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ABSTRACT 

 

Regulation of soluble N-ethylmaleimide-sensitive fusion protein attachment protein 

receptors (SNARE) mediated exocytosis is dependent upon four key proteins; the 

vesicular SNARE synaptobrevin, target SNAREs SNAP-25 and syntaxin and the 

Sec1/Munc18 (SM) protein munc18-1.  Despite the munc18-1-syntaxin interaction being 

central to regulated vesicle exocytosis the spatial and temporal pattern of their molecular 

distribution and interaction in neuroendocrine and neuronal cells remains undefined.  

Using in vitro and molecular approaches this thesis shows that disruption of the munc18-

1-syntaxin-N-terminal interaction results in significant changes in syntaxin localisation, 

membrane-proximal vesicle dynamics and fusion efficiency within neuroendocrine cells.  

Using the super-resolution techniques Ground State Depletion-Individual molecule return 

(GSDIM) Microscopy and Photoactivation Localisation Microscopy (PALM) this thesis 

has demonstrated that the spatial distribution of single munc18-1 molecules is non-random 

and that few munc18-1 molecules are required for exocytosis to proceed in 

neuroendocrine cells.  Furthermore, targeted disruption of the N-terminal interaction 

resulted only in a reorganisation of interaction with syntaxin with no change in the 

molecular spatial pattern of secretory vesicles, syntaxin or munc18-1.  Single molecule 

imaging PALM (sptPALM) enabled the investigation of the complex spatio-temporal 

behaviours of single munc18-1 molecules in living neuroendocrine cells. Spatially 

resolved maps of single munc18-1 molecules demonstrated that munc18-1 exhibits a 

caged motion within areas of the plasma membrane and were found to move between 

molecular storage depots distinct from vesicle docking sites.  To explore the precise 

spatial and temporal sequence of interactions between syntaxin and munc18-1 in living 

neurons, super-resolution imaging techniques PALM and sptPALM were employed.  Two 

kinetically and spatially distinct populations of munc18-1 molecules co-exist within a 

living neuron and munc18-1 requires syntaxin to traffic efficiently in axons but not for its 

retention in nerve terminals.  Moreover, Fluorescence Correlation Spectroscopy (FCS) 

revealed that the majority of munc18-1 molecules do not interact with syntaxin in nerve 

terminals and the diffusion rate of syntaxin is significantly slowed down upon neuronal 

depolarisation. 
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1.1  AN INTRODUCTION TO CELLULAR COMMUNICATION 

 

The defining feature of all eukaryotic cells is the division of their intracellular space into a 

series of highly differentiated membrane bound compartments in which specialised and 

distinct functions occur.  The transfer of newly synthesized material between intracellular 

compartments requires the action of membrane bound transport vesicles which bud from 

one compartment and fuse with the next (Caro and Palade, 1964; Jamieson and Palade, 

1967; Palade, 1975).  However, the major disadvantage of compartmentalizing biological 

membranes results in the isolation of a cell from its immediate external environment.  In 

order to overcome this isolation, extracellular transport involves the timely release of 

biological substances from the interior of secretory vesicles into the extracellular milieu. 

The process whereby vesicles fuse with the plasma membrane and release their contents, 

including proteins, lipids and cellular metabolites, is known as exocytosis (Bellen, 1999; 

Jahn et al, 2003).  Despite the enormous diversity of all intra- and inter-cellular fusion 

reactions, the underlying steps from membrane contact to aqueous fusion pore formation 

have been heavily conserved throughout evolution (Jahn et al, 2003). 

 

1.1.2 CONSTITUTIVE VS REGULATED EXOCYTOSIS 

 

Exocytosis can occur by either a constitutive or a regulatory pathway, both involving the 

sorting of proteins or lipids destined for release into secretory vesicles within the trans-

Golgi network (Burgess and Kelly, 1987).  Constitutive exocytosis is a fundamental 

pathway in all eukaryotic cells and involves the continual release of proteins and other 

internalized cargo from the lumen of secretory vesicles upon fusion with the plasma 

membrane (Burgess and Kelly, 1987; Burgoyne and Morgan, 2003). This pathway is 

instrumental to both cellular growth and the delivery and insertion of newly synthesised 

lipids and proteins to the plasma membrane (Burgess and Kelly, 1987; Burgoyne and 

Morgan, 2003). As inferred in its name, regulated exocytosis involves the fusion of 

secretory vesicles with the plasma membrane upon the arrival of a physiological stimulus 

(Burgess and Kelly, 1987; Jahn and Südhof, 1999; Burgoyne and Morgan, 2003; Jahn, 

2004). This stimulus often originates from the extracellular milieu, for example through a 

change in the cellular environment or a signal from an adjacent cell.  Specialised 
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eukaryotic secretory cells, for example, neurons and neuroendocrine cells, have exploited 

this release mechanism in order to efficiently transfer information between adjacent cells 

and throughout the whole organism respectively (Bellen, 1999; Cowan and Kandel, 2000; 

Burgoyne and Morgan, 2003).  Regulated secretion in neurons and neuroendocrine cells is 

both spatially and temporally restricted in order for their enclosed signalling compounds, 

neurotransmitters and hormones respectively, to be released when and where required.  

The physiological stimulus involved in catalysing this release mechanism commonly 

results in an influx of extracellular Ca
2+

 (Dodge and Rahamimoff, 1967; Burgess and 

Kelly, 1987; Jahn, 2004).  In neuronal cells synaptic transmission is initiated when an 

action potential, which results in an influx of extracellular Ca
2+

, triggers neurotransmitter 

release from a presynaptic nerve terminal (Katz and Miledi, 1967).  Membrane exocytosis 

and signal transmission is followed by endocytic retrieval and recycling of the plasma 

membrane and vesicular proteins, enabling more rounds of membrane fusion to occur 

(Goldstein et al, 1979; Ceccarelli and Hurlbut, 1980; Betz and Bewick, 1993).  

 

1.1.3 VESICLE COMPARTMENTALISATION 

 

Neurons share many properties with their neuroendocrine counterparts; in part both cell 

types package their secretory products, from small molecules to multimeric proteins, into 

cell specific membrane bound organelles (Kelly, 1993). Synaptic vesicles are 

approximately 50 nm in diameter and compose of low-molecular weight chemical 

neurotransmitters such as acetylcholine and glutamate (Del Castillo and Katz, 1954; De 

Robertis and Bennett, 1955).   Secretory vesicles of chromaffin cells, similar to large 

dense core vesicles in neurons, are in the range of 70 to 400 nm in diameter and contain a 

variety of neuropeptides and soluble proteins, giving them a characteristic dense core in 

electron micrographs (Kelly, 1993; Voets et al, 2001; de Wit et al, 2006).  

 

Vesicles contained within neuroendocrine and neuronal cells are generally organised into 

morphologically and functionally distinct pools, the readily releasable pool (RRP) and the 

reserve pool (RP).  In order for specialised secretory cells to respond rapidly to a 

physiological stimulus they require a number of pre-assembled and fusion competent 

vesicles positioned in close apposition to the plasma membrane (Harata et al, 2001). This 
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pool of vesicles is commonly referred to as the ‘readily releasable pool’ (RRP), a subset of 

vesicles which have undergone a number of maturation steps in order to enable them to 

fuse with the membrane on immediate demand (Burgess and Kelly, 1987; Rosenmund and 

Stevens, 1996; Rizzoli and Betz, 2004).  The RRP only represents a small fraction of the 

total vesicle complement (Greengard et al, 1993; Pieribone et al, 1995; Brodin et al, 1997; 

Kuromi and Kidokoro, 1998; Rorsman and Renstrom, 2003).  However, it is important to 

note that the structural organisation of the RRP is not similar in all chemical synapses, for 

example, at the frog neuromuscular junction the readily releasable vesicles are not in close 

proximity with the presynaptic membrane (Rizzoli and Betz, 2004).  It is thought that the 

extensive subcellular actin network within neuroendocrine secretory cells acts as a barrier 

to the pool of secretory vesicles in the cell periphery, thereby segregating vesicles into 

distinct pools and ensuring the release of only fusion competent vesicles (Nakata and 

Hirokawa, 1992; Doussau and Augustine, 2000; Malacombe et al, 2006). Those vesicles 

residing in the RRP in both neuronal and neuroendocrine cells are thought to undergo two 

maturation steps.  First vesicles are ‘docked’, a molecular state where they are considered 

to be within ‘no measurable distance’ from the plasma membrane (Verhage and Sorensen, 

2008; de Wit, 2010).  Second, docked vesicles are subsequently ‘primed’, an ATP-

dependent step rendering secretory vesicles competent for Ca
2+

 triggered fusion (Burgoyne 

and Morgan, 2003; Südhof, 2004).  

 

The process of vesicle exocytosis within neurons and neuroendocrine cells has been 

remarkably well conserved but differences still exist within the regulation (Childs et al, 

1987; McNeilly et al, 2003) and speed of vesicle release (Barrett and Stevens, 1972; Voets 

et al, 1999; Braun et al, 2009).  Despite these subtle variations, all eukaryotic secretory 

cells share a common mechanism of vesicular exocytosis (Clary et al, 1990; Bennett and 

Scheller, 1993a; Ferro-Novick and Jahn, 1994).  Regulated exocytosis involves the pairing 

of highly conserved proteins on the opposing vesicular and plasma membranes, with the 

soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNARE) 

proteins and their regulatory partners found at the core of this cascade of protein-protein 

interactions (Söllner et al, 1993a,b).  
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1.2 SNARE PROTEINS  

 

The compartmentalisation of intracellular membranes has made it necessary for vesicles to 

be brought into close proximity with the plasma membrane in order for them to release 

their enclosed components.  A number of studies conducted in the 1970s and 1980s began 

to probe both the mechanisms and players behind the a) cascade of events involved in 

intracellular transport, specifically between the ER and the Golgi complex, and the b) 

intricacies of the membrane fusion reaction.  These studies established that individual 

proteins are involved in a chain of events from initial synthesis in the endoplasmic 

reticulum to carrying out their desired biological function.  Post ER-synthesis, proteins are 

sorted in the Golgi complex and subsequently transported to their specific cellular 

destination within vesicles destined for fusion with the plasma membrane (Griffiths and 

Simons, 1986; Jamieson and Palade, 1967; Palade, 1975).  It was not until the late 1970s 

when Novick and co-workers pioneered the initial study which led to the identification of 

various components of the cellular machinery involved in driving compartmental transport 

and membrane fusion.  Novick and co-workers generated 188 secretion deficient or sec 

thermosensitive yeast (Saccharomyces cerevisia) mutants and screened their individual 

abilities to secrete invertase, an enzyme that catalyses the hydrolysis of sucrose (Novick 

and Schekman, 1979; Novick et al, 1980, 1981).  This approach resulted in the discovery 

and isolation of 23 gene products that were principally involved in intracellular membrane 

trafficking events.  Sec mutants resulted in defects in a number of stages of the 

intracellular trafficking pathways; from the ER to the Golgi complex to the trafficking of 

secretory vesicles to the plasma membrane (Novick et al, 1980).  Major components of the 

yeast secretory pathway identified in this study, and now heavily characterised, included 

Sec1 (a Sec1/munc18 protein), Sec4 (a Rab/GTPase), Sec9 (a target membrane SNARE 

protein), and Sec22 (a vesicle membrane SNARE protein) (Novick et al, 1980).  

 

These pioneering studies led by Novick and colleagues in the 1970s coincided with the 

characterisation of both novel and previously identified proteins involved in the catalysis 

of ATP dependent intracellular transport (Glick and Rothman, 1987).  Only a few years 

later another study led by Rothman in 1981 identified a number of proteins also essential 

for intracellular transport reactions through the use of reconstituted Golgi compartments 
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from wild-type and secretion mutant Chinese hamster ovary (CHO) cells (Rothman and 

Fries, 1981; Balch et al, 1984). This study led to the identification of both N-

ethylmaleimide-sensitive fusion protein (NSF; Fries and Rothman, 1980; Rothman and 

Fries, 1981) and soluble NSF attachment proteins (SNAPs), the latter required at the same 

step of membrane fusion as NSF (Clary et al, 1990; Clary and Rothman, 1990).  NSF, a 

trimeric ATPase, was shown to be essential for intracellular membrane fusion as its 

genetic ablation resulted in the accumulation of vesicles in the acceptor membrane 

(Malhotra et al, 1988).  Essential factors in mediating intracellular transport steps initially 

identified by Novick and co-workers, specifically Sec17 and Sec18, were found to be 

homologous to α-SNAP (Clary et al, 1990) and NSF (Wilson et al, 1989), respectively.  In 

summary, the fact that the same components, SNAPs and NSF, were identified in two 

distantly related eukaryotic model systems highlights the conserved nature of intracellular 

trafficking and membrane fusion reactions.  

 

Despite identifying a number of highly conserved proteins involved in catalysing 

membrane fusion it was still unclear what determined the specificity of membrane 

trafficking, in other words, how does a vesicle recognise a membrane it is destined to fuse 

with? Following the characterisations of NSF and SNAPs, Rothman and colleagues later 

set out to investigate the identity of the membrane receptors of these proteins. Using 

highly purified NSF and SNAPs from bovine brain extract they successfully isolated their 

targets, leading to the identification of SNAP receptors (SNAREs) (Söllner et al, 1993b).  

SNAREs, syntaxin and Synaptosome-Associated Protein of 25 kDa (SNAP-25), were 

found to be localised to the plasma membrane and Vesicle Associated Membrane Protein 

(VAMP) was found to reside on the vesicular membrane (Söllner et al, 1993b).  However, 

it is often overlooked that all three SNARE proteins had already been previously identified 

in a number of separate studies.  VAMP (Trimble et al, 1988) or synaptobrevin (Baumert 

et al, 1989) was initially labelled as a major constituent of synaptic vesicles and syntaxin 

was first identified using a monoclonal antibody raised against a synaptosomal membrane 

preparation (Barnstable et al, 1985; Inoue et al, 1992).  Synaptosome-associated protein of 

25 kDa (SNAP-25) had been previously isolated (Oyler et al, 1989) and shown to be a 

major substrate for fatty acid palmitoylation (Hess et al, 1992).  Despite their previous 

identification Rothman and colleagues were the first to demonstrate that SNARE proteins 

form a core complex upon bilayer fusion (Söllner et al, 1993a,b).  
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Following the identification of the SNARE proteins the most direct evidence to suggest 

that they are central to the process of membrane exocytosis originated through the initial 

characterisation of clostridial neurotoxins (Südhof et al, 1993; Montecucco and Schiavo, 

1995; O'Kane et al, 1999).  The clostridial neurotoxin family is composed of tetanus 

neurotoxin (TeNT) and seven different serotypes of botulinum neurotoxins (BoNT) 

(Minton, 1995), produced respectively by the obligate anaerobic bacteria Clostridium 

tetani and Clostridium botulinum.  These neurotoxins are comprised of two fragments, 

termed the heavy (100 kDa) and light (50 kDa) chains which block neurotransmitter 

release both in vitro and in vivo (Schiavo and Montecucco, 1997). C. tetani produces 

tetanus neurotoxin (TeNT) which is transported retrogradely to the spinal cord, travelling 

through the synaptic cleft to block release of neurotransmitter from inhibitory neurons 

(Schwab and Thoenen, 1976, 1978; Dumas et al, 1979; Schwab et al, 1979).  Conversely, 

the seven serotypes of botulinum neurotoxin (BoNT) termed A-G infect a host by being 

absorbed into the blood through the gut wall, later taken up at neuromuscular junctions 

(NMJ) to inhibit neurotransmitter release (Maksymowych and Simpson, 1998; 

Maksymowych et al, 1999).    

 

Identification and characterisation of the specificity of these toxins was achieved by 

incubating purified recombinant SNARE proteins with specific toxins and sequencing the 

N-terminal portion of these protein fragments.  This demonstrated that all clostridial 

neurotoxins specifically target the neuronal SNAREs, syntaxin, SNAP-25 and 

synaptobrevin by cleaving the different peptide bonds.  TeNT and BoNT B, D, F and G 

target synaptobrevin (Schiavo et al, 1992, 1993a,c, 1994; Yamasaki et al, 1994a,b,c), 

while BoNT A and E instead cleave SNAP-25 (Schiavo et al, 1993a,b).  Only BoNT C has 

a dual-specificity for SNAP-25 and syntaxin 1 (Blasi et al, 1993a; Schiavo et al, 1995; 

Foran et al, 1996; Osen Sand et al, 1996; Williamson et al, 1996).  Clostridial neurotoxins 

result in the complete suppression of vesicle exocytosis by detaching the cytoplasmic 

portion of syntaxin and synaptobrevin from their membrane anchors (Schiavo and 

Montecucco, 1997), thereby reducing the stability required for the correct formation and 

assembly of the SNARE complex (Hayashi et al, 1994, 1995).   

 

Clostridial neurotoxins and the associated phenotype of the affected nerve cell have been 

particularly useful in unravelling the role of SNAREs in exocytosis.  Despite the complete 
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abolition of exocytosis seen in synapses treated with TeNT or BoNT/C, a normal 

distribution of synaptic vesicles is observed by electron microscopy, with a sub-population 

of vesicles docked at the plasma membrane (Hunt et al, 1994; O'Connor et al, 1997). This 

finding suggested that the SNAREs are not involved in the process of docking but 

fundamental to the fusion process itself.  The three SNARE proteins form an extremely 

stable complex in vivo which has been shown to be resistant to cleavage by clostridial 

neurotoxins in vitro (Hayashi et al, 1994; Pellegrini et al, 1994).  It is therefore likely that 

the SNAREs only form a stable SNARE complex at a very late stage in the fusion process, 

most likely after the triggering of fusion by Ca
2+

 influx into the presynaptic terminal (Xu 

et al, 1998).  Over the subsequent years a vast number of studies have confirmed that 

SNARE proteins are universally fundamental to all eukaryotic membrane fusion events 

and essential for membrane exocytosis (Südhof et al, 1989; Bennett and Scheller, 1993a; 

Söllner et al, 1993a; Ferro-Novick and Jahn, 1994; Hayashi et al, 1994; Jahn and Südhof, 

1999). Thus the discovery of the SNARE proteins and the fact that they are targets for 

clostridial neurotoxins marked the initial understanding of how these proteins regulate the 

dynamics of donor-acceptor membrane fusion. 

 

1.2.1 SNARE COMPLEX FORMATION 

 

The fusion of membranes is driven by a complex interaction between three SNARE 

proteins, syntaxin, SNAP-25 and synaptobrevin (Söllner et al, 1993a,b).  SNARE proteins 

belong to a universally conserved superfamily of either vesicle anchored (v-SNARE) or 

target (t-SNARE) membrane anchored proteins (Söllner et al, 1993a).  In neuronal and 

neuroendocrine cells synaptobrevins (v-SNARE), syntaxins (t-SNARE), and 

synaptosomal-associated protein of 25 kDa (SNAP-25s) (t-SNARE) make up the minimal 

SNARE machinery required to drive membrane fusion (Jahn and Südhof, 1999; Chen and 

Scheller, 2001; Jahn, 2004).  SNARE proteins interact via their tightly conserved SNARE 

motifs, a highly conserved sequence of 60-70 amino acids which have a high propensity to 

form α-helical coiled coils (Chapman et al, 1994). The t-SNAREs syntaxin and 

synaptobrevin donate one SNARE motif (Fasshauer, 2003) whereas SNAP-25 contributes 

two motifs, separated by a linker region (Poirier et al, 1998a; Sutton et al, 1998; Gerst, 

1999), to the ternary SNARE complex.  It is now well established that this linker region 
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includes a number of cysteine residues which are palmitoylated in order to anchor SNAP-

25 in the plasma membrane (Oyler et al, 1989; Veit et al, 1996; Gonzalo et al, 1999; 

Loranger and Linder, 2002).  Syntaxin, in contrast, is associated with the membrane via its 

transmembrane domain, allowing its extreme C-terminal α-helical coil to occupy the 

intracellular space and interact with the N-terminal α-helix of SNAP-25 (Hayashi et al., 

1994).   

 

A number of different studies have shown that the formation of the SNARE complex is 

sequential and initiated by the association of the t-SNAREs, SNAP-25 and syntaxin, most 

likely in a 1:1 stoichiometry at the plasma membrane (Chen et al, 2001; Fasshauer and 

Margittai, 2004; Rickman et al, 2004; Weninger et al, 2008).  Upon the formation of the t-

SNARE heterodimer complex, synaptobrevin binds and results in the formation of a tight 

four-helical trans-SNARE core complex (Weber et al, 1998).  Interaction between cognate 

v- and t-SNAREs in opposite membranes forms a ternary core complex that contributes 

significantly to the energy required for membrane fusion (Poirier et al, 1998b) and drives 

bilayer unification and subsequent exocytosis (Sutton et al, 1998; Weber et al, 1998; 

Parlati et al, 1999; Hu et al, 2002).  

 

1.2.2 THE SNARE HYPOTHESIS 

 

The SNARE hypothesis was introduced alongside the discovery of the SNARE proteins 

and their role in catalysing membrane fusion (Söllner et al, 1993a,b; Rothman, 1994a,b). 

The original hypothesis suggested that secretory vesicles fuse with the plasma membrane 

by virtue of the specificity of cognate v-SNARE and t-SNARE interactions.  The second 

main postulate of the hypothesis stated that both NSF and SNAP bind to the assembled 

SNARE complex and through NSF hydrolysis of ATP drive bilayer unification. The 

SNARE hypothesis therefore addressed the major outstanding questions in the field at the 

time, 1) what molecular mechanism specified membrane fusion and 2) what made it 

energetically possible? However, over the last ten years facets of the SNARE hypothesis 

have either been called into serious question or disproved. It has now been shown that the 

function of NSF and SNAP is not to drive fusion (Mayer et al, 1996) but to disassemble 

and recycle SNARE complexes post fusion (Nichols et al, 1997; Ungermann et al, 1998), 
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specifically through the enzymatic activity of NSF.  This fits with other members of the 

same family of proteins, some of which have been implicated in disentangling protein 

complexes (Hanson and Whiteheart, 2005).  The other main principle of the hypothesis, 

i.e., SNARE protein interactions account for the specificity reported in membrane fusion 

reactions, has also been disputed.  The sequencing of the yeast Saccharomyces cerevisiae 

genome revealed that SNAREs could not specify all intracellular transport steps as there 

simply were not enough of them present (The Yeast Genome Directory, 1997).  Another 

line of evidence discrediting the ‘SNARE specificity model’ of the original hypothesis is 

that a single SNARE can participate in more than one transport step (Fischer von Mollard 

and Stevens, 1999) and noncognate mammalian SNARE complexes can form in vitro 

(Fasshauer et al, 1999; Yang et al, 1999).  Despite the fact that parts of the SNARE 

hypothesis have been heavily disputed the core message has survived, i.e. the formation of 

SNARE complexes confers specificity necessary to drive bilayer unification.   

 

Over the last decade an overwhelming body of evidence has established that SNARE 

proteins make up the minimal molecular machinery required for membrane fusion.  

However, it is now generally accepted that additional accessory factors are essential to 

regulate and maintain cellular compartmentalisation and the kinetics of membrane 

exocytosis.  For example, the single-membrane spanning synaptotgamin protein (Syt) 1 

has been labelled as the Ca
2+

 sensor for fast synaptic fusion (Chapman, 2002). Genetic 

removal of Syt1 in both mice and Drosophila results in the loss of the fast, Ca
2+

-dependent 

phase of transmitter release (Chapman 2002). In addition, ubiquiteously expressed Rab 

proteins have been shown to be instrumental in both membrane docking and fusion 

(reviewed in Jahn, 2000). It has recently been shown that membrane-specific Rab proteins 

ensure the directionality and specificity of both vesicular docking and fusion (Grosshans et 

al, 2006). Another protein critical to membrane fusion is complexin (CPX), a small 

neuronal protein that binds rapidly and with high affinity to the SNARE complex 

(McMahon et al, 1995; Pabst et al, 2002). In pancreatic β-cells, insulin secretion is 

reduced by silencing CPX I expression (Abderrahmani et al, 2004) and the genetic 

knockdown of CPX II in mast cells also leads to suppressed secretion (Tadokoro et al, 

2005). Furthermore, Sec1/Munc18 (SM) proteins are required for every step of 

intracellular membrane fusion and have been recently shown to accelerate SNARE pairing 
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and complex assembly between bilayers, therefore enhancing fusion specificity and 

driving the basal fusion reaction (Shen et al, 2007). 

 

1.3 SEC1/MUNC18 (SM) PROTEINS  

 

SNARE proteins are critical to all membrane fusion events but rely heavily on the 

presence of a number of molecular regulators which provide both the spatial and temporal 

specificity seen in bilayer unification. One such regulator is the Sec1/Munc18 (SM) 

proteins, a 65-70 kDa family of proteins composed of seven mammalian and four yeast 

members.  As previously mentioned, SM proteins were initially identified as crucial 

components of the intracellular trafficking machinery in secretion deficit strains of S. 

cerevisia (Novick and Schekman, 1979; Novick et al, 1980, 1981).  Sec1p and its 

homologue, slp1, have been implicated in a number of intracellular transport pathways, 

from secretion to ER-Golgi transport, respectively in S.cerevisiae (Novick et al, 1980; 

Wada et al, 1990).   

   

Around the same time Brenner independently identified mutations in 77 genes which 

resulted in the altered movement and coordination of the roundworm, Caenorhabditis 

elegans (Brenner, 1974).  Disrupting the function of SM protein unc-18 (uncoordinated-

18) resulted in paralysis and an accumulation of acetylcholine, suggesting impairment in 

the mechanisms underlying neurosecretion (Brenner, 1974).  A similar phenotype for the 

Sec1 homologue, Rop, was later recorded in Drosophila melanogaster (Salzberg et al, 

1993). The highly conserved sequence homology between Rop and Sec1p suggests that 

the Rop protein may also function in vesicle trafficking among membranes of Drosophila 

cells (Pevsner et al, 1994a).  The prevailing phenotype evident in yeast, worm and fly 

highlights the conserved function of SM proteins throughout eukaryotic evolution and 

their necessity in both general secretion and synaptic transmission (Harrison et al, 1994).   

 

The mammalian homologue of Sec1p, munc18-1, was identified through its specific 

interaction with syntaxin1a (Hata et al, 1993).  In mammalian cells three munc18 isoforms 

exist, munc18-1 is primarily expressed in neurons and neuroendocrine cells (Hata et al, 

1993; Garcia et al, 1994), munc18-2 is expressed in all non-neuronal tissue and munc18-3 
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is expressed ubiquitously (Hata and Südhof, 1995; Katagiri et al, 1995; Tellam et al, 

1995).  The study into the specificity of the interaction between different munc18 and 

syntaxin isoforms revealed that munc18-1 and munc18-2 can interact with syntaxin-1A, -

1B,  -2 and -3 whereas munc18-3 can only bind syntaxin-2 and -4 (Hata and Südhof, 1995; 

Halachmi and Lev, 1996; Tellam et al, 1997).  This highly selective interaction 

highlighted the conserved function of SM proteins in membrane fusion may actually be 

mediated via syntaxin (Jahn, 2000).  Munc18-1 was originally considered an oddity 

among other SM members as its interaction with its cognate SNARE, syntaxin, inhibited 

SNARE complex assembly (Pevsner et al, 1994a; Yang et al, 2000).  This inhibitory role 

assigned to munc18-1 was however in stark contrast to the functionality of its 

homologues.  Was this simply due to the divergence of SM protein function along the 

evolutionary tree or was the function of munc18-1 more complicated than first thought? 

 

Whereas munc18-1 has been shown to have a strong affinity for monomeric syntaxin 

(Pevsner et al, 1994b) its yeast homologues Sly1p and Sec1p only bind to their cognate 

syntaxin, Sed5p and Ssolp respectively, when in the ternary SNARE complex (Carr et al, 

1999; Bracher and Weissenhorn, 2002).  Another yeast SM protein, Vps45p, binds to 

Tlg2p, its cognate syntaxin, both in the monomeric state and in the ternary SNARE 

complex (Bryant and James, 2001).  This apparent discrepancy in binding modes was 

initially explained by apparent differences in the structures, binding sites and recognition 

motifs of the SM proteins and their syntaxin partners.  However, another way to interpret 

the inconsistency between interaction modes was that SM proteins were interacting with 

their cognate syntaxin in two distinct manners (Misura et al, 2000; Bracher and 

Weissenhorn, 2002).   

 

The complicated mechanism of SM-syntaxin interaction was finally elucidated upon the 

completion of the crystal structures of both munc18-1 and Sly1p, in complex with their 

cognate syntaxins (Misura et al, 2000; Bracher and Weissenhorn, 2002).  Munc18-1 exists 

as a three-domain V-shaped molecule with a central cleft of approximately 15-20 Å which 

binds to syntaxin (Figure 1.1, based on crystal structure PDB 3C98 (Burkhardt et al, 

2008)).  The crystal structure of Sly1p revealed, in the presence of a Sed5p peptide, that it 

also exists in a similar arch like structure to munc18-1 (Bracher and Weissenhorn, 2002).  

Interestingly, comparison of both crystal structures revealed two separate binding motifs 
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between syntaxins and their respective SM protein.  Sed5p bound only to the N-terminal 

domain of Slylp on the surface of the protein (Bracher and Weissenhorn, 2002) whereas 

syntaxin binds to domains 1 and 3 of munc18-1 and occupies most of the space of the arch 

of munc18-1 (Misura et al, 2000).  A recent study comparing the membrane fusion 

machinery between the choanoflagellate Monosiga brevicollis and mammalian cells found 

that the structure and function of the munc18-1-syntaxin complex was remarkably similar.  

This finding indicates that this dual mode of interaction must have existed in the last 

common ancestor of choanoflagellates and animals and is a key step in driving SNARE 

mediated membrane fusion (Burkhardt et al, 2011). Therefore the conservation of 

components of the fusion machinery and their mechanisms of interaction from unicellular 

organisms to man suggests that these proteins were versatile enough to allow its adaptation 

to all intracellular fusion reactions (Bennett and Scheller, 1993a; Jahn and Südhof, 1999).  

The fact that SM homologues interact with their cognate syntaxins via two distinct 

mechanisms has partially explained the controversy regarding the functionality of SM 

proteins in exocytosis. 
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1.3.1 MUNC18-1 AND ITS ROLE IN EXOCYTOSIS 

 

The release of internalized cargo from a membrane bound vesicle involves a highly 

complex and regulated cascade of protein-protein interactions.  The regulators of this 

process are therefore of vital importance in controlling the rate and extent of vesicle 

exocytosis.  Munc18-1 is now widely accepted as a key player of the exocytotic reaction 

but for many years its precise function was hard to decipher, owing mostly to its complex 

interaction with syntaxin.  

 

Preliminary findings found that SM proteins were imparting a negative effect on 

membrane fusion (Yang et al, 2000; Rickman and Davletov, 2005), for example, 

overexpressing munc18 orthologs Rop and s-Sec1 resulted in a 50% reduction in 

spontaneous vesicle fusion and inhibited evoked neurotransmitter release in Drosophila 

and squid respectively (Schulze et al, 1994; Dresbach et al, 1998).  However, the 

interpretation that SM proteins were negative regulators of exocytosis simply did not fit 

with other findings of SM protein function in vivo.  For example, yeast sec1 mutants 

exhibited a temperature-sensitive block in exocytosis (Novick and Schekman, 1979; 

Novick et al, 1980, 1981) and a single amino acid substitution in another yeast SM 

protein, Sly1p, demonstrated its fundamental importance in cell viability (Dascher et al, 

1991).  Perturbing unc-18 function within C. elegans affected acetylcholine metabolism 

(Hosono et al, 1992) and impaired neurotransmission at its neuromuscular junctions 

(Gengyo-Ando et al, 1993).  Furthermore, Drosophila rop mutants (Harrison et al, 1994) 

and munc18-1 knockout mice exhibit a complete loss of spontaneous and evoked 

neurotransmitter release (Verhage et al, 2000) with the latter leading to postnatal 

neurodegeneration.  Therefore, SM protein function reported in a wide range of organisms 

is wholly inconsistent with previous findings suggesting a simple inhibitory function.  

 

One way these conflicting in vitro versus in vivo results have been partially reconciled is 

through the analysis of the diverging interaction profiles between SM proteins and their 

cognate syntaxins.  Despite the fact that this interaction is evolutionarily conserved, the 

modality of their binding has diverged, complicating the understanding of their functional 

significance.  Crystallographic analysis revealed that munc18-1 can interact with its 
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cognate syntaxin via two binding mechanisms, an interaction with ‘closed form’ syntaxin 

and via the highly conserved N-terminus of syntaxin (Burgoyne and Morgan, 2007; 

Dulubova et al, 2007; Rickman et al, 2007; Shen et al, 2007).  Re-analysis of this data 

revealed that both binding modes can occur simultaneously (Burkhardt et al, 2008).  

Munc18-1 binds to syntaxin in its ‘closed’ conformation, in which the N-terminal Habc 

domain of syntaxin folds back onto the C-terminal α-helical SNARE motif (Pevsner et al, 

1994b; Dulubova et al, 1999).  This ‘closed’ conformation has a high affinity (2-20 nM) 

for munc18-1 (Pevsner et al, 1994b; Burkhardt et al, 2008) and prevents the formation of 

the SNARE complex due to the occlusion of the syntaxin SNARE motif.   Closed form 

binding is utilised at the plasma membrane and within intracellular compartments of 

specialised secretory cells (Rickman et al, 2007).  Syntaxin must travel from the ER to the 

plasma membrane in order to form SNARE complexes and drive exocytosis. Closed form 

binding has been shown to prevent syntaxin from forming any ectopic complexes with 

other intracellular SNAREs (Medine et al, 2007) until it reaches its final destination.  

Closed form binding thus prevents unregulated vesicular release by preventing 

indiscriminate SNARE complex formation and also proves to stabilise the SNARE 

complex immediately prior to fusion (Dulubova et al, 1999; Chen et al, 2008).  The second 

mode of binding involving the extreme N-terminus of syntaxin is far less characterised and 

its functionality is the subject of intense debate. 

 

1.3.2 THE FUNCTIONALITY OF MUNC18-1-SYNTAXIN N-TERMINAL 

BINDING  

 

Munc18-1 is able to interact with syntaxin via its highly conserved N-terminal sequence, a 

mode of interaction recently confirmed in a number of other SM homologues (Misura et 

al, 2000; Yang et al, 2000; Rickman et al, 2007).  In fact, yeast SM proteins, Sly1p and 

Vps45p, involved in various intracellular trafficking steps only bind to monomeric 

syntaxin via its highly conserved N-terminal motif (Toonen and Verhage, 2007).  This 

mode of binding involves an interaction between the outer surface of munc18-1 domain 1 

and the extreme N-terminal peptide of syntaxin (Hu et al, 2007; Burkhardt et al, 2008).  

Munc18-1 can also bind to the assembled SNARE complex through ‘open’ syntaxin 

(Dulubova et al, 2007; Shen et al, 2007), a mode of interaction which involves the same 
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N-terminal binding motif and is consistent with the general function of SM proteins (Hu et 

al, 2007).  The fact that the same N-terminal motif is employed in binding ‘open’ syntaxin 

is the reason for why this thesis only refers to two binding modes between munc18-1 and 

syntaxin. Over the last few years a huge amount of research has focussed on elucidating 

the functionality of N-terminal binding.   

 

To date, N-terminal binding has been shown to stimulate secretory vesicle dynamics at the 

plasma membrane (Rickman and Duncan, 2010), SNARE assembly in vitro (Shen et al, 

2007; Schollmeier et al, 2011), synaptic fusion in the calyx of Held (Khvotchev et al, 

2007) and synaptic vesicle priming (Deak et al, 2009).  Moreover, the interaction between 

munc18-1 and the N-peptide of syntaxin acts to recruit munc18-1 to the SNARE bundle to 

initiate the assembly of the SNARE-SM membrane fusion complex (Rathore et al, 2010) 

and has been shown to constitute the minimal complement for munc18-1 binding and 

activation (Shen et al, 2010).  In C. elegans, a mutation in unc18 designed to disrupt N-

terminal binding (F113R) with syntaxin did not rescue its locomotion defects, thereby 

suggesting that this second mode of binding is essential for Unc-18 function in vivo 

(Johnson et al, 2009).  Other studies using site-directed mutagenesis in and around this 

area of munc18-1 reported that N-terminal interaction has little influence on 

neuroendocrine exocytosis (Arunachalam et al, 2008; Han et al, 2009; Malintan et al, 

2009).  However, a mutation used in one study was observed to have a low degree of 

evolutionary conservation and may therefore reflect a poor choice of mutation rather than 

the functionality behind the N-terminal interaction (Malintan et al, 2009).  More recently it 

was shown using purified vesicles that N-terminal binding is indispensable for SNARE 

mediated membrane fusion (Diao et al, 2010).  Furthermore, this year Verhage and 

colleagues found that mutations in munc18-1 that disrupted binding to the free syntaxin N-

terminus and to assembled SNARE complexes support normal docking, priming and 

fusion of synaptic vesicles in munc18-1 null neurons (Meijer et al, 2012).  This most 

recent interpretation of the role of the syntaxin N-terminal peptide suggests that it plays a 

role before and during SNARE-complex assembly but becomes dispensable during the 

later stages of synaptic transmission (Meijer et al, 2012). 

 

As mentioned before, it is thought that N-terminal binding to free syntaxin and the 

assembled SNARE complex involves the same N-terminal domain of syntaxin.  The exact 



 

 

30 

mechanism of how N-terminal binding contributes to SNARE complex assembly and 

downstream membrane fusion is still unknown. It has been demonstrated in multiple 

studies that N-terminal interaction is crucial for SNARE complex binding (Dulubova et al, 

2007; Rickman et al, 2007; Shen et al, 2007).  One possibility is that N-terminal binding 

supports the binary interaction between munc18-1 and syntaxin and acts to prevent 

indiscriminate and inappropriate SNARE complex assembly until required (Burkhardt et 

al, 2008).  A recent study found that the association of munc18-1 with the assembled 

ternary SNARE complex affects fusion pore properties via multiple interactions with 

syntaxin, Rab3A and mints (Jorgacevski et al, 2011).  Another study employing FRET-

based reconstitution assays showed that the N-terminal peptide of syntaxin is able to 

recruit munc18-1 to the SNARE complex during the early stages of membrane fusion 

(Rathore et al, 2010).  To date, the precise functionality of the N-peptide and its 

interaction with munc18-1 remains contradictory and thus requires further work to clarify 

its exact role in the membrane fusion process.   

 

Another aspect of the munc18-1-syntaxin interaction which has never been elucidated is 

when munc18-1 and syntaxin enter into a long (or short) lived interaction and whether 

they ever dissociate from one another.  Using intact and exocytosis-competent lawns of 

plasma membrane one study showed that the SNARE complex containing munc18-1 

bound syntaxin can be effectively displaced by adding recombinant synaptobrevin or by 

endogenous SNAP-25 (Zilly et al, 2006).  Therefore munc18-1 allows for the formation of 

a complex between syntaxin and SNAP-25 which serves as an acceptor for vesicle-bound 

synaptobrevin, thus acting as a positive regulator in the fusion process.  Other evidence 

suggests that munc18-1 remains bound to syntaxin via its N-terminus throughout SNARE 

complex formation and subsequent membrane fusion (Dulubova et al, 2007).  Therefore, 

quantification of molecular changes in interaction on a physiological (µs) time scale will 

elucidate when munc18-1 and syntaxin initially associate and if they ever actually 

dissociate from one another.   
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1.3.3 THE ACTION OF MUNC18-1 AS A MOLECULAR CHAPERONE FOR 

SYNTAXIN 

 

SM proteins play a chaperone-like role for their cognate t-SNARE, in addition to other 

regulatory functions.  In S. cerevisiae cells lacking Vps45p, a munc18/Sec1p homologue, 

the cognate t-SNARE Tlg2p is down-regulated to undetectable levels by rapid proteasomal 

degradation (Bryant and James, 2001).  Re-analysis of null munc18-1 embryonic murine 

chromaffin cells revealed more than a 50% reduction in syntaxin expression levels (Voets 

et al, 2001), providing more evidence for a chaperone-like role for munc18-1.  In these 

mice, catecholamine release from embryonic chromaffin cells was reduced 10-fold but 

could be reversed by the over expression of munc18-1, leading investigators to conclude 

that munc18-1 was directly impacting on the exocytotic process.  However, this phenotype 

can also be explained by changes in the expression levels of functional syntaxin on the 

plasma membrane and not only the lack of endogenous munc18-1.  The reciprocal study, 

led by the same group, involved the acute deletion of the t-SNARE syntaxin in mice and 

resulted in an exact phenocopy of the munc18-1 null phenotype (de Wit et al, 2006).  

Unsurprisingly the cellular and plasma membrane levels of munc18-1 were reduced 

indicating that both proteins work in conjunction, making it nearly impossible to resolve 

their individual and independent functions.  Furthermore, the inhibition of 

neurotransmitter release in Drosophila caused by overexpression of ROP can be fully 

rescued by co-overexpression of syntaxin (Wu et al, 1998).   

 

Experiments carried out in non-neuronal cells revealed that overexpressed syntaxin 

becomes trapped in intracellular compartments (Medine et al, 2007).  Co-expression of 

munc18-1 restored the correct plasma membrane localisation of syntaxin (Rowe et al, 

1999; Rowe et al, 2001; Medine et al, 2007; Rickman et al, 2007).   In PC12 cells lacking 

endogenous munc18-1, secretory events and large dense core vesicle docking was 

significantly impaired (Arunachalam et al, 2008).  This was attributed to the absence of 

munc18-1 despite a reduction in syntaxin expression by 20% and its mislocalisation.  A 

more recent study, using double munc18-1/-2 knockdown PC12 cells, found that both the 

expression and distribution of syntaxin determines the extent of vesicle docking and fusion 

(Han et al, 2009, 2011), not munc18-1. Further support for such a chaperoning role 
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demonstrated a disturbance in syntaxin homologue unc-64 anterograde trafficking upon a 

knockdown of endogenous munc18- in C.elegans neurons (McEwen and Kaplan, 2008). 

 

Importantly it is now thought that instead of inhibiting SNARE complex formation 

(Pevsner et al, 1994a; Dulubova et al, 1999; Yang et al, 2000),  munc18-1 acts as a 

molecular chaperone to prevent unregulated SNARE complex assembly until signalled to 

release syntaxin (Jahn, 2000).  All of the above studies clearly indicate that munc18-1 is 

absolutely required for stabilizing monomeric syntaxin and for its efficient transport to the 

plasma membrane.  All documented phenotypes involving the knockout or knockdown of 

a SM protein are therefore partly attributed to the subsequent reduction in expression 

levels of its cognate syntaxin. 

 

1.3.4 REGULATORS OF THE MUNC18-1-SYNTAXIN INTERACTION 

 

Pivotal to understanding the dynamic interaction between munc18-1 and syntaxin is 

dissecting how their interaction is regulated.  Over the last decade a number of kinases, 

proteins and fatty acids have been proposed to regulate this complex interaction and 

therefore a number of steps in the exocytotic pathway.  It has been shown that munc18-1 is 

a substrate for protein kinase C (PKC) and can be phosphorylated at sites Ser313 (Craig et 

al, 2003), Ser306 and Ser307 (Fujita et al, 1996).  PKC activation is triggered upon 

neuronal depolarisation (de Vries et al, 2000) and has been shown to prevent munc18-1 

and syntaxin from associating (Fujita et al, 1996).  Using munc18-1 phospho-mutants it 

was demonstrated that the phosphorylation of munc18-1 by PKC leads to vesicle pool 

replenishment following a physiological stimulus (Nili et al, 2006).  PKC phosphorylation 

is thought to be essential for the regulation of exocytosis (Barclay et al, 2003), probably 

down to the fact that PKC phosphorylation of munc18-1 reduces its affinity for closed 

syntaxin (Fujita et al, 1996; Toonen and Verhage, 2007).  It has also been shown that 

munc18-1 can be phosphorylated by cyclin-dependent kinase 5 (Cdk5), resulting in the 

dissociation of the munc18-1-syntaxin complex (Fletcher et al, 1999).  Both PKC and 

Cdk5 phosphorylation sites are contained deep within the munc18-1-syntaxin complex, 

suggesting that this type of phosphorylation can only act after munc18-1 and syntaxin 

disassociation (Barclay et al, 2003).   
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Moreover, it has also been shown that the phosphorylation of syntaxin can modulate its 

interaction with munc18-1.  Death-associated protein kinase (DAPK) phosphorylates 

syntaxin at Ser188 and decreases its ability to bind munc18-1 in a Ca
2+

-dependent manner 

(Tian et al, 2003).  Initial investigation into the function of synaptotagmin, the proposed 

neuronal calcium sensor, observed that it was phosphorylated in vivo by casein kinase II 

(CKII) (Bennett et al, 1993b).  Further work identified residue serine
14

 on syntaxin as a 

target for CKII (Risinger and Bennett, 1999; Foletti et al, 2000).  Using a series of 

phosphomimetic and phospho-null mutations, it was later shown that serine
14

 is a key 

regulator of the N-terminal interaction between syntaxin and munc18-1 (Rickman and 

Duncan, 2010).  The enzymatic activity of these kinases therefore provides a signal 

transduction pathway by which the function of both munc18-1 and syntaxin could be 

regulated in response to an external stimulus. 

 

Immediately prior to SNARE mediated vesicle exocytosis, syntaxin transitions from a 

closed to open conformation which is compatible with SNARE complex assembly 

(Dulubova et al, 1999; Gerber et al, 2008).  Munc13, a comparatively large active zone 

protein, interacts directly with the extreme N-terminus of syntaxin, a site similar to that 

used by munc18-1 (Betz et al, 1997), explaining why the unc-13 and unc-18 phenotypes 

overlap considerably.  Unc-13 has been shown to displace unc-18 from a complex with 

syntaxin, thereby modulating the interaction between unc-18 and syntaxin (Sassa et al, 

1999).  It is noteworthy to mention that this finding has never been repeated. However, 

following on from this finding, it has been hypothesised that munc13 is involved in the 

conversion between binding modes and is able to regulate the SNARE complex through 

binding directly to syntaxin (Betz et al, 1997).  A more recent study has shown, through 

NMR and fluorescence experiments, that the munc13-1 MUN domain markedly 

accelerates the transition from the syntaxin-1-Munc18-1 complex to the SNARE complex 

(Ma et al, 2011).   

 

Another possible regulator of this conformational switch is unsaturated arachidonic acid, 

shown to both stimulate munc18-regulated SNARE complex assembly and overcome the 

inhibition of syntaxin when munc18-1 is bound in vitro (Rickman and Davletov, 2005).  

Arachidonic acid has also been shown to act directly on syntaxin in its closed 
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conformation, permitting the transition of syntaxin from its inhibited state into the ternary 

SNARE complex where it can interact with SNAP-25 (Connell et al, 2007).  These 

findings point to a role of fatty acids in the regulation of the conformational status of 

syntaxin and thus SNARE complex formation.  Both munc18-1 and syntaxin are key 

players in the regulation of membrane fusion and it is their interaction with a number of 

regulatory partners, PKC, munc13-1, or the action of fatty acids that provides the temporal 

control necessary for their dynamic interaction and function.   

 

1.3.5 MUNC18-1 AND ITS SYNTAXIN-INDEPENDENT MODES OF 

INTERACTION 

 

Munc18-1 performs multiple functions in membrane exocytosis by acting as (i) a 

molecular chaperone of syntaxin, (ii) a mediator of vesicle docking, and (iii) a fusogenic 

component of the membrane fusion machinery.  Despite its well characterised interaction 

with syntaxin, the multiple roles of munc18-1 in exocytosis may not be due to its 

interaction with syntaxin alone.  The idea that SM proteins are not restricted to one role in 

the vesicle transport and fusion process is supported by a variety of studies in diverse 

organisms.  In yeast cells the genetic interaction between Sly1 and the Rab-like GTPase 

Ypt1 (Dascher et al, 1991; Ossig et al, 1991) suggests an involvement of SM proteins in 

the early stages of vesicle recruitment.  On the other hand a number of SM homologues 

have been reported to act at a late stage in membrane fusion, downstream of SNARE 

complex assembly (Carr et al, 1999; Grote et al, 2000; Fisher et al, 2001).  A post-docking 

role of munc18-1 has been further supported by studies demonstrating that munc18-1 

regulates fusion pore expansion, one of the last steps of membrane fusion (Fisher et al, 

2001; Barclay et al, 2003).  SM proteins have also been extensively linked to ‘docking’ 

stages of the vesicle lifecycle, an intermediate stage between vesicle trafficking and 

plasma membrane fusion.  Within C. elegans unc-18 mutant synapses there is a reduction 

in the number of docked vesicles (Weimer et al, 2003), a similar phenotype recorded in the 

chromaffin cells from munc18-1 knockout mice (Voets et al, 2001).  Interestingly, another 

study using the same munc18-1 knockout mice revealed that there was no synaptic vesicle 

docking phenotype despite a silencing of neurotransmission (Verhage et al, 2000), again 

supporting the role of munc18-1 downstream of vesicle docking.  The disparity between 



 

 

35 

docking phenotypes in neuronal and neuroendocrine munc18-1 null cells indicates that 

additional regulatory mechanisms have evolved in order to support the more specific 

requirements of neurotransmission.   

 

Recently, attention has been drawn to other proteins implicated in exocytosis that also 

bind to munc18-1.  Granuphilin, a protein identified in pancreatic β cells that associates 

with dense core granules, has been reported to bind munc18-1, Rab3, and Rab27A 

(Coppola et al, 2002; Fukuda et al, 2002), providing a potential mechanism for the 

modulation of munc18-1 function through Rab activity. Using a gain-of-function mutant 

of munc18-1 (E466K), Graham et al (2008) identified a direct interaction between 

munc18-1 and Rab3A. Mutant munc18-1 increased exocytosis in both adrenal chromaffin 

cells and PC12 cells, indicating that Rab3A is involved in bridging Rab- and SNARE-

mediated events in exocytosis (Graham et al, 2008). In support of this mechanism a more 

recent study found that the Rab3A cycle is coupled with the activation of munc13-1 via 

Rab3-interacting molecules (RIM; Huang et al, 2011).  Munc18-1 could therefore act 

downstream of the macromolecular munc13-1/RIM/Rab3A complex and trigger fusion by 

promoting the dissociation of Rab3A dissociation from vesicles (Huang et al, 2011).  

However, despite these recent findings no convincing evidence exists which strongly 

supports this hypothesis.   

 

Doc2 proteins, specifically doc2a and doc2b, which co-purify with synaptic vesicles, also 

bind to munc18-1 and have been suggested to act as adaptors in the regulation of the 

munc18-1-syntaxin interaction during vesicle docking (Verhage et al, 1997).  

Interestingly, these doc2 proteins contain C2-like domains, therefore linking them to the 

binding of Ca
2+

, introducing a possible activity dependent mechanism with munc18-1. 

Furthermore, Mint proteins have been implicated in the regulation of both synaptic and 

large dense core vesicle exocytosis (Okamoto and Südhof, 1997; Zhang et al, 2004) by 

mediating the function of munc18-1.  Therefore granuphilin (Coppola et al, 2002; Fukuda 

et al, 2002), doc2 (Orita et al, 1996; Verhage et al, 1997) and mints (Okamoto and Südhof, 

1997; Ho et al, 2003) have all been implicated in the regulation of exocytosis but the exact 

nature of their function regarding munc18-1 and syntaxin is not well understood.  
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A study, using mutations in munc18-1 previously modelled on those in Drosophila 

(Harrison et al, 1994; Wu et al, 1998) and C. elegans (Sassa et al, 1999), revealed that 

despite retaining wild-type syntaxin binding affinities both the extent of exocytosis and 

the kinetics of individual release events in chromaffin cells were altered (Ciufo et al, 

2005).  Interestingly, a number of these munc18-1 mutants displayed reduced binding to 

mint1 and mint2 proteins, introducing another potential mechanism for the observed 

alteration in release kinetics.  In support of this, a study rescuing defects in unc18 mutants 

by expressing constitutively open syntaxin mutants (Weimer et al, 2003) indicated that the 

function of SM proteins in exocytosis was not solely to regulate the conformational state 

of syntaxin.  These studies therefore highlighted that munc18-1 can control multiple 

functions within a single membrane trafficking step via both syntaxin-dependent and -

independent protein interactions (Ciufo et al, 2005).   

  

The active zone is a structure found beneath the presynaptic plasma membrane and is 

thought to be the site of spatially regulated neurotransmitter release (Landis et al, 1988).  

Since the characterisation and identification of the active zone, a number of proteins have 

been shown to reside in its matrix, including bassoon (tom Dieck et al, 1998), piccolo 

(Cases-Langhoff et al, 1996), RIM1 (Wang et al, 1997), munc13-1 (Brose et al, 1995) and 

CAST (Ohtsuka et al, 2002).  Most active zone proteins are thought to form elaborate 

protein-protein interactions resulting in the formation of a macromolecular protein 

complex (Ohtsuka et al, 2002).  The functional interactions between active zone proteins 

have been shown to mediate synaptic vesicle priming (Betz et al, 2001), vesicle transport 

(Wang et al, 2002) and the release of neurotransmitters (Mochida et al, 1996; Schoch et al, 

2002).  Munc18-1 and syntaxin have also been repeatedly implicated in mediating these 

specific stages of membrane fusion, implying that a cascade of protein-protein interactions 

orchestrate the fusion of synaptic vesicles with the presynaptic plasma membrane.  In 

summary, this intricate network of proteins has complicated our understanding of whether 

various munc18-1 binding proteins function by regulating SM-syntaxin interactions or 

whether their association with SM proteins involves syntaxin-independent pathways that 

are also linked to fusion.   
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1.4 THE MOLECULAR MACHINERY DRIVING MEMBRANE FUSION 

 

It is established that the SNARE complex is a central component of the molecular 

machinery which drives membrane fusion. However, the molecular arrangement of the 

SNAREs and various accessory proteins required to catalyse membrane fusion is currently 

unknown.  Up until now it has been widely accepted that a number of integral membrane 

proteins are highly clustered, for example insulin receptors (Uhles et al, 2003), lipid 

phosphate phosphatases (Kai et al, 2006) and synaptotagmins (Willig et al, 2006) are 

reported to exist in nonoverlapping, defined clusters.  So, what is known about the spatial 

patterning of munc18-1 and syntaxin?  Super-resolution imaging techniques 

Photoactivatable Localisation Microscopy (PALM) and Stimulated Emission Depletion 

Microscopy (STED) have shown that single syntaxin molecules adopt a highly clustered, 

non-random distribution across the plasma membrane (Sieber et al, 2007; Rickman et al, 

2010).  PALM data generated in this study provided an estimate of approximately 30–40 

syntaxin molecules within a syntaxin cluster, a value comparable to a previous estimate 

using STED microscopy in combination with molecular modelling (Sieber et al, 2007).  

Munc18-1 has been previously localised on a gross scale in multiple studies (Zilly et al, 

2006; Medine et al, 2007; Rickman et al, 2007) but diffraction-limited imaging, with a 

maximum lateral resolution of 178 nm (Medine et al, 2007), is too low to report subtle 

changes in the spatial distribution of any protein.   Therefore the localisation of all 

membrane associated proteins to date has been at the limit of the resolution of the 

microscope or technique used and therefore cannot probe spatial arrangements of 

individual molecules on a nanometre scale. 

 

Alongside membrane protein nano-patterning, the evidence concerning the composition of 

the fusion pore and specifically the minimal number of SNARE complexes required to 

drive single vesicular fusion is currently lacking.  The advancement of molecular imaging 

and biochemical techniques has now made it possible to quantify the number of SNARE 

proteins needed to execute membrane fusion.  In 2004 it was reported that as little as one 

SNARE interaction was necessary to drive liposome bilayer fusion by recording inter-

protein fluorescence resonance energy transfer changes (Bowen et al, 2004).  Interestingly 

this study demonstrated that both syntaxin and synaptobrevin are necessary in opposing 
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membranes to facilitate liposome docking whereas SNAP-25 had little effect on the 

efficacy of bilayer fusion (Bowen et al, 2004).  However, a more recent study 

demonstrated that one SNARE complex was indeed sufficient for liposomal-liposome 

fusion but only at a low speed (van den Bogaart et al, 2010).  These studies argue against a 

synergistic mechanism of membrane fusion between multiple SNARE molecules. 

However, these studies were conducted in a highly purified in vitro system that lacked the 

presence of other accessory molecules, known to regulate the formation of the SNARE 

complex, and could therefore potentially modify the number of SNAREs required to 

execute in vivo fusion.    

 

What is perhaps most confusing about such a limited requirement of SNAREs in 

membrane fusion is the fact that synaptic vesicles express as many as 70 synaptobrevin 

molecules (Takamori et al, 2006) while PC12 fusion sites can contain on average 75 

clustered syntaxin molecules (Sieber et al, 2007).  So, if only one SNARE molecule is 

required for membrane fusion, why do specialised membranes express so many of them?  

Perhaps only a subset of expressed SNARE molecules exist in the correct orientation and 

conformation to drive membrane fusion making a large proportion of the molecules 

redundant? It has been shown that SNARE molecules are highly mobile and can rapidly 

diffuse through membranes (Wienisch and Klingauf, 2006), thereby increasing the 

probability of limited subset of fusion competent SNARE molecules to be present at a 

specific fusion site.  It has been shown that SNAREs are highly promiscuous (Bajohrs et 

al, 2005), therefore making it conceivable to imagine that a large proportion of SNAREs 

are in fact redundant, with only a small subset performing the functions related to 

vesicular exocytosis.   

 

It was over a decade ago when Scheller and colleagues demonstrated that three SNARE 

complexes dynamically cooperate to drive the fusion of a single secretory vesicle (Hua 

and Scheller, 2001).  This was achieved by measuring the fusion kinetics of large dense 

core vesicles within PC12 cells alongside in vivo titration of inhibitors, in this case, a 

soluble SNARE coil domain derived from synaptobrevin.  This is in agreement with a 

study conducted recently which used another titration approach to quantify the required 

number of SNARE complexes in intact chromaffin cells.  The expression of different 

ratios of either wild-type SNAP-25 and a SNAP-25 mutant unable to support exocytosis 
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revealed a third-power relation for the fast phase of exocytosis, indicating that membrane 

fusion in neurosecretory cells is driven by three SNARE complexes (Mohrmann et al, 

2010).  Electrophysiological recordings of PC12 cells expressing a number of mutations 

within the transmembrane segment of syntaxin demonstrated a change in both transmitter 

flux and pore conductance (Han et al, 2004).  This mutagenesis assay and steric hindrance 

measurements indicated that between five and eight SNARE complexes were positioned 

in a circular arrangement lining the fusion pore in order to drive membrane fusion (Han et 

al, 2004).  

 

Clearly, over the last decade there have been a range of divergent estimates on the number 

of SNARE molecules required to catalyse membrane fusion.  The wide range of estimates 

can be explained in a number of ways.  Firstly, each study used different in vitro and in 

vivo models.  Liposomal membranes used in one study had an average radius of 17 nm 

(van den Bogaart et al, 2010) whereas large dense core vesicles used in another are on 

average 10 fold larger (Han et al, 2004).  These different membrane models will probably 

alter both the amount of energy and number of SNAREs required to drive fusion.  

Secondly, most purified in vitro systems neglect to express accessory proteins which have 

been shown to contribute to exocytotic events.  For example, synaptotagmin has been 

repeatedly implicated in altering the curvature of plasma membranes in order to facilitate 

membrane fusion (Arac et al, 2006; Martens et al, 2007; Hui et al, 2009).  Without 

accessory molecules the entire process of membrane fusion may exhibit different 

dynamics and impact on the number of fusogenic molecules required.  Lastly, it is 

plausible that the number of SNARE complexes required to fuse a vesicle may differ 

depending on when the vesicle is recruited to a fusion site upon the arrival of a 

physiological stimulus.  Those vesicles already resident at the plasma membrane, part of 

the readily releasable pool (RRP), feasibly have enough time to form multiple SNARE 

complexes before the arrival of a stimulus.  A higher number of recruited SNARE and 

accessory molecules may well provide those RRP vesicles with a higher probability of 

undergoing fusion in a faster time scale. On the other hand, vesicles recruited to the 

plasma membrane under continuous and sustained stimulation may fuse with fewer, and 

possibly only one, SNARE complex (Bowen et al, 2004; van den Bogaart et al, 2010), due 

to time and demand constraints.  In summary, establishing the correct number of SNAREs 

and their accessory factors necessary to drive vesicular fusion remains a huge challenge as 
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the composition of the RRP and how vesicles are spatially organised and prioritized in 

recruitment is more complex than originally thought (Duncan et al, 2003).   

 

1.5 SUMMARY AND THESIS AIMS 

 

It is clear that all intracellular trafficking and membrane fusion events absolutely require 

the presence of the SNAREs and a number of accessory proteins, specifically munc18-1.  

Major findings, for example, the existence of divergent binding modes between munc18-1 

and syntaxin to their temporal and spatial regulation across an intact biological membrane 

have led to a greater understanding of the regulatory steps involved in membrane fusion.  

It is now well known that multiple munc18-1-syntaxin binding mechanisms are utilised in 

distinct cellular locations and perform different regulatory roles (Rickman et al, 2007). 

Closed form binding is important in facilitating the trafficking of syntaxin to the plasma 

membrane (Rowe et al, 1999; Medine et al, 2007) whereas N-terminal/SNARE complex 

binding is  involved in vesicle mobilization (Rickman and Duncan, 2010), SNARE 

complex binding (Dulubova et al, 2007) and regulating the extent and specificity of 

membrane fusion in vitro (Shen et al, 2007).  Due to the close interrelationship between 

both binding modes it has been difficult to dissect the functional outcomes of these 

spatially organised protein interactions. This thesis will test which specific residues are 

critical in mediating the munc18-1-syntaxin N-terminal interaction and determine the 

functionality behind this interaction in live neuroendocrine cells. 

 

Despite a large effort focused on the roles of munc18-1 and syntaxin in the exocytotic 

pathway it still remains unknown how both proteins are organised on the plasma 

membrane at a molecular level.  The existence of their spatial arrangement and the 

mechanism behind such a self-organizing process is still unknown due to the limited 

techniques available to probe the spatial patterning and dynamics of these membrane 

proteins.  Using both ground state depletion followed by individual molecule return 

microscopy (GSDIM) and photoactivatable localisation microscopy (PALM) this thesis 

aims to elucidate the molecular arrangement of both munc18-1 and syntaxin on a 

nanometer scale in both neuronal and neuroendocrine cells.  It is still currently unknown, 

despite a number of estimates, how many SNAREs and accessory proteins are required to 
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drive membrane fusion.  Using PALM this thesis explores the molecular distribution of 

munc18-1 in relation to membrane associated secretory vesicles to determine the number 

of munc18-1 molecules required to drive the fusion of a single secretory vesicle.  By 

employing single particle tracking PALM (sptPALM) this thesis also investigates how 

munc18-1 molecules behave at the plasma membrane in order to provide information at 

the level of individual molecular motions for the whole population of proteins observed. 

 

It is thought that munc18-1 functions through its direct interaction with syntaxin (Hata et 

al, 1993; Pevsner et al, 1994a).  The universal importance of munc18-1 has been 

evidenced in a number of studies which genetically manipulated the function of munc18-1, 

resulting in deficits in intracellular trafficking (Novick and Schekman, 1979), syntaxin 

trafficking (Rowe et al, 1999; Arunachalam et al, 2008), large dense core vesicle docking 

(Voets et al, 2001) and neurotransmission (Gengyo-Ando et al, 1993; Verhage et al, 2000).  

What remains unknown however is the precise molecular kinetics and functionality of the 

munc18-1-syntaxin on a molecular level in live neuronal cells.  This thesis aims to probe 

the dynamics of the munc18-1-syntaxin interaction at a single molecule resolution and 

physiological time scale in live neuronal cells.  Despite a large body of evidence detailing 

the modes of interaction between munc18-1 and syntaxin, nothing is currently known 

about precisely when these proteins interact on a physiologically relevant time scale.  

Therefore, this thesis also aims to address, using Fluorescence Correlation Spectroscopy 

(FCS), the interaction profile between munc18-1 and syntaxin on a nanosecond time scale 

and whether this interaction is dynamically regulated by neuronal activity.   
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2.1 MATERIALS 
2.1.1 GROWTH MEDIA AND SOLUTIONS  

 

All chemicals were supplied by Sigma Aldrich, UK, unless otherwise stated and all tissue 

culture reagents were supplied by Invitrogen, UK, unless otherwise stated. 

 

LB media 

 

1% (w/v) Yeast Extract  

1% (w/v) Bacto-tryptone 

86 mM NaCl 

 

2 X TY media 

 

1.6% (w/v) Bacto-tryptone 

1% Yeast extract 

172 mM NaCl 

 

SDS Sample Buffer (4X) 

 

200 mM Tris-HCl, pH 6.8 

6.4% (w/v) SDS 

5 mM EDTA 

16% (v/v) Glycerol 

A few grains of Bromophenol blue 

 

SDS PAGE Running Buffer 

 

25 mM Tris 

0.2 M Glycine 

0.1% (w/v) SDS 

 

Western Transfer Buffer 

 

25 mM Tris 

0.2 M Glycine 

20% (v/v) Methanol 

 

1 X PBS, pH 7.4 

 

0.01 M Phosphate Buffer (pH 7.0) 

0.0027 M Potassium chloride  

0.137 M Sodium chloride 

 

 

PBST 

 

0.01 M Phosphate Buffer (pH 7.0) 

0.0027 M Potassium chloride  
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0.137 M NaCl 

0.02% Tween-20  

 

Coomassie stain 

 

10% (v/v) Methanol 

20% (v/v) Acetic acid 

200 mg/L Coomassie G-250 

 

Orange-G loading dye 

 

50% (v/v) Glycerol 

5 mg/ml Orange G 

 

Buffer A – GST tagged proteins 

 

20 mM HEPES, pH 7.4 

100 mM NaCl 

1 mM EDTA 

0.1% (v/v) Triton X-100 

 

Buffer B (His6-tagged proteins) 

 

20 mM HEPES (pH 7.4) 

100 mM NaCl 

20 mM Imidazole 

0.1% (v/v) Triton X-100 

 

KD43 PC12 cell culture media 

 

Advanced RPMI 1640 supplemented with- 

5% (v/v) Fetal bovine serum 

10% (v/v) Horse serum 

1% Glutamax 

50 µg/ml Gentamicin 

2.5 µg/ml Puromycin 

 

Primary embryonic cortical neuron culture media 

 

Neurobasal medium supplemented with- 

B-27 (50X) 

0.5 mM L-glutamine 

1% (v/v) penicillin/streptomycin 
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Primary embryonic dissection media 

Dulbecco's Modified Eagle Medium (DMEM (Invitrogen)) supplemented with - 

10% FBS 

1% (v/v) penicillin/streptomycin 

 

Primary embryonic transfection media 

 

Minimal Essential Media (MEM (Invitrogen)) 

 

Primary embryonic cortical neuron stimulation buffer 

 

136 mM NaCl 

2.5 mM KCl 

10 mM glucose 

10 mM HEPES (pH 7.4) 

2 mM CaCl2 

1.3 mM MgCl2 

Final pH – 7.3 

 

Primary embryonic cortical neuron Ca
2+

 free stimulation buffer  

 

136 mM NaCl 

2.5 mM KCl 

10 mM glucose 

10 mM HEPES (pH 7.4) 

1.3 mM MgCl2 

1 mM EGTA 

Final pH – 7.3 

 

GSDIM imaging buffer (in PBS) 

 

0.5 mg/ml glucose oxidase  

40 µg/ml catalase  

10% (w/v) glucose  

50 mM ß-mercaptoethylamine (MEA) 

 

 

 

 

 

 

 



 

 

46 

2.1.2 ANTIBODIES 

 

The following antibodies were used for both immunofluorescence (IF) and western 

immunoblotting (WB).    

 

Table 2.1 Primary and secondary antibodies 

 

Antibody Host Clone Dilution for 

IF 
Dilution for 

WB 
Supplier 

anti-munc18-1 Mouse  1:500 1:5000 BD 

Biosciences 
anti-munc18-1 Rabbit   1:5000 Synaptic 

Systems 
anti-syntaxin Mouse 

 
HPC-1 1:1000 1:5000 Sigma 

Syntaxin 1a 

(phospho S14) 
 

Rabbit  1:1000 1:5000 Abcam 

anti-SNAP-25 Mouse SMI81 1:1000 1:10000 Cambridge 

Bioscience 
anti-

synaptobrevin 
 

Mouse 69.1 1:1000 1:5000 Synaptic 

Systems 

anti-β-tubulin Mouse 
 

  1:5000 Abcam 

anti-synapsin Goat 
 

 1:500 1:1000 Santa Cruz 

anti-

synaptotagmin 
 

Rabbit  1:1000  Invitrogen 

anti-mouse-

Alexa488 
 

Mouse  1:1000  Invitrogen 

anti-rabbit-

Alexa488 
 

Donkey  1:1000  Invitrogen 

anti-mouse 

Alexa647 
 

Goat  1:1000  Invitrogen 
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2.1.3 ESCHERICHIA COLI (E.COLI) STRAINS  

 

A number of different E.coli strains were used for both DNA amplification and stable 

protein expression (Table 2.2). XL10-Gold ultracompetent cells were used for the 

transformation of DNA.  BL21 competent cells were used for the transformation and 

expression of GST tagged proteins whereas M15 (pREP4) competent cells were used for 

the transformation and expression of His6 tagged proteins.  

 

Table 2.2 E. coli strains 

E.Coli strain Usage Supplier 

X10-Gold DNA amplification Stratagene 

BL21 GST-tagged protein 

expression 

Stratagene 

M15 (pREP4) His6 tagged protein 

expression 

Qiagen 
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2.1.4 DNA PLASMIDS 

 

The following table lists those DNA plasmids that were used during this study.  A 

construct map is included in the Appendix. 

 

Table 2.3 DNA plasmids 

 

Plasmid Protein fragment Fusion tag Antibiotic 

resistance 
Promot

er 
Supplier 

pCI Munc18-1 - Ampicillin CMV Promega, 

UK 
pGEM-T-

Easy 
- - Ampicillin T7, SP6 Promega, 

UK 
pmCerulean

-C1 
Syntaxin, 

Syntaxin[S14E] 
pmCerulean Kanamycin CMV *Dr D 

Piston 
pdkEYFP-

C1 
Syntaxin pdkEYFP Kanamycin CMV Clontech, 

UK 
pEYFP-C1 Munc18-1 and 

mutants [D122A, 

D112K, I127A, 

I127F, E132A, 

E132K] 

pEYFP Kanamycin CMV Clontech, 

UK 

pEGFP-C1 Munc18-1, 

Syntaxin, 
Syntaxin[openΔ6] 

pEGFP Kanamycin CMV Clontech, 

UK 

pEGFP-N1 NPY EGFP Kanamycin CMV Clontech, 

UK 
pmCherry Munc18-1, 

Munc18-1[I127A] 
Syntaxin,  
Synapsin 

mCherry Kanamycin CMV Clontech, 

UK 

PA-Cherry Munc18-1, 

Munc18-1[I127A], 

Syntaxin 
 

PA-Cherry Kanamycin CMV Clontech, 

UK 

*Kind gift of Dr D. Piston, Vanderbilt Kennedy Centre for Research on Human Development, 

Nashville, USA. 

 

2.1.5 BACTERIAL PROTEIN EXPRESSION PLASMIDS 

 

The following proteins were expressed in Escherichia coli BL21 or M15 (pREP4) cells 

(section 2.1.3) depending on the purification tag (Table 2.4).  
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Table 2.4 Bacterial protein expression plasmids 

 

Protein + Protein 

Fragment 

 

Purification 

Tag 
Parent Vector Source 

Syntaxin 1a (1-261) 
Syntaxin 1a (7-261) 
Syntaxin 1a (1-225) 
Syntaxin 1a (1-213) 
Syntaxin1a (7-225) 
Syntaxin 1a (7-213) 
Munc18-1 
Munc18-1[D112A] 
Munc18-1[D112K] 
Munc18-1[I127A] 
Munc18-1[I127F] 
Munc18-1[E132A] 
Munc18-1[E132K] 

GST 
GST 
GST 
GST 
GST 
GST 

His6 

His6 

His6 

His6 

His6 

His6 

His6 

pGEX-KG 
pGEX-KG 
pGEX-KG 
pGEX-KG 
pGEX-KG 
pGEX-KG 
pQE-30 
pQE-30 
pQE-30 
pQE-30 
pQE-30 
pQE-30 
pQE-30 

(Medine et al, 2007) 
(Medine et al., 2007) 
See Appendix 
See Appendix 
See Appendix 
See Appendix 
(Rickman et al, 2007) 
See Appendix 
See Appendix 
See Appendix 
See Appendix 
See Appendix 
See Appendix 
 

 

2.1.6 OLIGONUCLEOTIDES 

 

All custom designed oligonucleotides used for cloning were purchased from Sigma-

Aldrich, UK. 

 

2.2 MOLECULAR BIOLOGY TECHNIQUES 

 

2.2.1. POLYMERASE CHAIN REACTION (PCR) 

  

Amplification of DNA fragments from template DNA was performed using the Expand 

High Fidelity PCR System (Roche, UK).  Custom oligonucleotides (Sigma Genosys, 

Sigma-Aldrich, UK) were designed and used in the amplification of the DNA fragment of 

interest.  All PCR reactions were performed using a Gene Amp PCR System 9700 

(Applied Biosystems). 
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The following standard reaction was used:  

 

DNA template (50 ng/ml) 

Oligonucleotide 1 (10 pmol/µl) 

Oligonucleotide 2 (10 pmol/µl) 

Nucleotide mix (10 mM of each dNTP)          

Expand High Fidelity Buffer (10X conc.)  

Expand High Fidelity enzyme mix 

Sterile double distilled water 

1 µl 

1 µl 

1 µl 

1 µl 

5 µl 

1 µl 

Final volume of 50 µl 

 

The PCR cycle parameters were as stated in the manufacturer’s (Thermo Scientific) 

instructions. The reaction was prepared and the Expand High Fidelity enzyme mix was 

added at 95 ºC. The thermostable polymerase enzyme mix (Taq DNA polymerase and Tgo 

DNA polymerase) acts by extending the annealed oligonucleotides to synthesise DNA 

from 3’ to 5’ end of the oligonucleotide. The process of denaturation, annealing and 

extension is repeated numerous times, with each newly synthesised DNA acting as a 

template for the next reaction. The PCR product size was confirmed through agarose gel 

electrophoresis (section 2.2.3) and subsequently ligated into the plasmid of interest 

(section 2.2.5) and transformed into XL-10 Gold ultra-competent E. coli cells (section 

2.2.6). 

 

2.2.2 SITE-DIRECTED MUTAGENESIS  

 

The technique of site-directed mutagenesis was used to introduce defined point mutations 

in vitro into previously cloned DNA. The QuickChange XL Site-Directed Mutagenesis Kit 

(Stratagene, UK) used parent DNA template and two complementary mismatched 

oligonucleotide primers (Sigma Genosys, Sigma-Aldrich, UK), both containing the 

desired base change flanked by unmodified nucleotide sequence.  
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The standard reaction was as follows: 

 

10X Reaction Buffer 

DNA template 

Oligonucleotide 1 

Oligonucleotide 2 

Nucleotide mix (10 mM of each dNTP) 

Quiksolution 

Pfu Ultra DNA polymerase 

Sterile double distilled water 

5 µl 

5 ng/µl of plasmid DNA 

100 ng/µl  

100 ng/µl 

1 µl 

3 µl 

2.5 U/µl 

Final volume of 50 µl 

 

The PCR cycle parameters were as stated in the manufacturer’s instructions, with an 

extension time of 1 min per kb of plasmid. Agarose gel electrophoresis (section 2.2.3) was 

used to confirm that a PCR product was present. Dpn I (1 µl) restriction enzyme was 

added directly to each amplification reaction to digest the parental supercoiled dsDNA at 

37 °C for 1 hour. The PCR product was subsequently transformed into XL-10 Gold ultra-

competent E. coli cells (section 2.2.6) and was later amplified depending on the selective 

survival of the E. coli on an antibiotic background.  

 

2.2.3 AGAROSE GEL ELECTROPHORESIS 

 

Agarose gel electrophoresis was used to separate and resolve different DNA fragments 

based on both their length and size.  A 1% (w/v) agarose gel solution was added to 1 x 

Tris/Borate/EDTA (TBE) buffer and boiled.  SYBR Safe (Invitrogen, Paisley, UK) was 

added at a 1:10,000 dilution and the mixture was poured into the gel rack containing an 

appropriate gel comb. A volume of loading dye (Orange G) was added to the DNA 

mixture and the samples were loaded alongside a 1 Kb plus DNA marker (Invitrogen, 

Paisley, UK). DNA gels were run at 120 V in 1 x TBE buffer until the sample reached the 

end of the polyacrylamide gel and imaged using a UV light source. 
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2.2.4 RESTRICTION ENDONUCLEASE DIGESTS 

 

Restriction endonucleases were used to verify that plasmid DNA inserts were in the 

correct orientation and to switch the fluorescent tag contained within a plasmid.  

Restriction endonucleases (Promega, UK) are commercially available bacterial enzymes 

that cleave DNA at specific recognition nucleotide sequences. Double digests were 

commonly performed if the activity of selected restriction enzymes were compatible with 

the same buffer.  A typical double restriction enzyme digest reaction was as follows: 

 

Plasmid DNA 

Restriction enzyme 1 

Restriction enzyme 2  

10 X Enzyme Buffer  

Sterile double distilled H2O 

3 µg plasmid DNA 

1.5 µl (enzymes 1/10 final volume) 

1.5 µl  

3 µl 

Final volume of 30 µl 

 

A standard double restriction digest involved incubating the reaction for 1 hour at 37 ºC.  

DNA digestion was confirmed using agarose gel electrophoresis (section 2.2.3).  DNA 

was subsequently imaged under UV light, cut out of the agarose gel and purified using a 

QIAquick gel extraction kit (Qiagen, UK). 

 

2.2.5 LIGATION OF INSERT AND VECTOR DNA  

 

To ligate the double-stranded insert and vector DNA T4 DNA ligafast enzymes (Promega, 

UK) were used.  A typical ligation reaction was performed according to the 

manufacturer’s instructions and was set up as follows:  

 

Vector DNA 

Insert DNA 

Rapid Ligation Buffer 

T4 DNA Ligase 

Sterile double distilled water 

1 µl 

3 µl 

5 µl 

1 µl 

Final volume of 10 µl 
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All ligation mixtures were incubated at room temperature for 30 minutes and confirmed by 

agarose gel electrophoresis (section 2.2.3).  Upon successful ligation DNA was 

transformed in E.coli competent cells (section 2.2.6). 

 

2.2.6 PLASMID TRANSFORMATION 

 

XL-10 Gold ultracompetent cells (Table 2.2) were used for the high efficiency 

transformation of plasmid DNA.  In the case of protein expression, BL21 (DE3) or M15 

(pREP4) (Table 2.2) competent cells were used. 1 g of DNA or 10 l of ligation product 

was added to 35 l of competent cells on ice.  The suspension was incubated for 10 minutes 

on ice, exposed to a 42 C heat shock for 30 seconds to permeabilise the E.Coli cell 

membrane and returned to ice for 2 minutes. Suspensions were then incubated with 0.5 ml 

preheated Luria Bertani (LB) media and left in a 37 C cell shaker (200rpm) for 1 hour.  100 

µl of each suspension was plated on LB agar plates containing 0.1 mg/ml of the appropriate 

antibiotic and incubated at 37 C overnight.  

 

2.2.7 SMALL AND LARGE SCALE PLASMID DNA PURIFICATION 

 

The isolation and purification of small and large scale plasmid DNA was carried out 

according to the manufacturer’s instructions using a QIAprep Miniprep Kit (Qiagen, UK) 

and HiPure Maxiprep Kit (Invitrogen, Paisley UK) respectively.   DNA that was used to 

transfect primary embryonic cortical neurons was isolated and purified using a QIAprep 

Maxiprep kit (Qiagen, UK) according to the manufacturer’s protocol.  

 

2.2.8 DNA QUANTIFICATION AND SEQUENCING 

 

The concentration of plasmid DNA was determined using spectrophotometry at 260 nm. 

DNA was diluted 1:200 with 0.5% DEPC H2O in balanced Hellma 6040-UV 10 mm Quartz 

cuvettes and measured using a Thermo Electron Corporation, Biomate 3 UV-Vis 

spectrophotometer. The sequencing of all constructs used standard or custom designed 
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oligonucleotides (Cogenics, UK). To verify correct sequencing, DNA sequences were 

analysed using Invitrogen Vector NTI software.  

2.3 PROTEIN BIOCHEMISTRY TECHNIQUES 

2.3.1 SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 

 

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) was used for the separation of 

proteins based on their molecular weights.  10% protein gels were made using the 

following recipe – 

 

Resolving gel 
          Sterile H2O                                                

50% (v/v) glycerol                                    
1.5 M Tris, pH 8.8                                
30% (w/v) Acrylamide                              
10% (w/v) SDS                                      
10% (w/v) APS                                      
TEMED                                                   
                              

 
3 ml 
3 ml 
3.75 ml 
5 ml 
150 µl 
100 µl 
10  µl 
Final volume 15 ml 

 

Stacking gel 
Sterile H2O                                                
0.5 M Tris, pH 6.8 
30% (w/v) Acrylamide                              
10% (w/v) SDS                                      
10% (w/v) APS                                      
TEMED                                                   
                                          

 
4.75 ml 
1.875 ml 
0.75 ml 
75 μl 
100 µl 
10  µl 
Final volume 7.5 ml 

 

 

Resolving gel was poured into pre-assembled gel boxes and left to polymerize for 30 

minutes. To provide a smooth surface and interface at the top of the separating gel, sterile 

H2O was placed on top of the resolving gel during polymerization. Following resolving gel 

polymerization the sterile H2O is removed and the stacking gel is poured to make up 15-

20% of the gel height.  The appropriate comb was then inserted and the stacking gel was 

left to polymerize for 15 minutes.  The difference in pH and acrylamide concentration of 

both gels functions to compress the sample at the interface and provides better resolution 

when the protein bands reach the resolving gel. 
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The gels were then inserted into a Mini-PROTEAN 3 electrophoresis apparatus (Biorad, 

UK) and the tank was filled with SDS running buffer (section 2.1.1).  Protein samples 

were denatured at 100 ºC for 5 min in 1 x SDS sample buffer (section 2.1.1), loaded 

alongside a Precision Plus Protein Standards All Blue protein marker (Biorad, UK) and 

run at 150 V until the dye front reached the bottom of the gel.  

 

2.3.2 WESTERN BLOT TRANSFER AND IMMUNOBLOTTING 

 

Western immunoblotting was used to identify and to quantify the expression of various 

proteins.  Samples were separated as described in section 2.3.1, transferred to 

polyvinylidene fluoride (PVDF) membrane (Millipore, UK) and probed with specific 

antibodies.  The PVDF membrane was pre-soaked in 100% methanol, placed on top of the 

SDS-PAGE gel and then sandwiched between filter paper and sponges.  This stack was 

then placed into a Mini-Trans Blot Cell Cassette (Biorad, UK) which was then inserted 

into a tank containing pre-chilled western transfer buffer (section 2.1.1). The membrane 

was transferred at a constant current of 250 mA for 90 minutes.  The successful transfer of 

immobilized proteins from the SDS-PAGE gel to the PVDF membrane was confirmed by 

the presence of the protein standard markers. 

 

Immediately after transferring the proteins to a PVDF membrane the membrane was 

incubated in milk solution to prevent spurious antibody binding.  The milk solution was 

prepared fresh by adding 5g of dried milk (Sigma, UK) to 50 ml 0.05% PBS-Tween and 

centrifuged at 4000 rpm for 10 minutes to remove insoluble debris from the mixture.  The 

PVDF membrane was blocked in this milk solution for 30 minutes at room temperature 

and the primary antibody (typically 1:5000 dilution) was added for either 1 hour at room 

temperature or overnight at 4°C.  Unbound primary antibody was removed from the 

membrane by three, 5 minute washes of 15 ml PBST. The membrane was then incubated 

in HRP conjugated secondary antibody (diluted in 15 ml PBST + milk) for 1 hour at room 

temperature. Unbound secondary antibody was again removed by three, 5 minute washes 

of 15 ml PBST.  All blocking, washing and antibody probing steps were performed under 

gentle agitation. 
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2.3.3 ENHANCED CHEMILUMINESCENCE (ECL) 

 

Following primary and HRP-labelled-secondary antibody incubation protein bands were 

visualised by Enhanced Chemiluminescence (ECL).  The West Dura enhanced 

chemiluminescence reagent kit (Pierce, UK) was used according to the manufacturer’s 

instructions.  Briefly, the HRP enzyme (attached to the secondary antibody) catalyses the 

reaction between the two substrates within the ECL kit (peroxide buffer and 

luminol/enhancer solution), emitting light which was detected by Kodak 

Chemiluminescence BioMax light x-ray film.    Exposure of the membrane to the film 

typically lasted for 5 – 30 seconds to generate a strong signal on the film.  The film was 

then immersed in Kodak GBX developer for 2 minutes, and immersed in water before 

being fixed in Kodak GBX fixer for 2 minutes. Finally, the film was rinsed in water before 

being dried using a photo film drier. 

 

2.3.4 COOMASSIE STAINING 

 

Coomassie Brilliant Blue R-250 stain was prepared as described (2.1.1) above and used to 

visualise proteins in a SDS-PAGE gel.  Following gel electrophoresis the SDS-PAGE gel 

was immersed in pre-boiled Coomassie stain and subjected to gentle agitation for 10 

minutes.  The gel was then transferred to deionised water and allowed to destain, with 

regular changes of water, until the background was clear.  This technique allows detection 

of bands of ~15 ng.  The gel was then dried using a GelAir Drying System (Biorad, UK). 

 

2.3.5 PROTEIN QUANTITATION 

 

Protein concentrations were determined using the BCA (bicinchoninic acid) kit (Pierce, 

UK). The manufacturer’s instructions were followed.  
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2.4 PURIFICATION OF GST AND HIS6-TAGGED PROTEINS 

2.4.1 RECOMBINANT PROTEIN EXPRESSION CONDITIONS 

 

All recombinant SM and SNARE proteins used in this study were expressed under 

standard conditions. A 50 ml solution of 2xTY + 0.1 mg/ml (section 2.1.1) of the 

appropriate antibiotic was inoculated with a single colony of either BL21 (DE3) or M15 

(pREP4) cells expressing the relevant plasmid.  The culture was grown for 7 hours at 37 

ºC with shaking at 200 rpm and then used to inoculate 1 L of 2x TY media + 0.1 mg/ml 

antibiotic in a 2 L flask.  After 2 hours of growth at 37 ºC with shaking at 200 rpm, IPTG 

was added at a final concentration of 1 mM to induce protein expression.  Following the 

addition of IPTG, the temperature was reduced to 19 ºC and the bacteria was grown 

overnight (~16 hours) with shaking at 200 rpm. 

 

2.4.2 PREPARATION OF BACTERIAL LYSATES FOR GST PROTEIN EXPRESSION 

 

Following the overnight expression of the glutathione S-transferase (GST) fusion proteins, 

1 L bacterial cultures were centrifuged at 4,000 xg for 20 min at 4 ºC and the supernatant 

discarded. All procedures concerning the purification of bacterial lysates were carried out 

at 4 ºC and using cold solutions. The bacterial pellet was resuspended in 5 ml of chilled 

buffer A (section 2.1.1) + EDTA free protease inhibitor tablets (Roche, UK) and 

transferred to a 50 ml tube. Triton X-100 was added to a final concentration of 2% (v/v) 

and cells were lysed by sonication for 30 seconds (2 x 15s pulses) and incubated at 4 ºC 

for 20 minutes with rotation. The mixture was transferred to a centrifuge tube and 

insoluble material was pelleted by centrifugation at 15,000 xg for 30 min at 4 ºC.  

 

2.4.2.1 ISOLATION OF GST-TAGGED PROTEINS 

 

The purification of GST fusion proteins was performed using sepharose beads coated with 

glutathione. Glutathione sepharose beads (0.5 ml) (GE Healthcare, UK) were prepared by 

washing once in buffer A + 1 mM EDTA (section 2.1.1) and gently centrifuging (200 xg, 

1 min) to remove the preservative solution.  The buffer was then removed from the beads 

and replaced with 15ml lysed bacterial supernatant (section 2.4.2) and incubated at 4 ºC 

with rotation for 2 hours. The GST-fusion protein glutathione complex was washed by 
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centrifugation at 200 xg with 3 x 1 min washes with 15 ml of buffer A to remove unbound 

protein. After washing the beads were re-suspended in 7.5 ml of buffer A. SDS-

polyacrylamide gel electrophoresis (section 2.3.1) was used to analyse typically 20 µl of 

the GST-fusion protein glutathione complex bead slurry to assess protein yield and to 

equalise future loading. Glycerol was then added to the bead slurry to a final volume of 15 

ml and the mix was stored at -20 ºC until required. 

 

2.4.3 PREPARATION OF BACTERIAL LYSATES FOR HIS6-TAGGED PROTEIN EXPRESSION 

 

Bacterial cultures expressing His6 fusion proteins encoded by pQE-30 vectors were 

prepared as for GST tagged proteins (section 2.4.2), the only difference being in the buffer 

used (Buffer B, section 2.1.1). 

 

2.4.3.1 PURIFICATION AND ELUTION OF HIS6-TAGGED PROTEINS 

 

His6 fusion proteins were purified on a nickel chelating affinity column. All procedures 

were carried out at 4 ºC and all buffers were kept cold. 1 ml of Profinity Ni-Charged Resin 

(Biorad, UK) was transferred to a 15 ml Falcon tube and washed once with buffer B 

(section 2.1.1) by gentle centrifugation.  The lysed bacterial supernatant (section 2.4.4) 

was transferred to the tube containing the resin slurry and incubated at 4 ºC with rotation 

for 2 hours. The His6-fusion protein resin complex was washed by centrifugation at 200 

xg, with 3 x 1 min washes with buffer B (section 2.1.1). The complex was then re-

suspended in 7.5 ml buffer B and 20 µl of the His6-fusion protein resin complex slurry was 

analysed by SDS-polyacrylamide gel electrophoresis (section 2.3.1). Finally, 7.5 ml of 

glycerol was added to the resin complex and the solution was mixed and stored at -20 ºC 

until required. 

 

To elute the His6 fusion proteins and remove unbound material from Ni
2+

 charged resin the 

beads were washed with 15 ml buffer B + 20 mM imidazole. The samples were added to 

0.45 µm spin columns (Spin X, Corning Costar, UK) and washed with buffer B.  The 

protein was eluted with 3 washes with a buffer containing excess imidazole (20 mM 

HEPES (pH 7.4), 100 mM NaCl, 300 mM imidazole, 0.1% (v/v) TX-100).  Eluted protein 
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samples were solubilised in sample buffer and analysed by SDS- polyacrylamide gel 

electrophoresis (section 2.3.1).  

 

2.4.4 PURIFICATION OF BRAIN DERIVED PROTEINS 

 

All procedures to prepare brain extracts were performed at 4 ºC using cold solutions. 

Adult rats were culled according to Home Office regulations under Schedule 1.  Rat brain 

lysates were prepared by homogenising whole rat brains in 6 ml of buffer A containing 

Complete Protease Inhibitor (EDTA free) (Roche) (section 2.1.1) using a glass 

homogeniser. Lysate was then transferred to a 15 ml tube and buffer A (section 2.1.1) 

added to a final volume of 10 ml.  Triton X-100 was added to a final concentration of 2% 

(v/v) and the lysate was placed at 4 ºC for 20 minutes with mild rotation. Cellular debris 

was removed by ultracentrifugation using a Beckman TLA-100 rotor at 100,000 xg for 45 

minutes at 4 ºC.  Freshly prepared rat brain lysate was always used immediately.  

 

2.5 ANALYSIS OF PROTEIN-PROTEIN INTERACTIONS 

2.5.1 PROTEIN-PROTEIN BINDING ASSAYS 

 

To study protein-protein interactions at a biochemical level we employed pull-down 

assays.  Briefly, Glutathione S-transferase (GST) fusion proteins (table 2.4) were 

expressed in BL21 E. coli cells using standard methods (section 2.2.6).  Eluted purified 

proteins or rat brain lysates were incubated with immobilised GST-Syntaxin (and variants) 

and incubated for 2 hours at 4 ºC with rotation.  Unbound material was discarded by 

centrifugation in a table top micro-centrifuge at 13,000 x g. Beads were then washed 4 

times in 1 ml of buffer A (section 2.1.1) and eluted in sample buffer (section 2.1.1) for 

SDS-polyacrylamide gel electrophoresis. Electrophoresed samples were transferred to 

PVDF membranes for immunoblotting with the appropriate antibodies (section 2.3.2) or 

alternatively membranes were stained with Coomassie to reveal the extent of protein 

binding (section 2.3.4). 
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2.5.2 PROTEIN PURIFICATION FOR FLUORESCENCE CORRELATION SPECTROSCOPY 

 

Coding sequences for EGFP (Clontech pEGFP-N1) and mCherry (Clontech pmCherry-

N1) were amplified by PCR with added 5’ and 3’ restriction sites.  A poly-histidine tag 

was also added to carboxyl terminal of the fluorescent protein during PCR.  PCR 

fragments were then inserted into the bacterial expression plasmid pGEX-KG for 

Glutathione-S-transferase (GST) fusion. EGFP fused to mCherry was created by ligation 

of EGFP into EcoRI and SalI sites of the newly constructed pGEX-KG_mCherry plasmid.  

Recombinant fluorescent proteins were expressed in E.coli and purified using affinity, ion-

exchange and size exclusion chromatography.  Affinity chromatography was carried out 

using GST and His-tag purification.  GST purification was performed first by incubation 

of clarified bacterial lysate with Glutathione-Sepharose beads (GE Healthcare). Beads 

were washed twice with 500 mM NaCl in buffer A (20 mM Tris pH 7.4, 1 mM EDTA and 

0.1% TX-100) and twice with 150 mM NaCl in buffer A (section 2.1.1).  A final washing 

step was done in low salt buffer A excluding EDTA followed by thrombin (Sigma) 

cleavage to elute the bound protein. His-Tag purification was performed on a HiTrap ™ 

FF nickel chelating column (GE Healthcare) equilibrated with 20 mM imidazole in buffer 

B (20 mM Tris pH 7.4 and 150 mM NaCl) followed by a gradient elution with 500 mM 

imidazole in buffer B . The His tag eluted proteins were further purified by ion exchange 

using a Mono Q™ 5/50 GL column equilibrated with 25 mM NaCl in 20 mM Tris pH 8.5 

and eluted with 1 M NaCl in 20 mM Tris pH 8.5. Gel filtration was carried out on a 

HiLoad™ 16/60 Superdex 200 column equilibrated with buffer A. All fractions were 

analysed by SDS-PAGE and Coomassie staining and fractions containing fluorescent 

proteins were concentrated with a Vivispin 15R (Sartorius Stedim) before proceeding to 

subsequent purification steps. Protein concentration was measured using a Nanodrop A 

280 module with entered values for protein molecular weight and molar extinction 

coefficient. 

 

2.5.3 PROTEIN STRUCTURAL DATA  

 

The structural alignment of munc18-1 was based on the crystal structure (PDB 3C98, 

(Burkhardt et al, 2008)) and was generated by aligning the amino acid sequences of 191 

predicted SM proteins.  The degree of amino acid conservation was shown on a colour 
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coded scale (red – low, blue – high conservation).  All illustrations were generated using 

PyMol software.  

 

2.6 CELL CULTURE 

 

All cell culture reagents were supplied by Invitrogen (Paisley, UK) unless otherwise 

stated. All plasticware was Greiner branded products (Greiner, UK). 

 

2.6.1 ROUTINE PC12 CELL CULTURE 

 

Wild-type and KD43 PC12 cells were maintained at 37 ºC in 7.5% (v/v) CO2, 92.5% (v/v) 

air. Wild-type PC12 cells and KD43 PC12 cells were maintained in Advanced RPMI 1640 

(section 2.1.1) and passaged twice weekly. PC12 cells were rinsed off collagen-coated 

flasks using 5 ml of versene. The cell suspension was diluted with 50 ml medium and 

centrifuged at 500 xg for 5 min at room temperature. Medium was then removed and the 

cells re-suspended in 12 ml media. Cells were re-seeded into collagen-coated flasks at a 

1:3 dilution.  For imaging purposes, cells were seeded onto glass coverslips in 6 well 

plates at a density of approximately 10
6
 cells/ml. 

 

2.6.2 CLEANING AND COATING OF GLASS COVERSLIPS 

 

All coverslips used in imaging experiments were thoroughly cleaned before poly-D-lysine 

coating. Dust and foreign material was removed from coverslips by washing them with 

100 mM NaOH + 0.1% (v/v) Decon- 90 detergent in a sonicator bath for 30 secs. 

Following sonication, the coverslips were washed 3 times with double distilled H2O, once 

with 100% ethanol and once with 100% acetone.  Coverslips were allowed to air dry 

before immersed in Poly-D-lysine (PDL) at a final concentration of 50 µg/ml for 1 hour at 

room temperature.  Coverslips were then washed with sterile distilled water to remove 

excess PDL and allowed to air dry under a UV light source.  
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2.6.3 PC12 CELL TRANSFECTIONS 

 

For the effective delivery of plasmid DNA into PC12 cells, cell transfections were 

performed using Lipofectamine 2000 (Invitrogen, UK). PC12 cells were plated onto 30 

mm coverslips at the desired density (section 2.6.1) twenty four hours prior to 

Lipofectamine 2000 (Invitrogen, UK) transfection.  Manufacturer’s instructions were 

followed. 

 

2.6.4 PRIMARY EMBRYONIC CORTICAL CELL CULTURE - CLEANING AND COATING OF 

GLASS COVERSLIPS 

25 mm coverslips were autoclaved at 120 °C for 1 hour and incubated in filter sterilised 

Poly-D-lysine at a final concentration of 50 µg/ml at room temperature under gentle 

agitation.  Coverslips were left to air dry in a sterile environment and used when required. 

At least two hours before dissection a 50 μl droplet of 10 μg/ml
 
laminin was placed into 

the middle of previously PDL-coated coverslips and transferred to 37°C incubator.   

2.6.5 DISSECTION AND PRIMARY CELL MAINTENANCE 

Embryonic (18) cortical neurons were prepared using Sprague Dawley rats which were 

killed according to Home Office Schedule 1 regulations. The abdomen of the rat was 

opened and both uterine horns containing the embryos were removed and placed in a 

solution containing ice-cold PBS + 1% penicillin/streptomycin.  Embryos were then 

decapitated and heads were dissected to isolate individual cortices.  Olfactory bulbs and 

meninges were carefully removed and the cortical tissue was transferred to enzyme tubes 

containing pre-warmed papain diluted to 10units/ml in sterile PBS.  Enzyme digestion 

took place in a water bath set to 37 °C for 20 mins.  Following tissue digestion excess 

papain solution was removed and replaced with 2 ml pre-warmed supplemented DMEM 

(section 2.1.1).  Tissue was disaggregated and any precipitated DNA was removed.  

DMEM media (section 2.1.1) was then added to a final volume of 10 ml and the cell 

suspension was centrifuged at room temperature at 250 xg for 3.5 minutes.  Supernatant 

was then removed and the resulting pellet was re-suspended in pre-warmed full 

Neurobasal (NBA) medium (typically 1 ml NBA per head dissected) (section 2.1.1).  A 
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cell count was performed using a haemacytometer and the suspension was diluted to 10
7
 

cells/ml.  Cells were plated into the laminin spot at the desired density, placed in a 37°C 

incubator and topped up with 2 ml full Neurobasal medium after 1.5 hours.  After 24 - 72 

hours in vitro Ara-C  (Invitrogen) was added to a final concentration of 1 μM.  

2.6.6 PRIMARY EMBRYONIC CORTICAL CELL TRANSFECTIONS 

 

Cortical neurons were transfected at day in vitro (DIV 10-12) with Lipofectamine 2000. 

Twenty minutes before transfections full NBA was removed from the cells, transferred to 

a falcon tube and placed back into the 37°C incubator.  Pre-warmed MEM (section 2.1.1) 

was added to the neurons and transfections were carried out according to the 

manufacturer’s instructions. In contrast to the PC12 cell transfections 1 µl/well 

Lipofectamine 2000 and 2 µg DNA was used due to the apparent difference in sensitivity 

of each cell type. The transfection mixture was left on for 2 hours and then removed. Cells 

were washed twice in pre-warmed MEM and then immersed in the pre-conditioned full 

NBA that was previously removed. 

 

2.7 SAMPLE PREPARATION FOR MICROSCOPY 

2.7.1 CELL FIXATION WITH PARAFORMALDEHYDE 

 

For immunofluorescence, both PC12 cells and primary cortical neurons were fixed with 

4% (w/v) paraformaldehyde (PFA).  PFA was prepared by adding PFA powder (4 g) to 

double distilled sterile water (50 ml), heated to 60 C, and cleared by the addition of 1 M 

NaOH.  This stock solution was diluted with phosphate buffered saline (2 x PBS) (50 ml). 

Culture media was aspirated off and cells adhering to coated coverslips were gently 

washed twice with 1 x PBS (section 2.1.1) and then fixed with 4% (w/v) PFA for 20 min.  

PFA was then removed by aspiration and the cells were washed twice with 1 x PBS.  Cells 

were then incubated with 50 mM NH4Cl for 10 min in order to quench cellular 

autofluorescence.  The cells were again washed twice with 1 x PBS and were either 

mounted on slides using mowiol anti-fade medium (Calbiochem, UK) or subjected to 

immunofluorescence staining. 
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2.7.2 IMMUNOFLUORESCENCE LABELLING 

 

Following fixation with 4% (w/v) paraformaldehyde (section 2.7.1), cells were 

immunostained using the relevant primary and secondary antibodies.  Cells were incubated 

in 0.5% (v/v) Triton X-100 detergent diluted in 1 x PBS (section 2.1.1) for 4 min in order to 

permeabilise the cell membrane. Neuronal cells were typically permeabilised for 3 min. 

Cells were then washed twice with 1 x PBS and incubated in 0.5% (w/v) fish skin gelatine 

for 30 minutes to prevent spurious antibody binding.  Primary antibody (typically 1:1000 

dilution), diluted in 1 x PBS supplemented with 0.5% (w/v) fish skin gelatine, was added to 

the cells and left to incubate for 3 hours at room temperature.  The cells were washed twice 

with 0.5% (w/v) fish skin gelatine diluted in 1 x PBS and then stained with the conjugated 

secondary antibody (typically 1:1000 dilution) diluted in 1 x PBS supplemented with 0.5% 

(w/v) fish skin gelatine for 1 hour at room temperature.  The secondary antibody was 

removed and the cells were washed at least 3 times with 1 x PBS in order to remove excess 

and unbound fluorescent secondary antibody.  Lastly, cells were gently washed in double 

distilled H2O to remove residual NaCl from the PBS, left to air dry and mounted on 

microscopic slides with mowiol anti-fade medium (Calbiochem, UK).  

 

2.8 MICROSCOPY TECHNIQUES 

2.8.1 THE POINT SPREAD FUNCTION (PSF)  

 

The term 'resolution' is defined as the ability of an optical imaging system to distinguish 

between two objects. All conventional imaging systems, including widefield and confocal 

microscopy, are limited in the resolution that they can achieve by a number of physical 

properties. These physical factors include the wavelength of light used and the numerical 

aperture (NA) of the optical technique, a dimensionless number corresponding to the 

amount of light the microscope can collect.  During image acquisition all imaging 

techniques are only capable of collecting a fraction of light emitted by a single source of 

light.  Due to this inherent restriction not enough positional information is gathered in 

order to focus this light into a perfect three-dimensional image of the point.  Instead, the 

image generated appears widened and spread into a three-dimensional diffraction pattern. 

The Point Spread Function (PSF) of a single source of light is therefore described as the 

three-dimensional diffraction pattern that it generates (Pawley, 1995).  This spread of light 
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generated when light hits the sample is the reason why images acquired through optical 

means is not an accurate representation of what the sample actually looks like. There are 

two main reasons for this. Firstly, electronic noise aberrations from the microscope will 

force the spread of the image and secondly, diffraction limitations of the objective also 

results in a widened, distorted image.  

 

An x-y slice through the centre of the PSF generated by an image can be seen as a set of 

concentric rings: the so-called Airy Disks.  The width of these disks is used to define the 

theoretical maximum resolution of an imaging system and can be used as a direct indicator 

of the quality of an imaging system (Pawley, 1995; Müller, 2002).  When two objects are 

sufficiently separated their images can be distinguished from each other on the basis of the 

variation in image intensity.  However, as the minimum distance between objects 

decreases the intensity distribution, or PSFs, of the two points overlap.  This overlap 

results in an image of a single larger or brighter object rather than two separate objects 

(Pawley, 1995; Müller, 2002).  An image generated by a microscope is therefore 

composed of the superposition of PSFs from all the objects which have dimensions below 

the resolution of the system, each scaled according to the intensity of the corresponding 

point (Pawley, 1995).  Thus, if resolution is the minimum separation distance at which the 

two objects can be distinguished, it is the width of the PSF that defines the limit of 

resolution.   

 

2.8.2 CONFOCAL LASER SCANNING MICROSCOPY (CLSM) 

 

All confocal data, apart from neuronal FCS data, were acquired on a Zeiss LSM510 

Axiovert confocal laser scanning inverted microscope equipped with an LSM510 scanning 

head.  The Zeiss LSM510 was fitted with four lasers, an Argon laser tuneable to 458 nm, 

477 nm, 488 nm and 514 nm, a 543 nm He-Ne1 laser, a 633 nm He-Ne2 laser, and a 

pulsed excitation source at 800 nm (MIRA 900 Ti:Sapphire femtosecond pulsed laser with 

a coupled VERDI 10-watt pump laser (Coherent).  

 

All FCS recordings were acquired using a Leica SP5 SMD (single molecule detection) 

laser scanning confocal microscope using a Zeiss C-Apochromat 1.2 NA X63 water-

corrected immersion objective and 488 nm or 561 nm CW lasers.  Photon fluctuation data 
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routed through a Picoquant PRT 400 router were acquired at microsecond rates using 

external Single Photon Avalanche Photodiodes (SpADs; MicroPhoton Devices, Italy).  

Band pass (BP) and long pass (LP) emission filters were used in both systems to only 

allow desired wavelengths of light to reach the objective. PMT detector gain and laser 

power were set manually in order to balance image brightness versus noise.  Digital scan 

zoom was set to acquire at Nyquist sampling rates to improve resolution dependent upon 

the chosen objective.  Using dual laser excitation, separate fluorescence emission channels 

were collected. Data were acquired using a 1024 X 1024 pixel image size, using a Zeiss 

Plan NeoFLUAR 1.4 numerical aperture (NA) 63x oil immersion lens.  For all 

microscopy, live cells were maintained at 37 ºC in 5% (v/v) CO2, 95% (v/v) air in a POC 

chamber (LaCon).  

 

 

2.8.3 TOTAL INTERNAL REFLECTION FLUORESCENCE MICROSCOPY (TIRFM) 

 

All TIRFM experiments used an Olympus CellR widefield TIRFM microscope equipped 

with  488 nm and 561 nm diode laser lines which were focussed into a motorised inverted 

epifluorescence microscope (IX81, Olympus, UK) through separate condensers. A 

micrometer screw in the illuminator was used to adjust the position of the laser beam in 

order to reach the critical angle for TIRF illumination. Laser light was also used for 

widefield illumination.  The laser beam travelling through the objective exits the front lens 

at a high incident angle limited by the numerical aperture. The system was equipped with 

excitation and emission filters allowing rapid sequential imaging of red and green 

fluorescent emission. Data were acquired at a 512 x 512 pixel image size using a 

Hamamatsu ImageEM EMCCD with an Olympus PLAN APO 45 NA 60x oil immersion 

objective lens.  For TIRFM imaging, cortical neurons and PC12 cells were plated on PDL 

coated coverslips (section 2.6.1 and section 2.6.5). All imaging was performed using live 

cells maintained at 37 ºC in 5% (v/v) CO2, 95% (v/v) or cells fixed with 4% (w/v) 

paraformaldehyde and subsequently immunostained (section 2.7.2) and imaged in UV-

sterilised PBS.  
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2.8.4 PHOTOACTIVATABLE LOCALISATION MICROSCOPY (PALM) 

 

In this study PALM data was acquired in both fixed and live neuronal and PC12 cells 

transfected with plasmids tagged with PA-mCherry. PALM acquisition involved cycles of 

brief activation at 405 nm followed by rapid imaging in TIRF mode at 561 nm. All PALM 

experiments were performed using an Olympus IX-81 microscope equipped with Olympus 

Cell^R acquisition software, an ImageEM EM-CCD 512x512 camera (Hamamatsu UK) 

and an Olympus 150X UAPO 1.45NA oil lens with a resulting pixel size in the image of 

106 nm. All single molecule coordinates were obtained using Matlab using a fitting and 

localisation routine kindly supplied by Dr Samuel Hess (Maine).  Live PALM experiments 

required a lower 405 nm laser intensity, ensuring an even sparser distribution of single 

molecules during each activation and bleaching cycle.   Point spread functions arising 

from single molecules were localised and tracked using custom written Matlab scripts.  All 

cells for live PALM were maintained at 37 °C in 5% (v/v) CO2, 95% (v/v) air in a 'POC' 

chamber (LaCon, Germany). Fixed cells were imaged in pre-bleached PBS and live cells 

were imaged in phenol-free supplemented culture media. 

 

2.8.5 GROUND STATE DEPLETION FOLLOWED BY INDIVIDUAL MOLECULE RETURN 

(GSDIM) 

 

All GSDIM experiments were performed on an Olympus IX-81 microscope equipped with 

Olympus Cell^R acquisition software, an ImageEM EM-CCD 512x512 camera 

(Hamamatsu UK) and an Olympus 150X UAPO 1.45NA oil lens with a resulting pixel 

size of 106 nm.  Endogenous proteins were immunolabelled, after 90 minute fixation in 

4% (section 2.7.2) with commercially available primary antibodies and Alexa-647-

conjugated anti-IgG (Invitrogen).  Alexa-647 was found to have the greatest propensity to 

enter a dark 'triplet' state using high intensity 640 nm illumination in an oxygen-depleting 

buffer (section 2.1.1).  Point spread functions arising from single molecules of Alexa-647 

were identified, localised and images rendered using a MatLab script written by Samuel 

Hess (Maine).  
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2.8.6 TIME CORRELATED SINGLE-PHOTON COUNTING FLUORESCENCE LIFETIME IMAGING 

MICROSCOPY (TCSPC FLIM) 

 

TCSPC measurements were acquired using a Zeiss LSM510 Axiovert confocal laser 

scanning microscope equipped with a pulsed excitation source (MIRA 900 Ti:Sapphire 

femto-second pulsed laser coupled with a VERDI 10W pump laser (Coherent)) capable of 

delivering pulses of photons at a repetition rate of 80 MHz (Duncan et al, 2004).  

Recordings were made under 800–820 nm two-photon excitation, which efficiently 

excited cerulean without any measurable excitation or emission from EYFP, using a non-

descanned detector (R3809U-50) multichannel plate-photomultiplier tube or a fast 

photomultiplier tube (H7422; both Hamamatsu Photonics UK) coupled directly to the rear 

port of the microscope. TCSPC recordings were acquired for 60 s with mean photon 

counts between 10
5
 and 10

6
 counts per second. Images were recorded at 256 × 256 pixels 

from a 1024 × 1024 image scan with 256 time bins over a 12-ns period (Duncan et al, 

2004), using a Zeiss Plan NeoFLUAR 1.4 NA 63x oil immersion objective lens. Off-line 

FLIM data analysis used pixel-based fitting software (SPCImage, Becker & Hickl). The 

optimization of the fit parameters was performed by using the Levenberg-Marquardt 

algorithm, minimizing the weighted χ-square quantity and thus enabling the separation of 

the interacting and non-interacting FRET components. The long fluorescence lifetime 

component τ2 was determined by control assays with cerulean expressed alongside dark 

(non-interacting) EYFP. Long lifetimes for each experiment were fixed. The number of 

photons given off by the sample decreasing over time results in a decay curve which can 

be fit to provide a measure of the lifetime of the fluorophore. During all FRET 

experiments neurons and KD43 PC12 cells were bathed in phenol-free supplemented 

culture media (section 2.1.1) and maintained at 37 °C in 5% (v/v) CO2, 95% (v/v) air in a 

POC chamber (LaCon). To stimulate the neuronal cells 1 μM ionomycin (Invitrogen) was 

added immediately prior to FRET recordings with all acquisition parameters kept constant.   

 

2.8.7 FLUORESCENCE CORRELATION SPECTROSCOPY (FCS) 

 

All FCS recordings were acquired using a Leica SP5 SMD (single molecule detection) 

laser scanning confocal microscope using a 63X 1.2NA HCX PL Apo water lens and 488 

nm or 561 nm CW lasers. Photon fluctuation data routed through a Picoquant PRT 400 
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router were acquired at microsecond rates using external Single Photon Avalanche 

Photodiodes (SpADs; MicroPhoton Devices, Italy). Neurons were transfected at DIV 10-

12 (section 2.7.3), imaged at DIV 11-13 to ensure weak plasmid expression and placed in 

a custom made POC chamber with embedded platinum wires to deliver a stimulus. Cells 

undergoing electrical stimulation were immersed in stimulation buffer (section 2.1.1) and 

stimulated at 20 Hz for 20 s allowing all FCS data to be acquired during the stimulation 

train. Cells were also loaded with a Ca
2+

 indicator (Fluo-5F, 1 µM) in clear NBA media 

for 15 minutes at 37 °C in order to record the intracellular calcium rise during the FCS 

recordings. All cells imaged were maintained at 37 ºC in 5% (v/v) CO2, 95% (v/v) air and 

analysis of all FCS data was performed using Leica software.  

 

2.8.8 FM1-43 DYE IMAGING 

 

FM dye imaging is a popular method used to monitor the rate of synaptic vesicle 

recycling. Recording the fluorescence changes of FM dyes under different stimulation 

paradigms quantifies the extent of exocytosis of distinct pools of synaptic vesicles. 

Embryonic cortical neurons were maintained for 12 days in vitro (DIV 12), transfected 

(section 2.6.6) and typically imaged on DIV 14-15.  Cells were placed in a plastic imaging 

chamber and immersed in imaging buffer (section 2.1.1). Invaginating membrane was 

loaded using FM1-43 (10 μM) by stimulating vesicle recycling with a constant low 

frequency electrical stimulation (10 Hz, 60 s).  This stimulation was delivered using 

platinum wires embedded in the imaging chamber.  Cells were then washed for 2 minutes 

with imaging buffer (section 2.1.1) and left to recover for 8 minutes.  Following the rest 

period, FM dye was unloaded from nerve terminals using either 60 action potentials (30 

Hz) for 2 s to release the readily releasable pool of vesicles and 2 X 400 action potentials 

(40 Hz) for 10 s to unload the reserve pool of vesicles.  Cells were left to recover for 40 s 

between stimulations.  Untransfected cells in the same field of view served as internal 

controls.  Dye unloading was visualised using a Nikon Diaphot-TMD epifluorescence 

microscope and 40 X oil objective at 495 nm excitation and 550 nm emission. Images 

were visualised using a Hamamatsu Orca-ER CCD digital camera and analysed using 

offline imaging software (ImageJ).  
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2.9 IMAGE PROCESSING AND ANALYSIS 

2.9.1 NYQUIST SAMPLING RATES 

 

In order to capture all the information generated by a signal a microscopic system needs to 

sample at an optimal frequency.  If the sampling rate interval in the x, y and z direction is 

either too fast or too slow aliasing occurs, a term referring to when a signal is sampled at a 

rate that is insufficient to capture the changes in a signal.  The sampling rate used in this 

thesis was set at 2.3 times that of the resolvable spatial frequency which conforms to the 

Nyquist sampling theorem (Pawley, 2006).  The Nyquist sampling frequency should be at 

least twice the highest frequency contained in the signal and therefore represents the 

minimal sampling at which a sample must be recorded to ensure that all the information 

present is represented in the samples. In order to adhere to Nyquist sampling rate using a 

confocal system the excitation wavelength, the numerical aperture of the objective, and the 

refractive indices of the immersion medium were all set correctly.  

 

2.9.2 IMAGE DECONVOLUTION 

 

All three-dimensional image stacks generated using a confocal microscope were 

deconvolved, an algorithm-based process aimed at reversing signal degradation, namely 

axial distortion and noise degradation (Inoué, 1995; Pawley, 1995; McNally et al, 1999; 

Pawley, 2006).  Deconvolution is a computational image processing technique that is 

routinely used for improving the contrast and resolution of microscopic images by 

reversing the blurring which can be caused by diffraction limitations of the objective.  In 

short, deconvolution recreates and restores the original signal before signal distortion, or 

convolution, occurs. Image deconvolution uses a number of deconvolution algorithms 

alongside theoretically or experimentally measured PSF dimensions.  Theoretical PSF are 

commonly used however it is possible to experimentally calculate the PSF in a microscope 

system by measuring the image of a sub-resolution spherical bead.  A combination of PSF 

values and tailored algorithms restores the original image by redistributing out-of-focus 

fluorescence and background signals by resolving the original distribution of point sources 

of light from the summed, overlapping PSFs (McNally et al, 1999; Sibarita, 2005; Pawley, 

2006).  Deconvolution has been shown to be of great importance in a number of image 

analysis techniques, such as co-localisation (Bolte & Cordelieres, 2006).  Image data 
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acquired at Nyquist sampling rates in this thesis was deconvolved using Huygens software 

(Scientific Volume Imaging, The Netherlands), using a theoretical PSF calculated from the 

microscope parameters, and the resulting image data were analysed using NIH Image J 

software. 

 

2.9.3 QUANTIFICATION OF PROTEIN CO-LOCALISATION 

 

Protein colocalisation is a term used to describe the presence of two or more distinct 

fluorescent molecules in the same volume.  In this thesis, quantitative co-localisation 

analysis was performed to analyse the spatial distribution of two fluorescent proteins 

(either fluorescently tagged or through direct immunofluorescent labelling) within a cell.   

 
All image co-localisation analysis was conducted on deconvolved 3D images (section 

2.9.2).  Quantitative protein colocalisation analysis, using ImageJ software, was displayed 

in a qualitative manner by merging the red and green channels together in order to 

represent overlapping pixels or areas of coincidence. A two-dimensional histogram 

represents the intensity for each channel in each voxel with a colour scale representing 

frequency. This method was applied to every voxel in the three-dimensional image stack, 

with the colour scale of the histogram corresponding to the frequency of voxels for each 

pair of intensity values. The more linear the histogram is, the closer the fluorescence 

intensity ratio between both channels and therefore the higher the colocalisation between 

both proteins.  This histogram was fit by linear least-squares regression and yielded either 

a Pearson’s correlation coefficient.  From this fit, weighted residuals for each voxel were 

calculated and displayed as a ‘residual map’ to highlight areas of fluorescence channel 

covariance.  The residual maps were generated by calculating the residual of each voxel 

from the linear regression fit to the intensities of each channel from all voxels.  

 

The ImageJ co-localisation threshold plugin was used to calculate the linear regression 

equation of best fit (y = mx + b). The x axis channel (green) was used to generate a 

predicted y axis channel (red) using the line of best fit.  The difference between the 

observed y axis channel and the predicted y axis channel was then calculated using the 

following equation: 
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For display, the residual was shown on a Hue Saturation Brightness (HSB) colour scale, 

where Hue was defined by the residual, Brightness was the combined intensities of 

channels 1 and 2, and Saturation was the maximum value of 255. Residual maps are 

displayed on a colour scale from -1 to 1 with cyan corresponding to a zero residual.   

 

Pearson’s correlation coefficient was used to quantify the co-localisation between two 

separate channels. Pearson's correlation coefficient (R) measures the intensity-dependent 

correlation between two channels and provides a value ranging from -1 to 1. This R value 

reflects the degree of linear relationship between the two variables, with the value of 1 

representing perfect co-localisation between channels.   

 

2.9.4 FLIM DATA ANALYSIS AND FRET CALCULATIONS 

 

Offline TCSPC-FLIM data analysis used pixel-based fitting software (SPCImage, Becker 

& Hickl). Data generated was fit to either a mono-exponential or a bi-exponential decay 

depending on the experiment. An adaptive offset correction was calculated from the 

average number of photons per channel preceding the rising part of the fluorescence trace.  

This calculation ensured detector noise and background room light did not contribute 

significantly to photon counts.  To fit the parameters of the multi-exponential decay to the 

fluorescence decay trace measured by the system, a convolution with the instrumental 

response function was carried out. The optimization of the fit parameters was performed 

by using the Levenberg-Marquardt algorithm, minimizing the weighted χ-square quantity 

and thus enabling the separation of the interacting and non-interacting FRET components.  

As a control the long lifetime component τ2 was determined by expressing cerulean with 

dark (non-interacting) EYFP. This value was subsequently used as a fixed τ2 lifetime for 

all other experiments. No FRET was detected in any of the control experiments.  

 

 

 

Observed - Predicted 

Observed + Predicted 
Residual  
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2.9.5 PALM ANALYSIS 

 

All single molecule and vesicle coordinates were obtained using Matlab using a fitting and 

localisation routine kindly supplied by Dr Samuel Hess (Maine).  Custom written scripts 

were used to perform Ripleys L function and nearest neighbour analysis (Ondrej Mandula, 

University of Edinburgh).  sptPALM data were analysed using custom written algorithms 

for automated particle detection and tracking.  These particle detection algorithms build on 

the recently proposed concept of particle probability (PP) image (Yang et al, 2010), which 

measures the critical visual features of particles in a statistical manner.  By combining the 

concept of PP images with a new refinement approach to obtain more accurate particle 

features, this novel particle detection and tracking method acts to improve particle tracking 

in dense particle fields under low signal-to-noise ratio and low contrast environments. 

 

After obtaining particle tracking results using particle detection and tracking codes, two 

steps were employed to produce density and speed contour maps.  Firstly, to guarantee 

sub-pixel precision of each particle trajectory, linear interpolation methods were used to 

estimate particle coordinates between consecutive image frames.  Secondly, the numbers 

of particles trajectories were counted in each pixel of an image, generating contour maps 

containing molecular densities. Contour maps representing the average molecular speed of 

particles were produced by calculating the mean speed of each molecule in every pixel of 

an image.  The difference contour maps were generated by normalising the density and 

speed contour maps and calculating the difference between the normalised figures.  The 

rose diagrams, presented in a circular format with each concentric circle representing a 

different frequency of direction and colour-coded to display ranges of molecular 

directionality were produced using Matlab functions.   

 

2.9.6 VESICLE TURNOVER QUANTITATION 

 

FM dye unload was recorded as a time stack using simplePCI software (Hamamatsu).  

ImageJ software performed subsequent analysis. FM dye unload from transfected neurons 

was compared to dye release from internal controls, non-transfected neurons.  In order to 

locate actively recycling synapses an image of a transfected neuron was overlaid with an 

image of FM puncta and those FM puncta that merged with a neurite were chosen for 
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analysis. The ImageJ software plugin, time series analyser, was used to measure the 

change in fluorescence of the FM dye at defined regions of interest.  Traces were 

normalised (between 1 and 0) to the total change in fluorescence, i.e. the size of the total 

recycling pool of synaptic vesicles. Synaptic vesicle pool sizes were then determined by 

the changes in FM dye fluorescence upon different stimulation paradigms. 

 

2.9.7 FCS DATA ANALYSIS 

 

Photon fluctuation analysis and FCS auto-and cross-correlation data were performed using 

SymphoTime v5.4.4 software (Picoquant GmbH, Germany). To quantify rates of 

diffusion, the value of kappa (the ratio of the axial and waist excitation spot dimensions) 

was estimated using recombinant fluorescent protein standards. Briefly, purified EGFP 

and mCherry proteins (section 2.5.2), or EGFP fused to mCherry protein at defined 

nanomolar concentrations were suspended in 150 mM NaCl, 20 mM Tris pH7.4, 1 mM 

DTT and 0.1% (v/v) Tween 20 in LabTek borosilicate glass bottomed chambers. 

Parfocality between 488 nm and 561 nm excitation was achieved by adjusting the 

objective correction ring to maximise photon counts in each router channel. FCS data from 

these defined samples were fitted with triplet-state diffusion models informed with 

concentration and expected diffusion rates and the resultant value for kappa were used in 

subsequent fitting from experimental data from the same day.  
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3.1 INTRODUCTION 

Key insights which helped to elucidate SM protein function came from studies of 

SNAREs and SM proteins from a number of different membrane compartments.  The 

yeast SM proteins, Sec1p and Sly1p, previously implicated in membrane fusion, were 

shown to interact with their cognate syntaxin within the ternary SNARE complex rather 

than to isolated syntaxin (Carr et al., 1999; Bracher and Weissenhorn, 2002; Togneri et al, 

2006).  Another yeast SM protein, Vps45p, has been shown to bind to Tlg2p, its cognate 

syntaxin, both in the monomeric state and in the ternary SNARE complex (Bryant and 

James, 2001).  In contrast, mammalian SM protein, munc18-1, was initially identified 

through its tight and highly specific interaction with monomeric syntaxin (Hata et al, 

1993; Pevsner et al, 1994b).  It was later shown that all syntaxins contain an Habc domain, 

a motif which occludes its SNARE motif and downstream SNARE complex formation 

(Dulubova et al, 2001, 2002), suggesting the possibility that a closed conformation is not a 

general feature of syntaxins (Dulubova et al, 2001, 2002).  In support of this, syntaxins 

from membrane bound cellular compartments like the ER, Golgi, trans-Golgi network and 

early endosomes were found to have a strong affinity for their cognate SM proteins 

through an N-terminal peptide, an interaction that is compatible with SNARE complex 

assembly (Dulubova et al, 2001, 2002; Yamaguchi et al, 2002).  

The confusion surrounding SM-syntaxin interactions was recently resolved following the 

solving of the crystal structures of both munc18-1 and Sly1p, in complex with their 

cognate syntaxins (Misura et al, 2000; Bracher and Weissenhorn, 2002; Burkhardt et al, 

2008).  Comparison of both crystal structures revealed two distinct binding motifs between 

syntaxins and their respective SM protein. Sed5p, a yeast syntaxin, was found to only 

interact with the extreme N-terminal domain of Slylp (Bracher and Weissenhorn, 2002) 

whereas syntaxin binds to domains 1 and 3 of munc18-1 and occupies most of the ‘arch’ 

of munc18-1 (Misura et al, 2000).  Therefore, despite both SM proteins adopting similar 3-

D conformations they bind to their cognate syntaxins via more than one distinct 

mechanism.   

Munc18-1 is able to interact with syntaxin in two possible conformations.  First, munc18-1 

can bind and stabilise syntaxin in a closed conformation in which the Habc domain of 

syntaxin folds back and occludes the SNARE motif (Pevsner et al, 1994b, Dulubova et al, 
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1999).  By locking syntaxin in a closed conformation SNARE complex assembly is 

inhibited, the main reason why munc18-1 was initially labelled as an inhibitor of vesicle 

exocytosis (Pevsner et al, 1994b; Yang et al, 2000).  A second SM protein binding site is 

located at the extreme N-terminus of syntaxin, a highly conserved N-peptide characterised 

by two to three charged residues followed by a hydrophobic leucine or phenylalanine 

residue which insert into a peripheral pocket of the SM protein (Bracher and Weissenhorn, 

2002; Hu et al, 2007; Burkhardt et al, 2008).  The N-terminal binding mode, initially 

discovered in the Golgi and endocytic SNAREs (Dulubova et al, 2002; Yamaguchi et al, 

2002), was later found to be prevalent among SM–syntaxin pairs (Misura et al, 2000; 

Yang et al, 2000; Rickman et al, 2007).  Munc18-1 can also interact with the ternary 

SNARE complex via 'open' syntaxin, a binding mode that involves the same N-terminal 

binding motif in syntaxin, with differences in the conformation and additional interactions 

adopted by the syntaxin molecule (Rickman et al, 2007; Shen et al, 2007).  Therefore the 

finding that SM homologues interact with their cognate syntaxins via at least two distinct 

mechanisms has partially explained the apparently contradictory findings regarding the 

functionality of SM proteins. 

Recent in vitro reconstitution experiments established a role for munc18-1 in accelerating 

SNARE-driven liposome fusion, revealed by selectively dissecting both binding modes 

(Shen et al, 2007).  By selectively impairing N-terminal peptide interaction and SNARE 

complex binding the stimulatory action of munc18-1 was eliminated, an effect that was 

not reported using mutations that only interfered with closed syntaxin binding (Shen et al, 

2007).  These in vitro results therefore suggest that the interaction of munc18-1 with the 

N-terminus of syntaxin is critical for efficient neuronal exocytosis.  In the same year it was 

shown that the two mechanistically distinct modes of binding between munc18-1 and 

syntaxin are both functionally and spatially distinct (Rickman et al, 2007).  By separately 

analysing each binding mode these studies were able to assign a specific biological 

function to the munc18-1-syntaxin N-terminal interaction, an approach used in this 

experimental part of the thesis. 

Despite a large body of work focusing on the interaction between munc18-1 and the N-

peptide of syntaxin, little is actually known about the key residues mediating this highly 

specific interaction. Another facet of this interaction which is also largely unknown is 
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what function these key residues play in a cellular environment.  Structural analysis 

discussed above has revealed potential residues key to mediating this interaction, key 

residues that must be tested experimentally. A recent study used a site directed 

mutagenesis approach to elucidate the key residues involved in mediating N-terminal 

interaction and reported that it had a limited influence on neuroendocrine exocytosis 

(Malintan et al, 2009).  However, mutations selected in this study were shown to have a 

low degree of evolutionary conservation and therefore not appropriate constructs to 

investigate the functionality of the N-terminal interaction (Malintan et al, 2009).  The 

available structural information on SM-SNARE protein binding modes has now enabled 

the design of mutations that disable these interactions, an approach used in this study. 

This chapter describes the dissection of both closed form and N-terminal binding in vitro, 

a mutagenesis approach aimed at highlighting the extent of N-terminal binding utilised 

between munc18-1 and syntaxin in vitro.  This chapter also describes new and rationally 

designed mutants of munc18-1 that quantifiably disrupt N-terminal interaction in vitro, 

highlighting residues important in maintaining an N-terminal interaction with syntaxin.  

Here it is shown that mutating the hydrophobic pocket of munc18-1 and specifically 

residue I127, highlighted by SM protein conservation maps, results in a reduction in in 

vitro binding to syntaxin.  The next experiment was to investigate whether perturbing the 

N-terminal interaction in vitro result in a corresponding effect in a cellular environment. 

Using both confocal microscopy and TCSPC FLIM it is further demonstrated that 

mutating specific residues of the hydrophobic pocket of munc18-1 resulted in changes in 

both munc18-1 and syntaxin protein localisation and interaction. 

3.2 DISSECTION OF MUNC18-1-SYNTAXIN INTERACTION MODES IN VITRO. 

 

To determine the extent of binding modes between munc18-1 and syntaxin in vitro 

syntaxin mutant constructs were used in order to isolate closed form and N-terminal 

interactions biochemically.  It has already been reported that truncation of the first seven 

amino acids of the N-terminus of syntaxin (GST-Syx7-261) can disrupt N-terminal 

interactions with munc18-1 (Rickman et al, 2007).  To perturb closed form binding 

truncations of the SNARE helix of syntaxin were designed based on the close interaction 

of this region with munc18-1 in closed form interactions (Burkhardt et al, 2008).  Two 
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truncations were used: removal of the syntaxin C terminus up to the ionic layer of the 

SNARE helix (GST-Syx1–225) and a complete removal of the SNARE helix (GST-Syx1–

213). To examine the influence of these mutations and their combinations syntaxin 

constructs were immobilized on glutathione sepharose beads and incubated with fresh 

brain lysate (section 2.4) for 2 hours at 4 ºC.  Following standard washing procedures, 

bound material was analysed by SDS-PAGE and subsequent Coomassie staining.  

 

Upon incubation, native munc18-1 readily bound to wild type syntaxin (GST-Syx1-261; 

Figure 3.1). Truncation of the N-terminus of syntaxin (GST-Syx7–261) caused a small 

decrease in the amount of bound munc18-1 detected.  Munc18-1 binding following 

truncation of syntaxin to the ionic layer (GST-Syx1–225) was also detected but at decreased 

levels as a result of loss of closed form binding (Figure 3.1).  No interactions were 

detected following removal of the whole SNARE helix of syntaxin (GST-Syx1–213). 

Importantly, the combination of the N-terminal truncation and the ionic layer truncation 

(GST-Syx7–225) resulted in the complete removal of detectable munc18-1 binding through 

ablation of both binding modes (Figure 3.1).  N-terminal binding to GST-Syx1–225 was also 

eliminated in a high salt buffer, highlighting the considerable ionic nature of this 

interaction in contrast to closed from interaction (GST-Syx7–261).  By specifically isolating 

munc18-1-syntaxin binding modes it was possible to test which residues of munc18-1 

were important in mediating N-terminal binding to purified GST-syntaxin in vitro.  
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3.3 IDENTIFICATION OF RESIDUES CONTAINED WITHIN THE HYDROPHOBIC 

POCKET OF MUNC18-1 IMPORTANT IN MEDIATING N-TERMINAL 

INTERACTION. 

 

The approach used in order to identify residues within the hydrophobic pocket of munc18-

1, well placed to mediate an N-terminal interaction with syntaxin, was to examine the 

amino acid sequence of members of the SM protein family.  Evolutionary conservation of 

amino acids, with relation to the three-dimensional protein structure is indicative of an 

essential function (Madabushi et al, 2002).  The amino acid sequences of 191 predicted 

SM proteins were aligned, mapping the degree of conservation on to the crystal structure 

of munc18-1 bound to syntaxin (Figure 3.2, Burkhardt et al, 2008). This approach 

highlighted the amino acids lining the N-terminal binding pocket on munc18-1 and 

indicated E132 and D112 as being potential candidates. Both residues are expected to 

form hydrogen bonds to the N-terminal motif of syntaxin.  Another potential residue 

important in mediating N-terminal interaction was I127, a residue forming one side of the 

hydrophobic pocket (Figure 3.2B, Burkhardt et al, 2008).  Two-point mutations for each 

amino acid (I127A/I127F, E132A/E132K, and D112A/D112K) were subsequently 

constructed using site directed mutagenesis (section 2.2.2) to investigate their individual 

contributions in regulating the level of binding to the N-terminus of syntaxin in vitro.   
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To determine whether these munc18-1 point mutations specifically disrupted N-terminal 

interaction with syntaxin in vitro, bacterial lysates containing His-tagged munc18-1, and 

mutant forms, were incubated with GST-syntaxin immobilized on beads (section 2.4.3).  

GST-Syx7–261 was used to examine the impact of munc18-1 mutations on closed form 

binding and GST-Syx1–225 to assess perturbations of N-terminal binding.  Levels of in vitro 

binding were analysed using SDS-PAGE and Coomassie staining (section 2.3.1 and 2.3.4).  

Mutants munc18-1[I127A], munc18-1[I127F] and munc18-1[E132A] resulted in the 

largest reduction in the level of N-terminal binding compared with wild-type munc18-1 in 

vitro (Figure 3.3).  No reduction in the extent of N-terminal binding was observed using 

mutants munc18-1[E132K], munc18-1[D112A] and munc18-1[D112K] (Figure 3.3).  This 

biochemical approach highlighted key residues in the hydrophobic pocket of munc18-1 

that were important in regulating the extent of N-terminal binding to syntaxin in vitro.   
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Proteins participate in extensive networks of interactions which are able to assemble and 

disassemble in concert with a change in intra-, inter and extracellular cues.  A preliminary 

step in understanding protein interaction and function is to determine which proteins 

interact with each other, thereby identifying relevant biological pathways.  The GST pull-

down technique is a common biochemical tool used for protein interaction analysis and 

has become an invaluable tool in studying cellular pathways via protein-protein 

interactions.  After observing an in vitro effect using pulldown assays on N-terminal 

binding with munc18-1[I127A], munc18-1[I127F] and munc18-1[E132A], it was 

important to investigate whether these munc18-1 mutants had a similar effect in a cellular 

context.  As mutants munc18-1[D112A], munc18-1[D112K] and munc18-1[E132K] had 

no identifiable effect on N-terminal binding in this in vitro assay, they were excluded from 

further study. 

 

3.4 CHARACTERISATION OF MUNC18-1 SILENCED KD43 PC12 CELLS. 

 

All experiments performed on cell lines in this thesis used munc18-silenced PC12 cells 

(KD43), a kind gift from Dr Sugita, Toronto Western Research Institute, Canada.  This 

null munc18-1 background provided an excellent cellular model in order to precisely 

probe the downstream cellular effects on ablating N-terminal interaction between munc18-

1 and syntaxin.  This model system also ensured that any effects observed using N-

terminal munc18-1 mutants were not an artefact of munc18-1 over-expression.  Stable 

KD43 PC12 cells were generated using a munc18-1 knockdown plasmid (pSuper-

Munc18-1-3), which selectively targeted residues 246-264 in the rat munc18-1 gene 

(Arunachalam et al, 2008).  Cells successfully transfected with the munc18-1 knockdown 

plasmid were selected for using puromycin.  To verify that the KD43 PC12 cells lacked 

endogenous munc18-1 cells were subjected to immunoblot analysis.  The lysates from 

three 95% confluent 75 cm
2
 flasks containing KD43 PC12 cells were combined and 

probed using various antibodies.  Total protein was quantified using SDS-PAGE and 

immunoblotting techniques (Figure 3.4; section 2.3.1 and 2.3.2).   

 

Immunoblot analysis revealed that total munc18-1 protein (BD-munc18-1) was knocked 

down by approximately 90% (Figure 3.4B).  A 30% reduction in the expression of 
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syntaxin (HPC-1) and no change in SNAP-25 expression (SM1-81) was also found, a 

similar finding to the initial characterisation of these cells (Figure 3.4; Arunachalam et al, 

2008).  A reduction in the expression of syntaxin upon the deletion of its cognate SM 

protein has been previously shown in S. cerevisiae cells (Bryant and James, 2001) and 

munc18-1 null embryonic murine chromaffin cells (Voets et al, 2001).  KD43 PC12 cells, 

unlike neurons from munc18-1 null mice (Voets et al, 2001), exhibited no problems in 

survival or growth. This relatively healthy model system therefore provided an excellent 

model system in order to conduct detailed analyses of the localisation and interaction of 

N-terminal munc18-1 mutants with syntaxin.   
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3.5 MUTATIONS IN THE HYDROPHOBIC POCKET OF MUNC18-1 RESULT IN 

A CHANGE IN ITS CO-LOCALISATION WITH SYNTAXIN IN CELLS. 

 

To investigate the effect of perturbing N-terminal interaction in a cellular context, a 

quantitative approach was used to examine co-localisation between the two proteins in 

KD43 PC12 cells.  In order to maintain a stable transfection of KD43 PC12 cells using 

fluorescently tagged munc18-1 constructs, six silent nucleotide mutations 

(GTCCGTGCACAGCCTGATC) were engineered within the target sequence of the 

munc18-1 gene.  These silent mutations would have no effect on the coding sequence of 

munc18-1 and therefore prevent these constructs from being recognised and degraded by 

the shRNA present within the KD43 PC12 cells.  shRNA-resistant fluorescent fusion 

proteins of munc18-1 and mutants were then transfected into KD43 PC12 cells in 

combination with syntaxin and fluorescence intensity co-variance analysis was performed 

(Figure 3.5, section 2.9.3).  

 

Quantitative protein co-localisation analysis was conducted on intact, live KD43 PC12 

cells to avoid a possible change in the cellular distribution of munc18-1 and syntaxin upon 

chemical fixation.  Figure 3.5 shows a merged image of both fluorescent channels 

(munc18-1 in red and syntaxin in green) and displayed areas of high protein coincidence 

in yellow hues.  The intensity of each voxel in the image was plotted as a two-dimensional 

histogram in order to represent the correlation in intensities.  Any deviation from the linear 

fit of the histogram was used to produce a residual map that corresponded to covariance 

between the two channels.  Regions which exhibit high protein covariance are coloured in 

cyan with any deviation from this fit appearing towards either end of the colour spectrum. 

As shown in the images covariance analysis revealed that both wild-type munc18-1 and 

syntaxin exhibited a plasma membrane distribution with a high level of protein co-

localisation (Figure 3.5).  The importance of munc18-1 in trafficking syntaxin to the cell 

surface has been previously demonstrated in these KD43 PC12 cells (Arunachalam et al, 

2008).  In fact, in the absence of munc18-1, syntaxin resides primarily in the perinuclear 

region of the cells, demonstrating the fundamental importance of munc18-1 in trafficking 

syntaxin to the plasma membrane (Rowe et al, 2001; Medine et al, 2007; Arunachalam et 

al, 2008).   
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When syntaxin was co-expressed with an N-terminal munc18-1 mutant the localisation of 

both proteins changed depending on the specific point mutation introduced.  Co-

localisation analysis confirmed that mutants munc18-1[I127A], munc18-1[I127F] and 

munc18-1[E132A,] that previously disrupted N-terminal interaction in vitro, (Figure 3.3) 

also had a significant effect on syntaxin intracellular localisation (Figure 3.5).  

Munc18[I127A] had the most significant influence with both proteins adopting more of an 

intracellular distribution, highlighting this residue as being key in the trafficking of both 

proteins to the plasma membrane. 

 

The data quantified for wild-type or mutants of munc18-1 in KD43 PC12 cells are 

expressed as Pearson’s correlation coefficient (R) values. As previously described, wild-

type proteins exhibited a predominant membrane localisation with a high degree of protein 

co-localisation (R = 0.94 ± 0.01, mean ± S.E.M, n = 6).  N-terminal mutants munc18-

1[E132A] (R = 0.86 ± 0.02, mean ± S.E.M, n = 5) and munc18-1[I127F] (R = 0.84 ± 0.02, 

mean ± S.E.M, n = 5) resulted in a significant reduction (One way ANOVA) in the 

covariance of both proteins on the plasma membrane.  The expression of munc18-

1[I127A] (R = 0.81 ± 0.03, mean ± S.E.M, n = 4) resulted in the partial trapping of 

syntaxin in intracellular compartments (Figure 3.5) and therefore the most significant 

effect on their co-localisation when compared to wild-type munc18-1 (Figure 3.5B).  

Taken together, these data from living KD43 PC12 cells indicates that a reduction in the 

extent of N-terminal binding in vitro using mutants munc18-1[E132A], munc18-1[I127A] 

and munc18-1[I127F] results in a concomitant downstream effect on the co-localisation of 

munc18-1 and syntaxin in a cellular environment.  Moreover, reducing the affinity 

between the N-terminal peptide of syntaxin and munc18-1 significantly affects the 

trafficking of both proteins to the plasma membrane.   
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The data generated by protein co-localisation studies is a good indicator of whether two 

proteins are sharing a similar space.  However, this co-localisation data is limited by the 

resolution, maximally 178 nm laterally, of the microscope used, thus making it impossible 

to detect an interaction between two proteins. Therefore, the next step was to combine 

these co-localisation data with studies of TCSPC-FLIM and FRET to determine regions of 

interest within the cells where N-terminal interaction predominates.   

 

3.6 PERTURBING N-TERMINAL BINDING AFFECTS THE INTERACTION 

STATUS OF MUNC18-1 AND SYNTAXIN. 

 

In order to probe where the munc18-1-syntaxin N-terminal interaction is predominately 

utilised within a cellular environment, Time Correlated Single Photon Counting (TCSPC) 

FLIM was employed (section 2.8.6).  FLIM quantifies the fluorescence lifetime of a 

fluorophore and is a direct measure of Förster resonance energy transfer (FRET) between 

acceptor, munc18-1, and donor, syntaxin, molecules.  Fluorescence lifetime values of a 

donor molecule can be largely influenced by the presence of an acceptor molecule, a 

second fluorophore with the appropriate spectral properties to allow the absorption of 

energy from the donor molecule, through FRET (Lakowicz et al, 1994; Bastiaens and 

Squire, 1999).  Therefore, a quenching of the donor fluorescence lifetime can be used to 

measure a FRET interaction with the acceptor fluorophore.  By quantifying this interaction 

in every pixel of an image the fraction of non-interacting and interacting donor 

fluorescence lifetimes can be resolved (Duncan et al, 2004).   

 

As a control, mCerulean-syntaxin was expressed with unfused munc18-1 and EYFP in 

KD43 PC-12 cells (Figure 3.6A).  This analysis revealed a principally plasma membrane 

localisation of syntaxin with some labelling of intracellular compartments, as reported 

previously (Medine et al, 2007; Rickman et al, 2007).  Without the presence of an acceptor 

molecule mCerulean donor fluorescence exhibited a mono-exponential decay function, 

and the FLIM map showed a single exponential fluorescence lifetime within cells of 2310 

± 151 ps (mean ± S.E.M, n = 10) (Figure 3.6A). Upon plotting this data as a frequency 

distribution histogram, this single fluorescence lifetime was evident (Figure 3.6A).   
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In the presence of a proximal FRET acceptor, EYFP, fused to munc18-1 the fluorescence 

lifetime could no longer be fitted by a mono-exponential decay function (Figure 3.6B).  

FLIM analysis showed a statistically significant quenching of the mean fluorescence 

lifetime of donor mCerulean-syntaxin to 1563 ± 65 ps (mean ± S.E.M, n = 6, One way 

ANOVA) in the presence of EYFP-munc18 (Figure 3.6B), indicative of FRET.  These 

FRET data could now be fit by a bi-exponential decay function and the FLIM map 

revealed a quenched donor fluorescence lifetime.  This analysis confirmed that munc18-1 

and syntaxin interact on the plasma membrane (Figure 3.6B).  

 

The expression of munc18[I127A] resulted in significantly less quenching of the donor 

fluorescence lifetime from 2310 ± 151 ps (mean ± S.E.M, n = 10) to 2062 ± 70 ps (mean ± 

S.E.M, t test, p < 0.05, n = 5), indicating either reduced interaction or altered conformation 

of interaction (Figure 3.6D).  Mutants munc18-1[I127F] (1994 ± 85 ps (mean ± S.E.M, n 

= 6, Figure 3.6E) and munc18-1[E132A] (1976 ± 205 ps (mean ± S.E.M, n = 7, Figure 

3.6C)) resulted in more of a donor lifetime quenching, indicating that they were involved 

in a stronger and more stable interaction.  Plotting every pixel in the image but assigning 

donor fluorescence lifetime value a colour revealed that areas on the plasma membrane 

contained significantly less energy transfer, confirming that N-terminal interaction 

predominates at the cell surface (Figure 3.6).  This result supports previous work 

demonstrating that distinct modes of munc18-1 and syntaxin interaction occur at distinct 

cellular locations, with the N-terminal interaction predominating at the plasma membrane 

(Rickman et al, 2007).  
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3.7 CONCLUSION. 

 

Using biochemistry, crystallography and optical imaging techniques, it has been 

previously shown that munc18-1 can interact with syntaxin through two discrete modes of 

binding, closed form and N-terminal.  Munc18-1 has been shown to readily bind to an 

open mutant of syntaxin, a mutant unable to adopt its closed conformation, with high 

affinity (Kd = 5 nM) (Medine et al, 2007).  This binding assay, and a number of other 

studies, therefore indicates that munc18-1 can interact with syntaxin via a second mode, 

through the extreme N-peptide of syntaxin (Misura et al, 2000; Yang et al, 2000; Rickman 

et al, 2007).   

 

By biochemically separating the binding modes between munc18-1 and syntaxin this study 

revealed the extent of closed and N-terminal binding occurring in an in vitro setting.  From 

these findings it is clear that munc18-1 can interact with syntaxin via two mechanistic 

modes, interactions that have been reported to be both functionally and spatially distinct 

(Rickman et al, 2007).  By dissecting both forms of interaction this study was able to 

specifically probe the effect of the munc18-1 point mutations specifically on the extent of 

N-terminal binding.  Without separating binding modes the effect reported using these N-

terminal mutants on total munc18-1 binding would have been lost.  Using GST-Syx1-225 in 

combination with various munc18-1 mutants the extent of disruption of N-terminal 

binding in vitro was revealed, with munc18-1[I127A], munc18-1[I127F] and munc18-

1[E132A] resulting in the largest reduction in binding to syntaxin.  These in vitro binding 

assays also demonstrated that N-terminal binding involves a number of ionic interactions, 

in contrast with closed form binding.  These preliminary findings highlighted which 

munc18-1 residues were the most important in facilitating the N-terminal interaction in 

vitro and acted as a platform for further investigation within cells.  

 

This study also employed both protein colocalisation and TCSPC FLIM in order to 

investigate whether the in vitro effects of perturbing the N-terminal interaction between 

munc18-1 and syntaxin were translated into a downstream function within a cellular 

environment.  Protein co-localisation studies revealed that perturbing N-terminal 

interaction resulted in the less efficient trafficking of syntaxin to the plasma membrane, 
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presumably to sites of fusion. This is in agreement with a previous study showing that 

removing the N-terminus of syntaxin affected the trafficking of both munc18-1 and 

syntaxin to the plasma membrane (Rickman et al, 2007).   A number of studies have 

shown that the binding of syntaxin to munc18-1 is critical for its efficient trafficking to the 

plasma membrane in specialised secretory cells (Rowe et al, 2001; Martinez-Arca et al, 

2003; Medine et al, 2007; Arunachalam et al, 2008).  However, in contrast it has also been 

demonstrated that syntaxin can traffic to the plasma membrane (albeit inefficiently) and 

synapses in the absence of munc18-1 in PC12 cells and neurons respectively (Schutz et al, 

2005; Toonen et al, 2005).  Perhaps the mere fact that syntaxin exists in excess over 

munc18-1 (Schutz et al, 2005) in PC12 cells has been used to argue against a role for 

munc18-1 in syntaxin trafficking.  A possible explanation for this discrepancy is the fact 

that genetically deleting munc18-1 still leaves other perhaps redundant munc18 isoforms 

present and also results in a concomitant fall in syntaxin in a variety of cells (Verhage et 

al, 2000; Toonen et al, 2005; Arunachalam et al, 2008).  However pulse-chase analysis in 

HEK293 cells suggested that munc18-1 directly promotes the stability of syntaxin  

(Toonen et al, 2005) and in its absence syntaxin forms ectopic complexes with other 

intracellular SNAREs (Medine et al, 2007), consistent with a chaperone function.  

 

Recently, studies have mutated amino acids in or around the hydrophobic region of 

munc18-1 and concluded that N-terminal interaction plays no part in catalyzing 

neuroendocrine vesicle exocytosis (Arunachalam et al, 2008; Han et al, 2009; Malintan et 

al, 2009).  One of the munc18-1 amino acid residues targeted in these studies and also 

analysed here (munc18-1[E132A], Malintan et al, 2009) was observed to have only 

modest effects on co-localisation with syntaxin compared with munc18-1[I127A].  An 

additional mutation used in the above study (munc18-1[F115E]) was observed to have a 

low degree of evolutionary conservation (Figure 3.2), a poor candidate for subsequent 

study.  Therefore, studies may have concluded that the N-terminus of syntaxin has no 

functional role within a cell due to the fact that researchers have not selected conserved 

residues, indicative of essential function (Madabushi et al, 2002).   

 

Protein co-localisation analysis revealed that N-terminal binding plays a role in trafficking 

syntaxin  to the plasma membrane and maintaining an interaction once there, as previously 

reported (Rickman et al, 2007; Arunachalam et al, 2008).  In this study residue I127 has 
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been shown to be the most significant residue in forming a tight interaction with syntaxin 

in vitro and in determining the level of interaction between both proteins in cells.  A 

reduced interaction, detected by TCSPC FLIM, is a likely explanation for why munc18-1 

and syntaxin are not trafficked efficiently to the plasma membrane, instead becoming 

trapped in intracellular compartments.  In support of this hypothesis a study using 

munc18-1 mutants carrying mutations in the syntaxin-binding region shows that the 

membrane association of munc18-1 is dependent on direct binding to syntaxin (Schütz et 

al, 2005).  Therefore, by ablating the N-terminal interaction between munc18-1 and 

syntaxin, both proteins are unable to reach the plasma membrane as efficiently and do not 

interact once there in a stable form.   

It remains to be established what the functional significance is of this altered localisation 

and interaction between munc18-1 and syntaxin.  It has been shown that perturbing the 

interaction of munc18-1 and syntaxin not only affects their membrane association but also 

inhibits neurotransmitter and hormonal release upstream of the individual fusion event 

(Schütz et al, 2005; Rickman and Duncan, 2010).  This implies that without a stable 

interaction between munc18-1 and syntaxin, downstream vesicle exocytosis is impacted 

upon.  The next study in the following chapter involved investigating the effect of N-

terminal binding on downstream neuroendocrine large dense core vesicle kinetics and 

fusion and whether or not this mode of binding had similar effects in neuronal 

counterparts. 
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4.1 INTRODUCTION 

Intracellular membrane fusion is the basis of a number of fundamental biological 

processes, from organelle preservation and maintenance to cellular secretion.  Munc18-1 

was originally defined as an inhibitor of this reaction following the observation that it 

prevented syntaxin from forming the SNARE fusion complex (Pevsner et al, 1994b; 

Dulubova et al, 1999).  This hypothesis was at considerable odds with previous genetic 

experiments which implied a more positive role for munc18-1 (reviewed in Toonen and 

Verhage, 2007).  The discrepancy surrounding the function of munc18-1 was resolved 

upon the discovery that munc18-1 interacted with syntaxin via two distinct binding modes 

(Burgoyne and Morgan, 2007; Dulubova et al, 2007; Rickman et al, 2007; Shen et al, 

2007).  The initial characterisation of the N-terminal mode of binding was the topic of 

considerable debate, primarily due to the fact that munc18-1 was shown to be unable to 

interact with the N-terminus of syntaxin (Calakos et al, 1994), unlike its homologues 

(Misura et al, 2000; Yang et al, 2000; Rickman et al, 2007).  However it is noteworthy to 

mention that early clones of syntaxin that were widely used to measure protein-protein 

interactions in vitro lacked a conserved N-terminal region (Calakos et al, 1994).   

Over the last decade a huge amount of research has focussed on elucidating the 

functionality of munc18-1-syntaxin-N-terminal binding.  To date, N-terminal binding has 

been shown to stimulate vesicle mobilization (Rickman and Duncan, 2010), SNARE 

complex binding (Dulubova et al, 2007) and assembly (Shen et al, 2007; Rathore et al, 

2010; Schollmeier et al, 2011), synaptic fusion in the calyx of Held (Khvotchev et al, 

2007) and synaptic vesicle priming (Deak et al, 2009).  Recently, the SNARE complex 

together with the N-terminal peptide of syntaxin was shown to constitute the minimal 

requirement for munc18-1 association and activation, whereas the remaining SNARE 

sequences, including the syntaxin-1 Habc domain, are expendable (Shen et al, 2010). 

There are a number of hypotheses that exist regarding how the N-peptide motif acts 

together with munc18-1 and the SNARE complex to drive bilayer fusion.   The N-peptide 

motif may provide an additional binding surface to stabilize an otherwise low-affinity 

interaction between munc18-1 and the SNARE complex, allosterically activate munc18-1 

or simply recruit the SM protein to its cognate SNARE syntaxin (Shen et al, 2007; Toonen 

and Verhage, 2007; Burgoyne et al, 2009; Carr and Rizo, 2010).  A recent study 
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discounted the possibility that N-terminal binding could activate a conformational change 

in syntaxin as it was shown to regulate fusion when completely spatially separated from 

the SNARE complex (Rathore et al, 2010). 

Despite the essential roles played by the N-terminal peptide in metazoan membrane 

fusion, the N-peptide motif of syntaxin appears to be superfluous in a number of yeast 

fusion pathways (Peng and Gallwitz, 2004; Carpp et al, 2006).  Furthermore, N-terminal 

binding is absent in the yeast SM proteins Sec1p and Vps33p (Pieren et al, 2010; Wickner, 

2010).  A possible explanation for these functional discrepancies could relate to the fact 

that the yeast SM protein Vps45p may have evolved a higher affinity for its cognate 

syntaxin (Carpp et al, 2006; Furgason et al, 2009).  Therefore, N-terminal binding may be 

dispensable for the assembly of the yeast endocytic fusion complex and bilayer 

unification, unlike its mammalian counterparts.  SM homologues possess both disparate 

modes of binding and regulatory effects, therefore leaving a hypothetical question mark 

over the precise functional role of the munc18-1-syntaxin-N-terminal interaction.  

This chapter describes how perturbing N-terminal interaction, specifically mediated by 

disrupting residue I127 of the hydrophobic pocket of munc18-1, restricted vesicle kinetics 

at the plasma membrane under TIRF microscopy.  By limiting the dynamics of membrane 

proximal vesicles a concomitant reduction in vesicle exocytosis was also recorded.  To 

elucidate whether changes in vesicle dynamics and fusion capabilities were a result of an 

altered association between munc18-1 and syntaxin at the plasma membrane, their 

interaction status was quantified.  Quantification of the munc18-1-syntaxin interaction at 

the base of a neuroendocrine cell upon N-terminal ablation revealed that this binding mode 

is not required for vesicle-membrane association and the spatial arrangement of membrane 

proximal vesicles.  Instead, disturbing N-terminal interaction resulted in a reduced size of 

a distinct pool of fusion competent vesicles at the plasma membrane, a probable 

explanation for reduced vesicle exocytosis.   

Aside from neuroendocrine cells, the munc18-1-syntaxin-N-terminal interaction has been 

shown to play a role in neuronal exocytosis and SNARE assembly (Khvotchev et al, 2007; 

Johnson et al, 2009; Rathore et al, 2010).  This study therefore also set out to investigate 

where N-terminal binding is utilised within a neuron and whether this form of interaction 
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was important in catalyzing synaptic vesicle fusion. By specifically probing for 

phosphorylated syntaxin at residue serine
14

, a key site for the regulation of munc18-1-

syntaxin N-terminal binding, this study shows that phosphorylated syntaxin is not 

localised to synaptic sites in a neuron, compared with unphosphorylated syntaxin.  Using 

phosphosyntaxin-specific antibodies this study also demonstrates that the phosphorylation 

of syntaxin at serine
14

 in neuronal cells is not activity dependent but required for the 

efficient fusion of synaptic vesicles specifically residing in the readily releasable pool. 

4.2 MODULATION OF VESICLE DYNAMICS AT THE PLASMA MEMBRANE BY 

THE MUNC18-SYNTAXIN-N-TERMINAL INTERACTION. 

It has been previously reported that the phosphorylation of syntaxin can modulate its 

interaction with munc18-1.  Following the finding that serine-14 was a target for casein 

kinase II (CKII) (Risinger and Bennett, 1999; Foletti et al, 2000) it was shown, using a 

series of phosphomimetic and phospho-null mutations, that this site was a key regulator of 

the N-terminal interaction between munc18-1 and syntaxin (Rickman and Duncan, 2010).  

Disrupting munc18-1-syntaxin-N-terminal binding, through phosphomimetic mutation of 

syntaxin at serine-14, resulted in the increased average immobilization of secretory 

vesicles, rendering them unable to support membrane fusion (Rickman and Duncan, 

2010).  This finding agrees well with the idea that vesicular mobility is enhanced directly 

preceding fusion (Degtyar et al, 2007).  The first part of this chapter therefore investigated 

whether mutation of the munc18-1 hydrophobic pocket, and a concomitant reduction in N-

terminal binding with syntaxin, resulted in similar downstream effects, specifically on 

single vesicle kinetics and their fusion capabilities.  In order to attain both high spatial and 

temporal axial resolution at the single-vesicle level Total Internal Reflection Fluorescence 

Microscopy (TIRFM) was employed (Axelrod, 2001).  TIRFM selectively illuminates and 

excites fluorophores immediately adjacent to the glass-water interface, penetrating into the 

sample to a depth of approximately 150 nm.  TIRFM is therefore an ideal technique for 

recording events specifically occurring at the plasma membrane, for example, the 

behaviour of membrane proximal secretory vesicles.   

Vesicles, expressing a fluorescent cargo marker, NPY-mCherry, were tracked under TIRF 

illumination at physiological temperatures in munc18-1-silenced PC12 cells (KD43) 
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expressing either wild-type munc18-1, a munc18-1 N-terminal mutant or lacking the 

expression of both exogenous (and endogenous) munc18-1 (unrescued).  Syntaxin was 

always co-expressed alongside munc18-1.  Fluorescent vesicles were tracked using Imaris 

software (Bitplane) and at least five cells from each condition were combined to give an 

average of a number of measured parameters (Figure 4.1).  Fluorescent vesicles contained 

within cells not expressing munc18-1 or syntaxin (unrescued) travelled at an average 

speed of 0.81 ± 0.06 µm/s (n = 8) with an average track length of 4.03 ± 0.13 µm (n = 8).  

Analysis of track displacement values, the distance calculated between the start and end of 

the vesicle track, indicated whether a vesicle was 'tethered' at the plasma membrane or 

whether it displayed more of a scanning behaviour, presumably of sites of fusion.   

Vesicles within KD43 cells only expressing a fluorescent vesicle marker, NPY, displayed 

an average displacement value of 0.17 ± 0.004 µm, (n = 8) (Figure 4.1B). 
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Vesicles contained within KD43 PC12 cells expressing both wild-type munc18-1 and 

syntaxin exhibited a significantly longer track displacement of 0.21 ± 0.01 µm (n = 6 

cells) with an average track length of 4.8 ± 0.17 µm (n = 6 cells; Figure 4.2).  The speeds 

at which vesicles were travelling in unrescued and wild-type munc18-1 rescued KD43 

cells were not statistically different.  Vesicular speed is therefore not dictated by munc18-

1; instead membrane proximal vesicles require a stable expression of munc18-1 molecules 

in order to successfully 'scan' the plasma membrane, most probably in search of SNARE 

mediated fusion sites.   
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It was previously shown in Chapter 3 that perturbing the N-terminal interaction (using 

munc18-1[I127A]) resulted in a mis-localisation of, and reduced interaction between, 

munc18-1 and syntaxin (Figure 3.5 and 3.6).  Following on from this earlier finding this 

chapter investigated whether a change in the localisation and interaction of munc18-1 and 

syntaxin affected downstream cellular events, for example, secretory vesicle behaviour.  

Employing mutant proteins, munc18-1[I127A], munc18-1[I127F] and munc18-1[E132A] 

alongside syntaxin and fluorescently labelled vesicles in KD43 PC12 cells revealed a 

significant change in a number of vesicle parameters.   All munc18-1 mutants resulted in 

restricted vesicle track lengths and displacement values, with munc18-1[I127A] reducing 

vesicle displacement by approximately 40% from 0.21 ± 0.01 µm (n = 6 cells) in wild-

type cells to 0.13 ± 0.01 µm (n = 5 cells; p < 0.05, one-way ANOVA, Figure 4.1B and 

4.2). Munc18-1[I127A], the mutant with the most significant effect on syntaxin 

localisation and interaction (Figure 3.5 and 3.6), was also the only mutant to have an effect 

on the average speed of fluorescently labelled vesicles.  The speed of vesicles was reduced 

from 0.96 ± 0.06 µms-1 (n = 6 cells) in wild-type munc18-1 expressing cells to 0.70 ± 

0.02 µms-1 (n = 5 cells, Figure 4.2).  This result supports the idea that N-terminal 

interaction imparts a kinetic advantage to a secretory vesicle and is an important 

modulator in their dynamics, as previously shown (Rickman and Duncan, 2010).  

Importantly the duration vesicle tracks were recorded under TIRFM illumination was not 

statistically significant; indicating that an effect seen with munc18-1 mutants was not 

caused by a difference in the amount of time a vesicle was visible and tracked for.  On 

average vesicles were tracked for 5.34 ± 0.12 s and those vesicles that were not tracked for 

at least 150 ms (3 frames) were discounted from further analysis.   

The effect on vesicle kinetics was less pronounced using munc18-1[I127A] compared with 

syntaxin[S14E], with the latter mutant resulting in the total immobilization of vesicles at 

the plasma membrane (Rickman and Duncan, 2010).  This indicates that residue I127 is 

not solely responsible, and could therefore be partially redundant, for mediating the 

munc18-1-syntaxin-N-terminal interaction.  Another likely reason for the difference in 

phenotypes is the idea that the phosphorylation of the N-terminus of syntaxin is a more 

important regulator of the munc18-1-syntaxin interaction and its preservation is more 

crucial in modulating vesicle dynamics at the plasma membrane.   
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Taken together, these findings indicate that perturbing N-terminal interaction between 

munc18-1 and syntaxin, most significantly using munc18-1[I127A], resulted in a) partial 

trapping of syntaxin in intracellular compartments, b) reduced munc18-1-syntaxin 

interaction and c) a loss of vesicle mobility at the plasma membrane.  Vesicular fusion 

involves a number of highly orchestrated interactions between large cohorts of proteins, 

proteins which are spatially and temporally regulated within the process.  So, if munc18-

1[I127A] is disrupting a number of key steps required for efficient SNARE mediated 

fusion, for example, munc18-1-syntaxin trafficking and vesicle mobility, it may also be 

having a detrimental effect on single secretory vesicle fusion capabilities.  For the 

remaining chapters of this thesis mutant munc18-1[I127A] will only be focussed on as it 

has consistently resulted in the largest effect on N-terminal binding both in vitro and in 

live cells. 

4.3 MODE OF INTERACTION OF MUNC18-1 WITH SYNTAXIN INFLUENCES 

VESICLE FUSION PROBABILITY AT THE PLASMA MEMBRANE. 

For many years it was postulated that secretory vesicles are stably bound to the plasma 

membrane before undergoing membrane fusion (Bittner and Holz, 1992; Xu et al, 1999). 

This theory was recently challenged by the finding that secretory vesicles, instead of being 

stably docked before exocytosis, undergo molecular-scale movements within several 

hundred milliseconds of agonist-induced fusion (Degtyar et al, 2007).  It is possible that 

this sudden change in organelle movement increases the probability of productive 

interactions with the SNARE complex and plasma membrane.  Molecular movements 

displayed by membrane bound vesicles have been postulated to be regulated by Ca
2+

, ATP 

(Allersma et al, 2006) and by various proteins (Tsuboi and Fukuda, 2006).  In fact, 

synaptotagmin-like protein 4-a (Slp4-a) has been shown to interact with the munc18-1-

syntaxin complex to support the docking of dense-core vesicles at the plasma membrane in 

PC12 cells (Tsuboi and Fukuda, 2006).  Furthermore, it has been repeatedly shown that 

munc18-1 promotes the docking of secretory vesicles in a variety of cells (Voets et al, 

2001; Arunachalam et al, 2008; de Wit, 2010; Han et al, 2011).  Therefore, the docking 

and fusion of secretory vesicles is dependent on the presence of munc18-1, its stable 

interaction with syntaxin and minute vesicular movements immediately prior to 

stimulation.  Consequently, by reducing the speed and distance travelled by membrane 
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proximal secretory vesicles upon N-terminal perturbation, using munc18-1[I127A], there 

must be a downstream effect on the fusion capability of a single secretory vesicle.   

To examine whether a change in vesicle behaviour affected downstream membrane fusion, 

single-vesicle fusion events, using a pH-sensitive EGFP-NPY probe (Rickman and 

Duncan, 2010), were analysed (Figure 4.3).  In the single-vesicle fusion assay, secretion is 

observed as a rapid transient increase in fluorescence intensity due to a change in the pH 

of the microenvironment upon fusion.  Fusion events were calculated as the percentage of 

the total number of vesicles visible at the start of the 3 minute recording that underwent 

fusion after stimulation with 300 μM ATP (Figure 4.3, shown by arrows).  In the absence 

of munc18-1, stimulated exocytosis in KD43 PC12 cells was not significantly different 

from basal secretion observed in single-vesicle fusion assays, as shown previously 

(Arunachalam et al, 2008) (Figure 4.3B).  Similarly, the genetic deletion of munc18-1 in 

mouse chromaffin cells results in the reduction of calcium-dependent LDCV exocytosis by 

10-fold (Voets et al, 2001).  Furthermore it was reported that the kinetic properties of the 

remaining single fusion events in chromaffin cells were not different from wild-type 

controls (Voets et al, 2001), a parameter not investigated in this study.  
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Exocytosis in KD43 PC12 cells was fully rescued (to levels observed in native PC12 cells) 

by introducing a fluorescent fusion of wild-type munc18-1 (Figure 4.3B).  The extent of 

exocytosis recorded in this study is in agreement with the initial characterisation of these 

KD43 PC12 cells (Arunachalam et al, 2008).  This result indicates a requirement for 

munc18-1 in exocytosis, as observed previously (Verhage et al, 2000).  Importantly, the 

fluorescent munc18-1 probe used in this thesis was functional and the expression level is 

sufficient for full fusion capacity.  

Mutant munc18-1[I127A] resulted in the partial rescue of exocytosis in KD43 PC12 cells 

(Figure 4.3B), with only 32 ± 1.8 % (n = 6 cells) of vesicles fusing with the plasma 

membrane, compared with 51 ± 0.9 % (n = 5 cells) in wild-type munc18-1 expressing 

cells.  The extent of vesicle exocytosis was significantly different in KD43 PC12 cells 

expressing wild-type munc18-1 and munc18-1[I127A] (p < 0.05, Mann-Whitney U).  

Therefore, mutating the hydrophobic pocket of munc18-1 to quantifiably disrupt N-

terminal interaction with syntaxin not only results in significant changes in vesicle 

dynamics, but also negatively impacts on single vesicle fusion efficiency.  It has been 

shown in Chapter 3 that disrupting N-terminal binding between munc18-1 and syntaxin 

results in a weakened interaction specifically at the plasma membrane.  Therefore, the next 

question to address was whether disrupting N-terminal interaction affected munc18-1-

syntaxin interaction specifically at the base of the cell, the site where these secretory 

vesicles are residing and eventually undergo fusion.  

4.4 PERTURBING N-TERMINAL BINDING DISRUPTS MUNC18-1-SYNTAXIN 

INTERACTION SPECIFICALLY AT THE PLASMA MEMBRANE.  

To understand further the molecular interactions underlying this spatially restricted N-

terminal interaction-enhanced exocytosis, munc18-1-syntaxin interaction, specifically at 

the base of the cell using TCSPC FLIM, was quantified (Figure 4.4).  FLIM maps reveal 

that munc18-1 and syntaxin interact across the entire plasma membrane and these 

interactions have membrane-proximal vesicles associated with all areas of the cell surface. 

These data revealed that disrupting the N-terminal mode of interaction between munc18-1 

and syntaxin, using munc18-1[I127A], decreases the amount of interaction detected, 

specifically within large areas at the plasma membrane (right panels, non-interacting 
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proteins shown in grayscale).  Notably, areas of the plasma membrane that have a reduced 

munc18-1-syntaxin interaction are not avoided by membrane-proximal secretory vesicles. 

This finding indicates that N-terminal interaction is not required per se for vesicle-

membrane association, at least within sub 100 nm axial distances.  Taken together, these 

findings show that munc18-1 interacts with the N-peptide of syntaxin at the plasma 

membrane and that the spatial distribution of vesicles is not controlled by N-terminal 

interaction as their localisation is unaltered.  Therefore, the reduced exocytotic events 

upon N-terminal ablation are not due to a re-positioning of secretory vesicles.   
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By disrupting the N-terminal interaction between munc18-1 and syntaxin this study has 

shown that a reduction in vesicle dynamics at the plasma membrane results in a 

concomitant fall in the level of vesicle fusion.  The link(s) between how N-terminal 

binding impacts on vesicle exocytosis is still unknown.  Previously in this chapter vesicle 

kinetics were analysed by calculating a mean account of their behaviours from at least five 

different cells (Figure 4.2).  By combining datasets and producing an average of vesicle 

displacement, track length and speed it is possible that the more subtle effects of N-

terminal interaction on single secretory vesicle dynamics were being lost.  To fully 

investigate the impact of N-terminal interaction on single secretory vesicles the behaviour 

of every vesicle (as opposed to the mean behaviour previously analysed) in both wild-

type- and mutant-rescued KD43 PC12 cells was analysed in detail.   

4.5 N-TERMINAL INTERACTION ACTS ON A SPECIFIC POOL OF VESICLES 

AND IMPARTS A GREATLY INCREASED FUSION PROBABILITY. 

By taking a cell by cell approach and resolving vesicle dynamics separately, this analysis 

should reveal whether all of the vesicles in a sample behave in an identical manner, or 

whether there are different types of vesicular dynamics prior to fusion.  Using this method 

of analysis it might then be possible to explain exactly how immobilizing vesicles on the 

plasma membrane resulted in a partial arrest in downstream exocytosis.  Approximately 

64% of single vesicles in wild-type munc18-1-rescued cells (n = 545 vesicles, n = 7 cells) 

had a limited displacement distance (Figure 4.5).  The behaviour of these vesicles was 

identical to that observed in the absence of munc18-1, i.e. in unrescued munc18-1 silenced 

KD43 PC12 cells (Figure 4.2).  This suggested that this vesicle pool had no, or few, 

proximal munc18-1 molecules.  Cells expressing wild-type munc18-1 and syntaxin 

revealed a smaller, more mobile pool of vesicles, comprising 37% of the total vesicle 

complement which had a greatly increased likelihood of proceeding to membrane fusion 

(Figure 4.5).  In total, 75 ± 3% of all single vesicle fusion events (at least 60 fusion events 

from 6 cells) arose from vesicles contained within this minority pool. In fact, the fusion 

probability of vesicles contained within this minority pool was enhanced by approximately 

5 times.  
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To further identify any role that N-terminal interaction may have in delineating this vesicle 

behaviour and fusion likelihood, data with those acquired from munc18-1[I127A]-rescued 

cells was analysed.  There was a significant decrease, revealed by a sum of squares special 

F-test (p < 0.001, n = 4 cells), in the magnitude of this higher fusion probability pool of 

vesicles when N-terminal interaction was disrupted, from 37% to 4% of the total vesicle 

complement (Figure 4.5).  These findings correlate with the decrease in exocytosis in 

munc18-1[I127A]-rescued cells.  Disruption of N-terminal interaction, as well as having 

an effect on vesicle pool mobility, also interferes with exocytosis from this pool.  It is 

noteworthy to mention that the complete removal of this more mobile pool of vesicles was 

seen upon phosphomimetic mutation of syntaxin serine
14

, when these data were analysed 

in this manner (Figure 4.6).  This fits well with the observation that syntaxin[S14E] 

resulted in the total immobilization of membrane proximal secretory vesicles and 

inhibition of membrane exocytosis (Rickman and Duncan, 2010). The simplest 

explanation for these observations is that N-terminal interaction is required for events 

immediately postdocking and preceding exocytosis.  
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From this study two distinct pools of vesicles can be identified, based on their relative 

mobility; the majority of fusion events arise from a minority pool of relatively mobile 

membrane proximal vesicles, which in turn relies on N-terminal interactions.  Disrupting 

this interaction reduces the magnitude of this pool and thus immobilizes almost all vesicles 

at the membrane. Therefore, the presence of munc18-1 molecules, engaged in regulated N-

terminal interaction with syntaxin, exerts a strong positive effect on a specific postdocking 

pool of vesicles, increasing the probability of fusion by a factor of 5 (Smyth et al, 2010). 

4.6 PHOSPHORYLATION OF SYNTAXIN AT SERINE
14

 REDUCES ITS CO-

LOCALISATION WITH SYNAPTIC TERMINALS. 

Over the last decade there has been a huge interest in further characterising N-terminal 

binding and its functionality in neuronal cells.  However, further understanding in an in or 

ex vivo setting has been hindered by the fact that munc18-1– and syntaxin-deficient 

neurons die early (Verhage et al, 2000; de Wit, 2006) and are thus difficult to analyse.  To 

overcome this problem a recent study used lentiviral expression of munc18-1 in neurons 

from munc18-1 knockout mice and concluded that interactions of munc18-1 with the 

SNARE complex via N-terminal binding are critical for SNARE complex binding and the 

priming of synaptic vesicles (Deak et al, 2009).  Another study tested the importance of 

the N-peptide of syntaxin in a physiologically relevant system, using large nerve terminals 

in the calyx of Held synapse.  This study showed that the binding of the syntaxin N-

terminus to munc18-1 is also essential for synaptic vesicle fusion (Khvotchev et al, 2007).   

Furthermore, within the nervous system of the C.elegans it has been shown that binding of 

the SM protein unc-18 to closed syntaxin is dispensable for membrane fusion, whereas 

interaction with the syntaxin N-terminus is essential for neuronal exocytosis in vivo 

(Johnson et al, 2009).   

The characterisation of the munc18-1-syntaxin N-terminal interaction could provide a new 

target for regulation (Dulubova et al, 2007; Rickman et al, 2007).  Following the finding 

that syntaxin is phosphorylated in vivo by casein kinase II (CKII) (Foletti et al, 2000) it 

was shown that serine
14

 was a target for CKII (Risinger and Bennett, 1999; Foletti et al, 

2000). Using phosphosyntaxin-specific antibodies this study reported that the 

phosphorylation on serine
14

 of syntaxin was developmentally regulated in vivo, rising to a 
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level of 40% of the total syntaxin in adult rat brains (Foletti et al, 2000).  Interestingly, it 

was shown that phosphorylated syntaxin at serine
14

 localises to discrete domains of the 

axonal plasma membrane that do not correspond to synaptic sites.  The authors of this 

study were unable to provide a mechanism that was in turn regulated by this modification 

and notably only employed syntaxin constructs which lacked N-terminal amino acids 

(Foletti et al, 2000).  Importantly, this site is well positioned to potentially influence the N-

terminal interaction of syntaxin with munc18-1.  

This study firstly set out to test whether phosphorylated endogenous syntaxin is localised 

outside of synaptic terminals in dissociated embryonic rat cortical neurons, instead of 

previously used rat brain slices.  An anti-syntaxin (phospho-serine
14

) antibody that 

specifically recognizes a casein kinase II-mediated phosphorylation on serine
14

 of syntaxin 

1 was supplied by Abcam.  This antibody was generated using a peptide corresponding to 

amino acids 9–19 of syntaxin 1A (RTAKDSDDDDD) (Bennett et al, 1992) and 

synthesized with a phosphoserine at position 14 and an additional cysteine residue at the C 

terminus.  Embryonic cortical neurons at day in vitro (DIV) 14 were fixed with 4% 

paraformaldehyde (section 2.7.1) and subsequently immunolabelled with syntaxin 1a 

monoclonal antibody (clone HPC-1) or syntaxin-serine
14

-phosphospecific antibody and 

synapsin (Table 2.1).  Cells were further labelled with Fab fragment secondary fluorescent 

antibodies specific to the primary antibody used (section 2.7.2) (Figure 4.7). 

Embryonic cortical neurons were imaged using confocal microscopy and data 

deconvolution techniques were performed on acquired Z axis stacks (section 2.8.2 and 

2.9.2). Quantitative co-localisation studies (section 2.9.3) of phosphorylated and 

unphosphorylated syntaxin indicated that endogenous and unphosphorylated syntaxin 

labelling was highly concentrated in synaptic terminals with a Pearson’s correlation 

coefficient of R = 0.90 ± 0.008, n = 8 cells (Figure 4.7B).  The dense accumulation of 

syntaxin at synaptic terminals agrees with previous reports suggesting that syntaxin forms 

clusters on the plasma membrane in a variety of cell types (Bennett et al, 1992; Lang et al, 

2001; Sieber et al, 2007).  Neurons immunolabelled with the phospho-specific syntaxin 

antibody revealed a significant reduction in co-localisation with synapsin, a synaptic 

terminal marker (R = 0.83 ± 0.019, n = 6 cells; One way ANOVA p < 0.05).  This value 

was not significantly different from the Pearson’s Correlation Coefficient calculated for 
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the covariance of unphosphorylated and phosphorylated syntaxin (R = 0.80 ± 0.013, n = 

11 cells, Figure 4.7B).  The colocalisation of β-tubulin and synapsin represented a 

negative control (R = 0.66 ± 0.03, n = 9 cells).  This finding supports previous 

immunohistochemistry experiments which revealed that phosphorylated syntaxin, despite 

being concentrated in puncta on a subset of axons, was not enriched at synaptic sites, in 

contrast to unphosphorylated syntaxin (Foletti et al, 2000).  These results suggest a role for 

casein kinase II and phospho-syntaxin in defining specific subdomains for a subset of 

vesicles which are segregated from the synaptic active zones.  
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Over the last decade a number of kinases, proteins and fatty acids have been demonstrated 

to regulate the dynamic interaction between munc18-1 and syntaxin (Fugita et al, 1996; 

Craig et al, 2003; Rickman and Davletov, 2005; Connell et al, 2007).  One of the proposed 

regulators of this interaction, acting in an activity dependent manner, is protein kinase C 

(PKC).  It has been shown that munc18-1 is a substrate for protein kinase C (PKC) (Fugita 

et al, 1996; Craig et al, 2003) and that PKC activation can be triggered upon neuronal 

depolarisation (de Vries et al, 2000).  PKC phosphorylation is thought to be essential for 

the regulation of exocytosis (Barclay et al, 2003) as the phosphorylation of munc18-1 by 

PKC reduces its affinity for closed syntaxin (Fujita et al, 1996; Toonen and Verhage, 

2007).  Therefore, the next question in this study was to address whether the 

phosphorylation of syntaxin, specifically at serine
14

, was regulated by neuronal activity.   

4.7 THE PHOSPHORYLATION OF SYNTAXIN AT SERINE
14 

IS NOT ACTIVITY 

DEPENDENT. 

In order to determine whether the regulation of syntaxin phosphorylation, specifically at 

serine
14

, is regulated by synaptic activity neuronal cultures were subjected to different 

ionic treatments in vitro.  Dissociated DIV 14 embryonic cortical neurons were exposed to 

either a treatment which would stimulate neurotransmitter release (50 mM KCl) or a 

control treatment containing 2.5 mM of KCl.  Cells were incubated for 1 minute in their 

corresponding buffers and immediately lysed in SDS-sample buffer.  Protein expression 

was determined by SDS-PAGE and immunoblotting using syntaxin (HPC-1), syntaxin 

phospho-serine
14

 and synaptophysin, a loading control (section 2.3.1 and 2.3.2, Figure 

4.8).  No significant difference in the levels of proteins between the unstimulated and 

stimulated conditions was found, indicating that the phosphorylation of syntaxin on 

serine
14

 is not regulated by neuronal activity (Figure 4.8B).  This finding also supports a 

previous study which failed to detect a change in the phosphorylation status of syntaxin 

upon neuronal depolarisation (Foletti et al, 2000).   
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The negligible change in the phosphorylation status of syntaxin following synaptic 

stimulation suggests that casein kinase II-mediated phosphorylation is unable to induce an 

immediate response that is required for efficient neurotransmission.  This finding is in 

contrast to the regulation of synapsin, a presynaptic protein, which undergoes a rapid 

change in its phosphorylation state after stimulation (Greengard et al, 1993).  Serine
14

, 

previously labelled as a regulator of the munc18-1-syntaxin N-terminal interaction 

(Rickman and Duncan, 2010), must be itself regulated via a different mechanism, perhaps 

by other proteins or kinases. 

Taken together these findings suggest that phosphorylated syntaxin at serine
14

, a regulator 

of the munc18-1-syntaxin-N-terminal interaction (Rickman and Duncan, 2010), resides 

outside of the active zone and is not regulated by neurotransmission.  It is possible that 

phosphorylated syntaxin could be labelling plasma membrane domains where exocytosis 

of synaptic vesicles is inhibited, domains where non-classical inter-cellular 

communication between neurons could occur.  The phosphorylation of syntaxin at serine
14

 

could therefore be a regulatory mechanism to impart a difference between fusion and non-

fusion sites across a neuron.   

A recent study has shown that serine
14

 on the N-terminus of syntaxin modulates the N-

terminal interaction with munc18-1 (Rickman and Duncan, 2010).  By specifically 

destabilizing this phosphorylation site it was shown that secretory vesicles within PC12 

cells displayed enhanced immobilization at the plasma membrane with a resulting 

inhibition of exocytosis (Rickman and Duncan, 2010).  Taking this result into 

consideration, the next facet of this interaction was to determine whether this 

phosphorylation site, and more importantly, N-terminal binding between munc18-1 and 

syntaxin, was also critical to the process of exocytosis in a neuronal cell.   

4.8 DISRUPTING THE PHOSPHORYLATION STATUS OF THE N-TERMINUS OF 

SYNTAXIN REDUCES THE SIZE OF THE READILY RELEASABLE POOL OF 

SYNAPTIC VESICLES. 

Inter- and intra- neuronal communication is operated by neurotransmitters stored in 

synaptic vesicles and released to the extracellular space by regulated exocytosis.  Synaptic 
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vesicles are virtually indistinguishable in ultrastructural examinations but nevertheless 

exhibit both functional and spatial heterogeneity in physiological studies (Rosenmund and 

Stevens, 1996; Von Gersdorff and Matthews, 1997; Kuromi and Kidokoro, 1998).  There 

is now an extensive amount of literature reporting that the proportion, distribution and 

release probabilities of synaptic vesicles are non-uniform, establishing a diversity that is 

thought to be vital for neuronal communication and information processing (Hessler et al, 

1993; Neher and Zucker, 1993; Rosenmund et al, 1993; Murthy et al, 1997).  Within 

central nerve terminals synaptic vesicles capable of fusing with the pre-synaptic 

membrane are commonly referred to as the recycling pool of vesicles (Südhof, 2000; 

Rizzoli and Betz, 2005).  This recycling pool can be further subdivided into the readily 

releasable pool (RRP) and the reserve pool (RP).  The RRP vesicles are positioned in close 

apposition to the active zone and are available for immediate release upon the arrival of a 

physiological stimulus (Greengard et al, 1993; Pieribone et al, 1995; Brodin et al, 1997; 

Kuromi and Kidokoro, 1998).   The reserve pool, anatomically distinct from fusion sites, 

releases synaptic vesicles during periods of prolonged stimulation, its size often 

resembling the functional requirements of a nerve terminal (Rizzoli and Betz, 2005).  In 

general, the magnitude of synaptic pools initially declines as the RRP is depleted, 

declining further as vesicles are then mobilized from the reserve pool during prolonged 

stimulation (Elmqvist and Quastel, 1965; Richards et al, 2003).  

The ability to measure the kinetics of synaptic vesicle fusion provides an insight into some 

of the basics of neurotransmission.  A common technique in order to visualise and 

measure synaptic vesicle release from nerve terminals is to use membrane-selective FM-

dyes.  FM-dyes FM4-64 and FM1-43 are most commonly used and belong to a class of 

amphiphilic styryl dyes developed by Betz and colleagues (Betz et al, 1992, 1996).  FM 

dyes are internalized by endocytic vesicles during spontaneous or evoked activity and are 

subsequently distributed to various organelle membranes (Betz et al, 1992, 1996).  Only 

when exposed to a lipophilic environment, for example the lumen of a synaptic vesicle, 

will FM dyes fluoresce brightly (Richards et al, 2005).  FM dye concentrated within 

vesicles is then released into the extracellular environment during exocytosis, resulting in 

a nominal fluorescence signal once in the extracellular fluid. The ability of FM dyes to 

bind to the vesicle membrane in a reversible manner enables FM dyes to be used to study 

vesicle exocytosis and endocytosis in various systems.  The advancement of optical 
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techniques has now permitted the study of synaptic vesicle cycling within nerve terminals 

(Betz et al, 1992; Ryan et al, 1993; Sankaranarayanan and Ryan, 2000).  

Synaptic vesicles from DIV 18 embryonic cortical neurons were labelled with FM1-43 to 

measure their release from functionally distinct pools using pre-defined stimulation 

paradigms (Richards et al, 2003; Rizzoli and Betz, 2004).  Resolving the changes in 

fluorescence, indicative of vesicle fusion, allowed for the examination of whether the 

munc18-1-syntaxin N-terminal interaction played a role in catalyzing synaptic vesicle 

exocytosis.   More specifically, FM1-43 fluorescence changes in conjunction with 

different electrical stimulations enabled this study to probe whether this interaction was 

important in facilitating the fusion of synaptic vesicles residing in a distinct pool in  

central nerve terminals.  

Embryonic cortical neurons were transfected with mCherry-munc18-1 and Cerulean-

syntaxin at DIV 14.  On DIV 18 embryonic cortical neurons expressing munc18-1 and 

syntaxin were labelled with FM1-43 dye (10 μM) using 600 action potentials (10 Hz) for 

60s.  Successful FM1-43 dye uptake into the membranes of synaptic vesicles was 

confirmed upon fluorescent puncta labelling.  Following FM dye uptake neurons were 

washed in order to remove external dye from the plasma membrane and allowed to rest 

within the stimulation buffer (section 2.1.1) for a further 8 minutes. FM1-43 dye was 

subsequently unloaded using 60 action potentials (30 Hz) for 2s (RRP release) and 2 X 

400 action potentials (40 Hz) for 10s (reserve pool) (Richards et al, 2003; Rizzoli and 

Betz, 2004).  Fluorescent images were captured at 4 s intervals and processed offline using 

ImageJ 1.43 software (NIH).  Regions of interest of identical size were placed over nerve 

terminals that displayed a decrease in fluorescence on stimulation and the total 

fluorescence intensity was monitored over time.  Fluorescence traces were normalised 

(between 1 and 0) to the size of the recycling pool (RRP+RP) for each nerve terminal 

(Figure 4.9A-C).  The fluorescence decay of FM dyes in control, non-transfected boutons, 

served as an internal control.  Importantly, the over-expression of wild-type munc18-1 and 

syntaxin had no effect on the rate and extent of vesicle exocytosis, as compared to the non-

transfected internal control (Figure 4.9A). 
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The same imaging protocol and analysis was carried out on DIV 18 embryonic cortical 

neurons expressing mCherry-munc18-1[I127A]/mCer-syntaxin (Figure 4.9B) and 

mCherry-munc18-1/mCer-syntaxin[S14E] (Figure 4.9C) to study whether N-terminal 

interaction was important in the fusion efficiency of synaptic vesicles, as compared to 

their neuroendocrine counterparts (Figure 4.3).  As shown in figures 4.9B and 4.10, there 

was no significant change in the size of both the RRP (first stimulus) and RP (second and 

third stimulus) in cortical neurons expressing munc18-1[I127A] alongside wild-type 

syntaxin.  This analysis revealed that the size of the readily releasable pool was 18 ± 2.23 

% (n = 3 experiments) of the total recycling pool of vesicles with 82 ± 1.93 % (n = 3 

experiments) of synaptic vesicles within the reserve pool in munc18-1[I127A] expressing 

cells (Figure 4.10).  The extent of vesicle release from both pools was almost identical to 

cells expressing wild-type munc18-1 and syntaxin.  This finding is in agreement with a 

finding earlier this year suggesting that interfering with the binding of munc18-1 to the N-

peptide of syntaxin is not involved in maintaining the normal docking, priming and fusion 

of synaptic vesicles in munc18-1 null mutant neurons (Meijer et al, 2012).  Null neurons 

rescued with either munc18-1[F115E], a construct predicted to disrupt N-terminal binding, 

or wild-type munc18-1 had the same size of RRP, indicating that the N-peptide is not 

required for normal synaptic transmission (Meijer et al, 2012). 

In contrast, the expression of syntaxin[S14E] alongside wild-type munc18-1 resulted in a 

significant reduction in the size of the readily releasable pool upon stimulation compared 

with non-transfected neurons in the same field (Figure 4.9C).  Quantification of 

fluorescence changes showed that the proportion of fusing vesicles within the RRP was 

reduced whereas the size of the RP was unaffected.  The extent of the RRP size was 

reduced to 12 ± 3.42% (n = 4) with an RP size of 88 ± 3.08% (n = 4) of the total pool of 

synaptic vesicles (Figure 4.10).  Together, these results suggest that residue I127A 

interaction looks to be largely dispensable whereas an intact N-terminal casein kinase II 

phosphorylation site is crucial for mobilising vesicles residing within the RRP.  A number 

of studies can be used to explain why the N-terminal interaction, specifically mediated 

through residue serine
14

, plays more of a role in synaptic vesicle exocytosis.  It has been 

previously shown that mutations in the UNC-18 protein which selectively abolish the N-

peptide interaction (F113R and L116K) in unc-18 null C. elegans neurons result in a 

sustained defect in regulated exocytosis (McEwen and Kaplan, 2008; Johnson et al, 2009). 
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However, in munc18-1 silenced PC12 cells the same munc18-1 mutants almost 

completely rescue exocytosis (Han et al, 2009; Malintan et al, 2009), suggesting a more 

subtle role of these particular residues of the N-peptide in driving dense core vesicle 

exocytosis.  Therefore, munc18-1[I127A] may be playing a more pronounced role in 

neuroendocrine cells but is superfluous to RRP synaptic vesicle exocytosis.  In contrast, 

the serine
14

 phosphorylation site on the N-peptide of syntaxin, important in 

neuroendocrine exocytosis (Rickman and Duncan, 2010) and RRP mobilisation reported 

in this study, may orchestrate a number of additional upstream actions involved in the 

regulation of different mechanisms, protein (N-terminal) interactions and pathways that 

are involved in catalysing the release of synaptic vesicles immediately adjacent to the 

active zone.   
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4.9 CONCLUSION 

Despite intensive research the molecular mechanisms involved in the lifecycle of a 

membrane bound vesicle, from transport to fusion, remains poorly defined. It is thought 

that munc18-1 acts to promote docking, as in its absence there is a large reduction in the 

number of vesicles found immediately adjacent to the plasma membrane of 

neuroendocrine cells (Voets et al, 2001; Toonen et al, 2006; Verhage and Sørensen, 2008), 

but not in synapses (de Wit et al, 2006).  More recently, it was suggested that syntaxin is 

involved in docking (de Wit et al, 2006) and that t-SNARE heterodimer intermediates act 

as an acceptor for synaptotagmin (Rickman and Davletov, 2003; Rickman et al, 2004), 

forming a docking assembly.  In this situation, munc18-1 has been suggested to act as an 

ancillary t-SNARE heterodimer-stabilizing factor (de Wit et al, 2009).  It is now clear that 

munc18-1 is an important factor in the process of both vesicle docking and membrane 

fusion (i.e. postdocking), but the molecular mechanism of its action at the membrane 

remains undefined.  

This chapter presents findings showing that mutating the hydrophobic pocket of munc18-1 

to quantifiably disrupt N-terminal interaction with syntaxin results in significant changes 

in vesicle dynamics and fusion efficiency.  This is in contrast with recent studies finding 

that the N-terminal peptide is dispensable in neuroendocrine exocytosis (Arunachalam et 

al, 2008; Han et al, 2009; Malintan et al, 2009).  This controversy can be explained by the 

fact that poorly conserved residues of the hydrophobic pocket of munc18-1 were selected 

for study and likely to play no significant role in mediating this interaction.  Furthermore, 

earlier this year Verhage and colleagues reported that the N-peptide of munc18-1 is 

dispensable for synaptic transmission (Meijer et al, 2012).   This study went on to suggest 

that binding to assembled SNARE complexes in order to drive membrane fusion may be a 

central aspect of some SM proteins (Carr et al, 1999; Togneri et al, 2006; McEwen and 

Kaplan, 2008), but is not a universal feature of all SM proteins.  Despite dismissing a role 

of the N-terminal interaction the authors of this study reported a slight difference in the 

ratio between synaptic responses to stimuli given at various time intervals i.e. release 

probability (Meijer et al, 2012).  This finding tentatively suggests that the binding of 

munc18-1 to the SNARE complex via the N-terminal peptide may be playing a more 

subtle and unpronounced role in synaptic transmission.  In addition, it may well be that the 
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contribution of N-peptide binding and its inter-dependence on closed form interaction is 

likely to be different in divergent systems, partially explaining the different effects 

documented upon disruption (Khvotchev et al, 2007; Shen et al, 2007; Deak et al, 2009; 

Johnson et al, 2009; Rickman and Duncan, 2010).  This chapter also presents evidence to 

suggest that two distinct pools of vesicles can be identified in neuroendocrine cells.  These 

pools are based on their relative mobility; the majority of fusion events arise from a 

minority pool of relatively mobile membrane proximal vesicles, which in turn relies on N-

terminal interactions.  

Despite extensive investigation into munc18-1-syntaxin-N-terminal binding it is still 

unknown how this mode of interaction between a t-SNARE and an SM protein affects 

prefusion vesicle dynamics.  At present it is thought that munc18-1 may be part of a larger 

“docking complex,” acting somehow to stabilize the t-SNARE heterodimer (de Wit et al, 

2009).  Based on current understanding, this interaction with the assembled SNARE 

complex would require munc18-1 to associate with syntaxin via N-terminal interaction.  In 

fact it was recently shown that the 4-helical SNARE bundle, containing the syntaxin N-

peptide region, is the minimal complement required for munc18-1-mediated stimulation of 

membrane fusion in vitro (Shen et al, 2010).  By destabilizing the N-terminal interaction 

this study highlighted that residue I127 is a key player in regulating vesicle mobility and 

membrane fusion, i.e. events immediately postdocking and preceding exocytosis.  

Both SNAREs and SNARE regulatory proteins are phosphorylated in vitro (Gerst, 1999; 

Lin and Scheller, 2000).  What remains to be resolved is when this phosphorylation 

occurs, what regulatory mechanism controls the phosphorylation of SNAREs and their 

partners and its downstream functional significance in vivo.  Regulation of plasma 

membrane dynamics and turnover is critical to the function of the nervous system in many 

ways, for example, axonal outgrowth and synaptogenesis.  Given the essential role of 

SNARE-mediated vesicular fusion in the functions of various membrane compartments, it 

is crucial to understand how SNAREs are themselves regulated. The three neuronal 

SNAREs have been previously shown to be phosphorylated in vitro by different kinases: 

synaptobrevin by Ca
2+

- and calmodulin-dependent protein kinase II (Hirling and Scheller, 

1996), syntaxin 1 by casein kinase II (Bennett et al, 1993) and SNAP-25 by protein kinase 

A (Risinger and Bennett, 1999). 
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This chapter investigated the phosphorylation of syntaxin on residue serine
14

 by casein 

kinase II using phosphosyntaxin-specific antibodies.  Phosphorylated syntaxin appears to 

reside in specific domains along axons, domains that are separate from active zones and 

synapsin localisation, in agreement with a previous report (Folleti et al, 2000).  The 

disparity between the neuronal localisation of phosphorylated and unphosphoryated 

syntaxin may provide a signalling pathway to differentiate between functional and non-

functional synapses, a regulatory mechanism in order to prevent indiscriminate fusion 

outside pre-defined areas.  This idea fits with the observation that the upregulation of 

syntaxin phosphorylation coincided with an increase in the expression of synaptic vesicle 

proteins and the maturation of synapses (Folleti et al, 2000).  Taking the differential 

expression and localisation of phosphorylated syntaxin into account, it would be of interest 

to investigate whether there are phosphorylated and non-phosphorylated syntaxin 

'hotspots' across the plasma membrane of a neurosecretory cell.  It would be conceivable 

to think that disrupting the phosphorylation of syntaxin could alter the architecture of the 

plasma membrane, specifically productive fusion sites, resulting in a loss and mis-

regulation of exocytotic events.  This hypothesis may help to explain why vesicle mobility 

and fusion was arrested in neuroendocrine cells upon phosphomimetic disruption of 

serine
14

 (Rickman and Duncan, 2010).  

The next facet of the N-terminal interaction within neuronal cells investigated was 

whether its regulation was activity dependent.  The phosphorylation of serine
14

 has been 

previously shown to be important in mediating the N-terminal interaction between 

munc18-1 and syntaxin (Rickman and Duncan, 2010).  These findings demonstrated that 

the extent of syntaxin phosphorylation, specifically on residue serine
14

, is not regulated by 

synaptic transmission, in agreement with Foletti et al (2000).  Therefore, despite the 

abundance of neuronal syntaxin and the extent of its phosphorylation, the casein kinase II 

site is not a likely regulator of an activity-induced response that could rapidly induce 

vesicular fusion.  

The interaction between munc18-1 and the N-terminal peptide of syntaxin has been 

repeatedly shown to be a critical factor in driving SNARE complex assembly and 

membrane fusion in purified in vitro systems (Dulubova et al 2007; Rickman et al, 2007; 

Shen et al, 2007, 2010).  In cultured neuronal systems it has also been shown that N-
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terminal binding is critical for SNARE complex binding and both the 'priming' and fusion 

of synaptic vesicles (Khvotchev et al, 2007; Deak et al, 2009; Johnson et al, 2009).  

Furthermore, the N-peptide has been shown to inhibit vesicle fusion if over-expressed in a 

number of different systems (Yamaguchi et al, 2002; Dulubova et al, 2003; Williams et al, 

2004; Khvotchev et al, 2007).  In support of both in vitro and ex vivo studies it has also 

been shown in a neuroendocrine model that perturbing N-terminal binding between 

munc18-1 and syntaxin (syntaxin[S14E]) renders secretory vesicles immobile and unable 

to support membrane fusion (Rickman and Duncan, 2010).  Using the same 

phosphomimetic syntaxin mutant as the latter study the importance of the N-terminal 

interaction in catalyzing synaptic vesicle fusion was explored.  In order to probe whether 

phosphorylation of this N-terminal peptide was acting specifically on a discrete pool of 

synaptic vesicles, different electrical stimulation paradigms were used (Richards et al, 

2003; Rizzoli and Betz, 2004).  FM1-43 fluorescence changes were directly correlated 

with stimulation intensity, thus the longer the stimulation the more sustained vesicle 

exocytosis and the larger the drop in fluorescence.   

This study has shown that the transfection of munc18-1 and syntaxin fluorescent 

constructs had no detrimental effect on the extent of synaptic vesicle exocytosis or 

endocytosis, in comparison to non-transfected control cells (Figure 4.9A).  This was also 

confirmed in KD43 PC12 cells as the same fluorescent munc18-1 probe used was 

sufficient for full fusion capacity (Figure 4.3B). Expression of munc18-1[I127A] 

alongside wild-type syntaxin in embryonic cortical cells did not alter the proportion of 

fusing vesicles residing in either the readily releasable pool or reserve pool.  Interestingly, 

disrupting the casein kinase II phosphorylation site at the N-terminus of syntaxin resulted 

in both the loss of secretory vesicle movement and exocytosis in neuroendocrine cells and 

a reduction in the percentage of fusing vesicles residing in the RRP of central nerve 

terminals.  This suggests that the transition of a vesicle from an immobilized to a more 

mobile state (on the nano-scale) is an essential step in the pathway to fusion. The idea that 

vesicle dynamics and exocytosis are inextricably linked fits well with the finding that 

vesicle motion increases on a molecular scale immediately prior to fusion (Degtyar et al, 

2005).  Indeed, a large majority of highly immobilized vesicles docked at the plasma 

membrane in bovine adrenal chromaffin cells exhibit a low degree of fusion competence 

(Becherer et al, 2007).  Thus, perturbing the phosphorylation site on the N-peptide of 
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syntaxin may well impact more heavily on downstream vesicular mobilites and 

mechanisms involved in the pathway of full fusion by vesicles primed for immediate 

release (Voets et al, 2001; Deak et al, 2009).  These results suggest that N-peptide binding 

is indeed important in regulating vesicular fusion, with an intact phosphorylation site at 

the N-terminus of syntaxin playing more of a prominent role.  Perhaps serine
14

 has a role 

beyond munc18-1 and its disruption leads to an alteration in a number of protein-protein 

interactions and upstream pathways required for Ca
2+

-triggered fusion. 

The matter of how Ca
2+

 triggers membrane exocytosis was first raised by Katz’s seminal 

finding showing that Ca
2+

 induces synaptic vesicle exocytosis, thereby initiating synaptic 

transmission (Katz and Miledi, 1967).  Approximately 23 years later the discovery of 

synaptotagmin-1, a candidate Ca
2+

-sensor for synaptic exocytosis, was made (Perin et al, 

1990).  Over the last 20 years there has been overwhelming evidence demonstrating that 

synaptotagmin-1 and its homologs function as the primary Ca
2+

-sensors in most forms of 

exocytosis (reviewed in Südhof, 2004).  Following its identification it was shown that 

syntaxin and synaptotagmin interact in vitro (Li et al, 1995; Kee and Scheller, 1996; 

Rickman and Davletov, 2003; Rickman et al, 2004) and more recently it was reported that 

vesicles dock when synaptotagmin-1 binds to syntaxin/SNAP-25 acceptor complexes and 

together with munc18-1, constitute the minimal docking machinery (de Wit et al, 2009).   

Taking this into consideration, it is plausible that preventing the phosphorylation of 

syntaxin at serine
14

 alters the fusion capabilities of readily releasable synaptic vesicles by 

disrupting an interaction between the N-terminal peptide of syntaxin and synaptotagmin, 

the putative Ca
2+

 sensor for exocytosis.  Previously, NMR spectroscopy elucidated the 

three-dimensional structure of the N-terminal peptide of syntaxin and revealed that a 

highly acidic region of this peptide binds to the C2A domain of synaptotagmin I in a Ca
2+

-

dependent manner (Fernandez et al, 1998).  The Ca
2+

-binding region of the C2A domain 

of synaptotagmin is highly negative before Ca
2+

 binding, leading to the hypothesis that this 

most likely acts to prevent interaction between the N-terminal peptide of syntaxin and the 

C2A domain of synaptotagmin, thereby inhibiting synaptic vesicle exocytosis until Ca
2+

 

influx (Fernandez et al, 1998).  This interaction could therefore be serving as an 

electrostatic switch in the release of neurotransmitters (Fernandez et al, 1998).  With 

synaptotagmin, syntaxin-1, SNAP-25 and munc18-1 now constituting the minimal 
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docking machinery a disruption between this acceptor complexes using syntaxin[S14E] 

could also prove to destabilize the initial association of readily releasable vesicles with the 

plasma membrane (de Wit et al, 2009).  Interestingly, the reserve pool is unaffected by the 

expression of syntaxin[S14E], indicating that these transient interactions between 

syntaxin, munc18-1, synaptotagmin and Ca
2+

 are only required for those vesicles already 

docked and primed for release at the plasma membrane.  These protein-protein interactions 

are therefore required downstream of membrane association and are essential in catalysing 

the final fusion event of vesicles in close apposition to the active zone of a nerve terminal.  

This finding may introduce another dimension to the regulation of synaptic vesicle pools, 

with the readily releasable and fusion competent vesicles requiring a more stable 

interaction between the N-terminus of syntaxin, munc18-1 and synaptotagmin.   
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5.1 INTRODUCTION 

 

SM proteins have been shown to directly interact with their cognate trans-SNARE 

complexes in order to promote the rate and specificity of the membrane fusion reaction 

(Novick and Schekman, 1979; Hata et al, 1993; Shen et al, 2007).  To date munc18-1 has 

been ascribed a wide range of functions; it has been shown to promote the docking of 

large dense core vesicles (Voets et al, 2001), regulate the ‘primed’ state of synaptic 

vesicles (Deak et al, 2009) and both the stabilization and stimulation of SNARE complex 

assembly immediately prior to vesicle fusion (Dulubova et al, 1999; Shen et al, 2007; 

Chen et al, 2008; Schollmeier et al, 2011).  The positive action of munc18-1 has therefore 

been evidenced at a number of stages within the vesicle lifecycle, from vesicle transport to 

fusion.  Despite these advances it still remains ambiguous how SM proteins actually 

function at the molecular level and how they are spatially arranged in order to execute 

their functions. 

 

Using intact and exocytosis-competent PC12 cell membranes it was shown that munc18-1 

is bound to the plasma membrane and concentrated at sites of docked vesicles (Zilly et al, 

2006).  Not surprisingly syntaxin was also found to reside in these cholesterol-dependent 

microdomains that determine the sites at which secretory granules dock and fuse, albeit 

determined using diffraction-limited imaging (Lang et al, 2001; Chamberlain et al, 2001).  

Lang and colleagues (2001) presented evidence demonstrating that syntaxin and SNAP-25 

are concentrated in diffraction limited 200 nm large, cholesterol-rich clusters in the 

plasmalemma.  Over the last decade a wide range of estimates concerning the number of 

SNARE molecules required to drive vesicle fusion now exist in the literature.  A number 

of studies have concluded that the fusion of a single secretory vesicle requires the 

concerted action of three SNARE complexes (Hua and Scheller, 2001; Mohrmann et al, 

2010).   Alternatively, it has also been demonstrated that bilayer fusion can be executed by 

either a single SNARE complex (Bowen et al, 2004; van den Bogaart et al, 2010) or by 

anything between five to eight complexes (Han et al., 2004).  More recently it was shown, 

using a pH-sensitive pHluorin attached to vesicle-associated synaptobrevin, that two 

SNARE complexes are sufficient for synaptic transmission in hippocampal neurons (Sinha 

et al, 2011).  These different estimates are most likely due to the different in vitro 
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biochemical and fluorescence techniques employed.  An obvious problem with these 

approximations is the fact that none of the above studies looked at the situation in situ or 

in the presence of co-expressed accessory proteins fundamental to exocytotic events.  For 

example, synaptotagmin has been shown to influence the curvature of plasma membranes 

(Martens et al, 2007; Hui et al, 2009) whilst munc18-1 is thought to stimulate SNARE 

complex assembly immediately prior to membrane fusion (Fisher et al, 2001; Shen et al, 

2007).  With the exception of Sinha et al (2011), these highly purified in vitro assays are 

probably unable to accurately report the number of SNARE molecules required to drive 

membrane fusion in a biochemically and physiologically relevant system.     

 

To precisely determine the quantity of exocytotic proteins required to drive exocytosis it is 

essential to probe a physiologically intact system on a single molecule level.  For many 

decades, diffraction limited optical imaging was prevented from attaining resolution better 

than half the wavelength of light (Abbe, 1873).  Due to these inherent limitations in the 

resolution of imaging techniques individual molecules appear much larger than they 

actually are.  This phenomenon is due to the fact that the dispersion of light, or Point 

Spread Function (PSF), generated by a single light source, is spread over a large area due 

to chromatic aberrations and diffraction effects of the optical system (section 2.8.1).  

Therefore, conventional imaging techniques lack sufficient resolution in order to optically 

discriminate between overlapping signals and as a result only display an expanded version 

of labelled proteins.  This fundamental drawback to light microscopy therefore prevented 

the visualization of cellular features smaller than 200 nm, the highest lateral resolution 

achievable using standard imaging techniques (Pawley, 1995). Consequently, Electron 

Microscopy (EM) was the only method that exceeded the resolution attainable with an 

optical microscope but required the fixation, dehydration and thin sectioning of a sample.  

So, in order to image minute cellular constituents in an unperturbed and dynamic 

environment, researchers had to find a way to combine the non-destructive nature of 

optical microscopy and the nanometer resolution of EM.   

 

One of the first optical techniques designed to overcome both the diffraction limitation of 

light microscopy and the harmful processing of samples for EM was the advent of 

Stimulated Emission Depletion fluorescence microscopy (STED) in 1994 (Hell and 

Wichmann, 1994).  In brief, a STED microscope resolves two adjacent objects by 
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transiently switching fluorescent markers between two interchangeable states using light, a 

concept known as Reversible Saturable Optical (Fluorescence) Transitions (RESOLFT) 

(Hell et al, 2003; 2009).  STED microscopy, revealed to reach resolutions far below that of 

conventional light microscopy (Hell and Wichmann, 1994),  has so far been used to map 

the spatial pattern of proteins in cells (Donnert et al, 2006; Sieber et al, 2007) and for the 

real-time imaging of synaptic vesicles in living neurons (Westphal et al, 2008).  Using 

STED the same group that suggested syntaxin and SNAP-25 reside in 200 nm large 

clusters (discussed above; Lang et al, 2001) reported six years later that approximately 75 

single syntaxin molecules are found in clusters of only 50-60 nm in size (Sieber et al, 

2007).  This discrepancy can be easily explained by considering the optical resolution of 

the imaging techniques used in both studies.  In 2001 immunolabelled syntaxin was 

imaged using a standard confocal microscope, an optical technique limited to 

approximately 200 nm in lateral resolution (Pawley, 1995).  Conversely STED 

microscopy, limited to a lateral resolution of approximately 50 nm, revealed that syntaxin 

resides in clusters of approximately 50-60 nm in size (Sieber et al, 2007).  These studies 

serve to highlight that advances in our understanding of protein organisation have 

mirrored technological developments in optical microscopy.   

 

Recently, RESOLFT microscopy was complemented by powerful optical methods that 

involve the sequential and stochastic activation of individual photoactivatable fluorescent 

probes in time (Betzig et al, 2006; Hess et al, 2006, 2009; Rust et al, 2006).  

Advancements in single-molecule spectroscopy in the early 1990s introduced a new 

approach to precisely localise the centre of a single fluorescent signal, heralding the new 

age of super-resolution microscopy (Moerner and Kador, 1989; Orrit and Bernard, 1990; 

Hess et al, 2006).   In 2006 three independent techniques demonstrated that molecular 

scale localisation accuracy could be achieved through Photoactivated Localisation 

Microscopy (PALM) (Betzig et al, 2006) Stochastic Optical Reconstruction Microscopy 

(STORM) (Rust et al, 2006) and Fluorescence Photoactivation Localisation Microscopy 

(FPALM) (Schermelleh et al, 2008).  In general, all three techniques achieve nano-scale 

resolution by activating fluorescent molecules in a temporally and spatially segregated 

manner, thereby avoiding PSF overlap and achieving precise positional information of 

each fluorescent marker.   
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Using the super-resolution technique PALM single molecules of SNAP-25 and syntaxin 

have been visualised and shown to be distributed non-randomly across the plasma 

membrane of specialised secretory cells (Rickman et al, 2010).  Despite these advances, 

however, it remains unknown how munc18-1 is spatially arranged at the molecular level in 

order to execute its functions.  Using single molecule imaging approaches and bio-

informatics analyses this chapter defines, with the highest possible resolution, the 

molecular arrangement and kinetics of large cohorts of single munc18-1 molecules across 

the plasma membrane of intact munc18-1-silenced PC12 cells.  This study also 

investigates whether perturbing the N-terminal interaction between munc18-1 and 

syntaxin, using munc18-1[I127A], affects the molecular organisation of both proteins.   

 

The combination of PALM and single-particle tracking (sptPALM) has now enabled the 

tracking of large cohorts of single molecules in live cells (Manley et al, 2008).  Analysis 

of single molecule trajectories, heterogeneities and behaviours provides a better 

understanding of protein dynamics fundamental to basic cell physiology and survival.  

Using this approach this study investigates the molecular kinetics of single munc18-1 

molecules in live munc18-1-silenced PC12 cells.  Taking the spatial arrangement and live 

kinetics of single munc18-1 molecules together, this chapter elucidates the molecular 

architecture and dynamics of munc18-1 in specialised secretory cells. 

 

5.2 THE MOLECULAR ARRANGEMENT OF ENDOGENOUS AND EXOGENOUS 

MUNC18-1 REVEALED BY GSDIM. 

 

Ground state depletion-individual molecule return (GSDIM) microscopy is a super-

resolution technique designed to overcome the diffraction-limited resolution of a 

conventional imaging setup (Fölling et al, 2008).  GSDIM achieves nano-scale resolution 

by regulating the number of active fluorescent probes in both time and space, thereby 

minimizing the likelihood that two fluorophores will spatially overlap (Figure 5.1).  The 

technique operates by starting with the vast majority of fluorescent labels in the inactive 

state (Figure 5.1).  By sequentially switching on fluorescent probes in time the precise 

localisation of thousands of sparse subsets can be achieved.  This operating principle is in 

stark contrast to conventional diffraction limited imaging which activates all the 
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fluorescent reporters at once, as shown in the summed raw data in Figure 5.1B.  By 

exploiting photoswitchable fluorophores and controlling the density of these high-contrast 

fluorescent probes the precise localisation of individual molecules can be determined 

through a statistical fit of the ideal point spread function, as seen in the localised rendered 

single molecule panel in Figure 5.1 (section 2.8.5).   

 

GSDIM and total internal reflection fluorescence microscopy (TIRFM) involves 

immunolabelling endogenous munc18-1 (section 2.8.2) with a fluorophore-conjugated 

antibody (Alexa-647), and driving this into a ‘dark-state’ using laser illumination in the 

presence of a reducing buffer (section 2.1.1, Fölling et al, 2008).  Single Alexa-647-

conjugated antibodies, bound to immunolabelled munc18-1 molecules spontaneously re-

emerge from this dark state, permitting the localisation of individual molecules separated 

in a time stack (Figure 5.1B).  
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Wild-type PC12 cells were chemically fixed using 4% paraformaldehyde for 60 minutes to 

ensure complete immobilization (Sieber et al, 2007) and munc18-1 was immunolabelled 

with Alexa-647 and subsequently processed for GSDIM.  The extended fixation period 

was to immobilise as much as possible the molecules under study to minimise potential 

movement or antibody patching artifacts (Sieber et al, 2007). Munc18-1 molecules were 

seen to be concentrated in areas of high and low densities across the plasma membrane 

(Figure 5.2). 
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It has already been shown in chapter 4 that KD43 PC12 cells expressing heterologous 

munc18-1 is sufficient to fully restore exocytosis (comparable to wild-type levels, Smyth 

et al, 2010, Figure 4.3).  Therefore, this investigation next determined whether rescuing 

munc18-1 silenced PC12 cells with exogenously expressed fluorescent munc18-1 resulted 

in a similar molecular distribution.  KD43 PC12 cells were transfected with munc18-1 and 

syntaxin, fixed and exogenous munc18-1 was immunolabelled with Alexa-647.  GSDIM 

imaging also revealed munc18-1 to be concentrated in specific areas across the plasma 

membrane and thus subject to similar targeting and localisation compared to endogenous 

munc18-1 (Figure 5.3).   

 

It was previously shown in chapter 4 that disrupting specifically the interaction between 

munc18-1 and the N-peptide of syntaxin resulted in a reduction in single vesicle mobility 

(Figure 4.1) and fusion capabilities (Figure 4.3, Smyth et al, 2010).  Therefore, it was also 

important to investigate whether these downstream effects were a result of a concomitant 

change in the spatial arrangement of munc18-1 molecules on a molecular level.  KD43 

PC12 cells were transfected with munc18-1[I127A] and syntaxin, fixed and exogenous 

munc18-1 was immunolabelled with Alexa-647.  GSDIM imaging reported that there was 

no obvious disruption in the localisation of single munc18-1[I127A] molecules as 

compared with wild-type munc18-1, with both proteins arranged in a spatially 

heterogeneous fashion on the cell surface (Figure 5.3B).  
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Functions of munc18-1 include docking secretory vesicles at the plasma membrane (Voets 

et al, 2001) and the catalysis of their final fusion (Novick et al, 1980; Dascher et al, 1991; 

Gengyo-Ando et al, 1993; Harrison et al, 1994; Verhage et al, 2000) but it remains 

unknown how it is spatially organised on the plasma membrane in order to help drive 

vesicular fusion.  Munc18-1 has been localised on a gross microscopic scale to the plasma 

membrane of secretory cells several times (Zilly et al, 2006; Medine et al, 2007; Rickman 

et al, 2007), with this membrane association mediated principally by interaction with 

syntaxin (Rickman et al, 2007).  Taking the functions of munc18-1 into consideration, it is 

reasonable to assume that some, if not most, munc18-1 is arranged in close proximity to 

membrane proximal vesicles in order to drive their fusion.   

 

To probe the spatial relationship between single endogenous munc18-1 molecules and 

membrane proximal secretory vesicles this thesis used GSDIM and total internal reflection 

fluorescence microscopy (TIRFM).  Wild-type PC12 cells were fixed, immunolabelled 

with Alexa-647-munc18-1 and Alexa-488-synaptotagmin, a marker of the vesicular 

membrane, and processed for GSDIM.  Surprisingly, in light of current hypotheses 

regarding munc18-1 and its proposed function, secretory vesicles did not co-locate with 

the areas of higher munc18-1 density (Figure 5.4).  Instead of being found in molecular 

contact with a secretory vesicle, munc18-1 was enriched in the ‘gaps’ between where 

vesicles were docked at the plasma membrane.  This finding is in agreement with a recent 

study also finding that most syntaxin clusters did not coincide with secretory vesicles 

(Barg et al, 2010).  However, calculating how these image data would have appeared if 

imaged using diffraction-limited fluorescence microscopy resulted in an image 

demonstrating partial overlap between munc18-1 and synaptotagmin, in agreement with a 

previous study (Figure 5.4; De Wit et al, 2009).  As before, it was next important to 

ascertain whether the spatial arrangement of exogenous munc18-1 molecules and 

endogenous secretory vesicles was similar to that of endogenous munc18-1 within KD43 

PC12 cells. 
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KD43 PC12 cells were co-transfected with munc18-1 and syntaxin, fixed and 

immunolabelled with Alexa-647-munc18-1 and Alexa-488-synaptotagmin as before.  

GSDIM imaging reported that munc18-1 molecules were distributed heterogeneously, 

congregating in areas of the cell membrane that were not associated with secretory 

vesicles (Figure 5.5).  Performing the same experiments in the presence of a munc18-1-

syntaxin-N-terminal mutant resulted in no difference between this molecular pattern and 

that of wild-type munc18-1, suggesting that binding between munc18-1 and the N-peptide 

of syntaxin is not involved in targeting munc18-1 to defined sites on the plasma membrane 

(Figure 5.5B).  Again, partial overlap is observed between secretory vesicles and munc18-

1 molecules if these molecular maps are used to generate lower resolution images 

comparable to those of a standard fluorescent microscope.   
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Whilst GSDIM data are invaluable for defining with the highest possible resolution the 

spatial distribution of endogenous proteins, further statistical analysis of this is hampered 

by the fact that individual molecules may move reversibly from an ‘off’ state to being 

repetitively fluorescent (Figure 5.1B, Fölling et al, 2008; McEvoy et al, 2010).  This 

means that single molecules may be counted multiple times in an analysis, as the precise 

coordinate of each signal will vary on the nano-scale because of photon statistics and 

minute sample movements.  In order to overcome these limitations and acquire statistical 

information on the spatial patterning of exogenously expressed munc18-1 molecules this 

thesis next used Photoactivatable Localisation Microscopy (PALM). 

 

5.3 THE RESOLUTION OF SINGLE MUNC18-1 MOLECULES USING 

PHOTOACTIVATABLE LOCALISATION MICROSCOPY (PALM). 

 

Cells expressing proteins of interest labelled with fluorescent markers contain detailed 

information on the spatial arrangement of these specific target proteins accurate at the 

molecular level.  However the precise location of fluorescently tagged proteins is lost 

using conventional optical microscopy, a technique limited by diffraction (Stephens and 

Allan, 2003).  Over the last decade advancements in fluorescence microscopy have broken 

through this diffraction barrier and enabled the imaging of intracellular proteins with near-

molecular resolution.  Nanoscale imaging is now capable of determining the static 

structural organisation and relationship of two or more proteins of interest at the molecular 

level.   

 

Photoactivation Localisation Microscopy (PALM) optically resolves fluorescent proteins 

to molecular resolution through the serial photo -activation and -irreversible destruction of 

subsets of molecules with each step optimized to ensure a sparse distribution of signals 

visible during each cycle (Betzig et al, 2006).  At the beginning of each PALM experiment 

the vast majority of fluorescent labels are in an inactive, dark state where they do not 

contribute to sample fluorescence.  Near-ultraviolet light illumination induces a chemical 

modification in a small fraction of quiescent molecules, activating on average less than 1% 

of the total population (Betzig et al, 2006).  The process of photoactivation occurs in a 

stochastic manner and its probability is proportional to the location and intensity of the 
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activation laser.  During the acquisition readout, activated molecules spontaneously 

photobleach, resulting in a reduction in the number of active molecules within the sample. 

Following photobleaching a new subset of molecules is transferred into an active state, a 

process repeated until all the molecules are depleted and molecular coordinates gathered.  

Over time many thousands of single molecules and their molecular coordinates are 

typically localised in a single experiment allowing for further statistical spatial analysis of 

point patterns.  Finally, a composite image rendered from all the coordinates in each image 

can then be used to generate a super-resolution map of the fluorescently-labelled sample 

under investigation.  

 

Although PALM imaging cannot provide an exact measure of the number of molecules in 

a sample, as it is never certain that every molecule has been localised (Hess et al, 2006; 

Betzig et al, 2006), it can provide a lower limit for the number of molecules per unit area 

(Rickman et al, 2010).  Therefore, under optimal imaging conditions, it is likely that most 

molecules will be imaged and localised (Hess et al, 2006; Zilly et al, 2006).  Point spread 

function signals that arise from single molecules in the sample are localised and the 

molecular coordinates added to a cumulative map (Figure 5.6).  In contrast to GSDIM 

imaging, photoactivatable molecules are photo-destroyed following activation and do not 

spontaneously re-emerge from a ‘dark state’ (Figure 5.6B).  Therefore, PALM records the 

signal from a fluorescent molecule only once, allowing for the precise localisation of a 

single molecule and further statistical spatial analysis (Figure 5.6B). 
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This study first examined the localisation of single photoactivatable molecules of munc18-

1 (Figure 5.7) and munc18-1[I127A] (Figure 5.7B) co-expressed alongside syntaxin in 

fixed KD43 PC12 cells.  The process of photoactivation, measurement, and bleaching of 

these photoactivatable molecules was repeated for many cycles, often for 10
2
 - 10

3
 image 

frames depending on the expression level of the PA-fluorescent probe. At a typical frame 

rate of 50 ms, recordings lasted for between 20 to 30 minutes in order to acquire a 

complete image stack, often containing 10
2
 - 10

3
 localised molecules.   

 

Positional information describing PA-mCherry-munc18-1 molecules was uniquely isolated 

and subsequently rendered into molecular maps, where munc18-1 molecules were seen to 

adopt an apparent heterogeneous distribution across the plasma membrane, in support of 

the data generated by GSDIM (Figure 5.7).  Similarly, munc18-1[I127A] molecules 

appear to be concentrated into higher and lower densities (Figure 5.7B).  The convolved 

image of all localised munc18-1 and munc18-1[I127A] molecules demonstrates that 

conventional, diffraction limited microscopy is unable to resolve single molecules and an 

accurate representation of their spatial organisation.    
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5.4 THE MOLECULAR DISTRIBUTION OF MUNC18-1 ACROSS A 

NEUROENDOCRINE PLASMA MEMBRANE IS NON-RANDOM. 

 

Having disrupted N-terminal interactions at the plasma membrane (Chapter 4), this study 

set out to determine whether this specific effect resulted in, or was caused by, a spatial 

reorganisation of munc18-1 molecules.  In order to extract positional information from 

fluorescent munc18-1 molecules a non-parametric statistical tool, Ripley’s K-function, 

was used to analyse the spatial distribution of single munc18-1 molecules across the 

plasma membrane (Ripley, 1977, 1987). 

 

Since its introduction in 1977, Ripley’s K-function has been widely used as a tool in 

spatial point pattern analysis (Ripley, 1977, 1987).  Since then spatial point patterns have 

been classified into three main classes, namely complete spatial randomness (CSR), 

clustering and regularity (Figure 5.8, Diggle, 2003).   To analyse the spatial distributions 

of single molecules the xy coordinates of each localised molecule are counted in 

concentric rings across every pixel of an image (as shown in Figure 5.8) and added 

together in a cumulative fashion.  This mathematical function is then compared with the 

expected line (y=x) under Poisson distribution of all points.  When the observed Ripley’s 

K value for single molecules is larger than the expected K value for a particular distance, 

the distribution is more clustered than a random distribution at that distance (Figure 5.8B). 

However, when the observed K value is smaller than the expected K, the distribution is 

more dispersed and regular than a random distribution at a particular distance.  If both 

observed and expected frequencies are the same the distribution of molecules is 

completely random (Figure 5.8B). 

http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2010.00009/full#B28#B28
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To analyse the spatial arrangement of munc18-1 molecules Ripley’s K function followed 

by its L function transformation was used to compare the spatial distribution of the 

individual molecules to a randomized sample (constrained to the same particle number and 

area as the test sample, Misura et al, 2000).  Both munc18-1 and munc18-1[I127A] 

exhibited a spatially ordered, non-random distribution across the plasma membrane of 

secretion-competent rescued PC12 cells (Figure 5.9 and 5.9B).  This finding demonstrates 

that munc18-1 is subject to a higher order organisation at the molecular level, a finding 

previously shown with the t-SNAREs (Sieber et al, 2007; Rickman et al, 2010).  It is 

noteworthy to mention that this study cannot conclude that munc18-1 resides in distinct 

clusters across the membrane as both the definition of a cluster and importantly, how 

many molecules makes up a cluster, remains undefined. 
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Recently it has been shown using PALM and Ripley's K function analyses that the 

molecular spatial organisation of syntaxin is non-random (Rickman et al, 2010).  This 

thesis has already provided evidence demonstrating that by disrupting the N-terminal 

interaction between munc18-1 and syntaxin the spatial organisation of secretory vesicles 

(Figure 4.4) or single munc18-1 molecules (Figure 5.9) is not altered.  Therefore, the next 

question to address was whether the reduced level of evoked exocytosis in the presence of 

a munc18-1 N-terminal mutant within KD43 PC12 cells was a result of a reorganisation of 

syntaxin at the molecular level.  

 

Performing reciprocal PALM experiments and Ripley’s K analyses demonstrates that 

single syntaxin molecules are organised into discrete molecular entities  across the plasma 

membrane, as shown in a number of previous studies (Sieber et al, 2007; Barg et al, 2010; 

van den Bogaart et al, 2011; Zilly et al, 2011; Figure 5.10). The expression level of 

transmembrane syntaxin was also much higher at the base of a KD43 PC12 cell compared 

to munc18-1 (Figure 5.10, middle panel), in agreement with a study demonstrating that 

syntaxin exists in excess over munc18-1 by approximately 20 fold (Schutz et al, 2005).  

Furthermore, these reciprocal PALM experiments revealed that perturbing its N-terminal 

interaction with munc18-1 had no effect on its non-random, highly ordered distribution 

(Figure 5.10B).  Thus, targeted disruption of the munc18-1-syntaxin-N-terminal 

interaction only resulted in a reorganisation of interaction with syntaxin (Figure 4.4; 

Smyth et al, 2010), with no change in the spatial molecular pattern at the plasma 

membrane.   
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In this chapter GSDIM imaging revealed that munc18-1 was found to be concentrated in 

areas of the plasma membrane that were devoid of secretory vesicles (Figure 5.5 and 

5.5B).  It can be deduced from our current understanding that for munc18-1 to act at the 

final stage of fusion it must be associated with syntaxin (and probably the other SNAREs) 

and an adjacent vesicle for exocytosis to proceed.  A number of in vitro measurements 

have suggested that anything between one to eight SNARE complexes are required to 

drive vesicular fusion (Hua and Scheller, 2001; Han et al, 2004; Mohrmann et al, 2010; 

van den Bogaart et al, 2010) but no study on the number of munc18-1 molecules has ever 

been conducted.  Using PALM and assigning xy coordinates to all single munc18-1 

molecules and labelled secretory vesicles it was possible to statistically quantify the nano-

scale organisation of single munc18-1 molecules in relation to their nearest secretory 

vesicle centre. 

 

5.5 NEAREST NEIGHBOUR ANALYSIS OF SINGLE MUNC18-1 MOLECULES. 

 

Nearest neighbour analysis was next performed on fluorescently labelled secretory 

vesicles and single munc18-1 molecules to determine their spatial arrangement in relation 

to one another.  KD43 PC12 cells rescued with fluorescently-labelled-munc18-1, -syntaxin 

and -NPY, a vesicle cargo protein, were fixed and imaged using PALM.  Nearest 

neighbour analysis was performed on immobilized samples where >97% of all cellular 

vesicles were labelled (Duncan et al, 2003). These newly assembled, NPY-labelled 

vesicles are trafficked preferentially to the plasma membrane, have the highest probability 

of fusion and comprise at least in part the readily releasable pool (Duncan et al, 2003).  

These vesicles were also localised using TIRFM, allowing visualization only within a 90 

nm (FWHM) distance of a refractive index interface, thereby selectively localizing only 

‘morphologically docked’ membrane proximal vesicles.   

 

As before single munc18-1 molecules were activated, localised and bleached (Figure 5.11, 

top left panel).  Molecules of munc18-1 (blue) and labelled secretory vesicles (red) were 

localised (Figure 5.11 top right panel) and all molecules were assigned to the centroid 

coordinates of their nearest secretory vesicles using nearest neighbour analysis (bottom 
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right panel).  Munc18-1[I127A] expressing KD43 PC12 cells were subject to the same 

experimentation and analysis (Figure 5.11B).   
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Using this cellular system the average numbers of munc18-1 molecules within 200 nm 

from the centre of mass of each vesicle i.e. under the equatorial diameter of a secretory 

vesicle, ranged between zero and a maximum of nine (Figure 5.12 and 5.13; n = 24,096 

munc18-1 molecules localised to 412 vesicles, combined from n = 8 independent 

experiments).  Ablating the N-terminal interaction between munc18-1 and syntaxin had no 

effect on the proportion of munc18-1 molecules within 200 nm of a vesicle.  This value 

gives an estimation of the minimum numbers of molecules that could potentially reside 

underneath a membrane resident secretory vesicle.    

 

However, allocating munc18-1 molecules that resided within 200 nm of the centroid of 

their nearest vesicle is perhaps not a realistic representation of the distances over which 

munc18-1 would be predicted to interact with the syntaxin-containing-SNARE complex to 

drive membrane fusion.  Therefore, a sampling radii was determined based on the range 

over which the tSNAREs and vSNARE would be able to interact using available structural 

information.  Using the most recent structural data regarding SNARE proteins in lipid 

bilayers (Ellena et al, 2009; Stein et al, 2009), the maximum separation distance over 

which the SNARE proteins can physically interact was calculated to be 17.8 nm (Figure 

5.12B).  Combining this estimate with the assumption that plasma and vesicular 

membranes are separated by a distance of zero nanometers (previously used to define 

'docked' secretory vesicles by electron microscopy (Voets et al, 2001; de Wit et al, 2006)), 

the maximum distance from the centre of a secretory vesicle that the t-SNARE and v-

SNARE proteins could interact was calculated to be 82.5 nm (Figure 5.12).  These values 

therefore provide the most stringent criteria for measuring the maximum distance over 

which SNARE proteins are able to interact with a neighbouring vesicle in order to catalyse 

its fusion.   
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Using the radius of 82.5 nm this analysis demonstrated that each vesicle had 

approximately a 25% probability of being physically associated with one or two munc18-1 

molecules in this functionally rescued cellular system (Figure 5.13B).  Furthermore neither 

the probability of having a munc18-1 molecule associated with a secretory vesicle, nor the 

number of molecules found to reside under a single vesicle was altered upon N-terminal 

interaction disruption (Figure 5.13B; n = 20,567 munc18-1[I127A] molecules, localised to 

350 vesicles, n = 7 independent experiments).  Thus, the reduction in exocytosis observed 

upon disruption of N-terminal binding in KD43 PC12 cells (Figure 4.3; Smyth et al, 2010) 

is not simply a result of a reduced number of munc18-1 molecules residing in close 

proximity to a secretory vesicle but rather arises from specific functional effects. 
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To date these experiments have provided an accurate ‘snapshot’ of the positional 

information of single munc18-1 and syntaxin molecules in immobilised cells that are not 

thought to undergo any structural alterations.  However, cellular fixation results in a huge 

loss of information regarding the molecular kinetics and processes existing within a 

biological system (Lippincott-Schwartz and Patterson, 2003).  Advancements in the use of 

fluorescent probes, stable imaging techniques and sensitive cameras has now permitted the 

study of sub-cellular dynamics in live cells on a physiologically relevant time-scale.  

Therefore, this study next determined the mobility and spatio-temporal behaviours of 

individual munc18-1 molecules in living KD43 PC12 cells by analysing, and quantifying 

molecular movements of, large cohorts of single molecules using single particle tracking 

PALM (sptPALM; Manley et al, 2008; Parton et al, 2011).  

  

5.6 RESOLVING SINGLE MUNC18-1 DYNAMICS IN LIVE NEUROENDOCRINE 

CELLS. 

 

The development of techniques specifically for imaging single molecules in living cells 

offers an opportunity to probe the dynamics of single proteins in living cellular 

environments (Sako et al, 2000; Nakada et al, 2003).  Proteins of interest can be attached 

to probes such as gold beads (Kusumi et al, 1993)
 
or fluorescent-protein chimeras 

(Douglass et al, 2005) and can be tracked by single particle tracking (SPT).  Single particle 

tracking provides an insight into local membrane environments by dissecting 

heterogeneities in molecular behaviour (Schütz et al, 1997; Dietrich et al, 2002).  To date, 

single particle tracking has helped to elucidate the molecular kinetics behind a number of 

cellular events, for example the movement of myosin V over actin filaments (Yildiz et al, 

2003) to the membrane binding mechanisms of epidermal growth factors (Teramura et al, 

2006).  More recently the use of photoactivatable markers in conjunction with single 

particle tracking has enabled the quantification of the diffusion coefficient of tens of 

thousands of hemagglutinin molecules in living fibroblast cells (Hess et al, 2007).   

 

Super-resolution techniques such as PALM (Betzig et al, 2006) have enabled the imaging 

of fluorescently labelled proteins to reveal their organisation on the nanoscale, a technique 

shown to be complementary to single particle tracking (Manley et al, 2008).  In this study 
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PALM has been combined with single particle tracking (sptPALM, Manley et al, 2008) to 

provide a greater understanding of the complex spatio-temporal behaviours of sub-cellular 

munc18-1 molecules and to quantify their molecular movements (Parton et al, 2011) in 

living neuroendocrine cells.  Live cell data are acquired in the same manner as for PALM, 

but with reduced activation energy (to activate fewer molecules at once), faster image 

frame rates and with lower excitation power, to ensure a larger number of image frames 

before single molecules bleach off (Manley et al, 2008).  Cell viability was also 

maintained by reducing the excitation light intensity to avoid damaging cellular effects.   

 

5.7 TRACKING LARGE COHORTS OF MUNC18-1 MOLECULES REVEALS 

HETEROGENEITIES ACROSS THE PLASMA MEMBRANE. 

 

This study obtained information on the positions of single munc18-1 molecules by 

activating, localizing and bleaching many subsets of photoactivatable-mCherry 

fluorescent-protein chimeras within KD43 PC12 cells.  For sptPALM the data acquisition 

rate and illumination intensities were optimized in order to maintain cell viability and 

activate the optimum number of fluorophores per frame.  As for PALM, sptPALM was 

operated under total internal reflection and a high numerical aperture objective was used 

(Olympus 150X; 1.65 NA).  Unlike traditional single-particle tracking in which all single 

molecules are simultaneously imaged and tracked (Douglass et al, 2005), photoactivatable 

fluorophores enable multiple subsets of molecules to be activated, imaged and bleached. 

Therefore several orders of magnitude more trajectories per cell were obtained, as opposed 

to traditional single-particle tracking which commonly combined 10–100 cells to obtain 

statistically significant single-particle tracking information (Vrljic et al, 2002; Ewers et al, 

2005; Wieser et al, 2007).  Therefore, by ensuring that the distance between fluorescent 

molecules at any one time was greater than the width of their point spread function, 

thousands of high-density overlapping single-molecule trajectories could be resolved and 

tracked (Figure 5.14).  Molecules that remained visible for more than three frames were 

localised and their determined positions in consecutive frames were linked into tracks.  

Particle identification and tracking algorithms were all written and performed by Lei 

Yang, Heriot-Watt University, Edinburgh (Figure 5.14).   
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Using sptPALM the spatial distribution of proteins and the information regarding their 

molecular dynamics could be examined.  Large cohorts of single munc18-1 (n = 5873) and 

munc18-1[I127A] (n = 20878) molecules were tracked in the basal plasma membrane of 

each cell at 37
o
C, revealing kinetically and spatially distinct populations of molecules 

(Figure 5.14 and 5.14B).  These images correspond to all the single molecule trajectories 

in consecutive frames, permitting the construction of maps containing thousands of 

molecular tracks across the plasma membrane.  This information provides a means of 

obtaining spatially resolved information on cellular dynamics and local environments on 

the molecular scale (Figure 5.14).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

171 

 

 

 

 

 

 



 

 

172 

 

5.8 MUNC18-1 MOLECULAR SPEED NEGATIVELY CORRELATES WITH 

DENSITY AT THE PLASMA MEMBRANE.  

 

The technique of sptPALM enabled the dynamics of single molecules to be investigated 

and molecular environments to be defined within a single cell.  This complex network of 

molecular tracks can be simplified by the generation of contour maps to provide a large-

scale quantitative representation of the dynamics of munc18-1 at the plasma membrane of 

intact, living cells.  Both munc18-1 and munc18-1[I127A] molecules exhibit a 

heterogeneous spatial distribution in their movement with regions of high and low density 

observed on the plasma membrane (Figure 5.15).  This result supported the finding that 

munc18-1 was found to be concentrated in areas of the cell as shown by GSDIM and 

PALM, a distribution shown to be independent of syntaxin-N-terminal interaction.   

 

sptPALM data was used to correlate areas of the plasma membrane that were characterised 

by a high density of munc18-1 molecules.  Bioinformatics analyses of sptPALM data 

revealed that munc18-1 moves freely across the plasma membrane but displays restricted, 

slower motions in areas enriched with munc18-1 molecules (Figure 5.15).  Conversely, 

munc18-1 travels at greater speed in areas of the plasma membrane that are not associated 

with a high concentration of munc18-1 molecules.  'Difference' contour maps were plotted 

in order to highlight the areas of the membrane with the largest degree of anti-correlation 

(section 2.9.5).  These plots revealed that areas of the membrane with a higher density of 

munc18-1 molecules and a lower molecular speed, and vice-versa, had the greatest anti-

correlation value (Figure 5.15).  Furthermore, disrupting the N-terminal interaction 

between munc18-1 and syntaxin did not result in a change in the molecular dynamics of 

munc18-1, with munc18-1 molecules continuing to display reduced molecular speeds in 

areas of munc18-1 concentration.  
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Diffusion maps of munc18-1 reflect the dynamics of molecules in single cells. By 

combining data from multiple cells, a histogram of single molecule speed coefficients was 

constructed (Figure 5.16; munc18-1 n = 31,566 molecules, n = 3 cells; munc18-1[I127A] 

n = 40,078 molecules, n = 3 cells).  This confirmed that a large fraction of munc18-1 

molecules exhibited a highly restricted speed, never reaching more than 3 µms
-1

 at the 

plasma membrane.  Perturbing the N-terminal interaction between munc18-1 and syntaxin 

had no effect on the molecular speed of munc18-1, indicating that the syntaxin-N-peptide 

is perhaps not critical in the recruitment of munc18-1 to the plasma membrane, as 

previously suggested (Figure 5.16; Rathore et al, 2010).  
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5.9 MUNC18-1 MOLECULES MOVE BETWEEN MOLECULAR DEPOTS ON THE 

PLASMA MEMBRANE. 

 

By resolving the tracks of thousands of munc18-1 molecules it was also possible to 

determine the trajectories and directionality of these molecules.  Single particle tracking of 

munc18-1 combined with detailed analysis of molecular trajectories revealed no 

directional preference of munc18-1 molecules in their choice of initial track movements 

(Figure 5.17).  This result indicated that munc18-1 molecules had complete freedom of 

directional motion regardless of an N-terminal interaction with syntaxin (Figure 5.17).  

The constructed ‘rose diagram’ shows that all molecules have an equal propensity to move 

in any direction in their first movement, discounting the idea that their movement is 

correlated with microscopic drift.  It was next decided to ask a more detailed question of 

the munc18-1 molecular motion data; once moving in a particular direction, where do 

single molecules go next?  

 

Analyzing the trajectory angle taken by every molecule at the second position of a 

trajectory, relative to the previous movement (i.e. incorporating a direction into the 

analysis), it was found that single molecules were highly likely to reverse their directions 

once already moving forward (Figure 5.17B).  Furthermore this molecular behaviour was 

not dependent on an interaction with the N-terminal peptide of syntaxin (Figure 5.17B).   

The reason for this unusual reversing behaviour could be either due to a ‘zig-zag’ motion, 

overlying a general linear directionality, or due to a ‘caged’ motion, where molecules are 

able to move only a certain distance from their origin (Figure 5.18). These two 

possibilities can be distinguished by correlating track length with displacement (the direct 

distance between the start and the end of molecular trajectories).  Analysis of track length 

and displacement confirmed that the immobile fraction of munc18-1 exhibits a caged, 

restricted motion (Figure 5.18B).  The restricted kinetics of munc18-1 molecules in 

membrane hot-spots are likely to reflect the recruitment of munc18-1 molecules to 

membrane-inserted syntaxin as this is the principal mechanism for munc18-1-membrane 

association (Hata et al, 1993; Rowe et al, 1999, 2001; Medine et al, 2007; Arunachalam et 

al, 2008).   
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The spatio-temporal organisation of relatively immobile munc18-1 molecules into hot-

spots, distinct from vesicle docking sites but interspersed with more mobile molecules, is 

suggestive of munc18-1 recycling between molecular depots.  This question was 

addressed using online tracking software which averaged the directionality of hundreds of 

munc18-1 (n = 786 tracks) or munc18-1[I127A] (n = 1239 tracks) molecules in a 500 nm 

region of interest (Hamilton et al, 2010).  This analysis demonstrated that munc18-1 

molecular populations appeared to move in a directed way around the membrane (Figure 

5.19).  However, averaging the behaviours of hundreds of molecules to highlight the 

average trend in directionality removes variations within data sets.   In order to dissect 

whether there was directed motion between areas of high and low munc18-1 densities this 

investigation extracted exemplar trajectories of fifty representative molecular tracks from 

KD43 PC12 cells expressing both munc18-1 and munc18-1[I127A] molecules (Figure 

5.19B).  Using the same region on interest and taking a more individual approach this 

analysis demonstrated that munc18-1 molecules move in a directed motion between areas 

of high and low molecular densities.    
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The eukaryotic plasma membrane is a laterally organised and highly heterogeneous 

structure where a number of proteins exert a multitude of cellular functions.  Over the last 

fifteen years a number of theories have been discussed to try and explain these lateral 

heterogeneities or plasma membrane microdomains. Simons and Ikonen (1997) 

popularised the ‘lipid raft' hypothesis, a theory suggesting that cholesterol clusters into 

lipid rafts in the exoplasmic leaflet of the plasma membrane.  Since the introduction of the 

‘lipid raft’ proposal more than 200 cellular components have been assigned to rafts, 

including syntaxins 1-4, SNAP-25 and VAMP 2 and 3 (Foster et al, 2003).  It has also 

been shown that the integrity of these SNARE-rich clusters is dependent on cholesterol 

with major changes in the distribution of syntaxin 1 (Lang et al, 2001; Ohara-Imaizumi et 

al, 2004), syntaxin 3 (Low et al, 2006) and SNAP-23 (Chamberlain and Gould, 2002) 

upon its depletion.  

 

Taking into account that munc18-1 interacts with syntaxin with a high affinity (Pesvner et 

al, 1994), it can be postulated that munc18-1 may also reside on lipid rafts through an 

interaction with syntaxin.  Cholesterol-rich clusters are of huge functional importance as 

their depletion results in a disruption of exocytotic events in a number of cell types 

(Chamberlain et al, 2001; Lang et al, 2001; Ohara-Imaizumi et al, 2004; Wasser et al, 

2007), similar to the genetic removal of munc18-1 (Verhage et al, 2000).  Therefore it 

could be reasoned that the caged motion exhibited by munc18-1 molecules may be 

responsible for the endogenous and heterologous molecular distribution seen in fixed 

samples (Figure 5.2), where single munc18-1 molecules accumulate in distinct membrane 

domains through a tight interaction with syntaxin, a local barrier to the diffusion of 

munc18-1 molecules.  Together, these findings demonstrate that a limited number of 

munc18-1 molecules recycle between molecular storage depots with membrane locations 

distinct from vesicle docking sites. 

 

5.10 CONCLUSION  

 

Most subcellular structures, for example, microtubules, ribosomes and vesicles, are much 

smaller than the limit of resolution of conventional imaging systems.  Therefore the ability 

to both visualise individual molecules and record their large-scale organisation and 
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kinetics has been severely restricted.  Advancements in single molecule imaging in vitro 

and in living cells (Sako et al, 2000; Nakada et al, 2003; Betzig et al, 2006; Hess et al, 

2006) now offer a method for probing single protein architectures and dynamics by 

breaking through the diffraction barrier and imaging beneath the size limitation that it 

defines.  Super-resolution imaging techniques including GSDIM and PALM can reveal the 

nanoscale organisation of fluorescently labelled proteins with a density of molecules high 

enough to provide structural context.  In this study GSDIM and PALM imaging 

demonstrated that, at rest, secretory vesicles do not reside over dense areas of munc18-1 

on the plasma membrane.  This is surprising given that the presence of munc18-1 is vital 

in catalysing the fusion of opposing lipid bilayers.  However, previous studies examining 

syntaxin clustering, which is directly relevant to the localisation of munc18-1, have 

observed only partial colocalisation with secretory vesicles (Lang et al, 2001; Barg et al, 

2010).  Furthermore, the spatial pattern of munc18-1 or syntaxin is not dictated by the N-

peptide of syntaxin; ablating this interaction does not result in a molecular reorganisation. 

Thus, a reduction in both vesicle kinetics and fusion likelihood upon the selective 

disruption of the N-terminal interaction, as shown previously (Smyth et al, 2010), cannot 

be explained by a spatial redistribution of molecules away from vesicles across the cell 

surface.   

 

For munc18-1 to act at the final stage of fusion it is intuitive to think that it must be 

associated with an adjacent vesicle.  Data included in this chapter provide estimates for the 

number of munc18-1 molecules that act within 200 nm of a single vesicle level in cells; 

this number ranges between zero and nine.  A substantial pool of vesicles in this study was 

found to have no adjacent munc18-1 molecule and these vesicles cannot move sufficient 

distances at the plasma membrane to reach their nearest neighbour munc18-1 molecule.  

Importantly, this limited number of munc18-1 molecules acting at a single vesicle level is 

sufficient to fully rescue exocytosis (Smyth et al, 2010).  As munc18-1 and syntaxin (and 

the SNARE complex) have a 1:1 stoichiometry, this suggests that few SNARE complexes 

are required to drive fusion, in agreement with current estimates of the numbers of 

SNARE molecules required to drive exocytosis, of between 5 and 11 (Han et al, 2004; 

Karatekin et al, 2010).  Furthermore, the majority of vesicles in this study were found to 

have no proximal munc18-1 molecule suggesting that few munc18-1 molecules are 

required for exocytosis to proceed and that despite the population of cells exhibiting full 
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secretion, at the single vesicle level, most vesicles remain unused.  Few molecules are 

required for exocytosis to proceed, and it remains unknown whether the presence of 

multiple munc18-1 molecules (this study observed a maximum of 9 per vesicle) further 

enhances fusion likelihood.  It remains to be seen whether multiple munc18-1-syntaxin 

complexes can act cooperatively to further increase release probability over the absent 

state.  Taken together, munc18-1 molecules exist in a non-random spatial distribution, 

resulting in areas of low and high molecular density.  Importantly it is the regions of low 

munc18-1 molecular density at the plasma membrane that are specifically targeted by 

secretory vesicles.  

 

There are three possible scenarios to explain why munc18-1 and secretory vesicles are 

spatially distinct on the cell surface.  Firstly, are molecules enriched in-between secretory 

vesicles able to move sufficient distances in order to reach the nearest vesicle and drive 

fusion?  Comparing total track length to maximum displacement showed that despite the 

presence of long molecular tracks, the maximum displacement for munc18-1 was capped 

at approximately 1.5 μm (Figure 5.18B), making it impossible for munc18-1 molecules to 

travel to secretory vesicle 'docking sites' immediately prior to exocytosis.  Secondly, in 

addition to the lateral diffusion of single munc18-1 molecules in the plasma membrane, 

secretory vesicles undergo both Brownian motion and have been shown to undergo a rapid 

movement immediately prior to fusion (Degtyar et al, 2007).  The functional significance 

of this 'jump' in vesicular movement may be to permit a secretory vesicle to sample more 

individual munc18-1 molecules immediately preceding membrane exocytosis.  Lastly, it 

may be the case that vesicular fusion occurs where munc18-1 (and presumably SNAREs) 

are not enriched; a theory not easily placed within the concept of SNARE mediated 

exocytosis.  Despite directly addressing the fundamental question of why munc18-1 

molecules and secretory vesicles appear to be spatially segregated, these findings provide 

a working model where the association of a small number of munc18-1 molecules are 

required to support single vesicle exocytosis and that the association, or not, of a munc18-

1 molecule with the SNARE complex within a functionally relevant distance of a vesicle 

is a determinant of fusion probability. 

 

In this study PALM was combined with live-cell single particle tracking (sptPALM; 

Manley et al, 2008) to capture the spatio-temporal complexities and heterogeneities of 
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single-munc18-1 molecular motions across the membrane of neurosecretory cells (Schutz 

et al, 1997; Dietrich et al, 2002).  By overcoming a number of difficulties associated with 

this technique, for example high particle density and temporary particle disappearance, it 

is possible to gain an insight into how individual proteins drive a number of cellular events 

(Yildiz et al, 2003; Douglass and Vale, 2005; Teramura et al, 2006).
 
 More relevantly, 

decoding the kinetics of single munc18-1 molecules provides a significant clue for 

understanding the mechanisms that drive the behaviors governing its spatial arrangement.   

 

In this study single-molecule motion was probed with high specificity, millisecond time 

resolution, and nanometer spatial resolution in a living cell using sptPALM. Single 

munc18-1 molecules exhibited spatially distinct diffusional behaviours across the plasma 

membrane of live neuroendocrine cells.  Munc18-1 molecules were seen to freely explore 

the plasma membrane, often preferring specific areas of the planar bilayer, evidenced by a 

heterogeneous density of tracks.  Munc18-1 molecules within areas of molecular 

enrichment exhibited slower speeds and confined kinetics whereas highly mobile munc18-

1 molecules were found in less dense munc18-1 areas and moved in a more mobile 

manner.  It can be speculated that munc18-1 ‘scans’ the membrane for syntaxin molecules 

and upon binding to the transmembrane protein becomes immobile, possibly marking a 

fusion site for the docking of a large dense core vesicle.  The fact that the mobility of 

single munc18-1 molecules is highly restricted within these plasma membrane ‘hot-spots’ 

could represent anomalous diffusion, a term used to describe a diffusion process with a 

non-linear relationship with time, as demonstrated for several membrane proteins and 

lipids (Feder et al, 1996).  The interaction with munc18-1 and syntaxin in membrane 

domains might act as a local barrier to diffusion, caging munc18-1 in order to catalyse the 

fusion of a secretory vesicle.   

 

These munc18-1-rich domains of the phospholipid bilayer might well be associated with 

lipid rafts as syntaxin has been shown to occur in clusters in cell membranes (Lang et al, 

2001; Sieber et al, 2007; Rickman et al, 2010), clusters that disperse upon cholesterol 

depletion (Lang et al, 2001).  In cells, spatially and functionally distinct clusters, 

containing predominantly one of two heterodimer forms, are influenced by the underlying 

lipid microenvironment (Rickman et al, 2010).  Thus, single munc18-1 molecules could 

accumulate in functionally and spatially heterogeneous distinct membrane domains 
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through a tight interaction with syntaxin.  These experiments also demonstrated that most 

munc18-1 molecules do not reside within interaction-distance of a membrane-proximal 

vesicle, suggesting that these ‘munc18-1 depots’ are distinct from the sites of exocytosis.   

In fact, these ‘in-between’ areas of high molecular densities may be acting as an important 

functional entity, providing a concentrated pool of munc18-1 to facilitate and enhance 

bilayer fusion.  Molecules were found to move between these depots, suggesting that there 

is an element of recycling of munc18-1 between membrane sites. It remains unknown 

whether these more mobile munc18-1 molecules are associated with syntaxin or not. 

However, as the interaction with munc18-1 and syntaxin in membrane domains may act as 

a local barrier to diffusion, such inter-molecular interactions may cage a small number of 

munc18-1 molecules in order to drive the fusion of a secretory vesicle.  

 

Although live-cell imaging with super-resolution microscopy is still in its infancy, it is 

likely that future research will focus heavily on the cellular dynamics and local 

environments on the molecular scale.  A future study of the characteristics of munc18-1 

dynamics in clustered regions could provide insight into whether molecules exhibit 

reduced mobility or directed motion as a result of interactions with large dense core 

vesicles or SNARE complexes.   Also, it is of particular interest to determine whether 

molecules exhibit heterogeneities in each of their trajectories, a change in behaviour 

possibly underlying an interaction between munc18-1 and the SNARE complex.   
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CHAPTER 6: 

 

THE MOLECULAR DYNAMICS OF 

LARGE COHORTS OF SINGLE 

MUNC18-1 MOLECULES IN CENTRAL 

NERVE TERMINALS  
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6.1 INTRODUCTION 

 
The sheer complexity of the nervous system relies on the ability of neurons to 

communicate with each other through the release of neurotransmitters in a highly localised 

and Ca
2+

 dependent manner (reviewed in Südhof, 2004).  Synaptic exocytosis is one of the 

most highly organised forms of intracellular membrane fusion, achieving such specificity 

and exquisite regulation through the concerted action of the SNARE proteins (Söllner et 

al, 1993a,b).  SNAREs possess conserved features that underlie the general mechanisms of 

vesicle cycling whilst exhibiting unique properties evolved to meet the demands of Ca
2+

 

dependent synaptic exocytosis.  The synchronized action of a number of accessory 

proteins is also required to oversee the highly ordered and localised nature of SNARE 

mediated exocytosis (Südhof and Rothman, 2009).   

 

Sec1/Munc18 proteins (SM proteins), identified in the nervous system of C. elegans 

(Hosono et al, 1992; Genyo-Ando et al, 1993), Drosophila (Salzberg et al, 1993; Harrison 

et al, 1994) and mammals (Hata et al, 1993; Garcia et al, 1994; Pevsner et al, 1994b) are a 

class of accessory factors that are present at all SNARE-catalysed membrane fusion sites 

(Gerber et al, 2008).  SM proteins were first suggested to interact directly with syntaxin by 

genetic work in yeast (Aalto et al, 1993), an observation later to be confirmed 

biochemically with mammalian proteins (Hata et al, 1993; Garcia et al, 1994; Pevsner et 

al, 1994b).  The dynamic interactions between munc18-1 and syntaxin homologues, 

documented to be both location and function dependent, are thought to reflect the 

multifaceted nature of the vesicle cycle (Gulyas-Kovacs et al, 2007; Gerber et al, 2008).   

 

It was previously shown that rbSecl, a mammalian neuronal protein homologous to the 

yeast SM Sec1p protein, is widespread in its subcellular localisation (Garcia et al, 1995).  

This distribution was shown to parallel that of syntaxin and SNAP-25 despite the fact that 

active zones, sites of spatially restricted synaptic vesicle fusion, only occupy a small 

percentage of the axonal plasma membrane (Galli et al, 1995; Garcia et al, 1995).  

Following this observation it was demonstrated, using immunohistochemistry and electron 

microscopy, that munc18-1 colocalised with cytoskeletal proteins in the rat olfactory bulb 

(Bhaskar et al, 2004) and that its distribution moved to the cytoplasmic fraction of rat 
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hippocampal neurons upon intense activation (Zhang et al, 2011).  Despite these 

aforementioned attempts to decipher the spatial arrangement of SM proteins, findings not 

supported in any other study, it has been repeatedly shown and generally agreed upon that 

munc18-1 and syntaxin colocalise with each other at synaptic terminals (Bennett et al, 

1992; Yoshida et al, 1992; Südhof, 1995; Okamoto et al, 2000).  A number of these 

studies have demonstrated highly punctate munc18-1 immunolabelling throughout the 

brain, with munc18-1 particularly abundant at active zones and lacking in the postsynaptic 

density (Bennett et al, 1992; Yoshida et al, 1992; Südhof, 1995; Okamoto et al, 2000).  

Findings to suggest that both munc18-1 and syntaxin are arranged at synapses are 

consistent with previously characterised biochemical interactions and functional assays of 

munc18-1 in synaptic vesicle exocytosis.  However, despite intensive study the spatial 

arrangement of munc18-1 and syntaxin in neuronal cells has never been defined at a 

molecular level. 

 

It has been widely established that munc18-1 interacts directly with syntaxin (Aalto et al, 

1993; Hata et al, 1993; Garcia et al, 1994; Pevsner et al, 1994b) via two distinct 

mechanisms, closed form and N-terminal binding (Burgoyne and Morgan, 2007; 

Dulubova et al, 2007; Rickman et al, 2007; Shen et al, 2007).  What has never been 

explored is the ‘whens’ and ‘wheres’ of these interactions, i.e. where do these proteins 

interact for the first time and when do they first enter into a long-, or short-, lived 

interaction within an intact neuron?  In spite of previous biochemical studies 

demonstrating the high affinity interaction of munc18-1 and syntaxin (Hata et al, 1993; 

Garcia et al, 1994; Pevsner et al, 1994a), it was shown by Garcia and colleagues that the 

neuronal SM protein rbSecl and syntaxin are not stably associated in situ (Garcia et al, 

1995).  This study went on to suggest that munc18-1 may well associate with syntaxin in a 

transient manner in order to allow its interaction with downstream effectors to proceed. 

This result supported a previous finding which suggested that only a small proportion of 

rbSecl was able to bind immobilised recombinant syntaxin (Hodel et al, 1994).   

 

Most studies to date have utilised approaches such as protein mutagenesis (Rickman et al, 

2007; Deak et al, 2009), GST pulldowns (Pevsner et al, 1994a) and crystallography 

(Misura et al, 2000; Toonen and Verhage, 2007) to investigate the complex interactions 

between munc18-1 and syntaxin.  These biochemical techniques involve reconstructing 
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and reconstituting biological systems, thereby providing an initial characterisation of 

protein-protein interaction dynamics.  However, translating these in vitro findings to the 

physiologically relevant behaviours observed in vivo ultimately requires methods to probe 

protein–protein interactions without affecting the physiological functions of the biological 

system.  Therefore, whilst in vitro biochemical, electrophysiological and ultra-structural 

data concerning the interaction status of munc18-1 and syntaxin is highly specific, the 

sensitivity needed to decipher their precise spatio-temporal arrangement at the molecular 

level is lacking.   

 

One advanced method available to elucidate biological mechanisms in living cells by 

monitoring real-time protein-protein interactions is Fluorescence Correlation Spectroscopy 

(FCS).  FCS is a non-invasive experimental technique used to accurately probe the local 

dynamics, concentration and photo-physics of single molecules that control various 

physiologic processes (Madge et al, 1972).  FCS is based on the analysis of spontaneous 

intensity fluctuations of a low concentration of fluorescently labelled molecules diffusing 

through a small, typically femtolitre observation volume (section 2.8.7).  The recorded 

fluctuations in fluorescence, caused by a range of physical parameters, can be quantified in 

terms of their strength and duration by autocorrelating the intensity signal (Schwille et al, 

1997; Haustein and Schwille, 2004; Kim et al, 2007).  The autocorrelation function 

measures the self-similarity of a time series signal giving biophysical readouts concerning 

molecular diffusion coefficients and concentrations.  Performing cross correlation analysis 

compares the signal between fluorescent channels, thereby measuring the extent of cross-

talk between fluorescently tagged molecules.  Taken together, FCS delivers quantitative 

information on molecular number, concentration, rate of diffusion and interaction status on 

a sec timescale in biologically intact systems (Bacia et al, 2006). 

 

Performing FCS in a living cell poses a demanding, yet feasible analytical approach to the 

study of biological molecules in their native environment.  Despite FCS requiring a low 

concentration (<1 nM), adequate brightness and mobility (>0.1 μms
-
1) of fluorescent 

molecules (Müetze et al, 2011), it is an ideal tool to study the molecular dynamics in 

living cells.  Since the development of FCS in the 1970s, a vast number of in vivo and in 

vitro studies have been conducted, primarily taking advantage of the spatial resolution of 
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FCS. Initial measurements using FCS focused on the lateral transport of receptor 

complexes on the plasma membrane (Schlessinger et al, 1976; Elson et al, 1976).  More 

recently FCS has elucidated the mechanisms behind the oscillations of the cyanobacterial 

circadian clock (Goda et al, 2011), the diffusion of fluorescently labelled tubulin in squid 

giant axons (Terada et al, 2000) and the precise stages of the SNARE mediated fusion 

pathway within reconstituted membranes (Cypionka et al, 2009).   

 

Despite intensive study into the multifaceted interaction between munc18-1 and syntaxin, 

the spatial and temporal pattern of their molecular distribution and interaction in central 

synapses remains undefined. Therefore, this study employed molecular imaging 

techniques ground state depletion followed by individual molecule return (GSDIM), 

photoactivatable localisation microscopy (PALM) and fluorescence correlation 

spectroscopy (FCS) to define the arrangement of endogenous munc18-1 and syntaxin 

molecules in central neurons.  By imaging large cohorts of single molecules it was 

possible to quantify their molecular movements preceding, during and immediately after 

exocytosis.  

 

6.2. THE ACCUMULATION OF ENDOGENOUS MUNC18-1 AND SYNTAXIN 

MOLECULES AT NERVE TERMINALS. 

 

To date, the precise intracellular localisation of neuronal munc18-1 relative to that of 

presynaptic t-SNARE syntaxin has never been probed at a single molecule level.  To 

investigate the molecular organisation of munc18-1 and syntaxin on a nanometer scale this 

study employed both GSDIM (Fölling et al, 2008) and PALM (Betzig et al, 2006). 

GSDIM involved immunodetecting endogenous munc18-1 and syntaxin with a 

fluorophore-conjugated antibody (Alexa-647), and driving this into a long-lived (seconds) 

‘dark-state’ using intensity laser illumination in the presence of a reducing buffer (Fölling 

et al, 2008).  Single Alexa-647 molecules spontaneously re-emerge from this dark state, 

permitting the localisation of individual immunodetected epitopes separated in a time 

stack, as discussed in Chapter 5.  DIV 14 cortical neurons were chemically fixed for 60 – 

90 minutes to ensure complete immobilisation (Sieber et al, 2007), munc18-1 or syntaxin 
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were immunolabelled with Alexa-647 and synapsin, a presynaptic marker, was 

immunolabelled with Alexa-488. 

  

GSDIM imaging revealed that both endogenous syntaxin (Figure 6.1) and munc18-1 

(Figure 6.1B) single molecules are enriched within central nerve terminals, when 

compared to their molecular distribution in neuronal processes, as shown previously 

(Bennett et al, 1992; Yoshida et al, 1992; Südhof, 1995; Okamoto et al, 2000).  This 

finding is in contrast with a previous finding demonstrating that rbSec1, a mammalian 

neuronal SM protein, has a widespread distribution in the axon of a neuron (Garcia et al, 

1995).  This discrepancy might be explained by the fact that Garcia et al (1995) analysed 

the localisation of two alternatively spliced isoforms, rbSeclA and B, both differing in 

subcellular localisation and at their COOH termini (Garcia et al, 1995). 
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GSDIM data are invaluable for defining, with the highest possible resolution, the spatial 

distributions of endogenous proteins.  However, due to individual molecules moving 

between states of fluorescence this technique prevents further statistical analysis, as 

discussed in Chapter 5.  To overcome these limitations, this study next used PALM to 

compare the distribution of heterologous munc18-1 and syntaxin with the spatial pattern of 

endogenous molecules ascertained using GSDIM.  

 

6.3 CONCENTRATION OF HETEROLOGOUS MUNC18-1 AND SYNTAXIN IN 

SYNAPSES. 

 

PALM optically resolves fluorescent proteins to molecular resolution through the serial 

photo-activation and -irreversible photo-destruction of subsets of photoactivatable 

molecules (Betzig et al, 2006).  Thus, to achieve the highest possible resolution of single 

heterologous munc18-1 and syntaxin molecules in primary cortical neurons, PALM 

imaging was employed.  DIV 14 cortical neurons co-expressing either photoactivatable 

(PA)-mCherry-munc18-1/ EGFP-syntaxin (EGFP provided diffraction-limited resolution 

data) or conversely, PA-mCherry-syntaxin/ EGFP-munc18-1 were chemically fixed 2 days 

post transfection and examined.  Positional information describing PA-mCherry-syntaxin 

and PA-mCherry-munc18-1 molecules was subsequently rendered into molecular maps, 

where exogenous munc18-1 and syntaxin molecules were seen to co-cluster with one 

another in varicosities (Figure 6.2 and 6.2B).  
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In order to determine whether these areas represented nerve terminals, neurons were 

transfected with PA-mCherry-syntaxin, fixed 48 hours later and co-immunolabelled 

against synapsin. PALM imaging confirmed that single syntaxin molecules clustered at 

synapsin positive synapses (Figure 6.3). This molecular distribution, with sparse and 

largely individual molecules in processes but dense accumulations in synapses, suggests 

that molecules are trafficked along axons before accumulation and retention in pre-

synaptic areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

196 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

197 

Following the confirmation that both munc18-1 and syntaxin proteins were restricted to 

synaptic terminals it was of interest to next quantify their molecular movements within 

these regions of a live neuronal cell using sptPALM, a technique introduced in Chapter 5 

(Manley et al, 2008).  

 

6.4 SINGLE MUNC18-1 MOLECULES EXHIBIT RESTRICTED KINETICS 

WITHIN SYNAPTIC TERMINI OF LIVE NEURONAL CELLS. 

 

Single munc18-1 molecules were localised under sptPALM imaging and tracked using 

Imaris (Bitplane), with single molecule trajectories shown as tracks with colour 

corresponding to the start (blue) and end (white) of the acquisition (Figure 6.4, n = 1302 

molecules, n = 4 experiments).  As hypothesised, munc18-1 molecules in synapses 

exhibited a caged and restricted motion, as shown by both the speed and displacement of 

tracks within varicosities of the neuronal cell, typically only moving between 0.046-0.107 

µm/s in length (Figure 6.4B).  Outside synapses a spatially distinct population of munc18-

1 molecules displayed directed movement, travelling in straight tracks and at greater speed 

between nerve terminals and moving up to 2.6 µm in length between synapses (Figure 

6.4B).  
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Munc18-1 has been shown to be essential in the trafficking of syntaxins to membrane 

fusion sites in neuroendocrine cells (Rowe et al, 1999, 2001; Medine et al, 2007).  Within 

their neuronal counterparts current models suggest that the pre-synaptic localisation of 

munc18-1 is also attributed to its high affinity interaction with syntaxin (Pevsner et al, 

1994a; Gerber et al, 2008).  In neuronal cells this trafficking function is less well defined, 

principally because, until recently, imaging approaches lacked sufficient spatial and 

temporal resolution to determine molecular localisations in neuronal preparations (Kim et 

al, 2010).  Could the distinct and directed kinetics of munc18-1 molecules in axons and 

dendrites be attributed to its high affinity interaction with syntaxin?  In order to address 

this question the interaction between munc18-1 and syntaxin was abolished by prohibiting 

syntaxin from adopting its closed conformation (“open”; L165A, E166A; Dulubova et al, 

1999) and deleting its N-terminal interaction motif (Δ6; Rickman et al, 2007).  It has been 

previously shown that syntaxin1a
open

Δ6 has a greatly reduced kd for munc18-1, eliminating 

interaction in living cells and acting in a dominant negative manner affecting single 

vesicle dynamics and exocytosis (Rickman et al, 2007).   

 

sptPALM experiments were performed with DIV 14 neurons transfected with PA-

mCherry-munc18-1 and syntaxin1a
open

Δ6, acquiring PALM data with a 30 frame-per-

second rate (Figure 6.5). Single particle tracking revealed that (n = 956 molecules, n = 3 

experiments) track speed increased within synapses, as shown by the coloured tracks, but 

displacement, the distance between the start and the end points of each track, decreased 

outside synapses, indicating that the molecules had lost directionality and were moving in 

an unregulated manner (Figure 6.5B).  Importantly, the displacements of the kinetically 

distinct population of munc18-1 molecules within synapses remained apparently 

unaltered.  

 

This study next compared the 10% fastest molecules between syntaxin and syntaxin (open 

Δ6) - expressing neurons, following the finding that munc18-1 molecular speed in axons is 

higher than in synapses (Figure 6.4B and 6.5B).  Munc18-1 molecules in the presence of 

interaction-deficient syntaxin were found to move in an uncoordinated manner in neuronal 

processes (Figure 6.5C). The slowest decile of all munc18-1 molecules was relatively 

unaltered (slowest 5% WT = 4.68% molecules, mutant = 4.81%) in the presence of 

interaction-deficient syntaxin and was localised to synapses. The dramatic effect of 
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disrupting the inter-molecular interaction with syntaxin on munc18-1 molecular behaviour 

demonstrates that this interaction is indeed required for the efficient trafficking of 

munc18-1 along neuronal processes, but surprisingly, not for the accumulation and 

retention of munc18-1 molecules in synapses. 
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Imaris is the most powerful commercially available software for the tracking and analysis 

of single particles.  However, a major problem with this package is its inability to correctly 

identify all fluorescent molecules in a relatively noisy image (due to low illumination and 

fast acquisition speeds) to ensure that all particles have a relationship between time points.  

Due to the immense number of molecules contained within each dataset and to avoid 

artefacts and inaccuracies in the tracking process this study decided to use particle tracking 

algorithms written and conducted by Lei Yang, Heriot-Watt University, Edinburgh, as 

introduced in Chapter 5.  These algorithms proved to be more accurate at identifying all 

fluorescent objects and accurately joining them together as part of a track.  Furthermore 

this more accurate tracking algorithm had the capability to dissect molecular speed and 

directionality, thus enabling more reliable quantification of molecular movements in such 

dynamic, noisy images.  

 

6.5 SINGLE MUNC18-1 MOLECULES ARE CAGED WITHIN NEURONAL 

CELLS. 

 

Using this custom designed tracking algorithm combined with detailed analysis of 

molecular trajectories it was possible to accurately probe the directionality of single 

munc18-1 molecules in a living neuron.  This analysis revealed no directional preference 

of munc18-1 molecules in their choice of initial track movements (Figure 6.6; n = 6584 

munc18-1 molecules, n = 3 cells), indicating complete freedom of directional motion for 

munc18-1 molecules regardless of syntaxin interaction (6.6B; n = 9499 munc18-1 

molecules tracked in the presence of dominant negative syntaxin1a
open

Δ6, n = 3 cells).  A 

significant difference was found, however, in molecular speed; in the presence of 

interaction-incapable syntaxin munc18-1 molecules had significantly faster velocities 

(Figure 6.6B), as shown previously with Imaris software (Figure 6.5).  This increase in 

speed might be expected if soluble molecules no longer interacted with a transmembrane 

protein.   
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This study, as compared with Chapter 5, put forward a more detailed question of the 

munc18-1 molecular motion data; once moving in a particular direction, where do single 

molecules go next? (Figure 6.7)  Analysing the trajectory angle taken by every molecule at 

the second position of a trajectory (Figure 6.7B), relative to the previous movement, found 

that single munc18-1 and mutant molecules were highly likely to reverse their directions 

once already moving forward (Figure 6.7B).   
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As with neuroendocrine cells, the reason for this reversing behaviour could be either due 

to a ‘zig-zag’ motion, overlying a general linear directionality, or due to a ‘caged’ motion, 

where molecules are able to move only a certain distance from their origin (Figure 6.8). 

These two possibilities can be distinguished by correlating track length with displacement 

(Figure 6.8B).  This analysis revealed that the majority of munc18-1 molecules had a 

caged motion, never moving more than 1 μm in a single direction before reversing; 

furthermore, this behaviour was not dependent on an interaction with syntaxin (Figure 

6.8B).  It could be reasoned that this ‘trapping’ of munc18-1 molecules may be 

responsible for the endogenous and heterologous molecular distribution seen in fixed 

samples (Figure 6.1), where single munc18-1 molecules accumulate in nerve terminals.  

To confirm this, ‘contour maps’, quantifying the density of molecular tracks over every 

pixel of an image, were plotted (Figure 6.8C). This approach illustrated that munc18-1 

molecules accumulate in varicosities across the neuronal cell and that this distribution is 

not dependent on syntaxin interaction. Despite the fact that this mutant has previously 

been shown to act in a ‘dominant-negative’ manner (Rickman et al, 2007), it should be 

mentioned that endogenous syntaxin might be rescuing the mutant cells to a certain extent. 
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6.6 MUNC18-1 AND SYNTAXIN INTERACT IN A HETEROGENEOUS MANNER 

ACROSS LIVE NEURONAL NETWORKS. 

 

Munc18-1 has been attributed to a range of essential functions, as a chaperone (Rowe et al, 

1999; Medine et al, 2007), as a ‘docking factor’ (Voets et al, 2001), acting with SNAP-25 

and synaptotagmin (de Wit et al, 2009), and as an essential modulator of the very latest 

stages of synaptic vesicle fusion (de Wit et al, 2009), even shaping fusion pore kinetics 

(Fisher et al, 2001; Jorgacevski et al, 2011).  These distinct functions suggest a molecular 

interaction pathway between docking and fusion (Gerber et al, 2008), as it is accepted that 

munc18-1 must regulate vesicle exocytosis via interaction with the N-terminus of syntaxin 

(as opposed to ‘closed’ syntaxin interaction) in the ternary SNARE complex (Shen et al, 

2007).  This hypothesis supports the earlier finding that syntaxin interaction is not required 

for the synaptic retention of munc18-1 (Figure 6.5), but suggests an activity-dependent 

interaction switch on the millisecond-timescale immediately preceding exocytosis in nerve 

terminals.  

 

As an initial test of this hypothesis, fluorescence lifetime imaging microscopy was 

employed to measure Förster resonance energy transfer (FRET) between proximal (within 

5 nm) acceptor (syntaxin) and donor (munc18-1) molecules in living neurons.  The donor, 

mCerulean-syntaxin, in the presence of unfused EYFP, had a single fluorescence lifetime 

at the plasma membrane (Figure 6.9, green line) in agreement with previous findings 

(Medine et al, 2007; Rickman et al, 2007).  However, in the presence of the FRET 

acceptor EYFP-munc18-1, a second fluorescence lifetime component was reported, 

indicating a specific protein-protein interaction (Figure 6.9, red line).  FLIM analysis 

showed a statistically significant quenching of the mean fluorescence lifetime of donor 

mCerulean-syntaxin from 2155 ± 90 ps (mean ± S.E., n = 13 experiments), in the absence 

of a proximal FRET acceptor, to 1295 ± 130 ps (mean ± S.E., n = 10 experiments) in the 

presence of EYFP-munc18-1 (Figure 6.9B), indicative of FRET.  The weighted mean 

fluorescence lifetime data, containing both interacting and non-interacting values and their 

respective amplitudes, was bimodal (Figure 6.9) due to two spatially segregated types of 

munc18-1-syntaxin interactions containing different FRET efficiencies.   
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In order to determine where munc18-1 and syntaxin were interacting across a neuronal 

network every pixel in the image was assigned a colour corresponding to non-interacting 

and interacting FLIM values (red - non-interacting, green - interacting).  Plotting this 

figure revealed that munc18-1 and syntaxin interactions were distributed across the 

neuronal cell in a heterogeneous manner and importantly, interactions in varicosities were 

detected only some of the time (Figure 6.10). 
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After demonstrating a spatially restricted interaction between munc18-1 and syntaxin this 

study next probed whether this heterogeneous interaction was regulated by neuronal 

activity.  Sixty second FLIM recordings were taken of EYFP-munc18-1 and mCerulean-

syntaxin expressing live DIV 14 cortical neurons before and after increasing the 

intracellular level of Ca
2+

 by the addition of 5 μM ionomycin (Liu and Hermann, 1978).  

Plotting every pixel in the image but assigning donor fluorescence lifetime value a colour 

revealed that areas on the plasma membrane contained significantly less energy transfer, 

confirming that the munc18-1-syntaxin interaction was spatially regulated (Figure 6.11).  

Perhaps surprisingly, cellular stimulation did not result in a change in the level of 

molecular interaction, with the proportion of interacting and non-interacting molecules 

remaining unaltered (Figure 6.11B).  This may reflect the fact that the munc18-1-syntaxin 

interaction is not just dependent on Ca
2+

 and may involve a cascade or pathway 

downstream of depolarisation. 
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FLIM represents a state-of-the-art technique for delivering information describing both 

molecular lifetimes and the proportion of molecules participating in energy transfer 

(Duncan et al, 2004).  Despite its advantages FLIM suffers from slow temporal resolution 

and diffraction-limited spatial resolution (Duncan et al, 2004).  It is therefore possible that 

FLIM does not possess the adequate sensitivity to report an activity dependent change in 

interaction status between munc18-1 and syntaxin, an interaction that is likely to occur on 

a faster time-scale. 

 

All molecular imaging techniques so far used in this thesis, namely GSDIM, PALM and 

FLIM, lack the required temporal resolution to be able to visualise dynamic protein-

protein interactions.  Measuring a dynamic molecular event in a synapse would ideally 

require a non-invasive molecular resolution technique with exquisite temporal resolution. 

To achieve sufficient resolution and observe highly regulated molecular events specific to 

a living synapse this study next employed fluorescence correlation spectroscopy (FCS). 

FCS performs correlation analysis of fluctuations in fluorescence intensities caused by the 

entry and exit of single fluorescent molecules into and out of a small excitation volume 

(Figure 6.12; Kim et al, 2007).  Analysis of accumulated molecular fluctuations, acquired 

on a μs timescale, delivers quantitative information on molecular number, concentration, 

rate of diffusion and interaction status (Kim et al, 2010). 
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6.7 THE ACCURACY OF FLUORESCENCE CORRELATION SPECTROSCOPY IN 

REPORTING PROTEIN-PROTEIN INTERACTION IN VITRO. 

 

The ability of FCS to report molecular interactions and diffusion rates using highly 

purified fluorescent proteins in solution was initially determined.  FCS was performed 

using defined concentrations (10 nM) of EGFP and mCherry (Chapter 2, section 2.5.2). 

When mixed in solution, no cross-correlation between the photon fluctuations occurred, 

indicating that the two proteins did not interact (Figure 6.13).  Repeating the experiment 

using an EGFP-mCherry fusion protein yielded FCS autocorrelation curves for green and 

red fluorescence with identical decay constants (indicative of similar diffusion rates) and 

substantial cross-correlation indicating that both fluorescent molecules behaved in an 

identical spatio-temporal manner in the excitation volume (Figure 6.13B).  

 

The rate of diffusion of EGFP-munc18-1 molecules in a cellular environment was next 

quantified.  For this, HEK-293 cells were chosen, known not to express syntaxin1 or any 

other munc18-binding proteins (Rowe et al, 1999).  Munc18-1 in this cellular expression 

system was cytosolic, and FCS autocorrelation analysis yielded a diffusion rate of 9.26 ± 

1.86 μm
2
s

-1
 (mean ± SEM, n = 9 independent experiments).  This molecular diffusion was 

slower than for cytosolic unfused EGFP (D = 19.66 ± 1.06 μm
2
s

-1
, also slower than EGFP 

in solution in vitro), because munc18-1-EGFP has a greater molecular mass than EGFP 

(Figure 6.13C). 
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6.8 MUNC18-1 AND SYNTAXIN DIFFUSE AT SIMILAR RATES BUT DO NOT 

INTERACT IN A RESTING SYNAPSE. 

 

Whilst the SNARE hypothesis model remains compatible with a large body of 

experimental evidence (Schiavo et al, 1992; Blasi et al, 1993b; Protopopov et al, 1993), 

the precise sequence of molecular interactions that precede and promote SNARE complex 

formation and vesicular fusion within an intact nerve cell are still unclear.  In order to 

determine the dynamics of munc18-1 and syntaxin in living neurons this study next 

focused on acquiring data from synapses containing EGFP-munc18-1 and mCherry-

syntaxin (Figure 6.14; Kim et al, 2010). Synapses containing the lowest detectable 

fluorescence were selected for analysis, and both the EGFP-munc18-1 and mCherry-

syntaxin photon count fluctuations were measured with a 2 sec acquisition rate.  Auto- 

correlation curves for these data accumulated over 5 - 10 seconds were generated, 

delivering similar diffusion rates for munc18-1 and syntaxin molecules (5.19 ± 0.84 μm
2
s

-1
 

and 3.26 ± 0.83 μm
2
s

-1
, respectively; mean ± S.E.M., n = 20 independent experiments; 

Figure 6.14B).  

 

Accurate measurement of membrane protein diffusion may be hampered by membrane 

flow and other confounding factors (Weiss et al, 2003); however, the relatively short 

diffusion time for syntaxin is in agreement with that measured for other trans-membrane 

proteins in cells (Weiss et al, 2003; Bacia et al, 2004).  Within a resting synapse munc18-1 

and syntaxin have similar rates of diffusion which are not statistically different from one 

another (unpaired t-test).  The fact that both proteins are moving at the same rate is an 

indication of a protein-protein interaction.  However, little or no cross-correlation was 

detected between munc18-1 and syntaxin molecular fluctuations in the majority of 

experiments suggesting the idea that both proteins are not interacting in a resting synapse.  

Also, the rate of synaptic munc18-1 in synapses appears slower than in the cytosol of 

HEK293 cells (Figure 6.13C), indicating that it cannot be free in the pre-synaptic cytosol 

and must therefore be bound via a syntaxin-independent interaction.   
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Taken together with the sptPALM and FLIM data, these different measurements confirm 

that the majority of syntaxin and munc18-1 molecules within varicosities do not interact in 

resting central synapses before exocytosis.  This is consistent with a previous finding 

showing that despite rbSecl, a SM homologue, and syntaxin1 being localised in the same 

regions of a nerve cell, the majority of the two proteins are not associated with each other 

in situ (Garcia et al, 1995).  Is this finding an indication that non-interacting munc18-1 and 

syntaxin may serve to inhibit the formation of the synaptic SNARE fusion complex and 

the catalysis of synaptic vesicle fusion, possibly within and outside active zones?  Taking 

this further, SNARE mediated vesicular fusion may then only be driven through a stable 

association between munc18-1 and the ternary complex upon neuronal depolarisation.  

 

6.9 NEURONAL ACTIVITY RESULTS IN A FALL IN THE DIFFUSION RATE OF 

SYNTAXIN. 

 

To determine whether neuronal activity could evoke an interaction between munc18-1 and 

syntaxin, or whether a change in their mobilities could be observed, a 20 Hz train of 

electrical depolarisations lasting 10 seconds was delivered during FCS recordings.  

Monitoring of intracellular Ca
2+

 (acquired at a 2 sec rate, Figure 6.15) confirmed the 

activity of these nerve terminals.  This thesis has previously shown that the same electrical 

treatment is sufficient to induce synaptic vesicle exocytosis, indicated by FM-dye 

unloading (Figure 4.9).  During stimulation, a decrease in the rate of munc18-1 molecular 

diffusion from 5.19 ± 0.84 μm
2
s

-1
 to 3.17 ± 0.47 μm

2
s

-1
 was recorded (Figure 6.15; mean ± 

S.E.M., n = 15 synapses).  Furthermore, the rate of syntaxin molecular diffusion rate 

significantly decreased upon stimulation, from 3.26 ± 0.84 μm
2
s

-1
 to 0.63 ± 0.14 μm

2
s

-
1 

(mean ± S.E.M., n = 15 synapses, p < 0.05, unpaired t-test, Figure 6.15B).  This dramatic 

fall in the diffusion rate of syntaxin might well represent syntaxin entering the ternary 

SNARE complex to drive synaptic vesicle fusion.  It would therefore be of interest to 

determine whether the diffusion rates of SNAP-25 and synaptobrevin, proteins known to 

interact with syntaxin, followed a similar trend in mobility upon neuronal activity. 
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FCS recordings taken 20 seconds post-stimulation revealed that the diffusion rate of 

syntaxin (3.21 ± 0.44 μm
2
s

-1
, mean ± S.E.M., n = 20 independent experiments, p < 0.05, 

unpaired t-test, Figure 6.16) had recovered to a similar rate recorded immediately prior to 

stimulation whereas the diffusion rate of munc18-1 had only partially recovered (3.93 ± 

0.50 μm
2
s

-1
).  Furthermore, during and 20 seconds following stimulation, no detectable 

cross-correlation between munc18-1 and syntaxin molecular fluctuations was observed.  

Therefore, the finding that both proteins had significantly different diffusion rates with no 

cross-talk between channels indicated that both proteins were behaving differently within 

the depolarised synapse – i.e., the molecules were not in a complex (Figure 6.16B).  This 

change in the diffusion rates of munc18-1 and syntaxin may reflect a general mechanism 

in which they, and possibly other exocytic proteins, modulate neuronal functions.  Perhaps 

the reason it is thought that munc18-1 and syntaxin interact at all times in the literature 

reflects the lack of available techniques that possess sufficient temporal speed and 

resolution required to detect such rapid changes in molecular diffusion and interaction 

status.  Furthermore, the fact that variability exists between the level of interaction of 

munc18-1 and syntaxin during some FCS recordings could be simply attributed to the 

different regulatory principles imposed on the synapse used in each measurement (de Jong 

et al, 2012).  Earlier this year it was shown that presynaptic sensitivity, vesicular protein 

expression and vesicular release of a particular synapse were dependent on the distance 

from the soma (de Jong et al, 2012). Lastly, it is noteworthy to mention that FCS can 

suffer from limitations, especially when sampling a noisy sample, like a neuron. The fact 

that no robust protein-protein interaction was detected in the majority of experiments 

could also be due to the high concentration of proteins positioned at a synapse, hence a 

low signal to noise ratio. In order to avoid these potential artefacts, neurons expressing 

low levels of fusion proteins were always selected for experimentation.      
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6.10 CONCLUSION 

 

SM protein biology has long been controversial; munc18-1 was originally thought to be an 

inhibitory factor, as it was isolated by virtue of its high affinity interaction with 

monomeric syntaxin, sequestering it in an inactive form (Pevsner et al, 1994a). 

Contemporaneous findings that munc18-1 acted at the latest stages of vesicle exocytosis 

proved controversial (Fisher et al, 2001), but later it emerged that munc18-1 could indeed 

interact, via a different binding site in syntaxin, with the ternary SNARE complex 

(Dulubova et al, 2007; Rickman et al, 2007; Shen et al, 2007).  Importantly, however, the 

precise temporal sequence of interactions between the SNAREs and regulators in the run 

up to synaptic vesicle fusion remains speculative, not least because of a lack of suitable 

approaches to directly probe molecular localisations, movements and interactions in situ.   

 

Over the last few years a number of super resolution techniques have emerged and enabled 

the investigation of biological structures and mechanisms with a nanosecond spatio-

temporal resolution.  The advancement of super-resolution techniques have permitted 

investigation into perhaps one of the most important structures within the nervous system, 

the synapse, a term coined by Sherrington in 1897 after the Greek word for ‘clasp’ 

(Cowan and Kandel, 2001).  Using both GSDIM and PALM this study has confirmed that 

munc18-1 and syntaxin colocalise with each other at synaptic terminals, seen previously 

on a diffraction-limited level (Bennett et al, 1992; Yoshida et al, 1992; Südhof, 1995; 

Okamoto et al, 2000).  Single molecule imaging PALM has recently been extended to live 

cells, enabling the non-invasive visualisation of dynamic processes in living cells using 

genetically encoded fluorescent proteins.  Using sptPALM this study also showed that 

single munc18-1 molecules exhibit two kinetically and spatially distinct populations 

within a living neuron.  A population of restricted, largely immobile munc18-1 molecules 

are confined to synapses whereas another population exhibits a more directed and faster 

movement between synapses.  This is the first time that divergent munc18-1 behaviours 

have been observed in a living neuron, a characteristic which could be attributed to the 

mode of interaction employed in that defined area of the neuron.  
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It is thought that munc18-1 functions through its direct interaction with syntaxin (Hata et 

al, 1993; Pevsner et al, 1994a).  The universal importance of munc18-1 has been 

evidenced in a number of organisms, with the genetic manipulation of munc18-1 resulting 

in deficits in cellular secretion (Novick et al, 1980), syntaxin trafficking (Arunachalam et 

al, 2008; Medine et al, 2007), large dense core vesicle docking (Voets et al, 2001) and 

neurotransmission (Gengyo-Ando et al, 1993; Verhage et al, 2000).  Despite strong 

evidence supporting an essential role of munc18-1 in vesicular fusion, it also has to be 

noted that disrupting the expression of munc18-1 results in a concomitant reduction in 

syntaxin expression levels (Voets et al, 2001; Arunachalam et al, 2008).  Investigating the 

crucial interaction between munc18-1 and syntaxin on a single molecule level using 

sptPALM demonstrates that ablating the interaction between munc18-1 and syntaxin 

severely affects the directionality of munc18-1, resulting in an average decrease in the 

displacement of munc18-1 molecules.  This finding supports the idea that munc18-1 and 

syntaxin chaperone one another, both requiring a stable interaction in order to facilitate 

their trafficking and delivery to defined areas of a cell (Rowe et al. 1999, 2001; Medine et 

al. 2007; Rickman et al. 2007).  Importantly, an interaction between munc18-1 and 

syntaxin is not required to maintain the accumulation of munc18-1 once synaptically 

localised.  

 

Alongside a change in the displacement of single munc18-1 molecules, a significant 

difference was found in molecular speed upon the removal of a syntaxin interaction.  

Munc18-1 molecules had significantly faster velocities (Figure 6.6B), an observation 

consistent with interrupting an interaction between a soluble and transmembrane protein.  

Taken together, these observations suggest that munc18-1 molecules not participating in 

an interaction with syntaxin molecules are not trafficking to the appropriate cellular sites, 

indicating a stable interaction with syntaxin is essential for the correct localisation of 

munc18-1, most probably to fusion sites.  These finding add another dimension to SM 

knockout studies conducted in a variety of organisms, perhaps such severe and detrimental 

phenotypes are a result of munc18-1 unable to reach its final destination and therefore 

unable to carry out its essential function(s) in the synaptic vesicle lifecycle. 

 

The interaction between munc18-1 and syntaxin is paramount in a wide variety of cellular 

processes, intimating that both proteins must interact at some stage in the synaptic vesicle 
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lifecycle.  However, despite a large body of evidence detailing the modes of interaction 

between munc18-1 and syntaxin, nothing is currently known about precisely when these 

proteins interact in real time.  Using the extremely high spatial and temporal resolutions 

offered by fluorescence correlation spectroscopy (FCS) this study was able to provide 

information on munc18-1/syntaxin concentrations, mobility coefficients and rate constants 

of their protein-protein reactions.  This study presents several independent lines of 

evidence to support the hypothesis that munc18-1 and syntaxin molecules interact in 

neuronal processes to enable efficient molecular trafficking to synapses, but that once in 

the synapse, these molecules are held apart in a resting and active nerve terminal.  Despite 

both proteins displaying similar diffusion constants prior to stimulation, little cross 

correlation was observed, indicating that they were not interacting at the point of 

measurement.  This observation now introduces the possibility that munc18-1 and 

syntaxin are not always in constant communication despite their high affinity interaction, 

suggesting spatial segregation in the synapse.  This result is in accordance with an earlier 

finding demonstrating that complexes involving syntaxin, SNAP-25, VAMP, αSNAP and 

NSF were not associated with munc18-1 (Pevsner et al, 1994b).    

 

FCS recordings revealed that the diffusion rate of syntaxin was reduced significantly 

during depolarisation.  This slow and sequestered behaviour might in fact reflect syntaxin 

entering the SNARE complex in order to drive exocytosis.  On the other hand, munc18-1 

also slows down in molecular motion upon stimulation, indicating that both proteins might 

actually bind to a much larger protein, or protein complex which is restricting their 

movement within synaptic terminals.  The active zone is a pre-synaptic structure found 

beneath the presynaptic plasma membrane, the principal site for Ca
2+

-dependent 

neurotransmitter release (Landis et al, 1988).  Since the discovery and characterisation of 

the active zone a number of essential components have been shown to reside in its matrix, 

including bassoon (tom Dieck et al, 1998), piccolo (Cases-Langhoff et al, 1996), RIM1 

(Wang et al, 1997), munc13-1 (Brose et al, 1995) and CAST (Ohtsuka et al, 2002), with 

the remaining molecular composition remaining unclear.  Most active zone proteins are 

comparatively large in structure and thought to form complex protein-protein interactions 

resulting in the formation of macromolecular protein complexes (Ohtsuka et al, 2002).  

The functional interactions between active zone proteins have been shown to mediate 

synaptic vesicle priming (Betz et al, 2001), vesicle transport (Wang et al, 2002) and the 
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release of neurotransmitters (Mochida et al, 1996).  Combining the finding that munc18-1 

and syntaxin have a long and sequestered diffusion time during neuronal depolarisation 

with previously characterised interactions with a number of active zone proteins (Betz et 

al, 1997; Gladycheva et al, 2004; Guan et al, 2008), suggests that both proteins may be 

sequestered into a large, slowly diffusing pre-synaptic-membrane bound molecular 

complex involved in catalysing synaptic vesicle fusion.  Furthermore, immediately 

following neurotransmitter release the diffusion rates of munc18-1 and syntaxin increase 

to near pre-stimulation levels.  This change may reflect the transient nature of pre-synaptic 

protein-protein interactions involved in eliciting synaptic vesicle fusion upon the arrival of 

an action potential. 

 

The extremely short delay between nerve terminal depolarisation and synaptic vesicle 

exocytosis is primarily attributed to vesicles residing in a metastable state at active zones, 

poised and ready for fast Ca
2+

-triggered fusion with the plasma membrane.  The arrival of 

an action potential generates a stimulation-dependent increase in local Ca
2+

 and results in 

vesicular fusion within 200 μs (reviewed in Lin and Scheller, 2000).  Therefore, a rapid 

change in the interaction status of the protein machinery driving SNARE mediated vesicle 

fusion would be undetectable using TCSPC-FLIM, a technique which lacks the temporal 

sensitivity of FCS.  Using FCS this study has revealed for the first time that munc18-1 and 

syntaxin may not in fact interact in a synapse before, during and after evoked synaptic 

vesicle fusion.  It is conceivable to imagine that spatially segregating a number of exocytic 

proteins could serve as a negative clamp, arresting the stages preceding full fusion.  This 

mechanism would therefore prevent spontaneous and indiscriminate SNARE complex 

assemblies outside the active zone or until vesicles are required to fuse (Hayashi et al, 

1994).  Finally, elevations in cytosolic Ca
2+

 triggered by the arrival of an action potential 

may act to release this clamp allowing SNARE complex formation and the fusion reaction 

to proceed (Rothman, 1994b), a reaction not necessarily involving a direct munc18-1-

syntaxin interaction.   

 

Whereas most intracellular membrane fusion events are constitutive and unregulated, 

neurotransmission depends on the coupling of neurotransmitter release to Ca
2+

 influx into 

the nerve terminal (Katz, 1969).  This concept introduces another possible explanation to 

account for why the molecular behaviour of munc18-1 and syntaxin change upon the 
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arrival of an action potential.  Synaptotagmin, the putative Ca
2+

 sensor essential for fast 

synchronous SNARE-mediated neuronal exocytosis (Geppert et al, 1994; Yoshihara and 

Littleton, 2002) has been shown to induce the aggregation of cellular membranes in 

response to Ca
2+ 

(Popoli and Mengano, 1988; Popoli et al, 1991; Perin et al, 1990).  The 

short delay period between Ca
2+

 influx and synaptic vesicle fusion suggests that 

synaptotagmin must be associated with the fusion machinery prior to Ca
2+

 influx into the 

nerve terminal.  In support of this suggestion SNARE complexes were shown to co-purify 

with synaptotagmin in the absence of Ca
2+

 (Söllner et al, 1993a; McMahon et al, 1995; Li 

et al, 1995), with native synaptotagmin specifically binding to the t-SNARE heterodimer, 

formed from syntaxin and SNAP-25 with high affinity (Rickman and Davletov, 2003; 

Rickman et al, 2004).  More recently it was reported that vesicles dock when 

synaptotagmin-1 binds to syntaxin/SNAP-25 acceptor complexes and, together with 

munc18-1, constitute the minimal docking machinery (de Wit et al, 2009).  Therefore, it is 

conceivable to imagine that upon neuronal depolarisation membrane bound 

synaptotagmin, already bound to syntaxin (Kee and Scheller, 1996; Fernandez et al, 1998; 

Rickman and Davletov, 2003; Rickman et al, 2004), binds to entering Ca
2+

 which triggers 

its oligomerisation (Damer and Creutz, 1996).  Ca
2+

 binding would therefore lead to a 

conformational change in synaptotagmin, potentially acting as an electrostatic switch in 

the molecular configuration of syntaxin, tethering it at the active zone and allowing it to 

enter into the ternary SNARE complex to drive SNARE complex formation and vesicle 

fusion.  It might well be the case that munc18-1-syntaxin protein-protein interactions are 

required upstream of membrane association and not directly in the catalysis of the final 

fusion event of vesicles in close apposition to the active zone of a nerve terminal.  These 

results can be summarised by a simplistic model which is based on the interpretation of the 

functionality of the munc18-1-syntaxin interaction within synaptic terminals (Figure 6.16).  
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CHAPTER 7: 

 

FINAL CONCLUSIONS 
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7.1 SUMMARY OF FINDINGS. 

 

Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved 

proteins: three SNARE proteins and munc18-1.  Dissecting the functional outcomes of the 

spatially organised protein interactions between these factors has been difficult because of 

the close interrelationship between different binding modes. This investigation had two 

main aims; firstly to biochemically characterise the munc18-1-syntaxin-N-terminal 

interaction to determine its downstream functionality within a living cell.  The SNARE 

protein, syntaxin, is regulated by munc18-1 (Pevsner et al, 1994b). This regulation is 

central to exocytosis but despite a large amount of biochemical, electrophysiological and 

ultra-structural data, the spatio-temporal arrangement of munc18-1 and syntaxin at the 

molecular level remains undefined. Therefore the second aim of this investigation was to 

resolve the spatial and temporal pattern of their molecular distribution and interaction in 

both central synapses and neuroendocrine cells. 

 

The findings from this thesis fall into three main areas.  Firstly it was found that the 

munc18-1-syntaxin-N-terminal interaction had a pronounced influence on the behaviour of 

vesicles at the plasma membrane and their likelihood to undergo fusion.  Furthermore N-

terminal interaction not only regulates a specific pool of secretory vesicles and imparts a 

greatly increased fusion probability within neuroendocrine cells but also exists as a 

catalyst for the fusion of readily releasable synaptic vesicles within central synapses.  A 

second main finding involved defining the molecular architecture of SM/vesicle 

relationships in fusion competent PC12 cells.  Lastly, another finding of this investigation 

demonstrated that munc18-1 requires syntaxin to traffic efficiently along axons but not for 

its retention in nerve terminals.  Moreover, no interaction between synaptic munc18-1 and 

syntaxin molecules was detected in nerve terminals, with the rate of syntaxin significantly 

slowing down upon Ca
2+

-triggered exocytosis.   
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7.2 CHARACTERISATION OF THE FUNCTIONALITY OF THE MUNC18-1-

SYNTAXIN-N-TERMINAL INTERACTION. 

 

The synchronized action of SNARE mediated exocytosis is reliant on a number of 

accessory proteins to regulate its highly ordered and localised nature (Südhof and 

Rothman, 2009).  Sec1/Munc18 proteins (SM proteins) are a class of such accessory 

factors that are present at all SNARE-catalysed membrane fusion sites (Gerber et al, 

2008).  It is known that munc18-1 and syntaxin interact via at least two distinct modes, 

one with monomeric ‘closed’ syntaxin and the other involving its highly conserved N-

terminus (Dulubova et al, 2007; Rickman et al, 2007; Shen et al, 2007).   

 

At the inception of this study, and in contrast with the consensus on SNARE protein 

function, conflicting findings had emerged regarding the precise role of the munc18-1-

syntaxin-N-terminal interaction.  N-terminal binding had been shown to stimulate 

secretory vesicle dynamics at the plasma membrane (Rickman and Duncan, 2010), 

SNARE assembly in vitro (Shen et al, 2007; Schollmeier et al, 2011), synaptic fusion in 

the calyx of Held (Khvotchev et al 2007) and synaptic vesicle priming (Deak et al, 2009).  

Moreover, the 4-helical SNARE bundle, containing the syntaxin N-peptide region, is the 

minimal complement required for munc18-1-mediated stimulation of membrane fusion in 

vitro (Shen et al, 2010).  However, and in stark contrast, other studies have reported that 

the N-terminal interaction is indispensable for SNARE mediated membrane fusion 

(Arunachalam et al, 2007; Han et al, 2009; Malintan et al, 2009; Diao et al, 2010; Meijer 

et al, 2012).  The controversy relating to the functionality of the N-terminal interaction can 

be partly attributed to the poorly conserved munc18-1 amino acid residues targeted in one 

recent study (E132 and F115; Malintan et al, 2009).  Therefore residues not indicative of 

essential function (Madabushi et al, 2002) have obscured the functionality of the N-

terminal interaction and demanded further work to clarify its precise role in the membrane 

fusion process.   

 

Structural information available on SM-SNARE protein configurations and binding modes 

enabled this study to both identify and characterise important residues regulating N-

terminal binding, paving the way for a more detailed understanding of its role in mediating 
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downstream cellular events.  Biochemical separation of binding modes between munc18-1 

and syntaxin revealed the extent of N-terminal binding occurring in an in vitro setting and 

highlighted those munc18-1 residues important in facilitating the N-terminal interaction, 

namely residue I127 (Figures 3.1 and 3.2).  Using various GST-syntaxin constructs in 

combination with selected munc18-1 mutants demonstrated the extent of disruption of N-

terminal binding in vitro, with munc18-1[I127A] resulting in the largest reduction in 

binding to syntaxin.  These in vitro binding assays also demonstrated that N-terminal 

binding involves a number of ionic interactions, in contrast with closed form binding 

(Figure 3.1).  

 

Following preliminary in vitro identification of munc18-1 residues essential in mediating 

N-terminal interaction this study further characterised where N-terminal binding 

predominated within a cellular environment.  Protein co-localisation and FLIM studies 

revealed that the N-terminal interaction was primarily utilised at the plasma membrane 

and key for the efficient targeting of syntaxin to sites of vesicular fusion, as reported 

previously (Figures 3.5 and 3.6; Rowe et al, 2001; Medine et al, 2007; Rickman et al, 

2007; Arunachalam et al, 2008).  It is noteworthy to mention that N-terminal binding is 

not the sole interaction mode responsible for the trafficking of syntaxin given that both 

munc18-1 and syntaxin molecules still reach the plasma membrane upon N-terminal 

ablation, as revealed by PALM (Figures 5.9B and 5.10B) and co-localisation studies 

(Rickman et al, 2007).  It is therefore reasonable to assume that those molecules not 

reaching the plasma membrane as efficiently (Figure 3.5) or not engaging in N-terminal 

interactions once there (Figure 4.4) are responsible for the downstream cellular effects 

seen throughout this investigation.  

 

In this study mutating the hydrophobic pocket of munc18-1 to quantifiably disrupt N-

terminal interaction with syntaxin also resulted in significant changes in vesicle dynamics 

and fusion efficiency (Figures 4.1 and 4.3).  This investigation identified two distinct 

pools of vesicles, based on their relative mobilities, in live neuroendocrine cells (Figure 

4.5).  Analysis of these kinetically distinct pools revealed that the majority of fusion 

events arise from a minority pool of relatively mobile membrane proximal vesicles, which 

in turn relies on N-terminal interactions.  Demonstrating that the majority of fusion events 

arise from a more mobile subset pool of vesicles supports the theory suggesting that 
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secretory vesicles undergo molecular-scale movements immediately prior to membrane 

fusion (Degtyar et al, 2007).  Therefore interaction with the syntaxin N-peptide can confer 

differential release probabilities to secretory vesicles and may contribute to the delineation 

of secretory vesicle pools.  This observation fits well with the finding that disrupting the 

casein kinase II phosphorylation site at the N-terminus of syntaxin, a key mediator of the 

munc18-1-syntaxin-N-terminal interaction, also results in a significantly reduced 

percentage of fusing vesicles specifically residing in the readily releasable pool of synaptic 

vesicles in a central nerve terminal (Figures 4.9 and 4.10).   

 

Specialised secretory cells, e.g. neuronal and neuroendocrine cells, share a number of 

characteristics, namely both are filled with membrane bound vesicles containing chemical 

compounds used in the transmission of a signal.  Vesicles reside in distinct pools with only 

a small fraction of the morphologically docked and primed vesicles available for 

immediate release upon the arrival of a physiological stimulus (Burgess and Kelly, 1987; 

Greengard et al, 1993; Pieribone et al, 2005; Brodin et al, 1997; Kuromi and Kidokoro, 

1998; Rizzoli and Betz, 2004).  The remainder of vesicles are thought to constitute a large 

reserve pool awaiting recruitment into the readily releasable pool (RRP) for further rounds 

of exocytosis. For example, fluorescence microscopy studies on chromaffin cells 

demonstrated that approximately 450–1000 large dense core vesicles are morphologically 

docked at the plasma membrane (Burgoyne, 1991; Parsons et al, 1995; Steyer et al, 1997), 

with only a fraction of these vesicles rapidly released upon stimulation (Neher and Zucker, 

1993; Parsons et al, 1995).  It has been shown that distinct populations of vesicles within 

neuronal and neurosecretory cells are segregated functionally (Rosenmund and Stevens, 

1996; Von Gersdorff and Matthews, 1997; Kuromi and Kidokoro, 1998) and, specifically 

within chromaffin cells spatially, according to age (Duncan et al, 2003).  By disrupting the 

N-terminal interaction in both neurons (syntaxin[S14E], Figures 4.9C and 4.10) and 

neuroendocrine cells (munc18-1[I127A], Figures 4.3 and 4.5) the proportion of fusion 

events from a specific postdocking pool of vesicles, most likely to reside in the RRP, is 

reduced.  Both results suggest that fusion competent vesicles ready for immediate Ca
2+

 

triggered fusion within the RRP of both neuronal and neuroendocrine cells rely on N-

terminal interactions for events immediately postdocking and preceding exocytosis.  

However, the fact that munc18-1[I127A] resulted in no difference in the extent of RRP 

fusion in neuronal cells despite playing a significant role in driving large dense core 
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vesicle exocytosis may simply point towards the fact that endogenous proteins can over-

ride the effects of transfected mutant proteins or that differences may exist in the 

regulation of exocytosis between both cellular models. For example, the rate of synaptic 

vesicle exocytosis measured in cerebellar synapses is reported to be 0.1 ms (Sabanti and 

Regehr, 1996).  In contrast, LDCV exocytosis in chromaffin cells occurs at a speed of 7–

27 ms (Chow et al, 1992; Voets, 2000).  Therefore, the fastest modes of Ca
2+

-triggered 

LDCV exocytosis are more than 10-fold slower than fast synaptic vesicle exocytosis and 

proceed at approximately 100 fold slower following stimulation.  Perhaps the great 

difference in release kinetics subjects the molecular machinery governing fast 

neurotransmission, namely the SNAREs, munc18-1 and synaptotagmin, to stricter 

regulatory mechanisms.  In that case the N-terminal hydrophobic pocket of munc18-1, 

specifically residue I127, may play more of a redundant role in synaptic vesicle exocytosis 

due to the differences that exist within the interplay between components of the SNARE 

complex and their positive and negative regulatory effectors.   

 

Approximately twenty years following Katz’s seminal finding, showing that 

neurotransmission depends on the coupling of synaptic vesicle release to Ca
2+

 influx into 

the nerve terminal (Katz and Miledi, 1967), the discovery of synaptotagmin-1, the putative 

Ca
2+

-sensor for synaptic exocytosis, was made (Perin et al, 1990).  Later it was shown that 

synaptotagmin and syntaxin interact in vitro (Li et al, 1995; Kee and Scheller, 1996; 

Rickman and Davletov, 2003; Rickman et al, 2004) through a highly acidic region of the 

extreme N-terminal peptide of syntaxin and the C2A domain of synaptotagmin I in a Ca
2+

-

dependent manner (Fernandez et al, 1998).  Combining the concept of vesicular pools and 

the actions of synaptotagmin suggests that preventing the munc18-1-syntaxin-N-terminal 

interaction (using syntaxin[S14E]) alters the fusion capabilities of readily releasable 

synaptic vesicles by disrupting an interaction between the N-terminal peptide of syntaxin 

and synaptotagmin.  With synaptotagmin, syntaxin-1, SNAP-25 and munc18-1 

constituting the minimal docking machinery (de Wit et al, 2009), a disruption between this 

acceptor complex could also prove to destabilise the initial association of those readily 

releasable vesicles with the plasma membrane.  These stable protein-protein interactions 

are therefore required downstream of membrane association and may be serving as an 

electrostatic switch in the immediate fusion of vesicles primed and ready for Ca
2+

 

triggered release.   
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All of the above results, in combination with the finding that N-terminal interaction is 

specific to the plasma membrane of a neuroendocrine cell (Figure 4.4), indicate that this 

mode of binding is only engaged with a subset of vesicles poised for membrane fusion.  

Assuming this is correct, it is therefore unsurprising that perturbing the N-terminal 

interaction only affects those membrane proximal vesicles that give rise to the majority of 

fusion events in neuroendocrine cells and the readily releasable pool of synaptic vesicles 

within central synapses. 

 

7.3 THE INTERACTIONS, MOBILITIES AND DISTRIBUTIONS OF SINGLE 

MOLECULES. 

 

Despite a large effort focused on the roles of munc18-1 in the exocytotic pathway its 

intracellular localisation on a molecular level and how it may act upon single vesicles 

prior to the final fusion event remains unknown.  SM proteins are essential factors in all 

intracellular trafficking routes (Novick and Schekman, 1979; Novick et al, 1980; Novick 

et al, 1981), synaptic transmission (Brenner, 1974; Salzberg et al, 1993; Harrison et al, 

1994; Verhage et al, 2000) and promoting the docking of vesicles in neuroendocrine cells 

(Voets et al, 2001; Toonen et al, 2006; Verhage and Sørensen, 2008). It is clear that 

munc18-1 is required in the process of both vesicle docking and postdocking events but a 

coherent explanation of how SM proteins are structurally organised on the molecular level 

in order to carry out their precise functions has been hampered by the lack of available 

techniques.   

 

This investigation employed super-resolution techniques Ground state depletion-individual 

molecule return (GSDIM) microscopy and Photoactivation Localisation Microscopy 

(PALM) to show that single munc18-1 molecules exist in a non-random spatial 

distribution, resulting in areas of low and high molecular density.  Interestingly, areas of 

lower molecular densities corresponded to areas that were specifically targeted by 

secretory vesicles.  This finding is similar to the spatial organisation of syntaxin which has 

been shown to reside in dense clusters (Sieber et al, 2007; Rickman et al, 2010) which do 

not coincide with secretory vesicles (Barg et al, 2010).  In addition, resolving the 
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heterogeneous distribution of munc18-1 supports the data generated using sptPALM 

(Figures 5.14 and 5.15, Manley et al, 2008).  Single munc18-1 molecule tracking data 

shows that munc18-1 moves freely across the plasma membrane of a neuroendocrine cell 

but displays confined, caged kinetics in sites enriched with other munc18-1 molecules 

(Figures 5.15).  Therefore, tracking large cohorts of single munc18-1 molecules 

demonstrated that the heterogeneities of single molecular motions were responsible for 

their spatial distribution across the membrane of neurosecretory cells.   

 

This finding is consistent with sptPALM data gathered from the behaviours of single 

munc18-1 molecules within live neuronal networks. These experiments revealed two 

kinetically and spatially distinct populations of munc18-1; one population consisted of 

restricted, largely immobile molecules confined to synapses whereas another population 

displayed a more directed, faster movement between synapses.  Similarly the dynamics of 

single munc18-1 molecules also accounted for the distribution of endogenous syntaxin 

(Figure 6.1) and munc18-1 (Figure 6.1B), both enriched within central nerve terminals 

when compared to their molecular distribution in neuronal processes.  Furthermore, 

ablating the interaction between munc18-1 and syntaxin severely affected the 

directionality and molecular speed of munc18-1, supporting the idea that munc18-1 and 

syntaxin require a stable interaction in order to facilitate their trafficking and delivery to 

defined areas of a cell (Rowe et al, 2001; Medine et al. 2007; Rickman et al. 2007).   

 

Further analysis of the molecular kinetics of munc18-1 in live neuroendocrine cells 

revealed that domains of the planar bilayer were preferred by munc18-1 molecules (Figure 

5.18B).  The restricted kinetics of munc18-1 molecules in these membrane hot-spots are 

likely to reflect the recruitment of munc18-1 molecules to membrane-inserted 

transmembrane syntaxin as this is the principal mechanism for munc18-1-membrane 

association (Hata et al, 1993; Rowe et al, 1999, 2001; Medine et al, 2007; Arunachalam et 

al, 2008).  Moreover, perturbing the N-terminal interaction between munc18-1 and 

syntaxin had no effect on the molecular speed of munc18-1, indicating that the syntaxin-

N-peptide is perhaps not critical in the recruitment of munc18-1 to the plasma membrane, 

as previously suggested (Rathore et al, 2010).  The spatio-temporal organisation of 

relatively immobile munc18-1 molecules into hot-spots, distinct from vesicle docking sites 

but interspersed with more mobile molecules, is suggestive of munc18-1 recycling 
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between molecular depots.  Indeed, this study demonstrated that munc18-1 molecular 

populations moved in a directed manner across the membrane, appearing to recycle 

between molecular storage depots where munc18-1 was enriched.   

 

It is intuitive to think that for munc18-1 to act at the final stage of fusion its presence must 

be associated with syntaxin (and probably the other SNAREs) and an adjacent vesicle for 

exocytosis to proceed.  Munc18-1 molecules were primarily localised in areas of the 

plasma membrane that were largely devoid of membrane proximal vesicles (Figures 5.4 

and 5.5).  This observation supports a previous study which showed that yeast SM proteins 

Sso and Sec9 are localised along the entire plasmalemma and not only at the tips of the 

bud, where the bulk of exocytosis occurs (Brennwald et al, 1994).  Furthermore, the low 

number of munc18-1 molecules close to the secretory vesicle is likely to be sufficient for 

the catalysis of membrane fusion and falls within the range observed for the SNAREs in a 

variety of biophysical experiments (Hua and Scheller, 2001; Han et al, 2004; Karatekin et 

al, 2010; Mohrmann et al, 2010; van den Bogaart et al, 2010; Sinha et al, 2011). This 

analysis demonstrated that vesicles only have a 20% probability of being physically 

associated with one or two munc18-1 molecules.  Moreover approximately 80% of 

vesicles were found to have no adjacent munc18-1 molecule associated and these vesicles 

cannot move sufficient distances at the plasma membrane to reach their nearest neighbour 

munc18-1 molecule.  In this case it is probable that secretory vesicles residing in a region 

of the plasma membrane with insufficient numbers of munc18-1 molecules would be 

unable to fuse and may help to explain why the majority of membrane proximal vesicles 

are left unused.  Therefore, either only a few molecules are required for exocytosis to 

proceed or this finding may reflect other functions of this molecule, in addition to its 

participation in the formation of SNARE fusion complexes.     

 

This comparatively low number of munc18-1 molecules found residing underneath a 

secretory vesicle differs hugely from current estimates of approximately 70 synaptobrevin 

copies expressed on a single synaptic vesicle (Takamori et al, 2006).  Interestingly, and 

only under certain culture conditions, it has been reported that syntaxin is in 

approximately 20-fold excess over munc18-1 in PC12 cells (Schutz et al., 2005).  

However, the molar ratio in the purified syntaxin/munc18-1 complex has been shown to 

be 1:1 (Rickman and Davletov, 2005), in agreement with the crystal structure (Misura et 
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al, 2000) and indicative of a tight association (Dulubova et al, 1999).  It is therefore 

possible that a large proportion of syntaxin remains free from munc18-1 in solution and a 

limited number of munc18-1 molecules recycle between SNARE complexes in order to 

drive the formation of the SNARE complex and the fusion of a single secretory vesicle. 

 

It remains to be seen whether multiple munc18-1-syntaxin complexes can act 

cooperatively to further enhance the likelihood of fusion.  It is also unknown whether the 

number of SNARE complexes or munc18-1 molecules required to fuse a vesicle differ 

depending on the type of vesicle, which functional pool that vesicle resides in or even 

what type of fusion event is occurring.  Together, these findings provide a working model 

where a small number of munc18-1 molecules recycle between molecular storage depots 

with membrane locations distinct from vesicle docking sites to directly affect downstream 

vesicle dynamics and exocytosis.  Therefore, these findings place munc18-1 as a key 

regulator of SNARE function, acting at multiple locations throughout the SNARE life 

cycle.  A number of conclusions regarding the functionality and molecular architecture of 

munc18-1-syntaxin interaction in neuroendocrine cells can be summarised in a simplistic 

model (Figure 7.1). 
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7.4 THE INTERACTION STATUS BETWEEN MUNC18-1 AND SYNTAXIN IN 

NEURONAL CELLS. 

 

The great complexity of the functions performed by the nervous system relies on the 

ability of neurons to communicate with each other in defined and precisely timed patterns. 

Data concerning both the spatial and temporal control of the munc18-1-syntaxin molecular 

interactions and how they affect prefusion synaptic vesicle dynamics is largely unknown.  

One reason for this involves the difficulty associated with reconstituting the regulation of 

the munc18-1-syntaxin complex seen in vitro into a physiologically accurate account of 

the importance of these putative binding partners in vivo.  

 

SNAREs and SNARE regulatory proteins are phosphorylated in vitro (Gerst, 1999; Lin 

and Scheller, 2000) but what remains to be resolved is when this phosphorylation occurs, 

the prevailing regulatory mechanism(s) and the downstream functional significance. This 

thesis has demonstrated that phosphorylated syntaxin, specifically on serine-14 of the N-

terminal peptide, resides in specific domains separate from active zones, in agreement 

with a previous observation (Figure 4.7; Fölleti et al, 2000).  This result indicates that 

phosphorylated syntaxin may provide a regulatory mechanism to differentiate between 

functional and non-functional synapses in order to prevent indiscriminate fusion outside 

pre-defined areas.  Therefore, by disrupting the phosphorylation status of the N-terminal 

peptide of syntaxin the architecture of fusion sites on the plasma membrane are disturbed, 

resulting in a loss and mis-regulation of exocytotic events.  This hypothesis fits well with 

the findings that phosphomimetic disruption of serine
14

 of syntaxin results in a reduction 

in the proportion of fusing synaptic vesicles residing in the readily releasable pool of 

central nerve terminals (Figure 4.9C) and the arrest of vesicle fusion in neuroendocrine 

cells (Rickman and Duncan, 2010).   

 

This investigation provided evidence to suggest that the phosphorylation status of serine
14

 

on the N-terminal peptide of syntaxin is not regulated by neuronal activity (Figure 4.8) but 

is somehow important in catalysing the fusion of vesicles in close apposition with the 

active zone.  This incongruity therefore led to the idea that another Ca
2+

 dependent 

syntaxin molecular mechanism was in place to control rapid synaptic fusion.  The 



 

 

242 

interaction between munc18-1 and syntaxin is paramount to a wide variety of cellular 

processes, intimating that both proteins must interact at some stage in the synaptic vesicle 

lifecycle.  The precise temporal sequence of this interaction in the run up to synaptic 

vesicle fusion remains speculative, not least because of a lack of suitable approaches to 

directly probe molecular localisations, movements and interactions in situ.  Conflicting 

reports have suggested that munc18-1 and syntaxin are never stably associated (Garcia et 

al, 1995), that munc18-1 dissociates from syntaxin upon SNARE complex formation 

(Zilly et al, 2006) and that munc18-1 remains bound to syntaxin via its N-terminus 

throughout SNARE complex formation and subsequent membrane fusion (Dulubova et al, 

2007).   

 

In this thesis Fluorescence Correlation Spectroscopy (FCS) was employed to define and 

quantify the molecular movements of munc18-1 and syntaxin preceding, during and 

immediately after exocytosis.  Analysis revealed that synaptic munc18-1 molecules are not 

directly interacting with syntaxin in resting nerve terminals.  Further investigation 

revealed that the rate of syntaxin diffusion was significantly reduced during stimulation, 

reflecting the formation of the ternary SNARE complex, or implying that syntaxin (and 

munc18-1) binds to a much larger complex, restricting its movement and tethering it to 

synaptic terminals in order to drive synaptic vesicle fusion (Figure 6.15B).  This result 

further supports the hypothesis that the molecular dynamics of single proteins are 

responsible for their spatial arrangement.  It would be of interest in the future to determine 

if this activity dependent switch in diffusion rates was observed in all types of neuronal 

specific Ca
2+

 triggered exocytosis and whether neurosecretory cells also possess this 

regulatory mechanism.  It would also be of great interest to determine what protein(s) or 

macro-molecular complexes are involved in reducing the mobility of munc18-1 and 

syntaxin during neuronal depolarisation. 

 

The extremely accurate and rapid timing seen in Ca
2+

-regulated synaptic exocytosis is 

mediated by specific interactions between SNARE proteins, their accessory molecules, 

Ca
2+

 and the phospholipid bilayer.  A number of effectors have been proposed to regulate 

munc18-1 binding and syntaxin activation, including members of the munc13 (Betz et al, 

1997) and Doc2 protein families (Verhage et al, 1997) and through the catalytic activity of 

protein kinase C (Barclay et al, 2003).  In addition to SNARE and SM protein interactions, 
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syntaxin has also been reported to interact with voltage-gated Ca
2+

 channels in mammalian 

neurons, an association proposed to colocalise Ca
2+

 channels and presynaptic release sites 

to support the efficient initiation of neurotransmitter release (Catterall, 2000).  The short 

delay period between Ca
2+

 influx and synaptic vesicle fusion unequivocally suggests that 

synaptotagmin, the Ca
2+

 sensor essential for fast synchronous SNARE-mediated neuronal 

exocytosis (Geppert et al, 1994; Yoshihara and Littleton, 2002), must be associated with 

the fusion machinery prior to Ca
2+

 influx into the nerve terminal.  In support of this 

suggestion SNARE complexes were shown to co-purify with synaptotagmin in the 

absence of Ca
2+

 (Söllner et al, 1993a; McMahon et al, 1995; Li et al, 1995).  Neuronal 

depolarisation induces membrane associated synaptotagmin, already bound to syntaxin as 

previously shown (Kee and Scheller, 1996; Fernandez et al, 1998; Rickman and Davletov, 

2003; Rickman et al, 2004), to bind free Ca
2+

 and oligomerise (Damer and Creutz, 1996).  

Ca
2+

 binding would therefore lead to a conformational change in synaptotagmin, 

potentially acting as an electrostatic switch in the molecular configuration of syntaxin, 

forcing it to become locked in position at the plasma membrane in order to drive SNARE 

complex formation and vesicle fusion.  This mechanism fits well with the model 

previously proposed by Rizo and colleagues suggesting that a change in the 

synaptotagmin-syntaxin interaction is central in the regulation of Ca
2+

-triggered synaptic 

vesicle exocytosis (Shao et al, 1997).  Therefore, the activity dependent switch reported in 

this thesis may reflect a rapid change in the structural arrangement of the fusion 

machinery, particularly between munc18-1, syntaxin and synaptotagmin, recently claimed 

to constitute the minimal docking machinery (de Wit et al, 2009).  The fact that this is the 

first report showing that munc18-1 and syntaxin are not directly interacting in a nerve 

terminal during exocytosis may simply be due to the lack of available techniques that offer 

the adequate temporal resolution required.   

 

A number of findings from this thesis point towards a key interaction between munc18-1, 

syntaxin and synaptotagmin.  Perturbing the munc18-1-syntaxin molecular interaction in 

both neurons and neuroendocrine cells resulted in the partial trapping of both proteins in 

intracellular compartments, with munc18-1 unable to be efficiently delivered to sites of 

membrane fusion (Figures 3.5 and 6.5).  The ultimate downstream effect resulting from 

these disruptions, now presumably affecting the actions and binding of synaptotagmin and 

syntaxin, resulted in a reduction in the proportion of readily releasable vesicles fusing with 
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the plasma membrane and a fall in the level of neuroendocrine exocytosis.  The findings 

from this thesis therefore introduce another dimension to the regulation of vesicle 

exocytosis, with the membrane associated fusion competent vesicles requiring an activity 

dependent switch in molecular behaviours (in the case of neurons at least) and a stable 

interaction between the N-terminus of syntaxin, munc18-1 and synaptotagmin.  Regulated 

exocytosis is an exquisitely coordinated form of intracellular membrane fusion and 

understanding the complexity of this process requires further characterisation of a) the 

mechanisms of membrane fusion and b) how fusion is temporally and spatially controlled 

at the molecular level. 

 

7.5 CONCLUDING REMARKS. 

 

The dynamic interactions seen between SM and syntaxin homologues are thought to 

reflect the multifaceted nature of the vesicle cycle and to meet the demands of regulated 

exocytosis (Gerber et al, 2008).  The findings presented here contribute to a greater 

understanding of the functionality of the munc18-1-syntaxin interaction in regulating 

SNARE mediated vesicular fusion, providing important insights into the spatially and 

temporally regulated molecular mechanisms mediating the final fusion event. 

Additionally, this investigation highlights the importance of combining in vitro 

biochemical data with quantitative super-resolution imaging approaches to resolve protein-

protein interactions and molecular dynamics within living cells. Together, this integrated 

approach will prove to be fundamental in unravelling the molecular mechanisms which 

mediate the dynamic shift in the munc18-1-syntaxin interaction during the vesicle 

lifecycle. These protein-protein interactions are required downstream of membrane 

association and are essential in catalysing the final fusion event of vesicles in close 

apposition to the plasma membrane.  Therefore, the understanding of molecular 

conformations adopted by proteins and their spatial organisation within cells will lead to a 

more complete appreciation of the molecular machinery of SNARE driven membrane 

fusion. Further development of current imaging techniques, particularly 3D PALM, and 

cellular models, for example transgenic animals with the munc18-1 gene replaced with a 

photoactivatable alternative, will ultimately lead to the ability to quantify protein-protein 

dynamics immediately before, during and after membrane exocytosis.   
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