultra high vacuum (UHV) systems meant 

samples could be kept 'clean' in chambers for hours instead of seconds. 

The initial weakness of LEED, of only being able to probe the surface of a sample, is 

now its major strength. LEED is now the principle technique used to determine the 

periodicity and condition of surfaces. The information gathered using LEED is in the 

form of a diffraction pattern. From the position of the spots, information about the 

size, symmetry and rotational alignment of the unit cell of the sample can be found. 

Similarly, from the intensities of the spots, information about atomic positioning can 

be found. This is done by recording the intensities as a function of incident electron 

beam energy, generating an I - V curve, which is then compared to theoretical values. 

Introduction to Low Energy Electron Diffraction 

In the operation of LEED, electrons are fired at a sample from an electron gun. 

Elastically scattered electrons from the sample contribute to the diffraction pattern 

formed. In Figure 2.8 a typical LEED experimental arrangement is shown. The 
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energy and quantity (i.e. the current) of electrons fired at the sample is controlled by 

the electron gun. The grids are used to filter out lower energy electrons and the 

diffraction pattern is displayed on the fluorescent screen. In order to generate a back-

scattered electron diffraction pattern, the sample must be a single crystal with a well-

ordered surface. 

Screen 

Electron gun 
Sample 

'->Grids 

Figure 2.8 	A typical LEED experimental arrangement. 

The principles of operation of LEED are very much dependent on diffraction theory. 

From the fundamentals of wave-particle duality, the electrons incident on the sample 

may be regarded not only as a stream of particles but also as a stream of waves. 

These waves will be scattered by the surface atoms as they encounter regions of 

highly localised electron density. The atoms can therefore be considered to act as 

point scatterers. 

When a wavefront strikes a crystal surface in which the layers of atoms are separated 

by a spacing d, there is a path-difference in the distance the reflected beam has to 

travel from the scattering centres to the detector. The path difference is d sin 0, where 

0 is related to the angle of incidence. This must be equal to an integral number of 

wavelengths for constructive interference to occur at the detector (screen). It can be 

found that all surface diffraction patterns show symmetry reflecting that of the 

surface structure and are centrally symmetric. The scale of the pattern shows an 

inverse relationship to the size of the surface unit cell and to the incident electron 

energy. 
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(a) Wj 

Figure 2.9 (a) shows an anisotropic fcc (I 10) crystal surface in which the spacing 

between the atoms horizontally is greater than the spacing vertically. Figure 2.9 (b) 

and Figure 2.9 (c) show two different diffraction patterns typical of the fcc (I 10) 

surface. In these, the spots seen (representing the atoms) have a greater spacing 

vertically than horizontally. Therefore, the observed LEED pattern is a scaled 

representation of the reciprocal lattice of the surface structure. The difference 

between the two diffraction patterns is the energy of the incident electrons. By 

increasing the energy, the distance between spots appears reduced. 

(c) 

Figure 2.9 	(a)frc (I 10) crystal plane. LEED images of the fcc (I 10) 
surface at (b) low energy and (c) higher energy. 
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Reflection Anisotropy Spectroscopy 

Historical View of Reflection Anisotropy Spectroscopy 

Reflection anisotropy spectroscopy (RAS) is a linear optical experimental method 

used to probe surface anisotropy as a function of photon energy incident upon a 

sample. The difference between the reflectivity for light linearly polarised along two 

perpendicular directions (x & y) at normal incidence is measured (Ar). 

The origins of reflection anisotropy (RA) measurements can be traced back to 

Cardona who in 1968 studied Si (110) using 'Rotoreflectance' [2.14]. Then in 1971, 

McIntyre and Aspnes showed the change in normalised reflectivity can be used to 

gain direct information about the physical properties of a system [2.15]. More than a 

decade later in 1985, Aspnes and Studna reported their studies of the optical 

anisotropy of cubic semiconductors and highlighted the potential of optical 

anisotropic techniques in studies of surfaces and interfaces [2.16]. Within two years, 

the technique was being used to measure the changes in optical reflectance as an in-

situ monitor of molecular beam epitaxy (MBE) [2.17, 2.18] 

RAS in its current format, using a photoelastic modulator (PEM), was developed by 

Aspnes et al. in 1988 [2.19] to study the growth of semiconductors by MBE and in 

particular under UHV conditions. The use of a PEM negates the use of the previously 

used rotating analyser giving the advantage of a higher signal to noise ratio [2.20]. 

They later gave an analysis of several reflectance difference (RD) configurations 

with MBE applications in mind [2.20]. Since then RAS has been developed by 

several other groups and now has many uses in addition to monitoring semiconductor 

growth. Borensztein et al. reported the first use of RAS on a single metal crystal 

[2.21] using Ag (110). This was closely followed by Richter et al. studying the RA 

of a Cu (110) single crystal [2.22]. Examples of other studies are molecular 

adsorbates [2.23], catalysts [2.24], Langmuir-Blodgett films [2.25], solid-liquid 

interfaces [2.26] and surface-induced stress [2.27]. 
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Introduction to Reflection Anisotropy Spectroscopy 

Reflection and Transmission 

The fundamental rules of reflection are governed by Snell's law which states the ratio 

of the sine of the angles of reflection and refraction (both measured from the normal) 

is equal to the inverse ratio of the refractive indices. Here we define the refractive 

index as the ratio of the speed of light in a vacuum and the speed of light in a 

medium. The complex refractive index (N) is given below, 

N=n—ik 	 Eq.2.3 

where n is the refractive index and k the extinction coefficient. These optical 

constants are related to the electrical properties of a medium, in particular the 

dielectric constant. 

N=../=.JE_iE1 	 Eq.2.4 

Eq.2.5 
E'=2nk 	 Eq.2.6 

Here e' and E" are the real and imaginary coefficients of the dielectric function. 

Although Snell's law can be used to describe the angles of reflection and refraction, 

for information about the intensity and amplitude it necessary to turn to the Fresnel 

reflection and transmission coefficients. A derivation of these can be found in 

Appendix A. By considering the electric field (E) with its vector parallel and then 

perpendicular to the plane of incidence and by applying boundary conditions, it is 

possible to obtain a relation for the ratio of the reflected (E0,) and incident (E01 ) 

electric field amplitudes. Similarly this can be done for the ratio of the transmitted 

(Eo ) and incident (E01) electric field amplitudes, resulting in the Fresnel equations 

(Equations 2.7 & 2.8 and Equations A.6 & A.7 from Appendix A) which give the 

reflection (r) and transmission (t) coefficients for any non-magnetic material at 

normal incidence. 
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E0r - N 1  —N2 	
Eq. 2.7 r12  = 	

-Oi N1  + N 2  

E01  - 2N1 	
Eq. 2.8 12 	

E0i- N i  + N 2  

The reflectance (R) and the transmittance (1) are related to these and for an interface 

which has air as one of the mediums, N2=1, they can be written: 

R=r2 (n1 
_1)2  +k12 	

Eq. 2.9 
(n1  + 1)2 + k12  

2 	
4(n+k12) 

T Ht   Eq. 2.10 
(n1  + 1)2  + k12  

The equivalent Fresnel reflection coefficient of a three phase system (Equation 2.11 

and Equations A.9 & A.17 from Appendix A) can be obtained by using the three 

phase model [2.28] or the matrix methods, also described in Appendix A. 

r12  +r23(1-2i/32) 	
Eq. 2.11 

123 = 1 + r12 r23 (1 - 202 ) 

Epioptics 

There are several optical probes which are used to gain surface and interfacial 

information, these are collectively known as epioptic techniques. Optical 

experimental methods have the advantage over other probes as they offer a 'non-

destructive' probe that can be used in a vast range of conditions from UHV to 

ambient and above. These techniques can offer real time in-situ monitoring of 

systems with sub-micron resolution [2.29]. 

The application of epioptic probes to surface science has complications. Due to the 

large penetration depth of light incident upon a sample, it is hard to isolate the optical 

response of the surface from that of the bulk. For particular materials (namely single 

crystals with cubic symmetry), it is possible to overcome this problem by utilising 

the bulk isotropic and surface anisotropic properties. In this situation, any measured 

RA must be due solely to the surface and not the bulk [2.30]. Using these principles 
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it is possible to have an optical technique which is not only surface sensitive but is 

surface specific. An example of this is RAS in which the difference in the reflection 

of near-normal incidence linear polarised light is measured along two perpendicular 

axes. The result (Equation 2.12) is given by the ratio of the difference in the sample's 

reflectivity along each of the two axes (r & r) and the average reflectivity (r). 

Ar(r—r,) 	
Eq. 2.12 

r 	(rX +r),) 

Surfaces studied by RAS can be thought of as a three phase system (see Appendix A). 

They have an ambient layer (medium 1), a very thin anisotropic surface layer 

(medium 2) and then the isotropic bulk of the sample (medium 3). By applying the 

Fresnel reflection coefficient of this three phase system (Equation 2.11) to Equation 

2.12, a relation can be found which describes the experimentally measured quantities 

of RAS in terms of the dielectric properties of the sample. This relation is given in 

Equation 2.13. Note the subscript '123' on r in the following equations has been 

dropped for simplicity. 

Ar  2iWd NNr

Ar 	

, 

2iwd E2 	
Eq. 2.13 

r 	C 	£3 1 

Ar 	
Re— z 

. Im = 2iodAE2+iAE2 - =  
r 	 C 

When split into its real and imaginary components gives, 

Re rAn 
	2akt AE; 	

Eq. 2.14 
rJ 	C £ 3  

IM 	

- 

rArl_2wd AE2 	 Eq. 2.15 i - i - 
Lri c £ 3 - 

which are the equations relating the reflection anisotropy to the dielectric properties 

of the sample. 
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Although RAS has been designed primarily as a surface technique which utilises the 

isotropic features of the bulk of a sample to obtain anisotropic surface information, it 

can also be used on samples which are anisotropic throughout. A sample such as this 

can be created by mechanically stretching copper foil for example. The preliminary 

results of an experiment where the RA and the force applied to a sample are 

measured as a function of sample elongation can be seen in Figure 2.10. Both the 

force and the RA increase with elongation until fracture occurs at which point they 

drop off dramatically. As expected, the RA shows evidence of plastic deformation in 

the sample as the anisotropy at the end of the experiment is greater than the initial 

value. 

I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	0 
0.10 0.20 0.30 0.40 0.50 0.60 0.70 

Elongation Distance (mm) 
Figure 2.10 RA at 4.] eV and force as afunction of elongation 

as polycrystalline copper foil is mechanically 
stretched. 
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Reflection Anisotropy Spectroscopy Apparatus 

1,1101 	
? 	

[1 1 01 

\45 45 / 

IG 
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Window 

Modulator 	 45 

Ana'yser 

Figure 2.11 Typical PAS equipment including a PER 

The most commonly used RA spectrometer is that of the design by Aspnes [2.19] 

which is shown in Figure 2.11. A xenon lamp provides the source of light and is 

aimed towards the sample. Before reaching the sample the light passes through a 

Rochon prism which transmits the ordinary ray of light undeviated but deflects the 

extraordinary ray by a few degrees. Sending unpolarised or circularly polarised light 

into the prism results in an output of linearly polarised light. The direction of 

polarisation will depend on the orientation of the prism. In the frame of reference of 

this example, the light is vertically polarised (00).  Depending on the use of the 

system, the light may next pass through a window into a vacuum chamber. Typically 

for these purposes, the window will be made of low strain quartz and ideally it would 

not alter the polarisation state of the transmitted light. To simplify the description of 

the operation of the spectrometer it is necessary to define another set of axes which 

lie in the same directions as the crystal axes of the sample. The [110] axis will be 

defined as being at +45°  to the vertical and the[ I 10] axis will be defined as being at - 

45°  to the vertical. The vertically polarised light incident on the sample can be 
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considered to be comprised of two components of equal magnitude perpendicular to 

each other and at ±45°  to the vertical. Anisotropy in the surface of the sample may 

cause the two components of light to be reflected differently and so the magnitude 

(or phase) of one component may not be the same as the other after reflection. The 

reflected light may be returned with elliptical polarisation. 

The analysis and collection of the reflected light begins with the PEM. As the light is 

transmitted through the PEM, the phase of the light is modulated at w - 50 kHz. This 

causes the transmitted light to switch between two elliptically polarised states. In this 

system the optic axis of the PEM is aligned with the polariser in the vertical position. 

The light then passes through an analyser, which is another Rochon prism, where it is 

then converted from a phase modulated signal to an amplitude modulated signal. By 

having the analyser at 45°  to the vertical, aligned with either [110] or [1 10] direction, 

the light transmitted through the analyser will be a modulated signal switching 

between two linearly polarised states. The difference in amplitude of the two states is 

a measure of the anisotropy of the sample and the average amplitude of the two states 

is related to the average reflectivity of the sample. These values can be extracted 

using a lock-in amplifier operating with the modulation frequency as a reference. The 

signal into the lock-in is an AC voltage which has a DC voltage offset. The AC 

voltage is related to the anisotropy and the DC to the reflectivity. The measured 

quantity (/) is directly related to the ratio of the modulated and unmodulated 

components of the light intensity (M/). 

By considering the Jones matrices of the optical components in the spectrometer 

[2.30, 2.31], it is possible to obtain the relation shown in Equation 2.16 which relates 

the experimentally measured quantities to the optical and dielectric properties of the 

sample. In this equation, (45° + AP), Oj, 02, (+450  + AM) and (0° + LtA) are the 

reference angles of the polariser, light incident on the window, light reflected back 

through the window, modulator and analyser [2.20] in the samples frame of 

reference. AP, AM and AA are the misalignments associated with the polariser, 

modulator and analyser [2.20]. 8, 82  and 8PEM  are the retardation effects on the light 
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as it is incident on the window, as it is reflected back through the window and as it 

passes through the modulator [2.20], in this case 8PEM =5PEM() sin(ot). The defects 

in the polariser and analyser prisms are given by (x + iapy) and (x + iaAy), Ji (PEM) 

and J2  (PEM)  are Bessel functions [2.20]. 

Al(Ar" 
—2 	Imi— I+51  cos 201  +82  cos 202  _ 2aP]Jl(SPFM) sin wt 

I 	[ 	r) 

+ 
21 

Re Ar 
 

( r  )  
+ 2AP + 2M]J2 (pEM  )cos 20)t 	Eq. 2.16 

Re=-2AP-2AM 	 Eq. 2.17 
r ) 	 I 2J 2 (6 PEM )cos2wt 

Ar 	 Al  
Imi 	I=-2a +8 sin 201 	sin 20 )  - 	 Eq. 2.18 

r ) 	 I 2J 1 (S PFM  )sin 2wt 

The above equations (Equations 2.16 - 2.18) show that the real and imaginary parts 

of the initial equation can be separated by their frequency dependencies [2.20]. Also 

shown is that the misalignments of the polariser and modulator (AP & AM) generate 

offsets in Re (A7).  Whilst the misalignment of the analyser does not appear in this 

first order dependency it is known to affect only the DC component [2.20]. The 

retardation effect of the window (81  & 52) and defects in the polariser (ap) contribute 

only to Im (Alr  and the defects in the analyser (aA) do not appear as they are a 

second order effect [2.20]. 

In more general terms, excluding offsets in the system, the amplitude of the electric 

field detected by the RA spectrometer is, 

AocI 
rI 01[cos() isin()1rrXA rX),1ri1 
[0 o]Lisin() cos()][r x  ry][i] 

A oc  cos (Xr + 	) + i sin (Xry + r)),) 	Eq. 2.19 
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where the contribution from the sample (the 2 x 2 r matrix) now has non-zero off-

diagonal elements to allow for sample rotation in the azimuth. By summing the 

averages of the diagonal and off-diagonal elements and by summing the differences 

of the diagonal and diagonal elements, 

+ + + 
AV = 

	

2 	2 

	

DIFF = (r - 	)+ (ry - r),.,,) 

therefore, 

rxx  + = AV + DIFF 

+ r)  - AV - DIFF 

and Equation 2.19 can be rewritten as, 

	

A 
cos_IAv 

 + DIFF 	

isin[I4v 
- DIFF 

2 ) 	 2 

The intensity of the light reaching the detector is therefore, 

2 

+ 

	

I 
+ 1 DJFF' 	cos(F) 
- 	I 	 (AVD1FF +AVDJFF)+ 

I-M) AV 2 
	 AV 	2 Av  2  
I 

	

. sin(F) 
(AVIFF 	AVD!FF) 

[2 AV
1 2  

By expanding the trigonometric functions using Bessel functions, J, with 

Jo ((5  PEM0  )= 0, the quantity measured is, 
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2J 1  

	

(PEM,, )IM DIFF 
	

2J (8PEM()  )Re(  
M 	 AV 	 AV 

1+ ! DIFF 	 1+ 1 ( DIFF 

) 	 4 AV J 

	

2J (8PEM0  ) Im DIFF 	
PEM()  ) Re1_1FF 

AV J 2J 	
AV 

which is similar to Equation 2.16. The real component can be rewritten as, 

Re1 	
Al 	I 

	

1  DIFF 	
Eq 2.20 

AV J12J2(SPEM)  

where, 

DJFF2rXXrYY+rXYrYX!i 	
Eq.2.21 

AV 	rxx  + ryy  + rxY  + r)X 	r 

which is the generalised RA and is a function of both energy and azimuthal angle. 
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Chapter 3: Construction of Apparatus 

'And many strokes, though with 
a little axe, hew down and fell 
the hardest-timbered oak' 
Shakespeare (1564 - 1616) 
King Henry VI Part III Act 2 Scene 1 

Summary 

This chapter is used to describe the construction and operation of the experimental 

equipment used throughout this project and is split into two major parts: the vacuum 

system and the reflection anisotropy spectrometer. There is also a final short section 

concerning the scanning probe microscope. Each section contains a discussion of the 

major components which includes the operation of each item individually and as part 

of the system and any known errors associated with each component. 



Part I: Vacuum System 

Vacuum Chamber 

The vacuum chamber used here can be split into three major sections: the main 

chamber, the pumping chamber and the transfer chamber. Each of these are capable 

of UHV pressures and can be completely isolated from one another. Measurements 

are taken in the main chamber where the samples are held. Connected to the base of 

this section is the pumping chamber which houses a liquid nitrogen trap and links the 

diffusion pump to the main chamber. Attached to a port on the side of the main 

chamber, separated by a valve, is the transfer chamber which has been designed to 

allow samples to be changed rapidly without exposing the entire system to ambient 

conditions. Photographs of the vacuum chamber are shown in Figures C.1 & C.2 of 

Appendix C. 

The primary function of this vacuum system is to allow in-situ monitoring, by RAS, 

of samples and sample processing. At present 'sample processing' refers to the use of 

either an ion bombardment sample cleaning source, a sample heater or molecular 

sublimation apparatus. However, the chamber has been designed to accommodate 

many other attachments giving extra flexibility in the positioning of current 

equipment and to allow for expansion in the future. All of the ports on the main 

chamber are angled towards the centre of the chamber where samples are held in a 

sample manipulator. To optimise the monitoring of the sample by RAS, the light 

enters and exits the chamber through a low strain quartz window allowing the 

transmission of higher levels of UV light and reducing birefringence effects. Careful 

positioning of all ports is crucial as it is desirable to be able to monitor as many 

processes as possible, simultaneously, by RAS. The quartz window is positioned in 

the centre of one side of the main chamber and is surrounded by the other ports as 

can be seen in Figure 3.1. 
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Figure 3.1 	Main chamber of the vacuum system. 

The metal crystal samples are held in a custom designed holder, Figure 3.2, which 

can be inserted into the manipulator using the mechanism contained in the transfer 

chamber. Two clips are used to attach samples to the holder by either pressing down 

on the top of the sample or by using slots cut into the sample. The sample 

manipulator is made of three main components allowing accurate positioning of the 

sample within the chamber. A RD2 rotary motion drive from Vacuum Generators 

allows two degrees of angular freedom and is mounted on the second component, a 

standard x-y-z stage. The third component is a custom made flexible flange from 

which the sample holder hangs and the other components of the manipulator are 

mounted. The flange has been reinforced using three variable length supports. By 

adjusting the length of any of the supports, the angle of the entire manipulator can be 

altered. 

Figure 3.2 	Custom designed sample plate which has dimensions of 
2 cm x 3 cm.. 
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The main component of the transfer chamber is a magnetically coupled transfer arm, 

as shown in Figure 3.3. When it is necessary to change the sample, the valve 

between the main chamber and the transfer chamber is opened and the arm extended 

towards the sample manipulator. The sample holder can be moved into the grooved 

jaw of the arm, which is then retracted before the two sections are isolated again by 

closing the valve. To remove the sample it is necessary to expose only the transfer 

chamber to ambient conditions. Using a rotary pump and a turbo pump dedicated to 

this part of the system it is possible to obtain a suitable vacuum in the transfer 

chamber after venting, such that it may safely be exposed to the main chamber within 

30 minutes. 

Main chamber 

Transfer 	Position Position 
arm 	2 	1 

TI  
— Sample 	Valve 	Magnetic sleave 

Turbo 
pump Transfer chamber 

Figure 3.3 	Connection of the transfer chamber to the main chamber. 

The molecular evaporator has been custom made and consists of a filament wrapped 

around a tube which contains the material to be sublimated, all of which is held 

within the vacuum chamber. The power source for the filament is the same as used 

for the sample heater. The advantage of this apparatus over other methods is that the 

thermocouple allows the temperature to be precisely controlled and higher 

temperatures can be obtained as a result of the heating components being housed 

within the vacuum chamber. 

An additional component which has been added to the transfer chamber (not shown 

in Figure 3.3) allows liquid to be dropped onto a clean sample without exposing the 

sample to ambient conditions. This component is a solid flange with a small hole (1 

mm diameter) drilled in the centre. When operating under normal (UHV) conditions, 

the hole is covered by a smaller solid blank flange, creating a seal. To deposit liquid 
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onto the surface of a sample, the sample must be held in the transfer arm, in the 

transfer chamber and isolated from the main chamber. The transfer chamber is 

flooded with argon until a pressure several times greater than atmospheric is 

achieved. When the seal is removed to expose the drilled hole, air is prevented from 

entering the chamber by the outward flow of argon. A syringe can be used to drop 

liquid onto the surface. After the seal is replaced, the argon can be removed using the 

turbo pump and the sample replaced into the main chamber. Although this technique 

prevents contaminants from ambient conditions from reaching the surface, it has not 

proved to be totally effective. The argon used has a purity of 99.99%, the remaining 

0.01% however is enough to react with the clean surface of the sample and 

contaminate it slightly. This method has been found to be much cleaner than simply 

depositing the liquid on the surface in ambient conditions. 

Pumping System and Gauges 

A pressure of lxlO1' mbar can be obtained in the main chamber by using a 

combination of a rotary pump, a diffusion pump, a ST22 titanium sublimation pump 

(Vacuum Generators) and a liquid nitrogen trap. In the transfer chamber a pressure 

Of 1x10 7  mbar is normal and is achieved using a single turbo pump backed by a 

rotary pump. The pressure in each chamber is measured using ion gauges, IGC 26 & 

IGC 11 (Vacuum Generators) and Pirani gauges at each of the rotary pumps. 

As protection for the filaments and electronic components used within the vacuum 

chamber, a pressure switch is used. The switch will be tripped if the pressure in the 

main chamber rises above a set level, cutting the power to all the electrical 

equipment, except the pumps. In the event of a pump failure, to prevent oil flooding 

the chamber, an electrical circuit has been implemented which is designed to isolate 

the diffusion pump and deactivate all the pumps. 
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Electronic Analysis and Experimental Equipment 

Low Energy Electron Diffraction 

LEED is a technique used to gain information about the crystal structure of the 

surface of a sample. A more detailed description of the technique can be found in 

Chapter 2. The LEED equipment used was purchased from Vacuum Generators. 

Sample Cleaning Ion Source 

Samples are cleaned in the vacuum chamber using a model 1S13000 Ion Source (PSP 

Vacuum Technology). The ion source has an operating pressure of 5x10 6  mbar and 

is variable energy (100 - 3000 eV) giving a typical beam current of about 15 pA. 

Surface material is removed from samples by impacting energetic ions into the 

surface. The ions are created by leaking an inert gas into a discharge chamber and are 

then focused onto the sample. 

Sample Heater 

A P.I.D. heater (PSP Vacuum Technology) is used to heat and anneal samples within 

the vacuum chamber. The heater is mounted on the sample manipulator and 

incorporates a 2116 PD temperature controller (Eurotherm Controls). The heating 

element is a tungsten filament which acts as a low voltage resistive heater giving a 

maximum temperature of approximately 750° C. 

Bake Out Unit 

The Bake-out control unit and Bake-out heaters (PSP Vacuum Technology) use four 

1 kW heaters to heat the vacuum chamber. When covered by an insulating hood, 

temperatures up to 200° C can be obtained. A thermocouple is used to ensure a 

constant temperature. 
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Part II: Reflection Anisotropy Spectrometer 

Introduction 

The RA spectrometer used to acquire the data presented in this thesis has been 

custom built in Edinburgh. The design of the system was largely based upon 

spectrometers previously constructed elsewhere, namely in Liverpool and Berlin. 

Although the design and components are essentially the same, much time has been 

spent to ensure the set up and performance of the Edinburgh spectrometer is optimal. 

The following section gives a relatively detailed description of the construction of 

the system, the operation of individual components involved and the errors involved 

with the system. The spectrometer can be thought of in two main sections, the 

electronic and optical parts, the following descriptions have been split up in the same 

way. The optical components of the spectrometer are used to obtain information from 

the sample and to process the reflected light, allowing the information contained 

within the light to be retrieved and presented by the electronics. Although most RA 

spectrometers are built as depicted in Figure 2.11, to allow the principal axes of the 

samples to be aligned horizontally and vertically, the polariser, PEM and analyser are 

rotated by 45° in the spectrometer built here. Photographs of the spectrometer are 

shown in Figures C.3 & C.4 of Appendix C. 

Optics 

Positioning 
RA spectrometers are built to be used both in conjunction with a vacuum chamber 

and stand-alone. For measurements in ambient conditions the sample is mounted in a 

holder which can be rotated through 360° in the position shown in Figure 3.4. 

Similarly, for studies in vacuum, the spectrometer must be aligned next to the 

vacuum chamber with the incident light beam directed into the low-strain window. 

All of the optical components are mounted on a single optical breadboard which has 

adjustable legs allowing height and angle adjustments to be made easily. 



Ideally, the position of each component would match exactly the calculated positions 

(see Focussing Mirrors section later in this chapter) but due to size constraints it is 

not always possible. The actual positions are as close to the calculated positions as 

possible. In this spectrometer, the length of each polariser is 40 mm, the thickness of 

the PEM is 10 mm and the focal lengths of the mirrors are 200 mm and 150 mm. The 

longer focal length mirror being positioned closest to the lamp. The distances 

between the components, not including the dimensions of the components, are shown 

in Figure 3.4 and are given in Table 3.1. The total distance between the lamp and 

sample is 1160 mm and the total distance between the sample and monochromator is 

1045 mm. Both compare well to the calculated distances of 1134 mm & 1056 mm, as 

discussed later. 

a b c d e I 	f I 	g h 

Size (mm) 230 240 370 280 330 1 	70 1 	/45 170 

Table 3.1 	Distances corresponding to Figure 3.4. 
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Figure 3.4 	Positions of each component in the RA spectrometer 
(sizes given in Table 3.1). 

Near normal incidence of light is crucial in RAS although small angles are permitted. 

The equations described in Chapter 2 use this assumption. The angle of incidence is 

measured for this spectrometer using the positions of the analyser and the polariser as 

shown in Figure 3.5. As the distance between the sample and each of the 



components is not equal (630 mm compared to 650 mm), an average of the two 

calculated angles is found. The distance between the prisms is measured from the 

near side of one prism to the far side of the other and is found to be 25 mm. The 

measured angle of incidence in the spectrometer built here is 2.37° ± 0.06°. 

Sample 

1 A B . 

/ 
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/ 	 Potariseri 
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Figure 3.5 	Diagram showing the difference in angle between the 
incident and reflected beams. 
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Figure 3.6 	Definition of lengths used to calculate the frcal lengths of 
the mirrors. 
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Approximate values of the required focal lengths of the mirrors were calculated 

using predefined criteria and the dimensions of some of the components in the 

system. From these estimated values, approximate positions of the 

mirrors, polarisers, lamp and monochromator with respect to the sample can be 

calculated. The focal lengths are calculated using distances defined in Figure 3.6. 

The aim of the following calculations is to roughly findfj  andf2  and then to use these 

values to approximately find a1, a2 , b1  and b2. This is done by firstly defining some 

criteria and then considering the incident' system on its own. Initially the criteria are 

that the light hitting the sample must be maximised, the magnification must be less 

than 4 and the radius of the light as it passes through the window must be less than 

sI 

>350mm 
h3 	h4  

d 2  = b1  

h3  h1  

:.b1  >875mm 

Using the magnification criteria, 

M=-4 
a1  

:.a1 >219mm 

f >175mm 

Next, another requirement is defined and the 'reflected' system is considered as well. 

The extra criterion is that the amount of reflected light collected by the 

monochromator must be maximised and so the final spot size must be less than the 

monochromator slit size (-1 mm). 
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>350mm 
h3 	h5  

b2  d4  

h2  45  

:.b2  >875mm 

Assuming the spot size on the sample to be --4 mm, based on a 1 mm source, to meet 

the criteria of getting all the light into the monochromator a magnification of --0.2 

would be required. Therefore, 

:.a2 >175mrn 

..f2 >145.8mm 

Using these estimated values as guidelines and by studying the available focal 

lengths, the mirrors used will have focal length of 200 mm and 150 mm. By using 

these values forfj  andf2  and by meeting the criteria set, it is found that a1  -259 mm, 

a2  -181 mm, b -875 mm and b2  --875 mm. Therefore, the calculated distance 

between the lamp and sample is 1134 mm and the calculated distance between the 

sample and the monochromator is 1056 mm. By comparing these values to the 

measured values for the constructed spectrometer, it can be found that the distances 

are accurate to within 2.29% and 1.04% respectively. These errors are due to the size 

constraints of the components, as mentioned earlier. 

Light Source 

The light source is a Hamamatsu 75 W xenon lamp which outputs a constant range of 

wavelengths from --180 nm to -1 gm. As the light contains relatively high levels of 

UV, for safety reasons, the aperture size was reduced to 1mm to limit the amount of 

light given out by the lamp. When triggering the lamp, a large quantity of 

electromagnetic noise is generated. This could prove damaging to devices which are 

weak against such noise, for example computers. 

Focusing Mirrors 

Light from the source is focussed onto the sample and then from the sample onto the 

monochromator aperture using spherical concave mirrors. These mirrors (Coherent) 



are 50 mm in diameter and have focal lengths of 150 mm and 200 mm. Each mirror 

is aluminium coated giving an average reflectivity over a wavelength range of 400-

800 nm of greater than 87%. Although a significant amount of UV is not reflected, 

these are mirrors more suitable than conventional glass lenses. A discussion of the 

method used to eliminate errors due to the absorption of light can be found in Errors 

section of this chapter. 

Polariser! Analyser 

The spectrometer requires linearly polarised light incident on the sample and it 

requires the reflected beam to be split into its two polarisation components after 

passing through the PEM. To do this, two quartz Rochon polarisers (Cornar 

Instruments) are used as a polariser and analyser. These prisms use double refraction 

(birefringence) to split an incident beam into its ordinary and extraordinary 

components. Each prism is made of two wedge shaped prisms which are cemented 

together with their optic axes perpendicular. In the first of these prisms, both the 

ordinary and the extraordinary beams travel through unchanged. This continues to be 

so for the ordinary beam after it enters the second prism as the refractive index is 

unchanged. However, as the extraordinary beam enters the second prism, the lower 

refractive index causes the beam to deviate. This effect is repeated as the light leaves 

the second prism. Having the ordinary beam undeviated is the main advantage of 

Rochon prisms over other types of polarisers, such as Glan—Thomson prisms, which 

deflect both the ordinary and the extraordinary components of the light. The 

deviation varies with wavelength and therefore the angular separation varies from 

12° at 350 nm to 9° at 2.5 rim. 

Photoelastic Modulator 

To measure the difference in amplitude between the two polarised components of the 

reflected light it is necessary to separate the polarisations prior to the light entering 

the analyser. This is done using a PEM (Hinds PEM 90 D) to modulate the reflected 

light before it enters the analyser. 

By mechanically stressing the block of silica within the PEM, birefringence is 

induced, that is, the velocities at which different polarisations of light travel through 
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the material varies slightly. The amount of birefringence is proportional to the stress 

applied and so by oscillating the stress applied to the sample, using a piezoelectric 

transducer, it is possible to oscillate the modulation. Modulation occurs at a 

frequency of approximately 50 kHz as this is a typical value of the resonant 

frequency of the fused silica used in this PEM. 

Assuming the plane of polarisation of light incident on the PEM is at 450  to the 

modulator axis, the light can be affected in either of two ways. If the silica is 

unstressed as the light passes through, all of the polarisation components will remain 

unchanged. However, if the silica is stressed as the light passes through, the 

polarisation component parallel to the modulator axis will travel slightly faster than 

the vertical component. Depending on whether the silica is stretched or compressed, 

the horizontal component of the polarisation will either lag or lead the vertical 

component. As a result of this, light transmitted through the PEM will be modulated 

and will oscillate between left and right circularly polarised light. 

Monoch romator 

To enable a spectroscopic study of the reflected light, it is necessary to split the light 

into its individual wavelengths. This is done using a monochromator (Jobin Yvon 

Ltd H1OUV) which uses a concave holographic diffraction grating with a focal 

length of 10 cm. The grating has 1200 grooves/mm, a spectral range of 200-750 nm 

and a maximum resolution of 1 nm. By changing the angle of the diffraction grating, 

it is possible to select the frequency of light to be transmitted through the 

monochromator. The counter indicating the wavelength setting of the diffraction 

grating is graduated in nanometre increments and has a precision of ±0.5 nm. 

A Hg/CdJZn lamp was used to calibrate the monochromator as the wavelengths of 

the transmission lines for these elements are well known [3.1]. The results of the 

calibration can be seen in Figure 3.7. Errors due to the slight difference between the 

two sets of values can be considered negligible as the monochromator has a more 

significant error associated with it which is discussed later in the Errors section of 

this chapter. 
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Common spectral lines 

Element Wavelength (nm) 

Hg 	365.0 

Hg 	404.7 

Hg 	435.8 
Cd 	508.5 

A 	 Hg 5476 g 	57  

06 	 1 

250 	350 	450 	550 	650 	750 
Wavelength (nm) 

Figure 3.7 	Monochromator calibration using a Hg/Cd/Zn lamp. 

Electronics 

The amplitude of the light, at each wavelength, is measured using a photodetector 

which converts the incident photons into a corresponding number of electrons. The 

electronic components of the spectrometer are responsible for processing the current 

from the detector and displaying the result. The experimental arrangement of the 

electronic components can be seen in Figure 3.8. 
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Figure 3.8 	Diagram showing set up of electronic equipment. 



Photomultiplier Tube 

The detector used to convert the light from the monochromator into a current is a 

photomultiplier tube (Hamamatsu H957-08) which has a spectral range of 185 nm to 

900 nm and has a typical sensitivity of 250 jiAlLm. Using a photomultiplier tube 

(PMT) gives very high sensitivity, nanosecond response time and low noise. The 

window used in the PMT is made from UV-transmitting glass which has a cut-off at 

-185 nm. The power is supplied from a 15 V dual power supply (Farnell L3013T). A 

silicon photodiode was tested as an alternative to the PMT but was found to have a 

lower spectral range and so was not used. 

A typical PMT consists of a photoemissive cathode, focusing electrodes, an electron 

multiplier and electron collector (anode) in a vacuum tube. When light hits the 

photocathode, photoelectrons are emitted. These photoelectrons are focused on the 

electron multiplier where they are multiplied by secondary emission and then 

collected by the anode as an output signal. 

Current-Voltage Converter & Amplifier 

The output signal from the PMT is a current with typical amplitude of only a few 

micro-amps. The signal consists of an AC component superimposed on a DC offset. 

The AC component is related to the anisotropy and the DC to the reflectivity. It is 

necessary to change both the AC and DC currents into AC and DC voltages which 

will then need to be amplified to be measured. These transformations are done using 

an electronic circuit based around an operational amplifier. 

The amplification device used has been custom built for this purpose, the circuit 

diagram can be seen in Figure 3.9. Both the gain and offset are variable to allow 

greater control over the operation of the amplifier. The power supply needed for the 

operation amplifier is output +15 V, 0 V and -15 V which is supplied by the lock-in 

amplifier. Two different circuit diagrams are shown, Figure 3.9 and Figure 3.10. The 

first of these is a typical circuit diagram whilst the second gives details of the wiring 

of the circuit to aid anyone wishing to duplicate this device in the future. 
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Figure 3.9 	Circuit diagram of amplifier. 
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Figure 3.10 Circuit diagram of amplifier showing details of wiring. 

Lock-in Amplifier 

To isolate and measure both the AC and DC voltages a lock-in amplifier is needed. 

In this system, an EG&G 5209 (Perkin Elmer) lock-in amplifier is used. Part of the 

signal from the operational amplifier is sent to the analogue to digital converter 

(ADC) of the lock-in amplifier and part is sent to the main input. The ADC is used to 

measure the DC component of the signal and the AC component is phase sensitively 

measured by the lock-in amplifier using the modulation frequency of the PEM (-50 

kHz) as a reference signal. The measured values are sent to a computer using the 

serial communication capability of the amplifier. 

Two crucial settings of the lock-in amplifier are the sensitivity and the time constant. 

The value of the sensitivity chosen will depend on the amplitude of the measured 

signal and should be set to the highest sensitivity allowed without overloading the 
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lock-in amplifier. The choice of time constant is made as a compromise between 

sensitivity and lowering noise levels. Figure 3.11 shows the measured RAS as a 

function of the sensitivity setting on the lock-in amplifier. From this figure, the 

offset, which is also discussed later in this section, can be seen to increase with the 

sensitivity setting. As Figure 3.12 shows, by having the time constant set at a high 

value, the signal to noise ratio appears very good but the sensitivity of the system is 

sacrificed to achieve this. Alternatively, by having the time constant set at a very low 

value, the sensitivity of the system is very good but the signal to noise ratio is 

relatively poor. Therefore values of 10 ms, 30 ms or 100 ms are recommended. 

3.5 
3000mV -°- 300mV -- 30mV -- 3mV 

0 
0 
0 

x2.5 

Cu 
0.5 

iI 
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

Energy (eV) 

Figure 3.11 RA spectra showing the different sensitivity settings of 
the lock-in amplifier with the time constant set to a 
constant value of 100 ms. 
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Figure 3.12 RA spectra showing different time constant settings of the 
lock-in amplifier with the sensitivity set to a constant value 
of 10 mV 

RS232 Communication 
The computer communicates with the PEM, rnonochromator and the lock-in 

amplifier using RS232. The operating system of the computer used for RAS is 

software written by J Rumberg [3.2]. Some minor changes were made to the software 

to enable communication with the PEM-90D. Prior to the changes, the software had 

been set to a baud rate of 1200, the rate needed to communicate with PEM-90C. By 

altering the files ras.c & raspem.c (changing all baud rate settings corresponding to 

the PEM from 1200 to 9600) it is possible to communicate with PEM-90D. An extra 

two serial ports were added to the computer to allow serial communication with up to 

four devices. All the communication (corn) ports were set to the values shown in 

Table 3.2. 

Baud rate 9600 
Data bits 8 
Parity None 
Stop bits 
Flow 

Table 3.2 	Computer communication 

XonlXoff 

port settings. 
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Communication between the lock-in amplifier and the computer is done through an 

RS232 serial cable. Here, the female connector (lock-in end) is a 25 pin parallel port 

connection whilst the male connector (computer end) is a 9 pin parallel port 

connector. The pin connections are shown in Table 3.3. Communication between the 

devices can only occur if the RS232 communications controls of the lock-in 

amplifier are set to match those in both the software and the corn port of the 

computer. Much time was spent trying to do this and so a full description is given 

here for future reference. To make changes to the RS232 settings of the lock-in 

amplifier, press CONFIG + SLOPE/RS232C. if the value displayed on the TUNING 

LCD shows '0', the Baud rate controls may now be changed. Alternatively, if the 

value displayed is '1', the other parameters may be set. For this configuration, it is 

required that the baud rate be 9600, therefore a setting of 11. Also required are 8 data 

bits, even parity, parity off, 1 stop bit and RS232 echo on, therefore a setting of 21. 

Explanations of these codes can be found in EG&G 5209 user manuals or from the 

Perkin Elmer website [3.3]. 

Female- Male Male - Female 
1-1 1-1 
2-3 2-3 
3-2 3-2 
4-5 4-5 
5-4 5-4 
7-7 6-20 

20-6&8 8-20 

Table 3.3 	RS232 cable connections. 

Errors 
Although the spectrometer has been optimised as much as possible, several sources 

of error still exist. Given in this section is a description of these errors plus a 

description of some other errors which have been minimised. 

Normalisation of Reflectivity 

The optical components in the spectrometer are not ideal transmitters and reflectors 

of light and so they absorb different quantities of light at different frequencies. 

Therefore the measured reflectivity is not a true measure of the reflectivity of the 
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sample. A true reflectivity value can be obtained by isolating the effect the optical 

components have on the light as it passes through. This can be done by using a 

sample of well known optical properties as a calibration standard, suitable examples 

are Si, Cu and GaAs. The reflectivity (R) of the calibration standard can be 

calculated using the refractive index (n) and extinction coefficient values (k), which 

may be obtained from reference [3.4]. By using Equation 3.1, the calculated 

reflectivity of the calibration standard, the measured reflectivity of the calibration 

standard and the measured reflectivity from any sample can be used to obtain a 

calculated (true) reflectivity of any sample. This method has been tested using 

several different samples and has resulted in spectra which appear approximately the 

same. These spectra, shown in Figure 3.13, are plots of the measured values (DC) 

divided by the theory (book) values for three calibration standards. The resultant 

spectra are graphical representations of the effect the optical components of the 

spectrometer have on the light as it passes through. In the case of Si and GaAs the 

measurements were taken in ambient conditions and although these results appear 

similar it is very likely both surfaces are contaminated with oxygen and 

hydrocarbons. In the case of Cu, the sample has been cleaned in a vacuum chamber 

and the reflectivity measurements are taken in-situ, the quartz window of the vacuum 

chamber must therefore be taken into consideration. 

Si 

GaAs 

1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5 	5.5 	6 
Energy (eV) 

Figure 3.13 Error spectra found by dividing the measured reflectivity 
by the known reflectivity. 
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X(Theory) = X(Measured) x 
Y(Theory) 	

Eq. 3.1 
Y(Measured) 

Window Correction 

Optical measurements taken from a sample within a vacuum chamber are subject to 

additional errors as the light will be modified as it enters and exits the vacuum 

chamber. Although birefringence and optical absorption effects can be minimised by 

the use of a low stain quartz window, a correction function is still required. The 

measured RA spectra can be thought to be made up of two components, one from the 

sample and one from the window. By using this, a correction function based upon 

spectra taken at perpendicular azimuthal angles can be obtained. 

RAS(0°) = RAS(window) + RAS(sample) 	
Eq. 3.2 

RAS(90° ) = RAS(window) - RAS(sample) 

The resultant effect on the RAS due to the window can be found by averaging the 

spectra taken at 00  and 90° (Equation 3.2) to give the window correction function 

(Equation 3.3). By subtracting this function from either the 0° or 90° data set, it is 

possible to obtain RA spectra specific to the sample. 

Window Correction 	
= RAS(0° ) + RAS(90° ) 

RAS(window) 	 Eq. 3.3 
2 

Offsets 

Polariser, Analyser and Modulator 

As mentioned in Chapter 2, the effect of misalignment of the optical components can 

be seen in Equations 2.16 - 2.18. These equations show that an offset in either the 

polariser or the modulator results in a offset in the real part of the measured RA. 

Similarly a misalignment of the analyser generates an offset in the DC [3.5]. These 

offsets can only be minimised by the precise alignment of the components. 



Sample misalignment 

The errors due to sample misalignment have been reduced significantly by the 

introduction of a laser alignment system. It has been found that a change in the 

vertical position of the light beam on the analyser, which corresponds to a very slight 

change in the angle of the sample, causes a significant offset in the RAS signal. It 

can be calculated that a 1 mm difference in the position of the light entering the 

polariser is due to a change of sample angle of less than 0.10.  To minimise this 

change, it is necessary to minimise the deviation of the angle of the sample. By 

having a laser diode in a fixed mounting such that the reflection of the laser beam 

from the sample hits a target, it is possible to accurately set the angle of the sample, 

with respect to the spectrometer. 

Lock-In amplifier 

An offset in the AC component of the signal has been found to originate from the 

lock-in amplifier and is dependent on the sensitivity setting and the length of time the 

amplifier has been switched on. As the amplifier reaches operating temperature, the 

AC offset is gradually reduced. The offset follows a general trend of becoming 

smaller as the sensitivity of the amplifier is increased. The AC offset has a constant 

value as a function of photon energy above 3.5 eV, below this energy the offset has a 

broad hump centred at 2.75 eV. 

Operational Amplifier 

The offset in the DC is created by the amplification of the output signal of the PMT 

prior to being measured by the lock-in amplifier. This offset is constant at all photon 

energies, is independent of all other settings, and has a value of 0.0455 V ±0.0005 V 

General 

The offsets in both the AC and the DC components of the signal have been measured 

and isolated by recording a no light spectra' (the spectra measured when the aperture 

to the monochromator is blocked). As the DC offset appears constant, the variations 

in the RAS (Figure 3.11 and Figure 3.12) are due to the AC component of the RAS 

and can be attributed to the lock-in amplifier. 
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The true AC and DC values are the measured AC and DC values minus the relevant 

AC and DC offsets. It should be remembered that the AC offset is dependent on the 

sensitivity setting of the lock-in amplifier which in turn is dependent on the 

anisotropy of the sample. To get a true RAS value it is necessary to correct both the 

AC and DC values by subtracting the no-light spectra value before they are used to 

calculate the RAS (Equation 3.4). It has been found that the resultant offset in the 

RAS due to these two offsets is negligible. From this point forward it is assumed that 

AC, DC and RAS refer to the true values. 

AC(true) = AC(measured) - AC(offset) 

DC(true) = DC(measured) - DC(offset) 	Eq. 3.4 

RAS (true) = Const * AC(true) 
DC(true) 

Calibration 

Monoch rom ato r 

Upon initiating the software it is necessary to input the current monochromator 

reading. This ensures the wavelength setting of the monochromator is correlated with 

the wavelength recorded by the software. Over the course of many readings, the 

correlation between the computer and monochromator drifts. For a 50 data point scan 

over the range of 1.5 eV to 6.0 eV, there is a drift of -0.05 nm. This is not considered 

a significant error over a small number of scans of 1.5 - 6.0 eV. However, over a 

significantly high number of scans or over a limited energy range the software should 

be brought in line with the monochromator at regular intervals to minimise these 

errors. 
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Part HI: Scanning Probe Microscope 

The Scanning Probe Microscope (SPM) used is a PicoSPM bought from Molecular 

Imaging Inc. This SPM is capable of both AFM and STM by simply changing the 

scanner. Different sizes of scanner are available to allow a range of scan areas. With 

this SPM, there is the option of using a 2 urn,  10 jim or 30 jim AFM scanner or a 10 

jim STM scanner. The AFM also has the extra feature of intermittent contact mode, 

both magnetic and acoustic. To give optimum performance the SPM is used within 

an isolation chamber which reduces vibrations and noise. Diagrams of the basic SPM 

set-up can be seen in Figure 3.14. 

61 



Chapter 4: Liquid Crystal Alignment Layers 

'... when you have eliminated 
the impossible, whatever 
remains, however improbable, 
must be the truth' 
Sir Arthur Connan Doyle 
(1859 - 1930) 

Summary 

In this chapter, the first use of RAS as a tool in the study of LC alignment layers is 

presented. RAS is used to monitor the rubbing technique under various conditions 

and using various materials. It is also used to study the alternative alignment 

techniques of photopolymerisation and atomic beam etching. AFM and the 

reflectivity component of the RAS are used to gain additional information to confirm 

the findings. A discussion is given of the behaviour of the RA amplitude during the 

experiments and simulations based on the Berreman 4x4 matrices are used to 

interpret the data. Operational devices have been constructed to enable correlation 

between RAS and device properties. A large portion of this chapter has been either 

published or submitted for publication. Described in [4.1] are the studies of the nylon 

substrates, [4.2, 4.3] the polyimide substrates and [4.4] presents results relating to 

defects in LCDs. Atomic beam etching of alignment layer experiments are reported 

in [4.5], and [4.6] is a review and comparison of the all RAS experiments on LC 

alignment layers. 
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Introduction to Alignment Layers 

In current LCD technology the vast majority of devices are made using the twisted 

nematic mode [4.7] which operates by having a layer of LC molecules sandwiched 

between two conductive substrates, as discussed in Chapter 1. When a LC molecule 

is placed onto a surface, it becomes anchored and no longer has an arbitrary 

orientation. In most LCDs, the alignment direction of the LC molecules on these 

surfaces is crucial to the operation of the display. Unidirectional homogeneous 

alignment of the LC molecules is desired and can be encouraged by using alignment 

layers on the inside surfaces of the conductors. 

Over several decades of research into the alignment of LC molecules, many 

techniques have been used. Initially thin layers of long chain polymers, such as 

polyvinyl alcohol (PVA), and organic molecules, such as silanes, were applied to 

glass surfaces and then buffed [4.8]. These materials were then replaced by 

polyimide films giving improved results. Some examples of other techniques which 

have been used are the oblique evaporation of dielectrics [4.9], in particular SiO, 

[4.10], photoalignment of light sensitive polymers [4.11, 4.12], Langmuir - Blodgett 

films [4.13, 4.14], AFM lithography of polymers [4.15, 4.16] and most recently the 

use of atomic beam alignment [4.17, 4.18, 4.19]. At present, rubbing remains by far 

the most common technique used in industry for the fabrication of alignment layers. 

However, this technique has many problems associated with it: the creation of 

surface debris, static charging and degradation of the rubbing fabric [4.20]. Each of 

these factors contributes to lowering the quality of the alignment layers and can 

result in the rejection of hundreds of displays [4.17]. This suggests either a more 

suitable alignment technique, a method of monitoring alignment layers or ideally 

both is long overdue. 

The alignment of the LC molecules can be tested by constructing LC cells. These 

cells are typically made from two ITO coated glass substrates, each with a treated 

polymer surface as an alignment layer, arranged so the treated surfaces face inwards 

and usually with the treatment directions perpendicular. The two surfaces are 
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separated slightly and the gap filled with LC molecules. This enables the alignment 

properties of the LC molecules to be examined easily using crossed polarisers. 

Although this is the main technique currently used to examine the quality of 

alignment layers it suffers from several problems: it is difficult to isolate the effect of 

the individual alignment layers and the technique cannot be used in real-time during 

fabrication. The latter problem results from the necessity of constructing cells prior 

to being studied. It also generates a high quantity of waste as the completed cells, if 

inadequate, cannot be reused. 

Several other techniques have been used to study alignment layers in the past. 

Although much work has been done using scanning electron microscopy (SEM) 

[4.21] and AFM [4.22 - 4.26], the vast majority of these are optical techniques which 

are non-destructive probes and can offer information on the molecular scale. Some 

examples are sum frequency vibrational spectroscopy [4.27, 4.28], optical second 

harmonic generation [4.28, 4.29] and near edge x-ray absorption fine structure 

spectroscopy [4.30]. Each of these techniques has disadvantages, mainly regarding 

the equipment used and the interpretation of the results. 

Optical techniques operating in transmission mode are less suitable compared to 

reflection techniques because of the complication of studying in-situ real time 

situations. By using reflective techniques it is possible to isolate the reflections from 

multilayer systems which is not possible in transmission mode. A further discussion 

of the advantages of reflective techniques over transmissive techniques can be found 

later in this chapter. Reflection ellipsometry [4.31 - 4.341 appears to be well suited 

for the study of alignment layers but does not measure the exact property of interest: 

the lateral anisotropy. 

Promotion of homogeneous alignment of LC molecules by the modification of 

polymer films has been suggested to result from the induced orientation of the 

polymer chains [4.35] which inevitably results in anisotropy within the surface layer. 

In general, the change in the reflectance of a material due to the modification of near 

nanoscale surface regions is small and therefore surface information contained within 



reflectance measurements is very difficult to extract. However, by measuring ratios, 

much greater sensitivity can be achieved and so subtle changes can be detected. For 

example, ellipsometry measures the ratio of the complex Fresnel reflection 

amplitudes for p and s polarised light [4.36], where p and s are the polarisation 

components in the directions parallel and perpendicular to the electric field vector. 

For incidence near the Brewster angle, extremely good sensitivity to surface 

modification is achieved, enabling ultra-thin films and multilayers to be studied. 

Reflection at normal incidence provides an alternative and complementary approach 

which isolates anisotropic character and is surface specific rather than simply surface 

sensitive. For isotropic substrates when 	anisotropy must be present in the 

surface. As RAS is an experimental technique used for direct measurements of 

optical anisotropy with sub-monolayer surface sensitivity, it is ideally suited to the 

study of LC alignment layers. 

In this chapter, these virtues of RAS allow the technique to be used in a similar way 

to its initial application of semiconductor epitaxy [4.37] by providing a real-time 

monitor of the alignment layer fabrication. This should allow information about 

alignment layers to be obtained directly rather than making inferences based on the 

operation of constructed devices. 
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Sample Preparation 

The quality of the resultant alignment layer is dependent on a great number of 

factors. In the case of an ITO/glass substrate, both the roughness of the glass and the 

sputtering technique itself contribute to make the surface of the substrate relatively 

rough. It is possible to reduce the roughness of the substrate by chemically and 

mechanically polishing the surface. The surface structure and roughness of the ITO 

samples are found to vary depending on the supplier, as shown in Figure 4.1. 

The ability of a polymer in solution to flow into low areas of the substrate leaves a 

flatter surface and results in better LC alignment. Figure 4.2 shows an AFM image 

of an ITO/glass substrate which has been spin coated with a polymer. The image 

clearly shows the sample can be made smoother by coating the ff0 surface with a 

polymer. Although, larger features, such as the trenches created on a silicon back-

plane by lithography (used to create individual pixels in a LCD), cannot be covered 

completely. These features are very regular in shape and have a typical depth of 100 

nm. However, after being polymer coated these features are reduced in depth to 

about -20 nm and appear smoothed over (Figure 4.3), both of which result in a 

flatter surface overall. The fragility of the polymer layer is also demonstrated here, in 

the lower half of the image the polymer has been removed by the AFM tip as the 



surface is imaged. The peaks in the polymer, which occur randomly over the entire 

surface, are contaminants which were on the silicon surface prior to spin coating. 

Figure 4.2 	AFM image of an ITO/glass substrate spin coated with a 
polymer resulting in a lower surface roughness. The 
image is 5 x 5 um and has a maximum height of 5 nm. 

Figure 4.3 	AFM image of polymer coated silicon back plane 
demonstrating how the polymer smoothes out large 
features on the surface. The image size is 30 x 30 /.lni and 
has a maximum height of 110 urn. 
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For this series of experiments, several different polymers and substrates have been 

used. This has allowed a thorough investigation of the origin and explanation of the 

features presented in this chapter. All of the samples used were prepared by either Di 

W. Zheng (Samples 1, 2, 3a, 3b & 5) or Mr C. Miremont (Samples 3c and 4) who 

were both part of the Silicon Technology Research Group in the School of 

Engineering at the University of Edinburgh. The values of the thickness of the 

polymer films given in Table 4.1 were found using a Veeco Dektak 8000 surface 

profiler which measures the difference in height at the interface between a polymer 

coated area and an area stripped of the polymer. The error associated with the 

measurements of a single sample are 5%. Through the course of these experiments 

it has become apparent that the intended and quoted thickness values vary from 

sample to sample. There are several possible explanations for the variation in film 

thickness but in the context of these studies it is irrelevant. 

In all cases, the substrates were ultrasonically cleaned directly before spin coating. 

The ITO substrates used were bought from Merck and are 1cm2  in size, typical for all 

the measurements taken. The procedures used here for preparing the samples are the 

same as used when preparing samples for the construction of LC devices and are 

carried out in a clean room environment. 

The preparation procedures for each different batch of samples used throughout the 

project are given below. 

Sample 1 is prepared by dissolving PVA in distilled water to make a 3% solution and 

then spin coating the solution onto an ITO/glass substrate at 2000 rpm for 45 s. The 

coated substrates are left to dry in air. 

Sample 2 is prepared by diluting 1mg of nylon 6-6 in 20 ml of m-cresol and then spin 

coating the solution onto an ITO/glass substrate at 3000 rpm for I mm. The samples 

are then baked at 80'C for 1 hr. 

Sample 3 is made using LQ 1800, a polyimide (PT) obtained from HD Microsystems 

Ltd. These samples were prepared by spin coating the ITO/glass substrates at 3000 



rpm for 1 min with a solution of LQ 1800 dissolved in N-methyl-2-pyrrolidone 

(NMP). The concentration of the solution is used to vary the film thickness. For 

samples 3a, 3b and 3c respectively, the concentrations are 3%, 15% and 1%. The 

samples were cured initially by soft baking at 1000  C for 15-30 min followed by 

thermal curing at 250° C for 100 mm. 

Sample 4 is made using the same procedure for sample 3a but is made using a glass 

substrate. 

Sample 5 is made by spin coating a 2% solution of polyvinyl cinnamate (PVCi) in 

chloroform onto a clean silicon substrate at 3000 rpm for 1 mm. The samples are 

then left to dry in air. 

Sample Polymer Substrate Film Thickness 

1 PVA ITO coated Glass -100 nrn 

2 Nylon 6-6 ITO coated Glass -120 nm 

3a LQ 1800 ITO coated Glass -120 nm 

3b LQ 1800 ITO coated Glass -1.2 gm 

3c LQ 1800 Silicon wafer -50 nm 

4 LQ 1800 Glass -120 nm 

5 	PVCi 	Silicon wafer 	 -50 nm 

Table 4.1 	Sample types used in the study of LC alignment layers. 



Rubbing 

Introduction to Rubbing 

It has been known for a long time that the orientation of some LC molecules can be 

controlled when they are placed on a solid that has been mechanically rubbed. In 

fact, the molecules tend to lie parallel to the rubbing direction which is crucial for 

display applications that require unidirectional alignment. An important and 

commonly used group of materials in the field of homogeneous alignment of LC 

molecules is polymers. By unidirectionally rubbing a polymer film with a fibrous 

material such as velvet, the ability of molecular alignment for certain LCs can be 

promoted [4.20]. A debate into the reasons for this molecular alignment was initiated 

by Berreman [4.38] after he proposed the alignment was due to elastic strain energy 

and therefore a result of the topographic features on the surface created by the 

rubbing process. A competing mechanism was put forward by Geary [4.35] which 

suggested the alignment of the molecular chains of the polymer, created by sheering 

the polymer chains during rubbing, was responsible for the LC alignment. 

Publications over the past 30 years, involving all of the techniques mentioned in the 

previous section and more, have been adding evidence to the argument of whether 

the alignment of LCs on a rubbed surface is predominantly due to topographic 

features or molecular orientation. Recent publications tend to favour Geary [4.27 - 

4.29] although it is likely that topographical features play some part in the alignment 

process. 

Figure 4.4 	3D AFM image of a typical rubbed polymer surface of size 
10  10 Mn and maximum height 250 nm. 
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A typical rubbed polymer surface used in LC alignment, as has been reported many 

times before [4.21 - 4.26], can be seen in Figure 4.4. The machine used to rub the 

samples, shown in Figure 4.5, has been custom made by Dr W. Zheng, and is 

composed of a flat plate, housing the sample which passes through underneath a 

rotating drum. The drum is covered with a velvet material and rotates at a constant 

speed of 41 rpm. This speed of rotation is known from the motor manufacturers 

specification for 12 V applied to the motor. The velvet has fibres of diameter —20 im 

and can be seen in Figure 4.6. Although Mahajan et al. [4.25] have shown that the 

cloth fibres used to rub the solid is an important factor in the creation of surface 

topography, in this project this parameter is kept constant. The stage on which the 

sample is housed, passes through under the rotating drum at a pre-set speed between 

1 and 60 mm/mm. In these experiments, one rub is defined as one pass through under 

the rotating drum. For multiple rubs the sample is removed from the machine whilst 

it is reset to the initial position to ensure the sample passes through the same way 

each time the surface is treated. Here, the results obtained from rubbing several 

different types of polymer films are studied using both RAS and AFM. For all cases, 

the samples were studied with the rubbing direction in the same direction as the x-

axis of the spectrometer (Equation 2.12). 

Figure 4.5 	The rubbing machine. 
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Figure 4.6 	SEM image ofjlbres of cloth. The scales of the images, 
from left to right, are 600 sum, 20 ,um and 10 1um. These 
images were provided by Dr W. Zheng. 

Rubbing PVA 

As previously mentioned, one of the first polymers to be used as a LC alignment 

layer was PVA. For this experiment sample I is used, a description of the procedure 

to produce this sample can be found in the Sample Preparation section earlier in this 

chapter. AFM images (Figure 4.7) of the polymer after being spin coated onto an 

ITO/glass slide show the roughness of this sample to be greater than the ITO alone. 

Further AFM images were taken after the sample has been rubbed several times but 

do not show any grooves. RAS taken before and after rubbing shows no anisotropy 

and therefore no further studies were done on this surface. 

Figure 4.7 AFM image of a PVA coated ITO on glass slide over an 
area of 15 x15 um and with a maximum height of 23 nm. 
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Rubbing Nylon 
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Figure 4.8 	Structure of nylon 6,6. 

The next set of experiments studied nylonlITO/glass substrates (sample 2), the 

structure of the nylon is shown in Figure 4.8. The unrubbed nylon surface can be 

seen to have little optical anisotropy, Figure 4.9 & 4.10. AFM (Figure 4.11 (a)) of 

the unrubbed surface confirms this, as the only structure, which is thought to arise 

from the drying process, appears isotropic. Further RA spectra were taken after the 

completion each rubbing cycle at a rubbing speed of 20 mrnlmin. Figures 4.9 & 4.10 

show the RA to increase from zero initially to its maximum value of about 15% after 

a single rub and then rapidly decrease back to almost zero with subsequent rubbing. 
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Figure 4.9 	RAS versus energy of a rubbed nylon sample. 
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Figure 4.10 RAS versus number of rubs for a nylon sample. 

The large amplitude of the RA spectra after the initial rub can be explained by 

considering Figure 4.11 (b). The surface of the sample is clearly anisotropic, having 

grooves at -5° to the horizontal axis over the entire surface area. The same image 

shows an uneven area approximately half way up the vertical axis which runs the full 

length of the image. It is likely this area has been created as a result of the sample 

being over rubbed slightly, which for this material causes significant damage to the 

surface. A more detailed view of the damage done to the sample can be seen in the 

cross-section of the AFM image, shown in Figure 4.12 (b), which suggests the scale 

of the features created as a result of damage to the film are roughly twice the size of 

normal grooves. Additional rubbing reduces the RA amplitude giving further 

indication that more damage to the surface has occurred; Figure 4.11 (c) confirms 

this. It is apparent the nylon film is being gradually removed from the surface by 

continuous rubbing to the extent that the low dark areas visible on the AFM image of 

Figure 4.11 (c) are likely to be the ITO/glass substrate. From this image and the 

cross-sectional image (Figure 4.12 (d)) it is possible to gauge the thickness of the 

film to be -40 nm: significantly lower than the initial thickness. The surface after 8 

rubs, Figure 4.11 (d), appears very flat and disordered, indicating only fragments of 

the nylon film now remain on the ITO surface. It is apparent that as the number of 

rubs is increased, the roughness of the surface and the thickness of the film, 
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measured approximately using the AFM images, both decrease, giving further 

evidence the nylon film is being removed by rubbing. 

Figure 4.11 AFM images of a nylon surface after (a) 0 rubs, (b) 1 rub, 
(c) 4 Rubs and (d) 8 rubs. The areas shown are 30 x 30 
Jim and have maximum heights of 16, 55, 50 and 9 nm. 
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Figure 4.12 Cross sectional AFM of rubbed nylon. (b) and (c) 
correspond to Figure 4.11(b) & (c). 
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Figure 4.13 shows the reflectivity of the nylon sample to increase as it is rubbed 

more, as does the energy position of the peaks. The overall shape of the spectra and 

indeed the fact that the sample is comprised of transparent thin films is very 

suggestive of interference effects being involved. This is true for not only the 

reflectivity (Figure 4.13) but also the RAS (Figure 4.9). The position and periodicity 

of these peaks can be predicted very approximately using the relation for 

constructive interference, 2Nd=m2. By using a refractive index value of N =1.53 and 

a film thickness of d =240 nm (120 nm each for the nylon and iTO layers), this 

simple relation predicts a periodicity of —1.6 eV. Comparison of this value to the 

spacing of the peaks shows it is approximately correct. It is hardly surprising it lacks 

precision considering a single value of N was used when this is known to vary across 

the entire spectral range. To simulate the spectra accurately it would be necessary to 

use a more sophisticated model. 
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Figure 4.13 Reflectivity versus energy for a nylon sample as a function 
of the number of rubs. 

The change in the reflectivity spectra as it is rubbed has two contributing factors. 

Firstly, as the thickness of the nylon film decreases with rubbing, a corresponding 

increase in energy of the position of the peaks can be predicted. Secondly, because 

the nylon layer is being rubbed away, more of the underlying (ITO) surface will be 

directly exposed to the incident light. By comparing the spectra shown in Figure 4.13 
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& 4.14, it can be seen that the final reflectivity of the rubbed nylon sample is very 

similar to the reflectivity of the ITO/glass substrate. 
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Figure 4.14 Reflectivity versus energy for nylon, ITO and glass 
samples which have had the back surface frosted. 

Although nylon is capable of being used as an alignment layer it is not the most 

suitable material as in this situation the surface is very susceptible to damage by over 

rubbing. Additionally, the structures on the surface prior to rubbing are not 

conducive to good alignment. A more robust polymer, which gives a more uniform 

film will be studied next. A PT is the obvious choice as it is commonly used in the 

commercial fabrication of alignment layers. 

Rubbing Polyimide 
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Figure 4.15 Structure of the P1 molecule. 

The study was continued using P1 coated samples (sample 3a), the structure of the P1 

can be seen in Figure 4.15. The surfaces were modified using exactly the same 
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procedure as for the nylon samples only this time for two different rubbing speeds, 

20 mm/min and 50 mm/min. This variable allows greater flexibility in the rubbing 

parameters and may allow the results to be applied and compared more readily to 

procedures used commercially. Figure 4.16 shows the development of the RAS 

signal for a standard P1 sample as a function of rubbing (at a speed of 50 mm/mm). 

The rate at which a sample passes through the machine is directly proportional to the 

amount of surface processing the sample receives. For a high rate, such as 50 

mm/mm, the amount of surface processing per cycle is relatively low. Conversely, 

for a low rate, such as 20 mm/mm, the amount of surface processing is relatively 

high. In general, the spectra from the P1 samples appear very similar to those 

obtained from the nylon samples. This is because the thickness' of the samples are 

roughly the same and so each spectrum consists of the same three peaks created by 

the superposition of a multilayer interference effect onto the optical anisotropy of the 

sample. Although not presented here, it is possible to obtain spectra with an unusual 

derivative type appearance by adjusting the thickness of the samples. 
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Figure 4.16 	RAS versus energy for a P1 sample rubbed at 50 mm/mm. 

As the P1 is rubbed, the RA of the sample increases proportionally over the entire 

energy range. The 'solid triangular' data set in Figure 4.17 shows the RA increasing 

as a function of rubbing but not to saturation point, even after having been rubbed 

twenty times, the signal still appears to be growing. Figure 4.18 shows RA spectra 



for a different P1 sample which has been rubbed while passing through the machine 

at a slower speed of 20 mm/mm. Although the shape of the RA spectra is 

approximately the same as the previous sample, by rubbing the samples at a different 

speed the RA dependence on rubbing number changes. This difference can be seen 

more clearly in Figure 4.17. At the slower processing speed, the anisotropy saturates 

after five rubs and decreases with further rubbing. In the previous studies of rubbed 

nylon alignment layers a similar effect was observed and was accounted for by 

damage to and the removal of the surface material. By using AFM to obtain surface 

profiles, this reduction in RA can also be attributed to damage being done to the 

polymer film as a result of the rubbing process. 
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Figure 4.17 RAS versus number of rubs for two polyimide samples 
rubbed at fast and slow speeds at 4.5 eV. 
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Figure 4.18 RAS versus energy for a P1 sample rubbed at 20 mm/mm. 

AFM images of the unrubbed PT sample, Figure 4.19 (a), show the surface to be 

isotropic, corresponding to the null spectra obtained with RAS. After a single rub at 

20 mm/min, the surface appears scratched and has grooves in the direction of the 

rubbing, Figure 4.19 (b). The creation of these grooves and scratches is a well-

known result of rubbing a polymer film and has been reported numerous times 

before, for example [4.15]. After two further rubs the grooves have increased in 

depth and density, Figure 4.19 (c). The sample therefore has a more anisotropic 

surface than before, as found using RAS. The final AFM image, Figure 4.19 (d), is 

taken after the substrate has been rubbed five times and shows the first signs of 

damage being done to the surface. Further rubbing would cause more damage and 

would result in a lower RA due to increased scattering or the exposure of the 

underlying substrate. 

It is apparent that although the rubbing machine is capable of producing samples 

which are consistently the same, it does not allow much control of the parameters 

which are thought to be crucial to the properties of alignment layers, i.e. the rubbing 

length and pressure. To allow greater flexibility in the rubbing parameters, a simpler 

system was employed wherein a sample was 'rubbed' by placing it face down on a 

velvet cloth and pushing it for a set distance. The pressure of rubbing can be varied 



by placing different weights on the sample whilst being moved. Additionally, to 

remove the effect of the multilayer interference and perhaps give more information 

about the origin of the RA spectra, a silicon substrate with a thin PT film (sample 3c) 

is used. 

Figure 4.19 AFM images of the P1 surftice rubbed at 20 mm/mm after 
(a) 0 rubs, (b) 1 rub, (c) 3 rubs and (d) 5 rubs. The 
maximums heights are 5 nm, 13 nm, 30 nm and 25 nm 
respectively. All scans are 36 x 36 /nn. 

The first of these experiments was to study the RA as a function of length under a 

constant pressure (always using a 2 g weight). The results can be seen in Figure 4.20 

and show the measured RA to increase with increased rubbing length. The sample 

was not rubbed until its saturation point and so the data presented here behaves 

linearly. The experiment was then repeated as a function of weight, keeping the 

rubbing length constant at 15 cm. As can be seen in Figure 4.21, the results are 

similar to the previous experiments as the RA increases linearly with weight. The 
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increased pressure on the sample will have the effect of creating deeper wider 

grooves. Simple trigonometry can be used to show that deeper grooves have a larger 

surface area and a corresponding larger contact area with the cloth fibres which 

results in more aligned molecules, therefore making the surface more anisotropic. 
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Figure 4.20 RAS versus energy for a thin polyimide layer rubbed as a 
function of length. 
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Figure 4.21 RAS versus energy for a thin polyimide layer rubbed as a 
function of weight. 
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The shape of the spectra measured from the thin rubbed polyimide samples is very 

similar to all the previous rubbing experiments if allowance of the multi-layer 

interference effect is made. In the most recent experiment a thin P1 film is used, it is 

not surprising an interference pattern cannot be seen as the predicted position and 

periodicity of the peaks lies out-with the measured energy range. The resultant 

spectra is a very clear indication of what the anisotropic signal from this rubbed 

polymer, for any thickness and substrate, should look like without interference 

effects. An alternative way to obtain this information would be to use a film so thick 

that the periodicity of the peaks is lower than the resolution of thepectrorneter. 

Assuming the resolution is governed by the monochromator, a maximum resolution 

of I nm can be used. However, for a typical scan, the spectrometer covers 50 data 

points in 4.5 eV, therefore the interference pattern from a polymer film of over 3 pm 

thick would exceed the resolution governed by these parameters. 
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Figure 4.22 	RAS versus energy for a thick rubbed polyirnide layer. 

Although still thin enough to show interference patterns, the next sample studied 

(sample 3b) is much thicker than previously and is rubbed at 20 mm/min. For the 

purposes of this experiment, it is only necessary to create an anisotropic surface to 

obtain an indication of the resultant RA spectra for comparative purposes. The 



predicted periodicity of the interference is approximately 0.1 eV, roughly what is 

seen in the measured spectra from the thick sample (Figure 4.22). In these spectra 

the interference appears as a ripple in the lower energy range although the overall 

shape of the spectra is similar to other results, especially the thin rubbed films. 

The results obtained from these rubbed polymers have so far been interpreted in an 

empirical fashion and have successfully shown that RAS is a viable tool for 

monitoring the fabrication of alignment layers in real-time. To fully utilise this tool 

and to possibly link the measured quantities directly to device parameters, it is 

necessary to understand the meaning and origin of the measured optical anisotropy. 
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Figure 4.23 Reflectivity versus energy for standard P1/IT0/glass 

substrate as afuncrion of rubbing. 

The reflectivity spectra from a standard PI/TO/glass sample (sample 3a) as a 

function of rubbing can be seen in Figure 4.23. This figure shows that multiple 

rubbing of the P1 does not affect the shape of the reflectivity, indicating the PT 

thickness does not change significantly. This would not be true if a significant 

amount of damage was done to the surface as in the case of the nylon film. However, 

the reflectivity spectra do undergo a progressive reduction in intensity, in particular 
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in the UV region, as would be expected from a surface of increasing roughness. The 

corresponding change in the topography of the PT film as it is rubbed is illustrated in 

Figure 4.19. 

Similarly, from studying all of the RA spectra, it is apparent that multiple rubbing of 

the surface does not alter the shape of the spectra either, unless the surface becomes 

severely damaged, but instead alters the amplitude. The precise reason for the 

increase in RA amplitude is unclear but it is highly probable that it is due to the 

molecules of the polymer being orientated in a single direction by the rubbing 

procedure. The anisotropic topography of the surface is not considered to be a 

significant factor as recent experiments have the shown the shape of the surface to 

have little effect on the retardation [4.39], and hence the RA. 

From the RAS of the rubbed PI/TO/glass samples (Figures 4.16 & 4.18) it is clear 

that the peaks observed in the spectra are not symmetrical and that the energy of RA 

peaks do not coincide with the peaks in the corresponding reflectivity spectra (Figure 

4.23). The explanation of these features lies in the orientation of the polymer chains, 

which is believed to be in the direction of rubbing as a result of the rubbing process 

[4.35]. It has been found that the refractive indices of the surface, in the directions 

parallel and perpendicular to the rubbing directions vary by an amount An, typically 

about 0.1 [4.31, 4.40] The result of this birefringence is a slightly different optical 

thickness for each of the orthogonal components of polarised light giving an energy 

difference between the interference peaks in the reflectivity spectra. In the cases 

considered here, the refractive index parallel to the rubbing direction will be greater 

than the refractive index perpendicular to the rubbing direction, n> fl). In addition to 

the energy difference between the orthogonal polarisation components, it is expected 

that the amplitude of reflectivity will be greater for the x component. This can be 

used to explain the lack of symmetry and peak positions in the measured spectra. 

It has been found [4.3] that the measured RA is proportional to the first derivative of 

the logarithmic reflectivity when multiplied by the optical retardation in the rubbed 

section of the film, d j An. AFM measurements, for example in Figure 4.19, show the 
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depth of the grooves and hence the size of the rubbed section to be -'40 nm. 

Therefore the optical retardation can be estimated at 1 nm which is consistent with 

the findings of others [4.35, 4.41, 4.42]. The hollow data sets in Figure 4.24 show 

the scaled derivative of the reflectivity, calculated using this optical retardation 

value. These are plotted against the RAS corresponding to the reflectivity for each 

sample. The PT film thickness' of the samples studied here are 80 nm and 1200 nm. 

The first sample has a significantly lower film thickness than initially thought. This 

corrected value (of 80 nm) was obtained from comparisons with simulations 

presented later in this chapter. A comparison of the experimental and calculated 

(from the reflectivity) spectra shown in Figure 4.24 reveals several things. Firstly, 

the similarities between the two conclusively show that the features below -'-4.0 eV 

result from interference effects in the reflectivity. Secondly, the difference between 

the two show that the features above ---4.0 eV are not caused by interference effects. 

From Equation 5 in reference [4.3], it can be found that a large PT layer would result 

in a small birefringent contribution to the RAS, as illustrated by the triangular data 

sets of Figure 4.24. 

8Onm 61  12OOnm 
0 
0 	- 
0 

'4- 
0 

Co 

NT 

 

U) 	I 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

Energy (eV) 

Figure 4.24 The measured RAS is shown as the solid data sets and the 
derivative of the corresponding logarithmic reflectivity is 
shown as the hollow data sets. 



For each thickness of sample studied, a broad peak around 4.5 eV can be seen. The 

studies of the thicker PT sample (Figure 4.22) show the interference patterns to die 

out above --3.5 eV because of the absorption of the polymer. The 4.5 eV peak must 

be therefore be attributed to the uppermost layer of the samples, which is roughly the 

same in each case. 

Rubbing Simulations 

The optical measurements taken here have been simulated using the Berreman 4x4 

matrix method for stratified media [4.43]. Details of this method can be found in 

Appendix A. Firstly the reflectivity of the untreated ITO/glass surface was 

investigated. Simulations were run using published optical constants [4.44] initially 

as a function of ITO film thickness. The results in Figure 4.25 show a good 

correlation between the experimental results and the simulated spectra at around 120 

nm of ff0. Upon close inspection 116 nm of ITO most resembles the experimental 

spectra. This value ties in well with the expected value; differences in the film 

thickness and the spectra can easily be accounted for by the optical constants which 

are expected to be slightly variable [4.45]. AFM of the ITO surface reveals a surface 

roughness of over 10 nm (Figure 4.1). This roughness can be replicated in the 

simulations by using the Bruggeman effective medium approximation [4.46] which 

is used to construct a single film model of a roughened surface and substrate. Despite 

the age of this model it has been found to be as good as and in some cases better than 

other models [4.47]. In these simulations the rough surface can be regarded as a new 

layer and so here, both the ITO film thickness and the thickness of rough layer are 

varied. The best results from the various combinations investigated are shown in 

Figure 4.26. This figure reveals the roughness layer does improve the model and that 

the most accurate simulated spectra is obtained by using a ITO film of 110 nm with a 

15 nm rough layer. The size of the simulated roughness (15 nm) corresponds well 

with the roughness value found from the AFM images of the ITO surface (11 nm). 

Interestingly, the spectra plotted all have roughly the same film thickness if the ITO 

thickness is added to half the roughness thickness. Also shown in Figure 4.26, is that 

as the roughness of the surface is increased, the shape of the spectra remains roughly 

the same except in the UV region where it is significantly reduced. 
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Figure 4.25 Simulated reflectivity spectra ftir an ITO/glass 
multilayer as a function offilm thickness. 
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Figure 4.26 Simulated reflectivity for an ITO/glass substrate as a 
function of thickness and roughness. The first number in 
the legend is the film thickness, the second the roughness. 



The simulations were repeated for the standard PI/ITO/glass samples that have been 

used throughout this chapter. As spectral values of the refractive index and extinction 

coefficient are not known for this PT sample, a suitable data set had to be constructed 

around the visible region refractive index of 1.8 and knowledge of similar materials. 

The optical properties are made to increase slightly across the spectral range, with 

the absorption highest in the UV region. As a direct consequence of estimating data 

for these simulations, the layers of roughness, between the P1 and ITO and between 

the P1 and ambient, were omitted. The result of the simulated reflectivity spectra for 

the PI/ITO/glass samples can be seen in Figure 4.27. The experimental spectra can 

be reproduced reasonably well by a PT thickness of 80 nm. Although this is thinner 

than the expected thickness of the PT film, considering the origin of P1 data and the 

possible inconsistencies in the production of the samples, the result is satisfactory. 

For comparative purposes the 120 nm simulated reflectivity spectrum is plotted as 

well. 
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Figure 4.27 Simulated reflectivity spectra for a P1 on ITO/glass 
multilayer as a function of PIfllm thickness. 

The reduced spacing of the interference effect seen in the RA of the thicker samples 

(Figure 4.22) can also be seen in the measured reflectivity (Figure 4.28). In the same 

manner as the standard thickness PT samples, the reflectivity from the thick PT 

samples (sample 3b) can be modelled accurately. The results of this simulation are 
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shown in Figure 4.28 and show 1200 nm of PT on 116 nrn of ITO to be a good 

match. 
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Figure 4.28 Simulated reflectivity of a thick P1/IT0/glass inultilayer. 

The RAS from these PT/ITO/glass samples has been simulated, again using the 

Berreman 4 x 4 matrices but with the structure of the samples based on a molecular 

orientation model. This model originates from ellipsometry studies by Hirowsawa 

[4.31 - 4.34] in which he demonstrated the ratio of the Fresnel reflection coefficients 

for s and p polarised components, measured from a rubbed P1 sample, varied as 

function of sample orientation angle. He then simulated the results using a model that 

comprised an optically uniaxial medium with an orientated upper layer and a lower 

isotropic layer, as shown in Figure 4.29. For the purpose of the RAS simulations, the 

lower layer has a thickness d1  and refractive index n, the upper layer has thickness d2  

in which the molecules are aligned in the rubbing direction giving a molecular 

birefringence, An. The values used are, d2=10 nm, An =0.1 and n is as used in the 

reflectivity simulations. The result of this simulation, for PT thickness' of 80 nm and 

1200 nm are shown as the solid data sets in Figure 4.30 and show a good match with 

the measured values in the IR and visible regions of the spectrum but not in the UV. 
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Figure 4.29 Diagrams showing the molecular model used to simulate 
the RA spectra. 
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Figure 4.30 Simulations of the RA spectra of a P1/ITO/glass sample 
using the molecular alignment mode are shown as the 
solid data set. The hollow data set shows the scaled 
derivative of the reflectivity. 

Neither the simulated or derivative spectra show evidence of the 4.5 eV feature 

previously seen in all of the measured RA spectra. This would be expected if this 

feature does not originate from the birefringence induced by the rubbing process. A 

possible explanation of the 4.5 eV feature could be rub-induced dichroism which 

would be present in the upper layer of the polymer as well as the rub-induced 

birefringence. Dichoric absorption was not included in the RAS simulations. Further 

evidence in favour of dichroism is presented with the RAS photoalignment studies. 
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Miller et al. [4.48] have previously used this mechanism to explain very similar RAS 

features in oriented polymer films. 

Liquid Crystal Alignment 

To test the alignment of the LC molecules on the rubbed polymers, LC cells are 

made using two pieces of ITO/glass, each of which has a treated polymer surface as 

an alignment layer. The cells are made with the treated surfaces facing inwards and 

depending on the type of cell, the treatment directions are either perpendicular or 

parallel. The two surfaces are separated slightly by using 2.4 im spacers and the gap 

filled with LC (E49, Merck). This procedure enables the alignment properties to be 

studied easily by using crossed polarisers. Photomicrographs are taken of the 

constructed cells and can be seen in Figures 4.31 & 4.32. The first set of images 

demonstrates the quality of alignment increases with rubbing, in this case the rubbing 

machine was not used and so the amount the rubbing is measured in length units. In 

the 30 cm image, not all the LC molecules are in domains and some of the domains 

themselves are relatively small. Whereas in the 120 cm image, the domains are larger 

and less rugged looking, showing the LC molecules are aligned more 

homogeneously than before. 

Figure 4.31 Photos of constructed LC cells viewed through crossed 
polarisers showing LC alignment after (a) 30 cm and (b) 
120 cm of rubbing. These cells were constructed by Mr C. 
Mireinont who also took the photographs. 
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The second set of images, illustrate that although good alignment can be obtained by 

rubbing the surface, Figure 4.32 (a), too much rubbing can have a detrimental effect 

on the quality of the LC cell. In this set of images the samples were rubbed using the 

rubbing machine at 50 mm/min, the amount of rubbing is therefore expressed in 

terms of the number of rubs. Good alignment is obtained after 4 rubs, (Figure 4.32 

(a)). As the number of rubs is increased, Figure 4.32 (b) shows cells after 20 rubs, 

Figure 4.32 (c) after 40 rubs, the number of defects on the surface increases 

proportionally, therefore decreasing the alignment quality of the LC cell. These 

observations suggest that in order to optimise the alignment of LCs between rubbed 

surfaces, a compromise must be reached between maximising the level of anisotropy 

and minimising the number of defects on the surface of the alignment layer. It may 

be necessary to find not only the minimum number of rubs required to saturate the 

anisotropy but to also find where the best alignment occurs in terms of a percentage 

of the maximum. The results presented here suggest the best results occur when the 

RA is at ---50% of its maximum value. 

Conclusion on Rubbing 

The alignment of LC molecules is fundamental to the fabrication and optimum 

operation of LCDs. While this can be engineered by a variety of means, it is the 

crude process of rubbing a polymer film with a piece of fabric that dominates in the 

commercial displays industry. Empirical RAS measurements can be used to monitor 

the alignment layer fabrication in real time. Using RAS it has been possible to 

monitor the growth, saturation and reduction of the anisotropy of a rubbed sample. 

Simulations have enabled RAS features to be interpreted in terms of molecular 
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alignment, birefringence and dichroism. AFM has shown the reduction in anisotropy 

is due to a degradation of the alignment layer resulting from over rubbing. 

Measurements have shown RAS capable of monitoring the onset of degradation, 

which could be used to prevent damage to alignment layers. Increased rubbing has 

been found to improve the LC alignment but also give more defects on the surface, 

reducing device quality. Excess rubbing has been shown to damage the polymer film, 

reducing device quality. 

Although rubbing is the preferred technique in industry for the fabrication of 

polymer alignment layers it has several drawbacks which include the generation of 

electrostatic charges and the generation of surface debris [4.20] as has been shown 

here. The obvious way to overcome these problems is to use a non-contact technique. 

In the next sections, two such techniques are investigated using RAS. 
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Photoalignment 

Introduction to Photoalignment 

As has been highlighted in the previous section, the technique of rubbing a polymer 

film to promote the alignment of LC molecules has several disadvantages. To avoid 

these problems, namely the generation of surface charge and the spreading of dirt 

[4.20], non-contact alignment techniques have been investigated. One technique 

found to be particularly effective in remedying these problems is photoalignment 

[4.11, 4.12 & 4.49]. This technique was first reported by Schadt et al. [4.50] to be 

suitable for the fabrication of alignment layers for use in LCDs. After polymerising 

photopolymers by exposure to linearly polarized light, UV dichorism and optical 

anisotropy are found in the surface layer [4.50]. These properties make it possible for 

LC molecules to align uniformly over the entire surface as the dispersive surface 

interaction forces align adjacent LCs parallel [4.50]. 

Photoalignment of a Light Sensitive Polymer 

When using this technique, generally two different types of cells are made, the 

composite or the surface layer. The composite cell is made by mixing a UV curable 

polymer with LC and then putting the mixture into an empty LC cell which is then 

cured by exposure to linearly polarised UV light. The surface layer cell is more 

common and is made in a similar manner to a typical rubbed cell. That is, the 

substrates are coated with the polymer and then processed, in this case by exposure 

to linearly polarized UV light. Cells are constructed using the treated substrates 

which are then filled with LC. 

By exposing a light sensitive polymer (in this case PVCi) to linearly polarised UV 

light it is possible to generate anisotropic alignment of the polymer chains on the 

surface of the film [4.50]. A study of photoalignment as a function of exposure time, 

by RAS, was carried out using sample 5. The spectra obtained for one exposure time 

at several different azimuth angles are shown in Figure 4.33 from which it can 

immediately be seen that the anisotropy is approximately two orders of magnitude 

lower than was produced by the rubbing technique. These spectra appear similar in 
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shape to the RAS measurements of rubbed polymers as they each have what appears 

to be multilayer interference peaks in the visible region of the spectra and a larger 

feature at 4.5 eV. In the previous experiments it was speculated that the 4.5 eV 

feature was a result of rub induced dichroism. The measurements of Schadt et al. 

[4.50] agree with this as they show direct measurements of UV dichroism from 

photoaligned samples in the energy range of -3.9 eV to -4.7 eV, albeit using a 

slightly different polymer. For these types of samples, it is expected that the RA will 

vary as cos 20, where 0 is the angle between the vertical axis of the spectrometer 

and the alignment direction of the sample. 
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Figure 4.33 	Typical RA spectra from a photoaligned polymer. 

A potential hazard of this technique is the inadvertent modification of the UV 

sensitive polymer if a broad band light source is used. The UV component of the 

spectrometer light source (a 75 W broad band lamp) can be estimated to be 

comparable to the 10 mW UV lamp used to align the samples (with exposure times 

of about 1 minute), and may therefore lead to modification of the samples during 

data acquisition. Spectra obtained for a series of azimuthal angles are shown in 

Figure 4.33. The expected cos 20 dependence is not observed and in fact, all of the 

spectra taken after the 0° data set appear to be more negative than expected. Initially 

the polarisation of the light from the spectrometer is incident at 45° to the axes of the 



sample and anisotropy is induced in this direction. The two competing anisotropies 

are thought to simply add together (after a scaling factor is considered) [4.51] 

resulting in an overall reduction of the measured anisotropy. Recording these spectra 

in the reverse order using a second sample leads to a greater RA than expected, 

clearly demonstrating the ongoing modification of the sample by the RAS beam. 

The UV exposed PVCi film gives a clear RAS signal in the visible portion of the 

spectrum and so real time RAS monitoring of the UV-stimulated alignment process 

is possible. 

Conclusions on Photoalignment 

It is not completely unexpected that RAS damages the photoaligned samples as the 

UV exposure during data collection and during the photalignment process are 

similar. Therefore RAS should not be used to study the alignment layers of 

photoaligned polymers, unless a UV filter is used, as in this case RAS is not a non-

destructive probe and interferes with the measurements. However, the shape of the 

measured RA spectra and the previous work of others have strengthened the case for 

the 4.5 eV feature seen in the rubbing spectra being due to dichroism. 
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Etching 

Introduction to Etching 

Sustained investment in the rubbing procedure has protected its dominance but with 

recent advances in resolution the limitations of rubbing are becoming increasingly 

troublesome. For example, degradation of the rubbing fabric can lead to non-

uniformity of the alignment layer and streaking defects in completed displays, 

resulting in the rejection of entire batches i.e. hundreds of displays [4.17]. This is a 

problem which will only be emphasised by the steady scaling up of substrate size 

[4.20] and whose occurrence highlights the need for both an improved alignment 

strategy. The pioneering work of Sun et al. [4.19] has shown that argon ions, when 

directed with oblique incidence, can induce anisotropic surface modifications 

capable of providing an alignment template for LC molecules. Very recently, 

Chaudhari et al. have demonstrated this alignment technique to be well-suited to the 

commercial production of LCDs and to be superior in several respects to rubbing 

[4.17]. Here, the previous RAS studies of rubbed polymer films are extended to the 

study of ion beam etching of polymer films. 

Ion Beam Etching of Polyimide 

Before and after polymer coating, the samples (sample 3a) were analysed using the 

RA spectrometer and an AFM. In each case negligible optical anisotropy was found 

before and after. To create an LC alignment template samples were then exposed to a 

beam of argon ions with energy of 500eV and current density 15 JiA/cm2  at 450  

incidence while their RA spectra were continuously measured. The alignment effect 

was confirmed by constructing LC cells using the nematic LC E49 (Merck) 

sandwiched between samples with orthogonal alignment directions which had been 

subjected to a dose of -1.3 x 1017  ions/cm2. Figures 4.34 & 4.35 show dark-state 

photomicrographs of an etched cell and that of a similar device constructed with 

conventional rubbed polyimide alignment layers. As has been previously reported 

[4.17, 4.18] we find that the ion etched polymer layers produce more uniform 

devices with less debris and no evidence of streaking defects. In fact, the debris 

observed in the ion etched cell, Figure 4.34, is not intrinsic to the etching process 
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itself but arises primarily because of atmospheric contamination when moving the 

samples into and out of the ion bombarding chamber which is housed outwith of a 

clean-room environment. 



The RA spectra measured during 20 minutes of bombardment of a sample are shown 

in Figure 4.36. Figure 4.37 illustrates the optical anisotropy to initially increase 

before saturating after 10 minutes, corresponding to a total dose of -7xiO'6  

ions/cm2. It appears that RAS allows clear detection of the development of the 

anisotropic (i.e. LC aligning) surface. Comparing the RA spectra of ion-etched and 

rubbed polymer alignment layers, shown in Figure 4.18, it is clear that the optical 

anisotropy of the latter is greater by approximately two orders of magnitude. This 

can be attributed to the depth of molecular alignment associated with the relatively 

deep (-10 - 30 nm) grooves created by the rubbing process. AFM cross-sections of 

the untreated, etched and rubbed surfaces, shown in Figure 4.38, illustrate the 

surface roughness of the ion-etched polymer to be determined essentially by the 

initial surface. This fact, together with our observation that the reflectivity of the 

sample was negligibly affected by the etching process, indicate that LC alignment on 

the etched polymer is promoted by surface modification at the atomic scale, in 

accordance with Geary et at. [4.35]. In the regime considered here, the collision 

cascade caused by the incident ions transfers energy to atoms in the near-surface 

region, causing some of them to be ejected. This sputtering process tends to establish 

a steady state in which the surface damage usually extends less than a nanometer or 

so into the surface. In-plane anisotropy may also be produced, giving rise to a non-

zero RAS signature and the LC alignment effect in the case of etched polyimide. In 

general, ion beams can induce surface corrugation parallel or perpendicular to the 

plane of incidence [4.52], but for covalently bonded systems a simple picture in 

which bonds are preferentially broken in the plane of incidence of the ion beam 

seems appropriate [4.17]. Therefore polymer chains at the etched surface are 

expected to be preferentially aligned along the etching direction. Although, Figure 

4.38 shows the spectra have the same sign, which is expected as the rubbing 

direction was parallel to the plane of incidence of the ion beam, the spectra appear 

fundamentally different. However, upon closer inspection several similarities exist, 

in fact, the etching spectra shows signs of being an undeveloped version of the 

rubbed spectra. The major feature in the etching spectra is a peak at 3.1 eV, however 

there is a definite increase in anisotropy at 4.5 eV in additional to the formation of a 

shoulder around 2.3 eV. It is possible that the two lower energy features are 
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multilayer interference effects. Although for the etching spectra presented here one 

peak is distinctly more pronounced than the other, this difference in amplitude can 

also be seen in the RAS spectra from the rubbed samples (Figure 4.16 and 4.18). 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

Energy (eV) 

Figure 4.36 RA spectra for an etched polyimide surface. The 
x-direction lies in the plane of incidence of the ion beam. 
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Figure 4.37 RAS signal as afunction of time for an etched polyiinide 
surface. 
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Figure 4.38 Cross sectional atomic force microscopy images of an 
untreated polyimide surfrice, an etched polyimide surface 
and a rubbed polyimide surface. All cross sections are 
from images 3 x 3 ,um. 

Conclusions on Etching 

It has been shown in Figure 4.38 that the topographical effect of etching is negligible 

compared to rubbing, however, corrugation of the etched surface is known to occur 

[4.53]. The use of a heavier element or higher energies to etch the surface would 

result in larger scale corrugation which may result in etching spectra more easily 

comparable to the rubbing spectra as the depth of molecular alignment would be 

greater. Nevertheless, we have found that RAS can monitor in real time the creation 

of ion-etched polyimide LC alignment layers. 
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Conclusions 
It is not immediately obvious that an optical reflection technique, such as RAS, will 

be suitable for studying alignment layers that are in essence transparent thin films. 

Simulations of a standard thickness rubbed PT alignment layer, Figure 4.39, clearly 

show that although the intensity of the transmitted beam is much greater that the 

reflected beam, the amount of birefringence information contained within the beam 

is lower. In the same figure, a comparison between RAS and transmission anisotropy 

spectroscopy (TAS) shows the same result; RAS is more sensitive and is therefore 

more suited to these types of samples. In fact, although the amplitudes measured here 

are of the order of lO', RAS is capable of detecting anisotropy of the order of lO s. 
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Figure 4.39 The comparison of the reflectivity and transmittance from 
a P1/IT0/glass substrate is shown in the upper figure. The 
comparison between RAS and TAS is shown in the lower 
figure. 

In this chapter RAS is shown capable of monitoring the fabrication of alignment 

layers for most of the main commercial techniques currently used. In general, the 

amplitude of the measured RA from each of the samples behaves in a manner that is 

consistent with observations made by AFM of the topography of the processed 

surfaces. Simulations of the rubbed surface suggest that the optical anisotropy results 

from birefringence and perhaps dichroism due to the preferential alignment of the 
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polymer chains caused by the alignment techniques. RAS measurements of UV 

aligned samples show similar features to the rubbed spectra. Elsewhere, dichroism in 

the same energy region has been measured from similar UV aligned samples. 

Operational LC cells have been constructed to demonstrate the drawbacks of the 

rubbing technique, namely how dirty it is. Contamination reduces the quality of the 

LC cells and advocates the use of non-contact fabrication techniques. Ion beam 

etching of a polymer is demonstrated as a superior alternative and RAS is shown to 

be capable of monitoring the changes in optical anisotropy of the surface which may 

be caused by minute topographical changes. By using RAS to monitor the 

fabrication, it may be possible to create a real-time quality control of the alignment 

layers which could result in increased production yields, lower waste and therefore 

lower manufacturing costs. The possibility of operating RAS in an imaging mode 

[4.54] may offer further advantages, for example screening for device uniformity. 

However, for all of the alignment techniques an important question is whether the 

optical anisotropy can be linked to a device property. 

Clearly there is still a great deal to understand about these systems: the increased 

anisotropy at 4.5 eV, the contribution to the anisotropy from molecular alignment 

and the behaviour of surface optical properties under various conditions (i.e. 

etching). It seems natural to continue this investigation by studying model systems, 

in particular the etching technique, as it is in the ascendancy. A suitable surface is Cu 

(110) which has been studied in the past under etching conditions [4.54, 4.55]. 

Additional studies of sub-monolayer organic films adsorbed on this surface [4.56] 

could prove useful in future investigations into the LC/alignment interactions. 
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Chapter 5: Angular Dependent RAS 

'Opportunity is missed by most 
people because it is dressed in 
overalls and looks like work' 
Thomas A. Edison (1847- 193 1) 

Summary 

An interesting by-product of the previous study of LC alignment layers has been the 

introduction of an extension to the normal RAS technique: angular dependent RAS 

(ADRAS). To demonstrate the potential of this technique, three different systems are 

examined, a doubly rubbed alignment layer, a double sided rubbed alignment layer 

and an alignment layer subjected to stress. Using these examples ADRAS is found 

capable of isolating and monitoring optical anisotropy from different sources within 

a single system. Some of the work presented in this chapter has been published [5.1], 

and another paper, a generalised and more in-depth discussion of [5.1], has been 

accepted for publication [5.2]. 
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Separation of Optical Anisotropies 

Angular dependent measurements are shown to be a useful extension to the standard 

technique by allowing different sources of optical anisotropy to be separated 

experimentally. This application is demonstrated with examples which highlight the 

manner in which competing anisotropies contribute to the measured anisotropy and it 

is shown that in general, azimuth dependent RAS (ADRAS) could be used to 

separate different physical effects. The first example is double rubbing which has 

real applications to the fabrication of LCDs and so a monitor of this upcoming 

technique could prove invaluable. The other two examples have been contrived to 

demonstrate the potential of ADRAS 

Double Rubbing 

In the previous chapter, RAS has been shown capable of characterising thin films 

such as those used for polymer alignment layers in LCDs. Here, a simple extension 

of the standard RAS technique is shown to allow a convenient characterisation of 

multidirectional over-rubbed alignment layers, and hence ADRAS can disentangle 

optical anisotropies derived from independent mechanisms. 

As discussed in Chapter 4, despite problems associated with charging and surface 

debris, rubbing is by far the dominant technique used in the commercial displays 

industry. Accordingly, rubbed polymers continue to attract a great deal of scientific 

interest. A recent development is multidirectional rubbing in which a polymer film is 

first rubbed in one direction and then over-rubbed in a different direction [5.3-5.6]. 

LC orientation on over-rubbed polymer surfaces is believed to lie between the two 

rubbing directions [5.3]. Recent reports suggest over-rubbing reduces the number of 

steps required to make multidomain displays which significantly increases viewing 

angle, traditionally a weakness of LCD technology [5.6]. 

The type of sample used in this investigation is sample 3a, as described in Table 4.1 

of Chapter 4. RAS analysis of the unrubbed samples revealed negligible optical 

anisotropy and corresponding topographic AFM images, Figure 5.1(a), confirmed 

the samples to be isotropic. After mechanically rubbing the surface of the polyimide, 
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microgrooves were observed along the rubbing direction, as seen in Figure 5.1(b). 

The RA spectrum after this rubbing is shown as the solid line in Figure 5.2. 

Figure 5.1 	AFM images of (a) an unrubbed polymer sample, (b) a 
rubbed polymer surftzce, (c) a rubbed polymer surface 
with a single over-rub at an angle to the initial rubbing 
direction and (d) a rubbed polymer surface with multiple 
rubs at an angle to the initial rubbing direction. Each 
image is -10 x 10 iim and the maximum heights are 
5.5 mini, 8.0 nm, 23.5 nnt and 27.0 am respectively. 

RA spectra can, in principle, be simulated to yield material parameters such as the 

composition, thickness of layers and roughness [5.7]. Here however, the primary 

concern is with the dependence of RAS signals on the sample azimuthal angle 0, 

defined as the angle between the y-axis of the spectrometer and the rubbing direction 
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of the sample. This is shown by the curve with solid square data points in Figure 5.3 

which illustrates the RAS signal of the rubbed polymer at 3 eV as a function of 

azimuth angle. The same 0 dependence was observed for all photon energies. From 

experimental results it is seen that introducing a rotation to the sample causes the 

RAS amplitude to vary as cos(20). This observed angular dependency can be 

predicted by considering the Jones reflection matrix of the sample, which relates the 

incident and reflected field amplitudes and can be expressed in Cartesian co-

ordinates as, 

Exr _ rr ][E.i 

E yr ] — [ry  

As mentioned in Chapter 2 (Equations 2.16 & 2.20), the amplitude of the electric 

field of the light reflected from the sample being measured by the RA spectrometer 

can be expressed as, 

where from Equation 2.21, 

Ar _ 2 r —r 5  +r — r 	
Eq. 5.1 

r — 	+ r),), + 	+ r),X 

By applying an azimuthal angular rotation 0, such that x—ci and y-3,  the Jones 

reflection matrix becomes, 

I  r 

	rX) 	[cos0 _ sin ol r,, 0 [ cosO 	sin0l 

r)), — [sin 0 cos e ] 0 rp [— sin 0 cos 0 

r1 	rX),1 	r cos2 0 + r13  sin 2 0 	r,, cos 0 sin  — r cos0 sin  

r 	r5j 	ra  cos O sin O - rp  cos 0 sin O 	ra  sin 2 0 + rp  cos2 0 



By substituting the elements of this reflection matrix into Equation 5. 1, an 

expression for the reflection anisotropy as a function of azimuthal angle is obtained. 

2 ra - rp 	cos 20 	
Eq. 5.2 

	

r 	ra + rp (1+ ra - rp 
sin 20) 

ra + r 

r — r 	 ra —  rR 
As 	a 	<<1, (1 + 	'' sin 20) = 1, and so it is clear that Equation 5.2 simply 

ra+rp 	ra+rp 

becomes the standard RAS equation scaled by the trigonometric factor of cos(20). 
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Figure 5.2 	RAS of a singly rubbed sample with 0, 3 and 7 over-rubs 
at angle ço to the initial rub. In each case 000 . 

The P1 surface was then over-rubbed a number of times at an angle q to the initial 

rubbing direction using the same rubbing parameters. The RA spectra after over-

rubbing are shown in Figure 5.2. A typical AFM image of the surface after a single 

over-rub, shown in Figure 5.1 (c), appears very similar to those previously reported 

[5.5] and clearly shows the initial rubbing underlying the over-rubbing. The RAS 

lineshape is unchanged as expected but the angular dependence is modified. Figure 

5.3 shows the ADRAS maximum moving to higher 0 with increased over-rubbing. If 

the over-rubbing completely replaces the original microgrooves, a cos(2(0 - (p)) 
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Figure 5.4 Simulation of ADRAS based upon 
Acos(20) + Bcos(2(O - (p)) where B = 1— A. 

Rubbing and Squeezing 

In the previous example, although the sample had two sources of optical anisotropy, 

the spectra from each were basically identical. In general, individual contributions to 

a resultant anisotropy can have different spectra as well as different angular 

dependencies. ADRAS is now demonstrated on a sample subjected to mechanical 

stress applied at ,_300  to the rubbing direction, the sample type used is sample 3a. 

The RA spectrum of the rubbed and squeezed sample, over a series of azimuthal 

angles, is shown in Figure 5.5, while ADRAS curves for photon energies of 3.30, 

3.57 and 4.38 eV can be seen in Figure 5.6. The signal at 4.38 eV shows 180° 

periodicity while that at 3.30 eV has 90° periodicity indicating the presence of two 

distinct sources of anisotropy. Figure 5.7 clearly shows that the 4.38 eV spectra is 

rub-induced, as discussed in Chapter 4, while the 3.30 eV spectra is stress-induced 

birefringence (the photoelastic effect). Both mechanisms appear to contribute to the 

measured anisotropy at 3.57 eV which has a unique angular dependence. The 90° 

periodicity of the latter contribution is due to reflections from the lower surface of 

the sample with polarisations parallel and perpendicular to the stress (corresponding 



to the fast and slow axis) combining incoherently on account of their large relative 

phase difference caused by the birefringence of the bulk. Confirmation of this is 

found by studying an identical sample under the same conditions but with the rear 

surface of the sample frosted to scatter light incident upon it. In this case, the angular 

dependency reverts to cos(20). The simulation in Figure 5.8 shows that the ADRAS 

curves of all photon energies can be decomposed into weighted sums of the cosine 

and sine-squared contributions. Conversely, a numerical fit of each ADRAS curve 

allows the stress-induced and rub-induced optical anisotropy spectra to be separated. 

For the present case this can be achieved by relieving the external stress, but usually 

competing mechanisms cannot be switched off. The negative sign before cos(20) 

and the factor of (2(0 - 15)) in the simulation equation result from the rubbing 

direction being at 0 =900 ,  and so the stress is actually applied at 

0=90° +2(15°)=120°. 
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Figure 5.5 	RAS of a rubbed and squeezed sample as a function of 
azimuthal angle. 
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Figure 5.6 	ADRAS of a rubbed and squeezed sample at a selection 
of energies. 
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Figure 5.8 	ADRAS simulation using - Acos(20) + 2B sin 2 (2(0 —15)) 
demonstrating the addition of different anisotropic 
components. 

Double Sided Rubbing 

Similar to the previous example, a sample with two sources of anisotropy resulting in 

two distinct spectra is studied. Since each source varies differently as a function of 

azimuthal angle, different information will be emphasised at particular angles 

depending on the configuration of the sample. As described in Chapter 4, P1 samples 

of different film thickness can be characterised by their RA spectra. This difference 

can be seen as a multilayer interference effect in the RA spectra where the positions 

of the interference maxima can be predicted. Typical spectra for both standard 

(sample 3a) and thick (sample 3b) samples, as described in Table 4. 1, can be seen in 

Figures 5.9 & 5.10 which show the RA spectra as a function of energy as the 

azimuthal angle is rotated. As the thickness of the PT film is increased, the spacing of 

the interference patterns seen in the RA spectra decrease. In Figure 5.9, maxima can 

be seen at energies of approximately 2.0 eV, 3.1 eV and 4.2 eV, whilst in Figure 

5.10 the maxima appear as ripples in the energy range of 1.5 eV - 3.5 eV and with 

approximate periodicity of 0.2 eV. Here, the results of the previous section are built 

upon and further evidence of the way in which of optical anisotropies from different 

sources combine is presented. 
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Figure 5.9 	Typical RA spectra of a standard rubbed P1 sample. 
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Figure 5.10 Typical RA spectra of a thick rubbed P1 sample. 
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Figure 5.11 Typical RA. spectra from the reverse side of a standard 
rubbed P1 sample. 
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Figure 5.12 Typical RA spectra from the reverse side of a thick 
rubbed P1 sample. The difference in amplitude of 
inteiference peaks is due to sample misalignment. 
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When the reverse side of these samples are studied, spectra similar to those obtained 

from the front surface are seen. Spectra from the front and rear surfaces differ as the 

latter is attenuated over the entire energy range, in particular in the UV area, as a 

result of optical absorption in the glass. Figures 5.11 & 5.12 show the spectra from 

the reverse side of the standard and thick samples used in Figures 5.9 & 5.10 

respectively. 

As expected, the amplitude of the anisotropy from each of the rubbed P1 samples 

varies as a function of cos(20 - ), where 0 is the azimuth angle and q is the angle 

parallel to the rubbing direction. Figures 5.9 & 5.]] show the magnitude of the RA 

amplitude for the sample of standard thickness, which in this case has çø=:O°

'

to have 

a maximum when U = 0°, 90°, 180° & 270°. Figures 5.10 & 5.12 show the 

magnitude of the RA amplitude for the thicker samples, which has ço=450  to have a 

maximum when 0 = 45°, 135°, 225° & 315°. 
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Figure 5.13 	Resultant spectra from a standard and thick rubbed 
samples together. 

These two samples are then studied at the same time, with both samples facing the 

beam, the standard sample in front of the thicker sample and with the rubbing 

directions at an angle of 45° to each other. Initially the rubbing direction of the 
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standard sample is in the same direction as 0 = 00. The resultant RAS is dominated 

by the signal from the standard sample and little evidence can be seen of the thicker 

sample behind. However, when the samples are rotated by 450  in azimuth, such that 

the signal from the standard sample is minimised, the signal from the thicker sample 

is maximised. The resultant spectra for this experiment is shown in Figure 5.13 and a 

scaled version, clearly showing the interference from the thicker P1 sample, can be 

seen in Figure 5.14. 
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Figure 5.14 Scaled version of Figure 5.13 highlighting the 
different interference effects seen by azimuth rotation. 

A good approximation to the spectra shown in Figure 5.13 and Figure 5.14 can be 

obtained by simply adding the data obtained from the front of the standard sample 

and the rear of the thick sample. Simulation of the absorption effect on the light as it 

passes through the ITO and glass components of the standard sample is made by 

using the data relating to the reverse side of the thicker sample. The spectra created 

as a result of this addition can be seen in Figure 5.15 and is very similar to the 

spectra obtained experimentally in shape and in the behaviour as a function of 

azimuth angle. Again, as the component from the standard sample is minimised, the 

component from the thicker sample is maximised revealing the characteristic 

interference pattern. Although the simulated spectra does not have a 45° component 
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shown, the effect can clearly be seen in the 300  and 60° spectra which are less 

affected than the 45° spectra would be. This again demonstrates the addition of 

anisotropies from different sources and that by using ADRAS it may be possible to 

isolate these different sources of optical anisotropy. 
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Figure 5.15 Scaled resultant spectra obtained by adding Figures 5.9 
and 5.12 giving a close approximation to Figure 5.14. 
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Conclusions 
Double rubbing of a polymer film with applications to LC alignment has been 

investigated using RAS and AFM. An angular dependent extension to RAS, was 

used to gauge the relative strength of rubbing in two different directions. Other 

examples used here to demonstrate ADRAS involved sources of optical anisotropy 

which had distinct spectra as well as distinct angular dependencies. For these cases, it 

has been shown that ADRAS is capable of isolating each independent source of 

optical anisotropy providing they have a distinct angular dependence. These 

measurements suggest ADRAS could allow sources of optical anisotropy such as 

microgrooves, surface steps, aligned molecules, stress and external fields, with a 

distinct 0 dependence to be experimentally separated. 

Recent work by Lorenzo [5.8] have shown that enantioselectivity (selective optical 

activity) can be induced in a heterogeneous catalytic system by the adsorption of 

chiral molecules, in this case R, R-Tartaric acid, onto a clean Cu (110) surface. These 

absorbed molecules have been shown to lie at an angle to the rows of copper atoms. 

Assuming the adsorbed molecules have a characteristic RAS spectra, by using 

ADRAS is will be possible to isolate this spectra from the Cu (110) spectra and 

provide important information about the system. This experiment will be discussed 

further in Chapter 7. 
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Chapter 6: Nanostructured Copper Surfaces 

'Even when laws have been 
written down, they ought not to 
remain unaltered' 
Aristotle (384BC - 322BC) 

Summary 

In the work presented in this chapter, RAS is applied to planar and vicinal copper 

surfaces under various processing techniques. The results from the vicinal surfaces 

represent another step forward in RAS studies of copper surfaces whilst the results 

from the plane surface further demonstrates the ability of RAS to monitor processes 

in real-time: a first for metal surfaces. These studies are used to gain information 

from 'simple' surfaces which can be applied to polymer alignment layers. The results 

are discussed in terms of surface state transitions, the temperature dependent 

diffusion of adatoms and vacancies and the corresponding energy barriers. The 

preliminary results of the real-time monitoring of Cu (110) surface processing have 

been published [6.1]. 
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Introduction 

Alignment layer fabrication using polymer films is known to have great potential and 

is one of the leading candidates to supersede the rubbing technique, yet relatively 

little is understood about the technique. Studying model systems will help to increase 

this knowledge. Cubic crystals, especially the fcc (110) surface, have been 

extensively studied in the past and are well understood, thus making them an ideal 

candidate for use with a new experimental technique such as RAS [6.2]. The 

electronic structure of metal surfaces is of fundamental interest [6.3] and in particular 

the symmetry of crystal surfaces has been shown to have a great influence on the 

chemical and physical properties of materials [6.4]. The most commonly studied 

metals are the noble metals (Cu, Ag and Au) as they have properties, such as 

resistance to contamination and the relative ease by which single-crystal surfaces can 

be prepared, which make them very important systems for understanding electronic 

structures [6.5]. 

Another virtue of these samples is that the form and structure of the surface can be 

significantly modified on the atomic and nano-scale by mis-cutting, thermal 

processing and ion bombardment. For example, the result of mis-cutting a metal 

crystal by a small angle can be the creation of a vicinal surface which may be 

considered analogous to the grooved PT surfaces studied in Chapter 4; the steps on 

the surface provide an atomic scale equivalent to the grooves. The introduction of 

defects (in this case steps) is a more realistic system; all commonly used materials 

have defects. By understanding the effect of atomic scale defects, advancements in 

'bottom up' technology may be more forthcoming. The results of these experiments 

will therefore be of relevance to alignment layers, surface science and nano-

technology in general. 

RAS is used here as a non-destructive method to obtain spectroscopic information 

about the surface properties of these crystals. The technique has been used to study 

noble metal surfaces in the past but the origin of the spectra obtained from these 

surfaces is not wholly understood and attempts to simulate the spectra have not been 
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satisfactory. Suggested explanations for the features observed in the RA spectra from 

metal surfaces centre around two main mechanisms. Both of these are summarised 

briefly below. 

Surface State Transitions 

In bulk solids it is possible to find the allowed energies of the electrons within the 

crystal by finding the solutions to the three dimensional Schrodinger wave equation. 

The solutions to the wave equation highlight band gaps in the electronic structure of 

the solid. At the surface of a three dimensional solid, the previous periodicity is lost 

and so different solutions to the wave equation are found which results in the 

existence of energy states within the band gap of the bulk solid. These states are 

localised in the plane of the surface and are known are as surface states. 

E 
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0 

1.0 	0.5 	0 	0.5 	1.0 

k 
Figure 6.1 
	

Surface band structure of Cu (110) near the Fermi level. 
The intrinsic surface states are shown in light grey. 

Studies of the electronic structure of the surface of noble metals using both 

experimental and theoretical methods have revealed the existence of occupied and 

unoccupied surface bands within gaps near the Fermi surface at different points on 

the surface Brillouin zone (SBZ) for the various surfaces [6.6]. Figure 6.1 shows a 

diagram indicating the location of these surface states. The main surface being 

studied here, Cu (110), possess two intrinsic surface bands that lie within the p-s 

band gap at the Y point of the (110) SBZ [6.6]. One of these is an occupied surface 
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band derived from the p-type band. The other is an unoccupied band derived from 

the s-type band. By using photoemission and inverse photoemission, it has been 

possible to identify these occupied and unoccupied states at 0.4 eV below and 2.0 

eV above the Fermi level [6.5, 6.7-6.91. The application of dipole selection rules 

indicates that transitions between these two states can only be induced by [001] 

polarized light [6.6]. The Cu (110) surface also possesses two unoccupied surface 

bands within the p-s band gap at the X point [6.6] with energies of -2.0 eV above 

and - 1.0 eV below the Fermi level. This transition is not thought to contribute to the 

observed spectra [6.10]. 

Surface Local Field Effect 

The electric fields in and around a surface are influential to the anisotropic 

reflectivity of a surface. Copper atoms have a shell structure of 

1s22s22p63s23p63d'04s' which means the 3d shell is complete while the 4s is 

incomplete. By assuming the 3d electrons are localised at lattice sites and the 4s 

electrons are delocalised it is possible to model the anisotropy using the Swiss cheese 

model [6.11] depicted in Figure 6.2. The full 3d shells are shown in this figure as 

ionic cores, represented here as small spheres with associated dipoles, and the space 

between the spheres is occupied by the delocalised 4s electrons. Near the surface, the 

electron distribution is ordered to give an electric field the same as would be 

obtained if the lattice sites were mirrored. 

Figure 6.2 	Swiss cheese model. 
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The dipole moment of each ionic core can be found by summing all the lattice and 

minor dipoles which can then be broken down into orthogonal x and y components. 

These can then be used to calculate the surface conductivity in the orthogonal 

directions which is related to the measured RA by Equation 6.1, in which o and o, 

is the surface conductivity in the x and y directions. A non-zero RAS is produced 

since the surface inter-band transitions in the x and y directions are not equal. 

Ar 2(C_cY) 
Eq. 6.1 

I' 	CEO  (E-1) 

Due to the design of the vacuum chamber used in conjunction with these 

experiments, it has been possible to obtain RAS measurements from Cu surfaces 

during processing (i.e. during etching and annealing). This gives the significant 

advantage of real time in-situ RAS measurements, for the first time. Prior to these 

experiments measurements were only in-situ as it would have been necessary to 

continuously re-orientate the sample being studied between the etching and RAS 

positions. 
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Cu (110) 

The first measurement of Cu (I 10) using RAS was reported in 1995 [6.10] in which 

the now well known Cu (110) spectrum was presented along with a possible 

explanation for the main features, seen at 2.1 eV and around 4.0 eV. The lower 

energy peak was attributed to a transition between occupied and unoccupied surface 

states found at 0.4 eV below the Fermi level and —2.0 eV above the Fermi level 

respectively. This explanation is based on predictions made by Jiang et al. [6.6] who 

also described that the indication of dipole selection rules is to only allOw a transition 

between the two surface states when induced by [001] polarised light. Based on these 

selection rules, a resonance can be expected in the RA spectra. The higher energy 

features in the Cu (I 10) spectra consist of a double peak (at 3.9 eV and 4.2 eV). It 

was speculated that the latter of these results from transitions between the high 

density of states at the Fermi surface and the image potential state, and intrinsic 

anisotropy caused by the surface local field effect [6.3, 6.10]. The RA peak at 3.9 eV 

remains after the sample is exposed to adsorbates whereas the 4.2 eV peak appears 

unaffected by adsorption and reconstruction [6.11]. 

More recently, the possible explanation of the Cu (110) spectra was backed up to 

some extent [6.2, 6.3 & 6.12]. It originally was suggested that the 2.1 eV peak 

mainly due to surface state transitions. However, a peak at around the same energy 

can still be seen after the sample has been exposed to air, highly suggestive of 

another factor being involved. It is proposed the additional contribution to the 2.1 eV 

peak is the surface local field effect that gives a feature centred around 2.2eV [6.3]. 

The structure of the Cu (110) surface is shown by the model seen in Figure 6.3 and 

clearly shows the surface to be anisotropic. The axes of symmetry of this surface are 

in the [110] and [001] directions, corresponding to the directions parallel and 

perpendicular to the orientation of the close packed row of atoms. In these studies it 

is desirable to obtain a copper surface as similar to the model surface as possible. To 

do this, single crystals of mechanically polished Cu (110), aligned using Laue x-ray 

diffraction to <0.50,  are inserted into the vacuum chamber for processing. By 

126 



repeated cycles of ion bombardment and annealing it is possible to obtain the desired 

periodic clean surface. These cycles typically consist of bombarding the sample, at 

room temperature, with -18 jIA of 0.5 KeV Ar ions for approximately 30 minutes 

before annealing the sample at -840 K for a further 30 minutes. The sample is then 

left to cool radiatively before the cycle is repeated. 

Figure 6.3 	Model of the Cu (110) surface. 

The periodicity of the sample can be confirmed using LEED, which, if the sample 

has been prepared successfully, will give a sharp lxi pattern. Figure 6.4 shows the 

LEED pattern obtained from the Cu (I 10) surface after repeated bombard/anneal 

cycles and confirms the surface to be periodic. The LEED image presented here does 

not give an accurate representation of a sharp LEED pattern as the sample being 

studied was not optimally ordered at the time of the image being taken. As 

mentioned in Chapter 2, the position and distances between the spots in the LEED 

pattern are the reciprocal of the position and distances between the atoms on the 

surface of the crystal. In this LEED pattern the spots form rectangles that have their 

long axis in the horizontal direction. From this it is possible to determine the 

orientation of the sample: in this case, the long axis of the crystal, the [00 1] axis, is in 

the vertical direction with respect to the LEED apparatus. The cleanliness and 

periodicity of the surface are confirmed by the comparison of the RA spectrum to 

previously published spectra. The characteristic spectra reported in these other papers 

are known to correspond to the clean Cu (110) surface as several other techniques, 

for example x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy 

and STM, have been used in conjunction with RAS to determine the condition of the 

surface. 
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Figure 6.5 shows an STM image of the Cu (110) surface under vacuum conditions 

after it has been cleaned using the procedure described above. This confirms that the 

sample is clean as the image appears atomically flat and ordered as shown in the 

model of Figure 6.3. 

Figure 6.4 	LEED of the clean Cu (I 10) surface. 

Figure 6.5 	STM of the clean Cu (110) surface. Image from 
www.dfi.aau.dk/camp.  
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Clean Cu (110) 

Figure 6.6 shows the RA spectra obtained from the clean Cu (110) crystal mounted 

within the vacuum chamber at room temperature. In Equation 2.12, the quantity 

measured by RAS was given in terms of the orientation of the spectrometer axes. As 

the crystal is orientated with the [110] direction parallel to the x-axis of the 

spectrometer (the same orientation is used throughout this chapter for each of the 

crystals studied) the quantity measured by RAS here can be written as, 

Ar- 2 ''°' 	. 	 Eq. 6.2 
r 	biO] + [001] 
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Figure 6.6 	RAS of the clean Cu (I 10) surface. 

The overall appearance of the spectra, including the amplitude and energy of the 

features observed, tie in well with previous reports of the surface [6.2, 6.3, 6.10 - 

6.12]. This confirms the equipment used here is of a high standard, comparable to 

spectrometers used elsewhere and that the preparation of the sample surface is good. 

As described previously, the most significant features of the RA spectra from the Cu 

(110) surface are the peaks at 2.1 eV and around 4.0 eV. As the clean Cu (110) 

surface is exposed to contaminants, for example oxygen from ambient conditions, the 

2.1 eV peak is reduced in intensity. This reduction is to be expected if the current 

129 



theory on the origin of this feature is correct. When the sample is exposed, an oxygen 

adlayer will form on the copper surface resulting in a reduction of the number of 

unoccupied surface states. A corresponding reduction in the number of surface state 

transitions will result in the reduced intensity of the feature [6.3]. Similar to the 2.1 

eV feature, one of the double peaks (the 3.9 eV peak) is reduced in intensity because 

of contamination. This behaviour suggests that the origin of this feature is the same 

as the origin of the 2.1 eV peak. The contaminated spectrum also has an additional 

feature at 3.1 eV. The RA spectra taken from a contaminated Cu (I 10) surface is 

shown in Figure 6.7 and appears almost identical to a Cu (110) spectrum under the 

same conditions reported elsewhere [6.2]. These can be used to gain further 

information as to the cleanliness of the experimental system and sample surface. 
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Figure 6.7 	RAS of the contaminated Cu (110) surface. 

Heating of Cu (110) 

The RA spectra from Cu (110) are known to vary as a function of temperature and 

have been reported along with a possible explanation [6.13]. These experiments were 

repeated here over a lower temperature range and the results, which are found to be 

very similar to those previously reported, will be briefly discussed for completeness. 
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As the temperature of the sample is increased, the 2.1 eV peak is reduced in 

intensity, broadened and shifted to a slightly higher energy. The reduction in 

intensity is thought to be a result of thermal depopulation of the occupied surface 

state due to a gain in thermal energy. This can also be used to explain the broadening 

effect [6.13]. The shift in energy has been partially attributed to the increasing 

importance of the contribution of the surface local field effect peak, thought to exist 

at 2.2 eV, as the 2.1 eV peak reduces in intensity. Another contribution to the shift in 

energy may be the occupied surface state which photoemission studies have shown 

to have a linear shift in energy as a function of temperature [6.7]. The 3.9 eV peak is 

found to be independent of temperature in the range studied here whilst the 4.2 eV 

peak is reduced in intensity with increasing temperature. The temperature 

independence of the 3.9 eV peak does not seem consistent with the possible origin of 

the feature being the same as the 2.1 eV feature as the latter is temperature 

dependent. 
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Figure 6.8 	RAS of the clean Cu (I 10) surface studied as afunction 
of temperature. 

At temperatures outwith the range studied here, from -730 K to -1060 K, the RA 

spectra from the Cu (110) changes further because of irreversible thermal roughening 

of the surface [6.13]. The roughening transition causes the creation of atomic steps 
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on the surface as the temperature exceeds a threshold value [6.14]. In the work 

presented here, the experiments are concentrated on the temperature range of up to 

773 K which simplifies the experiments as the roughening transition will not be a 

consideration. 

Cleaning Cycle of Cu (110) 

The cleaning cycle used to prepare the Cu samples in-situ, involves two distinct 

processes: ion bombardment (etching or sputtering) and annealing to 'repair' the 

damage done to the sample by the bombardment process. 

Etching 

The development of RA spectra from the clean Cu (110) surface at room temperature 

as the sample is bombarded with 0.5 KeV Ar ions has been studied. This experiment 

has been reported previously, for example [6.13, 6.15]. The results presented here are 

similar to those previously presented but are the first to show the effect of etching, as 

studied by RAS, in real-time. Although the previous reports have been in-situ 

studies, it would have been necessary to re-orientate the sample from the etching 

position to allow RAS measurements to be taken and so are not real-time 

measurements. The need to re-orientate the sample results from the limitations of the 

vacuum chamber used in the past, which have been overcome here by the design 

discussed in Chapter 2. 

In Figure 6.9 the peak at 2.1 eV can be seen to remain unchanged during the 

bombardment process whilst the features at -4 eV becomes less pronounced and 

grows7 into a single peak, orientated in the same direction as the 2.1 eV feature, 

centred at 4.1 eV. The growth of this feature (at 4.1 eV) is thought to be a result of an 

increased quantity of vacancies and steps on the surface [6.15]. As a function of time, 

this feature increases approximately linearly before saturation (after -30 min under 

these conditions). It is possible that the intensity of this feature gives a direct measure 

of the number of vacancies. Each impinging ion is thought to have a sputtering yield 

of up to 5 vacancies [6.16], therefore the number of vacancies on the surface will be 

proportional to the incident number of ions. Adatoms are also created as an ion 

impacts on a surface but as atoms are ejected from the surface (etching is an erosive 
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technique) the number of adatoms created will be less than the number of vacancies. 

However, as the surface is eroded, vacancies will be destroyed. The increase in the 

number of vacancies will saturate when the number of vacancies being created and 

destroyed, either by erosion of the surface or recombination, is in equilibrium. These 

results support the view that the peak at -4 eV is sensitive to atomic disorder at the 

surface [6.13]. 
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Figure 6.9 	RAS of the clean Cu (110) surface studied during 
bombardment by 0.5 KeVAr ions at -300 K. 

As the etching process proceeds, the RA measured in the UV region decreases. It 

was demonstrated in Chapter 4 that this sort of behaviour may be a result of the 

roughness of the surface increasing. AFM images of the copper surface shortly after 

etching show some roughness and surface structure. Although these surfaces were 

imaged ex situ, and are likely be oxidised, the observed topography should give a 

good indication of the underlying copper surface. The AFM image (Figure 6.10) 

shows the surface to be heavily stepped, which appear, in general, to have a preferred 

orientation. This result is similar to previous findings using in-situ STM to study ion 

bombarded Cu (110) [6.17] and Ag (110) [6.18] surfaces in which the steps are 

found to lie in [110] direction. The orientation and periodicity of the steps observed 
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on the silver surface were found to be independent of the angle of incidence of the 

ions [6.18]. In a similar manner, as part of this project, the Cu (I 10) surface was 

studied under etching at azimuthal angles of 00,  45° and 90° at -300 K. RAS is used 

to provide indirect information by revealing the symmetrical spectra for 0° and 90° 

and null spectra for 45°. This implies that the directional properties of the anisotropic 

topographic surface features, in this case steps, are orientated depending of the 

crystallographic axes of the sample during etching and do not depend on the angle of 

incidence of the ions. 

Figure 6.10 Ex-situ AFM of a Cu (110) surface after exposure to 500 
eVAr ions at -300 K. The image is 2 x 2 jim, has a 
maximum height of 2.4 nm and step heights of-1.0 nm. 

The steps seen after etching have been suggested [6.18] to result from competition 

between the erosion rate cause by the impinging ions and the surface diffusion rate of 

the adatoms, which is believed to be different for each principle crystallographic axis 

of the sample. The probability of an adatom moving from one site to another is given 

by the equation, 

E 

p=AekT 	 Eq.6.3 

in which p is hopping frequency (s'), E is the diffusion energy barrier (eV), T is the 

temperature (K), k is Boltzmanns constant (eVIC') and A is a constant (s ' ) [6.19]. 

Presented in reference [6.19] is a table of energy barriers for some hopping processes 
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on a selection of fcc surfaces. Although energy barrier values relating to the Cu (I 10) 

surface are not specified, these are expected be comparable to the Ag (110) values as 

the (001) energies for each metal are very similar. In this section, the Cu (110) 

energy barrier values are assumed to be the same as the Ag (110) values. Equation 

6.3 implies an increased probability of hopping, resulting in a higher rate of 

diffusion, will occur if the energy barrier is decreased or if the temperature is 

increased. For the (I 10) surface, both adatoms and vacancies preferentially move in 

the [110] direction. However, the rate at which they diffuse is different. The 

probability of recombination in the [110] direction is therefore going to be higher 

than in the [001] direction. Also, in this temperature range, an adatom which reaches 

a step may move along its edge. Due to the very high energy barrier, it is highly 

improbable for adatoms to detach from [110] steps and so the formation of ripples 

in this direction should be favoured [6.18]. 

-.-O.5KeV -o--0.75KeV -*-1.OKeV 
--1.25KeV -.-1.5KeV 

Il 

1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5 	5.5 	6 
Energy (eV) 

Figure 6.11 RAS of a clean Cu (I 10) surface etched over a range of 
incident ion energies at room temperature. 

It is possible that the size of the features created by the argon ions as they impact into 

the copper surface is dependent on the energy and mass of the incident ions. The 

effect on the RA spectra from etching over a range of different ion energies (from 0.5 

KeV to 1.5 KeV) is shown in Figure 6.11. No significant differences can be seen 

between the spectra except in the UV region where the intensity decreases with 
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increasing ion energy. This is not unexpected as the sputtering yield is thought to be 

approximately constant in the energy range considered here [6.18]. 

Annealing 

After etching it is necessary to anneal the surface to remove the defects and re-obtain 

surface order and periodicity. By heating the sample, the constituent atoms gain 

enough energy to increase their mobility and 'repair the damage done to the surface 

by recombining with vacancies. RAS data obtained from a Cu (110) surface after the 

completion of the etching cycle and during the annealing phase can be seen in Figure 

6.12. The surface appears to 'heal' as the RA spectra gradually changes from the 

etched RA spectrum into the elevated temperature RA spectrum. As the temperature 

of the surface is increased, the feature at 2.1 eV decreases in intensity, moves to 

higher energy and broadens in the same way as in the elevated temperature spectra of 

Figure 6.8. The feature at 4.1 eV is reduced in intensity although it does not return to 

its initial state because of the influence of the temperature dependent 4.2 eV feature. 

As the sample cools back to room temperature the RA spectra behave in a similar 

way to the elevated temperature spectra, shown in Figure 6.8, except in reverse. 
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Figure 6.12 RAS of the etched Cu (I 10) surface studied during 
annealing to -840 K. 
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Elevated Temperature Etching of Cu (110) 

The effect of ion bombarding surfaces decreases with increasing temperature. Studies 

on similar surfaces have shown mobility in both the vacancies and adatoms created 

during etching. As more energy is given to these 'particles' the probability of them 

overcoming the energy barrier and moving to new location is increased, resulting in a 

higher rate of diffusion and an increased rate of recombination. Once enough energy 

has been given to the substrate, the effect of bombarding the surface cannot be seen 

at all due to the speed at which the surface heals. In this situation the rate of creation 

of vacancies is in a steady state with the recombination caused by diffusion. For the 

Cu (110) surface this appears to be at a temperature of between 600 K and 700 K. 

Spectra taken from the Cu (110) surface after exposure to 0.5 KeV argon ions for 30 

minutes, over a range of substrate temperatures are shown in Figure 6.13. In each 

case the copper surface had been etched, annealed and cooled, to reveal the 

characteristic clean copper RA spectra directly before being heated to a specific 

experimental temperature. For comparative purposes, a spectrum from the Cu (110) 

which has not been etched, taken at 773 K, is plotted in the same figure and is 

practically identical to its etched counterpart. 
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Figure 6.13 RAS of the Cu (I 10) surface after ion bombardment at 
elevated temperature. 
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Figure 6.14 RAS of the 4.2 eVpeakfrom the Cu (110) surface after ion 
bombardment at elevated temperatures as a function qf 
time. 

The change of intensity of the 4.2 eV peak is initially greatest at a temperature of 

-400 K and saturates after -30 minutes exposure to the incident ions with an ion flux 

of -1.3x 1014  ions  CM-2  s'. At temperatures above this value, the rate of increase is 

lower and the peak does not reach saturation point within the time scale shown. This 

behaviour is expected for the higher temperatures but not for the lower temperatures. 

As the temperature of the etched surface is increased, the rate of diffusion of the 

vacancies and adatoms increases proportionally (from Equation 6.3), increasing the 

rate of recombination and so decreasing the effect of etching. Conversely, at lower 

temperatures the rate of diffusion is low and so the time required by the surface to 

reorder is long compared to the time scale of ion bombardment. This is consistent 

with data presented in Figure 6.14 and implies that the 4.2 eV feature will reach 

saturation point for etching at higher temperature but the time scale will be increasing 

large. The question of why the effect of etching is maximised at around 400 K still 

remains. Costantini at al. [6.19] have shown that the surface roughness of Ag (001) 

caused by ion bombardment is temperature dependent and also peaks at -400 K. As 

with the etching results presented in this thesis, this is somewhat surprising as an 

increased rate of surface diffusion should result in a smoother surface. The 

explanation of this phenomenon presented by Costantini et al. should apply for the 
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elevated temperature etching results of this thesis and is as follows. For temperatures 

below -440 K, the adatoms produced from ion impacts cannot balance the effect of 

etching because there are less of them (etching is an erosive technique and so atoms 

will be ejected from the surface upon impact). Additionally, because of the high 

energy required to remove an adatom from a step, they predominantly contribute to 

structure formation of straight edges. For the lowest energies, the rate of diffusion is 

very low and so adatoms and vacancies remain localised to the impact site which 

results in a layer by layer diffusion. Erosion to an underlying layer only begins when 

the upper layer is nearly all gone giving little roughness. With a slight increase in 

energy, the adatoms and vacancies are not so localised and so deeper etched features 

result. At temperatures greater than -440 K, adatom evaporation occurs more readily 

from the steps leading to an increased adatom density on the terraces that eventually 

exceeds the number of vacancies. 

Conclusions on RAS of Cu (110) 

The results of these experiments match those already reported by several other 

groups examining the same surface. This gives a very good indication that our RA 

spectrometer is working well and is capable of producing high quality results. A new 

feature of these results, in particular for the etching experiments, is that the RAS 

results are taken in real-time, allowing continuous processing and monitoring. This 

compares favourably to previous studies which could only monitor intermittently. 

A significant new result presented here regarding the Cu (110) crystal is found whilst 

etching the crystal at elevated temperatures. As the temperature of the substrate is 

increased the effect of etching visible by RAS and therefore the damage done to the 

surface of the sample diminishes. This continues until -570 K after which damage 

induced by ion impacts are no longer visible. It has also been found that the effect of 

etching is maximised at a temperature of -400 K. A likely explanation for both these 

observations stem from the energy barriers of the created adatoms and the 

subsequent adatom terrace densities and rates of diffusion. This means that below a 

certain temperature the movement of the adatoms is restricted to step edges. Above 

this temperature the probability of an adatom being on a terrace is increased allowing 

a greater number of vacancies to be annihilated. 
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Vicinal Cu (110) 

The next step in these studies is to increase the complexity of the substrate surface by 

the introduction of vicinal copper surfaces. Although there have been some previous 

reports of RAS studies of vicinal surfaces [6.20, 6.21], there has been none on 

copper. The surface used is Cu (771) which is a Cu (110) surface mis-cut by an angle 

of 5.8° ± 0.5°. This should result in a stepped surface with (110) terraces 4 atoms 

wide (-12.6 A) and (I 11) step edge facets of height —1.8 A. The steps run parallel to 

the close packed row of atoms in the [110] direction. A model of the surface can be 

seen in Figure 6.15. 

Figure 6.15 Model of the Cu (771) surface. 

Following the success of the surface preparation for the Cu (110) crystal, exactly the 

same procedure is used again for the Cu (771) surface. LEED of the surface taken at 

room temperature after the sample has been etched and annealed shows the expected 

contribution from the (110) surface plus additional spots from the steps. The 

sharpness of the features confirms the surface is ordered. This is in contrast to an 

etched Cu (I 10) surface which is also known to have steps in the [110] direction but 

does not produce a sharp LEED pattern. The difference between the two is that the 

Cu (77 1) surface is ordered and periodic whilst the etched Cu (I 10) surface is not. 

Figure 6.16 shows the Cu (77 1) LEED pattern and confirms the steps to be along 

[110]. The unit cell of the stepped surface appears about four times wider indicating 

monatomic height steps and a terrace width of —12 A. 
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Figure 6.16 LEED of the Cu (771) surface. 
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Figure 6.17 STM of the clean Cu (771) suiface showing monatomic 

height steps in the [1 10] direction. The cross-section 
corresponds to the black arrow in bottom right-hand of 
the image which is 100 x 100 nin and was provided by Dr 
Martin of the University of Liverpool. 
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STM of the surface corroborate with the LEED images in showing the surface has 

the expected structure. The STM images of the Cu (77 1) surface, Figure 6.17, shows 

a number of steps, all in the [110] direction. The surface has a range of terrace 

widths from —7 A to —3 nm giving a strong indication the surface is not optimally 

ordered. However, several regions can be found, for the example the region indicated 

by the arrow in Figure 6.17, in which a clear (77 1) surface is found. 

Clean Cu (771) 

RAS of the clean Cu (77 1) surface is shown in Figure 6.18 and is plotted alongside 

the RAS of the clean Cu (110) for comparison. Unexpectedly, there appears to be no 

anisotropic contribution from the steps. While the overall shapes of the two spectra 

are similar, there are two main distinct differences; the 2.1 eV feature and the 3.9 eV 

feature are reduced in intensity. These features have previously been assigned to 

surface state transitions at Y. A recent study by Heskett et al. [6.22] of the intensity 

of the 2 eV Y unoccupied surface state of the Cu (110) surface provides a significant 

insight into a connection between the electronic surface state and the surface order. 

By using inverse photoemission spectroscopy and Monte Carlo simulations Heskett 

etal. have shown that an area of 12 x 12 atoms (-25 x 25 A for the Cu (I 10) surface) 

is needed to support the 2 eV Cu (110) 1' surface state. In a similar manner, the 

STM measurements of Li et al. [6.23] have shown the existence of surface states, by 

measuring dl, , on a silver surface. These surface states are prominent on large 

terraces but diminished on smaller areas to the extent that they are not observed in an 

area of 10 x 15 A. The STM image of the Cu (771) surface, Figure 6.17, shows that 

for well ordered areas of the surface, the terraces have a width —12 A. Using the 

argument of Heskett et al., this area is not large enough to support the 2 eV surface 

state. The number of transitions and hence the contribution to the 2.1 eV RAS feature 

will be reduced. As the STM of the Cu (771) surface shows a range of terrace widths 

of up to —3 nm, a limited number of surface states will be supported and will give 

rise to the measured intensity of the 2.1 eV RAS feature. 
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Figure 6.18 RAS of the clean Cu (771) and Cu (110) surfaces. 

Heating of Cu (771) 

The temperature dependence of the Cu (771) surface, shown in Figure 6.19, is 

essentially the same as the temperature dependence of the Cu (110) surface, shown in 

Figure 6.8. The difference between the two sets of spectra relate to the differences 

seen in the clean RA spectra from these samples: the reduction of the features at 2.1 

eV and 3.9 eV. These differences are highlighted in Figure 6.20 which shows a 

comparison of the spectra obtained from the two samples at a temperature of 773 K. 

A new difference between these spectra not apparent in the room temperature 

measurements is the intensity in the UV region of the spectra. The UV component of 

the RAS is significantly higher from the Cu (77 1) surface. As with the Cu (110) 

surface, the 2.1 eV peak from the Cu (771) is reduced in intensity, broadened and 

shifted to a slightly higher energy as the temperature is increased for the same 

reasons as previously discussed. Similarly, there is no evidence of change from the 

3.9 eV peak whilst the position of the 4.2 eV peak is reduced in energy to 4.1 eV in 

the same way as was observed from this feature from the Cu (I 10) surface. 
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Figure 6.19 RAS of the clean Cu (771) surface as afunction of 
temperature. 
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Figure 6.20 Comparison of the clean RAS spectra for the Cu (110) and 
Cu (771) surfaces taken at 773K. 
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Cleaning Cycle of Cu (771) 

Etching 

The change in the RA from the Cu (77 1) surface shown in Figure 6.21 is essentially 

the same as the equivalent results from the Cu (110) surface. A comparison of the 

saturated RA spectra can be seen in Figure 6.22, this again highlights the differences 

in the two surfaces at 2.1 eV and 3.9 eV. In this case the effect of a having a reduced 

3.9 eV peak is to give a broader peak at 4.1 eV which reveals more of the true shape 

of the 4.1 eV feature. In the RA from the Cu (110) surface, the shape of this feature 

has been disguised by the contribution at 3.9 eV. One significant difference between 

the Cu (I 10) and Cu (77 1) surfaces under etching is the rate at which they reach 

saturation point. The Cu (110) surface typically takes -30 minutes whilst the Cu 

(771) surface typically takes -.20 minutes. The latter is quicker to saturate as etching 

has a greater effect on this surface. The reason for this difference relates to the 

number of steps on the surface. As discussed in the Cu (110) section, the adatoms 

created from ion impacts, which can annihilate vacancies, cannot be easily detached 

from steps. On the Cu (771) surface there are many more steps, if the surface is 

optimally ordered then there should a step every 4 atoms. This means there is a lower 

density of adatoms on the terraces as more are attached to the steps, therefore the 

relative number of vacancies is higher. 

Annealing 

As with the Cu (110) surface, the 4.1 eV feature is reduced in intensity and the RA 

changes from the characteristic etched RA to the characteristic elevated temperature 

RA (Figure 6.23). However, the rate at which the Cu (771) surface heals is higher. 

As the Cu (771) surface has more steps, there is a larger supply of adatoms that can 

repair the surface. Overcoming the adatom detachment energy barrier is not thought 

to be a concern in this situation, at a temperature of -.800 K, there is an abundant 

supply of energy. 
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RAS of the clean Cu (771) surface studied during 
bombardment by 0.5 KeVAr ions at -300 K. 
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Figure 6.22 Comparison of the clean RA spectra for the Cu (I 10) and 
Cu (771) surfaces taken after 30 minutes Ar ion 
bombardment at -300 K 
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Figure 6.23 	RAS of the etched Cu (771) surface studied during 
annealing to -840 K. 

Etching at Elevated Temperatures 

Similar to Cu (110), the RA measured from the Cu (77 1) surface shows that the 

damage done to the surface by etching decreases with increasing temperature (Figure 

6.23). This will happen for the same reasons. A comparison of the two figures which 

show the RA spectra after etching over a range for temperatures for the two surfaces, 

Figures 6.13 and 6.24, do not clearly show which surface is affected more during by 

temperature during etching. Neither surface shows evidence of damage to the surface 

whilst being etched at temperatures greater than -673 K although the Cu (771) 

surface has more evidence of etching at a temperature of 573 K. This implies that the 

Cu (771) is slightly less effective in counteracting the effect of etching than the Cu 

(110) surface. The energy barrier and diffusion rate discussion of before is still valid 

for this situation. As the Cu (77 1) surface has more steps than the Cu (I 10) surface, a 

greater number of adatoms are attached to steps instead of being on the terraces, 

where they can recombine with vacancies. In order to obtain the situation for the Cu 

(77 1) where the number of adatoms is in equilibrium with the number of vacancies, it 

is necessary to apply more energy than is required for the Cu (110) surface. The 

difference in energy required will be proportional to the difference in number of 

steps and is a direct result of the adatom detachment energy barrier being very high. 
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The values of these energy barriers are given in Table 1 of reference [6.19] and show 

that the detachment energy for the (110) surface is different by a factor of two in the 

[001] and [110] directions, the higher energy barrier being in the [110] direction. It 

would be possible to confirm the validity of the previous argument by studying a 

surface which had steps running in the [001] direction. If this theory is correct, it 

should require a significantly lower energy to detach adatoms from the steps onto the 

terraces. A higher density of adatoms on the terraces would counter act the effect of 

etching at a lower temperature. Preliminary studies of the Cu (1090) surface as it is 

etched at various temperatures (Figure 6.25) show no evidence of damage to the 

surface at temperatures above —473 K, —100 K lower than the equivalent result from 

both Cu (I 10) and Cu (77 1) surfaces. 

-.- 300K -o-  423K -*- 473K 
-&- 573K -.- 673K -a--  773K 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
Energy (eV) 

Figure 6.24 RAS of the Cu (771) surface after ion bombardment at 
elevated temperatures. 
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Figure 6.25 	RAS of the Cu (1090) surface after ion bombardment at 
elevated temperatures. 

Conclusions on RAS of Cu (771) 

The RA measured from the Cu (77 1) surface are essentially the same as the Cu (I 10) 

spectra. No additional contribution to the measured RA from the steps has been 

observed. The main difference between the spectra is the reduced intensity of the 2.1 

eV and 3.9 eV features which is thought to be caused by the narrow terraces that are 

not able to support surface states. As the Cu (771) surface is etched, damage is 

caused to the surface at a faster rate because a higher number of adatoms are attached 

to the steps, reducing the rate of annihilation of vacancies. When the Cu (771) 

surface is etched at elevated temperatures, it is suspected that evidence of etching 

will be seen at a higher temperature than for the Cu (110) surface. This is because of 

the higher number of steps which would need a greater amount of energy to allow the 

same number of adatoms to be detached from the steps onto the terraces as compared 

to the Cu (110) surface. Confirmation of this has been found from preliminary 

studies of the Cu (1090) surface which has steps running in the [001] direction and 

requires a significantly lower amount of energy to detach adatoms from steps. 
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Conclusions 

The study of metal crystals is used to gain 'background information which is relevant 

to many applications. In particular, the morphology of polymer alignment layers can 

be simulated by ion bombarding and mis-cutting these crystals. The form and effect 

of these surfaces on the RAS is studied over a range of processes. 

The Cu (I 10) and Cu (77 1) surfaces have been studied for the first time by RAS in 

real-time during etch and anneal cycles. The final result of these processes are clean 

ordered surfaces. A comparison of the RA measured from each surface indicates 

differences only in the features at 2.1 eV and 3.9 eV, both of which have been 

attributed to surface state transitions. The intensity of these features are reduced in 

the RA from the Cu (77 1) surface. STM images of this surface show narrow terraces 

which may not be able to support surface states and would therefore result in a 

reduced intensity at 2.1 eV and 3.9 eV. 

Etching Annealing Cooling 

2.1eV 

1110 10 

771 4.2eV 

0 	15 	30 	45 	60 	75 	90 
Time (mm) 

Figure 6.26 Time dependence of the main RAS features from the 
Cu(11O) and Cu(771) surfaces studied during etching, 
annealing and cooling. 
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Differences in the behaviour of the main features of these surfaces during the 

bombard/anneal cycle are illustrated in Figure 6.26 as a function of time. Although 

not clearly shown in this figure because saturation is not reached, the effect of 

etching is slightly different for the two surfaces. As the Cu (771) has a greater 

number of steps, more energy is required to get a specific number of adatoms from 

the steps onto the terraces as compared to the Cu (110) surface. When the amount of 

energy is limited, for example in this situation when etching occurs at room 

temperature, the Cu (771) surface is less capable of overcoming the effect of etching 

than the Cu (I 10) surface as it has less adatoms available. Although during etching at 

lower temperatures the steps are detrimental to the effect of adatoms annihilating 

vacancies, the opposite is true at high temperature when the surface is annealed. 

Figure 6.26 shows the Cu (77 1 ) surface to heal quicker as there are more adatoms 

available due to the higher number of steps. 

Studies of the effect of etching at elevated temperatures shows several things. For the 

Cu (110) surface, the effect of etching maximised at -400 K and cannot be seen 

above -573 K although it is thought the exact value may be somewhat lower. 

Similarly for the Cu (771), the effect of etching cannot be seen above -573 K. A 

possible explanation has been given in terms of the rate of diffusion of adatoms and 

the adatom step detachment energy barrier. Further evidence in favour of the 

explanation is found in preliminary results of RA measurements from the Cu (1090) 

surface. 

Etching these copper surfaces at room temperature has shown grooves to form in a 

direction that is dependent on the orientation of the crystallographic axes of the 

substrate and independent of the azimuthal orientation of the substrate with respect to 

the incident ions. This occurs because of the rates of diffusion of the vacancies and 

adatoms created during the etching. The diffusion process is highly temperature 

dependent and so at high temperatures, when the rate of diffusion is high, the effect 

of etching is reduced. This is different from what was found in Chapter 4 when the 

polymer surfaces where bombarded in a similar manner. In the case of the polymers, 

because of the random orientation of the polymer chains, there is no intrinsic surface 
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Chapter 7: ADRAS of Organic Molecules 

'If! have ever made any 
valuable discoveries, it has 
been owing more to patient 
attention, than to any other 
talent' 
Sir Isaac Newton (1642- 1727) 

Summary 

A potentially important experiment, based around the previously introduced ADRAS 

technique, is discussed in this chapter. The example considered involves adsorbing 

chiral molecules on to the Cu (110) surface. Information contained at different 

azimuthal angles of this sample, which has distinct orientation directions for the 

substrate surface and adsorbate, could be exploited using ADRAS and have 

applications to enantiomeric catalysis and biomolecular adsorption. 
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Introduction to RAS Studies of Adsorbates on Copper 

Following the studies of copper surfaces in the previous chapter, the next logical step 

to replicate a liquid crystal/alignment layer system is to deposit organic molecules on 

the Cu (110) surface. This could then be followed by deposition of organic molecules 

onto the more complex stepped and kinked Cu (110) surfaces. These systems will be 

studied using the same techniques as before: RAS and LEED. Although, ideally a 

combination of RAS and LEED in addition to other surface sensitive techniques, for 

example STM, would be used. 

Previous RAS studies of adsorbates on copper systems include the original 

experiments used to determine the origin of the characteristic 'clean' copper 

spectrum. This spectrum, which was introduced in Chapter 6, has its main features 

located around 2.1eV and 4.0eV. When the clean surface is covered with an 

adsorbate, the peak at 2.1eV is reduced in intensity. This behaviour has been 

attributed to the reduced number of unoccupied surface states on the copper surface 

as a result of the adsorbate [7.1] and ties in well with previous work on the same 

sample which used inverse photoemission to observe these states at around the same 

energy [7.2]. The existence of these unoccupied surface states had been predicted in 

an earlier report by Jiang et al. [7.3]. Many experiments have been reported in which 

the adsorption of contaminants onto the copper surface have caused a change in the 

measured anisotropy [7.1, 7.4, 7.5] but it was Frederick et al. [7.6] who first reported 

the observation of RA originating from the intermolecular transitions within an 

organic compound adsorbed onto the copper surface. By studying an adsorbate that 

has electronic transitions within the spectral range of the RA spectrometer, Frederick 

at al. showed it was possible to use RAS to obtain information about the orientation 

of the adsorbate. A very recent report by Martin et al. further demonstrates the use of 

RAS in this manner and is used in conjunction with JR measurements and STM to 

study the orientation of adsorbed molecules on the copper surface [7.7]. The ability 

to obtain this type of information is only going to become more important in the 

future as the applications and uses of molecular and sub-nanometer scale engineering 

are increased. 
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Introduction to Chirotechnology [7.8] 

The basis of chirotechnology dates back to around the 19th  century to Jean—Baptiste 

Biot and his once student Louis Pasteur. Pasteur introduced the concept that the 

optical activity of certain organic substances occurs as a direct consequence of its 

molecular structure. To be precise, he observed that the optical activity of a molecule 

varied with its 'chirality'. A molecule is said to be 'chiral' when it is not 

superimposable on its mirror image and 'enantiomers' are the isomers of a molecule 

that are chiral. An example of a chiral molecule is tartaric acid, the isomers of which 

can be seen in Figure 7.1. The nomenclature of these isomers is based around the 

tetrahedral bonding of the carbon atoms. By prioritising the groups bound to the 

carbon atom it is possible to denote that atom as being either left (denoted S, from the 

Latin 'sinister') or right handed (denoted R, from the Latin 'rectus') [7.9]. In his 

work, Pasteur studied solutions of tartaric acid and found the polarisation of the light 

to be rotated clockwise or not at all. He later found that a solution of a single 

enantiomer would rotate the polarisation of light in one particular direction whilst a 

solution containing a equal mixture of opposite enantiomers (a racemic solution) 

would not, as the effect of the isomers cancelled each other out. In the case of tartaric 

acid, the R, R enantiomer rotates the polarisation clockwise whilst the S, S 

enantiomer rotates its anti-clockwise. 

COOH COOH COOH COOH 
I I 

HO—C—H 
I 

H—C--OH 
I 

H—C—OH 
I 

HO—C—H 
I I 

H—C—OH 
I 

H—C—OH HO—C—H HO—C—H 
I I 

COOH 
I 

COOH 
I 
COOH COOH 

(S, S) (R, S) (R, R) (S, R) 

Figure 7.1 	The isomers of the chiral molecule tartaric acid. 

The applications of chirotechnology are wide and range from the preparation of new 

drugs to catalysis. An example of the importance of chirality is the synthesis of the 

thalidomide compound [7.10]. The left handed compound can be used as a 

tranquilliser whilst the right handed version can cause severe disabilities. 
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ADRAS and Chirotechnology 

The initial examples of ADRAS given in Chapter 5 were devised to demonstrate that 

RA spectra do not always obey the predicted cos(20) dependency and can change 

shape as well as amplitude as the azimuthal angle is varied. It was shown that the 

information contained within the ADRAS curves could enable independent sources 

of optical anisotropy to be separated, provided they have a distinct angular 

dependence. The previous examples used well-understood samples and confirmation 

of the separation of the optical anisotropy was obtained by switching off each 

particular contribution in turn. Obviously, the control of the sources of optical 

anisotropy is not always possible and so ADRAS could prove invaluable when 

characterising unknown samples for the first time. Here, the potential of ADRAS is 

emphasised further when it is applied to the chiral modification of surfaces for 

enantio-selective catalysis and biomolecular adsorption studies. 

Ortega Lorenzo et al. [7.11, 7.12] have shown R,R-tartaric acid can adsorb onto the 

Cu (110) surface to form extended hydrogen bonded domains with a distinct 

orientation to the axes of underlying substrate. As the equivalent counter-rotation 

domain cannot be formed the surface is rendered chiral. This has also been shown to 

be the case for the same chiral molecule on a Ni (I 10) surface [7.13]. Through 

experiment and simulations, ADRAS will be shown to be well suited to detecting 

chiral surface modification. It is expected that the RA spectra taken at 0=00  will 

show a typical copper spectra containing a strong component from the adsorbate. At 

an angle corresponding to the axis of symmetry of the adsorbate, the RA spectra 

should again be comprised of information from both the sources of optical 

anisotropy. However, when the system is studied at an azimuth angle of 0=450,  the 

amplitude of the RA from the copper surface will be zero, therefore the total 

measured RA will be solely due to the adsorbate. From the work of Ortega Lorenzo 

et al. it is known that the axis of symmetry of the adsorbate is at -20° to the [001] 

direction of the substrate and so the RA spectra measured at 0=450  will be a scaled 

by the known factor of cos(20). 
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Experiment 
These experiments were carried out using a Cu (110) single crystal which was 

prepared in the same manner as described in Chapter 6. Due to the detrimental effect 

of the high number of experiments conducted using this crystal in the past, some of 

which have involved the deposition of large quantities of organic compounds at high 

temperatures, the surface has become contaminated. Numerous cleaning cycles have 

been unsuccessful in resolving this issue. A remedy for this would be to have the 

sample re-cut and re-polished, however, the sample is still suitable for use to obtain 

preliminary measurements and information regarding the deposition procedure and 

the suitability of R, R-tartaric acid to this experiment. The 'clean' spectrum obtained 

from this crystal can be seen in Figure 7.2 and appears slightly different to those 

found previously and those which have been reported numerous times before (see 

Chapter 6 for details). Certain similarities can be seen between this spectrum and the 

spectrum from a copper sample exposed to ambient conditions [7.15], in particular 

the reduced size of the 2.1 eV feature. The figure shown has not had the window 

correction function applied to it, explaining why the spectrum appears to slope 

upwards at higher energies. The remaining features can be considered to be real' as 

they vary with cos(20), as expected. 

The deposition of the tartaric acid molecules onto the copper surface was carried out 

using the sublimation apparatus described in the Vacuum Chamber section of 

Chapter 3 and using the same method as Ortega Lorenzo et al. [7.11]. That is, firstly 

out-gassing the tartaric acid at 300 K and then heating the acid to 370 K whilst 

exposing the copper surface. During the sublimation, the pressure in the main 

chamber was —1x10 9  mbar. As the copper was exposed to the sublimated acid, RA 

spectra were taken, the change in the RA of the copper spectra can be seen in Figure 

7.3. As expected the 2.1 eV feature is diminished, corresponding to a reduction in 

unoccupied surface states as the acid bonds to the surface. Additionally, the centre of 

the contaminant peak appears to shift to a lower energy, as does the feature normally 

observed around 4.0 eV. These results strongly indicate the suitability of this acid for 

these experiments as the RA from the molecule falls within the energy range of the 

spectrometer. 
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Figure 7.2 	The contaminated Cu (I 10) spectra. 
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Figure 7.3 	Development of the Cu (I 10) RA spectra upon adsorption 
of R, R - tartaric acid. 

Upon completion of the sublimation, the copper surface was examined using 

LEED. Initially the LEED pattern 	appeared very similar to that reported by 



Ortega Lorenzo et at. suggesting the molecules had been successfully adsorbed on 

the surface in an ordered fashion. This pattern disappeared within seconds to leave 

only a poor lxi pattern, which is attributed to the substrate surface being covered 

with a disordered over-layer. It is not surprising that these preliminary experiments 

should suffer from such problems as Ortega Lorenzo et at. have shown the ordering 

of the surface to be very sensitive to temperature and time [7.11]. From this it can be 

concluded that in principle the sublimation was a success but needs more time spent 

on it to perfect the technique and to obtain the necessary orientated adsorbate layer. 

An ADRAS study of the surface at this stage revealed only the cos(20) azimuth 

dependence associated with the copper surface which is to be expected as a 

disordered overlayer would have no net effect on the angular variation. 

Simulations 
Simulations of this experiment were made using the Berreman 4x4 matrix method. 

The RA spectra from the clean Cu (110) surface is simulated by allowing the 

adsorption of [001] polarised light at 2.1 eV which reproduces one of the main 

features of this surface. The simulated Cu (110) RA spectra at azimuth angles of 00, 

30°, 45° and 750  can be seen in Figure 7.4 and follow the cos(20) angular 

dependency. The adsorption of the tartaric acid is modelled by reducing the intensity 

of the 2.1 eV feature and by adding a new adsorption at 3.5 eV. The feature was 

added at this energy to correspond with the peak seen in Figure 7.3. Although the 

orientation of the adsorbed molecule is known to lie at about 20° to the substrate 

[7.13, 7.14], for simplicity in the analysis of these simulations it is set to lie at 300  to 

the [001] direction. The RA from the molecule due to optical absorption will be 

maximised at this angle. The simulated Cu (110) spectra with the tartaric acid 

adsorbed on the surface is shown for azimuthal angles of 0°, 30°, 45° and 75°, in 

Figure 7.5. At 45°, the amplitude of the intrinsic optical anisotropy from the copper 

surface is reduced to zero and so does not contribute to the spectra. The signal seen 

arises only from the adsorbed over-layer. Similarly at 75° the spectra is solely from 

the copper surface as the optical anisotropy from the adsorbate has been 

extinguished. Comparison of the simulated adsorbate spectra at 0° and 30° show that 

standard RAS measurements would be very similar and would not reveal much new 
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information. In fact as the sample is rotated from 00  to 30°, the 2.1 eV will only be 

reduced in intensity by a factor of )/ and so the standard RAS measurements may not 

be able to determine if either one were chiral in nature. However, adsorption 

geometry permitting, a racemic mixture of enatiomeric domains would leave the 

optical axis parallel to the mirror planes of the Cu (110) surface, giving a null RAS 

spectra for 45°. 
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Simulation of the clean Cu (I 10) surface at azimuthal 
angles of 0°, 30°, 45° and 75°. 
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Simulation of the Cu (I 10) covered with a chiral 
absorbate aligned at 30° to the substrate axis shown at 
azimuthal angles of 0" 30°,45° and 75°. 
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Conclusions 

The extension to the normal RAS technique, ADRAS, which was introduced in 

Chapter 5 has been shown here to have potential applications in the currently topical 

areas of research of enatiomeric catalysis and biomolecular adsorption. The example 

considered here involves the adsorption of the chiral tartaric acid on the clean Cu 

(110) surface. It is known that the optical axis of the adsorbate lies at an angle of 

approximately 20° to the optical axes of the substrate surface. By using ADRAS it is 

possible to extinguish the contribution of the copper surface to the measured RA and 

hence isolate the RA from the adsorbate molecule. ADRAS also has the potential to 

determine the quantity of enantiomers in a racemic mixture. 

In this chapter, details of the experiment have been given although it has not been 

successfully completed due to time constraints. Simulations of the adsorbate covered 

copper surface at a selection of azimuthal angles have been presented here to 

demonstrate the principle of the experiment. 
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Chapter 8: Dodecane on Graphite 

'The difference between the 
impossible and the possible lies 
in determination' 
Tommy Lasorda (1927-) 

Summary 

For the optimal alignment of LCs, a uniform surface is desirable. Chapter 4 has 

shown that as polymers are put onto a substrate some structures can be formed 

during drying. In this chapter the evaporation of dodecane from a highly ordered 

pyrolytic graphite surface is used as a model system to study the drying and 

dewetting processes which are found to result in the formation of interesting 

nanoscale patterns and stable structures. The formation of these structures has been 

studied as a function of evaporation time and temperature using AFM. At low times 

and temperatures, the general structure of the patterns on the surface is comprised of 

sub-micron sized holes and nano-scale ripple structures. As the time and temperature 

are increased, these holes grow into micron sized features by two independent 

mechanisms. The work presented in this chapter has been submitted for publication 

[8.1]. 
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Introduction to Dewetting and Drying 

The drying and dewetting of liquid films is of fundamental importance to many 

aspects of science and technology. Numerous applications exist, for example the 

drying of ink and the lubrication of engines, which would benefit from a deeper 

understanding of the mechanisms involved in dewetting and drying. Obtaining this 

knowledge could lead to the prevention of dewetting and allow the formation of 

homogeneous films. For the particular application of liquid crystal alignment layers, 

as studied in this thesis, a greater understanding of these processes could allow more 

uniform polymer films to be created. This could result in the removal of the drying 

structures seen in Figures 4.7 & 4.11 (a) and create better alignment layers. It may 

also be possible to apply the same principles to the LC molecules themselves. 

Although drying and dewetting has been the subject of much interest over the last 

decade, a complete understanding is yet to be achieved. In this work the patterning of 

an n-alkane on a highly ordered pyrolytic graphite (HOPG) surface after drying and 

dewetting is studied using AFM. 

Previous work on these samples has shown the existence of stable nanoscale features 

on the 'dry' surface. The dimensions of these are thought to be dependent on the size 

of the alkane used [8.2, 8.3]. The stability of these structures is believed to arise from 

the absorption of the bottom n-alkane layer onto the graphite surface with the carbon 

chain lying parallel to the surface and with the hydrogen atoms fitting into the 

centres of the hexagonal structures formed by the carbon atoms of the graphite [8.4]. 

Figure 8.1 	Model of the HOPG surface. 
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A model of the HOPG surface can be seen in Figure 8.1. With alkanes, and other 

materials, for example liquid crystals, this absorption can result in domains of 

aligned molecules [8.5]. At the meeting point of such domains, the formation of a 

characteristic chevron type structure is possible and has been observed for some 

materials by scanning tunnelling microscopy [8.6, 8.7]. 

Dewetting has been characterised by three stages, the rupture of a film leading to the 

formation of holes, the growth of the holes resulting in a network structure and then 

the aggregation of material causing the formation of structures on the substrate [8.8]. 

Two mechanisms of triggering film rupture have been suggested [8.9], nucleation 

and spinodal dewetting. The first results from the nucleation of dry spots which are 

caused by defects/heterogeneities or thermal activation [8.10]. The second is due to 

long range molecular forces [8.11] destabilising the film and causing the exponential 

growth of surface fluctuations resulting in spontaneous rupture of the film. 

Drying can be described as the removal of liquid material from a surface due to 

evaporation. The rate at which material is removed from the surface is dependent on 

factors such as surface area, temperature, humidity and air velocity and can be 

described on the basis of kinetic theory. If the liquid film wets the solid surface (this 

corresponds to this experimental system) there are two options: (i) the thickness of 

the film remains uniform and decreases continuously until total evaporation has 

occurred; or (ii) for a specific range of film thickness uniform films are unstable and 

rupture into two different phases (thickness). This second scenario is more 

complicated and it has been shown to produce pattern formation in case of water on 

cleaved mica [8.12]. 
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Sample Preparation 

Samples are created by depositing 1.0 tl of C12H26  onto the freshly cleaved HOPG 

surface at —295 K. The samples are then heated to temperatures of 373 K, 398 K, 423 

K, 448 K or 473 K for either 5, 10 or 15 minutes before being left to cool naturally to 

—295 K for imaging. Temperature measurements are taken from the surface of the 

sample heater; it is therefore expected that the temperature of the surface of the 

HOPG will be lower than the measured value. Several different areas of the same 

samples have been studied and although they are found to be inhomogëneous, certain 

similarities do exist between the observed patterns. Figure 8.2 shows three different 

areas of a sample prepared by heating to 373 K for 10 minutes after the alkane is 

deposited onto the HOPG surface. Images (a) and (b) appear very similar to each 

other as they have roughly the same patterns formed on the surface, except with a 

minor discrepancy in the size of the holes. Although the appearance of the structures 

shown in image (c) are marginally different to the other areas of the sample; the 

periphery of the holes tend to be not as smooth, the overall surface coverage is 

similar and appears to be at roughly the same stage of evaporation. 

Figure 8.2 	AFM of three different areas of a single sample prepared 
at 373 Kfor 10 mm. Each image shows an area of 5 x 5 
turn with maximum heights of 5.5 mn, 6.2 nm and 5.0 nm 
respectively. 
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Dewetting and Drying of Dodecane on Graphite 

Results 

All experiments were carried out using the AFM operating in intermittent contact 

mode. The cantilevers used have a spring constant of 1.2 - 5.5 N/rn (typically 2.8 

N/rn), a resonant frequency of 60 - 100 kHz (typically 75 kHz) and nominal tip 

radius of --10 nm. The HOPG surface (AGAR) was initially examined directly after 

cleaving and found to have similar characteristics to those reported by Martin et al. 

[8.2]. The alkane used for these experiments is n-dodecane (C12H26) which has 

dimensions of 1.85 nm in length, -0.4 nm in width and a boiling point of 469 K. A 

gas chromatograph mass spectrometry analysis of the alkane gives strong evidence to 

the purity being over 99%. This analysis was carried out by Ms S. Shirran of the 

School of Chemistry at the University of Edinburgh. 

Figures 8.3 - 8.8 show the drying and dewetting patterns which have been observed 

at various heating times and temperatures. For each permutation of heating time and 

temperature, sizeable quantities of dodecane remained on the HOPG surface to form 

patterns. These have been found to remain on the surface for many hours after the 

samples are prepared. Cross-sectional AFM images of the samples at different 

heating times and temperatures can be seen in Figure 8.9 and show the patterns to 

have a preferential thickness of -2.5 nm of dodecane on the HOPG surface. This 

thickness approximately corresponds to either six layers of dodecane lying flat on the 

surface or two layers lying flat and one layer perpendicular to the surface. The latter 

formation is similar to the structures observed by Martin et al. [8.2, 8.3] who 

reported HOPG surfaces decorated with irregularly shaped features, some with sharp 

peaks. Martin proposed these features were formed by two layers of alkane 

orientated parallel to the HOPG and another layer orientated perpendicular, on top of 

the first two. The AFM images shown here also reveal larger features along the step 

edges where material has aggregated. An interesting point to be noted is that the rims 

of the holes do not have the aggregation of material normally associated with the 

drying process as a result of the 'coffee stain effect (giving indirect proof of the high 

purity of the liquid). 

166 



167 



Figure 8.8 	AFM images samples prepared at (a) 373 Kfor 5 min, (b) 
423 Kfor 5 inin and (c) 473 Kfor 15 inin corresponding 
to Figures 8.3 (a), 8.5 (a) and 8.7 (c). Each image is] 
pill  and has maximum heights of 6.0 nm, 5.0 nin and 
5.0 mini respective/v. 
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Figure 8.9 	AFM cross-sections of samples prepared at (a) 373 Kftr 
5 mm, (b) 473 Kfor 5 mm, (c) 373 Kfor 15 min and (d) 
473 Kfor 15 mm. The cross sections correspond to the 
horizontal lines shown on Figures 8.3 (a), 8.3 (c), 8.7 (a) 
& 8.7(c). 
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Figure 8.10 Cross-sections of the AFM images of the dodecane on 
HOPG samples corresponding to Figure 8.8 showing the 
relative scales of the preferred film thickness and the 
residual debris. 
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As would be expected, at low heating times and temperatures the coverage was far 

greater than compared to higher heating times and temperatures. In general, two 

different types of patterns were observed at low heating times and temperatures. The 

first of these is a ripple structure which has large ruptures randomly spread out over 

the surface (Figures 8.3 (a), 8.4 (a) & 8.5 (b)), the typical size of the large ruptures is 

initially about 1 pm. The second is a 'Swiss cheese' pattern formed from a network of 

small holes in the film (Figure 8.3 (b) & 8.5 (a)). An additional feature is the 

numerous large globules clearly seen in Figure 8.3 (a), for example. These are 

thought to occur due to the accumulation of the alkane and are deemed 

inconsequential with regards to the formation of the patterns as they do not appear at 

the increased temperatures and times. We define large holes as having dimensions 

over -1 pm, small holes having dimensions of -100 nm to -1 Im and the ripple 

structure having typical dimensions of less than -100 nm. These two different 

structures appear to tie in well with the two dewetting mechanisms mentioned 

previously, that is, (i) heterogeneous nucleation (due to defects and possibly 

contaminants) and thermally activated dewetting and (ii) long range molecular forces 

destabilising a film resulting in film rupture. However, dynamic effects during drying 

could be causing variations in the patterns within the same sample and their influence 

on pattern formation cannot be excluded. 

At high heating times and temperatures, the overall coverage of the surface is low 

and the patterns formed on the surface typically appear long and thin (Figure 8.5 (c), 

8.6 (b), 8.6 (c), 8.7 (b) & 8.7 (c)). These features are formed from the coalescence of 

the ruptures in the film as a result of the evaporation of the liquid, which is known to 

occur faster at the edges of liquid films. Interestingly, in this case, as the film 

gradually evaporates over time, the preferential film thickness remains. Instead of a 

decrease in the film thickness as the material is removed from the surface we see 

either an increase in the surface area of the ruptures or a decrease in the density of 

the ripple structure. In the cases where the bulk of the material has been removed 

from the surface to leave a 'dry' HOPG area, residual debris remains. This occurs at 

high heating times and temperatures when the coverage is low and also at low 

heating times and temperatures in the large holes formed within the ripple structure 
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but not in the holes of 'Swiss cheese' pattern. Figure 8.10 shows smaller area AFM 

scans of the patterns formed and include some 'dry' areas of the graphite surface. 

Within the 'dry' areas residual structures can be seen in images (a) and (c) but not in 

image (b) which corresponds to a 'dry' area (a hole) within the 'Swiss cheese' 

structure. The height of these residual features is constant at —1.1 nm, as shown in 

Figure 8.10. More structural information could be obtained by examining the surface 

with a smaller range/higher resolution piezo than was used here. 

There appears to be two general mechanisms for the dodecane covered HOPG 

surface to get from the high coverage state to the lower coverage state. These 

mechanisms appear to be dependent on the starting pattern (either a 'Swiss cheese' 

structure or a ripple structure) although the end result is largely the same. The only 

difference being the presence of the 1.1 nm sized debris left on the surface in the 

case of the ripple structure. In the case of the 'Swiss cheese' system, the holes 

continue to grow in size, coalescing with each other to form larger holes. This 

process is thought to continue until the surface is dry. The series of images; Figure 

8.3 (b), 8.5 (a) and 8.6 (c) show a possible reconstruction of this dewetting/drying 

mechanism and results in a surface which is free of the 1.1 nm sized residual debris. 

If the starting structure has a ripple effect then over time, as the dewetting/drying 

proceeds, the ripple structure appears to thin out. Additionally, in a similar manner to 

the previous mechanism, larger holes can nucleate out of the ripple structure which 

will then grow and coalesce as before. A possible reconstruction of this 

dewetting/drying mechanism can be seen in the series of the images of Figure 8.3 

(a), 8.4 (a), 8.4 (b), 8.7 (a) and 8.7 (c) and results in debris on the 'dry' graphite 

surface. 

Figure 8.11 shows a series of consecutive elevated temperature AFM images, taken 

in-situ, which clearly show the drying/dewetting of the dodecane from the HOPG 

surface as a function of time. This series demonstrates nucleation due to both defects 

and thermal activation. As a direct consequence of imaging at elevated temperatures 

over a larger area, the initial ripple structure (which has dimensions of less than -lOO 

nm) and the larger holes which appear at this early stage cannot be clearly 
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distinguished. These images show that over time, as previously described, the holes 

nucleate and then grow into each other leaving large dry areas speckled with residual 

debris. As before, the aggregation of material along the step edges gives the patterns 

an elongated appearance. 

The structures reported by Martin et al. [8.2, 8.3] are also observed in some of the 

figures presented here, for example in Figures 8.6 (a) & 8.5 (c). Similarly, some of 

the patterns reported here can be seen in Figure 11 of reference [8.2]. This image 

shows the slightly different system of n-pentane on HOPG in which a 'Swiss cheese' 
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type structure is visible. Although an in-depth discussion of this structure was not 

given by Martin et al., we refer to it here to show the close similarities between the 

two systems. This figure is also used to emphasise the new results we have obtained 

by studying this system at earlier stages of evaporation, when more material is on the 

surface, by the use of lower HOPG surface temperatures than Martin. 

Discussion 

In this system, there are two competing phenomena occurring at the same time: 

drying and dewetting. As they occur simultaneously and since the majority of our 

AFM measurements are snapshots of an evolving system, it is difficult to judge their 

individual contributions to the observed structures. 

A variety of patterns of various length scales have been observed previously in 

drying drops of colloid solutions [8.13] and have been associated with the 

antagonistic effects of flow during drying and pinning of surface heterogeneities and 

irregularities. Although the patterns presented here are on a much smaller scale than 

those observed by Deegan et al., one could argue that the fundamental ingredients for 

pattern formation due to drying are present in our system: nanometer-size 

irregularities and pinning effects could arise from preferential alignment and 

adsorption of the dodecane molecules on the graphite surface, as observed previously 

[8.5 - 8.7]. The small differences between the patterns observed at different areas of 

the same sample may arise from the rapid and far-from-equilibrium drying process. 

However, the appearance of holes of several sizes and of the rippled structure is 

reminiscent of well-known dewetting mechanisms: large holes of different sizes are 

very common features in our measurements. The variety of their size indicates a 

thermal activation process. It is well-known that thermal nucleation initiates the 

continuous formation of ruptures leading to holes of different sizes [8.8, 8.10]. The 

ripple structure is reminiscent of the spinodal dewetting process known to occur as 

the thickness of the liquid layer becomes sub-microscopic in size. Our system can be 

categorised as a 'Type IV" system [8.14] the thin alkane film experiences a long 

range van der Waals repulsion combined with a short range attraction resulting in a 

metastable interface potential (stable for sufficiently thick films but unstable for 
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films below a limiting thickness which is usually at the nanometer scale) [8.8, 8.10]. 

A thin liquid film becomes unstable if the effective interfacial potential exhibits 

negative curvature at a range of thickness'. In many situations this arises from long-

range attractive forces (positive Hamaker constant). In type IV systems the negative 

curvature appears from the combination of long-range repulsion and short-range 

attraction. For a detailed discussion of the phenomenon and the connection of the 

interfacial potential and the resulting dewetting patterns see ref. [8.8], [8.10], [8.14]. 

The long range repulsion is associated with a negative effective Hamaker constant: A 

= A11 - A1 = 5 X 1020 - 15.3 X 1020 J <0 (A11  = Adodecane  = 5 X 10 1 
 J, Ass = Agraphite  

47 X 10-20J, Asi = Agraphitedodecane = (AdodecaneAgraphite) U2  = 15.3 x 1020  J) [8.15] and 

stabilises the films above the limiting thickness. The short range attraction can 

originate from packing or steric effects: it has been shown that there are situations 

where a liquid cannot spread on its own monolayer resulting in "autophobic" 

behaviour at sufficiently low thicknesses [8.16]. The aligned adsorption of alkanes 

on the graphite surface is well-known from STM measurements [8.5 - 8.7]: ultra-thin 

alkane monolayers seem to form crystallised" regions on the graphite surface. 
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Conclusion 

In this chapter it has been shown that the evaporation of n-dodecane on graphite 

results in the formation of patterns which are tentatively attributed to two different 

dewetting scenarios: (i) heterogeneous and thermal nucleation of "dry" spots and (ii) 

spinodal dewetting at nanometer-size film thickness' due to combination of long-

range repulsive and short range attractive forces. It is possible that the resulting 

patterns give an indication of the effective interface potential of n-dodecane films on 

graphite surfaces. 

The drying and dewetting behaviour observed here and the formation of structures in 

this relatively simple situation may give an insight into more complex systems with 

'real' applications, the relevant example being LC alignment layers. By having 

knowledge of why these structures and patterns are formed, it should be possible to 

minimise and perhaps eradicate this effect as the substrates are coated with polymers. 

This would allow more uniform flatter alignment layers to be made which would 

increase the device quality. In a similar manner, this knowledge may also be 

advantageous to the deposition of the LC molecules onto the alignment layer. 
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Chapter 9: Conclusions 

if we know what we were doing 
it would not be called research 
would it!' 
Albert Einstein (1879 - 1955) 

Summary 

In this final chapter, a summary of the results from each chapter is given. This is 

followed by suggestions of work that could be done to improve and further the 

results obtained in this project. Final conclusions of the completed project are given. 
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Summary of Results 

By using RAS it has been possible to monitor the fabrication of LC alignment layers 

both in-situ and real-time. This has been done extensively for the rubbing technique 

and on a preliminarily basis for the non-contact alignment techniques of 

photopolymerisation and atomic beam etching. 

The results obtained from the rubbing technique clearly demonstrate that RAS can 

monitor the growth, saturation and reduction of optical anisotropy that results from 

processing and in the latter case, over processing. The ability of RAS to monitor 

these enables it to be used as a quality control tool which has the potential to reduce 

the high waste currently associated with the rubbing technique. Information 

contained within the measured reflectivity, later replicated using the multilayer 

simulations, has proved to be invaluable to these studies even though this 

information is normally overlooked by RAS practitioners. The variation of the 

optical anisotropy with the number of rubs (amount of rubbing) can be partially 

explained by analysis of the topographic AFM images of the surface. These have 

helped to show that reductions in the anisotropy, after saturation, are due to a 

degradation of the surface caused by over-rubbing. Further understanding of the 

spectra has emerged from simulations based on Berremans stratified media matrix 

formalism. These simulations have confirmed that the main features of the RAS 

spectra result from multilayer interference and a difference in the surface optical 

properties in the directions parallel and perpendicular to the rubbing direction, most 

probably due to the alignment of the polymer chains. The interference patterns 

appear at low energies, up to -4.0 eV but are extinguished at higher energies due to 

absorption of the light as it propagates through the media. Another feature common 

to all RAS measurements of rubbed polymers appears around 4.5 eV and has not 

been replicated by simulations. A possible source of this feature is induced surface 

dichroism. 

By constructing operational LC cells it has been possible to assess the effect of 

rubbing and over rubbing on the performance of these devices. Whilst it is necessary 
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to promote the alignment capability by surface processing, over-rubbing can have the 

opposite effect as it creates a high amount of contamination. Non-contact alignment 

techniques are a possible solution to this problem and here, RAS studies have been 

carried out on two possible candidates. Although RAS is capable of measuring the 

optical anisotropy in a photoaligned sample, the power output of the probe light 

source is comparable to the alignment method itself. A consequence of this is the 

modification of the photosensitive polymer by the RAS probe whilst measurements 

are taken. However, RAS measurements show anisotropy in the IR and visible 

regions and so non-destructive monitoring of this technique is possible providing an 

UV filter is used. 

LC cells constructed from alignment layers created by the etching process are shown 

to be superior to the rubbing equivalent as they are less susceptible to contamination. 

Again, RAS is found capable of monitoring the changes in optical anisotropy as the 

alignment layer is etched even though AFM show negligible signs of surface 

modification at the nano-scale. The fundamental reasons behind the optical 

anisotropy of the rubbing and etching techniques is suggested to be the same as 

similarities exist between the measured spectra. This proposition could be tested by 

increasing the topographical effect of ion bombardment to try to replicate the surface 

corrugation and therefore depth of molecular alignment caused by the rubbing 

process. 

Several question marks remain with regard to the use of RAS as a monitor in this 

manner but the potential of this technique has been demonstrated and it has been 

proven a suitable technique to study such systems. The use of RAS as a quality 

control monitor could result in increased production yields, lower waste and 

therefore lower manufacturing costs. In fact, further simulations have shown RAS to 

be far better suited to the study of transparent thin films than the transmissive 

equivalent, TAS. To help solve some of the remaining problems: the increased 

anisotropy at 4.5 eV, the contribution to the anisotropy from molecular alignment 

and the behaviour of surface optical properties under various conditions, further RAS 

studies are carried out on model surfaces. 
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In a slight tangent to the main goal of the project, the Pt/ITO/glass substrates from 

the alignment layers studies were used to introduce a new extension to the typical 

RAS technique. By studying the RA of a sample over a range of sample azimuthal 

angles, angular dependent RAS (ADRAS) can yield additional information. In the 

first example considered, ADRAS was used to determine the relative strength of 

rubbing in each direction of a doubly rubbed sample. Other examples, a stressed 

rubbed sample and a double sided rubbed sample, are used to show ADRAS is 

capable of isolating each independent source of optical anisotropy providing they 

have a distinct angular dependence. This new technique has the potential to be 

invaluable to applications involving, for example, microgrooves, stress and aligned 

molecules. 

Noble metal crystals have been studied by RAS to gain information relevant to 

polymer alignment layers as their morphology can be controlled by ion bombardment 

and mis-cutting. These properties allow them to simulate polymers surfaces and the 

effect of processing these surfaces. The first real-time RAS study of the Cu (110) and 

Cu (771) surfaces during etching and annealing has been presented. The spectra 

obtained from these surfaces are very similar and the differences have been 

explained by considering the terrace widths and the minimum width required to 

support a surface state. Differences in the behaviour of the main features of these 

surfaces during the bombard/anneal cycles have been observed. By considering the 

adatom diffusion energy barriers it has been possible to explain the observed 

behaviour in terms of the rate of diffusion of the adatoms. The same argument has 

been applied to the situation of elevated temperature etching of the surfaces which 

has revealed the effect of etching is maximised at —400 K and cannot be seen above 

—573 K. The results of the copper bombardment experiments have been applied to 

the bombardment of the polymer surfaces for use in creating alignment layers by ion 

bombardment. 

It has been possible to continue the studies of the copper surfaces whist continuously 

advancing towards the goal of understanding more about liquid crystal alignment 

layers. By increasing the complexity of the sample again, by the deposition of 
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organic molecules onto the copper surfaces, a further step towards the alignment 

layers is taken. The tangent of ADRAS is brought into context as it is the primary 

tool used in these advanced studies. The example considered involves the adsorption 

of a chiral molecule onto a clean Cu (110) surface. As the optical axis of the 

adsorbate is known to lie at a different angle to the optical axis of the substrate 

surface, it should be possible to use ADRAS to exploit the angular dependence and 

gain additional information. The preliminary work presented here confirms R, R-

tartaric acid is suitable for use in this experiment as changes are seen in the RA as it 

is deposited onto a copper surface. When the precise deposition conditions have been 

established and a suitably orientated sample produced, it will be possible to 

extinguish the anisotropic contribution of the substrate and study the adsorbate 

anisotropic spectrum in isolation. Simulations of these experiments successfully 

demonstrate the potential of ADRAS to be used in this way and highlight the 

potential of ADRAS in applications such as enatiomeric catalysis and biomolecular 

adsorption. Using ADRAS may also allow the quantity of enantiomers in a racemic 

mixture to be determined. 

Studies of the relatively simple system of an alkane on graphite as a function of time 

and temperature have revealed stable nano-scale patterns and structures formed on 

the graphite surface. In-situ AFM images show these structures to result primarily 

from dewetting although drying may also be a contributing factor. From these results 

a greater understanding of the mechanisms involved in the formation of such features 

has been obtained. This information is of potential use in many areas, in particular 

the application of polymer coatings for use as liquid crystal alignment layers. AFM 

images of current polymer alignment layer surfaces show evidence of drying induced 

structures and a degree of surface roughness. Homogeneous orientation of the LC 

molecules on the polymer surface will be encouraged by having a uniformly flat 

polymer film and hence improved device quality will result. 



Future Work 

Experimental Apparatus 

A significant improvement in the versatility and accuracy of the apparatus used 

throughout this project, giving improved results and greater time efficiency, would 

be possible by upgrading some of the experimental apparatus. The design and the 

components used in the RA spectrometer do not need improvements and in general 

the same can be said about the vacuum system. However, an improved sample 

heater, with a temperature range of up to 13000  K would allow the roughening 

transition to be studied. Also, in having the ability to cool the sample, either by using 

a Peltier or preferably by using liquid nitrogen, would give far more flexibility over 

the current radiative method. These improvements would allow the clean surface to 

be studied at room temperature without having to wait several hours for the sample 

to cool naturally, in which time the surface becomes slightly contaminated. Ideally, 

information about the quantities and types of contaminants on the surface should be 

known. This information could be obtained by using Auger analysis. Although this 

technique has recently been added to system, it is not yet operational. 

The idea of using a transfer mechanism to exchange the samples without venting the 

entire chamber has been found to be excellent. However, the current design is 

somewhat temperamental and can result in the sample being dropped or getting stuck 

within the chamber. An improved design would save time and effort by allowing 

easy (and safe) transfers of samples. 

The addition of one final experimental technique, an STM capable of operating 

under vacuum, would allow extremely useful, almost necessary, data to be obtained. 

Unfortunately, the cost of this type of STM is high, as would be the necessary 

changes to pumping system to reduce vibrations. 

In Chapter 5 ADRAS was introduced, this new technique proved to be a useful 

extension and gave additional information about the samples. The data acquired in 

these experiments was obtained by taking a series of RAS spectra at different sample 

azimuthal angles. The individual ADRAS data at specific energies was then 



extracted from each data set to form the complete set. The collection of ADRAS data 

could be simplified by alterations to the experimental set-up. One possibility is to use 

a double modulated RA spectrometer, similar to that reported by Aspnes [9.1]. In 

Aspnes' alternative system, the azimuth angle of the sample is slowly rotated at a 

rate that allows the axes of the sample to interchange twice during a single 

measurement cycle. This system allows the 'window correction', as given in 

Equation 3.3, to be automatically accounted for and could be adapted to 

automatically acquire data over a range of azimuthal angles, both spectroscopically 

and at single energies. A second, more complex suggestion, would allow greater 

versatility in situations where the sample cannot be rotated. The same angular 

information could be obtained by rotating the polarisation of the light incident upon 

the sample. Correlating the alignment of the polariser with the PEM and analyser 

would be extremely difficult but it may be simplified if these components were 

replaced by a rotating analyser as in original design of Aspnes [9.2]. In theory these 

suggestion would allow ADRAS data to be taken at a higher speed and with greater 

ease without losing the original features of RAS. The reduction in the signal to noise 

ratio in the case of the latter suggestion would have to be considered [9.3]. 

Experiments 

Throughout this project it has become apparent that the number of possible new 

experiments in the same general areas covered by this thesis is huge. Whilst this 

project has been kept relatively strictly to the main goal, several related avenues of 

work have been investigated on a preliminary basis. The result of one these 

experiments in particular, shown in Figure 2.12, has shown great promise to produce 

further scientific insight and another useful application of RAS. In this experiment a 

stretching device, which is compatible with RAS and AFM, has been built to apply a 

force to samples, causing elastic and plastic deformations in the sample, whilst 

monitoring the extension and force applied. This device has been designed and 

constructed by Mr D. Higgins of the Centre for Material Science and Engineering at 

the University of Edinburgh as part of his MSc project. The preliminary results 

concern only the use of RAS and show the anisotropy (which will be stress induced 

anisotropy) to increase proportionally with the force applied. Evidence of a plastic 

deformation can be seen as the anisotropy does not return to the initial value (of zero) 

182 



after the sample fractures. The fluctuations seen in the RAS result from the flexibility 

of the sample. Varying the sample thickness to reduce these deviations whilst still 

allowing the sample to be stretched would be a very worthwhile task in the future. It 

is hoped that after compiling RA and force data from a number of samples it may be 

possible to apply RAS to gauge how much stress an object is subjected to. An 

example of a suitable application could be to monitor the stress in a car window as 

the glass is struck by flying objects. 

in addition to perfecting some of the tangents which have been explored, the main 

experiments of this project could be studied further. Regarding the experiments 

presented in Chapter 4 which presented studies of the fabrication of LC alignment 

layers, an even stronger case advocating the use of RAS in for this purpose could be 

made if it were possible to correlate the measured RA to a property of the completed 

devices. Although this could be done using any of the fabrication techniques studied 

here, it is suggested that the etching technique is concentrated on. Although it is 

thought that the mechanisms for promoting the alignment of LCs are the same for the 

rubbing and etching techniques, the etching technique is new and so warrants further 

investigation. Experiments to correlate with device properties could be tied in with 

investigations of the etching technique itself, for example a study of the effects of 

etching on the anisotropy as a function of etch energy, time, current, angle or 

temperature. 

Although some differences were observed between the RA spectra of plane and 

vicinal surfaces, a larger contribution to the anisotropy was expected from the steps. 

Further work needs to be done to confirm these findings, in particular completing the 

studies of the Cu (1090) surface. A conclusive experiment would be to study an 

isotropic surface, for example Cu (100), which has steps. Studying more vicinal 

surfaces with a range of terrace widths may confirm the suggested explanations 

regarding terraces supporting surface states. It may also be interesting to study a 

stepped surface after undergoing the roughening transition, particularly if the 

roughening features are in the direction perpendicular to the vicinal steps. 
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Further work should be done on the temperature dependent experiments to allow 

more precise values of the temperature dependent transitions to be established. An 

interesting experiment derived from [9.4] would be to etch the Cu (110) surface at 

low temperature. Although the 2.1 eV feature is normally stable under etching, it is 

expected to be reduced in intensity if etched at a temperature of -180 K. If this 

proved to be the case it would be direct evidence of this feature stemming from 

surface states. 

The preliminary results of the chiral molecule experiments presented in Chapter 7 

have clearly shown the high potential of these experiments. To complete this study it 

is necessary to redo the experiment using a clean Cu (110) surface. It is expected that 

a significant amount of time will be needed to perfect the deposition of the molecules 

onto the copper surface. Once this has been achieved, it is then straightforward to 

obtain the ADRAS data. This experiment could be repeated for different molecules 

and different surfaces to give a range of information for use in catalysis or 

bimolecular adsorption. 

The experiments of Chapter 8 provide an almost endless list of possible future 

experiments by making subtle changes to the current experiments. An example 

would be to use other long-chain hydrocarbons such as alkenes to study the affect of 

the double bond. It would be worth while to redo the alkane on HOPG experiments 

presented here whilst measuring the temperature at the surface of the graphite instead 

of at the surface of the heater. The important thing would be to study shorter 

times/lower temperature to prevent any new work from being a repetition of the work 

by Martin et al. [9.5]. Although incredibly hard to do, further elevated temperature 

in-situ AFM measurements of the drying/dewetting processes could provide further 

interesting results. Crucial information about the material left on the on the surface of 

the graphite could be obtained by repeating the experiments in a vacuum chamber. 

By using mass spectroscopy it would be possible to monitor the material evaporated 

from the surface at the same time as an AFM study. Once an equilibrium situation 

has been reached, a further increase in the temperature of the substrate would reveal 

the identity of the molecules remaining of the surface to form the observed 



structures. Using the same systems of alkanes on HOPG, friction measurements of 

the surface using AFM could reveal some very interesting and useful information. 
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Conclusions 

The goal at the outset of this project was to study and improve the fabrication process 

of alignment layers for use in LCDs. This was to be done by applying an optical 

technique, initially conceived to monitor semiconductor growth, to monitor the 

process in-situ. 

After the successful construction of the optical spectrometer, the technique was 

applied to study all of the most common commercially used alignment techniques. 

RAS measurements, supported by AFM images and simulations, have allowed not 

only a tool for empirically monitoring the quality of alignment layers as they are 

produced but has also given an insight into the mechanisms which create surface 

optical anisotropy and promote LC alignment. 

Although not directly related to the study of LC alignment layers, a new technique 

which has the potential to make a significant impact in the fields of surface science 

and chirotechnology has been introduced. The ability of ADRAS is demonstrated 

using polymer coated substrates. Preliminary measurements and simulations are used 

to study the adsorption of a chiral molecule on a copper surface which has 

applications in catalysis. 

Further information about the optical properties of surfaces, in particular the effect of 

ion beam etching a surface, was found by replacing the complex systems of before 

with a model substrate. Experiments were carried out on a Cu (110) surface and then 

on vicinal copper surfaces. RAS measurements highlighted differences in the 

electronic structure and morphology of the crystals. These properties were studied in 

real-time and were found to be highly temperature dependent. 

AFM images of an alkane on graphite have shown the unusual patterns and structures 

which can be formed on a surface as a result of the dewetting and drying 

mechanisms. 
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Appendix A: Fresnel Coefficients 

Two Phase System 

An incident wave polarised with its E vector normal to the plane of incidence is 

shown in Figure A.]. The interface is defined at z = 0 where O, O and 0, are the 

angles of incidence, transmission and reflection respectively. 

Medium I 

' :E o t: H Yo 	Eot 
HOr Ho 

E 01 

Hot 

H th 0  

Figure A. I 	An incident wave polarised with its E vector normal to the 
plane of incidence. 

For any medium, 

Eq. A.l 
H0  k 

Continuity of the tangential components of both E and H leads to: 

E0  + E0,- = E01 	 Eq. A.2 

H 0, cos O1  Ho, cos 0,H0  cos 0,  

And then using Equation A.], 
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These equations apply to any isotropic media. However, for non-magnetic media, 

YI = 92 = ,uo , and the equations become, 

E0r 	Ni  cos o, - N 2  cos6 

E0 	N 1  cos O1  + N7  cosO 
& 

2N1  cos Oi  
'' 	N Cos U+N 2  Cos U 

Another pair of similar equations can be obtained by considering the incident wave 

with E polarised parallel to the plane of incidence. Each pair of equations, at normal 

incidence Oi = Ot  =0, reduce to the form, 

E0r - N 1  - N7  
r12 	 Eq. A.6 

Eoi=- 
  

- -  N1  +N 2  

& 
E01  -2N1 	

Eq. A.7 -
E0j  - N1  + N 2  

These are the Fresnel reflection and transmission coefficients for a two phase system. 

The subscripts, e.g. r12, denote the propagation of light from medium 1 (N1) to 

medium 2 (N2). 



Three Phase System [Al] 

The results of the two phase system can be used to determine the Fresnel coefficients 

of the three phase system. Similar to the previous situation, light incident on an 

interface is spilt into the reflected and transmitted components. For multiple layer 

systems, each time the light is incident at an interface it is divided further, as 

illustrated in Figure A.2. As before, 0,, Or  & 0 are the angles of incidence, reflection 

and transmission respectively. 

N2  

N a  

Figure A.2 	Splitting of light at an interface into reflected and 

transmitted components. 

The resultant reflected and transmitted beams, which are the equivalent Fresnel 

coefficients for a three phase system (r123  & t123), are obtained by the addition of all 

of the reflected components and all of the transmitted components. Here, the Fresnel 

reflection and transmission coefficients for light incident at the interface between N1  

and N2  are denoted r12  & t12, at the interface between N2  and N1  they are r21  & t21 and 

at the interface between N2  and N3  they are r23  & t23. Summing all of the reflected 

components gives, 

23 = 2 +t12t21r23 	 r23 	r23 + ...... 

As r21  =—r12 , 

1123 = 2 + t12t21r23  - t,2t,,r,2r23 + t12t,11 2 23 
1, 
	+ ...... 
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The change in phase of light after each propagation through medium 2 is given by, 

27rN2d2 COS  01  

132- 
- 
	

A 

As RAS is a near-normal incidence technique, this simplifies to, 

132 =Eq. A.8 
C 

After consideration of the phase changes, the resulting reflection coefficient is, 

23 	2 +t 12t21r23e21P2 - t 2t2 	+t 23 	12t211  re21P2 + ...... 

t12 t21r23e 202  
..23_12+ 

1 + r12r23e2'P2 

Using the thin film approximation, d< <X and t12t21=1-r122, 

r12+r23(l-2i/32) 	
Eq. A.9 

r123 1+r12r23(1-202) 

which is the Fresnel reflection coefficient of a three phase system. 

191 



2 x 2 Matrix Method For Isotropic Stratified Media 

The method of addition of multiple reflections becomes extremely impractical when 

considering systems with higher numbers of layers. A more suitable approach for 

considering the reflection and transmission of polarised light from isotropic stratified 

media uses 2 x 2 linear matrix transformations which were developed by Abelès 

[A.2]. A full account is given by Azzam and Bashara [A.3]. 

If the complex amplitudes of the incident and reflected waves at an arbitrary 

interface z are defined as E+(z) and E(z) then the total field at z, E(z), can be 

expressed as a 2 x 1 matrix. It should be noted in these equations that the ± subscripts 

are used to give the direction in which the wave is travelling. 

E(z) 	
(z)

=[ 
E(z) 

By considering the total fields found at planes parallel to z (z' and  z"),  a relation 

between the fields can be found. The relation has the form of a 2 x 2 matrix 

transformation and is called the general tranform matrix (T). 

rEjz')l r, T121rE+(z)1  

LEz') - [T2, T221LE(z)] 

rE+(z')l 
—T1 

[E(z')] [Ez 
E- z 
	

Eq.A.]O 

The general transfer matrix is used to represent the overall reflection and 

transmission properties of the stratified media between z' and z" and can be 

expressed as the product of the interface (transition) matrices (L) and layer (partial 

transfer) matrices (Tp) that lie within these bounds. 

T 	 Tp,?I _I L( ,?l _l),fl 	Eq. A.]] 
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(a) E+A 	EA 	(b) 	E+A 

VAV 

NBA 
E+B E+B E 8 

Figure A.3 	The interface between two media, A and B, showing (a) 
light incident from medium A and (b) light incident from 
medium B. 

A typical interface between two media (A and B) is shown in Figure A.3. L is used to 

relate the electric fields of a wave at either side of an interface to each other. The 

subscripts A and B relate to the medium being considered and rAB and tAB are the 

Fresnel reflection and transmission coefficients for the AB interface. 

r E+A1 
- 

L1 1[E~B 

L EA] - [L2, L22 ][E B 

For light incident from medium A on the interface (AB), shown in Figure A.3 (a), it is 

known that, 

E+B _t AB E+A 

E_A = rABE+A 

EB 0 

Therefore, 

rl 	1 

[

EIA

E-A 

L12
AB [ +B

] 	rAB L 	0 j 
LtAB 	-j 

Similarly for light incident from medium B on the interface (BA), shown in Figure 

A.3 (b), it is known that, 
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E+A  = 0 

E_A  - tBAE_B 

E+B  - rBAE_B 

Therefore, 

- rBA  1 
o, 

]- L11 	
'AB 	[E+B1 

(tABtBA — rABrBA) [ 0  ] 
t AB  

And so after manipulation using Fresnel interface coefficients for both propagation 

directions, 

ri 	rAlJ1 
LAB = — I 	I 	 Eq. A.12 

tAB [rAB 	I 

The result of propagation through a homogeneous medium is a phase change in the 

direction of travel. This is dependent on the complex index of refraction and 

thickness of the medium, the wavelength of light and the angle of incidence. The 

partial transfer matrix is therefore, 

T [era ol 
= 	 Eq. A.13 

e] 

With /3 as defined before, 

2irdN 
/3= 	cos6 

Knowing that E_B  = 0, Equation A. 10 applied to the AB interface becomes, 

rE+Alrm 21r+8 

LEA]LI T22 1L ° 
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By expanding this equation the reflection (r) coefficient can be found to be, 

E+A T11 
	 EqA.14 

The general transfer matrix can be obtained, as described in Equation A.]], by 

matrix multiplication and when used in conjunction with Equation A.]O provides a 

simple method of studying the reflection and transmission of stratified media. As an 

example of this technique, the three-phase system previously discussed is considered 

again and by using Equation A. / / the general transfer matrix is found to be, 

T = 4 2T 2 L23 	 Eq. A.15 

By applying Equations A. 12 & A. 13 the T matrix becomes, 

1 	2 1reip2 T=[
t12t23 r, 

1 

12   
t22  

T 	(_e 	+ r,2r23e ) 

t12t23 
I 	

+ r23et2P2) 

0 1 

r231 
e 2 j[r23 	1 j 

+ r, 2e22 )1 
( 2r23  +e _i202 

Eq. A.16 

By substituting the values ofT11  and T21  from Equation A.16 into Equation A.14, it is 

possible to obtain the reflection coefficient for a three-phase system which can be 

seen to the same as previously found (Equation A.9). 

r12  +r23(12i132) 	
Eq. A.17 r123 = 

1+1 2r23 (1-202 ) 

In isotropic systems the s and p polarisation components are uncoupled making it 

possible to treat each separately. To calculate the reflection and transmission 

coefficients for each polarisation it is necessary to apply the 2 x 2 matrix technique 

twice. 
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4 x 4 Matrix Method For Anisotropic Stratified Media 

To allow calculations of the reflection and transmission coefficients from an 

anisotropic stratified media it is necessary to use a higher rank matrix system as the p 

and s components of the electric and magnetic fields are no longer uncoupled. This 

technique was originally introduced by Teitler and Henvis [A.4] although it is more 

commonly known for the development by Berreman [A.5] and it has been recently 

refined by Schubert [A.6]. A very good overview of this technique, prior to 

Schubert's contribution is given by Azzam and Bashara [A.3]. 

By assuming e' °t  time dependence, Maxwell's first order equations can be 

represented as a matrix of rank 6. 

o o 0 0 - E 

o o 0 -  0 —E 

o 0 U  
a 
ay 

a 
ax 0 E Z 

D 
Z Eq. A.18 

o -- 0 0 0 H B 

--i- 0 ax 0 0 B  , 0 H 
Y 

ay --a- ax 0 0 0 0 H B 

This can be abbreviated to, 

0 	curlTEl . 
0)1 rD 1 

—curl 0 

curl][ 
=1

HJ 	LB 	
Eq. A.19 

 

RG = iwC 	 Eq. 

Ignoring non-linear effects there is a linear relation between G and C, 

C=MG 	 Eq. A.2] 

The matrix M is known as the optical matrix as it contains all of the information 

about the optical properties of a medium and has the form, 
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[Dielectric 	Rotation 

1=1P 
pl

1
L Rotation Permeability 	

Eq. A.22M=  

where each quadrant represents a 3 x 3 matrix corresponding to the properties in the 

x, y and z directions. Substituting Equation A.21 into Equation A.20 gives, 

RG=iwMG 
or 

RF=iwMF 	 Eq.A.23 

where F is the spatial part of G (G = e' (" F) 

AP 	 CP 

As 	
CS 

B ZS 	F z 	DS  

Figure A.4 	s and  polarised components of the incident, re flected 
and transmitted electromagnetic wave at an anisotropic 
stratified media. 

By assuming the geometry of the system is the same as shown in Figure A.4 with the 

z-axis orthogonal to the plane of the substrate, the symmetry dictates that there is no 

variation in the y-direction of any of the field components. 

ay 

For continuity of the tangential fields at the z=O boundary all fields in the x-direction 

should vary as e', where denotes the x component of the wave vector of the 

incident wave. can also be written in terms of the refractive index and the angle of 

incident of the ambient material, 	- No  sin Oi . Therefore the curl operator can be 

simplified to, 
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--- 0 az 
curl= 	0 	i 	 Eq. A.24 az 

—i4 0 

By substituting Equation A.24 into the matrix R (as defined in Equation A.20), two 

linear equations and four first order differential equations can be obtained by 

expanding Equation A.23. Solving the two linear components for E7  and H in terms 

of E, E, I1 and FI and then substituting these into the four differential equations 

gives a 4 x 4 matrix of the field variables E, E5, H and H3. 

E All A l2  A13  A14  E 

H, A 21  A 22  A 23  A 24  H %, 

z 	E 3, A31  A 24  A33  A34  E 

- H A 41  A 42  A 43  A44 - H 

= —io)Ayf Eq. A.25 
az 

The A matrix is a differential  propagation matrix from which the propagation of the 

generalised field vector (1/I) can be specified. The definition of each of the 

components of the A matrix can found on p344 of reference [A.3] and the value of 

each component is comprised of £, u, p and p', from Equation A.22, and 71 which can 

be defined as, 

No  
Ti =—=--sinO, 

0) C 

The differential propagation matrix is used to obtain a partial transfer matrix (Tp or 

Tp') for each layer of the stratified media. These matrices connect the in-plane 

components of the electric and magnetic fields at interfaces separated by a distance 

d, in a manner similar to the 2 x 2 isotropic method [A.6]. 

W. 



,u(z + d) = exp(— ia)1Xd)y(z) = T 'y(z) 	Eq. A.26 

T exp(—iwAd) 

,= I—icoAd— 	 + ......

} 
T1 	

{ 	

(c&l)2 A 2  + 
( j)3 - 

2! 	3! 

For heterogeneous anisotropic media in which M is dependent on z, by dividing the 

media into thin slices, such that M is independent of z for each slice, and repeatedly 

applying Equation A.26, it is possible to relate the field at either side of a layered 

structure. In this case, 

'(z + d) = T (z, d)ir(z) 

where, 
+h2 ,h3 )T'(z+ hl , h2 )T(z,h1 ) 

The sum of the distances between each of the thin layers (h1 , h2, . . . h,,1) equals the 

total thickness (d). These partial transfer matrices can in turn be used to calculate the 

general transfer matrix (T) when considered with the transition matrices. The 

transitions matrices are required to project the tangential parts of the wave existing 

in the incident medium through to the first interface and then to project the tangential 

electric and magnetic fields from the last interface back to the exit medium. The 

general transfer matrix is defined as the product of the incident transition matrix 

(L1), the partial transfer matrix for each layer (Tp') and the exit transition matrix (LE). 

	

T=LJ 'fl  Tip  (— dl  )LE . 	 Eq.A.27 

The final result is the definition of a general transfer matrix (1) for any stratified 

media. A, B, C and D are as depicted in Figure A.4. 
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As  rc1 TI 	T12 	'3 	T14 CS 

BS DS 1 	T22 	T23 	T24  0 
T  

= 
Eq. A.28 

A,, Cp T31 	T32 	T 3 	14  Cp  

[Bj [Dj 
L1 	T42 	T43 	4][ 0 

The coefficients of reflection and transmission for stratified media can be defined as 

the ratio of the amplitudes of the incident and reflected or transmitted waves and can 

expressed in terms of the elements of the general transfer matrix. Equation A.28 

gives the relationship between the polarised components on either side of Figure A.4 

The Jones reflection and transmission coefficients, which relate the amplitude of 

electromagnetic waves before and after an optical component, can be expressed in 

terms of the elements of the general transfer matrix. 

T21T33—T23T31 33  

Ac 	Al, =0 
T1  1T 3 - T13T31  A 	A,,  =0 ' T, T11T33  - T13T 31  

B P  T33T41 —T31T 43 C T31  - 
A 	

)AO - T11T33  —T13T31 
P  A, 	J,,,=0 T11T33  —T13T31  

B,, - T1T43—T13T41 C  T11  - 
P1' - 	A1, 

JA 
- T11  T33  - T1 3T31  

t  

A,, - T1 1T33  - T13  T31  
=0 A =0 

1T23 —T13T21  (G - —T13  
r1,5 	

A ,, - T11T33  - T13T31 
PS  A1, - T1  1T33 - T13T3I  

AO 

In comparison to the 2 x 2 matrix method, the uncoupled components rn,, r,, tjp  and 

t5 , are equivalent to Equations A.14 & A.15. If the reflection and transmission 

coefficients were to be calculated for s and p polarised light for the 2 x 2 system, the 

results would be denoted r5  and r. Using the 4 x 4 matrix system they would be 

denoted r,, and r111,. The 4 x 4 matrix coupled components r 1,, ,, ti,, and t1,, do not 

exist in the 2 x 2 matrix system, 

To demonstrate this technique the reflection coefficients are calculated for the simple 

example of the single interface as used for the calculation of the Fresnel reflection 

and transmission coefficients. In this case no partial transfer matrix is needed as there 

is no layers between the incident and exit interfaces. The light is propagating from 
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medium 1 (N1) to medium 2 (N2) with the angles of incidence and transmission given 

by 0, and O. The general transfer matrix is the product of the incident and exit 

transition matrices with, 

	

0 	0 	cosO 1 0 

1 0 0 0 

- 2 	1 	
o 	0 	

L 	
—N2  cos 0, 0 	0 	0 

cos O1 	 N1 	 0 	0 N2  0 

	

- 1 o 
	0 	_L 

cos 0, 	 Ni  

The origin of these matrices can be found in [A.6]. 

Therefore from Equation A.27, 

	

+ N
2  Cos O, 0 
	0 	0 1 

N Cos 0i  

	

N2  Cos Ot 0 
	0 	0 

T=1- 	
N1  Cos O, 

2cos 
0 	 0 

cosO, N1  

0 
_cosO,+N2 0 

- 	 cos 0, N 

By using Equation A.28 and the definitions of the reflection and transmission 

coefficients for the various polarisation combinations, it is possible to obtain, 

1 -I JJ 

i— 	 0 
N1  cos O1  

1 	
1 

N1  cosO 

11 

- N2  cos o t  
T21T33  —T23  T31 	N1  Cos O, 

rçç 	 = 
T11T33 —T13T31  ( + N COS  O1 

11 
1\ 	

N1  Cos O, 

+ N Cos 0, 
1 

	

N 1  Cos 0i 	N 1  cosO, —N 2  cos O, 

	

1+ 
N 2  Cos 0, 	N1  cos 01  + N 2  cos O, 

N 1  Cos 0i  

(N2  cosO, Y
-  COS  01  +- 

N 2  1 1+ 	I 
- T1 T43  —T13T41  - 	N1  Cos 0i A cos O, N1 - —N 1  cos 0, +N2 COS 01 

- T11T 3  —T13T1 
- 	

N 2  COS O coso, 	
- N 1  cosO +N 2  cos O, I 

N 1  cos 0,  cos 0. N1 ) 
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From these equations, under normal incidence conditions, the Fresnel reflection 

coefficient (Equation A.6) can be obtained. A factor of -1 resulting from the 

definition of the electric vector axis must be borne in mind when considering the rpp  

case to obtain the same format as r [A.7] 

r12— 	
N1  —N2  

r--r = 
,%.s 	

AT +N 2  
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Appendix B: Acronyms 

ADC 	Analogue to digital converter 
ADRAS 	Angular dependent RAS 
AFM 	Atomic force microscopy 
CRT 	Cathode ray tube 

fcc 	 Face centred cubic 
FLC 	Ferroelectric liquid crystal 

HOPG 	Highly ordered pyrolytic graphite 

ZR 	 Infra-red 
ITO 	Indium tin oxide 

LC 	 Liquid crystal 
LCD 	Liquid crystal display 
LEED 	Low energy electron diffraction 

NMP 	N-methyl -2-pyrrolidone 

PEM Photoelastic modulator 
P1 Polyimide 
PMT Photo multiplier tube 
PVA Polyvinyl alcohol 
PVCi Polyvinyl cinnamate 

RA Reflection anisotropy 
RAS Reflection anisotropy spectroscopy 
RD Reflection difference 

SBZ Surface Brillouin zone 
SEM Scanning electron microscopy 
5PM Scanning probe microscopy 
STM Scanning tunnelling microscopy 

TA  Transmission anisotropy spectroscopy 
TN Twisted nematic 

UHV 	Ultra high vacuum 
UV 	Ultra-violet 

XPS 	X-ray photoemission spectroscopy 
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Appendix C: Equipment Photographs 

Figure C. 1 Photograph of the vacuum chamber that was 
constructed and used throughout this project. 

I] 

\ 	I 
I 

-- 	 - 	 - - 

Figure ('.2 Photograph of the vacuum chamber that was 
constructed and used throughout this project. 

204 



- G 
.5 

Figure C.3 	Photograph qf the reflection anisotropic spectroscopy 
apparatus which was constructed and used throughout 
this project. 

'S 
'SI 

Figure C. 4 Photograph of the reflection anisotropic spectroscopy 
apparatus which was constructed and used throughout 
this project. 
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RAS as an in situ Monitor of Ion Bombardment 

B. F. MACDONALD and R. J. COLE 

Department of Physics and Astronomy and Centre for Materials Science and Engineering, 
University of Edinburgh, Edinburgh, Scotland, EH9 3JZ, UK 
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Subject classification: 78.40.Kc; 78.68.+m; S1.3 

RAS is used as a real time monitor of the bombarding of a surface by argon ions. Changing the 
reference frame of the spectrometer is found to give new insight into the competition between ion-
induced and crystallographic anisotropy. 

Introduction 

The new range of surface optical spectroscopies, known collectively as "epioptics", offer 
in situ applicability combined with extremely good surface sensitivity (or even surface 
specificity). In particular these attributes have enabled reflectance anisotropy spectro-
scopy (RAS), which measures the difference in normal incidence reflection amplitude 
for light linearly polarised along two orthogonal directions as a function of photon en-
ergy, to make a significant impact in the field of semiconductor micro- and nano-fabri-
cation. In contrast the surface optical anisotropy of metal surfaces has received much 
less attention, while in situ RAS monitoring of processes which remove material from 
surfaces remains largely unexplored, despite the fact that many commercially important 
processes (e.g. reactive ion etching) lack real time surface diagnostics. This preliminary 
study of ion bombardment of the Cu(110) surface is aimed at demonstrating the viabili-
ty of RAS in this context. 

Among metals the Group lB elements (the noble metals) have been the most stu-
died by RAS on account of the relative ease with which clean surfaces can be pre-
pared, even in air. Three mechanisms for optical anisotropy of the (110) surfaces of 
these elements have been idenitifed: the surface local field effect [1, 2], polarisation 
selective optical transitions involving surface states [3, 4], and anisotropic surface mod-
ification of bulk states [5, 6]. Yet the supposed simplicity of clean noble metal surfaces 
has not been borne out by experimental results, and there has been some discussion as 
to what the "true" RA spectra of these elements actually are [2, 4]. The observed de-
pendence of RA spectra on the details of surface preparation and surface history serves 
to emphasize the sensitivity of the technique to a wide range of surface properties, a 
fact yet to be exploited in real time monitoring of metals surfaces during processing. 
Here we extend previous similar studies [5, 7] by focussing on real time RAS measure-
ments during a bombard-anneal cleaning cycle for a Cu(110) sample. 

Experimental 

A Cu(110) crystal was inserted into an ultra-high vacuum chamber (PSP Vacuum Tech-
nology) with a base pressure of 10-11  mbar and cleaned by cycles of room temperature 
bombardment by 500 eV Ar ions followed by annealing to 860 K. A phase modulating 
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C) 

2.0 	3.0 	4.0 	5.0 

Photon energy (eV) 

Fig. 1. a) RA spectra of a partially 
clean Cu(110) sample in the xy-frame 
(dotted line) and the x'y'-frame (solid 
line). b) Evolution of the RAS signa-
ture in the x'y'-frame during bombard-
ment of the surface by Ar ions. The 
lower solid curve was taken after 3 mm 
exposure to the ion beam while subse-
quent spectra are separated by incre-
ments of 9 mm. The upward arrow in-
dicates the trend. c) Post-bombard-
ment x'y'-frame RA spectra (solid 
curves) for recovery times of 0, 4, 16, 
28 and 40 mm. The downward arrow 
indicates the direction of the trend 
while the dashed curve is the stabilised 
RA spectrum in the xy-frame 

RA spectrometer following the design of Aspnes was coupled to the vacuum system 
using a low strain quartz window and could be used to acquire RA spectra in real time 
at any stage of the cleaning cycle. Experimental artefacts were removed from the ex-
perimental data by the standard procedure of determining a correction function from 
spectra obtained before and after a 900  sample rotation. Surface periodicity could be 
assessed using low energy electron diffraction (LEED). 

The RAS spectrum of the Cu(110) sample 24 h after five bombard—anneal cycles had 
been performed is shown by the dotted curve in Fig. la. To be precise, the measured 
quantity is the real part of Ar/r which is defined by 

Ar 2'', 	 (1) 
r 

where r(r) is the complex Fresnel reflection amplitude for light polarised along the 
x(y) direction. Here we define x to be the [001] direction while y is along [110] and we 
refer to this choice of axes, which are the mirror planes of the Cu(110) surface, as the 
"xy-frame". Comparison with previous work [3] shows that the prominent feature at 
2.1 eV in this spectrum is rather weak, suggesting that the quality of the surface is 
poor, despite the observation of a relatively sharp 1 x 1 LEED pattern. Nonetheless, 
the primary features of the standard Cu(110) spectrum (the negative peak at 2.1 eV 
and the positive structure with clearly resolved peaks at 3.9 and 4.2 eV) are already 
well developed. Further cleaning cycles produced the much stronger RAS signature 
usually presented, but the aim here is to monitor in real time the modification of the 
surface during such a cycle. 

Before resuming the ion bombardment, Ar was admitted into the vacuum chamber 
and its purity verified using a mass spectrometer. The presence of this gas was found to 
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have no discernible effect on the optical anisotropy of the partially cleaned Cu(110) 
surface. Rotating the sample by 36° yielded the RA spectrum shown by the solid curve 
in Fig. la. As expected the measured anisotropy is greatly reduced (by a factor of 
-cos (2 x 36°)) since the spectrometer is now comparing new directions in the surface 

(x' = [112] and y' = [1111) which are almost equivalent. This sample orientation, which 
we refer to as the x'y'-frame, was chosen so that the [111] azimuth was in the plane of 
incidence of the Ar ion beam, as in the previous study of Bremer et al. [5. Contrary to 
previous work, however, RAS measurements were then performed in real time using 
the x'y'-frame during Ar ion bombarding. The ions impinged on the surface at 450  

incidence and the beam density was 15 A/cm2. 

3. Results and Discussion 

RA spectra obtained during Ar bombardment of the Cu(110) surface as described 
above displayed a broad oscillatory structure centred on 4.3 eV, as shown in Fig. lb. 
The upward arrow indicates the evolutionary trend of the spectrum. The first spectrum 
of this series was acquired after 3 min exposure to the beam, while subsequent spectra 
are separated by 9 mm. It can be seen that on this timescale the RAS signature (in the 
x'y'-frame) of the bombarded surface is established directly upon exposure to the ion 
beam. Only a gradual evolution of the surface optical anisotropy of the bombarded 
surface is observed in subsequent spectra. Stabilisation of the spectrum is observed at 
about 40 minutes, indicating that a steady state is achieved on this timescale. When the 
RAS spectrum of the bombarded surface had been stable for about 15 min the ion 
beam was shut down. Post-bombarding RAS spectra are shown in Fig. lc for recovery 
times of 0, 4, 16, 28 and 40 mm. The amplitude of the broad ion-induced feature be-
tween 3 and 6 eV can be seen to decay slightly over the first 4 mm. It appears that the 
surface mobility of the Cu(110) surface at room temperature is sufficient to promote a 
degree of "healing" of the ion-induced surface damage. The RAS results indicate that 
no significant changes in the surface condition take place after about 20 mm. 

Consideration of the experimental geometry provokes two questions. Firstly, does the 
orientation of the reference frame of the RA spectrometer matter? And secondly, does 
the orientation of the plane of incidence of the ions matter? If the surface modification 
induced by the incident Ar ions were isotropic in character then the answer to the 
second question would be 'no' by definition, and similarly the dependence of the RA 
spectrum on the orientation of the spectrometer would be trivial; for a rotation of the 
spectrometer by t, the RA spectrum will be scaled by cos 2, provided Iir/rl << 1, but 
it will not change shape. In fact the RA spectra in Fig. lb clearly show that the answer 
to the second question must be 'yes' since, in contrast to the starting surface, the x' and 
y' azimuths are rendered mnequivalent by the bombardment of ions along y', just as one 
might expect. Given this fact, the answer to the first question may also be 'yes'. Since 
the ion beam imposes a directionality on the sample which is in general unrelated to 
the underlying crystallography, the Jones reflection matrix will not be diagonal in either 

the xy- or the x'y'-frame. A diagonal frame must exist, but the required transformation 
will in general be different for each photon energy, rather like the dielectric axes of a 
monoclinic crystal [8]. We conclude that in general the shape of the RA spectrum will 

be dependent on the choice of the reference frame, or to put it another way, the azi-
muthal dependence will furnish additional information. 



1492 	B. F. MACDONALD and R. J. COLE: RAS as an in situ Monitor of Ion Bombardment 

The xy-frame RA spectrum of the bombarded sample is shown by the dashed curve 
in Fig. ic. The anisotropy in this frame is considerably greater than in the x'y'-frame. 
Incidence of the ion beam incident along [111] strongly modifies the optical anisotropy 
along the eigen axes of the clean surface and this is to be expected since the surface 
crystallography will ensure both the etch rate and the atomic diffusion rate for this sur-
face are anisotropic in the xy-frame. Similar post-bombarding xy-frame results have 
been observed by Bremer et al. [5] who have modelled the spectrum using the surface 
local field model which accounted for a surface vacancy fraction. Notice that the xy and 

x'y' RA spectra of the bombarded sample are not simply related by a scaling factor. We 
conclude that the Jones matrix does indeed comprise off-diagonal elements and that in 
situ RAS measurements therefore offer new insight into the kinetic competition of ion-
induced and crystallographic anisotropy. 

Before moving on we should moderate our earlier statement that the azimuthal direc-
tion of the incident ions "does matter". We have found that bombarding along the [001] 
and [110] directions produces xy-frame RA spectra qualitatively similar to that shown 
in Fig. lc (where the bombarding direction is [111]) but with varying relative intensities 

of the 2.1 and 4.5 eV structures. The RAS spectra were also distinguishable (both from 
each other and from an annealed surface) after exposure to air. Ex situ atomic force 
microscopy (AFM) was used to look for differences in morphology which could pin-
point the explanation for these differences. Preliminary results suggest that bombarding 
along [110] creates wide (102  nm) terraces with straight steps also running along [110]. 
On the other hand bombarding with a component of ion momentum transverse to the 
close-packed rows of copper atoms tended to produce less regular step edges which 
lacked a consistent orientation. While our results for the x'y'-frame demonstrate that 
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300K 
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1.0 	2.0 	3.0 	4.0 	5.0 
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Fig. 2. RA spectra of the Cu(110) surface in the xy-frame a) during annealing and b) subsequent 
cooling 
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RAS is sensitive to the direction of the incident ions, we must also conclude that the 
xy-frame results show that the surface crystallography plays a decisive role in determin-
ing the structure of the bombarded surface. 

Returning now to the dashed curve in Fig. ic, it can clearly be seen that the RAS signal 
of the bombarded surface is somewhat further from the "target" spectrum than the spec-
trum we started with. In particular the feature at 2.1 eV, attributed to transitions between 
surface states at the Y point of the surface Brillouin zone and in some sense a measure of 
surface order, is seen to be weaker than before. The results in Fig. 2a show this feature is 
further weakened by annealing. As the temperature reaches 860 K spectral weight in the 
region 3-5 eV shows substantial redistribution, similar to that observed in the recent 
study of Martin et al. [8]. The spectra displayed in this sequence correspond to a sample 
continuously heated until a temperature of 860 K was reached and therefore do not indi-
cate steady state surfaces (except at 860 K). Note that this temperature is somewhat be-
low that required to produce a roughening transition on this surface. 

The final stage of the standard cleaning cycle is sample cooling and representative 
RAS spectra for this process are shown in Fig. 2b. It can be seen that the 2.1 eV fea-
ture rises linearly between 800 and 300 K, as observed previously [8]. The positive 
feature centred on 4 eV does not change significantly until the temperature drops to 

500 K whereupon it moves to slightly higher energy and weakens a little, eventually 
splitting into two resolved structures below -400 K. 

4. Summary 

RAS has been used as a real time monitor of the bombarding of a surface by argon ions. 
The aim of the present work was to investigate the evolution of surface optical anisotropy 
of the Cu(110) surface during a cleaning cycle but RAS could equally well be applied in 

situ to a range of conceptually similar processes such as reactive-ion or wet chemical etch-
ing. The surface energetics, dynamics and kinetics which determine the bombarding, heal-
ing, annealing and cooling steps studied here are relevant to many phenomena, such as 
epitaxial growth and surface reactivity for example. The value of the azimuthal depen-
dence of RA spectra for systems with non-diagonal Jones matrices was briefly discussed. 

Acknowledgements This work was supported by the EPSRC of the UK (GR1N02924), 
the Royal Society, and by the Nuffield Foundation. 

References 

Y. BORENSZTEIN, W. L. MOCHAN, J. TARRIBA, R. G. BARRERA, and A. TAJEDDINE, Phys. Rev. Lett. 

71, 2334 (1993). 
J-K. HANSEN, J. BREMER, and 0. HUNDERI, phys. stat. sol. (a) 170, 271 (1998). 
PH. HOFMANN, K. C. ROSE, V. FERNANDEZ, A. M. BRADSHAW, and W. RICHTER, Phys. Rev. Lett. 75, 

2039 (1995). 
K. STRAHENBERG, T. HERRMANN, N. ESSER, J. SAHM, W. RICHTER, S. V. HOFFMANN, and PH. HOFMANN, 

Phys. Rev. B 58, R10207 (1998). 
J. BREMER, J-K. HANSEN, and 0. HUNDERI, Surf. Sci. 436, L735 (1999). 
K. STRAHENBERG, T. I-IERRMANN, N. ESSER, and W. RICHTER, Phys. Rev. B 61, 3043 (2000). 

D. S. MARTIN, A. MAUNDER, and P. WEIGHTMAN, Phys. Rev. B 63, 155403 (2001). 
See, for example, M. BORN and E. WOLF, Principles of Optics, Cambridge University Press, 

Cambridge 1999 (p.  806). 



phys. stat. sol. (a) 188, No. 4, 1577-1581 (2001) 

Reflection Anisotropic Spectroscopy as a Tool 
in the Fabrication of Liquid Crystal Devices 

B. F. MACDONALD (a), R. J. COLE (a), W. ZHENO (b), and C. MIREMONT (b) 

Department of Physics and Astronomy, University of Edinburgh, 
Edinburgh, EH9 3JZ, UK 

Department of Electrical and Electronic Engineering, University of Edinburgh, 
Edinburgh, EH9 3JZ, UK 

(Received July 12, 2001; accepted August 6, 2001) 

Subject classification: 61.30.—v; 78.66.Qn; S12 

We demonstrate the potential of Reflection Anisotropic Spectroscopy (RAS) as a new tool for 
predicting optical microelectronic device characteristics prior to assembly. The Reflection Anisotro-
py (RA) of polymer alignment layers has been studied as a function of rubbing. This data contains 
information about the suitability of the surface as an alignment layer as well as film thickness. 

1. Introduction 

Since its introduction, RAS has been widely used to provide in-situ monitoring of semicon-
ductor growth. Since then it has been used to study model systems under ultra high vac- 
uum conditions. Now, many new applications are being found. In this paper we present 
preliminary work which demonstrates RAS has applications to the fabrication of Liquid 
Crystal (LC) devices by the characterisation of the polymeric alignment layer. Topogra- 
phical information of the surfaces is obtained using Atomic Force Microscopy (AFM). 

Polymers are an important and commonly used material in the field of homogeneous 
alignment of LC molecules [1-5]. By unidirectionally rubbing a thin film of polymer 
with a fibrous material such as velvet, the molecular alignment for certain LCs can be 
promoted. It is thought [1, 2] alignment is produced by orientating the molecular chains 
of the polymer during the rubbing process. An alternative to this theory proposes the 
scratches and grooves on the surface of the polymer, induced by the rubbing process, 
may be the cause of the alignment [3]. Many different techniques have been used 
previously to study the effect of rubbing polymer surfaces [4, 5]. Here we show the 
possibility of using RAS to predict the alignment quality produced by a rubbed poly-
mer film by measuring the RA of the alignment layer before the device is con- 

structed. 

Experimental Details 

In these experiments two different polymers, Nylon 6,6 and LQ 1800, a Polyimide (P1) 
gratefully obtained from HD Microsystems Ltd, were studied on Indium Tin Oxide (ITO) 
coated glass slides. The slides were ultrasonically cleaned directly before spin coating. To 
prepare the Nylon samples, 1 mg of Nylon 6,6 was diluted in 20 ml of m-cresol and then 
spin coated onto the substrate at 3000 rpm for 1 mm. The sample was then baked at 80 °C 
for 1 It. The polyimide samples were prepared by spin coating the substrate at 3000 rpm 
for 1 min with a 5% solution of LQ 1800 dissolved in NMP. The P1 samples were cured 
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initially by soft baking at 100°C for 15-30 min followed by thermal curing at 250°C 
for 100 mm. The procedure used here for preparing both types of samples is the same 
used when preparing samples for the construction of LC devices. 

The machine used to rub the samples has been custom made and is composed of a 
flat plate, housing the sample, which is moved laterally at a defined speed underneath a 
rotating velvet coated drum. We define one rubbing cycle, or one rub, as one pass 
through under the rotating drum. For the duration of the remainder of the experiment 
the surface rubbing procedure was continuously alternated with the data collection pro-
cedure. A correction function based upon RA data obtained at sample rotations of 0° 
and 90° was used to remove artefacts. Reproducibility of all data was obtained by re-
peating the experiment for several samples. Additionally, reproducibility of the AFM 
data was obtained by imaging several different areas of each sample. 

RAS is a linear optical experimental method used to probe surface anisotropy as a 
function of photon energy incident upon a sample. The difference between the reflectiv-
ity for light linearly polarized along two perpendicular directions (a and b) at normal 

incidence is measured (Ar). The result is given in terms of the quotient of the change in 
the samples reflectivity and the average reflectivity (r), 

Ar 

	

=2 (ra—rb) 	 (1) 
r 	(ra +rb) 

RA spectra and AFM images were taken of the prepared substrates before any sur-
face modification. The RA analysis was carried out using apparatus with the same de-
sign as used by Aspnes et al. [6] incorporating a photoelastic modulator. The samples 
were studied with the rubbing direction in the same direction as b. All AFM measure-
ments were obtained in contact mode using a Molecular Imaging PicoScan. 

3. Results and Discussion 

Figure 1 shows the development of the RA spectra obtained from a Nylon sample dur-
ing the rubbing process. Individual spectra were taken after the completion of one rub-
bing cycle. It is apparent the amplitude of the RA signal prior to any rubbing shows 
little anisotropy. Topographical AFM images support this and can be seen in Fig. 2a. 
Also in Fig. 2a we can see some surface structure, probably due to the drying process, 
all of which appears isotropic. After one rub the anisotropy increases to its maximum 
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a) 	 h) 	 c) 

Fig. 2. Contact mode AFM images, 30 x 30 j.tm2, of a spin-coated film of Nylon 6,6 on an ITO 
coated glass substrate. Images taken a) prior to any surface treatment, b) after one rubbing cycle 
and c) after four rubbing cycles. The images show the modification and then damage to the surface 
after repeated rubbing. The z-scales of the images are 16 nm, 46 nm and 25 nm respectively, where 
the highest points are shown in white 

value of 6%. A reduction in amplitude can be seen after an additional rub. Subse-
quent rubbing of the sample reduces the RA spectra to levels comparable with the 
unrubbed sample with amplitudes at approximately 1/50th of the maximum value. 

The large amplitude of the RA spectra after the initial rub may be explained by 
considering Fig. 2b. It can be seen the sample is clearly anisotropic having grooves at 

° to the horizontal axis over the entire surface. Also to be noted on the same image 
is the uneven area approximately half way up the vertical axis which runs the full 
length of the image. It is likely this area has been created by the sample being over 
rubbed slightly, which for this material appears to cause significant damage to the sur-
face. Additional rubbing reduces the RA amplitude further indicating more damage to 
the surface has occurred, Fig. 2c confirms this. It is probable the Nylon film is being 
gradually removed from the surface by continuous rubbing. The low dark areas visible 
on the AFM image of Fig. 2c are likely to be the ITO/glass substrate. It is very possible 
the entire surface has been worn to some degree. 

The peaks seen in Fig. 1 and Fig. 3 are thought to be the result of a multilayer inter- 
ference effect. The position and periodicity of the peaks in both figures can be pre- 
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Fig. 3. The amplitude of the re-
flectivity, which is plotted as a 
function of energy, can be seen 
to increase with the number of 
rubs the sample has been sub-
jected to. Periodicity due to 
multilayer interference effects 
can also be seen. The reflectiv-
ity data has been normalised 
using a silicon wafer and data 
from 7j 
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dicted using the simple relation for constructive interference, 2nd = mt. The predicted 
energies match almost exactly with the experimental results. The shape of RA spectra 
seen is the superposition of a multilayer interference effect onto the true RA spectra, 
specific to the polymer, which is centred around 3.2 eV, It is not necessary to have a 
more detailed explanation as our main interest is the increase and decrease of RA and 
how this is linked to alignment quality. 

Figure 3 shows the amplitude of the reflected light is dependent on the number of 
rubs. The gradual removal of Nylon from the substrate by repeated rubbing, as sug-
gested earlier, may be the explanation. Initially, before the sample has been rubbed, the 
reflectivity is low. As the sample is rubbed more, the reflectivity increases indicating 
more of the underlying ITO layer is exposed to the incident light. 

Using the AFM data to back up the results of the RA spectra of the rubbed Nylon 
surfaces, it has been shown RAS can be used to predict the suitability of a surface to 
be used as an alignment layer. It is clear that Nylon is not suitable in this situation as 
the surface is very susceptible to be being damaged by over rubbing. To continue our 
studies, the experiment was repeated using the P1 coated samples. Exactly the same 
procedure as used for the Nylon sample was repeated. In Fig. 4 the RA amplitude can 
be seen to increase as a function of the number of rubs. Even after 20 rubs the ampli-
tude is still growing although the rate of growth is slow and appears to be heading for 
saturation shortly after the 20th rub. 

AFM data not presented in this paper shows the initial P1 surface to be flatter (P1 
maximum height of 10 nm compared to 16 nm for Nylon). The maximum height for the 
Nylon film was reached by over 100 peaks while the P1 film showed only on average 
3 peaks at the maximum height over a 30 x 30 .tm2 area. After the first rub the surface 
appears anisotropic with grooves similar to those found in the Nylon film. Continuous 
rubbing was found to increase the density of grooves and greatly increase the depth of 
a few grooves. After several rubs the surface becomes more abundant with defects, 
whether these are dirt or lumps of PT is not clear. It is clear however they result from 
the rubbing process. 

The samples were made into simple LC cells by putting two substrates together, poly-
mer surfaces facing each other, with the rubbing directions anti-parallel. The surfaces 
were separated by 2.4 mm spacers and the gap filled with LC. Observations of the cells 
between crossed polarisers under an optical microscope revealed the detects seen on 
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the polymer surface lower the quality of the alignment. These observations suggest that 
in order to optimise the alignment of LCs between rubbed surfaces, a compromise must 
be reached between maximising the level of anisotropy and minimising the number of 
defects on the surface of the alignment layer. It may be necessary to find not only the 
minimum number of rubs required to saturate the anisotropy but to also find where the 
best alignment occurs in terms of a percentage of the maximum. 

4. Summary 

The results indicate the potential RAS has as a tool in characterising polymer align-
ment layers. The behaviour of RA spectra obtained from rubbed Nylon films can be 
explained by the removal of the Nylon from the substrate during the rubbing process. 
AFM images of the samples suggest the Nylon film is being removed from the surface. 
Studies of rubbed PT films show the anisotropy increases until saturation as a function 
of rubbing. Although the anisotropy is not a direct measure of the alignment quality of 
the polymer film, the RAS data from the film can be used as a guide to estimate align-
ment quality. Other work carried out in this field by the authors, as yet unpublished, 
suggest RAS would be better suited to study ultra-thin films of photoaligned surfaces 
which would utilise the higher sensitivity RAS has to offer. 
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Double rubbing of polymer films, which finds applications in modern liquid crystal devices, has 
been investigated using reflection anisotropy spectroscopy (RAS) and atomic force microscopy. A 
method of gauging the relative strength of rubbing in two different directions, based upon the 
dependence of observed RAS signals on the sample azimuthal angle, has been found. Angular 
dependent measurements are shown to be a useful extension of the standard technique by allowing 
angular dependent sources of optical anisotropy to be separated experimentally. © 2002 American 

Institute of Physics. [DOT: 10.1063/1.1478784] 

Over the last decade we have seen the development of 
optical spectroscopies that offer real time in situ nanoscale 
surface characterization. One of these "epioptic" techniques, 
reflection anisotropy spectroscopy (RAS), also known as re-
flection difference spectroscopy (RDS), was conceived' as a 
nondestructive process control tool for commercial semicon-
ductor epitaxy but the benefits of simplicity, speed and low 
cost have encouraged studies of diverse systems, such as 
molecular adsorbates,2  catalysts,3  Langmuir—Blodgett films,4  
solid—liquid interfaces  and surface-induced stress.6  Here we 
demonstrate the viability of process control in liquid crystal 
device fabrication. In particular we show a simple extension 
of the standard RAS technique which allows convenient 
characterization of multidirectional overrubbed alignment 
layers, and hence how "azimuth-dependent" RAS can disen-
tangle optical anisotropies derived from independent mecha-
nisms. 

Homogeneous alignment of liquid crystal (LC) mol-
ecules is essential to the fabrication and optimal operation of 
liquid crystal displays (LCDs), and can be promoted by a 
variety of means, including rubbing of a thin polymer film, 
oblique evaporation of a silicon oxide layer and photoalign-
ment. Despite problems associated with charging and surface 
debris, rubbing is by far the dominant technique used in the 
commercial display industry. Accordingly, rubbed polymers 
continue to attract great scientific interest. A recent develop-
ment is multidirectional rubbing in which a polymer film is 
first rubbed in one direction and then overrubbed in a differ-
ent direction. 7 '°  LC orientation on overrubbed polymer sur-
faces is believed to lie between two rubbing directions. 7,10 In 
recent reports it was suggested that overrubbing reduces the 
number of steps required to make multidornain displays 
which significantly increases the viewing angle, traditionally 
a weakness of LCD technology." In this work we have com-
bined RAS and atomic force microscopy (AFM) to investi-
gate inultidirectional overrubbing. 

Indium—tin--oxide coated glass slides were ultrasoni-
cally cleaned before spin coating at 3000 rpm for 1 rr:tin with 
a 5% solution of the polyimide LQ 1800 (HD Microsystems 

')Electronic mail: rjc@ph.ed.ac.uk  

Ltd.) dissolved in N-methyl-2-pyrollidinone. The samples 
were soft baked at 100°C for 15-30 min followed by ther-
mal curing at 250°C for 100 mm. This same procedure is 
used in the construction of LC devices. A correction function 
based upon RAS data obtained at perpendicular azimuthal 
angles was used to remove artifacts from the data, and the 
reproducibility of the results was checked by studying sev-
eral samples. 

RAS analysis of the unrubbed samples revealed negli-
gible optical anisotropy. Corresponding topographic AFM 
images, obtained in contact mode using a Molecular Imaging 
PicoSPM, confirmed the samples to be isotropic. After me-
chanically rubbing the surface of the polyimide, micro-
grooves were observed along the rubbing direction, as can be 
seen in Fig. 1(a). The RAS spectrum after rubbing is shown 
in Fig. 2(a). To be precise the measured quantity is the real 
part of Lr/r where 

tr 
—2 
(- r)).+ rxy  r) 	

(1) 

and r11  are the elements of the Jones matrix (i.e., the complex 
Fresnel amplitudes for converting i to j polarization) for 
normal incidence reflection. RAS spectra can in principle be 
simulated using phenomenological models to yield material 
parameters such as the composition, layer thicknesses and 
roughness. 12 However, we are primarily concerned here with 

FIG. 1. Contact mode AFM images of (a) a typical rubbed polymer surface 
and (b) a rubbed polymer surface with a single overrub at an angle to the 
initial rubbing direction. Each image is - 10 JLm2  and the maximum heights 
are 35 and 25 mu, respectively. 

0003-6951/2002180(19)/352713/$19.0O 	 3527 	 © 2002 American Institute of Physics 
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FIG. 2. (a) RAS of a singly rubbed sample with zero, three and seven 
overrubs at angle cp to the initial rub. In each case 0=0'. (b) ADRAS 
curves at 3 eV for multiple overrubs. (c) Simulation of ADRAS based upon 
A cos(20)+B cos[2(0-p)] where B = 1 A. 

the dependence of RAS signals on the sample azimuthal 
angle 0, defined as the angle between the y axis of the spec-
trometer and the rubbing direction of the sample. This is 
shown for the 3 eV RAS signal of the rubbed polymer by the 
solid curve in Fig. 2(b). The same 0 dependence was ob-
served for all photon energies. For 00, x and y are or-
thogonal linear polarizations, the off-diagonal elements 
and rX). vanish, and Eq. (1) simplifies to the standard 
expression) Introducing coordinate rotation should make the 
RAS signal vary as cos(20) and this is what we see experi-
mentally when the sample is rotated. 

The polyimide surface was then overrubbed a number of 
times at an angle cp to the initial rubbing direction using the 
same rubbing parameters. RAS spectra after overrubbing are 
shown in Fig. 2(a), and AFM images of the surface, shown in 
Fig. 1(b), appear very similar to those previously reported 
and clearly show the initial rubbing underlying the overrub-
bing. The RAS line shape is unchanged as expected but its 
angular dependence (ADRAS) is modified: Fig. 2(b) shows 
the ADRAS maximum moving towards higher 9 with an 
increase in overrubbin, . If the overrubbing 	rn co ,pletely re- 

0 60 120 180 240 300 360 
Angle (deg) 

FIG. 3. (a) RAS spectra of a rubbed and squeezed sample. In each case 0 

= 30°. (b) ADRAS at a selection of energies demonstrating different angular 
variations of different anisotropic components. (c) ADRAS simulation using 
-A cos(2+2B sin 2[2(0- 15)], demonstrating the addition of different an-
isotropic components. 

places the original microgrooves one would expect cos[2(0 
- )] azimuthal dependence, but in general there will be two 
contributions: A cos(29)+B cos[2(0— (p)]. For the present 
case where =°45°, this expression can be rewritten as 
Ccos[2(0- 6)], where 28=arctan(B/A) and is therefore a 
measure of the relative residual anisotropy for the two rub-
bing directions, and C JA2+B2  which is a measure of the 
total rubbing strength. Thus ADRAS measurements offer a 
direct means by which to characterize overrubbed samples 
and hence of predicting the behavior of the LC devices to be 
constructed with them. 

The experimental results in Fig. 2(b) are qualitatively 
reproduced by the simulation in Fig. 2(c) which assumes B 
= I —A. However it is significant that even after seven over-
rubs we find that the ADRAS maximum does not reach 0 
= cp. We note also that the ADRAS maximum for seven 
overrubs is stronger than that for the initial rub. Surprisingly 
the memory of the initial rub persists although B>A. These 
deductions are in agreement with the results of Kim et al.7  

and are further supported by AFM results. We observed for 
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repeated rubbing along 	that the corresponding micro- 
grooves are enhanced but remnants of the initial micro-
grooves remain. 

The angular dependent measurements considered here 
suggest ADRAS could be a useful extension of the standard 
technique by allowing sources of optical anisotropy such as 
microgrooves, surface steps, aligned molecules, stress and 
external fields with a distinct 0 dependence to be experimen-
tally separated. We now demonstrate this process using re-
sults obtained for a 10 mm2  rubbed polymer coated indium—
tin—oxide on glass sample subjected to mechanical stress 
applied 450  to the rubbing direction. The RAS spectrum of 
the rubbed and squeezed sample is shown by the solid curve 
in Fig. 3(a), while ADRAS curves for photon energies of 
3.30, 3.57 and 4.38 eV can be seen in Fig. 3(b). The signal at 
4.38 eV shows 180° periodicity while that at 3.30 eV has 
900 periodicity indicating the presence of two distinct 
sources of anisotropy. The first is rub induced, as discussed 
earlier, while the second is stress-induced birefringence (the 
photoelastic effect). The 90° periodicity of the latter is due to 
reflections from the lower surface of the sample with polar-
ization parallel and perpendicular to the stress combining 
incoherently on account of their large phase difference. The 
simulation in Fig. 3(c) shows that the ADRAS curves of all 
photon energies can be decomposed into weighted sums of 
the cosine and sine-squared contributions. Conversely, a nu-
merical fit of each ADRAS curve allows the stress-induced 
and rub-induced optical anisotropy spectra to be separated. 
For the present case this can be achieved by relieving the 
external stress, but usually competing mechanisms cannot 
simply be "switched off." Various mechanisms, including 
surface-induced substrate strain,6  have been proposed to ex-
plain the RAS of surfaces.6  ADRAS may be a useful tool in  

clarifying the fundamental questions which still surround the 
nature of surface optical anisotropy, even for model systems. 

In conclusion, double rubbing of a polymer film with 
applications to LC alignment was investigated using RAS 
and AFM. An angular-dependent extension to RAS, ADRAS, 
was used to gauge the relative strength of rubbing in two 
different directions. 
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Abstract 
Ion beam etching of surfaces has recently been shown to be an attractive 
liquid crystal alignment technique for use in the commercial fabrication of 
liquid crystal displays. Reflectivity and atomic force microscopy 
measurements suggest the alignment ability of an ion-etched surface is 
promoted by modifications at the atomic scale. Reflection anisotropy 
spectroscopy is demonstrated as a real time monitor of the etching process, 
promising a process control tool for the next generation of liquid crystal 
devices. 

The alignment of liquid crystal (LC) molecules is fundamental 
to the fabrication and optimum operation of liquid crystal 
displays (LCDs). While this can be engineered by a variety 
of means, it is the crude process of rubbing a polymer film 
with a piece of fabric that dominates in the commercial 
displays industry. 	Thus far the considerable inertia of 
sustained investment in the rubbing procedure has protected 
its pre-eminence, but with recent advances in resolution the 
limitations of rubbing are becoming increasingly troublesome. 
For example, degradation of the rubbing fabric can lead to 
non-uniformity of the alignment layer and streaking defects 
in completed displays, resulting in the rejection of entire 
batches, i.e. hundreds of displays [1]. This is a problem 
which will only be emphasized by the steady scaling up of 
substrate size [21 and whose occurrence highlights the need 
for both an improved alignment strategy and a real time 
diagnostic to monitor, and ideally control, LCD fabrication. 
The pioneering work of Sun eta! [3] has shown that argon ions, 
when directed with oblique incidence, can induce anisotropic 
surface modifications capable of providing an alignment 
template for LC molecules. Very recently, Chaudhari et at 
have demonstrated this alignment technique to be well suited 
to the commercial production of LCDs and to be superior in 
several respects to rubbing [1]. The aim of this work is to 
extend our preliminary ex situ measurements in this field [4, 5] 
to demonstrate reflection anisotropy spectroscopy (RAS) in the 
role of a real time process control tool. 

It has been suggested that homogeneous alignment of 
LC molecules is promoted by the orientation of polymer 
chains within the surface layer [6]. In general, the change 
in the reflectance of a material due to the modification of 
near nanoscale surface regions is small and therefore surface 
information contained within reflectance measurements is very 
difficult to extract. However RAS is an optical spectroscopy 
ideally suited to this purpose since it is surface specific, rather 
than simply surface sensitive, and furthermore isolates the 
anisotropic contribution to the optical response. To be precise, 
RAS measures 

Arr— r 	
(1) 

r 

the anisotropy in Fresnel complex reflection amplitudes for 
orthogonal polarizations at normal incidence. In addition to 
this intrinsic 'double discrimination', RAS offers submono-
layer surface sensitivity. These points have previously been 
exploited in the context of process control in semiconductor 
epitaxy, and in fact RAS was conceived with this purpose in 
mind (see, e.g. [7]). We now demonstrate that it can play a sim-
ilar role in LCD fabrication by offering the means to probe, in 
real time, the creation of alignment layers rather than making 
inferences based on the performance of completed devices. 

The substrates used were ultrasonically cleaned 1 cm  
indium tin oxide coated glass slides. A 100 nm polymer layer 
was deposited by spin coating at 3000 rpm for 1 min with a 5% 
solution of the polyirnide LQ 1800 (HD Microsystems Ltd) 
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dissolved in N-methyl-2-pyrollidinone. The samples were 
soft baked at 100'C for 15-30min followed by thermal 
curing at 250'C for 100 mm. Before and after polymer 
coating, the samples were analysed using a phase modulating 
reflection anisotropy (RA) spectrometer and were studied 
using an atomic force microscope. In each case, negligible 
optical anisotropy was found before and after. To create 
an LC alignment template, samples were then exposed to 
a beam of argon ions with energy 500eV and current 
density 15 rAcm 2  at 45' incidence while their RA spectra 
were continuously measured. The alignment effect was 
confirmed by constructing miniature LC cells using the 
nematic LC E49 (Merck) sandwiched between samples with 
orthogonal alignment directions which had been subjected 
to a dose of 1.3 x 1017  ions cm 2. Figure 1 shows dark-
state photomicrographs of such a cell alongside that of a 
similar device constructed with conventional rubbed polyimide 
alignment layers. As has been previously reported [1,81, 
we find that the ion-etched polymer layers produce more 
uniform devices with less debris and no evidence of streaking 
defects. In fact, the debris observed in the ion-etched cell, 
figure 1(a), is not intrinsic to the etching process itself but arises 
primarily because of atmospheric contamination when moving 
the samples into and out of the ion bombarding chamber which 
is housed out with of a clean room environment. 

The RA spectra measured during 20 min of bombardment 
of a sample are shown in figure 2(a). Figure 2(b) illustrates 
the optical anisotropy, measured at 3.12 eV, initially increased 
before saturating after '40min, corresponding to a total 

(a) 

Figure 1. Dark-state photomicrographs of LC cells constructed 
using polymer alignment layers prepared by (a) the etching 
technique and (b) the rubbing technique. 

dose of "-7 x 1016  ionscm 2. It appears that RAS allows 
clear detection of the development of the anisotropic (i.e. LC 
aligning) surface. Comparing the RA spectra of ion-etched 
and rubbed polymer alignment layers, shown in figure 2, it 
is clear that the optical anisotropy of the latter is greater by 
approximately two orders of magnitude. This can be attributed 
to the large 'form birefringence' (see, e.g. [91) associated 
with the relatively deep ("- 10-30 nm) grooves created by the 
rubbing process. Atomic force microscopy cross-sections of 
the untreated, etched and rubbed surfaces, shown in figure 3, 
illustrate the surface roughness of the ion-etched polymer to 
be determined essentially by the initial surface. This fact, 
together with our observation that the reflectivity of the sample 
was negligibly affected by the etching process, indicate that 
LC alignment on the etched polymer is promoted by surface 
modification at the atomic scale, in accordance with Geary 
et at [6]. In the regime considered here, the collision cascade 
caused by the incident ions transfers energy to atoms in the 
near-surface region, causing some of them to be ejected. This 
sputtering process tends to establish a steady state in which 
the surface damage usually extends less than a nanometre or 
so into the surface. In-plane anisotropy may also be produced, 
giving rise to a non-zero RAS signature and the LC alignment 
effect in the case of etched polyimide. In general ion beams 
can induce surface corrugation parallel or perpendicular to the 
plane of incidence (see, e.g. [101 and references within), but 
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Figure 2. (a) RA spectra for an etched polyimide surface. The 
)-direction lies in the plane of incidence of the ion beam. (b) RAS 
signal as a function of time for an etched polyimide surface. (c) RA 
spectra of a polyimide surface rubbed along the y-direction. 
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Figure 3. Cross-sectional atomic force microscopy images of an 
untreated polyimide surface, an etched polyimide surface and a 
rubbed polyimide surface. All cross-sections are from images 3 Am  
and were taken in contact mode using a molecular imaging picoscan. 
The cross-sections have been displaced vertically for clarity. 

for covalently bonded systems a simple picture in which bonds 
are preferentially broken in the plane of incidence of the ion 
beam seems appropriate [1]. Thus we expect polymer chains 
at the etched surface to be preferentially aligned along the 
etching direction. Since the dominant mechanisms for optical 
anisotropy are different for the ion-etched and rubbed polymer 
surfaces, it is not surprising that their RA spectra are quite 
different. In fact, figure 2 shows the spectra even have opposite 

sign, despite the fact that the rubbing direction was parallel 
to the plane of incidence of the ion beam. Further surface 
characterization is required for these differences to be clarified. 
Nevertheless, we have found that RAS can monitor in real time 
the creation of ion-etched polyimide LC alignment layers. 

A key question is whether the RAS signal of the etched 
alignment layer can be related to some device characteristic. 
Chaudhari etal[l, 8] have previously observed the pretilt angle 
of LCs to vary not only with the ion dose of their alignment 
layers, but also with ion energy and angle of incidence. Indeed 
even changing the polyimide can affect the pretilt angle. Since 
it has been shown that a wide variety of surfaces, including 
diamond-like carbon and oxides as well as polymers, can 
be used to produce alignment layers by ion etching [1], it 
seems natural to investigate the fundamental physics of ion 
etching of surfaces and their subsequent interaction with LC 
thin films using model systems. By having the ability to 
determine the orientation of submonolayer adsorbed organic 
films [11], RAS promises to be a powerful tool in this field. 

Thus far both post-processing [12,13] and real time [14] RAS 
studies have been performed for the ion bombarded Cu(l10) 
surface. For this system it appears that the structure of the 
etched surface is determined predominantly by that of the 
starting surface, which is itself already anisotropic, and is 
insensitive to incidence angle and ion energy. 

In conclusion, we have found RAS to provide a real 
time monitor of the production of LC alignment layers by 
ion bombardment, raising the prospect of feedback control 
in commercial device fabrication and increased production 
yields. We also note that the technique may also be operated 

in imaging mode [15] which could allow convenient screening 
for device uniformity. 
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Abstract 
Reflectance anisotropy spectroscopy (RAS) is used to study anisotropic 
polymer thin films. The measured spectra are interpreted in terms of 
molecular orientation at the polymer surface. It is shown that RAS spectra 
of thin transparent films resemble the logarithmic derivative of the 
corresponding polarization-averaged reflection spectra. The amplitudes of 
the spectra are found to be highly sensitive to the optical retardation in the 
anisotropic layer. 

1. Introduction 

Over the last decade reflection anisotropy spectroscopy (RAS), 
which measures anisotropy in the normal incidence reflectivity, 
has proved itself a powerful probe of semiconductor epilayers 
(see, e.g. [1]). 	Its ability to operate out-with of ultra- 
high vacuum conditions has stimulated RAS studies in a 
range of new fields, including solid—liquid electrochemistry 
[2], catalytic reactivity [3] and polymer thin films [4]. 
Underpinning these applications, there have been intensive 
studies of well controlled model systems such as clean and 
adsorbate covered semiconductor and metal single crystal 
surfaces (see the recent reviews in [5,6]).  These have shown 
that a detailed understanding of RAS spectra is rather hard to 
achieve, even for such 'simple' cases. Indeed, it is not even 
certain that the basic mechanisms of surface optical anisotropy 
have been correctly identified. While it is generally hard to 
relate optical anisotropy to more familiar surface properties 
(e.g. adsorption sites, surface symmetry, bond lengths, etc), 
RAS is inherently well suited to the study of systems and 
processes where the creation of surface anisotropy is the 
phenomenon of primary interest. Here, we consider one 
example: the anisotropic surface modification of polymer 
films for use in liquid crystal displays. Our preliminary 
work [7, 8] has shown that RAS can be used empirically to 
monitor the fabrication of such polymer alignment layers, 
demonstrating the potential for real time process control in 
a commercial environment. Here, we seek to establish an 
explicit link between the measured spectra and the molecular 
scale effects of processing the polymer films. We find that 
RAS is a very sensitive measure of birefringence in transparent 
media. It is readily demonstrated that for thin (of order 

102  nm) birefringent films the observed spectra resemble the 
logarithmic derivative of the polarization-averaged reflectivity 
spectrum. 

2. Experimental 

The substrates used in this work were commercially obtained 
glass slides coated with a 120 nm indium tin oxide (ITO) film. 
These were spin coated at 3000 rpm for 1 min with a 5% 
solution of the polyimide (P1) LQ 1800 (HD Microsystems) 
dissolved in n-methyl-2-pyrrolidone. The samples were cured 
initially by soft baking at 100CC for 15-30 min followed by 
thermal curing at 250CC for 100 mm. The PT film thickness 
could be controlled by varying the P1 concentration. Since 
120 nm PT films are routinely used in the manufacture of liquid 
crystal displays, we chose thicknesses of 80, 120 and 1400 nm 
to ensure relevance of this work to the fabrication of real 
devices. The samples were rubbed using a rotating velvet 
coated drum as described previously [7]. 

A home built phase modulating reflection anisotropy 
spectrometer following the design of Aspnes [1] was used 
in this work. For each photon energy, E, this instrument 
measures a DC voltage, V0, and an AC voltage, V2 , where 
w is the modulation frequency, which are related to the optical 
properties of the sample by 

V0  = TJFJ 2, 	v2 = T  (j * + F*) 	(1) 
2 

where asterisks denote complex conjugation, 

r, + r y  - 	
, 	(2) 
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and r and r are the Fresnel reflection amplitudes for linear 
polarization along x and y (the horizontal and vertical axes of 
the spectrometer), respectively. T, the instrument transmission 
function, is not known precisely and so V0  provides only an 
approximate measure of the absolute (polarization-averaged) 
reflectivity. Here, we have estimated T by measuring V0  for 
materials with known optical constants (copper and silicon). 
The ratio V2/ V0  is proportional to the real part of the 
reflection anisotropy, A /F, and, being unaffected by temporal 
fluctuations and drifts in the light source and detector, is 
precisely measured. Optical measurements were made with 
the rubbing direction of the samples aligned with the x-axis of 
the RAS spectrometer. 

3. Results and discussion 

3.1. Reflectivity 

While reflectivity measurements provided by V0  are discarded 
in the majority of RAS studies, here they are a useful source 
of additional information. The measured reflectivity of an 
ITO/glass substrate prior to any surface treatment is shown 
in figure 1. The main features of the spectrum are broad 
thin film interference maxima centred on 1.8 and 3.7 eV. 
The ITO/glass reflectivity spectrum was simulated using the 
matrix method for isotropic stratified substrates described by 
Abelès [9], previously determined optical constants [10], and 
treating the ITO thickness as a free parameter. By varying 
the ITO thickness to reproduce the interference maxima of the 
experimental spectrum, we obtained an optimum thickness of 
116 1 5 nm, consistent with the manufacturer's specification. 
The simulated reflectivity spectrum for an ITO thickness of 
116nm is compared with the experimental data in figure 1. 
Given that the optical properties of ITO thin films are known 
to be somewhat variable [11], and that RAS spectrometers do 
not measure reflectivity with high accuracy, agreement with 
experiment was considered satisfactory. Improvements were 
apparent if the top 10-20 nm of ITO was modelled using the 
Bruggeman effective medium approximation [12], the standard 
approach for simulating surface roughness. 

The measured reflectivity spectrum of the three 
PI/ITO/glass samples A, B and C are shown in figure 2. 
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Figure 1. The solid circle data set shows the reflectivity from an 
ITO/glass substrate which has had its back surface frosted to 
suppress incoherent reflections from this surface. The simulated 
reflectivity for a 1 I6nm ITO layer on a glass substrate, with and 
without surface roughness, are also shown. 

In each case oscillations are observed due to interference 
between the beams reflected from the air-PI, P1-ITO and 
ITO-glass interfaces. Simulation of these spectra is hampered 
by incomplete knowledge of the dielectric function of the 
particular P1 used in this study. To allow simulations we have 
used measurements of the refractive index of this material in 
the visible region and extrapolated on the basis of data for 
similar systems. Using the Abelès method, and treating the P1 
thicknesses as free parameters, we found optimum agreement 
between simulated and experimental spectra for P1 thicknesses 
of 80nm, 120nm and 1400nm for samples A, B and C, 
respectively (figure 3). We estimate the uncertainty in these 
thickness measurements to be about 10%. Agreement between 
experiment and simulation can be considered satisfactory, 
given the uncertainties in each. We note that the central results 
of this work do not rely upon accurate knowledge of either the 
thickness or optical density of the P1 films. 

The reflectivity spectra measured after rubbing the P1 
surfaces are also shown in figure 2. While rubbing reduces 
the reflectivity in the UV region, consistent with surface 
roughening, it does not affect the general form of the 
reflectivity spectra, indicating that the P1 film thicknesses do 
not change significantly. 
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Figure 2. Solid data Sets show the measured reflectivity spectra of 
unrubbed PT/ITO/glass samples. Hollow data sets are the spectra 
after rubbing the surfaces. Samples A, B and C are shown by 
squares, triangles and circles, respectively. 
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Figure 3. Reflectivity spectra simulated using the Abelès matrix 
method [10] for samples A, B and C. P1 thicknesses of 80 nm, 
120 nm and 1400 nm, respectively, have been assumed. In each case 
the ITO thickness was taken to be 116 nm. 
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3.2. RAS 

RAS spectra of the three P1/ITO/glass samples after rubbing 
are shown as the solid data sets in figure 4. For all three 
samples a broad peak centred on E - 4.5 eV is observed. For 
sample C the oscillations in the reflectivity and RAS spectra 
die out abruptly at —3.5 eV, indicating complete absorption 
within the P1 layer for E > 3.5 eV. It follows that the 4.5 eV 
feature is derived purely from the upper surface of the P1, 
which is believed to be essentially the same for all the three 
samples. We consider first the visible region of the spectra. 
It is apparent from the RAS spectra of samples A and B that 
the interference related features in the region 1.5-3.5 eV are 
asymmetric, and that the photon energies of the maxima do 
not correspond with those of the reflectivity spectra. These 
observations can be explained as follows. It is widely accepted 
that rubbing causes a preferential alignment of polymer chains 
parallel to the rubbing direction [13] and it has been found that 
the refractive index for polarization parallel to this direction, 

fix, exceeds that for perpendicular polarization, fly, by typically 
0.1 [14, 15]. This rub-induced birefringence, An, causes a 
slightly different optical thickness for  and  polarizations and 
so an energy shift, q, in the interference peaks of the reflectivity 
spectra for the two polarizations: 

rI2(E) 	 + i) 	 (3) 

where 
d, An 	

4) 
(d 1 +d2)n 

and d 1 and d2 are the thicknesses of the anisotropic sur-
face layer and underlying polymer layer, respectively. It 
follows that 

Re 
Ir2 -- ryI2 

lzz~ 
	 1 	d 	- 

I - I 
L 	] 	IrV + IryI2 	q2(IrI) 	(5) 

that is, the RAS spectrum is approximately proportional to the 
logarithmic derivative of the reflectivity spectrum, the constant 
of proportionality being determined by the optical retardation 
in the overlayer d 1 An. Our previous AFM measurements [8] 
on similar samples have revealed penetration of the fibres of the 
rubbing cloth to depths '-'10nm, so we estimated1 -- 10 nm 

	

and hence d 1 An 	1 nm, a value consistent with previous 
retardation measurements [13, 16-19]. 
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Figure 4. RAS measurements for samples A, B and C are shown as 
the solid data sets. The hollow data sets were obtained by applying 
equation (5) to the corresponding experimental reflectivity spectrum. 

Before applying equation (5) to our experimental 
reflectivity data we first seek to establish its validity by 
comparing the simulations shown in figure 5. This figure 
reports results calculated for three different five-layer systems, 
each of the form sketched in figure 6 but with a different total P1 
thickness. In each case, a retardation of 1 nm was assumed for 
the anisotropic layer. It can clearly be seen that the exact RAS 
calculation for each system, shown by the solid data points, 
is very well reproduced by equation (5) using the calculated 
reflectivity for each system, shown by the hollow data points. 

Having established the validity of equation (5), we now 
use it to simulate the experimental RAS spectra of samples A, 
B and C using only our estimate of d An - I rim and 
the experimental reflectivity spectrum of each sample. This 
approach yields the hollow data sets in figure 4 which are 
clearly similar to the measured RAS spectra they are plotted 
against. This simple approach can be used to explain the 
asymmetry and peak positions in the measured spectra, as well 
as their approximate magnitude. Since nx > n we expect the 
reflectivity for x polarization to be slightly greater than that 
for y polarization, as well as being slightly shifted in energy. 
This would lead to a positive correction term to the right-
hand side of equation (5), giving improved agreement with 
experiment. 

As one would expect, the 4.5 eV RAS feature discussed 
above does not emerge from these simple considerations of 
rub-induced birefringence. In fact for sample C the large 
denominator in equation (4) ensures that birefringence makes 
only a minor contribution to the RAS spectrum. We speculate 
that, as well as birefringence, molecular alignment at the 

1,5 2 2.5 3 3.5 4 4.5 5 5.5 6 
Energy (eV) 

Figure 5. RAS simulations for samples A, B and C as shown as the 
solid data sets. The hollow data sets were obtained by applying 
equation (5) to the corresponding simulated reflectivity. The same 
thicknesses as used in figure 3 were used. In each case the upper 
10 nm was assumed to have a birefringence of 0.1. 

Air 

Aligned P1 

P1 

ITO 

Glass 

Figure 6. The five-layer model used in the simulations shown in 
figure 5. 
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t5 0.4 

1,5 	2 	2.5 	3 	3.5 	4 	4.5 

Energy (eV) 

0 	 RAS 
0.1 	 TIS 

E 0.05 

Energy (eV) 

Figure 7. The comparison between the simulated reflectivity (R) and 
transmission (T) for a five-layer model with parameters corresponding 
to sample A is shown in (a). The comparison of the simulated 
RAS and simulated TAS for the same system is shown in (b). 

surface would give rise to dichroic absorption, not included 
in the simulations in figure 5. The extinction above 3.5 eV of 
the thin film interference oscillations in the reflectivity spectra 
of our samples indicates strong absorption in this region. 
While we have not measured their dichroism spectra, strong 
dichroism would be consistent with the findings of Schadt et al 

[19] and Miller et al [20]. It is straightforward to show [201 
that the RAS spectrum of a dichroic absorbing thin film reveals 
its dichroism spectrum, and we propose this as the origin of the 
4.5 eV feature we observe. Miller et al [201 have previously 
used this effect to explain very similar RAS features for other 
oriented polymer films. 

Previous measurements have established RAS to be 
capable of monitoring the orientation of molecules on surfaces 
[21] but it is not obvious that an optical reflection technique, 
such as RAS, will be a suitable probe of the surfaces of 
transparent thin films. In fact, the simulations for a five-layer 
model corresponding to Sample A, shown in figure 7, clearly 
demonstrate that while the reflected beam is much weaker 
than the transmitted beam, the reflection anisotropy is much 
more sensitive to the birefringence of the surface layer than 
the transmission anisotropy. This extra sensitivity makes the 
RAS technique much better suited for studying transparent 
thin films than transmission anisotropy spectroscopy (TAS). 
It is important to appreciate the large amplitude (10_i) 
of the RAS spectra measured in this work compared to 
the experimental detection limit of standard spectrometers 
(.—. 10-5). We deduce that retardations of order 10-4  nm should 
be measurable with a standard RAS spectrometer. 

4. Conclusions 

RAS has been used to characterize rubbed polymer alignment 
layers used in commercial liquid crystal display fabrication. 
Though usually discarded, the reflectivity spectra provided by 
the RAS instrument proved valuable in this study, enabling 
layer thicknesses to be deduced and providing a basis for 
interpreting the measured RAS spectra. The spectra were 
explained qualitatively using a simple birefringence model 
in terms of the logarithmic derivatives of the corresponding 

reflectivity spectra. Detailed RAS simulations using a five-
layer model produced good agreement with experiment in the 
visible region and demonstrated the technique to be a sensitive 
probe of optical retardation. Although the RAS spectra 
of samples A, B and C are quite different, the simulations 
show that they are derived from essentially the same aligned 
overlayer. A feature in the UV region was observed in the 
RAS spectra of all samples studied. Though originating 
unambiguously from the rubbed P1 surface, this feature and 
could not be explained by birefringence due to molecular 
alignment and has been attributed to dichroism arising from the 
same underlying mechanism. The development ofa systematic 
approach to interpreting RAS spectra of anisotropic polymer 
thin films will greatly assist attempts to apply this technique to 
the real time monitoring and process control of liquid crystal 
device fabrication. 
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