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Abstract

Automatic speech recognition technology is becoming increasingly widespread in many

applications. For dictation tasks, where a single talker is to use the system for long

periods of time, the high recognition accuracies obtained are in part due to the user

performing a lengthy enrolment procedure to ‘tune’ the parameters of the recogniser

to their particular voice characteristics and speaking style. Interactive speech systems,

where the speaker is using the system for only a short period of time (for example to

obtain information) do not have the luxury of long enrolments and have to adapt rapidly

to new speakers and speaking styles.

This thesis discusses the variations between speakers and speaking styles which re-

sult in decreased recognition performance when there is a mismatch between the talker

and the systems models. An unsupervised method to rapidly identify and normalise

differences in vocal tract length is presented and shown to give improvements in recog-

nition accuracy for little computational overhead.

Two unsupervised methods of identifying speakers with similar speaking styles are

also presented. The first, a data-driven technique, is shown to accurately classify British

and American accented speech, and is also used to improve recognition accuracy by

clustering groups of similar talkers. The second uses the phonotactic information avail-

able within pronunciation dictionaries to model British and American accented speech.

This model is then used to rapidly and accurately classify speakers.
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Chapter 1

Introduction

1.1 ASR and Speaker Variation

The most natural means of communication for humans is that of spoken language, aug-

mented as necessary by other means such as gesture, written language, diagrams, maps

etc. It has long been a goal to create a machine which can automatically recognise

and understand spoken language input. Recognition systems, such as those shown in

science-fiction films (e.g. HAL in 2001, and R2D2 in Star Wars) would remove the

need for the contrived, machine driven, input techniques such as keyboards and mice

that we use at present and which many people find difficult to use. Such devices would

be replaced with an entirely natural means of communicating ideas and requests to the

system upon which the machine could react — that of spoken language. There are

several advantages to the use of speech input: The integration of computer systems in

situations where the use of a keyboard is impossible (by doctors during surgery for in-

stance) would become a practical possibility. Disabled users who have difficulty using

standard input devices would be able to use machines to the same effect as their able

bodied colleagues and the use of computer technology where no keyboard exists (eg at

the end of a phone line) would also become a possibility.

Much of the reason why the problem of automatic speech recognition has not been

solved to date is that speech is widely variable. We have few problems understand-

ing the speech of, for example, an American child, despite the fact that his/her speech

will be acoustically very different from our own. The same is not true of automatic

1



CHAPTER 1. INTRODUCTION

recognition systems which generally try to model the acoustic patterns of speech and as

such are highly sensitive to variations in speaking styles. That is not to say that current

systems are of no use — in recent years, companies such as Dragon, Microsoft, IBM

etc, have released automatic dictation systems with usable recognition levels imple-

mented on desktop personal computers. However, such systems gain a large proportion

of their accuracy by having long enrolment procedures in which the system is trained to

recognise the particular speaking style of each user. This time consuming procedure is

necessary if anything approaching reasonable accuracy is to be achieved, and users are

generally willing to perform the enrolment for the additional benefits of having speech

recognition available as an alternative to keyboard control.

Around the same time as the introduction of these automatic dictation systems, BT’s

‘Callminder’, an ‘in the network’ answering machine with voice control and other voice

activated telephony services became available. Such systems do not have the luxury of

large amounts of enrolment data from each speaker (imagine the popularity of a system

which required reading a twenty minute passage every time you wished to check your

voice messages!) and as such rely on explicitly modelling all the acoustic variations in

the speech sounds. Because of the range of variability between speakers and despite the

fact that these usually have more restricted vocabularies and grammar their recognition

rate is usually much lower than that of systems with an enrolment phase, sometimes

unacceptably so.

The purpose of this investigation is to identify methods of rapidly classifying speak-

ers based on their particular speech characteristics. Given this knowledge of the speak-

ing style, we then aim to show how this information may be used to improve the ac-

curacy of recognition systems. We will concentrate on classification based on param-

eters related to vocal tract length and accent since normalising for these factors has

been shown to give improvements in recognition accuracy. It is to the class of systems

general termed ’interactive speech systems’, rather than ‘dictation systems’, that the

procedures described in this thesis are directed, and this imposes several restrictions

on the methods. They must have very low computational overhead since they may be

being used in situations where many speakers may be using the system at a given time

(for instance in the case of ’Callminder’) and therefore increasing the computation for

a single speaker results in an unacceptably large increase in overall system processing

requirements. They must also work in an unsupervised manner since labelled enrolment

2



CHAPTER 1. INTRODUCTION

data will not generally be available and it would be unacceptable to expect the user to

provide it. Since the systems are only likely to be used for a short time by each user, it

is also a requirement that the methods achieve an improvement in accuracy after only a

very small amount of adaptation data has been received from the speaker.

To summarise, we are seeking to identify and exploit characteristics of a speaker’s

speaking style to improve recognition accuracy given the constraints that the methods

must have low computational overhead, work in an unsupervised manner and require

very small amounts of adaptation data.

1.2 Structure of the Thesis

In Chapter 2 the human speech production system is described and used to classify

the various sounds used in speech. A simplified model of the vocal apparatus, the

source-filter model, is also presented. Chapter 3 describes the methods used to extract

information relevant to speech recognition from the acoustic signal, and describes the

most popular method used to perform automatic speech recognition - Hidden Markov

Modelling. Chapter 4 describes the ways in which speakers may vary and the effect

of such variation on both the speech signal and recognition task. It also describes the

methods currently used to overcome such variation. Chapter 5 develops a new method

for rapid, unsupervised speaker normalisation based on formant modeling. Chapter 6

describes a new technique for unsupervised clustering of talkers with similar speaking

styles and uses the technique both for accent identification and to improve performance

an automatic speech recogniser. Chapter 7 describes a second technique to perform

accent identification. Results are summarised in chapter 8 and conclusions and further

work identified.

3



Chapter 2

Speech Production system and

Modelling

In this chapter, the mechanism for speech production is introduced. This leads to a

classification of speech sounds in terms of their production process. A model is then

introduced which can be used to approximate the characteristics of a speaker’s vocal

apparatus.

2.1 Speech Production System

Figure 2.1 shows a cross section of the vocal apparatus, consisting essentially of the

lungs, trachea, larynx and the oral and nasal tracts. The manner in which these are used

in producing speech sounds will be briefly described — more detailed descriptions are

given in most introductory phonetics books such as [39, 55].

The lungs act as the energy source for speech generation. They are filled with air

by the expansion of the rib cage and the lowering of the diaphragm. As the rib cage

contracts, air is forced out of the lungs along the trachea. The velocity at which air exits

the lungs is used to control the volume of the produced speech.

The first section of the vocal apparatus which the air encounters is the larynx which

controls the voicing of the subsequent sound. The larynx consists of two folds of skin

called the vocal cords, with the space between them known as the glottis. The vocal

cords may be in one of three states — closed, open, or vibrating. In the closed state, air

4



CHAPTER 2. SPEECH PRODUCTION SYSTEM AND MODELLING
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Figure 2.1: Primary features of the human vocal apparatus. After [49].

builds up to high pressure behind the vocal cords and can then be released by the vocal

cords parting. This is known as a glottal stop and may be heard in many accents such

as Cockney, Glaswegian and Birmingham in words such as ‘water’ and ‘butter’. With

the vocal cords open, air passes unimpeded through the glottis. Such sounds are known

as voiceless, for example /t/ as in ten. If the vocal cords are held close together, but not

tightly closed, the air builds up behind them until it reaches sufficient pressure to force

them apart. The pressure then drops, the cords close again and the pressure begins to

build once more — the vocal cords effectively act like a mechanical oscillator. Air is let

through the glottis in short bursts, though the bursts are in such rapid succession (from

70 to 1000 per second) that they are perceived as a constant vibration. Sounds such as

/u/ as in ‘boon’ which are produced in this way are referred to as voiced.

Having passed through the glottis the air is then directed into either just the mouth,

or the nose and mouth simultaneously, depending upon the position of the velum.

Sounds made with the velum open, that is with air passing into both cavities, are re-

ferred to as nasal, while those produced with the velum closed, and air passing into

the mouth only, are referred to as oral. The sound is then modulated by the various

articulators within the oral cavity and the resulting sounds may be classified based on

their manner and place of articulation. The contoid sounds are produced by forming

different closures within the vocal apparatus which interfere with the air stream. The

manner of articulation describes the degree of closure produced and may be one of the

following :
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� Stop: In which the air flow is completely blocked by the articulators, e.g. the first

and last sounds in ‘top’.

� Fricative: In which the articulators are brought close enough together to cause a

turbulent airflow e.g. ‘zoo’.

� Approximant: In which the articulators are close, but not enough to cause a frica-

tive, e.g. ‘we’.

� Nasal In which air flow is blocked in the oral cavity, but the velum is open, al-

lowing air to pass through the nasal cavity, e.g. ‘my’.

� Affricate In which a stop is immediately followed by a fricative, e.g. the first

sound in ‘cheap’.

� Lateral In which the air stream is obstructed at a point along the centre of the oral

tract, with incomplete closure at the sides of the tongue, e.g. the first sound in

‘lie’.

The place of articulation describes which of the articulators cause the interference and

may be one of the following :

� Bilabial: The sound is produced by the action of both the lips working together,

e.g. ‘pop’.

� Labiodental: The lower lip and the upper teeth are brought together, e.g. ‘fudge’.

� Dental: The tongue and the upper teeth are used to form a constriction, e.g.

‘thigh’.

� Alveolar: Between the tongue tip or blade and the alveolar ridge, e.g. ‘die’.

� Retroflex: Between the tip of the tongue and the hard palate. This is not used in

English.

� Palato-Alveolar: Between the blade of the tounge and the back of the alveolar

ridge. e.g. ‘shy’.

� Palatal: Between the front of the tongue and the hard palate e.g. ‘huge’.
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� velar: Between the back of the tongue and the soft palate, e.g. ‘gang’.

The vocoids are produced if there is no contact between the articulators. The sounds

are then classified based upon the position of the tongue with respect to the cardinal

vowel space, and are described as front, centre or back and low, middle or high and are

also differentiated by the degree of lip rounding present. The cardinal vowels are shown

in Figure 2.2 and Figure 2.3 shows the vowels used in RP English.
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Figure 2.2: The cardinal vowels. Front is to the left
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Figure 2.3: Vowels used in received pronunciation (RP) English. Front is
to the left.

If the articulators remain in a steady state during the vocoid, they are referred to as

monophthongs. Those in which they move during articulation are known as diphthongs.

Each of the sounds which may be made by combinations of phonation, manner

and place of articulation are referred to as phonemes. Since in general there are more

sounds than letters in most alphabets, the International Phonetic Alphabet (IPA) is used

to describe each of the sounds [66]. This alphabet is common across all languages, and

defines a set of sounds and associated symbols which may be used to unambiguously

transcribe any utterance. A list of the phonemes used in the RP production of English

is given in Table 3.1.
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2.2 Source-Filter Model of the Vocal Tract

The vocal apparatus, when producing vocoid sounds may be modelled as a simple tube,

open at one end (the lips) and with a sound source at the other (the larynx) as shown in

Figure 2.4.

Figure 2.4: Uniform tube model of vocal tract.

Such a system has resonances at odd harmonic frequencies shown by the curves in

the tube in Figure 2.4. They denote the standing wave vibrations which air in the tube

will form and are determined by the way in which the cross sectional area varies along

the length of the tube. In the case of the central, mid vowel sound, /e/, the resonances

occur at approximately ��� ���� ��� etc where �� � ����, � being the speed of sound

in air and � the length of the tube. Taking � to be 17cm (the average length for a male

talker) and � to be 340 m/s gives �� � ���Hz and third and fifth harmonics at 1000Hz

and 1500Hz respectively. This model is a large over simplification however, since it

does not take into account the separate resonances of the oral and nasal tracts, the effects

of the tongue, or constrictions along the vocal tract.

The resonances of the vocal tract are referred to as the formants and the position

of the first three formants is highly correlated to the perceived quality of the vowel

sound being produced [51, 62]. Although the vocal tract has an infinite number of

such resonances, because the glottal excitation source rolls off at -12dB/octave, it is

only necessary to consider the first 3 or 4. Variations between speakers’ vocal tracts
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will manifest themselves in changes in the values of the formant frequencies. Speakers

with longer vocal tracts will have lower frequency formants, while those with shorter

vocal tracts will in general have higher formant frequencies. This model is a large over-

simplification however, since it does not take into account the separate resonances of

the oral and nasal tracts, the effects of the tongue, or constrictions along the vocal tract.

The ‘loseless tube’ model of the vocal apparatus may be extended to the model of

the speech production system shown in Figure 2.5.

Figure 2.5: Source-filter model of vocal tract.

This ‘source-filter’ model approximates human speech production by modeling it

as a signal source modified by a variable transfer function filter. The source represents

the glottal excitation (either periodic pulses in the case of voiced sounds or noise in

the case of unvoiced) and the time varying filter is equivalent to the vocal tract. The

gain controls �� and �� control the amplitude of the voiced and unvoiced sources. By

specifying the gain values and the transfer function, each of the sounds which the vocal

apparatus may produce can be approximated.

This is also an over simplification however, since fricative sounds are not filtered by

all the resonances of the vocal tract (since the sound is produced at a constriction some-

where along it). It also assumes that the source and filter are independent and linearly
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separable, which is not true since the vocal chord vibrations are affected by pressure

within the vocal tract. These points are usually ignored however and the source-filter is

assumed an adequate representation of the speech production process.

The model is also of particular importance in computational speech processing,

since the signal processing technique of linear predictive analysis is capable of pro-

ducing estimates of the source and filter. The filter, being a representation of the vocal

tract, may then be used in the classification of both speech and speakers.
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Chapter 3

Speech Processing and Recognition

Techniques

3.1 Introduction

There are essentially two methods for performing automatic speech recognition. The

first (referred to in [67] as the ‘acoustic-phonetic’ approach) exploits a set of rules de-

rived from the fields of phonetics and linguistics to interpret the speech signal. The

alternative is the use of statistical pattern classification [14, 58, 67, 69] in which mathe-

matical pattern matching techniques are used to perform the recognition. The acoustic

phonetic approach exploits a large body of information which relates characteristics

of speech sounds such as voicing, nasality, fortis/lenis, to higher level linguistic units

such as phonemes. These relationships are, however, highly complex and as yet it is

not well understood how to deal with the large variations between individual realisation

of sounds which are identified as the same phonetic unit. It is also unclear how such

rules could be incorporate into a computational framework such as would be required

to perform ASR.

The statistical pattern classification approach ignores most linguistic knowledge of

the speech signal (or rather, it is usually too difficult to incorporate such knowledge

into the mathematical framework it uses). Instead it gains its ‘knowledge’ by exam-

ple — training mathematical models on large amounts of training data. This approach

has many advantages — firstly, a set of mathematically rigorous techniques exist which
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guarantee to optimize the performance of the model for a given set of training data.

Secondly, since no knowledge of the signal is assumed, the techniques are equally ap-

plicable to a wide range of speech units — word, syllable or phoneme models may

all be generated with little modification to the basic system. Thirdly, this model can

easily be extended to incorporate a model of language, and the choice of vocabulary,

syntax and task for which the recogniser is developed have no effect on the implemen-

tation. However, the performance of such systems are highly sensitive to the quantity

of training data used for creating the acoustic models. Often many hours of speech is

required. The models are also highly sensitive to the noise and environmental condi-

tions present when the training speech was recorded since this is modelled along with

the required speech signal. When used under good conditions the recognition accuracy

of such systems is very high, and the ease with which they may be implemented in a

computational framework means they are the preferred method of speech recognition

used in all commercially available recognisers.

Figure 3.1 shows a block diagram of a typical statistical speech recogniser.

Figure 3.1: Block diagram of a typical statistical speech recognition system.

In this chapter, the techniques used for the front end signal analysis, statistical mod-

elling and pattern recognition will be described in detail.
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3.2 Front End Analysis System

The purpose of the front end processing stage is to parameterise the incoming speech

signal. The reason for this is two fold: firstly, to represent the signal in a more compact

form and secondly, to extract relevant acoustic features from the speech signal to be

used in the recognition process.

In all the experiments to be described, a Mel Frequency Cepstral Coefficient (MFCC)

[16] front end was used. Other methods of parameterisation have been used for speech

recognition and have been found to give good recognition performance [53], however

MFCCs allow some computationally efficient techniques for speaker characterisation

and normalisation to be incorporated directly in the parameterisation stage. Figure 3.2

shows the components of such an analysis scheme, each of which will be described in

detail.

Figure 3.2: MFCC parameterisation scheme.

3.2.1 Windowing

The first procedure in the parameterisation scheme is to window the incoming speech

into blocks. As shown by Figure 3.3, the speech signal is continually varying when ob-

served over long periods, while over periods of 20-30 ms the signal is, to a reasonable

approximation, stationary. The signal is stationary over this time due to physiological

limitations of the speech articulators — the various organs involved in speech produc-

tion are unable to move fast enough to change their output in a shorter time span [58].

The speech is therefore parameterised in overlapping blocks as shown by Figure 3.4

and the signal in each block is assumed to be stationary. In all the experiments to be

presented, a block length of 25.6 ms with 15.6 ms overlap between blocks was used.
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Figure 3.3: A typical speech signal. Top plot shows the signal continually
varying over the length of an utterance. Bottom plot shows that the signal is
approximately stationary over the duration of several analysis frames.
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Windowing using a rectangular window would introduce artifacts into the frequency

response of the signal due to the sharp discontinuities the window edges [18]. A Ham-

ming window, as shown in Figure 3.5, which tapers at its edges rather than having a

sharp discontinuity, introduces fewer artifacts and is therefore used.

Figure 3.4: The speech is processed in overlapping blocks. The signal
within each block is assumed to be stationary.

3.2.2 Pre-Emphasis Filter

As discussed in more detail in Section 2.2, The vocal apparatus may be modelled as a

pipe (the vocal tract) open at one end (the lips) and with a sound source at the other

(the larynx). The excitation source has a high frequency roll off of -12db/octave while

radiation at the lips may be approximated by a 6db/octave spectral lift, resulting in a

combined spectral tilt of -6db/octave. It is desirable to have a constant dynamic range

across the entire frequency spectrum [58] and the speech is therefore processed to give a

6db/octave lift. This process is usually performed by a first order digital high pass filter.

The transfer function of the filter used in the experiments was ���� � � � ���	���.

The frequency response of the filter is shown in Figure 3.6.

3.2.3 Conversion to Frequency Domain

In Section 2.2 it was shown that the vocal apparatus may be modelled as the output

of a sound source being convolved with a time varying filter. The speech sound being

produced is characterised by the configuration of the articulators. In the source-filter
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Figure 3.5: Weighting function of Hamming window.
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Figure 3.6: Frequency response of pre-emphasis filter, ���� � �����	���,
giving 6db/octave spectral lift.
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model this is described by the kind of excitation used and the frequency response of the

filter. Since we wish to identify the sound being produced, we may go some way to

achieving this by modelling the frequency domain characteristics of the filter. The ma-

jority of parameterisation techniques are therefore frequency domain based, and hence

the speech signal is converted to its spectral representation. Two methods for deriving

the frequency characteristics of the signal were used in this study:

Discrete Fourier Transform

The Discrete Fourier Transform (D.F.T.) is a standard signal processing technique for

obtaining the frequency response of a signal. The D.F.T. of a frame from a typical

speech signal is shown in Figure 3.7. A discussion of the D.F.T. may be found in many

introductory signal processing texts (eg [36,65,88]) and a ‘C’ language implementation

of the fast Fourier transform (which is a computationally efficient method of calculating

the Fourier transform) is given in [64]. It will not be discussed further, other than to say

that it produces a reliable estimate of the spectrum of a signal which may be used for

subsequent processing.
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Figure 3.7: Top: A single frame from a typical speech signal. Bottom:
Frequency spectrum of the signal obtained using the D.F.T.
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Linear Predictive Analysis

The technique of linear prediction is based upon the assumption that sample values

of speech may be approximated by a linear combination of the preceding 	 samples.

Mathematically,



��� � ��
��� ��  ��
��� ��  ��
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��� 	� (3.1)
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where 

��� is the predicted sample at time � and ��� �� � � � �� are the predictor coeffi-

cients. Generally it will not be possible to exactly predict the signal, leading to an error

���� for each sample :

���� � 
���� 

���� (3.3)

The coefficients are determined by solving a set of linear simultaneous equations so

as to minimise the mean squared error, �, between the predicted signal and the actual

signal.
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where � is the number of samples over which the error is to be minimised. We need to

find �� such that

Æ��Æ�� � ��
�
�
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� � �� �� � � � � 	

which gives
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��� � 
��� �� (3.6)

� � �� �� � � � � 	
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a set of 	 linear equations for the set of 	 unknowns ��. The choice of 	 is a compromise

between modelling accuracy and computation time — In general, one pair of poles is

required to model each of the formants, plus a residual 4-6 poles to model possible

zeros and general spectral trends in the signal [57]. 	 is generally therefore between 10-

15, and solving this system of equations is not trivial. Two efficient methods exist for

finding the solution — The auto-correlation method and the covariance method. Again

these are both covered in most signal processing texts and will not therefore be covered

here.

Once the predictor coefficients are known they may be used to estimate the vocal

tract response.

The error signal may be calculated if the predictor coefficients are known

���� � 
����
��

���

��
��� � � (3.7)

and it follows that the original signal may be reconstructed if the error signal and pre-

dictor coefficients are known:


��� � ���� 

��
���

��
��� � �� (3.8)

Taking z-transforms

���� � ���� 

�
��

���

���
��

�
���� (3.9)

���� � �����

�
��

��
���

���
��

�
(3.10)

� �������� (3.11)

where ���� and ���� are the z-transforms of ���� and 
���. ���� is the transfer

function of an all pole filter and equation 3.11 shows that the speech signal may be

viewed as the output of this filter when the error signal, ���� is input. From a physical

point of view, ���� describes the vocal tract excitation and ���� the response of the

vocal tract — a precise analogy to the source-filter model. An approximation of the
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vocal tract response may be obtained by substituting � � ���� in ���� :

���� � ��

�
��

��
���

���
�����

�
(3.12)

and evaluating � ���� � at various values of � as shown in Figure 3.8. This is directly

analogous to the source filter model described in Section 2.2.
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Figure 3.8: Approximation of the vocal tract frequency response obtained
using LPC analysis.

3.2.4 Magnitude

The phase of the signal carries little useful information for recognition [57] and would

increase the amount of computation required for subsequent processing. The phase is

therefore discarded to leave the log magnitude spectrum of the signal.

3.2.5 Mel Filter Bank

The human auditory system does not resolve sound equally at all frequencies; rather

the response of the system can be considered to be split into frequency bands known

as ‘critical bands’ [37, 57, 91]. If two sounds are played with frequencies within a
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Figure 3.9: Relationship of Mel scale to frequency.

single critical band, the signal with higher energy will mask the other. Experiments

have shown that the bandwidths of the critical bands are roughly linearly related to

frequency below 1kHz and approximately logarithmically related to frequency above

1kHz. Hence low frequency sounds have better resolution than high frequencies. Stud-

ies have shown that emulating this performance in the front end processing stage can

result in improvements in recognition performance [16]. This may be implemented by

using a filter bank, with non-linear spacing of the filters across the frequency range. The

filter bank used in the study follows the Mel-scale where

Mel��� � ���� �����

�
� 

�

���

�
(3.13)

As Figure 3.9 shows, the Mel scale is approximately linear from 0 to 1kHz, and

logarithmic thereafter. Triangular filters, linearly spaced along the Mel scale give rise

to the required variation in frequency resolution as we go from low to high frequency

as shown in Figure 3.10.

At each point, the frequency spectrum of the signal is multiplied by the filter weight

at that frequency. The output of each filter bank channel is then the sum of these

weighted frequency components. In the experiments to be described, 26 filters were

used, giving 26 Mel frequency coefficients as the output of the filter bank.
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Figure 3.10: Placement of filter banks to emulate critical band behaviour
of human auditory system. (Top) Filters are linearly placed along the Mel
scale giving rise to the required non linear spacing in the frequency domain
(Bottom).

3.2.6 Log

If we assume the frequency response of the speech signal, ���� is the product of the

spectra due to the source ���� and the vocal tract � ���,

������ � ������ � �� ���� (3.14)

as the source filter model suggests, then taking logs gives us :

����� ������ � ����� ������ ����� �� ���� (3.15)

i.e. in the log magnitude spectrum, the contribution from each of the components of
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the model are summed. The contribution from the vocal tract tends to be slowly varying

(low frequency) while that from the excitation source is of higher frequency. Hence the

contributions are separable by means of a linear filtering operation on the log magnitude

spectrum.

3.2.7 Inverse DCT

Taking the inverse transform of the log magnitude spectrum gives the cepstral coeffi-

cients of the speech signal. The component due to the periodic excitation source may

be removed from the signal by simply discarding the higher order coefficients. In this

study, 12 coefficients were retained after the DCT.

The inverse DCT also serves to decorrelate the coefficients, an assumption which is

made in the modelling technique to be described.

3.2.8 Addition of Dynamic Coefficients

In the recognition methods to be described, no use is made of the fact that consecutive

frames of speech are likely to be highly correlated, since the articulators may only move

a limited distance in the 10 ms gap between frames [85]. Dynamic features, that is,

values which attempt to explain the way in which the speech signal is varying between

successive frames, such as those presented in [25, 28, 52] are therefore appended to

the static coefficients. The following was used to calculate the first order dynamic

coefficients, known as velocity, or delta coefficients:

�	 �

�

��� ���	�� � �	���

�
�


��� �
�

(3.16)

where �	 is the delta coefficient at time � and �	 is the static coefficient at time � and

� is the width of the window [86]. Since this formula relies on the current samples

preceding and subsequent samples, at the beginning and end of the speech the first and

last parameters are copied to fill the required regression window. Second order, known

as acceleration, or delta-delta coefficients are obtained by applying the same formula to

the delta coefficients. In this study the window size used was two.

Finally, the log spectral energy has also been shown to be a useful feature for dis-
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crimination, and it, along with its dynamic coefficients is also appended to the feature

vector.

In the experiments presented here we therefore have a 39 component feature vector

comprising of :

� 12 Mel frequency cepstral coefficients

� 12 delta coefficients

� 12 delta-delta coefficients

� log energy

� delta log energy

� delta-delta log energy

As the frame advance rate is 10ms and each frame consists of 39 coefficients, there

are 3900 coefficients per second. If each coefficient is represented at 16 bit precision,

this leads to a bit rate of 62.4 kBits/s — reduced over the raw speech signal. More

importantly, the techniques described extract features which are relevant to the classifi-

cation of the speech signal and may be used to generate accurate models of the speech

sounds.

3.3 Hidden Markov Models (HMMs)

Any method of modelling speech must account for the fact that the information in the

signal is carried by the temporal ordering of the sounds. The model must also be able to

describe the variation within sounds, while identifying the differences between them. A

stochastic process is able to perform both these requirements. Such a method, and one

which has become extremely popular in the modelling the speech data is that of hidden

Markov modelling.

Here a brief description of the general principles behind the method is given, fol-

lowed by a discussion of how Hidden Markov Models may be used in the classification

of unknown speech signals. More detailed descriptions are given in [14, 45, 54, 67, 69]

24



CHAPTER 3. SPEECH PROCESSING AND RECOGNITION TECHNIQUES

3.3.1 Description of an HMM

Figure 3.11 shows an example hidden Markov model

Figure 3.11: A 5 state left right, discrete HMM with 4 output symbols.

The model consists of a number of states, shown as the circles in Figure 3.11. At

time � the model is in one of these states and outputs an observation (A, B, C or D). At

time �� the model moves to another state, or stays in the same state and emits another

observation. The transition between states is probabilistic and is based on the transition

probabilities between states which are given in the state transition matrix, �, where

��� is the probability of being in state � at time � and moving to state � at time �  �.

Notice that in this case � is upper triangular. While in a general HMM transitions may

occur from any state to any other state, for speech recognition applications transitions

only occur from left to right i.e., the process cannot go backwards in time, effectively

modeling the temporal ordering of speech sounds. Since at each time step there must

always be a transition from a state to a state each row of�must sum to a probability of

1.
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The output symbol at each time step is selected from a finite dictionary. This process

is again probabilistic and is governed by the output probability matrix �, where ��� is

the probability of being in state � and outputting symbol . Again since there must

always be an output symbol at time �, the rows of � sum to 1.

Finally, the entry probability vector, �, is used to describe the probability of starting

in each of the � states of the model — �� being the probability of starting in state �.

The model is fully described by the parameter set� � �������.

3.3.2 The Markov Source

Such a model may be used in conjunction with a random number generator (RNG) to

produce an observation vector. Initially, the starting state is determined using � and

the output of the number generator. Then at each time interval �, the output symbol is

chosen based on� and the RNG, and � is used to determine the next state. The process

continues until state 5 is reached. This state has a self transition probability (that is,

a probability of returning to itself) of 1, and outputs only a single dummy symbol, D.

After this state is reached, all output symbols will therefore be D. A typical output

sequence may be AAAABBBABBBBBBCCCCCCBBBCD. At each time instant we

know only the output of the model, but not which state we are in. The state is effectively

‘hidden’ from us (though, as will be shown in Section 3.5.2, it is possible to calculate

the most likely state sequence).

3.4 Application of HMMs to Speech Recognition

If we make the assumption that the speech articulators, while generating a given sound

are moving between a series of target positions, and at each position they generate a

characteristic output for a varying length of time, the correlation between this and the

hidden Markov model is clear. Each ‘target position’ becomes a state in the model, and

the ‘sound generated’ (actually the vector output by our front end at that time frame)

is represented by the output symbol. With our present example the outputs must be

discretised into a finite number of symbols by, for example, vector quantisation of the

speech vectors. The model can however be extended to allow for a continuous set of

output symbols defined by a probability density function, which is more appropriate for
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modelling speech sounds.

There are two problems associated with the application of HMMs to speech recog-

nition :

� The training problem: Given a set of utterances, labelled at some level of speech

unit, generate a set of models (i.e. estimate the values of �, � and �) each of

which represents one of the units of speech.

� The recognition problem: Given a sequence of speech frames whose classification

is unknown, and a set of well trained models, identify the most likely model for

each input vector

The training problem is the more difficult of the two. However an algorithm exists

(the Baum-Welch algorithm) which guarantees to produce a locally optimal model for

a given set of training data. This procedure is covered in detail elsewhere [14, 67, 86]

and will not be discussed here. We will assume that a well-trained set of models exist

for the speech we wish to recognise. The recognition problem may be solved by means

of maximum likelihood classification. That is we find the model, or series of models

which has the highest probability of having produced the given unknown observation

sequence.

3.5 The Classification Problem

For isolated word recognition, given the unknown observation sequence,

��� ��� ��� � � � � �� � � and a set of � models,� � ��� ��� ��� � � � � � , each with

� states and � discrete output symbols, we wish to find the class, � such that

� � ������
��������� �

 ������ (3.17)

It is unrealistic to estimate  !����� by evaluating every possible state sequence

which could have generated the observation, since in general there are some � � such

sequences. Instead a recursive method utilising the ‘forward probabilities’ is used.
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3.5.1 Baum-Welch Classification

The forward probabilities, "	���, are defined as the joint probability of emitting the

partial observation sequence, ��� ��� � � � � �	 and being in state #� at time �, i.e.

"	��� �  !���� ��� � � � � �	� #������� (3.18)

Then the required probability is given by

 !����� �  �� �

�
���

"� ��� (3.19)

The forward probability at the next time instant, �� for some state � depends only

on the current forward probabilities, the transition probabilities from the current state

to the next state and the probability of outputting the next observation from the current

state. Hence the forward probabilities may be calculated recursively

"	����� �

�

�
���

"	������

�
$���	��� � � �� �� � � � � % � � (3.20)

The starting conditions are given by

"���� � ����$����� (3.21)

and hence using equation 3.19 we may calculate the required probability.

3.5.2 Viterbi Classification

The Viterbi algorithm allows the most likely state sequence through the model to be

identified. The summation in equation 3.20 is replaced by a maximum operator result-

ing in a ’best path’ search. A recursive algorithm similar to equation 3.20 is used to

calculate the probabilities at each time step. The recursion is

&	�� � ���
��������� �


�&	������� $���	��� � � �� �� � � � � % � � (3.22)
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with starting conditions

&� � ����$������ (3.23)

The final probability of emitting the sequence � for a given model is found by max-

imising over all states,

 !����� �  � � ���
��������� �


&� ��� (3.24)

In order to recover the most likely state sequence, at each time instance, �, and for each

model state, �, we record the state at time �which maximised equation 3.22 at time ��:

'	����� � ������
��������� �


�&	������� � � �� �� � � � � % � � (3.25)

The most likely state at time % , given by equation 3.24 is used to recover the state

sequence by back tracking :

 � '� ��� � ������
��������� �


�&� ���� (3.26)

, the most likely state at time % � � is used to find the most likely state at % � � from

'�����, and so on until the most likely state at � � � is found. Given the optimal state

sequence for a set of frames we may use the information to learn about the structure

of the model, or use the data to re-estimate the parameters of the models [86]. The

Viterbi algorithm is also computationally less expensive than Baum-Welch since we do

not have to perform the summation in equation 3.20, and a trellis structure may be used

to provide an efficient implementation.

3.6 Extensions to Basic HMMs

The discussion above has given a basic background into the use of HMMs for statistical

pattern matching. Several extensions to the basic model are used in practical recognition

systems which will now be discussed.
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3.6.1 Continuous Density HMMs

The models described in Section 3.3.1 generate their output from a finite library of ob-

servations. The parameterised speech data is a continuously varying quantity and as

such would have to be quantised to one of these observation values using vector quanti-

sation techniques [47,68] to be used with such a system. This results in additional errors

being introduced due to quantisation noise. An alternative is to replace the discrete out-

put probabilities with a continuous probability distribution of observations as shown in

Figure 3.12. The multivariate Gaussian distribution is the most widely used, because a

weighted mixture of Gaussians may model, arbitrarily closely, any probability density

function [46].

Figure 3.12: Continuous density HMM

The rows of � are then replaced by the parameters of the PDF, and the output

probability is modelled by,

$���	� �
��

���

���� ��	� (������� � � �� �� � � � � � (3.27)

where � is the number of mixtures, ��� is the weight of mixture � in state � and

� ��	� (������� is the probability of observation vector�	 from multivariate Gaussian
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distribution with mean vector (�� and covariance ���,

� ��� (��� �
��

���������
�� �

�
��������������� (3.28)

The probability distribution for each state in every model has its own set of means and

covariances, though in practice, to reduce computation times, each of the components

in the feature vector are assumed to be uncorrelated and as such a diagonal covariance

matrix is used.

3.6.2 Semi Continuous HMMs

In a semi continuous HMM, shown in Figure 3.13, all models share a large com-

mon pool of distributions or ‘modes’ and the output probabilities for a given state are

weighted sums of this common pool of modes [31, 32]. The output probability matrix

for each state is reduced to a vector of weights for each of the modes. This particular

HMM topology reduces the amount of space required for the storage of the models (the

pool needs only be saved once) and also allows for finer modelling of the feature vector

distributions, as a large mixture of Gaussians may be used to model the distributions,

but may result in a loss in generality for the output distributions — it is possible that

the probability distribution for a certain state may have components that are not present

in any of the modes and can not therefore be accurately modelled. The SCHMM is

therefore a compromise between the computational complexity and high storage re-

quirements of a continuous HMM and the simplicity but lack of generality of a discrete

HMM.

3.6.3 Sub Word Modelling

The previous discussion of HMMs concentrated on the use of whole word models,

that is, each HMM represents a single word in the required recognition vocabulary.

For isolated word recognition it is then sufficient to pick the model with the highest

output probability as the recognised word. In practice, in anything other than a small

vocabulary system (i.e. one with fewer than about 100 words) it is unlikely that there

will be sufficient training data to train whole word models. It would also be difficult to
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Figure 3.13: Semi Continuous HMM.

add new words to such a system since each new word would require a large amount of

data. Instead, sub word models are built for each sound or ‘phoneme’ in the language,

and words are described as sequences of these units. Since many of the IPA symbols are

difficult to represent in a computer system, they are encoded to the ARPABET symbols

as shown in Table 3.1.

At recognition time the best path through concatenated sequences of these phones

is used to determine the identity of the input utterance. The output probability for

each series of phones is calculated and the sequence with the highest output probability

chosen.
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IPA ARPABET Example IPA ARPABET Example
symbol symbol symbol symbol

Vowels i iy lead Consonants p p pin
� ih pit b b but
e eh pet t t ten
æ ae pat d d den
u uw boon k k can
� uh good g g game
� ah putt f f full
� oh pot v v very
� ax about � th thin
� er burn ð dh then
� ao born s s some
� aa barn z z zeal

Diphthongs e� ey bay 	 sh ship
a� ay buy 
 zh measure
�� oy boy t	 ch chain
�� aw now d
 jh jane
�� ow load m m man
�� ia peer n n not
�� ea pair � ng long
�� ua pore l l like
�� ua poor r r run

j y yes
w w went
h hh hat

Table 3.1: IPA symbols for the phonemes used in RP English transcription
with examples of their use.
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3.6.4 Lexical Decoding

At recognition time it is impossible to evaluate the output probability for all the possible

sequences of concatenated phonemes so lexical decoding is used to place constraints on

the sequences of phones which are evaluated. A dictionary is used which maps words

within the recognition lexicon to the sub word units being used as shown in Table 3.2.

Word Pronunciation Probability
barter b aa t ax sp 0.5
barter b aa t ax r sp 0.5

bartered b aa t ax d sp 1.0
barterer b aa t ax r ax sp 0.4
barterer b aa t ax r ax r sp 0.6
barterers b aa t ax r ax z sp 1.0
bartering b aa t ax r ih ng sp 1.0
barters b aa t ax z sp 1.0
bartes b aa t s sp 1.0

Table 3.2: Extract from typical pronunciation dictionary. Each word in the
lexicon is associated with one or more sequences of phonemes describing
its pronunciation

Only sequences of phones which correspond to words within the lexicon are inves-

tigated at recognition time. Multiple pronunciations of a single word may be included

in the dictionary, and a probability of occurrence associated with each distinct pronun-

ciation. Adding a new word or pronunciation to such as system is achieved by simply

including it in the dictionary (and adjusting the probabilities of the pronunciations if

necessary [63].

3.6.5 Syntactic Analysis

Syntactic analysis imposes further constraints on the network of sub word HMMs to

be searched. Only paths for which the corresponding words are in a proper sequence

based on the task grammar are investigated. The grammar may consist of a finite state

network which explicitly defines all word combinations which are acceptable to the

recogniser [56, 63].

Alternatively a statistical grammar may be used — A trigram language model for
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instance gives the probability of sets of 3 words occurring which is then incorporated

into the final probabilities for each path investigated [10, 60].

It is within this framework of acoustic analysis and stochastic modelling with lex-

ical and grammatical constraints that the techniques for speaker characterisation and

adaptation must be incorporated. To improve ASR accuracy however, we require some

idea of the nature of the differences between speakers’ speech and how they may be

identified from the acoustic signal.
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Chapter 4

Interspeaker Variation

Figure 4.1 shows a very basic model of the way in which we generate speech sounds.

We have some concept of a target sound that we wish to produce in order to commu-

nicate an idea, and via our vocal apparatus we attempt to make that sound. There are

Figure 4.1: Simple speech production model

two important effects which cause speakers to produce different realisations of a given

word. These are variation in the target sound to be produced caused by learned speaking

styles, and variation in the realisation of the sound caused by differences in vocal ap-

paratus. In this chapter these variations are described, as are ways to account for them.

We neglect many other factors which cause variations in the acoustic signal, such as the

desired rate of speaking, the emotional state of the speaker, the effect of illnesses such

as colds, etc.

4.1 Variation in Target Sound

Differences in what we perceive as the target sound in a particular context will mani-

fest themselves in the accent and dialect used when speaking. A distinction should be

made between the two — dialects consist of variations in the syntactic structure of the
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language, the vocabulary used, and the associated pronunciations. Accents differ only

in their pronunciations [82]. The speech data used during this study is derived from

databases recorded by speakers reading from scripts, rather than spontaneous speech.

As such, the syntax and lexicon are predefined and any dialect the talker has will not

be represented in the speech. Differences in pronunciation will be apparent in the utter-

ances, and we therefore concentrate on variations in accents between talkers.

4.1.1 Sources of Accent Variation

Wells [82] suggests many factors which influence the accent used when speaking :

� Geographical region: Accents frequently indicate the geographical region from

which the talker originates. For native speakers, the precision with which we may

place a speaker depends largely on our familiarity with the region. At a coarse

level most people may easily differentiate between British and American English

speakers, while someone from England would find it easy to distinguish between

Northern and Southern British, or Liverpudlian and Mancunian, while having

difficulty differentiating two American accents - a task readily performed by an

American. For non-native speakers, Flege [20–22] identifies several factors with

influence the degree of accent identified in a talkers speech. These are shown

to be related to both the talker (such as the age at which the second language

was learnt and the length of time spent in a country where the second language

is the native language) and the listener (for instance with their familiarity to the

sentence being uttered).

� Socio-Economic class: In British English, there is is often a wide variation be-

tween the accent used by differing social classes in a given region. It is also

generally found that the amount of variation between regional dialects is a func-

tion of class as shown in Figure 4.2. Speakers in class IV or V as defined in [70]

show a much wider variation in accents between regions, whilst between those

in class I the variation is less pronounced. RP (received pronunciation) English,

traditionally characterised as the accent used by the ‘upper classes’, is generally

taken to be the ‘standard’ pronunciation of British English to which variations in

other accents are referred. This is because it is non-localised, and also because a
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Figure 4.2: Amount of variation in regional accent as a function of social
class. After [82]

large amount of research has been conducted into this accent.

� Age: There is often a difference between the accents used by older and younger

people. Accent is generally learnt up to the age of around 11, and it is the influ-

ence of ones peers who are largely responsible for influencing accent. As such it

is children who tend to introduce and proliferate changes in accent.

� Style: Accent changes as the style of speech alters. In normal, conversational

speech with friends or family accents are likely to be broad since we are not mon-

itoring our speech. Formal speech, when talking to strangers or being interviewed

is generally less likely to have such large accent effects. The accent decreases fur-

ther when reading aloud and further still when reading a list of words or phrases.

4.1.2 Result of Accent Variation

The used accent may alter the way in which a person talks in several ways [82]

� Phonetic Realization: These are differences in the way in which we produce a

certain phoneme, for instance the degree of lip rounding in the diphthong /��/ as

in ‘coat’, or the starting point of the phoneme /��/ as in ‘out’. Differences may

also occur depending on the surrounding phonemes of the sound begin produced

- an effect known as co-articulation.

� Phonotactic Distribution: These are differences in the allowed sequences of

phonemes in the accent. The rhotic English accents (Scottish, Irish, parts of the
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West country, many of the American accents) allow the phoneme /r/ in a variety

of contexts including pre-consonantal (eg farm) and absolute-final position (eg

far). The non-rhotic accents do not.

� Phonemic Systems: These are differences in the number and identity of phonemes

available to the speaker. RP English for instance has two close-back vowels, /u/

as in boon and /�/ as in good. Scottish English does not have the short version,

and as such both these phonemes are represented by /u/.

4.1.3 Consequence of Accent Variation to Automatic Speech Recog-

nition

Variations in accent cause certain problems when performing automatic speech recog-

nition. As was discussed in Section 3.1, most successful speech recognition systems

have acoustic models which represent the various sounds in the language. Since the

phonetic transcriptions of the speech used to train the models are not of sufficient detail

to identify the differences in phonetic realization between two accents, a single model

usually accounts for all the different realisations. This leads to higher variances within

the model parameters since they are modelling a broader set of acoustic parameters

resulting in greater overlap between models and reduced recognition performance, as

shown in [17, 75].

The manner in which the acoustic models may be ordered to produce words in the

lexicon is described in the pronunciation dictionary. Since a single dictionary is used

for all speakers, it must cover the lexical distribution used by speech with all accents

which the recogniser may encounter. This leads to a large increase in the number of

pronunciations in the dictionary, increasing search times and decreasing performance

due to the added possibility of confusions [41].

A further point is that, while it is highly unlikely that a speaker will change accent

mid conversation, their is no reason for the recogniser to consistently choose pronunci-

ations from a given accent group. That is, a word may be output based on its southern

English pronunciation, immediately after one with a Scottish pronunciation. As has

been described, the phonotactic distribution of these two accents are different and this

should not occur. Additional constraints could be put on the recognition system, re-
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stricting outputs to pronunciations of words from a single accent group, which would

reduce the decoding time and improve performance since the search space would be

reduced.

4.1.4 Use of Accent Specific Information to Improve ASR Accuracy

If the accent group used by a speaker could be accurately and quickly identified then

the problems outlined previously could be reduced.

To account for the variations in lexical distribution, a pronunciation dictionary for

each of the accent groups could be produced. Once a speaker is identified as hav-

ing a particular accent, pronunciations from other groups could either be removed or

their probability of occurrence greatly reduced by means of a weighting factor. In [34]

and [72], methods of automatically generating pronunciation dictionaries which could

be used in such a system are presented.

The techniques used for language identification [12, 29, 84, 89, 90] could be used

in the classification of accent, since accent identification is essentially the same task

on a finer level. In [90], four popular methods of language identification are compared.

Gaussian mixture models are shown to have the lowest performance, with the advantage

of requiring no labelled training data, and running in real time. The other three systems

are based on comparing the output probabilities of phone recognisers from one or more

languages combined with syntactic models from each language. In ‘Phone recognition

followed by language modeling’ (PRLM) the output of a phone recogniser from a sin-

gle language is decoded using grammar models from several different languages. The

grammar model which gives the highest output likelihood is chosen as the most proba-

ble language. An extension of this is ‘Parallel phone recognition followed by language

modeling’ (P-PRLM). Here the output of several phone recognisers is decoded by each

of the language models and the results combined - this allows for languages with dif-

ferent phone sets to be classified. In ‘Parallel phone recognition’ (PPR), the language is

identified using multiple recognisers with acoustic and grammar models from a single

language. These three techniques are shown in Figure 4.3.

Such systems have much higher accuracies than Gaussian mixture models, at the

cost of greatly increased computation time. Despite the fact that P-PRLM has been

shown to be successful in automatic accent classification [7], this technique would be
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Figure 4.3: Methods for automatic language identification. (Top) PRLM.
(Middle) P-PRLM. (Bottom) PPR
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too computationally expensive to run in conjunction with a real-time recogniser.

In [8, 33, 50], methods of determining regional accent are given, however they re-

quire the user to utter specific words or sentences designed to highlight the differences

between accents. This would be unacceptable in many applications. We therefore in-

vestigated methods of accent identification as a by product of the recognition process

- that is with virtually no computational overhead, utilising phonotactic knowledge of

each accent (Section 7).

A solution to the problem of variations in phonetic realization is to build separate

model sets for speakers with similar realisations. In [7] and [75] it was shown that this

approach can provide significant improvements in recognition accuracy.

4.2 Variation in Vocal Apparatus

Once a speaker has decided upon the sound he or she wishes to make in a given situa-

tion, the speaker attempts to arrange his or her vocal apparatus to produce an acoustic

realisation that is as close as possible to the target.

4.2.1 Sources of Vocal Apparatus Variation

As with all areas of human anatomy there are significant differences between the vocal

apparatus of individuals. The length of the vocal tract varies between male and female

speakers, from about 13cm to 18cm; the nasal cavity size can vary and the character-

istics of the vocal cords change from speaker to speaker. Such changes, unlike accent

variation, are specific to a given individual, rather than to a group of talkers.

4.2.2 Result of Vocal Apparatus Variation

Variations in vocal apparatus result in measurable differences to the speech signal pro-

duced, even if two speakers wish to produce the same phonetic realization. The position

of the formants will change as an approximately linear function of vocal tract length.

The pitch varies as a function of the vocal chord characteristics and the bandwidth and

inclination of the signal spectrum as a whole will also vary from speaker to speaker.
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4.2.3 Consequence of Variation to ASR

As with differences in phonetic realization, speaker dependent variations for a given

phoneme result in increases in the variances of the models and a subsequent reduction

in recognition accuracy. Several methods have been proposed to attempt to overcome

the problem of variation between speakers’ realisations of a given phoneme:

4.2.4 Speaker Dependent Recogniser

The simplest method of dealing with variation in speakers, and one which accounts for

differences in phonetic realization as well as changes in vocal apparatus, is to build

a speaker dependent (SD) recogniser. The acoustic models in an SD recogniser are

trained on the speech of a single speaker and therefore have very much lower variations

than those trained on speech from many talkers. There are however several disadvan-

tages to this approach. Firstly, a large amount of training data is required to successfully

estimate the parameters of the models - many hours of speech - and it would be imprac-

tical to collect this whenever a new user wanted to use a system. Secondly, once trained

for an individual speaker, performance for other users is normally extremely poor since

their speech is unlikely to match precisely that of the user on which the models were

built. As a consequence, each user would have to have their own set of models which

would require a large amount of storage space if the system were to be used by many

speakers.

4.2.5 Speaker Adaptation and Speaker Normalisation

The terms ‘speaker adaptation’ and ‘speaker normalisation’ have been used loosely and

in different ways in the literature. The distinction we make here is that ‘adaptation’

means adapting the speech models to become ‘closer’ to the speaker, whereas ‘normal-

isation’ means adapting the speaker’s data to some standard or canonical talker.

Two distinctions should be made when discussing speaker adaptation and normali-

sation techniques :

� Supervised vs Unsupervised: Supervised adaptation/normalisation requires the

new user to read a given passage to the system before adaptation takes place. This

passage is often chosen to highlight differences in pronunciation, and to cover as
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large a number of phonemes as possible. Alternatively the speaker may be asked

to correct the output of the recogniser during recognition. This technique is only

appropriate when the speaker is to be using the system for a significant period of

time and the time used to read the passage or correct the recogniser is insignif-

icant compared with the time spent using the system. Un-supervised adaptation

generally occurs without the user being required to utter a specific phrase. The

recogniser is used to identify which models to adapt with each utterance.

� Batch vs Incremental: Batch adaptation is performed by collecting a large sam-

ple of the user speech and subsequently processing it. Incremental adaptation is

performed at recognition time and the recogniser should be seen to improve in

accuracy as the speaker uses the system.

From a user’s perspective, unsupervised, incremental adaptation is preferable, however

this method is significantly more difficult than the batch, supervised method — prob-

lems may arise in unsupervised techniques if, for instance, the recogniser misrecognises

a section of speech and subsequently adapts the wrong model.

Speaker Adaptation

Speaker adaptation avoids the need for large amounts of training data from a single

speaker, by allowing a set of speaker independent (SI) models to be adapted to the new

user. The initial set of SI models may be trained using data from a database containing

many hours of speech and model the general characteristics of each speech unit. Speech

from individual talkers is then used to adapt the models such that they more closely fit

the individual acoustic properties of the talker.

A variety of methods have been proposed to perform speaker adaptation:

� Bayesian adaptation [9, 23, 40]: This technique combines the output distribution

parameters from a set of speaker independent models with new parameters gen-

erated from the new speaker’s adaptation data. The combination takes the form

of a weighted sum — as more data is collected from the talker, the weighting

for the prior models is decreased until the models are equivalent to the speaker

dependent case. The method is easily incorporated into the hidden Markov model

recognition framework [40], but does have the disadvantage that adaptation of a
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given model may only be performed once an example of the sound represented

by that model has been given. Also, the output distributions produced by the

technique can only be single Gaussian mixtures which can result in the adapted

models having lower performance than multiple mixture, speaker independent

models.

� Transformations of model parameters [5,15,27,35,44]: Adaptation algorithms of

this type seek to estimate a set of transformations (linear or non-linear) which may

be used to transform the parameters of the original models to better match those

of the adaptation data. One of the most popular schemes is MLLR (Maximum

Likelihood Linear Regression), in which a linear affine transform, initially of the

means of the models [44] and later of both the means and variances [27], is found

which maximises the likelihood of the adaptation data. This method has several

advantages. Firstly it fits rigorously within the hidden Markov model framework,

secondly, a single transformation may be applied to all the models, hence an ex-

ample of each phoneme is not required before adaptation can take place. As more

adaptation data is acquired, specific transforms for different classes of phoneme

are generated until a transform for each model is obtained. In [15] correlations

between sounds are calculated and used to predict linear transforms for unseen

phonemes from those for which adaptation data is available. The use of non-linear

transforms [5] [35] have shown some improvements in recognition accuracy. The

transform is usually implemented by a feed-forward multi layer perceptron. The

topology of such systems is arbitrarily chosen and as such often has a large num-

ber of parameters to estimate, requiring large amounts of adaptation data and as

such, linear techniques are currently more popular.

� VQ prototype modification: An alternative to continuous density HMMs is to vec-

tor quantize the parameterised input speech and then perform recognition using

discrete HMMs trained on the quantised values. The codebooks used for the vec-

tor quantisation may be modified to better match the adaptation data from a new

speaker using either Bayesian techniques [71] or by estimating a transform which

maps the SI codebook to the new speaker’s input vectors [26]. Such models have

been largely abandoned however due to the increased use of continuous density

HMMs instead of VQ and discrete ones.
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� Speaker Clustering [26, 48, 59, 77]: Speaker clustering reduces the variances in

the model set by identifying speakers within the training set who have similar

speech characteristics. A separate set of models, which will have smaller vari-

ances than truly speaker independent models, is then generated for each of the

speaker groups. During recognition, the goal is to associate the test speaker

with one of the clusters, and use the models for that cluster to recognise their

speech, thus improving recognition performance. Several clustering procedures

have shown to give increases in recognition performance. In [48] speakers are

clustered depending on parameters relating to their vocal tract dimensions, while

in [77] the dialect of the talker is identified and used to cluster similar speakers.

Speaker Normalisation

Speaker normalisation describes techniques in which the input vectors from a speaker

are adapted in some way so as to reduce the variation between speakers [11, 13, 19, 42,

74,79,80,87]. The normalisation may be applied to speakers in the training set, resulting

in acoustic models with smaller variances and less overlap [42]. This is not due to the

model parameters being explicitly changed as in a speaker adaptation scheme, it is sim-

ply a result of all the training speakers appearing acoustically more similar. If the same

normalisation procedure is then applied to the test speakers, their data will better match

the models, leading to a decrease in recognition errors. Rose and Lee [43] perform

the adaptation by moving the positions of the filter bank channels in an MFCC front

end so as to expand or compress the frequency spectrum of the signal. They present

two methods of determining the required normalisation factor for each speaker — the

first requires performing a probabilistic alignment of the utterance, parameterised at

each warp factor, to a transcription . The second requires decoding the utterance using

several Gaussian mixture models — one for each normalisation factor. Both these pro-

cedures are computationally too expensive to be used in a real time recognition system.

Burnett and Fanty [11] use Brents algorithm to find the optimum normalisation factor

(i.e. that which minimizes the output log likelihood of the recogniser), however this still

typically takes 8-10 passes over the adaptation data. Eide and Gish select the correct

warp factor based on the ratio of the speakers median third formant frequency to the

median third formant frequency of all the speakers. Zhan and Westphal [87] extend this
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by comparing the use of the median of the first, second and third formant frequencies

for determining the normalisation factor. All these methods estimate the median for-

mant position over a large number of frames representing several different phonemes.

Since many of the phonemes have different values for the formant frequencies, averag-

ing over several will result in a poor estimate of the actual formant value. In Chapter 5

we present a new method of normalisation which address many of the criticisms of the

current methods. The normalisation factor is determined without evaluating recogni-

tion performance over a range of normalisation factors and is therefore computationally

more efficient than the methods of Lee and Rose. The position of the first and second

formants is used in calculating the normalisation factor — the test speakers formants are

matched to distributions of the formants of all speakers. The distributions are estimated

individually for each phoneme, removing the problem of averaging formant positions

over different sounds.
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Speaker Normalisation

Differences in vocal tract length account for much of the variation in the realisation

of a target sound between talkers. Automatic Speech Recognisers trained with speech

data from a large number of different talkers must model this variability, leading to

models with higher variances and significant overlap. This in turn leads to poor recog-

nition performance. Similarly, mismatches between training and test set speakers leads

to increased confusion at the recognition stage. If these physiological differences be-

tween talkers may be identified, either explicitly through estimation of the vocal tract

length [61,83] or implicitly through estimation of some parameter related to vocal tract

length (such as formant positions) then it may be possible to use this information to

remove some inter speaker variability by simple signal processing techniques. In this

chapter a rapid, unsupervised method of speaker normalisation is developed and used

to reduce the mismatch between speakers, thereby improving recognition accuracy

5.1 Preliminary Investigation - Spectral Matching

A preliminary investigation was conducted to determine whether the variation between

speakers may be reduced by mapping the frequency spectrum of the test speaker’s utter-

ance to that of a canonical speaker using simple linear transformations of the frequency

spectrum of the speech. If the normalisation were sufficiently powerful, a speaker de-

pendent system trained on the utterances of a ‘canonical’ speaker would then, give

similar performance for all the normalised utterances.
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5.1.1 Data

The speech data used for the investigation consisted of the central 25.6ms frame of 5 vo-

coids, (/ae/ /er/ /iy/ /oy/ /uw/) from 49 speakers (18 female and 31 male) selected from

dialect region 1 of the TIMIT database (Section A.2.1). As shown in Section 3.2.3,

linear prediction coefficients may be used to generate a close approximation to the fre-

quency response of the vocal tract. A power spectrum derived from the LPC coefficients

is preferred to direct estimation of the spectrum because the inherent smoothness of the

LPC-derived spectrum results in more clearly defined peaks at the formant frequencies,

as shown in Figure 5.1. 20th order linear prediction was used to model each of the

vowel segments and 800 point normalised frequency response plots were generated for

each utterance.

5.1.2 Selecting the Canonical Speaker

In [76] it was shown that there are significant differences between vocal tract frequency

responses of male and female speakers. Females were generally found to have higher

formant and fundamental frequencies because of their shorter vocal tracts. It was there-

fore decided to perform the normalisation in a gender dependent manner, using two

different canonical speakers, one male and one female so that the normalisation was not

simply removing the gross differences between speakers related to their gender.

A distance between a given speaker, � and the other speakers was defined to be:

���� �
�

���

��
���

��
���

�
�� ���� 
�� ������

� � �� �� �� � � ��
� �� � (5.1)

where ) is the number of vowel sounds being compared (in this case ) � �), � is

the number of speakers (18 for the female talkers and 31 for the males) and � is the

upper frequency limit of the spectrum (8000). 
�� ��� is the amplitude of the spec-

trum for speaker �, vowel � at frequency �. The canonical speaker was chosen as the

speaker with the minimum ����, that is, the speaker with the smallest squared differ-
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Figure 5.1: Frequency spectra for a single 25.6ms utterance of the vocoid
/ae/. Top: FFT derived spectrum. Bottom: LPC derived spectrum.
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ence between the frequency spectrum of their vowels and those of all the other talkers.

It should be noted that this distance is calculated using only the single central frame of

speech for each vowel.

5.1.3 Normalisation Of Frequency Spectra

Two different methods of transforming the frequency spectra in order to normalise them

with those of the canonical speaker were investigated.

Frequency Offset

A frequency offset such that � ���� � ���  #� where ���� is the amplitude of the

frequency response of utterance � at frequency � was implemented. This shifts the

spectrum up or down the frequency scale depending on the value of #. The effect of

the shift is to move the absolute and relative positions of the formants while leaving

their bandwidth unchanged. Values of # from -200 to +200 Hz in increments of 10 Hz

were used and the squared error between the offset signal and the canonical speaker’s

utterance calculated. Figure 5.2 shows, for each of the five vowels of a typical speaker,

the change in error as # is varied. The optimum offset for each utterance is defined as

that which minimises the squared error. It is encouraging to note from Figure 5.2 that

the optimum offset is negative for all the vowels and approximately the same value (be-

tween 65Hz and 110 Hz) for four of these. This implies that in all cases the spectrum

has to be shifted down the frequency axis to match that of the canonical talker i.e. the

speaker has a shorter vocal tract (leading to higher frequency resonances) than that of

the canonical talker. The result of applying the optimum offset to the frequency re-

sponse of the speaker’s utterance is shown in Figure 5.3. The shifted spectrum, together

with the original unshifted response and the canonical response for the vowel /er/ are

shown. The effect is to align the first formants of both speakers. Plotting the optimally

offset responses of a single vowel for all talkers, Figure 5.4, shows that the major effect

of the shift is to align the first formants. This is due to the fact that the first formant is

the highest energy feature of the response and as such aligning them will result in the

smallest squared error between the test speakers and the canonical speaker.
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Figure 5.2: Error verses frequency offset for the 5 vowels of a single talker.
Each curve represents a different vowel.
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Figure 5.3: Effect of applying the optimal offset to the frequency spectrum
of a single utterance.
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Figure 5.4: Frequency spectra of vowel /er/ for all male speakers, unshifted.
Bottom: Frequency spectra of vowel /er/ for all male speakers, optimally
offset.
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Frequency Scaling

A scaling of the frequency axis such that � ���� � ����� was implemented. This

expands or compresses the response about the 0 Hz point, altering the formant band

widths and absolute positions, while not effecting their relative positions. In terms of

the ‘uniform tube’ model of the vocal tract as described in Section 2.2 this is equivalent

to scaling the length of the tube. If the tube is scaled by a value �, the frequency of the

tube’s resonances are scaled by a factor �
�
. Values of � from 0.25 to 1.75 in increments

of 0.05 were investigated. Figure 5.5 shows the resulting variation in error for each

vowel of a single speaker as the scaling factor is varied. Figure 5.6 shows the effect

of the optimum scaling on the response of a single vowel, together with the canonical

speaker’s response for that vowel. Again the overall effect of the shift for all speakers is

to align the first formants and thereby reduce the squared error, as shown in Figure 5.7.
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Figure 5.5: Error versus frequency scaling factor for the five vowels of a
single talker. Each line represents a different vowel.
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Figure 5.6: Effect of applying the optimal scaling the frequency spectrum
of a single utterance.

5.1.4 Classification Experiment

To investigate the usefulness of the transformations in reducing inter-speaker variabil-

ity, a simple classification experiment was conducted. The ’city block’ distance, *��,

between utterances from each speaker and the canonical speaker was calculated, where:

*�� �

�
���

� ����� % ��� � (5.2)

���� is the amplitude of the canonical speaker’s utterance at frequency � , % ��� is the

amplitude of the test speaker’s utterance at frequency � and N is the upper frequency

limit of the response. The test utterance was then assigned to the vowel class which

gave the smallest *��.

���## � ���
	

���
���


�
���

� ������ % ��� � (5.3)
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Figure 5.7: Top: Frequency spectra of vowel /er/ for all male speakers,
unscaled. Bottom: Frequency spectra of vowel /er/ for all male speakers,
optimally scaled.
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where + is the vowel class and ����� is the canonical response for vowel +

Table 5.1 shows the percentage of correctly classified vowels for the original, op-

timally offset and optimally scaled spectra. The alignment of the first formant by the

translations has provided a significant increase in classification accuracy implying that

simple linear transforms in the frequency domain can increase discrimination between

certain vowel classes. The frequency offset shows better improvements than the fre-

quency scaling, even though the later is more consistent with the acoustic theory related

to changes in vocal tract length. An explanation for this is that the offset was evaluated

at increments of 10 Hz and as such the first formants would be aligned to within 10

Hz of each other. The scaling was evaluated at increments of 0.05, and since the first

formant is at approximately 300Hz, they are only aligned to within 15Hz of each other

(���Hz � ���� � ��Hz�. Hence improvements using the scaling are slightly less than

those obtained using the offset.

The method of exhaustively searching for the optimal transformation is, however,

computationally highly expensive. Transforming the frequency response by changing

the LPC’s directly, rather than in the frequency domain would reduce the required num-

ber of new parameters which need to be calculated from 800 to just 20, reducing the

computational burden. The technique must also be shown to work over all speech

sounds rather than just a small subset of the vowels.

Spectra Type /ae/ /er/ /iy/ /oy/ /uw/ Average
Female Original 70.6 41.2 58.8 94.1 70.6 67.1
Female Optimal Offset 82.3 70.6 76.5 88.2 94.1 82.3
Female Optimal Scaling 70.6 58.8 100 88.2 100 81.2
Male Original 86.7 23.3 53.3 73.3 63.3 60
Male Optimal Offset 86.7 53.3 53.3 93.3 73.3 72
Male Optimal Scaling 86.7 40 53.3 96.7 70 69.3

Table 5.1: Results of classification experiments for unnormalised, optimally
offset and optimally scaled frequency spectra (% Correctly Classified).

5.2 Normalisation by LPC Pole Matching

The previous transform showed that aligning test speakers’ first formants to those of a

canonical speaker could provide an increase in recognition accuracy for a simple vowel
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classification task. In Section 3.2.3 it was shown that the transfer function described

by the linear prediction coefficients may be interpreted as the vocal tract filter of the

source-filter model. In [74] it was shown that the apparent identity of a speaker may

be modified by directly altering the LPC pole positions to those of a canonical speaker,

however the results were not used to improve recognition accuracy and were only eval-

uated by human listening tests. Here we attempt to extract the value of the first formant

directly from the vocal tract transfer function then normalise the test speaker directly

to the canonical speaker in the LPC domain. This removes the need to evaluate the

transfer function explicitly and should increase the computational efficiency of the nor-

malisation.

5.2.1 Data

The preliminary experiment was conducted on frequency spectra derived from the LPC

coefficients of a single frame from each vowel of every speaker. There was no assurance

that these spectra were representative of the vowel sound in general, rather than just the

short segment observed. The roots of the 20 LPCs for 5 contiguous 25.6ms frames with

10 ms overlap, taken from the center of the sound were observed for several speakers.

Figure 5.8 shows a plot of the roots of the LPCs in the z-plane over 5 frames for a typical

vowel utterance. The clustering of poles near the unit circle indicates that the LPCs vary

little from frame to frame and it was concluded that the LPCs were providing a stable

representation of the sounds. For the subsequent experiment, the values of the LPCs

were averaged across the 5 frames. The data was also extended to included examples

of all seventeen vocoid sounds in the TIMIT transcriptions rather than just five.

5.2.2 The Transform

The original transform relied on exhaustively searching for the optimum offset or scal-

ing which minimised the squared error between the frequency response of the test

speaker and a reference speaker. This was seen to effectively align the first formants.

The LPC representation of the speech signal provides a method of directly evaluating

the formant frequencies which can then be matched to those of the reference speaker.

As shown in Section 3.2.3, linear prediction approximates the vocal tract response

as an all pole filter
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Figure 5.8: Variation of LPC pole placement over 5 contiguous frames from
a typical utterance of the vowel /ao/. Clustering of poles near unit circle
indicates that the LPCs are providing a stable representation of the sound.

���� �
���

��� ���
��

(5.4)

�
�

����
(5.5)

Where �� are the predictor coefficients and � is the analysis order. Estimates of

the resonances of the vocal tract (the formants) are given by the roots of the predictor

polynomial, ����. For each root, !�, the frequencies and bandwidths are given by:

�� �
����
��

(5.6)

�� �
� �� �!����

�
(5.7)

where �� is the sampling frequency and �� and �!�� are the angle and magnitude of !�
respectively.
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The roots representing the formants typically have very small bandwidths (by ob-

servation, typically �!�� , ���) and low frequencies. The first and second formants for

each utterance were therefore located by sorting the roots into order of ascending fre-

quency, and extracting the two lowest frequency roots with �!�� , ���. Figure 5.9 shows

a plot of the roots of the polynomial, with the formant bandwidth decision threshold.

Four pairs of poles lie outside the threshold and the formant frequencies associated with

these are shown on the Fourier transform of the signal in Figure 5.10, along with the

lpc derived spectrum.
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Figure 5.9: LPC pole placement in the z-plane for the vowel /oy/ showing
the bandwidth threshold (red) used for identifying the speech formants

The accuracy of the formant finding algorithm is sometimes compromised, partic-

ularly for high pitched speech where the first and second formants merge to a single

peak, and for the third and fourth formants where the bandwidths are often lower than

the threshold. In the majority of cases however it was reliably able to identify the first

and second formants and is also computationally far cheaper than other methods such

as those presented in [30] and [81]

Having located the formants from the LPC coefficients, they may be directly trans-

formed to more closely match those of the canonical speaker. This is computation-
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Figure 5.10: FFT and LPC derived frequency spectra for the vowel /oy/
showing the candidate formant locations estimated from the LPC roots

ally more efficient than deriving the frequency response and performing an exhaustive

search over various scaling factors.

The new transform is defined such that if ��� and ��� are the angles of the new

speaker’s first and second formants for a given vowel, and ��� and ��� are those of the

reference speaker for the same vowel, then the transformed angles ��	 and ��	 are given

by

��	 � ���� (5.8)

��	 � ���� (5.9)

where � is found so that

���� � ��	 �
�  ���� � ��	 �

� (5.10)

is minimised. Setting

- � ���� � �����
�  ���� � �����

� (5.11)
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and differentiating with respect to � gives

.-

.�
� ���������

�  �����
��� �����

�
�  ����

�
���� (5.12)

For ��
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� �
����

�
�  ����

�
�

�����
�  �����

�
(5.13)

Using similar notation for the bandwidths leads to:

���
	 � � $���

�� (5.14)

���
	 � � $���

�� (5.15)

where

$ �
���

� ����
�� ���

� ����
��

����
� ���  ����

� ���
(5.16)

It should be noted that this is no longer a simple linear transformation in the fre-

quency domain. Instead we are finding a multiplicative factor which minimises the

distance between the poles of the canonical and test speakers in the z-plane, thereby

normalising both the frequency and bandwidth of the formants.

5.2.3 Results

Figure 5.11 shows the results of applying the shift to a single utterance. On the top

row, the unnormalised roots of the test and canonical speaker’s LPCs are shown in the

z-plane, alongside the LPC derived spectra. On the bottom row the normalised roots

and spectra are shown. The roots associated with the first and second formants have

been aligned in the z-plane, matching the test and canonical speakers’ formants.

The effect of applying the transform to the spectra of several speakers for the vowel

/ih/ is shown on the bottom of Figure 5.12; the unnormalised spectra are shown on the

top. The variance around the first and second formants has been significantly reduced

by the transform, as would be expected. For each speaker’s utterance of the vowel /ih/,

62



CHAPTER 5. SPEAKER NORMALISATION

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 Original Spectra

Freuency (Hz)
A

m
pl

itu
de

Test Speaker     
Canonical Speaker

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

2
Original filter poles

Real Part

Im
ag

in
ar

y 
P

ar
t

Test Speaker     
Canonical Speaker

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

2
Transformed filter poles

Real Part

Im
ag

in
ar

y 
P

ar
t

Test Speaker     
Canonical Speaker

10
2

10
3

10
4

0

1

2

3

4

5

6

7

8
x 10

−3 Transformed Spectra

Frequency (Hz)

A
m

pl
itu

de

Test Speaker     
Canonical Speaker

Figure 5.11: Effect of LPC transform on single utterance. Top: Unnor-
malised spectra and filter pole positions. Bottom: Normalised spectra and
filter pole positions
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Figure 5.13 shows the position of the first and second formants when plotted against

each other. The effect of the normalisation is to cluster talkers with the same ratio of

first to second formant frequency to a single point within the f1-f2 plane. Before the

normalisation speakers are randomly scattered in the formant plane; after the shift, the

speakers are ordered along an ellipse, the axes of which are given by:

/ �
�

�

�
�����  ����� 

��
�

(5.17)


 �
�

�

�
�����  ����� 

��
�

(5.18)

where �� and �� are the frequency of the reference speaker’s formants, as is shown in

appendix B. The ratio of the speaker’s first and second formants is therefore preserved

by the transform, while their absolute positions is normalised toward that of the refer-

ence speaker. Formant ratio theory [51] states that the ratio of the lower formants is

of significantly more importance than their absolute positions in defining the perceived

identity of vowel sounds. This is demonstrated by Figure 5.14 which shows the distri-

bution of formant ratios for the vowels /ih/ and /aa/ after normalisation. The two vowels

show distinct peaks at different points along the formant ratio axis indicating that the

F1-F2 formant ratio is a good discriminator of these sounds. This has been shown to be

true for many other of the vowel sounds [76]. The ability to reduce inter-speaker vari-

ance, while retaining the ratio of the lower formants is of significant importance since

this will preserve the discriminative information between the sounds, while reducing

the within class variance.

5.2.4 Recognition Test

To investigate the usefulness of the transform, a simple classification experiment was

performed. 12 MFCC’s were generated from both the original and normalised utter-

ances and a multivariate normal classifier was used to assign the utterance to the vowel

class with the highest probability. Assuming the features to be uncorrelated (i.e. covari-

ance matrix is diagonal), the probability of 
 being in class � is given by
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Figure 5.12: Effect of LPC transform on the spectra of the vowel /ih/ from
50 speakers. Top: Unnormalised spectra. Bottom: Normalised spectra.
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mant ratio for two vowels, showing the discriminative information available
from the formant ratio.
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where 0� is the diagonal of the covariance matrix for class c, (� is the vector of

means for each feature in class c, � is the dimensionality of the data (in this case 12)

and 
 is the test utterance.

The results of the recognition experiment are given in Table 5.2 and show that the

transform provides a significant improvement in classification accuracy.

Phoneme Recognition rate (%) Recognition rate (%)
before normalisation after normalisation

iy 58.3 51.5
ih 12.3 43.9
eh 12.4 25.9
ey 46.2 54.6
ae 41.9 55.6
aa 18.6 54.5
aw 44.0 59.7
ay 40.0 60.6
ah 5.4 44.4
ao 25.5 63.8
oy 65.2 72.8
ow 27.4 57.2
uh 4.0 72.4
uw 15.8 32.6
er 62.4 61.2
ax 21.3 45.5
ix 20.5 56.1

Average 30.7 53.7

Table 5.2: Results of multivariate normal classification experiments (%
phone recognition accuracy) before and after normalisation by matching test
speakers’ vowels to those of a canonical speaker by LPC pole matching.

68



CHAPTER 5. SPEAKER NORMALISATION

5.2.5 HMM Based Recognition

Given the observed improvement in accuracy using a simple classifier when normali-

sation was used, an HMM monophone recogniser for the entire TIMIT database using

normalised and unnormalised data was constructed. Separate male and female models

were produced. The data comprised of 3260 training and 1120 test sentences for the

male model, and 1360 training and 560 test sentences for the female model. Figure 5.15

shows the method used to generate the MFCC’s from the raw speech data. A window

duration of 25.6 mS with a frame period of 10 ms was used.

The models were created using HTK [86]. A 3 state, single Gaussian mixture, left

right with no skips, diagonal covariance matrix topology was used. The models gen-

erated with the unnormalised training data were tested with unnormalised test data to

provide a baseline performance measure. The normalized models were then tested with

normalised test data , giving an upper bound on the performance increase available us-

ing the normalisation technique. The results of the recognition tests, given in Table 5.3,

show significant improvements in the percentage of correctly identified vowel segments

for both the male and female cases.

5.2.6 Conclusions

Direct transformation of a speaker’s utterance in the LPC domain has proved successful

in reducing inter-speaker variability and increasing recognition performance. However

the technique still relies upon calculating a separate normalisation factor for every frame

of the utterance. While this provides the maximum improvement in accuracy, it is still

computationally to expensive to implement in a current real-time recogniser architec-

ture. The transform is also highly dependent upon the selected canonical speaker and

normalisation is only performed on the vowel sounds since the formant estimator is

only able to provide candidate formant frequencies for vocoid sounds. The normalisa-

tion still requires supervision, since the segment labels are required to determine which

of the canonical speaker’s vowels to normalise to. A new transform was implemented

in order to address these issues.
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Figure 5.15: Parameterisation of data for HMM recogniser (Unnormalised
(right) and normalised (left) cases.)
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5.3 Normalisation to Canonical Distribution

Other work ( [19, 43, 80]) has shown that a single normalisation factor applied to all

frames of a speaker’s utterance can provide a useful reduction in error rate. A method

of combining the normalisation factors for all the frames into a single normalisation for

each speaker was therefore developed and tested. The new normalisation also discards

the concept of a ‘canonical speaker’, replacing it with a statistical representation of all

the speakers to which each test speaker is normalised.

5.3.1 The Transform

The previous transform was defined such that, if ��� and ��� are the angles of the poles

representing the test speaker’s first and second formants (related to the frequencies of

the formants by �� �
����
�"

) and ��� and ��� the angles of the reference speaker’s formants,

then for frame � the transformed poles, ��	 ��� and ��	 ��� are given by :

��	 ��� � ���������� (5.20)

��	 ��� � ���������� (5.21)

where

���� �
����

�
����  ����

�
����

��������
�  ��������

�
(5.22)

To remove the need for a canonical talker, estimates (by the lpc root finding method

discussed in Section 5.2.2) of the first and second formants for each frame of each

vowel in the TIMIT training set are calculated. A uni-variant Gaussian distribution is

then used to model each formant in each vowel class.

��� �
�

0�
�����

�

�
� (��
�

�0���
(5.23)

��� �
�

0�
�����

�

�
� (��
�

�0���
(5.24)
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���� is then found such that :

���� � ������
�
1��� (5.25)

���� � ������
�
1��������� ��

�
����� (5.26)

���� � ������
�

���������� � ���� ���������� � ���� (5.27)

���� � ������
�

�

��0�0�
���

	
��

�

��������� (��
�

0��



���

	
��

�

��������� (��
�

0��



(5.28)

That is, ���� is chosen so as to maximise the likelihood of the transformed formants hav-

ing come from the two formant distributions for that vowel class. Figure 5.16 demon-

strates this — the two original vowels, shown by the lines f1 and f2 are scaled by a

factor ’a’ such that they are closer to the means of distributions F1 and F2. This is an

extension to the work of Eide and Gish [19] who calculate a normalisation factor from

the ratio of the mean value of the third formant for the test speaker, to the mean value

of the third formant for all speakers.
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Figure 5.16: Normalisation of formant estimates to formant distributions.
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A closed form solution to Equation 5.25 may be found by differentiating the loga-

rithm of the likelihood equation:

1��� �
�

��0�0�
���

	
��

�

������������ (��
�

0��



���

	
��

�

������������ (��
�

0��



� (5.29)
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(5.30)

which may be expanded to give

���1���� � ��
�
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Differentiating with respect to ���� results in

.����1����

.������
�
������������  ������(�
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������������  ������(�

0��
(5.32)

and setting this to zero and rearranging gives

���� �
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������

0�

�� (5.33)

Values of � , ��� or � 2 ��� are ignored since this has generally been observed to

indicate a failure of the formant picking algorithm to locate the correct formants (e.g.

matching the third formant to the second formant distribution).

The normalisation factors, ����, each have an associated likelihood, 1���, where

1��� �
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��0�0�
���
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� (5.34)
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These are then used to calculate a single normalisation factor, ��3�, for each speaker :

��3� �

��
��� �

$
�1

$
���

��� 1
$
�

(5.35)

where j is the total number of vowel frames for speaker 3 and 1$
% is 1�
� for speaker

3 . This alleviates the need for a separate normalisation for each frame, greatly reducing

the computational overhead of the technique.

Normalising the estimate of each ���� by the its associated likelihood has a further

advantage. If the estimate of the formant picking algorithm for a particular frame is

poor, even the optimum value of ���� will still result in the transformed formants having

a poor match to the distributions. This being the case, their value of 1��� will also be

low and they will receive a relatively small weighting in the calculation of ��3�

5.3.2 Experimental Studies

A series of recognition experiments were conducted using the new transformation to

compare it to the previous techniques.

Dialect Independent Normalisation

The first experiment was a direct continuation of the previous work on LPC normalisa-

tion (Section 5.2.2). Gender independent formant distributions for each of the vowels

in the TIMIT data base were generated from the training set. These were then used in

equations 5.25— 5.35 to find a normalisation factor, ��3� for each speaker 3 . Normal-

isation was then performed on the LPCs for each of the vowel frames. The angle of

the poles representing the first and second formants were multiplied by the normalisa-

tion factor, scaling their frequency by a factor ��3�. The normalised LPC’s were then

used to generate the MFCC’s used as the input vectors for the HMM recognition exper-

iment. Figure 5.17 shows the parameterisation procedure including the normalisation

technique.

Separate male and female models were generated using the normalised data and

HTK. Identical recogniser topologies and raw data sets to those mentioned in 5.2.5

were used. The models were tested using the normalised test data and the recognition
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error rates and reference error rates (calculated using un-normalised data) are shown in

Table 5.4.

The results given in Table 5.4 were some what disappointing, showing a lower im-

provement than that obtained by optimally normalising every frame. The overall recog-

nition rate (including all phonemes rather than just vowels) increased by just 0.31%

(from 41.57% to 41.88%) for the male model, and 0.46% (from 42.70% to 43.16%) for

the female case. This was caused by the accuracy of the unnormalised phonemes (the

non vowel frames) decreasing thereby offsetting the improvement in vowel recognition.

In order to try and resolve this problem a second experiment was conducted in which

all the speech was normalised rather than just the vowel frames. Since unvoiced speech

has no clearly defined formants, normalisation cannot be performed on these segments

by simply shifting the roots of the LPCs by the normalisation factor. In [43], Lee

and Rose perform speaker normalisation by warping the Mel filter bank channels (Fig-

ure 5.18 — Compressing the filter bank effectively expands the spectrum shifting the

formants up in frequency. Expanding the filter bank compresses the spectrum shifting

the formants down. Their method of determining the correct warping factor consisted

of performing an alignment of the utterance parameterised at several normalisation fac-

tors and selecting the one which gave the highest output likelihood from the recogniser.

Here we use the new method of selecting the correct warping factor, ��3�, and scale

the filter bank by a factor of �

�$�

. This does not require performing the alignment at

a number of different warp factors and is therefore computationally more efficient than

the work presented in [43].

The HMMs used identical topology to that mentioned in Section 5.2.5 and were

trained and tested using the normalised data set. Overall results were again disappoint-

ing, the recognition rate increased by just 0.23% over the vowel only normalisation for

males, and 0.4% over the vowel only case for females.

A possible explanation for this result is given in [39] in which the effects of accent

on vowel formant position is discussed. The transformation is effective only if the ratio

of the test speaker’s first and second formants is close to the ratio of the means of the f1

and f2 reference distributions. In [39] it is suggested that the effect of accent in terms

of phonetic realisation is to adjust the spacing of the formants and therefore the f1-f2

ratio. This would adversely effect the performance of the normalisation. To investigate

this effect, a series of accent independent experiments were conducted.
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Figure 5.18: Warping of Mel filter-bank dependent upon normalisation fac-
tor.
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Figure 5.19: Waveform parameterisation incorporating normalisation by
filter-bank warping.
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Dialect Dependent Normalisation

The TIMIT database is divided into 8 distinct dialect regions, and therefore to test the

effect of dialect variation, gender independent distributions for each of the vowels were

generated within each dialect region. The change from gender dependent to gender

independent was necessary due to the reduction in the size of the data set available for

each of the models. Data set sizes varied from 330 sentences (220 training and 110 test)

for dialect region 8 to 1020 sentences (760 training and 260 test) for dialect region 2.

A normalisation factor for each speaker was calculated using the vowel distributions

from the speaker’s accent group and equations 5.25- 5.35. The distribution of selected

warp functions is shown in Figure 5.20. There is a clear distinction between the normal-

isations for male and female speakers - Female speakers generally have a normalisation

factor less than one, while males have a factor greater than one. The warping com-

presses the frequency response of the female speakers and expands it for the males.

This is what would intuitively be expected since, in general, women have shorter vocal

tracts and correspondingly higher formants than men.
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Figure 5.20: Distribution of warping factors
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Figure 5.21: Waveform parameterisation including normalisation of vowels
by filter bank warping
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Three recognition experiments were performed on the data from each dialect region.

In each case the previously used HMM topology was again implemented.

No warping The scheme shown in Figure 5.15(right) was used to parameterise the

waveform data from each class. Here the warp factor is not used, and the results

represent a baseline dialect dependent result to which the improvements provided

by the normalisation may be compared.

Vowel warping In this scheme, shown in Figure 5.21 the vowel segments of each ut-

terance are coded using the warped Mel-Filter bank, while the other segments are

coded as before.

Complete warping Here every frame in the utterance is coded using the warped Mel

filter-bank as shown in Figure 5.19. This represents the maximum improvement

available from the technique and was performed to investigate whether normalis-

ing unvoiced segments of data provided a significant improvement in recognition

accuracy.

The results of the three experiments are given in Table 5.5. Overall recognition re-

sults averaged across the dialect regions improved from 38.95% for the reference case

to 40.66% for vowel normalisation, and finally to 41.72% for the fully normalised case.

Warping of the Mel filter bank by a single normalisation value for each speaker can pro-

vide reasonable reductions in error rate for a low computational overhead. Further, the

results show that although the normalisation is derived purely from the vowel segments

of the speech, applying the same normalisation to all speech sounds provides further

improvement than only normalising the vowels.

The normalisation procedure is still supervised however, since labelled utterances

from each of the test speakers is required so that the formant frequencies are normalised

to the correct set of vowel distributions. This is of little use in a realistic recognition

scenario where labelled data from a new test speaker is unlikely to be available. An

investigation was conducted into methods of performing the normalisation in an unsu-

pervised manner, that is, without prior knowledge of the test transcription.

83



CHAPTER 5. SPEAKER NORMALISATION

Normalisation method
Dialect region None Vowel only All

DR1 38.56 39.58 41.57
DR2 41.17 42.87 43.30
DR3 40.15 41.95 42.83
DR4 38.12 40.26 41.15
DR5 37.81 40.08 40.49
DR6 37.63 38.78 40.0
DR7 40.15 41.41 42.79
DR8 38.04 40.37 41.65

Average 38.95 40.60 41.72

Table 5.5: Recognition results for dialect dependent, filter bank warping
schemes.

5.4 Unsupervised Normalisation

5.4.1 Speaker Adaptation Scheme

Each speaker in the TIMIT database says two identical ‘speaker adaptation’ sentences

(the so called ‘sa’ sentences). In this experiment, the normalisation factor for each of

the test speakers was derived from the data for just these two sentences. Normalisation

was then performed on all ten of the speaker’s utterances (including the ‘sa’ sentences).

Transcriptions for just the two ‘sa’ sentences are therefore required rather than for all

the test material - this is equivalent to a type of ‘speaker enrolment’ system, where new

talkers are asked to say a few predefined sentences before continuing their interaction

with the system. Results of the system are given in Table 5.6.

The results are comparable to those shown in Table 5.5 in which all the test speakers’

utterances were used to calculate the normalisation factor, showing that only a limited

amount of data is required to accurately estimate the warping factor for each talker.

5.4.2 Two Pass Recognition

In this experiment, two recognition passes on each of the speaker’s utterances is made.

The first pass uses the un-normalised data from a test speaker to generate a set of recog-

nition files for the utterance. These are then used to calculate the normalisation for that

speaker. The data is then re-parameterised using the calculated normalisation factor and
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Dialect Region Phoneme Recognition Accuracy
DR1 42.06 %
DR2 43.61 %
DR3 42.90 %
DR4 41.14 %
DR5 40.15 %
DR6 40.10 %
DR7 42.65 %
DR8 41.38 %
Mean 41.74 %

Table 5.6: Recognition results for speaker enrolment scheme

Dialect Region Phoneme Recognition Accuracy
DR1 41.30 %
DR2 42.49 %
DR3 41.55 %
DR4 39.62 %
DR5 38.51 %
DR6 37.75 %
DR7 41.40 %
DR8 41.03 %
Mean 40.46 %

Table 5.7: Recognition results for two pass recognition scheme

the scheme shown in Figure 5.19. This data is then recognised and the output taken as

the final recognised transcription of the utterance. Recognition rates for the method are

given in Table 5.7.

The results of this method are lower than those obtained using the enrolment pro-

cedure, largely due to the fact that the transcriptions generated in the first pass, and

subsequently used to calculate the normalisation factor are only approximately 40%

correct. It does however represent an entirely unsupervised adaptation scheme which

would be fast enough to be performed in a real time recognition system.
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5.5 Summary and Conclusions

In this chapter a simple method of normalising the frequency response of a speaker’s

utterances was introduced. The method was systematically extended to produce an

unsupervised method of normalisation using filter bank warping techniques.

The distribution of normalisation factors shows a marked difference between male

and female speakers, and this indicates that the method is normalising variations in

vocal tract length. The results of the dialect independent recognition tests suggest,

however, that the system cannot normalise for differences caused by varying accents.
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Speaker Clustering

In this chapter, work is presented which studies a method for automatically clustering

speakers. The procedure is a data driven technique utilising semi-continuous HMMS

which is initially used as a method for automatically classifying accent, and is then used

as a means of dividing the available data set into acoustically similar clusters of talkers.

6.1 Accent Identification Using SCHMMs

6.1.1 Introduction

Different talkers may use several different realisations of the same phonetic unit while

speaking. As mentioned in Section 4, speaker clustering is a method of reducing the

variance of the recognition models by training multiple sets of models on speakers with

acoustically similar realisations of the same target sound. At recognition time the task

is to quickly and accurately assign the unknown test speaker to one of the clusters. The

models for that cluster should provide a better match to the subjects speech patterns,

thus reducing recognition errors.

Speaker clustering differs from the previously presented work on speaker normal-

isation in that no attempt is made to alter the speech sounds from the talker, they are

simply classified as being from one of a number of distinct groups, and training and

recognition is then done within group. The method works at a level between signal

processing of the speech signal (be it in raw or parameterised form) such as vocal tract

normalisation techniques and the phonetic level such as the methods presented in [34]
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and Chapter 7.

While it would be possible to directly cluster the parameterised input speech, this

would be highly computationally expensive owing to the large amount of data from

each talker (one new vector every 25.6ms). This approach would also be difficult to

implement in the context of a typical recognition system. Our premise is that speakers

who are acoustically similar will tend to use the same distributions within a semi contin-

uous HMM when their speech is recognised. This provides a mechanism for identifying

clusters of speakers. This approach has the advantage that clustering may be done as a

by-product of the recognition process with little additional computation.

The technique is based on the assumption that if speech from talkers in all accent

groups has been used to train an HMM recogniser, then the modes in the mixture distri-

butions will separately model the variations in the realisation of a particular target sound

for a particular accent. Speech spoken with a particular accent will therefore occupy a

distinct set of regions within the pattern space. This will undoubtedly not hold for some

sounds and different accents may well share many of the same regions. However, if

enough sounds are available, these effects should average out to make classification

possible using regions in which the assumption is good. By estimating and recording

at training time the regions of the pattern space used by speakers with known accents,

classification of a new speaker’s accent may be performed by observing which part of

pattern space (that is, which modes of the mixture distribution) they utilise.

If a small number of modes were used to model the data within a state, as is normal

in a continuous density HMM(Section 3.6.1), this approach would be too coarse and the

distinction between accent groups too small to accurately model. In addition, a recog-

niser which uses triphone models might have several thousand models, each of which

has several states with an associated mixture distribution. This is clearly unmanageable.

In a SCHMM (Section 3.6.2) the distributions are shared between all the models, each

state having a different weight on each distribution. This is useful for our purposes for

two reasons: firstly, it restricts the number of distributions to a manageable number;

secondly, it means that each sound is quite finely modelled. Hence we use a semi con-

tinuous HMM in which a large number of modes are available in every state and the

distinction between different accents should be better defined.
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6.1.2 Method

In order to cluster the speakers the regions of the pattern space used by a speaker were

identified and a distance measure between speakers was calculated based on the sub

space used by them. We then cluster based on this ’speaker dissimilarity’ measure.

Identifying the Speakers Pattern Space

In order to identify the subspace of the pattern space used by a speaker, a set of semi-

continuous speaker independent phoneme models were generated. The models share a

common pool of 256 multivariate Gaussian modes which cover the acoustic space of

all accents present in the training data. The model topology was 3 states per model,

left-right with no skips. The models consist of the state transition matrices plus a set of

mode weights for each state. The mode weights describe how the pool of Gaussians are

combined to form the mixture distribution for that state.

The models were generated using HTK’s parameter tying facilities — an original set

of continuous models were trained, and the mixtures tied across all models to produce

a semi continuous topology. The weights and mode pool were then updated using

embedded Baum Welch re-estimation.

In order to identify which of the modes in the speaker independent mode pool were

used by a given speaker, the SI models were used to recognise data from each of the

training speakers. Table 6.1 shows a fragment of the data recorded during recognition

— for each frame, the number of the mode which best matched the frame is recorded,

along with the most likely model and state for that frame. From this information, a

set of mode utilisation vectors as shown in Table 6.2 are generated — For each model

state during recognition, the mode which has the highest likelihood most frequently

is associated with that state. For each speaker we therefore have a vector of 132 (44

models * 3 states per model) modes. States which were not represented in the test data

and therefore have no mode assigned a dummy mode (-1). Such models are not used

in calculating the speaker dissimilarity measure. The mode utilisation vector for each

speaker may be interpreted as coarse representation of the parameter space used by that

speaker.
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Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 � � � 1027
model sh sh sh sh sh sh ae ae ae ae ae ae d d � � � sp
state 1 2 2 2 3 3 1 1 2 2 3 3 1 1 � � � 1
mode 27 28 28 37 37 38 10 10 12 12 19 10 2 2 � � � 130

Table 6.1: Example of recorded data for a speaker’s utterance. For each
frame, the most likely mode, model and state is recorded.

Model aa ae ah � � � zh
State 1 2 3 1 2 3 1 2 3 � � � 1 2 3

Speaker 1 Modes 10 11 13 7 8 9 27 14 15 � � � 169 170 171
Speaker 2 Modes 10 11 17 -1 -1 -1 32 14 15 � � � 168 171 172
Speaker 3 Modes 10 12 13 7 8 9 13 15 16 � � � -1 -1 -1

...
Speaker N Modes 10 12 13 -1 -1 -1 13 14 15 � � � 189 190 191

Table 6.2: Example Mode utilisation vectors. The mode which occurred
most frequently for each model state during recognition is associated with
that state.

Model aa ae ah � � � zh
State 1 2 3 1 2 3 1 2 3 � � � 1 2 3

Speaker 1 Modes 10 11 13 7 8 9 27 14 15 � � � 169 170 171
Speaker 2 Modes 10 11 17 -1 -1 -1 32 14 15 � � � 168 171 172

*�#�������� �� � ��� � ����

Speaker 3 Modes 10 12 13 7 8 9 13 15 16 � � � -1 -1 -1
Speaker 4 Modes 10 12 13 -1 -1 -1 13 14 15 � � � 189 190 191

*�#�������� �� � ��	 � ����

Table 6.3: Calculation of a simple dissimilarity measure. The dissimilarity
between 2 speakers is the number of states observed in the test data for which
their modes are different, normalised by the number of observed states.
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Generating a Speaker Dissimilarity Measure

To perform the clustering, a dissimilarity measure between pairs of speakers is required

so that similar speakers may be clustered together. A simple method would be to com-

pare, on a state by state basis, pairs of mode utilisation vectors as shown in Table 6.3.

The dissimilarity is calculated as number of non identical pairs of modes. States with a

mode of -1 for either of the speakers (i.e. the model state was not represented in the test

data and therefore an estimate of the most used mode could not be made ) are ignored.

The final sum is then normalised by the number of pairs of states compared (i.e. those

in which neither speaker recorded -1).

While this method provides a simple method of generating a speaker dissimilarity

measure, it does not take into account the relative similarity of the modes : Given the

three example modes shown in Figure 6.1, it is clear that modes 1 and 2 are extremely

similar, and that two speakers utilising those modes in the same state should have a

lower dissimilarity measure than two using modes 1 and 3.
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Figure 6.1: Example Modes

In order to account for this, a dissimilarity measure between the modes, �*, was

calculated :

�*�� �

�
���

�(�� � (���

�0��  0���
(6.1)

where �*�� is dissimilarity between mode � and �; � is the number of components

in the mode; (�� is the th mean value for mode i; 0�
� is the th variance value for mode

�.

The dissimilarity between two speakers can now be calculated as the sum of the

dissimilarities between the modes, normalised by the number of comparisons as shown

in Table 6.4.
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Model aa ae ah � � � zh
State 1 2 3 1 2 3 1 2 3 � � � 1 2 3

Speaker 1 Modes 10 11 13 7 8 9 27 14 15 � � � 169 170 171
Speaker 2 Modes 10 11 17 -1 -1 -1 32 14 15 � � � 168 171 172

*�#�������� �� � &'�����
��&'��
�����&'���������&'��
���
���&'��
���
��
�

Speaker 3 Modes 10 12 13 7 8 9 13 15 16 � � � -1 -1 -1
Speaker 4 Modes 10 12 13 -1 -1 -1 13 14 15 � � � 189 190 191

*�#�������� �� � &'��	�����&'�����	�
�

Table 6.4: Example dissimilarity measure incorporating mode dissimilarity

Given this dissimilarity matrix between speakers, a clustering method can be used

to obtain groups of similar speakers.

The Clustering Algorithm

To cluster the training speakers, a variation on K-means clustering was used.

i For the entire data set, the two maximally separated points (ie the two speakers with

the largest dissimilarity) are found and all the speakers assigned to the nearest of

these points to form an initial pair of clusters.

ii The centroid of each cluster is then calculated, were the centroid is defined as the

speaker with the minimum - maximum distance to any of the other speakers

within that cluster.

iii Speakers are allocated to their closest centroid.

iv New clusters are formed from the allocations of speakers in [iii].

v Repeat ii — iv until iteration converges (ie no speakers change clusters) or a pre-

defined number of iterations have been completed.

vi If number of clusters is less than the required number, find the current cluster with

maximum separation between any pair of speakers (ie the widest spread cluster).

Take the maximally separated points within this cluster and assign the rest of

the points to the closer of the two, effectively splitting the cluster into two new

smaller clusters.
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viii Find the minimax centroids of those two new clusters and repeat from iii.

This process then provides a number of cluster centroids which are generated with-

out reference to the speakers’ accents. The expectation is that each of the training

clusters would contain a majority of speakers from a single accent group.

To cluster the test data, dissimilarity measures between each test speaker and the

cluster centroids were calculated using the method described for generating dissimilar-

ity measures between training speakers, ie the normalised sum of the mode dissimilar-

ities. The test speakers are then assigned to the cluster with the most similar centroid.

6.1.3 British v American English Classification

The Data

The technique was tested on its ability to discriminate British and American accented

English speech. The WSJCAM0 database was used to provide the British English data,

and WSJ1, the American English. Speech from 98 speakers from the training sets

of both databases were used to train the models, providing a total of 8596 sentences.

The speech was parameterised to provide a 12 component MFCC vector, augmented

with velocity, acceleration and log energy coefficients. Cepstral mean normalisation

was applied to each sentence processed to compensate for differences in the recording

procedure of each of the databases. The clustering of the training set to determine

the cluster centroids was performed on a subset of 29 speakers from each of the two

databases. For testing, speech from a set of 40 speakers from WSJ and 19 speakers

from WSJCAM0 were used.

Separation of Training Data

As mentioned in Section 6.1.2 the clustering of the training data gives an initial indica-

tion of whether the method is applicable to accent classification. The 58 speakers were

clustered into two groups. The first contained 29 American and 13 British speakers,

while the second was composed entirely of the remaining 16 British talkers - a rea-

sonable grouping for classification purposes (Table 6.5). The gender distributions of

the two clusters showed no split between male and female talkers, indicating that the
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accent differences between speakers have a greater effect on mode usage than speaker

gender.

Cluster 1 2
British Talkers 13 16

American Talkers 29 0

Table 6.5: Distribution of training speakers using SCHMM based clustering

Results on Original Databases

The test data was classified using the procedure given in Section 6.1.2. Speakers as-

signed to the centroid of cluster 1 were designated American, while those assigned to

cluster 2 were designated British. Classification accuracy was tested after 1, 2, 3, � � � ,

8 sentences of speech had been recognised. The results are shown in Figure 6.2.
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Figure 6.2: Results of accent classification experiment on WSJ1 and WSJ-
CAM0 data using a SCHMM technique.

10 of the 59 speakers are misclassified after 3 sentences are available but this falls

to 4 speakers after 4 sentences are available and 2 speakers after 6.
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Results on Independent Databases

The American and British accented speech was derived from two separate databases

recorded under different conditions. Cepstral mean normalisation was used on the data

in an attempt to alleviate any overall spectral differences between the two datasets, but

we were concerned that the “accent recognition” demonstrated here might be no more

than identification of two sets of data which differed in their acoustic characteristics

and which were represented in both the training and the test data. We therefore ran

an experiment to verify the techniques on an independent set of data. Sentences from

twenty speakers from the American-accented TIMIT database (dialect region one) were

tested using the same method as described in Section 6.1.2. Results are shown in Fig-

ure 6.3. The same pattern of fewer unclassified and misclassified speakers as more data

becomes available is shown and the final classification performance is comparable to

that achieved on non-independent data. This result shows that the accent classification

is independent of the conditions used when recording the database.
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Figure 6.3: Results of accent classification experiment on TIMIT data using
a SCHMM technique.
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6.1.4 Regional Accent Classification

Having shown that the technique is capable of discriminating between British and

American accented speech, two experiments were performed to test the methods ability

to differentiate between British regional accents and American regional accents.

British English Accent Discrimination

The Subscriber database [73] has accent classifications for each of the talkers in the

test and training set A.1.2. A SCHMM was built using the training set and the method

described above used to divide the training talkers in to various numbers of clusters.

Test speakers were then assigned to a cluster as before. The distribution of accents, and

the gender of speakers for various numbers of clusters are shown in Tables 6.6 to 6.8

These results show some clustering of talkers into their accent groups, the London

and Liverpudlian groups for example. However most clusters contain talkers with a

number of different accents. Also, there seems to be little clustering of talkers by gen-

der. This is most significant in the 2 cluster results where, if the accents were not greatly

different, it would be expected for the split in talkers to be dominated by the variation

between males and females.

An explanation for the lack of accent discrimination comes from the fact that the

Subscriber database was recorded over telephone channels. It is possible that the clus-

tering is showing variations in telephone handsets or line conditions rather than in the

talkers’ speech.

American English Accent Discrimination

In order to investigate whether the telephone channel conditions were responsible for

the poor results observed in the British regional accent discimination task, the TIMIT

database (Section A.2.1) was used in an identical experiment. TIMIT is a clean speech

database and as such will have no associated channel effects. It is also approximately

the same size as Subscriber and each of the talkers is labelled with respect to their

accent. The dialect and gender distributions for each of the generated clusters is shown

in Tables 6.9 to 6.11

In these experiments, most of the clusters tend to contain speakers of a single gender,

though there still seems to be little discrimination in terms of the annotated accent.
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Cluster
Dialect Region Train-1 Train-2 Total

Northern British 64 (38.5%) 169 (36%) 233 (36.6%)
Southern British 31 (18.6%) 88 (18.7%) 119 (18.7%)

Liverpudlian 0 (0%) 6 (1.3%) 6 (0.9%)
Welsh 3 (1.8%) 8 (1.7%) 11 (1.7%)

London 3 (1.8%) 30 (6.4%) 33 (5.2%)
Irish 6 (3.6%) 45 (9.6%) 51 (8.0%)

Scottish 34 (20.5%) 67 (14.3%) 101 (15.9%)
West Country 25 (15.0%) 57 (12.1% 82 (12.9%)

Total 166 470 636

Cluster
Dialect Region Train-1 Train-2 Train-3 Total

Northern British 49 (28.9%) 37 (40.2%) 147 (35.2%) 233 (36.6%)
Southern British 25 (19.8%) 8 (8.6%) 86 (20.5%) 119 (18.7%)

Liverpudlian 0 (0%) 0 (0%) 6 (1.4%) 6 (0.9%)
Welsh 2 (1.6%) 2 (2.2%) 7 (1.7%) 11 (1.7%)

London 3 (2.4%) 2 (2.2%) 28 (6.7%) 33 (5.2%)
Irish 4 (3.2%) 12 (13%) 35 (8.4%) 51 (8.0%)

Scottish 25 (19.8%) 18 (19.5%) 58 (13.8%) 101 (15.9%)
West Country 18 (14.3%) 13 (14.1%) 51 (12.2%) 82 (12.9%)

Total 126 92 418 636

Table 6.6: British accent distribution - Top: 2 clusters. Bottom: 3 clusters
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Cluster
Gender Train-1 Train-2 Total
Male 75 (45.2%) 234 (49.8%) 309 (48.6%)

Female 91 (54.8%) 236 (50.2%) 327 (51.4%)
Total 166 470 636

Cluster
Gender Train-1 Train-2 Train-3 Total
Male 68 (45.2.5%) 19 (20.7%) 225 (53.8%) 309 (48.6%)

Female 58 (54.8%) 73 (79.3%) 193 (46.2%) 327 (51.4%
Total 126 92 418 636

Cluster
Gender Train-1 Train-2 Train-3 Train-4 Total
Male 64 (55.2%) 17 (20.2%) 9 (17.0%) 219 (57.2%) 309 (48.6%)

Female 52 (44.8%) 69 (79.8%) 42 (83.0%) 164 (42.8%) 327 (51.4%)
Total 116 84 53 383 636

Table 6.8: British gender distribution. 2 - 4 clusters
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Cluster
Dialect Region Train-1 Train-2 Total

DR1 11 (12.2%) 27 (7.4%) 38 (8.3%)
DR2 13 (14.4%) 62 (16.9%) 75 (16.4%)
DR3 12 (13.3%) 62 (16.9%) 74 (16.2%)
DR4 8 (8.9%) 60 (16.3%) 68 (14.9%)
DR5 18 (20%) 51 (13.8%) 69 (15.1%)
DR6 10 (11.1%) 24 (6.5%) 34 (7.4%)
DR7 12 (13.3%) 65 (17.7%) 77 (16.8%)
DR8 6 (6.7%) 16 (4.3% 22 (4.8%)
Total 90 367 457

Cluster
Dialect Region Train-1 Train-2 Train-3 Total

DR1 8 (15.1%) 6 (7.7%) 24 (7.4%) 38 (8.3%)
DR2 8 (15.1%) 10 (12.8%) 57 (17.5%) 75 (16.4%)
DR3 6 (11.3%) 18 (23.1%) 50 (15.3%) 74 (16.2%)
DR4 6 (11.3%) 8 (10.3%) 54 (16.6%) 68 (14.9%)
DR5 9 (17.0%) 15 (19.2%) 45 (13.8%) 69 (15.1%)
DR6 8 (15.1%) 5 (6.4%) 21 (6.4%) 34 (7.4%)
DR7 6 (11.3%) 11 (14.1%) 60 (18.4%) 77 (16.8%)
DR8 2 (3.8%) 5 (6.4%) 15 (4.6%) 22 (4.8%)
Total 53 78 326 457

Table 6.9: American accent distribution - Top: 2 clusters. Bottom: 3 clus-
ters
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Cluster
Gender Train-1 Train-2 Total
Male 4 (4.4%) 319 (86.9%) 323 (70.7%)

Female 86 (95.6%) 48 (13.1%) 134 (29.3%)
Total 90 367 457

Cluster
Gender Train-1 Train-2 Train-3 Total
Male 3 (5.7%) 12 (15.4%) 308 (94.5%) 323 (70.7%)

Female 50 (94.3%) 66 (84.6%) 18 (5.5%) 134 (29.3%)
Total 53 78 326 457

Cluster
Gender Train-1 Train-2 Train-3 Train-4 Total
Male 2 (5.1%) 1 (1.7%) 296 (94.9%) 24 (52.2%) 323 (70.7%)

Female 37 (94.9%) 59 (98.3%) 16 (5.1%) 22 (47.8%) 134 (29.3%)
Total 39 60 312 46 457

Table 6.11: American gender distribution. 2 - 4 clusters
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Discussion

While the method shows good ability to discriminate between English and American

speakers who have large differences in their accents, it seems unable to identify the

smaller variations between regional American and British accents. In this case however,

the method is being judged against the subjective assessment of the talkers accent given

by the annotator of the database. The lack of success in identifying accents may be due

to the fact that the processes of discretising a continually varying set of speaking styles

into one of 8 accent classes means that talkers in a single accent group may have widely

different speaking styles which the method is unable to identify. In effect, the system

may be classifying similar talkers together, but the similarities are due to effects other

than those associated with their accent. Indeed, the results of the American regional

accent classification task have shown that the method is capable of identifying some

structure in that it can discriminate between male and female talkers. While the method

can not be used to determine an unknown speaker’s regional accent, it is possible that

by building separate recognition models within each cluster, and testing with test talkers

assigned to that cluster, recognition accuracy may be improved.

6.2 Clustering Recognition Experiments

6.2.1 Annotated Accent Clustering Experiments

An initial experiment was conducted to determine whether in fact building models for

each of the annotated accent groups and testing within group would produce an in-

crease in recognition accuracy over the accent independent case. That is, even if the

accent classification technique were 100% accurate, would it make a large improve-

ment in recognition accuracy? The TIMIT database was used for the investigation and

the speech data parameterised as before.

Method

Phoneme level Continuous HMM recognisers were generated using HTK. A 3 state,

single Gaussian mixture, left right with no skips, diagonal covariance matrix topology

was used for the experiments. Initially a dialect independent recogniser was built using
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all 462 speakers in the training set. This was then tested using all 168 test speakers.

Individual sets of models for each of the 8 dialect regions were then trained, and the test

data for the appropriate region used to evaluate their recognition accuracy. The results

of the recognition tests are given in Table 6.12.

Dialect Region Phoneme Recognition Accuracy

Dialect Independent 59.17%

dr1 58.41%
dr2 61.39%
dr3 60.51%
dr4 57.59%
dr5 57.30%
dr6 58.04%
dr7 59.62%
dr8 58.67%

Mean 58.94%

Table 6.12: Dialect dependent recognition results

Discussion

The results show that the use of the annotated accent groups as a means of clustering

speakers provides no improvement in recognition accuracy over the dialect independent

case. It is possible that any improvement in accuracy is offset by the reduction in the

amount of training data, though this is largely mitigated by the results for the DR8

accent group. This so called ’army brat’ group consists of speakers who moved around

during their childhood and as such have no clearly defined accent. This group also has

the smallest number of speakers and is, as such, equivalent to a dialect independent

model trained with less data. The difference in recognition accuracy between this and

the dialect independent model is only 0.5% implying that both sets of models are fully

trained.

The clustering procedure used in Section 6.1.4 was able to identify the variation

between male and female speakers whilst being unable to distinguish between accent

groups. This suggests that the effects of accent could be masked by variations in vocal

tract and if this is the case, removing variations in vocal tract may allow accent to be

more easily identified,
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6.2.2 Effects of Vocal Tract Variation on Regional Accent

To investigate whether the effects of vocal tract variation masked those due to regional

accent, we used vocal tract normalisation of speakers prior to model building. With

differences in vocal tract between speakers removed, we can see whether significant

improvements in recognition accuracy are gained by building dialect dependent models.

Method

The investigation was conducted as follows :

1. Select two distinct accent groups from the 8 in the TIMIT database. This was

done by listening to several of the talkers from each dialect group and selecting

two which sounded very different.

2. Train dialect independent models using both sets of training data from the se-

lected accent groups. Measure the performance on both sets of test data.

3. Train Dialect dependent models for each of the accent group and test within

group.

4. Use vocal tract normalisation on all utterances and retrain dialect independent

models on normalised data. Measure recognition accuracy on all normalised test

data. Performance should rise slightly over the unnormalised case.

5. Use normalised data to build dialect dependent models and test within group

on normalised test data. If dialect effects are masked by vocal tract variation,

these models should show significant improvements in recognition accuracy over

the unnormalised case. The improvements between the dialect dependent cases

should be greater than that seen between the dialect independent case.

The vocal tract normalisation procedure used is described fully in 5.

Results

The selected dialect regions were dr2 (northern) and dr5 (southern). The results of the

recognition experiments are given in Table 6.13.
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Training Data Test Data Phoneme Recognition Accuracy

Both - unnormalised Both - unnormalised 53.12%
dr2 - unnormalised dr2 - unnormalised 54.56%
dr5 - unnormalised dr5 - unnormalised 52.06%

Both - normalised Both - normalised 55.42%
dr2 - normalised dr2 - normalised 56.88%
dr5 - normalised dr5 - normalised 54.26%

Table 6.13: Dialect dependent recognition results—normalised and unnor-
malised cases.

The improvement in using normalised models is approximately 2% in both dialect

independent and dependent cases.

Discussion

The results show that the use of dialect dependent models in the recognition system,

even after vocal tract effects have been removed, provides little improvement in recog-

nition accuracy. An explanation for this result could come from the phonetic transcrip-

tions used in generating the models. The label files for the TIMIT database are hand

annotated, fine level phonetic transcriptions. If the variation in pronunciation of a phrase

between two different dialect regions is large (for instance the difference between the

word ’bath’ for southern talkers who use /�/ and northern British talkers, who use /æ/)

then the difference would result in a different transcription of the phrase in each case.

If the different pronunciation is consistent for all talkers with a given dialect then the

accent variation will already have been accounted for in the labelling. In effect, the

dialect independent model consists of a shared set of models for phonemes common to

all accent groups plus separate subsets used by only a few of the dialect groups. Hence

the dialect independent system has near identical performance to the dialect dependent

case. To investigate this effect, an experiment was conducted using phone level label

files generated from a standard pronunciation dictionary, rather than the supplied tran-

scriptions.
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6.2.3 Use of Standard Pronunciation Dictionary to Generate Label

Files

The purpose of this experiment was to investigate recognition accuracy if pronunciation

differences are not accounted for in the phonetic transcriptions.

Generating Label Files

In addition to the phonetic transcriptions, the TIMIT database also includes word level

transcriptions of each sentence. A standard pronunciation dictionary (also supplied

with the database) with a single pronunciation per word, was used to construct new,

‘standard pronunciation’ transcriptions for each of the files. This was performed by

simply replacing each word in the transcription with its corresponding pronunciation

from the dictionary.

Experiment

A set of speaker independent monophone hidden Markov models were generated using

the new label files, as well as dialect dependent models for each of the 8 TIMIT dialect

regions. Model topology in all cases was three state, left right with no skips, diagonal

covariance matrix. The speaker independent models were tested using data from all

accent groups. Accent dependent models were tested ‘within group’ on a single dialect

region.

Phoneme recognition results are given in Table 6.14. Again, little improvement is

gained by using dialect specific models over the speaker independent case.

Conclusions

Even with labelling differences removed, the lack of improvement suggests that there

is little systematic variation in pronunciation of phonemes between American accent

groups. It is suggested in [82] that differences between local accents are largest in

countries which have been English speaking for longest. American accents tend to

be far less variable than British ones and as such the modeling technique may not be

powerful enough to identify the small variations between groups.
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Dialect Region Phoneme Recognition Accuracy

Dialect Independent 50.84%

dr1 50.90%
dr2 53.47%
dr3 52.65%
dr4 49.66%
dr5 48.69%
dr6 50.55%
dr7 52.82%
dr8 49.25%

Mean 51.00%

Table 6.14: Dialect dependent recognition results using label files generated
from a pronunciation dictionary

System % Correct % Accuracy

SI 33.72 26.08
2 Cluster 33.85 26.26
3 Cluster 34.02 26.33
4 Cluster 34.17 26.44
5 Cluster 34.16 26.48
6 Clusters 33.95 26.09

Table 6.15: Results of recognition experiment for clustered Subscriber data

6.2.4 Data Driven Clustering Recognition

Since the method of regional accent classification is based on a purely data driven clus-

tering procedure, it is likely that there are some similarities between the speakers in

each cluster. In order to establish whether the clustering method may be used to in-

crease the recognition accuracy, the clusters generated previously were used to build

cluster models. The same topology models as those used for the clustering (256 mode

SCHMM, 3 state, left right with no skips) were implemented. The test utterances were

then recognised using the cluster models to which the test speaker had been allocated.

Results for the speaker independent case and 2 to 6 clusters for subscriber and 2 to 4

clusters for TIMIT, are given in tables 6.15 and 6.16.

While the improvements appear small, it should be noted that the same amount of

training data is being used in all cases, even though the number of parameters being es-
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System % Correct % Accuracy

SI 49.95 44.01
2 Cluster 51.89 45.70
3 Cluster 51.90 45.60
4 Cluster 51.62 45.20

Table 6.16: Results of recognition experiment for clustered TIMIT data

timated is increasing proportional to the number of clusters, therefore any improvement

is significant. The improvements are also larger than those given by clustering based on

the annotated accents (Table 6.12), indicating that, as suggested, the clustering method

identifies similarities between speakers which are different from those used to identify

the accent.

6.3 Conclusions

The accent classification experiments have shown that clustering speakers based on their

use of the model parameter space is capable of identifying gross differences between the

accents of different talkers. The observed failure of the method to distinguish between

regional accents may be due to the following reasons :

� It is possible that the clustering of British and American English accents may have

been due to effects such as speaking rate, line conditions or spectral slope present

in the databases and not specifically on the effect that we perceive as ‘accent’. As

many of these effects would be identical in a single database, the method would

fail to discriminate between regional accents.

� There are no clear definitions as to what constitutes a given accent - two speakers

described as ‘northern British’ may have considerably different accents and it

is not therefore unreasonable to find the clusters containing speakers with many

accent classifications.

� The large differences between accents - that of one phoneme being substituted

for another - will already have been accounted for in the phonetic labelling. As

such, the models will not contain accent specific information in these cases.
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The fact that building accent specific models does not improve recognition accuracy,

even if vocal tract differences are removed, also indicates that the accent labelling given

in the databases covers too wide a variation of speaking styles to be useful in reducing

model variance and therefore improving recognition accuracy.

Clustering speakers using a purely data driven technique does, however, give some

improvement in accuracy, despite the reduction in training data for each model. Since

the clusters do not correlate with the labelled accent, we may conclude that there are

variations between speakers which are more useful in reducing recognition accuracy

than those which manifest themselves as ‘accents’.
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Chapter 7

Phonotactic Models for Accent

Classification

It has been shown [7, 75]that the gross differences between accents, such as those be-

tween British and American English may be overcome by the use of the use of accent

specific model sets, lexicons and grammars. To use this method effectively we must be

able to quickly and accurately classify the speaker’s accent so as to know which model

set etc. to use. In this chapter we present a method of accent classification which models

the accent using higher level phonetic features (diphones) rather than the acoustic signal

as was used in the method presented in the previous chapter. Hence we are using the

phonotactics of the accent rather than the phonetic realisations to model the differences

between speakers.

7.1 Introduction

Languages and dialects each have a set of rules which describe how the sounds which

make up the language may be combined to form words. In English for instance, al-

though the sounds /p/ and /f/ are available, the word ‘Pfropf’ is not a valid word since

/p//f/ is not a allowed sequence of phonemes — the phonotactic rules of English do

not allow it. The rules of German are different however — the word means ‘stopper’.

Phonotactic rules can be extended to describe the likelihood of a certain ordering of

sounds occurring during speech from a certain language. Previous studies have shown
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that the phonotactic rules can be used to identify a given language [90] or regional ac-

cent [38]. Typically, in these systems, the probability of occurrence of diphones (that is,

pairs of phonemes) for a given accent is estimated from the output of a recogniser when

recognising speech from that accent. The output of the recogniser for speech from an

unknown talker is used in conjunction with these probabilities to determine the talkers’

accent.

There are, however, certain problems with this approach which are addressed in the

technique described here. Inconsistent recognition errors in the training phase (i.e. if

identical input phone sequences were decoded differently on different occasions) would

introduce errors into the model. The occurrence of ‘preferred’ error patterns, that is if

the recogniser frequently output a particular incorrect phone sequence regardless of the

accent or language, would also introduce incorrect information into the model. Both

of these forms of error would result in a reduction in the performance of the system

when the model was subsequently used in the classification of an unknown talker. The

accuracy of the phoneme recogniser used in the previous experiments was only approx-

imately 45%. Hence, only about 20% of diphones available from the output would be

correct — the errors in the phonotactic model would be large if this output were used

to generate it. Instead, a pronunciation dictionary for each of the accents to be identi-

fied was used to generate the model which removes the problem of incorrect recogniser

output. However, it does mean that the technique relies on the dictionary transcription

for each entry to be correct.

7.2 Method

The premise of the technique is that the phonotactic information about a language which

is contained within a pronunciation dictionary can be modelled, and that this model

may then be used to classify the output of the recogniser as being from a certain lan-

guage. For example, if a diphone occurs frequently in a dictionary for language A and

infrequently for language B, then the occurrence of that diphone in the output of the

recogniser is a strong indicator that the speaker is of language A. The model is built by

measuring the amount of information supplied by a particular diphone to the classifica-

tion task. This is done by calculating the mutual information of a given diphone.
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7.2.1 Mutual Information

Mutual information [6, 78] is a measure of the reduction in the uncertainty of a source

gained by observing a certain output. In general, if we have a zero memory source

which may be one of 4 classes and let ������ describe the output distribution for the

th class, we then have 4 a priori distributions �������������� � � � �������. We define

an information unit to be

3���� � ���
�

������
� (7.1)

The base of the logarithm defines the units (base 2 implies bits, 10 implies Hartleys,

etc). We now define the average information provided by the source, the source entropy

to be

���� �
(�
���

������3���� (7.2)

or

���� � �
(�
���

������ ��������� (7.3)

To illustrate the idea of mutual information, consider a pattern recognition task in an

5 dimensional pattern space, in which the !th dimension has been quantised to 1�

levels, 6����, where � � �� �� � � � � 1�. We wish to know the amount of information

about the classification supplied by each of the dimensions. Suppose we are told the

value of the !th dimension — to consider what we have learned about the th class,

��, we require the conditional probability ������6����� with associated information

� ����������6�����. The source entropy given this observed feature value is then :

����6�� � �
(�
���

)��
���

������ 6����� ����������6����� (7.4)

����6�� is known as the equivocation of the source given that we may observe

113



CHAPTER 7. PHONOTACTIC MODELS FOR ACCENT CLASSIFICATION

dimension !. The amount of information provided by dimension ! is simply :

3��� 6�� � ���������6�� (7.5)

that is, how much has the uncertainty of the source been reduced by observing the

dimension. This quantity is known as the mutual information and may be represented

by :

3��� 6�� �
(�
���

)��
���

������ 6����� ���
������6�����

������
(7.6)

�
(�
���

)��
���

������ 6����� ���
������ 6�����

������ ���6�����
(7.7)

Returning to the accent classification problem, the amount of information supplied

for the discrimination task by observing a certain output from the recogniser (that is,

the mutual information of a given diphone) is calculated as follows: the probabilities of

occurrence of diphone �� in American accented speech

�������� (7.8)

and in British accented speech

�������� (7.9)

were estimated directly from the entries in the dictionary:

�������� � Number of occurrences of �� in American dictionary
Total number of diphones in American dictionary

(7.10)

and

�������� � Number of occurrences of �� in British dictionary
Total number of diphones in British dictionary

� (7.11)

The amount of information 3���� for discrimination of the accent supplied by di-
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phone �� can be estimated as follows:

3���� �
��

���

������ ��� ����
������ ���

������ ������
bits� (7.12)

where �� � � (American accent) and �� � � (British accent). This is simply the

mutual information when the observation vector has a single dimension.

7.2.2 Pronunciation Dictionaries

The classification task was that of identifying British and American accented English

speech. To build the model, British and American pronunciation dictionaries were

required. The BEEP dictionary [1] provided the British English pronunciations and

CMUDICT [2] the American. The BEEP dictionary provides phonemic transcriptions

for over 250000 words, while CMUDICT contains approximately 100000 pronuncia-

tions.

7.2.3 The Model

The technique has the advantage that any diphone not occurring in either pronunciation

dictionary has 3���� � �. Although such diphones may be frequently output by the

recogniser, they will contribute nothing to the classification. If the recogniser output

were used to train the model, this would not be the case and incorrectly decoded di-

phones would contribute spurious information to the classification resulting in increased

errors. Also diphones which are incorrectly classified but are legal (i.e. diphones which

occur in the dictionary) will contribute noise to the classification which should average

to zero if enough diphones are used.

The distribution of the diphones in the dictionaries is highly skewed, some diphones

occurring thousands of times and some a handful. Hence the estimates of the proba-

bilities of occurrence of diphones are subject to a large variance. This variance is cal-

culating by modelling the distribution of diphones as a multinomial. In this case, the

variance associated with diphone �� is given by

)� � ��������� ��������� (7.13)
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where� is the total number of diphones in both dictionaries and ������ is approximated

by its estimate,

������ � Number of occurrences of �� in both dictionaries
Total number of diphones in both dictionaries

� (7.14)

In order to alleviate the problem of poor estimates of ������ caused by infrequently oc-

curring diphones (which could have spuriously high information associated with them),

the variance of 3���� is calculated as )� and 3���� is normalised by dividing by
�
)�.

Hence the normalised information for phoneme �� is given by

3����� � 3�����
�
)� (7.15)

A high value for 3����� implies that �� supplies a high amount of information about

the identity of the accent. It does not, however, tell us which accent is more likely should

that diphone be output by the recogniser. Hence we define a new signed information

value, 7���� where

7���� � sgn���������� ���������3������ (7.16)

7���� is positive for any diphone that occurs more frequently in British accented

speech than in American and negative if the situation is reversed. Since the two dictio-

naries do not have identical phone sets, it was necessary to construct a new phone set

to cover both sets of pronunciations. This was simply the union of the sets used in each

dictionary. One disadvantage of this approach is that the method is highly reliant upon

the labelling used in the construction of the dictionaries, and we may be modeling the

method which was used to label a particular sound in a given dictionary , rather than

the effects of the accent.

The 10 diphones which provide the maximum information for classification of each

accent are given in Table 7.1 along with the percentage of information for the accent

which they contribute.

The high information content associated with diphones such as /l/ /er/ and /n/ /er/

for American speech is due to the fact that most American accents are rhotic and these

diphones appear ‘word final’. Most English accents are non rhotic and as such do not
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often have these diphones. The distinction in the dictionaries between words such as

‘accumulate’ ([/ah/ /k/ /y/ /uw/ /m/ /y/ /ah/ /l/ /ey/ /t/] in the American dictionary and

[/ax/ /k/ /y/ /uw/ /m/ /y/ /uh/ /l/ /ey/ /t/] in the British) shows the reason for the high

information content for the /ah/ /X/ diphones in American and /uh/ /X/ in British. This

models the longer vowel sounds typically associated with an American ‘drawl’.

If the technique is successful, the output of the recogniser for American accented

speech will consist of diphones with values of 7���� which are mostly negative, and

diphones with values of 7���� which are mostly positive for British accented speech.

7.2.4 Classification

To classify the accent of an unknown speaker, a phone recogniser is trained on speech

from speakers with both accents. The phone level label files used when training the

models were generated from word level transcriptions of the training sentences, and the

appropriate dictionary (Beep for WSJCAM0 and CMUDICT for WSJ1). Again it is

possible that here we are modelling the differences between the dictionaries use of a

particular symbol to represent a given sound, rather than actual differences between the

accents.

The output of the recogniser for speech from the unknown speaker is concatenated

into diphones. A sequential technique is then used to perform the accent classification

— a decision on the speaker’s accent is made when at time % a score 7� is outside one

of two thresholds. 7� is derived as follows: A null hypothesis 	� is proposed, that the

speaker is “mid-Atlantic” i.e. that the frequency of his/her diphone usage is taken in

equal proportions from American and British accented speech. Define:

3� � 7������� (7.17)

where ��� gives the index of the ’th diphone in the sequence of diphones output by

the recogniser. We accumulate the values of 3( such that at time %

�� �
�

%

��
���

3� (7.18)

Under 	�, for a random sequence of diphones output by the recogniser, the expected
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value of �� is the mean of 7 and the variance ) �!��� � of �� is given by

) �!�7� � � 0$
��% (7.19)

where 0�$ is the variance of the set of values of 7����. Hence if at time % , the value ��

is outside 
� � �*�7� � where

�*�7� � �
�
) �!�7� �� (7.20)

then with 95% confidence, the accent is British if �� is positive and American if �� is

negative.

Figure 7.1 shows the value of �� for typical british and American accented sen-

tences. The two 95% confidence thresholds (which follow a ��
�
% ) curve) are shown

as dotted lines. It can be seen that in the case of the American speaker, the lower

threshold is exceeded after about 30 diphones have been processed indicating that the

accent is American. For the British talker, the upper threshold is exceeded after about

20 diphones, indicating that the speaker is British. Classification is done by noting the

duration for which the score �� lies outside each of the two 95% confidence thresholds

over the entire length of the test utterance. The accent is classified as the accent whose

threshold was exceeded for the longest period.

7.3 Results

The technique was evaluated by classifying the speaker’s accent after 1, 2, 3, � � � , 8

sentences of speech had been processed. In practice, very few speakers produced values

of �� which lay outside both thresholds and the most commonly-observed behaviour

was for �� to exceed one of the thresholds and then remain outside it (as shown in

Figure 7.1). However, if the score remained within the thresholds after all the diphones

have been seen, the result is “unclassified”. The results in Figure 7.2 show that when

there is only a small amount of data available, the technique may produce the result

“unclassified” since the diphones observed do not contribute sufficient information to

confidently identify the accent. After 3 sentences are available however, there are no

unclassified or misclassified speakers.
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Figure 7.1: Value of�� for (top) American-accented sentence and (bottom)
British accented sentence.
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Figure 7.2: Results of accent classification using phonotactic models on
original data.

As with the accent identification using clustering technique, it was possible that the

accent identification being seen was simply the identification of 2 databases recorded

under different conditions. Again, the technique was tested using the independent,

American accented, TIMIT database. If differences between the databases were be-

ing modelled (rather than differences between the accents of the speakers within them)

the classification performance would be significantly lower than those seen previously

. The accent classification results are shown in Figure 7.3. The same pattern of initially

“unclassified” results, followed by correct classification as more test data is made avail-

able is observed using the independent database. This indicates that the discrimination

being demonstrated by the technique is indeed accent rather than database identifica-

tion.
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Figure 7.3: Results of accent classification using phonotactic models on
TIMIT data

7.4 Conclusions

In this chapter a method of using the phonotactic differences between British English

and American English as a method of accent classification was presented. The results

showed good classification performance after only a small amount of data was available

for classification. Importantly, classification performance was also maintained for an in-

dependent data set not used in the training procedure, indicating that genuine ‘accent’

identification was being performed rather than database identification. In comparison

to the clustering procedure given in Section 6, this procedure has the advantage that

it does not rely on a special recogniser topology (the clustering technique was based

around a SCHMM). The output of any phoneme recogniser may be concatenated into

diphones and used as the input to the classifier - as phoneme recognition performance

improves, classification will require less data since the number of ‘information provid-

ing’ diphones will increase. The procedure is also computationally efficient, requiring

only a simple ’lookup’ procedure to obtain the information value for the given diphone

and an accumulation of the value of �� . Extending the method to discriminate between
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more than two accents would require a change in classification strategy — while the

information between a diphone and any accent may be calculated, a problem arises

when weighting the information measure for more than two accents, since at present

the information is made positive or negative depending on the more likely accent. This

could be solved by associating the information measure for that diphone with the most

likely accent, and accumulating separate scores for each accent. When one of the accent

scores crosses a given threshold, the speaker may then be classified as being from that

accent.

123



Chapter 8

Conclusion and Further Work

The aims of the thesis were to classify speakers based on characteristics of their speech,

and to identify methods which may use this knowledge to improve the accuracy of

automatic speech recognition systems. Since the methods were to be applicable to ‘in-

teractive speech systems’ rather than ‘dictation systems’ further constraints were to be

meet. Firstly, they must be computationally efficient, secondly they must be unsuper-

vised, and finally, they must require very small amounts of adaptation data to provide

improvements in accuracy.

8.1 Summary

After introducing the process of human speech production and the signal processing

techniques currently used to extract information from the signal useful for the recog-

nition task, the current preferred method of performing automatic speech recognition

was discussed. This provided a general description of the environment in which any

scheme for improving recognition accuracy would have to fit. A detailed description of

the manner in which the speech from different talkers may vary was then given. These

variations were identified as being either due to learned differences in speaking style,

such as those due to geographical origin and social class, or physiological differences

between speakers such as vocal tract length. These differences, if not accounted for in

some manner, lead to a significant reduction in recognition accuracy.
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8.1.1 Identifying and Compensating for Physiological Differences

Current techniques for compensating for physiological differences were shown to take

two general forms - speaker adaptation in which the recognition model parameters are

transformed to more closely match those of the speaker; and speaker normalisation in

which the input speech (or, more precisely, the method of parameterisation) is altered

in some way so as to make the parameters more closely match the correct model. The

former has the problem that, due to the large number of parameters in the recognition

models, a significant amount of data from the unknown speaker is required to generate

the transforms. This would be un-acceptable in systems where the speaker is only using

the system for a very limited time. The speaker normalisation techniques reviewed gave

significant increases in performance without lengthy enrolment times, but most required

an exhaustive search over some parameter space to identify the ‘best’ normalisation fac-

tor for a given speaker. Since the definition of ‘best’ frequently took the form of ‘highest

recogniser output probability’, multiple recognition passes were usually performed to

determine the correct parameter. This did not fit our requirement of ‘little computa-

tional overhead’ and so a method was sought to identify the normalisation parameter

without an exhaustive search.

Chapter 5 describes the development of this technique — initially a method of nor-

malising the input parameters based on transforming the frequency spectrum of the test

speakers to those of a canonical speaker was presented. This gave significant improve-

ments in a simple vowel classification task. The method was shown to effectively align

the first formant of the test speaker to that of the canonical speaker, however it still

required an exhaustive search over all normalisation factors to find the correct one. To

overcome this, a method of estimating the formant locations and aligning the speakers

directly in the LPC domain was developed and again shown to give significant improve-

ment in a recognition task.

The problem of aligning to a single canonical reference speaker who may not have

been representative of the speech as a whole was addressed next. A uni-variant distri-

bution was calculated from estimates of the first and second formants for each vowel

sound from many speakers. A normalisation was found which maximised the like-

lihood of the test speaker’s formants having been taken from these distributions. A

closed form solution to the maximisation equation was derived, and a method of com-
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bining the normalisation factors for each speech frame into a single factor for each

speaker was presented. This combination had the advantage that it accounted for inac-

curacies in the formant picking algorithm by weighting normalisation values depending

on how well the transformed formants fitted the appropriate distribution. Once calcu-

lated, the normalisation was used in two different ways. Initially, the pole locations of

the LPCs of the test speaker for vowel sounds were shifted. The recognition accuracy

improvements observed using this method were small since, despite vowel recognition

accuracy improving, recognition accuracy for the contoid sounds decreased. In order

to normalise all sounds, rather than just the vocoids, the method proposed in [43], that

of moving the positions of the filter-bank, was used. Results showed better improve-

ments in recognition accuracy however the method was still supervised since labelled

speech data was required so as to identify which of the distributions to normalise the

test speaker’s formants to.

In order to overcome this, initially a speaker enrolment method was tested in which

2 sentences of speech was used to derive the normalisation factor. This showed similar

performance to using all the test data. Finally, a two pass scheme was implemented in

which an initial transcription generated from recognising the un-normalised data was

used to calculate the normalisation factor. This was then applied and a second recogni-

tion pass made. This scheme again gave similar performance to using labelled speech.

8.1.2 Identifying and Compensating for Learned differences

Currently, techniques for compensating for learned differences in speech, particularly

accent effects, rely on using a separate acoustic model set for each of the accents likely

to be observed. At recognition time the correct model set is then used. This technique

has shown to give good improvements for gross accent differences such as those be-

tween native and non-native speakers of a language. The method of identifying the

correct model set to use is, however, often either computationally highly expensive, re-

quiring the use of multiple recognisers running in parallel, or requires the user to utter a

particular sentence designed to highlight accent differences. Again this is of little use in

the task described above. To overcome these problems we have developed 2 methods of

accent classification which do not rely on multiple recognisers or accent id utterances.

In Chapter 7 a technique based on modeling the phonotactics of the accents to be
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identified was proposed. The model was based on the mutual information between the

occurance of a particular diphone and the accent, the information scores being calcu-

lated from accent specific pronunciation dictionaries. Information scores were accu-

mulated and accent classification made dependent on the period for which a confidence

threshold was exceeded. Classification performance was shown to be excellent for even

limited amounts of input data (Figure 7.2) and also for an independent database (Fig-

ure 7.3).

In Chapter 6 a new data driven clustering technique was introduced which used

semi continuous HMMs to identify clusters of talkers within the pattern space. The

premise was that speakers with similar accents would cluster to similar regions within

the pattern space, and at recognition time the test speaker could be assigned to one

of the clusters and their accent identified. The technique was shown to perform well

for identifying British and American accented English, again even for an independent

database. The technique was then used to identify regional accents within these two

groups. The method failed at this task, even after the effects of vocal tract variation

had been removed. A recognition experiment showed however, that building dialect

specific models for regional accents, and testing within group provided no improvement

in recognition accuracy. This suggests that either the accent classifications provided

with the databases are inaccurate, or that the variation within a regional accent group is

as significant as across them. The latter is more likely to be the case since the accent

groups cover a wide geographical area, and also contain speech from all social classes.

The clustering technique was then used to try and improve recognition accuracy

by identifying clusters of similar talkers without reference to their accent. The premise

was that building models for speakers with similar characteristics would reduce the vari-

ances within the model parameters and therefore increase recognition accuracy. Results

showed a small improvement over the speaker independent case, despite the reduction

in data for estimating the model parameters caused by splitting the training set.

8.2 Conclusions

The speaker normalisation scheme of Chapter 5 fulfills the requirements of low com-

putational overhead by using information which may be efficiently generated as part of

the parameterisation scheme (i.e. the formant locations) to calculate the normalisation

127



CHAPTER 8. CONCLUSION AND FURTHER WORK

factor. Using the first pass output of the recogniser to provide transcriptions for the

adaptation meant that the normalisation was unsupervised, and it was shown that im-

provements in accuracy after 2 adaptation sentences had been processed were compa-

rable to those gained using much greater amounts of adaptation data. The experiments

do show that there is a cost in meeting these constraints. Computational efficiency was

improved by calculating a normalisation factor for each speaker rather than each frame,

and this was seen to significantly reduce the effectiveness of the procedure. In the future

this may be overcome to some extent by the the fact that the increase in computational

power of the systems running A.S.R. technology will allow the use of more compu-

tationally expensive methods. The move to unsupervised adaptation was also seen to

reduce the improvements available, and it is unclear how to alleviate this problem —

speakers are always likely to object to enrolment procedures.

The speaker clustering scheme presented in Chapter 6 was also unsupervised and

shown to be able to differentiate between British and American talkers with only very

small amounts of adaptation data, however it showed an inability to differentiate be-

tween regional accents. This may have been due to the fact that the method was being

compared to the subjective decisions of a human listener about each speaker’s accent.

There is no reason to suppose that these decisions are consistent and accurate, or should

correlate with clusters identified by a data driven approach such as this. It should also

be noted that Wells [82] suggests that the effects of accent diminish with the style of

speaking - the more formal or contrived the situation, the less we use accent specific

pronunciations. It is difficult to imagine a more contrived situation for a member of the

public than reading a list of Wall Street Journal sentences to a computer!

It is possible that the clusters may represent groups of speakers with similar speak-

ing characteristics which are related to effects other than accent. The recognition ex-

periments based on clusters of speakers generated by the procedure gave increases in

recognition accuracy in excess of those obtained by clustering based on the annotated

accent, indicating that this may indeed be the case. We must beware of discarding data

driven techniques such as this, which may be useful in improving recognition accuracy,

simply because they do not fit with the results we expect given our perception different

speaking styles.

The accent identification method of Chapter 7 again met the requirements of low

computational overhead, and was shown to accurately classify speakers after very small
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amounts of data had been processed. There was, however, some question as to whether

the information used to identify the accent came directly from differences between the

accents, or from differences between the way in which the dictionaries had been labelled

for each accent. Care should be taken to ensure that what appears as the automatic

identification of speech characteristics which we perceive to be similar (ie British and

American accents) is not the identification of some other correlated effect such as the

labelling of the two dictionaries.

8.3 Further Work

There are several ways in which the techniques may be extended or further investigation

in a particular are made :

� The normalisation scheme currently only models the formant distributions as a

single Gaussian. It is likely that using a multiple mixture component Gaussian

distribution will give a better match to the observed data, and thereby improve

the accuracy of the normalisation estimate.

� The results of the speaker enrolment experiment showed that estimating the nor-

malisation factor using 2 labelled sentences provided similar improvements to

using 10 sentences. An investigation should be made to determine how much

labelled data is required to accurately estimate the normalisation factor.

� The normalisation method should be implemented in a real time recognition sys-

tem to investigate whether the observed increase in recognition accuracy result in

noticeable improvements in system performance.

� The speaker clustering scheme currently only associates a single Gaussian com-

ponent with each model state. This could be extended to a distribution, better

modeling the feature space occupied by each speaker and improving the cluster-

ing of similar talkers

� The phonotactic method should be extended to identify multiple accents using

dictionaries generated from the methods described in [34].
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� Both the clustering and phonotactic methods of accent classification should be

validated on an independent British English database.

With the development of interactive speech systems proceeding at a tremendous

rate, it is likely that speech recognition technology will be used in increasingly diverse

situations, with ever more complicated tasks and larger numbers if users. As this occurs,

if the shortcomings of present recognition technology are not to result in increasing

numbers of frustrated users, the problems of recognising speech from diverse speaker

populations must continue to be addressed, and techniques such as those presented here

improved upon.
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Appendix A

Speech Databases

A.1 British English Databases

A.1.1 WSJCAM0

The WSJCAM0 database is a British English equivalent of a subset of the American

English WSJ0 database. It is a clean speech database recorded using two different

microphones (one head mounted and one desk mounted) and sampled at 16kHz, 16

bits/sample. All included talkers are native English speakers, recruited from the Cam-

bridge area of the U.K. (though this is not necessarily their regional accent). The

database consists of a 92 speaker training set and a 48 speaker test set. This test set

is then subdivided into two evaluation and one development set. Automatically aligned

phone level transcriptions for all the sentences are provided in addition to word level

transcriptions. Full details of the recording and transcription procedure are given in [24]

Table A.1 shows the gender distribution for each of the sets of talkers

Number of Speakers
Data Set Male Female Total
Training 46 46 92

Development Test 10 8 18
Evaluation Test (1) 7 7 14
Evaluation Test (2) 7 7 14

Table A.1: Gender distribution of training and test sets in WSJCAM0
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The talkers are each labelled with one of nine accent classifications shown in Ta-

ble A.2

Northern
Southern
Eastern
Western

Midlands
Welsh

Scottish
Irish
other

Table A.2: WSJCAM0 Accent categories

A.1.2 Subscriber

Subscriber [73] is a British English database collected over the British telephone net-

work and as such is subject to transmission effects from the network. The database

consists of 1017 speakers split into a training and test sets. Age, accent and gender in-

formation for is speaker is recorded. The bandwidth is limited from 300Hz-3.4kHz and

there is significant noise on many of the recordings. Also there is no control over the mi-

crophone used by the speaker (it is the one supplied with their telephone handset) or the

telephone line they use when making the call to the automated recording system. The

database is supplied with phonetic trascriptions for each of the utterances. Table A.3

shows the gender distribution for the training and test sets. The talkers in subscriber are

Number of Speakers
Data Set Male Female Total
Training 309 327 636

Test 187 194 381

Table A.3: Gender distribution of training and test sets in Subscriber

also classified as having one of the nine accents shown in Table A.4. The accent classi-

fication is made based on the pronunciation of the two "Shiboleth" sentences included

in every talkers prompting script.

132



APPENDIX A. SPEECH DATABASES

Dialect Region Geographical Region

SBS Southern British Standard (RP)
LON London Area

R-WEST West of England (Rhotic)
WAL Wales

NB-LIV Liverpool Area
NB North of England

R-LANCS Lancashire (Rhotic)
R-IRISH Ulster (Rhotic)
R-SCOTS Scotland (Rhotic)

Table A.4: Subscriber accent categories

A.2 American English Databases

A.2.1 TIMIT

The TIMIT database [4] is a clean speech (16KHz, 16 bit sampled, little or no back-

ground noise) database consisting of 6300 sentences read by American English talkers,

10 sentences each from 630 talkers. The database is subdivided into a training set, con-

sisting of 502 talkers, and a test set of 128 talkers. The data is then subdivided into 8

dialect regions given in Table A.5. The gender split for both the training and the test set

across each of the dialect regions is given in Table A.6

Dialect Region U.S. Geographical Region

dr1 New England
dr2 Northern
dr3 North Midland
dr4 South Midland
dr5 Southern
dr6 New York City
dr7 Western
dr8 Army Brat (moved around)

Table A.5: Dialect regions in TIMIT Database
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Number of Speakers
Data Set Male Female Total
Training 366 136 502

Test 112 56 128

Table A.6: Gender distribution of training and test sets in TIMIT

A.2.2 WSJ1

The WSJ1 continuous speech recognition corpus is a clean speech (recorded with head

mounted microphone in quiet office conditions) database. The speech is sampled at

16KHz, 16 bits/sample. The training data consists of 77800 utterances read by 245

speakers and the generic test set contains 8200 utterances read by 30 speakers. More

detailed information on the database is given at [3].
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Effect of LPC Transform in f1 - f2

Plane

Let the reference speaker’s formant frequencies be �� and ��, new speaker’s formant

frequencies be 8� and 8�, transformed formant frequencies be 9� and 9�. From 5.13

9� � �8� (B.1)

and

9� � �8� (B.2)

where

� �
��8�  ��8�
�8���  �8���

(B.3)

Letting 	 � *�
*�

gives

9� �
��  	��
8�  	8�

8� (B.4)
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and

9� �
��  	��
8�  	8�

8� (B.5)

solving B.4 for 8� gives

8� �
	9�8�

��  	�� � 9�
(B.6)

substituting 8� in B.5

	9�9�
��  	�� � 9�

 	9� � ��  	�� (B.7)

which may be simplified to

9�  	9� � ��  	�� (B.8)

But

9�
9�

�
�8�
�8�

� 	 (B.9)

Hence

9� 
�9��

�

9�
� �� 

9�
9�
�� (B.10)

�9��
�  �9��

� � ��9�  ��9� (B.11)

let 9� � ! ���" and 9� � ! ���", therefore !� � �9��
�  �9��

�. Substituting in B.11

gives

!� � ��! ���"  ��9� (B.12)

9� �
!

��
�! � �� ���"� (B.13)

similarly

9� �
!

��
�! � �� ���"�� (B.14)
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Substituting ! � +�
���,

in B.13 and simplifying leads to :

9� � ���"��� ���"  �� ���"� (B.15)

Similarly, in B.14

9� � ���"��� ���"  �� ���"� (B.16)

But,

�� ���"  �� ���" � 5 ���"  � (B.17)

where 5 �
�

�����  ����� and  �� � � ��
��

. Hence :

9� � ���"5 ��� �"  �� (B.18)

9� � ���"5 ��� �"  �� (B.19)

using ���� ���� � �
�
���� ��� ��� ��� �����:

9� �
5

�
���� � � ��� ��" ��� (B.20)

but 5 ��� � � ��, hence :

9� � �5
�

��� ��"  �� 
��
�

(B.21)

Using ���� ���� � �
�
���� ����  ��� ��� ���

9� �
5

�
���� ��"  ��  ��� �� (B.22)

but 5 ��� � � ��, hence

9� �
5

�
��� ��"  �� 

��
�

(B.23)
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Figure B.1: Experimental confirmation of ellipse.

Equations B.21 and B.23 are a parametric form of equation of an ellipse with axes

given by :

�

�

�
�����  ����� 

��
�

(B.24)

�

�

�
�����  ����� 

��
�

(B.25)

This is confirmed experimental by Figure B.1 which shows some randomly generated f1

- f2 pairs normalised to a reference speaker, and also the ellipse defined by the reference

speaker’s formants. The transformed poles clearly lie on the locus of the ellipse.
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