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Abstract

A relatively small number of synapses are potentiated at individual CA1 neurones

following conventional long-term potentiation (LTP) stimulating protocols. This makes it
difficult to detect changes in the amplitudes of miniature excitatory post synaptic currents

(mEPSCs) which can be used as a marker to provide evidence that changes in synaptic strength
are mediated, in part, by alterations of synaptic AMPA receptors. Thus, to mimic the LTP-like

postsynaptic calcium concentration change, that occurs following NMDA receptor activation,
we have used a depolarizing voltage pulse (VP) stimulating protocol to increase intracellular
calcium levels via L-type calcium channels. Characterization of VP stimulation was done by
whole-cell patch-clamp recordings from CA1 pyramidal neurones in organotypic hippocampal
slices. Culturing these slices maintains the hippocampal architecture, but results in an increase
in the number of synaptic sites. The increase in synapse number, allows for the greater

detection of mEPSCs allowing for the functional changes brought about by the VP stimulus to

be better characterized. Following the VP stimulus there is a mean doubling of the amplitudes
of the mEPSCs with a small non significant increase in mEPSC frequency. To assess whether
the increase in amplitude of mEPSCs requires the insertion of AMPA receptors into

postsynaptic sites we inhibited the actions of several proteins involved in intracellular
membrane fusion events. In these experiments inhibitors were included in the patch-pipette to

restrict their actions to the postsynaptic cell. We observed that both N-ethylmaleimide and
botulinum toxin A inhibited the NSF dependent delivery of AMPA receptors to synapses, by

blocking the induction of VP potentiation. The requirement for NSF was supported by a Pep2m
blockade of the induction of VP potentiation. Pep2m, a peptide that blocks the NSF binding site
on the C-terminus of the GluR2 AMPA receptor subunit also blocked VP potentiation, while a

scrambled version of this peptide, Pep4c failed to block potentiation. Further experiments using

Pep-AVKI characterized a second delivery system, dependent upon PDZ domains, and

suggested the possible involvement of PICK-1 in VP potentiation. None of the peptides
examined altered mean mEPSC amplitude (or frequency) in recordings where they were

included in the patch-pipette but no voltage-pulses were applied. A final set of experiments
were undertaken to determine the kinase regulation underlying the induction and maintenance of
the potentiation of mEPSC amplitudes with the VP stimulus. Targeting phosphoinositide 3
kinase (PI-3 K) with both wortmannin and LY 294002 blocked the VP potentiation of mEPSC

amplitudes, while LY 303511 an in active analogue of LY 294002 allowed potentiation of
mEPSCs. In conclusion, it appears that VP potentiation shares common expression mechanisms
with NMDA receptor-dependent LTP, and the VP protocol provides a valuable method for

studying biochemical changes in individual neurones following changes in synaptic strength.
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Chapter One:

Introduction



1.1: Glutamate as a neurotransmitter

Glutamate is the primary excitatory neurotransmitter in the mammalian brain, utilized in

approximately 60 % of all brain neurones. Glutamate is released into the synaptic cleft from
vesicles when docked in the presynaptic terminal. This occurs in response to membrane

depolarisation by a Ca2+ dependent mechanism which requires the activation of N and P/Q type

voltage dependent Ca2+channels (Birnbaumer et al., 1994) which are linked to SNARE complex

dependent vesicle docking sites.
Release of neurotransmitter from the presynaptic membrane is tightly controlled by a

range of pre-synaptic receptors, including cholinergic (nicotinic and muscarinic) receptors, y-

aminobutyric acid (GABAb), adenosine (Al) receptor and the kappa opioid receptor (Meldrum,

1998, 2000). The glutamate concentration within the synaptic vesicle is a source ofmuch debate
and some groups have put it around 60 mM This debate is important as varying the
concentration of synaptic glutamate released can have a modulatory effect on synaptic
transmission and effectively the output from the cell. The second issue is whether the glutamate
released in a single synaptic vesicle although a saturating concentration may not be sufficient for
functional saturation of the receptors in the postsynaptic membrane (Mainen et ah, 1999; Chen et

ah, 2001; Ishikawa et ah, 2002). Therefore, synaptic activity may be sensitive to the number of

quanta released by a burst of action potentials and to changes in the concentration profile of

glutamate in the synaptic cleft.
Glutamate in the synaptic cleft is recycled via the excitatory amino acid transporters

found both on neurones and glia cells. With glia uptake the glutamate is rapidly converted to

glutamine and released back into the extracellular fluid, where upon it is reabsorbed into the

presynaptic terminals and converted back to glutamate via the action of neuronal glutaminase.
Five types of glutamate transporters exist within the mammalian brain. Two are

predominately expressed in the glia, the glial glutamate transporter (GLT) found mainly in the
rat hippocampus and glial glutamate and aspartate transporter (GLAST) found mainly in the
cerebellum (Lehre and Danbolt, 1998). Neurones possess the other three transporters classed as

excitatory amino acid transporter called (EAAC in the rat and the human EAAT 1, 3, 5) (Seal
and Amara, 1999). The mechanism of action of these transporters is dependent upon the Na+/K+
balance as the transporter uptakes one molecule of glutamate for the co transport of 3Na+ with
1H+ out of the cell and 1K+ into the cell (Levy et al., 1998). The rat neuronal transporter EAAC
is highly expressed in the postsynaptic neural membranes (up to 15 times the density of the
AMPA receptor); glutamate uptake by this transporter contributes to the termination of the
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excitatory postsynaptic current and synaptic transmission. Such is the importance of this

process, as free glutamate in the brain leads quickly to processes of cell death through

excitotoxicity, that 2/3 of brain energy metabolism is related to reuptake and recycling of

glutamate (Shulman et ah, 2002).
The glutamate released from the synaptic vesicles, is known to act on four receptor

types: a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR), kainate

receptors, /V-methyl-D-aspartate receptors (NMDAR) and metabotropic receptors (mGluR)

(Figure 1.1).

1.2: AMPA receptors

The fast components of a glutamatergic excitatory synaptic potential/current are

mediated by AMPARs. These receptors require at least two molecules of agonist (glutamate) to
be bound before the channel opens (Clements et al., 1998). There are four main subunits

(GluRl-4, A-D) these range in size from 102 to 108 kDa and share 68-74% sequence identity at

the protein level. These subunits are arranged as tetrameric complexes, comprising pairs of
identical heteromeric dimers forming the functional AMPA receptor (Rosenmund et al., 1998).

Typically in adult CA1 pyramidal cells the hetromeric expressions of the receptor are either

paired dimers of GluRl/ GluR2 subunits or of GluR2/ GluR3 subunits (Wenthold et al., 1996;

Collingridge et al., 2004). However, immature pyramidal cells and other brain regions will

express the GluR4 subunit which combines with the GluR2 subunit to form an AMPA receptor

(Zhu et al., 2000), but is lost in the adult CA1 pyramidal cell. The subunit composition of the
AMPA receptor has a profound effect on the nature and the biophysical properties of the

receptor. Homomeric assemblies of GluRl, 3 and 4 subunits have ionic permeability to sodium

(Na+) potassium (K+) and calcium (Ca2+), the inclusion of an edited GluR2 subunit in a

heteromeric AMPA receptor confers the Ca2+ impermeability traditionally ascribed to the AMPA

receptor.

The key features of the AMPA receptor subunit and its conformation during activation
have been confirmed using 3D reconstruction (Nakagawa et al., 2005). An extracellular N

terminus, comprising 400 amino acids, forms one half of the 'Venus fly trap' binding site for

glutamate on the AMPA receptor. This N terminal domain is connected to the first of three
transmembrane domains (Ml) (Figure 1.2: The AMPA receptor). The second domain is not a

membrane spanning domain but loops within the membrane and finishes on the intracellular
side. A key feature of AMPA receptors found in CA1 pyramidal cells is conferred by the M2
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loop of the GluR2 subunit; a single amino acid substitution at the 764 amino acid (Q/R site)
confers Ca2+ impermeability. A small uncharged glutamine residue is replaced with a large

positively charged arginine residue (Hume et al., 1991).

Furthermore, it was found that the arginine residue in the pore of the GluR2 was not

encoded at the genomic level but was a result ofRNA editing (Sommer et ah, 1991). Control of
the editing and effectively calcium permeability of the receptor is conferred by adenosine
deaminase (ADAR2); conversion of inosine to adenosine within the CAG codon, (Codon switch
CAG to CIG) which results in the switch from glutamine to arginine. Intron 11 in the GluR2

gene which is adjacent to the editing site was found to direct the editing process. Disruption of
the editing process in mice causes severe brain injury and seizures, most probably due to excess

calcium influx through activated AMPA receptors (Higuchi et ah, 2000).
The second half of the glutamate binding pocket called S2 is formed by an extracellular

loop between the M3 and M4 domains. A further feature of this loop is the 38 amino acid

Flip/Flop cassette coded for by exons 14 and 15, alternative splicing of this cassette alters the
kinetic properties of the desensitisation and deactivation of AMPA receptors. Flip containing

receptors generally possess slower decay time than their flop containing counterparts. Flip being
slow and flop inducing fast decays. The temporal distribution of these individual cassettes in
AMPA receptors in the rat, shows that flip variants are widely expressed at birth and remain so

as the animals mature. Flop variants have very low expression in the young (pre P8) and their

expression is up regulated to a similar level as the flip variants in the adult (for a review see

(Dingledine et ah, 1999). The spatial distribution within the hippocampus varies as in CA3

pyramidal neurones flip versions dominate, whereas in neurones of the CA1 subfield flip/flop
versions coexist (Sommer et ah, 1990).

Another RNA edited feature of the AMPA receptor is the R/G splice variant. This
mutation from arginine to glycine confers a unique property as the G forms recover from
desensitisation more rapidly than those assembled from the unedited (R) form subunits. The

expression of this editing shows temporal variations in the embryonic rat pup (El4)
approximately 20 % of receptors show this editing, while in the adult (P21) there is

approximately 70 % editing of this sequence (Lomeli et ah, 1994).
The final part of the AMPA receptor is the intracellular carboxy terminal, usually

referred to as the C domain. This comprises 50 - 100 amino acids and is important as the C
terminus controls the interactions of the AMPA receptor subunits with membrane associated

proteins in the postsynaptic membrane, which govern AMPA receptor trafficking and membrane
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stability. Splice variants of the C terminal exist with the GluR2, Ca2+ impermeable AMPA

receptor subunit (long and short C terminal) where only a small proportion of receptors existing
in the long isoform (Kohler et al., 1994). This C terminal splice variance is also shown with the
GluR4 usually expressed in the cerebellum (Gallo et ah, 1992). Functional differences between
the splice variants have not been reported, but the possibility exists that the different C terminals

may interact with different intracellular proteins and may differently regulate this expression at

active synapses (See Protein-Protein interaction section).

However, considerable diversity of AMPA subtypes can be achieved following
alternative splicing and RNA editing. Information about the single channel conductance levels
of synaptic channels is limited to estimates obtained from non stationary fluctuation analysis of

synaptic currents (Smith et ah, 2000) indicating that they show similar values to those obtained
from studies of recombinant receptors in transfected cells or from channels isolated from patches
excised from cell bodies in culture (Jonas and Monyer, 1999). What is striking is the fact that
AMPARs display a multiplicity of unitary conductance levels (GluRl Flip: 5, 14, 20 pS (Banke
et al., 2000) GluR2 Flip: 7, 11, 18 pS). It remains to be seen to what extent changes in synaptic

strength can be accounted for by alterations in this channel property (for example see (Benke et

al., 1998). Additionally receptors containing GluR2 subunits have lower unitary conductances
due to the presence of an arginine residue in the ion channel pore.

1.3: Kainate receptors.

Kainate receptors have been show to be widespread in the brain, and specifically found
in the hippocampus (Huettner, 2003). Furthermore, their function has been linked with the
induction of long term potentiation (LTP) at mossy fibre synapses in the CA3 region of the

hippocampus (Harris and Cotman, 1986; Hirbec et al., 2003; Marchal and Mulle, 2004). An

important finding as the expression of LTP in this region does not require the activation of the
NMDA receptor, but maybe induced by the activation of both pre and postsynaptic kainate

receptors.

Kainate receptors share 40% sequence identity with the AMPA receptor, but have a

higher glutamate affinity [Ki = 290nM, Sommer et all992], Their nomenclature is dependent

upon their affinity for kainate, the low affinity kainate receptors are classed as GluR5-7 and have
about 80 % sequence homology which defines them as a receptor family. The second group, the

high affinity receptors (KA1-2) share a 69% inter-group homology, only 42 % sequence

homology with the GluR5-7 group and only 35% sequence homology to the AMPA receptor
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(Hollmann and Heinemann, 1994). As with AMPA receptors, kainate receptors display Q/R

editing, which alters the single channel conductance of these receptors.

Ionotropic Glutamate Receptor Family
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Figure 1.1: Diversity of ionotropic glutamatergic receptors. Ionotropic glutamate receptors

include NMDA receptors which mediate the slow regulatory component of excitatory synaptic

transmission, while AMPA/Kainate mediate the fast component of excitatory synaptic

transmission; these later receptors display different functional and spatial characteristics. Delta
subunits constitutes an orphan receptor sharing 30 % sequence homology with AMPA receptors
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1.4: NMDA receptors.

The NMDA receptor, the third type of ionotropic glutamate receptor is highly permeable
to Ca2+ ions. This receptor mediates the slow component of the glutamatergic synaptic current.

Elucidation of the slow component was achieved by Collingridge et al. 1987, who blocked all

GABAa receptor mediated inhibition, then depolarising the CA1 pyramidal cell to remove the

magnesium block of the NMDA receptor increasing the NMDA receptor mediated current.

Application of AP5, the prototypical NMDA receptor antagonist, blocked the NMDA mediated

current, revealing the fast AMPA receptor mediated current, subtraction of these two currents

revealed the slow decaying NMDA receptor dependent current.
These NMDA receptors show the lowest sequence homology between all glutamate

receptors (25-30%). However, the receptor subunit grouping is somewhat more complex than
that of the AMPA receptor. All NMDA receptor subunits have the same general structure as

AMPA receptors, an extracellular N terminus, 3 transmembrane domains, a P loop and an

intracellular C terminus, which are features of all ionotropic glutamate receptors.

These receptors are generally considered to be tetrameric in nature (Laube et al., 1998);

consisting of heteromers of two NR1 subunits and two NR2 subunits. Although the identity of
the NR2 subunits does not have to be the same, as NMDA receptors comprising 3 subunits (NR1
+ NR2A + NR2C) have been expressed in Xenopus laevis oocytes (Chazot et al., 1994) and

further, experimental immunoprecipitations from rat brain extracts have shown a receptor

comprised of (NR1 + NR2A + NR2B) (Sheng et al., 1994).
Evidence from the literature supported an additional NMDA receptor subunit

(Chatterton et al., 2002; Kemp and McKernan, 2002; Matsuda et al., 2003). A NR3 subunit,
mRNA for this NR3 subunit is found to be highly expressed in motor neurons in the spinal cord,

pons, and medulla, but not expressed in the cerebellum, although the expression of this mRNA is
reduced by the second postnatal week (Sucher et al., 1996).

When co-expressed with the NR1 and NR2 subunits in cells (NR1/NR2A/NR3) these
channels show a decrease in channel conductance and approximate 5 fold reduction in Ca2+
permeability when compared to the (NR1/NR2A) (Perez-Otano et al., 2001).

The NR1 subunit has two main functions the first is the binding the co-agonist glycine

required for the activation of the receptor and the second is that the NR1 subunit is essential for
the trafficking and insertion of the NMDA receptor into active synapses. A degree of diversity
within the NR1 subunit is derived by the alternative splicing of three exons. The first of these

(exon 5) is located near the amino (N) terminus, while the other two (exons 21 and 22) and
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located towards the carboxy terminus of the protein. The NR2 subunits share about 30 % amino
acid sequence identity with the NR1 subunit, and possess 4 principal subunits (A-D). All these
subunits share 46-56 % amino acid sequence identity. The distribution of these subunits is
controlled both temporally and spatially. Clements et al. (1991) determined the need for two

glycine and two glutamate molecule to bind to the receptor to elicit full activation - which is
consistent with the idea that this receptors are tetrameric in nature.

Another unique feature of NMDA receptors is that extracellular Mg2+ blocks these

receptors by binding in the receptor channel at resting membrane potentials; this block is
relieved by depolarisation of the membrane (i.e. it is voltage-dependent), allowing NMDA

receptor to act as integrators of synaptic activity. The calcium conductance of the receptor is
controlled by a specific extracellular region (C terminal to M3), unique to the NR1 subunit
called DRPEER, which acts as a Ca2+ binding site and causes a constriction of the channel

(Watanabe et al., 2002).
The spatial and temporal distribution for each subunit, has been characterised by in situ

hybridisation studies for each subunit RNA. This has shown both periodic and regional

expressional variation for the NR2 subunits. In the neonatal brain the greatest expression is for
the NR2B and 2D subunits, but these receptors are replaced over the course of development with

widespread expression ofNR2A subunits, and specific expression of NR2C in the cerebellum.
The kinetic properties ofNMDA receptors are dependent upon the subunit composition

and these govern the decay time for the different receptor subtypes. Wyllie et al. (1998) showed
there existed significant differences in the deactivation rates for diheteromeric NMDA receptors.

For example, NR1/NR2A receptors deactivate in tens of milliseconds, while deactivation of
NR1/NR2D receptors takes several seconds. The range of these deactivation times (xw) for each
subunit gives a deactivation sequence of (NR2A (50 ms) < NR2C (300ms) = NR2B (280 ms)«
NR2D (1.7 s) (Vicini et al., 1998). Indeed such differences in decay times have been used to

infer subunit composition of native NMDA receptors (Misra et al., 2000). NMDARs containing
NR2A or NR2B subunits (together with NR1) display a main single-channel conductance of
around 50 pS and a sub conductance level of around 40 pS these receptors also have high

sensitivity to blockade by Mg2+ ions (Monyer et al., 1994). NR1/NR2C and NR1/NR2D

containing NMDA receptors exhibit lower conductance levels of approximately 35 pS and a sub-
conductance level of about 17 pS (Stem et al., 1992; Wyllie et al., 1996) and have lower

sensitivity to extracellular magnesium (Dingledine et al. 1999). It has been reported (Burnashev
et al., 1995) that the Ca2+ permeability of the receptor is not affected by the composition of
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which NMDA receptor subunit is present, as the fractional Ca2+ current varies between 8 and 14
%. Therefore, the differences in the sensitivity to external magnesium may account for the
differences in calcium influx shown with activation of different NMDA receptors.

1.5: Metabotropic glutamate receptors

The metabotropic glutamate receptors (mGluR) are the final class of receptor which

respond to the neurotransmitter glutamate. These receptors have a completely different structure
and function, when compared to the AMPAR, as they have no transmembrane ion channel, but
function through a series of 2nd messenger molecules. mGluRs are seven

transmembrane/domain, G-protein linked receptors. There are eight subtypes (mGluR 1-8 with

splice variants also occurring) which can be divided into 3 functional groups. mGluR group 1

receptors are coupled to phospholipase C (PLC) and mediate their effects via two well-
characterized intracellular second messengers, inositol tris-phosphate (IP3) and diacylglycerol

(DAG). IP3 usually acts to increase cytosolic Ca2+ by release from intracellular stores. DAG
activates protein kinase C (PKC) and mediates its action via phosphorylation of various proteins.
mGluR group 2 and group 3 are negatively coupled to adenylate cyclase which through

generation of an intracellular second messenger cAMP (cyclic adenosine monophosphate)
activates protein kinases and affects the function of various ion channels. These receptors have a

vast diversity of locations as they are widespread through the brain and each group possesses a

vast diversity of function. When located in the presynaptic terminal they modulate the vesicular
release probability through actions on both N and L type Ca2+ channels (Fagni et ah, 2000) at
CA1 hippocampal synapses, and via modulation of potassium channels in the same locus.

Application of the mGluR agonist ACPD, reduces the NMDA component of the EPSC with a

similar potency to that of the AMPA component (Baskys and Malenka, 1991; Lovinger, 1991;
Pacelli and Kelso, 1991). These papers highlight a presynaptic effect on vesicular release as the
method for reduction of the EPSC, because if postsynaptically mediated; a different effect on
each receptor EPSCs would be expected.

When located postsynaptically, the function and sites of actions of these receptors are

vastly multiplied. Functional roles for mGluR receptors have been proposed in both NMDA

receptor dependent and independent LTP. In CA1 hippocampal synapses, the expression is

dependent upon the degree of depolarization of the postsynaptic cell. AP5 blocks ACPD
induced LTP (Breakwell et ah, 1996, 1998), but uncovered a second slow component,

expression ofwhich is dependent upon arachidonic acid and PKC activity.
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Activation of postsynaptic mGluRs also directly modulates the function of AMPA

receptors, inducing a reversible depression in the CA1 area in the presence of Mg2+, a form of
mGluR-sensitive LTD (Oliet et al., 1997). For review ofmGluR receptors, see (Anwyl, 1999).

1,6: The Hippocampus and Synaptic Plasticity.
The role of the hippocampus in memory-related research starts with a Russian

neurophysiologist and psychiatrist Dr Vladimir Bekhterev (1857-1927), who first noted a role of
the hippocampus in memory around 1900, based on observations of a patient with profound

memory disturbances. The importance of the hippocampus in memory was later characterized

through the work of Dr Corkin with patient HM. At age 27 H.M had an 8 cm length of his
medial temporal lode bilaterally excised, this included two thirds of the patient's hippocampus.
This surgery was conducted as a cure for medically intractable epilepsy but left HM with partial

retrograde amnesia, and extreme anterograde amnesia which confers an inability to encode new

memories and remember events from a few years prior to the surgery (Corkin, 2002).
The hippocampal formation is comprised of two hippocampi one found in each

hemisphere. Among mammals the hippocampi are bilateral curving sausage-shaped structures

which cannot be seen from the brain surface as they lie lateral to the thalamus and medial to the

temporal horns of the lateral ventricles. One end of each hippocampus borders the septum and is
termed the septal pole; the opposite end extends anteriorly into the temporal lobe and is termed
the temporal pole. The hippocampus and its neighboring cortical regions, the dentate gyrus,

subiculum and entorhinal cortex, are collectively termed the 'hippocampal formation' (Amaral et

ah, 1990).

The anatomical structure of the hippocampal slice is well defined, the principal cell
bodies of the two main regions form distinct curves around each other. The dentate granule cells
form the smaller of the two curves and are the principal cells of the dentate gyrus (DG) and are

estimated to number 1 x 106 cells (Boss et al., 1987). Granule cells density have been found to

be at a 180:1 ratio, with the pyramidal basket cell (Seress and Pokorny, 1981).
The hippocampal pyramidal cells form a second curved layer, characterised by four

general areas (CA1- CA4). The CA title refers to the Latin description Cornu Ammonis or

Ammon's (ram's) horn, relating to the curved shape of the hippocampal structure, originally

proposed by Lorente de No, 1934 (No, 1934). CA 2-3 region is thought to contain

approximately 2.1 x 105 pyramidal cells and CA1 region 3.2 x 10s pyramidal cells, although

species variability has been shown (Amaral et al., 1990; Amaral et al., 1995; Abe et al., 2004).
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CA1 pyramidal cells tend to have dendritic homogeneity in total dendritic length (although
number of principal dendrites may vary), despite differences in the number and distribution of
dendritic branches. The excitatory synapses found in the CA1 pyramidal cells, are almost

exclusively located on the dendritic spines (Andersen, 1990) with an estimated spine density of
2.5 - 3 per pm. This would give 25000-30000 spines per cell. It is thought that 100-300

synchronously active synapses are necessary for a CA1 neurone to discharge an action potential.
The trisynaptic pathway represents three main circuits, the first main input is to the

dentate granule cells via the perforant pathway (PP), but this pathway also has direct projections
to the CA1 and CA3 regions (Desmond et al., 1994; Pare and Llinas, 1995; Yeckel and Berger,

1995).
The next projection is from dentate granule cells to the proximal section of the apical

dendrite of the CA3 pyramidal cells (mossy fibre pathway), with the distal section of the apical
CA3 dendrite receiving a commissural projection. The CA3 pyramidal cells have three outputs;

the first a commissural output projection through the fimbria, to the other hippocampi. The
second projection is the "inward" commissural projection from the other hippocampi. The third

projection of the CA3 pyramidal cell forms the third circuit of the trisynaptic pathway. This

projection is from the CA3 to CA1 pyramidal cells through the stratum radiatum and called the

Shaffer collateral commissural pathway. The last step of this pathway is the output axons of the
CA1 pyramidal cells which project out to the entorhinal cortex via the subiculum.
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Figure 1.3: Diagram of the tri-synaptic pathway of the rat hippocampus. A figure

representing the projections of the tri synaptic pathway, highlighting the input connections to the

granule cells of the dentate gyrus (DG) via the perforant pathway (PP), and the subsequent

projection to the pyramidal cells of the CA3 region is via mossy fibre pathway (MF). The third

projection the one utilized in these experiments is the Schaffer collateral commissural pathway

(SC/AC) from the CA3 pyramidal cells to the CA1 pyramidal cells. The output projection from
the CA1 cell is to the entorhinal cortex (EC), via the subiculum (Sb) closing the pathway.

Figure 1.3 adapted from www.bristol.ac.uk/fmvs/research/neurosciene.html. (L) lateral (M)
medial.
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Synaptic plasticity
The synaptic plasticity expressed by CA1 pyramidal cells of the trisynaptic pathway

found in the hippocampus has been proposed as the mechanism by which processes of learning
and memory can occur. Excitatory modifications to the strength of a synaptic signal can occur

by six main mechanisms (see below); the balance between these effectors is what is termed

synaptic plasticity.

Presynaptic mechanisms
1. Increasing the release probability of vesicles
2. Increasing the concentration of vesicular neurotransmitter.

Postsynaptic mechanisms
1. Increasing the number of receptors at the synapse

2. Increasing the conductance of receptors at the synapse

3. Increasing the open channel probability
4. Increasing the sensitivity of receptors at the synapse to agonists

Synaptic plasticity can be broken down into two main components, a process by which

excitatory synaptic transmission can be increased (long term potentiation-LTP) and a

complementary pathway by which synaptic transmission can be depressed (long term depression
- LTD). Mechanisms of LTP have been most extensively studied in the hippocampus (2730
research papers on LTP and hippocampus from June 1979 to March 2005. LTP is usually

generated by the pairing of a presynaptic stimulus with a depolarised post synaptic cell. The
stimulus is applied to the Schaffer collateral commissural (SCC) axons; this presynaptic stimulus

generates action potentials which bring about neurotransmitter release in a Ca2+ dependent
mechanism. The SCC axons synapse with CA1 pyramidal cells and the released
neurotransmitter acts on postsynaptic membrane bound receptors and generates a graded

excitatory postsynaptic potential (EPSP), the strength of synaptic neurotransmission is defined

by the amplitude of the EPSP. The typical stimulus to induce LTP is a high frequency burst

typically (100 Hz) lasting for 1-3 seconds (called a tetanic stimulus). This stimulation usually
induces an increase in the amplitude of the EPSP (between 50 - 100%), and the EPSC may stay

at this potentiated level, as long as the slice is viable (2-8 hours).
LTD is the weakening process which is complementary to LTP. LTP occurs at synapses

which have both presynaptic activity and a depolarised postsynaptic cell. LTD will occur with
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either presynaptic activity or depolarised postsynaptic cell, but is still dependent upon an

increase in postsynaptic calcium. In addition, if there is presynaptic activity and no postsynaptic

depolarisation the synapse is still functionally weakened, termed homosynaptic LTD. The
converse is also true, if the postsynaptic cell is active due to other sites of stimulation (neurones

may have over 10,000 synapses) and there is no presynaptic activity then again the synapse will
be weakened and this is termed heterosynaptic LTD (Oliet et al., 1997). The stimulation

required to induce LTD is significantly different from that of LTP as it can require several
minutes of stimulation at a low frequency (1-5 Hz). A significant difference in the stimulation

period exists between LTP/LTD. The difference has been linked to a reduction in afferent
innervation of these pyramidal cells, innervation which would normally occur in the intact brain,
but are missing due to the slicing protocol. Application of a cholinergic agonist reduced the
stimulus period to 20 ms to induce LTD (Abraham and Bear, 1996; Yang et al., 1999).

The cellular effects of LTD have been associated with a reduction in AMPA receptor

number at the synapse, and the negative presynaptic modulation of transmitter release. Both of
these phenomena can occur in the same cell and are dependent upon calcium influx but require
different levels of stimulation. The higher order regulation of cell function, causing the switch
between either form of plasticity been championed by Professor Mark Bear. Defined as

metaplasticity it is described by the statement 'Metaplasticity has occurred if prior synaptic or

cellular activity (or inactivity) leads to a persistent change in the direction or degree of synaptic

plasticity elicited by a given pattern of synaptic activation' (Abraham and Bear, 1996).

Basically this describes the state of weakly innervated cells. In that low levels of synaptic

activity do not fully depolarise the cell and induce LTP, this low activity state maybe sufficient
to prime the threshold for synaptic modifications making it easier to induce LTD.
In summary CA1 pyramidal cells display mechanisms, by which the ability to both strengthen
and weaken the synaptic output of these cells are affected.

1.7: Functional cellular mechanisms for LTP

Historically the first experimental recording of long term potentiation comes from the
laboratories of Per Andersen in Oslo Norway, with the first presentation of LTP by Terje Lomo

(Lomo, 1966). However the most famous full account, regarded as the first publication of LTP,
was published in 1973 by Tim Bliss and Teije Lomo (Bliss and Lomo, 1973).

The development of the now classical NMDA receptor-dependent LTP (Collingridge et

al., 1983) occurs upon tetanic stimulation of Schaffer collateral/commissural fibres that synapse
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on to CA1 pyramidal neurones in the hippocampus. Indeed pharmacological and genetic

manipulations of NMDA receptor function can have profound effects on both LTP and spatial

learning tasks (Martin et al., 2000; Martin and Morris, 2002).

Initially synaptic plasticity experiments focused on the induction mechanism for LTP,
induced by brief repetitive stimulations of the excitatory Schaffer collateral pathway of the

hippocampus. The induction was found to be dependent upon two key features, an increase in
the postsynaptic calcium concentration and the activation of postsynaptic NMDA receptors the a

source of the calcium increase (Collingridge et al., 1983).
In 1988, it was demonstrated that LTP in the CA1 region of the hippocampus required

an increase in postsynaptic calcium concentration. This finding was elucidated by two groups,

with Malenka et al. using the Ca2+ chelator Nitr-5 and Lynch et al. using EGTA. Both chelators
were included in the internal recording solution in the glass electrode restricting the application
to the postsynaptic cell. Through different mechanisms in the first case by Ca2+ flash photolysis

(which generates a sudden increase in Ca2+ concentration) and in the second by chelation (which
removes all of the Ca2+ present in the postsynaptic cell) these two papers indicated that a rise in
the postsynaptic calcium concentration was essential to LTP induction in CA1 neurones.

Investigations by Collingridge (Collingridge et al., 1983), determined that postsynaptic
Ca2+ enters the cell via three main routes. For the classical LTP-NMDA receptor-dependent
mechanism in the CA1 pyramidal cell of the hippocampus, postsynaptic Ca2+ entry is through
the NMDA receptor. The other pathways are somewhat controversial but rely upon entry

through voltage gated calcium channels (Kapur et al., 1998; Morgan and Teyler, 1999; Matias et

al., 2003; Woodside et al., 2004) and release from intracellular stores (Reyes and Stanton, 1996;

Emptage et al., 1999; Nishiyama et al., 2000; Lauri et al., 2003; Kumar and Foster, 2004).
LTP induction is NMDA receptor-dependent, the increase in synaptic strength generated

is mediated as an increase in the AMPA component of the EPSC (Andrasfalvy and Magee,

2004). This implies that this stimulating protocol has a distinct effect on AMPA receptor

recruitment or modification, or is utilising a presynaptic mechanism, that facilitates an increase
in pre-synaptic vesicle release. Postsynaptic mechanisms underlying this increase in the AMPA

receptor mediated component are discussed in Protein-Protein interactions section 1.14.

1.8 Long Term Potentiation and Voltage-Pulse Potentiation
The conventional LTP stimulating protocol uses tetanic stimulation to relieve Mg2+

blockade of NMDAR, inducing a postsynaptic depolarisation with a corresponding increase in
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postsynaptic Ca2+ dependent upon synaptic mechanisms involving NMDA receptors

(Collingridge et al., 1983). Such a LTP stimulating protocol is likely to activate only a few
hundreds of synapses impinging on the CA1 neurons. Such a protocol will potentiate too few of
the total number of synaptic sites on the individual CA1 pyramidal neurone to resolve any

alterations to miniature post synaptic current (mEPSC) amplitudes and frequencies before and
alter LTP induction, in that any mEPSCs occurring at potentiated synapses would be lost in the

background of small amplitude mEPSCs from other non-potentiated synapses.

Gustafsson and Wigstrom, (1990) suggested the need to depolarise the cells further than
was done with LTP stimulation, to activate voltage operated Ca2+ channels. This approach was

adopted by Kullmann et al. (1992), whose approach was to block the NMDA receptor using 2-

amino-5-phosphonovaleric acid (AP5), and apply a series of depolarising pulses to the cell to
activate voltage gated Ca2+ channels - this is referred to as voltage-pulse potentiation (VPP).
The original induction protocol used in acute slices consisted of twenty, +100 mV

depolarisations lasting 3 seconds in a two minute period. This protocol induces a global increase
in Ca2+ in the postsynaptic cell, resulting from the activation of postsynaptic L-type voltage-

gated calcium channels, either synaptic or at extra-synaptic sites. The small size and unique

shapes of dendritic spines (site of synapses) lends itself well to the VPP stimulus, due to the
small volume of the spine, a large postsynaptic calcium concentration can be obtained even after
a small influx of calcium ions.

Experiments using the VPP stimulus in guinea-pig slices resulted in a transient increase
in both the amplitude (2.5 fold) and frequency (1.6 fold) of mEPSCs (Wyllie et al., 1994). VPP
was subsequently found to be dependent on kinase activity and intriguingly can be converted to

a sustained potentiation if phosphatase inhibitors are present at the induction stage (Wyllie and
Nicoll, 1994).

In this thesis I have looked solely at the AMPA receptor dependent component of this

potentiation of synaptic output. To do this I used miniature excitatory postsynaptic currents

(mEPSCs). Such miniature synaptic events were first described by Sir Bernard Katz in 1952

(Fatt and Katz, 1952) when recording from the frog neuromuscular junction. In these recordings
he noted small depolarizations of the membrane potential which he first thought to be due to an

artefact of the recording set-up. These were no artefact and for this and other work Katz was

awarded the Nobel Prize in Physiology or Medicine in 1970.

Recording mEPSCs is an excellent way of looking at synaptic activity, as these small
currents result from the spontaneous release of single glutamate containing vesicles and,
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therefore act as a functional read out of the cell as they give an expression of both presynaptic

(frequency changes) and postsynaptic (amplitude changes) functionality. Furthermore, since
mEPSCs do not require the constant stimulation that (evoked) EPSC studies require these

experiments are not hampered by the often overlooked phenomena of activity dependent

synaptic silencing. This occurs when repetitive stimulation, required to generate EPSCs, acts on

synapses with a weaker synaptic weight and functionally silences these synapses. This can be
likened to LTD at the single synapse level (Xiao et al., 2004). The net result is an expression of
a 'false' potentiation of EPSC amplitudes, false because of the selection of only larger amplitude
events. This functional silencing is expressed as an increasing failure rate over the course of the

experiment (a 'failure' is classed as each occurrence of an applied stimulus which fails to

generate an EPSC).
mEPSC result from the spontaneous release of 'packets' of neurotransmitter, as Katz

referred to them, from the presynaptic nerve terminal and give rise to a current from the
activation of both AMPA and NMDA receptors. True mEPSCs are insensitive to the voltage-

gated sodium channel blocker, tetrodotoxin. In the presence of tetrodotoxin (evoked) EPSC
stimulation based experiments are impossible as generation of the presynaptic action potential
cannot happen. The other advantageous features of mEPSC recordings over the EPSC
stimulation experiments apart from the failure rate problems (expressed postsynaptically), is that
EPSCs are also dependent on presynaptic properties of the cable conducting properties of the

presynaptic (SCC) axons affecting the release probability i.e. failure of an action potential to be
conducted. This is not a problem for mEPSC recording as release is spontaneous.

Glutamate release generates various types of EPSCs, either pure AMPA or kainate
mEPSCs or mixed receptor type kainate/AMPA. Pure kainate mEPSCs are very rare and have a

much slower rise and decay time, when compared to the pure AMPA mEPSC (Cossart et al.,

2002). Since glutamatergic ionotropic receptors are believed to be co-localised at excitatory

synapses (Bekkers and Stevens, 1995; Gomperts et al., 1998; Lissin et al., 1998; Gomperts et al.,

2000) has increased the use of mEPSCs as a sensor for the changes applicable to a pre or

postsynaptic mechanism/modification for plasticity.
There is, however, controversy that the majority of nascent glutamatergic synapses

express both functional AMPA and NMDA receptors in the neonatal Wistar rat hippocampus

(P0 - P8) (Groc et al., 2002). This is controversial, since there is physiological evidence during

development, for certain synapses to contain only functional NMDA receptors, and lack the fast

acting AMPA receptor. These synapses appear to be physiologically silent due to the NMDA
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receptor being blocked by magnesium (Mg2+) ions in a voltage-dependent manner. (Gasparini et

al., 2000; Gomperts et al., 2000; Isaac, 2003). Therefore, these silent synapses are unable to

respond to glutamate released from the presynaptic terminal. Silent synapse theory relates to

that ability of functional AMPA receptors, to be quickly recruited into the postsynaptic
membrane. Through the action of these new receptors the functional block is relieved and the

synapse becomes active (Standley et al., 1995; Braithwaite et al., 2000; Isaac, 2003). One major

argument against this silent synapses theory, is that 'spill over' (Diamond, 2002) from synapse

to synapse could account for the sudden synaptic activity associated with silent synapses. Due to

the approximate 100 fold difference in affinity for glutamate between AMPA and NMDA

receptors (Gomperts et al., 1998), it is possible for glutamate to spill over from neighbouring

synapses and selectively activate NMDA receptors in these synapses. Other possible
mechanisms include incomplete uptake of glutamate, by transporter proteins on surrounding

glial cells (Bergles and Jahr, 1997) resulting in a sufficient concentration to activate receptors in

neighbouring synapses. Although immunohistochemical studies have provided evidence that

synapses containing only NMDA receptor are present in some neurones (Liao et al., 1999). The

possibility of glutamate spill over, occurring between the synapse can never be fully ruled out.

AMPA receptors can also move laterally within the plasma membrane during synaptic

plasticity. Single particle tracking has shown that the GluR2 containing receptors rapidly
alternate between highly mobile (6-12 pmV) and stationary (< 0.05 pmV1) states. Furthermore
transition between these states is regulated by intracellular calcium (Borgdorff and Choquet,

2002). With AMPA receptor transport and insertion there has been shown a proportional
increase in NMDA receptor number at synapses as well (Watt et al. 2004).

1.9 Why use organotypic hippocampal slices and what is the cellular purpose of mEPSCs?
In 1957 Henry Mcllwain, showed that slices of hippocampal tissue retained their highly

organized structure and circuitry and could be kept viable in an artificial experimental setting,

enabling intracellular electrophysiological recording from CA1 pyramidal cells.

Gahwiler, (1981) first pioneered the application of cell culture techniques to nerve cells

developing an artificial culture system, which produced viable nerve cells for experimentation.
In 1981 this was further developed with the production of viable cultured acute hippocampal
slices. (Gahwiler, 1984, 1988) (For review see Gahwiler et al. 1997).

Organotypic cultured hippocampal slices as described by (Stoppini et al., 1991), have
the advantage, that their use allows better access these pyramidal cells, as through the culturing
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process as the thickness of the tissue reduces to almost a monolayer, allowing for the
characterization of cell network circuitry. Recordings from organotypic CA1 pyramidal cells
have shown that these cells have very similar electrophysiological properties to CA1 pyramidal
cells in traditional acute hippocampal slices, although the organotypic slices lack any

development of synaptic connectivity and morphology which may be attributed from the normal
behavior of these animals.

De Simoni et al. (2003) characterized the relationship between acute and organotypic
slices. In this study acute slices prepared at postnatal day (P) 7, 14, 21 were found to be

developmentally equivalent to organotypic slices cultured for 1, 2, 3 weeks in terms of synaptic
transmission and dendritic morphology. Furthermore, the development of dendritic length and

primary branching as well as spine density and the proportions off spine types were also similar
in both preparations and at equivalent ages. The only significant difference was the frequency of

glutamatergic (not GABAergic) miniature postsynaptic currents (mEPSCs) in the organotypic

slice, which showed a four fold increase. This significant increase in event frequency was

attributed to an increase in the complexity of higher order dendritic branching in these

organotypic slices.
This higher event frequency is beneficial for this study as a large number of synaptic

events, will be advantageous in this study as it will allow better resolution of any change in
mEPSC amplitudes or frequencies.

Katz suggested that the miniature end plate potentials (mEPPs) recorded at the
neuromuscular junction could summate to an action potential. Per Andersen (1990) later found
that only 100-300 synchronously active excitatory synapses seem necessary to make the cell

discharge.
To date the functionality of the mEPSC has been described by two diverging principles;

the first from McKinney & Gahwiler who investigated the changes in dendritic spine size/shape
as an enduring structural correlate for synaptic plasticity (McKinney et al., 1999b; McKinney et

al., 1999a). Structural changes in dendritic spine size and shape are associated with LTP

(Edwards, 1995). Hence, spine size and shape influence the electrical transfer of synaptic
currents and the intracellular Ca2+ concentration transients generated in spines thereby modifying

synaptic integration and plasticity. What was shown by McKinney et al., (1999b) was that a low
mEPSCs frequency and subsequent AMPA receptor activation was sufficient to maintain
dendritic spine structure, useful for maintaining the architecture of quiescent cells in the brain.
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The second functional property shown by the laboratories of Erin Schuman, highlighted
that the spontaneous activity of the mEPSC acutely regulated dendritic protein synthesis.

Blocking action potentials with TTX caused a reduction in protein synthesis, while blockade of
both action potentials and mEPSCs resulted in an increase in dendritic protein synthesis. The
functional consequence is the possibility of local translational regulation on a rapid scale which

may define use dependent change in synaptic strength and hence modify synaptic plasticity

(Sutton et al., 2004).

1.10: Organisation of the postsynaptic density
The postsynaptic compartment, found at the spine head, represents the site of the

synapse and hence the site of excitatory cell to cell signalling. At the spine head, there exists a

specialisation called the postsynaptic density (PSD), which acts as a scaffold to hang the
effectors of synaptic activity upon, thereby stabilising these effectors in the postsynaptic
membrane.

The PSD comprises a disk like structure 30 - 40 nm thick and a few 100 nm long, the
PSD is found at postsynaptic sites directly apposed to the active zones in the presynaptic
terminal. The PSDs are also subject to activity dependent remodelling as activating stimuli
induce changes in spine shape and volume the PSD must also be able to change to continue

synaptic action.

There are five main components of postsynaptic density:

1. Cytoskeletal proteins, such as actin and tubulin (Brown, 1999; Krupp et al.,
1999; Braithwaite et al., 2000; Chen et al., 2004), which are required to support the architecture
of the spine projection.

2. Cell adhesion molecules required for the binding of new components to the

postsynaptic density.
3. Receptors involved in excitatory signal transduction are held in the PSD.
4. Signal transduction proteins, including the calcium binding protein calmodulin

(CaM); serine/threonine protein kinases such as the calcium/calmodulin dependent kinase II

(CaMKII) and cAMP dependent kinase (PKA). These proteins conduct the signal from the

postsynaptic desity to the cell, and also interact directly with postsynaptic receptors modifying
their function and facilitating LTP.
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5. Scaffolding proteins, these proteins have the largest diversity of function; they
act to cluster receptors (of different types) at activated synapses. These facilitate the targeting of

newly synthesised receptors to specific membrane domains, which cause the membrane
immobilization necessary for the function of the receptor by anchoring to cytoskeleton.

Scaffolding proteins effect coupling of the receptor to down-stream signalling molecules, which
is necessary for the long term potentiation of excitatory synaptic activity.

1.11: Protein-Protein interactions governing AMPA receptor transport to synapses

Both AMPA receptors (Liu and Cull-Candy, 2000; Borgdorff and Choquet, 2002) and
NMDA receptors (Tovar and Westbrook, 2002) have been shown to be highly dynamic, in that

receptors can be rapidly interchanged between the synapse and the various intracellular receptor
stores.

This dynamic transport of receptors suggests that a rapid incorporation of the receptor

into synapses is a possible mechanism for development of the potentiated EPSC amplitude
shown with LTP. With this rapid incorporation of new receptors there exists the further

phenomena, the generation of silent and nascent synapses and the synaptic effects of the

subsequent removal of receptors by endocytosis (Carroll et al, 2001). Such cycling of receptors

may provide a method for the rapid alteration in synaptic strength seen with some forms of

synaptic plasticity.
This transport of AMPA receptors is thought by many groups to be dependent upon

activity of the neuron, as chronic NMDA receptor blockade experiments show rapid AMPA

receptor synaptic delivery (AMPAifcation) (Zhu and Malinow, 2002). Thus this suggests a

possible activity-dependent mechanism underlying the relief of the NMDA receptor Mg2+ block
and therefore synaptic plasticity. Moreover Washboume et al (2002) have indicated that there is
a distinct difference in the recruitment interval for NMDA and AMPA receptors, strengthening
the silent synapse theory. They suggest that vesicles of NMDA receptors move to synapses

faster than the AMPA subunits are recruited to the same synapse. Therefore the NMDA

receptors are already in situ waiting to be activated when the AMPA receptors arrive, effectively

generating a functional but silent synapse, with a further proportional delayed increase in
NMDA receptor number following AMPA receptor transport (Watt et al. 2004).

Silent synapse theory, describes any synapse which has in situ NMDA receptors but
lacks AMPA receptors, they are physiologically silent or deaf due to Mg2+ block of the NMDA
receptor at resting membrane potentials. This theory is further complicated by synapses
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displaying degrees of silence depending upon a pre/postsynaptic locus for activation.

Postsynaptically silent/deaf synapses are unable to detect glutamate release and do not conduct
due to the lack of AMPA receptors. Presynaptic silent synapses do not conduct because the
release probability is close to zero (mute synapse) or there is a small degree of receptor
activation (whispering synapse) due to the temporal profile of glutamate in the cleft. This idea
of low cleft concentration for glutamate was proposed by Kullmann (Kullmann, 2003), as a

mechanism of synaptic spill-over to neighbouring synapses, which brings about their activation

(Kullmann, 1994; Kullmann et al., 1996; Kullmann and Asztely, 1998).
As shown with NMDA receptors the trafficking of receptors to membrane sites is

dependent upon interactions with various membrane associated proteins, from the literature there

appears to be three well defined protein complexes with bring about the insertion of AMPA

receptors into active membrane. Trafficking properties of these complexes NSF related protein

complexes, the PDZ domain related proteins (PICK1/GRIP/ABP) and stargazin/PSD-95 a

modification of the NMDA receptor delivery mechanism.

1.12: NSF protein

Initially N-ethylmaleimide sensitive fusion (NSF) protein was characterised as an

ATPase with diverse cellular actions, but primarily involved in the docking and fusion of

presynaptic vesicles facilitating transmitter release (Patel and Latterich, 1998; Finley et ah,

2002). This protein was found to exist independently as NSF and act as a chaperone for the
SNARE complex proteins (soluble NSF attachment protein receptor) which include SNAP 25

(soluble N-ethylmaleimide adaptor protein of 25 kDa) and VAMP1 (vesicle associated
membrane protein also called synaptobervin). Through various interactions these proteins in the

presynaptic terminal facilitate the association of vesicle and the presynaptic membrane to allow
neurotransmission, and for the subsequent removal of the vesicle from the docking site

(Littlejohn et al 2001; for review see Chen and Scheller, 2001; Ziv and Garner, 2004).
Functional NSF shows a wide tissue distribution and is abundant in the hippocampus

(Hong et ah, 1994), the protein presynaptically exists as a hexamer, and only in this oligomeric
form does it exert any functional action on SNARE complexes. NSF has 3 domains an N
domain which is essential for function and a D1 domain which requires ATP binding and

hydrolysis for the SNARE complex disassembly reaction to occur and ATP binding but not
further hydrolysis by the D2 subunit is necessary for hexamer formation.
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However these proteins were later identified in the postsynaptic membrane (Walsh and

Kuruc, 1992), an unusual finding as this part of the synapse typically receives the presynaptic

signal, and so has no vesicles with neurotransmitter.

Postsynaptically NSF was found to associate with the GluR2 AMPA receptor subunit
and modify its activity dependent insertion into the postsynaptic membrane as pharmacological
blockade of NSF with NEM inhibited the induction of LTP (Lledo et ah, 1998). Association of
NSF and other glutamate receptor subunits proved ellusive, as NSF is only weakly associated
with the GluR3 subunit and does not bind to the GluRl or GluR4 AMPA receptor subunits, or
the kainate GluR6 and finally does not associate with the NR1 subunit of the NMDA receptor

(Nishimune et ah, 1998), but is involved in the transport of nicotinic acetylcholine receptors.

(Liu et ah, 2005).
The reduction of the LTP potentiated AMPA component of the EPSC, by the application

of NSF blocking drugs has two possible mechanisms of action. The first is that NSF is required
for the surface expression of AMPA receptors and blockade of this interaction inhibits this

expression (Nishimune et ah, 1998; Osten et ah, 1998; Song et ah, 1998; Luthi et ah, 1999; Noel
et ah, 1999; Osten and Ziff, 1999; Banke et ah, 2000). The second mechanism is that NSF acts

as a stabiliser of membrane integrated AMPA receptors. This limits exocytosis and insertion of
new receptors into these synapses (Braithwaite et ah, 2002).

Multiple mechanisms exist for the delivery of new receptors to active synapses. In the
GluR2 knockout mouse, AMPA receptors are still present at CA1 synapses, and AMPA-

receptor mediated EPSCs are reduced by 50 % compared to wild type litter mates (Jia et ah,

1996).

1.13: PDZ scaffolding protein dependent transport of AMPA receptors

PDZ domains are small 90 amino acid long binding domains, which have the sole
function of tethering the carboxy terminal on one protein to another; by this mechanism they
form large protein complexes which facilitate activity-dependent synaptic plasticity.

PSD95/Synapse associated protein (SAP)-93 is a well characterised scaffolding protein (Lim et

ah, 2003; Lin et ah, 2004; Romorini et ah, 2004), which is part of the membrane associated

guanylate kinase-like (MAGUK) family. The PSD 95 protein has 3 PDZ binding domains, a

SH3 (Src homology 3 domain) domain which will facilitate an interaction with kainate receptors,

and a guanylate kinase- like (GK) domain (Figure 1.4).
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These proteins have been shown to be principally responsible for the delivery ofNMDA

receptors to active synapses (Lin et al., 2004); via the interactions of a C-terminal amino acid

sequence (ESDV or ESEV) on the NMDA NR2 (A-D) subunits and the PDZ domains of PSD
95/SAP 90.

PSD 95 does not directly bind or facilitate the transport ofAMPA receptors to synapses.

Elowever, PSD 95 when associated with stargazing, another membrane associated adaptor

protein, and has been shown to facilitate the transportation of AMPA receptors to synapses

(Chen et al., 2000; Schnell et al., 2002; Dakoji et al., 2003 {Rumbaugh, 2003 #438; Rumbaugh et

al., 2003; Vandenberghe et al., 2005); for review of PSD see Kim and Sheng, 2004. This

PSD95/stargazin interaction is regulated by phosphorylation of Stargazin, as in the

phosphorylated state stargazin is prevented from binding to PSD95 (Chetkovich et al., 2002;
Choi et al., 2002).

Only SAP 97 acts to directly transport AMPA receptors to the synapse, unlike NSF

transportation of the GluR2 AMPA subunit, SAP 97 interacts with the GluRl subunit (Leonard
et al., 1998; Rumbaugh et al., 2003).

Three types of PDZ domain containing AMPA receptor specific scaffolding proteins
have been classified: protein interacting with C kinase 1 (PICK1), glutamate receptor interacting

protein (GRIP), and AMPA receptor binding protein. Within the literature there is much debate
over the functional actions of these scaffolding proteins in CA1 LTP. PICK 1 structurally is the

simplest of the PDZ containing AMPA receptor scaffolding proteins, as it contains only one

PDZ domain and a coiled coil domain which allows dimerism of this protein (See Figure 1.4 and

Figure 1.5).
This scaffolding protein displays a high degree of promiscuity as interactions with

mGluRs and kainate receptors have also been shown, and inhibition experiments have shown
effects on kainate mediate synaptic transmission (Hirbec et al., 2003).

PICK 1 via an interaction with protein kinase C (PKC) has been shown to regulate an

increase in AMPA receptor surface expression in a population of CA1 pyramidal neurones

(Banke et al., 2000; Chung et al., 2000; Daw et al., 2000; Perez et al., 2001; Hirbec et al., 2003;
Terashima et al., 2004). However there is also a proposed role for PICK 1, with internalisation of
AMPA receptors in LTD in CA1 neurones (Kim et al., 2001). Differences may be accounted for

by the phosphorylation state of the AMPA receptor. Phosphorylation of Ser 880 in the C
terminus of GluR2 by PKC prevents the interaction with GRIP/ABP but not with PICK1, this

suggests that phosphorylation might selectively displace AMPA receptors from GRIP in favour
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of PICK 1. This phosphorylation is well characterised in cerebellar LTD, and has been shown
with hippocampal LTD (Perez et al., 2001). In summary, evidence can be proposed for an action
of PICK1 in both pathways. Therefore it is logical to believe that PICK 1 regulates both
insertion and internalisation ofAMPA receptors.

1.14: GRIP/ABP

GRIP and ABP represent large multi PDZ AMPA receptor binding proteins, these

proteins contain 7 PDZ domains in comparison to the singular PDZ domain found with PICK1.
These proteins are expressed throughout the brain, and at the cellular level are found both on

excitatory and inhibitory neurons, suggesting a vast diversity of action (Wyszynski et ah, 1999).
Two variants of GRIP exist (1 and 2). Although homologous proteins of 130 kDa they

display different temporal patterning during embryonic development. GRIP1 is highly

expressed at a point pre AMPA receptor expression, while GRIP2 is expressed later and parallels
the cellular expression of AMPA receptors. A further protein ABP is regarded as a splice
variant of GRIP2. These proteins are almost identical, bar the expectation that ABP lacks a 7th
PDZ domain. (Srivastava and Ziff, 1999; Braithwaite et ah, 2002)

GRIP is also capable of forming dimers through an interaction between the PDZ 6
domains of 2 monomers (Im et ah, 2003). The binding of AMPA receptors to GRIP occurs

through PDZ 5 but requires interaction from PDZ 4 to stabilise the binding (Dong et ah, 1999;

Feng et ah, 2003); AMPA receptor interactions occur at three PDZ domains (3,5,6) (Srivastava
et ah, 1998; Srivastava and Ziff, 1999).

1.15: AMPA PDZ protein regulation of LTP and LTD
Under basal synaptic transmission, PDZ interactions with the C terminus of GluR2/

GluR3 regulate the insertion and retrieval of receptors from the synapse. The idea is that
GRIP/ABP proteins regulate the sorting and delivery of AMPA receptors to active synapses,

while PICK1 controls the binding and stability of these receptors in membranes (Dong et ah,

1999). Induction of LTP activates PKC and subsequently phosphorylation of the GluR2 receptor

subunit at serine 880; this promotes dissociation of receptors from a rapidly releasable pool

(PICK1 and GRIP/ABP bound synaptically located receptors) allowing for receptor insertion.
The opposite is also applicable during LTD experiments where receptors which have

undergone activity-dependent internalisation may bind to multi-protein complexes ofGRIP/ABP
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which would anchor these receptors to the sub-synaptic domain preventing their reinsertion

(Chung et al., 2000) and acting as a functional store.

De-depression experiments (Heynen et ah, 2000; Lee et ah, 2000; Bear, 2003), which
show LTP in cells which have previously expressed LTD, display this functional plasticity
where AMPA receptors dissociate from PICK1 or GRIP/ABP and PKC phosphorylation at

serine 880 prevents rebinding to GRIP/ABP (Chung et ah, 2000) and allows insertion of these
unbound receptors.

PSD-95/SAP90 N

GRIP1 N

GRIP2/ABP N

ABP N
mmm MM MM MM MM MM

c

c

c

PICK1

Figure 1.4: Structural domains of PDZ containing proteins which interact with glutamate

receptors. SAP90/ PSD95 are principal scaffolding protein for NMDA receptor insertion into
active synapses. PSD 95 comprises 3 PDZ domains, one SH3 domain through which kainate
receptors can bind, and a guanylate kinase binding domain which is used to attach to the

postsynaptic cytoskeletal matrix. GRIP 1/2 and the splice variant ABP all contain simple PDZ

binding domains which facilitate AMPA receptor incorporation into synapses. PICK1 another
AMPA receptor scaffolding protein which has a function linked with GRIP/ABP complexes
contains only 1 PDZ binding domain and a coiled coil domain (CC).
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Figure 1.5: Scaffolding proteins controlling AMPA receptor insertion. AMPA receptor

specific scaffolding proteins used for the insertion for new receptors include PICK1, GRIP1 and
the splice variant GRIP2/ABP. This transport of receptors is mediated via an interaction with
the GluR2 subunit. Furthermore, AMPA receptors can also be transported via the traditional
NMDA receptor transport machinery, in the case of PSD 95 this transport is dependent upon the

auxiliary protein Stargazin for the transport of the GluR2 receptor subunit. SAP 97 governs the

transport of the GluRl subunits. The multiple transport mechanisms for AMPA receptors when

compared to the NMDA receptor could reflect the diversity and speed of novel AMPA receptor

function.
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1.16: Protein kinase regulation
For LTP based synaptic plasticity the diversity of higher order regulation at the protein

kinase level is staggering. Within neurones there exists over 2,000 protein kinases and over

1000 protein phostphatases estimated from the human genome (Hunter, 1995). These kinases

regulate all cell function including synaptic plasticity and cell homeostasis through interactions
with cellular substrates and most importantly diverse interactions with other protein kinases. In
order to facilitate an effect, kinases must be located close to their substrate, and an example of
this is the interaction between A-kinase anchoring proteins (AKAP- For review see Colledge and

Scott, 1999) and protein kinase A (PKA), which brings about the synaptic insertion of GluRl

containing AMPA receptors in a SAP97 dependent delivery mechanism (Colledge et al., 2000).
Another well characterised protein kinase regarded as the molecular switch for LTP and memory

storage, via both the transmission and activation of AMPA and NMDA receptors, is

calcium/calmodulin-dependent protein kinase II (CaMKII) (Ghetti and Heinemann, 2000; Bayer
et al., 2001; Lisman et al., 2002; Poncer et al., 2002; Machaca, 2003). CaMKII was found to be
essential for the induction of LTP, as it holds the NMDA receptor in an open conformation for

longer and facilitates AMPA receptor trafficking (Liao et al., 2001; Lisman and Zhabotinsky,

2001). As well as directly phosphorylating a serine 831 residue of the GluRl subunit altering
the conductance level, pushing the receptor to higher conductance levels (Benke et al., 1998;
Lisman et al., 2002).

Membrane bound lipids, are substrates for many kinases, these lipids have a diversity of
function. Not only are they utilised for the structural stability of the spine; they are used in

receptor stimulated signalling. Well characterised membrane lipid family known to be involved
in cell signalling are the inositol phospholipids. The classical mechanism for the hydrolysis of

phosphatidylinositol (4,5) bisphosphate (Ptdlns (4,5)P2) is mediated by phospholipase C (PLC)
to produce inositol (1,4,5) trisphosphate (Ins (1,4,5)P3) which acts at various sites to bring about
an increase in intracellular calcium. This breakdown also produces diacylglycerol (DAG),
which activates serine/threonine kinases such as protein kinase C (PKC).

However, (PtdIns(4,5)P2) acts as a substrate that has a wide diversity of effectors.

Through a second metabolic pathway, phosphoinositide 3 kinase (PI3K) phosphorylates the 3'-
OH position of the inositol ring of phospholipids and produces PtdIns(3)P, PtdIns(3,4)P2, and

PtdIns(3,4,5)P3 all second messenger phospholipids with a diverse cellular functions. In
mammalian cells PI3 kinases have multiple isoforms, but are divided up into three groups (Class

1,2,3). Class 1 PI3 kinases, typically have a pi 10 catalytic subunit of which 4 isoforms exist (a,
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(3, y, and 5) and a p85 adaptor subunit, for review see Rameh and Cantley, 1999. The principal
mechanism of action is that the p85 domain regulates an interaction with serine/theronine
kinases in the cell membrane. This interaction brings the pi 10 domain into functional proximity
with its main substrate, Ptdlns (4,5) P2 and generates Ptdlns (3,4,5) P3 thereby facilitating cell

signalling. Class 2 PI3 kinases are bigger than Class 1, but show 45 % homology, and show

binding to PKC isoforms. Their cellular actions are not well characterised. Class 3 PI3 kinase

appears to be a yeast isoform.
Scientific interest in PI3 kinases stems from cancer research, due to the finding that

PTEN (Phosphate and TENsin homologue deleted on chromosome TEN) manages the

degradation of Ptdlns (3,4,5) P3 (Cantley and Neel, 1999). Mutation or loss of the (PTEN)
tumour suppressor gene has been found in many human tumours including breast and prostate

cancers (Li et al., 1997; Steck et ah, 1997) and at high frequency in endometrial tumours

(Bonneau and Longy, 2000). Mice homozygous for target embryonic deletions of the PTEN

gene, die during embryonic development (between 6 and 9 days), while heterozygous mice

develop normally, but are prone to a wide range of tumour types (Dahia, 2000; Leslie and

Downes, 2002). Cells which lack PTEN have elevated levels of Ptdlns (3,4) P2 and Ptdlns (3,4,5)

P3 and exhibit constitutive activation of PI3 kinase signalling pathways mediated via PKA/AKT

(Cantley and Neel, 1999; Cantrell, 2001) and Rac/Rho GTPases (Liliental et ah, 2000). Due to

the functional crossover with PLC, and the knowledge that PLC products mediate cellular

trafficking mechanisms, the role of phosphoinositide 3 kinase (PI3 kinases) in excitatory

synaptic transmission was highlighted when PI3 kinase was shown to be required in the glycine
induced LTP of mEPSCs in cultured hippocampal neurones (Sanna et ah, 2002; Man et ah,

2003).
The mechanism for receptor trafficking and functional modification at the synaptic

membrane requires interactions with other cellular protein kinases (See Figure 1.6). PKB has
been shown to mediate the action of PI3 K. PtdIns(3,4)P2 and PtdIns(3,4,5)P3 bind to a PH
domain ofPKB recruiting the kinase to the plasma membrane. Furthermore the activation ofPI3
K is sufficient in turn to mediate the activation of PKB (Datta et ah, 1996). PKB shares

sequence homology with PKA and PKC. Its activation regulates cell survival through Bad and
can induce protein synthesis through mTOR. The activation of PKB also governs inter kinase
interactions as PKB will activate Raf and subsequently MAP kinase signalling pathway which
acts directly on AMPA and NMDA receptors. Within the PKB signalling pathway, a feed back
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loop exists via phosphoinositide-dependent protein kinase-1 (PDK1) and activates PKC

(Chou et al., 1998) for review see Chou et al.,1998;Vanhaesebroeck and Alessi 2000; Cantrell,

2000). In summary, the kinase regulation of cellular processes is a vast highly complex inter-

regulating system. PI3 kinase has been shown to be important in the regulation of LTP in

pyramidal cells although the mechanism has never been fully described (Hisatsune et ah, 1999;

Cantrell, 2001; Man et al., 2003; Huang et al., 2004).

1.17: The present study

My thesis work examined three areas which affect the potentiation of mEPSC

amplitudes, mediated by increases in post synaptic calcium. In chapter three I will discuss the
mechanisms for the induction of voltage pulse potentiation. Included in this is the dependency
of the potentiation on various receptor subtypes. Furthermore I will examine the requirement for
a post synaptic rise in intracellular calcium and possible sources of this calcium.

In chapter four I will look at intracellular postsynaptic docking proteins and their
interactions with different AMPA receptor subunits as mechanisms for bringing about the

voltage-pulse induced potentiation of mEPSC amplitudes. Chapter five will look at the kinase
regulation of voltage-pulse potentiation and highlights one kinase upon which the induction and
maintenance of voltage-pulse potentiation is dependent.
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Figure1.6:PI3Kinaseinteractionsatthesynapse:PI3kinaseshaveavastdiversityoffunctiontheyinteractwithPKB(Bondevaetal.,1998;Cantrell, 2001)andeffectAMPAreceptortrafficking(Sannaetah,2002;Manetah,2003),furthermediateupstreamsignallingviaPDK1toPKC(Chouetah, 1998)withcytoskeletalproteins(Maetah,1998;Ditlevsenetah,2003)andhigherorderkinases(Bondevaetah,1998;DuandMontminy,1998; VanhaesebroeckandAlessi,2000;Perkintonetah,2002;Wangetah,2003)andreceptors.(Steinberg,2001;Rongetah,2003). 31



Chapter Two:

Materials and Methods



2.1: Experimental animals
Animals used in these studies were male Wistar rat pups aged between post natal day 7

and 11 (P7-P11) all pups used weighed between 20-30 grams, with the breeding stock being
obtained from the supplier, (Charles River). The breeding adults were maintained on a 12 hour

light/12 hour dark cycle and given food and water ad libitum.

2.2: Preparation of acute slices for organotypic slice culture

Organotypic slice cultures used in this research were an extension of the traditional
acute slice preparation (Edwards et al 1989; Gibb & Edwards 1994). Acute slices were prepared
from juvenile male Wistar rats (P7-P11). The animals were decapitated using surgical shears

(Solingen 92008. Germany), the skin and fur layer was removed, using surgical scissors (FST
14003-12. Germany) to reveal the skull cap. The initial incision made with flexing surgical
scissors (FST 15372-62. Germany) at the foramen magnum and the mid line of the skull cap

sectioned; additional incisions were made at 45° angle at the front portion of skull cap junction,

and rostral incisions (again 45°) at the cerebellum hindbrain junction of the skull cap.

Following incisions the skull cap was pealed back using curved surgical forceps (FST
11003-12. Germany) to reveal the underlying brain. The brain was then levered out from the
skull plate, starting in the forebrain domain, using a curved surgical spatula (FST10093-13.

Germany). The brain was then immersed in an ice cold artificial cerebrospinal fluid (aCSF,

Figure: 2.4). This cutting aCSF is continually gassed with 95% 02/ 5% C02 (BOC gas, UK).
The brain was then placed on an ice cold sectioning table for dissection (See Figure 2.1)

The cerebellum was removed at the hind brain junction and discarded (cut 1.), the forebrain was

also removed to form a block of brain tissue (2.). The brain was then hemi-sectioned along the
mid line (5.) and the base of the brain removed to form a smooth fixing surface (3. & 4.).

The tissue blocks containing each hippocampi were then mounted, using an

cyanoacrylate based glue, against a 5% agar block, in a purpose-made cutting chamber (See

Figure 2.1b). The cutting chamber is then mounted onto a Vibratome 1000 Plus tissue slicer

(Campden Instruments, Loughborough UK) and slices cut at 250 pm using Valet auto strop

blades (World Precision Instruments, Inc). The tissue blocks when being sliced were submerged
in an ice cold slush aCSF solution gassed with 95% 02/ 5% C02 (BOC gas. UK).

Cut slices were transferred to a 60mm Petri dish (Sterilin. UK Bs611), containing ice

cold, gassed cutting Ringer in a slush solution. The hippocampus was then dissected out using
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10a scalpel blade (Swann Morton Ltd) or a dissecting micro knife (FST 10055-12 Germany) and
a flat spatula (FST 10094-13 Germany). Dissected hippocampi were then transferred to the

organotypic culture system.

Figure 2.1: Sectioning procedure for removal of the hippocampus. Firstly, the forebrain and
the cerebellum were removed (Cut 1. & 2.). The brain was then sectioned along the midline

creating two blocks (Cut 5.). Then the blocks were smoothed (Cut3. & 4.) to allow for

mounting in the holding chamber, with this as the basal surface.

(B.) Vibratome tissue slicing chamber. This picture shows the mounting chamber for the

production of acute slices. Commencing with the Valet microtome blade (1.) progress though
the brain blocks, which were mounted against a 5% agar block (2.). (3.) Indicating the outline of
the tissue holder which is fdled with ice cold slush solution when preparing slices. This small

holding chamber is then mounted in a larger ice fdled for slicing (4.). (5.) Represents the
chamber clamp (6.) the air perfusion system, (7.) optics.
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2.3 Culture system for organotypic slices.

Organotypic slices were prepared according to a slightly modified method described by

Stoppini et al (1991). Each culture system comprises one 35 mm petri dish (NunclonTm: Cat no:
153066) with a 0.4 pm Millipore cell culture insert (PICMORG50). The insert was immersed
with 1 ml of organotypic cell culture media (See 2.6a). These petri dishes were then placed in a

Galaxy R C02 incubator (Scientific Laboratory Suppliers (SLS) and incubated at 37°C in 95%
air 5% C02 for 20 minutes.

After incubation period, under sterile conditions in a Class 2 flow cabinet (uniMAT Class 2

Microbiological Safety Cabinet), the hippocampi were transferred to the Millipore cell culture

inserts, using two purpose made glass tools (see preparation of glass ware). The hippocampi
were lifted from the ice cold gassed aCSF solution in a drop of solution and placed onto the cell
culture insert. The second action was to use a fine fire polished glass suction pipette to remove

excess solution encasing the hippocampi, leaving only the hippocampi on the insert membrane.
Two to three hippocampi were placed per petri dish.

The organotypic cell culture media was replaced three times per week, (De Simoni et al.,

2003). This method involves the removal of the residual media using a Gilson 1000pi manual

pipette, with a lOOOpl filter pipette tip (Rainir). Fresh pre-incubated (20 minutes at 37°C)

organotypic cell culture media (500pl) was then added to the petri dish between dish wall and
filter housing, not directly to the filter membrane. The organotypic slices were kept in the
incubator at 37°C 95% air / 5% C02 for seven days before being used for recording.

2.4: Preparation of experimental glass ware

2.4a: Transfer pipette for organotypic slice culture
The preparation of the glass (Volac: ref D812) for the transfer pipette, involved the

removal of the pipette nozzle at the base of the shank. This was achieved using a diamond knife
and snapping the glass. This rough end was then fire polished to a smooth edge, ensuring a

reduced aperture, so application of a small volume of aCSF containing a single suspended

hippocampal slice, to the cell culture insert was possible. These glass pipettes were pre-made
and stored in 100% ethanol (Fisher scientific Ltd. UK), and used once per culture set, to

minimise cross contamination.
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2.4b: Angled suction pipette for organotypic slice culture
The angled suction pipette was fabricated from Volac glass (ref D812). The aperture of

the pipette was reduced using the ethanol burner, and an approximate 35 degree bend put in the

glass approximately 2.5 cm from the tip of the pipette. Again, these pipettes were pre-made,

single use and stored in 100% ethanol (Fisher scientific Ltd. UK).

Angled suction pipette

Transfer Pipette

Figure 2.2: Suction pipettes for slice transfer: Glass pipettes used to transfer acute slices to the
filter membranes for culturing. Using the transfer pipette only a small volume of culturing
medium is transferred to the filter membrane, this is then easily removed using the small

aperture angled suction pipette.

2.5: Preparation of recording electrodes.
Glass electrodes for whole-cell patch electrodes were made from a thick walled

borosilicate glass (Flarvard Apparatus, GC150F-7.5) with glass dimensions of 1.5mm O.D x

0.86mm I.D and containing a filament. The glass was mounted onto a Flaming Brown

Micropipette Puller (Model 97; Sutter instruments Co. USA) and pulled with respect to the ramp

value of the glass, into a patch electrode. The pulled shank of patch electrodes were further
treated with heat cured Sylgard 184 (Dow Corning GmbH. USA), in order to reduce the noise
level of the recording. The electrode tips were then fire polished using a Narishige - Microforge

(MF-830. Japan) to the required resistance; between 5 and 10 MQ for patch electrophysiology.
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2.6: Organotypic cell culture and electrophysiological recording solutions

2.6a: Organotypic culture media

Preparation of this solution requires the sterile filtering of a series of solutions, including
MEM (Eagle's) solution, Hank's balanced salt solution (HBSS) and Horse Serum (Figure 2.3)
all ofwhich were accurately measured and dispensed using Sterilin 25ml pipettes (40125). This
final mixture was filtered using a Nalgene Filter Unit (218795-2) with a 50 mm membrane
diameter and a 0.2pm pore size and was stored at 4°C

Figure 2.3: Components of organotypic cell culture media

Organotypic cell culture media Volume Catalogue Number

MEM (Eagle) + 25mM HEPES,
with Earles Salt solution without L-Glutamine

100 mis 23360-026

Hank's Balanced Salts (HBSS) 50 mis 24020-091

Horse Serum - Heat Inactivated 50mls 26050-088

Penicillin/ Streptomycin (5000/5000) 1ml 15140-122

L-Glutamine xlOO (200mM) 0.5mls 25030-032

2.6b: Slice cutting solution
This solution composition as described in Misra et al. (2000), has a low calcium and

high magnesium concentration to protect the cells of the organotypic slice, from excitatory cell
death produced by NMDA receptor activation due to an increase in free glutamate because of the

slicing process. This solution was made to 1000 mis in volume, pH adjusted to 7.4 and the

osmolarity ranged between 300-310 mOsm. This solution was continually gassed with 95% 02/
5% C02 (See table: Cutting and external recording solutions).

36



2.6c: External recording solution
This solution from Wyllie & Nicoll (1994) has the calcium/ magnesium concentration

reversed, in order to promote mEPSC generation. This solution contains tetrodotoxin (300 nM)
and picrotoxin (50 pM) to block the effects of excitatory voltage gated sodium channel

dependent action potentials, and inhibitory GABA receptors dependent currents. Again this
solution was made to 1000 mis in volume, pH adjusted to 7.4 and osmolarity of between 300-
310 mOsm. This solution was continually gassed with 95% 02/ 5% C02. This external solution

was applied at a flow rate of 4 mis per minute, and at room temperature (22-25°C). This
solution was modified by the inclusion of various drug components (See Figure: 2.4).

Figure 2.4: Components of external recording solution

Slice External
Solution Cutting recording Source

Reference Molecular

Components Solution

(mM)
Solution

(mM)
Number Weight

Sodium Chloride

(NaCl)
125 119

Fisher
Chemicals.

UK
s/3160/60 58.44

Sodium Hydrogen Fisher
Carbonate 26 26.2 Chemicals. s/4240/53 84.01

(NaHCOj) UK

Fisher
Glucose 25 25 Chemicals.

UK
g/0500/53 180.16

Potassium
Chloride (KC1)

2.5 2.5
Fisher

Chemicals.
UK

p/4280/53 74.56

Sodium

dihydrogen Fisher

orthophosphate 1.25 1 Chemicals. s/3760/53 156.01

dihydrate UK

(NaH2P04)
Calcium Chloride

(CaCl2
1 4

BDH - Anala
R

190464K 110.98

Magnesium
Chloride

4 Fluka 378/041 95.21

Magnesium Fisher

Sulphate 1.3 Chemicals. m/1050/53 246.48

(Mg2S04) UK
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Figure 2.4a: Toxin components of external recording solution.

Slice External
Solution Cutting recording Source

Reference Molecular

Components Solution

(mM)
Solution

(mM)
Number Weight

Tetrodotoxin 300 nM
Tocris

Cookson Ltd
1069 319.27

Picrotoxin 50pM
Tocris

Cookson Ltd
1128 602.00

Figure 2.5: Experimental inhibitors used

Reference:
Drug/toxin Concentration Source

number
Molecular weight

CNQX 20 pM Tocris 1045 303.14

D-AP5 30pM Tocris 0106 197.13

Nifedipine 10 pM
Sigma
Aldrich

N 7634 346.3

Thapsigargin 10 pM Tocris 1138 650.75

Ryanodine 10 pM
Sigma
Aldrich

R 6017 494.6

LY 294002 5 pM
Sigma
Aldrich

L-9908 343.81

LY 303511 5 pM
Sigma
Aldrich

L-2786 379.3

Wortmannin 100 nM
Sigma
Aldrich

W 1628 428.4

CNQX: 6- Cyano-7-nitroquinoxaline-2,3- dione
D-AP5: 2-Amino-5-phosphonopentanoic acid
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Figure 2.6 Structure of inhibitors
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(NEM) N-ethylmaleimide (BAPTA) 1,2-bis(o-aminophenoxy) ethane N,N,N,N- tetraacetic acid

(CNQX) 6-cyano-7 nitroquinoxaline-2,3-dione (APV) 2-amino-5-phosphonopentanoic acid.
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2.7: Pipette recording solution,
The internal recording solution, used was an ATP-based regenerating solution found in

Wyllie & Nicoll (1994). They found that the use of this regenerating internal solution increased
the time period through which mEPSC could be recorded, secondly that its use increased the

ability to induce VPP (90% of cells). The use of the regenerating solution, did not affect the

amplitude of the kinetics mEPSC recorded (See Figure 2.7).
This solution was then further modified by the inclusion of various drugs/toxins (Figure

2.8). Through inclusion in the internal solution, the application of these drugs was

compartmentalised to the postsynaptic cell, therefore these drugs will only affecting postsynaptic
internal signalling events. Furthermore in the following table (Figure 2.9) shows the amino acid

composition for all peptides used. All internal solutions used in these experiments were pH to

7.4 and had an osmolarity of between 280 -295 mOsm determined in all cases by a freezing

point osmometer (Advanced osmometer: Model 3D3, Advanced Instruments Inc).

Figure 2.7: Pipette solution composition

Solution Component
Concentration

(mM)
Source

Reference
Number

Molecular

Weight
Cesium Gluconate 105 Sigma-aldrich G-1139 346.41

Cesium Chloride 17.5 Anala Biochemical 10067 168.36

Cesium HEPES 10 Sigma- Aldrich H3375 238.3

EGTA 0.2 Fluka 03778 380.35

Sodium Chloride

(NaCl)
8

Fisher Chemicals.
UK

s/3160/60 58.44

Mg-ATP 2 Sigma- Aldrich A-9187 507.2

Na2- ATP 2 Sigma- Aldrich A-7699 551.1

Na3-GTP 0.3 Fluka 51123 589.13

Phosphocreatine 20 Sigma- Aldrich P-7936 255.1

Creatine

Phosphokinase
50U/ml Sigma- Aldrich C-3755
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Figure 2.8: Inhibitors added to internal solutions

Internal toxin/drug Concentration Source
Reference
Number

Molecular

Weight
N-ethylmaleimide

(NEM)
5 mM Sigma- Aldrich 02460 125.13

Botulinum Toxin A

(BoTox)
10 ng/ml Sigma- Aldrich B8776

Pep2m 50 pM Tocris Cookson 1595 1173.44

Pep4c 50 pM Tocris Cookson 1596 1146.42

Pep2m-AVKI 50 pM Tocris Cookson 1600 1268.47

Pep-TGL 50 pM Tocris Cookson 1601 990.14

Final Botulinum Toxin A is made up from a stock solution of lmg/ml.

Figure 2.9: Peptide inhibitor amino acid composition.

Peptide AA1 AA2 AA3 AA4 AA5 AA6 AA7 AA8 AA9 AA10 AA11

Pep2m Lys Arg Met Lys Val Ala Lys Asn Ala Gin

Pep4c Lys Arg Met Lys Val Ala Lys Ser Ala Gin

Pep2m-
AVKI

Tyr Asn Val Tyr Gly lie Glu Ala Val Lys He

Pepl-
TGL

Ser Ser Gly Met Pro Leu Gly Ala Thr Gly Leu

Peptide reference. Ala: Alanine. Lys: Lysine. Met: Methionine. Val: Valine. Asn:

Asparagine. Gly: Glycine. Pro: Proline. lie: Isoleucine. Leu: Leucine. Tyr: Tyrosine. Ser:
Serine.
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2.8: Electrophysiology
All recordings were conducted in a purpose built Faraday cage (Technical

Manufacturing Corporation (TMC) with the recording equipment mounted on a pressurised air
table (TMC. Micro-g Vibration isolation system), to reduce the ambient noise and vibration
which is a major problem with this experimental technique. Organotypic hippocampal slices
were first visualised using 4x optic lens (Olympus. Japan Plan 4 x /0.10 oo/-) then a higher

magnification lens using Normanski optics to visualise the cells (Acroplan. Carl Zeiss Germany
water immersion 40x /0.98w Ph2 oo/-). All imaging was done using an Axioskop FS microscope

(Carl Zeiss. Germany), mounted on a Gibraltar platforms X-Y stage. Whole-cell patch-clamp

recordings were then made from visualised CA1 pyramidal cells. The backfilled borosilicate

glass patch electrodes were mounted on a head stage (Axon instruments; CV4 head stage) which
was fixed to a micromanipulator (Sutter instrument company, MP-285) in order to allow the
movement of the electrode, which was aligned to the microscope by mounting on a Gibraltar
static table (Gibraltar Platforms, Burleigh). After breakthrough from the cell-attached

configuration to the whole-cell configuration, the pyramidal neurons were clamped at -80mV by
an Axopatch ID amplifier. (See Figure 2.10 for recording rig set up).

Perfusion of the organotypic slices was achieved by gravity feed system at a rate of 4
mis / min into a holding chamber with a volume of approximately 2 mis. Suction occurs at a

similar rate to allowing for a circulation of the recording solution in the holding chamber at

almost a constant volume.

The general recording parameters used to determine suitable cells, included any CA1

pyramidal cell with a holding current under -100 pA, when voltage clamped at -80 mV. In
addition these cells must further have a series resistance less than 20 MQ and this series

resistance must not vary by more than 15 % of the original value during the entire recording

period which was typically 30-40 minutes.

2.9: Stimulating protocol.

The voltage pulse stimulating protocol, described by Wyllie and Nicoll (1994), involves
a depolarising voltage step of +100 mV (typically from the holding potential of -80 mV to +20

mV). Each pulse lasted for three seconds with an interpulse interval of three seconds. Within
this experimental paradigm, 10 pulses were applied to each neurone in whole-cell voltage-clamp.
The generation of the +100 mV pulse was done via the Gate setting on the Axopatch ID. The
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signal generation for the timing of these pulses is programmed and executed through a Master 8,

(Intracel. Eight channel programme pulse generator).

2.10: Filtering of miniature synaptic currents
The whole-cell currents recorded were visualised on an oscilloscope (Teckronix

TDS210) and recorded on computer hard disk via an interface board using, WinEDR 6.1 data

capture software by Dr John Dempster, Department of Physiology, and Pharmacology,

University of Strathclyde (http://innovol.sibs.strath.ac.uk/phvspharm/ses.html). All mEPSC
viewed were initially sampled at 20 kHz on to DAT tape (120 min) for storage, using a SONY

digital tape recorder (DTR-1205). mEPSCs were then analysed off line; currents were replayed
from the tape with a 2 kHz fdter using an 8th order low pass bessel fdter (University College

London), then digitized at 10 kHz with the WinEDR capture software. This .EDR fde was then
converted with a utility function to an .ABF fde (ABF utility. Minianalysis, Synaptosoft) and
transferred to a DVD for long term storage.

2.11: Selection and analysis of miniature synaptic currents
.ABF was the file format which allows for the digitised mEPSC trace to be analysed

with Mini analysis software (Justin Lee. http://www.synaptosoft.com/MiniAnalysis/). This
software employs a semi automated detection procedure. mEPSCs were detected by eye and

displayed using an event threshold of 3 pA. The rejection protocol focused on the initial

parameters of the data derived by mini analysis: any mEPSC with a time to rise greater than 5
ms was discarded (Figure 2.11).

mEPSCs were further analysed for peak amplitude, rise and decay time constants (single

decay exponential) using a template fit algorithm written in the Synaptosoft mini analysis
software. Selection parameters for the mEPSCs were not as stringent as those used by Smith et

ah, (2003) for two main reasons. Firstly they discarded any event with a rise time constant over

400 ps as these mEPSCs did not arise from local sites. I did not adopt this approach since

theoretically VP potentiation produces a global potentiation of mEPSC amplitudes from events

all over the patched pyramidal cell. The Smith-Magee selection would restrict VP potentiation
to local sites thereby restricting the global effect ofVP phenomena.

The second reason is possible dendritic filtering of mEPSCs, if filtering occurs with
distal mEPSC then the rise and decay times will be significantly slower than those events arising
at local synapses, and these events would be excluded from the study. Although dendritic filter
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shaping of the mEPSCs occurs, this phenomenon is counterbalanced by the idea that the further

away from the soma the site of activation is, the greater the synaptic conductance of the synapses

found there producing bigger events (Magee and Cook, 2000).

2.12: Protocol for graphing and statistical analysis
The total data produced from each recording is further analysed using Microsoft® Excel

2003. The first step with data analysis was to calculate the average amplitude for the control

period, the standard deviation, and standard error of the mean. Early in this study, substantial

variability in the base line average values for amplitude, frequency, and total current output of
each individual cell was noted. To account for this variability each data point in the pre and post

manipulation period, was normalised against the control average. Therefore, each event is

represented by its relationship to the control average. Events were then grouped into 30 second

bins, and an average taken. These average values were then graphed using Microcal ™ Origin ®
Version 6. Data when appropriate will be presented as mean ± S.E.M. Graphical representation
of mean data traces for mEPSC amplitude, frequency were shown by scatter plots with error

bars. Further plots including cumulative probability and amplitude histograms, were used as

they display any small differences in mEPSC amplitudes following either VP stimulation or

inhibitor application. Representations of typical mEPSCs were a mean average of 100 events

from each representative experimental period shown for comparison.
All statistical analysis was conducted using Sigma Stat version3, the statistical

significance between data groups was determined using the Mann/ Whitney U test. Due to the
data originating from spontaneous release of vesicles, these events indicate a non-parametic

alignment (skewed distribution) further shown by a failure to pass a normality test that indicates
a normally distributed data set typical of a Gaussian distribution.

Amplitudes of VP potentiated mEPSCs display a rightward shift, from the skewed distribution
of the control events, highlighting a large probability of large amplitude events. Testing the shift
in mEPSC amplitudes distribution was conducted using the Kolmogorov - Smimov test, to

evaluate changes in the distribution of potentiated and non-potentiated event histograms.
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Figure 2.10: Setup of electrophysiology recording rig: The recording apparatus is mounted on

a pressurised air table (7.) contained within a faraday cage, used to reduce both vibrational and
electrical noise. A gravity feed system (1.) is used to perfuse the slice cultures, when placed in a

holding chamber attached to a static Gibraltar table (4.). A Zeiss Axioskop microscope (2.) was
used to view the cells in the culture system, movement of the microscope was controlled via a

Gibraltar micromanipulator table (6.). Movement of the recording electrode (3.) was controlled

using a Sutter micromanipulator (5.). Finally, a copper mesh shield (8.) was placed in front of
the recording electrodes again to reduce noise.
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Figure 2.11: Selection criteria for mEPSCs: The amplitude of any mEPSC was calculated from

analysis of the previous 12.5 ms to find the base line value and then calculate the peak amplitude
of the mEPSC. Rejection of the mEPSC events occurred if the initial time to rise (period
indicated between two dotted lines) was greater than 5 ms, further indicated is the time period
selected in which the mEPSC must decay back to baseline. (B.) mEPSC with single exponential

decay fit, showing expression used to characterise this decay, (x) time decay to baseline (A)

amplitude (x) decay time constant.
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Chapter Three:

Characterisation of the voltage-pulse

potentiation of mEPSC amplitudes



3.1: Summary
This chapter describes experiments that evaluated rat organotypic slices for

electrophysiological recording and characterises the voltage-pulse stimulating protocol as a

system to understand the mechanisms of LTP-like plasticity in the CA1 region of the
hippocampus.

3.2: Spontaneous event recording
The first set of experiments, were conducted to characterise typical spontaneous

whole-cell currents from patch-clamped CA1 pyramidal cells, in which three current types

are typically observed. The first of these are large spontaneous undamped currents (Fig 3.1)
which result from action potentials in these pyramidal cells and I will refer to these as

"action currents". The second are very large currents, which result from the loss of all
GABAergic inhibition, and are seen in the presence of PTX. The third are TTX insensitive
currents called miniature postsynaptic currents. These small currents can be either excitatory
i.e. miniature excitatory post synaptic currents (mEPSCs) or inhibitory (mlPSCs).

To resolve a neuronal form of what Sir Bernard Katz (1950) described as

spontaneous miniature end plate potentials (mEPPs), voltage-clamped whole-cell current

recordings were made from CA1 pyramidal cells in organotypic hippocampal slices which
were incubated with both picrotoxin (PTX: 50 pM) and tetrodotoxin (TTX: 300 nM).
Miniature excitatory postsynaptic currents (mEPSCs), are events which are insensitive to

tetrodotoxin, and therefore arise from the release of single packets of neurotransmitter
released from the presynaptic nerve terminal, acting on membrane bound postsynaptic
receptors. In the case of CA1 pyramidal cells previous investigators have shown that under
these conditions AMPA receptors mediate the resulting synaptic currents and recordings of
mEPSCs will give a direct measure ofAMPA receptor function in CA1 pyramidal cells.

3.3: Spontaneous events
These initial recordings were conducted to ensure that the organotypic slices had

remained a viable preparation through the culturing process. In the absence of TTX, whole-
cell spontaneous currents (Figure 3.1a) display a fast rising phase and decay phase.

Andrasfalvy & Magee (2004) indicate that these spontaneous events are the result of action

potentials from the pyramidal cells when the cell is held in voltage clamp (Figure 3.1a).
When switching to current clamp in the same cell at a more depolarised membrane potential
(-40mV) the action potentials are evident (Figure 3.1b). Analysis of 50 spontaneous events,

show a mean event with a large amplitude (Figure 3.2: 368.1 ± 26.7 pA).
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Application of picrotoxin (Figure 3.1c) to the whole-cell patch clamped CA1
pyramidal cell inhibits both the GABAa receptors (Davies and Collingridge, 1996) and
therefore the inhibitory GABAergic currents from interneurones synapsing onto the

pyramidal cell. The physiological consequence of the loss of GABAergic inhibition are

spontaneous events which have large amplitudes and slow decay phases. The mean analysis
of 50 events shows a doubling of the amplitude of the spontaneous events (934.2 ±14.1 pA).
The purpose was to characterize the effects of the loss of GABAergic component on these

spontaneous events, the explanation is drawn from the Nemst equation, which describes the
membrane reversal potential of chloride (or any ion) as a relationship between the cytosolic
and extra cellular chloride concentrations.

Nernst Equation determinants: ECi = equilibrium potential for CI", R = gas constant, T =

absolute temperature, F = Faraday constant. ZCi = valence of CI" (-1) [Cl0~] = CI"
concentration outside the cell [Clf] = CI" concentration inside the cell.

In these experiments, the internal/ external CI" concentrations were 25 mM and 140
mM respectively. This represents an equilibrium potential of about - 40 mV. As we employ
a voltage clamp of -80mV, these GABAergic currents are inward in nature acting to return

the cell potential from this voltage clamped level of -80 mV back towards the reversal

potential at -40 mV.
The viability of the cells is compromised with this loss of inhibition, therefore the

next experimental step was application of TTX which has a well characterized action
(Mosher, 1986). When used in the peripheral nerves in the neuromuscular junction

preparation, the application of TTX blocks action potential-dependent presynaptic vesicle
release, by inhibition of axonal transmission of nerve impulses as the toxin inhibits the

opening of sodium channels (Na+) at the Nodes of Ranvier. When applied to this system

TTX has two actions, the first is the blockade of the neuronal action potential, and the
second is the inhibition of inhibitory GABAergic interneurones. The net result of applying
both toxins is that all action potential evoked synaptic transmission is blocked and only

spontaneously released vesicles, as Katz described as single packets of neurotransmitter
remain, acting on the postsynaptic receptors generating the miniature excitatory
postsynaptic currents (Figure 3.1d.e).

RT Cl0-
In

CI,"
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Figure 3.1 A: Whole-cell voltage-clamped spontaneous events. Trace of spontaneous
events from whole-cell patched CA1 pyramidal cell at -80 mV. Figure (B.) Whole-cell
current clamped action potentials. When in current clamp action potentials underlie the
spontaneous events. (C.): Application of Picrotoxin (50 pM). PTX removes all

GABAergic inhibition and increases EPSC activity. (D.) Application of Tetrodotoxin. The

application of TTX 300 nM abolishes all visible currents. (E.): TTX insensitive events.

Increasing the gain function from 5 mV/pA to 50 mV/pA allows for the visualisation of
mEPSC events.
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100 pA

500 ms

Figure 3.2: Examples of single spontaneous events. (A.) Typical spontaneous events,

likely to be the result of an undamped action potential: (B.) Mean spontaneous event trace,

the average of 50 spontaneous events (C.) mean trace ofPTX insensitive events, highlighting

larger slower events following the loss ofGABAergic inhibition.
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3.4: mEPSC recording.
After resolution of mEPSCs from the hippocampal CA1 pyramidal cells,

characterisation of stable baseline recordings were conducted to evaluate the typical
characteristics of mEPSCs in the rat organotypic hippocampal slice. In this thesis changes in
mEPSC amplitudes were used as an indirect measure of AMPA receptor insertion and any

functional alteration of these receptors in active synapses.

Eight experimental recordings from individual cells were taken and analysed for

changes in mEPSC amplitude over the time course of the experiment (Figure 3.3A).

Recordings indicated no significant difference in mEPSC amplitudes across the 30 minute
time period, the mean amplitude of these mEPSC was 20.6 ± 1.7 pA (n = 8), with a range of
mean amplitudes from 15.4 ± 2.0 to 27.2 ± 2.4 pA. What was obvious from these initial

recordings was the degree of variability of the mean amplitude and frequencies of the
mEPSCs between cells. Therefore, all data are normalised with respect to the mean control
mEPSC value (Section 2.11).

Analysis of a typical single cell recording with a mean mEPSC amplitude of 21.3 ±
0.3 pA and showed the same trend as the grouped amplitude time course again with no

significant deviation from the normalised value. The stable mEPSC amplitude baseline
indicates that this system has either a stable surface expression of AMPA receptors or if
turnover of the AMPA receptors is facilitating this stability then the population of receptors

being removed is almost identical to the population being inserted, or a change in mEPSC

amplitude would be evident.

Figure 3.3B shows a scatter plot of the amplitudes of control mEPSCs and highlights
the degree of variability of mEPSC amplitudes which contribute to the mean mEPSC

amplitude value at each time point. This difference is not unusual, but reflects the fact that
the total output from each individual cell, will differ due to the factors which underlie
mEPSC events. Factors which generally underlie mEPSC event amplitude include the

dependency upon receptor number at the active synapse, the sensitivity of these receptors to
neurotransmitter. Presynaptic effectors include changes in detection rate due to the low

probability of vesicle release, in combination with the concentration of L-glutamate
contained within these vesicles. Silent synapse activation, which is a postsynaptic

expression of a frequency change, must also be considered.
Further analysis of the single cell recording gives the cumulative probability plot

(Figure 3.3C); this graph indicates the probability of events having a specific amplitude.
What is indicated is that the 50 % probability for this cell is about 15 pA and the 80 %

probability is 20 pA. This data is reinforced with the amplitude event histogram which
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indicated a typical leftward skewed distribution and features that the majority of events will
be found in the range from 15 to 20 pA. Any change in mEPSC amplitude caused by
stimulus or by ligand application can be easily shown with sort of analysis.

Figure 3.4A, shows a typical control mEPSCs Raster plot, all events are about 25 pA
in amplitude and display the spontaneous nature of these events, showing no distinct

temporal pattern. Analysis of 500 mEPSCs from a control recording indicates events with
mean amplitude of 19.7 ± 0.4 pA, this average event has a typical rise time of 1.2 ± 0.1 ms

and a single exponential fit of the decay phase shows a x decay of 16.7 ± 0.2 ms.

Frequency changes with the mEPSC have traditionally been linked to presynaptic
mechanisms for LTP, with the proviso of a postsynaptic mechanism for frequency change.
In these experiments, the mean control frequency was 1.5 ± 0.3 Hz with a range of 0.5 Hz to

2.3 Hz. Over the time course, this control frequency reduced to 1.2 ± 0.3 by 20 minutes

(Figure 3.5A).
This reduction in mEPSC frequency, but not mEPSC amplitude is indicative of the

dialysation of the cell cytoplasm, as whole-cell patch configuration allows the internal
solution direct access to the cells cytoplasm, allowing for a reduction in the cellular

components necessary for cell function. This finding limits the maximum recording period
for each experimental series to approximately 30 minutes.

Due to this change in mEPSC frequency, the total current produced by the cell for
each time bin is a measure of cell function, as a means of drawing any comparison between

changes in mEPSC amplitudes and frequencies. The mean current output for these cells 1.2
± 0.2 nA, with a range from 0.7 ±0.1 nA to 2.6 nA ± 0.1 nA (Figure 3.5B). Total current

output for these cells across the time course mirrors the frequency change, as by 20 minutes
the mEPSC current produced had reduced to 0.9 ± 0.25 nA.

All recorded events were compared for factor dependence of the mEPSC, by rating
the r2 value of each determining factor against the event amplitude (rise time, decay time).
The amplitude of any event was shown to be independent of both the time to rise and the
time to decay period (Figure 3.6).
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Figure 3.3A: Time course for control mEPSCs amplitudes. Over the 30 minute time

period there is no significant deviation from the mean amplitude of 20.55 ± 1.67 pA. (B.)

Amplitude scatter plot. Scatter ofmEPSC amplitudes across the thirty minute period. (C.)
Cumulative Probability. Typical left ward skewed distribution showing a low probability
of large amplitude events. (D.) Amplitude histogram. Again, a left ward skewed
distribution, showing a predominance of small amplitude events
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25 pA

3.4A: Raster plot for control mEPSCs. This figure highlights the differences in mEPSC

frequency, and small changes in mEPSC amplitude, which occur over the 30 minute time

period. (B.) Typical averaged control mEPSC, from analysis of 100 mEPSCs shows low
amplitude and a fast rise and decay time (C.) Control averaged mEPSC with exponential

decay fit (in red).
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3.5: Voltage pulse potentiation

Long term potentiation of excitatory synaptic transmission between the synapses of
the CA3 and CA1 pyramidal cells via the Schaffer Collateral/Commissural (SCC) fibers, is a

long debated and researched area as well as being a well known model for certain forms of

learning and memory. Conventional stimulating protocols require activation of SCC fibers,
to induce the most commonly studied form of LTP. LTP is known to be dependent upon a

rise in the postsynaptic calcium concentration and dependent upon NMDA receptor

activation in the CA1 pyramidal cell. These trigger cellular events which activate
intracellular protein cascades, and enhance the transmitted signal.

Early LTP is an enhancement of synaptic efficacy mediated by AMPA receptor

synaptic transmission, as changes in receptor number, distribution, and function in the spines
of these cells are mechanisms by which the functional increase in synaptic strength in LTP
can be explained. Here we use a modified version of the voltage-pulse stimulating protocol,
first used by Kullmann et al (1994), and then later adopted by Wyllie & Nicoll (1994). The
later research showed transient but significant increases in mEPSC amplitude (2.5 fold),
which could be converted into a sustained potentiation by the addition of phosphatase

inhibitors, a second finding which accompanies the amplitude change is a non significant
increase in mEPSC event frequency. This work was conducted on CA1 pyramidal cells in
acute guinea pig slices, not the traditional rat brain slices. The stimulating protocol revolves
around a series of depolarizing voltage pulses; a +100mV step which lasts for 3 seconds at a

frequency of 0.2 Hz, applied for a duration of 120 seconds. Use of organotypic slices

required a modification of the stimulating protocol due to the thinner slice. The parameters

of this stimulating protocol were reduced to a +100mV depolarizing step lasting 3 seconds
with a 3 second interval, and applied for only 60 seconds. The main outcome of this

protocol is the generation of a sustainable potentiation of mEPSC amplitudes, with no

significant increase in event frequency, when compared to the control period.

3.6: Application of voltage pulse potentiation to mEPSCs
Whole-cell voltage clamp were used to examine the potentiation of miniature

excitatory whole-cell postsynaptic currents (mEPSC) in CA1 pyramidal cells by the voltage

pulse technique. The potential of the VP stimulating technique for dissection of postsynaptic
function is immense. A traditional LTP stimulation protocol requires a stimulating electrode

placed distally in the stratum radiatum to stimulate the Schaffer collateral commissural

(SCC) pathway. Stimulating through this electrode requires a high presynaptic release of
vesicles from a few synapses and modification of the postsynaptic membrane. If the voltage
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pulse protocol was applied in this manner, then conceivably only a small proportion of the
total number of synapse available would be stimulated. Any observable change in mEPSC

amplitudes brought about by modification of the postsynaptic membrane at these synapses,

could be lost due to combination with small non potentiated mEPSC events being generated
elsewhere in the pyramidal cell, and would not result in an observable potentiation of
mEPSC amplitudes. Switching the site of stimulation to the whole-cell voltage clamped

pyramidal cell, firstly removes the need for the stimulating electrode, so after the VPs only
the specific output of the cell was recorded. The second advantage is by stimulating through
the recording electrode, it is possible to induce a global calcium change through the cell, and

potentiate a far greater proportion of the total number of synapses present. The experimental

protocol for VP potentiation (Figure 3.8A) consists of recording a whole-cell current for a 5
minute period, then applying the depolarizing voltage pulse stimulus as described in methods
section. This resulted in a reliable sustainable potentiation of mEPSC amplitudes, (control
22.1 ± 0.9 pA: VP 46.1 ± 0.1 pA. n = 60) for the 35 minute time period (Figure 3.7A). A
characteristic of the VP potentiation protocol are spontaneous inward currents which further
investigation (shown later 3.8A) were shown to be found mediated by L-type voltage

dependent Ca2+ channels.

Figure 3.7B shows typical mEPSC traces from the control period and from around
the peak of the voltage pulse potentiation. Analysis of 50 events from both the control and
VP potentiated period (Figure 3.8B) indicated an increase the amplitude of the average

mEPSC event with VP stimulation (control 21.2 ± 0.1 pA: VP 45.2 ± 0.1 pA). VP has little
detectable effect on the mEPSC rise time (control 1.4 ± 0.1 ms: VP 1.4 ± 0.1 ms) or mEPSC

decay times (control 11.9 ±0.1 ms: VP 12.6 ±0.1 ms).
With this increase in mEPSC amplitudes, there is a corresponding non significant

transient increase in mEPSC frequency (control 1.6 ± 0.2: VP 1.9 ± 0.2 Hz. n = 60), prior to
the potentiation there appears to be a depolarisation-induced suppression of inhibition (DSI),

gained from a postsynaptically released endocannabinoid regulating presynaptic function.
This potentiated frequency then decays to 0.9 ±0.1 Hz by 30 minutes (Figure 3.9A).
Due to the degree of fluctuation with both the amplitude and frequency ofmEPSCs, the total
current output of the cell will give a true reflection to the degree of potentiation as it is

dependent upon both factors. This shows a significant but transient (20 min) increase in the
total current generated by the pyramidal cells (control 1.2 ± 0.1 nA; VP 3.1 ±0.6 nA. n =

60), while thirty minutes post VP potentiation the total current output returned to 1.3 ± 0.1
nA (Figure 3.9B).
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The single cell VP potentiation shows the same trend of mEPSC amplitude
potentiation, confirmed with the amplitude scatter plot, where potentiated mEPSCs show a

far greater range of amplitudes than is shown with the control mEPSCs. Investigation of
mEPSC amplitude probability showed a trend for the control mEPSC to have a high
probability of smaller amplitude events (80% probability equals 21.2 pA), while the 80 %

probability for the VP potentiated mEPSC equals 81.17 pA equivalent to a 3.8 fold change in
mEPSC amplitude (Figure 3.10.C). This change in amplitude probability is further

described, by a significant shift (KSV p < 0.01) in the amplitude distribution following VP
stimulation. The distribution trend for the control mEPSCs is a leftward skew, following
stimulation the events shift rightward toward a more bell shaped distribution. This
distributional shift indicates a higher occurrence of large amplitude mEPSCs in the

potentiated period (Figure 3.10.D).
The amplitudes and time course of the mEPSCs recorded may be subject to

distortion by dendritic filtering (Ulrich and Luscher, 1993; Pare et al., 1997; Smith et al.,

2003). The extent of filtering may depend on pyramidal cell structure, the distance from the
soma to the synapse at which the signal is generated, and the time course of the event.

Although the cable properties of the CA1 cells may influence the shape of the mEPSCs
recorded, it is unlikely that this accounts entirely for the range of mEPSC amplitudes
observed. Both control and potentiated mEPSCs showed little correlation between the rise
time and the decay time constant or amplitude for individual events. Furthermore there was

only poor correlation between the decay and amplitude of mEPSCs. This data suggest that
the variation in mEPSC amplitudes cannot be explained by dendritic filtering of events

generated at dendritic sites (Figure 3.11).
The mechanisms by which this potentiation of mEPSC amplitudes maybe achieved

are by alterations in the conductance of the receptors present in the synapses as shown by

(Benke et al., 1998) or via the insertion of new AMPA receptors into active synapses. This

process of receptor insertion requires postsynaptic membrane fusion events and is the focus
of the next chapter.
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Figure 3.7A: Voltage pulse potentiation of mEPSC amplitudes. Application of the

voltage pulses induces a significant increase in mEPSC amplitude over the 35 minute time
course. (B.) Raster plot for control and potentiated mEPSCs. Following potentiation
there is an obvious increase in mEPSC amplitudes.
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Figure 3.8A: Voltage Pulses. This picture highlights typical inward currents shown with VP
stimulation. (B.) mEPSC overlay analysis of 100 mEPSCs from the control period (1.) and
the VP potentiated (2.) period show a significant increase when overlaid (3.) with little

change in rise or decay times when mEPSC are scaled (4).
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Figure 3.10. Typical single cell mEPSC amplitude potentiation. (A.) Following VP
stimulation there is a sustainable potentiation (2 fold) of the mEPSC amplitudes. (B.)
mEPSC amplitude scatter plot highlighting the raw increase in mEPSC amplitudes. (C.)
Cumulative probability plot, following VP stimulation there is a significant increase in the

probability of large amplitude mEPSC, when compared with control. (D.) Amplitude

histogram of mEPSCs, the rightward shift for the VP mEPSCs suggests bigger mEPSCs
following the stimulus.
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Figure3.11:mEPSCeventsdisplaynocorrelationbetweenriseanddecaytimes.AmplitudesofcontrolmEPSCsshownocorrelationbetweenrisetimeofthe event(A.R2=0.0001)orxdecaytime(B.R2=0.0041)andnocorrelationbetweenriseanddecayx(C.R2=0.0047).FollowingVPpotentiationnocorrelationsare evidentbetweentheseparameters.
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3.7: VP potentiation- some interesting observations
The reliability of this stimulating protocol was the next question addressed.

Analysis of the average degree of potentiation for the 5 minute period following the
stimulus, showed the main potentiation levels to be between 75 and 100 % above the control

amplitude, with the skew of the distribution favoring greater degrees of potentiation.

Choquet & Triller., (2003), published the idea that synapses must have a maximum level for

receptor insertion, over which the synapse cannot accept more receptors and hence there
must be a limit on the amplitude potentiation of the mEPSC. Although the cumulative

probability data (Figure 3.10 C) suggests that this is not the case due to the largest events of
the VP potentiation period being much bigger than the largest event of the control period.
The idea that the degree of mEPSC potentiation could be dependent upon the mean

amplitude of the control mEPSC, as a reflection of the receptor number at the synapse is

important (Figure 3.12B). When this correlation of postsynaptic function, the mean

amplitude of the control period against the percentage potentiation form five minutes post

VP potentiation, was plotted it was shown that no relationship exists (R2 = 0.0126). The idea
that the degree of potentiation achievable is dependent upon initial frequency was also

investigated. The mean control frequency was plotted against the percentage potentiation,

again no correlation was found (Figure 3.12.C R2= 0.0006). There was also no correlation
between the mean amplitude and frequency showing complete independence of the VP

potentiation. In summary, the degree of VP potentiation of mEPSCs achieved is not

dependent upon the initial mean amplitude of the events or on the frequency of these events.
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Figure 3.12A: Spread of potentiation. This histogram indicated that the VP stimulation
resulted normally in a 100 % potentiation of the mEPSC amplitudes, with the trend to larger

degrees of potentiation with this stimulus. (B.) Correlation between degree of

potentiation and mean amplitude. The mean amplitude of the control mEPSCs are not a

factor in the size of the potentiation gained from the stimulus. (C.) Potentiation frequency
correlations. The mean control mEPSC frequency is not a determinant of the degree of

potentiation elicited by the VP stimulus. (D.) Amplitude, frequency correlations. There is
no correlation between mean control amplitudes and frequencies of the mEPSCs.
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3.8: Long lasting VP potentiation of mEPSC amplitudes
In previous experiments the VP stimulus induced a sustainable potentiation of

mEPSC amplitudes, but the time course in terms of LTP experimentation is short.

Increasing the experimental time course showed a reduction in the potentiated mEPSC

amplitudes. The difference between in the long term sustainability of VP potentiation and
NMDA receptor dependent LTP, may in fact be the activation of the NMDA receptor. Long
time period recordings in the organotypic slice preparation are technically difficult, due to

mechanistic problems of holding a cell in the whole-cell configuration, and the viability of
thin slices in a submerged chamber decreases over time. In a series of experiments VP

potentiation was recorded over a long time course of 45-50 minutes (Figure 3.13A: control
24.3 ±2.5 pA: VP 53.1 ± 1.8 pA: late VP (45 min): 37.1 ± 1.5 pA. n = 10).

With the potentiation of mEPSC amplitudes there is a corresponding decease in
event frequency (Figure 3.13B: control 1.6 ± 0.5 Hz: VP 1.2 ± 0.2 Hz: VP 45 min 0.7 ± 0.1

Hz) over the same time course. Current output for the same time course as above shown an

initial potentiation of the total current output, as the time period increases the degree of

potentiation reduces (Figure 3.13C: control 1.3 ± 0.35 nA: VP 2.2 ± 0.4 nA : VP 45 min 1.0
± 0.3 nA). Analysis of 100 events from equivalent time periods highlighted above show
mean amplitudes of (control 20.5 ± 1.9 pA: VP 53.6 ± 1.2 pA: Late VP 30.9± 0.6 pA). Rise
time data for the three time periods shows no significant change, (control 2.1 ± 0.3 ms: VP
2.1 ± 0.2 ms: late VP 2.0 ± 0.3 ms). The decay time constant show a small non significant
variation (control 13.7 ±1.4 ms: VP 15.7 ± 1.6 ms: late VP 16.7 ±1.7 ms) (Figure 3.14).
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Figure 3.13 Late phase VP potentiation. (A.) The amplitude time course shows typical

potentiation over the first thirty minutes of the experiment, and then the mean amplitude
decreases over the last 20 minutes. (B.) The mEPSC frequency shows a prominent DSI
current, and continues to decline over the experimental time course (C.) the total current

produced potentates following the VP stimulus, but then displays a similar parallel reduction

displayed with the frequency time course.
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Figure 3.14: mEPSC overlays for late VP potentiation. Analysis of 100 mEPSCs from the
control period (A.) and the VP potentiated (5-10 min) (B.) and late VP period (40-45) (C.)
show a significant increase when overlaid (D.) with the late VP mEPSC having a smaller

amplitude than the VP potentiated period.
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3.9: Pharmacological characterization of voltage pulse potentiation

Application of the voltage pulses induces sustainable potentiation of the mEPSC, but
in this system it is still unproven as to what factors contribute to this potentiation. Therefore,

receptor antagonists for the AMPA receptor, and NMDA receptor were used to determine
the receptor requirement for this potentiation ofmEPSC amplitudes.

3.10: Receptors required for mEPSCs
mEPSCs have long been known to be generated by the activation of AMPA

receptors in the postsynaptic membrane. Therefore, it was important to determine if these

receptors are responsible for mediating VP potentiation. In these experiment, control

recording were made and a significant potentiation of the mEPSC amplitude induced,

(Figure 3.15: control 13.0 ± 0.2 pA; VP 24.1 ± 1.6 pA n = 3). At the peak of the

potentiation, 5 minutes after the induction of VP stimulus, the AMPA receptor antagonist 6-

cyano-7-nitroquinoxaline-2, 3-dione (CNQX 20 pM) was bath applied. As expected the

application of this AMPA receptor antagonist quickly abolished all mEPSC events.
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Figure 3.15: CNQX blocks VP potentiation of mEPSC amplitudes. (A.) following

potentiation of mEPSC amplitude, CNQX (20 pM) was bath applied and this blocked all
mEPSC events. (B.) Histogram representing loss of potentiation with CNQX application.
(C.) Corresponding reduction in mEPSC frequency (D.) potentiation of mEPSC currents was

abolished with CNQX application.
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Figure 3.16: mEPSC raster plot for mEPSCs with CNQX (20 pM). Control mEPSC are

typically 15 pA, application of the VP stimulus induces a significant potentiation of mEPSC

amplitudes, while application of CNQX (20 pM) abolishes all events.
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3.11: Is Voltage Pulse potentiation dependent upon NMDA receptor activation?
If the mEPSC event potentiation induced by the voltage pulse stimulus, was to be

consistent with traditional LTP, there would have to be a dependency upon the activation of
the NMDA receptors present in the synapses to generate the increase in mEPSC amplitudes.
In these experiments, 2-amino-5-phosphonovaleric acid (APV 30 pM) the prototypical
NMDA receptor antagonist was bath applied, to inhibit the action of this receptor, and to

further characterize any background effect on mEPSCs.
These experiments characterize the effects of NMDA receptor blockade on the

control mEPSC, in a series of three experiments no significant change in the amplitude of the
mEPSCs was shown after the bath application of the APV (30 pM) (Figure 3.17A: control
23.4 ± 1.9 pA: APV 24.3 ± 1.9 pA. n = 3). A typical scatter plot shows little difference in
the distribution of mEPSC amplitudes for both control and APV mEPSC. The cumulative
probability plot for both control and APV treated mEPSCs overlap indicating little difference
between control and APV treated events. Analysis of events in the control period (5 min)
and treated period (5 min) show firstly a leftward skewed distribution for both groups.

Raster plots from both control and APV treated periods show events of similar

amplitude (Figure 3.ISA). Analysis of 100 mEPSC events from both control and APV
treated mEPSCs show an average mEPSC amplitude of 21.4 ± 0.3 pA: APV 21.3 ± 0.4 pA

respectively. These average mEPSCs have a rise time of control 1.7 ± 0.5 ms: APV 1.6 ±

0.7 ms respectively, and have a x decay time of 16.0 ± 0.9 ms and (APV) 17.2 ± 0.8 ms.

The time course of mEPSC frequencies does change, but the reduction shown is
similar to that shown with both the control mEPSC and the VP potentiation frequency

recordings (Figure 3.19A: control 1.5 ± 0.6 FIz: APV 1.4 ± 0.3 Hz. n = 3). The total current

generated in these experiments shows a reduction in current output after the application of
APV (Figure 3.19B: control 0.9 ± 0.3: APV 0.8 ± 0.1 nA. n = 3).

In summary the application of APV was used as a check of the functionality of the
NMDA receptors in these cells. The experimental set up precludes activation of these

receptors, as the combination of voltage clamping the cells at -80 mV and the inclusion of
1.3 mM MgS04 would inhibit the NMDA receptor, and mEPSCs recorded would not be

expected to express a NMDA component.
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Figure 3.17: Control and APV (30 pM) mEPSCs. (A.) Application of APV has no

significant effect on mEPSC amplitudes (B.) Scatter plot shows similar amplitude
distributions for both control and APV treated mEPSCs (C.) Cumulative probability plot
shows no difference between control and APV treated mEPSCs (D.) Analysis of event in the
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Figure 3.18: Raster and overlay plots for control and APV treated mEPSCs. (A.) Raster

plot show mEPSCs with similar amplitudes for both control and APV treated mEPSCs. (B.)

analysis of 100 mEPSCs from the control period (1.) and the APV treated period (2.) show
no significant increase when overlaid (3.) with little change in rise or decay times.
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Figure 3.19: mEPSC frequency and current with APV. Application of APV (30 pM)
shows the same trend of reducing mEPSC frequency shown with control recordings.
(MacDermott et al., 1999) suggested a role for presynaptic NMDA receptors facilitating
vesicular release, but if this was a factor then frequency would reduce to zero. (B.) The total
mEPSC current output shows the expected reduction paralleling the reducing mEPSC

frequency.

3.12 Does inhibition of the NMDA receptor affect the induction of VP potentiation?
Inhibition of the NMDA receptor has no effect on the control amplitudes of mEPSC,

indicating that synaptic AMPA receptors are stable and that turnover of new AMPA

receptors in non potentiated cells is at a low level. As previously suggested mEPSC

amplitude potentiation, could be mediated by insertion of new patches of AMPA receptors.

If VP potentiation is expressed using similar mechanisms as traditional LTP, then this
receptor insertion will be dependent upon the activation of the NMDA receptor.

After stable control recording in the presence of APV (30 pM), the voltage pulse
stimulus was applied and a significant mEPSC amplitude potentiation was shown (Figure
3.20A: control 26.7 ± 4.9 pA; VP 53.1 ± 5.6 pA n = 5). Figure 3.20B indicates Raster plot of
typical control and potentiated mEPSCs, both event types were treated with the NMDA

receptor antagonist APV.
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Frequency time course for this experiment, again shows no significant decrease

following the VP stimulus (Figure 3.21A: control 1.5 ± 0.3 FIz; VP 1.47 ± 1.6 Flz), but
mEPSC frequency was shown to reduce across the time course of the experiment. Total
current output for this experiment as expected potentiates following the VP stimulus, (Figure
3.2IB: control 1.3 ± 0.5 nA; VP 2.1 ± 0.4 nA).

Single cell event data show the same trends as shown in the grouped data; with

amplitude increase, post stimulation (Figure 3.22A) the corresponding single cell scatter plot
shows a large distribution of mEPSC events following VP stimulation (Figure 3.22B).
Cumulative probability diagram shows clear differences between the control and VP

protestation data, the 50 % probabilities are 17.1 pA and 27.9 pA. 80 % probabilities for this

single cell represent are 27.7 pA and 45.3 pA respectively, clear difference between these
values (Figure 3.22C). The amplitude index shows significant differences between the
control recording and VP potentiated data, (KSV p<0.05) both results indicate that after VP
stimulation there is an increased likelihood of larger amplitude events (Figure 3.22D).

Analysis of 100 mEPSC events from the APV treated control and VP potentiated

periods, showed a 96 % potentiation of mEPSC amplitudes (17.8 ± 0.4 pA: APV 35.0 ± 0.4

pA). The rise time for these two classes of events was not significantly different (1.7 ± 0.3
ms: APV 1.7 ± 0.2 ms). x Decay times again fitted with a single exponential differ by 10.5
% (16.9 ± 1.9 ms: APV 18.6 ± 1.2 ms), but when a scaled control mEPSC is compared to the
VP potentiated mEPSC little difference is evident between the two types of event (Figure

2.21C).
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Figure 3.20. VP potentiation of mEPSC amplitudes is independent of NMDA receptor
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Figure 3.21: VP stimulated mEPSCs frequency and currents with APV: Following the
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there is no potentiation of either mEPSC frequency, (A.), but mEPSC currents potentate as a

factor of the increase in mEPSC amplitudes (B.). mEPSC overlays for control and APV

potentiated mEPSCs. (C) Analysis of 100 mEPSCs from the control period (A.) and the
APV treated period (B.) show a significant increase when overlaid (C.) with little change in
rise or decay times when mEPSC are scaled (D.)
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Figure 3.22 Properties of APV treated mEPSCs. A single cell amplitude time course

shows typical potentiation of the mEPSC amplitudes. (B.) The scatter plot of the raw data
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potentiation was occurring reinforces this. (C.) The cumulative probability shifts rightwards
indicating a higher probability for larger amplitude mEPSCs. (D.) Amplitude histogram
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3.13: Is the APV functioning?
To test the viability of the APV recordings evoked excitatory postsynaptic currents

were recorded at depolarized potentials, at a holding potential of +50 mV to reveal the
NMDA component of these EPSCs (Figure 3.23A).

Recording of mEPSCs were similarly made at + 50 mV, at this holding potential
these events have a large NMDA receptor mediated component in the decay phase of the
event, due to the release of the physiological Mg2+ ion blockade of this receptor (about a +
25 mV holding potential). When APV is applied, there is a significantly reduction in the

decay time for the mEPSC events. This figure is a qualitative representation, since the
control mEPSC will be a mixed group of pure AMPA mEPSC and the AMPA/NMDA

mEPSC, therefore the average decay time will be affected by the faster AMPA mEPSC.
mF.PSCs from both control and APV treated time periods are shown in a Raster plot 3.23B.

Therefore, Figure 3.24 indicated the differences between an obviously selected
NMDA component mEPSC and an AMPA mEPSC. Clearly, there is a significant difference
in the decay time, the reason that this phase does not return to the zero level, is due to the

positive potential.
The voltage pulse stimulation protocol, highlights another small problem. This is

that the voltage step from -80 mV to + 20 mV may remove the voltage sensitive magnesium
block of the NMDA receptor, and this sudden transient activation of this receptor is all that is

required for the mEPSC amplitude potentiation shown. Evoked EPSC at stepped positive

holding potentials from 0 mV to + 40 mV, highlighted the removal of the magnesium block
on the NMDA receptor at the + 20 mV trace. At a holding potential; of + 20 mV a small
20.5 pA current is evident. The possible contribution of this small current to VP potentiation
is not known, but the clear result from these experiments is that VP potentiation of mEPSC

amplitudes is still possible in the presence ofAPV.
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Figure 3.23: NMDA receptor dependent currents (A.) evoked EPSCs recorded at a

positive holding potentials (+10 mV increments) showing relief of magnesium block of the
NMDA receptor. (B.) Raster plot of mEPSCs at positive holding potentials. mEPSC
with large NMDA components which are blocked by APV (30 pM)
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Figure 3.24: The NMDA receptor component of the mEPSC. mEPSC recorded at

positive holding potentials (+ 50 mV) show large slow NMDA components in the decay

phase of the mEPSC (Black trace). This slow decay phase significantly reduced with the

application ofAPV (30 pM)

3.14: Calcium source and homeostasis

With NMDA receptor mediated LTP, there has to be, as Malenka & Bear (2004)
defined, a contributing mediating factor that when not present, LTP simply cannot be
generated. This trigger, the influx of calcium has long been the focus of rigorous debate in
the LTP field; whether it is calcium flow through the NMDA receptor or simply the increase
in postsynaptic calcium concentration which is essential for LTP induction. The next set of

experimental defines a requirement for an increase in postsynaptic calcium, and then
identifies both an internal and external source for calcium is required.

In this series of experiments, the calcium chelator BAPTA (10 mM) was included in
the recording pipette; this effectively compartmentalizes the application of this drug to the
internal compartment of the cell, effectively removing any presynaptic effect. Application of
this chelator by this method, blocks the potentiation of mEPSC amplitudes (Figure 3.25:
control 18.8 ± 2.4 pA: VP 17.8 ± 0.6 pA. n = 3), while interleaved controls show typical

potentiation, (control 23.3 ± 4.0 pA: VP 43.1 ± 3.0 pA. n = 2). Raster plot (Figure 3.26C)
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shows typical mEPSCs from both control and the BAPTA treated VP stimulated time
periods.

This result signifies that the mechanism for VP potentiation is clearly dependent

upon an increase in the postsynaptic calcium concentration. However, the trend of event

amplitude time course is interesting as the control period is stable, but after VP stimulation,
there is not the characteristic amplitude potentiation. The mean amplitude of the events in
the control period with BAPTA are smaller than typical control mEPSC amplitude values;
over the time period of the experiment after the potentiation stimulus the amplitude increases
towards the amplitude for the non potentiated control values. mEPSC frequency does not

potentiate with the application of BAPTA (10 mM) (0.7 ± 0.1 Hz: VP 0.6 ± 0.1 Hz. n = 3)
which also applies to the frequency of the interleaved control mEPSCs (0.6 ± 0.1 Hz: VP 0.6
± 0.1 Hz. n = 2). The total current produced by the mEPSC events over the time course is
sensitive to BAPTA, as potentiation was blocked (0.4 ± 0.1 nA: VP 0.3 ± 0.1 nA. n = 3)
while interleaved control recordings show an increase in current (0.4 ± 0.1 nA: VP 0.6 ± 0.1
nA. n = 2) (Figures 3.26 A + B). Figure 3.27 shows a single cell recording for VP

potentiation with BAPTA (10 mM), following VP stimulation there is no obvious

potentiation ofmEPSC amplitude, the amplitude scatter plot does appear to have an increase
in distribution, due to random large amplitude events. The cumulative probability for all
events in both time periods overlaps indicating little change in amplitude probability,
similarly the amplitude histograms overlap and indicate no rightward distribution shifts
following VP stimulation.

Analysis of 100 mEPSCs from each of the three time periods show no significant
difference in amplitude between the BAPTA treated control mEPSCs and potentiated
mEPSC (control 17.9 ± 1.6 pA: BAPTA 18.2 ± 1.4 pA) while VP potentiated mEPSCs from
an interleaved control recording show a typical potentiated mEPSC amplitude (VP 46.1 ± 2.1

pA). Analysis of the rise time data show no difference between the control mEPSCs and

potentiated mEPSC with BAPTA (2.7 ± 0.1 ms: BAPTA 2.7 ± 0.1 ms), while the interleaved
control average rise time was not significantly increased (2.8 ± 0.5 ms). Decay times when
fitted with a single exponential again show little difference between the BAPTA control
mEPSCs and potentiated mEPSC (13.6 ± 0.3 ms: BAPTA 14.2 ± 0.5 ms).
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Figure 3.26 Potentiation of mEPSC frequency and current was blocked by BAPTA.

Following the VP stimulation in the presence of the calcium ion chelator BAPTA (10 mM)
there was no significant potentiation of either mEPSC frequency, (A.) or total current (B.).
mEPSC overlays for BATPA treated and potentiated mEPSCs (C.) Analysis of 100
mEPSCs from the BAPTA treated control period (1.) VP potentiated period with BAPTA
(2.). Interleaved control overlays highlight the degree of amplitude potentiation shown with
the VP stimulus (3.) Control and BAPTA mEPSC show no significant difference when
overlaid with little change in rise or decay times when mEPSC are scaled (4.)
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86



3.15: Source of the postsynaptic calcium rise

As with NMDA receptor LTP the importance of a calcium increase has been
confirmed. However the mechanism through which this increase results in potentiation
needs to be addressed. From previous experiments, I have demonstrated that activation of
NMDA receptors are not required for this form of synaptic efficacy enhancement. From the

original work by Kullmann et al (1992) and Wyllie & Nicoll (1994), the increase in

postsynaptic calcium was thought to be supplied via the large conductance voltage sensitive

L-type Ca2+ channel. To validate this hypothesis, in the rat organotypic system used here,
the slices were incubated in nifedipine (10 pM). This application of nifedipine has no

significant effect on the baseline amplitude of the mEPSCs when the same time periods as

analyzed for VP potentiation were considered (Figure 3.28A: control 28.1 ± 1.3 pA:

nifedipine 27.1 ± 1,8 pA (w = 3). mEPSC frequencies showed no significant potentiation

(control 0.9 ± 0.11 Hz: nifedipine 1.0 ± 0.1 Hz. n = 3) (Figure 3.29A). Similarly, the total
current output data showed that nifedipine blocked this potentiation (control 0.8 ± 0.1 Hz:

nifedipine 0.9 ± 0.1 Hz. n = 3) (Figure 3.29B), but these reducing trends are similar to the

general reduction shown with normalized mEPSC amplitudes through the whole time course.

An amplitude scatter plot for this experiment shows no major differences in mEPSC

amplitude distribution, cumulative probability plots, and amplitude histograms overlay

highlighting no major differences in mEPSC amplitudes between the two experimental
sections.

Typical mEPSCs from both control and nifedipine treated sections are shown in

Figure 3.29C. Analysis of 100 mEPSC from both the control and nifedipine treated time

periods shows average mEPSCs with similar mean amplitude (control 23.5 ± 0.4 pA:

nifedipine 23.7 ± 0.5 pA). Rise time values for the control and nifedipine mEPSC are not

significantly different (control 2.3 ± 0.2 ms: nifedipine 2.4 ± 0.1ms). Decay times for the
control and nifedipine show little difference (control 13.0 ± 2.4 ms: nifedipine 13.3 ± 0.5

ms).
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Figure 3.28: Properties of nifedipine treated mEPSCs. (A.) Nifedipine has no significant
effect on the baseline amplitude of the mEPSC. (B.) Analysis of the scatter plot distribution
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nifedipine. (C.) The cumulative probability plot for the most part overlay and shows only a

small degree of variance over the 85 % probability point. (D.) This is further substantiated
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Figure 3.30: mEPSC overlays for control and nifedipine treated mEPSCs. Analysis of
100 mEPSCs from the control period (A.) and the nifedipine treated period (B.) show no

significant change when overlaid, with little change in rise or decay times of the mEPSC
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3.16: Inhibition of VP potentiation by nifedipine
Non VP stimulated mEPSCs, are resistant to the effects of nifedipine. This result

taken with the results from the chelation of the intracellular calcium, leads to the idea that the

increase in mEPSC amplitudes are dependent upon some intracellular calcium activated
cascade which may govern AMPA receptor movement to active synapses in these cells.
Control nifedipine experiments have shown that the population of receptors present in the

synapses is relatively stable in both number (amplitude) and their ability to be activated

(frequency). Therefore, if VP potentiation involves similar postsynaptic mechanisms known
to be important for receptor trafficking in NMDA receptor LTP experiments, inhibition of
the source of the postsynaptic calcium increase should block VP potentiation of mEPSC

amplitudes.
The application of this L-type calcium channel inhibitor blocked the induction of

voltage pulse potentiation of mEPSC amplitudes (Figure 3.31 A: control 27.4 ± 3.6 pA:

nifedipine 25.0 ± 1.7 pA. n = 4), while interleaved control recordings showed typical

potentiation of mEPSC amplitudes.
The time course profile for potentiated mEPSC frequency when nifedipine was

applied is interesting, as it does not display the typical rundown profile shown in other

experiments. Here the frequency drops and remains relatively stable (Figure 3.32A: control
1.8 ± 0.6 Hz: nifedipine 1.2 ± 0.8 Hz. n = 4). This profile is also shown with mEPSC current

output (Figure 3.32B: control 1.6 ± 0.6 nA: Nifedipine 1.1 ±0.1 nA. n = 4).

Figures 3.32B & C, highlight the loss of the depolarization induced L-type voltage

gated channel currents, shown with the application of the voltage-pulses.

Comparison of the kinetics of 100 mEPSCs from each point of the experiment, show
similar mEPSC amplitudes values for both control and nifedipine mEPSCs are 22.1 ± 0.3

pA and 23.5 ± 0.1 pA respectively (Figure 3.34), while interleaved control mEPSC

potentiated amplitude is 45.7 ± O.lpA. Overlay plot of each mEPSC type shows similar rise
time (control 1.5± 0.1ms: nifedipine 1.4 ± 0.1ms) and x decay values (control 10.4 ± 0.1ms:

nifedipine 10.8 ± 0.1ms) for control and nifedipine mEPSCs. Interleaved control data shows
the typical potentiation of mEPSC amplitudes and potentiated mEPSCs have rise and decay
times values of 1.6 ± 0.7 ms and 10.9 ±0.1 ms respectively.
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Figure 3.34: mEPSC overlays for nifedipine treated and potentiated mEPSCs. Analysis
of 100 mEPSCs from the nifedipine treated control period (1.) VP potentiated period with

nifedipine (2.) show no significant differences when these events are overlaid (4.).
Interleaved control overlays highlight the degree of amplitude potentiation shown with the
VP stimulus (3.)
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3.17: Intracellular sources of calcium

The calcium concentration in the pyramidal cell is typically 100 nM (Syntichati &
Tavernarakis., 2003). However, the actual increase in concentration of calcium ions required
to initiate LTP like plasticity in CA1 pyramidal cells is still unknown. From the previous

experiment, I have determined that the increase in postsynaptic calcium supplied via the L-

type Ca2+ channel is required to induce the potentiation of mEPSC amplitudes shown with
VP potentiation, but is it sufficient to induce the potentiation.

To investigate this phenomenon further the slices were incubated again for

approximately 10 minutes prior to control recordings with both ryanodine (10 pM) and

thapsigargin (lOpM). These drugs act by inhibiting the internal calcium store. Ryanodine
inhibits the intracellular ryanodine receptor and control the calcium-activated-calcium-
release current (CACR current) and thapsigargin inhibits Ca2+ dependent responses via the
sarco- and endoplasmic reticulum (SERCA) type ATPases (Davidson and Varhol, 1995)
which controls the specific release and uptake of the calcium. With combined application
this internal calcium current in inhibited.

The application of thapsigargin and ryanodine block the induction of voltage pulse

potentiation of mEPSC amplitude (Figure 3.35: control 21.2 ± 1.2 pA: thap/ryr 21.4 ± 1.5

pA. n = 6). mEPSC frequencies show a non significant increase of 11.1 percent (control 0.6
± 0.1 Hz: thap/ryr 0.72 ± 0.7 ± 0.2 Hz. n = 6), this increase is transient and is followed by a

typical reduction in mEPSC frequencies to around 0.5 Hz . The current output for these cells
show a transient non-significant potentiation of 8.5 % (control 0.8 ± 0.1 nA: thap/ryr 0.9 ±

0.2 nA. n = 6). Interleaved control data show a significant potentiation ofmEPSC amplitude

(control 19.3 ± 2.5 pA: VP 34.5 ± 1.5 pA. n = 3). mEPSC frequencies showed a non

significant transient potentiation (control 1.3 ± 0.4 Hz: VP 1.8 ± 0.8 Hz. n = 3). Similarly,
after VP stimulation a transient non significant potentiation of the total current produced by
the cell was shown (control 0.7 ± 0.8 nA: VP 1.4 ± 0.8 nA).

Analysis of 100 mEPSCs from each time period show no significant difference
between mean the amplitude values for thapsigargin and ryanodine treated mEPSCs, and the
VP potentiated thapsigargin and ryanodine treated mEPSCs (control 20.59 ±0.31 pA:

thap/ryr 19.35 ± 0.4 pA). The rise time correlates for these mEPSC again show no

significant differences (control 1.98 ± 0.33 ms: thap/ryr 2.01 ± 0.42 ms). Decay time values

again fitted to a single exponential, show no significant difference between thapsigargin and

ryanodine treated mEPSCs, and the VP stimulated thapsigargin and ryanodine treated
mEPSCs (control 14.9 ± 3.2 ms: thap/ryr 12.6 ± 2.1 ms). The interleaved control data give a
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mean potentiated amplitude of 45.6 ± 0.6 pA with a rise and decay time constant values of
2.5 ± 0.3 ms and 26.4 ± 4.6 ms respectively.

These experiments suggest that the calcium supplied from the external source via the
calcium channel, is insufficient to induce the VP potentiation. There is a dependency upon

calcium from the internal store to facilitate the VP potentiation of mEPSC amplitudes. In

conclusion, these three experiments have demonstrated that calcium is the major mediator as

suggested by Malenka & Bear (2004), this is a pathway convergence with traditional NMDA

receptor dependent LTP. However in this system, the trigger for all potentiation is calcium
influx via the L-type, but this is not sufficient to induce VP potentiation, the calcium influx
must in turn activate the internal calcium currents (CRAC), to produce the sustainable short
term potentiation shown here.
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Figure 3.35: Thapsigargin and ryanodine block the VP potentiation of mEPSC
amplitudes. (A.) Potentiation of mEPSC amplitudes is blocked by inhibiting the internal
calcium stores with the application of thapsigargin and ryanodine (10 pM), while interleaved
control recordings showed typical potentiation of mEPSC amplitudes (B.) Raster plot
showing typical mEPSCs from each time period.
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Figure 3.36: Properties of thapsigargin and ryanodine treated mEPSCs. Following the
VP stimulation in the presence of the internal calcium store blockers there was no significant

potentiation of either mEPSC frequency, (A.) or total current (B.). (C.). Overlays

thapsigargin and ryanodine treated mEPSCs. Analysis of 100 mEPSCs from the control
period (1.) and the VP stimulated thapsigargin and ryanodine treated period (2.) show no

significant change in mEPSC amplitude when events are overlaid (4.) mEPSCs from the
interleaved control recording show typical potentiation ofmEPSC amplitudes(3.).
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Figure 3.37: Properties of thapsigargin and ryanodine treated mEPSCs (con't). A single
cell amplitude time course shows block of the potentiation of the mEPSC amplitudes by
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cumulative probability plots overlap showing little change in amplitude probability. (D.)
Amplitude histogram for both control and nifedipine treated VP stimulated mEPSC show a

leftward skewed distribution indicating small amplitude events
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Discussion - Characterisation voltage pulse potentiation of mEPSC amplitudes

3.18: Control mEPSC recordings
The initial whole-cell recording experiments were conducted to characterise the

viability and responsiveness of the organotypic cell culture system. From the whole-cell patch-

clamped pyramidal cell I determined the characteristic properties of synaptic current in these
cells. The changes in cell physiology found with the application of TTX and PTX, are well
characterised in acute slice systems and with this information, I could further identify identical

changes in cellular physiology with the application of these toxins to cells within the

organotypic slice culture.
In the presence of TTX and PTX the conditions permitted the isolation and recording of

spontaneous mEPSCs. In the first instance, the experimental premise investigated was that
whole-cell patching did not affect the viability of the cell. Whole-cell patching causes the cell
contents to be dialysed with the 'internal' solution contained within the patch-pipette. If this
was to reduce the responsiveness of the cell to the spontaneously released vesicles of glutamate
then one might anticipate seeing a reduction in the frequency of events detected. Indeed, in
these experiments mEPSC frequency does reduce across the time course from 1.6 ± 0.3 Hz to

1.2 ± 0.3 Hz, but still at this end point there are still more than 1 mEPSC every second. As one

of the hypotheses being tested is the concept that alteration in postsynaptic responsiveness is a

result of the postsynaptic insertion of AMPA receptors this frequency was sufficient to generate

a suitable number of mEPSCs and to observe subsequently changes in mEPSC amplitudes - the

quintessential marker of postsynaptic function. In terms of postsynaptic response, this
experiment displays stable normalised amplitudes across the time period of the experiment. In
terms ofAMPA receptor mechanics at the synaptic level, a stable mean amplitude relates to two

possible states. The first is a balanced cycling of receptors, those being inserted are balance by
loss of receptors, possibly at the single synapse or perhaps regulated throughout the entire cell,
an idea confirmed by Ehlers (Ehlers, 2000), who also proposed dual fast and slow mechanisms
for the insertion of AMPA receptors. One further point about AMPA receptor trafficking and
number of receptors at the synapse shows great variability. Nusser et al (1998), has shown

through quantitative immunogold labelling that the number of receptors at CA3/CA1 synapses

can vary between 3 and 140 AMPA receptors per synapse. Here the idea is that loss of AMPA

receptor and silencing at one specific synaptic site, may preferentially strengthen other synapses
which have a higher function weight than the one being silenced, thereby maintain the total

synaptic signal, in fact the basis for a cell wide integrated system. An alternative explanation is
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that there is no baseline receptor cycling and the receptors are stable in the membrane, and just
activated.

The literature on mEPSC function and baseline activity has shown baseline turnover of
AMPA receptors and that this is a highly dynamic but regulated system. Therefore the

underlying factors must be that these mEPSCs result from the stable cycling of comparable
numbers of receptors into and out of synapses, so timescale of this turnover is the important

factor, and unfortunately there is no way to address this in the current system (see further work
for the address to this problem). The third consideration for this is the reduction in mEPSC

frequency (and excluding a presynaptic locus), occurs when one considers the receptor

recycling process and the possibility of activity dependent synaptic silencing. Thus this would

give a postsynaptic locus for this frequency change, as if the total number of synapses being
activated were to reduce due to silencing then the frequency of mEPSCs would reduces as we

are effectively generating 'deaf (i.e. a postsynaptic silent synapse) and whispering (i.e.

presynaptic release occurs but there is no postsynaptic response) synapses. Therefore, this
failure of detection would represent a post synaptic locus for a decrease in mEPSC frequency.

3.19: Comparison of mEPSCs recorded in this study with other studies of mEPSCs

Moving away from the dynamics of AMPA receptor cycling, the properties of the
mEPSCs recorded here are no different to those recorded from rat CA1 pyramidal cell from
other groups, matching not only in the amplitudes of the events, but the rise and decay time
constant for these events as well. The only minor difference is that the mEPSC frequency (1.57
± 0.23 Hz) from this present study is comparable but slightly higher than other groups 1.34 ±

0.24 Hz (Tyler and Pozzo-Miller, 2001) and 1.44 ± 0.33 Hz (McKinney et al., 1999). Event

frequencies from all control recordings across the three years of experimenting have shown
consistent control frequencies and the range of control mEPSC frequencies is similar throughout

every experiment.
The original study of voltage-pulse potentiation of mEPSCs (Wyllie et ah, 1994) shows

the biggest difference in mEPSC amplitudes, although kinetically these events are very similar.
The mEPSC mean amplitude reported in the study ofWyllie et al (1994) was 7 pA, while the
mean control mEPSC in this study was nearer to 21 pA a 3 fold difference. Such a difference
could results from differences in species (rat vs guinea-pig) age of animal or different degrees of
innervation. For example, guinea-pigs are known to have greater levels of corticosteroids in
brain tissue, when compared to rats and such differences may contribute to differences in mean

mEPSC amplitudes. Nonetheless my studies indicated that prior to the application of the
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voltage-pulse stimulation protocol there is a low probability of observing events with large

amplitudes.

3.20: Voltage-pulse potentiation
The mechanistic theory behind voltage-pulse potentiation revolves around a global

potentiation of many synapses in the postsynaptic cell. To discuss the functionality of this
stimulus one must consider the conventional NMDA receptor dependent LTP induction

protocol. In such a setup responses are evoked by a stimulating electrode placed within the
Shaffer collateral commissural fibres, which deliver a preset stimulus pattern, with EPSCs being

generated following every stimulus (assuming that the stimulus being used is sufficiently large).
This leads to two separate but increasingly interlinking problems which are firstly a failure rate

change at individual release sites, meaning that no EPSCs are generated by the presynaptic

stimulus, for example as a result of the action potential not being conducted. Secondly, due to

a postsynaptic alternation proposed by (Xiao et al., 2004) where failure rate changes are linked
to a physiological silencing of postsynaptic weakly weighted synapses in preference for the
more strongly weighted synapses, with the silencing effector being the actual stimulus used to

generate the EPSC. This can be likened to synaptic LTD, where repetitive low frequency
stimulation retards active synapses. The result of these two factors are an increase in the failure

rate, a well known effect of field LTP recording and a constantly large potentiated EPSC, due to

the loss of the weak signal from the weakly innervated synapses.

In my experimental set up using voltage clamped whole-cell patched CA1 pyramidal

cell, cable properties, failure rate, or functional silencing are not problems as all mEPSCs are

the result of spontaneously released vesicles of glutamate. Cable properties conducting an

action potential to facilitate release of presynaptic vesicles do not apply as this is blocked by

application of TTX. Failure rate changes similarly do not apply as again there is only a single
stimulus paradigm applied, all mEPSCs are spontaneous and do not require the patterned
stimulus required to evoke EPSCs. Similarly this single stimulating paradigm negates the
functional silencing problems associated with EPSC recording. In all this makes for a superior

experimental setup to look at the short term effects of receptor trafficking following stimulation.
The application of depolarising voltage pulses is thought to bring about a global

synaptic potentiation, by activating voltage-gated calcium channels resulting in the potentiation
of many more synaptic sites than could be activated by the presynaptic stimulus applied with
LTP. The result of the application of depolarising voltage pulses stimulus is interesting in the
first point as this study compared to the earlier Wyllie and Nicoll studies, shows that there is
sustained potentiation of mEPSC amplitudes and a small transient potentiation of mEPSC
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frequency. Overall the effect is to cause a very large, but transient potentiation of the total
current produced following voltage-pulse stimulation. With the proposed mechanism for this

amplitude potentiation being brought about through a synergistic combination of effects

including a change in the conductance of the receptors already present at the synapse, and

through the insertion of new AMPA receptors into active synaptic membranes

However, there are some significant differences in the nature of the amplitude

potentiation, as previous studies indicated voltage-pulse induced potentiation is transient in

nature, but can be converted to a sustainable form in the presence of phosphatase inhibitors

(Wyllie and Nicoll, 1994). In my studies voltage-pulse-induced potentiation in organotypic
slices is sustained and a doubling of the mean mEPSC amplitude has been recorded for up to an

hour.

Differences also exist in the degree of stimulus, in that their stimulus consisted of a
three second depolarising step, with a two second latency, which lasted for a total of 2 minutes,

resulting in the application of 24 depolarising pulses. This stimulus when applied to the

organotypic slices was obviously too strong as I observed concentric rings of degraded tissue

originating from the site of the recording electrode, with an accompanying loss of the recording.

Reducing the total stimulating period to 1 minute and increasing the latency by one second
while keeping the duration constant, resulted in a stimulus suitable to bring about the

potentiation of mEPSC amplitudes.
This form of organotypic voltage-pulse potentiation is very interesting as all the

analysis carried out indicates the simple conclusion that following the stimulus there is a

sustainable potentiation of mEPSC amplitudes and that this potentiation is the result of a

possible increase in the number of AMPA receptors at these synapses. Thus following the

voltage pulses there is a greater probability of large amplitude mEPSCs being recorded than
there was prior to the stimulus. Furthermore, the largest potentiated mEPSC amplitude far
exceeds the largest amplitude event from the control period. The second feature I observed was

that the increased mEPSC amplitudes appear to be stable, allowing this potentiation protocol to
permit the identification of factors responsible for the possible insertion of new AMPA

receptors into synapses.

3.21: mEPSC frequency changes and the DSI current.
Further observations include a phenomenon which results in the transient suppression of

mEPSC frequency following the voltage-pulse stimulus, possibly mediated by retrograde

signalling (Fitzsimonds and Poo, 1998) or via a depolarisation-induced suppression of inhibition
(DSI) (Wilson et al., 2001)[see figure 3.9A], This is a retrograde signalling pathway which
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regulates the vesicular release probability; the DSI pathway is initiated by calcium influx

through postsynaptic voltage dependent calcium channels. This increase in postsynaptic
calcium regulates the release of endocannabinoids possibly anandamide or 2 arachidonylgycerol

(Piomelli et ah, 1998; Ameri, 1999). These diffuse retrogradely to activate presynaptic G

protein coupled receptors (presumably CB1) which in turn negatively modulate the N type

(Cav2.2) voltage-dependent calcium channels (VDCC) found at the presynaptic terminal and

suppress the release of vesicles of neurotransmitter (Hajos et ah, 2000; Hoffman and Lupica,

2000). To date investigation of the DSI current has focused on its induction at GABAergic

synapses, Wilson et al 2001, but endocannabinoids have been found to regulate glutamatergic

synaptic transmission during LTP (Misner and Sullivan, 1999; Sullivan, 2000; Robbe et ah,

2001). This presynaptic regulation introduces another interesting possibility by which mEPSC

frequency potentiation following the DSI is mediated. So far all frequency change is thought to
be mediated via presynaptic vesicular release. But in this system the reversal of the DSI

suppression (from depressed to potentiated level) by a purely presynaptic mechanism would

require a large increase in the release of synaptic vesicles, effectively an extra 267 vesicles on

top of the 1.6 vesicles per second (control frequency 1.6 ± 0.1 Hz) for the period of the

frequency potentiation. I feel that the vesicular release probability in this system is too low due
to the inhibition by TTX, to be able to facilitate this change; therefore a change in the

postsynaptic detection rate is more probable and indicates the activation of previously silent

synapses. Furthermore activation of silent synapses has been suggested as a mechanism of

postsynaptic expression for LTP in CA1 pyramidal cells.
This idea of a postsynaptic expression mechanism is further supported by the data. If an

increase in the number of vesicles being released at synapses was to occur then one would

expect a significant change in the rise time of the mEPSCs, and secondly if two vesicles were

released from the synapse one would expect a significant increase in the number of double
mEPSCs (two events overlapping), both of which do not occur. If this increase in frequency
was to occur by a presynaptic mechanism then both vesicles must be released at exactly the
same time to have equal diffusion and activation characteristics as not to cause a double. Again
this is unlikely; it is far more likely that two vesicles would be released with a fractional delay
between release, and this delay underlies the shudder in the rise time or the increase in the
number of doubles. mEPSC doubles are very rare events, even in the highest frequency

recordings, so the possibility of a presynaptic locus facilitating the frequency change is even

more remote.

Nicoll and Malenka, (1999) investigated presynaptic expression mechanisms for LTP,

using a paired pulse facilitation (PPF) recording paradigm, which is generally agreed to be a
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method of studying any change in presynaptic release probability. In these experiments

application of 4-AP saturated the vesicular release probability. With this maximised release

probability no change in the PPF ratio occurred when they increase the number of activated

synapses by increasing the stimulus strength (Kauer et al., 1988; Nicoll and Malenka, 1995).
This finding indicates that LTP cannot be mediate by a simple change in presynaptic function,
but requires a post synaptic mechanism for expression.

3.22: Maximising potentiation
Another interesting observation from the voltage-pulse study concerns limits to the

degree of potentiation achievable as (Choquet and Triller, 2003) proposed a limit for the number
of AMPA receptors found in a normally active synapse to be between 1 and 50 receptors. This
was later found to be greatly underestimated as (Nusser et al., 1998) using quantitative

immunogold labelling put the count between 3 and 140 receptors. It is thought that space at the

spine head limits the number of receptors which could possibly be inserted into the synapse. To
a degree I feel that this is true as there are space limitation due to the volume of the spine head,
but in comparison between the volume of an AMPA receptor and the volume of the synapse it
would be anticipated that the synapse volume must outweigh by many fold the number of
AMPA receptors which can be inserted. This might suggest that a large number of receptors
can be inserted and overload, in terms of space, is unlikely to be achieved. Clearly in such a

complex system this insertion has to have limiting functional regulation. Choquet's premise
about limitation would indicate that the number of AMPA receptors contributing to the

amplitude of the mean mEPSCs would regulate the total degree of potentiation achievable by
that cell. An example would be that cells with small mean amplitudes would be able to generate

a large degree of potentiation simple due to the fact that they have more space at the synapse, to

incorporate more AMPA receptors. This is further flawed by the fact that the volume of

pyramidal spines have been shown to increase with the activation of AMPA receptors, but
shrink with the application of NMDA (McKinney et al., 1999; Luthi et al., 2001). However,

analysis of the mean amplitude (reflective of number ofAMPA receptors at the synapse) plotted
against the degree of potentiation I found no correlation. Thus, it would appear that mean
amplitude does not govern the degree of potentiation achievable.

This theory about limits to the degree of potentiation was also checked against the
presynaptic locus for potentiation, again no correlate was found between the control mEPSCs

frequency and the degree of potentiation, and the same is also true when mean and frequency
are compared directly.
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One interesting characterising experiment which was not done due to the experimental

difficulty is the comparison with late phase NMDA receptor-dependent LTP. In these

experiments field recordings are made and an applied stimulus recorded, this set up enables the

study of the longer term potentiation, due to there being no experimental washout of the cell,
because in field recording configuration the CA1 pyramidal cells are not patched. A

comparison of late phase LTP potentiation with voltage-pulse potentiation would be interesting
as it would provide evidence for the function of the NMDA receptor in potentiation. But,

impracticable using our experimental setup, due to as the requirements for the stimulus (whole-
cell patched CA1 pyramidal cell to deliver global postsynaptic potentiation) preclude the ability
of it to work. When the voltage-pulse stimulus is applied presynaptically as in the traditional
LTP set up, too few synapses are stimulated and no change in mEPSC signal can be detected.

3.23: Characterisation of voltage-pulse potentiation of mEPSC amplitudes
The initial characterisation experiments with the prototypical AMPA receptor antagonist

CNQX did not throw up any unexpected results as mEPSCs have long been known to be
mediated by AMPA receptors (Alford et ah, 1993). Following the voltage-pulse stimulus all

potentiated mEPSCs were blocked by the application of CNQX thereby reinforcing the belief
that voltage-pulse potentiation is mediated by the AMPA receptor.

A more significant result is gained from the blockade of the NMDA receptor with APV.
As the two central dogmas surrounding potentiation of a LTP nature in the CA1 pyramidal cells
has been, firstly a requirement for an increase in postsynaptic calcium and the second that this
calcium increase and the mechanisms of signal potentiation are as a result of the activation of
NMDA receptors (Matias et ah, 2003).

The experimental premise which I'm trying to introduce is that activation of the NMDA

receptor may not be the critical component for the development of synaptic potentiation rather
that it is the increase in postsynaptic calcium which is the critical step and the source is not the

fundamentally important point. In the experiments shown previously, after determining no

significant effect of APV application on the baseline amplitudes of the mEPSCs and a

functional back check of the antagonist potency in this system, application of functional APV
did not inhibit the induction of voltage-pulse potentiation. This finding, although never before
shown with voltage-pulse potentiation in the rat organotypic slice, has been shown in the

guinea-pig slices (Wyllie et al. 1994).
Therefore characterisation of the postsynaptic calcium component within mEPSC amplitude

potentiation was the next important step in this line of investigation; inclusion of the calcium
chelator (BAPTA 10 mM). Application via the pipette solution restricted its application to the
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postsynaptic cell only ruling out a significant presynaptic component. Inclusion of this chelator
blocked the potentiation of mEPSC amplitudes, while interleaved control recording,

interspersed between each drug application to ensure that potentiation of mEPSC amplitude
could be achieved on each experimental day showed typical potentiation ofmEPSC amplitudes.
This finding confirms the first dogma of LTP potentiation, the requirement for postsynaptic
calcium increases.

The mechanisms by which the postsynaptic calcium concentration increase comes about
was investigated by identifying two effectors of changes in intracellular calcium levels -

voltage-dependent Ca2+ channels and release from an internal source of calcium. Calcium from
an external source must have a mechanism through which transport to the internal cytosol is
achieved. I used a depolarising voltage pulse with a voltage step of sufficient range to bring
about the activation of the postsynaptic L-type voltage gated calcium channel, and that this
channel has been identified as having a role in the induction of various forms of LTP (Morgan
and Teyler, 1999; Yasuda et al., 2003; Woodside et ah, 2004).

L-type Ca2+ channels (Cavl.i.4) have been found in all types of excitable cells, four
main subtypes exist and are divided into both high (Cavl.l & Cav1.2) and low (Cav1.3 &

CavL4) thresholds for activation. With different activation profiles being fast activating for the
low threshold and slow activating for the high threshold, but all L-type Ca2+ channels have a

large single channel conductances (Lipscombe et al., 2004). Location of the subtypes varies

Cavl.l are primarily found in skeletal muscle mediating muscle excitation-contraction

coupling. Cav1.2 and Cav1.3 are found in neuronal cell bodies and dendrites and are utilised for
the integration of signal transduction, and Cav1.4 are located primarily within the retina.

Other calcium channels types are also located in the presynaptic terminal, these
channels act to facilitate calcium dependent vesicle release, these types of calcium channel
include the P-Q type (Cav2.1), N type (Cav2.2), R type (Cav2.3) and the T type (Cav3.1). It is a

mistake to assume that these receptor are only located presynaptically. They are also found
distributed across the cell bodies and dendrites of neurones; the only spatial restriction applies
to the L-type channels as these are not found at the presynaptic terminal.

The unique spatial features and kinetic properties of the L-type channel make it an

excellent target through which the effects of voltage-pulse potentiation may be mediated.
Therefore I used nifedipine, an L-type calcium channel antagonist, to block the rise in
intracellular calcium following the application of voltage-pulses. Application of nifedipine
blocked voltage-pulse potentiation of mEPSC amplitudes, as well as the inward calcium
currents observed during the application of the depolarising pulses. This finding confirms a role

108



for this channel in mediating the initial calcium change which facilitates the voltage-pulse

potentiation ofmEPSC amplitudes.
I next addressed whether this calcium influx through the L-type calcium channel was

sufficient for the induction of voltage-pulse potentiation or if was merely a trigger in the

signalling cascade? To address this question I used a combination of drugs which target the
internal calcium store. The endoplasmic reticulum (ER) and non ER associated calcium

containing organelles (CCOs)(Korkotian and Segal, 1997, 1998) constitute large and centrally

important internal sources of calcium, for various neuronal signalling processes (Mattson et al.,

2000). Release of ER calcium is controlled by two receptors the ryanodine receptor (RyR) and
the inositol 1,4,5 trisphosphate receptor (IP3R). RyRs are activated by increases in cytosolic
Ca2+ and are therefore responsible for the phenomenon of Ca2+ induced Ca2+ release (CICR)

(Zucchi and Ronca-Testoni, 1997). IP3Rs are activated by IP3 generated via metabotropic

receptors linked to phospholipase C (PLC) although these receptors show modulation in

response to increasing cytosolic calcium (Simpson et al., 1995). In CA1 RyRs are present

throughout the neurone, including the dendritic spines and shafts, whereas the IP3Rs are

predominantly located in the dendritic shafts (Sharp et al. 1993). Inhibition of these receptors

with application of ryanodine or depletion of ER Ca2+ stores by inhibition of the Ca2+ ATPase

pump with thapsigargin has been shown to inhibit the induction of LTP (Harvey and
Collingridge, 1992; Paschen et al., 1996; Treiman et al., 1998).

However a conflicting result does exist for the IP3R as analysis knockout' mice
revealed facilitation of LTP induced by very weak stimulation (Fujii et al., 2000). In a series of

experiments the application of thapsigargin and ryanodine blocked the induction of voltage-
pulse potentiation of mEPSCs amplitudes. In these experiments inward voltage-activated
calcium channel currents were still evident upon the voltage-pulse stimulus indicating the

presence of still functional L-type calcium channels. Thus to conclude the activation of L type
calcium channels is essential but not sufficient for the induction of voltage-pulse potentiation, as
this phenomenon requires release of calcium from the internal store.

This concludes the initial characterization of the properties of mEPSCs in CA1

pyramidal neurones in organotypic slice cultures. In the next results chapter I will describe a

series of experiments that test directly the hypothesis that the potentiation induced by this

protocol arises from the insertion ofAMPA receptors into the postsynaptic membrane.
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Chapter Four:

Voltage-pulse potentiation is

dependent upon postsynaptic
membrane fusion events



In the previous chapter, the focus was the characterisation of a sustainable potentiation
of mEPSC amplitudes. This potentiation is thought to be expressed by either change in the
conductance of receptors already in the synapses, or through insertion of patches of new AMPA

receptors into membranes. The possible insertion of receptors can only be brought about by

postsynaptic membrane fusion events, between AMPA receptors and PSD scaffolding proteins.
These interactions will be the focus of this chapter.

4.1: Inhibition of the NSF domain

The first protein isolated and found to be a crucial factor in membrane fusion events,

such as synaptic vesicle fusion to the pre-synaptic membrane during neurotransmission, was the
NSF protein. Protein complexes containing NSF are collectively referred to as SNAREs or the
SNARE complex (soluble NSF-attachment protein (SNAP) receptors; where NSF is N-

ethylmaleimide sensitive fusion protein.
These NSF containing complexes have been associated with induction of LTP (Lledo et

al., 1998) and receptor trafficking through an association with the GluR2 receptor (Nishimune et

ah, 1998). These protein complexes represent the first target tested for the dependence of
mEPSC amplitude potentiation on membrane fusion events.

In the first series of experiment the broad spectrum NSF inhibitor NEM (N- ethylmaleimide)
was included into the patch pipette; this inclusion causes a functional compartmentalisation of
this inhibitor, limiting it only to the postsynaptic cell. If bath applied then NEM would have a

presynaptic effect inhibiting all release of glutamate vesicles.
The grouped control data for the NEM treated mEPSCs show no significant deviations

in the normalised amplitudes of these mEPSCs across the time course of the experiment (Figure
4.1). Giving a mean amplitude of 24.1 ± 0.4 pA (n = 3) with a range of 23.3 ± 0.2 pA to 24.9 ±
0.3 pA. The frequency of mEPSCs with NEM indicates a mean control frequency of 1.9 ± 0.1
Hz (n = 3) with a range of 1.7 ± 0.2 Hz to 2.0 ± 0.1 Hz. Over the time course of this experiment
the frequency of the mEPSCs reduces, by 25 minutes time point the frequency was 1.0 ± 0.1 Hz.
This finding that mEPSCs still spontaneously occur in the presence of the membrane fusion
inhibitor, even at the 30 minute time period is important, as NEM may display a small degree of
membrane permeability and therefore would interfere with presynaptic release.

As expected the current output across the experimental time period parallels the
reduction in the frequency ofmEPSCs. The control current value was 1.2 ± 0.1 nA with a range
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of 1.1 ± 0.1 nA to 1.6 ± 0.2 nA and this shows a similar reduction across the experimental time
course, by the 25 minute time point the current was 0.5 ± 0.1 nA.

Analysis of 100 mEPSC from both periods, indicate little difference in the mean

amplitudes of the events control and NEM are 21.3 ± 0.2 pA and 23.1 ± 0.5 pA respectively.
Rise times for these events again show no statistically significant difference, control equally 0.9
±0.1 ms and NEM mEPSC rise time was 1.0 ± 0.3. The decay time constant for both these
events are similar to control equals 10.2 ± 1.9 ms and NEM 11.0 ± 1.5 ms.
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Figure 4.1: NEM does not affect non potentiated mEPSC amplitudes. (A.) Control recording
show no change in mEPSC amplitude with application ofNEM (5mM). (B.) The distribution of
mEPSC amplitudes does not increase with application of NEM. (C.) The frequency of mEPSC
events decreases across the experimental time period. This reduction is mirrored by the total
current produced by the mEPSCs (D.).
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Figure 4.2: Control and NEM treated mEPSCs. Analysis of 100 mEPSCs from the control

period shows a mEPSCs which typically have mean amplitudes of about 20 pA (1.). Application
of the NSF peptide inhibitor has NEM (5 mM) has no significant effect on the amplitude of the
mEPSC (2.). When these mean events are overlaid, there is little obvious difference in the rise
or decay phase of these mEPSCs (3.). Fitting control mEPSC with a single exponential indicates
the goodness of fit for the x decay constant.
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4.2: Inhibition of VP potentiation by the postsynaptic application ofNEM
The application ofNEM is known to inhibit membrane fusion events in the presynaptic

nerve terminal, effectively silencing vesicle release. When application of this toxin is

compartmentalised to the postsynaptic cell, NEM was found to have no significant effect on the
baseline control amplitudes of the mEPSCs. Using the hypothesis I tested whether VP

potentiation utilises postsynaptic membrane fusion events to bring about an increase in AMPA

receptor number at active synapses.

Previous studies utilizing an NMDA receptor dependent LTP stimulating protocol have
shown a relationship between NSF protein and the GluR2 AMPA receptor. The aim of these

experiments is to investigate these mechanisms through which AMPA receptors maybe
trafficked to the active synapses. NEM by action is a crude broad spectrum NSF inhibitor.
Therefore in this experiment the application of NEM should block all NSF, SNAP-25 and
SNARE complexes.

The results show that the induction of the VP potentiation of mEPSC amplitudes was

inhibited by NEM (Figure 4.3: control 21.5 ± 1.5 pA: NEM 20.6 ± 0.9 pA. n - 6). The range of
mean mEPSC amplitudes was 15.8 ± 0.6 pA to 25.2 ± 0.1 pA. Interleaved control recordings of
normal VP potentiation show a 95% increase in the mean mEPSC amplitude after VP
stimulation (control 19.6 ±1.3 pA: VP 38.5 ± 2.2 pA. n = 6). mEPSC raster plots from each
time period indicating little obvious change between the control NEM mEPSCs and the VP
stimulated NEM mEPSC, while the amplitudes of the interleaved control VP potentiated
mEPSCs are significantly increased (Figure 4.3 B).

The amplitude time course for the single cell VP potentiation experiment with NEM
shows no significant deviation from the normalised amplitude value following the VP stimulus
across the time period of the experiment, the mean amplitude was 21.8 + 0.06 pA. Plotting all
mEPSC amplitudes in both the control and NEM groups show a cumulative probability plot that

overlaps, the 50 % probability of 21.4 pA, and an 80 % probability of 23.5 pA. This indicates
little difference in the mEPSC amplitude between the two groups, this result was further backed

up by a mEPSC amplitude histogram of the mEPSC from the control and NEM groups over the
same time period, and this histogram shows no significant difference between the two groups

(KS > 0.05. Figure 4.4C).
In the previous chapter it was shown that VP potentiation protocol causes a transient not

significant potentiation of mEPSC frequency lasting only 5 minutes. The application of NEM

113



blocks this transient the potentiation of mEPSC frequency (Control: 1.4 ± 0.3 Hz: NEM 1.2 ±
0.1 Hz), with a range of recordings from 0.5 ±0.1 Hz to 2.5 ± 0.2 Hz. These data further show a

similar trend as the control NEM mEPSC recordings, a gradual reduction in mEPSC frequency

by the 20-25 minute time period (Figure 4.5A). The interleaved control frequency shows a

similar reducing trend from 1.1 ± 0.2 Hz to the VP potentiated mEPSC frequency of 0.9 ± 0.2
Hz.

VP potentiation protocol shows at its peak a larger than 3 fold increase in the total
current after VP stimulation (Figure 3.9 B). The application ofNEM blocks the VP potentiation
of the total current produced by these cells (control 1.7 ± 0.2 nA: NEM 1.4 ± 0.2 nA). The range

of mean current recordings was 0.6 ±0.1 nA to 5.1 ±0.1 nA (Figure 4.5B). The interleaved
control recordings show an increase in the total current produced after the application of VP
stimulus (Control 1.0 ± 0.5 nA: VP 1.7 ± 0.6 nA).
This is further highlighted by mEPSC overlays, 100 mEPSCs from each time period were

analysed, control NEM mEPSC and VP stimulated NEM mEPSC had no significant difference
in mEPSC amplitudes, rise or decay times. The interleaved control VP potentiated mEPSC
shows a mean amplitude of 43.9 ± 0.2 pA, again with similar rise and decay time constant

characteristics 1.037 + 0.1 ms and 11.1+ 0.9 ms respectively (Figure 4.5C).
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Figure 4.3: Blockade of VP potentiation of mEPSC amplitudes by NEM. (A.) The induction
of VP potentiation of mEPSC amplitudes is blocked by NEM (5 mM). (B.) Raster plot of the
blockade of VP potentiation by NEM. Corresponding traces for the control NEM mEPSC

(Black) VP stimulated mEPSC with NEM (Red) and VP potentiated mEPSCs (Blue).
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4.3: Inhibition of SNAP 25 blocks VP potentiation ofmEPSC amplitudes.
Botulinum neurotoxin is produced by the anaerobic bacterium Clostridium Botulinum.

It is an extremely poisonous biological substance; infection in people can occur by two methods,
the infection through bacterial spore growth and toxin release in intestinal enteric infectious
botulism or from the ingestion of the toxin from a contaminated food source (food bome

botulism). The mechanism of action at the neuromuscular junction is well understood and acts

via a blockade of acetylcholine vesicle release and hence neurotransmission. What is interesting
is that nerve terminals do not degenerate, but the blockade of neurotransmitter release is
irreversible. Function can be recovered by the sprouting of nerve terminals and the formation of
new synaptic contacts.

In this series of experiments, the unique properties of Botulinum toxin A (Botox) will be
used to probe postsynaptic membrane fusion events governing AMPA receptor delivery to

synapses. The properties which will be exploited are the specific inhibition of the SNAP-25

protein, (Synaptosome associated protein of 25-kD molecular weight). In the presynaptic nerve

terminal SNAP-25 has a fascinating spectrum of action. Characterisation of this protein's
function from homozygous knock out animal against heterozygous litter mates, have shown
normal embryonic development, but animals are slightly smaller, they show no obvious signs of

neurodegeneration up to birth although some neuromuscular junctions are weakly developed

(Meunier et al., 2003). Electrophysiological studies at the neuromuscular junction have
indicated a hierarchy of function for the SNAP/ SNARE proteins as SNAP-25 knockouts have
shown that spontaneous vesicle fusion is not dependent upon the SNAP-25 protein, and that
blockade of these events is achieved through linking with the SNARE complex. Furthermore
mEPSCs were still reported, despite complete lack of evoked synaptic transmission in these
animals at the same neuromuscular junction; this finding indicates that SNAP-25 is a crucial

component of the machinery that mediates evoked fusion.
In the postsynaptic cell, the application of Botox should inhibit the actions of SNAP-25,

interacting with vesicular SNARE proteins which facilitate patches of membrane (possibly
vesicular) containing new AMPA receptors into active synapses.

The positive control for this experiment, was done the laboratories of Dr Richard
Ribchester at the University of Edinburgh was successful inhibition of peripheral nerve

innervation of the neuromuscular junction in the Wlds mouse, was achieved with the same

Botox sample and at the same concentration.
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In this series of experiments Botox was included in the pipette solution again

compartmentalising its application to the postsynaptic cell. The application of Botox blocked
the induction of VP potentiation ofmEPSC amplitudes (control 21.3 ± 2.9 pA: Botox 21.4 ± 1.4

pA. n = 7), while interleaved control recordings showed typical significant potentiation of
mEPSC amplitudes (control: 23.0 ± 3.6 pA: VP 48.0 ± 3.2 pA. n = 5) (Figure 4.7). Raster Plots
from each time period show little difference between the control Botox mEPSCs and VP
stimulated mEPSCs, while interleaved control VP stimulated mEPSCs show a significant

potentiation ofmEPSC amplitudes (Figure 4.6B). The single cell mEPSC amplitude distribution
shows a control mean amplitude of 27.6 ± 1.3 pA, cumulative probability plot for this Botox
treated cell shows control and VP stimulated mEPSCs which overlap, indicating an equal

probability of mEPSCs with similar amplitude, effectively application of Botox blocks the VP

potentiation of mEPSC amplitude (Figure 4.7C). A result further supported by an amplitude

histogram (Figure 4.7D) which shows no significant difference between both groups (KSG >

0.05).

Frequency of the mEPSCs with Botox show a gradual reduction after application of the
VP stimulus (control 1.6 ± 0.3 Hz: Botox 1.3 ± 0.2 Hz). This decrease in event frequency is

paralleled by the interleaved control frequency which similarly reduces (Control 1.2 ± 0.2 Hz:
VP 0.7 ± 0.2 Hz).

As expected the interleaved VP recordings show a typical transient potentiation of
mEPSC current (Control 0.8 ± 0.2 nA: VP 3.5 ± 1.4 nA), while application ofBotox blocked the
current potentiation produced by the VP stimulus (Control 1.1 ±0.3 nA: 0.7 ± 0.1 nA).

Analysis of 100 mEPSCs from each time period show little difference in mEPSC

amplitude for the control Botox treated and VP stimulated mEPSC (Control 24.8 ± 0.1 pA: VP
24.0 ± 0.2 pA) or with rise (Control 1.9 ± 0.1 ms: VP 1.8 ± 0.1 ms) and decay time constant

(Control 9.6 ± 1.5: VP 9.9 ± 1.0 ms). The interleaved control VP potentiated mEPSCs mean

amplitude was significantly increased 44.6 ± 0.97 pA with rise and decay time constant of 2.0 ±

0.1 ms and 10.5 ± 1.9 ms respectively (Figure 4.8 C).
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4.4 Specific inhibition of postsynaptic membrane fusion events.

So far this investigation of postsynaptic membrane fusion events has focused on the
blockade of NSF peptide related complexes associated with the postsynaptic membrane.

Although data from both the NEM and Botox experiments are encouraging, an approach with

greater specificity was employed to investigate this phenomenon. Again with a postsynaptic

compartmentalisation a specific peptide targeted to the NSF binding motif on the GluR2 AMPA

receptor was applied to the CA1 pyramidal cells. This approach guarantees a greater degree of

specificity; unlike the NEM experiment this peptide will leave the action of the NSF proteins

intact, as it affects the receptor. Furthermore Pep2m has no metabolic activity unlike Botox with
the catabolism of the SNAP-25 protein, and membrane permeability issues are removed.
The application of Pep2m (Lys-Arg-Met-Lys-Val-Ala-Lys-Asn-Ala-Gin) to control cells had no

significant effect on the mean amplitude of the mEPSCs (Figure 4.9A: Control 25.1 ± 2.3 pA:

Pep2m 29.5 ± 3.3 pA: 20-25 minutes 22.4 ± 2.0 pA. n = 4).
The frequency of mEPSCs with inclusion of Pep2m reduces from the control value of

1.3 ± 0.2 Hz to 0.9 ±0.1 Hz by the 25lh minute, this decrease in mEPSC frequency is previously
shown in control studies, without peptide inclusion. As expected the total current parallels the
reduction in mEPSC frequency from a control value of 1.1 ±0.2 to by the 25th minute 0.5 ± 0.2
nA. Analysis of all the mEPSC events recorded from the 0-5 minute period with Pep2m (50

pM), generated a mEPSC with mean amplitude of 25.1 ± 1.0 pA. This averaged event indicated
a rise time of 1.7 ± 0.1 ms and a x decay time of 21.1 ± 0.9 ms both of these values are larger
than expected for mEPSCs of this amplitude (Figure 4.10). When compared to an average of
mEPSCs from the 10-15 minute period no significant difference was found between the rise and

decay time for these events.
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Figure 4.10: Control Pep2m treated mEPSCs. Analysis of 100 mEPSCs from the 0-5 minute

period shows a mEPSCs which typically have mean amplitudes of about 25 pA (1.). Infusion of
the AMPA receptor GluR2 NSF binding site inhibitor Pep2m has no significant effect on the

amplitude of the mEPSC (2.). When these mean events are overlaid, there is a 2 pA difference
in the mean amplitude, while the rise or decay phase of these mEPSCs are similar (3.). Fitting
control mEPSC with a single exponential indicates the goodness of fit for the decay time
constant.
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4.5: Pep2m inhibits the VP potentiation of mEPSC amplitudes.
The previous experiments demonstrated a requirement of functional NSF protein

complexes to facilitate the VP potentiation of mEPSC amplitude. In these experiments we again

target the NSF peptide by use a peptide Pep2m (Lys-Arg-Met-Lys-Val-Ala-Lys-Asn-Ala-Gln)
which specifically targets the NSF binding motif on the GluR2 AMPA receptor, and was found
to have no significant effect on the amplitude of non VP stimulated mEPSCs. This amplitude
measure is an indirect measure of AMPA receptor number in the synapses. If the amplitudes of
mEPSCs increase as with VP stimulation, it is possible that insertion of new receptors into the

postsynaptic membrane has occurred.
In this series of experiments Pep2m was included in the internal solution, restricting the

peptide to the postsynaptic cell. After VP stimulation a small non significant transient

potentiation of mEPSC amplitudes lasting for 2 minutes was observed (Figure 4.11 A: Control
22.8 ± 1.6: VP Pep2m 24.8 ± 2.1 pA. n - 8). Interleaved recordings were conducted with Pep4c

(50 pM). Pep4c is the control peptide for Pep2m, which has a single amino acid residue of the

Pep2m protein changed (position 8, asparagine to serine) This change render a non-functional

peptide sequence, application of VPs to the Pep4c containing cells induces a significant
sustained potentiation of mEPSC amplitudes (Figure 4.13C: Control 22.5 ± 1.3 pA: VP Pep4c
47.0 ± 2.1 pA. n = 4). A full review of the Pep4c peptide can be found in the next section

(Section 4.6).

Figure 4.13B, highlights typical mEPSCs from each of the Pep2m time periods, control
mEPSCs display a tight amplitude distribution, with few large amplitude mEPSCs, following
stimulation there is a small increase in these larger amplitude events. For comparison Pep4c
mEPSCs following VP stimulation as shown, the degree of potentiation is evident as Pep4c
mEPSCs display significantly larger amplitudes.

The single cell amplitude time course with the Pep2m highlights this transient

potentiation to a fuller extent. VP stimulation brings about a non significant transient 25%

potentiation ofmEPSC amplitudes lasting for 2 minutes (Control 17.5 ± 0.4 pA: VP Pep2m 21.8
±3.7 pA). The scatter plot of mEPSC amplitudes shows no significant spread of mEPSC

amplitude following VP potentiation, in combination with the overlapping cumulative

probability and amplitude histogram; indicate that the application of Pep2m blocks the

potentiation ofmEPSC amplitudes.
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The mEPSC frequency plots show a decrease in event frequency from the control value
of 1.0 ± 0.3 Hz to 0.8 ±0.1 Hz by the 25lh minute. In previous experiments the VP stimulating
protocol, induced a 3 fold increase in the current produced by the potentiated mEPSCs. The
inclusion Pep2m, blocked the VP potentiation of mEPSC currents (Control 0.7 ± 0.2 nA: VP

Pep2m 0.9 ± 0.3 nA. n = 8).

Analysis of 100 mEPSCs from each time period, indicate for the Pep2m exposed
mEPSCs mean amplitude of 19.7 ± 0.4 pA with a rise time and decay time constant of 1.9 ±

0.2ms and 19.3 ± 1.5 ms. The VP stimulated mEPSCs with Pep2m taken from the peak of the
transient potentiation, display a small increase in mean amplitude (20.1 ± 0.2 pA) the rise and t

decay times for these events are similar to the control mEPSC values (1.8 ± 0.3 ms and 19.57 ±
1.5 ms respectively). The data from both control Pep2m and VP stimulated groups show similar
rise and x decay times, but the parameters of these mEPSC are slower than typical mEPSC rise
and decay times. The mean Pep4c mEPSC displayed had mean amplitude of 45.2 ± 0.4 pA with

comparable rise (2.1 ± 0.2 ms) and x decay times (22.8 ± 2.1 ms). The Pep4c data is discussed
in the next section.
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4.6: The characterization of the inactive peptide Pep4c
The approach of using specific peptide sequences allows for effective characterization

experiments, due to the ability to swap the amino acids in the peptide sequence. In this series
control non potentiated mEPSC recordings were done with Pep4c (50 pM) to characterize any

possible effect on mEPSC amplitudes and frequencies.
Inclusion of Pep4c (Lys-Arg-Met-Lys-Val-Ala-Lys-Ser-Ala-Gln) the inactive control

analogue of Pep2m has no significant effect on the amplitudes of the mEPSC across the time
course of the experiment (Figure 4.16: Control 25.8 ± 3.4 pA: Pep4c 23.1 ± 2.0 pA. n = 3). The

frequency of the mEPSC with Pep4c transiently increases across the time course, (Figure 4.16 C:
Control 0.9 ±0.1: Pep4c 1.2 ± 0.3 Hz. n = 3). This increase in mEPSC frequency as expected
causes an increase in the normalized total current plot (Figure 4.17 D: Control: 1.0 ± 0.2 nA to

1.1 ±0.1 nA. n = 3).

Analysis of 100 control mEPSCs renders an event with a mean amplitude of 24.6 ± 0.2

pA, with a rise and decay time of 1.4 ± 0.1 ms and 13.5 ± 0.8 respectively. Analysis of the 100
events from the Pep4c period, indicate a non stimulated mEPSC with a mean amplitude of 22.0
± 0.3 pA with a rise time and decay time constant of 1.2 ± 0.2 ms and 14.0 ± 1.0 ms

respectively.
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4.7: Point mutations within the Pep2m peptide allow VP potentiation of mEPSC

amplitudes.
As mentioned previously Pep4c is the non functional version of the Pep2m peptide

which selectively inhibits the NSF binding site on the GluR2 AMPA receptor. This peptide is
made from a single amino acid swap, asparagine to serine at the eighth position (out of total 10
amino acids) on this peptide. The effect of this mutation had some interesting effects on the
control frequency and current recordings, in that these recordings had a lower mean frequency
and current than the typical mEPSC frequency and current, but increases or ran up to a level
which was consistent with previous experimental findings.

The effect of this non functional peptide Pep4c (50 pM) on the VP potentiation of
mEPSC amplitudes, is as expected after stimulation there was a significant sustained increase in
the mean mEPSC amplitude (Figure 4.16A: 22.5 ± 1.3 pA: VP Pep4c 47.0 ± 2.1 pA. n = 4).
These large mEPSCs at the peak of the potentiation are shown in Figure 4.16B, with control

Pep4c mEPSCs for comparison.
The cumulative probability plots for the mEPSCs from both Pep4c control and VP

stimulated periods show a clear difference, indicating a higher probability of the VP stimulated
mEPSC to be a large amplitude event. Similarly a histogram of Pep4c mEPSC amplitudes from
both time periods shows a clear rightward shift following the VP stimulus, this right ward shift is
indicative ofmEPSC with larger amplitudes.
As mentioned earlier the mEPSC frequencies with Pep4c for the control recordings are below
the typical frequency for mEPSCs. This finding is carried through in this experiment, where VP
stimulation induces a transient potentiation of mEPSC frequency (Figure 4.18A: 0.6 ± 0.1 Hz:
VP Pep4c 1.0 ± 0.1 Hz). VP potentiated frequency of these mEPSC is not significantly different
from the control mEPSC frequency.

Previous experiments have shown a three fold potentiation of total mEPSC current with
VP potentiation, the application of Pep4c does not inhibit the potentiation of the mEPSC
currents (Control 0.3 ± 0.1 nA: VP Pep4c 0.7 ± 0.1 nA).

The kinetics of 100 analysed mEPSC for each time period show little significant

difference, this is further true of the 100 largest mEPSC recorded, as Pep4c treated VP
stimulated recording yielded some of the biggest events recorded in any of the experiments

presented. Control mEPSC has mean amplitude of 23.4 ± 0.8 pA with a rise time and decay
time constant of 1.5 ± 0.2 ms and decay time constant of 17.9 ± 2.2 ms respectively. The VP
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Pep4c mEPSCs have mean amplitude of 49.9 ± 0.9 pA with rise and x decay times of 1.4 ± 0.3
ms and 15.1 ± 1.1 ms respectively. The analysis of the 100 largest events gave a mean VP

Pep4c mEPSC of 150.9 ± 2.7 pA with rise time and decay time constant of 1.2 ± 0.1 ms and 16.7
± 0.6 ms respectively.
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Figure 4.17: Pep4c does not block VP potentiation of mEPSC amplitudes. (A.) Single cell

recording shows a significant potentiation of mEPSC amplitudes following VP stimulation with

Pep4c (50 pM). (B.) The distribution of mEPSC amplitudes increase with application of Pep4c

following the VP pulses. (C.) Cumulative probability plots do not overlap indicating mEPSC

amplitude potentiation via the VP stimulus (D.) Amplitude histograms for control and Pep4c (5
min following application) show a significant right ward shift in the amplitude distribution of the
mEPSCs following VP stimulation.
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Figure 4.18: Further characterization of Pep4c. (A.) Pipette inclusion of Pep4c, allowed for
the transient potentiation of mEPSC frequency following VP stimulation (B.) The total current

produced by the mEPSCs showed significant but transient potentiation following VP stimulus.

(C.) Analysis of 100 mEPSCs from the control period (1.) and the Pep4c treated period (2.) show

significant amplitude potentiation, with little change in rise or decay times when overlaid (4.)
100 of the largest mEPSCs from interleaved Pep4c recording (3.).

138



4.8: Effects of PICK 1 inhibition on mEPSC amplitudes.

Synaptic membrane expression and composition of AMPA receptors has been shown to

be dependent upon the action of PICK1 (protein interacting with C-kinase-1) (Terashima et al.,

2004). As discussed previously PICK1 interacts with GRIP (glutamate receptor interacting

protein) and ABF (AMPA receptor binding protein to facilitate this trafficking but the
mechanisms and functional consequence is still unclear. In this experimental study, it was

important to characterise the action of Pep2m-AVKI (50 pM) on properties of the mEPSCs.

Pep2m-AVKI (Tyr-Asn-Val-Tyr-Gly-Lle-Gln-Ala-Val-Lys-Lle) is a peptide directed against the
PICK1/ AMPA receptor binding motif, which should inhibit the ability ofAMPA receptors to be

functionally inserted into active synapses.

In this series of experiments, the application ofPep2m-AVKI (50 pM) was via the patch

pipette, again restricting the application of this peptide to the postsynaptic compartment. This

application had no significant effect on the amplitudes of non VP stimulated mEPSCs (Figure
4.19A: Control 19.3 ± 0.7 pA: Pep2m-AVKI 20.0 ± 3.6 pA. n = 3).

The scatter plot of all events recorded shows a tight distribution of smaller amplitude
events with the occasional lager amplitude mEPSC, there appears no obvious difference between
the two groups. mEPSC frequencies show a non significant transient increase (Figure 4.19B:
Control 1.5 ± 0.4: Pep2m-AVKI: 1.6 ± 0.2 Hz), and reduce to half of the control frequency by
15 minutes. The current time course for these mEPSCs is nearly stable for the first twenty

minutes, with only small non significant deviations from the normalised value (Control 1.3 ± 0.5
nA: Pep2m-AVKI 1.4 ± 0.2 nA). At twenty minutes there is a large deviation in the mEPSC
current plot; this was caused by the single cell burst activity and results in a current value of 2.6
± 2.0 nA,

Analysis of 100 control Pep2m-AVKI mEPSC indicates little difference in the kinetic

parameters of theses events when compared to other control mEPSC from other peptide

experiments, the mean mEPSC has an amplitude of 21.7 ± 0.7 pA and displays rise and x decay
times of 2.0 ± 0.1 ms and 11.1 ± 1.0 ms respectively (Figure 4.20). Analysis of 100 mEPSCs
from the Pep2m-AVKI period indicate a mEPSC with a mean amplitude of 22.0 ± 1.0 pA and

displays rise time and decay time constant of 1.9 ± 0.2 ms and 12.5 ± 0.9 ms respectively.
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Figure 4.19: Pep2m-AVKI does not affect non potentiated mEPSC amplitudes. (A.) Control
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Pep2m-AVKI. (C.) mEPSC frequency reduces with the inclusion of Pep2m-AVKI across the
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Figure 4.20: Control Pep2m-AVKI treated mEPSCs. Analysis of 100 mEPSCs from the 0-5
minute period shows a mEPSCs which typically have mean amplitudes of about 20 pA (1.).
Inclusion of the PICKI binding site inhibitor Pep2m-AVKI has no significant effect on the
baseline amplitude of the mEPSC (2.). Overlaid events from 0-5 minute and 10-15 minute

periods show little difference in the mean amplitude, and rise or decay phase of these mEPSCs
are similar (3.). Fitting control mEPSC with a single exponential indicates the goodness of fit
for the decay time constant (4.).
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4.9: PICK-ing out membrane fusion events underlying mEPSC amplitude potentiation.
In the previous experiment the application of PICK 1 binding site inhibitor Pep2m-AVKI

has no significant effect on the non VP stimulated mEPSC amplitudes. Pep2m-AVKI (Tyr-Asn-

Val-Tyr-Gly-Lle-Gln-Ala-Val-Lys.Lle) peptide sequence is directed against the PICK1/ AMPA
receptor binding motif, which should inhibit the ability of AMPA receptors to be functionally
inserted into active synapses. In this experimental series the Pep2m-AVKI peptide was applied
via the patch pipette. After the application of voltage pulses there is a transient non significant

potentiation of mEPSC amplitudes, which retains this elevated level across the time course of
the experiment (Figure 4.21 A: control 20.0 ± 1.3 pA: VP Pep2m-AVKI 22.8 ± 2.3 pA. n = 8).
Interleaved control recordings show a significant potentiation of mEPSC amplitudes after VP
stimulation (control 20.4 ± 0.2 pA: VP 40.5 ± 0.2 pA. n = 3). This is highlighted with the Raster

plots for this experiment (Figure 4.21 B), which clearly show VP potentiated mEPSCs from the

peak of the potentiation which are larger than the control mEPSCs.
The mEPSC frequency time course shows no significant change after the VP stimulus in

the presence of Pep2m-AVKI (control 0.6 ± 0.1 Hz: VP Pep2m-AVKI 0.6 ± 0.1 Hz:), but
reduces over the rest of the experimental time course. The frequency of mEPSCs from the
interleaved control recordings show the typical non significant transient potentiation (Control 0.7
± 0.1 Hz: VP 1.5 ± 0.4 Hz). VP potentiation ofmEPSC currents as with mEPSC amplitudes is
blocked by the application of Pep2m-AVKI (control 0.7 ± 0.1 nA: VP Pep2m-AVKI 0.4 ± 0.1

nA), while interleaved control recordings show a 1.5 fold potentiation ofmEPSC currents (0.4 ±

0.1 nA : VP 1.9±0.7nA).
In this single cell experiment the postsynaptic restriction of this peptide, blocked the VP

potentiation ofmEPSC amplitudes (Figure 4.22A: Control 20.8 ± 0.9pA: VP Pep2m-AVKI 20.2
± 2.4 pA). This blockade of potentiation is again shown by a lack of change in the distribution
of the mEPSC amplitudes. The cumulative probability plots (Figure 4.22 C) for the mEPSC

amplitudes in this experiment overlap, highlighting little effect of the VP stimulation in

promoting an increase in AMPA receptor number at the synapse. This lack of potentiation

highlighted with the histogram of mEPSC amplitudes, which has a clear rightward skew,

indicating a high probability of small amplitude mEPSC, in both the Pep2m-AVKI control and
the VP stimulated time periods (Figure 4.22 D).
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Analysis of 100 mEPSCs from both of the time periods, show little change in the mean

amplitudes or kinetic behaviour of these events. Control mean mEPSC was 22.8 ± 0.3 pA with a

rise and t decay time of 2.0 ± 0.3 pA respectively, while the VP Pep2m-AVKI mEPSC had
similar values with a mean amplitude of 20.2 ± 0.1 pA and rise and x decay time of 1.9 ± 0.3 ms

and 25.2 ± 2.7 ms respectively. Analysis of 100 mEPSC from the VP potentiated interleaved
control show a mEPSC with a mean amplitude of 77.2 ± 2.6 pA with rise time and decay time
constant of 2.5 ±0.1 ms and 28.3 ± 2.2 ms.
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following stimulation. (D.) Amplitude histograms for control and Pep2m-AVKI mEPSC over

the same time period (5 min) show no significant change in event distribution.
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Analysis of 100 mEPSCs from the control period (1.) and the Pep2m- AVKI treated period (2.)
show no significant change in rise or decay times when overlaid (4.) mEPSCs from interleaved
control recording have significantly larger amplitudes following VP stimulation (3.).
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4.10: Importance of GluRl AMPA receptor

CA1 pyramidal cells typically have two types of AMPA receptors, protein complexes
made up from hetro-dimers of either GluRl/GluR2 receptors or GluR2/ GluR3 receptors. So far,
the investigation of the receptor requirements for VP potentiation of mEPSC amplitudes has
shown a dependency upon the GluR2 receptor. The purpose of this series of experiments is to

classify the effects ofGluRl inhibition on non VP stimulated mEPSCs. To facilitate this study

Pepl-TGL (Ser-Ser-Gly-Met-Pro-Leu-Gly-Ala-Thr-Gly-Leu) was applied via the patch pipette

restricting its application to the postsynaptic cell only. Pepl-TGL is a peptide sequence targeted
to the TGL motif that corresponding to the C terminus of the GluRl subunit. TGL motif

represents the binding site for the structural protein SAP 97, usually utilized for the transport of
the NMDA receptor subunits.

Inclusion of this peptide (Pepl-TGL 50 pM) had no significant effect on the amplitudes
of mEPSCs across the experimental time course (Figure 4.24 A: Control 21.7 ± 2.3 pA: Pepl-
TGL 23.1 ± 3.1 pA. n = 3). The amplitude of all mEPSCs was shown in a typical scatter plot
and indicates no major changes in distribution. The plot of the frequency mEPSCs with Pepl-
TGL indicates no significant change in mEPSC frequency across the time course (Figure 4.24C:
Control 0.5 ± 1.6 Hz: Pepl-TGL 0.5 ± 0.1 Hz). Furthermore inclusion of Pepl-TGL had no

significant effect on total mEPSC current (Figure 4.24 D: control 0.3 ± 0.1 nA: Pepl-TGL 0.5 ±

0.2 nA)

Analysis of 100 control Pepl-TGL mEPSC indicate a mean control mEPSC with an

amplitude of 21.3 ± 0.1 pA and displays rise and x decay times of 2.0 ± 0.2 ms and 16.5 ± 1.1 ms

respectively. Analysis of events from the Pepl-TGL period indicate a mean event with an

amplitude of 21.9 ± 0.1 pA with a rise time and decay time constant of 2.1 ± 0.2 ms and 14.6 ±

0.9 ms respectively.
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Figure 4.25: Control experiments with Pepl-TGL. Average of 100 mEPSCs from the control

period shows mEPSCs which typically have mean amplitudes of about 20 pA (1.). Application
ofPepl-TGL has no significant effect on the baseline amplitude of the mEPSC (2.). When these
mean events are overlaid, there is little difference in the mean amplitude, and rise or decay phase
of these mEPSCs are similar (3.). Fitting control mEPSC with a single exponential indicates the

goodness of fit for the decay time constant.
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4.11: Blockade of the GluRl receptor, inhibits the VP potentiation of mEPSC amplitudes.
In the previous set of experiments, it was found that the compartmentalized application

of Pep-TGL had no significant effect on the amplitudes of non VP stimulated mEPSCs. In this
series of experiments, the same peptide was used to determine if the GluRl receptor is required
for the VP potentiation of mEPSC amplitudes, as the GluRl subunits exploit trafficking

pathways usually reserved for NMDA receptor subunits.

Following the application of the VP stimulus to the Pepl-TGL infused CA1 pyramidal
cells there was no significant increase in the amplitudes of the mEPSCs (Figure 4.26A: Control
21.5 ± 1.6 pA: VP Pepl-TGL 22.7 ±0.10 pA), while interleaved control VP recordings indicate
a potentiation of mEPSC amplitudes (Control 22.2 ± 1.9: VP 40.5 ± 2.1pA. n = 5).

The cumulative probability plots (Figure 4.27C) for the mEPSC amplitudes in this

experiment overlap, highlighting little effect of the VP stimulation in promoting an increase in
AMPA receptor number at the synapse. This lack of potentiation was highlighted with the

histogram of mEPSC amplitudes, which has a clear leftward skew, indicating a high probability
of small amplitude mEPSCs, in both the Pepl-TGL control and the VP stimulated time periods.

mEPSC frequency following the VP stimulus shows a 1 minute burst period and
transient not significant potentiation ofmEPSC frequency (Figure 4.28 A: Control 0.6 ± 0.1 Hz:
VP Pepl-TGL 0.7 ± 0.1 Hz). Inclusion of Pepl-TGL as expected further blocked the

potentiation of mEPSC currents (Figure 4.28B: Control 0.4 ±0.1 nA: VP Pepl-TGL 0.5 ± 0.1

nA), while interleaved total mEPSC currents potentiated.

Analyses of 100 mEPSCs from both of the time periods show little change in the mean

amplitudes, rises and decay times of these mEPSCs. Control mean mEPSC amplitude was 20.1
± 0.4 pA with a rise and r decay time of 1.3 ± 0.3 ms and 13.4 ± 1.1 ms respectively, while the
VP Pepl-TGL mEPSC had similar values with a mean amplitude of 19.8 ± 0.3 pA and rise and x

decay time of 1.4 ± 0.2 ms and 14.8 ± 1.2 ms respectively. Analysis of 100 mEPSC from the VP

potentiated interleaved control show a potentiated mEPSC has a mean amplitude of 44.1 ± 0.8

pA with a rise time and decay time constant of 1.8 ± 0.2 ms and 14.1 ± 0.8 ms respectively.
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Discussion- Voltage pulse potentiation is dependent upon post synaptic membrane
fusion events

So far I have shown that the voltage pulse stimulating protocol brings about reliable
sustainable potentiation of mEPSC amplitudes and that this potentiation is presumably
mediated via the insertion of new AMPA receptors into activated synapses or changes in the
conductance of these receptors. If this potentiation ofmEPSC amplitudes is mediated by the
insertion on AMPA receptors, then what are the mechanistic pathways involved in this
insertion. To answer this I looked at previously identified transport pathways to determine if

they impact on the voltage-pulse potentiation ofmEPSC amplitudes.

4.12: Importance of NSF to voltage-pulse potentiation
NSF (N-ethylmaleimide sensitive fusion protein) is a core protein found to exist

individually and as a component of two presynaptic protein complexes SNAP25 - soluble
NEM attachment protein of 25 kDa and SNARE (transmembrane SNAP receptors) complex.
Both of which are required for the induction of calcium dependent presynaptic vesicular

docking bringing about the release of neurotransmitter (Chen et al., 1999; May et al., 2001).

Surprisingly within pre- and postsynaptic terminals there is a synergy of function and the
same proteins have been shown to regulate the delivery of AMPA receptors to the

postsynaptic membrane (Song et ah, 1998; Braithwaite et ah, 2000; Braithwaite et ah, 2002).
More specifically it has been demonstrated that there is an association between the NSF

protein and the GluR2 AMPA receptor, the subunit which confers the Ca2+ impermeability of
the AMPA receptors (Osten et ah, 1998; Osten and Ziff, 1999; Shi et ah, 2001). This

receptor trafficking method is not unique to AMPA receptors but is also utilised by the
nicotinic a7 receptor subunit (Liu et ah, 2005).

In the initial set of experiments, I included the NSF inhibitor N-ethylmaleimide

(NEM 5 mM) in the internal solution compartmentalizing the application of this inhibitor to
the postsynaptic cell. I appreciate that the chemical structure of this inhibitor will confer a

degree of membrane permeability; leak of NEM from the postsynaptic cell would inhibit
vesicle release and ultimately influence mEPSC frequency. From my experiments this

aspect might be applicable as over the time course of the experiment there was significant
reduction in mEPSC frequency, by nearly 1 event per second. Alternatively there exists the

possibility of a reduction in postsynaptic detection, expressed by changes to the normal
AMPA receptor turn over rate, as receptors would be removed but not inserted due to the
block by NEM, this reduction in functional postsynaptic component creating only
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whispering synapses (Voronin and Cherubini, 2004). This would also be observed as a

change in frequency - this needs to be investigated further.
The primary focus of the experiments described in this Chapter is to provide insight

into mechanisms which govern mEPSC amplitude changes; application of NEM, in the
absence of voltage-pulses did not significantly affect the mean amplitude of the mEPSCs.
This may be seen as an unusual finding when considering, the possibility that the frequency

change is mediated by a loss of postsynaptic sites. The consideration that the amplitude
distribution of all the mEPSCs is very tight and that the reduction in synaptic site number is
most likely to occur from the least strong synapses first, which would result in the loss of
small amplitude mEPSC. This loss is unlikely to make a significant enough impact on mean

mEPSC amplitudes due to the normalizing process. Furthermore, there is no significant
difference in the amplitude histogram of control and NEM treated mEPSCs, implying no

major changes in mEPSC amplitude distribution.

Stimulating with the voltage pulse protocol induced the typical inward calcium
currents induced by the depolarizing phase of the voltage-pulses protocol. These currents

have previously been shown to result from the activation of L-type calcium channel.

Application of NEM blocked the voltage-pulse potentiation of mEPSC amplitudes, while
interleaved control recordings showed typical potentiation ofmEPSC amplitudes.

The conclusion from this experiment is that NSF protein or structures containing this

protein domain found in the postsynaptic compartment, regulate the insertion of AMPA

receptors during voltage-pulse potentiation of mEPSC amplitudes. Interestingly the mEPSC

frequency time course shows a similar reduction to that shown in the control recordings,
however there is a very obvious DSI current (Wilson et al., 2001) as discussed with normal

voltage-pulse recordings shown with this experiment. Moreover the voltage-pulse
stimulation of NEM treated mEPSCs has no significant effect on the rise time and decay
time constant of the mEPSCs.

To further develop the idea that receptor insertion mediates voltage-pulse

potentiation of mEPSC amplitudes, I decided to target SNAP-25, a NSF containing adaptor

protein. SNAP 25 is specifically cleaved by the application of botulinum toxin A (Botox).
Furthermore this application of Botox, when included in the patch-pipette does not cross

through the membrane. Indeed if this was to occur then there would be a total blockade of
vesicular release at the affected synapses. The small change in mEPSC frequency does not

support this idea. Pipette inclusion of Botox blocked the voltage-pulse potentiation of
mEPSC amplitudes, while interleaved control data showed potentiation of mEPSC amplitude
but with a different profile across the time course. Again this experiment indicates a
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requirement for the NSF containing SNAP 25 in the voltage pulse potentiation of mEPSC

amplitudes.
The transient potentiation of mEPSC frequency shown with the voltage-pulse

stimulus is similarly blocked by the application of Botox, the reduction in mEPSC frequency
is similar to the reduction shown with NEM although the control frequency is lower. This

finding does not aid the explanation, as to the site of mEPSC frequency change, or even if
that explanation is realistic. As I am assuming that the rate of release is almost constant,
therefore I feel that this reduction in event frequency is mediated by a balance between both

pre (reducing vesicle release) and postsynaptic mechanisms (reduction in the number of
active synapse).

4.13: Peptide inhibition of voltage-pulse potentiation
To this point I have used, one selective and one broad spectrum inhibitor of

membrane fusion events to determine the relationship between the NSF protein and insertion
of AMPA receptors into active synapses. To develop this idea further, I selected the same

site of inhibition but used the complementary target. This was achieved by using selective

peptides targeted to the NSF binding site on the intracellular C terminal of the GluR2

receptor. This experiment has many advantages over the standard NEM experiment, as these

peptides are specific for only one site i.e. the actual receptor which is being inserted, and is

reported to have no significant effect on the NSF and SNAP 25 protein structures. Due to

the fact that they are composed of ten amino acids they do not display membrane

permeability which is a potential issue with the NSF experiments. In a set of control

experiments Pep2m a peptide sequence target to the GluR2 NSF binding site had no

significant effect on the mEPSC amplitude time course. Evidence from other groups using
the traditional presynaptic stimulus for EPSC recording reported that application of this

peptide resulted in a reduction in control amplitudes of the EPSCs (Nishimune et al., 1998;

Song et al., 1998; Osten and Ziff, 1999; Song and Huganir, 2002). The possible explanation
for this difference could be referenced to the synaptic silencing generated by the applied
stimulus required for the generation of the EPSC (Xiao et al., 2004).

Again a reduction in mEPSC frequency was shown with the inclusion of this

peptide, but as discussed before this result is a source of further study as the source for this

change is undeterminable at this time with this experimental setup.
The potentiation ofmEPSC amplitudes by application of voltage pulses was blocked

by the pipette inclusion of Pep2m, confirming the NEM results and further indicating that it
is the interaction between the NSF peptide and GluR2 AMPA receptor subunit which
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mediate this potentiation. The experimental versatility of the peptides was next utilised as a

simple single amino acid substitution at position 8 where an asparagine (R-CH2CONH2)
residue is replaced by a serine (R-CH2OH) residue renders a functionally inactive peptide

(Pep4c). Application of Pep4c does one of two things it proves that application of this
inactive form does not inhibit the voltage-pulse potentiation of mEPSC amplitudes; in fact

application of this peptide consistently generated some of the largest mEPSCs recorded in
the study. The second, that the block of potentiation produced by Pep2m is simply not due
to a non-specific effect, brought about by the postsynaptic compartmentalized application of
this peptide. Furthermore the rundown in event amplitude shown with EPSC recording was

not evident with the mEPSC amplitudes following the voltage-pulse stimulus, strengthening
the possibility that this rundown is dependent upon repetitive stimulation (Prof John Isaac

supports this experimental premise- personal communication Neuroscience San Diego 2004)
As with typical voltage-pulse recordings the application of Pep4c does not block the

potentiation of mEPSC frequency or total current produced by these pyramidal cells

4.14: Other AMPA receptor delivery mechanisms
NSF dependent delivery mechanisms for AMPA receptor insertion into active

synapses is not the only transport mechanism for these receptors. AMPA receptors can be
trafficked by three PDZ domain containing proteins, which are structurally unique. Single
PDZ containing structural protein, PICK1 (protein interacting with C kinase 1) and the larger
multi PDZ containing proteins GRIP1 (Glutamate receptor interacting protein 1) and ABP

(AMPA receptor binding protein) form protein complexes which assemble into scaffolding
networks with which AMPA receptors associate in order to facilitate activity dependent

receptor insertion.
AMPA receptors have also been found to hijack the traditional NMDA receptor

delivery pathway requiring postsynaptic density protein PSD 95, via a secondary attachment

protein Stargazin (Chen et al., 2000; Choi et al., 2002; Schnell et ah, 2002; Vandenberghe et

ah,2005)
In this series of experiments I applied a derivative of Pep2m, again via the pipette

solution compartmentalising its application to the postsynaptic cell. This derivative Pep2m-
AVKI is specifically targetted to the PICK1 binding site on the C-terminus of the GluR2
AMPA receptor subunit, while not affecting the interactions of the AMPA receptor with
either GRIP or ABP. Inclusion of this peptide in the non-potentiated mEPSC recordings had
no significant effect on the non-potentiated mEPSC and mEPSC frequency and current
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displayed the typical pattern of reduction across the time course of the experiment apart from
a period of burst activity the trend is the same.

Application of the voltage pulse, in the presence of Pep2m-AVKI did not give the
usual degree of potentiation of mEPSC amplitudes although a small, but significant,

potentiation of mEPSC amplitudes of around 20 % was observed for a 10 minute period

following stimulation. It is tempting to suggest that this resulted through the interaction of
the GluR2-GluR3 receptor with ABP (Srivastava et al., 1998; Wyszynski et al., 1999; Osten
et ah, 2000). Furthermore interleaved control recordings highlighted that typical potentiation
of mEPSC amplitude was in fact possible. Therefore this small potentiation of mEPSC

amplitude may be mediated by the actions of GRIP1/ABP, while generation of full voltage-

pulse potentiation may require a functional interaction between the GluR2 AMPA receptor

subunit and PICK 1.

The application of this peptide blocks the transient frequency potentiation of mEPSC

amplitude, but does not fully mask the potentiation of the total current which shows a small
increase (30 %) across the time course as the amplitude potentiation. This change is vastly
smaller than the current change shown with voltage-pulse potentiation which is

approximately a 2.5 fold increase following the voltage-pulse stimulus.

4.15: AMPA receptor subunit composition
In mature hippocampal pyramidal cells, the subunit composition of AMPA receptors

are considered to be heterodimers of either GluRl-GluR2 subunits or GluR2-GluR3 subunits

(Wenthold et al., 1996). GluR4 subunits are expressed early in development and are replaced
by the adult repertoire of subunits by the seventh post natal day (Zhu et al., 2000).

LTP studies have indicated that complexes of GluRl-GluR2 subunits are rapidly
inserted following synaptic stimulation, with these later being replaced with complexes of
GluR2-GluR3 (Shi et al., 2001; Lee et al., 2003).

In a final series of experiment I used a peptide (Pepl-TGL) that interacted with a

motif found only on the short C terminus of GluRl receptors. This TGL motif has been
shown to be the site of interaction of the GluRl subunit with PDZ domains of SAP97 and

PSD95 (Leonard et al., 1998; Lisman and Zhabotinsky, 2001; Lim et al., 2002; Rumbaugh et

al., 2003), NARP (O'Brien et al., 1998; O'Brien et al., 1999; O'Brien et al., 2002), protein 4.1

(Ruberti and Dotti, 2000; Shen et al., 2000), stargazin (Lim et al., 2002; Schnell et al., 2002)
and PICK1 (Hirbec et al., 2002). Application of this peptide blocks only the trafficking of
GluRl- GluR2 subunits, and had no significant effect on the non potentiated mEPSC
currents. Following voltage-pulse stimulation the typical potentiation of mEPSC amplitudes
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shown in the interleaved control experiments was blocked by Pepl-TGL. These results
further demonstrated that the initial potentiation of mEPSC amplitude is unlikely to be
mediated by the insertion of GluR2-GluR3 subunits and that the later replacement synaptic
GluRl-GluR2 subunits by GluR2- GluR3 is dependent upon the insertion of the GluRl-

GluR2, as there were no late stage changes in mEPSC amplitudes indicative of an increase in
AMPA receptor number.

This concludes the characterisation of the requirement of post synaptic membrane
fusion events to facilitate the insertion of different AMPA receptor subunits, to bring about

the potentiation of mEPSCs in CA1 pyramidal neurones in organotypic slice cultures.
In the next Results Chapter I will describe a series of experiments that test directly the kinase

regulation of voltage pulse potentiation, in particular the requirement for a poorly described
kinase (PI-3 kinase) which is essential for the development of voltage pulse potentiation.
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Chapter Five:

Kinase regulation of voltage-pulse

potentiation



Kinase regulation of VP potentiation

The kinase regulation underlying the regulation of voltage pulse potentiation was initially
addressed by (Wyllie and Nicoll, 1994), who found both a role for CaMKII (Lisman et ah, 2002;
Poncer et ah, 2002) in initiating the potentiation of mEPSC amplitudes, and with further

experimentation revealed a sustainable form of VP potentiation would be achieved by blockade of

postsynaptic phosphatases. The differing expression of VP potentiation of mEPSC amplitudes
shown in this study, in combination with other studies showing a requirement for PI-3 kinase in

mediating glycine induced LTP of synaptic transmission, facilitated investigation of the possible

requirement of PI-3 kinase for L-type calcium channel mediated VP potentiation of mEPSC

amplitudes.
The function of phosphoinositide 3 kinases (PI-3 Kinase) are not well described in terms of

LTP based synaptic plasticity or memory experiments, but is known to be an important signaling
molecule in pathways required for LTP including NMDA receptor dependent activation of MAP
kinase and Atk/PKB (Perkinton et ah, 2002) as well as the upstream regulation of CREB (Du and

Montminy, 1998). A role for AMPA receptors regulating CREB has been shown through the PI-3
kinase activation ofMAP kinase (Perkinton et ah, 1999).

In other systems PI-3 kinase has been shown to play pivotal roles in translating a variety of
extracellular stimuli (growth factors and hormones) into a wide range of cellular processes. This
kinase is further known to be important in cancer development through regulation of the tumor

suppressor PTEN (Cantley and Neel, 1999; Leevers et ah, 1999; Leslie and Downes, 2002).

Signal transduction requires the metabolism of inositol phospholipids, and two clear

pathways compete for this substrate. The first is the well characterized phospholipase C (PLC)

pathway. Hydrolysis of phosphatidylinositiol(4,5) bisphosphate (PtdIns(4,5)P2) via this pathway

produces two products inositol (1,4,5) triphosphate (Ins (1,4,5)P3) which regulates intracellular
release of Ca2+ from stores, and diacylglycerol (DAG) which signals PKC. The second metabolic
pathway via the phosphoinositide 3-kinases (PI-3 kinase), produces different end products via the

phosphorylation of 3'-OH position of the inositol ring of inositol phospholipids and produces

phosphatidylinositiol (3) phosphate (PtdIns(3)P), phosphatidylinositiol (3,4) bisphosphate (Ptdlns

(3,4)P2) and phosphatidylinositiol (3,4,5) triphosphate (PtdIns(3,4,5)P3)(Cantrell, 2001).
Inhibition of this reaction is achieved by the broad spectrum PI-3 kinase inhibitor,

wortmannin. Wortmannin is a highly cell permeable antifungal antibiotic isolated from penicillium
fumiculosum (Wymann et ah, 1996; Walker et ah, 2000).
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5.1: Characterization of wortmannin's effect on non VP stimulated mEPSCs.

In this series of experiments, the effect of PI-3 kinase inhibition on the non VP stimulated
mEPSC was characterised. Wortmannin has no significant effect on the amplitudes of non-

potentiated mEPSC over the experimental time course (Figure 5.1: control 22.6 ± 0.1 pA:
wortmannin 22.4 ± 1.5 pA. n = 4). In combination with this a scatter plot of all mEPSC amplitudes
from the control period does not indicate an increase in the spread of mEPSC amplitude, when all
events are plotted as in a cumulative probability plot there is no apparent difference in the amplitude

probabilities between the two groups as both plots overlap. When the amplitude of the mEPSCs
from the control period and the first five minutes following application of wortmannin are

compared there is no significant difference between the two groups, both groups show a leftward
skewed distribution, indicative of small amplitude events. Raster plot of events, indicate no major
differences of mEPSC amplitudes between the control and the wortmannin treated events (See

Figure 5.2 C). The frequency of mEPSCs did change with the application of wortmannin the

frequency of mEPSCs significantly reduces from the control value of 1.4 ± 0.4 Hz to the treated
value of 1.3 ± 0.2 Hz and to 0.5 ± 0.2 Hz by the 20-25 minute time period. This reduction in
mEPSC frequency is difficult to attribute to the actions of wortmannin as similar frequency
reduction is shown in control recordings. This reduction in the frequency of the mEPSCs as

expected is paralleled with a reduction in the total mEPSC current. This mEPSC current produced

by these pyramidal cells have a control value of 1.5 ± 0.1 nA which is stable across the wortmannin
treated period 1.5 ± 0.3 nA, but reduces to 0.6 ± 0.2 nA by the 20-25 minute time period.
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Amplitude (pA) Amplitude (pA)

Figure 5.1: Characterization of wortmannin on non potentiated mEPSCs. (A.) Application of
100 nM Wortmannin had no significant effect on non potentiated mEPSCs. (B.) The distribution of
mEPSC amplitudes does not change significantly with application of wortmannin. (C.) Cumulative
probability plots for each data group overlap, indicating no significant differences in mEPSC

amplitudes. (D.) Amplitude histogram distributions do not change following the application of
wortmannin.
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Figure 5.2: Characterization of wortmannin on non potentiated mEPSCs (con't). (A.)

Application of wortmannin reduces mEPSC frequency across the time of the experiment (p > 0.05).

(B.) mEPSC total current shows a parallel reduction in mEPSC current is also significant (p < 0.01).

(C.) mEPSC raster plot, showing both control and wortmannin treated mEPSCs, which have similar

amplitudes and frequencies.
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1. 2.

3. 4.

Figure 5.3: Control wortmannin mEPSC overlays. Analysis of 100 mEPSCs from the control

period show a mean event of 20 pA (1.) which is consistent with control mEPSC mean amplitudes
from other recordings. Application of wortmannin (2.) has no significant effect on the mean

amplitude of these mEPSC, and showed little difference in the rise and decay times of these events

when overlaid (3.). Fitting the decay time exponential to the control mEPSC indicates the goodness
of fit for these events (4.).

5.2: Blockade of Pl-3 kinase inhibits the potentiation of mEPSC amplitudes.
In the previous experimental series, wortmannin failed to have any significant effect on the

amplitudes of the non VP stimulated mEPSCs, indicating that functional AMPA receptors found in
the membrane do not require PI-3 kinase for normal function. In the next series of experiments, the

objective was to characterise the induction phase of VP potentiation, that is PI-3 kinase activity
required for the induction ofVP potentiation of mEPSC amplitudes?
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In this series of experiments bath application of wortmannin (100 nM) blocked the
induction of VP potentiation of mEPSC amplitudes (Figure 5.4A: control 23.8 ± 2.1 pA: VP
Wortmannin 23.8 ± 3.8 pA. n = 8). In a series of interleaved control data, the VP stimulus induced
a significant increase in the amplitudes of the mEPSCs (control 21.83 ± 2.4 pA: VP 43.5 ± 5.0 pA.
n = 6). Typical mEPSCs from each experimental period are shown in figure 5.5B, mEPSCs from
the interleaved controls, show significantly larger amplitudes.

A single cell representation displays this lack of potentiation following the VPs; again a

scatter plot does not highlight any significant spread ofmEPSC amplitudes. Cumulative probability

plot for both control and VP stimulated wortmannin treated mEPSCs overlap, indicating a blockade
of the VP potentiation of mEPSC amplitudes. Furthermore the leftward distribution of this trace

indicates a high probability of small amplitude events. Analysis of the distribution of an amplitude

histogram ofmEPSCs from both time periods shows no significant differences in the distribution of
these histograms, as both traces show a typical leftward skewed distribution.

Application of wortmannin blocked the transient frequency potentiation shown with VP

stimulation, as the frequency of mEPSCs reduces across the time course of the experiment (Figure
5.6A: control 1.9 ± 0.4 Hz: VP Wortmannin 1.7 ± 0.3 Hz). The frequency of the interleaved control
mEPSCs showed no significant potentiation and reduced across the time course (control 1.2 ± 0.2
Hz: VP 0.9 ± 0.2 Hz: 20-25 minute 0.6 ± 0.1 Hz). Although the magnitude of the VP frequency
decrease appears to be significantly greater it is not the case, as this represents a 46 % decrease
across the time course, where as the VP wortmannin treated mEPSCs show a 40.6 % decrease

across the same time course. Application of wortmannin inhibited any potentiation of mEPSC
currents following the VP stimulus (control 1.4 ± 0.4 nA: VP wortmannin 1.4 ± 0.3 nA).

Analysis of one hundred mEPSCs from each time period (figure 5.6C) indicates little or no

significant difference in mean amplitudes (control 17.8 ± 0.1 pA: VP Wortmannin 17.9 ± 0.1 pA).
The 10-90% rise times for the mean mEPSC are similar for control mEPSCs and the wortmannin

treated VP stimulated mEPSCs (control 1.0 ± 0.2 ms: VP Wortmannin 1.3 ± 0.1 ms). Similarly

decay time constant show little difference between the two groups (control 9.6 ± 0.9 ms: VP
Wortmannin 10.1 ± 1.2 ms).

Analysis of 100 mEPSCs from the peak of the mEPSC potentiation from the interleaved
control data show a mean mEPSC with significantly increased amplitude (51.2 ± 0.6 pA), however
the rise time and decay time constant are not significantly different for these events (Rise 1.3 ± 0.1
ms : t decay 9.8 ± 0.7 ms).
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Figure 5.4: Wortmannin blocks VP potentiation of mEPSC amplitudes. (A.) bath application of
wortmannin (100 nM) blocks the induction of VP potentiation, while interleaved control recordings
show typical potentiation of mEPSC amplitudes. (B.) Raster plot of mEPSCs, control and VP
stimulated wortmannin treated mEPSCs show similar amplitudes, while interleaved control mEPSC
form the potentiated period have much larger amplitudes.
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(C.) Cumulative probability plots for each data group overlap, indicating no significant differences
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Figure 5.6: Further characterization of inhibition of VP potentiation by wortmannin.

Application of wortmannin blocks both the potentiation of mEPSC frequency (A.) and current (B.)
across the time course. Control mEPSC overlays. Analysis of 100 mEPSCs from the control

period show a mean event of 20 pA (1.) which is consistent with control mEPSC mean amplitudes
from other recordings. Application of wortmannin (2.) blocks the VP potentiation of mEPSC
amplitudes. Interleaved control VP recording show typical potentiation of mEPSC amplitudes (3.)
when overlaid both control and wortmannin treated cells showed little difference in the amplitude,

rise, and decay times of these events (4.).
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5.3: Confirming PI-3 kinase inhibition of VP potentiation
Due to the variety of actions that PI-3 kinase is been associated with, it was important to

check the specificity of this blockade of the induction of VP potentiation of mEPSC amplitudes, by
wortmannin. To achieve this we used a synthetic inhibitor (2-(4-Morpholinyl)-8-phenyl-l(4H)-

benzopyran-4-one hydrochloride) LY 294002-hydrochloride (5 pM), to complement the
wortmannin study.

In a series of control experiments, application of LY 294002 (5 pM) via the recording
solution had no significant effect on the control mEPSC amplitudes (See Figure 5.7A: Control 23.1
±1.1 pA: VP LY 294002, 21.6 ± 2.6 pA. n = 3). Again scatter plots of mEPSC amplitudes show no

difference in the amplitude distribution following application LY 294002. The cumulative

probability plot for both control and LY 294002 treated mEPSCs overlap, indicating little

significant difference between the control and treated mEPSC. Furthermore, the leftward
distribution of this trace indicates a high probability of small amplitude events, the 50 % probability
of 18.7 pA with an 80 % probability for the control mEPSCs of 28.7 pA and for the VP stimulated
mEPSCs with 26.8 pA. Analysis of the distribution of an amplitude histogram of mEPSCs from
both time periods shows no significant differences in the distribution of these histograms, as both
traces show a typical leftward skewed distribution (Figure 5.7 C,D).

The frequency of mEPSCs appears to be relatively stable throughout the control period, but
increases following the application of LY 294002, however this apparent potentiation is not

significant and the result of a burst of activity (Figure 5.8A: Control 1.4 ± 0.1 Hz: VP LY 294002,
1.6 ±0.3 Hz).

Total mEPSC current parallels this frequency change, appearing stable (no significant

change) across the time course except for a burst of activity following application of LY 294002

(See Figure 5.23: Control 1.7 ± 0.5 nA: VP LY 294002, 2.2 ± 0.4 nA). Raster plot indicates typical
mEPSCs from both periods indicate that there are no major differences between the two groups of
mEPSCs (Figure 5.8 C).

Analysis of one hundred mEPSCs from each time period indicates little or no significant
difference in mean amplitudes (Figure 5.10: Control 20.9 ± 0.2 pA: LY 294002, 20.5 ± 0.5 pA).
The 10-90% rise times for the mean mEPSC are similar for control mEPSCs and the LY 294002

treated VP stimulated mEPSCs (Control 2.0 ± 0.3 ms: LY 294002, 2.1 ± 0.3 ms). Similarly, decay
time constant shows little difference between the two groups (14.5 ± 1.4 ms: LY 294002, 14.5 ± 2.0

ms).
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Figure 5.7: Characterization of LY 284002 affects on non potentiated mEPSCs. (A.)

Application of LY 294002 (5 pM) had no significant affect on the mean amplitude of control
mEPSCs. (B.) There were no significant increases in the distribution of mEPSC amplitudes

following application of LY 294002. Although one 200 pA mEPSC does occur at 20 minutes, but
was excluded from figure (C.) Cumulative probability plots overlap, indicating no differences with

amplitude probability between the two groups. (D.) Amplitude histograms show no significant
change in distribution following application of LY 294002.
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Figure 5.9: Control LY 294002 mEPSC overlays. Analysis of 100 mEPSCs from the control

period show a mean event of 20 pA (1.) which is consistent with control mEPSC mean amplitudes
from other recordings. Application of LY 294002 has no significant effect on the mean mEPSC

amplitude (2.). When control and LY 294002 treated mEPSCs are overlaid, there are no apparent

differences in amplitude, rise or decay times between the two groups.

5.4: Blockade of VP potentiation of mEPSC amplitudes by LY 294002
In the previous experimental series, the application of LY 294002 like wortmannin failed to

have any significant effect on the amplitudes of the non VP stimulated mEPSCs. Indicating that
functional AMPA receptors found in the membrane may not require PI-3 kinase for normal
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function, in this next series of experiment, the objective was to determine if LY 294002 induced a

similar blockade of the induction of VP potentiation ofmEPSC amplitudes.
In this series of experiments bath application of LY 294002 (5 pM) blocked the induction

of VP potentiation of mEPSC amplitudes (Figure 5.10A: control 20.6 ± 2.8 pA: VP LY 294002,
22.4 ± 2.9 pA. n = 6), while interleaved control recordings show typical VP potentiation. Figure
5.1 IB highlights the differences in the amplitudes of the mEPSCs between the LY 294002 treated
mEPSCs and the VP potentiated events.

Single cell experiments highlight the finding that application of LY 294002 inhibits the VP

potentiation ofmEPSC amplitudes further showing no significant increase in the scatter of mEPSC

amplitudes. Cumulative probability plot for both control and VP stimulated LY 294002 treated
mEPSCs overlap. Indicating a blockade of the VP potentiation of mEPSC amplitudes by LY

294002, furthermore the leftward distribution of this trace indicates a high probability of small

amplitude events, the 50 % probability of 17.2 pA with an 80 % probability for the control mEPSCs
of 27.2pA and for the VP stimulated mEPSCs with LY 294002 24.79 pA. Analysis of the
distribution of an amplitude histogram of mEPSCs from both time periods shows no significant
differences in the distribution of these histograms, as both traces show a typical leftward skewed
distribution (See Figure 5.11 C.D).

Application of LY 294002, shows the similar reduction in mEPSC frequency shown with

application of wortmannin, again this reduction cannot be assigned to a function of the inhibitor
used as a similar reduction in event frequency is shown with control recordings. However
interleaved control recordings showed the transient frequency potentiation shown with VP
stimulation (Figure 5.12A: control 1.2 ± 0.5 Hz: VP 1.7 ± 0.2 Hz:).
The current generated by the mEPSCs from the interleaved control data, show the robust

potentiation of the mEPSC currents shown with VP potentiation (control: 0.8 ± 0.4 nA: VP 2.3 ±

0.3 nA). Application ofwortmannin inhibited the potentiation of mEPSC currents following the VP
stimulus (control 1.2 ± 0.4 nA: VP LY 294002, 1.1 ± 0.3 nA).

Analysis of one hundred mEPSCs from each time period indicates no significant difference in mean

amplitude, rise or decay times. Although 100 mEPSCs from the peak of the mEPSC potentiation
from the interleaved control data show a mean mEPSC with significantly increased amplitude,
however the rise times and decay time constants are not significantly different when compared to

the LY294002 treated events.
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Figure 5.10: LY 294002 blocks the VP potentiation of mEPSC amplitudes. (A.) Application of
LY 294002 (5 pM) blocks the VP potentiation of mEPSC amplitudes, while interleaved control data
show typical amplitude potentiation. (B.) Raster plot of mEPSC from control (black), LY 294002

(Red) and interleaved control time periods (blue).
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Application of LY 294002 blocks both the potentiation of mEPSC frequency (A.) and current (B.)
across the time course. Control mEPSC overlays. Analysis of 100 mEPSCs from the control

period show a mean event of 20 pA (1.) which is consistent with control mEPSC mean amplitudes
from other recordings. Application of LY 294002 (2.) blocks the VP potentiation of mEPSC

amplitudes. Interleaved control VP recording show typical potentiation of mEPSC amplitudes (3.)
When overlaid both control and wortmannin treated cells showed little difference in the amplitude,

rise, and decay times of these events (4.).
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5.5: LY 303511

In the previous set of experiments, the application of LY 294002 blocked the induction of
VP potentiation, while interleaved control recordings showed the mEPSC amplitude potentiation
associated with the VP stimulus.

To detail the selectivity of LY29402 (Ci9Hi8N202) the inactive analogue LY 303511 (C19H17NO3)
was used. This analogue is inactive due to a substitution in the morpholine ring when compared to

LY 294002.

O

rVS
n ^

LY 294002

The application of this inactive analogue allows for the typical VP potentiation of mEPSC

amplitudes (Figure 5.13A: control 22.7 ± 4.1 pA: VP LY 30351 1, 40.5 ± 2.6 pA. n = 5). Following
VP stimulation there is an increase in the distribution of the mEPSC amplitudes. This potentiation
is confirmed by the cumulative probability plot as this indicates two completely separate groups,

with the potentiated mEPSCs being of significantly larger amplitudes. Analysis of the amplitudes
of mEPSCs for the 5 minute period following VP stimulation, showed a rightward shift in the
amplitude distribution, when compared to control events.

The frequency ofmEPSC show the transient potentiation previously demonstrated with VP

potentiation (Figure 5.14A: control 1.5 ± 0.1 Hz: VP LY 303511, 1.7 ± 0.1 Hz. n = 5). The mEPSC
currents show potentiation after the VP stimulus with the bath applied inactive LY 303511 (Figure
5.14B: control 1.2 ± 0.6 Hz: VP LY 303511, 2.5 ± 0.2 Hz. n = 5). Analysis of one hundred
mEPSCs from each time period, show a control mEPSC with mean amplitude of 20.2 ± 0.2 pA, this
event has a rise time of 1.2 ± 0.2 ms and a decay time constant of 9.0 ± 1.2 ms.

Following the VP stimulus with LY 303511, there is a significant potentiation of the mean

mEPSC amplitude, 53.3 ± 0.3 pA, with a small shift in rise and decay time constant, 1.3 ± 0.1 ms

and 11.1 ± 0.7 ms respectively. These experiments rendered some of the largest mEPSCs recorded;
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analysis of 100 of the largest mEPSCs shows an event with mean amplitude of 171.3 pA with a

mean rise time and decay time constant of 1.9 ± 0.1 ms and 15.7 ± 1.1 ms respectively.
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Figure 5.13: An inactive isoform of LY 294002 allows for the VP potentiation of mEPSC

amplitudes. (A.) Application of LY 303511 (5 pM) does not inhibit the VP potentiation ofmEPSC

amplitudes. (B.) The distribution of the amplitude scatter plot increases following VP stimulation
with LY 303511 (5 pM). (C.) Cumulative probability plots show clear separation between the two

groups, indicating a higher amplitude probability for the VP potentiated mEPSCs. (D.) Amplitude

histograms show clear rightward shift with VP potentiation with LY 303511 (5 pM).
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Figure 5.14: Further characterisation of VP potentiation with LY 303511. (A.) Application of
LY 303511 does not inhibit the significant potentiation of both mEPSC frequency (A.) and current

(B.). mEPSC overlays for LY 303511. Analysis of 100 mEPSCs from the control period shows a

mean event of 20 pA (1.) Application of LY 303511 (2.) does not block the VP potentiation of
mEPSC amplitudes (3.). Mean mEPSC from 100 of the largest mEPSCs from the single cell
recording.
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5.6: Maintenance of the VP potentiation of mEPSC amplitudes is dependent upon PI-3 kinase.
Sanna et al., (2002) described a requirement for PI-3 kinase in the expression of LTP, but

not for the induction of LTP. In the pervious set of experiment, the role of PI-3 kinase in

establishing the induction of VP potentiation of mEPSC amplitudes was well characterised.

Extrapolating upon this difference, I wanted to know if the sustained potentiation of mEPSC

amplitudes shown with VP potentiation was dependent upon active PI-3 kinase, and will show

reversibility of potentiation with application of wortmannin.
In this series of experiment a VP stimulus was given, and then 5 minutes post stimulus

wortmannin (100 nM) was per-fused via a gravity feed at a perfusion rate of 4.5 ml/min into a 2 ml
bath. Following the VP stimulus there was a significant potentiation of mEPSC amplitude, this

potentiation was reversed by the application of wortmannin and returns to around the control

amplitude in approximately 10 - 12 minutes (Figure 5.15: control 20.1 ± 1.0 pA: VP 38.7 ± 2.5 pA:
wortmannin 19.5 ± 2.7 pA. n = 8). Events from each time period highlight show little difference
between the control and the VP stimulated wortmannin treated events from the 20-25 minute time

period, while the VP stimulated event have much larger amplitudes (Figure 5.15B).
A typical single cell experiment highlights the finding that application of wortmannin

reverses the significant VP potentiation of mEPSC amplitude (Figure 5.16: control 18.4 ± 0.7 pA:
VP 36.9 ± 1.7 pA: wortmannin 27.5 ± 2.9 pA). The cumulative probability plots for this
experiment are interesting as the control and VP mEPSCs do not overlap, and the plots show the
typical rightward shift shown with VP potentiation. This indicates a shift in the amplitude

probability for these events 50 % 12.0 pA and 26.1 pA respectively and 26.1 pA and 41.6 pA for
the 80 % probability for the control and VP potentiated mEPSCs.

However the application of wortmannin reversed the amplitude potentiation of the
mEPSCs, this is highlighted by 50 % and 80 % probabilities of 21.5 pA and 33.12 pA which fall
between the control and VP amplitude probability. Analysis of the distribution of an amplitude
histogram of mEPSCs show a significant rightward shift for the VP stimulated mEPSC (control
mEPSCs have left ward skewed distribution). The distributions ofmEPSCs from the VP stimulated
wortmannin treated mEPSCs have features of both the leftward skewed and the rightward

distributions, indicative of a change from the VP potentiated mEPSC trace (Figure 5.16 C.D).
The frequency of mEPSCs reduces across the time course of the experiment. VP stimulus

induced no significant frequency potentiation, comparison of frequencies from control and VP
stimulated periods were not significantly different (Figure 5.18 A: control 12.5 ± 0.1 Hz: VP 1.2 ±
0.1 Hz: wortmannin 0.8 ± 0.2 Hz).
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The total current, showed a 22 % increase following the VP stimulus, but application of
wortmannin blocked this potentiation and caused a significant reduction by the 20-25 minute time

period (Figure: 5.17 B: control 0.8 ± 0.1 nA: VP 1.0 ± 0.1 nA: wortmannin 0.6 ± 0.2 nA).

Analysis of one hundred mEPSCs from each time period (Figure 5.18) indicates a

significant difference in mean amplitudes, following the VP stimulus, however this potentiation is
reversed with application of wortmannin (control 22.4 ± 0.2 pA: VP 57.1 ± 1.1 pA: wortmannin
28.5 ± 0.2 pA). The 10-90 % rise times for the mean mEPSC from all three time periods are similar

(control 1.5 ± 0.1 ms: VP 1.6 ± 0.1 ms: wortmannin 1.2 ± 0.2 ms). Similarly decay time constant

show little difference between the three groups (control 10.0 ± 0.7 ms: VP 11.2 ± 0.3 ms:

wortmannin 10.0± 1.1 ms).
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Figure 5.15: Reversal of the VP potentiation of mEPSC amplitudes by wortmannin. (A.)

Following the VP stimulus the resulting mEPSC amplitude potentiation was inhibited by the
application of wortmannin. (B.) Raster plots representitive mEPSC from control (black) VP

potentiated (blue) and wortmannin treated (red) periods.
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Figure 5.16: Characterization of the reversal of VP amplitude potentiation by wortmannin.

(A.) A single cell representation of the reversal of VP potentiation by wortmannin. (B.) Scatter plot
of all mEPSC amplitudes from single cell example. (C.) Cumulative probability plot shows clear

separation between the control and potentiated event s indicative of a potentiation of mEPSC

amplitudes, while wortmannin treated mEPSCs fall between the control and potentiated plots
indicative of a reducing trend in mEPSC amplitude. (D.) Amplitude index mirrors the cumulative

probability plot, potentiated mEPSCs show a clear rightward shift, indicating a higher probability of

large amplitude events, while the wortmannin treated events regress towards the leftward skewed
distribution of the control mEPSCs.
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Figure 5.17: Further characterization of wortmannin on VP potentiation. (A.) following the
VP stimulus there was no mEPSC frequency potentiation, with application of wortmannin the

frequency reduced across the time course to approximately half of the control frequency. (B.) The
VP potentiation ofmEPSC currents was reduced with application of wortmannin.
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Figure 5.18: Analysis of 100 mEPSCs from each time period. Control period mEPSCs show a

mean event of with an amplitude of approximately 20 pA (1.) Consistent with control mEPSC
mean amplitudes from other recordings. (2.) Application of the VP stimulus induces a significant

potentiation of mEPSC amplitudes. (3.) Analysis of 100 wortmannin treated mEPSCs show a

reduction in mean mEPSC amplitude. (4.) When all mean traces are overlaid a clear potentiation of
the VP stimulated mEPSCs is shown, with control and wortmannin treated mEPSCs having similar

amplitudes.
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5.7: Ensuring that the maintenance of VP potentiation of mEPSC amplitude is PI-3 kinase

dependent.

In the previous set of experiments a significant potentiation of mEPSC amplitudes was

reversed by inhibition of PI-3 kinase. This result suggests a role of this kinase in the cycling of
AMPA into active synapses of the dendritic spine. To validate the role of PI-3 kinase the

experiment was repeated but LY 294002 (5 pM) was applied instead of wortmannin.

Following the VP stimulus there was a significant potentiation of mEPSC amplitude, this

potentiation was later reversed by the application of LY 294002, returning to around the control

amplitude in approximately 15 minutes (Figure 5.19 A: Control 18.0 ± 1.1 pA: VP 33.3 ± 1.6 pA:
VP LY 294002, 19.5 ± 2.7 pA. n = 7). Control and the VP stimulated LY 294002 treated mEPSCs
show little difference in mEPSC amplitudes, while the VP stimulated mEPSCs have much larger

amplitudes (Figure 5.19 B).

A typical single cell experiments highlight the finding that application of LY 294002
reverses the significant VP potentiation of mEPSC amplitude (Figure 5.20 A: Control 19.7 ± 0.6

pA: VP 39.8 ± 1.7 pA: VP LY 294002, 18.9 ± 2.2 pA). The cumulative probability plots for this

experiment are interesting as the control and VP mEPSCs do not overlap. The VP potentiated
mEPSCs show the typical rightward shift in the plot, indicating a shift in the amplitude probability
for these events 50 % 15.5 pA and 23.7 pA respectively and 24.7 pA and 38.2 pA for the 80 %

probability for the control and VP potentiated mEPSCs. However the application of LY 294002
reversed the amplitude potentiation of the mEPSCs, this is highlighted by 50 % and 80 %

probabilities of 16.4 pA and 26.0 pA which fall between the control and VP amplitude probability.

Analysis of the distribution of an amplitude histogram of mEPSCs show a significant rightward
shift for the VP stimulated mEPSC (control mEPSCs have left ward skewed distribution). The
distributions of mEPSCs from the VP stimulated LY 294002 treated mEPSCs have features of both

the leftward skewed and the rightward distributions, indicative of a change from the VP potentiated
mEPSC trace (See Figure 5.20 C.D).

The frequency of mEPSCs though the time course of this experiment is shows a transient

potentiation following the application of PI-3 kinase, but reduces across the time course of the

experiment. The VP stimulus from did not bring about a significant mEPSC frequency potentiation,

comparison of frequencies from control and VP stimulated periods were not significantly different

(Figure 5.21 A: Control 1.1 ± 0.1 Hz: VP 0.8 ± 0.1 Hz: VP LY 294002, 0.9 ± 0.2 Hz). The total

current, was shown to increase following the VP stimulus, but application of wortmannin blocked
this potentiation and caused a significant reduction by the 20-25 minute time period (Figure : 5.21
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B: Control 0.5 ± 0.1 nA: VP 0.7 ± 0.2 nA: VP LY 294002, 0.5 ± 0.1 nA). Analysis of one hundred
mEPSCs from each time period indicates a significant difference in mean amplitudes (Figure 5.22:
Control 20.6 ± 0.5 pA: VP 44.8 ± 0.4 pA: VP LY 294002, 24.1 ± 0.7 pA). The 10-90 % rise times
for the mean mEPSC from all three time periods are similar (Control 1.6 ± 0.3 ms: VP 2.1 ± 0.3 ms:

VP LY 294002, 1.8 ± 0.4 ms). Similarly decay time constants show a small increase between
control and VP potentiated events, but there is no significant difference between the control and the
VP stimulated LY 294002 treated mEPSC groups (control 20.7 ± 1.5 ms: VP 29.0 ± 1.5 ms: VP LY
294002 22.0 ± 1.5 ms).
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Figure 5.19: Maintenance of VP mEPSC amplitude potentiation is PI-3 kinase dependent. The
potentiation of mEPSC amplitudes was reversed by the application of LY 294002. Figure (B.)
Raster plots for inhibition of the maintenance of VP potentiation. Control mEPSCs (Black), VP

potentiated (Blue) LY 294002 treated mEPSC (Red).
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Figure 5.20: Characterization of the reversal of VP potentiation by LY 294002. (A.) A single
cell representation of the reversal of VP potentiation by LY 294002. (B.) Scatter plot of all mEPSC

amplitudes from single cell example. (C.) Cumulative probability plot shows clear separation
between the control and potentiated event s indicative of a potentiation of mEPSC amplitudes,
while LY 294002 treated mEPSCs fall between the control and potentiated plots indicative of a

reducing trend in mEPSC amplitude. (D.) Amplitude index mirrors the cumulative probability plot,
potentiated mEPSCs show a clear rightward shift, indicating a higher probability of large amplitude
events, while the LY 294002 treated events regress towards the leftward skewed distribution of the
control mEPSCs.
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Figure 5.21: Further characterization of LY 294002 inhibition of VP potentiation.

(A) Application of the voltage pulses did not induce a potentiation of mEPSC frequency; however,
a transient potentiation ofmEPSC frequency was shown following application of LY 294002. (B.)

Following the VP stimulus there was a potentiation of mEPSC currents, this potentiation was

reversed by the application of LY 294002.
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Figure 5.22: mEPSCs overlays from LY 294002 inhibition of VP potentiation. Control period
mEPSCs show a mean event of with an amplitude of approximately 20 pA (1.) Consistent with
control mEPSC mean amplitudes from other recordings. (2.) Application of the VP stimulus
induces a significant potentiation of mEPSC amplitudes. (3.) Analysis of 100 LY 294002 treated
mEPSCs shows a reduction in mean mEPSC amplitude. (4.) When all mean traces are overlaid a

clear potentiation of the VP stimulated mEPSCs is shown, with control and LY 294002 treated
mEPSCs having similar amplitudes.
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Discussion - Kinase regulation of voltage pulse potentiation

5.8: Background to PI-3 kinase
In this series of experiments I aimed to characterize the effects of PI-3 kinase in the

voltage pulse potentiation of mEPSC amplitude, which I have demonstrated has a

requirement for postsynaptic membrane fusion events. Specifically the previous Chapter
showed there to be interactions between the GluR2 subunit and NSF and PICK1 proteins,
and with the GluRl through the TGL binding motif to the possible effectors of this

trafficking pathway stargazin and the NMDA receptor transport proteins SAP97 and PSD95.
Scientific interest in PI-3 kinase signaling originates from a loss of PTEN a tumour

suppressor gene from dividing cancer cells. The PTEN tumour suppressor protein is a

phosphoinositide 3-phosphatase that, by metabolising phosphatidylinositol 3,4,5-

trisphosphate (PtdIns(3,4,5)P(3)), acts in direct antagonism to growth factor stimulated PI 3-
kinases (Leslie and Downes, 2002).

Within neuronal cells PI-3 kinase function requires the same substrate for action as

phospholipase C namely phosphatidylinositol (4,5) bisphosphate (Ptdlns (4,5)P2).
Metabolism via the PLC pathway generates two second messengers, IP3 and DAG. IP3 acts

on ryanodine receptors to release calcium from internal stores and generate the calcium
induced calcium release (CICR) current, while DAG activates protein kinase C. From earlier

experiments (see Chapter 3.17) I have determined that intracellular release of the store

calcium is critical for the development of voltage-pulse potentiation.
Metabolism via the PI-3 kinase pathway produces three second messengers

PtdIns(3)P, PtdIns(3,4)P2, PtdIns(3,4,5)P3 each of these second messenger proteins have
diverse cellular functions, mediated via PKA/AKT (Cantley and Neel, 1999; Cantrell, 2001)
and Rac/Rho GTPases (Liliental et al., 2000).

Due to the functional crossover with PLC, and the knowledge that PLC products
mediate cellular trafficking mechanisms, the role of phosphoinositide 3 kinase (PI-3 kinases)
in excitatory synaptic transmission was highlighted when PI-3 kinase was shown to be

required in the glycine induced LTP of mEPSC currents in cultured hippocampal neurones

(Sanna et al., 2002., 2002; Man et al., 2003). PI-3 kinase again overlaps with the PLC

signaling pathway to bring about the activation PKC. PI-3 kinase interaction with PKB

signaling pathway will activate PKC via a feed back loop which exists through PDK1 which
activates PKC (Chou et al., 1998) (for review see (Chou et al., 1998; Vanhaesebroeck and

Alessi, 2000; Cantrell, 2001).
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In summary, the kinase regulation of cellular processes is a vast highly complex

inter-regulating system. PI-3 kinase has been shown to be important in the regulation of
LTP in pyramidal cells although the mechanism has never been fully described.

5.9: PI-3 kinase is required for the induction of voltage pulse potentiation
Man et al (2003) reported a requirement for PI-3 kinase with glycine dependent

induction of LTP, my aim was to characterise the importance of PI-3 kinase for voltage-

pulse potentiation of mEPSC amplitudes. Application of wortmannin (Powis et al., 1994) a

specific PI-3 kinase inhibitor had no significant effect on the amplitude of non - potentiated

mEPSCs, indicating that AMPA receptors in active synapses are stable or that the basal
turnover rate is very low that the inhibition of AMPA receptor insertion by wortmannin is
not represented by a change in mEPSC amplitudes. Wortmannin further blocks the
induction of voltage-pulse potentiation ofmEPSC amplitudes.

A further complication exists as PI-3 kinase has been found to regulate the function
of the L-type Ca2+ channels (Steinberg, 2001) which could account for the blockade on the
induction of mEPSC amplitude potentiation. Furthermore PI-3 kinase has been shown to

regulate presynaptic P/Q and N type Ca2+ channels (Wu et al., 2002) which may account for
the reduction in mEPSC frequency shown with application ofwortmannin.

In these experiments this implied blockade of the L-type Ca2+ channels is not

significant, due to the observation of recurrent inward currents induced by the depolarising

phase of the voltage step. Generation of these currents was previously found to be

dependent upon active L-type Ca2+ channels. Therefore if the currents are occurring then the

receptors must be functional, and supplying the postsynaptic cell with calcium.
This experimental finding was then verified using a synthetic PI-3 kinase inhibitor

LY 294002 (Vlahos et al., 1994; Perkinton et al., 2002). Here again the application of this
PI-3 kinase inhibitor had no significant effect on non potentiated mEPSCs amplitudes, but
blocked the induction of the potentiation of mEPSC amplitudes, while interleaved control

recordings showed typical potentiation ofmEPSC amplitudes. These experiments confirmed
the importance of PI-3 kinase for the induction of voltage-pulse potentiation of mEPSC

amplitudes.
The function of LY 294002 was further checked with and an inactive analogue LY

303511, with application of this analogue did not inhibit the sustainable voltage-pulse

potentiation ofmEPSC amplitudes.
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5.10: Maintaining voltage pulse potentiation
The maintenance phase of voltage-pulse potentiation became the next target to

determine if PI-3 kinase is required for this stable potentiation ofmEPSC amplitudes. Sanna
et al., 2002 showed a requirement of PI-3 kinase, for the expression but not for the induction
or the maintenance of both NMDA receptor and VDCC-dependent LTP in the hippocampal
CA1 region. Expression was defined as the recovery of induced LTP following wash out of
these inhibitors.

Our findings in the first instance contradict those of Sanna et al., 2002 in that PI-3
kinase is required for the induction of voltage-pulse potentiation. This is probably due, to
the vast diversity of regulatory functions of this kinase. Figure 1.5 indicates some of the

diversity of regulation which PI-3 kinase displays. It has been linked with other major
kinases (AKT/PKB and PKC) which have previously been identified as regulators of
traditional NMDA receptor dependent LTP (See Figure 1.5) An interesting observation as

PI-3 kinase has also been shown to also regulate NMDA receptor function (Perkinton et al.,

2002; Crossthwaite et al., 2004).

In the next set of experiments a significant potentiation of mEPSC amplitude was

first generated. Then, wortmannin was applied five minutes after the stimulus; this

application reversed the potentiation, but did not ablate all mEPSC events. I did not check
the reversibility of the blockade of voltage-pulse potentiation as did Sanna et al., 2002, due
to two factors, the experimental set up of using whole-cell patched pyramidal cells precludes

experiments which require a long time course due to dialysis of the cell with the internal
solution. The second reason that the chemistry of wortmannin suggests that it cannot be
washed out as Sanna et al. (2002) indicated. Wortmannin binds at Lys-883, resulting in a

covalent complex which irreversibly inhibits PI-3 kinase (Wymann et al., 1996; Walker et

al., 2000).
The blockade of the maintenance of voltage-pulse potentiation, was further checked

with LY 294002 application of this synthetic PI-3 kinase inhibitor again reversed the

voltage-pulse potentiation of mEPSC amplitudes. But took a longer time period to reverse

the potentiation back towards control mEPSC amplitude, thereby confirming the requirement
of PI-3 kinase in the maintenance of the voltage-pulse potentiation ofmEPSC amplitudes.
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Summary of all experimental findings

1. Voltage-pulse potentiation
The experimental results indicate that the voltage-pulse stimulation protocol

provides an excellent mechanism through which postsynaptic function that underlies the long
term potentiation of synaptic function may be probed. The characterising experiments

proved that initially potentiation of mEPSC amplitude was possible and that the stimulation
resulted in a stable increase mEPSC amplitudes. This potentiation was later found to be

dependent upon the activation of L-type voltage gated calcium channels and not NMDA

receptors a functional requirement for traditional LTP. A requirement of the potentiation is
release of intracellular store calcium, as the activation of only the L-type calcium channel
was insufficient for the induction of voltage-pulse potentiation.

Furthermore, considering the duration of each experiment being significantly shorter
than any typical LTP experiment, application of any inhibitor (except CNQX) did not

completely ablate the synaptic transmission mediating mEPSCs. Suggesting that in the

pyramidal cells there are synapses which display almost stable AMPA receptors through
which this transmission is mediated.

2. Post synaptic membrane fusion events are required for receptor trafficking
This phenomenon of voltage-pulse potentiation was later shown to be expressed

through a postsynaptic mechanism dependent upon postsynaptic membrane fusion events,

involving interactions between the NSF and SNAP 25 proteins in postsynaptic membrane
with the GluR2 AMPA receptor subunit. The potentiation was then compartmentalised into
which hetrodimers are dependent at which point of the potentiation. In experiments where
the PICK1 binding site of the GluR2 receptor subunit and the TGL binding site of the GluRl

receptor subunit were inhibited, proved a requirement for insertion of hetrodimers of these
subunits to mediate the magnitude and stability of the potentiation of mEPSC amplitudes.
While the GluR2- GluR3 subunit complexes only mediate a very small potentiation of
mEPSC amplitudes following the voltage-pulse stimulus, with insertion of these receptors

occurring through the PICK1 related peptide ABP (Srivastava et al., 1998; Srivastava and

Ziff, 1999).

3. Kinase regulation of voltage-pulse potentiation
Intracellular kinase regulation of any form of potentiation is a complex inter-

regulating process; I selected a poorly described PI-3 kinase, which shares the same
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regulatory substrate as a very well defined protein kinase cascade the PLC activation of
PKC. The results from this study support and contradict previously published data. Man et

al found that PI-3 kinase was important in the induction phase of glycine induced LTP. Our
data support this finding as voltage-pulse potentiation was blocked by PI-3 kinase inhibition.

However, the work of Sanna et al., (2002) suggests that PI-3 kinase is only required
for the expression of LTP and not maintenance or induction. I found that PI-3 kinase was

essential for regulating the induction of the potentiation of mEPSC amplitudes which is

typically expressed as an increase in AMPA receptor insertion into synapses. Furthermore
this kinase was essential for the maintenance of the potentiation of mEPSC amplitudes,

expressed by the recycling and insertion ofAMPA receptors into the synapse to maintain the

potentiated response.

The voltage-pulse to study potentiation protocol represents and excellent protocol

through which biochemical methods can be applied to discern the mechanisms required for

receptor trafficking to activated synapses.

Further experiments

1. Imaging changes in postsynaptic AMPA receptor number
The application of confocal microscopy, could be used to verify the two main

premises of this thesis, the first that the mEPSC amplitude increase shown following VP

potentiation, is brought about by the insertion of new AMPA receptors into nascent and
active synapses in these CA1 pyramidal cells

The second premise of the voltage pulse potentiation paradigm holds that the
transient potentiation of mEPSC frequency is made possible through a post synaptic

mechanism, mainly the unsilencing ofprevious silent synapses. To address this concept with

voltage-pulse potentiation I would use optical indicators of AMPA receptors, namely using
con-focal imaging to view the movement green fluorescent protein (GFP) tagged AMPA

receptors following application of the VP stimulus.

Developing this experiment further I would use a pHluorin-GluR2 receptor

(Miesenbock et al., 1998; Perestenko et al., 2003).This AMPA receptor has a pH sensitive
form of the traditional GFP attached. This protein pHluorin, changes it fluorescence intensity
with movement from the more acidic cytosol to the less acidic synaptic site, through this

intensity change we could look at receptor turnover following VP stimulation. Also it could

provide an answer to site of the reduction in frequency shown in control recordings and with

196



the application of NEM. Whether this is due to rundown of vesicle release from the

presynaptic terminal or due to a postsynaptic mechanism, by which AMPA receptors in the
least stable synapses are removed, bringing about a physiological silence at these synapses

induced by the application of the toxin is not clear. This postsynaptic phenomenon would
mediate a reduction in the detection probability and hence a post synaptic frequency change.

2. Knock out animals

Other key experiments would involve the use of knock out mice; my interests would
involve investigation of the receptor subunits involved in the voltage-pulse potentiation of
mEPSC amplitude in the stargazing mouse. Through interactions with the stargazin protein,
GluRl receptor subunits join transport mechanisms usually reserved for NMDA receptor

subunits.

Other experiments would involve the characterisation of voltage pulse potentiation
in knockouts of both GluRl and GluR2 AMPA receptor subunits. Further, investigation of

protein kinase regulation of voltage pulse potentiation are needed, one important task is to

try to identify if there are any kinases utilised in voltage-pulse potentiation which are not

activated in traditional NMDA receptor LTP.
The potential for investigation with the voltage pulse stimulating protocol is

immense, this experimental set up could easily be applied to investigation of the cellular
actions of AMPAkines, potentiators of the function of AMPA receptors currently developed
as a cure for Alzheimer's disease and Schizophrenia (Tsai and Coyle, 2002).
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