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Abstract

The interconnect mechanisms (shared bus or crossbar) used in current chip-multiprocessors

(CMPs) are expected to become a bottleneck that prevents these architectures from scaling to a

larger number of cores. Tiled CMPs offer better scalability by integrating relatively simple cores

with a lightweight point-to-point interconnect. However, such interconnects make snooping

impractical and, thus, require alternative solutions to cache coherence.

This thesis proposes a novel, cost-effective hardware mechanism to support shared-memory

parallel applications that forgoes hardware maintained cache coherence. The proposed mech-

anism is based on the key ideas that mapping of lines to physical caches is done at the page

level with OS support and that hardware supports remote cache accesses. It allows only some

controlled migration and replication of data and provides a sufficient degree of flexibility in the

mapping through an extra level of indirection between virtual pages and physical tiles.

The proposed tiled CMP architecture is evaluated on the SPLASH-2 scientific benchmarks

and ALPBench multimedia benchmarks against one with private caches and a distributed direc-

tory cache coherence mechanism. Experimental results show that the performance degradation

is as little as 0%, and 16% on average, compared to the cache coherent architecture across all

benchmarks for 16 and 32 processors.
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1. Introduction

1.1. Chip-Multiprocessors and the Cache Coherence Problem

Chip-multiprocessors (CMP) have now replaced very wide-issue out-of-order super scalar pro-

cessors as they provide higher aggregate computational power, multiple clock domains, better

power efficiency, and simpler design through replicated building blocks.

Current chip-multiprocessors are at the moment commonly built around a relatively small

number of cores (2 to 8), each with its own L1, and possibly L2, cache, and are connected

through an on-chip interconnect to a lower level shared cache. So far, the choice of on-chip

interconnect has followed those of multi-chip symmetric multiprocessor (SMP) systems: shared

bus fabrics and crossbars. Supporting shared-memory parallel applications requires cache co-

herence, which is greatly facilitated by the use of buses and crossbars in current CMPs. Such

interconnects allow for straightforward hardware cache coherence mechanisms based on snoop-

ing [MMG+06, MB05] and directories [KST04, KAO05].

Unfortunately, as pointed out in [KZT05], future technology scaling will lead to on-chip

interconnects having different sets of tradeoffs and design issues than traditional off-chip in-

terconnects. In particular, global wires do not scale down at the same rate as other features

shrink, which means that either the delay or the area overheads, or both, of buses and crossbars

increase (likely exponentially for the delay and polynomially for the area) as process scales. In

fact, the detailed study in [KZT05] clearly shows that the area and delay overheads of buses

and crossbars will become prohibitively high in CMPs with more than 8 or 16 cores in 65nm

and smaller processes. In order to scale the number of cores in a CMP above this barrier a

different approach will be necessary. In particular it will be necessary to resort to a scalable

interconnect type.

Tiled CMPs [BKM+04, CCC+02, KBH+04, SMSO03, TLM+04] (also known as cellular mul-

tiprocessors and grid processors) have been investigated with the goal of how to build a larger

processor by combining multiple small “cores” together. These systems were designed with

different goals in mind: Some designs tried to provide an alternative to ever more complicated

super scalar processors by finding new ways of exploiting ILP in sequential applications. Other

designs focused on stream processing, where the data is passed from processing element to pro-

cessing element and each processing element performs a part of the total computation. Tiled

CMPs are built from a relatively large number (≥ 32) of relatively simpler cores plus a tightly

integrated and lightweight point-to-point interconnect. Such interconnects are suitable not only

because their peak bandwidth naturally scales with the number of cores, but also because, due

to the short-length wires and low radix, their area overhead is a fixed, independent, fraction of

the number of cores (unlike buses and crossbars where this overhead usually increases polyno-

mially). Unfortunately, while these interconnects are very scalable, they do not lend themselves

1



1. Introduction

well to the implementation of snooping cache coherence protocols1. The alternative to continue

enforcing cache coherence in such systems is to employ distributed directory schemes, which

have been used in multi-chip multiprocessors in the past (e.g., [LLG+90, ASL03, LL97]). These

have proven fairly scalable, reaching up to hundreds of processors. Snooping protocols are al-

ready somewhat difficult to completely debug and verify due to subtle corner cases and state

transitions [Hag07]2, and distributed directories, with even more states, races, and corner cases,

are notoriously even harder to debug and verify (e.g., [ASL03]).

Most of this complexity stems from the fact that requests cannot always be resolved at

the home directory, but must in some cases generate further requests (such as forwarding

and invalidation requests), which lead to complex protocols with subtle race conditions and

several pending states. Moreover, distributed directory schemes are more involved in a CMP

environment than they are in multi-chip systems. One reason for this is that in multi-chip

systems the home node always has a directory entry for each and every memory line assigned

to it as well as a placeholder for the data, while on a CMP each tile has only entries for the few

memory lines that fit in its cache. Because caches are small and replacements are frequent, the

situation where the directory information is not available on chip can occur more frequently,

leading to longer pending state periods and further race conditions. Obviously, keeping more

entries in each directory is possible (e.g., [BW04, CPV05, KBK02, ZA05]), at the expense of

more directory storage per tile, but it still does not solve the problem of possibly frequent spills

of directory state off-chip. All this complexity is of serious concern, as it is not clear how much

design re-use is possible with respect to protocols and directory coherence controllers. If little

design re-use is possible, and considering previous experiences with the design of such protocols,

then designing and verifying the directory coherence protocol for each new generation of the

CMP architecture will likely become an expensive bottleneck.

An alternative to enforce coherence in a distributed memory system is to use the OS’ virtual

memory (VM) system to handle the copies of virtual pages, as was done on software DSM

systems (e.g., [CBZ91, KHS+97, Li88, RLW94]). In this scheme, all caches are private and it

is the responsibility of software to maintain coherence. As with distributed directories, such

schemes have only been tested on multi-chip systems and must be adapted to operate on a

CMP. A major drawback of directly porting software DSM schemes to the CMP environment

is that such schemes require moving, comparing (“diff”), and copying data in physical memory

pages to enforce coherence. This is because creating multiple physical copies of the same virtual

page is the only way to cope with false sharing and the inability of the hardware to identify

which parts of a cache line have been modified. In this way, at communication points, such as

lock transfers and barriers, the individual copies must be compared against the previous stable

copy of the page and the modifications must be merged into a single new stable copy of the

page. These operations are likely to be extremely costly in a CMP, will consume precious off-

chip memory bandwidth, and generate much pollution in the relatively small on-chip caches. In

fact, previous work on software DSM systems showed that the costs of managing the multiple

copies of pages, generating diffs, and updating pages, correspond to a significant fraction of the

costs in these systems [ISL96].

1Promising recent research has attempted to implement snooping-like protocols on top of scalable intercon-
nects [MHW03, MH06], but their tradeoffs are still open to investigation.

2Further suggestion to the difficulty of complete verification is the recent Core 2 Duo Errata AI39: “Cache Data
Access Request from One Core Hitting a Modified Line in the L1 Data Cache of the Other Core May Cause
Unpredictable System Behavior” [Int07]. While it is not officially stated as so, this clearly suggests some
nagging bug in the coherence protocol implementation, which was only identified after product shipping.

2



1.2. Contribution of this Thesis

Overall, the potentially complex hardware solution of distributed directories and the po-

tentially high-overhead software-only solution of a VM-based scheme are two extremes in the

spectrum of solutions for the cache coherence problem in tile CMPs.

1.2. Contribution of this Thesis

This thesis proposes an alternative cost-effective software/hardware mechanism to support

shared-memory parallel applications that forgoes hardware maintained cache coherence. The

proposed mechanism is based on the key ideas that mapping of lines to physical caches is done

at the page level with OS support and that the hardware efficiently supports remote cache ac-

cesses. An extension of the basic scheme only allows some controlled migration and replication

of data. Data is migrated by refreshing the page mappings at barriers. Read-only sharing is

done with the help of the existing write-protection mechanisms in the TLB/OS. Overall, the

mechanisms allow a sufficient degree of flexibility in the mapping and sharing. This thesis also

addresses in depth some issues that arise from the implementation of the technique, such as the

implementation of memory locks.

By moving the key coherence handling and decision making to software (in our case the

OS), the proposed scheme, like software-managed coherence mechanisms [CH04, KOH+94],

benefits from the possibility to modify the protocol after hardware shipping, which may allow

for customising the protocol to application behaviour and for more easily fixing bugs. Like

other recent attempts to divide coherence labour between OS/software and hardware [ZH07,

ZRKH06], the mechanism is likely to be more cost-effective and easier to verify and validate

than distributed directory schemes. Unlike such previous trap-based schemes, however, the

small hardware extensions to support an extra level of indirection between virtual pages and

tiles as well as to support remote cache accesses minimise the need for OS and trap handler

activity. In the proposed scheme, only the processor’s first load or store to data in a page requires

trap handler intervention and only the system’s first load or store to data in a page requires

full OS intervention. Also, unlike recent hardware-only schemes for co-operative distributed

caching [BW04, CPV05, KBK02, ZA05] the proposed scheme does not rely on broadcasts,

centralised tag stores, or large redundant tag stores in order to map, locate, and access data

cached remotely.

The proposed tiled CMP architecture is evaluated on benchmarks from two very different

domains – the SPLASH-2 scientific benchmarks and the ALPBench multimedia benchmarks.

The system is compared against one with a distributed directory cache coherence mechanism.

Experimental results show that the proposed scheme performs very close to this system with

a performance gap as close as 0% (no gap) and 16% on average, across all benchmarks for 16

and 32 processors.

1.3. Summary of Work

The basic idea of this thesis is that instead of keeping the distributed caches coherent, they are

prevented from becoming incoherent by simply disallowing data to be stored in more than one

cache. However, unlike previous work, this work does not move the data to another cache in

order to enforce the invariant. Instead, other processors are allowed to access the cache, which

stores the data, remotely. The allocation of which data is stored in which cache is done at page

3
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granularity. This information is stored in an OS managed table that is similar to the page table

(used to translate virtual to physical addresses). This basic scheme is then extended to allow

some form of migration and read-only sharing.

1.4. Structure of this Thesis

The remaining of this thesis is structured as follows: Chapter 2 to 4 discuss the motivation for

this work and present important background information. Chapter 5 discusses software DSM

systems, which are somewhat between related work and background information and as such

deserve a separate chapter, apart from the other related work presented later in chapter 14.

Chapter 6 to 9 present the baseline architecture and in detail the proposed architecture exten-

sions. They also discuss support for synchronisation operations and how these operations are

implemented in the proposed architecture. Fictional models, which are used to evaluate the

performance of the proposed architecture, are presented in chapter 10. Chapter 11 presents the

applications used to evaluate the proposed architecture. Chapter 12 explains the simulation

setup, while chapter 13 discusses the performance of the proposed system in detail. Finally,

chapter 15 concludes this thesis, and shows future research directions.
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2. Parallel Programming

Parallel programming assumes that a problem can be split into several independent parts that

can be executed in parallel. These parts are then run as independent execution threads (the

term thread is used here in a broader sense and should not be confused with “thread” as it

is used in the context of operating systems). Although there are cases where these threads

are completely independent and do not communicate with each other, in most cases some

form of communication is necessary. In general there are two different approaches to how

this communication is performed. One approach assumes that a shared address space exists

that can be used for communication; the other approach assumes a distributed address space.

Having a shared address space makes developing parallel applications more similar to developing

traditional sequential applications. All programming constructs from sequential programming

are still present. In particular the usage of pointers is still possible. For example, one thread

might pass a pointer to another thread as part of the communication between them. Similarly

a thread might just follow pointers within a linked data structure. However in the distributed

memory approach things are not that simple. The destination of a pointer might be different

for a different thread. For example a pointer to 0x10000000 might point for one thread to the

beginning of a linked list element, while on another one it points to the middle of the data

structure. Due to this problem, threads cannot use pointers when communicating with each

other. Instead, the whole element has to be sent as a message from one thread to the other.

This restriction makes it more complicated to pass information that is stored in pointer based

data structures from one thread to another.

On the actual hardware side, these two approaches have been matched with machines that

lend themselves particularly well to one of the approaches. Shared memory machines are a good

match for the approach that assumes a shared address space, while machines with distributed

memory are more suited for the approach that does not assume this shared address space. How-

ever, it should be noted that either machine is able to also support the other approach. A shared

memory machine can communicate by messages through the shared address space without using

pointers. And a distributed memory machine can use an additional software layer that pro-

vides the illusion of a shared address space. The following sections describe these programming

schemes in more detail and highlight their respective advantages and disadvantages.

2.1. Message Passing

Message passing systems have been developed as a solution to combine the computational power

of several smaller systems in order to process larger programs. Usually each system is a self

contained computer with its own processor and memory. These nodes are then connected using

some kind of interconnect. The basic structure is shown in figure 2.1a. The whole computation

is now broken into smaller parts that are assigned to individual nodes. Each node performs a
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Figure 2.1: Overview of basic parallel systems.

part of the computation and then sends the intermediate results to other nodes that depend on

these results.

One advantage of message passing systems is that they scale to thousands of nodes (for

example the largest Blue Gene/L installation features 106,496 nodes). Furthermore, since it

exposes communication directly to the programmer, he or she can optimise the algorithms

to the communication pattern. However, this exposed communication is also the obstacle for

the widespread use of message passing systems. Programmers have to handle data placement

(including replication) and migration themselves. These tasks are non-trivial and sometimes

as demanding as the development of the program itself. Still, it seems that there is today no

alternative programming model to write applications for systems with thousands of nodes other

than message passing.

2.2. Shared Memory

The Shared Memory model has first been used in early multi chip multiprocessors that connect

several CPUs via a shared bus to a memory system (shown in figure 2.1b). This model simplifies

it for programmers to write multi processor programs, since it removes the burden of distributing

data across different nodes and accessing data that is stored on a remote node. Since CPUs in

these early systems did not have local caches or out-of-order execution, the shared bus could act

as serialisation point for all memory requests. All write accesses become immediately visible to

all processing elements.

One problem has been created with the introduction of hardware caches: processing elements

keep local copies of data for fast access under hardware control. This data might no longer

be identical to the data stored in main memory: writes by other processors to shared memory

might not be reflected in the local cache. Similarly writes to the local cache might not be

written back to shared memory that is visible to all.

Another problem is caused by out-of-order execution, since it allows processing elements

to reorder instructions differently from the original order specified in the program. While

a processing element ensures that by doing so the semantic is not changed with respect to

single processor execution, the situation becomes more complicated once out-of-order processing

elements are used in a multi processor system. Imagine a program that spins on a memory

variable before it reads some other value from memory. An out-of-order processor might not

detect a dependency for the second load and issue it before the spinning load.
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2.2. Shared Memory

These problems have prompted research into consistency models, their relations with each

other and programming implications. These models will be briefly discussed in sections 2.2.1

to 2.2.3.

In terms of scalability, the largest shared memory system built so far consists of 512 nodes

(SGI Altix 3000). While Cray X1E allows up to 1024 nodes with 4 processors each, no such

system has been installed so far.

2.2.1. Sequential Consistency

Sequential Consistency (SC) is probably the oldest and most intuitive consistency model that

exists [Lam79]. The model makes two requirements: firstly, all memory requests issued by

an individual processor appear in the order specified by the program. Secondly, all memory

requests from all processors appear to be serviced from a single FIFO queue.

While these requirements make programming fairly straight forward, they limit hardware

scalability, instruction level parallelism, etc. For example, a single FIFO queue would soon

become a bottleneck. Based on these observations two research areas have started: Ways

to support more sophisticated hardware while still maintaining Sequential Consistency and

research into other consistency models. The first area includes techniques such as cache coher-

ence protocols (discussed in more detail in chapter 3), memory barriers to prevent reordering of

memory instruction across the barrier and speculation based approaches that require a rollback

once a modification to an address with an out-of-order load is detected [GFV99, Yea96].

Also, since enforcing Sequential Consistency in hardware can be very costly, research started

into other consistency models that are less restrictive than Sequential Consistency and either

still allow an intuitive way of programming or implement Sequential Consistency using library

functions. Providing a full list of other consistency models is outside the scope of this thesis.

Adve and Gharachorloo have compiled a list of several consistency models, their implementation

and programming implications [AG96]. Steinke and Nutt have compiled a similar list, but also

investigate the relation between different consistency models [SN04]. The next sections present

some important consistency models that will be referred to in later parts of this thesis.

2.2.2. Weak Consistency

Even though Sequential Consistency is a very intuitive model, its main problem is the additional

cost required to maintain the illusion of serialised accesses to memory. It has been noted that

requiring this for every memory operation is mostly unnecessary. Thus, models were developed

that do not enforce the requirement of sequential access for all memory accesses, but still offer

a sufficient intuitive behaviour to be useful to programmers. Dubois et al. [DSB86] noticed

that it was enough to ensure Sequential Consistency for access to synchronisation variables and

make a few further restrictions on other memory accesses. The model they proposed was called

Weak Consistency and requires that:

• Access to shared synchronisation variables is sequentially consistent.

• No access to a shared synchronisation variable is performed before all previous memory

requests to shared data have been completed.

• No access to normal shared data is performed before all access to shared synchronisation

variables have been completed.
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These conditions ensure that a normal access to shared data will either be before or after

a synchronisation operation. All processing nodes must see these normal accesses occur in

this order with respect to the synchronisation operation. These simple restrictions match the

requirements for locks and barriers very well and as such allow an easy implementation of these

synchronisation constructs.

2.2.3. Release Consistency

The above restrictions might be sometimes too strict, since they just assume one kind of synchro-

nisation operation. Instead synchronisation operations are usually used for different purposes:

some instructions are used to import updated information (such as the acquire of a lock); other

instructions are used to export information (such as the release of a lock). Gharachorloo et

al. [GLL+90] used this observation to define a more relaxed consistency model called “Release

Consistency” (RC). The model requires that:

• Before a normal load or store operation is allowed to perform1 with respect to any other

processor, all previous acquire accesses must be performed.

• Before a release access is allowed to perform with respect to any other processor, all

previous normal load and store operation must be performed.

• Special accesses (such as acquire and release) are sequentially consistent with respect to

one another.

An acquire operation guarantees that the process is provided with all required updates. There

are two different flavours of release consistency:

Eager Release Consistency requires that all updates be performed when an acquire operation

happens.

Lazy Release Consistency tries to delay all updates as much as possible [KCZ92]. The idea is

to only make memory updates visible if these are really needed. For example, the arrays a,

b and c were modified and thread x is acquiring a lock. Eager Release Consistency would

now require that all modifications are made visible to thread x. However, this might

be unnecessary, if thread x only accesses array b. Thus, with Lazy Release Consistency

thread x is only informed that a, b and c are modified. Once an actual access to one of

these arrays in performed, then the modifications to that array are made visible to thread

x.

Making modifications visible usually involves communication between different threads.

By reducing the number of modifications that are made visible, Lazy Release Consistency

is able to reduce the amount of communication that is required.

Release consistency is the consistency model that is used by a wide range of languages, such

as Java [GJSB05], OpenMP [Ope05] and Unified Parallel C [UPC05].

1The expression “to perform” refers to accessing the memory and either reading or storing a value to/from a
register. An access is considered “performed” once its outcome can no longer be affected by another access.
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Figure 2.2: Overview of a distributed shared memory.

2.2.4. Processor Consistency

Another consistency model that is rather relevant in practice is “Processor Consistency”. It

is the model that is adopted by most processor nowadays. It has been defined by Good-

man [Goo89] and requires the following: “a multiprocessor system is said to be processor con-

sistent if the result of any execution is the same as if the operations of each processor appear

in the sequential order specified by its program.” Thus while writes by the same processor are

always observed in the order specified in the program by all other programs, writes performed

by different processors can be observed in different order by different processors. For exam-

ple, processor X might see the write by processor A first and then B’s write. However, from

processor Y’s point of view, it was B who wrote first and then A.

2.3. Distributed Shared Memory

Distributed shared memory systems try to offer the view of a shared memory system (as shown

in figure 2.1b) on a system that in reality looks like a system as shown in figure 2.1a. In order to

provide the illusion of a single shared address space a mapping manager is necessary (as shown

in figure 2.2). Several solutions exist for implementing this manager; some of these solutions are

implemented completely in hardware, others only in software. These systems will be discussed

in more detail in chapter 3 and chapter 5.
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3. Cache Coherence

The Cache Coherence problem affects shared and distributed shared memory systems that use

hardware caches. It is illustrated in figure 3.1. The variable x with the original value 10 is

loaded from main memory into the cache of processing element 1 (➊). Next, processing element

N also loads the same variable (➋) and updates its value to 99 (➌). The questions are now:

which value will be loaded into the cache of processing element 2, if it tries to load the variable

in its local cache (➍)? What happens if processing element 1 accesses variable x again (➎)? For

example, if the system is supposed to be sequentially consistent, then the system should return

the updated value of x, which is 99. Cache coherence is the mechanism that will update the

cached value eventually. The exact moment depends on the implemented consistency model.

2
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5

1

x:10

x:10 x:10
. . . 

x=99

x=?

x=?

Interconnection Network

Processing
Element 1

Processing
Element 2

Processing
Element N

L1−D Cache L1−D Cache L1−D Cache

Memory

Figure 3.1: Overview of the cache coherence problem in a shared memory system. The variable
x is loaded into several caches and modified as indicated by the numbers.

A simple solution to the problem is to avoid caching shared data. If all accesses to shared

data are directed exclusively to main memory, then the cache coherence problem does not arise.

The Cray T3D and T3E were machines that followed this strategy by only caching access to

local data [Sco96]. The problem with this approach is that it is very difficult for the compiler

to identify non-shared data in order to allow caching of it. Thus, in the end, the compiler

often decided to mark almost all data as non-cacheable, which decreased the available system

performance significantly.

Hence, other solutions are needed that support caching of data. The following sections will

discuss the most common solutions and why they will not be applicable to large scale CMPs.

This chapter will then be concluded with a solution that has been developed for multi-node

distributed shared memory systems.
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3.1. Snooping

All snoopy based cache coherence protocols have one thing in common: the caches are all

connected to the same bus and can observe transactions that happen at the other caches. The

two basic strategies of either updating all copies or only allowing a single valid copy of a cache

block are described next:

Write Update protocols are the simplest snooping protocols. The basic idea is that a write-

through cache is used. Thus all writes are visible to all caches and each cache can update its

local data, if it happens to share that cache block. The obvious disadvantage of such a protocol

is the increased usage of the shared bus, since all writes go directly to memory. Furthermore,

the caches will be quite busy monitoring each message on the bus, which might have an impact

on offering low latencies to the local processing element.

Write Invalidate protocols ensure that there is only a single valid copy of a cache block, once

it is modified. This is done by sending an invalidation message on the shared bus once a write to

a cache block happens. In order to reduce the number of invalidation messages sent, each cache

block also stores a state: M-odified, E-xclusive, S-hared, and I-nvalid. The states exclusive and

modified indicate that the current cache is the only cache that currently has a copy of the block.

Thus no invalidation messages have to be sent in case of write access to this block. Goodman

was the first to describe such a scheme in the literature [Goo83]. This scheme is also referred

to as MESI protocol, based on the initial letters of the cache block states. While there have

been a couple of slight modifications to this basic scheme, it would be beyond the scope of this

thesis to discuss them in detail. Further details are available in [AB86].

While snooping protocols have been originally developed for multi chip multiprocessor sys-

tems, they are now used in chip-multiprocessors as well. For example, Intel’s Core 2 Duo

(see figure 3.2a) uses a MESI protocol to keep the two L1 caches coherent. Intel decided to

implement a snooping protocol as opposed to a directory based one, due to its reduction in

complexity [MMG+06].

(a) Intel Core2Duo [GMNR06]. (b) Sun Niagara [LST+06].

Figure 3.2: Floorplan of two current chip-multiprocessors
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3.2. Directory Based

While snooping based protocols lend themselves particularly well to implementation on early

bus based shared memory systems, the bus limits the scalability of the system and is destined

to become a bottleneck as the number of processors increases. Thus, larger systems usually

use multi-staged point-to-point interconnects to allow communication between attached de-

vices. Unfortunately, these networks do not lend themselves to the efficient implementation of

broadcasts, which all snooping based protocols rely on.

As an alternative solution, Censier and Feautrier [CF78] proposed a scheme that uses a

directory to locate copies of a memory block. Interestingly, this scheme was developed for

shared bus systems as a mechanism to reduce the overhead of unnecessary broadcasts. In

principle a directory allows only one cache to contain a writeable copy; all other copies must

be invalidated before a write can proceed. The basic idea is that for each memory block a

directory entry is present. This entry contains a present bit for each processor to indicate,

if this processor currently caches this memory block. Additionally, each cache line contains a

private bit to indicate that this cache exclusively holds the only copy of the cache line.

By using this directory, messages no longer have to be broadcasted to all devices but can be

sent just to affected ones. The obvious problem with this approach is the extra storage required

for all the present bits. Several schemes have been proposed to limit the amount of extra storage

required, such as the limited directory [ASHH88] or the chained directory [JLGS90]. Another

problem with the directory approach is that some transactions require multiple, possibly lengthy

sub-transactions, which complicates the directory implementation.

As with snooping protocols, this protocol has been originally used in multi chip multiprocessor

systems. However, directory based schemes can be found in current CMPs. For example, Sun’s

Niagara processor (see figure 3.2b) uses a directory based protocol to keep the private L1 cache

of each processing element coherent [KAO05]. The directory information is stored in the shared

L2 cache.

An extension of the directory based protocol for distributed shared memory will be discussed

in section 3.4.

3.3. Scalability of Buses and Crossbars

Considering the importance of shared buses and crossbars for current coherence protocols on

chip, it is important to see how these interconnects scale with an increasing number of cores.

Kumar et al. [KZT05] investigated in detail the effect on area, power and latency in this

situation. As a baseline they assumed a 65nm process with 400mm2 die. These assumptions are

mostly in line with current CMPs like Sun’s Ultrasparc T2 and IBM’s Power6. Both processors

are manufactured using a 65nm process, but occupy slight less area (340mm2). Each core is

considered to be a stripped version of a Power4 core requiring 10mm2 of area and 10W power

(including leakage). All remaining area is assumed to be used as L2 cache.

3.3.1. Shared Busses

The first study in [KZT05] focused on shared buses, with the first results that using a single

bus to connect 16 cores is latency wise not feasible. Instead, they suggested to use 2 buses

that just connect 8 cores each and are then joined by a peer-to-peer link. The effect on area is
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Figure 3.3: Area overhead and power requirement for a shared bus [KZT05].

shown in figure 3.3a. Please note that sometimes certain components do not result in a direct

area overhead, since the additional wires can be routed in a different metal layer across other

components. The area overhead is 7.2% with 4 cores, 8.7% with 8 cores and 13% with 16 cores.

This is an equivalent area of 3-5 cores or 4-6MB of cache.

Another interesting thing to notice is the increase in power consumption (see figure 3.3b),

with most of the power being consumed in the logic of the shared bus and not its wires. As for

accessing data in the L2 cache, over half of the access latency would be due to latencies in the

shared bus (assuming no contention on the bus). The performance degradation caused by the

shared bus is 10% for 4 cores, 13% for 8 cores and 26% for 16 cores.

3.3.2. Crossbars
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Figure 3.4: Area overhead and power requirement for a crossbar connecting 8 cores with 8 banks
of cache [KZT05]. The metal plane 1X, 2X and 4X refer to lower, intermediate and upper metal
layers that are used during chip manufacturing process. Lower metal layers contain very thin,
short running wires, while upper layers contain thick long running wires. As such, wires in the
upper layers have lower signal latency than wires in the lower layers. In particular, 1X contains
metal layers 1 to 4, 2X contains metal layers 5 and 6, and 4X contains metal layers 7 and 8.

Kumar et al. [KZT05] only investigated crossbars that connect 8 cores to 8 banks of cache.

For the crossbar there are two design parameters: first, in order to increase single thread

performance, it is important that a single core can access as many cache banks as possible in
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order to increase the amount of cache available to it. Second, the metal layer the crossbar is

routed in has impact on its latency and wire thickness. As a rule of thumb, going to a higher

metal plane reduces the latency by almost half, but also doubles the wire thickness. Another

design point is the decision of where to place the crossbar. If it is placed next to the core and

caches, then wiring will be easy but all components result in an area overhead. If the crossbar

is placed above the cache, then wiring becomes much more difficult, but its overhead is greatly

reduced.

Figure 3.4a shows the area overheads in this design space. Thus, for a crossbar with acceptable

latencies (wiring in the 2X plane) the area overhead is 11.4% for 2-way sharing, 22.8% for 4-

way sharing and 46.8% for all-way sharing. A similar picture also displays itself for the power

consumption. With an increase in the level of sharing, so does the power consumption increase

(figure 3.4b).

Another aspect of these results is: considering that sharing of caches should increase the

amount of cache available to a single core, then it might be more useful to use a lower degree

of sharing and use the saved area to increase the size of the cache banks.

Considering the area requirement of this crossbar it seems improbable that a crossbar can be

used to connect 16 cores due to the expected area overhead.

3.4. Distributed Directory Cache Coherence

The protocols discussed in section 3.1 and 3.2 were designed to provide cache coherence in

shared memory systems as shown in figure 2.1b. In order to provide cache coherence in system

with distributed shared memory (figure 2.1a), a different solution is needed. One of the main

design decisions for these systems was to avoid the bottleneck to the memory system as was

present in shared memory systems. Thus while using a centralised directory would solve the

coherence problem, it would also prevent scalability of the system.

In order to address these scalability problems, protocols with distributed directories were

developed. The first of such systems was the DASH research system [LLG+90] developed at

Stanford University. Similar to centralised directories, the main idea is to separate the global

sharing state from the caches holding the data. However, in absence of a centralised directory

the additional problem of locating the directory for a cache block arises. The solution is

that cache blocks are associated, usually at page granularity, with a particular directory. The

protocol introduces the following terms:

Home node contains the directory information for a particular page, as well as the actual

physical memory for the page.

Remote node is any other node that is not the home node.

Owner node is usually the home node. However, if a cache block is in a dirty state on a remote

node, then this node becomes the owner node. Note that there can be only a single owner

node for any cache block. Also, only the owner node of a cache block is allowed to update

the sharing state regarding this block in the directory on the home node. Such an update

then also indicates that the owner node is giving up ownership.

A typical cache miss is resolved as follows: the node determines the home node of the accessed

page based on the physical address of the TLB lookup. It then sends a message to the home
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node (assuming that the accessing node and the home node are different). The action of the

home node then depends on the type of the request, and if the home node is also the owner

node of that cache block. For example, if the home node is not the current owner, then it has

to forward the request to the current owner. Or, if the node requests exclusive access to the

cache block, then the home node has to inform all other sharers (for local invalidation purposes)

before the request can be granted.

The home node is usually identified by the physical address of a page in the TLB. Thus, the

physical address might be in the address range of memory that is really installed in the node.

In such a case the home node is the local node. If the physical address is outside the address

range of locally installed memory, then the home node is some remote node. Which remote

node is the home node can be identified by looking at specific bits in the physical address. The

home node itself is usually dynamically assigned using a first-touch policy.

Even though distributed directory protocols can be used to implement sequential consistency,

DASH decided for performance reasons to settle with release consistency. While read operations

are blocking, writes are performed in a non-blocking way. This might result in a later write

being committed to memory first. This situation can arise, if the write operations are handled

by different directories. While the first write might still wait for the directory, the second write

got already permission to commit. In this case, the order of writes observed by other nodes

would be different from the node that issued the writes. In order to provide support for stronger

consistency models (such as sequential consistency), DASH offers support for memory fences (a

fence ensures that all memory operations have been committed, before allowing the processor to

continue). However, it is the responsibility of the programmer or compiler to insert these fence

operations at appropriate places into the program. Performance issues, such as this, had the

effect that a quite a few distributed shared memory machines used weaker consistency models

than sequential consistency by default.

Apart from the originally mentioned DASH research system [LLG+90], a distributed cache

coherence protocol has also been used in the following machines. The SGI Origin 2000 [LL97]

(and its successor, the Origin 3000) is based on the DASH protocol, but uses several performance

improvements. An extra state (clean-exclusive) for a cache line has been added. This state is

similar to the exclusive state in the MESI protocol. Furthermore, the Origin 2000 can upgrade a

cache line from shared to exclusive without certain overheads that exist in the DASH protocol.

The final improvement involves a more sophisticated algorithm to deal with deadlock avoidance.

Figure 3.5 shows the performance of the SGI Origin 2000 for several SPLASH-2 benchmarks.

The Origin has been designed to scale up to 512 nodes with 2 processing elements each. Both

protocols seem to have some issues with negative acknowledgements [GSSD00]. While the

Origin 2000 resorts to some complicated mechanisms (such as reverting to a strict request-reply

protocol) to resolve this, the DASH protocol simply seems to ignore this.

The other commercial machine is the Cray X1 (and its successor, Cray X1E). The machine

scales up to 1024 nodes with 4 processing elements in each node. The Cray X1 also uses a

relaxed memory model, which does not offer sequential consistency or any other commonly

used form of consistency [ASL03].
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Figure 3.5: Performance of the SGI Origin 2000 on several SPLASH-2 benchmarks [LL97].

3.5. Complexity of Distributed Directory Cache Coherence

Considering the increase in complexity from simple bus based snooping protocols, to directory

based protocols and finally distributed directory based protocols, one important question is the

verification of such a protocol and its hardware implementation. Due to the complexity of the

protocol, it is impossible to enumerate all possible states of the system and verify the correct

behaviour in a reasonable amount of time. Instead, other methods are required. The DASH

protocol was extensively tested using an FPGA implementation of the protocol controller and

the SPLASH benchmarks. While such an approach will probably find most obvious mistakes,

it is unlikely that it will find corner cases1, since it suffers the same drawback as other testing

based approaches: exhaustive testing requires an enumeration of all system states, which is not

practical for any but the most simplest systems. For example, the FLASH protocol (discussed

later in this paragraph) was tested extensively for 7 years. Still, several critical errors were

found in the protocol after this time. Eiŕıksson [Eir96] used a model based approach to verify

the SGI Origin 2000 protocol. However, he had to use a simplified model at a higher abstraction

layer, ignoring many details to make the verification tractable. Furthermore, he was only able

to verify a system consisting of 3 nodes. Abts et al. [ASL03] used also a model based approach

to verify the Cray X1 protocol, and also had to simplify this model. However, they were able

to record the protocol actions and use this “witness string” to verify the correctness of the

Verilog implementation. Still, even with these simplifications the total state space of the Cray

X1 would haven been 21664 states. Luckily, only about 200 million states are actually reachable.

In the final result this approach was able to find several implementation flaws in one of the

cache coherence controllers. Unfortunately, the approach was still too slow to be extended to

the other cache coherence controllers. Lie et al. [LCED01] used also a model based approach to

verify the correctness of the cache coherence protocol in the FLASH multiprocessor [KOH+94].

Since FLASH uses a programmable protocol controller, it was possible to extract the model

semi-automatically from the C source files by extending the compiler. Problems that prevent

a fully automated extraction of the model include the weak C type system and bit operations,

which are not supported by the model checker and have to be emulated. Using this approach

1For example, a cache line not being invalidated correctly. However, this mistake never has any impact, since
the application does not access the cache line before it gets evicted from the cache.
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it was possible to extract a model for 4 protocols (Unfortunately, the authors do not mention

how many protocols are there in total.). The extracted model is then verified using a four node

configuration. Lie et al. were able to find 6 critical errors in the 4 protocols, even though

these have been tested and used for 7 years. The main obstacle to port this semi-automatic

approach to other systems seems to be the need of a protocol implementation in an imperative

programming language. The final conclusion is that no one was able to completely verify a

distributed cache coherence protocol.

So far no chip multiprocessor uses a distributed directory cache coherence protocol. Thus, one

of the open questions is how to adapt such a protocol in order to work in a CMP environment.

As pointed out in [KZT05] the tradeoffs for on-chip networks are different from inter-chip

networks. Traditionally distributed directory protocols were developed for a scenario in which,

first, the network communication speed is relatively slow compared to CPU speed, and second,

there is sufficient memory available on each node to store the directory information. However,

on CMP things are reversed: the network is clocked at the same speed as the CPU, thus it is fast

enough to consume messages produced by the CPU at the same rate as they are produced. On

the other hand, fast on-chip memory is relatively limited. Considering the lack of verification

of distributed cache coherence protocols for multi-node system, this thesis claims that there is

no reason to assume why the situation should be different when moving to a CMP.

Considering one would like to use the unmodified protocol of an existing commercial system,

such as the Origin 2000, for a CMP, the first thing to consider is how components in the Origin

2000 relate to components in a CMP. There is no problem to associate the on-chip interconnect

on the CMP with the inter-node interconnect in the Origin 2000, the cores on the CMP with

the nodes of the Origin 2000, and processing elements in each core with the CPU in each node.

A home node of the Origin 2000 stores the sharing information in its main memory. In the

CMP environment the cache in each core would be responsible to store this information. This

association has the following implications: the first issue arises due to fact that cache entries

are frequently evicted from the cache. Since this will also evict the sharing state information, it

requires some special attention: either all remote copies of the cache line have to be invalidated

before it can be evicted, or the sharing state information has to be saved in main memory and

reloaded when necessary. Either solution will add extra states to the cache coherence protocol

and, thus, complicate the protocol even further. Note that this issue does not arise in the Origin

2000, since it has enough main memory to store the sharing information for all memory blocks.

Thus, no sharing state information is ever evicted. The second issue limits the efficiency of

the cache on the home node. Since the home node stores the sharing state information in the

cache, it must keep space in the cache for this information, even for data that is only accessed

remotely.
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As seen in the previous chapter, future large scale CMPs are unlikely to rely on shared buses or

crossbars in order to scale to the envisioned number of cores. Instead an alternative approach to

design scalable many-core processors is needed. Cellular architectures1 already investigated this

problem. However, while they now look like large scale CMP architectures, they were originally

a solution to two different problems: first, building ever more complicated super scalar processor

will soon hit a complexity wall that makes it impossible to verify these designs. Second, the

available ILP that can be exploited by super scalar processors is limited (with recent advances

in super scalar designs delivering diminishing returns in performance). Thus, new ways of CPU

design might be necessary to put all the available transistors to use.

Cellular architectures try to address these problems by composing a CPU from several cells.

Since these cells are rather small in size, wire delays can be ignored within a cell. Also due

to the small size, the complexity of each cell is rather limited, making verification of each cell

design rather simple. The whole CPU is then designed by replicating many of these cells and

connecting them together. The general idea is that a signal can reach all parts within a cell in

the same cycle. As for communication to neighbouring tiles, messages usually take one cycle

per hop. Additional cycles might be required to setup the communication.

Another characteristic of cellular architectures is the absence of central structures such as

result buses or a central control unit. While, of course, some central control is needed, it either

has to be provided by the software stack or by a unit that can deal with the fact that it will

not be able to broadcast control information across the whole chip within one extra cycle.

What is a Cell? There is no simple answer to this question. Different cellular architectures

encapsulate different functionality within a single cell. Some place a whole CPU core with

caches within a cell, while others just place a single functional unit. Also some architectures

use homogeneous cells while others use heterogeneous ones. Common among all architectures

are that cells are relatively small and simple structures. Thus, wire delays can be neglected

within a cell and the design can be easily verified. In addition, since every cell is rather

small, a large number of them will fit on a single chip. For example, describing a 2-core chip

multiprocessor (CMP) like the AMD Athlon 64 X2 as cellular microprocessor with two cells

would be inappropriate.

As such, by looking at proposed tiled architectures, it should be possible to derive future

large scale CMPs designs. The following sections discuss several such designs that have been

proposed and some of them have been implemented. The final section in this chapter then

concludes by mentioning some of the characteristics of such large scale CMP design.

1Another name for cellular architecture is tiled architecture. Thus, the names “tile” and “cell” are used as a
synomym throught this thesis.
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4.1. RAW
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Figure 4.1: The RAW microprocessor [TLM+04].

RAW’s development is supervised by Anant Agarwal at MIT [TLM+04]. A survey of the

literature reveals that RAW appears to be the first cellular architecture to be implemented in

hardware.

RAW is a homogenous cellular architecture with rather large cells. A single cell consists

of a single issue MIPS core, 32 Kbytes data cache memory, a programmable static network

processor and a dynamic network processor. Sixteen of these cells are arranged in a 4x4 grid

to build up a single RAW chip. Figure 4.1 shows an overview of the RAW architecture and

how the components are assembled into the RAW chip. A RAW chip has a large number of

connector pins (over 1100). This massive number of pins allows the chip to support an I/O

bandwidth that is 60 times larger than that of a Pentium III2. RAW was designed with so much

bandwidth in order to link several RAW chips together (see section 4.1.3). Another option to

use this abundance of bandwidth is for streaming applications and to turn RAW into a more

DSP like processor.

The following paragraphs describe certain parts of the RAW architecture in detail.

4.1.1. RAW CPU

RAW uses a five stage pipelined, single issue MIPS core with 32Kbytes instruction cache, as

it’s main CPU. The CPU is a traditional RISC CPU apart from four registers: r24 to r27.

These registers connect the CPU to the static and dynamic network processor buffered by a

3-element queue. Any access to them will either read a word from the network processor or

write a word to the network processor. Read accesses to the register while the queue is empty

will stall the “read register stage” until a value becomes available. A similar effect happens if

the “execution stage” tries to write back a value while the queue is full.

It seems that the data cache can be used in two different operations mode. The first mode

uses the on-tile memory as a private, fast memory. It also seems that data has to be copied

from off-chip memory to on-tile memory under the control of the CPU and the application.

The second mode was added later. It simply uses the on-tile memory as a normal L1 data

cache. Currently not much information on this mode is available. A reasonable guess for the

introduction of this mode is that, for some classes of applications, programmers prefer not to

deal with private data memory and the associated complications.

2These are estimated numbers due to lack of detailed information to the public.
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4.1. RAW

4.1.2. On-Chip Networks

As mentioned before, RAW has two different networks: a static network and a dynamic one.

The static network is used for messages whose source and destination can be determined at

compile time. Thus, the compiler can arrange a predetermined routing, resulting in a static

routing behaviour at runtime and messages that do not need headers to inform the router of the

destination and message length. The dynamic network on the other hand performs the routing

decision at runtime. It is used for messages whose destination cannot be determined statically

at compile time, but only at runtime.

Static Network

The static network processor is user programmable. It has four registers, a very limited in-

struction set, mostly consisting of conditional branches, and ten network ports; two to each

neighbour and two connecting to the main CPU. Every instruction consists of two parts: A

“normal” CPU instruction and a routing map for all network ports. Thus, the static network

processor can route (within certain limits) up to ten words per cycle.

With the static network, it is possible to transmit a value to a direct neighbour tile in just

three cycles. Because of these rather low latencies it becomes possible to exploit some ILP with

RAW by combining several tiles into a mode that is somewhat similar to VLIW [LPSA02].

Dynamic Network

The dynamic network is designed as a backup network in case the destination of a network

access cannot be determined statically. It is also used for memory transfers between the local

data caches and off-chip memory. It guarantees that if two messages are sent from tile A to tile

B and message 1 is sent before message 2, then message 1 will arrive first. Apart from this, it

does not give any further guarantees. For example, messages sent to different tiles might arrive

in different order.

4.1.3. RAW cluster

Another feature that is worth mentioning is the possibility of combining several RAW chips

into a RAW cluster. From the applications’ point of view the whole system will just look like

a, for example, 32x32 RAW chip. Only, the latencies for messages that cross chip boundaries

will be higher. There is no information on whether this configuration has been tested in real

hardware.

4.1.4. RAW Compiler: Maps

The main RAW philosophy is that all aspects of the underlying hardware should be exposed to

the compiler. Only if the compiler is aware of all the delays that certain communication has,

it will be able to schedule it in the most efficient way. The underlying idea is that the com-

piler, which has global knowledge both about the program and the latencies of the underlying

hardware, can develop an optimal schedule to achieve peak performance. This approach will

also greatly simplify the hardware, since no complicated structures are needed to discover and

exploit parallelism at run time.
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Maps [LBF+98, BLAA99, Bar00] is the first compiler for RAW. It translates C code into

native RAW code and is built on top of SUIF [HAA+96]. The compiler uses a technique called

space-time scheduling. It is applied to the instructions within a basic block, assigning them not

only a time slot but also a tile. If values that are produced on a tile are needed on another tile,

then the scheduler creates instructions that copy the value to that tile by using the network

registers and programming the static network processor. The tradeoffs that the scheduler has

to take into account are, on the one hand, the communication delays of transmitting a value

to another tile, and, on the other hand, utilising the maximum number of tiles to execute

independent instructions simultaneously. Space-time scheduling has later been improved by a

technique called “Convergent Scheduling” [LPSA02]. Still, this technique does not overcome

the restriction that it only applies to a single basic block.

Maps has been developed to support RAW’s private data memory model. It is not clear

whether it also supports the cache model, but the lack of information suggests it does not. By

using the private memory model, Maps can map data in such a way that it is evenly distributed

across all private memories. This distribution works by using certain bits in the address as

the tile address. However, there is no hardware based mapping, it is up to the software to

identify the tile with these bits and to remove them from the address before performing the

real memory access. This scheme allows distributing the data independently from the size of

one data element.

In order to get the best on chip memory bandwidth, it is necessary that the data is distributed

as much as possible across different tiles. Maps uses two techniques for this distribution: the

first one uses the Span package [RR99] to identify pointers that might point to the same memory

location. Memory objects that are guaranteed to be different are then allocated to different

tiles. The second technique is called modulo unrolling, which is very similar to loop unrolling.

However, it uses the unrolled loop not only to find independent instructions that can be assigned

to different tiles, but also to distribute the matrices that the loop operates on across the local

memories.

One of Maps probably biggest shortcomings is that it can perform space-time scheduling only

within a single basic block. Hence the possibility of finding independent instructions is rather

limited, unless the basic block has been enlarged by, for example, loop unrolling.

4.1.5. RAW Compiler: StreamIt

StreamIt [TKA02] is a high level programming language that has been designed with data

streaming applications in mind. In these applications, data enters the chip on one side, is

passed from tile to tile, until it leaves the chip on the other side. Based on the description of

StreamIt, it is unlikely that it can be used for any other type of application. The RAW group

has developed a backend for the StreamIt compiler that supports RAW [GTK+02]. Due to its

high I/O bandwidth, RAW is particularly well suited for streaming data processing.

4.1.6. Tilera TILE64

Tilera’s TILE64 is the commercial successor of the RAW processor [ABB+07]. The processor is

fairly identical to RAW, with the following changes (see figure 4.2): the simple single-issue, in-

order CPU has been replaced with a 3 way VLIW one. The number of tiles has been increased

to 64, arranged in an 8x8 layout. The local memory has been changed into a 2 level cache per
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Figure 4.2: The Tilera TILE64 processor [Til].

tile. The number of different dynamic networks has been increased to 4. Other changes include

integrated memory controller and different I/O ports. However, the main characteristics of the

chip remain the same: TILE64 still uses mesh based on-chip network and seems to be very

suited for streaming applications (such as multimedia encoding and decoding; network traffic

filtering and routing).

Unfortunately, there is almost no solid information about the technical details available.

Especially, no information on cache coherence is available. Tilera only states that each tile is

able to run an independent copy of an operating system. Furthermore, several tiles together

can run a multiprocessor operating system. Since Tilera has not published any shared memory

application results and only focused on stream based application, it can be assumed that the

processor has no cache coherence mechanism and most likely implements cache coherence in

software (most likely directly in the OS).

4.2. Trips

Figure 4.3: The Trips microprocessor [Bur05].

The Trips processor has been developed at the University of Texas, Austin, by a team led by

Doug Burger [SNL+03]. A hardware implementation of the Trips processor was finished in the

second half of 2006.
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The Trips architecture is unlike any architecture of the past. Some parts of it have some sim-

ilarities with data flow machines, some other aspects bear similarities with VLIW architectures,

but most parts are simply novel.

A tile in Trips is not a complete CPU as it is in RAW. Instead, tiles are specialised to only

perform a very specific task, like stages in a pipelined CPU. For example, there are execute

tiles, instruction cache tiles, data cache tiles, global control tiles, and register file tiles, to just

name some of them. Figure 4.3 shows the arrangement of these tiles. The CPU is divided

into three areas: on the left of the chip is the data cache. The right side is occupied by two

execution cores: one in the upper half and one in the bottom half. An execution core consists

of 16 execution tiles, 4 register file tiles, 4 instruction cache tiles, 4 load store queue tiles and

1 global control tile. The other main difference between RAW and Trips is the philosophy

followed by these architectures. RAW emphasises a static approach to instruction scheduling

and network packet routing, with a single issue, in-order CPU, the static network and a compiler

that has to schedule instructions on the CPU and network processor statically. Trips, on the

other hand, uses a much more dynamic approach to instruction scheduling and does not have

a static network. Instead, all traffic between tiles is routed with one dynamic network out of

seven dynamic networks. In addition, instructions that can be executed are (within certain

limits) determined dynamically.
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Figure 4.4: A Trips Execution Block [Bur05].

Trips does not execute instructions in the conventional sense; instead a program is divided

into blocks, which are similar to HyperBlocks3 [MLC+92]. A block consists of up to 128

instructions4 and several support instructions that access the register file or perform memory

accesses. Figure 4.4 shows such an execution block. The register file is divided into 4 banks

with 32 registers each. A block can read and write up to eight registers in each bank. As for the

memory accesses, it is possible to perform up to 32 memory accesses within one block. However,

the sum of all stores and loads cannot exceed 32. The most important aspect about a block

however is its atomic behaviour: it will only commit completely or not at all. The instructions

are statically assigned to a slot in a specific execution tile. If an instruction produces a result,

then it also encodes which instructions need the result it produces and sends the result to them.

The result is, in contrast to RAW, dynamically routed to the receiving tile. The execution of

3A HyperBlock is a collection of basic blocks with a single entry of control. However, unlike a basic block,
control can also leave a HyperBlock prematurely without every instruction being executed. A HyperBlock
can have an arbitrary number of these premature exists. A final restriction is that the collection of basic
blocks within the HyperBlock cannot form a loop.

4A block is always filled up to 128 instructions with noops.
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a block starts with the register file tiles sending values to the appropriate execution tiles. The

execution ends once a determined number of results have been produced and are either sent

to the register file or data cache. Under optimal circumstances, Trips is able to execute 16

instructions per core at the same time. However, since the results have to be sent across the

operand network, they will be delayed by one cycle for every tile they cross. Thus, other

independent instructions are needed in order to maintain this performance. Only if all values

have been produced, a commit happens.

Since a block could contain several branch instructions (of which only one is really executed),

it can have several successors. Just like a normal CPU uses a branch predictor, a block predictor

is used in Trips. The quality of this predictor is very important in order to achieve good

performance on Trips. Since loading a block into the execution units takes several cycles, it

is very important that the next blocks are already being loaded while the current block still

executes. In addition, the execution of the next block will be started speculatively based on

the results that are already available. This is one source for the 16 instructions per cycle that

are needed in order to achieve peak performance.

The next block predictor is part of Trips’ global control tile. This approach is different from

the RAW approach where every tile has exactly the same capabilities and without a designated

controller. The control tile manages the loading of the instruction blocks. It also determines if

a block has been completed in order to purge it from the execution tiles. While in the current

design with 16 execution tiles the control tile can cope with the delays caused by tile distance,

it might become a bottleneck or cause some other problems if one tries to increase the number

of execution tiles per core.

As mentioned before every Trips chip contains two cores. These cores share a 1 MB L2 data

cache. The cache again is built from tiles. These tiles provide a non-uniform response time to

cache accesses [KBK02]. Hence, if data is stored on a tile that is close to an execution core, then

the data can be accessed faster than if it is further away. On average this gives better cache

hit latencies than a uniform cache, where the hit time is defined as the worst time that it takes

until a request is resolved. It also allows the construction of bigger caches that are not limited

by wire delays. Another possibility is to migrate data in the cache, such that more frequently

used data is closer to the core using it. Trips supports four different modes of operation for this

cache memory:

• Normal shared cache for both execution cores.

• Split the cache between each execution core. This strategy minimises the maximum hit

latency each core can experience. It also prevents one core from evicting the other core’s

data from the cache (due to collisions or capacity problems). To my knowledge, Trips

does not implement any cache coherence protocols for this mode.

• Use the L2 data cache as scratch pad memory. The memory is mapped to the process

as some very fast local memory, however it’s up to the application to move data between

the off chip main memory and the scratch pad.

• Use one half of the L2 memory as a scratch pad and the other half as a shared L2 cache

for both cores.

Trips looks primarily at ILP as its main source for parallelism. While there is little doubt

that ILP is available to a certain degree, previous studies [Wal91] have shown that ILP only
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exists in abundance when completely unrealistic assumptions are made (like perfect branch

prediction). Otherwise, the best one can hope to find on average is ILP up to 14 [Wal91].

While Trips team hopes that it will be able to achieve similar performance as current super

scalar design with less complicated hardware (that probably is also more suitable for higher

frequencies), this thesis advocates that it is beneficial to also look at other forms of parallelism

besides ILP. The inability of the design to run “unmodified” shared memory applications might

be an inconvenience or a limitation to what kind of parallelism it can exploit.

4.3. Cyclops
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Figure 4.5: Cyclops processor: block diagram [CCC+02].

Cyclops [ACC+03, CCC+02] is part of the Blue Gene Project by IBM. Unlike the com-

mercially available BlueGene/L, Cyclops also defines a new type of CPU. The idea is that an

application running on Cyclops consists of hundreds or even thousands of threads.

The basic design of a Cyclops CPU is shown in figure 4.5. It consists of several units called

Thread Groups, some I-caches, 8 MB embedded DRAM and some off-chip communication logic.

Four Thread Groups share one 32Kbyte I-cache module. A Thread Group is composed of four

Thread Units, a data cache and a floating-point unit. While the floating-point unit is shared

between the four thread units, the 16 Kbytes data cache is shared with all other Thread Units

on the chip. In total, there are 128 Thread Units on the chip and the idea is that each of them

executes a single thread. However, compared with RAW it is not possible to combine some of

these Thread Units to extract some ILP; thus, if there are not enough threads available, then

only a fraction of the chip’s performance can be exploited.

The most interesting part about Cyclops is the memory model. As shown in figure 4.5,

Cyclops’ cache is distributed across the whole chip. Figure 4.6 shows the two switches that

enable the memory system to load data into any cache and enable every thread unit to access

any cache. Cyclops does not provide any hardware cache coherence; it is up to the software to

deal with this problem. The data placement is also under the control of the software. Cyclops

uses the top eight bits in each physical address to control the placement of data (this also limits

the amount of directly addressable memory to 16MB). This placement does not necessarily

assign data to exactly one thread group. Several thread groups can form an “interest group”;

this group has an interest in the same data. In this case, the data is automatically distributed

among the caches that belong to this interest group and a hardware mechanism guarantees that
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Figure 4.6: Cyclops processor: memory system [CCC+02].

the data is only stored in one cache. Another interest group consists of the whole Cyclops chip,

resulting in data being stored in just one location. While in this mode the programmer does

not have to deal with the coherence problem, he has sacrificed locality and hence has to deal

with longer latencies. However, by using the upper eight bits for cache placement, Cyclops does

not really need a cache coherence mechanism as long as the software does not refer to the same

physical address via different mapping addresses. For example 0x00ABCFEF and 0x02ABCDEF

would both refer to the physical address 0xABCDEF, but it would be accessed via different caches.

Also worth mentioning is that Cyclops uses a special register to enable a fast barrier operation

across a subset of the thread units. This barrier register is a special purpose register that can

be written individually by each thread; however, a read operation returns the ORed value of all

registers. Each thread unit has first to decide, if it wants to participate in the barrier. If it does,

it will write a 1 to its register otherwise a 0. Once a participating thread enters the barrier, it

will also write a 0 to the register. All threads will have entered the barrier when reading the

register returns a 0. Of course, there are some finer details to enable multiple barriers at the

same time. Cyclops supports up to four barriers with this register.

4.4. WaveScalar
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Figure 4.7: Overview of a WaveScalar chip [SSP+04].
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The WaveScalar project is supervised at the University of Washington by Mark Oskin et

al. [SMSO03]. It is currently still in its early stages of development. The idea is to have

thousands of small and mostly identical (how they differ is so far not specified) processing

elements. These processing elements execute the program in a way that is very similar to data

flow machines. However, unlike Trips, which encodes the dependencies between instructions in

the instruction itself, WaveScalar uses a traditional hardware dynamic token match mechanism.

Unlike previous data flow architecture, WaveScalar is able to maintain the load-store ordering of

imperative programming languages5 and does not have a centralised control unit. WaveScalar

distributes the processing elements across the instruction cache. This combination of logic and

memory is called a Wavecache. Figure 4.7 shows an overview of the WaveScalar chip. The most

important aspect is to move instructions that are linked via data-flow dependencies physically

close together to minimise the communication delay.

WaveScalar achieves the load-store-ordering of imperative programming languages by break-

ing the execution in blocks they call a Wave. Only one Wave can be executed at a time. A Wave

seems to be similar to a HyperBlock [MLC+92]. Within a Wave, every memory instruction is

annotated with its ordering relationship in the original control flow graph. These annotations

allow the memory system to execute these operations in the correct order. The current design

insists on a partial order of all memory operations. It is not possible to declare two operations

as independent. The memory system consists of the usual parts for a two level cache hierarchy.

As for the second level cache, it is “conventional, unified, non-intelligent” cache. It is not clear,

if this cache is on-chip or not, nor if data is placed in such a way to minimise communication

time. As for the later, this work assumes that “non-intelligent” implies that it does not. The

first level data cache seems to be distributed across the whole chip. Four clusters of processing

elements share a data cache module.

The original architecture was designed to just execute a single thread application. However,

the WaveScalar team has identified this problem and modified their design slightly to deal with

this issue [SSP+04]. However, most of this work addresses the implementation of synchro-

nisation primitives for a WaveScalar architecture. It does not address the problem of cache

coherence of the data caches.

The WaveScalar team developed a hardware prototype of their architecture implemented

with FPGAs in August 2005.

4.5. Vector Threads
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Figure 4.8: Logical View of the Vector Threads Architecture [KBH+04].

5This makes programming easier, since the programmer will get the load-store order he/she expects.
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The Vector Thread architecture [KBH+04] looks very similar to the Multiscalar architecture

proposed by Sohi et al. [SBV95]. However, unlike Sohi’s design it does not use speculation

(which simplifies the hardware) in order to find additional parallelism. The design idea is to

have an architecture that is equally well suited for multi threaded code as for vector/SIMD

code. A Vector Thread CPU consists of a main processing element (MPE) and several vector

thread units (VTU). Work is assigned to the VTUs in form of an atomic instruction block (AIB).

However, unlike the blocks in Trips these blocks do not have an atomic commit. Instructions

within a block commit in the usual way. The VTUs do not have an automatic fetch mechanism

for these blocks; the AIBs have to be either assigned to them by the MPE or they have to

request them by themselves.

SIMD code is executed by assigning the same code to each of the VTUs and simply changing

the offset at which each VTU starts processing the data. Since SIMD code does not contain

any branches, all VTUs will execute exactly the same code. For threaded code, different (or

the same) AIB will be assigned to each VTU. However, then it is up to each VTU to fetch the

next AIB.

Another feature, which has been copied from Multiscalar, is that the VTUs are linked in

a one directional ring. This enables them to forward results to the next VTU. One potential

application is to execute iterations of a loop partially in parallel that otherwise would not be

efficiently parallelisable at all.

As for its memory model, it assumes a standard L1 data cache that is connected via a crossbar

to the processing elements. As discussed in section 3.3.2, such a crossbar will not allow the

design to scale to a larger number of VTUs. From the published material, it seems that most

of the design focused on the VTU and not on the memory system and its scalability.

4.6. Intel’s Tera-scale Computing Prototype Polaris

Intel recently presented a prototype of a tiled CMP with 80 cores [VHR+07]. The tiles are

arranged in an 8x10 mesh and connected using a packet based point-to-point interconnect.

Each tile has 2KB of data and 3KB of instruction memory. There is no indication of whether

this memory is used as local stores or as a cache. Nor is any information available, if this

processor supports any kind of cache coherence. However, considering the simplicity of each

tile and the overall floorplan of the chip, it seems that the memory is local storage not being

kept coherent by any hardware mechanism. While this prototype does not support a shared

memory programming model, it does give an indication of up to how many tiles future tiled

architectures will scale.

4.7. Conclusion

This chapter presented an overview of proposed tiled architectures. These architectures are

particular interesting, since they already feature number of cores that have to be expected

in future generation of large scale CMPs. One particular area of interest is the interconnect

that is used to allow communication between the tiles. A common trend among most tiled

architectures (such as RAW, TILE64, Trips, WaveScalar and Polaris) is the use of a mesh

based interconnect, combined with packet switching routers. As such it seems reasonable to

assume that similar interconnects will be used in future CMPs. In particular, designs such as
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RAW, TILE64 and Polaris (which have been implemented in hardware) can be easily envisioned

with more complex core, once the total number of transistors supports such designs. As a final

note, while this thesis will assume a base line architecture that is very similar to one of the ones

mentioned here, it does in no way limit the scheme, which this thesis will proposed, to tiled

architectures.
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As discussed in section 2.1, Message Passing systems offer the advantage of combining several

processing nodes (such as workstations) into a larger system. On the other hand, they have the

disadvantage of a more complicated programming model that requires the programmer to deal

with data placement.

Software Distributed Shared Memory systems (SW DSM) try to bridge this gap, by com-

bining the advantages of a shared memory system with the scalability and flexibility of loosely

coupled systems. By using a software layer, it presents the physically different address spaces

as a single shared one. This process is shown in figure 5.1: while each processing element can

directly access only its local memory, the Mapping Manager makes it appear that all PEs are

using the same address space. Of course, it then has to deal with the cache and memory coher-

ence problem as hardware shared memory systems do. The following sections present several

approaches that implement such a system. Please note that providing an in depth description

of all available SW DSM systems is beyond the scope of this chapter. Instead, the discussion

here focuses on a few significant ones that introduced new ideas to the SW DSM approach.

Section 5.1 presents the IVY system [Li88], which is the first SW DSM system. This initial

system has prompted additional research into various optimisations. One such area of research

is to aid SW DSM system with additional information that is available program language level,

but is usually lost at binary level. Such language based system are presented in section 5.2.

In particular the SW DSM systems Munin [BCZ90], CRL [JKW95] and Orca [BKT92] are

discussed. Munin, as a survey of the literature reveals, was the first system to utilise such

additional information in order to characterise the sharing pattern. CRL is noteworthy because

it is implemented as a system and compiler independent library. It only requires that before

and after shared data is used special library calls are inserted. Orca, on the other hand, was the

first system that designed a whole, new programming language to support distributed shared

memory programming. The TreadMarks system [KCDZ94], presented in section 5.3, tries to

maintain the language agnostics of the IVY system while at the same time trying to optimise

the protocol with some insights learnt from language based system. It is also the only commer-
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Figure 5.1: Distributed Shared Memory Mapping.
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cially available SW DSM system to date. Section 5.4 presents a brief summary of SW DSM

system that have been proposed more recently.

The final section in this chapter then relates these works to this thesis and justifies why the

TreadMarks systems is a reasonable baseline to compare against.

5.1. IVY

IVY [Li88] is the first system that tried to implement a Software Distributed Shared Memory

system on top of a cluster of workstations. It uses the already existing MMU (memory manage-

ment unit, which normally provides the translation of virtual addresses to physical addresses)

in the workstations to provide a distributed shared memory. The scheme roughly works as

follows: the multi threaded shared memory application is mapped to the same virtual address

space on all processing nodes. A page that is accessed, but does not reside within the physical

memory of a node, will cause a page fault. The fault handler will then copy the page over the

network from a node that has a copy. In order to ensure data coherence across all nodes, IVY

allows a single writer. To ensure this, IVY marks all pages as write-protected within the MMU.

If a node tries to write to a page, it will again trigger the page fault handler. IVY will then

invalidate all other copies of that page and give write permission to the node performing the

write access. By restricting access to a single writer, IVY is able to implement a sequential

consistency model for the distributed shared memory.

IVY’s implementation consists of a user level part and an operating system part1, with most

services being implemented in the user level part. It can use different algorithms to manage page

ownership information: the centralised manager runs on a single node and other nodes have to

contact this node in case of a page fault. Since this single node might become a bottleneck, the

fixed distributed manager assigns responsibility for a certain page to different nodes based on

some bit in the page start address. If using this manager still results in one node becoming a

bottleneck for requests, then IVY can use a dynamic distributed manager. A node using this

manager will keep track of the owners of all pages itself. This owner might be the true owner,

or just the “probable” owner, in case the page already migrated to another node. While this

scheme does not suffer from the bottleneck problem, it takes longer to locate the true owner

of a page. Another notable feature of IVY is that it supports automatic process migration for

load balancing reasons. Also, since the local OS does not know that it is part of a distributed

shared memory system, it has no means to create a thread remotely. Instead the thread is

created locally and then migrated by the load balancer to an idle node.

Being the first distributed shared memory system; IVY had several shortcomings that limited

performance greatly. The main problem is that IVY only allows a single writer to a page and

has to migrate pages to nodes that want to write. False sharing of a page causes another

problem. False sharing forces a page to be invalidated on another node, even though the nodes

accesses different areas on that page. The only solution IVY offers for this problem is to use

relatively small pages of size 1KB or 256 bytes.

The following two sections will discuss two different approaches to overcome this issue. The

first approach focuses on making additional information available to the SW DSM, by an-

1It seems that the operating system part was only necessary due to limited user access to the memory man-
agement.
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notating the programs with sharing information. The second approach retains the language

independent page-based approach, but augments it to address the above problem.

5.2. Language based SW DSMs

As discussed in the previous section the main problem of IVY was that pages would migrate

frequently if several nodes would try to write to them. Also, a node that writes would invalidate

copies on other nodes, even if these other nodes were reading from a different area on that page.

The main reason for this behaviour is false sharing: the SW DSM system does not know that the

node that writes will write to a different region on the page than the node that is reading from

the page. Similarly, two nodes that write to the same page might write to different addresses

that do not interfere with each other. Another reason would be the implementation of user-level

synchronisation primitives that rely on sequential consistency.

In order to allow a SW DSM to deal with these different cases efficiently, a SW DSM needs

to know the following information: what are the boundaries of a certain object in memory?

Using pages as boundaries is a rather arbitrary, practical way that quite likely does not reflect

the real object boundaries. The other kind of information that would be beneficial is to know

what kind of object this region of memory is. For example, is this object only been read from?

Or, does it have multiple writers or just a single one? Using this information the SW DSM can

make more sophisticated decisions on how to distribute and keep this region consistent.

Two SW DSM systems that try to address these issues are Munin [BCZ90] and Orca [BKT92].

Both systems identified that there are several different categories of objects that can be found

in shared memory program:

Write-Once Objects are written during initialisation but afterwards only read. These objects

can be safely replicated across several nodes.

Private Objects are only accessed by the local node. Since changes to these objects are of no

concern to other nodes, the SW DSM system does not have to be invoked when accessing

these objects.

Result Objects are maybe written by several nodes and will not be read from until a global

synchronisation event has occurred. Since the SW DSM system knows that different

nodes update different parts of the result object, the writes can be delayed and then later

combined at the global synchronisation.

Synchronisation Objects are used to allow a node exclusive access to certain other objects.

Read-Mostly Objects are updated very infrequently. Thus, the SW DSM system can replicate

these objects and broadcast changes to all nodes that have a copy.

Migratory Objects should be moved to the node that is currently accessing them. There is

usually no need to replicate this object across several nodes.

General Read/Write Objects are objects that cannot be classed as any of the above mentioned

objects. The SW DSM system will most likely resort to a single writer policy (maybe at

a finer granularity than the size of the object) in order to avoid an incoherent state.
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5.2.1. Munin

Several other SW DSMs try to address the problem of pages thrashing by pinning a page to a

particular node (and forcing the other node to access it remotely) [RAK89, FP89]. However,

a survey of the literature reveals that Munin [BCZ90] appears to be the first system that

took advantage of the above mentioned classes of objects by providing different consistency

protocols to deal with them more efficiently. It also relaxed the consistency for most parts to

release consistency.

Munin is an extension to the Presto parallel programming environment [BLL88]. Presto

provides parallelism and synchronisation for C++. As mentioned before, users are expected

to insert declarations to provide type-specific information for each object. The compiler then

passes this information on to the runtime system, which in turn selects the appropriate consis-

tency protocol.

5.2.2. C Region Library

The C Region Library (CRL) [JKW95] is language and system independent library that provides

support for distributed shared memory. The basic idea is that the programmer has to declare

all shared data using CRL library function. Before such data can be used, it has to be mapped

into the address space of the node that wants to use it. Furthermore, CRL has to be informed

of all read and write accesses to the data using special library functions such as CRL start read

and CRL end read. The user is again responsible for inserting these function calls. Unlike all

other so far discussed schemes, it does not need any special compiler or hardware support (like

modifying page access permissions) apart from being able to send messages across a network.

5.2.3. Orca

Instead of simply extending an existing programming language with annotations, the approach

of Orca [BKT92] goes further. Orca provides a complete system, consisting of a programming

language, compiler and runtime system. While Orca can be used from within traditional lan-

guages (like ANSI C), it is optimised for programs that are written in the Orca language. The

Orca language was designed especially for programming on distributed-memory systems. While

this allows one to write new applications in a clean way, it causes problems to reuse existing

codes.

5.3. TreadMarks

TreadMarks is an advanced page based SW DSM system [KCDZ94]. Similar to IVY and other

page based SW DSM, TreadMarks does not require any changes to the program. Any shared

memory program, written for the release consistency model, will run on TreadMarks without

modification. TreadMarks is build around the principle of “Lazy Release Consistency” [KCZ92]

in order to reduce the additional overhead to keep the system consistent. “Lazy Release Con-

sistency” is similar to release consistency in that it requires special acquire and release events

before changes to shared data can be made visible to other nodes. However, instead of making

these changes immediately available by sending them to all other nodes that have a copy of

that page, the idea is to delay this action until the other node tries to access a page that has
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been modified. The rationale is that the other node might not access the modified data, and

as such, it would be a waste to compute and send the update information. Furthermore as per

the RC model, TreadMarks assumes that if different nodes write to the same page in between

synchronisation points then these nodes write to different addresses and can be merged in the

future.

In order to enable merging of changes, TreadMarks uses a diff based approach: initially all

pages are marked as write protected in the TLB. Upon a write access a copy of the page (a so

called “twin”) and a write notice to remember that this page has been modified are created.

The write notice will later also store the diff that encodes the changes such that the diff has

only to be created once. The process of creating these diffs has been generally noticed as the

most expensive part of such system [ISL96].

As noted before, TreadMarks tries to reduce the number of diff creations by only creating a

diff when it is required to ensure correct program execution. In order to be able to associate

a write operation with a certain point of the execution time of the application, TreadMarks

divides the execution on each node into intervals. An interval begins with an acquire or release

operation and ends with an acquire or release operation. Whenever a write notice is created,

it is linked to the current interval. In addition to its own interval, the nodes also keep track

of the last known interval other nodes are in. This information is held in a data structure

called a “vector timestamp”. Whenever an acquire event occurs the previous owner of the lock

transfers its vector timestamp to the new owner. By comparing its vector timestamp with the

new one, the acquirer is able to identify intervals that it does not know about so far. This

might include only new intervals on the previous owner, but could also include intervals on

other nodes. This ensures that the acquiring node is not only informed about changes that

the previous owner made, but also about all changes of previous owners. The acquirer then

requests the write notices for each interval it does not know about. For each write notice that is

received, the associated page is marked as invalid and linked with the write notice. This allows

a quick traversal of write notices in case of an access to the page. Apart from transferring and

managing the write notices nothing else is done at this stage. If at a later stage during the

execution of the program a memory access to such a page is performed, then a trap to the

TreadMarks runtime system will occur. The runtime system will analyse from which nodes it

can get the required diffs to validate the local version of that page. Getting the diffs usually

means that program execution on these other nodes has to be suspended until the diff has been

created.

5.4. Additional SW DSM systems

This section tries to give a brief overview of other SW DSM systems that have been proposed.

Quite often similar systems with similar characteristics have been proposed; in such a case only

one system is introduced. This selection is guided by which system is best documented and

referred to in other publications more often.

The Shasta [SGT96] SW-DSM system used a different approach from all so far mentioned

SW-DSM systems. It used binary rewriting technique to convert a parallel shared memory

program into a distributed shared memory program. This was done by replacing all load and

store instruction with custom code that performs checks to see if the data is shared, exclusively

held by another processor, etc. The advantages of this approach are that sharing can be detected
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at a much finer granularity (multiple of cache line sizes) and that traps to the OS due to page

table protection faults are avoided. The disadvantages are that the code size is increased by

about 70% and that the instrumentation is always executed as opposed to page based schemes,

where only the first access triggers an exception. Shasta employed a couple of techniques to

minimise this overhead (e.g. load and stores that use the stack pointer as the base register will

access private data, thus no checks need to be inserted).

The schemes discussed up to this point are true software distributed shared memory sys-

tem. Based on the systems discussed so far, researchers tried to identify inexpensive hardware

additions that improve performance, while still the largest amount of work is still performed

in software. The Tempest [RLW94] system builds on top of the proposed hardware platform

Typhoon. It supports a wide range of data communication: from simple low-overhead mes-

sage passing to sophisticated, fine-grained memory consistency. In order to support the latter

efficiently, it needs hardware support to assign access permissions at a finer granularity than

pages. In the proposed implementation, aligned regions with a length of a power of 2 are sup-

ported. The actual coherence handler can then either implemented in software or in hardware.

The Cashmere [KHS+97] protocol requires the availability of a low-latency mechanism that

performs writes directly to main memory of another node. It is in principle another page based

SW DSM system, however writes to shared data are doubled: one write updates the local copy,

the other write updates the main memory on the home node of that page. The system was

later soon after extended into a 2-level system [SDH+97]. Within a node of SMP processors

coherence is maintained using the provided hardware mechanism. Coherence across these nodes

is maintained by a modified Cashmere protocol.

Currently the main area of interests in SW DSM research are multi-level protocol and het-

erogeneous systems. One such system is the InterWeave system [CTC+02], which is a 3 level

protocol: within an SMP node coherence is enforced with a hardware protocol. Across sev-

eral such nodes that are linked within a tightly coupled cluster a software protocol similar to

Cashmere is used. At the 3rd level the system provides a mechanism to keep objects that are

distributed across different servers on the Internet coherent.

5.5. Conclusion

While language based SW DSM systems demonstrate good scalability for some programs, they

do distance themselves from the original shared memory goal of providing a simpler program-

ming environment than message passing systems. While the user is not required to modify

his/her algorithm to match the message passing paradigm, he/she is required to annotate the

used data structures according to their usage. A misclassification will most likely result in a

runtime error (for illegal accesses that the SW DSM can detect) or in an incorrect result. A

simple classification as “General Read/Write Objects” on the other hand will result in poor

performance.

Page based systems on the other hand do not require a change of the application (as long

as the consistency model required by the application matches the one provided by the page

based system). However, overall these systems were not able to deliver the same performance

as their language based counterparts. In some cases [RLW94], it is possible to tune the coher-

ence mechanism of the page based system to the problem, in order to minimise unnecessary

communication. But this sacrifices the transparency that the system should provide.
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SW DSM system that require the presence of special, simple hardware already left the original

idea of SW DSMs to provide coherent shared memory without additional hardware support.

However, they do add interesting design points to the general problem of providing shared

memory. Furthermore, they highlight the importance to investigate design points that lie

between software-only and hardware-only designs.

5.6. Relation to Thesis

SW DSM systems were developed in the context of a loosely coupled workstation environment

that does not offer any kind of hardware support for a shared address space. As such they would

also lend themselves to the problem of offering cache coherence to a CMP that does not have

hardware support for it. However, these systems were developed with a different target and

tradeoffs in mind. Inter-node communication latencies were one of the most pressing concerns

in these systems, such that performing more computation and utilising sophisticated memory

structures to lower communication requirements was the preferred tradeoff. On a CMP the

communication latencies are much lower in relation to computation speed than in a multi node

system. In addition, the migration and replication of data occurs at main memory for SW DSM

systems instead of only at the caches. Furthermore, the limited memory space available on chip

limits the usage of sophisticated data structures. Still investigating the suitability of a software

only solution is necessary in order to be able to make the case in this thesis for some limited

hardware support.

This thesis uses the TreadMarks SW DSM system as a baseline to evaluate the feasibity of

software only cache coherent CMP design. TreadMarks was chosen, since it is the only commer-

cially available SW DSM, which indicates that the overall system is very mature. Furthermore,

apart from relying on a page protection mechanism in the TLB, it does not have any addi-

tional requirements towards the hardware. This simplifies porting it to a different architecture.

And as a final remark, Kontothanassis et al. compare the performance of TreadMarks and

Cashmere [KHS+97]. They find that even though Cashmere utilises special hardware support,

it is only able to outperform TreadMarks for application that exhibit a large amount of false

sharing.

The only other true SW DSM for comparison would be Shasta. However, its implementation

benefits from the availability of the binary instrumentation tool ATOM [SE94]. Unfortunately,

such a tool is not available for the PowerPC ISA, rendering the possibility of reimplementing

Shasta beyond the scope of this thesis.
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6. Baseline Architecture

This thesis is concerned about tiled CMPs consisting of 32 or more processors. At the begin-

ning of this research no such architecture was available. Considering the results of Kumar et

al. [KZT05] (discussed in section 3.3) it seems unlikely that these systems will be built using

shared buses or crossbars. As such, the usage of snooping based cache coherence approaches

is similar unlikely. Since tiled architectures already scaled beyond processor numbers that are

possible using buses and crossbars, they presented themselves as a good starting point to look

for a baseline architecture. At the beginning of this research, only two tiled architectures seemed

mature enough to be considered: RAW and Trips. Trips uses a very different execution model

that requires a specialised compiler. As such, it does not really present itself as a typical CMP

architecture. RAW on the other hand uses almost standard cores that are connected using a

scalable point-to-point mesh interconnect. Such an interconnect would allow the architecture

to scale to a larger number of nodes than the current 16 tiles1. As extra benefits, RAW already

demonstrated strong performance for ILP and DLP and was implemented in real hardware,

which emphasises the maturity of the design. In order to base the proposed architecture on a

sound foundation, it was decided to use many of the parameters that were used in the RAW

processor.
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Figure 6.1: Overview of the baseline architecture.

1This has been confirmed by its successor TILE64 [ABB+07].

43



6. Baseline Architecture

As such, this work assumes a fairly generic tile that consists of a compute processor (PE) that

is a simple single-issue RISC processor with separate and private instruction and data caches.

These first level caches are virtually indexed and physically tagged2. The compute processors

are completely independent and there is no global program control in hardware. The on-chip

interconnect fabric consists of a point-to-point network with a mesh topology where each tile is

connected to its four neighbours. Each tile also contains a very simple network controller (NC)

that performs simple dimension-ordered routing. The number of message buffers in the NC is

enough to guarantee maximum throughput, which corresponds to four non-conflicting transfers

per cycle. Figure 6.1 gives a high-level overview of the architecture.

The shaded gray components labelled with “???” in the figure refer to the additional hardware

that is required to support cache coherence. A possible implementation might be a distributed

cache coherence controller or the proposed extension that is discussed in chapter 7.

Since this work started from RAW, it left RAW specific architecture extensions in the base-

line architecture. These extensions include the static programmable network controller (see

section 4.1.2) and registers that are directly linked to the network (see section 4.1.1). These

features are not necessary for the proposed architecture. However, in order to be more in line

with the polymorphic principle of tiled architectures, which states that tiles can be linked to-

gether in different ways to adapt to different workloads, it would be useful to keep them. RAW

already showed that it is able to extract some ILP by combining multiple tiles, and performs

excellently on data parallel and streaming applications. Thus by keeping these components,

these strengths are preserved and a new application domain of shared memory thread level

parallelism is added.

2Using the virtual address to index the cache is a commonly used technique that allows the cache access to
start before the TLB access has been completed. The cache block has to be physically tagged in order to
verify that the correct block has been accessed.
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This chapter describes the mechanism this work proposes to avoid incoherence. The basic idea

is to treat all L1s as a single logical cache and, thus, avoid replication of data, which can lead

to data incoherence. Section 7.1 presents a conceptional overview of this architecture, which

is then explained in more detail in section 7.2. This initial architecture is extended later in

sections 7.3 and 7.4 to allow some controlled migration and replication of data.

7.1. Overview

The basic idea of the scheme is to the fast on-chip network to perform cache accesses on the

cache of a remote tile. Thus instead of having several copies of the same data, only one copy

exists, which by default is consistent. A tile that accesses data determines the location of data

by querying a local table in each tile. This table is similar to a TLB, but instead of translating

a virtual address into a physical one, it translates it into a tile number. If the tile number is

not the requesting tile, then the memory access is forwarded to the remote tile. Otherwise, it

is performed locally.

This scheme is significantly simpler than a directory based scheme. Firstly, the address to

tile translation happens at a local hardware structure. Secondly and more importantly, this is

all that has to be done. No request has to be forwarded or results into multiple invalidation as

in directory based scheme. This reduces complexity and avoids subtle race conditions.

7.2. Detailed Description

As mentioned in the introduction to this chapter, instead of trying to keep the L1 caches

coherent, the proposed scheme avoids duplicate copies of a single cache line. To achieve this,

every memory line can only reside in one L1 cache (the home cache or tile) and processors in

other tiles must perform remote cache reads and writes to access the data. Thus instead of a

directory controller, a remote cache access controller (RAC) is added to each tile, in the gray

component labelled “???” in figure 6.1. To receive and service remote data requests the RAC

is given access to the network and it uses the dedicated port to the cache that is normally used

by the snooping or directory controller.

The simplest way to place and locate data in the L1 caches while enforcing a single copy

of each line would be to statically map lines to L1 caches based on address. This, however,

is too restrictive and takes no account of the data access patterns. At the other end of the

spectrum, each line would be dynamically mapped to any one L1 cache and it would be located

through broadcasts, centralised tag stores, or redundant tag stores, as has been previously

proposed [BW04, CPV05, KBK02, ZA05]. What this thesis proposes is to map whole memory

pages to L1 caches through extensions to the OS page table and the hardware TLB mechanisms.
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Figure 7.1: Direct mapping between virtual address and tile based on the physical address it is
mapped to. For example, Tile 0 is responsible for all addresses that start with 0x1... .

More specifically, the internal chip structure is exposed to the OS and the traditional page

table is extended with a new table that maps virtual pages to architectural tiles. This is

matched with a new TLB-like hardware table that caches these translations and allows for fast

identification of the home L1 cache where data in the page can be found. Each tile is given one

of such hardware structures, which is called MAP. The default policy for the OS to map virtual

pages to tiles is first-touch. Note that the proposed mechanism is different from simply mapping

memory pages to L1 caches based on physical address and using the virtual-to-physical page

translation mechanism to provide the run-time mapping (see figure 7.1). The problem with the

latter is that physical addresses are bound to specific L1 caches, which limits the OS flexibility

in allocating physical memory and may lead to fragmentation and inefficient use of physical

memory. For example, in figure 7.1a the physical address 0x3... is not used and results in a

fragmentation of the address space. Additionally, it makes any changes to the mappings much

more involved, as the physical pages have to be moved in memory. For example, in figure 7.1b

one might want to change the mapping for virtual address 0x3... from tile 0 (as in figure 7.1a)

to tile 2. Since tile 2 is only responsible for physical addresses starting with 0x3..., the page

content from physical address 0x1... has to be copied to 0x3... before the mapping can be

changed in the TLB.

One important design decision at this point is where to provide virtual-to-physical address

translation. Traditional CMPs keep all the translations of the local processor in the local TLB

and ship only physical addresses to access lower level caches. A problem with using physical

addresses for the remote cache accesses in the proposed architecture appears when virtually

indexed L1 caches are used, which is often the case in order to speed up accesses from the local

processor. Thus, performing the virtual-to-physical address translations locally in the case of

remote L1 accesses would require some (impractical) inverse translation at the remote tile. This

thesis’ solution to this problem is to keep the virtual-to-physical address translations only in

the TLB next to the home L1 cache and to ship virtual addresses over the network for remote

cache accesses.

In this scheme a processor request proceeds as follows (see figure 7.2): firstly, the virtual

address is simultaneously used to index the local L1 cache, to perform a local TLB lookup to

obtain the physical address, and to perform a local MAP lookup to obtain the identity of the

home L1 cache (➊). If the result of the MAP translation points to a remote L1 cache (➋),

the local cache access is aborted (➌). In this case, the result of the local TLB lookup is also
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Figure 7.2: Remote Cache Access mechanism overview.

ignored, including a possible TLB miss. The virtual address is then shipped to the RAC in the

remote tile over the network (➍). At the remote tile, the virtual address is simultaneously used

to index the L1 cache and to perform a TLB lookup (➎). If the TLB lookup succeeds then a

tag comparison follows, using the physical tag. A cache or TLB miss is handled as usual.

If the result of the MAP translation points to the local L1 cache then the local cache access

proceeds as usual. To avoid delaying local cache requests due to remote cache requests it is

assumed that the L1 cache has a dedicated port for incoming remote requests. This is also

beneficial for hardware cache coherent systems. Similarly, the TLBs are given two ports, one

for local and one for remote requests. Figure 7.3 shows the whole decision process. The chart

also shows that the content of TLB and MAP does not have to be identical: if a virtual

address A is mapped to remote tile X then there will be an entry in the MAP table for this

address. However, since the access to the local TLB will be aborted before a virtual to physical

translation can be loaded, the TLB will not contain an entry for virtual address A. Similar,

since the MAP table on the remote tile X is not accessed at all during the process, it is possible

that the entry for virtual address A has been replaced by some other entry and no longer exists

in tile X’s MAP table. A similar situation happens when a remote access replaces a TLB entry

that is later needed by a local memory access: the access to the MAP table might hit, while the

access to the TLB misses. While it would be possible to store MAP and TLB information in the

same data hardware structure, this thesis did not investigate this implementation due to fact

that the content of both structures can be disjoined. A similar discussion applies to how the

operating system stores the OS version of the map and page table. It is possible to store both

information within the same data structure. Whether this is possible depends on how misses in

the TLB and MAP are being handled. If a hardware mechanism is used to handle such misses

in a very fast way, then it might be required that each entry has to be stored in exactly one
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word. Otherwise, that mechanism would become more complicated in order to avoid reading

inconsistent data.

The above discussion only applies to data caches. Each tile has its own read-only instruction

cache.

7.3. Migration Extension

The proposed first-touch allocation strategy combined with the fact that allocation is done

at the granularity of pages may lead to poor performance when data migrates across threads.

Mechanisms have been proposed to allow migration and replication of memory pages in CC-

NUMA machines [VDGR96], but these are tailored to much larger systems with larger latencies

and are inappropriate for a tiled CMP like the proposed one.

To alleviate this problem this thesis proposes a simple mechanism that allows for some degree

of migration by invalidating the mappings of virtual memory pages to L1 caches. This is done by

invalidating the MAP table in all tiles. After an invalidation, a first-touch policy is again used

for the new mappings. Note that invalidating the mappings does not in itself migrate pages, but

it creates an opportunity for this to happen. The invalidation is more easily implemented at a

quiescent state where there are no pending memory requests on chip. A natural point to perform

such invalidation is at barriers. In well-designed applications, especially those written for release

consistency, barriers are used to signal change in the data access pattern and communication

across threads. Thus, barriers are also natural good points for re-mapping and migration.

Another important restriction is that all dirty lines in the L1 caches must be written back at a

mapping invalidation or, otherwise, the modified data may be unreachable after the re-mapping.

The actual invalidation is done in two phases. Figure 7.4 shows an example of the migration

process using two tiles X and Y. Figure 7.4a shows the state of the system just before tile X joins

the barrier. Page p is owned by tile X and page q is owned by tile Y. The value for b has been

modified in the local cache of tile X and has not been written back to memory yet. The moment

tile X joins the barrier, it invalidates its local MAP table (see figure 7.4b). This is done with

a new instruction added to the instruction set that is very similar to the existing instructions

that invalidate the whole TLB content (for example, tlbia in the PowerPC instruction set).

At this point, the local cache controller starts writing back dirty cache lines to main memory

with the goal of hiding the write-back overhead with the idle synchronisation time (the updated

variable b is written back to memory). Note that written-back lines may be modified again by

remote tiles that have not yet joined the barrier, leading to duplicate write-backs. Experiments

show that this occurs very infrequently. Such a situation occurs in figure 7.4c, where the value

of a has been updated by a remote tile.

Figure 7.4d shows the state of the system just after all tiles have joined the barrier. This

is the beginning of the second phase. Just before releasing the barrier one processor invokes a

special system call so that the OS can also invalidate its internal virtual-address to tile table

(in figure 7.4e this system call is invoked by tile Y). Also at this point (before releasing the

barrier) all tiles write back all remaining dirty cache lines. When the writebacks are completed,

the contents of the caches are invalidated and the barrier is released (as shown in figure 7.4f).

As can be seen, all modified values have been written back to memory. Furthermore, since all

MAP tables (the OS one and all hardware ones) have been cleared, the system state is identical

to the state at the beginning of execution of the application. Thus, the normal mechanism (as
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Figure 7.4: Example of the migration extension. The variables a and b are stored in page p,
while c and d are stored in page q. Memory and cache content printed in inverse indicates stale
data.
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Figure 7.5: Illustration for the reason for invalidating caches at barriers. Part (a) and (b) show
the state of the system before and after the first barrier respectively, while part (c) shows the
state a little bit after the second barrier. Memory and cache content printed in inverse indicates
stale data.

described in section 7) will ensure that the MAP tables will be repopulated again and that no

incoherence issues arise.

Strictly speaking it is not necessary to invalidate the content of the caches at every barrier.

On a first glance, invalidation is not necessary at all. If the page is migrated to another tile,

then the data in the cache will not be accessed and eventually replaced by the LRU (least

recently used) policy. If the page is mapped to the same tile, then the data is already in the

cache, and does not have to be refetched from memory. Thus, not invalidating is potentially

beneficial. While these observations are correct for a single barrier, they do not hold in case

of two barriers. Figure 7.5 illustrates the problem. Consider that a variable a on page p is

mapped to tile X. Tile X caches the variable (either because it accesses the variable itself, or

because it serves a remote access) as shown in figure 7.5a and enters the first barrier. If the

variable has been modified, then it would be written back to main memory (the figure assumes

that there was no need to write it back). However, it does not invalidate the cache line that

contains a. After the first barrier, the page p is mapped to tile Y and some node updates the

value of a to 20. Even though tile X still has a cache entry for variable a (which is stale), it is

not a problem since the current MAP table entry will prevent tile X from accessing the local

cache line. Instead, it will perform a remote cache access that will return the current value.

The state of the system at this point is shown in figure 7.5b. At this point, Y enters the second

barrier. Since variable a has been modified, it has to be written back to main memory. After

the second barrier, the page p is mapped again to tile X as shown in figure 7.5c. If now a read

access is performed to a, then there is a chance that the old value of 10 is returned (in the

figure this is the case). If the old or the current value is read depends on whether the cache line

containing a was evicted from the cache while the page was owned by tile Y. If it was evicted,

then it will be reloaded from main memory with the current value; otherwise the stale value
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will be returned. While the chance of the cache line not being evicted is relatively small1, it

cannot be ruled out. One can also easily see that if the cache had been invalidated at either the

first or the second barrier, then this problem would not have occurred. Thus, for correctness it

is not necesary to invalidate the cache at every barrier, but at every other barrier.

7.4. Read-Only Sharing Extension

The scheme proposed to map pages to physical caches coupled with the extension to refresh such

mappings to allow migration is likely to work well as long as there is not much sharing of data

at the granularity of pages. While full-blown sharing requires line-based hardware coherence

or complex page based software DSM coherence, some degree of sharing can be easily enforced

by the OS with minimal hardware support. What this thesis proposes is a simple mechanism

that allows sharing of pages across multiple readers and a single writer at any given time. The

full protocol for a tile X is shown in figure 7.6. At the beginning all pages are in state “1/A”.

This situation is shown in figure 7.7a. Assuming that tile X is the first tile to perform a read

access to page p, then this request will trap to the OS. To be precise after the initial miss, the

1The cache line will not be accessed at all while the page is owned by Y. Thus, it is a good candidate for
replacement according to the LRU strategy.
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fast PowerPC hardware miss handler will try to load the entry and also fail. At this point, an

exception is raised and control has to be transferred to the OS. The OS then sets up an entry

in the OS MAP table, and marks the page as read-only in this table and the tile’s local TLB

and MAP. The new state for this page is now “4/B” from the point of view of tile X. On all

other tiles the new state of the page is now “1/B”. In figure 7.7b, such a read access has been

performed to variable a. Note that these tiles do not have to be notified of this change and

other transactions that only affect the OS side state (the letters in figure 7.6). Such “invisible”

transitions are marked with a dotted line in figure 7.6. If these other tiles (that are now in state

“1/B”) now try to read from this page, then they are also allowed to create a local read-only

mapping (and change into state “4/B”). Since the entry already exists in the OS MAP table,

this miss can be handled successfully by the fast hardware miss handler. In figure 7.7c, tile Y

reads variable b and causes such a change. Unlike directory based schemes, the OS does not

need to keep track of which tiles are sharing the page. This would also be difficult, since the

OS is not aware which tiles become sharers by means of the fast hardware miss handler. To

summarise, two different local MAP table misses are possible. The first type of miss is due

to the fact that there is no entry in the OS MAP table. In this case, an exception has to be

raised and the OS has to insert such an entry. The second type of miss is normal miss like any

cold, capacity or conflict miss in a TLB or cache. This type of miss can be handled by the fast

hardware miss handler. Or, if the architecture lacks such a feature, then the OS can obtain the

entry by only performing read operations on the OS MAP table (assuming that a load word

instruction atomically loads a whole word).

Now, assuming that tile X is the first one to write to page p, then the OS intercepts the write,

marks page p as modified and makes processor X the owner of the page “3/CX”. In figure 7.7d,

tile X writes to variable a. Thus from tile X point of view, page p is now in state “3/CX”. Also

note that for tile Y the same page is now in state “4/CX”. If a different tile Y is the first one to

write to page p, then it causes an “invisible” transition on tile X. Either into state “4/CY” if it

had a previous read-only mapping “4/B”, or into state “1/CY” if it had no previous mapping.

In figure 7.7e, tile Y writes to variable c. Since tile X does not have an earlier local mapping of

page q, page q is now in state “1/CY” with respect to tile X. Subsequent reads by processor X

with an existing local mapping (“4/CY”) can continue to use this mapping, and, thus, access

local data. However, subsequent writes by processor X to pages, that are either in state “1/CY”

or “4/CY”, are then intercepted by the OS and are not allowed to proceed locally. Instead a

local MAP entry will be generated (or changed if one already exists) that points to the owner

node (the entry is now in state “2/CY”). Figure 7.7f shows this situation from the perspective

of tile Y. Tile Y performs a write access to b. This write access is intercepted, the local mapping

for page p is replaced by a remote mapping, and the request restarted as a remote request. Also

note that the cache in tile Y now holds a cache line that contains stale data. This data cannot

be accessed as long as there is a remote MAP table entry. The implication of the presence of

this stale data will be discussed later. Similarly, reads by processors without a local mapping

“1/CY” for the page will generate an entry pointing to the owner node “2/CY”.

The mechanism just described allows processors to continue using local mappings and locally

cached data. However, as can also be seen from the state diagram, pages that are in state

“4/CY” on tile X, are a potential cause for stale data access. Even though tile Y has claimed

ownership to such a page and modified its data (otherwise it would not have become the

owner), a stale version of that data might be still in the cache of tile X. This situation is
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Figure 7.7: Example of the read-only sharing extension. The variables a and b are stored with
in page p, while c and d are stored in page q. Memory and cache content printed in inverse
indicates stale data.
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Figure 7.8: Example of the read-only sharing extension. The variables a and b are stored with
in page p, while c and d are stored in page q. Memory and cache content printed in inverse
indicates stale data.

shown in figure 7.8a. Tile X has a local read-only mapping of page p. If tile X would now

perform a read access to variable a, then it would access the out of date version stored in

main memory. To prevent use of this stale data, this thesis assumes the release consistency

memory model [GLL+90] and invalidates local MAP entries for potentially shared pages (these

are pages that are in state “4/B” or “4/CY ”) on lock acquire operations. This can be done by

performing the following logical operation with a bit extra hardware support (2 inverters and

1 NAND gate) on the valid and shared bit2 of every entry: valid = valid & ¬shared. This

ensures that all pages in state “4/CY” are reset into state “1/CY”. Unfortunately, also pages

that are in state “4/B” are set to state “1/B”, even though there is no need to do so. This

will cause some overhead of avoidable misses in the local MAP table. However, the only way to

avoid these would be to synchronise the local MAP table with the OS one. Whether this can

be done in less time than the overhead caused by the misses, depends on the availability of a

mechanism that can synchronise the MAP table issuing fewer memory accesses than which are

necessary to refetch the invalidated entries. In particular, not all entries that are invalidated

might be accessed afterwards. Thus, synchronising such entries would not be beneficial at all.

From the diagram, it can also be seen that pages that are in state “2/CY” or “3/CX” do not

have to be invalidated, since these states are final states (except for the possible state change

due to eviction from the local MAP table). These states can only be left by resetting both OS

and local MAP tables. This only happens at a barrier in order to allow migration of ownership.

By performing the selective invalidation, it is guaranteed that all accesses to data modified by

other processors will use a new remote mapping and will become remote. Figure 7.8b shows the

state of tile X just after the selective MAP table invalidation. An access to variable a would

now create a remote mapping in tile X’s MAP table and access the current version in tile Y’s

cache. Note that cache lines that contain data from page p are not invalidated.

2Technically speaking: the tile does not know if the page is really being shared with another tile. It only knows
that the page can only accesses for reading and might be potentially shared. Thus, the bit should be called
“potentially shared”. However for practical reasons, this thesis refers to this bit just as “shared”.
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As mentioned before, it is possible that cache lines contain stale data (as shown in figure 7.7f;

tile Y caches a stale value of variable b). A similar situation can happen in figure 7.8b, if an

update to variable b is performed. While this data cannot be accessed as long as a remote

MAP table entry exists, a barrier could delete such an entry. If now the cache would only be

flushed at every other barrier, then it could be possible that such a stale entry is accessed with

a new local mapping after the barrier. Thus, it is also necessary to extend the barrier actions

used with the migration mechanism of section 7.3 to include a full cache flush in addition to

the writebacks and the refresh of the mapping. It is no longer possible to just invalidate caches

at every other barrier. Note that no special action is required on lock releases.

The protocol for the read-only extension described so far seems to be asymmetric: if tile X

reads a from a page p, then it can continue to read using a local copy even after tile Y has

written to the same page at a later point. As discussed before, this behaviour is acceptable,

if release-consistency is assumed. However, if tile Y writes to the page p first, and then tile X

tries to read from this page, the tile X has to perform a remote access. This behaviour is not

incorrect, but according to release consistency not necessary: it should be possible for tile X to

perform read-only accesses to page p using its local cache. This observation is indeed correct.

However, it only holds as longs as no locks are involved. Consider the following: Tile Y writes

to page p and becomes its owner. Afterward it releases a lock that is then acquired by tile X.

Tile X now wants to read from page p. Allowing tile X to access p using its local cache, might

result in X not being aware of the changes Y has made. Thus, in this case it is not possible

that tile X performs local read accesses to page p. The only way to avoid this is to keep track

of which pages were updated inside a lock-block and which were updated outside. But even

without considering locks, the following situation might occur: Again tile Y writes to p and

becomes its owner. Tile X now also wants to write to variable a (stored in a different part of

page p), resulting in a remote cache access to tile Y. Now tile X performs a couple of other

memory accesses, resulting that the entry for p is replaced by some other entry. At this point,

tile X tries to read the value of variable a again. If it now creates a new entry in the MAP

that allows to local read-only access, it might be possible that tile Y has not yet written the

updated cache line containing a to main memory. In this case, tile X would read a stale value.

In order to avoid this situation, it would be necessary to record which tiles already performed

a write access to which page at some point in the past. Based, on this two examples it can

be seen that this asymmetry in the protocol is indeed required to guarantee correct execution.

Otherwise, the protocol would have to be extended to deal with these cases correctly.

While this mechanism may seem very similar to previous software cache coherence mech-

anisms (e.g., [KHS+97]), it differs from these in one crucial way. Namely, it does not allow

multiple writers, reverts to a single up-to-date copy of every page upon a write, and enforces

remote cache accesses in such cases. The key benefit of this is that in the proposed scheme,

no multiple modified copies of physical pages exist at any time and, thus, there is no need to

perform expensive diff operations and copying of data in memory.

7.5. Hardware Complexity

Since this thesis proposes to replace a directory controller and its protocol with an RAC, a

MAP table and their combined hardware/OS protocol, it is relevant to compare both schemes’

area and complexity overheads. In particular, the main goal of the proposed scheme is to
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provide a less complex alternative. A comprehensive comparison between the two competing

approaches would require the full design of the controllers and their circuit implementation.

This, unfortunately, is a highly involved task and, instead, this thesis attempts to provide some

intuition into why this thesis claims that the proposed scheme is less complex.

Like a directory controller, the RAC has to handle remote read and write requests. Unlike

a directory controller, it does not have to deal with forwarded transactions and multiple in-

validations, which lead to complex protocols with subtle race conditions and several pending

states. The RAC can directly handle requests and generate responses for all transactions in the

proposed protocol. Thus, the RAC has fewer states and a much simpler finite state machine,

which means that it has simpler logic than a directory controller does. More importantly, this

means that the resulting protocol is simpler to verify and validate.

In addition, the MAP table contains information at the coarse granularity of pages and it

is only a hardware cache for an OS data structure. A directory, on the other hand, contains

information at the finer granularity of cache lines and must maintain information for all cache

lines in the chip. In the evaluated systems, the MAP table has a fixed size of 128 entries and

each entry has 15 bits for the virtual address tag (for a 32bit address and 4KByte pages), 5 bits

to name each of the 32 tiles, and 1 valid bit, leading to a total of 336 bytes per MAP table. For

a 32 tile system with 32KByte L1 caches and 32byte lines the directory requires 32 bits for the

full sharing vector and 2 bits for the line state for each of the 1024 lines per home directory,

leading to a total of about 4KBytes per directory.

On the negative side, the proposed system requires an additional port to the 4-way associative

TLB to handle remote accesses independently from the CPU. Also, a few simple, extra hard-

ware structures are needed to support correct synchronisation (these structures are explained

in section 8.1). The required structures are a time out mechanism for remote LL requests

(including the generation of “reservation cancellation” messages), a bit vector (one bit for each

tile in the system) to keep track to which tiles remote stores have been issued, and a modifica-

tion of eieio instruction to ensure that all memory operation have been completed (this the

generation of dummy loads to ensure the stores have completed). Note that the cache has a

similar number of ports as a cache in a directory scheme. In a directory scheme, the directory

controller also needs access to the cache in order to invalidate a cache line or to send the dirty

content back to the home node. The only difference is that in a directory scheme the directory

controller does not need access to individual words in the cache line. Also, similar to current

non-symmetrical CMPs, such as those with clustering of processors and caches and those with

multithreading, the proposed architecture requires OS changes because it exposes the internal

chip structure to the OS.

7.6. 2-Level Cache Hierarchy

The proposed system so far has only one level of on-chip cache. In order to process larger sets of

data, the amount of cache per tile has likely to be increased. The most suitable option for this

would be to introduce a multi-level cache hierarchy. This decision offers several design options

that are shown in figure 7.9. The probably most intuitive version is shown in figure 7.9a, where

the second level cache is simply attached as a backing store to first level cache. The coherence

between L1 and L2 can be easily arranged by a write-through L1.
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Figure 7.9: Possible options to design a tile with multiple levels of cache.

However, other arrangements are possible. By connecting the remote cache access controller

(RAC) directly to the second level cache, one could hope that the first level cache gets less

polluted by remotely requested data and, thus, offering a higher hit rate for local CPU requests.

On the downside, serving remote accesses would now take longer, since they can only be served

at the hit latency of the L2. Furthermore, the design of the L1 becomes more complicated,

since it also has to respond to invalidation messages from the L2, in case a cache line has been

modified remotely. Such an arrangement is shown in figure 7.9b.

The option shown in figure 7.9c would overcome this problem by adding a dedicated first

level cache to the RAC controller. The obvious drawbacks of this approach are the extra

costs for another first level cache and the logic required to keep the two private L1s coherent.

This configuration was not evaluated, since it seems obvious that it would perform better than

option (a) and (b). Furthermore, this performance would be gained by sacrificing the relatively

simplicity of a single tile.

7.7. Performance Issues

This section gives a quick overview of potential performance issues. The most important per-

formance issue is the ratio between local and remote accesses. While the latency of the network

is already quite low, it still requires 2 cycles (3 or 4 cycles in case of a store) to just send a

request using the network. Furthermore, the network might become too congested and can no

longer provide the low latencies it is able to offer. Remote accesses especially become an issue

if they all target the same tile (for example to access a lock variable). In such a case this tile

might not be able to queue up incoming request and had to start replying with nacks.

Another variant of this problem (that too many requests are sent to the same tile) is that

cache lines are getting replaced due to conflict misses. Even though all requests are accessing

different data, it might be possible that this data happens to map to the same cache line. This

could become a problem, once more larger number of tiles than the associativity of the cache

try to access data remotely on one tile.

Another common problem in shared memory systems, is false sharing: different words in the

same cache line are read and written by different processors. Even though each processor is just

accessing its own words and no data is shared, the cache line gets invalidated since consistency

is maintained at a larger granularity than words. False sharing that results in invalidation is

not possible in the proposed scheme. However, a similar effect is possible if, for example, tile
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X only accesses the first half of a page p and tile Y the second half. Even though no data

is actually shared, the scheme will assign ownership of p to one tile and forces the other to

perform remote accesses.

These performance issues will be addressed during the evaluation of the proposed scheme in

chapter 13.
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8.1. Locks

Memory locks have been implemented in the past using either compare&swap-style atomic

instructions or load-link store-conditional (LL-SC) pairs [CS99]. The latter approach has been

favoured recently because it allows for the implementation of a variety of higher-level read-

modify-write operations in software and because it is easier to implement in hardware with

cache coherence.

In the proposed architecture, compare&swap-style primitives can be more easily implemented

than in current multiprocessors. This is because there is no replication of the lock variable in

multiple caches and it is, thus, easier to enforce the atomicity of the primitive. To implement

these operations then only requires adding the compare logic to the cache controller and blocking

subsequent requests from other processors until the swap is performed.

On the other hand, implementing load-link store-conditional pairs in the proposed architec-

ture is more difficult than in current multiprocessors with cache coherence. These instructions

work by registering the load with a LL and subsequently performing a store that only suc-

ceeds if there are no other intervening stores from other processors since the LL. In current

CMPs, this is easily achieved by keeping a Reserve register in the local L1 and relying on the

hardware coherence mechanism to detect conflicting stores (figure 8.1a). Keeping the Reserve

in the local L1 of the requesting processor will not work, however, without cache coherence

(figure 8.1b). Instead, to implement the LL-SC primitive the Reserve register is placed in the

home L1, and this register is then shared by all processors attempting to obtain any locks that

map to this L1 cache.

One problem with this approach is that a livelock is possible when processors attempting to

lock different lock variables displace each other’s LL from the Reserve register (figure 8.1c).

Note that this overwriting of the Reserve register does not happen in CMPs with private L1

caches and private Reserve registers, and there is never a conflict between attempts to lock

different lock variables. This work’s solution to this problem is to change the operation of the

Reserve register such that once set it cannot be overwritten by LL requests to other lock

addresses.

Another problem with this approach is shown in figure 8.1d, where more than one processor

obtains the same lock simultaneously. 1) tile A and B both try to obtain the same lock X at

address 0x10 by sending LL requests to the tile that is caching the lock; 2) A’s LL registers

the address of X in the Reserve register and returns an “open” lock value; 3) B’s LL does

nothing to the Reserve register, but also returns an “open” lock value (at this point A and B

are correctly competing for the lock); 4) both A and B on observing the lock “open” issue their

matching SC; 5) A’s SC succeeds and clears the Reserve register, such that any subsequent

SC to X will fail; 6) before B’s SC reaches the tile, tile C issues a LL request to X, which

returns a “closed” lock value, but registers the value of X in the Reserve register; 7) finally,
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Figure 8.1: Problems of locks implemented with load-link (LL)/store-conditional (SC).

B’s SC reaches the tile and is matched against C’s LL and is considered successful. Thus, in this

scenario, both A and B may have been allowed into the same critical section simultaneously.

This thesis’ solution to this problem is to extend the Reserve register with the ID of the

tile that successfully sets it, and to only consider successful SCs that match the value in the

register and come from the same tile.

The solutions proposed to the two problems above lead to another problem when the thread

holding the Reserve register fails to issue the matching SC, either accidentally or maliciously.

To handle this, a timeout mechanism is introduced to clear the Reserve register. The problem

is that this timeout counter cannot be placed in the tile that holds the Reserve register due

to variabilities in latencies in the network. It would be impossible for this tile to decide with

absolute certainty that it should have received an answer for the LL. Instead the timeout

mechanism is placed in the tile that sent the LL. The timer will start in the cycle the response

to the LL request has been received. The processor then has to issue a matching SC request

within a given number of cycles, otherwise a special reservation cancellation message is sent to

the tile holding the Reserve register. This message is automatically generated by the hardware

once the timer runs out. Similarly, since the requesting tile can only keep track of a single LL

request answer, issuing a LL request to a different address will also result in the immediate

generation of a reservation cancellation message sent to the tile that was responsible for the

previous request. Note that this timeout mechanism also applies in the case that the tile sending

the LL request and holding the Reserve register are the same tile.

One consequence of just having a single copy of the lock variable is that the test&test&set

does not result in the same traffic reduction as one might expect. Test&test&set is a technique

to reduce coherence traffic in the case that the lock is already taken by another thread. The

idea is to use a normal load to perform the first test, and only if this first test shows that

the lock is still available then issue a LL instruction that requires exclusive access to the lock

variable. Since the normal load does not need an exclusive copy, it will just access its local

copy without causing further coherence traffic. In the proposed scheme these normal loads will

result in remote cache accesses so, they still create network traffic. Still test&test&set has also
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some benefits in the proposed scheme: receiving the answer for a LL request will always start

the above mentioned timeout counter. In the case that the lock is taken, no SC will be issued

and as such a reservation cancellation message will be sent. Using the test&test&set approach

can at least reduce the number of reservation cancellation messages sent.

The discussion so far assumed a lock implementation on the baseline architecture without

read-only sharing extension (described in section 7.4). Using this extension causes one potential

problem: some pages might be mapped as read-only shared in the MAP table of the lock

acquiring tile even though they are now owned in the OS MAP table. Accessing such a page

could result in potential access to stale data. However, very little change is necessary to adapt

the lock to support this extension: after the lock has been successfully acquired the local map

table has to be invalidated. One final side effect of using the read-only sharing mechanism is

that the LL instruction has to be treated as a write when it comes to replication. Thus, the

first processor to issue a LL becomes the owner of the page that contains the lock variable.

Subsequent LL instructions from other processors will trigger a change in their local mapping,

if there is one, so that all accesses to that page will become remote. This guarantees that any

updates to the lock variable will become visible to processors issuing LL instructions even if

they previously had a read-only copy of the page.

Appendix C.2 shows some sample code of the lock implementations.

8.2. Barriers

Current CMPs implement barriers in software using locks. In the proposed architecture, barriers

can also be implemented using the static network as follows. An attempt to read a value

from a network link when the corresponding buffer is empty will stall the network or compute

processor until a value becomes available. Thus, this blocking interface can then be used to

stall and release processors involved in barriers. In this scheme, the compute processor first

writes a value to the static network (i.e., through one of the registers mapped to the static

network), informing the network processor that it is joining a barrier, and then reads a value

from the static network and blocks. The network processors are then responsible for collecting

the information about all compute processors that have already reached the barrier and, once

all have reached the barrier, they are responsible for releasing the compute processors.

More specifically, the barrier process can be divided into two phases as shown in figure 8.2.

During the first phase, the compute processor informs the static network processor on its tile

that it is joining the barrier. The network processors are organised in a tree structure where

the longest path from a leaf node to the root has length ⌈√n⌉, with n being the number of

tiles. Each network processor is responsible for waiting until all its children have joined the

barrier and, once all have joined, is responsible for passing this information to its parent network

processor. This process is shown in figure 8.2a. For example, the static network processor in

tile 3 waits for a message from its neighbours (tiles 2 and 4) and its own PE informing that they

have entered the barrier. Only then it will send a message to tile 11 indicating that all tiles in

the first row (tile 0 to 7) have entered the barrier. This signalling is done by simply sending any

value over the static network. After signalling the arrival at the barrier to the parent network

processor, each network processor reads a value from the network link of the parent network

processor and waits for the signal that the barrier has been released. In the above example, the
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Figure 8.2: Propagation of a barrier across an 8x4 tile chip.

network processor in tile 3 tries to read a value from the link to tile 11 and stalls until such a

value becomes available.

From the PE’s point of view, the barrier operation so far works as follows: the PE sends a

word via r24 to the static network processor. This word is the start address for the barrier

code in the network processor. Afterwards the PE tries to read a word from r24; this operation

will stall the PE.

The second phase starts once the root tile (tile number 11 in figure 8.2) has received the

signal that all tiles have joined the barrier. At this point, a signal to release the barrier is sent

down the tree following the inverse path of the join signal. Upon receiving the release signal,

each network processor releases its compute processor and sends the signal further down the

tree. This process is shown in figure 8.2b. To continue with the example, once the network

processor in tile 3 receives a message from tile 11, it will forward this message to its local PE,

which then resumes execution, and to tiles 2 and 4.

Figure 8.2 also shows that in order for this barrier mechanism to be efficient, it is necessary

that all participating threads run on tiles that are next to each other. For example, this

mechanism could not be employed if only the threads running on tile 0, 7, 24 and 31 wanted

to participate in the barrier. In such a case, a fallback to a lock-based barrier implementation

would be necessary. However, such situations would be unlikely: in most cases all threads of an

application participate in a barrier. Furthermore, the remote cache access mechanism already

suggests that it would be beneficial to group these threads spacially together. As such, the OS

would most likely try to place the threads of an application to a cluster of tiles. If this is not

the case, then again the fallback mechanism of a lock-based barrier has to be used.

This thesis proposes that the operation described above be implemented as a library with the

compute and network processor codes. Also, to perform this barrier synchronisation as quickly

as possible this thesis proposes to fix the topology of the tree statically for each number of tiles

participating in barriers. Then specific code for each topology can be either fixed at compile or

link time or can be chosen at run time from a set of pre-compiled codes.

The barrier mechanism discussed so far is the barrier mechanism for the baseline architecture

without any extensions. In order to realise the extensions discussed in section 7.3 it is necessary

to add the following actions to the scheme described above: first, the tile should write back

dirty cache lines. Second, the tile invalidates its local MAP table. After these have been

completed, it can join the barrier tree scheme (as described above). However, unlike above, the

barrier is not complete once all tiles have joined the barrier. At this stage all caches have to be

flushed (including writebacks of cache lines that became dirty again, since the first write back).

In addition, one tile has to execute a special system call to reset the global MAP table. In

principal, this can be any tile (as long as it is only one tile that is assigned to this task), but it
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was decided to use the tile that is at the root of the barrier tree. This choice also might improve

performance a little bit, since the reverse traversal of the barrier tree can be overlapped with

the execution of the system call. To ensure that all these operations have been completed, the

tiles join a second barrier tree scheme (identical to the first one). Once this barrier tree scheme

signals it has been completed, the barrier can be considered lifted.

Appendix C.3 shows some sample code of the barrier implementations.

8.3. Enforcing Proper Order of Memory Operations at

Synchronisation Events

Synchronisation events such as locks and barriers require that no memory access is moved across

them. Thus, all outstanding loads and stores have to be completed. PowerPC provides the

eieio instruction that only allows execution to continue after all memory operations have been

completed. The proposed architecture uses the same instruction for this purpose. Ensuring that

no load instruction is waiting is relatively simple, since the processing elements knows how many

load buffers are currently allocated for pending loads. Remote stores are a more complicated

problem. The easiest solution would be to force the remote cache access controller (RAC) to

acknowledge every store. However, this would double the amount of network traffic for stores.

Instead, the proposed architecture takes advantage of the following network characteristic:

while the dynamic network does not guarantee any latencies or in what order messages sent by

different tiles to the same destination are received, it does guarantee that message sent between

two tiles arrive in the same order they were sent. Moreover, the RAC processes remote requests

in first-come first-served order. Thus, if a load is sent to the same tile as a previous store, then

the store must have been received and completed before the load could be processed. Hence, the

tile sending the load will know that the store also completed. The load indirectly acknowledges

the completion of the store.

This idea is used to avoid generating extra traffic by acknowledging every store individually.

Instead, a bit in a bit vector is set whenever a remote store is issued indicating to which tile

the store has been sent. If the store is later followed by a load, then the corresponding bit is

cleared from the bit vector. Now, when a tile encounters an eieio instruction, it will check if

any load buffers are allocated and if any bits in this remote store bit vector are set. If a bit

is set, then the system will send out a “remote store acknowledge” message to the remote tile

and allocate a load buffer for the answer. After that it will clear the corresponding bit. Thus,

the system now waits for the allocated load buffer to be released.
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9. Adapting PARMACS for the Proposed

Architecture

The SPLASH-2 benchmarks, which will be presented in section 11.1, do not require any specific

implementation of synchronisation and multi-threading primitives (such as locks and fork). In-

stead they utilise PARMACS [ANMB97] to describe high level constructs such as barriers, locks,

thread creation and joining. The PARMACS package uses the m4 macro processor to replace

the high level construct with actual code. Such code can be simple library calls that are more or

less identical to the original macro (e.g.: LOCK(l) is replaced by pthread mutex lock(&l)) or

numerous lines of assembly code. This chapter describes the issues of adapting the PARMACS

macros for the proposed architecture.

9.1. CREATE

The CREATE macro is used to create a new thread running a specified procedure. The origi-

nal PARMACS thread simply requires a function as an argument, and then assumes that it is

implemented by some code that runs this function as a new thread. Considering that communi-

cation between different tiles is not uniform in the proposed architecture, it would not only be

useful to specify which function to run as a thread, but also where to run it. However, neither

do the SPLASH-2 benchmarks require any mechanism to assign a thread to a specific processor,

nor do they provide any hints as to which threads should be best allocated to which processor

if communication latency between processors is not uniform. The only suggestion it makes (as

comments in the source code) is where to add some code that binds a thread to a processor,

in order to prevent thread migration. Thus, the easiest approach would be to just assign each

new thread to the next tile in sequence. Thus the thread number would be identical to the tile

number. This is actually very easy, since all threads are created within a single for-loop. The

final obstacle is that the mapping of tile number to tile position depends on the total number

of tiles in the system. As such, the total number of tiles in the system has to be provided to

the CREATE macro as well. An alternative would be to read the total number of tiles from

a special purpose register. In addition to enhance compatibility with POSIX threads, support

was added to pass a single word argument to the procedure that is being run as a new thread.

This could be a pointer to some argument structure or a single integer value. Thus, the format

of CREATE is now:

CREATE(<procedure>, <thread id>, <total number of tiles>, <arg ptr>)

For the thread creation process, it is assumes that the application binary either has some

static information about the required number of tiles or performs some system call to the OS

to set this information for the rest of the execution. Again, this is a RAW requirement to

efficiently schedule one procedure across several tiles in order to exploit ILP. On one of these
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tiles, the OS starts the main program, while on the other ones a slave procedure is started. This

slave procedure starts by trying to read several values from r25, the dynamic network register.

Since no values can be read there at this moment, it just stalls.

In order to support the joining of threads (see section 9.2), a table is used to keep track of

which tiles are currently running a thread and which are waiting to get a thread assigned. Each

entry in this table is similar to the condition of the PAUSE primitive (see section 9.5). The

condition is set when the tile is waiting for work and unset if it is running a thread.

Once the main thread decides to create a thread, it will allocate some memory for the stack

of this thread. Currently 2MB are used for each thread stack, which seems to be enough. Then

it will compute the tile number on which the thread is to be run, based on thread number and

total number of tiles in the system. With this information, and after updating the running

threads table, the main thread creates a message that is sent using the dynamic network and

contains the following four words:

1. the stack pointer.

2. a pointer to its entry in the table of running threads.

3. a pointer to the procedure that is to be run.

4. a pointer to an optional argument.

Once the remote tile receives the message, it will initialise the stack pointer r1 with the first

received value. The other 3 values are received in a similar way and stored in registers that

are callee saved (according to the Power PC Linux ABI). After that, a minimal initialisation

procedure is called to setup thread specific data, like the global offset pointer r2. This procedure

could not be called at the very start, since it needs a stack pointer. Once it returns, the argument

pointer is copied to r3 and control branches to the provided procedure pointer.

9.2. WAIT FOR END

Joining threads describes the process by which a thread waits for a previously created thread

to terminate. Execution is then resumed in the thread that waited. If the created thread

terminated before the creating thread starts to wait, then it does not wait, but just continues

execution. The WAIT FOR END macro waits until n previously created threads have stopped

execution. These threads can either have stopped execution before the macro or after. In all

SPLASH-2 benchmarks, n is always the number of threads that have been created previously

within the for-loop with the CREATE macro.

The macro’s code checks the status of each thread in the table of running threads. If a thread

has already stopped execution, it just continues with checking the next thread. Otherwise, it

performs a WAITPAUSE on this entry in the thread table. Once WAITPAUSE finishes, it

continues checking the remaining threads.

9.3. LOCK and UNLOCK

A lock is used to ensure that only one thread is able to access a variable that is protected by the

lock. The lock implementation is almost identical to the PowerPC reference implementation
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(b) Barrier for 4 tiles cluster.
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(c) Barrier for 8 tiles cluster.
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(d) Barrier 16 tiles cluster.

Figure 9.1: Clusters of 2, 4, 8 and 16 tiles on an 8x4 tile CMP that can perform a partial
barrier.

found in [fre01, Appendix E.2]. Only one modification was made to conserve network band-

width: if the lock has already been taken by another thread, the thread does not spin on the

lock with an lwarx instruction, but just with a normal load. Otherwise, the hardware would

also generate “Reservation Cancellation” messages, since no matching stwcx.1 is issued within

the timeout interval.

9.4. BARRIER

A barrier signals that a certain part of the computation has been completed and threads should

synchronise with each other, before starting the next part of the computation. The PARMACS

macro BARRIER expects two arguments: a barrier variable and the number of threads that

are expected to synchronise in the barrier. While this allows to only synchronise a subset of all

running threads, the SPLASH-2 benchmarks never use this feature. Always all running threads

are synchronised at a barrier. The barrier implementation takes advantage of this by utilising

the static network and the blocking behaviour of the network registers.

The basic barrier macro for an all-to-all barrier follows the description in section 8.2. However,

in order to allow the same application binary run on different CMP configuration the following

modification was made: the static network controller is programmed to support an all-to-all

barrier for the following configurations: 2 (2x1), 4 (2x2), 8 (4x2), 16 (4x4) and 32 (8x4) tiles.

The value that is sent from the PE to the static network controller, does not only indicate that

the PE wants to join a barrier, but also how many threads are running in total. The static

network controller then executes the appropriate barrier code.

In order to implement a barrier that only synchronises a subset of threads two possible

solutions exist: first, the barrier can be implemented using a traditional software only approach

based on locks or the WAITPAUSE macro. Second, if the threads run in a single cluster on the

tiled CMP (for example on tile 0, 1, 8 and 9), then synchronisation with the static network is

again possible. This is due to the fact, that all static network controllers are programmed to

1The stwcx. instruction has a dot at the end. This is not a typo.
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support different CMP configurations. Figure 9.1 shows the cluster that can perform a barrier

utilising the static network.

9.5. CLEARPAUSE, SETPAUSE and WAITPAUSE

The PAUSE macros allow a thread to suspend execution until a condition is met. This condition

is a boolean variable that is unset/set with the CLEARPAUSE and SETPAUSE macros. The

WAITPAUSE macro is used to wait until the condition is met.

Implementing these macros is very straight forward: the condition is a boolean variable

that is protected by locks to ensure that changes are visible to all threads and no conflicting

operations happen simultaneously (e.g., one thread checking the condition and deciding to wait,

while another thread sets the condition but does not find the first thread waiting). While most

traditional implementations now either let waiting threads spin on the condition variable or

suspend the thread with help of the OS, the wait can also implemented utilising the dynamic

network and the blocking behaviour of the network register r25. A thread that finds a condition

not set, and thus has to wait, adds its tile number to a list of waiting threads for this condition.

Afterwards it tries to read a value from the dynamic network register r25. Since no value is

available yet, it stalls.

The thread that sets the condition, checks the lists for waiting threads. For each thread it

creates a one-word message that is sent to the tile running this thread via the dynamic network.

Once the tile receives the message, it can continue its execution.
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10. Fictional Models

While it would be preferable to compare the proposed architecture to an existing architecture,

this is not easily possible, since no CMP with 32 tiles that supports shared memory applica-

tions with a hardware based coherence mechanism has been built so far. Lacking this option

one could try to scale down the proposed architecture to compare it with existing small scale

CMPs or to scale current designs to 32 tiles using a shared bus or a crossbar. However, scaling

down the proposed architecture does not address the area of interest of this research, which

is large scale CMPs. Results with small scale CMPs are unlikely to answer if the proposed

scheme delivers sufficient performance in a large scale CMP. As for the latter, [KZT05] uses

this approach but concludes that buses do not scale beyond 16 nodes and a crossbar not beyond

8 nodes, as discussed in section 3.3. Another option would be to implement a distributed di-

rectory coherence protocol on a mesh based interconnect. However, as discussed in section 3.2,

implementing and verifying such a protocol, including simulating the timing delays, would re-

quire tremendous effort that is way beyond this thesis. The last option would be to assume that

there is no hardware support for cache coherence and port one of the software DSM systems

discussed in chapter 5. Again, the more sophisticated software DSMs are fairly complicated

and would require a significant effort to reimplement the whole system and execute it as part

of the simulation on the simulator. Instead, this thesis tries to estimate the performance of

the proposed system by comparing it against four fictional models. These models use certain

simplifications that reduce the complexity of the implementation and give the model an advan-

tage compared to a realistic implementation. This approach should give some insight into the

expected performance degradation in the worst case.

Furthermore, two fictional models based on the proposed system have been developed to

identify sources of performance loss. The following sections will describe these models in detail.

10.1. Mystery Cache

This system models a perfect cache coherent system. It is perfect in the sense that it assumes

a MESI cache coherence protocol with a shared bus, however:

• There is no arbitration for the bus and it is always available to all tiles.

• Invalidation messages are effective immediately and do not need any time to reach the

tiles.

• Cache-to-cache transfers only experience a delay based on the distance and bandwidth of

the network. There is no limit on how many different cache lines can be transferred from

the same cache at any given time. The system will always choose the tile that offers the

lowest latency if multiple tiles have a copy of the same cache line.
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This model has been developed to obtain an idea of how well the benchmarks scale in an

ideal cache coherent system. Furthermore, it gives an upper bound of how bad the proposed

system would fare against such an ideal cache coherent system. This system will be referred to

as Coh.

10.2. Directory Cache

Directory cache models a system that uses an idealised distributed directory protocol to enforce

cache coherence. The model is basically a direct implementation of this protocol from a multi-

chip multiprocessor.

For the directory controller, an aggressive hardware implementation is assumed that requires

only 5 cycles to process each request. This time is the minimum required to access some fast

SRAM, check the current directory state, and decide on the appropriate actions. Finally, it

is assumed that the home tile has one directory entry for each cache line in its local cache

and, thus, cannot track lines that are not present in the home cache. This last assumption

corresponds to existing distributed directory schemes (e.g., [LL97]).

While this protocol is more realistic than Mystery Cache, it still makes the following simpli-

fications:

• Control and invalidation messages take zero time. Thus, the model does not have to deal

with the transient states and multiple hop transactions that complicate the implementa-

tion of a real distributed directory protocol.

• The latency of a cache-to-cache transfer is determined by just the bandwidth and distance.

Sending and receiving cache lines is not serialised.

For fairness of comparison, the directory scheme is augmented with migration of pages at

barriers, which minimises the effect of hotspots due to the first-touch home-allocation policy.

The cost of migration is the same as in the proposed system: 2000 cycles plus the cost of

flushing the caches. This system will be referred to as Dir-Coh.

10.3. Software Distributed Shared Memory

This system models a page based software distributed shared memory system. As discussed in

chapter 5, several techniques have been used to avoid the “ping-pong” effect and unnecessary

generation of diffs. The TreadMarks [KCDZ94] software DSM system seems to be one of

the most advanced systems. It allows multiple writers (to avoid the “ping-pong” effect) and

supports lazy diffing (to reduce the number of diffs created). Implementing the whole system

for a tiled CMP would be beyond the scope of this research. Previous work on software DSM

systems showed that the costs of managing the multiple copies of pages, generating diffs, and

updating pages, correspond to a significant fraction of the costs in these systems [ISL96]. Thus,

instead this thesis focuses on one of these expensive aspects: the creation of diffs. In order to

model this overhead accurately, it is necessary to reimplement the book keeping logic of the

TreadMarks system. As for the actual memory, the model simply uses a single memory image

that is not distributed. Thus, this model simulates the following aspects in detail:
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• The system accounts for the creations of twins (copies of a page that will be later used to

identify the differences). The creation of a twin involves reading a page completely and

then writing it completely to a different memory location. This will obviously have an

impact on the data in the cache and is modelled appropriately. Furthermore a trap to

the OS is necessary, since a twin is only created in the event of a write access to a page

that is write protected in the TLB. All cache accesses that are required to simulate the

impact on the cache are issued within the same cycle.

• Diffs are only created when they are actually needed to validate a page that has been

marked as invalid. The same lazy strategy as in TreadMarks is used to minimise the

number of diff creations.

• Creating a diff involves reading from the modified page and the unmodified twin. Thus,

the data of these two pages will be in the cache at the end of diff creation. A simple

loop that compares two pages at word (4 bytes) granularity was implemented as a stand

alone application and found to complete in a little more than 48,000 cycles. The following

assumptions were made for timing of the loop: all data of the first page is in the cache,

while all data on the second page is not in the cache. The first page corresponds to the

page that is modified by the application, while the second page corresponds to the twin

of that page. Since the twin is not being accessed by anyone except the twin and diff

creation subroutine, this page would have been evicted from the cache (this is especially

likely since diff creation is postponed as much as possible). While there is no intuitive

argument for why all data of the first page should be in the cache, it will only give the

software DSM system an advantage. The loop did not contain any logic to encode the

encountered differences nor to identify the modified bytes within a modified word. It was

optimistically assumed that on average these tasks could be done in 2,000 cycles, thus

bringing the total costs of the diff operation to 50,000 cycles.

• Since this DSM is running on a CMP with a single physical memory one optimisation is

made that would not be possible in a multi node system. During the validation phase at

a barrier the system might detect that a page has only been written to by a single tile.

So instead of creating a diff and distributing it to all other nodes, it would be enough to

update the page mapping in each tile so that the modified page is seen by all threads.

However, on the other side the following aspects are not modelled:

• As mentioned before, the system accounts for the creation of twins. However, this is being

limited to the content of the cache. As such the simulation will perform the required cache

accesses to create the twin. However, the simulation will not consider the time it takes

to create the twin. Allocating the twin page and copying the data, which might include

waiting for cache misses, all happens in zero time. While, the simulator still stalls the

CPU for the OS trap time, it is unlikely that all these operations can be completed in

this time.

• Transferring and applying a diff happens instantly. The receiving tile only has to wait

until all diffs required to validate a page are created, after that they are applied instantly.

• Applying the diff does not affect the cache in any way. On the negative side, cache lines

that would be prefetched in order to apply the diff, suffer a cache miss later, when they
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are really needed. On the other side, the cache is not polluted with the diff data and

updated cache lines that will not be accessed.

• The TLB updates that are necessary to implement the CMP specific optimisation for a

single writer are assumed to complete in zero time.

This system will be referred to as SW-DSM.

10.4. Big Cache

Another way to get a coherent system is to have all tiles share the same L1 cache. In this

system the following assumptions have been made:

• Adding more tiles (hence more ports) to the cache does not have any impact on the access

times.

• The cache is able to service as many requests simultaneously as there are tiles connected

to it.

• The total size of the cache is equal to the combined cache available in a system with

private caches.

• Each tile still has its own private instruction L1 and TLB.

One motivation for this model is to investigate the effect of sharing data in a system with

private caches. Since there is only a single copy of every data in this system, the total amount of

data would be larger than in a system with private caches. This effect might lead to a possible

increase in performance. This system will be referred to as UCA-Shared (a shared cache with

uniform cache access times).

10.5. Fast Network

The models discussed so far describe fictional systems that should give some insight into the

expected performance of competitor approaches. Unlike these models, the “Fast Network” and

the “Fast Synchronisation” model are simplifications of the proposed system that were designed

with the intention to identify sources of performance loss of the proposed approach.

In the proposed architecture remote memory accesses result into messages that have to tra-

verse the on-chip-network. There are several situations where these messages could be delayed

due to network congestion:

• A tile might generate memory requests faster than it is able to insert these into the

network. For example issuing a sequence of 4 loads (e.g., the 3D position and an attribute

of a point) takes 4 cycles. However, inserting a single load message takes at least 2 cycles.

• Several tiles request data from the same tile. Since the remote cache access controller can

only start processing one request at a time, the other requests have to wait.

• A third possibility for delays is in the network itself, if a request can not use a certain

link because it is already in use by a different request.
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In order to evaluate the impact of these delays, a system based on the proposed architecture

was implemented that is not affected by the above issues. This system is identical to the

complete system with migration and read-only sharing extensions. However, the following

modifications were made:

• A tile can inject all waiting messages into the network in a single cycle. A tile can

receive an infinite number of messages from the network within a single cycle. Thus, the

bandwidth of the network interface is infinite.

• The network can transport any message (regardless of length) to its destination within a

single cycle.

• The remote access controller can start processing an infinite number of remote cache

accesses in a single cycle. Cache and TLB access are still delayed as before.

10.6. Fast Synchronisation

The migration and read-only sharing extensions (see sections 7.3 and 7.4) of the proposed

system require that caches are flushed at a barrier and the MAP table is invalidated on a

lock acquire operation in order to prevent stale entries and ensure correct program execution.

These operations are potentially very expensive and reason for concern for the scalability of the

proposed system. In order to evaluate the impact of these flushes and invalidations, another

fictional system based on the proposed architecture was designed. This system is able to

synchronise the cache and MAP table with main memory in zero time.

77



10. Fictional Models

78



11. Benchmarks

This chapter presents the two benchmark suites that were used to evaluate the performance of

the proposed architecture on shared memory applications.

11.1. The SPLASH-2 Benchmarks

The SPLASH-2 benchmarks[WOT+95] are a collection of 4 kernels and 8 applications written for

machines with a shared memory architecture. They represent typical scientific and engineering

workloads. The benchmark suite is composed of the following programs (a detailed discussion

can be found in [WOT+95]):

cholesky is a matrix factorisation kernel that factors a sparse matrix into a lower triangular

matrix and its transpose. The algorithm is similar to lu, but since it deals with a sparse

matrix, it has a larger communication to computation ratio. Also, the algorithm does not

use global synchronisation with barriers.

fft is a version of a complex 1-D fft kernel that is optimised to minimise communication. The

data is organised as a matrix, which is divided into submatrices in order to partition the

work. Each processor in addition to its own submatrix transposes every other processor’s

submatrix. The transposition occurs in a staggered fashion in order to avoid memory

hotspots.

lu is another matrix factorisation kernel that factors a dense matrix into a lower and upper

triangular matrix. The matrix is divided into blocks; each owned by a specific processor.

Only a processor that owns a block will update it, in order to reduce communication.

radix is a kernel that implements radix sort. Each processor generates a local histogram of its

sets of keys. These local histograms are then merged into a global histogram. Afterwards

the keys are permutated, resulting in an all-to-all communication.

barnes simulates the interaction of bodies such as galaxies or particles in a 3D space over several

timesteps. The application organises its data in octrees1. Most of the computation time

is spent traversing this octree (one partial traversal for each particle). This makes it very

difficult to find a satisfactory distribution of the data in shared memory.

fmm also simulates the interaction of bodies but in 2D space. Similar to barnes the data

is stored in trees in such a way that makes an intelligent distribution of the data very

difficult. However, unlike barnes this tree is only traversed twice per timestep.

1An octree is a tree in which each internal node can have up to eight children.
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ocean simulates large-scale ocean movements, based on eddy and boundary currents. The data

is organised as 4D arrays. In order to improve the communication to computation ratio,

it now uses a red-black Gauss-Seidel multigrid equation solver (as opposed to successive

over-relaxiation). Furthermore, a patch was incorporated into this benchmark to improve

the behaviour of one critical lock [HC03].

radiosity computes the equilibrium distribution of light in a scene composed of large input

polygons. It uses distributed task queues, quadtrees, list and a BSP tree for data struc-

tures. The computational pattern of this application is highly irregular and uses task

stealing techniques for load balancing. Thus, a distribution of data to exploit locality is

again very difficult.

raytrace renders a 3D scene using ray tracing. The data is stored in octree similar structures.

However, since the ray is reflected in unpredictable ways off the objects it strikes, it is

again very difficult to find a satisfactory data and workload distribution. Thus distributed

task queues and task stealing are used to at least distribute the computation somewhat

evenly across all processing elements.

volrend renders a 3D scene using ray casting. This application uses octrees to store information

about the scene and similar techniques as mentioned before to achive load balancing. The

data access pattern is irregular and input dependent, thus preventing any satisfactory

distribution of data.

water-nsquared simulates a system of water molecules and evaluates forces that affect them.

It uses an O(n2) algorithm to perform this computation. Each thread stores results first

locally and then merges them into a shared data structure at the end of each iteration.

water-spatial solves the same problem as before, but using an O(n) algorithm. The data is

divided into cells using a 3D grid with each thread being responsible for certain cells.

Molecules that travel between cells cause communication between processors. However,

since cells can only travel to neighbouring cells, communication can also be optimised

only to happen between neighbouring processors.

The SPLASH-2 benchmarks scale up to 64 processors, as has been shown in [WOT+95].

Figure 11.1 shows the reported results, for reference purposes. SPLASH-2 is not written for

any particular system; the suite only assumes a shared memory system that provides a release

consistency or stronger memory consistency model. In order to interact with the host system’s

multi threading programming model it uses the PARMACS macro package [ANMB97]. This

macro package provides simple functions (like create, lock, unlock, and barrier) that the macro

preprocessor then replaces with the actual programming constructs used on the host system.

While this approach limits access to specialised multithreading extension the host system might

offer, it reduces the effort required to port SPLASH-2 to different systems. Apart from using a

version of PARMACS (see chapter 9) for the proposed architecture and the mentioned change

in ocean, no changes to the benchmarks were made in order to make them match better the

proposed architecture.

Table 11.1 shows the characteristics of each benchmark. Note that the number of instructions

includes the initialisation. While the number of instructions does give an indication of the

complexity of the benchmark, it hides the fact that the parallel part of raytrace and volrend
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Figure 11.1: Scalability of the SPLASH-2 benchmarks as reported in [WOT+95]
.

Benchmark Input Instr. Pages Locks Barriers

cholesky tk29.O 1,234M 11,968 72,075 (19K) 3 (14,558K)
FFT 65,536 points 58M 975 32 (843K) 7 (120K)
LU (cont. part.) 512x512 matrix 389M 622 32 (10,923K) 67 (163K)

16x16 blockK
er

n
el

s

radix 262,144 keys 54M 1,057 406 (145K) 12 (153K)
barnes 16,384 particles 4,361M 924 69,360 (63K) 18 (7,564K)
fmm 16,384 particles 2,903M 7,470 47,074 (62K) 34 (2,663K)
ocean (cont. part.) 258x258 grid 412M 4,037 6,656 (67K) 900 (15K)
radiosity demo 646M 7,273 281,217 (5K) 19 (1,876K)
raytrace car 2,006M 9,291 95,528 (7K) 2 (10,562K)
volrend head 1,344M 5,648 38,604 (32K) 20 (1,946K)
water-nsquared 512 molecules 652M 666 35,360 (18K) 19 (1,063K)A

p
p
li
ca

ti
o
n
s

water-spatial 512 molecules 664M 178 609 (1,067K) 19 (1,069K)

Table 11.1: Characteristics of the SPLASH-2 benchmarks. The number of instructions refers
to the total number of instructions for a sequential execution of the benchmark. The number
of pages is the number of pages needed for execution on 32 tiles. The number of locks refers
to those encountered by all 32 tiles within the application (not library) code. The numbers in
parenthesis refer to the average number of instructions per barrier/lock on a 32 tile system.

are about the same size. Similarly, the number of pages includes pages that might only be used

during initialisation.

Each benchmark is run until completion with the base input set; the only exception is radiosity

which is run with a reduced input set in order to keep simulation times manageable.

11.2. The ALPBench Benchmark

The ALPBench benchmark suite has been developed as a set of media applications that try to

extract “All Levels of Parallelism” [LSA+05]. These levels are extracted by using both vector

instructions and multiple threads. Since the processing element in each tile does not have a vec-

tor processing unit (like Altivec or SSE), this thesis only focuses on the multithreading aspects

of the benchmarks. Unlike the SPLASH-2 benchmarks, the ALPBench benchmarks are only

designed to take advantage of at most 16 threads. While this is somewhat unfortunate, since

it does not allow the evaluation of a larger 32 core configuration of the proposed architecture,
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it does give some insight into the performance of the proposed system for a different class of

applications.

The individual benchmarks are (a detailed discussion can be found in [LSA+05]):

facerec tries to find which face in a database matches most closely a given input face. The

matching is performed by computing a single number that expresses how similar two

faces are. This number is called the distance between two faces and the overall goal is

to find the faces with the shortest distance to the given input face. Parallelising this

task is trivially done by assigning subsets of the database to each threads. Each thread

computes the distance to the input face to each face in its subset and selects the face with

the smallest distance. After this parallel phase, the main thread compares the minimum

distance computed by each thread and selects the global minimum.

mpegdec is an MPEG-2 decoder. For MPEG-2 compression, each frame is divided into 16x16

pixel macroblocks. Contiguous rows of these macro blocks are called a slice. These mac-

roblocks are then encoded independently. The main thread identifies a slice (contiguous

rows of blocks) in the input stream and assigns it to another thread for decoding. The

problem here is that the input stream is also variable length encoded. Thus, the main

thread has to at least partly decode the input stream, in order to identify slices. This re-

sults in a staggered assignment of slices to threads and limits the scalability of extracting

parallelism.

mpegenc is an MPEG-2 encoder. The encoder uses in principle the same data structures as

the decoder. The encoding process is parallelised by assigning different slices to each

thread. However, since these slices can be determined very easily in uncompressed data,

the encoding process can be parallelised without much effort by assigning different slices

to different threads.

raytrace is another ray tracer. This benchmark was not used, since the SPLASH-2 benchmark

suite already includes a ray tracing application.

sphinx3 is a speech recognition program. The benchmark uses a hardware lock (a lock imple-

mented with C library code, that uses atomic instructions) to protect a software lock (a

variable that is set with non-atomic instructions). This results in a deadlock situation

(both on the proposed architecture and a 2 processor 2-way SMT x86 machine), in which

one thread holds the hardware lock and another the software lock. Unfortunately, this

problem could not be solved in the available time.

The ALPBench benchmark suite, as mentioned earlier, scales up to 16 processors. Fig-

ure 11.2 shows the reported results, for reference purposes. The suite assumes that a pthread

library [IEE95] is available in order to take advantage of thread level parallelism. While there

is no reason why pthreads cannot be ported to the proposed architecture, a more pragmatic

approach was followed to execute the ALPBench benchmarks on the proposed system. Since

ALPBench only uses the most basic pthreads constructs, these constructs could also be ex-

pressed with the PARMACS macro package [ANMB97]. Thus, instead of writing a pthread

implementation for the proposed system, the pthread library calls were replace by their PAR-

MACS equivalent.
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11.2. The ALPBench Benchmark

Benchmark Input Instr. Pages Locks Barriers

facerec ALP Training 2,826M 4,167 30 (321K) 3 (200K)

mpegdec 525 tens 040.m2v 1,049M 456 29 (30,857K) 41 (1,364K)

mpegenc Output of mpegdec 9,477M 1,339 29 (321,384K) 40 (14,563K)

Table 11.2: Characteristics of the ALPBench benchmarks. The number of instructions refers
to the total number of instructions for a sequential execution of the benchmark. The number
of pages is the number of pages needed for execution on 16 tiles. The number of locks refers
to those encountered by all 16 tiles within the application (not library) code. The numbers in
parentheses refer to the average number of instructions per lock/barrier on a 16 tile system.
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Figure 11.2: Scalability of the ALPBench benchmarks as reported in [LSA+05]
.

Table 11.2 shows the characteristics of each benchmark. Each benchmark is run until com-

pletion with the base input set.
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12.1. Simulator

The Liberty Simulation Environment (LSE) [VVA04] was used to implement a cycle accurate

simulator. A tile consists of a PowerPC core, a network controller, a data cache module,

and a private instruction cache. The single-issue CPU is implemented as an 8-stage pipeline

and is simulated in detail. The cache has been implemented with the cache module from

SimpleScalar [BAB96]. A more detailed discussion of the Liberty Simulation Environment and

the simulator can be found in appendix A and B, respectively.

12.2. System Parameters

The benchmarks were compiled with gcc 3.4.4 and glibc 2.3.5 for PowerPC. The compiler and

the libraries were modified such that they do not use the special network registers for normal

computation. In addition, the synchronisation primitives were replaced with versions that have

been adapted to the proposed architecture.

All benchmarks were run until completion. Since many of the benchmarks have a rather

long initialisation phase, a fast-forward mechanism is employed. While the simulator is in

fast-forward mode, it will not simulate the network and only executes instructions on one tile.

Furthermore, all instructions and system calls complete within one cycle. However, effects on

the memory system are still simulated in detail. The fast-forward mode is triggered by special

system calls that have been inserted into the benchmarks.

This thesis assumes that the single issue CPU runs at 2GHz; the resulting memory access

time is listed in table 12.1. System calls and interrupts to the OS are assumed to take 2000

cycles. Note that PowerPC uses a hashed page table that can be read by a fast hardware

handler. The 200 cycles listed in the table are the 200 cycles required by this handler. Only

if this handler misses (because there is no entry for that page), then an interrupt to the OS

occurs.

Unfortunately, this system configuration was not the one that was used at beginning of this

research. A lower clock cycle was assumed and thus less latency to access off-chip memory.

L1 D-cache size 32K TLB/MAP entries 128
L1 hit latency 3 cycles TLB/MAP page size 4K
L1 miss latency 200+16 cycles TLB/MAP associativity 4-way
L1 line size 32 bytes TLB/MAP hit latency 1 cycle
L1 associativity 4-way TLB/MAP miss latency 200 cycles
L1 writeback buffers 8 RAC input queue entries 32

Remote cache access latency without any congestion: 2 ∗ (h + w) + t + 1, where h is the number of hops, w is
the number of words in the message (2 or 3), and t is the access time at the remote cache.

Table 12.1: Memory system configuration. For an L1 miss, it takes 200 cycles for the first word
to arrive and another 16 cycles to fill the remaining words in the cache line.
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slowmem fastmem

L1 miss latency 200+16 cycles 80+16 cycles
TLB/MAP miss latency 200 cycles 80 cycles
Trap to OS 2000 cycles 1000 cycles

Table 12.2: Differences between the slowmem and fastmem memory configuration.

Since simulation time was a serious constraint during this research, it was not possible to rerun

all experiments with a single consistent memory configuration. Thus, the results for some

of the experiments reported were obtained with this earlier configuration. While the results

obtained with this earlier configuration cannot be directly compared against results of the final

configuration, they still allow some additional insight into the impact of various extensions

that were developed. The memory configuration of this earlier system will be referred to as

fastmem. The configuration of the final system will be referred to as slowmem. Table 12.2

lists the differences between the two configurations.

12.3. Systems Evaluated

Throughout the evaluation the systems are referred to as: NUCA-Dist (non-uniform cache

access with distributed cache), for a system that implements the proposed architecture, but

without the page migration and sharing mechanisms described in sections 7.3 and 7.4. NUCA-

Dist+M (M stands for migration), for a system that implements the proposed architecture

and page migration mechanism. NUCA-Dist+MS (S stands for sharing), for a system that

implements the proposed architecture with page migration and read-only sharing extension.

Only the fastmem configuration was used for NUCA-Dist and NUCA-Dist+M systems. Re-

sults for the NUCA-Dist+MS system were obtained using both the fastmem and slowmem

configurations.

For the other systems, the following design decisions were made:

Directory Coherent System This system uses the same configuration as the proposed system

(with the exception of not having a MAP table). For the directory controller, this thesis assumes

an aggressive hardware implementation that requires only 5 cycles to process each request. This

time is the minimum required to access some fast SRAM, check the current directory state,

and decide on the appropriate actions. During initial tests with this system it was found that

the first touch policy used by the directory system to assign home nodes, results in the creation

of hotspots that limit the performance of the directory coherent system in an unexpected way.

The measured speedups did not match the reported speedups in [WOT+95] even closely. Thus,

the directory scheme was augmented with migration of pages at barriers, which minimises any

negative effects from the first-touch home-allocation. The cost of migration is the same as in

the proposed system: 2000 cycles1 plus the cost of flushing the caches. This system will be

referred to as Dir-Coh.

Software DSM System This system uses the same configuration as the proposed system (with

the exception of not having a MAP table). As discussed in section 10.3, the system assumes

1Migration requires that the mapping between physical address and the tile that manages the diretory is being
reset. Such an operation is most likely not available from user level code, but requires a system call. Since
the general assumption for system calls is 2000 cycles, the same 2000 cycles are assumed here.
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that it takes 50,000 cycles to create a single diff. As for the trap, whenever a tile tries to write

to a write-protected page, the same 2000 cycle latency is assumed, as it is in the proposed

system. This system will be referred to as SW-DSM.

2-Level Cache Hierarchy Of the several options presented in section 7.6 how to add a second

level cache to the system, the option that uses the second level cache simply as a backing store

for the first level cache was chosen (see figure 7.9a). Thus, a 128KBytes second level cache was

added to every tile. The size of the first level cache remained the same, however a write-through

policy is assumed. The total L2 capacity on a 32 tile chip is 4MBytes, which is in line with

current CMP offerings. The relatively small capacity per tile is in line with what could be

expected from a CMP with 32 tiles. Each L2 has a 20 cycles access time.

The directory cache coherent system Dir-Coh also uses a private 128KB second level cache

that is connected to the write-through first level cache. The second level cache is now the

domain of cache coherence. The proposed system with the second level cache will be referred

to as NUCA2-Dist+MS, and the directory cache coherent system with second level cache as

Dir-Coh2.

Mystery Coherent System This system assumes a cache coherence mechanism that is able to

keep all caches coherent in virtually no time (as discussed in section 10.1). The system uses the

same configuration as the proposed system (with the exception of not having a MAP table).

This system will be referred to as Coh.

Singe Shared Cache System This system follows the design discussed in section 10.4. The

system uses the same configuration as the proposed system (with the exception of not having a

MAP table and the L1 cache size). The L1 cache size is the same as the combined size of all L1

caches in the proposed system. For example, a system with 8 tiles will have a single L1 cache

of size 256KBytes; a system with 32 tiles will have a single L1 cache of size 1MBytes. Apart

from the size, all other cache parameters (including the access time) remain the same as in the

proposed system. This system will be referred to as UCA-Shared (uniform cache access with

shared cache).
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13.1. Overall Performance

The discussion of the performance of the proposed system starts by looking at the achieved

speedup, as shown in figure 13.1 for the Coh, Dir-Coh, NUCA-Dist+MS and SW-DSM system.

The speedups were measured on a 32 tile system for the SPLASH-2 benchmarks and on a 16

tile system for the ALPBench benchmarks. It comes without surprise that the almost perfect

system Coh performs best across all benchmarks. On average it achieves an efficiency (speedup

divided by number of processors) of 92%. The most notable exceptions are radiosity and

mpegdec, which show efficiencies around 50%, and to a lesser degree lu and radix. On the other

hand, it is able to achieve super-linear speedup for 8 SPLASH-2 benchmarks. In particular, its

performance for ocean is impressive (almost a 40x speedup). The reason for this is its ability

to increase the locally available cache size by migrating cache lines between tiles at almost no

cost compared to an off-chip memory access. The reason for including these results is to get an

upper bound for the potential speedup available.

Looking at a more realistic system, the performance of the idealised distributed directory

coherent system, Dir-Coh, comes close to the speedups of Coh. Notable exceptions are fft (19%

gap), radix (36% gap), ocean (42% gap) and raytrace (21% gap). On average the performance

gap and efficiency are 11% and 81%, respectively, for all benchmarks. These results are some-

what better than those found in a real distributed directory machine [LL97] mainly due to

the lower communication latencies observed in a single chip and simplifications made in the

protocol.

Looking at the performance of the proposed scheme (NUCA-Dist+MS) one can see that it

performs fairly close to the hardware directory coherence system, with a performance gap rang-

ing from 0% (no gap) to 32% (for radiosity), and 16% on average. Moreover, the performance

gap is less than 10% for 6 out of 15 benchmarks, which is an impressive result considering that

the directory coherence system uses a very aggressive hardware implementation and that the

proposed architecture requires only simple hardware support.

13.2. Memory Access Breakdown

To better understand the behaviour of the proposed architecture, the outcome of each processor

memory request is tracked for each system. Figure 13.2 shows the breakdown of memory

requests for each benchmark and for configurations with 32 (SPLASH-2) and 16 (ALPBench)

processors. For each benchmark and configuration, the bar is normalised to the total number

of processor memory requests, which does not vary noticeably across the different systems. For

SW-DSM, these numbers do not include requests that were issued by the software DSM system

to manipulate pages. Since for most manipulations the software DSM is performing a linear

access to every word in a page, the access pattern is roughly as follows: the first access will
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Figure 13.1: Speedups for Coh, Dir-Coh, NUCA-Dist+MS and SW-DSM. The y-axis shows the
speedup compared to execution time (after initialisation) of a single tile.

be either a miss or a hit, while the next 7 accesses are guaranteed to be hits. This would

significantly affect the overall cache access distribution, while at the same time these accesses

are simulated to take zero time. Thus, since these accesses do not affect run time directly (they

still affect the run time indirectly by replacing data in the cache, resulting either in a prefetch

effect or a refetch), they also should not be included in the distribution.

The bars are broken down into the following components: accesses that hit in the local L1

cache (local hits); accesses that hit in a remote L1 cache (remote hits); accesses that go off-chip

following a miss in the local L1 cache (local miss); and accesses that go off-chip following a miss

in a remote L1 cache (remote miss).

The figure shows that the fraction of off-chip accesses is fairly small in most cases, with

the exception being ocean, where the off-chip accesses for all systems (including the single-

tile configuration) account for about 12% of all requests. Another exception is facerec, where

sequential execution shows only a small number of off-chip accesses, but the parallel systems

show a large fraction (22%) of off-chip accesses. Given this generally small number of off-

chip accesses, the ratio of local to remote cache accesses is to be expected to be the main

differentiating factor.

The results for NUCA-Dist+MS show that the fraction of remote cache accesses is fairly

small for most benchmarks except cholesky (39%) and mpegdec (38%), and, to a lesser extent,

lu (15%) and radiosity (18%). Such relative small number of remote cache accesses mostly

explains the reasonably good performance of the proposed architecture for many benchmarks.

An interesting case is cholesky where the fraction of remote cache accesses is high compared to

most benchmarks, but its performance with NUCA-Dist+MS is good. On the other hand, some

benchmarks, such as ocean and barnes show small fraction of remote cache accesses (0.8% and

0.8%, respectively), but their performance with NUCA-Dist+MS is not as good as with some

of the other benchmarks. In the case of barnes this might be explained by a higher number

of off-chip accesses (1.4% for NUCA-Dist+MS compared with 0.3% for Dir-Coh); for ocean on

the other hand the off-chip accesses are roughly identical (12.1% for Dir-Coh and 11.9% for

NUCA-Dist+MS ). These somewhat unintuitive cases will be discussed in more detail later (for
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cholesky see section 13.9, and for ocean see section 13.7). The results for Dir-Coh, on the other

hand, show that it incurs very few remote accesses (i.e., cache-to-cache transfers), which mainly

explains its very good performance. The results for SW-DSM will be discussed in section 13.4.

The impact of local, remote, and off-chip accesses can be further seen in figure 13.3, which

shows the average load latencies, in cycles, for the different types of loads for NUCA-Dist+MS

and for the average load for Dir-Coh. While the latencies for remote loads in NUCA-Dist+MS

are significantly larger than those of local loads, the average latencies are fairly close to the

local ones and, thus, very close of those in Dir-Coh.

While figures 13.2 and 13.3 can be used to explain the behaviour for most benchmarks

(that includes all benchmark that haven’t been identified as a somewhat unintuitive case in

the previous paragraph), it fails to explain the problem with ocean. Ocean almost does not

experience any remote accesses and the average load latency (30.8 cycles) is similar to the load

latency for the directory coherent system Dir-Coh (31.1 cycles). As section 13.7 will show,

part of the degradation is due to the overhead introduced at barriers. Still, this overhead

is not enough to explain the whole performance degradation experienced. The problem with

the observation so far is that they treat at all memory operations equally. Unfortunately,

not all memory operations are equally important. For example, memory operations that are

used as part of synchronisation primitives have a much larger potential of slowing down the

whole application than other operations. Section 13.3 takes a more detailed look at those

memory operations. Another problematic benchmark is either cholesky or lu. Even though

cholesky shows a larger fraction of remote accesses than lu and experiences a worse average

memory latency gap than lu, it seems to perform very close to Dir-Coh. It turns out that the

unintuitive one is indeed cholesky and this issue will be discussed in section 13.9.

13.3. Latency of Lock Acquire Operations

As mentioned before, not all memory operations are equally important. Memory operations

that are part of synchronisation events are usually on the critical path of execution and, thus

their latency cannot be hidden by performing independent operations. Figure 13.4 shows the

average time in cycles it takes between the first request for a lock and the time when the lock

has been granted. The number of cycles does not include any additional delay that might be

caused by invalidating the local MAP for NUCA-Dist+MS.

The reason for the overall poor performance is that locks are still implemented using spinning

techniques. Since accessing the lock variable will require a remote access (in most cases),

latencies for accessing it will be increased. This problem gets worse if several locks are mapped

to the same tile. Not only will several independent requests compete for the bandwidth to this

tile, but also the tile will only be able to make forward progress on managing one lock while

all other lock attempts are stalled (they still receive answers for their LL requests, but will not

succeed with a SC).

The large time spent on synchronisation is particularly damaging for ocean since it is one

of the shorter running benchmarks, with little opportunity to amortise the lost time. For

example, for fmm the proposed architecture also takes about 4 times longer to acquire a lock

than Dir-Coh. However, first the absolute time to acquire a lock is one order of magnitude less

for fmm, and second, fmm is the third longest running benchmark (after mpegenc and barnes)

with plenty of time to amortise.
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Only benchmarks with a significant number of locks were evaluated.

Kuhn [Kuh07] investigates other lock implementations on the proposed architecture and

finds that a queue based implementation that also suspends threads by making them spin

on a network register is able to achieve far better performance than a simple spin lock based

implementation. Unfortunately, he only investigates the impact on small synthetic benchmarks.

Still, even using these benchmarks, the potential to reduce network traffic and, thus, reduce

runtime is significant. The queue lock has only minimal overhead for a low frequency of locks.

However, once the lock frequency increases, the queue lock is able to reduce the runtime to less

than 25% of the runtime of the spin lock version.

13.4. Software DSM Results

Figure 13.1 shows the speedup obtained with the simplified software DSM implementation

(SW-DSM ). The numbers are somewhat in line with the speedups reported in [ISL96] (i.e.:
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Benchmark Speedup Twins Diffs Ratio Benchmark Speedup Twins Diffs Ratio
cholesky 8.88 99,230 88,784 89.47 raytrace 0.60 99,563 98,235 98.67
fft 31.06 1,285 154 11.98 volrend 13.32 11,548 9,869 85.46
lu 24.28 9,825 88 0.90 water-nsq 19.85 10,557 3,573 33.84
radix 1.53 17,803 16,488 92.61 water-spa 17.72 5,393 1,551 28.76
barnes 9.25 99,285 70,147 70.65 facerec 13.81 284 84 29.58
fmm 10.64 170,118 109,350 64.28 mpegdec 9.14 6,055 3,434 56.71
ocean 24.61 128,928 2,317 1.80 mpegenc 10.45 18,652 5,832 31.27
radiosity 0.57 131,504 109,462 83.24

Table 13.1: Speedup and diff creation statistics for the software DSM system. The right-most
column shows the ratio between created twins and diffs in percent. Results are shown for a
32 tile system in case of the SPLASH-2 benchmarks and for a 16 tile system in case of the
ALPBench benchmarks.

Applications that perform well in [ISL96] also perform well on SW-DSM and vice versa).

However, the simplified system SW-DSM obtains in most cases a higher speedup, which comes

at no surprise, considering that several operations came for free in this thesis’ implementation.

As can be seen, the proposed system NUCA-Dist+MS is able to outperform the software DSM

system in most cases. However, one of the most striking results is that for fft, lu and ocean

the software DSM system performs better than even Dir-Coh. While the superior performance

can be easily dismissed as an artefact that happens because only the diff creation overhead of

software DSMs is simulated, it also happens that these three benchmarks have something else

in common: they are mostly controlled by barriers instead of locks. It seems that using barriers

results in sharing at a coarse enough granularity that only a few number of diffs have to be

created. This is confirmed by table 13.1, which lists the number of twins and diffs created.

Fft, lu and ocean show the lowest ratio of created diffs compared to any other benchmark. A

further reason for SW-DSM ’s better performance on these benchmarks compared to Dir-Coh

is that SW-DSM does not have to write back dirty cache lines when it arrives at a barrier (as

Dir-Coh and NUCA-Dist+MS do). Strictly speaking, SW-DSM has to do the same as part of

diff creation process at barriers. However, as pointed out in section 10.3, the creation of diffs

is simplified. Modified cache lines will be evicted (thus written back) from the cache if at least

4 diffs are created. However, SW-DSM only models the cache content during this phase and

not the latencies required to fetch or write back data. Furthermore, if 4 or less diffs are created

then some modified cache lines might not be written back at all. This situation is extremely

likely to happen if a large percentage of pages are only modified by a single tile and, thus, no

diff at all is created for these pages. As the diff to twin ratio in table 13.1 suggests this seems

to be the case for fft, lu and ocean.

A final advantage that SW-DSM has over the proposed scheme NUCA-Dist+MS is that data

is always locally shared. Even after diffs had to be created in order to update a page, that page

can be then cached locally by any node. In comparison, if a page has been declared owned by

a tile in the proposed scheme NUCA-Dist+MS, then it will never be read-only shared again,

unless all tiles synchronise at a barrier.

Still, it seems surprising that SW-DSM does not suffer similar performance degradation for

ALPBench. Despite having similar high ratio between twins and diffs created, all ALPBench

benchmarks show almost the same performance as Dir-Coh. A possible explanation might be

that ALPBench also uses mainly barriers for synchronisation. As discussed earlier, SW-DSM

has an advantage at barriers compared to the other schemes.
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Another interesting observation is shown in figure 13.2. As discussed in section 10.3, SW-

DSM does model the effect of polluting the cache during twin and diff creation. As such, it

would be interesting to know if these cache accesses would result in having a prefetching effect or

cause more cache misses. The recorded numbers for cache accesses only show accesses made by

the application and not by the software DSM system to create twins and diffs. These numbers

show that there is no increase in cache misses. In several cases SW-DSM has significantly fewer

misses than Dir-Coh and NUCA-Dist+MS. Thus, overall, it seems that SW-DSM benefits from

a prefetching effect. Unfortunately, it is impossible to say how realistic it is for a real software

DSM system to benefit similarly. This is due to the fact, that while SW-DSM simulates cache

pollution, it does not simulate the precise access times. For example during the creation of a

twin or a diff SW-DSM might miss several times in the cache, being forced to wait until the

data arrives. However, the algorithm that simulates the cache pollution effect issues all requests

in the same cycle, thus all misses will be resolved at the same cycle in the future.

On average NUCA-Dist+MS performs 28% faster than SW-DSM, with the gap ranging from

-57% (i.e., SW-DSM is faster) and 98%.

Apart from 3 benchmarks (which performance is not to believed since the cost of a barrier is

zero in this simplified implementation) the performance of SW-DSM is worse than any other

system, even though the costs used in the simulation are much lower than to be expected in a

realistic implementation. The overall result of these experiments is that the coherence problem

within a tiled CMP cannot just be solved by using a software DSM system. Instead it seems

that additional hardware support is needed to offer sufficient performance across a wider range

of applications.

13.5. Impact of the Migration, Read-Only Sharing and

Selective Invalidation

As discussed in sections 7.3 and 7.4, some extensions were added to the base system in order

to improve performance. This section discusses in detail the impact of each extension. The

analysis starts with looking at the performance of the base system (NUCA-Dist). Figure 13.5

shows the performance of this model. The system performs well for all SPLASH-2 benchmarks1

for up to 4 tiles. However, doubling the number of tiles to 8 results in almost no performance

increase for a number of benchmarks (cholesky, lu and radix ). This becomes even more obvious,

when the number of tiles is doubled again to 16. Now also barnes, radiosity, raytrace, volrend,

water-nsquared and water-spatial do not show any further performance gains. Only fmm and

ocean show some signs of scalability.

This behaviour can be explained by looking at the memory access distribution and latencies

of remote accesses shown in figures 13.6 and 13.7, respectively. Similar to figure 13.2, figure 13.6

shows the outcome of each memory access. However, unlike figure 13.2 it does so not only for

the configuration with the maximum number of supported tiles, but also 2, 4, 8 and 16 tiles.

The first thing to notice is that with an increase in the number of tiles the percentage of remote

accesses increases. This does not come as a surprise, since shared memory programs usually

1Results for the ALPBench benchmarks are not included in this study, since these results were obtained before
the ALPBench benchmarks were adapted to run on the system. This study was not repeated with the
ALPBench benchmark, since this work did not expect to find any new insights and simulation time is rather
long.
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Figure 13.5: Speedups with respect to execution time of a single tile for NUCA-Dist, NUCA-
Dist+M and NUCA-Dist+MS for 2 to 32 tiles. The x-axis shows the number of tiles. The
y-axis shows the speedup.

use a certain memory area for shared data. The size of this area mostly depends on the size of

the problem, and not on the number of tiles. Each tile also uses a certain amount of private

data, however, this amount depends on the number of tiles (each tile usually gets a smaller

chunk of the work if the number of tiles increases). In the baseline model NUCA-Dist due to

the first-touch policy, a remote access is required for all tiles to access the shared data (with

the exception of the tile that initialised this data). Thus, the percentage of remote accesses

increases. Lu demonstrates this principle to the extreme. The benchmark only uses shared data,

thus, for two tiles one tile can work on local data, the other one has to use remote accesses all

the time. Thus, in total about 50% of all accesses are remote. Increasing the number of tiles

to 4, means that once again one tile can access all data locally, while the remaining three have

to perform remote accesses. This results in the observed 75% remote accesses.

Regardless of whether the remote tile can keep up or not, remote accesses cost more and will

be a problem; the bottleneck at the remote node only exacerbates it. Unfortunately, this often

happens, as shown in figure 13.7. The latency of remote access (figure 13.7a) starts to increase

significantly at a certain point for most benchmarks. At the same point also the average load

latency (figure 13.7b) for most benchmarks starts to increase. This point corresponds to the

same point when the benchmark stops scaling. The only exception to this is ocean, which

shows a drastic increase in its remote access latency, while still scaling acceptably. The reason

is that ocean manages to convert some memory accesses that would otherwise be cache misses
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Figure 13.7: Average latencies for remote and all loads. The x-axis shows the number of
processing tiles. The y-axis shows the latency in processor cycles.
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into remote accesses. Since the remote access latency is still slightly lower than the cache miss

latency, the overall performance is not much affected.

In order to identify the source of this increase in access time, the simulator not only tracks

the outcome of each memory access (local vs. remote, hit vs. miss) but also the destination

of each remote access. Figure 13.8 shows the distribution of remote accesses across a 16 tile

system for the NUCA-Dist, NUCA-Dist+M and NUCA-Dist+MS systems. The distribution is

normalised to the total number of remote accesses. Thus, the height of a bar does not reflect the

actual number of remote accesses, and as such, individual bars for different configurations or

benchmarks cannot be used to compare the actual number of remote accesses handled by that

tile. For example, for fft with NUCA-Dist configuration the plot shows that about 77% of all

remote accesses are handled by tile 0. Tile 1, 4, and 6 to 15 handle about 2% and tile 2, 3 and 5

almost nothing. Figure 13.8 identifies the primary reason for the increase in latency: almost all

requests are directed to the same tile. This is usually the tile that performed the initialisation

of the data sets. With the number of tiles increasing, the number of remote accesses to this tile

starts to increase. Unfortunately, this problem gets worse if tiles issue remote cache accesses

at about the same time. Furthermore, with all requests being directed to the same tile, the

number of conflict misses in the cache also starts to increase. Increasing the latency of remote

caches accesses even further. In particular cholesky, fft, lu and raytrace suffer from this effect.

The migration extension (NUCA-Dist+M ) was developed to address these issues. The overall

results can be seen in figure 13.5. All benchmarks that had problems scaling to 8 tiles now

perform acceptably up to 16 and sometimes even 32 tiles. The main reason is that the percentage

of remote accesses has been greatly reduced, as can been seen in figure 13.6. Exceptions are fmm,

ocean, radiosity and water-spatial. Fmm already performs acceptably in the base configuration,

since it has one of the lowest remote access percentages of all benchmarks. Migrating pages

does not help to improve this ratio even further. Ocean shows again a very different behaviour:

while the percentage of cache misses is slightly reduced, the percentage of remote accesses

increases significantly. The overall performance of ocean with migration is now slightly worse

than before. The problem with ocean is its extreme high number of barriers. The barriers

appear so frequently that there is not enough time to amortise the extra time the migration

extension requires. Furthermore, the access pattern in ocean is of such a nature that the first

touch policy does not select pages that are then accessed most by this tile. As for radiosity

and water-spatial, the migration extension is not able to reduce the number of remote accesses.

Still, both benchmarks perform better with migration than without. The reason is that the

migration extension spreads out the remote accesses across several tiles (as shown in figure 13.8).

This in itself results in a reduction of remote access latencies (figure 13.7a) and overall load

latencies (figure 13.7b). This observation is also true for all other benchmarks. Overall, the

observed performance improvement of NUCA-Dist+M over NUCA-Dist is as high as 249.3%

and is 79.8% on average for all benchmarks and 16 processors.

However, once the number of tiles is increased to 32, the latency problem appears again:

the latency of remote accesses for raytrace, volrend, water-nsquared and water-spatial increases

greatly and prevents these benchmarks from scaling. The reason is that remote accesses are

issued at almost the same time and the remote access controller cannot keep up with processing

these remote requests. In order to reduce the percentage of remote accesses even further, the

read-only sharing extension was developed. The success of this extension can again be seen in

figure 13.6 (please note that the results shown do not utilise selective MAP table invalidation at
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barriers). The number of remote accesses is greatly reduced for all benchmarks except cholesky,

and for fft, barnes, ocean, raytrace, volrend and water-nsquared almost completely removed.

In terms of access distribution little effect is seen, accesses are still as evenly distributed as

with NUCA-Dist+M (some benchmark a little more even others less even). One interesting

thing is that the read-only sharing extension increases the latency for remote accesses for several

benchmarks (figure 13.7a). This, however, has to be seen in the context of the reduced number of

remote accesses. Thus, actually, the average latencies of all loads are reduced for all benchmarks

(figure 13.7b). Furthermore, the read-only sharing extension improves raytrace, volrend, water-

nsquared and water-spatial significantly and allows them to scale easily to 32 tiles. For the other

8 benchmarks there is only very little improvement in performance. In the case of cholesky,

there is actually a significant performance degradation. The problem is the additional overhead

introduced by the MAP table invalidation whenever a lock is acquired. The selective MAP

table invalidation scheme was developed to address this final issue.
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Figure 13.9: Speedups compared to execution of a single tile between a system that invalidates
the whole MAP table on lock-acquire and a system that only invalidates selected entries. The
y-axis shows the speedup.

Figure 13.9 shows the difference in speedup between a system that utilises this selective inval-

idation technique and a system that does not2. While the overall improvement of this extension

is less impressive than for the previous extensions, it is able to improve the performance of some

of the worst behaving benchmarks significantly. It is no surprise that selective invalidation does

only make a small difference for most benchmarks: Only pages that are assigned to a tile are

allowed to stay in the MAP table. However, as we have with the read-only sharing extension

most data is shared and as such the corresponding pages still invalidated. The speedup for

radix improves from 10.7 to 11.8, bringing the gap to the idealised system Dir-Coh from 29%

down to 22%. Radiosity experiences an even larger improvement of the speedup from 9.8 to

11.3. This reduces the gap to Dir-Coh from 42% to 32%.

2Please note that the results in figure 13.9 were obtained with the slowmem configuration and cannot be
compared directly with all other results in section 13.5, which were obtained using the fastmem configuration.
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Conclusion The last few sections showed that the performance of the baseline system NUCA-

Dist, is already quite impressive for a few benchmarks. However, in order to allow the architec-

ture to scale to a higher number of tiles and to be more suitable for a wider range of programs,

it is necessary to augment it with extensions for migration, sharing and selective MAP table

invalidation. The first two extensions come at no extra hardware complexity (assuming that

an instruction to clear the local MAP table must have existed anyway for OS). The selective

invalidation extension does not require any additional on chip storage (all information is already

available in the existing structures), but just a simple circuit (less than 10 transistors per entry)

that uses only local information to perform a more intelligent invalidation of some MAP table

entries.

13.6. General Notes on Individual Overhead Analysis

Sections 13.7 and 13.9 will discuss the impact of particular negative aspect of the proposed

system, namely flushing of caches at barriers, invalidating MAP tables on lock acquire and

network latency. Before reading these discussions, a word of warning would be appropriate:

while the modifications to the system were made in such a way that they should only eliminate

the impact of a single negative aspect at a time, it became apparent that they also might have

some other subtle effects on the runtime in general. For example, if a memory access is not

delayed in the same way as in the original system, then a pointer can be loaded from memory

faster. A write to the target of this pointer might then result that a different tile, as compared

to execution on the unmodified system, becomes the owner of that pages. This allocation then

might be a better or worse distribution of pages than before. This impact becomes apparent

for example in lu: while the benchmark only has 32 locks, a modification to the system that

eliminates the negative impact of invalidating the MAP table improves the performance by 2%.

This is strange since all these locks happen to be in the first part of the benchmark before

the first barrier. Since after the barrier the local MAP tables are invalidated and the global

MAP table is cleared, there should be no effect afterwards. Furthermore, just the overhead of

repopulating the MAP table cannot account for this performance gap. It turns out that by

synchronising the MAP table, pages are allocated to tiles in a different way. This distribution

is apparently more efficient than the distribution with full invalidation.

Unfortunately, these indirect effects could not be eliminated. Thus, for all the results pre-

sented in this section it is difficult to exactly quantify the impact of each overhead. For example,

it might be possible that eliminating a certain overhead would give an improvement, which is

then cancelled by performance degradation due to a worse page to tile allocation. However,

while there are some cases where an overhead elimination resulted in worse performance, in

general they were beneficial. Thus, the results in this section give a good idea of the impact

of a certain overhead (especially if the effect is similar across several benchmarks), but do not

quantify it exactly.
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Benchmark Barriers Locks Benchmark Barriers Locks Benchmark Barriers Locks
cholesky -0.18 0.77 fmm 1.67 0.21 water-nsq 0.18 0.43
fft 0.23 0.04 ocean 10.56 -0.51 water-spa 0.47 0.04
lu 8.01 <0.01 radiosity 3.74 -1.99 facerec <0.01 0.07
radix 8.75 0.17 raytrace -1.28 5.57 mpegdec -0.88 -0.15
barnes -0.79 0.61 volrend 0.00 0.00 mpegenc -0.54 -0.54

Table 13.2: Overhead for NUCA-Dist+MS with 32/16 processors in % caused by flushing the cache
at barriers and invalidating the MAP table on a lock acquire. A negative overhead means that NUCA-

Dist+MS executes the program faster than the idealised system.

13.7. Analysis of Introduced Overheads by Migration and

Read-Only Sharing

The proposed architecture with the migration and read-only sharing extension has two opera-

tions that can cause a significant overhead in execution time:

• The migration extension requires that all caches be flushed at a barrier. This operation

can be very expensive if the same data is accessed again after the barrier and has to be

reloaded from memory. On the other hand, if the data were accessed on a different tile

then it would not have been available on that tile anyway and would have to be fetched

from memory. The general speed improvement of the remapping scheme suggests that

the latter is at least true for some of the data.

• The read-only sharing extension requires a selective invalidation of the local MAP table

of the tile that acquires a lock. This means in the best case nothing is invalidated, since

all entries refer to non-shared pages. Or in the worst case, all entries are invalidated, since

they all refer to shared-pages. Both of these extreme cases are unlikely to happen. The

success of the read-only sharing scheme indicates that there must be some shared pages.

On the other hand, as discussed in sections 7.4 and 8.1, access to the lock variable requires

(even if the lock variable is just read) that this access is treated as a write access. A write

access will always result in a MAP table entry that marks the page the lock variable is

placed on as owned (either locally or remote). Thus, all pages can only be shared if no

lock operations have been performed.

From the above arguments it seems that it is very difficult to just base the overhead on a

best and worst case analysis. Instead, specialised versions of the binary and simulator were

used to establish how much overhead is caused for each benchmark. In order to establish the

overhead of cache flushes, the simulator does not perform a cache flush, but instead updates all

cache lines with the current copy from memory within 0 cycles. Please note that the simulator

still performs the write back of dirty cache lines, as it would normally happen during a cache

flush. In order to establish the overhead of MAP table invalidations at lock acquires, the

simulator no longer invalidates, but instead synchronises, the local MAP table with the global

OS MAP table within 1 cycle. Table 13.2 lists these overheads. For most benchmarks, these

overheads are insignificant. Notable exceptions are: lu, radix and ocean have a significant

barrier overhead and raytrace has a significant overhead for locks. The barrier overhead does

not come as a surprise, since these programs spend the least amount of time between barriers

of all benchmarks (see table 11.1). While fft spends a similar short amount of time between

barriers, it does not experience a similar overhead. The reason is that the data is accessed
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by a different tile after the barrier anyway. Thus, there is no benefit to keeping the data in a

cache of tile that will not access it. In order to establish the impact of the cache flushing at

barrier, the simulator was modified to keep track of the cache hit rate during the parallel part

of the execution. Figures 13.10 to 13.13 show the cache hit rate during the parallel part of the

computation for SPLASH-2 benchmarks running on a 32 tile system. As one would expect, the

hit rate drops right after the barrier. However, this is only a short transient impact and hit

rates quickly return back to normal. As for raytrace, again the 5% slowdown due to MAP table

invalidation does not come as a surprise. Raytrace has with radiosity the highest lock frequency.

However, radiosity seems not to be affected by it. The difference between these benchmarks

is however, that radiosity performs about 20% of all cache accesses remotely. Remote cache

accesses always indicate that pages are actually owned by a tile, rather than being shared. Since

MAP table entries to owned pages are not invalidated at a lock acquire, radiosity does not have

to repopulate the MAP table as often as raytrace. Though, looking at the overall performance,

it seems that having to repopulate the local MAP is less performance critical than having to

perform 20% remote accesses.

13.8. Network Traffic Analysis

Another important aspect of the proposed architecture is the amount of network traffic that is

generated. The amount of traffic allows further insight into potential bottlenecks. In particular

it is important to know if the observed network traffic (based on the cache access distribution)

happens all at once or is evenly distributed across the whole computation. In order to answer

these questions, the simulator counts the number of active messages in each timestep. Active

messages also include messages that are waiting in a queue either waiting to be sent to another

tile or waiting for a cache miss to be resolved. In order to reduce the amount of collected data,

the simulator computes the maximum number of active messages seen so far. Every n cycles

this number is recorded in a histogram file and the maximum reset to 0. Thus, the number

recorded reflects the peak traffic during the interval.

Benchmark Duration Granularity Benchmark Duration Granularity
cholesky 146,060k 2,000 ocean 151,500k 3,000
fft 2,680k 2,000 radiosity 152,780k 2,000
lu 90,570k 2,000 raytrace 137,890k 2,000
radix 3,640k 2,000 volrend 131,850k 2,000
barnes 425,600k 6,000 water-nsq 73,940k 2,000
fmm 402,400k 6,000 water-spa 72,780k 2,000

Table 13.3: Duration and granularity used for creating the network activity histograms. Both
values are given in processor cycles.

The histograms were collected using a 32 tile system. Table 13.3 lists length of the interval

in processor cycles during which the numbers of active messages are collected by the simulator.

The interval start and end is determined by the reported begin and end of the computation

phase in each SPLASH-2 benchmark. Granularity indicates after how many cycles an entry

is written to the histogram file. The resulting histograms are shown in figures 13.14 to 13.17.

The vertical gray lines in the plots show the position of barriers. The plots show that for most

benchmarks the number of active messages stays below 20 for most of the time. A couple

of benchmarks show a spike just before or after a barrier. This spike is caused by the PE

executing a large number of remote stores. Since the PE is not stalled when it is creating
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Figure 13.10: Cache hit rate during the parallel part of the application. The gray vertical lines
show the position of barriers during the execution. The x-axis shows the elapsed execution
time. The y-axis shows the hit rate in percent.
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Figure 13.11: Cache hit rate during the parallel part of the application. The gray vertical lines
show the position of barriers during the execution. The x-axis shows the elapsed execution
time. The y-axis shows the hit rate in percent.
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Figure 13.12: Cache hit rate during the parallel part of the application. The gray vertical lines
show the position of barriers during the execution. The x-axis shows the elapsed execution
time. The y-axis shows the hit rate in percent.
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Figure 13.13: Cache hit rate during the parallel part of the application. The gray vertical lines
show the position of barriers during the execution. The x-axis shows the elapsed execution
time. The y-axis shows the hit rate in percent.
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remote store requests, they just happen to pile up in the send queue. However, these events

occur relatively seldom and usually for a very brief period of time, it did not seem necessary

to create a throttling mechanism that limits the number of active remote stores. Exceptions to

this are cholesky, radix and radiosity.

Cholesky has on average between 20 and 30 active messages. This is not surprising con-

sidering it has 39% remote cache accesses. However, it seems that these accesses are rather

evenly distributed across the whole execution of cholesky and thus cause little congestion (as is

confirmed by cholesky’s good speedup).

Radix, on the other hand, has two longer periods where there are about 50 active messages in

the system. These periods will most certainly result in some messages being delayed and might

explain some of the observed gap. In addition, it seems that there is a discrepancy between the

shown number of active messages and the relatively low remote cache accesses of about 5%.

The explanation is that, unlike other benchmarks, it performs its initialisation in parallel mode.

The cache access statistics are collected during the full time the application is in parallel mode.

However, the histogram only shows the region that is actually measured as computation time

by the benchmark.

Radiosity has some increased traffic during its second half of execution with active messages

between 15 and 35. Again, while this explains some performance degradation, it should not be

a problem to handle this amount of traffic.

Benchm. Ratio (r/w) abs. Ratio rel. Benchm. Ratio (r/w) abs. Ratio rel.
cholesky 108,206,273 / 1,432,122 98.69 / 1.31 ocean 1,288,634 / 23,958 98.17 / 1.83
fft 111,397 / 10,618 91.30 / 8.70 radiosity 44,334,452 / 1,475,006 96.78 / 3.22
lu 20,313,588 / 1,030 99.99 / 0.01 raytrace 4,581,546 / 414,041 91.71 / 8.29
radix 482,930 / 560,958 46.26 / 53.74 volrend 7,411,302 / 409,394 94.77 / 5.23
barnes 12,618,927 / 1,259,085 90.93 / 9.07 water-nsq 618,521 / 372,610 62.41 / 37.59
fmm 69,136,912 / 4,041,156 94.48 / 5.52 water-spa 18,842,895 / 673,622 96.55 / 3.45

Table 13.4: Ratio between remote read and write accesses during the parallel part of the
execution.

Relating the network activity results with the load latency plot (figure 13.3) is somewhat

problematic due to two problems: first, the load latency plot shows latencies of all loads during

the parallel part of the execution. However, the network activity plots only show the part

of the execution that is identified as the computational part. For most benchmarks, these

execution parts are identical; for a few (e.g., radix ) these execution parts are different, since

the initialisation happens in parallel. The second problem is that the load latency plot only

considers loads, while the network activity plots also show activity caused by stores. For

example, it is possible that the network activity plot shows a high network activity, while this

activity is only caused by stores and does not affect any loads. Table 13.4 gives a rough answer

to how much of the network activity can be attributed to stores. Unfortunately, it does not

show how loads and stores are intermixed. Still, if this table is used to group benchmarks into

groups with similar load percentage (91%: fft, barnes and raytrace. 94%: fmm and volrend.

96.5%: radiosity and water-spa. 99%: cholesky and lu) one can see that a plot with higher

network activity also results in higher load latencies.

The overall result of the network traffic analysis is that the traffic observed is mostly low

and should not have too much impact on most benchmarks. For the three benchmarks with

the most traffic (cholesky, lu and radiosity), this has been confirmed by Kuhn [Kuh07], who

implemented a detailed network model for the proposed architecture. He found that cholesky
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Figure 13.14: Active messages in the network during the execution of the parallel part of the
application. The gray vertical lines show the position of barriers during the execution. The
x-axis shows the elapsed execution time. The y-axis shows the maximum number of messages
during the interval.
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Figure 13.15: Active messages in the network during the execution of the parallel part of the
application. The gray vertical lines show the position of barriers during the execution. The
x-axis shows the elapsed execution time. The y-axis shows the maximum number of messages
during the interval.
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Figure 13.16: Active messages in the network during the execution of the parallel part of the
application. The gray vertical lines show the position of barriers during the execution. The
x-axis shows the elapsed execution time. The y-axis shows the maximum number of messages
during the interval.
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Figure 13.17: Active messages in the network during the execution of the parallel part of the
application. The gray vertical lines show the position of barriers during the execution. The
x-axis shows the elapsed execution time. The y-axis shows the maximum number of messages
during the interval.
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suffers 0.08% performance degradation, while lu and radiosity execute about 4% faster. The

reason for this increase in performance is most likely a better page to tile distribution. This

effect is explained in more detail in section 13.6.

13.9. Network Latencies Analysis

The previous section discussed whether the on-chip network could cope with the amount of

generated traffic. This section will have a look at how much performance is lost because a

remote access simply takes more time to perform than a local access. This delay is due to two

reasons, first, it takes several cycles to route a request across the chip even if the message does

not experience any other delay, and second, if several messages are in the network at the same

time then messages can get delayed due to limited bandwidth available. The Fast Network

simulator (see section 10.5) has been developed to evaluate this aspect. Table 13.5 shows the

results of this study. The main observations are that the amount of performance degradation

roughly follows the amount of remote memory accesses (see figure 13.2) and compared to the

previous overhead study for locks and barriers in section 13.7, it can be clearly seen that network

latencies are a serious cause for performance degradation for some benchmarks. Overall, this

result explains that a significant reason for the performance gap to Dir-Coh is the latency it

takes to perform a remote access.

A very interesting case is cholesky, since it runs faster on the Fast Network Simulator than

the directory coherent version. This result helps to explain the previously observed behaviour of

cholesky that even though it has about 38% remote accesses it only experiences a 6% slowdown.

It seems that the proposed architecture with a fictional network is much more suitable for

executing cholesky than the directory coherent one. However, this advantage is then negated

by about 40% remote accesses and the associated delays. Still the original advantage is enough

to limit the performance degradation to just 6%.

Considering the large impact remote access latencies have on the overall performance, it

would be interesting to further pin down the reason. The Fast Network simulator makes two

simplifications: first, the network latency is assumed to be always 1 (independent of distance

and message length). Second, the remote cache access controller (RAC) can start handling all

requests that have been received in that cycle. In order to determine the impact of each of

these simplifications, the fast RAC of the Fast Network simulator was replaced with the normal

RAC of NUCA-Dist+MS, which can only start handling a single request per cycle. Table 13.6

shows the results of this analysis.

Benchmark Network DC Benchmark Network DC Benchmark Network DC
cholesky 11.46 6.12 fmm 5.46 14.91 water-nsq 0.18 19.62
fft -0.08 1.57 ocean -0.45 31.15 water-spa 12.62 18.53
lu 18.51 26.74 radiosity 22.08 32.40 facerec 1.29 1.57
radix 3.44 21.87 raytrace 2.13 5.57 mpegdec 24.62 26.79
barnes 0.73 23.38 volrend 1.00 0.00 mpegenc 1.80 1.62

Table 13.5: Overhead for NUCA-Dist+MS with 32/16 processors in % caused by network delays.
DC is given as a reference to the performance gap towards the idealised directory coherent
system Dir-Coh. A negative overhead means that NUCA-Dist+MS executes the program faster
than the idealised system.
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Benchmark fast normal Benchmark fast normal Benchmark fast normal
cholesky 11.46 0.32 fmm 5.46 5.46 water-nsq 0.18 0.18
fft -0.08 0.00 ocean -0.45 -0.45 water-spa 12.62 12.62
lu 18.51 18.51 radiosity 22.08 22.51 facerec 1.29 0.93
radix 3.44 -0.60 raytrace 2.13 2.42 mpegdec 24.62 24.20
barnes 0.73 0.28 volrend 1.00 1.00 mpegenc 1.80 1.71

Table 13.6: Comparison of the gaps in % between NUCA-Dist+MS and a fast network simulator
with and without a fast remote cache access controller. A negative gap means that NUCA-
Dist+MS executes the program faster than the idealised system.
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Figure 13.18: Gaps between NUCA-Dist+MS and systems that do not suffer from the cache
flush overhead at barriers, the MAP table invalidation at lock acquire and network bandwidth
and latency restrictions. The gap with Dir-Coh is shown as a reference.

The results show that the only reason for the performance increase in cholesky and radix is

indeed the fast RAC. For the rest of the benchmarks, it seems that having an RAC that can

start handling multiple requests at the same time makes little difference.

Combination with Lock and Barrier Overhead Analysis Figure 13.18 tries to show the com-

bined impact of the network latency overhead (discussed in this section) and the lock and

barrier overhead (discussed in section 13.7) by just adding each individual overhead. How-

ever, these results should be taken with a grain of salt. Since all overhead studies resulted

in slightly different page to tile mappings, combining them might result in a slightly larger or

smaller gap than expected. Still, this plot gives some valuable insight into the behaviour of

some benchmarks. As for fft, lu, radiosity, volrend, water-spatial, facerec, mpegdec and mpegenc,

this graphs explains the observed gaps fairly well. To a lesser extend the same can be said for

radix and fmm. However, the observed gap in barnes, ocean and water-nsquared cannot be

explained by just studying these three overheads. Some performance degradation for ocean and

water-nsquared can be explained with the longer lock acquiring time (see section 13.3). As for

barnes and water-nsquared, both benchmarks experience somewhat more off-chip accesses with

NUCA-Dist+MS than Dir-Coh (barnes : 1.4% vs. 0.3%, water-nsquared : 1.4% vs. 0.3%).
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Figure 13.19: Speedups for 32 tiles with 2nd level caches with respect to the execution time
(after initialisation) of a single tile also with a 2nd level cache. The y-axis shows the speedup.

13.10. 2-Level Cache Hierarchy

Figure 13.19 shows the speedup results of such a system for both the proposed scheme (NUCA-

Dist+MS ) and the distributed directory scheme (Dir-Coh). Note that these speedup numbers

are not directly comparable to those in Figure 13.19, because they are normalised to different

sequential execution times (with and without the L2 cache, respectively). The figure shows

that the performance gap between NUCA-Dist and Dir-Coh remains mostly the same as for

systems without the second-level cache (the gap range is now 1.3%-32% and the average gap is

16%), demonstrating that the proposed scheme also works with the addition of a second level

of cache.

13.11. MAP Table Granularity

The configurations evaluated so far use a page table size of 4K. However, considering the very

low miss rates in the MAP table, it seems that by decreasing the page size the effects of false

sharing within a page can be reduced. This hopefully results in more data being accessed locally.

On the negative side, the number of capacity misses in the MAP table is likely to increase.

Table 13.7 shows the results of this analysis. As expected, the number of misses in the MAP

table increases and, on average the miss rate is now 3.6 times higher than in a system with

4K MAP pages. However, the impact on the overall performance of the system is less obvious,

some benchmarks (like lu or mpegdec) greatly benefit from smaller MAP pages, while other

benchmarks do not benefit at all and actually lose performance (like fmm, ocean or mpegenc).

This behaviour can be explained by looking at the cache access distribution of the system with

the finer granularity (shown in figure 13.20). For benchmarks that profit from the smaller

granularity the number of remote accesses is reduced (in the case lu they are almost completely

eliminated). For benchmarks that do not profit, the local to remote ratio almost remains

unchanged. These benchmarks just have to pay the penalty of missing more often in the local

MAP table. In total only 4 benchmarks benefit from the smaller MAP table pages; all other
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Figure 13.20: Distribution of memory accesses into local and remote accesses for NUCA-
Dist+MS with a MAP table with either 4k or 1k granularity. The accesses are then further
divided into cache hits and misses.
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Benchmark 4k Pages 1k Pages Difference
speedup MAP misses speedup MAP misses speedup MAP misses

cholesky 28.36 0.11% 26.65 0.20% -6.42% 1.81
fft 26.35 0.35% 26.35 0.42% 0.00% 1.20
lu 15.45 0.01% 17.78 0.04% 13.10% 4.00
radix 11.79 1.21% 11.85 1.84% 0.51% 1.52
barnes 24.54 0.08% 23.81 0.32% -3.07% 4.00
fmm 24.09 0.10% 21.08 0.21% -14.28% 2.10
ocean 15.76 0.36% 9.03 0.79% -74.53% 2.19
radiosity 11.29 0.31% 12.16 1.09% 7.15% 3.51
raytrace 25.77 0.90% 24.26 1.36% -6.22% 1.51
volrend 31.56 0.24% 30.35 0.42% -3.99% 1.75
water-nsq 27.77 0.03% 25.89 0.28% -7.26% 9.33
water-spa 25.55 0.01% 25.65 0.03% 0.39% 3.00
facerec 13.82 0.12% 13.81 0.73% -0.07% 6.08
mpegdec 6.86 0.01% 8.93 0.02% 23.18% 2.00
mpegenc 10.91 0.001% 9.58 0.01% -13.88% 10.0
Average -5.69% 3.60

Table 13.7: Difference in speedup and MAP table miss rate between a system that uses 4K and
1K MAP table pages. As before, SPLASH-2 benchmarks were executed on a 32 tile system, while
ALPBench benchmarks were executed on a 16 tile system.

benchmarks (with the exception of fft whose performance is not affected) lose performance. The

average loss is 5.69%. One interesting thing to notice is that there is no correlation between the

increase of the MAP miss rate and the impact on the performance. For fft, ocean and mpegdec

the MAP miss rate approximately doubles, however the impact on performance varies between

a critical slowdown to a significant speedup.

13.12. Effects of Sharing and Replication of Data

The Big Cache Memory model was developed to evaluate the performance gain that can be

achieved by not having to sacrifice capacity due to replication. The overall results were, however,

somewhat surprising. Figure 13.21 shows the speedups for the SPLASH-2 benchmarks for up

to 16 tiles3. The figure shows that some benchmarks (cholesky, fft, lu, ocean and raytrace)

scale very well; with cholesky even showing superlinear speedup. However, the performance

of some other benchmarks does not scale very well. The performance gain of radix, fmm and

water-nsquared starts to flatten out after 4 tiles and in case of fmm it even starts to decrease

beyond 8 tiles. A similar observation can be made for volrend, water-spatial and (to a lesser

extend) barnes, where performance does not increase when going beyond 8 tiles.

The explanation for this slightly surprising result lies in the number of conflict misses in the

cache. The problem is that most private data is allocated to the same position within a page on

all tiles. Thus there is also a fairly high chance that this data is also mapped to the same cache

line. As long as the associativity of the cache is high enough, this mapping does not cause a

problem. However, once the associativity is less than the number of tiles, too many addresses

may be mapped to the same cache set, causing conflict misses. Thus, data is evicted from the

cache before it can be accessed another time, greatly reducing the effectivity of the cache. This

would explain the good performance of this model up to 4 tiles.

3These results were obtained with the fastmem system configuration and should not be compared with results
that used the slowmem configuration.
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Figure 13.21: Speedups compared to execution of a single tile for Coh and UCA-Shared. The
UCA-Shared8 system is identical to the UCA-Shared system except that it uses an 8 way
(instead of 4 way) associative cache. The x-axis shows the number of tiles. The y-axis shows
the speedup.

Some experiments4 were performed to confirm this theory by increasing the associativity for

an 8 and 16 tile system to 8. This new system is referred to as UCA-Shared8. The effect of

this change can be seen in figure 13.21: the three benchmarks that performed poorly on the

8 tile system achieve now a similar speedup as Coh. However, this time the scalability was

limited to 8. Increasing the number of tiles to 16 did not result in any performance gains.

While this shared cache is used as an L1, this thesis claims that these results are also relevant

to large shared caches in general. The overall conclusion seems to be that for a shared cache

the associtivity of the cache has to be increased as the number of connected tiles is increased.

The other alternative would be a more sophisticated data layout that reduces the number of

conflict misses.

4Due to the long simulation time, these experiments were limited to benchmarks whose scalability from 4 to
8 tiles was significantly reduced and had relative short simulation times. These benchmarks were: volrend,
water-nsquared and water-spatial.
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14. Related Work

Some related works has already been presented in the background information presented in

chapter 4 and 5. As such, this chapter will solely focus on related works that have not been

discussed so far.

14.1. Distributed Caches

The works in [CPV03, KBK02] explored how large (multi-megabyte) on-chip L2 caches can

be efficiently organised to cope with increasing wire delays. The studies proposed policies for

dynamically migrating heavily used lines to banks closer to the processor. However, those works

focused on the uniprocessor case. The work in [BW04] explored the extension of the work in

[KBK02] for CMPs. Unlike the work presented in this thesis, that work focused on a large

shared L2 and assumed that L1 coherence is maintained through directories, but no detailed

analysis of the costs of such coherence mechanism are presented. None of these works considers

systems where the L2 caches are distributed along with each tile. In addition, the study was

limited to only 8 processors. Also, the migration mechanisms proposed differ from ours in that

they operate at the granularity of lines and require either broadcast tag lookups or a centralised

partial tag store for the “smart search” mechanism.

Closer to this work, [CS06, CPV05, ZA05] considered the tradeoffs in organising the L2

caches in a tiled CMP where L2 is physically distributed along with each tile. Similarly to

ours, those works considered the option of organising these distributed L2 caches as a logically

single L2 cache. Those works differ from ours in the following ways: firstly, the L1 caches

are private to each tile and allow replication of data, such that coherence is always required.

No details about the implementation or the costs of such coherence mechanism are presented.

Secondly, those works propose techniques, “controlled replication” and “victim replication”

respectively, that allow for some degree of replication in the L2 caches that is at the line level

and is controlled by the hardware. The work presented in this thesis emphasises simplicity

and only allows a very restricted degree of replication that is totally controlled by the OS and,

thus, forgoes hardware coherence mechanisms. Thirdly, those works only considered baseline

schemes with static mapping of memory lines to L2 caches based on address, which is much

more restrictive than the proposed baseline OS managed mapping mechanism. Finally, those

works only considered smaller systems with 4 or 8 processors.

14.2. OS Controlled Migration

There have been previous work in OS directed page migration and replication in CC-NUMA

(cache-coherent non-uniform memory architecture) environments, such as [VDGR96]. The poli-

cies in that work are based on measurements of cache misses and degree of sharing, which are

done with hardware counters. The scheme is evaluated for remote to local access time ratios
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of 2 to 20 times. That work differs from ours in that CC-NUMA machines support fine-grain

caching of memory lines, so that the page-level migration and replication is only necessary when

the workloads overflow the private caches. In the proposed system, poor page placement always

leads to remote cache accesses. Another important difference is that migration and replication

of main memory pages may involve actual data movements with high overheads. Finally, there

is a difference in the scale of the systems considered, which has a significant impact on the cost

tradeoffs.

14.3. Alternative Hardware Cache Coherence Schemes

Apart from the hardware schemes that are discussed in section 3.1, 3.2 and 3.4, a few other

hardware based schemes have been recently proposed that take advantage of advances in inter-

connect mechanisms.

Martin et al. [MHW03] offer an alternative coherence protocol based on token counting for

machines that use a low latency unordered interconnect. Instead of assigning specific states

(such as shared, exclusive, etc.) to each cache line, the state is expressed by the number of

tokens a processor has for that cache line (e.g. at least one token). The study investigates a

tree and torus interconnect. Using a tree network the protocol performs similar to a snooping

protocol implemented on the same network. However, performance is greatly improved (about

50%) when the same protocol is run on the torus network. While the protocol was designed

for low-latency networks, it still assumes a multiprocessor system. How this protocol behaves

in a CMP environment is open to further research. Another constraint is the scalability of

the protocol. While it performs well for the studied 16 processors, it still relies on broadcast

mechanism that limits its scalability. The authors assume that scaling the protocol beyond

16 processors will require high bandwidth links between tiles and high throughput coherence

controllers with low power consumption.

Marty and Hill [MH06] investigate the possibility of providing a cache coherence mechanism

for processors that use a ring based on-chip network (like for example IBM/Sony/Toshiba’s

Cell [PAB+05]). Ring based interconnects use point-to-point connections between two nodes.

Thus, they offer a scalable design (unlike buses and crossbars) and simpler logic than packet-

switched interconnects with arbitrary topology1. Ring based interconnects might offer a prefer-

able compromise between these two network types. The problem with respect to coherence

protocols is that ring networks do not provide the same strict ordering that buses do, even

though they still offer some ordering of messages. They use the already mentioned token co-

herence mechanism to provide a suitable protocol for ring networks. By exploiting the ordering

available on the ring network, they were able to simplify the token coherence protocol. While

they show that their protocol performs better than a protocol that is similar to the one used

in AMDs Opteron, it still suffers some stability issues resulting in dead-locks. As with some

other studies before, this study limited itself to an 8 tile system. Thus, it is an open question,

if a ring based bus or the protocol scales beyond this number of nodes.

Eisley et al. [EPS06] propose to consider the topology of the mesh based on-chip network

in order to decrease the latency of memory accesses. In particular a get-shared request that

1As opposed to a network controller in a 2D mesh network, a network controller in a ring based network only
has to decide if a packet has reached its destination or if it should be forwarded to the next node. It does not
have to make a decision to which output port it has to forward the packet, nor has to deal with congestion
where several incoming packets want to be routed to the same output port.
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is sent to the home-node might be routed across a tile that has a copy of the requested cache

line. Thus, the request can be already answered at this intermediate node. In order to keep

track of sharers, the protocol constructs virtual trees that use the first requester of a cache

line as root. Read requests that touch this virtual tree on their way to the home node are

redirected to the root along the tree and can obtain a copy of the data there (or from any node

in the tree that happens to possess the requested data). Write requests use a similar technique

to speed up the invalidation of sharers. The protocol was tested with the 8 benchmarks from

Splash-2 and verified using a model based analysis tool. However for this verification, in order

to allow a tractable analysis, the number of concurrent requests was limited to 2. Also, testing

was performed using a sequential simulator, which simplifies the protocol implementation sig-

nificantly due to the absence of truly concurrent events. This is somewhat worrying, since the

protocol has several conditions that can easily resolve into races and require deadlock recovery

schemes. As for the complexity of the scheme, it seems that the home nodes have still a similar

complexity as in directory based schemes. Furthermore, the complexity is increased since the

information about the tree is distributed across several nodes. If any of these nodes has to evict

this information, then the whole tree has to be torn down. The initial evaluation is performed

on a 16 node system and shows an average latency reduction of 27% for reads and 41% for

writes. The overall impact on performance is not shown in the paper. The implementation is

scaled up to 64 tiles resulting in an average latency reduction of 35% for read and 48% for writes,

however assuming the same 2MB private second level cache as in the 16 tiles implementation.

This assumption might be mislead, since experiments on the 16 tile system with smaller caches

show that performances decreases significantly. No experiments with reduced cache sizes were

performed for the 64 tile system. Overall, this protocol offers a very interesting design point,

but further investigation is necessary to understands its complexity and performance tradeoffs.

14.4. Hybrid Cache Coherence Schemes

Considering the design complexity and storage that is required to enforce cache coherence in

hardware, schemes have been proposed to move some of the complexity and storage into software

for various reasons.

The MIT Alewife machine [CKA91] used a hybrid cache coherence mechanism in order to

address the storage requirements of a full-map directory. In such a directory an entry for a

cache line requires as many bits as there are nodes in the system. This property potentially

limits the overall scalability of a full-map directory. The LimitLESS directory protocol used in

the Alewife machine, uses a limit vector of sharers: up to 4 sharers can be tracked in hardware.

If another node requests shared access to the cache line, then a software handler is invoked.

This handler copies the 4 sharers to software managed directory, adds the new sharer to the

software directory as well, clears the 4 hardware entries and sets a special bit in the hardware

entry to indicate that part of the state is now stored in software. The next 4 sharers can be

added by the hardware as usual. If a processor requests exclusive access to a cache line, then

the behaviour of the protocol depends on if the “software managed” bit is set. If the bit is

not set, then the hardware behaves like in any other hardware directory scheme. If the bit is

set, then another software handler is invoked. This handler then sends invalidation messages

to all sharers (up to 4 sharers can be stored in the hardware directory and an unbounded

number in software). The final action is to inform the hardware directory of the number of
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expected “invalidation-acknowledgement” messages. Thus, the hardware directory just has to

count down until all invalidations have been received. It then can grant exclusive access to

the requester. While this hybrid protocols addressed storage issues, it does not simplify the

protocol as such: the hardware is still responsible to run a full-blown cache coherence protocol;

just parts of the protocol are replicated in software in order to deal with storage constraints.

The Stanford FLASH multiprocessor [KOH+94] is the successor of the DASH multiprocessor.

Similar to the DASH multiprocessor the FLASH multiprocessor also has a dedicated protocol

processor. However, while the DASH protocol processor is hardwired to a distributed directory

cache coherence protocol, the FLASH protocol processor is user programmable. The reason

for such a user programmable controller is that the controller can be better tuned to required

communication patterns. For example, sequential consistency might not be required, but just

release consistency instead. Or the problem is better solved with message passing rather than

with shared memory to begin with. To summarise the main design considerations were hardware

overhead and flexibility.

Grahn and Stenström [GS95] investigated a class of mostly software coherency protocols.

Starting with a full blown distributed, software only directory protocol, they add pieces of

hardware to remove the most critical overheads introduced by the software-only protocol. With

their best strategy, which is a combination of all individual strategies, they are able to obtain

60%-68% of the performance of a hardware-only protocol. The main design considerations,

similar to the one in this thesis, were the increasing complexity of directory based scheme.

However, their design considerations differ in 3 points from the proposed scheme: first their

starting point is a software-only scheme that is then extended by hardware to eliminate the

most critical elements of a software-only scheme. Second, this design assumes a multi node

system with associated latencies. And third, they implement a full blown distributed directory

scheme.

The work done by Chaudhuri and Heinrich [CH04] also looks into ways of moving part of

the coherence mechanism to software. However, their motivation is a different one: they first

notice the complexity of implementing cache coherence protocols in hardware. Furthermore,

they noticed that the memory controller is also moved into the main processor and modern

processors are likely to support simultaneous multi-threading (SMT) [TEL95]. Thus, instead

of adding another cache coherence controller to the main processor and increase its complexity,

they decided to run the cache coherence protocol on a separate thread in software. The OS

scheduler does not see this thread, thus it does not migrate to another processor nor is affected

by context switches. On the other hand a new complexity arises: the protocol thread shares

execution resources with normal application threads. Thus, there might be cyclic dependencies

between these two threads (e.g., the protocol thread waits for a functional unit to become

available, the functional unit waits for the result of a load operation that requires attention of

the protocol thread). Unlike the proposed scheme, this mechanism runs a full blown distributed

directory protocol in a dedicated hardware context.

Zeffer et al. [ZRKH06, ZH07] were concerned with the increasing complexity of coherence

protocols and if such complexity is the correct design decision when moving to CMPs. They

concluded that instead of adding more hardware support, a better decision would be to add

only minimal hardware support and instead move the complexity to the software. The overall

benefit would be shorter time to market and a more cost-efficient system. The first system,

TMA Lite [ZRKH06], is based on an unmodified, single chip memory system and extends the
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processor to trap on certain stores and loads. The load trap is activated whenever a “magic-

value” is loaded that indicates a coherence miss. As for stores, in order to not trap at every

store, the processor is extended with a write permission cache (WPC) that stores addresses

to which the processor has write permission. For an 8 node system with 2-way simultaneous

multithreaded cores, TMA Lite lags about 25% behind a hardware coherent system.

The second system proposed, CRASH [ZH07], uses a normal processor, but augments the

memory system in such a way that it can detect coherence violations/problems. Two bits

are added to each cache line: one bit indicates that the node has read permission, the other

indicates that it has write permission. Whenever a store or load operation is performed, these

bits are checked by the hardware. If the required bit is not set, then an exception is signalled

and the handler that resolves these violations is executed in software. For an 8 node system with

2-way simultaneous multithreaded cores, CRASH lags between 5% and 45% behind a hardware

coherent system.

While these schemes are close in spirit to the one this thesis proposes, they do require more

activity in the OS and trap handler than the proposed scheme. Such activity is greatly reduced

in the proposed scheme due to two effects: First, the proposed scheme handles coherence at the

coarser granularity of pages (4,096 bytes). TMA Lite supports granularities of 64, 128 and 256

bytes, while CRASH handles coherence at cache line granularity (in this case 64 bytes). Every

first access for each processor will trigger an OS trap, in order to get shared or exclusive access.

For the proposed scheme only the first access to a page (and if this first access happened to be

a read access, then also the first write access) will trigger an OS trap, all subsequent accesses

either hit in the MAP table or if they miss there, are handled by the fast PPC hardware

handler. Second, the proposed scheme uses a small hardware extensions to support an extra

level of indirection between virtual pages and tiles as well as to support remote cache accesses.

Thus, only the processor’s first load or store to data in a page requires trap handler intervention

and only the system’s first load or store to data in a page requires full OS intervention. Both

TMA Lite and CRASH require OS intervention every time a unit of coherence is assigned to a

new owner, or additional sharers are added.

Another important difference with all discussed systems in this section is that all those

schemes focused on coherence mechanisms for multi-chip systems, while this work focuses on

the problem of providing cache coherence for a single, large-scale, CMP.

14.5. Remote Access Mechanisms

Remote memory access schemes have been previously used in DEC’s Memory Channel tech-

nology [Gil96]. The system allowed a user level application to perform writes to memory on a

remote node. All that is necessary is a normal store instruction to a virtual memory address.

The system does not require any kind of OS trap or similar overhead upon this write. In this

way it is similar to the proposed mechanism. However, its main limitation is that it can only

perform remote write operations. Read operations have to be emulated, by telling the remote

node with a remote write to send the data to the requesting node. Other minor differences

include that not the whole address space can be used to perform remote writes. All nodes that

are connected to the same memory channel network have to share a 512MB window at 8Kbytes

granularity. Furthermore, Memory Channel does allow multicast and broadcast writes, which
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can be used to implement coherence protocols that use an update instead of an invalidation

approach.

The M-machine is another architecture that allowed remote cache accesses [FKD+97]. Re-

mote accesses are performed by simply issuing load and store instructions. Unlike the before

mentioned Memory Channel, the M-machine also supports remote read access. Unlike the pro-

posed architecture, it uses a software trap based TLB mechanism to generate and handle the re-

mote access. This results in that an uncongested read access to the neighbouring tile is 46 times

slower than a local one. Remote write accesses are 37 times slower. Considering the significant

higher access latency it seemed to be necessary to also support local caching. The mechanism

is similar to the ones previously described in section 14.4 by Zeffer et al. [ZRKH06, ZH07]. The

hardware only supports some mechanisms to keep track if a violation occurs; the actual handler

is then run in software. However, it seems that it is for the programmer/compiler to decide

which access strategy would be best suited in a given situation.

14.6. Fast Synchronisation Mechanisms

Sampson et al. describe a mechanism that also allows fast barrier synchronisation by stalling

threads accessing specific resources [SGC+05] instead of using a spin based approach. However,

their scheme differs in two ways from the mechanism presented in this thesis: First, they stall

the CPU using an L1 instruction cache miss. The 2nd level cache then is modified to not

serve the L1 cache miss, until all threads have joined the barrier. Second, they don’t use any

special network to propagate barrier participation and release information. Instead, the L2 will

start serving the instruction cache lines, once all cores have joined the barrier. The potential

problem with this approach is that, unless cache lines can be broadcasted to all participating

L1 caches, it requires a one by one release of each core. In our approach the release information

is broadcasted along a tree, which should be significantly faster than the cache line method.
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15.1. Summary of Contributions

This thesis has been motivated by the current trend of an increasing number of cores on a single

chip. Interconnects that are used in today’s small scale CMPs will not scale to the number

of cores that are assumed in these future CMPs. Instead, the use of a scalable, point-to-point

interconnect will be required. However, such an interconnect will make the implementation of

cache coherence mechanisms that are currently used in CMPs impossible.

In conclusion, the contributions of this research have been:

• This thesis presents an alternative solution for the cache coherence problem in a large

scale, tiled CMP. The proposed solution is less complex than a hardware only solution,

since complicated parts of the protocol are executed in software as part of the OS. Con-

sidering the reduction in complexity, the solution proposed in this thesis, which performs

on average 16% slower than an idealised hardware solution, is an acceptable tradeoff.

• This thesis demonstrates how the basic mechanism of remote cache accesses can be ex-

tended to support controlled migration at barriers and read-only sharing.

• This thesis shows how to execute shared memory programs on the proposed architecture

and investigate in detail the implications of the design decision on the implementation of

locks and barriers.

• This thesis shows that a page based software only scheme is not able to deliver adequate

performance on a tiled CMP for shared memory applications.

15.2. Future Work

The following areas are still worth investigating:

• The original RAW processor had an ILP mode in which the instructions of a single basic

block are scheduled across several tiles. One interesting direction of research would be to

combine this mode with the TLP mode described in this thesis. A previous study [ES03]

shows that for small scale super-scalar CMPs, it depends on the application if it is more

beneficial to have fewer threads but a wider issue super-scalar core, or more threads and a

less wide super-scalar core. Considering the result of this study, it might be that for some

applications (e.g., the ALPBench benchmarks) it is more beneficial to use fewer threads

but instead combine several tiles that execute one thread together.

• The MAP table uses a selective invalidation protocol when it has to be invalidated upon

a lock acquire. This invalidation protocol only uses local information for its decision and
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does not access the global OS MAP table. A similar protocol, although more complicated,

can be used to perform selective flushing at barriers. The key observation is again that

cache lines that belong to owned pages (i.e., pages that the tile has read/write permission

for) do not have to be flushed, since they are the most up to date copy there is. Instead,

they can be kept in the cache, but have to be downgraded to shared. Such a scheme could

be implemented in at least two ways:

1. Before a cache line is flushed, a lookup in the MAP table is performed. If this lookup

confirms that the page is owned by the tile, then the cache line is not flushed. If the

lookup misses, then it is assumed that the cache line is not on a page that is owned

by the tile and no attempt is made to retrieve the page information from the global

MAP table.

While this scheme is relatively simple, it has two problems: first, in order to perform

a MAP lookup, the virtual address of a page is required. However, the cache is

physically tagged. Second, the cache flush logic requires an access to the MAP table

on its critical path.

2. Each cache line also contains an extra owned bit. Whenever a cache line is brought

into the cache, the owned bit is set according to the sharing state of the page. The

owned bit might also be set later, with an action (such as a write to the cache line)

that indicates that the tile now owns the page. At a barrier, cache lines with set

owned bit will not be flushed, instead their owned bit will just be unset.

Even though by adding this extra bit to each cache line the whole system looks like

a traditional snooping protocol, the main difference is that all decisions can be made

locally. The owned bit is never updated because of some remote action.

• Another area of improvement is to utilise knowledge about the application. For example,

each thread probably uses some private data. This data obviously does not have to be

invalidated, flushed or written back in comparison to the shared data. The question is

now how the system can distinguish between shared and private data. Is further hard-

ware support necessary, or can it implemented within the OS component of the proposed

scheme? Another option is that the compiler can identify which pages should be best

mapped to which tile in order to minimise remote accesses. Such a distribution could be

computed by the application and loaded into the OS MAP table as part of the barrier

process.

• The system proposed in this thesis simplifies the process of off-chip memory access by

simply assuming a certain number of cycles to perform an off-chip memory access. In

reality, such access also has to be performed using the mesh network. Thus, memory

accesses from tiles that are closer to the centre of the chip would have to traverse several

nodes before they can go off-chip. Similarly, requests by tiles that are close to the edge of

the chip might experience delays caused by the requests coming from the centre. Another

question would be which network these requests would use: the same network that is

used for the remote memory accesses proposed in this thesis, or better a dedicated third

dynamic network? Or as another option, maybe merge the dynamic networks into one

network and use a virtual channel for each message type?
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• One aspect that is becoming more and more important with future processor designs

and is completely ignored by this thesis is power consumption. For example, while the

power consumed by the relative simple cores is most likely acceptable, will the power that

the on-chip network consumes negate this favourable power balance? Thus, in general it

would be interesting to know if power issues make certain design decision made in this

thesis less attractive.

• RAW exploits data level parallelism in loops and during stream based computation. These

techniques work at very fine granularity and use RAW’s blocking register communication

for passing of data. The proposed scheme could be used to provide a similar way to

exploit data level parallelism, however at a coarser granularity. For example, instead

of using blocking register communication, several tiles could write the results remotely

into another tiles cache. In another approach, the application could direct the OS to

migrate ownership of a page to another tile at other times than a barrier. However, in

this scenario it is the responsibility of the application to invalidate mappings to this page

in all tiles that had a mapping. This should be relatively simple, if only one tile has a

local mapping. This approach could be used to pass large blocks of data between tiles in

a more asynchronous way (the receiving tile can read the information in a different order

than the data is produced).
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José E. Moreira, and Henry S. Warren, Jr. Dissecting Cyclops: A Detailed Anal-

ysis of a Multithreaded Architecture. SIGARCH Computer Architecture News,

31(1):26–38, 2003.

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models:

A Tutorial. IEEE Computer, 29(12), 1996.

[ANMB97] Ernest Artiaga, Jose Ignacio Navarro, Xavier Martorell, and Yolanda Becerra. Im-

plementing PARMACS Macros for Shared-Memory Multiprocessor Environments.

Technical Report UPC-DAC-1997-7, Departament d’Arquitectura de Computa-
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Derek Lieber, José E. Moreira, Karin Strauss, and Henry S. Warren, Jr. Evaluation

of a Multithreaded Architecture for Cellular Computing. In Proceedings of the 8th

International Symposium on High-Performance Computer Architecture, pages 311–

322, February 2002.

[CF78] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems

in Multicache Systems. IEEE Transactions on Computers, C-27(12):1112–1118,

December 1978.

[CH04] Mainak Chaudhuri and Mark Heinrich. SMTp: An Architecture for Next-

generation Scalable Multi-threading. In Proceedings of the 31st Annual Interna-

tional Symposium on Computer Architecture, pages 124–137, June 2004.

[CKA91] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories: A

scalable Cache Coherence Scheme. ACM SIGPLAN Notices: ASPLOS-IV Proceed-

ings, 26(4):224–234, April 1991.

[CPV03] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Distance Associativ-

ity for High-Performance Energy-Efficient Non-Uniform Cache Architectures. In

Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 55–66, December 2003.

132



Bibliography

[CPV05] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing Replication,

Communication, and Capacity Allocation in CMPs. In Proceedings of the 32nd

Annual International Symposium on Computer Architecture, pages 357–368, June

2005.

[CS99] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architecture - A

Hardware/Software Approach, chapter 5.5.3. Morgan Kaufmann, 1999.

[CS06] Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiproces-

sors. In Proceedings of the 33rd Annual International Symposium on Computer

Architecture, pages 264–276, June 2006.

[CTC+02] DeQing Chen, Chunqiang Tang, Xiangchuan Chen, Sandhya Dwarkadas, and

Michael L. Scott. Multi-Level Shared State for Distributed Systems. In Proceed-

ings of the 2002 International Conference on Parallel Processing, pages 131–140,

August 2002.

[DSB86] Michel Dubois, Christoph Scheurich, and Faye A. Briggs. Memory Access Buffering

in Multiprocessors. In Proceedings of the 13th Annual International Symposium on

Computer Architecture, pages 434–442, June 1986.

[Eir96] Ásgeir Th. Eiŕıksson. Integrating Formal Verification Methods with a Conventional

Project Design Flow. In Proceedings of the 33rd Annual Conference on Design

Automation, pages 666–671, June 1996.

[EPS06] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-Network Cache Coherence. In Pro-

ceedings of the 39th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 321–332, December 2006.

[ES03] Magnus Ekman and Per Stenström. Performance and Power Impact of Issue-width

in Chip-Multiprocessor Cores. In Proceedings of the 32nd International Conference

on Parallel Processing, pages 359–368. IEEE Computer Society, October 2003.

[FKD+97] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew

Chang, Yevgeny Gurevich, and Whay S. Lee. The M-Machine Multicomputer.

International Journal of Parallel Programming, 25(3):183–212, June 1997.

[FP89] Brett D. Fleisch and Gerald J. Popek. Mirage: A Coherent Distributed Shared

Memory Design. In Proceedings of the 12th ACM Symposium on Operating Systems

Principles, pages 211–223, December 1989.

[fre01] freescale semiconductor. Programming Environments Manual for 32-Bit Implemen-

tations of the PowerPC Architecture, 2001.

[GFV99] Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In Pro-

ceedings of the 26th Annual International Symposium on Computer Architecture,

pages 162–171, May 1999.

[Gil96] Richard B. Gillett. Memory Channel Network for PCI. IEEE Micro, 16(1):12–18,

February 1996.

133



Bibliography

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTMLanguage

Specification. Prentice Hall, 3rd edition, June 2005.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop

Gupta, and John L. Hennessy. Memory Consistency and Event Ordering in Scalable

Shared-Memory Multiprocessors. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, pages 15–26, June 1990.

[GMNR06] Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. Introduction

to Intel Core Duo Processor Architecture. Intel Technology Journal, 10(2):89–97,

May 2006.

[Goo83] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic.

In Proceedings of the 10th Annual International Symposium on Computer Archi-

tecture, pages 124–131, June 1983.

[Goo89] James R. Goodman. Cache Consistency and Sequential Consistency. Technical

Report 61, IEEE Scalable Coherent Interface (SCI) Working Group, February 1989.

[GS95] H̊akan Grahn and Per Stenström. Efficient Strategies for Software-Only Protocols in

Shared-Memory Multiprocessors. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 38–47, June 1995.

[GSSD00] Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Van Doren. Ar-

chitecture and design of AlphaServer GS320. In Proceedings of the 9th International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 13–24, November 2000.

[GTK+02] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and

Saman Amarasinghe. A Stream Compiler for Communication-Exposed Architec-

tures. In Proceedings of the 10th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 291–303, October 2002.

[HAA+96] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Murphy,

Shih-Wei Liao, Edouard Bugnion, and Monica S. Lam. Maximizing Multiprocessor

Performance with the SUIF Compiler. IEEE Computer, 29(12):84–89, December

1996.

[Hag07] Erik Hagersten. Personal Communication regarding the verification of the coher-

ence protocol of Sun Microsystems’ Enterprise Servers E3000, E4000, E5000 and

E6000. July 2007.

[HC03] Mark Heinrich and Mainak Chaudhuri. Ocean Warning: Avoid Drowning.

SIGARCH Computer Architecture News, 31(3):30–32, 2003.

[IEE95] IEEE. IEEE Standard 1003.1c-1995 Thread Extension. IEEE, 1995. Formerly

POSIX.4a. Now included in 1003.1-1996. Also known as POSIX.1c.

[Int07] Intel. Intel Core2 Extreme Processor X6800 and Intel Core2 Duo Desktop Processor

E6000 and E4000 Sequence Specification Update, July 2007. Document No: 313279-

016.

134



Bibliography

[ISL96] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Understanding Applications Per-

formance on Shared Virtual Memory Systems. In Proceedings of the 23rd Annual

International Symposium on Computer Architecture, pages 122–133, May 1996.

[JKW95] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-

Performance All-Software Distributed Shared Memory. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles, pages 213–226, December 1995.

[JLGS90] David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi.

Distributed-Directory Scheme: Scalable Coherent Interface. Computer, 23(6):74–

77, June 1990.

[KAO05] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A

32-way Multithreaded Sparc Processor. IEEE Micro, 25(2):21–29, March-April

2005.

[KBH+04] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian

Pharris, Jared Casper, and Krste Asanović. The Vector-Thread Architecture. In

Proceedings of the 31st Annual International Symposium on Computer Architec-

ture, pages 52–64, June 2004.

[KBK02] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An Adaptive, Non-Uniform

Cache Structure for Wire-Delay Dominated On-Chip Caches. In Proceedings of

the 10th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 211–222, October 2002.

[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-

Marks: Distributed Shared Memory on Standard Workstations and Operating Sys-

tems. In USENIX Winter 1994 Technical Conference Proceedings, pages 115–131,

January 1994.

[KCZ92] Peter J. Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy Release Consistency

for Software Distributed Shared Memory. In Proceedings of the 19th Annual Inter-

national Symposium on Computer Architecture, pages 13–21, May 1992.

[KHS+97] Leonidas I. Kontothanassis, Galen Hunt, Robert Stets, Nikolaos Hardavel-

las, Michae l Cierniak, Srinivasan Parthasarathy, Wagner Meira, Jr., Sandhya

Dwarkadas, and Michael L. Scott. VM-Based Shared Memory on Low-Latency,

Remote-Memory-Access Networks. In Proceedings of the 24th Annual International

Symposium on Computer Architecture, pages 157–169, June 1997.

[KOH+94] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,

Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz,

Anoop Gupta, Mendel Rosenblum, and John L. Hennessy. The Stanford FLASH

Multiprocessor. In Proceedings of the 21st Annual International Symposium on

Computer Architecture, pages 325–337, April 1994.

[KST04] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 Chip: A Dual-

Core Multithreaded Processor. IEEE Micro, 24(2):40–47, March-April 2004.

135



Bibliography

[Kuh07] Marius Kuhn. Conception and Implementation of a Dynamic On-Chip 2D Mesh

Network Simulator for a Multi-Core Chip. Master’s thesis, Universität Duisburg-

Essen, 2007.

[KZT05] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in Multi-

core Architectures: Understanding Mechanisms, Overheads and Scaling. In Pro-

ceedings of the 32nd Annual International Symposium on Computer Architecture,

pages 408–419, June 2005.

[Lam79] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Exe-

cutes Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691,

September 1979.

[LBF+98] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan

Babb, Vivek Sarkar, and Saman Amarasinghe. Space-Time Scheduling of

Instruction-Level Parallelism on a RAW Machine. In Proceedings of the 8th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, pages 46–57, October 1998.

[LCED01] David Lie, Andy Chou, Dawson Engler, and David L. Dill. A Simple Method

for Extracting Models from Protocol Code. In Proceedings of the 28th Annual

International Symposium on Computer Architecture, pages 192–203, June 2001.

[Li88] Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Pro-

ceedings of the 1988 International Conference on Parallel Processing, volume 2,

pages 94–101. Pennsylvania State University Press, August 1988.

[LL97] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable

Server. In Proceedings of the 24th Annual International Symposium on Computer

Architecture, pages 241–251, June 1997.

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John L.

Hennessy. The Directory-Based Cache Coherence Protocol for the DASH Multipro-

cessor. In Proceedings of the 17th Annual International Symposium on Computer

Architecture, pages 148–159, June 1990.

[LPSA02] Walter Lee, Diego Puppin, Shane Swenson, and Saman Amarasinghe. Convergent

scheduling. In Proceedings of the 35th Annual ACM/IEEE International Sympo-

sium on Microarchitecture, pages 111–122, November 2002.

[LSA+05] ManLap Li, Ruchira Sasanka, Sarita V. Adve, Yen-Kuang Chen, and Eric Debes.

The ALPBench Benchmark Suite for Complex Multimedia Applications. In Pro-

ceedings of IEEE International Symposium on Workload Characterization, pages

34–45, October 2005.

[LST+06] Ana Sonia Leon, Jinuk Luke Shin, Kenway W. Tam, William Bryg, Francis Schu-

macher, Poonacha Kongetira, David Weisner, and Allan Strong. A Power-Efficient

High-Throughput 32-Thread SPARC Processor. In Digest of Technical Papers of

the International Solid-State Circuits Conference (ISSCC), volume 2, pages 2–4,

February 2006.

136



Bibliography

[MB05] Cameron McNairy and Rohit Bhatia. Montecito: A Dual-Core, Dual-Thread Ita-

nium Processor. IEEE Micro, 25(2):10–20, March-April 2005.

[MH06] Michael R. Marty and Mark D. Hill. Coherence ordering for ring-based chip multi-

processors. In Proceedings of the 39th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 309–320, December 2006.

[MHW03] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token coherence: Decou-

pling performance and correctness. In Proceedings of the 30th Annual International

Symposium on Computer Architecture, pages 182–193, June 2003.

[MLC+92] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A.

Bringmann. Effective Compiler Support for Predicated Execution Using the Hy-

perblock. In Proceedings of the 25th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 45–54, December 1992.

[MMG+06] Avi Mendelson, Julius Mandelblat, Simcha Gochman, Anat Shemer, Rajshree

Chabukswar, Erik Niemeyer, and Arun Kumar. CMP Implementation in Systems

Based on the Intel Core Duo Processor. Intel Technology Journal, 10(2):99–107,

May 2006.

[Ope05] OpenMP Architecture Review Board. OpenMP Application Program Interface,

Version 2.5, May 2005. URL: http://www.openmp.org/mp-documents/spec25.pdf.

[PAB+05] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,

M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and

K. Yazawa. The Design and Implementation of a First-Generation CELL Processor.

In Digest of Technical Papers of the International Solid-State Circuits Conference

(ISSCC), volume 1, pages 184–185, 592, February 2005.

[RAK89] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef Amin Khalidi.

Coherence of Distributed Shared Memory: Unifying Synchronization and Data

Transfer. In Proceedings of the 1989 International Conference on Parallel Process-

ing, volume 2, pages 160–169. Pennsylvania State University Press, August 1989.

[RLW94] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:

User-Level Shared Memory. In Proceedings of the 21st Annual International Sym-

posium on Computer Architecture, pages 325–337, April 1994.

[RR99] Radu Rugina and Martin C. Rinard. Pointer analysis for multithreaded programs.

In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language

Design and Implementation, pages 77–90, May 1999.

[SBV95] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar Proces-

sors. In Proceedings of the 22nd Annual International Symposium on Computer

Architecture, pages 414–425, June 1995.

[Sco96] Steven L. Scott. Synchronization and Communication in the T3E Multiprocessor.

In Proceedings of the 7th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 26–36, October 1996.

137



Bibliography

[SDH+97] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas

Kontothanassis, Srinivasan Parthasarathy, and Michael Scott. Cashmere-2L: Soft-

ware Coherent Shared Memory on a Clustered Remote-Write Network. In Proceed-

ings of the 16th ACM Symposium on Operating System Principles, pages 170–183,

October 1997.

[SE94] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Customized

Program Analysis Tools. In Proceedings of the ’94 Conference on Programming

Language Design and Implementation, pages 196–205, June 1994.
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A. Liberty Simulation Environment

The Liberty Simulation Environment (LSE) is a framework written by David August et.

al. [VVA04] to develop simulators. The framework is not meant to be a simulator by itself, but

offers support for construction of one. Instead of building a single monolithic simulator, the

main idea of LSE uses a divide&conquer approach: try to break your simulator into smaller

building blocks, implement these and the use LSE to glue them together into a more complex

simulator. LSE does not have any restrictions on what such a building block can be: it can be

as simple as a single gate or as complicated as a super-scalar out-of-order CPU core. A build-

ing block can also be hierarchically composed from other LSE building blocks. For example,

figure A.1 shows the components of a single tile and how these components are connected with

each other. Using such a tile as a building block it is then very simple to connect several tiles

in to a larger system (for example a 4x4 CMP, as shown in figure A.2.

Each module defines a number of ports that it can use to communicate with other modules.

The LSE framework provides handlers that get invoked whenever some data becomes available

at the port. It is the responsibility of the programmer to implement appropriate actions. The

LSE framework also offers a feedback mechanism that allows the module to signal if it is able to

consume the data. For example, an adder should only produce a result if both input operands

are ready, otherwise it should not consume the already available operand.

This communication mechanism is the strong point of LSE. The main scheduler of LSE keeps

track of all generated signals and passes them on to the handler in each module. That way

the simulator designer does not have to figure out in what order to process the parts of his

simulator in order to obtain correct simulation behaviour.

Figure A.1: Visualisation with Liberty of the pipeline of a single tile.

143



A. Liberty Simulation Environment

Figure A.2: High level visualisation with Liberty of a 16 tile system.

Despite these advantages LSE has two severe drawbacks that reduce the speed of the resulting

simulator significantly:

• LSE replicates code for each instance of a module. This results into a large block of code

that has to be executed in order to simulate a single cycle. Starting with 16 tiles, this

block of code is so large that it no longer fits into the 2MB L2 cache of the host system.

This causes a significant loss in simulation performance.

• The interaction between modules is mapped to function calls. These function calls are

sometimes very simple, such as setting a flag. Since each instance of a module is created as

an individual C file, most compilers will not be able to optimise this code using inlining.

Thus the final simulator will execute a significant number of function calls that could

have been avoided. Compilers (such as Intel’s ICC), that are able to perform inlining

across multiple source files, achieve a reduction in simulation time between 30% and 40%.

Unfortunately, Intel’s ICC fails to compile simulator configurations for more than 8 tiles.

LSE has been succeeded by UniSim that addresses these issues. Unfortunately, there is no

automated process of converting LSE simulator specifications to UniSim specifications. Thus, it

was not feasible to change the simulator infrastructure to take advantage of the better runtime

behaviour of UniSim.
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B. The RAWplus Simulator

The proposed architecture was developed with the goal in mind to have a tiles architecture that

is equally well suited to support ILP, DLP and TLP. While the first two levels were already

being handled by the original RAW processor, it was not able to support TLP. Considering

these design constraints, it was necessary to have a simulator that offered the special features of

RAW (like network linked general purpose registers) and the ability to plug in different memory

modules. In particular the network linked register file caused a problem finding a simulator.

Since most simulator packages do not support to change the register file, only one other option

remained: instead of linking general purpose register with the network, use memory mapped

registers. This might have been a feasible option, but it did not provide the latencies required

to make RAW’s ILP strategy feasible.

Thus in the end, I was faced with the task of writing the simulator mostly from scratch. This

chapter describes some design decision and details of the implementation.

B.1. The Main CPU

The implementation follows the schematic of the RAW CPU as shown in [TKM+02]. The

execution and write-back stages were merged into one stage, in order to keep the implementation

simpler in supporting instructions with different latencies. While the original RAW supported

the MIPS instruction set, I decided to use the PowerPC one1. The instruction latencies and

dependencies were taken from PowerPC port of SimpleScalar [SNKB00]. This port also provided

the instruction decoding functionality. Each stage of the pipeline is connected with a latch to

the next stage. Each latch also supports flushing its contents instead of passing it to the next

stage.

The CPU module contains an ELF loader that can handle static linked PPC binaries.

B.1.1. Fetch Stage

The fetch stage contains an instruction memory model, a branch predictor and a program

counter. In its current implementation, the memory model assumes a perfect I-cache that will

never miss. The branch predictor on the other side is virtually non-existing; it always predicts a

branch as not-taken (even unconditional ones). Each instructions that is fetched, is augmented

with a field of the predicted address of the next instruction. The branch predictor simply sets

this field to current program counter (PC) plus 4. The execution stage will later use this field

to handle a misprediction and initiate a rollback. The branch predictor itself is a LSE module

and can be replaced without effort with a more sophisticated one.

1The main reason for this decission was that I were more familiar with this ISA. In the end I do not think that
it made much of a difference, since both are RISC instruction sets.
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B. The RAWplus Simulator

B.1.2. Decode Stage

The decode stage performs a predecode of the instruction into input and output dependencies.

Unfortunately, PowerPC instructions can have up to 5 input dependencies and 5 output de-

pendencies. This made the resulting record of the predecoded instruction rather large. Since

LSE uses a pass-by-value mechanism to pass information between different modules, it made

the whole simulator rather slow. Hence, the decode stage is also responsible for allocating a de-

coded instruction record and just to pass a reference to this one between modules. It contained

some further optimisation to only decode an instruction once; otherwise the same instruction

would be decoded several times, every time the pipeline stalls.

B.1.3. Register File

The register file was the one problematic component that basically prevented the use of any

existing simulator due to the four registers that are directly linked to the on-chip network.

Also these network registers prevented the use of the common simulation technique that just

computes when the results become availability of the input operands and functional units.

The problem is that an operand can be delayed in the network due to another message that

is generated after the arrival time of the operand has already been computed. The required

bookkeeping and update mechanism would be fairly complicated and potentially a very big

source of timing mistakes.

The register file is implemented in a very straightforward way. For all non-network registers

the register file stores the following information: is the register ready to be read and what is

the last instruction to update the register? The last information is necessary to avoid write-

after-write hazards that could be possible if a register is written to twice without being read in

between. The network registers are implemented as a 3 element queue (identical to the queue

used in the static network). Reading from the register removes one element from this queue.

Writing to the register involves checking if the network processor has space to receive the data

and then sending the data. In order to ensure the correct order of data that is sent the register

file has to remember the order of the instruction that generate the data, since the data has to

be send in order.

B.1.4. Execution and Write-Back Stage

The execution and write-back stages are combined into a single module. The reason is that

once an instruction has been accepted for execution, there is nothing that can prevent it from

completing execution. Thus it is possible to compute the time at which the result will be

available. This event is then inserted into a queue that is used to determine which instructions

will be able to write-back their results to the register file. The queue is necessary to ensure that

only one instruction writes back at any given cycle. Still, the write-back does not have to be

successful in all cases: a write to a network register might fail, since the network processor has

no space available to receive the data. In such a case the whole execution stage is stalled, it

cannot accept a new instruction in this cycle. The execution stage also uses this stall mechanism

to simulate the time it takes to handle a system call, without actually executing OS binary code.

A similar stall happens when the execution stage is not able to accept an instruction for

execution. For example, a system call will only be executed, if the execution unit is currently
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B.2. Memory System

not busy (i.e. there no functional unit, that is still trying to write a result back to the register

file). Similarly, the memory fence instruction eieio will only accepted for execution, if no

memory operation is still waiting for completion. Load instructions are another example that

need a load buffer to support non-blocking memory access.

B.2. Memory System

The memory stage is normally located between the execution and write-back stage in the

standard RISC pipeline. This stage is split between the execution system and the memory

system. The execution stage performs the address computation (like adding a fixed offset to a

base address stored in a register) and allocates a load buffer, if the memory instruction produces

a result that is written back to a register. Using this information, it then constructs a memory

request for the memory system.

The execution stage is connected with a single one-way connection to the memory module

and sends requests via this channel. A request is either a normal memory request (read/write)

or some special memory management command (like write confirm, see section 8.3). Memory

requests that require a reply from the memory system, such as loads, also contain a pointer to

the functional unit in the execution that will later produce the result. While this not the most

elegant solution and also violates the encapsulation idea of an LSE module, this decision was

necessary to keep simulation time manageable. Overall, the interface between the execution

stage and the memory system is very easy and allows plugging in different memory systems.

B.2.1. The Remote Cache Access Module

This is the module that implements the scheme presented in section 7.

B.2.2. The Cache-Coherence Module

This is the module that implements the scheme presented in section 10.2.

B.2.3. The Software Distributed Memory Module

This module implements a simplified TreadMarks distributed shared memory system (which

is discussed in more detail in Section 10.3). It manages similar data structures as were used

in the original TreadMarks system in order to determine when diffs have to be created. The

creation of diffs is simulated by stalling the execution stage for certain number of cycles. It uses

the same mechanism to stall the execution that has been described in Section B.1.4 in order

to simulate system calls. Locks and barriers are implemented with special 1-cycle system calls

that stall the execution stage if the tile has to wait for the lock or at the barrier.

B.3. The Static Network

The static network processor is not implemented as a fully pipelined processor, as specified in

the RAW specification. Instead it is assumed to have a perfect branch predictor, so that the

fetch stage never misses and causes stalls in the pipeline. Furthermore the instruction memory

is loaded as part of application loading process. The application itself does not have any way
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B. The RAWplus Simulator

to modify this instruction memory. Since unlike the compute processors, the static network

processors execute different code on each tile, it is necessary that each processor loads a different

program. This is done by requiring that along with each executable for the compute processor

several executables for the static network processors are present in the same directory. The

convention for the filenames for these executables is that it is the same filename as the compute

executable appended with stnXXX where XXX is the number of the tile. These executables for

the static network processors are not stored as a binary file, but instead in assembly language.

This approach removes the need to implement an assembler and an instruction decoder for

static network processor. Instead the “assembler” translates the code for the network processor

directly into the simulator’s internal data structures.

B.4. The Dynamic Network

The dynamic network is very seldom used in the evaluated systems. Exceptions are the starting

of threads on other tiles (see section 9.1) and the PAUSE macros (see section 9.5), which are

only used by radix. As such there are almost never more than one message active in the dynamic

network. Thus, instead of implementing a detailed simulation of the dynamic network a simpler

one was implemented: a model that ignores congestion between tiles (just congestion at the end

point is correctly simulated). The arrival of the first word just depends on the distance between

the two tiles. The dynamic network module decodes the header of the message and reserves an

arrival slot at the destination tile. These arrival slots determine in which order messages sent

to the same tile are received: they are received in the order of arrival slot allocation, i.e., a

message that is sent later but from a closer tile cannot overtake another message. In addition,

if the words of a message are not generated one word per cycle, then similar gaps are inserted

on the receiving tile before they are transferred to the register file module.

Due to the very low number of messages in this network (for all benchmarks, except radix,

32 or less), the accuracy of the model was not verified with the more precise dynamic network

model.

B.5. Collected Statistics

The simulator collects the following statistics for the total execution of the program (please

note that some of these statistics do not apply to all memory models):

• Number of cache/TLB/MAP hits and misses.

• Average latency of a load request.

• Number of executed instructions.

• Number of cycles.

• Number of messages that experienced a delay caused by congestion in the send or receive

queue.

• Average delay in cycles caused by congestion in the send and receive queues.

• Average distance of remote requests sent and serviced.
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• Time spend in cycles to write back or flush the cache.

• For each cache flush I record the number of lines that belong to pages that were owned by

the tile, shared with others or stale. Stale lines are the only lines that have to be flushed

in order to ensure correct program execution.

In addition to these, it is possible to record the changes of some statistics during the course of

the execution. The simulator currently only supports this feature for a single window with a set

resolution. The window refers to an interval during the execution defined by a start and cycle

number. The resolution defines after how many cycles the simulator generates a data point

that describes the current state of the system. For example, it is possible to generate such a

data point every 5,000 cycles starting in cycle 100,000,000 and stopping in cycle 200,000,000.

The following statistics can be recorded in this way:

• Cache hit rate. This statistic can be sometimes misleading, since the simulator only

records the ratio, but not how many cache accesses are performed during the resolution

interval.

• Maximal and average number of elements in the send and receive queues.

• The total number of messages in the system. In order to simplify the computation of this

value, I simply use the number of allocated messages. However, this number also includes

messages that are currently waiting in a queue.

B.6. Fast Forward Mode

During initialisation, the simulator runs in fast forward mode, using just one tile and assuming

no pipeline stalls due branch misprediction or not ready registers. Also, system calls complete

in just 1 cycle. Memory accesses are still performed as in normal operation mode and cause

delays. Thus, the memory system is in the same state after initialisation as if the simulator

would have executed the whole time in normal mode. The switch between execution modes is

triggered by special system calls within the application.
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C. Sample Listings

C.1. Thread Creation

Initial Thread on “Slave Tiles”

1 void s l a v e s p i n ( ) asm (” asm s lavesp in ” ) ;

2 asm (

3 ” asm s lavesp in :\n” /∗ i n i t i a l i s e r0 and r1 on the network processor ∗/

4 ” l i 24 , 0\n” /∗ with requ i red cons tant s ∗/

5 ” l i 24 , 1\n”

6 ” a sm s l ave sp i n l oop :\n”

7 ” cmpwi 0 , 2 , 0\n” /∗ check i f r e g i s t e r 2 has been se tup? ∗/

8 ” mr 1 , 25\n” /∗ dynamic1 conta ins the s t ac kpo in t e r ∗/

9 ” mr 16 , 25\n” /∗ dynamic1 conta ins pt r −> t hreads [ t no ] ∗/

10 ” mr 14 , 25\n” /∗ dynamic1 conta ins the method address ∗/

11 ” mr 15 , 25\n” /∗ dynamic1 conta ins arg ∗/

12 ” bne− r2ok \n”

13 ” l i 3 , 0\n” /∗ ok we have todo a minimal pthread i n i t . ∗/

14 /∗ t h i s i n i t has only to be done once , a f t e rwards ∗/

15 /∗ r e g i s t e r 2 i s non−nu l l ∗/

16 ” l i 4 , 0x20\n”

17 ” b l l i b c s e t u p t l s \n”

18 ” r2ok :\n”

19 ” mtctr 14\n”

20 ” mr 3 , 15\n”

21 ” b c t r l \n”

22 ” nop\n”

23 ” l i 6 ,1\n” /∗ load 1 in to r6 ∗/

24 ” s l a v e s p i n l k 1 :\n”

25 ” lwarx 5 ,0 ,16\n” /∗ load l oc k in to r5 ∗/

26 ” cmpwi 0 ,5 ,0\n” /∗ check i f l o c k i s taken ∗/

27 ” bne− s l a v e s p i n l k 2 \n”

28 ” stwcx . 6 ,0 ,16\n”

29 ” bne− s l a v e s p i n l k 1 \n” /∗ stcwx unsuc c e s s f u l => t r y again ∗/

30 ” t l b i a \n” /∗ i n v a l i d a t e map to prevent access to ∗/

31 /∗ s t a l e data ∗/

32 ” lwz 5 ,4(16)\n” /∗ load . count in to r5 ∗/

33 ” stw 6 ,8(16)\n” /∗ s t o r e 1 in to . f l a g ∗/

34 ” addi 3 ,16 ,12\n” /∗ r3 −> . wai t ing [ 0 ] ∗/

35 ” s lw i 5 ,5 ,2\n” /∗ r5 <<= 2 [ ge t by t e o f f s e t in . wai t ing [ ] ∗/

36 ” s l a v e s p i n r e l w a i t :\n”

37 ” cmpwi 0 ,5 ,0\n” /∗ check i f a l l wai t ing have been n o t i f i e d ∗/

38 ” beq− s l a v e s p i n f i n \n”

39 ” sub i 5 ,5 ,4\n” /∗ decrement o f f s e t by 4 ∗/

40 ” lwzx 6 ,3 ,5\n” /∗ load . wai t ing [ r5>>2] in to r6 ∗/

41 ” addis 25 , 6 , 0x0100\n” /∗ add header to address ∗/

42 ” l i 25 , 0x4321\n” /∗ wri t e junk to network ∗/

43 ” b s l a v e s p i n r e l w a i t \n”
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44 ” s l a v e s p i n f i n :\n”

45 ” e i e i o \n”

46 ” stw 5 ,0(16)\n” /∗ r e l e a s e lock , r5 has to be 0 ∗/

47 ” b a sm s l ave sp i n l oop \n”

48 ” s l a v e s p i n l k 2 :\n” /∗ l o c k taken , wai t ∗/

49 ” lwzx 5 ,0 ,16\n”

50 ” cmpwi 0 ,5 ,0\n”

51 ” beq− s l a v e s p i n l k 1 \n” /∗ l k i s a v a i l a b l e ∗/

52 ” b s l a v e s p i n l k 2 \n” /∗ s t i l l taken ∗/

53 ” nop” ) ;

Create a Thread on “Main Tile”

1 /∗ We need todo s e v e r a l t h i n g s :

2 − creat e a pr i v a t e s tack f o r t h i s thread

3 − send a msg on the dyn . network to the t i l e t ha t should run t h i s

4 thread .

5 ∗/

6

7 /∗ creat e a new stack , i f none e x i s t s ∗/

8 i f ( thr eads [ thread number ] . s t a ck p t r == 0) {

9 void ∗ t i l e s t a c k = mmap(NULL, 2097152 , PROT READ | PROT WRITE,

10 MAP PRIVATE | MAPANONYMOUS, −1, 0 ) ;

11 i f ( ( int ) t i l e s t a c k == −1) {

12 f p r i n t f ( s tder r ,

13 ”Cannot a l l o c a t e memory f o r thread %d ’ s s tack ! [%d ] ” ,

14 ( thread number ) , ( int ) er rno ) ;

15 e x i t ( 1 ) ;

16 }

17

18 /∗ s tack grows down , thus s tack pt r po in t s to end of a l l o c a t e d area . ∗/

19 /∗ ok , something i s weird here .

20 + 2MB would poin t j u s t at the f i r s t by t e a f t e r the a l l o c a t i o n .

21 + 2MB − 4 would poin t at the l a s t word a l l o c a t e d

22 + 2MB − 8 a c t u l l y works . re turn addr i s saved at sp + 4 ( sp va lue

23 of s tack poin t e r at method beg in ) .

24 ∗/

25 thr eads [ thread number ] . s t a ck p t r = ( ( int ) t i l e s t a c k ) + 2097152 − 8 ;

26 }

27 int t i l e a dd r ;

28

29 /∗ t r an s l a t e t i l e number in to t i l e address ∗/

30 switch ( t o t a l n o o f t h r e ad s ) {

31 case 32 : asm (

32 /∗ 8 x 8 and 8 x 4 processor layout ∗/

33 ” rlwinm %[addr ] , %[no ] , 2 , 21 , 26\n”

34 ” r lwimi %[addr ] , %[no ] , 0 , 29 , 31\n”

35 : [ addr ] ”=&r” ( t i l e a d d r )

36 : [ no ] ” r ” ( thread number ) ) ;

37 break ;

38

39 case 16 :

40 case 8 : asm (

41 /∗ 4 x 4 and 4 x 2 processor layout ∗/

42 ” rlwinm %[addr ] , %[no ] , 3 , 21 , 26\n”

43 ” r lwimi %[addr ] , %[no ] , 0 , 30 , 31\n”

44 : [ addr ] ”=&r” ( t i l e a d d r )
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45 : [ no ] ” r ” ( thread number ) ) ;

46 break ;

47

48 case 4 :

49 case 2 : asm (

50 /∗ 2 x 2 and 2 x 1 processor layout ∗/

51 ” rlwinm %[addr ] , %[no ] , 4 , 21 , 26\n”

52 ” r lwimi %[addr ] , %[no ] , 0 , 31 , 31\n”

53 : [ addr ] ”=&r” ( t i l e a d d r )

54 : [ no ] ” r ” ( thread number ) ) ;

55 break ;

56

57 default : f p r i n t f ( s tder r , ”ERROR: Inva l i d number o f p r o c e s s o r s ! \n” ) ;

58 e x i t (−1);

59 }

60

61 thr eads [ thread number ] . f l a g = 0 ; /∗ mark thread as running ∗/

62

63 asm volat i l e (

64 /∗ add remaining header i n f o and wr i t e header to dyn network ∗/

65 ” addis 25 , %[addr ] , 0x0400\n”

66 /∗ wri t e s tack pt r to dyn network ∗/

67 ” mr 25 , %[ s ta ck p t r ]\n”

68 /∗ wri t e ∗ t hreads [ ] to dyn network ∗/

69 ” mr 25 , %[ thr ead ptr ]\n”

70 /∗ wri t e method address to dyn network ∗/

71 ” mr 25 , %[ func ]\n”

72 /∗ wri t e method argument pt r to dyn network ∗/

73 ” mr 25 , %[arg ]\n”

74 : /∗ no output s ∗/

75 : [ s t a ck p t r ] ” r ” ( thr eads [ thread number ] . s t a ck p t r ) ,

76 [ func ] ” r ” ( p t r t o f un c t i o n t o r un a s t h r e ad ) ,

77 [ thr ead ptr ] ” r ” (&threads [ thread number ] ) ,

78 [ arg ] ” r ” ( ptr to funct i on argument ) , [ addr ] ”b” ( t i l e a d d r )

79 ) ;

C.2. Locks

Baseline Locks

1 int tmp ;

2

3 asm volat i l e (

4 ” 1 :\n” /∗ l o c k not taken , but somehow we didn ’ t ge t i t ∗/

5 ” lwarx %[tmp ] , 0 ,%[ l ock ] \n”

6 ” cmpwi 0 ,%[tmp ] , 0\n”

7 ” bne− 2 f \n”

8 ” stwcx . %[one ] , 0 ,% [ l ock ] \n”

9 ” bne− 1b\n”

10 ” b 3 f \n”

11 ” 2 :\n” /∗ l o c k taken by someone e l se , spin using

12 normal load , to avoid r e s e r va t i on

13 c an c e l l a t i o n messages ∗/

14 ” lwzx %[tmp ] , 0 ,%[ l ock ] \n”

15 ” cmpwi 0 ,%[tmp ] , 0\n”

16 ” beq− 1b\n”
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17 ” b 2b\n”

18 ” 3 :\n” /∗ l o c k s u c c e s f u l acqu i red ∗/

19 : [ tmp ] ”=&r ” ( tmp )

20 : [ l ock ] ” r ” (&< l o ck va r i ab l e >) , [ one ] ” r ” (1)

21 : ” cr0 ” , ”memory” ) ; /∗ make sure no memory access i s moved across

22 t he bar r i e r ∗/

Locks Supporting Read-Only Sharing

1 int tmp ;

2

3 asm volat i l e (

4 ” 1 :\n” /∗ l o c k not taken , but somehow we didn ’ t ge t i t ∗/

5 ” lwarx %[tmp ] , 0 ,%[ l ock ] \n”

6 ” cmpwi 0 ,%[tmp ] , 0\n”

7 ” bne− 2 f \n”

8 ” stwcx . %[one ] , 0 ,% [ l ock ] \n”

9 ” bne− 1b\n”

10 ” mapia\n” /∗ i n v a l i d a t e map to prevent access to s t a l e

11 data ∗/

12 ” b 3 f \n”

13 ” 2 :\n” /∗ l o c k taken by someone e l se , spin using

14 normal load , to avoid r e s e r va t i on

15 c an c e l l a t i o n messages ∗/

16 ” lwzx %[tmp ] , 0 ,%[ l ock ] \n”

17 ” cmpwi 0 ,%[tmp ] , 0\n”

18 ” beq− 1b\n”

19 ” b 2b\n”

20 ” 3 :\n” /∗ l o c k s u c c e s f u l acqu i red ∗/

21 : [ tmp ] ”=&r ” ( tmp )

22 : [ l ock ] ” r ” (&< l o ck va r i ab l e >) , [ one ] ” r ” (1)

23 : ” cr0 ” , ”memory” ) ; /∗ make sure no memory access i s moved across

24 t he bar r i e r ∗/

Unlock

1 asm volat i l e (

2 ” e i e i o \n” /∗ make sure a l l l oads / s t o r e s are complete

3 b e f o r e r e l e a s i n g the l oc k ∗/

4 ”stw %[ zero ] , 0 (%[ l ock ] ) \ n”

5 :

6 : [ l ock ] ”b” (&< l o ck va r i ab l e >) , [ ze ro ] ” r ” (0)

7 : ”memory” ) ; /∗ make sure no memory access i s moved across

8 t he bar r i e r ∗/

C.3. Barriers

Baseline Barriers

1 i f ( no o f th r ead s > 1) {

2 int addr ; /∗ s t a r t address o f the bar r i e r code on the s t a t i c

3 network processor ∗/

4

5 /∗ t h i s assembly code does a very f a s t t r an s l a t i on of the number

6 t hreads in the bar r i e r in to an o f f s e t in to the s t a t i c network

7 processor code . I used assembly s ince t h i s computation can be done
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8 very e f f i c i e n t l y i f you can count the number o f l e ad ing zeros in a

9 b inary number .

10 ∗/

11 asm (

12 ” cntlzw %[addr ] , %[P] \n”

13 ” sub i %[addr ] , %[addr ] , 30\n”

14 ”neg %[addr ] , %[addr ] \n”

15 ” mul l i %[addr ] , %[addr ] , 24\n”

16 : [ addr ] ”=&b” ( addr )

17 : [P] ” r ” ( no o f th r ead s )

18 ) ;

19 addr += 0x10 ;

20

21 asm volat i l e (

22 ” e i e i o \n” /∗ make sure t ha t a l l memory r e que s t s are

23 completed ∗/

24 ”mr 24 , %[addr ] \n” /∗ assumption bar r i e r code i s at 0x00000010 in

25 t he s t a t i c net processor ∗/

26 ”tw 1 , 24 , 24\n” /∗ eat a va lue ( the t rap i n s t r u c t i on cannot

27 t r i g g e r s ince r24 == r24 ) ∗/

28 ”tw 1 , 24 , 24\n” /∗ wait on r24 f o r the bar r i e r be ing r e l e a s ed ∗/

29 :

30 : [ addr ] ” r ” ( addr )

31 : ”memory” /∗ make sure no memory access i s moved across

32 t he bar r i e r ∗/

33 ) ;

34 }

Barriers Supporting Migration

1 i f ( no o f th r ead s ) > 1) {

2 int addr ; /∗ s t a r t address o f the bar r i e r code on the s t a t i c

3 network processor ∗/

4

5 /∗ t h i s assembly code does a very f a s t t r an s l a t i on of the number

6 t hrads in the bar r i e r in to an o f f s e t in to the s t a t i c network

7 processor code . I used assembly s ince t h i s computation can be done

8 very e f f i c i e n t l y i f you can count the number o f l e ad ing zeros in a

9 b inary number .

10 ∗/

11 asm (

12 ” cntlzw %[addr ] , %[P] \n”

13 ” sub i %[addr ] , %[addr ] , 30\n”

14 ”neg %[addr ] , %[addr ] \n”

15 ” mul l i %[addr ] , %[addr ] , 32\n”

16 : [ addr ] ”=&b” ( addr )

17 : [P] ” r ” ( no o f th r ead s )

18 ) ;

19 addr += 0x20 ; /∗ assumption bar r i e r code i s at 0x00000020

20 in the s t a t i c net processor ∗/

21

22 asm volat i l e (

23 ” e i e i o \n” /∗ make sure t ha t a l l memory r e que s t s are

24 completed ∗/

25 ” dcbst 0 , %[ nu l l ] \n” /∗ s t o r e a l l modi f ied cache l i n e s ∗/

26 ” mapia\n” /∗ f l u s h l o c a l map ∗/

27 ” mr 24 , %[addr ] \n” /∗ jump to bar r i e r code ∗/
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28 ” tw 1 , 24 , 24\n” /∗ eat a va lue ( the t rap i n s t r u c t i on cannot

29 t r i g g e r s ince r24 == r24 ) ∗/

30 ” cmpwi 0 , 24 , 0\n” /∗ Should t h i s t i l e f l u s h the g l o b a l map? ∗/

31 ” beq+ 1 f \n” /∗ branch , i f t h i s t i l e should not f l u s h the

32 g l o b a l map ∗/

33 ” l i 0 , 777\n” /∗ sytsem c a l l 777: f l u s h g l o b a l map ∗/

34 ” sc \n”

35 ” 1 :\n” /∗ branch des t inat ion , in case t h i s t i l e

36 should not f l u s h the g l o b a l map ∗/

37 ” dcbf 0 , %[ nu l l ]\n” /∗ f l u s h a l l cache l i n e s ∗/

38 ” mr 24 , %[addr ] \n” /∗ second bar r i e r ∗/

39 ” tw 1 , 24 , 24\n” /∗ eat a va lue ( the t rap i n s t r u c t i on cannot

40 t r i g g e r s ince r24 == r24 ) ∗/

41 ” tw 1 , 24 , 24\n” /∗ wait on r24 f o r bar r i e r r e l e a s e ∗/

42 :

43 : [ addr ] ” r ” ( addr ) , [ nu l l ] ” r ” (0)

44 : ” cr0 ” , ” r0 ” , ”memory” /∗ make sure no memory access i s moved

45 across the bar r i e r ∗/

46 ) ;

47 }

Code for Network Processor 3

1 move r0 , $Ci1 /∗ i n i t i a l i s e r0 to 0 ∗/

2 move r1 , $Ci1 /∗ i n i t i a l i s e r1 to 1 ∗/

3 j r $Ci1 /∗ ge t method s t a r t addr from cpu ∗/

4 nop /∗ and jump to method ∗/

5 nop route r0 −> $Co1 , r0 −> $Wo1 /∗ 32: b ar r i e r f o r 2 t i l e s ∗/

6 nop route $Wi1 −> $Co1

7 b −5

8 b −6

9 nop route $Si1 −> $Co1 , $Si1 −> $Wo1 /∗ 64: b ar r i e r f o r 4 t i l e s ∗/

10 nop route $Wi1 −> $Co1 , $Wi1 −> $So1

11 b −9

12 b −10

13 nop route r0 −> $Co1 , r0 −> $Wo1 /∗ 96: b ar r i e r f o r 8 t i l e s ∗/

14 nop route $Wi1 −> $Co1

15 b −13

16 b −14

17 nop route r0 −> $Co1 , r0 −> $Wo1 /∗ 128: b ar r i e r f o r 16 t i l e s ∗/

18 nop route $Wi1 −> $Co1

19 b −17

20 b −18

21 nop route $Wi1 −> $Co1 , $Ei1 −> $So1 /∗ 160: b ar r i e r f o r 32 t i l e s ∗/

22 nop route $Si1 −> $Co1 , $Si1 −> $Wo1, $Si1 −> $Eo1

23 b −21

24 b −22

Code for Network Processor 11

1 move r0 , $Ci1 /∗ i n i t i a l i s e r0 to 0 ∗/

2 move r1 , $Ci1 /∗ i n i t i a l i s e r1 to 1 ∗/

3 j r $Ci1 /∗ ge t method s t a r t addr from cpu ∗/

4 nop /∗ and jump to method ∗/

5 nop route r0 −> $Co1 , r0 −> $Wo1 /∗ 32: b ar r i e r f o r 2 t i l e s ∗/

6 nop route $Wi1 −> $Co1

7 b −5
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8 b −6

9 nop route r0 −> $Co1 , r0 −> $No1 /∗ 64: b ar r i e r f o r 4 t i l e s ∗/

10 nop route $Ni1 −> $Co1

11 b −9

12 b −10

13 nop route r0 −> $Co1 , r0 −> $Wo1 /∗ 96: b ar r i e r f o r 8 t i l e s ∗/

14 nop route $Wi1 −> $Co1

15 b −13

16 b −14

17 nop route r0 −> $Co1 , r0 −> $Wo1 /∗ 128: b ar r i e r f o r 16 t i l e s ∗/

18 nop route $Wi1 −> $Co1

19 b −17

20 b −18

21 nop route $Wi1 −> $Co1 /∗ 160: b ar r i e r f o r 32 t i l e s ∗/

22 nop route r1 −> $Co1 , $Ni1 −> $No1 , $Ni1 −> $Wo1, $Si1 −> $So1 , $Ei1 −> $Eo1

23 b −21

24 b −22
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