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ABSTRACT 

Centromeres are the regions on each chromosome responsible for the faithful 

transmission of genetic material during mitosis and meiosis. The failure of 

correct chromosome segregation can drive anueploidy and may contribute to 

tumour formation. 

The fission yeast, Schizosaccharoinyces pombe, provides an excellent model for 

the dissection of centromere structure and function due to its genetic 

tractability and comparatively small genome size. The three centromeres of 

S. poinbe are similar to those found in more complex eukaryotes; they are 

complex repetitive structures which bind multiple microtubules at mitosis. 

In particular, eukaryotic centrorneres contain large blocks of 

heterochromatin. The assembly of heterochromatin requires an orchestrated 

array of chromatin changes including histone deacetylation, methylation and 

the recruitment of proteins that bind these modifications. In fission yeast, 

heterochromatin assembly requires an intact RNA interference (RNA1) 

pathway. Non-coding RNA transcripts originating from centromeric repeats 

are found to be associated with protein complexes that mediate RNAi. These 

transcripts are processed and the resulting siRNAs direct heterochromatin 

assembly over the homologous repeats and induce transcriptional silencing. 

The centronlere:suppressor of position effect (csp) mutants were previously 

isolated as specifically alleviating silencing within the centromeric outer 

repeats. The initial aim was to identify and characterise additional factors by 

analysing several mutations in unknown genes and then investigate their 

role in centromeric heterochromatin formation and integrity. 

Complementation with genomic libraries followed by sequencing allowed 

the identification of csp7, csp9, csplO and cspl2 as alleles of rdp1, ago1, c1d12 

and arbi respectively. 

Cid12, which encodes a putative poly(A) polymerase and associates in a 

complex with Rdpl, was chosen for more detailed analyses. Mutations in 

the predicted catalytic domain of Cid12 which would be expected to 



abrogate its function were generated (Cid12). Recombinant wild type and 

mutant protein were produced and employed in in vitro assays designed to 

test the biochemical function of Cid12. To date no convincing poly(A) 

polymerase activity has been detected however, assays indicate that Cid12 

may possess nuclease activity. Affinity selection indicates that Cid12 

associates with many proteins. Such interactions may be constitutive or 

transient. It is possible that Cid12 is only active in the context of these 

proteins and/or that it has unusual, unknown requirements with respect to 

substrate specificity. These analyses are described in detail and demonstrate 

that Cid12 plays a central role in heterochromatin assembly at centromeres. 
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CHAPTER 1 

Introduction 

The faithful transmission of genetic material from generation to generation is 

an essential process. The centromere is vital for the correct segregation of 

sister chromatids during mitosis and meiosis as it is the site of kinetochore 

formation. The kinetochore is a multiprotein complex which mediates 

centromere-microtubule interactions during mitosis (Cleveland et al., 2003; 

Sullivan et al., 2001; Wiens and Sorger, 1998). Understanding the processes 

which contribute to chromosome segregation and the chromatin structures 

underlying centromere integrity is important, as the resulting cellular defects 

both in S. pombe and in more complex eukaryotes, can cause genomic 

instability. Chromosome loss or gain as a consequence of aberrant 

centromere function causes aneuploidy which can result in tumour formation 

and ultimately leads to a reduction in organism viability (Hassold and Hunt, 

2001; Wassmann and Benezra, 2001). 

1.1 Chromatin organisation 

Eukaryotic genornes are packaged into higher-order chromatin structures 

which has implications for cellular processes such as DNA replication, 

recombination and transcription (Morales et al., 2001). The nucleosome is the 

basic repeating unit of chromatin, around which 146 bp of DNA is wrapped. 

The core particle of the nucleosome consists of a protein octamer of a histone 

H3-H4 tetramer and two H2A-H2B dimers (Luger et al., 1997). Nucleosomes 

allow the formation of higher-order chromatin structures. At the first level 

of compaction, DNA is wrapped around the core nucleosome particle which 

forms a 10 nm fiber. This is often referred to as the 'beads-on-a-string' array, 

the structure of which has been well characterised (Mohd-Sarip and 

Verrijzer, 2004). This 10 nm fiber can be further compacted into a 30 nm fibre 

which is thought to form a solenoid arrangement (Hayes and Hansen, 2001; 

Kornberg and Lorch, 1999). The 30 nm fiber is anchored to the nuclear 

periphery to form loops of chromatin of approximately 50-100 kb (Morales et 

al., 2001). Higher-order chromatin structure is illustrated schematically in 

1 



Figure 1.1. Nucleosomes are spaced at approximately 200 bp between which 

linker histone Hi binds and acts to stabilise the condensed states of 

chromatin (Kornberg and Lorch, 1999). The core histones are highly 

conserved proteins whereas the linker histones are less conserved. 

Nucleosomes are not static entities; rather histones undergo numerous 

posttranslalional modifications on their N-terminal tails which are essential 

to encrypt different chromatin conformation and gene expression states 

(Morales et al., 2001; Heit, 2006). 

Besides packaging the huge length of chromosomal DNA into the relatively 

small nucleus, higher-order chromatin structure is essential for many 

processes, ranging from gene regulation to accurate chromosome segregation 

during mitosis and meiosis. The organisation of chromatin can be described 

as two functionally and structurally distinct regions of the genome. These 

regions are known as euchromatin (or active chromatin) and 

heterochromatin (or silent chromatin) (Richards and Elgin 2002). 

Euchromatin is historically associated with regions of transcriptional activity. 

In contrast, heterochrornatin remains condensed throughout the whole cell 

cycle and was thought to be transcription ally inactive by virtue of its 

inaccessibility to transcription factors. This transcriptionally inactive state is 

also imposed on genes placed within heterochromatic regions. The 'off' or 

'silent' state requires specific chromatin modifications which allow its 

duplication and propagation through mitotic and meiotic divisions (Richards 

and Elgin, 2002). Heterochromatin has a vital role in maintaining the 

structural integrity of specific chromosomal regions; it is essential to sustain 

stable structures at defined regions of repetitive DNA such as centromeres, 

telomeres and transposable elements. Recombination is repressed across 

centromeres in general and the silent mating type loci in fission yeast 

(Nielsen and Egel, 1989; Niwa et al., 1989). It is likely that silent chromatin 

structures inhibit the potentially detrimental effects of homologous 

recombination between repetitive elements on different chromosomes. 
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Figure I.I.  DNA is packaged into higher-order chromatin 
structure. The DNA double helix is wrapped around the core nucleosome 
particle to form the 10 nm "beads-on-a-string structure". 	This is further 
compacted into a 30 nm fibre of 6 nucleosomes per turn. Chromatin is 
packaged as loops which anchor to the nuclear matrix. 
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1.2 Histone modifications 

Nucleosomes are dynamic entities. Histones are post-translationally 

modified on their N-terminal tails which provides a dynamic environment 

for the binding of chromatin associated proteins (Jenuwein and Allis, 2001). 

These modifications and proteins which bind them define the chromatin 

state; that is, particular modifications can facilitate or repress transcription by 

regulating access to the underlying DNA (Jenuwein and Allis, 2001). 

Histones can be acetylated, methylated, phophorylated, ubiquitinated, 

sumolyated, biotinylated and ADP-ribosylated (Krebs, 2007; Bernstein, 2006). 

It is known that specific modifications also define heterochromatin and 

euchromatin. The enzymes which effect histone modifications are highly 

specific for particular amino acid residues. 	For example, general 

hypoacetylation of histones and phophorylation of serine 10 on histone H3 is 

required for correct chromosome segregation by regulating chromosome 

condensation during mitosis (Hendzel et al., 1997). In addition the 

methylation of lysine 9 by the Suv39 family of histone methyltransferases 

which creates a binding site for HP1 proteins is required for the formation of 

heterochromatin (Peters et al., 2001, Bannister, 2001; Rea et al., 2000). 

Histone modifications do not act independently of one another. It has been 

demonstrated that the ubiquitination of 1-1213 causes repression of 

transcription initiation by inhibiting the di- and tri-methylation of H3K4 in 

mice (Nakagawa et al., 2008). Ubiquitination of 1-12A has also been shown to 

inhibit transcription by preventing elongation by RNA polymerase II 

(RNJAPII) (Zhou et al., 2008). Moreover, Set2 mediated H3K36 methylation 

which is associated with actively transcribed genes, acts as a mark to recruit 

histone deacetylases (Lee and Shilatifard, 2007). This is thought to stabilise 

chromatin and inhibit aberrant transcriptional initiation (Lee and Shilatifard, 

2007). 
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1.3 Epigenetic regulation of centromeres 

Several lines of evidence contribute to the view that centromeres are 

epigenetically regulated. Centromeric DNA is usually found to be enriched 

for repetitive elements and AT-rich sequences yet the primary sequence is 

not conserved among different species and indeed may vary within an 

individual organism (Sullivan et al., 2001). Centromeric DNA is not always 

sufficient to form a functional centromere and active centromeres can be 

formed on DNA sequence bearing little resemblance to that found at 

endogenous centromeres (Karpen and Alishire, 1997; Marshall et al., 2008). 

Most organisms are monocentric, that is they possess only one centromere 

per chromosome. Dicentric chromosomes which have more than one 

centromere have been recovered and appear to be stably transmitted in both 

flies and mammals. In some instances this could be due to inactivation of 

one of the centromeres although exactly how the active and inactive 

centromeres are defined is unknown. Thus, centromeres can become 

inactivated with no alteration to the DNA sequence. Usually the presence of 

more than one centromere per chromosome would result in chromosome 

loss as the formation of an anaphase bridge would occur and cause each 

centromere to attach to opposite poles and thus fragment (Karpen and 

Alishire, 1997; Wiens and Sorger, 1998) (Figure 1.2a). 

Centromeres are able to form on noncentrorneric DNA. For example, the 

human marker chromosome mar(del)10, which is a rearrangement of 

chromosome 10, does not contain any a.-satellite DNA yet is mitotically 

stable (Voullaire et al., 1993). Centromere proteins can be visualised at a site 

of primary constriction indicating the formation of a neocentromere. The 

way in which activation of neocentromeres occurs is unclear. Two 

hypotheses are presented in Figure 1.2b. The neocentromere may become 

activated after which chromosome breakage occurs, resulting in loss of the 

endogenous centromere. 	Alternatively, deletion of the endogenous 

centromere may occur first and then the neocentromere is activated (Figure 
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1.2b). Many human marker chromosomes have been studied which lack 'a-

satellite DNA yet are stably transmitted and bind proteins usually found at 

centromeres (Depinet et al., 1997; Marshall et al., 2008; Sullivan and 

Schwartz, 1995; Voullaire et al., 1993). In fact, it may be proteins which 

specify centromere function as CENP-B, which is known to bind cc-satellite 

DNA, can bind both active and inactive centromeres whereas only active 

centromeres bind CENP-C, CENP-E and CENP-A (Depinet et al., 1997). 

However, it has been shown that de novo centromere formation on artificial 

chromosomes requires cc-satellite DNA containing the 17 bp binding site for 

CENP-B (Okada et al., 2007). CENP-B also binds cc-satellite DNA inserted at 

ectopic loci where no centromere is formed (Okada et al., 2007). It has been 

proposed that CENP-B may act to form neocentromeres on acentric 

chromosomes but may suppress excess centromere formation (Okada et al., 

2007). Interestingly, one factor which is conserved at all active centromeres, 

and neocentromeres, is the histone H3 variant CENP-A (Heit et al., 2006). 

CENP-A and its homologues have been identified at centromeres in 

mammals, flies and yeast (Black and Bassett, 2008). 

Drosophila are capable of forming neocentromeres after irradiation 

mutagenesis of a minichromosome (Murphy and Karpen, 1995; Williams et 

al., 1998). Typically, these minichromosomes are stably transmitted and 

appear to have normal centromeres. However, chromosome fragments were 

only able to form neocentromeres if they had previously been adjacent to the 

centromere of the minichromosome prior to irradiation. This 

suggests that formation of a neocenfromere may require spreading of some 

kinetochore/centromere proteins in the absence of any boundary elements. 

Evidence from S. poinbe supports the argument for epigenetic regulation of 

the centromere. Mini chromosomes containing central core and an outer 

repeat sequence could convert from a nonfunctional centromere to a 

functional centromere without any alteration to the DNA sequence or 

plasmid structure (Steiner and Clarke 1994). Once the active state was 
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Figure 1.2. Centromeres are epigenetically regulated. (a) Chromosome 

fusions/translocations can cause formation of dicentric chromosomes which can have one 
or other of the centromeres inactivated. (b) Neocentromeres may be formed in two 
ways. A neocentromere becomes activated, part of the chromosome becomes lost during 

breakage where the endogenous centromere is deleted and then rejoins. Alternatively, 
deletion may occur first and then the neocentromere is activated. (c) In S. pombe, 

modification of the centromere can induce heritable changes without alteration of the 

DNA sequence. 	Chromatin which is chemically treated can form both active and 

inactive states, as can minichromosomes bearing a minimal centromere. 
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established it could be propagated for many divisions (Figure 1.2c). This 

demonstrates that it is possible for the same DNA sequence to have two 

functionally independent states. In addition, transient trichostatin A (TSA) 

treatment, which inhibits histone deacetylation, induces a heritable 

hyperacetylated state which induces functional changes within the 

centromere. This disruption of centromeric chromatin can be inherited 

through several generations and is propagated even in the absence of TSA 

(Ekwall et al., 1997). This demonstrates that the active and inactive states 

coexist with no alteration to DNA sequence (Figure 1.2c). 

Thus, centromeric DNA is not always required or sufficient to form an active 

kinetochore. The plasticity of the centromere is demonstrated by the fact that 

the kinetochore can form on sequence other than that found at endogenous 

centromeres. However, given that the function of the centromere is essential 

to viability, it is vital that the cell retains some way of regulating centromere 

identity. This paradox of centromeric plasticity and stability can be 

explained by the epigenetic nature of the locus. That is, centromeres are 

epigenetically defined and propagated so that a site previously designated as 

centromeric will be inherited for many generations. 

1.4 CENP-A may define centromere identity 

Centromeres are generally composed of two elements: highly repetitive 

tandemly arranged DNA sequences and a distinct chromatin domain 

containing a histone H3 variant, CENP-A (Morris and Moazed, 2007). H. 

sapiens CENP-A, and its homologs, S. cerevisiae Cse4p, S. pombe Cnpl, 

Drosophila CID, is found at all active centromeres and as such is a good 

candidate for the epigenetic mark which specifies the site of kinetochore 

assembly (Black and Bassett, 2008; Morris and Moazed, 2007; Pidoux and 

Alishire, 2000). CENP-A is incorporated into nucleosomes presumably in the 

place of H3 but how CENP-A becomes deposited specifically at the correct 

location is unclear (Castillo et al., 2007). It has been suggested that CENP-A 

is deposited during replication but data from mammals and flies show that 



replication is not required for CENP-A incorporation (Mellone and Alishire, 

2003). It may be that a specific loading factor, such as Mis6 or Sim4 in fission 

yeast, is required for CENP-A loading at centromeres. Mutants of Mis6 or 

Sim4 display reduced CENP-A localisation at centromeres (Pidoux et al., 

2003; Takahashi et al., 2000). However, the budding yeast Mis6 hornolog, 

Ctf3, is not required for CENP-A loading (Measday et al., 2002). Many 

proteins are found to affect CENP-A localization. In Drosophila, the histone 

chaperone RbAp48 has been shown in vitro to assemble CENP-A chromatin, 

but as it also contributes to H3 loading it is unclear how this would facilitate 

CENP-A localisation in vivo (Furuyama et al., 2006). 

1.5 Centromere structure and kinetochore assembly 

The centromere, and the associated kinetochore complex, is a highly 

specialised structure on a chromosome which is responsible for the correct 

segregation of sister chromatids to both daughter cells during mitosis. To 

this end, the centromere must fulfill several functions. The sister chromatids 

must be attached to microtuhules and this attachment must be such that the 

chromatids are bi-orientated to opposite poles (Pidoux and Allshire, 2000; 

Pluta et al., 1995). A surveillance checkpoint, the spindle checkpoint, exists 

to delay the onset of anaphase when a single kinetochore is incorrectly 

attached or other spindle damage occurs (Pidoux and Alishire, 2000; Pluta et 

al., 1995). The centromere is required to maintain cohesion until all of the 

chromosomes are correctly oriented and only then can segregation occur 

(Pidoux and Alishire, 2000; Pluta et al., 1995). 

1.5.1 Budding yeast centromeres 

The best characterised, and perhaps the simplest, centromeres are found in 

the budding yeast Sciccaroinyces cerevisiae. It has point centromeres of 125-bp 

that bind a single microtubule (Pluta et al., 1995; Cleveland 2003). Each 

centromere contains three distinct DNA sequences; CDE-I and CDE-III are 

conserved at each chromosome whilst CDE-II has no sequence conservation 



but length (76-84 bp) and AT-content (90%)  are similar (Cleveland et al., 

2003; Sullivan et al., 2001). CDE-I is not essential for centromere function but 

serves as a binding site for the kinetochore protein Cbfl (Ortiz et al., 1999). 

CDE-II interacts with the single Cse4 nucleosome which is required for 

correct chromosome segregation (Keith and Fitzgerald-Hayes, 2000; Stoler et 

al., 1995). Cse4 is the budding yeast CENP-A homolog. CDE-III is only 25-

bp long but the integrity of this sequence is essential as mutations of specific 

single bases can abolish centromere function (Figure 1.3) (McGrew et al., 

1986). CDE-III is bound by the Cbf3 complex which is composed of NdclO, 

Cep3, Ctf13 and Skpl (Sorger et al., 1995). This complex along with Ctf19, 

Mcm2l and Okpl is thought to mediate kinetochore-rnicrotubule 

interactions (Ortiz et al., 1999). 

1.5.2 Drosophila melanogaster centromeres 

In metazoa, centromeres tend to be much larger and more complex. Analysis 

of the X-derived minichromosome Dp1187 in Drosophila has demonstrated 

that a 420 kb region is required for proper centromere function (Murphy and 

Karpen, 1995; Sun et al., 1997). This is composed of two distinct simple 

repeats, AATAT and AAGAG, single interspersed complete transposons and 

a unique AT-rich region (Figure 1.3) (Murphy and Karpen 1995). The 

transposable elements can be found at many chromosomal sites and are not 

present at all centromeres (Sun et al., 1997). In addition, the AATAT and 

AAGAG repeats are found scattered thoughout the genome but alone are not 

sufficient to induce centromere formation (Sun et al., 1997). The Drosophila 

CENP-A homolog, CID, is required for kinetochore assembly and 

chromosome segregation during mitosis (Blower and Karpen, 2001). The 

CID protein is localised along extended chromatin fibers interspersed with 

blocks of H3 which may have functionally distinct properties (Blower et al., 

2002). The overexpression of CID causes the formation of ectopic 

centromeres and multicentric chromosomes resulting in misegregation, 

anueploidy and growth defects, demonstrating the importance of centromere 

specification (Heun et al., 2006). 
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Figure 1.3. Centromere structure varies in different organisms. S. cerevisiae 

centromeres contain 3 distinct DNA sequences. S. pombe centromeres consist of a unique 
central core with flanking inverted repeats. 	Drosophila minichromosome Dpi 187 
containing a core of 5 bp satellites interspersed with transposons (in light gray) and flanked 
by repetitive DNA in purple. C. elegans forms holocentric centromeres along the entire 
length of the chromosome. Human centromeres consist of tandem arrays of a.-satellite 

DNA. (Adapted from Sullivan et al 2001). 
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1.5.3 Plant centromeres 

Plants show a similar centromere DNA composition to metazoans. 

Arabidopsis thaliana centromeres consist of 180-bp repeats surrounded by 

complex DNA and retrotransposons and flanked by ribosomal DNA 

(Copenhaver et al., 1999). Although these centromeres show repression of 

recombination the flanking regions contain repetitive elements which 

display normal levels of recombination. CENH3, the Arabidopsis CENP-A 

homolog, is known to associate with centromere repeats and localises at a 

region of low DNA methylation (Talbert et al., 2002; Zhang et al., 2008). 

Interestingly, Arabidopsis centromeres contain genes that are thought to be 

expressed. This is rare in more complex eukaryotes but there are exceptions 

(Copenhaver et al., 1999). Rice centromeres are composed of two elements: 

the 155 bp satellite CentO and the retrotransposon CRR (Yan et al., 2006). 

Transcription has been demonstrated across specific rice centromeres which 

corresponds to active genes, but also to intergenic regions and repetitive 

DNA (Yan et al., 2006). 

1.5.4 Caenorhabditis elegans centromeres 

Centromeres in fission yeast, Drosophila, plants and mammals are regional 

centromeres as they assemble at a specific locus on the chromosome. Most 

organisms contain only one centromere per chromosome and are thus 

termed monocentric. However, the nematode Caenorliabditis elegans forms 

holocentric centromeres where kineotchore proteins extend ribbon-like along 

the entire length of the chromosome (Figure 1.3) (Sullivan et al., 2001). This 

results in the formation of diffuse kinetochores along the chromosome which 

coincides with CENP-A localisation (Maddox et al., 2004). Holocentric 

centromeres may provide a way of retaining genetic material after double-

strand breaks by allowing the transmission of chromosome fragments. 

12 



1.5.5 Mammalian centromeres 

Human centromeres primarily consist of tandemly arranged 171-bp 

monomer repeats called cc-satellite DNA. These repeats can extend from 

100kb to several megabases (Figure 1.3). Centromere function has been 

mapped to these cc-satellite arrays by deletions and insertions (Brown et al., 

1994; Schueler et al., 2001). However, the insertion of a-satellite DNA into 

ectopic chromosomal sites is not sufficient to form an active centromere 

(Earnshaw et al., 1989). It has been shown in mammalian cells that cc-satellite 

DNA containing binding sites for the centromere protein CENP-B is 

sufficient to form de novo centromeres (Okada et al, 2007). However, mice 

lacking CENP-B are viable and do not demonstrate any significant defects in 

chromosome segregation (Hudson et al., 1998). CENP-A the kinetochore 

specific H3 variant, is found on cc-satellite DNA interspersed with H3 on 

stretched chromatin fibres (Blower et al., 2002). CENP-A chromatin is 

predominantly found beneath the kinetochore and thus provides a base for 

kinetochore assembly (Blower et al., 2002). 

1.6 Fission yeast centromeres 

S. poinbe provides an excellent model organism for the dissection of 

molecular events involved in chromosome structure and function due to its 

genetic tractability and comparatively small genome size. S. poinbe has 4979 

protein-coding genes contained within 13.8 Mb. The genome is divided 

between three chromosomes: chromosome I is 5.7 Mb, chromosome II is 4.6 

Mb and chromosome III is 3.5 Mb (Wood et al., 2002). S. poinbe is a 

unicellular archiascomycete fungus which shares many biological 

characteristics with more complex eukaryotes. For this reason it has been 

used with great success to study many cellular processes including cell-cycle 

control, DNA repair and recombination as well RNA1-mediated 

heterochromatin formation and chromosome segregation (Egel, 2004). 
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1.6.1 Centromere structure 

The structure of S. poinbe centromeres is somewhat similar to that of more 

complex eukaryotes in that they are relatively large, repetitive and complex 

structures which occupy 35-110 Kb (Figure 1.3 and Figure 1.4) (Steiner et al., 

1993; Takahashi et al., 1992). This is in contrast to the comparatively simple 

point centromeres of the budding yeast Sciccaroinyces cerevisiae which are only 

125 bp (Cleveland et al., 2003; Sullivan et al., 2001). Fission yeast 

kinetochores bind 2-4 microtubules at mitosis (Ding et al., 1993). This is again 

more reminiscent of the multiple niicrotubule association of metazoan 

kinetochores than the single microtubule attachment observed in budding 

yeast (Winey et al., 1995). S. ponthe centromeres are composed of a unique 

central core (cc) of 4-7 Kb which is flanked by the innermost repeats (irnrL I R) 

and the outer repeats on which centromeric heterochromatin forms (Alishire, 

1995; Cowieson et al., 2000; Steiner et al., 1993; Takahashi et al., 1992). The 

largest centromere resides on the smallest chromosome and the smallest 

centromere resides on the largest chromosome (Figure 1.4). Centromere I is 

the best characterised due to its size and the fact it has the fewest repetitive 

elements. Together the central core and i,nr repeats make up the central 

domain and are packaged in a centromere specific form of chromatin 

containing the histone H3 variant Cnpl (the CENP-A homolog in fission 

yeast), which replaces histone H3 (Figure 1.4 and 1.5a) (Castillo et al., 2007; 

Takahashi et al., 2000). This central domain has an unusual chromatin 

structure as partial digestion with micrococcal nuclease produces a smeared 

pattern rather than the typical ladder pattern (Polizzi and Clarke, 1991; 

Takahashi et al., 1992). Genes are also silenced when placed in this central 

domain, and the factors involved affect CENP-A localisation and kinetochore 

assembly and function, distinct from those that affect heterochrornatin 

formation on the outer repeats (Allshire et al., 1994; Alishire et al., 1995; 

Ekwall et al., 1996; Partridge et al., 2000; Pidoux et al., 2003). Thus, this 

central domain is functionally and structurally distinct from the 

heterochromatic outer repeat regions (Alishire et al., 1995; Partridge et al., 

2000). The central core itself is essential for centromere activity but alone it is 

not sufficient to assemble an active centromere. Studies using 
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Figure 1.4. Centromere organisation in fission yeast. S. pombe has three 
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of centromeres I and Ill share sequence homology, represented by the spotted box. 
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chromosome II. The inner repeats, imr!, at all three centromeres are distinct. The 

multiple tRNA genes are represented by orange bars (from A!Ishire, 200!). 
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minichromosomes have demonstrated that at least part of the 

heterochromatic outer repeat, in combination with central domain sequences, 

is essential to allow the de novo formation of active centromeres (Baum et al., 

1994; Folco et al., 2008; Ngan and Clarke, 1997; Takahashi et al., 1992). 

Large blocks of heterochromatin are prevalent at the centromere regions of 

many eukaryotes. In metazoa, large arrays of repetitive DNA of up to 

several megabase pairs are packaged as heterochromatin at centromeres. 

The outer repeats (otr) themselves are composed of two elements, known as 

the dli and dg (or K and L) repeats which vary in number and are arranged 

differently with respect to each other at each centromere (Figure 1.4 and 1.5a) 

(Steiner et al., 1993; Takahashi et al., 1992). Because these repeats are 

packaged into heterochromatin, expression levels of marker genes (ade6 and 

ura4 for example) inserted at sites across the outer repeats are subject to 

variable repression or expression, resulting in phenotypic variegation. This 

has allowed the development of screens to identify many factors involved in 

heterochromatin and hence centromere structure and function (Figure 1.5b) 

(Allshire et al., 1995; Ekwall et al., 1999) 

1.6.2 Central core domain and kinetochore proteins 

The central core domain, which comprises of the central core and the 

innermost parts of the imi repeats, has a distinct chromatin structure from 

the heterochromatic outer repeats. The transcriptional silencing found here 

is less robust than that at the oh,  repeats however, silencing screens like those 

performed at the otT repeats have uncovered numerous kinetochore proteins 

which alleviate silencing at the central core (Pidoux and Allshire, 2004; 

Pidoux et al., 2003). 

The sim (silencing in the middle of the centromere) mutant screen uncovered 

siin2 which is an allele of Cnpl, the fission yeast CENP-A homolog, siin3 
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which shares homology the histone binding protein NASP, and s1rn4 which 

shares similarity with CENP-H (Dunleavy et al., 2007; Pidoux et al., 2003). 

Sim3 is required for Cnpl deposition at centromeres (Dunleavy et al., 2007). 

It has been shown that Sim3 can bind both Cnpl and histone H3 and is 

required for the incorporation of newly synthesised Cnpl at centromeres 

(Dunleavy et al., 2007). Sim3 has been proposed to act as a Cnpl chaperone 

to allow its incorporation into centrorneric chromatin (Dunleavy et al., 2007). 

Sim4 associates with Mis6 and both proteins associate with the central core 

domain (Pidoux et al., 2003). The sii4 and rnis6 mutants display reduced 

Cnpl association with the central core region and both demonstrate a 

disrupted niicroccocal nuclease digestion pattern (Pidoux et al., 2003; 

Takahashi et al., 2000). Mis6 is required for the incorporation of newly 

synthesised Cnpl at centromeres and as such has been proposed to act as a 

loading factor for Cnpl, in conjunction with Sim4 (Takahashi et al., 2000). 

Sim4 associates with a number of proteins; Mis6, Mis15, Mis17, Ma12, Dadi 

and the Ftal-7 proteins (Liu et al., 2005). rn1s15 and mis17 mutants both 

display reduced Cnpl association at centromeres and have disrupted 

centromere chromatin demonstrated by microccocal nuclease digestion 

(Hayashi et al., 2004). Ma12 is also required to maintain structural integrity 

of the central core domain and associates with another central core protein 

Mis12 (Tin et al., 2002). Fta2, 3 and 4 are novel proteins which are associated 

with the central core domain (Liu et al., 2005). Fta2 is associated with Ma12 

and is required for bipolar chromosome attachment (Kerres et at, 2006). 

Mis12 was identified in the same screen as Mis6 and localises to the central 

core domain (Takahashi et al., 1994). It is associated with Mis13 and Spc7 in 

a complex similar to the Mtwl complex in budding yeast (Obuse et al., 2004). 

Both Mis13 and Spc7 localise to the central core domain (Obuse et al., 2004). 

Spc7 interacts with the microtubule binding protein Ma13 and may mediate 
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kinetochore-microtubule interactions (Kerres et al., 2006). The human Mis12 

complex associates with HP1 and may provide a bridge between the 

heterochrornatic repeats and central core domain (Obuse et al., 2004). A 

summary of proteins found at the central core is detailed in Figure 1.6. 

1.6.3 Distinct boundaries demarcate the domains within and around 

centromeres 

The transition from outer repeat heterochromatin to central domain CENP-

A 1  chromatin coincides with the presence of two to four tRNA genes 

(Kuhn et al., 1991; Partridge et al., 2000; Steiner et al., 1993; Takahashi et al., 

1992; Takahashi et al., 1991). For example, two tRNA genes are found in the 

region of transition between the central core domain and the heterochrornatic 

repeats at centromere 1. In addition, tRNA genes are present at five of the 

six extremities of the three centrorneres between the otr and surrounding 

euchromatin, the exception occurring at the right hand side of centromere 1 

(Figure 1.4). Strong DNase hypersensitive sites coincide with the tRNA 

genes in the iinrL/R of centromere 1 and it had been suggested that these 

tRNA genes might act to separate outer repeat heterochromatin from the 

CENP-A 1  chromatin of the central domain (Partridge et al., 2000; 

Takahashi et al., 2000; Takahashi et al., 1992). Genome-wide analysis has 

confirmed that heterochromatin is absent inside of the 2-4 tRNA genes 

clustered at the cc/otr boundary. The transition between outer repeat 

heterochromatin and adjacent euchromatin also coincides with the presence 

of tRNA genes, TFIIIC binding sites or other elements which may act as 

boundaries (Cam et al., 2005; Wallrath and Geyer, 2006). The tRNA found 

at the transition between the central domain and outer repeats at centromere 

1 is transcribed and is required to restrict heterochromatin to its normal 

location. The barrier activity of this tRNA requires the association of RNA 

polymerase III and the transcription factor IIIC (Scott et al., 2007). 

Inactivation of this transcriptionally active tRNA permits heterochromatin to 

spill into the central domain. However, deletion of the other tRNAGIU  gene, 

only 424 bp away from tRNA"', had a very weak effect. Attempts to 
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simultaneously delete both the tRNA 	and tRNA failed perhaps 

indicating that these tRNA genes act together to provide an important 

function at the centromere (Scott et al., 2006). 

1.6.4 Heterochromatin is associated with specific histone modifications 

and proteins 

The definition of heterochromatin is documented as a cytologically visible 

region of condensed chromatin. More recently it has become possible to 

analyse heterochromatin at a molecular level and identify the proteins and 

histone modifications associated with these regions (Richards and Elgin, 

2002). It is now commonly accepted that heterochromatin can also be 

defined as regions which display low levels of histone acetylation and are 

associated with the methylation of histone H3 on lysine 9 (H3K9me) and 

binding of chromo domain proteins related to Drosophila and mammalian 

Heterochrornatin Protein 1 such as Swi6 in S. poinbe (Figure 1.6 and Figure 

1.7). The specific methylation of histone H3 on lysine 9 creates a binding site 

for Sw16 allowing it to bind histone H3 via its chromo domain (Bannister et 

al., 2001). However, S. cerevisiae, although it has heterochromatin which 

mediates transcriptional gene silencing, does not contain homologs of C1r4 or 

Swi6 and as yet no H3K9 methylation has been detected (Sharp et al., 2003). 

Swi6, like HP1, dimerises via its chromo shadow domain and this may create 

an interaction surface for the recruitment of other proteins (Cowieson et al., 

2000). Swi6 is required to recruit a high concentration of the cohesin 

complex over the outer repeats. The cohesin complex is required to maintain 

tight physical cohesion of sister chromatids until the point of anaphase 

(Bernard et al., 2001). Methylation of lysine 9 in fission yeast is mediated by 

the conserved histone methyltransferase C1r4 (Suv39 in Drosophila and 

mammals). C1r4 has been shown to be required for the association of Swi6 

with outer repeat heterochromatin at centromeres, the mating type locus and 

telomeres (Ekwall et al., 1996; Nakayama et al., 2001; Partridge et al., 2000). 

Strains expressing histone H3 that lack lysine 9 are defective in silencing and 

Swi6 localisation. This underscores the importance of lysine 9 of H3 and its 
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methylation by C1r4 in recruiting Swi6 (Mellone et al., 2003). 

1.6.5 Histone methylation is required to bind the HP1 homolog, Swi6 

C1r4 is the only ortholog of Suv39 in fission yeast. These histone 

methyltransferases can catalyse mono- di- and tn- methylation of lysine 9 of 

histone H3. In S. pornbe most H3 K9 methylation appears to be dimethyl 

although mono- and tn- methyl states have been detected (Yamada et al., 

2005). In the absence of C1r4, all H3 K9 methylation is lost and thus Clr4 is 

probably the only enzyme responsible for these modifications. Like its Suv39 

orthologs, C1r4 contains a chrorno and a SET domain. It is the conserved SET 

domain of C1r4 that is responsible for the H3 K9 methyltransferase activity 

and mutations in this domain affect the levels of H3 K9 methylation at 

centromeres and the mating type locus (Nakayama et al., 2001; Rea et al., 

2000). Perhaps surprisingly, the genes encoding Clr4 and Swi6 are not 

essential, thus aiding analyses of these proteins in fission yeast. However, 

loss of C1r4 or Swi6 function results in defective silent chromatin at 

centromeres, telomeres and the mating type locus which leads to reduced 

centromere cohesion and increased chromosome loss (Allshire et al., 1995; 

Ekwall and Ruusala, 1994; Kiar and Bonaduce, 1991; Lorentz et al., 1994; 

Thon et al., 1994). 

1.6.6 Histone deacetylation is required to allow methylation 

It is known that histone methyltransferases are unable to methylate target 

lysine residues that are acetylated and therefore histone deacetylases are 

required to allow methylation (Rea et al., 2000). Within regions of 

heterochromatin the lysine residues in the tails of histones H3 and H4 exhibit 

low acetylation levels and this hypoacetylated state is important for the 

integrity of heterochromatin. Transient inhibition of histone deacetylases 

using Trichostatin A (TSA) induced hyperacetylation of histone H3 and H4 

on the outer repeats resulting in derepression of marker genes, loss of Swi6 

localisation and defective chromosome segregation (Ekwall et at, 1997). This 
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expressed state was found to be heritable through several generations even 

in the absence of TSA. It is likely that this forced hyperacetylation blocked 

methylation of lysine 9 by Clr4, thereby causing loss of H3 lysine 9 

methylation and thus propagation of the expressed state. Deacetylation of 

H3 and H4 is therefore essential for the formation of intact heterochromatin 

and associated functions. 

Several histone deacetylases (HDACs): Sir2, 06, and C1r6, are involved in 

heterochromatin formation. C1r6 is an essential gene, with broad substrate 

specificity (Bjerling et al., 2002; Nakayama et al., 2003; Wiren et al., 2005), Sir2 

specifically deacetylates H3K9 and H4K16 residues and is required for H3K9 

methylation (Shankaranarayana et al., 2003; Wiren et al., 2005). Clr3 

specifically deacetylates H3K14 and it is required to recruit the histone 

methyltransferase C1r4 (Bjerling et al., 2002; Nakayama et al., 2001; Wiren et 

al., 2005). It has been proposed that Clr3 may stabilise histone H3K9 

methylation by prohibiting histone modifications associated with active 

transcription, thereby discouraging RNA polymerase II (RNAPII) association 

with regions of heterochromatin (Yamada et al., 2005). Furthermore, Clr3 

has been identified as a component of the effector complex SHREC 

(Snf2/Hdac-containing Repressor Complex) which also comprises Cirl, 

C1r2, and Miti, a SNF2 chromatin-remodeling factor (Sugiyama et al., 2007). 

Clr2 alone has been found to associate with the central core, suggesting it 

may play a role in kinetochore formation (Sugiyama et al., 2007). SHREC is 

found at all heterochromatic loci and acts to mediate transcriptional gene 

silencing, presumably due to the activities of Clr3 and Miti. SHREC binding 

to heterochromatic loci requires Swi6, however the complex can also localise 

to euchromatin independently of Swi6 (Figure 1.7). Its recruitment to 

telorneres is dependent on the telomere binding protein Ccql and Tazi. In 

addition, it has been hypothesised that SHREC acts to regulate nucleosome 

positioning and thus maintain higher-order chromatin structure as mutations 

of SHREC components cause pronounced differences in micrococcal 

nuclease digestion patterns (Sugiyama et al., 2007). 
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Figure 1.7. Heterochromatin is associated with specific histone 
modifications and proteins. Histones H3 and H4 within heterochromatic 
regions are hypoacetylated on their N-terminal tails. In addition, histone H3 is 
dimethylated on lysine 9 by the action of the histone methyltransferase C1r4. This 
H3K9me2 is bound by Swi6, which can dimerise. Swi6 is required at centromeres 
to recruit a high concentration of cohesin to centromeric regions which holds 
sister chromatids in tight physical cohesion until the onset of anaphase. SHREC 
association with centromeric heterochromatin is dependant on Swi6. C1r3 alone 
has been shown to be required for the recruitment of C1r4. 



1.7 RNAi components are required for heterochromatin integrity 

Heterochromatin forms on related repetitive sequences at fission yeast 

centrorneres, the mating type locus and adjacent to telomeres. Although not 

fully understood, it initially seemed most likely that the formation of this 

silent chromatin was driven by this repetitive DNA and specific DNA 

binding proteins which would attract histone deacetylases and methylases to 

promote binding of Swi6 and other proteins. However, it is now apparent 

that the RNAi machinery is required for the assembly and maintenance of 

heterochromatin in fission yeast. Like C1r4 and Swi6, deletion of RNAi 

components was found to result in defective heterochromatin formation and 

chromosome missegregation (Hall et al., 2003; Volpe et al., 2003; Volpe et al., 

2002). 

It is ironic that despite centromeres having been previously thought of as 

transcriptionally silent regions, the dg/dli repeats themselves were found to 

produce convergently transcribed non-coding RNA transcripts. These 

transcripts accumulate in many mutants involved in heterochromatin 

formation and in mutants lacking RNAi components and are found to be 

preferentially transcribed during S-phase (Chen et al., 2008; Volpe et al., 2003; 

Volpe et al., 2002). Non-coding transcripts have also been shown to originate 

from the mating type locus and sequences adjacent to telomeres (Kanoh et 

al., 2005; Mandell et al., 2005; Noma et al., 2004). Thus, at these regions 

transcription itself contributes to the transcriptionally silent state. In wild-

type cells these transcripts are made but are continually processed. 

Moreover, siRNAs identical in sequence to the dg/dh region have been 

identified (Cam et al., 2005; Reinhart and Bartel, 2002). 

The discovery of two key complexes, the RNA-induced initiation of 

transcriptional gene silencing complex (RUTS), which appears to be the main 

RNAi effector complex, and the RNA-directed RNA polymerase complex 

(RDRC) provided further insights into the mechanisms of RNAi-mediated 

heterochromatin formation in fission yeast (Motamedi et al., 2004; Noma et 
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al., 2004; Verdel et al., 2004). Recently Argonautel (Agol), a component of 

RISC, has been identified as part of a second complex termed the Argonaute 

siRNA chaperone (ARC). These findings demonstrate that the formation of 

heterochrornatin is much more complex than first imagined. 

Many organisms contain several genes encoding Dicer and Argonaute 

homologues which complicates analyses of the RNAi pathway. Fission yeast 

has an advantage in that it only possesses a single gene encoding each of the 

key proteins required for RNAi and these are not essential for cell viability. 

In several other organisms, the effector complex RISC (RNA-induced 

silencing complex) containing Argonaute and guide siRNAs is known to 

target homologous mRNAs and inhibit their expression by either blocking 

translation or mediating their degradation (Agrawal et al., 2003; Hannon, 

2002). In fission yeast, Dicer (Dcrl) is the ribonuclease which cleaves dsRNA 

into —22-25 nt double stranded siRNAs and Argonaute (Agol) is a 

component of the RITS effector complex which directly binds these siRNA 

molecules. These siRNAs act to guide RITS to homologous target RNAs and 

it appears to act only in the nucleus to bring about modification of 

homologous chromatin and transcriptional silencing. As well as fission yeast, 

RNA mediated silencing mechanisms exist in mammals, flies and plants 

(Alishire, 2002). For example, inactivation of the X chromosome in 

mammalian cells requires Xist RNA which preceeds histone H3K9 

methylation, transcriptional inactivation and DNA methylation 

(Csankovszki, et al., 2001). 

A general model of events is now widely accepted whereby non-coding RNA 

transcripts derived from repetitive DNA sequences during S-phase form a 

double-stranded RNA (dsRNA) template (Chen et at, 2008). This dsRNA is 

processed by Dicer into small interfering RNAs (siRNAs) whose production 

also peaks during S-phase (Chen et al., 2008). These siRNAs are incorporated 

into the RITS RNAi effector complex to target homologous RNAs and induce 

heterochromatin assembly (Motamedi et al., 2004; Noma et al., 2004; 



Sugiyama et al., 2005). In fission yeast, siRNA production must somehow 

bring about the recruitment of histone deacetylases and the histone 

methylase Clr4 to methylate H3 on lysine 9 allowing Swi6 binding and 

heterochromatin formation on homologous dgldlz repeats (Figure 1.8). In 

plants it has also been shown that the RNAi pathway can feedback onto 

homologous chromatin to induce modifications such as DNA methylation, 

another mark of silent chromatin (Mathieu and Bender, 2004; Matzke and 

Birchier, 2005). However, DNA methylation has not been detected in fission 

yeast (Wilkinson et al., 1995). 

Both RTTS and RDRC components can be detected on centromeric outer 

repeats (Motamedi et al., 2004; Noma et al., 2004; Sugiyama et al., 2005; 

Verdel et al., 2004). While RITS must utilise siRNAs to somehow home in on 

homologous sequences, RDRC may play a role in providing the source of 

dsRNA for siRNA generation by Dcrl. Indeed, Dcrl has been shown to 

associate with the RDRC and facilitate the dsRNA synthesis activity of RDRC 

(Colm.enares et al., 2007). However, the exact function of RDRC remains to 

be resolved given that no activity has as yet been reported for two of its 

components, the predicted helicase and poly(A) polymerase. Furthermore, 

recent studies have identified factors involved in ubiquitination, 

sumoylation, and RNAPII transcription as affecting RNAI mediated 

heterochromatin formation. The role of these complexes and modifications 

will be discussed in detail below. A summary of proteins found at the 

heterochromatic outer repeats is shown in Figure 1.8. 
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Figure 1.8. An overview of RNA1-induced heterochromatin 
formation in fission yeast. The outer repeats are transcribed by RNA 
polymerase II. These non-coding transcripts are assumed to provide a substrate for 
Dcr I, perhaps by annealing or through the action of Rdp I. These transcripts are a 
source of siRNAs which are incorporated into the RITS complex. This somehow 
recruits the histone methyltran sfe rase C1r4 which methylates histone H3 on lysine 9. 
This, in turn, creates a binding site for Swi6. The exact role of RDRC is unclear but 
Rdp I is known to associate with the outer repeats and is thought to be required to 
recruit RITS to this region. 
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1.8 Heterochromatin has several roles at independent loci 

1.8.1 Centromeres 

In S. ponbe, heterochromatin is mainly found at centromeres, telomeres, the 

mating-type locus and rDNA (Figure 1.9a). The role of heterochromatin at 

each of these sites is different. For instance, cells with defective centromeric 

heterochromatin display increased rates of chromosome loss and an elevated 

frequency of lagging chromosomes on late anaphase spindles (Allshire et al., 

1995; EkwaIl et al., 1995; Ekwall et al., 1996). Consequently, mutants are 

sensitive to microtubule destabilising drugs such as thiabendazole. This 

indicates that loss of heterochromatin from centromeres affects centromere 

function. These defects arise because Swi6 is somehow required to recruit a 

high concentration of the cohesin complex over the outer repeats. The 

cohesin complex is required for tight physical cohesion of sister chromatids. 

In the absence of Swi6 (or C1r4), subunits of cohesin (Rad2l and Psc3) 

dissociate from centromeric outer repeats and cohesion at centromeres, but 

not chromosome arms, is lost (Bernard and Alishire, 2002; Bernard et al., 

2001; Nonaka et al., 2002). Thus, any mutation affecting the formation of 

heterochromatin at centromeres ultimately leads to defective chromosome 

segregation. Fission yeast cells that lack centromeric heterochromatin remain 

viable because cohesion along chromosome arms is unaffected and is 

sufficient to sustain reasonable levels of chromosome segregation in an 

organism with just three chromosomes. Consistent with this, cells with a 

mild lesion in the Rad2l cohesin subunit require Swi6 /heterochromatin for 

viability (Bernard et al., 2001). 

1.8.2 Mating-type locus 

Heterochromatin also plays an important role in regulating mating type 

switching. The fission yeast mating type locus contains three mating-type 

cassettes, mati (either P or M), mat2-P and mat3-M over a region of 

approximately 30 Kb on chromosome 2 (Figure 1.9b) (Egel, 2004; Thon and 

Klar, 1992). Depending on whether P or M information is present at inati, 
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Figure 1.9. Heterochromatin exists at several locations in fission 
yeast. 	(a)Heterochromatin is found at pericentric regions of fission yeast 

centromeres. The central core (cc) is flanked by the inner inverted repeats (imr) and 

the heterochromatic outer repeats (otr or dg/dh). (b) At the mating type locus, 
heterochromatin spans around 10 Kb covering mat2-P, cenH and mat3-M. (C) Only 

telomeres on chromosome 3 contain rDNA repeats. Subtelomeric regions on 
chromosome I and 2 contain telomere-linked helicase genes (tlh) with homology to 

dgldh centromeric repeats. The sequencing of telomeres is not yet complete, 
presumably due to the highly repetitive nature of these regions 
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cells preferentially recombine either inat2-P (in a inatl-M cell) or inat3-M (in a 

inatl-P cell) with mati in a process known as switching. inati is 

transcriptionally active but mat2-P and ,nat3-M are maintained in a silent 

state. The mating type of a haploid cell is determined by the exchange 

between P and M information at the mati locus i.e. whether P or M 

information is expressed. Heterochromatin is required to maintain the 20 Kb 

region containing incit2-P and ,nat3-M in a silent state as expression of both 

causes haploid cells to undergo an aberrant meiosis which is usually lethal 

when it occurs in haploid cells (Thon et al., 2005). The cenH region between 

inat2 and mnat3 has 96% homology to dli elements at centromeres. cenH is 

required for efficient silencing and switching as replacement of this region by 

a marker gene causes variegated expression (Grewal and KIar, 1997). As at 

centromeres, Swi6 also attracts cohesin to tnat2-inat3 and mutations in 

cohesin subunits lead to defective mating type switching (Nonaka et al., 

2002). Further analyses suggest that heterochromatin influences long-range 

chromatin interactions between inati and the silent mating type cassettes to 

determine the direction of the switching event (Jia et al., 2004). 

At centromeres, it is apparent that the RNAi pathway is necessary for the 

formation and maintenance of silent chromatin although some features, such 

as residual H3K9 methylation and Swi6 localisation, remain even after 

inactivation of RNAi (Sadaie et al., 2004). In contrast, RNAi is required to 

establish heterochromatin at the mating type locus but is dispensable for its 

maintenance. Transcription of the cenH element residing between rnat2 and 

rnat3 attracts the RNAi machinery to nucleate heterochromatin formation in a 

similar fashion to that seen at centromeres (Hall et al., 2002). However, 

unlike at centromeres the silent state is propagated in the absence of active 

RNAi. This is due to an alternative pathway involving Atfl and Pcrl, two 

members of the stress-activated ATFICREB protein family, which act in an 

RNAi-independent manner to recruit heterochromatin components to the 

mating type locus. When either of the genes encoding Atfi or Pcrl is deleted 
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in combination with RNAi components, heterochromatin is completely 

abolished. This suggests that the two pathways act in parallel and that 

Atfi / Pcrl act to retain specific factors such as C1r4 and hence Swi6 once they 

have been delivered to the locus by the RNAi machinery (Jia et at, 2004; Kim 

et al., 2004). Interestingly, both Atfi and Pcrl physically interact with Swi6. 

In addition, Atfi associates with the C1r6 histone deacetylase, while C1r4 can 

bind both Atfi and Pcrl in vitro (Jia et at, 2004; Kim et al., 2004). This 

supports the idea that these DNA binding proteins act to maintain the silent 

state at the mating type locus in the absence of RNAi. 

1.8.3 Telomeres 

Blocks of heterochromatin are found over regions of approximately 40 Kb 

adjacent to each telomere (Figure 1.9c) (Kanoh et al., 2005; Nimmo et at, 

1994; Nimmo et al., 1998). This telomeric heterochromatin is possibly 

required in some way to prevent end-to-end fusion, to protect chromosome 

ends from enzymatic degradation or to prevent homologous recombination 

between telomere repeats at the ends of different chromosomes (Ferreira et 

al., 2004; Mandell et al., 2005; Sadaie et al., 2003). It is known that telomeres 

are clustered at the nuclear periphery in mitotically dividing cells (Funabiki 

et al., 1993) whereas during meiotic prophase they gather together at the 

spindle pole body to aid pairing of homologous chromosomes and 

recombination (Chikashige et al., 1994; Cooper et al., 1998; Nimmo et al., 

1998). When telomeric heterochromatin is impaired telomere length is 

unaffected but telomere clustering is disrupted to some extent (Ekwall et al., 

1996; Hall et al., 2003; Tuzon et al., 2004). This demonstrates a possible role 

for telomeric heterochromatin in maintaining proper chromosomal 

organisation within the nucleus. Disruption of telomeric heterochromatin 

also causes derepression of genes within the subtelomeric repeats and also of 

marker genes inserted adjacent to telomeric regions (Alishire et al., 1995; 

Hansen et al., 2006; Kanoh et al., 2005; Mandell et al., 2005; Nimmo et al., 

1998). 

32 



Similar to the situation at the mating-type locus, a distinct process also occurs 

at telomeres where Tazl, a telomere terminal repeat DNA binding protein, is 

able to establish heterochromatin independently from the RNAi machinery 

(Allshire, 1995; Kanoh et al., 2005; Nimmo et al., 1998). RNAi components 

are also required for normal clustering of telomeres at the nuclear periphery 

in interphase cells (Hall et al., 2003). Telomere length remains normal in cells 

lacking genes required for RNAi-mediated heterochromatin formation 

(Ekwall et al., 1996; Hall et al., 2003). Although C1r4 and Rikl are required 

for Swi6 localisation and silencing at telomeres, Swi6 localisation and 

silencing is retained in cells lacking Dcrl, Agol or Rdpl (Allshire et al., 1995; 

Hall et al., 2003). This RNAi-independent form of silencing at telomeres is 

due to a redundant pathway where the terminal telomere repeats themselves 

can recruit C1r4 via Tazl bound to terminal telomere repeats (Allshire, 1995; 

Cooper et al., 1997; Kanoh et al., 2005). Loss of Tazl causes the terminal 

repeats at telomeres to elongate and leads to loss of silencing, but Swi6 

remains localised due to the maintenance of heterochromatin on telomere 

associated repeats (Cooper et al., 1997; Kanoh et al., 2005; Nimmo et al., 

1998). 

1.8.4 RNAi acts at rDNA and other loci 

In fission yeast, approximately 100 copies of the 5.8S, 18S and 25S ribosomal 

RNA genes are tandemly arranged as 10.4 Kb repeats occupying —1000 Kb 

adjacent to telomeres on chromosome 3 and are ITanscribed by RNA 

polyrnerase I in the nucleolus (Figure 1.9c). When RNAPII transcribed 

marker genes are placed within rDNA they are transcriptionally silenced in a 

process that requires C1r4, Chp2, Swi6 and to a lesser extent Chpl (Thon and 

Verhein-Hansen, 2000). Genome-wide heterochromatin and euchromatin 

profiling confirmed that in addition to centromeres, telomeres and the 

mating-type loci, heterochromatin is also found associated with rDNA and 

siRNA homologous to rDNA can be detected (Cam et al., 2005). H3K9 

methylation and Agol, but not Rdpl, was found to be associated with 

particular regions of rDNA repeats. Moreover, H3 K9 methylation, Swi6, 
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RITS components, and Rdpl were found to associate with a silenced RNAPII 

marker gene inserted within rDNA. H3 K9 methylation and Swi6 association 

with this gene requires Chpl, Dcrl and C1r4. The rDNA arrays themselves 

are subject to increased inter-repeat recombination, indicating that this 

heterochromatin contributes to the mitotic stability of rDNA arrays by 

suppressing recombination. In other organisms it is known that only a 

proportion of ribosomal repeats are actively transcribed (Dammann et al., 

1993, 1995). It is possible that this RNAi-mediated heterochromatin also acts 

to regulate the number of active rRNA genes. 

Recently, the poly(A) polymerase Cid14 and the exosome component Dis3 

have been shown to play a role in maintaining the stability of the rDNA 

locus indicating that RNAi-independent mechanisms exist here as well as at 

the mating-type locus and telomeres (Wang et al., 2008). 

In genome wide studies, a number of other chromosomal loci were also 

highlighted as being potential sites of heterochromatin formation by their 

relatively high levels of H3K9 methylation in mitotically dividing cells. 

These islands of heterochromatin mainly corresponded to genes which are 

only expressed in meiosis (Cam et at, 2005). Therefore, heterochromatin may 

be required to maintain repression of these genes in vegetative cultures but it 

is not known if RNAi is required to direct H3K9 methylation to these loci. 

Regardless, it is possible that RNAi is involved in endogenous gene 

regulation in fission yeast as it is in Drosophila and plants (Aravin et al., 2001; 

Chan et al., 2004). 

It is clear that in fission yeast heterochromatin is required to form stable 

structures at distinct chromosomal loci in order to contribute to the normal 

function of these regions. As well as the contribution to endogenous loci, 

heterochromatin can also regulate exogenous sequences. In many organisms 

the expression of a synthetic double stranded RNA homologous to an 

endogenous gene can target homologous RNA resulting in degradation of 
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that RNA and in I  some cases modification of DNA/ chromatin at the 

homologous locus (Agrawal et al., 2003; Harmon, 2002). In fission yeast the 

expression of an exogenous dsRNA hairpin with homology to a GFP 

transgene can induce the production of siRNAs homologous to GFP, thus 

allowing some silencing of the transgene (Sigova et al., 2004). It is not known 

if these hairpin derived GFP siRNAs are incorporated into the RITS complex. 

Transgene silencing was shown to require the presence of C1r4, Rdpl, Dcrl 

and Agol but not Swi6, Tas3 or Chpl. However, the level of ongoing 

transcription from the transgene does not appear to be affected indicating 

that this silencing must be due to post-transcriptional processing of the GFP 

transcript by RNAi. Further investigation of such silencing is required as in 

this GFP system, both target GFP transcripts and homologous siRNAs are 

thought to be very highly expressed compared to the apparent lower levels 

of naturally occurring centromere transcripts and siRNAs. Strong 

transcription of the target or too much siRNA could interfere with, rather 

than promote, RNAi-mediated heterochromatin formation at an artificial 

locus. Nonetheless, such artificial assays provide a useful tool to further 

investigate defects in mutants affecting RNAi-mediated heterochromatin 

formation and offer some clue as to where and how specific proteins may ad 

in the process. Other assays utilising tricks to direct the RNAi machinery to 

particular loci such as ectopic silencing via repeats placed in euchromatin or 

tethering components to RNA or DNA at euchrornatic loci should also allow 

further insights into the mechanism of RNAi-mediated heterochromatin 

assembly (Buhler et al., 2006; Hall et al., 2002; Partridge et al., 2002). 

1.9 RNAi is required for heterochromatic gene silencing 

1.9.1 Non-coding transcripts and siRNAs are produced from silent loci 

Although overlapping non-coding transcripts derived from dgldh repeats at 

centrorneres can be detected, it is not known how the initiating dsRNA that 

provides the template for siRNA production is formed. It seems reasonable 

to assume that these centrorneric transcripts are the source of a dsRNA 

substrate that is processed by Dcrl to produce homologous siRNAs (Figure 



1.10). Dcrl generates siRNAs in an ATP-dependant manner which also 

requires its conserved helicase domain (Buker et al., 2007). Dcrl has been 

shown to interact with RDRC via its C-terminus, an interaction which is 

required for siRNA synthesis and heterochromatic gene silencing (Buker et 

al., 2007). The first few siRNAs identified were homologous to the 

centromeric dli element but comprehensive sequence analyses of siRNA 

associated with RITS identified siRNAs homologous to both the dli and dg 

centromeric repeats (Noma et al., 2004; Reinhart and Bartel, 2002). These 

siRNAs are concentrated in specific regions. This distribution could reflect 

variation in the density of transcripts from certain regions or in the way the 

transcripts are converted to dsRNA. This remains to be investigated further 

as the transcripts arising from heterochromatic regions have not been 

characterised in detail. However, comprehensive mapping of these 

transcripts is challenging because the arrangement of repeats at each 

centromere varies. In addition, the sequence similarity of dg and dli elements 

makes it difficult to distinguish repeats from each centromere and other 

regions of heterochromatin. 

RNAs homologous to centromere repeats may be produced by transcription, 

however, Rdpl has been shown to be able to synthesise RNA from an RNA 

template (Motamedi et al., 2004; Sugiyama et al., 2005). This activity of Rdpl 

could be required to produce a complementary second strand using primary 

centromeric non-coding RNA transcripts as a template (Volpe et al., 2002). It 

has been demonstrated that the dsRNA synthesis activity of the RDRC is 

strongly stimulated by its interaction with Dcrl (Buker et al., 2007). 

Apart from siRNA derived from the centromeric outer repeat dg/dh elements 

siRNAs were also identified which are homologous to unique inverted 

repeat elements found at the outer boundaries on centromere 1 and 3, the 

region of centromere homology (cenH) at the mating type locus, the sub-

telomeric cenH-like sequences, rDNA and also a small number from iinr 
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Figure 1. 10. Several complexes are involved in heterochromatin 
formation in fission yeast. RNAPII transcripts may provide a platform to recruit 

RITS and RDRC. RDRC could be involved in the production of dsRNA which is 
required for siRNA production, RITS association and subsequent H3K9me2. RNAi, 
H3K9me2 and formation of intact heterochromatin act in a closed loop where loss of 
any one component leads to collapse of the pathway. ARC could be the loading 
complex for RITS and transfer siRNA from Dcrl to RITS. Loading of siRNAs into 
RITS allows its targeting to homologous nascent transcripts which recruits C1r4. The 
CLRC may be responsible for the modification of histones or other factors involved in 
RNAi-induced heterchromatin formation. Splicing factors could provide a platform for 
the amplification of siRNAs. CidI4 may target transcripts for degradation via the 

exosome or the RNAi machinery. 
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region of centromere 1 (Cam et al., 2005). Since these siRNAs were 

associated with RITS this suggests that all of these sequences can be targeted 

for RNAi-induced heterochromatin formation. 

1.9.2 RITS: the effector complex 

The RNA-induced initiation of Transcriptional gene silencing complex (RITS) 

comprises three proteins: Agol, Chpl and Tas3. The complex also contains 

siRNA which directly bind Agol and presumably guide the complex to 

homologous target RNAs (Figure 1.10). In other organisms, the effector 

complex RISC (RNA-induced silencing complex) containing Argonaute and 

guide siRNAs is known to target homologous mRNAs and inhibit their 

expression by either binding the mature mRNA and blocking their 

translation or by inducing their degradation by virtue of the 'slicer' 

endonuclease activity inherent in some Argonaute proteins (Agrawal et al., 

2003; Baumberger and Baulcombe, 2005; Harmon, 2002; Liu et al., 2004; 

Miyoshi et al., 2005; Rivas et al., 2005). In S. poinbe, the PIWI domain of Agol 

has been shown to be required for its 'slicing' activity which is thought to 

cleave and degrade its target ruRNA (Buker et al., 2007; Irvine et al., 2006). 

The incorporation of siRNA into Drosophila or mammalian RISC requires a 

loading complex containing Dcrl (Preall and Sontheirner, 2005). siRNAs are 

loaded as a duplex and one strand is cleaved by Argonaute leaving behind a 

single 'guide' strand which confers target specificity (Miyoshi et al., 2005; 

Preall and Sontheimer, 2005). In fission yeast it is not known how siRNAs 

are loaded into RITS. However, it is possible that ARC acts as the loading 

complex for RITS as it contains duplex siRNAs which conceivably could be 

passed directly from Dcrl, similar to interactions observed in Drosophila and 

human (Figure 1.10). As yet, no interaction has yet been identified between 

Dcrl and ARC (Buker et al., 2007). 
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Like Swi6, the Chpl subunit of RITS contains a chromo domain and this 

chromo domain has also been shown to bind histone H3 when methylated 

on lysine 9 (Partridge et al., 2002). However, Chpl not only binds to 

H3K9me2, but as part of the RITS complex it is required to target this 

modification to sequences homologous to the siRNA carried by RITS (Figure 

1.10) (Ekwall, 2004; Partridge et al., 2002). The fact that Chpl also binds 

target chromatin when methylated on lysine 9 implies a physical link 

between Chpl / RITS and its chromosomal targets and that binding of RITS to 

chromatin via RNAi reinforces transcriptional silencing. After the initial 

unknown events that nucleate a patch of heterochromatin, Chpl could be 

required to stabilise the interaction of RITS with heterochromatin. Therefore, 

the binding of the RITS components themselves may contribute to 

heterochromatin integrity by being loaded in cis with siRNA generated from 

any RNA synthesised in the vicinity. Consistent with this, each of the 

individual RITS components is required for complete H3K9 methylation of 

and Swi6 association with marker gene insertions at centrorneres (Verdel et 

al., 2004). Surprisingly, all RITS components are also required for siRNA 

generation, again indicating that a feedback mechanism operates between 

chromatin modification and siRNA generation (Noma et al., 2004). RITS 

components do not always act together, for example, Agol alone is required 

for the post-transcriptional repression of a transgene via expression of an 

exogenous dsRNA hairpin but Tas3 and Chpl are not (Sigova et al., 2004). 

This makes sense since only the single Argonaute protein in fission yeast can 

be responsible for the targeting of nascent and mature transcripts. Tas3,like 

Chpl, is located mainly in the nucleus (Noma et al., 2004). Tas3 acts as an 

adaptor and links Agol to Chpl (Partridge et al., 2007). However, mutations 

which abolish the Tas3-Agol interaction do not affect heterochromatin 

formation and RITS is still able to localise to the centrornere (Partridge et al., 

2007). Tas3 appears to be required for the maintenance of centromeric 

heterochromatin but cannot mediate de novo establishment in cells where 

H3K9 methylation is depleted (Partridge et al., 2007). However, a Tas3 

mutation which abolishes Chpl binding cannot maintain centromeric 

heterochromatin demonstrating the importance of Chpl (Debeauchamp et 
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al., 2008). 

Chpl, and presumably other RNAi components, are required for the 

establishment of heterochromatin at centromeres, mating-type locus and 

telomeres (Sadaie et al., 2004). In the absence of RNAi, H3K9 methylation is 

reduced but it is not completely abolished from repetitive sequences at these 

locations. Swi6 and a related chromo domain protein, Chp2, are required to 

maintain this residual H3 K9 methylation at centromeres and the mating 

type locus in the absence of Chpl. Thus, it appears that chromo domain 

proteins contribute in several ways to heterochromatin formation in fission 

yeast. Chpl appears to be a key player since it is required for full 

methylation of histone H3 K9, it associates with chromatin only when it is 

methylated on lysine 9 and it is required for the production of the siRNA that 

allow it and H3K9rne to be targeted to homologous chromatin. Because of 

these inherent interdependencies, the order of events that trigger RNAi—

mediated heterochromatin formation are difficult to determine. 

1.9.3 Heterochromatin formation and RNAi are closely coupled 

This interdependency is further highlighted by the fact that all components 

of RITS associate with regions of heterochromatin and that this is dependent 

also on C1r4 and Dcrl (Noma et al., 2004). As with Chpl, the production of 

siRNAs and their incorporation into RITS is required for the association of 

Agol and Tas3 with centromeric heterochromatin. However, all RITS 

components remain associated with the mating type locus in cells lacking 

Dcrl and thus siRNA (Jia et al., 2004; Noma et al., 2004). In addition, in the 

absence of Agol, Tas3 and Chpl can still interact and both proteins still 

associate with the mating type locus and telomeres but not centromeres 

(Petrie et al., 2005). This may indicate an RNAi-independent role for these 

proteins at these regions or could simply reflect the ability of Chpl to bind 

methylated H3K9 after targeting. This also suggests that RITS is required for 

the maintenance of heterochromatin at centromeres but not at other loci. 



ChaDter 1: Introduction 

Exactly how the RITS complex loaded with siRNAs recognises homologous 

targets to induce the specific chromatin modifications that lead to 

heterochromatin formation at these locations is not known and requires 

further scrutiny. It is possible that siRNAs recognise homologous chromatin 

by targeting homologous nascent transcripts still associated with chromatin 

templates in an RNA-RNA mediated interaction. Equally, RITS associated 

siRNAs could somehow bind or interact with homologous DNA sequences 

to induce the modification of nearby chromatin. Evidence to date points 

towards an RNA-RNA interaction as the RITS complex has been shown to 

associate with non-coding centromere RNA transcripts but only when Dcrl 

is present in the cell (Motamedi et al., 2004). Consistent with this, tethering 

Tas3, and consequently RITS, to a normal euchromatic transcript (iira4) 

allows production of ura4 homologous siRNAs, lysine 9 methylation of H3 

on the ura4 gene and silencing (Buhier et al., 2006). This suggests that 

nascent transcripts can be converted to dsRNA at their site of production, 

allowing Dcrl to act in cis to form siRNAs which are directly loaded into 

RITS to allow chromatin modification. This artificial RNA-tethered RITS 

version of heterochromatin requires Dcrl, all RITS and RDRC components, 

and Clr4. It is also possible that mature centromere and other transcripts are 

exported to the cytoplasm for processing to siRNA where these are then 

loaded into Agol to form RITS on their journey back to the nucleus. 

1.9.4 ARC: the siRNA chaperone complex 

The Argonaute siRNA chaperone complex (ARC) is composed of Agol and 

two previously uncharacterised proteins Arbi and Arb2 (Figure 1.10). Arbi 

is conserved in fungi and contains a C-terminal domain which shares 

homology with organellar maturases which facilitate intron self-splicing 

(Buker et al., 2007). Arb2 is conserved from yeast to humans but has no 

obvious domains. All of the ARC components were found to be required for 

centromeric heterochromatin assembly. 	Unlike the RITS complex 

components, Arbi and Arb2 do not localise to centromeric heterochromatin 
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and can be observed both in the nucleus and the cytoplasm by 

immunostaining (Buker et al., 2007). 	Furthermore, ARC contains 

predominantly double-stranded siRNA whereas RITS contains mainly 

single-stranded siRNA. This may account for the lack of ARC at centromeres 

as it is widely assumed that targeting of RITS occurs through base pairing of 

siRNAs to either centromeric DNA or nascent RNA transcripts. From this 

data, it has been proposed that ARC acts to inhibit release of the siRNA 

passenger strand from Agol. This is confirmed by the inhibition of Agol 

slicer activity by Arbi and by the fact that catalytically dead Agol only 

copurifies with double-stranded siRNA (Figure 1.10). It may also be the case 

that ARC functions to transfer duplex siRNA from Dcrl to Agol although no 

interaction has yet been identified between Dcrl and ARC. It is thought that 

ARC may regulate the slicer activity of Agol and prevent the cleavage of 

nascent centromere transcripts which act as an assembly platform for JUTS 

and thus heterochromatin formation (Buker et al., 2007). 

1.9.5 RDRC: RNA-directed RNA polymerase complex 

The JUTS complex has been shown to physically interact with the RNA-

directed RNA polymerase complex (RDRC). The components of RDRC are 

also required for the integrity of silent chromatin. RDRC is composed of 

Rdpl, Hrrl, and Cidl2. Rdpl is an RNA-dependent RNA polymerase, Hrrl 

is a putative RNA helicase, and Cid12 is a putative poly(A) polymerase 

(Figure 1.10) (Motamedi et al., 2004). As with the RITS complex each of the 

components of RDRC are required for siRNA generation, complete H3 K9 

methylation of, and Swi6 association with heterochromatic loci (Motamedi et 

al., 2004; Sugiyama et al., 2005). The association of RDRC components with 

JUTS subunits is also dependent on Dcrl and C1r4 and the catalytic activity of 

Rdpl itself (Motamedi et at, 2004; Sugiyama et at, 2005). Thus, both RDRC 

and JUTS appear to be mutually dependent on one another for their 

association with heterochromatic loci and the formation of silent chromatin. 

The dependency of JUTS on RDRC holds steadfast even when silent 

chromatin is induced by tethering Tas3/RTTS to euchromatic iira4 transcripts 
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(Buhier et al., 2006). Thus, the generation of dsRNA substrate, the processing 

of dsRNA to siRNA, loading of siRNAs into RISC and subsequent targeting 

of chromatin are all intimately linked. This also suggests that Rdpl is part of 

a self-enforcing RNAi feedback loop that couples siRNA production and 

heterochromatin formation (Buhler et al., 2006; Noma et at, 2004; Sugiyama 

et al., 2005). 

In vitro analyses indicate that Rdpl can act as an RNA-dependent RNA 

polymerase in that it can synthesise RNA from a single stranded RNA 

substrate in the presence or absence of a complementary primer. Mutations 

which destroy this activity cause phenotypes equivalent to those observed in 

cells lacking RNAi (Motamedi et at, 2004; Sugiyama et at, 2005). Hence the 

ability of Rdpl to synthesise complementary RNA is essential for the 

production of centromeric siRNA and heterochromatin formation. It remains 

unclear why Rdpl is so important for RNAi-mediated chromatin 

modification in fission yeast as other eukaryotes such as Drosophila and 

mammals do not encode an RNA-dependent RNA polymerase but still have 

an active RNAi pathway. In plants RNA dependent RNA polymerase is 

required for transgene silencing, but not for silencing mediated by viruses. 

This suggests that exogenous viruses are capable of synthesizing sufficient 

dsRNA to bypass the need for RdRP activity (Dalmay et al., 2000). In the 

filamentous fungi Neurospora crassa and Aspergillus nidulans the requirement 

of RdRP for robust RNA dependent silencing are variable (Catalanotto et al., 

2002; Hammond and Keller, 2005). Fission yeast seems to be extremely 

dependent on Rdpl for RNAi-mediated silencing since in its absence, 

although centromeric transcripts are still produced, no siRNAs are 

detectable. The observation that Rdpl associates with centromeric chromatin 

and transcripts is compatible with a model where Rdpl acts on nascent 

transcripts to synthesise dsRNA leading to the production of the initial 

siRNAs (Motamedi et al., 2004; Sugiyama et al., 2005; Volpe et al., 2002). 

Alternatively, Rdpl may utilise pre-existing rare primary siRNAs, formed by 

Dcrl mediated cleavage of annealed centromere transcripts, to prime 

synthesis of additional dsRNA and amplify the signal. However, Rdpl is 
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also required for a form of PTGS in S. pombe triggered by the expression of an 

exogenous hairpin RNA (Sigova et al., 2004). In this case siRNAs are 

presumably not limiting, as with plant viruses, so it is not entirely clear why 

Rdpl is required. 

The role of Hrrl is not known but it has significant similarity to DEAD box 

helicases such as Smg2 in C. elegans, which acts in the nonsense mediate 

decay pathway as well as RNAI, and Sde3 in plants which is required for 

RNA1-mediated transgene silencing (Dalmay et al., 2001; Domeier et al., 

2000). It is conceivable that Hrrl is required to unwind siRNA duplexes 

prior to loading into RISC or it might act upon dsRNA providing single 

stranded RNA templates for Rdpl (Motamedi et al., 2004). The role of Cid12 

is also not known, it is possible that it binds the 3' end of transcripts 

producing a poly(A) tract that somehow primes RNA synthesis by Rdpl. In 

C. e/egans a related putative poly(A) polymerase, RDE-3 has also been shown 

to be required for efficient RNAi and siRNA production (Chen et al., 2005). 

Polyadenylation by proteins such as Cid12 might also play a role in RNA 

degradation since the addition of short poly(A) tracts is known to attract the 

exosome and degrade RNAs (Anderson, 2005). Cid12 may be required for 

the specific degradation of non-coding transcripts originating from regions of 

heterochromatin either for regulation or to somehow aid the provision of a 

template for Rdpl. The details of how these activities act on endogenous 

transcripts to execute efficient siRNA production and silencing remains to be 

determined. 

1.9.6 Transcription of centromere repeats and silencing requires RNAPII 

Transcripts from the mating type locus and from the centromere are 

polyadenylated (Djupedal et al., 2005). This is a well known hallmark of 

mature transcripts produced by RNAPII (Birse et al., 1997). However, it is 

possible that this polyadenylation is due to the putative activity of Cid12 

rather than that normally associated with termination of RNAPII 

transcription. RNAPII itself is enriched at heterochromatic loci which 
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reinforces the idea that it is responsible for the transcription of these regions 

(Figure 1.10) (Cam et al., 2005; Kato et al., 2005). Consistent with this, a 

specific mutation in the second largest subunit of RNAPII, Rpb2, causes loss 

of silent chromatin from outer repeat regions of centromeres regulating the 

expression of normally silent marker genes. Interestingly mutation of Rpb2 

causes a reduction in H3K9rne2, accumulation of centromere transcripts and 

loss of siRNA homologous to centromere repeats. General transcription does 

not appear to be affected in Rpb2 mutant cells, so the loss of heterochromatin 

is probably due to a defect in processing non-coding centromere transcripts 

to siRNAs (Kato et al., 2005). A specific role for RNAPII in the production of 

non-coding centromeric transcripts is also supported by the finding that a 

mutation in the small RNAPII subunit Rpb7 results in loss of centromeric 

siRNA defective heterochrornatin formation at centrorneres (Djupedal et al., 

2005). However, Rpb7 mutation causes decreased transcription of the 

centromeric repeats, indicating that Rpb7 has a specific role in promoting 

transcription of centromere repeats under conditions where general 

transcription of euchromatic genes appears normal. Thus, in Rpb7 mutant 

cells, no RNA substrate is made therefore no siRNAs are formed. It is not 

clear how the Rpb2 mutant affects heterochrornatin formation. One 

possibility is that when the RITS complex and RDRC engage a nascent 

transcript associated with RNAPII on its template there is an interaction 

between RITS/RDRC and RNAPII subunits. Once stabilized, such 

interactions might promote RNA production by Rdpl and the recruitment of 

chromatin modifying activities. 	Such interactions between RNAi 

components and RNAPII may be disrupted in the Rpb2 mutant. 

1.9.7 C1r4 affects siRNA production and associates with Riki 

The RNAi pathway is required for full methylation of H3 K9 on homologous 

chromatin and thus Clr4 would be expected to act downstream of the RNAi 

components. Clr4 is essential to create the H3K9rne2 binding site for the 

chromo domain proteins Chpl, Chp2, Swi6 and possibly Clr4 itself 

(Bannister et al., 2001; Partridge et al., 2002; Sadaie et al., 2004). Surprisingly, 



Clr4 is also required to produce centromeric siRNAs which accounts for why 

RITS and RDRC are delocalised in its absence (Noma et al., 2004) (Sugiyama 

et al., 2005). The complete role of Clr4 in the RNAi pathway is difficult to 

understand mainly due to the inherent feedback in the process and thus our 

inability to decipher the initiating events that lead to heterochromatin 

formation. However, it is clear that Clr4 plays a central role since the 

methylation of H3K9 is required to allow binding of key components. 

In most cases loss of any component involved in heterochromatin formation 

results in, if not complete loss, then at least a significant reduction of H3K9 

methylation. However, it is still not known how Clr4 itself is recruited via 

RNAi to form heterochromatic loci. It had been demonstrated that Clr4 

interacts with Riki (Sadaie et al., 2004). As with other components Riki is 

known to be required for silencing, H3K9 methylation, Swi6 

association/ localisation and production of centromeric siRNAs (Allshire et 

al., 1995; Ekwall et al., 1996; Ekwall and Ruusala, 1994; Hong et al., 2005; 

Horn et al., 2005; Jia et al., 2005; Li et al., 2005; Partridge et al., 2000). The 

Riki protein contains a !-propeller domain with similarity to a cleavage 

specificity and polyadenylation factor (CSPF-A) which may be involved in 

RNA binding (Neuwald and Poleksic, 2000). It has been proposed that Riki 

could act to guide C1r4 to its target regions (Jia et al., 2005; Li et al., 2005). 

1.9.8 Riki and Clr4 interact in a complex which has E3 ubiquitin ligase 

activity 

Riki is related to DDB1 (DNA damage binding protein 1), a component of an 

E3 ligase complex in plants (Yanagawa et al., 2004). Recent analyses have 

demonstrated that Riki copurifies and associates with several other proteins; 

Rafi (also known as Dosi, Cmcl and C1r8), Raf2 (or Dos2/Cmc2/Clr7), the 

E3 ubiquitin ligase subunits Pcu4 and Pipi, the small ubiquitin like protein 

Nedd8 and the histones H2B and H4, as well as Clr4 (Figure 1.10). This has 

been called the Clr4-Rikl complex (CLRC). Deletion of the genes encoding 

Rafi, Raf2 or Pcu4 perturbs heterochromatin formation at centromeres, 



telomeres and at the mating type locus (Hong et al., 2005; Horn et al., 2005; 

Jia et al., 2005; Li et al., 2005; Thon et al., 2005). Levels of H3K9 methylation 

are substantially reduced at centromeres and at the mating type locus while a 

modification normally associated with expressed genes, methylation of 

H3K4, increases. As with other mutants affecting H3K9 methylation and 

RNAi the generation of centromeric siRNAs is abolished and chromosome 

segregation is defective (Hong et al., 2005; Horn et al., 2005; Jia et al., 2005; Li 

et al., 2005; Thon et al., 2005). 

Ubiquitin is a small regulatory protein that can be covalently attached to 

substrate proteins and is another post translational modification which, like 

acetylation and methylation, occurs on lysine residues (Hershko and 

Ciechanover, 1998). Polyubiquitination (the addition of chains of ubiquitin) is 

a multi step pathway that ultimately targets proteins for degradation via the 

proteasome (Hershko and Ciechanover, 1998). Monoubiquitination, the 

addition of a single ubiquitin molecule to a substrate is involved in protein 

regulation. Histone H2A and H2B are known to be monoubiquitinated and 

in S. cerevisiae ubiquitination of H2B K120 is required to regulate the 

methylation of H3 on K4 and K79 (Osley, 2004). Riki, Raf2 and C1r4 

purifications were demonstrated to have E3 ubiquitin ligase activity in vitro 

(Horn et al., 2005). The in vivo substrates for this ubiquitination are not 

known, however, the fact that H2B and H4 copurify with C1r4 and Rikl may 

indicate that ubiquitination of histones is involved in heterochromatin 

formation (Hong et al., 2005; Horn et al., 2005). A related complex from 

human cells (Cu14-DDB1-Rocl) has recently been shown to ubiquitinate 

histones H3 and H4 on several lysines in vivo and in vitro (Wang et al., 2006). 

Given that Pcu4 and Riki, fission yeast homologs of Cu14 and DDB1, are 

required for methylation of H3 on K9 and associate with the H3K9 

methyltransferase C1r4 it is conceivable that ubiquitination of histones by the 

Riki complex promotes H3K9 methylation. Ubiquitination of H3/H4 might 

destabilise nucleosomes and force exchange with new H3 which is then 

methylated on H3 K9 by C1r4 during the replacement process. Alternatively, 

ubiquitination of H3/H4 may induce conformational changes in 
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nucleosomes presenting the H3 tail and lysine 9 to Clr4 for methylation. 

1.9.9 Sumoylation is required for heterochromatin integrity 

SUMO (small ubiquitin-related modifier) is a small peptide that is also 

conjugated to specific target lysine residues in a manner similar to ubiquitin. 

SUMO may act to prevent other modification on lysines such as acetylation, 

methylation and ubiquitination. Many regulators of transcription are known 

to be sumoylated and in general this promotes transcriptional repression by 

interactions with histone deacetylases. Intriguingly all four histones have 

also been shown to be sumoylated in S. cerevisiae and this appears to act to 

oppose ubiquitination and acetylation and inhibit transcription (Nathan et 

al., 2006). Sumoylation is also involved in maintaining heterochromatin 

stability in fission yeast (Shin et al., 2005). Deletion of the gene encoding 

SUMO (Pmt3) causes defective silencing at centromeres and at the mating-

type locus but had no effect at telomeres. In addition, a SUMO-conjugating 

enzyme has been shown to interact with Chp2 and also to be associated with 

regions of heterochromatin perhaps through interactions with Swi6 or Clr4. 

Swi6, Clr4 and Chp2 are sumoylated in vivo and defective sumoylation of 

either Swi6 orChp2 impairs silencing (Shin et al., 2005). 

The involvement of ubiquitination and sumoylation in heterochromatin 

formation in fission yeast are relatively new discoveries. These modifications 

may act to promote or inhibit specific protein-protein interactions and/or 

other modification in a variety of ways. Apart from promoting repressive 

modification of histones it is perhaps possible that RNAPII is ubiquitinated 

and/or sumoylated in response to RNAi, allowing RNAPII and its nascent 

transcript to be efficiently engaged by RNAi components. RITS, RDRC, Clr4 

and Swi6 might also be regulated by post-translational modification during 

transcription and cell cycles. 
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1.10 General RNA processing factors contribute to silent chromatin 

formation 

It has been demonstrated that mutations in several specific splicing factors 

disrupt heterochromatic gene silencing. Defects in centromeric silencing 

coincide with an increase in accumulation of non-coding centromere 

transcripts and reduced levels of siRNAs (pers. corn. Elizabeth Bayne). 

Despite this, splicing mutants can maintain a relatively high level of 

H3K9rne2 and Swi6 at centromeres (pers. corn. Elizabeth Bayne). This 

suggests that low levels of siRNAs are sufficient to establish 

heterochromatin. The effect of these splicing factors on centromere silencing 

appears to be direct as defective splicing does not interfere with the RNAi 

mediated gene silencing or transcription of centromeric non-coding RNA 

(pers. com. Elizabeth Bayne). In addition, splicing factors are known to 

associate with the Cid12 component of RDRC and with Agol (Motamedi et 

al., 2004 and pers. corn. Elizabeth Bayne). It has been proposed that 

interactions between the RNAi pathway and splicing factors may provide a 

platform to promote siRNA amplification to ensure robust heterochromatin 

assembly. 

The phenotypes observed in splicing factors which display defective 

heterochromatin gene silencing is reminiscent of cells lacking the poly(A) 

polymerase Cid14. Mutations in Cid14 cause decreased levels of siRNA 

production but do not affect the structural integrity of heterochromatin 

(Buhier et al., 2007). Cid14 is found in a protein complex that resembles the 

budding yeast TRAMP complex which promotes degradation of aberrant 

transcripts via the exosome (Buhier et al., 2007). It has been hypothesised 

that Cid14 may polyadenylate non-coding centromere transcripts and mark 

them for degradation via the exosome or via the RNAi machinery (Figure 

1.10) (Buhler et al., 2007). However, centromere transcripts from c1d14 

mutants have been demonstrated to be polyadenylated (Wang et al., 2008). 

In addition, Cid14 is not enriched at centromeres and is instead found in the 

nucleolus, indicating that it acts away from chromatin (Wang et al., 2008). 



However, mutations in exosome components which have been shown to 

affect heterochrornatin silencing do not interfere with siRNA production, 

suggesting that Cid14 plays a more complex role than simply recruiting the 

exosome (Buhier et al., 2007). Cid14 may act to mediate degradation of 

transcripts from other heterochromatic loci such as the telomeres and 

mating-type locus as transcripts from these regions accumulate in Cid14 

mutants (Buhier et al., 2007). Cid14 has also been shown to be required to 

maintain the genomic integrity of rDNA. It would appear that Cid14 is 

involved in several RNA turnover processes which affects diverse functions 

within the cell (Wang et al., 2008). 

In any case, heterochromatic gene silencing and RNA processing appear to 

be closely coupled events although exactly how all of these pathways 

converge to mediate the formation of higher-order chromatin structures such 

as at centromeres seems destined to become yet more complex. 

1.11 The centromere; suppressor of position effect (csp) mutants affect 

heterochromatic gene silencing 

Several years ago, a genetic screen was carried out to identify genes encoding 

proteins involved in heterochromatin formation. The screen was devised to 

identify factors specifically involved in silencing at centromeres and not at 

other regions so as to eliminate the possibility of re-isolation of genes such as 

swi6 and c1r4 (Ekwall et al., 1999). A tester strain containing the cide6 gene 

inserted at the SphI site on the right hand side of centromere 1 (ceni), 

otr1R(Sp1zI):ade6, or the ura4 gene inserted 15 kb away at the NcoI site on the 

left hand side, 1mr1L(NcoI):nru4, was used as a reporter for mutations 

affecting centromere silencing. In a wild-type strain, the ade6 gene is 

transcriptionally repressed resulting in red colonies on plates containing low 

supplementing adenine (Allshire et al., 1994; Allshire et al., 1995). The tester 

strain was mutagenised using ethyl methanesulfonate (EMS) which causes 

point mutations, preferentially C/C to A/T mutations. 
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Chapter 1: introduction 

The csp (centromere: suppressor of position effect) mutants were isolated as 

mutations which specifically alleviate the silencing of marker genes inserted 

into the heterochrornatic repeats of centromeres (Ekwall et al., 1999). Two 

classes of mutants were recovered by this strategy, the temperature-sensitive 

(ts) and non-temperature sensitive (non-ts) mutants. In-depth analysis and 

cloning of cspsl to 6 was undertaken by a former PhD student, Manuela 

Portoso (Portoso, 2005). The csp3 and csp4 genes were identified by Karl 

Ekwall (Djupedal et al., 2005). The affected genes in the c.-;p mutants 

identified so far are all involved in fundamental pathways of RNA 

metabolism and processing. It is therefore unsurprising that these genes are 

essential. csp3 is an allele of Rbp7 which is a conserved subunit of RNA 

polymerase II required to promote pre-siRNA transcription and RNAi-

mediated chromatin silencing (Djupedal et al., 2005). csp4 is an allele of 

CwflO which is orthologous to the S. cerevisiae splicing factor Snu114. 

Snu114 is a GTP-binding component of the US snRNP which is involved in 

U4/U6 unwinding during spliceosome activation. csp5 is an allele of Prp39 

which is a Ui-associated protein involved in pre-mRNA splicing. The 

phenotypes of these splicing factors have analysed by Elizabeth Bayne and 

are described above. The affected genes in the cspl, 2 and csp6 mutants 

remain to be identified although the phenotype of csp6 was found to be 

suppressed by the overexpression of several Hsp70 heat-shock proteins 

(Portoso, 2005). The identification of these ts mutants provides a link 

between general RNA processing, transcription and chromatin structure. 
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1.12 Summary 

Although much is known about RNAi-mediated heterochromatin assembly 

in fission yeast, many questions remain regarding specific aspects of the 

pathway. In this thesis, I present the analysis of several mutants known to 

affect heterochromatic gene silencing, the csp7 to 13 mutants, in order to 

identify the affected genes and their impact on centromere function. The 

genes I have identified are found to encode components of the RNAi 

pathway so it is unsurprising that the mutants affect heterochromatin 

formation. In addition, I present in-depth analysis of the putative poly(A) 

polymerase, Cid12 which was found to be encoded by csplO. 
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CHAPTER 2 
Materials and Methods 

2.1 S. pombe culture and media 

2.1.1 Growth 

S. poinbe cultures and colonies were incubated at temperatures between 18°C 

and 36°C for between overnight and 3 days as indicated for each experiment. 

Haploid strains will grow with the following generation limes: 

Medium 	Temperature °C 	Generation Time 

YE 	 25 	 3 hours 

32 	 2 hours 10 minutes 

36 	 2 hours 

PMG minimal 	25 	 4 hours 

32 	 2 hours 30 minutes 

36 	 2 hours 20 minutes 

The generation time of mutant strains may vary. The time required to double 

the population of cells can be accurately calculated using the following formula: 

T= log(2t2 t1) I log(x / y), where T is the generation time, x is cells per ml at tI and 

y is cells per ml at 2. 

2.1.2 Growth Media 

All solutions were made up to a final volume in dH20 and autoclaved unless 

otherwise stated. 

PMG agar in 900m1: 

Pthallic acid 3g 

di-sodium orthophosphate 2.2g 

glutamic acid 3.75g 

D-glucose anhydrous 20g 

vitamins 1000x lml 

minerals 10,000x 0.1ml 

salts 50x 20m1 

agar (OXOID) 20g 
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PMG liquid in 900m1: 

Pthallic acid 

di-sodium orthophosphate 

glutamic acid 

D-glucose anhydrous 

vitamins 1000x 

minerals 10,000x 

salts 50x 

3g 

2.2g 

3.75g 

20g 

imi 

0. imi 

20m1 

YES agar (-ade): 

Yeast extract (DIFCO) 
	

5g 

D-glucose anhydrous 
	

30g 

Arginine (Sigma) 
	

0.2g 

Lysine (Sigma) 
	

0.2g 

Histidine (Sigma) 
	

0.2g 

Uracil (Sigma) 
	

0.2g 

Leucine (Sigma) 
	

O.2g 

Agar (OXOID) 
	

20g 

YES liquid: 

4 x YES liquid: 

Yeast extract (DIFCO) 

D-glucose anhydrous 

Arginine (Sigma) 

Lysine (Sigma) 

Histidine (Sigma) 

Uracil (Sigma) 

Leucine (Sigma) 

As above all reagents x 4. 

5g 

30g 

0.2g 

0.2g 

0.2g 

0.2g 

0.2g 

ME plates (10: 

Malt extract (OXOID) 
	

3OgIL 
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Adenine (Sigma) 250g/ L 

Arginine (Sigma) 250g/ L 

Histidine (Sigma) 250g! L 

Uracil (Sigma) 250g / L 

Leucine (Sigma) 250g / L 

Vitamins 1000x (100m!): 

Pantothenic acid 0.5g 

Nicotinic acid 

Inositol lg 

Biotin 1mg 

Filter sterilised 

ig 

Minerals 10,000x (100m!): 

Boric acid 5g 

MnSO4  4g 

ZnSO4  4g 

FeC126H20 2g 

Molybdic acid 1.6g 

CuSO4  5H20 0.4g 

Citric acid lOg 

Filter sterilised 

Salts 50x: 

Magnesium chloride 53.5g 

Calcium chloride ig 

Potassium chloride 50g 

di-sodium sulphate 2g 

Supplement stocks: 

Adenine 50x (Sigma) 5g/L 

Arginine lOOx (Sigma) lOg/L 

Histidine lOOx (Sigma) lOg/L 
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Uracil 20x (Sigma) 	 2g IL 

Leucine lOOx (Sigma) 	lOg/L 

Additional supplements: 

Fluoroorotic acid (FOA) (Melford Laboratories) was added to media at a 

concentration of 0.5g/500rnl (lx) or lg/500rn1 (2x). 

Thiabendazole (TBZ) (Sigma) was added to media at concentrations of 10tg/mI 

or 20tg/ml in DMSO. 

Nourseothricin (cJoNAT) (Werner BioAgents) was added to media at a 

concentration of 2000x 

Geneticin (G418) (Gibco) was added to media at a concentration of 0.1mg/mi. 

6-azauracil (6AU) (Sigma) was added to media at a concentration of 2mg/mi. 

2.1.3 Cell counting 

Coulter counter 

Cell number was estimated using a Beckman Z2 Particle Count and Size 

Analyzer. 100tl of cells were mixed with lOmi Isoton II (Beckman Coulter) 

solution and counted according to manufacturers instructions. 

Haemocytometer 

Cells were also counted using a haemocytometer. A haemocytometer is a 

special microscope slide which has a grid etched onto the glass. This grid is on 

a region of the slide which is 0.1mm lower than the rest of the slide. The grid 

consists of 25 large squares which are subdivided into 16 smaller squares. Once 

the coverslip has been applied to the slide, 10tl of cell culture is pipetted 

underneath. This creates a known volume of 0.1mm3. The number of cells/ml 

can be calculated by multiplying the number of cells in the 25 large squares by 1 
X 104. 

 

2.1.4 Cell culture 

For physiological experiments cells are required to be in mid-exponential 

growth which is between 2 x 106  and 1 x 10 cells/mi. To generate such cultures 

a loopful of freshly growing yeast was inoculated into 10mls liquid media and 

incubated generally overnight at 32°C (or for 1-2 days at 25°C) until cells reach 
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early stationary phase. This pre-culture was then diluted in an appropriate 

volume for a suitable amount of time to reach the desired concentration. Flask 

size is an important consideration and should be taken into account according 

to the volume of culture required: 25m1 flask for up to lOrnl culture, lOOml flask 

for up to 50m1 culture, 250m1 flask for up to 125m1 culture and 500m1 flask for 

up to 250ml culture. 

2.1.5 Auxotrophy 

The most commonly used auxotrophic markers in S. pombe are uracil, leucine, 

arginine, histidine and adenine. These amino acids are used at a concentration 

of 100ig/ml. To test auxotrophy, cells are grown as single colonies on non-

selective media and then replica plated to minimal media lacking the 

appropriate supplement. The plates are then incubated for 2-3 days and 

examined for growth. 

2.2. Yeast Molecular Genetics 

2.2.1 Mating and random spore analysis 

Crosses were carried out on ME medium in order to nitrogen starve the cells 

and induce sporulation. A similar amount of cells from two strains of opposite 

mating types (h'/h-) were mixed together and incubated for 2-3 days at 25°C. 

The cells were checked for the presence of ascii containing four spores by light 

microscopy. Cells were resuspended in 500tl of filter sterilised dH20 

containing 5tl of glusulase (NEN) and incubated for between 5 hours and 

overnight at 37°C. Glusulase digests the acsus wall and vegetative cells so that 

only the spores remain. The spores were plated on selective media at dilutions 

of 1:100 and 1:1000 and grown at 32°C, or appropriate temperature until 

colonies are formed. 

2.2.2 S. pombe transformations 

Electroporation 

A 50m1 culture of cells in log phase (5x106  to 1x107  cells/ml) was harvested at 

3000rpm for 3 minutes in a Sorvall Legend RT benchtop centrifuge. The pellet 

was washed once in 20m1 ice-cold 1.2M sorbitol (Sigma) and then three times in 
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10m1 1.2M ice-cold sorbitol. The pellet was resuspended in 1.2M ice-cold 

sorbitol to a concentration of 1x109  cells/nil. 200tl of cells were mixed with 

between bOng (plasmids) and 10ig (linear fragments) of DNA in an ice-cold 

cuvette. Cells were pulsed using a Bio-Rad Gene Pulser II at a setting of 2.25kV, 

200Q and 25tF. Immediately following pulsing, 500t1 of 1.2M ice-cold sorbitol 

was added. Cells were spread at various dilutions onto selective media using 

sterile glass beads and incubated at 32°C until colonies appeared. 

Lithium acetate transformation 

A 50m1 culture of log phase cells was harvested as before. Cells were washed in 

lOml 0.1M lithium acetate pH4.95 (Sigma), resuspended in lOmi O.1M lithium 

acetate pH4.95 and incubated for between 30 minutes and 1 hour at 32°C. Cells 

were pelleted and resuspended at a concentration of 1x109 /ml in 0.1M lithium 

acetate pH4.95. 1tg of DNA was added to 150t1 of cells, mixed and then 370tl 

50% PEG 3350 (Sigma) dissolved in TE was added. Cells were again incubated 

for between 30 minutes and 1 hour at 32°C, heatshocked for 20 minutes at 42°C 

then pelleted and resuspended in sterile dH20. Cells were spread at various 

dilutions onto selective media using sterile glass beads and incubated at 32°C 

until colonies appeared. When transforming linear DNA fragments, after 

heatshocking cells are allowed to recover for a few hours to overnight in liquid 

non-selective media and then plated on selective plates. 

2.2.3 Serial dilution assay 

To assay the growth of different S. poinbe strains on different media cells were 

taken from a plate and counted using a Beckman Z2 Particle Count and Size 

Analyzer. Serial dilutions of 1:4 were made in sterile microtitre plates in dH2O 

starting with 5x106 /ml cells and 5tl of each plated on the appropriate media. 

Cells were then incubated at the desired temperature until colonies were 

formed. 

2.2.4 Centromere silencing assay 

Wild type cells which have the ade6+ gene inserted into centromeric outer 

repeats are red when grown under restricted adenine conditions. This is due to 

transcriptional repression which causes the accumulation of amino-imidazole 
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ribonucleotide (AIR) (Fisher 1969). Mutants which alleviate silencing at the 

outer repeats are white due to alleviation of silencing. This assay can also be 

carried out using the insertion of the ura4+ gene. In wild type cells, u.ra4+ 

expression is repressed and cells are able to grow well on counter-selective 

media containing FOA. Mutant cells grow well on media lacking uracil but are 

unable to grow on media containing FOA (Boeke, LaCroute et al. 1984). Cells 

are spotted onto appropriate plates as described in 2.2.3. 

2.2.5 S. pombe expression vectors 

ars vectors 

S. poinbe vectors contain a bacterial origin of replication and selectable marker 

as well as a yeast selectable marker and an autonomous replication sequence 

(ars) or equivalent. Budding yeast markers are frequently used such as LEU2 

which complements a mutation in the letil gene of S. poinbe. Plasmids based on 

the S. cerevisiae origin 2t are mitotically unstable, have a low copy number, are 

more prone to rearrangements and are more difficult to recover from fission 

yeast than plasmids containing S. poinbe arsl. However, the copy number of 

arsl vectors may vary as they can produce polymers with variable numbers of 

repeats. 

Inducible vectors 

The most commonly used inducible vectors in S. pombe are the pREP vectors. 

These contain the thiamine responsive promoter of the nmt1 gene which is 

repressed in the presence of thiamine and expressed in the absence of thiamine 

and gives full induction after around 16 hours (Maundrell 1993). The nmtl 

promoter has been mutated to give different levels of expression as the fully 

induced level is very high. pREP1 and pREP3X have the highest levels of 

expression, pREP41X has a 15 fold lower level than pREP1 and pREP81X has an 

80-fold reduction in expression level than pREP1 (Basi et al., 1993). 

2.2.6 Plasmid recovery from S. pombe 

To recover plasmids from fission yeast transformed with a genomic library, 

single colonies were grown at 32°C for 3 days in PMG media lacking the 

appropriate auxotrophic marker to select for colonies retaining the plasmid. 
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Cells were harvested by centrifugation at 3000rpm for 2 minutes. The pellet 

was resuspended in SP1 containing lmg/ml zymolyase 100-T (MP Biomedicals) 

and incubated for 1 hour at 37°C. Cells were harvested again and resuspended 

in Buffer P1 from the Qiagen Plasmid Miniprep kit. The Qiagen minprep 

protocol was then followed as per manufacturers instructions and the DNA 

eluted in 30tl dH20. 10J of the recovered DNA was transformed into 30tl 

DH5a competent cells (Invitrogen) and plated on selective LB plates containing 

30tg/ml ampicillin. As a low yield of plasmid DNA occurs from this initial 

rescue, a miniprep was performed on colonies from this first transformation 

and the DNA was then re-transformed into DH5a competent cells as before. 

SP1: 1.2M sorbitol, 50mM sodium citrate, 50mM Na2HPO4.7H20, 40mM 

EDTA, pH 5.6. 

2.2.7 S. cerevisiae transformation 

A 50m1 cell culture was grown to exponential phase overnight at 25°C in YP 

media containing galactose. Cells were harvested by centrifugation at 3000rpm 

for 5 minutes. The pellet was washed once in CIH20, transferred to an 

eppendorf tube and resuspended in 300il LiAc/TE solution. 50i1 of the cell 

suspension was mixed with 1tg DNA and 5tg salmon sperm DNA and then 

300iJ of LiAc/PEG/TE solution was added. The cells were heatshocked for 40 

minutes at 42°C, then harvested, resuspended in 100tl dH20 and plated on 

appropriate media as indicated. 

YP: 1% (w/v) yeast extract, 2% (w/v) Bado-peptone containing either 2% 

(w/v) glucose or 3% (w/v) glycerol 

LiAc/TE: 0.1M LiAc, 1xTE 

LiAc/PEG/TE: 0.1M LiAc, 40% PEG 3350, 1xTE 

2.2.8 FACS analysis 

A lml culture of log-phase cells were harvested and washed in PBS. These were 

then resuspended in lml PBS. Fluorescence was analyzed using a FACScan 

Flow Cytometer (Becton-Dickinson). Constant settings were maintained for all 

experiments. Data were acquired from 10,000 cells in all experiments and 

analyzed with Cell Quest (Becton-Dickinson) software. 
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2.3 DNA protocols 

2.3.1 Genomic DNA Isolation 

A 5m1 stationary phase culture was harvested at 3000rpm for 5 minutes. The 

pellet was resuspended in 250tl SP1 buffer containing 0.4mg/mi zymolyase 

100-T (MP Biornedicals) and incubated for 30 to 60 minutes at 37°C. The cells 

were then pelleted at 13000rpm in a microfuge for 15 seconds and the pelleted 

resuspended in 0.5m1 TE, 50t1 10% SDS and vortexed. 165tl 5M potassium 

acetate was then added and the samples incubated on ice for 30 minutes. After 

centrifugation at 13000rpm at 4°C for 10 minutes, the supernatant was added to 

0.75m1 iospropanol, incubated on dry ice for 5 minutes and then centrifuged as 

before. The pellet was resuspended in 0.3m1 TE containing 10tg/ml of RNase 

A (Roche). After 30 minutes at 37°C the sample was then extracted with 

phenol/ chloroform and precipitated by addition of 2-3 volumes of ethanol and 

1 / 10 volume of 3M sodium acetate. The pellet was resuspended in 20tl TE and 

stored at -20°C. 

SP1: 1.2M sorbitol, 50mM sodium citrate, 50mM sodium phosphate, 40mM 

EDTA, pH 5.6 

2.3.2 Rapid DNA isolation for PCR 

A small scrape of a single colony of S. pombe was suspended in 10tl SPZ buffer 

and incubated at 37°C for 10 minutes. Crude DNA was used in PCR analysis 

diluted at 1:10. 

Alternatively, a small scrape of cells was placed directly into a PCR tube and 

microwaved at full power for 1 minute 30 seconds then placed immediately on 

ice. PCR mix was added directly to the tube and used for PCR analysis. 

SPZ: 1.2M sorbital, 100mM sodium phosphate, 2.5mg/mi zymolyase-100T (MP 

Biomedical) 

2.3.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to analyse the size of DNA fragments. 

Agarose (Melford) at a final concentration of between 0.8% and 2% was 

dissolved in 1 x TBE buffer by heating in a microwave. Once cooled, ethidium 
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bromide (Sigma) was added to a concentration of 0.03tg/mI. DNA samples 

were loaded in Orange G loading buffer and visualised under a UV 

transilluminator. Data capture was achieved using Kodak DC software. 

10xTBE: 108g Trizma base, 55g boric acid, 9.3g EDTA 

Loading buffer: 15% ficoll in TE, Orange G 

2.3.4 Polymerase Chain Reaction 

PCR reactions were carried out as follows in 0.2tl thin walled PCR tubes: 

template DNA, 10pM primer, 2.5mM dNTPs , 10 x PCR buffer, 0.5U Taq 

(Roche), dH20. When precise amplification was required, in the case of 

cloning, Platinum Pfx taq polymerase from Invitrogen was used as per 

manufacturers instructions. All reaction were carried out using a PTC-225 

thermal cycler (MJ Research). The following programs were used as indicated. 

Ura program: 94°C for 4 minutes, (94°C for 30 seconds, 55°C for 30 seconds, 

72°C for 1 minute), 29 cycles, 72°C for 5 minute. 

A1i3 program: 94°C for 2 minutes, (94°C for 30 seconds, 52°C for 30 seconds, 

72°C for 2 1/2 minute), 34 cycles, 72°C for 10 minutes. 

Bahiong: 96°C for 5 minutes, (94°C for 1 minute, 55°C for 1 minute, 72°C for 4 

minutes), 34 cycles, 72°C for 10 minutes. 

Bahvlong: 96°C for 5 minutes, (94°C for 1 minute, 55°C for 1 minute, 68°C for 6 

minutes), 34 cycles, 68°C for 10 minutes. 

Ade6otr: 94°C for 4 minutes, (94°C for 30 seconds, 55°C for 30 seconds, 72°C for 

1 minute 45 seconds), 29 cycles, 72°C for 5 minutes. 

2.3.5 Sequencing 
Reactions were set up as follows: 2p1 ABI Prism BigDye Terminator Cycle 

Sequencing Ready Reaction Kit v 3.0 (Applied Biosystems), 3.2pmol / tl primer, 

template DNA as recommend by manufacturers (1-1000ng for PCR products, 

200-500ng for dsDNA) and dH20 up to 20d. Reactions were run on the 

following program in 0.2t1 thin walled PCR tubes in a PTC-225 thermal cycler 

(MJ Research): 95°C for 5 minutes, (95°C for 30 seconds, ramp 1°C per second to 

55°C, 55°C for 15 seconds, ramp 1°C per second to 64°C, 64°C for 4 minutes), 
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perform 25 cycles. Samples were then sent to the central sequencing service for 

analysis. 

2.4 RNA protocols 

2.4.1 Total RNA isolation 

A 50m1 culture of cells in log phase was harvested then resuspended in imi TE 

and transferred to an eppendorf tube. Cells were pelleted and resuspended in 

600t1 extraction buffer, 600tl phenol: chloroform 5:1 (Sigma) and 600tl 425-600 

micron acid-washed beads (Sigma). Cells were lysed on a multi-head vortexer 

at maximum speed for 30 minutes at 4°C. The samples were spun at 13,000rpm 

at 4°C for 5 minutes and the supernatant transferred to a fresh tube. Samples 

were extracted with phenol: chloroform and subsequently with chloroform then 

precipitated by adding 3 volumes of ice-cold 100% ethanol and centrifuging at 

13,000rpm for 15 minutes. The pellet was resuspended in 30-50tl 50% 

formamide (Sigma). 

Alternatively, RNA was made using a Qiagen RNeasy Miniprep or Midiprep 

kit as per manufacturer's instructions. RNA was quantified using a Nanodrop 

spectrophotometer. 

Extraction buffer: 50mM Tris-HC1 pH7.5, 10mM EDTA pH8, 100mM NaCl,1% 

SDS 

2.4.2 Small RNA isolation 

A 50m1 culture of cells in log phase was harvested then resuspended in imi TE 

and transferred to an eppendorf tube. Cells were pelleted and resuspended in 

600tl extraction buffer, 600tl phenol: chloroform 5:1 (Sigma) and 600tl 425-600 

micron acid-washed beads (Sigma). Cells were lysed on a multi-head vortexer 

at maximum speed for 30 minutes at 4°C. The samples were spun at 13,000rpm 

at 4°C for 5 minutes and the supernatant transferred to a fresh tube. Samples 

were extracted with phenol: chloroform and subsequently with chloroform then 

precipitated by adding 3 volumes of ice-cold 100% ethanol and centrifuging at 

13,000rpm for 15 minutes. The pellet was resuspended in 400tl dH20. Large 

rRNA, mRNA and genomic DNA were removed by precipitation with 10% 

polyethylene glycol 8000 and 0.5M sodium chloride. The samples were 

63 



nauei : 1' iaLeiias anct Memous 

incubated on ice for 30 minutes then spun at 13,000rpm for 20 minutes. The 

pellet was dissolved in 25tl of 50% formamide. The supernatant containing the 

siRNAs was then precipitated by the addition of 3 volumes of 100% ethanol and 

1/10  volume sodium acetate and incubating at -20°C for between 3 hours and 

overnight. Pellets were then washed in 95% ethanol, spun for 10 minutes and 

resuspended in 50tl 50% deionised formamide. The samples were stored at - 

80°C. RNA was quantified using a Nanodrop spectrophotometer. 

Extraction buffer: 50mM Tris-HC1 pH7.5, 10mM EDTA pH8, 100mM NaC1,1% 

SDS 

2.4.3. Poly(A) RNA isolation 

A cell culture of 50m1 was grown to log phase (1 x 108  cells/ml) in 4 x YES 

media and a total of 1.6 x lO9cells/ml were used to make total RNA. Poly(A) 

RNA was isolated from 500tg total RNA prepared using a Qiagen Midiprep 

Kit. Poly(A) RNA was isolated using PolyATract mRNA Isolation System IV 

(Promega). RNA was quantified using a Nanodrop spectrophotometer. 

2.4.4 Denaturing Polyacrylamide Gel Electrophoresis 

siRNA samples were diluted in FDE sample buffer (deionised formamide, 0.5M 

EDTA pH8, 10mg xylene cyanol,lOmg bromophenol blue), denatured for 15 

minutes at 65°C then stored on ice prior to loading. 32P end-labelled RNA 

Decade ladder (Ambion) was run as a size marker. 

siRNA samples were run out on an 8% 16 x 18cm polyacrylamide gel using the 

Sequagel system (National Diagnostics). Gels were run in the Hoefer SE600 

Ruby apparatus first at 150V to pre-run and then at 300V once the samples were 

added. The gel was run until the bromophenol blue dye front was 

approximately 2 cm from the bottom. The gel was cut above the xylene cyanol 

dye band and stained with ethidium bromide to check loading. The rest of the 

gel was soaked in 10mM sodium phosphate pH7 for 10 minutes and then in 20 

x SSC for 10 minutes then transferred to a membrane by northern blotting. 
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2.4.5 Northern Blotting 

Gels were blotted by capillary transfer for at least 16 hours in 20 x SSC using 

Hybond-NX (Amersham). Transfer was checked by monitoring for the 32P-

labelled Decade markers using a Geiger counter. The membrane was 

crosslinked twice at 1200 joules in a UV crosslinker (Stratagene). 

Hybridisation and probe preparation 

Membranes were pre-hybridised for a minimum of 1 hour at 42°C in 

PerfectHyb buffer (Sigma) or in standard sodium phosphate buffer. During this 

time DNA probes were labelled using the High Prime (Roche) random labelling 

kit. Briefly, 25ng of purified PCR product was mixed with 1tl each of 0.5mM 

dATP, dTTP and dGTP, 4tl High Prime reaction mixture containing 200il 

random primer mixture and IU! tl Kienow polymerase, and 50tCi [a32 P]dCTP. 
The reaction was incubated for 1 hour at 37°C and unincorporated 

radionucleotide was removed using a Microspin S-200 HR column (Amersham) 

or a NucAway Spin column (Ambion). The probe was denatured for 5 minutes 

at 95°C and added directly to 20ml fresh hybridisation buffer. Membranes were 

hybridised overnight at 42°C and subsequently washed twice for 30 minutes at 

50°C in 2xSSC/0.2%SDS. The membranes were sealed in a bag and signals 

were visualised after between 4 hours and overnight using a phosphoscreen. 

Data was captured on a Storm phosphoimager with ImageQuant TL v 2005 

(Amersham). 

RNA probes were labelled with [a32P]UTP  using a MAXlscript in vitro 

transcription kit (Ambion) as per manufacturer's instructions. 

Hybridisation buffer: 0.5M sodium phosphate pH 7.2, 1mM EDTA, 7% SDS 

2.4.6 RT-PCR 

1tg of total RNA was aliquoted into an eppendorf tube. 1tl Turbo DNAse 

(Ambion) and 1d 10 x Turbo DNAse buffer was added and samples made up 

to a final volume of 10tl with dH20. Samples were incubated for 30 minutes at 

37°C. For straightforward RT-PCR, 1tg oligo dT18  was added. For strand-

specific RT-PCR 1tg of either cenF, cenR or actR was added and the samples 

made up to 25t1 with dH20. Samples were incubated at 70°C for 10 minutes 

and then placed on ice. For first strand synthesis, the following reagents were 
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added; 8tl 1st strand buffer (Invitrogen), 4 tl 0.1M DTT (Invitrogen) and 2p1 2.5 

mM dNTPs (Roche). Samples were then mixed and split into two aliquots. 1tl 

Superscript II Reverse Transcriptase (Invitrogen) was added to one of each pair 

of tubes only. Samples were then incubated at 42CC for 50 minutes and 70'C for 

15 minutes and then placed on ice. 1t1 of this cDNA was used as a template in 

a 20iI PCR reaction. 

2.4.7 RNA preparation for microarray analysis (K.Ekwall) 

100m1 of cell culture was grown overnight at 32°C to mid-exponential phase (5 

x 106 - 1 x 10 cells/ml) and harvested at 3000rpm for 2 minutes at room 

temperature. Cells were resuspended in 2rn1 TES and 500i1 of this was added 

to a pre-prepared tube containing 500p1 phenol: chloroform 5:1 (Sigma). The 

tubes were vortexed vigorously for 10 seconds and then incubated for 45 

minutes at 65°C in a heated vortex. Samples were then placed on ice for 5 

minutes and then centrifuged at 15,000rpm at 4°C for 5 minutes. Samples were 

phenol and chloroform extracted and precipitated with 3M sodium acetate pH 

5.3 and 100% ethanol on dry ice. RNA was pelleted, washed in ice-cold 70% 

ethanol and resuspended in 100tl dH20. The RNA was cleaned up using an 

RNAeasy Mini Protocol (Qiagen) as per manufacturer's instructions. 

TES: 10mM Tris-HC1 pH7.5, 10mM EDTA, 0.5% SIDS 

2.5 Microscopy 

2.5.1 Live cell imaging 

Cells were grown to log phase, harvested and resuspended in a small volume of 

culture medium so a cloudy suspension was formed. 1% low melting point 

agarose (Gibco) in culture medium was prepared and cooled to 37C. 4d of 

cell suspension and 6tl of agarose were mixed on a glass slide and a coverslip 

applied. Cells were visualised with a Carl Zeiss Microimaging, Inc Axioplan 2 

IE fluorescence microscope with Chrorna 83000 and 86000 filter sets, a Prior 

ProScan filter wheel (Prior Scientific), and Photometrics CooISnapHQ CCD 

camera (Roper Scientific). Image capture was achieved using MetaMorph 

software (Universal Imaging Corp). 
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2.5.2 Immunostaining 

a-tubulin staining 

A lOmi of cells was grown to log phase and fixed by adding 3.7% formaldehyde 

and 0.0625% glutaraldehyde final concentration. Cells were fixed for 10 minutes 

at room temperature. Cells were then pelleted by centrifugation at 3000rpm for 

2 minutes and washed twice in 5ml PEM. Cells were resuspended in lmI 

PEMS, transferred to 1.5ml eppendorf tubes and pelleted. Pellets were 

resuspended at 1x108 /ml in PEMS containing lmg/ml zymolyase and 

incubated for 2 hours 30 minutes at 37°C. After centrifugation, cells were 

washed in 0.5m1 PEMS then incubated for 1 minute in imi PEMS containing 1% 

Triton-X100 (Sigma). Cells were again washed in 0.5ml PEMS and then 

incubated twice for 10 minutes in 2mg/ml sodium borohydride in PEM. After 

two further washes in PEM the cells were resuspended in PEMBAL and 

incubated at room temperature for 1 hour. Cells were then pelleted and 

resuspended in 100tl PEMBAL containing the appropriate dilution of primary 

antibody. Antibody incubations were carried out at 4°C overnight with 

rotation. Cells were washed three times in PEMBAL for 30 minutes at room 

temperature. Pellets were resuspended in Alexa green or Alexa red secondary 

conjugated antibody at 1:1000 in 100d PEMBAL. Incubations were carried out 

at 4°C between 4 hours and overnight with rotation. Cells were washed once in 

0.5ml PEMBAL for 30 minutes then incubated in PEM + 0.1% sodium azide and 

1:500 DAPI for 5 minutes. Cells were washed in PEM with 0.1% sodium azide 

for 30 minutes and then resuspended in a small amount of PEM with azide to 

make a cloudy suspension. 2tl of this suspension was applied to poly-L-lysine 

coated slides (Fisher) and spread with a pipette tip. Once cells were dry a small 

drop of Vectashield (Vector Laboratories Inc.) was added and a coverslip was 

sealed on top. Cells were visualised with a Carl Zeiss Microimaging, Inc 

Axioplan 2 IE fluorescence microscope with Chroma 83000 and 86000 filter sets, 

a Prior ProScan filter wheel (Prior Scientific), and Photometrics CoolSnapHQ 

CCD camera (Roper Scientific). Image capture was achieved using MetaMorph 

software (Universal Imaging Corp). 

Swi6 and Cnpl co-staining 
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Cells were stained as detailed above with the following adjustments. Ten 

minutes prior to fixation, 10m1 2.4M sorhitol was added to 10m1 cell culture and 

incubated at room temperature. 	Cells were then fixed in 3.7% 

paraformaldehyde for 5 minutes and no sodium borohydride step was 

required. 

PEM: 100mM PIPES pH7, 1mM MgCl2, 1mM EDTA 

PENIS: PEM, 1.2M sorbitol 

PEMBAL: 1% BSA, 100mM lysine hydrochloride, 0.1% sodium azide 

2.6 Protein Protocols 

2.6.1 S. pombe protein extraction 

A 50m1 culture was grown to log phase, harvested at 3000rpm at 4°C and 

washed once in dH20. The sample was transferred to a screw-capped 

eppendorf tube and frozen in liquid nitrogen. Cells were then resuspended in 

500d ice-cold lysis buffer with protease inhibitors (Sigma) and 1mM PMSF. 

After the addition of 500tl sample buffer and 500tl acid-washed glass beads 

(Sigma), the cells were lysed by bead-beating for 3 minutes. Samples were 

boiled for 5 minutes at 95°C then spun in a microfuge for 30 seconds to remove 

beads and cell debris. Samples were then either immediately loaded on an SDS-

PAGE gel or stored at -20°C until required. 

Lysis buffer: 50mM HEPES pH7.6, 75mM potassium chloride, 1mM 

magnesium chloride, 1mM EGTA, 0.1% triton-X100 

2x Sample buffer: 2% SDS, 50mM Tris-HC1 pH6.8, 2mM EDTA, 10% glycerol, 

0.03% bromophenol blue, 2% p-mercaptoethanol 

2.6.2 S. cerevisiae protein extraction 

A 10rnl cell culture was grown to log phase and 2 x 108  cells in total were used. 

Cells were harvested at 3000rpm for 5 minutes at 4°C and resuspended in 100&tl 

of dH20. 15tl of 2M sodium hydroxide and 80mM DTT were added to the cell 

suspension and incubated on ice for 10 minutes. 15d of 50% trichioroacetic acid 

was added and the samples incubated for a further 10 minutes on ice. Samples 

were then centrifuged at 15,000rpm for 2 minutes at 4°C and the pellets washed 



hapLer a..: vi4ierias inc MeEods 

with lml of acetone which had been stored at -20°C. The pellet was dried 

briefly and resuspended in sample buffer with 100mM Tris pH 8.8. 

Sample buffer: 100mM Tris pH6.8, 4%SDS, 0.2% bromophenol blue, 20% 

glycerol, 200mM DTT. 

2.6.3 SDS-PAGE 

Proteins were separated on 1mm thick SDS polyacrylamide gels using the 

Hoefer minigel apparatus. Resolving gel was poured at concentrations varying 

between 6 and 12% depending on the size of the protein. Stacking gel (5%)  was 

poured on top and gels were run at 200V for around 40 minutes in 1 x running 

buffer. After running gels were either transferred to nylon membrane for 

Western blotting or stained with Coomassie Brilliant Blue (Sigma) and dried. 

Polyacrylamide gel lOmi: 2.5m1 1.5M Tris-HCI pH8.8, 100tl 10% SDS, 100t1 

10% ammonium persuiphate, 10tl TEMED, 30% acrylamide/bis mix (Sigma) 

between 2ml and 4m1 depending on concentration, up to 10m1 with dH7O. 

Stacking gel lOOml: 17m1 30% acrylamide/bis, 12.5ml 1M Tris-HC1 pH6.8, lml 

10% SDS, 69.5m1 dH20. 

5xRunning Buffer: 30g Tris Base, 144g glycine, 5g SDS. 

2.6.4 Western analysis 
Proteins were transferred onto Protran nitrocellulose membrane (Schleicher and 

Schuell) using a Hoefer semi-dry electroblotter. Before use, the membrane was 

floated on top of dH20. The blotting apparatus was assembled with 6 pieces of 

3MM paper soaked in blotting buffer, the membrane stacked on top, then the 

gel, then another 6 pieces of 3MM paper. Any bubbles were removed by rolling 

over the top of the stack with a glass test-tube. Transfer was carried out for 1-

2hours at 65mA per gel. After transfer, the membrane was washed briefly in 

dH20 and stained with Ponceau S (Sigma) solution to confirm transfer. The 

membrane was washed in PBS and placed in blocking buffer for 1 hour at room 

temperature. Primary antibody was then added at appropriate concentration in 

PBS + 0.1% Tween 20 and incubated for 1 hour at room temperature. 

Membranes were then washed twice in PBS + 0.1% Tween 20 for 15 minutes 

each and then the secondary HRP-conjugated antibody was added in blocking 
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buffer. The secondary antibody was also incubated for 1 hour at room 

temperature. The membrane was washed again as before and then rinsed 

briefly in PBS. Proteins were detected using an Enhanced Chemi-Luminescence 

kit (Amersham) as per manufacturer's instructions. The blot was exposed to 

Bio-Max Light film (Kodak) for between 10 seconds and 1 hour. 

Blotting buffer: 20m1 5 x SIDS running buffer, 20ml methanol, 20m1 dH20 

Blocking buffer: 5% Marvel dried nonfat milk, PBS+0.1% Tween 20. 

2.6.5 Chromatin Immunoprecipitation (ChIP) 

A 50m1 culture was grown in YES to between 5x106  cells/ml and 1x107  cells/rnl. 

Cultures were shifted to 18°C/RT for 2 hours on a shaking incubator 1/10th 

volume of 30% or 10% formaldehyde was added to each culture and mixed. 

Cells were fixed in the fume hood for between 15 and 30 minutes. Fixation was 

stopped by addition of 1/20'  volume of 2.5M glycine. Cells were transferred to 

a falcon tube and centrifuged for 2 minutes at 4°C in a Sorvall Legend RT 

benchtop centrifuge. The cells were then washed twice in 20 to 50ml ice-cold 

PBS. Cells were resuspended at 1x108 /ml in PENIS containing 0.4mg/ml 

zymolyase-100T and incubated for 20-30mins at 37°C and then washed twice in 

lOmi PENIS. 

Cells were resuspended in imi PEMS, transferred to an eppendorf tube and 

pelleted. Cells were resuspended so as to obtain 2.5 x 108  cells/ml per ChIP and 

frozen in lml aliquots. Frozen pellets were resuspended in 300ul ice-cold lysis 

buffer containing 3ul protease inhibitors (1:100) and 2mM PMSF. Samples were 

then sonicated on ice using a BioRuptor water bath for a total of between 15 and 

20 minutes. Samples were then pelleted in a microfuge at 13,000rpm for 5mins 

at 4°C and the supernatant transferred to a fresh tube. Samples were spun again 

for 15mins at 4°C and the supernatant transferred to a fresh tube. While 

samples are centrifuging, Protein A or Protein C agarose (Roche) as appropriate 

was washed with lysis buffer 3 times and finally resuspended as a 50:50 

beads:lysis buffer slurry. The crude lysates were pre-cleared using 25u1 Protein 

A or Protein C as appropriate for 1 hour at 4°C. Beads were pelleted at 

13,000rpm for 2 minutes in a microfuge. The lysate was transferred to a fresh 

tube with 40u1 retained as the crude control and frozen at -20°C. The 
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appropriate concentration of antibody and 40u1 Protein A or Protein C beads 

were added to the cell lysate and incubated at 4°C for between 4 hours and 

overnight depending on antibody. Following the antibody incubation, beads 

were centrifuged at 13000rpm for 2minutes in a microfuge. Beads were then 

washed in lml each of the following ice-cold buffers for 5 minutes at room 

temperature: lysis buffer, lysis buffer + 0.5 M NaCl, wash buffer, TE pH8. 250u1 

of TES was added to the beads and 210u1 TES added to the crude extract. All 

samples were incubated at 65°C for between 6 hours and overnight to reverse 

the crosslinks. Samples were centrifuged for 1 minute and the supernatant 

removed to a fresh tube, discarding the beads. 250u1 TE and 25u1 lOmg!ml 

Proteinase K were added to each sample and incubated for 2 hours at 37°C. 

Samples were then extracted with phenol: chloroform and precipitated with 3M 

sodium acetate pH5.5 and 100% ethanol. The samples were incubated for 30 

minutes on dry ice and then centrifuged at 13000rpm for 30 minutes at 4°C. 

The supernatant was removed and pellets were dried under a hood then ChIP 

samples resuspended in 30il TE and crude samples in 300tl TE. Samples were 

then analysed by PCR. For all ChIP PCR reactions the 'Ura' program was used. 

Lysis buffer: 50mM HEPES-KOH pH7.5, 140mM NaCl, 1mM EDTA, 1% 

Triton-X100, 0.1% sodium deoxycholate 

Wash buffer: 10mM Tris-HCI pH8, 0.25M lithium chloride, 0.5% NP-40, 1mM 

EDTA, 0.5% sodium deoxycholate 

TE: 10mM Tris-HC1 pH8, 1mM EDTA 

TES: 50mM Tris-HC1 pH8, 10mM EDTA, 1%SDS 

2.6.6 Recombinant protein expression 

Plasmids were transformed into BL-21star (Invitrogen) cells and grown 

overnight at 37°C in lOrnis LB liquid. Cultures were diluted 1:500 and then 

grown to an 0D600  of 0.4. Protein expression was induced by adding an 

appropriate concentration of IPTG and incubating for a further 3 hours. Cells 

were harvested by centrifugation at 10,000rpm for 20 minutes in a Beckman 

Avanti J-25. Pellets were frozen and stored at -20°C. 
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2.6.7 Recombinant protein purification 

Cell pellets were thawed on ice and resuspended in 2m1 lysis buffer per gram. 

Lysozyme (Sigma) was added to 1mg / ml and the sample incubated on ice for 

30 minutes. Samples were sonicated six times for 10 seconds at a high setting 

with 10 seconds cooling in between. Lysates were centrifuged at 20,000rpm for 

30 minutes at 4°C and then passed through a 0.45tM filter disc. His-tagged 

proteins were purified under native conditions using Ni-NTA agarose (Qiagen) 

as per manufacturer's instructions. Purified protein was then dialysed into ice-

cold PBS containing 10% glycerol. 

PBS (10: lOg sodium chloride, 0.25g potassium chloride, 1.43g Na2HPO4, 0.25g 

KH2PO4  

2.6.8 ATPase assay 

This ATPase assay takes advantage of the fact that ATP hydrolysis is coupled to 

NADH oxidation which causes a decrease in absorbance at 340mm The assay 

was performed at 37°C with all components pre-warmed before starting. Two 

mixes were made as follows. Mix K (600p1); 1M KCI, 1M imidazole, 1M MgC12  

100mM ATP, 1U/RI lactic dehydrogenase, 2.5U pyruvate kinase, 2.5mM 

phosphoenolpyruvate, 2.5U NADH, dH20. Mix A (150tl); 500mM PIPES pH7, 

100mM EGTA, 1M MgCl,, 1.25mM DTT and 5-50tg of test protein and dH20. 

The two mixes were pre-warmed separately and then mixed together in a 

cuvette (Pidoux et cii, Mo!. Cell Biol. 1996). The optical density was measured 

using a Ultrospec 2100 pro (Amersham) in kinetics mode. ATP hydrolysis was 

calculated using the following formula; 

ATPase rate [min-'] = - dA340/dtfOD/minj x 	x moles` ATPase 

where Kpath is the molar absorption coeffiecient for NADH for a given optical 

path length. The assay was carried out in the absence and presence of an RNA 

substrate as indicated. 

2.6.9 Poly(A) polymerase assay 

Initially, standard 20tl reactions contained 20 mM TrisHCl, pH 7.5, 50 mM 

KC1, 0.7 mM MnC12, 15 mM MgC121  0.2 mM EDTA, 100 ig/ml acetylated BSA, 

10% glycerol, 1.5tg of RNA and between bOng and 1tg of protein. Reactions 
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were incubated at 37°C for 1 hour. RNA was phenol/ chloroform extracted and 

EtOH precipitated before loading on 6% denaturing polyacrylamide gel 

containing 8M urea. Subsequently, assay conditions were modified and carried 

out with varying concentrations of MgCl2  and MnC1 as indicated. Potassium 

glutamate was substituted for KC1 in order to minimise chloride ion 

concentration and more closely mimic the intracellular environment. Gels were 

exposed to a phosphoscreen and images captured using a Storm 

phosphoimager with IrnageQuant TL v 2005 (Amersham). 

2.7 Bacterial Protocols 

2.7.1 Media 

LB medium per litre: 	 Bacto tryptone 	lOg 

Bacto yeast extract 	5g 

Sodium chloride 	lOg 

LB agar per litre: 	 Bacto tryptone 	lOg 

Bacto yeast extract 	5g 

Sodium chloride 	lOg 

Bacto agar 	 15g 

Antibiotics: 

Kanamycin 50mg! ml 

Ampicillin lOOmg!ml 

Carbenicillin 50mg / ml 

Chioramphenicol 20mg/mi 

2.7.2 Transformation 

BL-2lStar and DH5a (Invitrogen) cells were transformed as per manufacturer's 

instructions with between 1 and 5tg plasmid DNA. In brief, between 30-100iJ 

of cells were mixed with DNA, incubated on ice for 30 minutes, heatshocked at 

42°C for 45 seconds and returned to ice for 1 minute. Cells were then grown at 

37°C for 1 hour with the addition of between 100-400tl of SOC medium. Cells 
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were plated on media or grown in liquid supplemented with the appropriate 

antibiotic. 

Soc 1L: Bacto tryptone 20g, bacto yeast extract 5g, sodium chloride 20g. lOmi 

250mM potassium chloride, 5m1 2M magnesium chloride, 20m1 1M glucose pH 

7 

2.7.3 Plasmid construction 

PCRs for cloning were carried out using either HiFi Taq (Roche) or Platinum 

Pfx Taq (Invitrogen). Restriction enzymes were obtained from Roche or New 

England Biolabs. DNA fragments were recovered and purified using a Gel 

Extraction kit (Qiagen). Ligations were performed using T4 DNA ligase 

(Promega) and incubated at 4°C overnight with insert:vector ratios of 1:1 and 

3:1. Ligations were transformed into DI-15a (Invitrogen) cells and plated on 

media containing appropriate antibiotic. 

2.7.4 Plasmid miniprep 

Single bacterial colonies were grown in 5m1 LB plus appropriate supplement 

overnight at 37°C. Cells were harvested and plasmid prep performed using a 

QIAGEN miniprep kit according to manufacturer's instructions. 
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2.8 Antibodies 

2.8.1 Chromatin Immunoprecipitation 

mouse anti-diMeH3K9 1:300 (m5.1.1., gifted from Takeshi Urano lab) 

sheep anti-Cnpl 1:30 

2.8.2 Immunofluorescence 

rabbit anti-Swi6 1:300 

sheep anti-Cnpl 1:2000 

anti-aipha-tubulin 1:15 

Alexa 594 anti rabbit 1:1000 

Alexa 477 anti sheep 1:1000 

Anti GFP 1:2000 (Molecular Probes) 

2.8.3 Western Analysis 

PAP-HRP 1:1000 (Sigma) 

M2 FLAG-HRP 1:1000 (Sigma) 
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2.9 Primers 

Name Sequence 5'-3' Description 
pALKS-for GTA AAA CGA CCC CCA CT Forward primer to 

sequence Shimoda 
library insert 

pALKS-rev AAC AGC TAT GAC CAT GA Reverse primer to 
sequence Shimoda 
library insert 

cenF GAA AAC ACA TCG TTG TCT TCA GAG Strand-specific RT-PCR 
and probe for nothern 

cenR CCT CTT GTA GCT GCA TGT GAA Strand-specific RT-PCR 

otrA CAC ATC ATC GTC CTA CTA CAT dg for ChIP 

otrB CAT ATC ATC TAT AU TAA TCA CTA CT dg for ChIP 

TM-A AAC AAT AAA CAC CAA TCC CTC cc for ChIP 
TM-B ATA CTA CCA TCC CAT TCT CTC cc for ChIP 
fbp-a AAT GAC AAT TCC CCA CTA CCC euchromatin control for 

ChIP 

fbp-b ACT TCA GCT ACC ATT CAC CTG C euchrornatin control for 
ChIP 

actinF CCC TC ACA CTT TCT ACA ACC actin RT-PCR control 

actinR GAG TCC AAC ACG ATA CCA CTC actin RT-PCR control 

U6sn ATG TCG CAG TCT CAT CCT TC siRNA northern loading 
control 

siRNAH TAC TCT CAT TAG GAT ATC CTC A dh to make northern 
probe 

Ing-F CCC TAC TCT TCT CGA TGA TCC TG dh to make northern 
probe 

Ing-R GGG TAG TAC CAC CAT CAT CTC TTT TC dh to make northern 
probe 

IngT7-F TAA TAC CAC TCA CTA TAG GGC TAC dh to make strand- 
TCT TCT CGA TCA TCC TG specific northern probe 

IngT7-R TAA TAC CAC TCA CTA TAG CCC TAG dh to make strand- 
TAC GAC CAT CAT GTC TU TC specific northern probe 

loading control for 
adhl-f CTC TCT CCC ACA CCC AU TAC northern 

loading control for 
adhl-r GTC ACC CCA CAT GCT CTC CT northern 
Rdp-1 CTC ATA CTG CAT AAA CCC CC Rdpl sequencing 

Rdp-2 CTC CAA GTA CTA CU CU TG Rdpl sequencing 

Rdp-3 TCA CTC ACC CTC CGA AAC AC Rdpl sequencing 

Rdp-4 TTC CCA GAA TCC AAC UT CC Rdpl sequencing 

Rdp-5 CCC CTT CAT CAT TAC GCT AC Rdpl sequencing 

Rdp-6 CCA TCA AAC ACA ACA CAC ACC Rdpl sequencing 

Rdp-7 TGT CCC ACT CU TCG TCT TG Rdpl sequencing 

Rdp-8 ATA CCA CTA CCA GTC GTT CC Rdpl sequencing 

Rdp-9 CTT CAA ACT TTC TGG ACT CC Rdpl sequencing 

Rdp-10 CCC AAA TCA ATT TCT CAT AA Rdpl sequencing 

Rdp-1 1 CAT CCC TCT ACT CTA ATA AA Rdpl sequencing 

Rdp-12 GCA AAC TCC UA AAA UT C Rdpl sequencing 
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Rdp-13 GTT ACA CCT ACT ACT CTT CG Rdpl sequencing 
Rdp-14 TCC ITT GTC GTT GAA AAC C Rdpl sequencing 
Rdp-15 GGG TGA CTT TAG TGA AAT C Rdpl sequencing 
Rdp-16 TTT ATC TIC ACT ACG GCG TG Rdpl sequencing 
Rdp-17 CAT CAT ATG ITT CCC ICT GC Rdpl sequencing 
Rdp-18 AAG CAT CAT CTC III CAA CC Rdpl sequencing 
Rdp-19 HI AAT GTT ACG CCA CAA CC Rdpl sequencing 
Rdp-20 GCA IAA CCI CAT CCC ATC TG Rdpl sequencing 
Rdp-21 GTT GGA TIC TGT AlT CTT CC Rdpl sequencing 
Rdp-22 ATC CCT ICC AAG CAT TIC AA Rdpl sequencing 
Rdp-23 AAA CCC ACT TAT CGA TIC CC Rdpl sequencing 
Rdp-24 IAA ACA CIA TIC AlT ATC CC Rdpl sequencing 
Rdp-25 CAG AlA CCC ICC ACC ATI CC Rdpl sequencing 
Rdp-26 CAC CAA CCC CAC TGT HA IC Rdpl sequencing 
Rdp-27 CCC CTT TAT CAA ATC AAT CC Rdpl sequencing 
Rdp-28 CTT AAC ICT AGC TAC CTC TI Rdpl sequencing 
Dcrl-af AAA ACC GAA ICA TIC TAG C Dcrl sequencing 
Dcrl-ar CAA AlA CCA AAC CGA CTT IC Dcrl sequencing 
Dcrl-bf AAA ITT CTC GTC AAT TGA AIC Dcrl sequencing 
Dcrl-br GAA ACC ACG TGT CCI ITA C Dcrl sequencing 
Dcrl-cf AIC AGC CAC CAC TIC HG AC Dcrl sequencing 
Dcrl-cr ICA CTT TIC CCC TAA CIA CC Dcrl sequencing 
Dcrl-df AlT CIA ITA ICA ACA AAT CC Dcrl sequencing 
Dcrl-dr CAA ACT TIC AAC CCA TIC C Dcrl sequencing 
Dcrl-ef TGA AAG AAA AGC TAC CCC C Dcrl sequencing 
Dcrl-er ACC AlT CTC HI CCC ITT CC Dcrl sequencing 
Dcrl-ff GTT AAT ICA TGA ACG CAT IC Dcrl sequencing 
Dcrl-fr TAA CAA CTC AAG CAG AIC AC Dcrl sequencing 
Dcrl-gf ACA TAT GAG CCC TAT CIA C Dcrl sequencing 
Dcrl-gr AAT GTC TAG AGA CIC CCA C Dcrl sequencing 
Dcrl-hf CCC CII CTT ACA AAA TCT C Dcrl sequencing 
Dcrl-hr CAC CCA TAC TAG CTT CCA C Dcrl sequencing 
Dcrl-if AAT ICC GIG CTT CIA ITA CAC Dcrl sequencing 
Dcrl-ir ACT CTC CCT CAA CCC TTC Dcrl sequencing 
Dcrl-jf AAC AAA CTA CTC CAT TIC Dcrl sequencing 
Dcrl-jr AAC TAA CII ACA CTT ATC Dcrl sequencing 
Dcrl-kf CCC AAC AAA GIG TGT CAT CC Dcrl sequencing 
Dcrl-kr AAG ITT CCA AAC ACG ATC CC Dcrl sequencing 
Arbl-1 CCA CAC TGA TAA ACT ACT Arbi sequencing 
Arbl-2 ICI ACG GTC CCI CCA TTT IC Arbi sequencing 
Arbl-3 CAA CAA CCC GAA CTC ACA CC Arbi sequencing 
Arbl-4 CCI TIC ACC GGA AAC TIC IC Arbi sequencing 
Arbl-5 ITT CTA CCC CCC AAA AAC AG Arbi sequencing 
Arbl-6 TIC ACT ICT CCI ICC ICT CC Arbi sequencing 
Arbl-7 ICC ACA CA CTC TIC GTC CAC Arbi sequencing 
Arbl-8 AAG GIG GGT AGC ACA CCA AC Arbi sequencing 
Arbl-9 ICC GTT CCI GGA CIA III CTG Arbi sequencing 
Arbi-10 TIC CGA HI GTC CCA IAA CC Arbi sequencing 
Arbi-11 AAC TIC CCC CTA CAT ICC AC Arbi sequencing 
Arbl-12 ICC ATC CCA AAC CAT AAA CAC Arbi sequencing 
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GGA ATT CCA TAT GAT GGG TAA AGT Cid12 cloning and 
NDEcidl2f CCT GTT A sequencing 

CCC GGA TCC TTA TCC CCC AGC TTG Cid12 cloning and 
BAMcid12r TAA sequencing 
seqcidl2f AU GCT CAT GCT AU GAA CC Cid12 sequencing 
seqcidl2r TCA AGC CAA CCA AU AGC Cid12 sequencing 

Cid12 cloning and 
cidtest-for TTA GCA CCT TTG CAA TTA CCC sequencing 

Cid12 cloning and 
cidl2_3down AAC ACC CCA ACC TTC CCT AAG sequencing 
K1546 TGA TCA CTC CTA ATC TAG CC Agol sequencing 
L1086 CAG GAACAT CCA AAA TAC TG Agol sequencing 
L1076 GTT CTC TTC TTT ACT TTC CC Agol sequencing 
L1085 GAC ACC TCA CCT TTA GAA AC Agol sequencing 
L1077 CTC ACA CTT TGT TTG GCT TC Agol sequencing 
L1084 CAA CGT CCA CTA ACC CCA CC Agol sequencing 
L1078 CGA TGC TTC CTA TTC AAT IC Agol sequencing 
L1079 GTT GAA GAA CTA TCT ATA AC Agol sequencing 
L1083 GAG CAA TTA ATT CCT TCC AAC Agol sequencing 
L1080 CAA CCT ATT ATC TAT TCC C Agol sequencing 
L1082 CTT TTC CTA CAA TGA CTG CC Agol sequencing 
L1081 CTT TGT TAT CTT TAT CCA AC Agol sequencing 
K1547 AGG AAC TAA AAC UC TGG GC Agol sequencing 

UC ATT TCA UT CCA TAT TTA TTT TCT 
ACT CCT CTT TCT CAG CU TCA CCA 
AAA CCC ATG CTT ACT CCT AAT AAT TTT forward primer to tag 

pFARdptagF CCC ATC CCC CCC TTA ATT AA Rdpl 

CTA AAA AU ATG ACA ACT CTT TTC CTT 
CAG CAG AAA CAT ACA ACA GTC TTG 
TTA AAT CTT AAC TCT ACC TAC CTC TTT reverse primer to tag 

pFARdptagR TCC AAT TCG AGC TCC TTT AAA C Rdpl 

CTT TTC CAC CCT TCC CTT TCT AAA AAC 
TTA TTA TCA CAA AU CAT TTG CCC AU 
ATA TTC CCC AAT TTA AAC AAA TTA forward primer to tag 

pFARdptruncF CCC ATC CCC CCC HA ATT AA csp7 '1  
TTA CAT ATA ATT ACA ACG CAC TCC 
CAC CAC CTC CTT ATC TGC GAG GAG 
CCA TCA AAT TCA ATC CAT TCA TAT forward primer to 
TAA AAT TAA TCC GTA AAG TCC TCT integrate Cid12 d,da into 

cid12-for TAG A the genome 
ACC ACA TCC CCC AAG ACA ACT TAG 
GAA UC AAA AAC AAA TCT TTA TTT 
AAA CAC CCA CCA TTA TTT TTT AAA reverse primer to 
TCC ATT AAT TAT CCC CCA CCT TCT AAT integrate Cid12 dad, into 

cid12-rev T the genome 
CAA AAT CTT ATA AAT ACT AAA CCA 
ACT TTC CTC GAG GGA TAT CAT ACT 
CAT ACC CAA TCA CAT CAA HA CAA 
GCT CCC GGA CCC ATC CCC CCC TTA forward primer to tag 

cidl2ctermtagF ATT AA Cid12 
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CGA ACT GTA GTG AAA CAT TAC CAC 
ATG CCC CAA GAG AAC TTA GCA ATT 
CAA AAA CAA ATG TTT ATT TAA ACA 
CCC ACC ATT GAA TTC GAG CTC CIT 	reverse primer to tag 

cidl2ctermtagR TAA AC 	 Cid12 

forward primer to check 
cidl2chkl7O-f CAT TAA AGC TGC ATT TGT TCC 	 Cid12 tagging 

PFA6A- 
insseq_r 	CTC AAC AAT AAC AAT TTT CC 
HA-R 	CTC ACC ACC CTA ATC ICC 

TAP-rev 	CTC CTT TCG CTT CCC TCC TC 

siRNAF-S 	UCCAACUCCUCUUAUCUC 

siRNAF-A 	AUAAGCACCACUUCCCCACU 

reverse primer to check 
Cidl2 tagging 
Reverse HA to check 
tagging 

Reverse TAP to check 
tagging 

RNA oligo poly(A) 
assay substrate 

RNA oligo poly(A) 
assay substrate 
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2.10 Strains 

Strain 	 Genotype 
Number 

hA cIr4-s5 ade6-210 leul-32 ura4-DS/E otrlR dg-glu (BarnHI- 

	

707 	Spel) Sphl::ura4 

	

972 	x 

hA swi6::hisl ade6-210 hisl-102 leul-32 ura4-DS/E ofrlR (dg- 

	

1034 	glu BamHI-Spel fragment) Sphi::ura4 

	

1180 	h+ ade6-210 Ieul-32 ura4-D18 otriR (dg-glu) Sphl::ade6 

	

1181 	h- ade6-210 leul-32 ura4-D18 otriR (dg-glu) Sph-l::ade6 

h+ ade6-210 hisl-102 leul-32 ura4-DS/E otriR (dg-glu) 

	

1193 	Sphl::ade6 imrlL (Ncol): :ura4 

	

1384 	h- csp7-473 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1385 	h+ csp7-473 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1386 	h- csp8-432 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1387 	h+ csp8-432 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1388 	h+ csp9-434 ade6-210 ura4-DS/E otrlR-Sphl::ade6+ 

	

1389 	h- csp9-434 ade6-210 ura4-DS/E otrlR-Sphl::ade6+ 

	

1390 	h+ csplo-439 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1391 	h+ csp10439 ade6210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1392 	h+ cspll-476 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1393 	h- cspll-476 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1394 	h- cspl2-505 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1395 	h+ cspl2-505 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1396 	h- cspl3-446 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

	

1397 	h+ cspl3-446 ade6-210 ura4-DS/E or D18 otrlR-Sphl::ade6+ 

h+ csp7 ade6-210 hisl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 

	

1484 	[Ch16 LEU2+ ade6-216] 

h- csp7 ade6-210 1-isl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 

	

1485 	[Ch16 LEU2+ ade6-216] 

h+ csp8 ade6-210 hisl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 

	

1486 	[Ch16 LEU2+ ade6-216] 

h+ csp8 ade6-210 hisl-102 ura4-DS/ E or D18 otrlR-Sphl::ura4+ 

	

1487 	[Ch16 LEU2-+ ade6-216] 

Source 
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h+ csp9 ade6-210 hisl-102 ura4-DS/E otrlR-Sphl::ura4+ [Ch16 
1488 	LEU2+ ade6-216] 

h- csp9ade6-210 hisl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 
1489 	[Ch16 LEU2+ ade6-2161 

h+ cspl0 ade6-210 hisl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 
1490 	[Ch16 LEU2+ ade6-216] 

h- csplO ade6-210 hisl-102 ura4-DS/E otrlR-Sphl::ura4+ [Ch16 
1491 	LEU2+ ade6-216] 

h+ cspll ade6-210 hisl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 
1492 	[Ch16 LEU2+ ade6-216] 

h- cspll ade6-210 hisl-102 ura4-DS/E otrlR-Sphl::ura4+ [Ch16 
1493 	LEU2+ ade6-216] 

h+ cspl 2ade6-210 hisl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 
1494 	[Ch16 LEU2+ ade6-2161 

h- cspl2 ade6-210 hisl-102 ura4-DS/E otrlR-Sphl::ura4+ [Ch16 
1495 	LEU2+ ade6-216] 

h- cspl3 ade6-210 hisl-102 ura4-DS/E or D18 otrlR-Sphl::ura4+ 
1496 	[Ch16 LEU2+ ade6-2161 

h90 (Xbal-Spel)clr4::LEU2 ade6-210 leul-32 ura4-D18 otriR 
2009 	Sphl::ade6 

h90 (Xbal-Spel)clr4::LEU2 ade6-210 leul-32 ura4-D18 otriR 
2010 	Sphl::ade6 

h- TM1(NcoI)::arg3 ade6-210/D1 arg3-D4 his3-D1 leui-32 ura4- 
2221 	D18 
3043 	h+ ade6-210 arg3-D3 his3-Di leul-32 ura4-D18/DS-E 

TM1 : :arg3+ 

4837 	h- TM-ura4 leul-32 ura4DSE his3Di arg3D4 ade6-210 #1 

4838 	h+ TM-ura4 leul-32 ura4DSE 1-is3Dl arg3D4 ade6-210 #1 
4551 	h- sim3-205 TM1::arg TM3::ade6 otr2::ura4 his3tellL ade6-210 

leul-32 ura4D18 arg3D4 his3Dl 

5805 	h? argonaut (ago) cenl-ade6+, G418res, ura4-, his-, leu- 

5806 	h? argonaut (ago) cenl-ade6+, G418res, ura4-, his-, leu- 

5807 h? argonaut (ago) cenl-ade6+, G418res, ura4-, his-, leu- 
5808 h? dicer (dcr) cenl-ade6+, G418res, ura4-, his+, leu- 
6222 Rdp G418R ura4DSIE 
6399 h? D Ago G418R ade6-210 otrlR(dg-glu) Sphl::ade6 
6642 h- TFIIS::leu2 leul-32 ura4Dl8 ade6-M216 canl-1 
6856 h- cidl2-GFP-KAN leul-32 
6857 h- cidl2-HA-KAN leul-32 
6858 h- cidl2-TAP-KAN leul-32 

Shao-Win 
6892 h- cidl2::KAN leul-32 ura4-D18 Wang 

Shao-Win 
6893 h- cidl2::ura leul-32 ura4-D18 Wang 
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h+ DDcrl (NATR) (KANs) cenl-ade6+ leu? his? ade6-210 ura4- 
7005 	D18 

h- Rdp-TAP-C10NAT leul-32 ura4-D18 otrlR sphl:: ade6 arg+ 
7051 	his+ 

h- Rdp-TAP-C1oNAT leul-32 ura4-D18 otriR sphl:: ade6 arg+ 
7052 	his+ 

h- "csp7'-TAP-CloNAT leul-32 ura4-D18 otriR sphl:: ade6 arg+ 
7053 	his+ 

h- "csp7'-TAP-CloNAT leul-32 ura4-D18 otriR sphl:: ade6 arg+ 
7054 	his+ 

h- \'csp7\"-TAP-CloNATleu132 ura4D18 otriR sphl:: ade6 
7055 	arg+ his-F 

h- 'csp7-TAP-C1oNAT leul-32 ura4-D18 otrlR sphl:: ade6 arg+ 
7056 	his+ 

h? cidl2: rura ade6: :Kan otri RSphl :ade6 lysi ::NAT leu+ 
7344 	ura4DSE/D18 

7366 	h? Ago::Kan (G418R) ade6-210 ura4DS/E otrlRSphi:ura4 

h+ leui-32 ura4DS/E ade6-210 otrlR::ura4+ 
7516 	rdpl(D/A)HA::KAN 
8096 	h- cidl3::KANMX leul-32 ura4-D18 

h? agol::KAN adhl:GFP-KANMX ura4-D18 ade6-210 leu? his? 
8129 	arg? 
8130 	h? rdpl::KAN adhl:GFP-KANMX ura? ade? leu? his? arg? 

8134 	h- cidl::ura4 leul-32 ura4-D18 

8135 	h+ cidl::leu2 leu1-32 ura4-D18 

8136 	h- cidll::ura4 leul-32 ura4-D18 

h+ hrrl::TAP-KANR ura4-D18 leul-32 ade6-216 
8207 imrlR(Ncol)::ura4+oril 

h+ hrrl::KANR ura4-D18 leul-32 ade6-216 
8209 irnrlR(Ncol)::ura4+oril 
8284 h? rdpl-TAP-NAT cid12-HA-KAN leul-32 
8285 h? rdpl-TAP-NAT cid12-HA-KAN 1eu132 
8286 h? rdpl-TAP-NAT cidl2-HA-KAN leul-32 
8287 h? rdpl-TAP-NAT cid12-HA-KAN leul-32 
8339 h? cid12::KAN ura4-D18 adhl::GFP-KAN leul-32 
8476 h- cidl::ura4 leul-32 ade6-210 ade6::Sphl otriR 
8477 h- cidll::ura4 leul-32 ade6-210 ade6::Sphl otriR 
8478 h- cidl3::KAN leul-32 ade6-210 ade6::Sphl otriR 

8533 	h- cidl4::ura4 ura4-D18 

8535 h- cidl4::LEU2 leul-32 ura4-D18 
8589 h? dcrl::c1oNAT arg3::ura4-GFP 
8590 h? cid12::KAN arg3::ura4-GFP 
8591 h? csp7 arg3::ura4-GFP 
8592 h? cspl0 arg3::ura4-GFP 

this thesis 

this thesis 

this thesis 

this thesis 

this thesis 

this thesis 

Shiv Grewal 
Paul Russell 

this thesis 
this thesis 

Chris 
Norbury 
Chris 
Norbury 
Chris 
Norbury 
Danesh 
Moazed 
Danesh 
Moazed 
this thesis 
this thesis 
this thesis 
this thesis 
this thesis 
this thesis 
this thesis 
this thesis 

Shao-Win 
Wang 
Shao-Win 
Wang 
this thesis 
this thesis 
this thesis 
this thesis 

82 



Chapter 2: MaLerias and Methods 

8593 h? cspll arg3::ura4-GFP this thesis 
8594 h? cspl2 arg3::ura4-GFP this thesis 
8595 h? cspl3 arg3::ura4-GFP this thesis 
8760 h- cidl4::ura4 ura4-D18 ade6-210 this thesis 
8787 h- cid12DADA-HA-KAN leul-32 ade6-210 ade6otr:sphl this thesis 
8788 h- cid12DADA-HA-KAN leul-32 ade6-210 ade6otr:sphi this thesis 
8865 h? cidl4::ura4 ura4-D18 ade6-210 ade6::(Sphl)otrlR this thesis 
8866 h? rdpl-TAP-NAT cidl2::KAN leul-32 ura4D-18 this thesis 
8867 h? rdpl-TAP-NAT cidl2::KAN leul-32 ura4D-18 this thesis 
8868 h? rdpl-TAP-NAT cidl2::KAN leul-32 ura4D-18 this thesis 
9614 h? agol::KAN arg3::ura4-GFP Ieul-32 this thesis 
9616 h? csp9 arg3::ura4-GFP leul-32 this thesis 

h+ Cidl2-3FLAG(NATMX6) ura4DS/E leui-32 ade6-210 
9768 otrSphl::ade6 
9845 h? cidl2dada Ieul-32 ura4D-18 this thesis 
9846 h? cidl2dada Ieul-32 ura4D-18 this thesis 
9947 h? cidl2dada-3FLAG (NATMX6) leul-32 ura4Dl8 this thesis 
9948 h? cidl2dada-3FLAG (NATMX6) leul-32 ura4Di8 this thesis 
9949 h? cidl2dada-3FLAG (NATMX6) leul-32 ura4Dl8 this thesis 
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9951 h? cidl2dada-3FLAG (NATMX6) leul-32 ura4Dl8 this thesis 

10381 h? dcrl::KAN TM1:ura4 leul-32 his3Dl ura4DS/E this thesis 
10382 h? hrrl::KAN TM1:ura4 Ieul-32 his3Dl ura4DS/E this thesis 
10383 h? rdpl::KAN TM1:ura4 leul-32 1-is3Dl ura4DS/E this thesis 
10384 h? cidl2::KAN TM1:ura4 leul-32 his3Dl ura4DS/E this thesis 
10385 h? csplo TM1:ura4 leul-32 his3Dl ade6-210 ade6:(Sphl)otrlR this thesis 
10386 h? dcrl::KAN TM1:arg3 this thesis 
10387 h? hrrl::KAN TM1:arg3 this thesis 
10388 h? rdpl::KAN TM1:arg3 leul-32 this thesis 
10389 h? cidl2::KAN TM1:arg3 leul-32 this thesis 
10390 h? csplo TM1:arg3 leul-32 ade6-210 ade6:(Sphl)otriR this thesis 
10143 h- arbi::KAN ade6-210 leul-32 ura4-D18 arg3D Bioneer 
10584 h- cidl2::KAN this thesis 
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CHAPTER 3 

The effect of csp mutants on centromeric 

heterochromatin formation 

3.1 Introduction 

3.1.1 Properties of the fission yeast centromere 

Large blocks of heterochromatin are prevalent at the centromere regions of 

many eukaryotes. In metazoa large arrays of repetitive DNA are packaged 

as heterochromatin at centromeres (Sullivan et al., 2001). The structure of S. 

pombe centromeres is somewhat similar to that of more complex eukaryotes 

in that they are also relatively large, repetitive and complex structures 

(Steiner et al., 1993; Takahashi et al., 1992). Fission yeast centromeres are 

composed of a central core region on which the kinetochore forms and 

flanking outer repeat sequences, known as dg and dli (Clarke and Baum, 

1990; Takahashi et al., 1992). Additionally, fission yeast centromeres share 

characteristics with more complex eukaryotes in that these outer repeats are 

packaged as heterochromatin. Insertion of marker genes within these 

regions of heterochromatin causes variable transcriptional repression also 

known as position effect variegation (PEV) or transcriptional silencing 

(Alishire et al., 1994; Allshire et al., 1995). This property has allowed the 

development of genetic screens to identify factors which disrupt 

heterochromatin and hence affect centromere structure and function. 

At a molecular level, heterochrornatic regions display low levels of histone 

acetylation and are associated with di-methylation of the lysine 9 residue on 

histone H3 (H3K9me2). The specific H3K9me2 modification creates a 

binding site for Swi6, allowing it to bind histone H3 via its chromodomain 

(Bannister et al., 2001; Lachner et al., 2001). Another chromodomain protein 

which is involved in RNAi-directed heterochromatin formation, Chpl, is 

known to bind H3K9me2 although its exact role is unclear (Partridge et al., 

2002). H3K9me2 is mediated by a conserved histone methyltransferase, C1r4, 

and has been shown to be required for the association of Swi6 with outer 

repeat heterochromatin at centromeres, the mating type locus and telomeres 
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(Ekwall et al., 1996; Nakayama et al., 2001; Partridge et al., 2000). C1r4 

contains both a chromodomain and a SET domain and it is this SET domain 

which is responsible for the methylation activity of C1r4 (Sadaie et al., 2004). 

Mutations in this SET domain have been shown to affect the levels of H3K9 

methylation at both centromeres and the mating-type locus (Nakayama et 

al., 2001; Rea et al., 2000). In addition, strains expressing histone H3 with 

lysine 9 mutated to either arginine or alanine are defective in silencing and 

Swi6 localisation. This underscores the importance of lysine 9 of H3 and its 

methylation by C1r4 in recruiting Swi6 (Mellone et al., 2003). 

The dg!dlz repeats are transcribed by RNAPII and this transcription is 

required for heterochromatin assembly at centromeres (Djupedal et al., 2005; 

Kato et al., 2005). In addition, an active RNAi pathway is required to ensure 

the establishment and maintenance of centromeric heterochromatin. In brief, 

the RNAi pathway processes dsRNA originating from the dgldli repeats into 

siRNAs which are then targeted to homologous sequences via the RITS 

complex. Somehow this targeting brings about the recruitment of chromatin 

modifying enzymes such as histone deacetylases and the histone 

methyltransf erase Clr4 which in turn allows Swi6 binding and 

heterochromatin formation on homologous dg/dli repeats (Verde! and 

Moazed, 2005). 

Several genes involved in heterochromatin formation alleviate centromere 

silencing. Insertions of the ura4 gene at several sites across the centromere 

display variable expression (Allshire et al., 1995). Deletion of c1r4, sw16, 

c1zp1 or rik1 all display alleviation of silencing at centromeric outer repeats 

(Allshire et al., 1995; Partridge et al., 2000). Riki is a protein containing a 

propeller domain and a cleavage specificity and polyadenylation factor 

domain (CSPF-A) which may be involved in RNA binding (Allshire et al., 

1995). Riki is also related to DNA damage binding protein 1, DDB1, a 

component of an E3 ubiquitin ligase in plants (Yanagawa et al., 2004). 

85 



Chapter 3: The effect of csp mutants on centrorneric 

Indeed, Riki has been found to associate with several other factors involved 

in ubiquitination as well as C1r4, however the targets and the consequences 

of this ubiquitination have not yet been identified (Hong et al., 2005; Horn et 

al., 2005; Jia et al., 2005; Li et al., 2005; Thon et al., 2005). It should be noted 

that silencing of marker genes is not a function of heterochromatin although 

it does provide a way to assay heterochromatin structure and thus 

centromere stability. 	Nonetheless, it is possible that similar related 

mechanisms could regulate the expression of endogenous genes. Swi6 and 

Chpl localise specifically to the outer repeats at centromeres; very little is 

found across the central core region (Partridge et al., 2000). Both Riki and 

C1r4 are required for the localisation of Swi6 and Chpl at centromeres, 

however Chpl localisation is independent of Swi6 (Partridge et al., 2000). 

C1r4, Swi6, Chpl and Riki are also required to silence marker genes inserted 

at the mating-type locus and at sites adjacent to telomeres (Allshire et al., 

1995; Sadaie et at, 2004). Deletion of any of these genes results in increased 

rates of chromosome loss and chromosome missegregation, in particular a 

high frequency of lagging chromosomes on late anaphase spindles (Allshire 

et al., 1995; Ekwall et al., 1995; Partridge et al., 2000; Partridge et al., 2002; 

Sadaie et at, 2004). 

3.1.2 A screen to identify additional factors involved in centromeric 

heterochromatin formation 

A genetic screen was carried out to identify genes encoding proteins 

involved in heterochromatin formation. Previously identified mutations 

affecting heterochromatin formation were shown to affect all three sites 

where heterochromatin is known to form; centromeres, mating-type locus 

and telomeres. A screen was devised to identify factors specifically involved 

in silencing at centromeres and not at other regions so as to eliminate the 

possibility of re-isolation of genes such as swi6 and c1r4 (Ekwall et al., 1999). 

A tester strain containing the ade6 gene inserted at the Splil site on the right 

hand side of centromere 1 (ceni), otr1R(Sp1iI):ade6, or the i1ra4 gene inserted 

15 kb away at the NcoI site on the left hand side, imr1L(NcoI):iira4, was used 



Chapter 3: The effect of csp mutants on centromeric 

as a reporter for mutations affecting centromere silencing (Figure 3.1a). In a 

wild-type strain, the ade6 gene is transcriptionally repressed resulting in red 

colonies on plates containing low supplementing adenine (Alishire et al., 

1994). Defects in the ade6 gene causes accumulation of an intermediate, 

phosphoribosylaminoimidazole (AIR) (Fisher, 1969). The AIR intermediate 

is uncoloured however and subsequent events are required for the red colour 

to appear. Mutations which cause the alleviation of ade6 expression result in 

white colonies. Similarly, wild-type cells repressing iira4 gene expression 

fail to grow on plates lacking uracil but grow strongly on plates containing 

the counter-selective 5-fluoro-orotic acid (FOA). Mutants alleviating ura4 

repression will grow strongly on media lacking uracil but fail to grow well 

on FOA (Boeke et al., 1984). The tester strain was mutagenised using ethyl 

methanesulfonate (EMS) which causes point mutations, preferentially C/C 

to A/T mutations. White colonies were selected for further analysis (Ekwall 

et al., 1999). 

The csp (centromere: suppressor of position effect) mutants were isolated as 

mutations which specifically alleviate the silencing of marker genes inserted 

into the heterochromatic repeats of centromeres (Ekwall et al., 1999). Two 

classes of mutants were recovered by this strategy, the temperature-sensitive 

(ts) and non-temperature sensitive (non-ts) mutants. In total, 2200 white 

ade6 colonies were selected and tested for growth at 36°C. Forty-eight of 

these colonies were found to be ts. This indicates that these csp mutations 

may be in genes which are required for other essential functions than that at 

centromeres, unlike previously identified heterochromatin factors which are 

non-essential. Backcrossing the ts colonies identified 7 ts mutants which 

grew well at 25°C but are inviable at 36°C. There was one allele each of cspl 

to 5 and two alleles of cs p6. 

Of the remaining 2152 non-ts mutant colonies, 387 were screened for 

defective mating-type silencing. All of the csp mutants were screened 
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Figure 3.1. csp mutants are defective in silencing at the centromeric 

outer repeats. 

(a) A schematic representation of centromere I (cen!) showing the marker gene 

insertions otrlR(SphI):ade6+ and imrlL(NcoI):ura4+. (b) Northern analysis showing a 

comparison of the centromeric silencing defects of ts and non-ts csp mutants using 

the imrlL(NcoI):ura4 marker gene insertion as a readout of transcription levels. The 

wild-type has undetectable levels of ura4+ gene expression whereas the csp mutants 

show alleviation of ura4+ gene repression, with expression levels varying greatly 

between mutants. All of the non-ts csp mutants show a strong alleviation of ura4+ 

silencing but of the ts mutants only csp6 and csp3 show strong expression of ura4+ 

(from Ekwa!I, 1999). 
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: 
against mating-type silencing so as to avoid the re-isolation of mutants such 

as swi6 and clr4. From this secondary screening of the 387 non-ts mutants, 

241 were found to have intact mating-type silencing and these were then 

further screened for alleviation of silencing of the 1mr1L(NcoI):11ru4 marker 

gene inserted at cenT!. Finally, seven non-ts mutants, named csp7 to 13, were 

isolated. Crossing the mutants in all pair-wise combinations allowed them to 

be placed in complementation groups; csp8 and Cs p10 were subsequently 

shown to be allelic. 

Although in the first instance only white, ade6 colonies were selected, upon 

further plating some pink and red colonies appear. This suggests that there is 

a variable degree of marker gene expression in the csp mutants although this 

is much more apparent in the ts mutants than in the non-ts mutants. 

Northern analysis of iinr1L(NcoI):ura4 was used to quantify expression 

compared to a euchromatic locus. This demonstrates that the silencing 

defect is much weaker in the ts csp mutants than in the non-ts mutants 

(Figure 3.1b) (Ekwall et al., 1999). 

3.1.3 Known phenotypes of the csp mutants 

The csp mutants were identified as factors alleviating silencing of marker 

genes inserted at centromeric heterochromatin (Ekwall et al., 1999). It has 

also been shown that they are sensitive to the microtubule destabilising drug, 

thiabendazole (TBZ) and have high rates of chromosome loss (Ekwall et al., 

1999). The non-ts mutants, csp7 to 13, also display a high incidence of 

lagging chromosomes on late anaphase spindles which may be caused by 

failure to establish a correct bipolar orientation of sister kinetochores to 

spindle microtubules. Initial characterisation has demonstrated that csp7 to 

12 display between 11 and 58% of cells with lagging chromosomes although 

this analysis was limited to around 20 cells per mutant (Ekwall et al., 1999). 

Cs p13 was also found to display lagging chromosomes but this has not been 

quantified. In addition, the number of cells with short spindles and the 
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number of cells in late anaphase was slightly increased in csp7 to 12. This 

may indicate defects in spindle elongation and/or activation of the spindle 

checkpoint (Ekwall et al., 1999). 

However, despite the fact that the csp mutants show defective chromosome 

segregation, markers of heterochromatin appear to be, if not fully intact, at 

least partially present. Immunofluorescence data has shown that the csp 

mutants retain normal Swi6 localisation within the nucleus, implying that 

H3K9me2 is present at centromeres (Ekwall et al., 1999). Thus, H3K9me2 

and Swi6 may be present at centromeres in the csp mutants at amounts 

sufficient to show normal localisation but may be insufficient to recruit a 

high enough level of cohesin to allow correct chromosome segregation. 

Conversely, Swi6, H3K9me2 and cohesin association on a marker gene 

inserted at heterochromatic repeats, otr1R(SphI)::ura4, were shown to be lost 

by chromatin immunoprecipitation (ChIP) analysis in all of the csp mutants 

(Volpe et al., 2003). This may indicate differences in sensitivity of the assays 

or may imply that Swi6 is less tightly bound at centromeres, perhaps due to 

reduced H3K9me2 levels, and therefore cannot be observed by ChIP. 

In order to clarify these issues and to investigate the role of csp genes in silent 

chromatin formation, further analysis of the csp mutants is presented here. 

At the time of the csp screen, many of the molecular techniques which we 

now take for granted had not been fully developed and therefore phenotypic 

analysis was limited. Furthermore, the role of the RNAi pathway in 

heterochromatin assembly had not yet been uncovered. It is now known that 

the centromeric outer repeats are transcribed and that these transcripts 

accumulate in RNAi mutants (Volpe et al., 2002). In addition, RNAi mutants 

are unable to produce siRNAs homologous to the centromere and are thus 

unable to correctly form centromeric heterochromatin (Motamedi et al., 2004; 

Verdel et al., 2004). 

KE 
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The initial aims of this project were to characterise and identify the genes 

affected in the csp mutants and to further investigate the role of the affected 

proteins in heterochromatin formation and centromere integrity. In this 

chapter, I analyse the potential role of the non-ts csp mutants, csp7 to 13, in 

RNAi-mediated silent chromatin formation and examine further their 

phenotypes. 

3.2 Results 

3.2.1 csp mutants alleviate silencing at centromeric outer repeats 

The csp mutants were isolated as factors which specifically alleviate silencing 

at the centromeric outer repeats (Ekwall et al., 1999). Previous analysis has 

revealed that all of the csp mutants display derepression of both ade6 and 

zira4 genes at the centromeric outer repeats with cspl to 6 showing a 

markedly lesser effect than csp7 to 13. The silencing defect of csp7 to 13 using 

otr1R(Sp1zI):ude6as a reporter is shown in Figure 3.2. Although in this assay 

all of the csp mutants look white, when streaked for singles colonies 

they do show some variegation of ade6 expression, evident in the 

appearance of pink and red colonies (not shown). This demonstrates that the 

effect of the csp genes on silent chromatin formation at centromeres is 

variable. 

In addition, all of the mutants had been previously tested for effects on 

silencing at the central core, mating-type locus and telomeres (Ekwall et al., 

1999). The central core domain is the region of the centromere where the 

kinetochore forms and whilst it has an unusual chromatin structure, it is not 

packaged into heterochromatin (Polizzi and Clarke, 1991; Takahashi et at, 

1992). The ura4 gene was inserted at the central core of centromere 2 and at 

the mating-type locus, CC2(SphI):ura4 and mat3M::ura4, to check for 

alleviation of silencing at these loci. cs p2, 6 and all of the non-ts mutants, 

csp7 to 13, which contain CC2(SpIiI):ura4 show some growth on plates lacking 
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Figure 3.2. csp mutants alleviate silencing at centromere I. 

Serial dilution assay showing the effect of non-ts csp mutants on 

otrIR(SphI):ade6 expression at centromere I. On low adenine plates a 

wild-type strain appears red due to silencing of the marker gene while 

mutants alleviating centromere silencing are white. 
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uracil and do not grow at all on plates containing FOA, indicating that they 

have some effect on central core silencing (Ekwall et al., 1999). However, RT-

PCR analysis failed to detect any increase in ura4 expression compared to a 

euchromatic control. As the growth of these mutants on plates lacking uracil 

is fairly poor it can be taken that these mutants retain silencing at the central 

core (Ekwall et al., 1999). This is similar to the effect seen in other 

heterochromatin mutants such as c1r4 and sw16 (Alishire et al., 1995). 

Only csp2 displays alleviation of silencing at the mating-type locus, all other 

csp mutants behave like wild type cells and show no alleviation of silencing 

at this locus (Ekwall et al., 1999). Telomere silencing was assayed in a similar 

manner by insertion of a lzis3 gene placed adjacent to the left telomere on 

chromosome 1. Wild type cells bearing this marker are unable to grow on 

plates lacking histidine. Assaying all of the csp mutants containing this 

marker gene revealed that only csp4 displays alleviation at telomeres (Ekwall 

et al., 1999). 

3.2.2 Swi6 localises to centromeres in csp7 to 13 mutants 

The phenotypes described in the non-ts csp mutants are reminiscent of those 

seen in heterochromatin mutants such as swi6 and clr4. C1r4 is the histone 

methyltransferase required to methylate histone H3 on lysine 9 and thus 

create a binding site for Swi6 (Bannister et al., 2001; Cowieson et al., 2000; 

Nakayama et al., 2001; Rea et al., 2000). Swi6 is required to promote 

heterochromatin spreading and recruit a high concentration of cohesin to the 

centromere (Bernard et al., 2001; Nonaka et al., 2002). In wild type cells, Swi6 

is seen as several punctate spots (between two and six) within the nucleus 

(Ekwall et al., 1995; Ekwall et al., 1996). These punctate foci are known to be 

heterochromatic loci and have been shown to be clustered centromeres and 

telomeres and the mating type locus (Ekwall et al., 1995). 
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csp7 to 13 were tested to examine the nuclear localisation of Swi6 by 

immunofluoresence. csp7 to 13 have all previously been shown to retain 

normal Swi6 localisation (Ekwall et al., 1999). In contrast, it has also been 

shown that csp9 to 13 lose Swi6 association with otr1R(Sp1:I)::ura4 by ChIP 

analysis (Volpe et al., 2003). This may reflect differences in csp behaviour at 

endogenous centromeric sequence as opposed to inserted transgene 

sequence. However, it may simply be that in csp mutants Sw16 is not so 

tightly associated with centromeric sequence and thus is not detectable by 

ChIP but can be seen as spots in the nucleus by immunostaining. 

In order to ensure that Swi6 is indeed still localised to centromeric 

heterochromatin and not coincidentally associating with other nuclear loci in 

a similar pattern, co-immunostaining was carried out using polyclonal anti-

Swi6 and anti-Cnpl antibodies. Cnpl is the histone H3 variant found only at 

the central core region of fission yeast centromeres (Takahashi et al., 2000). 

Cnpl is seen as a single spot in the cell nucleus due to the clustering of the 

three centromeres (Takahashi et al., 2000). Figure 3.3 shows that all of the csp 

mutants have a Swi6 localisation pattern of two to four nuclear spots, 

comparable to wild type cells. The intensity of staining is also similar to that 

observed in wild type cells. Furthermore, in all of the mutants examined, 

Swi6 is found to maintain its centromeric localisation as it colocalises with 

Cnpl. 

3.2.3 H3K9 methylation in csp7 to 13 

Di-methylation of histone H3 on lysine 9 (H3K9me2) is a feature of 

heterochromatin in fission yeast. This modification has been shown to create 

a binding site for Swi6 (Bannister et al., 2001). It has previously been 

demonstrated that csp9 to 13 display loss of H3K9me2 and hence Swi6 from 

otr1R(Sp1zI):ura4 by ChIP (Volpe et al., 2003). However, as shown above, csp 

mutants appear to retain Swi6 localisation at centromeres by 

immunostaining indicating that at least some H3K9me2 must remain. ChIP 
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Figure 3.3. csp mutants retain Swi6 at centromeres. 
Co-immunfluorescence staining using Swi6 antibody to stain heterochromatin 
and Cnp I antibody to stain kinetochores shows that all of the csp mutants 

retain Swi6 localisation at centromeres, despite having defective centromere 
silencing. Scale = 5tM 
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analysis was carried out to analyse the levels of H3K9me2 on endogenous 

centromere sequence. The immunoprecipitated DNA was amplified using 

primers complementary to the centromeric outer repeats (otr) and a 

euchromatic negative control (Jbp). Figure 3.4 shows that all of the csp 

mutants show a dramatic reduction in H3K9me2 levels on the centromeric 

outer repeats, consistent with previous data. However, the reduction is not 

quite as severe as that seen in a c1r4A mutant and there appears to be some 

residual, albeit a small amount, of H3K9me2 on the outer repeats. In order to 

compare ChIP data with immunostaining, H3K9me2 staining was carried 

out. Wild type and clr4A mutants were stained with the same H3K9me2 

monoclonal antibody used for ChIP under a variety of conditions (H3K9me2 

antibody was a gift from Takeshi Urano). However, either the antibody or 

the fixation conditions were not suitable for immunostaining as a speckled 

pattern was observed in the nucleus and the cytoplasm of both wild type and 

c1r4A mutant cells. 

To further investigate the role of the csp mutant gene products in centromere 

function, it would be interesting to perform a Cnpl/heterochromatin 

establishment/ maintenance assay in order to see how the csp mutant gene 

products behave. Cnpl is the histone H3 variant which is found only at 

centromeres and is a key determinant of kinetochore assembly (Takahasbi et 

al., 2000). Factors required for RNAi-mediated heterochromatin assembly 

have been shown to be essential for the establishment of Cnpl chromatin 

and thus the kinetochore (Folco et al., 2008). To perform this type of 

analysis, the csp mutants would be transformed with plasmid containing 

unmodified central core and heterochromatin DNA to determine whether 

Cnpl chromatin can be established in a particular csp mutant. To test 

whether the csp gene products are involved in maintaining Cnpl chromatin 

at centromeres, the csp mutant strains would be crossed to a wild type strain 

containing a plasmid in which heterochromatin and Cnpl chromatin had 

already been established (Folco et al., 2008). This could provide useful 
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Figure 3.4. H3K9me2 is reduced at centromeres in the csp 
mutants. 
(a) ChIP analysis shows that all of the csp mutants display reduced levels of 
H3K9me2 at centromeres. Multiplex PCR was performed and relative 
intensity of bands was calculated by dividing IP by WCE. Cen = Centro 
mere, Fbp = euchromatic control, WCE = whole cell extract, IP = 
immunoprecipitation. (b) Quantification of ChIP analysis showing that 
levels of H3K9me2 are greatly reduced but not to levels of a c!r4ii mutant. 
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information regarding the H3K9me2 state of centromeres in the csp mutants 

and how this contributes to centromere function. 

3.2.4 csp7 to 13 mutants accumulate non-coding centromeric RNA 

transcripts 

RNAi mutants have been shown to accumulate non-coding RNA transcripts 

originating from the centromeric outer repeats that are normally processed 

into siRNAs (Volpe et al., 2002). These transcripts are derived from both the 

upper and lower strand of the dg-dh centromeric repeats. In wild type cells, 

only the lower strand is transcribed but this is barely detectable by RT-PCR 

as it is thought to be continually processed by the RNAi machinery (Volpe et 

al., 2002). Transcription of the upper strand is thought to be repressed by the 

formation of Swi6 heterochromatin as in a swi6 mutant, only the upper 

strand accumulates (Volpe et al., 2002). In contrast, both strands are 

transcribed and accumulate to a high level in RNAi mutants (Volpe et al., 

2002). 

The centromeric transcripts are thought to act as a precursor to produce 

dsRNA which can then be processed by Dcrl to produce siRNAs. siRNAs of 

between 20 and 24 nts, which are homologous to centromeric dg-dh repeats, 

have been detected in wild type cells (Cam et al., 2005; Reinhart and Bartel, 

2002). These siRNAs are then incorporated into the RITS complex via Agol 

which somehow mediates targeting of chromatin-modifying activities to the 

homologous DNA! chromatin template to bring about heterochromatin 

assembly. However, deletion of any of the factors involved in RNAi-directed 

heterochromatin formation causes loss of siRNA production, consequent loss 

of H3K9rne2 and thus heterochromatin formation. Due to the inherent 

interdependencies within the pathway, the order of events that trigger 

RNAi-mediated heterochromatin assembly are difficult to determine. 

However, the accumulated data has led to the proposal of a model whereby 

siRNA production and heterochromatin formation are intimately linked as 
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part of a self-enforcing RNAI feedback loop (Figure 3.5) (Noma et al., 2004; 

Sugiyama et al., 2005). It is therefore difficult to place mutants at a specific 

point along the pathway by examining their general phenotypes as they tend 

to be more or less identical. Nonetheless, analysing the overall phenotypes 

of mutants can provide useful information as to their general role in RNAi-

directed heterochromatin assembly. 

In order to investigate whether the csp mutants could be involved in RNAi-

directed heterochromatin formation, levels of centromeric transcripts and 

siRNAs were examined. The position of strand-specific primers used to 

amplify centromeric transcripts is shown in Figure 3.6a. First strand cDNA 

synthesis reactions were primed using primers specific to either the forward 

or reverse strand of centromeric transcripts (cen for, which amplifies the 

lower strand or cen rev, which amplifies the upper strand) and with a primer 

complementary to the reverse strand of actin as a control. This RT-PCR 

analysis demonstrates that csp7 to 13 accumulate centromeric non-coding 

RNA transcripts from both strands at levels similar to that seen in RNAi 

mutants (Figure 3.6b) (Motamedi et al., 2004; Volpe et al., 2003). In this 

instance cells lacking dcrl were used as a control. 

The accumulation of centromeric transcripts was confirmed by northern 

analysis using a probe against the centromeric dli repeats (Figure 3.7a). The 

resulting phosphorimage reveals that all of the csp mutants accumulate 

centromeric transcripts to levels equivalent to those seen in an rdplA mutant 

(Figure 3.7b). It should be noted that neither the RT-PCR or northern 

analysis is specific for a particular centromere as the dgldh repeats share a 

high degree of homology and therefore the primers and probes indicated in 

Figures 3.6 and 3.7 will detect transcripts and siRNAs deriving from all three 

centromeres. In addition, regions of the mating-type locus and telomeres 

which share high homology with dg/dh repeats will be represented in these 

analyses. 
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Figure 3.5. A self-enforcing loop couples heterochromatin assembly 
to siRNA production. 
Bi-directional transcription of the centromeric outer repeats provides an initial 
source of dsRNA precursor which is processed by Dcrl into primary siRNAs. 
These siRNAs are targeted to heterochromatin, presumably via the RITS complex 
which allows/acts in concert with chromatin modification factors such as Clr4. Clr4 
methylates H3K9 and allows RITS to assemble on heterochromatin. Once this is 
achieved, the RDRC can assemble on RITS at heterochromatic loci. siRNAs may 
target Rdpl to nascent transcripts to synthesise dsRNA. DcrI may be recruited to 
process these dsRNAs into secondary siRNAs which may act as amplification signals 
to recruit more heterochromatin assembly factors. (Adapted from Sugiyama, 2005) 
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Figure 3.6. RT-PCR analysis of non-coding centromere 
transcripts. 
(a) A diagram showing the position of primers used to initiate cDNA 
synthesis for RT-PCR. The cen for primer is used to detect anti-sense 
transcripts from the lower strand and the cen rev is used to detect 
sense transcripts from the upper strand. (b) Strand specific RT-PCR 
analysis in the presence (+RT) or absence (RT) of reverse 

transcriptase demonstrates that all of the csp mutants accumulate 

centromeric transcripts to the same extent as an RNAi mutant, in this 

case dcrlii is used for comparison. 
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Figure 3.7. Northern analysis of centromeric non-coding 
transcripts. 
(a) A schematic diagram showing the relative positions of sequenced siRNAs 
and primers used to generate a probe for northern analysis (Reinhart and 

Bartel, 2002) . Cen for and siRNA H oligos were used to generate a PCR 
fragment to probe the northern blot. Cen for and cen rev oligos are the 
same as those used for the RT-PCR analysis shown in Figure 3.6. (b) 
Northern analysis using the probe indicated in (a) confirms that all of the csp 

mutants accumulate centromeric transcripts. 
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3.2.5 csp7 to 13 mutants are defective in siRNA production 

Deletion of any of the components of the RNAi machinery results in a loss of 

centromeric siRNA production (Motamedi et al., 2004; Verdel et al., 2004). 

Centromeric siRNA production was examined by northern blotting using 

the same probe as for the non-coding RNA transcripts. As expected, none of 

the csp mutants are able to process the centromeric transcripts into siRNAs 

(Figure 3.8). In wild type cells, siRNAs are observed as a 'smear' upwards 

from around 24 nts to just above 30 nts. This is slightly larger than suggested 

by published sequence data. It may be that the siRNAs are modified in some 

way, perhaps phosphorylated as in C. eiegans, although this has yet to be 

investigated (Pak and Fire, 2007; Sijen et al., 2007). in RNAI mutants this 

'smear' of siRNAs disappears completely; this is also observed in all of the 

csp mutants (Figure 3.8). 

Taken together with the transcript analysis, these data indicate that all of the 

csp mutants examined are defective in processing the centromere transcripts 

into siRNAs. As a result, all of the csp mutants are defective in RNAi-

directed heterochromatin formation as they must be unable to target the 

RITS complex to centromeric outer repeats. Since most of the factors known 

to be involved in RNA1-directed heterochromatin formation display 

accumulation of centromere transcripts and loss of siRNA production it is 

difficult to ascertain where the csp mutants may act in this pathway. 

3.2.6 siRNAs can be produced from an exogenous source in csp mutants 

The csp mutants are defective in heterochromatin formation, that is, they fail 

to properly process centromere transcripts into siRNAs but still appear to be 

able to target low levels of H3K9me2 and Swi6 to the outer repeats. It is 

possible that the csp mutants are able to process dsRNA into siRNAs at an 

undetectable level and in this way cause some H3K9me2 and Swi6 targeting. 

However, the phenotypes observed for the csp mutants are similar to those 
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Figure 3.8. csp mutants fail to produce centromeric siRNAs. 
siRNAs originating from dh centromeric repeats accumulate in wild-type cells but 
not in RNAi mutants. rdpILl is included here for comparison. Centromeric 
siRNAs are undetectable in any of the csp mutants. 
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seen in a dcrlA mutant which is unable to produce any siRNAs so this 

hypothesis seems unlikely. Rather, it could be that the residual H3K9me2 

and Swi6 binding are due to an RNAi-independent event. 

In order to overcome some of the difficulties in determining where csp 

mutants may act to contribute to silent chromatin formation at centromeres, 

the following strategy was devised. Briefly, a double-stranded (ds) hairpin 

RNA was transformed into csp mutants to investigate; a) if they are capable 

of processing a dsRNA precursor into siRNAs and b) are these siRNAs able 

to target and silence a transgene, presumably via the RITS complex? To do 

this, a previously engineered GFP hairpin plasmid was utilised (Sigova et al., 

2004). This construct contains the 760 bp ORF of GFP which was cloned as 

an inverted repeat separated by a 67 bp spacer region containing the first 

intron of the rad9 gene which when spliced is thought to leave a loop of 14 nt 

between the GFP arms (Sigova et al., 2004). This GFP construct is transcribed 

from the ninti promoter, one of the strongest in S. pombe. As this construct 

contained a uracil marker gene, the plasmid was modified to replace this 

uracil gene with leucine (gift from Femke Simmer) (Figure 3.9). In addition, a 

strain was constructed in which the GFP ORF was fused in frame to the ura4 

gene at the arg3 locus, arg3::ura4-GFP (gift from Halim Boukaba) (Figure 

3.9). This was done to allow investigation as to whether the GFP hairpin 

construct could, in the first instance target and silence the GFP transgene and 

secondly, whether this silencing could cause spreading of chromatin 

modifications upstream and trigger silencing of the ura4 marker gene 

(Figure 3.9). 

Initially, the csp mutants were screened simply for their ability to process the 

ds GFP hairpin into siRNAs. csp7, 9, 10 and 12 mutants are able to process 

the hairpin GFP RNA into siRNAs shown in Figure 3.10. However, cspll 

and 13 appear to be unable to produce siRNAs even when the source dsRNA 

is expressed at high levels. This demonstrates that Dcrl is still capable of 

processing the hairpin RNA in some of the csp mutants. In cspll and cspTI3, 

no GFP siRNAs are evident which could imply that these genes are involved 
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Figure 3.9. Can the csp mutants produce siRNAs from an 
exogenous source? 
A double-stranded GFP silencing trigger is transcribed from the nmtl promoter 

as a hairpin RNA containing a 14 nt loop of rad9 intron. This may be processed 
into siRNAs which effect silencing of a target marker gene. If silencing of the GFP 
transgene does occur, it seems feasible to assume that these siRNAs become 
incorporated into the RITS complex which could mediate heterochromatin 
formation across the transgene. Thus, it may be possible to mediate silencing of 
an upstream sequence, in this case the ura4 gene, through spreading of 

heterochromatin. 
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Figure 3.10. Production of siRNAs from a GFP hairpin 
in csp mutants. 
A GFP hairpin was transformed into the csp mutants. WT and 

dcr!/i were transformed with pREP4I empty plasmid as a control. 
In WT cells containing the GFP hairpin, GFP siRNAs are made. In a 

dcr ILl control no siRNAs are seen, as expected. In the presence of 

the ura4:GFP target transcript csp7, 9, /0 and 12 are able to 

process the GFP hairpin into siRNAs. csp/ I and /3 do not appear 

to produce any GFP siRNAs. 
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upstream of Dcrl or may collaborate with Dcrl to direct cleavage, and 

perhaps play a role in the transcription of the precursor RNA. 

In order to assess whether these siRNAs can be targeted to induce silencing 

of the inserted zira4-GFP, the GFP hairpin plasmid was transformed into csp 

strains containing arg3::iira4-GFP. Levels of ura4-GFP transcription were 

analysed by northern blotting using several probes against both GFP and 

ura4 ORFs (not shown). These northerns were unsuccessful due to high 

background hybridisation levels. Previous serial dilution assays have 

demonstrated that plating assays are not sensitive enough to see any 

knockdown of the ura4-GFP transcript (Femke Simmer, pers. comm.). That 

is, plating wild type cells containing the i,ra4-GFP transgene and the GFP 

hairpin plasmid were still able to grow on plates lacking uracil and unable to 

grow on FOA. dcrlA cells which are unable to produce any siRNAs were 

used as a control and displayed the same phenotype as the wild type (Femke 

Simmer, pers. comm.). However, this lack of silencing in the wild type cells 

may be due to the fact that the GFP siRNAs are unable to spread effectively 

enough to induce strong silencing of the transgene. 

The published studies using the GFP hairpin utilised FACS analysis to 

demonstrate that an adlil:GFP transgene is silenced via the GFP hairpin 

(Sigova et al., 2004). As northern analysis was unsuccessful, FACS analysis 

was attempted to examine whether the GFP siRNAs produced in the csp 

mutants were capable of inducing silencing of the ura4-GFP transgene. The 

data obtained was inconclusive as expression of the GFP hairpin RNA only 

resulted in a 20% knockdown of the GFP signal in wild type cells compared 

to dcrlA control cells. Another way to assess whether these siRNAs are 

actually functional would be to examine if the GFP siRNAs produced in the 

csp mutants become incorporated into the RITS complex and target 

chromatin modifications to the DNA. This remains to be tested. 
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Although these analyses did not determine whether the siRNAs produced 

are functional, it has provided some indication that cspl 1 and cs p13 behave 

differently to the other csp mutants in that they appear to be unable to 

process the dsRNA hairpin into siRNA. This could mean that they are 

involved in a more upstream process such as transcription or processing of 

RNA prior to cleavage by Dcrl or that they are co-factors which cooperate 

with Dcrl to induce cleavage of dsRNA. 

3.2.7 csp mutants are not sensitive to 6-azauracil 

Since both cspl 1 and csp13 appear to be unable to process a dsRNA into 

siRNAs, it could be hypothesised that they may play an upstream role, 

perhaps during transcription or processing of RNA. A crude plating assay 

using 6-azauracil (6AU) was performed to test this. 6AU treatment causes 

the inhibition of transcriptional elongation by depleting intracellular pools of 

GTP and LJTP (Ishiguro et al., 2000). This is not in itself lethal but when 

combined with mutations affecting transcription can block growth. The csp 

mutants were therefore tested for growth on 6AU to examine whether they 

had any defect in transcriptional elongation. tfslA, a transcriptional 

elongation factor, was used as a control. As demonstrated in Figure 3.11, 

none of the csp mutants appeared to show any sensitivity to 6AU which 

indicates that they are unlikely to be involved in transcriptional elongation. 
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Figure 3.11. csp mutants are not involved in 
transcription. 
None of the csp mutants show increased sensitivity to 
6-azauracil. Although this is a crude assay, it appears 
unlikely that any of the csps are involved in 
transcriptional elongation. 
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3.3 Discussion 

Taken together, the data described here clearly indicate a role for the csp 

proteins in RNAi-directed heterochromatin formation, at least at 

centromeres. A summary of the csp mutant phenotypes discussed here is 

shown in Table 3.1. However, due to the fact that removal of any component 

involved in RNAi-directed heterochrornatin formation causes collapse of the 

entire pathway, interpretation of these results with regards as to where the 

mutant gene products may act is limited. 

Like other RNAi mutants, all of the csps display an accumulation of 

centromeric non-coding RNA transcripts and a concomitant loss of siRNA 

production. One would expect that this loss of siRNA production would be 

accompanied by a loss of Swi6 and H3K9me2 across the centromeric outer 

repeats. However, like the observations of the RNAi mutants which retain 

small amounts of Swi6 and H3K9me2, this is not the case (Sadaie et al., 2004). 

In some instances, the csp mutants appear to retain at least some H3K9me2. 

Presumably this is enough to allow some Swi6 to bind but not enough to 

attract a high enough concentration of cohesin resulting in the aberrant 

chromosome segregation phenotypes observed. All of the csp mutants 

display high rates of chromosome loss and this demonstrates the instability 

of centromeres within these mutants (Ekwall et al., 1999). The csps also 

display chromosome segregation defects; chromosome missegregation and 

lagging chromosomes on late anaphase spindles (Ekwall et al., 1999). This 

points toward centromeric defects but could also point to defects in spindle 

formation and/or the spindle checkpoint (Cleveland et al., 2003). Indeed, 

these chromosome segregation phenotypes may occur due to the loss of 

centromere-microtubule interactions. 
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Table 3.1. A summary of the csp mutant phenotypes. 
All of the csp mutants alleviate silencing of otrIR(SphI)ade6 at the outer repeats. 

All of the mutants retain Swi6 localisation and some H3K9me2 at centromeres. 
The mutants all accumulate centromeric non-coding RNA transcripts and are 

unable to synthesise centromeric siRNAs. Only cspl I and csp l3 are unable to 

process a dsRNA hairpin into siRNAs. 
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heterochromatin formation 

It may be that a small number of centromeric transcripts are processed or are 

aberrantly processed to allow the production of an undetectable amount of 

siRNAs. This could possibly be enough to target chromatin-modifying 

enzymes such as histone deacetylases and C1r4 to the centromere, allowing 

small patches of heterochromatin to form. This is consistent, at least in the 

case of csp7, 9, 10 and 12, with the data obtained using the GFP hairpin 

whereby these mutants clearly have the ability to process a dsRNA into 

siRNAs. Whether these siRNAs are able to direct chromatin-modifying 

activities to the target region remains to be investigated. On the other hand, 

residual H3K9me2 and Swi6 binding may be due to RNAi-independent 

recruitment of chromatin-modifying activities much like that observed at the 

mating-type locus and telomeres (Jia et al., 2004; Kanoh et al., 2005; Kim et 

al., 2004). At the mating-type locus, the ATF/CREB proteins Pcrl and Atf 1 

are required for the maintenance of heterochromatin in the absence of RNAi 

components. Deletion of either of the genes encoding Atfi or Pcrl, in 

combination with the deletion of RNAi components, causes heterochromatin 

formation to be completely abolished (Jia et al., 2004; Kim et al., 2004). This 

suggests that the two pathways act in parallel and that Atfl/Pcrl act to 

retain specific factors such as C!r4 and hence Swi6 once they have been 

delivered to the locus by the RNAi machinery. This supports the idea that 

these DNA binding proteins act to maintain the silent state at the mating 

type locus in the absence of RNAi. 

One could hypothesise that a similar parallel pathway may exist at 

centromeres. Indeed, three CENP-B homologs, which in humans bind a-

satellite DNA, have been implicated in the formation of centromeric 

heterochromatin. These CENP-B homologs have been proposed to act to 

bind Swi6 or to attract chromatin-modifying activities to centromeres 

(Nakagawa et al., 2002). Moreover, Cid14, a poly(A) polymerase, has been 

shown to be involved centromeric heterochromatin gene silencing but it also 

acts at the mating-type locus (Buhier et al., 2007). The discovery of these 
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factors affecting centromeric heterochromatin offer tantalising insights as to 

alternative pathways involved in centromere structure/ function. 

The characterisation of the csp mutants has given clues as to their role in 

centromeric heterochromatin function. The csps were discovered using an 

ade6 marker gene insertion at the centromeric outer repeats which allowed 

their isolation on the basis of colour selection. However, due to the 

variegation of expression of this ade6 gene and the fact the csp mutant 

phenotype is not completely penetrant, it has not been possible to uncover 

the genes responsible for the phenotypes observed until recently. Had the 

identities of the csps cloned so far been uncovered sooner it would have 

provided a great insight into the connections between the RNAI pathway, 

general RNA metabolism, and centromeric heterochromatin in fission yeast. 

However, the csp mutants still provide some interesting possibilities for 

investigation as there are many questions remaining unanswered. Even so, 

the uncloned non-ts csp mutants provide us with some further insights into 

RNAi-directed heterochromatin assembly at fission yeast centromeres. The 

cloning and identification of the non-ts csp mutant genes is discussed in 

Chapter 4. 
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CHAPTER 4 

Identifying defective genes in the csp mutants 

4.1 Introduction 

4.1.1 Mutations in the csp genes are unknown 

The csp (centromere: suppressor of position effect) mutants were isolated as 

mutations which specifically alleviate the silencing of marker genes inserted 

into the heterochromatic repeats of centromeres (EkwaIl et al., 1999). In 

Chapter 3, I described the examination of the csp mutant phenotypes with a 

view to providing some clues as to what the csp genes may be doing and 

whereabouts in the pathway they contribute to heterochrornatin formation at 

centromeres. However, the affected genes in the csp mutants are unknown. 

Since they have been generated by EMS mutagenesis they are predicted to be 

point mutants. It was essential to identify in which genes these mutations 

occur so as to fully elucidate their role in heterochromatic gene silencing and 

centromere function. Previous attempts to use existing yeast genomic 

libraries or genetic crosses to clone the csps were unsuccessful. In this 

chapter I will discuss the cloning and identification of the csp mutants using 

a newly available yeast genornic library. 

4.2 Results 

4.2.1 Cloning of the csp genes 

The strategy adopted was to use a new high-copy yeast genomic library to 

clone the mutants by complementation (Figure 4.1). The library used 

contains Sau3AI fragments of fission yeast genomic DNA cloned into the 

multi-copy plasmid pAL-KS and is known colloquially as the 'Shimoda' 

library (Tanaka, 2000; Nakamura et al., 2001). It contains approximately 

60,000 independent clones with an average insert size of 8kb. 

The csp strains used for library screening contained the otr1R(SphI)ade6 

insertion within ceni. Initial screening was performed by transformation of 

library DNA via electroporation but this was found to produce a high level 

of background red and pink colonies even using only an empty plasmid 
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Figure 4.1. Strategy for cloning the csp genes. 

An overview of the screening strategy used to clone the csp genes. csp mutants 

containing otrIR(SphI):ade6 at centromere I were transformed with a yeast high-

copy genomic library. In parallel, mutants were transformed with empty plasmid 

in order to determine the level of background false positives. Red colonies which 

display restoration of centromere silencing were selected and subjected to further 

analysis. 
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(pAL-KS or pLEU2) as a control. This indicated that the process of 

electroporation itself somehow affects the csp mutants and causes them to 

variegate. 

Electroporation and lithium acetate are the most commonly used methods to 

transform S. pombe. Electroporation has the advantage of being very fast 

with high transformation efficiency but the results are not always 

reproducible. Lithium acetate is comparatively slower but has a higher 

transformation efficiency than electroporation (Nurse). Therefore, the csp 

mutants were transformed using a standard lithium acetate protocol and 

screened for red colonies in which centromeric silencing was restored. This 

method resulted in an acceptable background level of red and pink false 

positive colonies upon transformation of the empty pAL-KS plasmid of 

approximately 1-5 in 10,000 colonies depending on the mutant. A schematic 

representation of the pAL-KS plasmid is shown in Figure 4.2. This library 

was chosen over other available resources for several reasons. The plasmid 

contains an autonomous replication sequence (arsl) which is more 

mitotically stable than those based on the S. cerevisiae 2tM origin. The pAL-

KS plasmid is also less prone to rearrangements and has a higher copy 

number than those based on 2tM (Nurse). In addition, the 'Shimoda' library 

has a large insert size which gives better coverage of the genome than other 

available libraries. 

The complementing plasmids were rescued from S. poinbe and digested with 

Sail and NotI restriction enzymes to check for inserts. Repression of 

centromere silencing was verified by re-transforming the plasmid back into 

the csp mutant to ensure that complementation was reproducible. Inserts 

were identified by sequencing using vector-specific primers directly adjacent 

to the insert. Once restoration of silencing was confirmed and the inserts 

were identified, the mutation itself was identified by sequencing candidate 

ORFs in the csp mutant background, usually in more than one strain (Figure 

4.3). 
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Figure 4.2. Plasmid map of pAL-KS vector. 
The pAL-KS plasmid is 6.3 Kb in size and contains an ampicillin 
resistance gene for selection in E.co!i and a LEU2 marker gene for 

selecting yeast transformants. It has an autonomous replication 
sequence, arsI, which allows a high transformation efficiency and 
low copy number. The multiple cloning site, MCS, is as follows; 
Apo!, Xho I, Sail, Hind!!!, Pst!, Sma!, BamHI, SpeI, Not!, Sac!!! and 

Sac!. The Sail and Nod sites are shown in bold as these are the 
sites immediately flanking the inserts. Orange arrows denote the 
position of the vector-specific otigos used to PCR and sequence 
the inserts. 
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Figure 4.3. Strategy to identify the csp genes and mutations. 

Plasmids were recovered from complemented csp colonies by growing for two days 

in selective media, plasmid DNA recovered and transformed into E. coil to amplify. 

Plasmids were then recovered from E. coil and digested to check for the presence of 

an insert. The plasmid was re-transformed into S. pombe to confirm 

complementation and the ends of the insert were identified by sequencing with 

vector-specific primers. Candidate OREs were sequenced in the csp mutant to 

identify the mutation. 	 119 



4.2.2 csp7 is an allele of rdp1, an essential component of the RNAi 

pathway 

Identification of the affected genes in the csp7 to 13 mutants was undertaken 

using the 'Shimoda' library as described above. The original transformations 

were carried out by electroporation but this was unsatisfactory as a high 

number of false positives were obtained. The initial strategy to overcome 

this was to cross the csp mutants containing otr1(SplzI):ade6 with a strain 

containing another marker gene in ceni, imr1L(NcoI):i,r174, in order to make a 

secondary evaluation of the red colonies initially selected. The 11ra4 

insertion is at the opposite side of cenl, 15 kb away from ade6 as seen in 

Figure 4.4. In wild type strains, colonies repressing this ura4 gene can be 

identified by counter-selection on 5-FOA. This strategy worked well for csp7 

but not for the other csp mutants. By transforming a csp7 strain containing 

two marker genes with the genomic library, complemented red colonies 

which are 5-FOA resistant were selected. Thus, plasmids which restore 

silencing of both centromeric marker genes were isolated. 

Two plasmids were recovered using this approach. When these were 

digested with restriction enzymes Sail and NotI they were found to have 

identically sized genomic inserts of 8.7 kb (Figure 4.5a). However, as the 

insert contains a Sail site at 2110 bp and the empty plasmid is 6.3 kb, after 

digestion two bands of around 6 kb and 2 kb are observed on a gel (Figure 

4.5a). Sequencing and subsequent BLAST searches revealed that both of the 

plasmids contain part of S. poinbe chromosome 1 cosmid SPAC61712. This 

encompasses 336 bp of the gene encoding Tom20, a mitochondrial outer 

membrane translocase protein, the whole ORF of a hypothetical coiled-coil 

containing protein, the whole ORF of Rdpl, the RNA-dependant RNA 

polymerase and approximately 1 kb of the gene encoding Ade3, predicted to 

be involved in purine biosynthesis. Transformation of the individual 

plasmids back into the csp7 mutant produced a much higher frequency 

(around 70-80%) of red colonies than the original screen (0.03%) or empty 

plasmid (Figure 4.5b). This confirmed that the insert contained in these 
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Figure 4.4. csp mutants containing two centromeric marker gene 
insertions. 
Each of the csp mutants containing the otrIR(Sph1):ade6 marker gene insertion was 

crossed to a strain containing the imrIL(Nco!):ura4 marker gene IS kb away to have 
double selection for complementation of the loss of silencing by plasmids from the 
genomic library. 
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Figure 4.5. Cloning and initial characterisation of csp7. 

(a) Two independently isolated plasmids (numbered 10 and I 2) 

complement the csp7 silencing defect. U; uncut plasmid, C; digested with 

Sal! and Nod restriction endonucleases to release the plasmid insert. (b) 

Sequencing the ends of the inserts using vector-specific primers revealed 

that the plasmids contained the full ORF of rdplt pRdpl (10 or 12) 

complemented the csp7 defect in centromere silencing. (C) csp7 and 

rdplL\ display the same centromeric silencing defect. (d) Sequence 

analysis confirms that csp7 is an allele of Rdp I. 	 122 



plasmids complements the csp7 defect in silencing. The plasmids were 

named pRdpl. The complementation of csp7 by pRdpl is variable as csp7 

colonies containing the pRdpl plasmid do not return to a wild type red 

colour but are slightly paler in colour and in fact show a range from pale 

pink through to almost red. This could be explained by the fact that the 

ORFs contained in the plasmid are overexpressed and that expression levels 

vary in each colony. 

Surprisingly, the pRdpl plasmids are not able to complement the defective 

silencing of an rdplA mutant (Figure 4.6). It was hypothesised that 

overexpression of rdp1 had some detrimental effect to the cells and 

interfered in some way with centromeric silencing so the following approach 

was used. Linearised pRdpl plasmid was transformed into the rdplA strain 

in the hope that homologous recombination of a single copy of the plasmid 

would complement the defective silencing. However, complementation was 

not reproducibly observed (not shown). It is conceivable that the rdplA 

strain contains a mutation in another gene and this somehow affects 

centromere silencing or the uide6+ pathway and thus complementation 

cannot be observed. pRdpl was also transformed into agolA and dcrlA 

strains but again no complementation was observed (Figure 4.6). 

It is likely that suppression of the csp7 phenotype is mediated by Rdpl as 

Rdpl has previously been shown to be required for transcriptional silencing 

at the centromere (Volpe et al, 2002; Volpe et al., 2003). Consistent with this, 

the centromeric silencing defects displayed by rdplA mutants and csp7 are 

similar therefore the rdp1 ORF was sequenced from DNA amplified from 

csp7 cells (Figure 4.5c). This demonstrated that csp7 is an allele of rdp1 since 

it contains a point mutation at nucleotide 1232 of the ORF which creates a 

premature STOP codon at residue 411 (serine 411 STOP), just upstream of the 

polymerase domain (Figure 4.5d and Figure 4.7a). 

Normally, allelism is tested by genetic crossing whereby the unknown 
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Figure 4.6. pRdp I does not complement RNAi mutants. 

Overexpression of pRdpl in an rdpl/i mutant does not rescue the silencing 

defect of this mutant. The silencing defect of ago I/i or dcrlii are not affected by 

pRdpl expression. 

r 
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Figure 4.7. csp74  is an allele of Rdp I. 
(a) csp7 contains a premature STOP codon indicated by a star just upstream of 

the polymerase domain. The red arrows indicate the position of primers used 

to make the PCR fragment referred to in (b). (b) A 300bp wild type PCR 

fragment of Rdpl complements the csp7 phenotype. csp7 colonies containing the 

PCR fragment re-establish silencing of the ade6 gene. (c) Strand-specific RT-

PCR analysis shows that csp7 is only partially complemented by pRdpl. RNAi 

mutants which alleviate centromere silencing accumulate non-coding RNA 

transcripts originating from both the sense and anti-sense strands of the 

centromere, as does csp7. Expression of Rdpl in csp7 does lessen this 

accumulation but not to wild type levels. Arrows indicate specific products, 

asterisks denote non-specific products. 	 125 
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mutant is mated with a known knockout and should therefore produce only 

mutant progeny if the two mutations are indeed in the same ORF. However, 

as the csp7 strain containing otr1(Sp1iI):ade6 mated to itself produces variable 

colony colour this approach was unreliable. To confirm that rdp1 and csp7 

were indeed allelic, a PCR fragment of wild type rdpl was transformed into 

csp7 containing otrl(SpIzI):ade6 to replace the mutation by homologous 

recombination. Colonies that had taken up the PCR fragment were shown to 

have restored silencing of the marker gene and were red in colour (Figure 

4.Th). 

Non-coding RNA transcripts originating from the centromeric outer repeats 

accumulate in fission yeast RNAi mutants such as rdplA, agolA and dcrlA but 

are constantly turned over in wild type cells (Volpe et al, 2002; Volpe et al., 

2003). Only upper transcripts accumulate in a swi6A mutant. Strand-specific 

RT-PCR analysis of centromeric transcripts demonstrates that both strands 

accumulate in an rdplA mutant but are barely detectable in a wild type strain 

(Figure 4.7c). csp7 cells containing the pRdpl plasmid display only partial 

reduction in the accumulation of centromeric transcripts compared to an 

empty plasmid control, further demonstrating that the complementation of 

csp7 by pRdpl is not fully penetrant (Figure 4.7c). Again, this could be due 

to a variation in Rdpl expression levels in different colonies and may 

indicate that overexpression of a single component of the pathway may alter 

or interfere with silencing by altering the balance of factors involved. 

At the time of discovering that csp7 and rdp1 were allelic, little information 

was available about Rdpl. The proposed strategy was to use a tandem-

affinity purification (TAP) tagging procedure with mass spectrometry to 

identify factors interacting with both full-length Rdpl and the truncated 
csp7T(hul protein. Full-length and truncated Rdpl were TAP-tagged using a 

modified Bahier cassette containing a noursethrecin (cloNAT) marker gene (a 

gift from Stuart McNeill) (Sato et al., 2005). Tagged strains were checked for 

functionality using centromere silencing and TBZ sensitivity assays. The 
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full-length Rdpl behaved as wild type with respect to centromere silencing 

and TBZ sensitivity and the truncated csp7' 1  protein behaved like the 

untagged csp7 mutant indicating that the tagged proteins were functional 

(Figure 4.8). Tagged strains were also verified by Southern blotting (not 

shown). At this point I planned to further characterise Rdpl and associated 

proteins to dissect their function. Unfortunately, shortly after this time 

Moazed et al published the biochemical purification and characterisation of 

the RNA-Directed RNA polymerase complex (RDRC) (Motamedi et al., 

2004). Rdpl is an RNA-directed RNA polymerase thought to be responsible 

for the amplification of double stranded RNA (dsRNA), and thus siRNAs, in 

the RNAi pathway (Motamedi et al., 2004; Sugiyarna et al., 2005; Volpe et al., 

2003). It has been shown to associate with the putative poly(A) polymerase 

Cid12, and the putative helicase Hrrl in the RDRC (Motamedi et al., 2004). 

The RDRC interacts with the RITS complex in a Dcrl-dependant manner. 

It has been demonstrated that Rdpl can act as an RNA-dependent RNA 

polymerase (Motamedi et al., 2004; Sugiyama et al., 2005). A point mutation 

within the polymerase domain which destroys this activity renders Rdpl 

defective in centrornere silencing and unable to associate with its binding 

partners in a complex. Since the mutation in csp7 truncates the entire 

polymerase domain it would seem reasonable to assume that even if any 

protein were produced it would result in a similar phenotype which is 

indeed the case. 

4.2.3 csp9 is an allele of agoV, an essential RNAi component 

Genetic analysis had previously revealed that csp9 was closely linked to the 

gene encoding Argonautel (Agol) (pers. comm. R.Allshire and W. 

Richardson). Agol is a component of the RITS complex and is required for 

heterochromatin formation at centrorneres (Noma et al., 2004; Verdel et al., 

2004). It contains a PAZ domain thought to be required for RNA binding 

and a PIWI domain which is required to cleave or 'slice' RNA (Figure 4.9a) 

(Irvine et al., 2006). 
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Figure 4.8. TAP tagging of Rdp I. 

Strains which exhibit intact centromere silencing are red and show resistance to 

TBZ. Full-length TAP tagged Rdpl does not alleviate centromere silencing and is 

resistant to TBZ, indicating that the tagged protein is functional. Tagged truncated 

protein behaves as a csp7 mutant displaying alleviation of centromere silencing and 

sensitivity to TBZ. 
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Figure 4.9. Identification of csp9'. 

(a) Previous genetic analysis revealed that csp9 was closely linked to ago It 

which contains a PAZ and a PIWI domain (pers. comm R. Allshire and W. 

Richardson). (b) Sequence analysis confirms that csp9 contains a premature 

STOP codon indicated in (a) by a star almost halfway through the PAZ domain. 
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It seemed likely that csp9 could be an allele of Agol. The ago1 ORF was 

amplified from DNA extracted from csp9 cells and sequence analysis of ago1 

was carried out. Simultaneously, the same library screen used to identify 

csp7 was carried out to identify plasmids complementing csp9. The library 

screen was unsuccessful in recovering any complementing plasmids. 

However, sequence analysis confirmed that csp9 is an allele of ago1. csp9 

contains a C to T mutation at nucleotide 853 which causes a glutamine to 

STOP mutation of codon 285, truncating the protein approximately halfway 

through the PAZ domain (Figure 4.9b). 

4.2.4 csplO is an allele of cid12, a component of the RDRC, which 

associates with rdp1 

The csp10 gene was isolated in a similar manner to csp7. The csplO strain 

containing otr1R(Sph1):ade6 was transformed with the Shimoda library and 3 

red colonies were recovered from around 10,000 transformants. One of the 

plasmids had no insert when recovered from S. pombe however, the 

remaining two were found to have inserts of 6 kb and 3 kb (Figure 4.10a). 

When these individual plasmids were re-transformed into the original csplO 

strain containing otr1R(Sp1z1):ade6 they consistently complemented the 

defect in centromere silencing (Figure 3.10b). Both plasmids contained 

sequence from the same S. poinbe chromosome 3 cosmid SPCC663. The 3 kb 

insert was found to contain part of an ORF of a sequence orphan 

SPCC663.11, the ORF of the gene encoding Cid12 and the ORF of a gene 

encoding an N-acetyltransferase. The 6 kb plasmid also contains the 

sequence orphan SPCC663.11, Cid12, the N-acetyltransferase, a hypothetical 

protein SPCC663.13, and another sequence orphan, SPCC663.14. As Cid12 

associates with Rdpl in the RDRC it seemed like the most obvious ORF to 

complement the csplO phenotypes. To test this, the c1d12 ORE was amplified 

from DNA extracted from csplO and sequenced. Sequence analysis 

confirmed that csplO and cid12 are indeed allelic. csplO contains a C to T 

mutation at nucleotide 256 which results in an arginine to STOP mutation in 

codon 86 (Figure 4.10c and d) This truncates the protein approximately a 

third of the way into the putative nuceotidyltransferase domain. This 
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Figure 4.10. Identification of csp 10k. 

(a) Two independently isolated plasmids (A and C) were digested and found to 

have distinct inserts. (b) Schematic representation of plasmids A and C showing 

ORFs. (C) Both of the plasmids complement the csplO silencing defect, only C is 

shown here. (d) Sequence analysis demonstrates that cspIO and cidI2 are allelic. 

csplO contains an arginine to STOP mutation in codon 86. (e) The mutation in 

csplQ causes a premature STOP codon approximately a third of the way into the 

nucleotidyltranferase domain, indicated by a star. 
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domain is characterised by the sequence hG[G/S]X9-13DJz[DIE]h  (where X 

= any amino acid and Ii = hydrophobic residue) which is proposed to use the 

three aspartic acid residues to coordinate a divalent metal ion in the catalytic 

site (Iyer et al., 2003). The STOP codon causes the truncation of the last of 

these aspartic acid residues. The phenotypes of csplO and analysis of the 

Cid12 protein will be discussed in greater detail in Chapters 5 and 6. 

4.2.5 Cs p11 is unknown 

cspTl I was transformed with the Shimoda library and positive colonies were 

selected. Three separate transformations yielded a total of 10 positive 

colonies, of which two plasmids could not be rescued into E. co/i. The 

remaining 8 plasmids were rescued and digested to ensure they contained 

inserts. However, upon re-transformation into a cspl 1 strain, none of these 

plasmids restored silencing. This may be due to variegation of the cspll 

strain as an effect of transformation. As yet, cspl 1 remains unidentified. 

4.2.6 cs p12 is an allele of arb1 which associates with agoV 

cspI2 was transformed with the Shimoda library and positive colonies were 

selected. Two plasmids were isolated but on re-transformation only one 

containing a 6 kb insert was found to complement cspl2 (Figure 4.11 a). This 

plasmid was found to contain most of the ORF of the gene encoding Gar2, a 

protein involved in nucleolar structure and function, the complete ORFs of 

genes encoding two hypothetical proteins, SPAC140.03 and SPAC140.04 and 

part of a serine/threonine kinase. 

Interestingly, the same plasmid was isolated in another screen to identify 

factors required for outer repeat and central core silencing. Four alleles of 

cos2 were found in a screen to identify factors involved in central core 

silencing and outer repeat silencing. The pGar2 plasmid was found only to 

complement the cos2 defect in outer repeat silencing but had no effect on 

central core silencing. pGar2 also complements the TBZ sensitivity of the 
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Figure 4.11. Identification of csp 12. 

A plasmid containing a 6 kb insert was found to complement csp/2. 
The complementation is specific to csp/2 and does not suppress 

other csps. (C) csp/2 contains an tryptophan to STOP mutation in causing 

truncation of around two-thirds of the protein. (d) Sequence analysis 

confirms that csp 12 and ArbI are alleles. 
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cos2 strains (Dunleavy, 2007). As the same plasmid was found to 

complement two distinct mutations affecting outer repeat silencing, it was a 

concern that the complementation of cspl2 by pGar2 was non-specific. 

Therefore several other cos mutants and csp mutants were transformed with 

pGar2. However, the complementation appeared to be specific for only cos2 

and cspl2 (Figure 4.11b). As nothing was known about the two hypothetical 

ORFs encoded by this pGar2 plasmid it was decided to first sequence the 

Gar2 ORF. Car2 has a CR-rich domain and is a conserved protein. It is 

related to nucleolin in vertebrates and is thought to play a role in the 

assembly of ribosomal components. It is required for processing of 35s pre-

rRNA and its disruption affects normal cell growth (Culli et al., 1995; Leger-

Silvestre et al., 1997). However, sequence analysis of the ORF of Car2 from 

DNA extracted from both cspl2 and cos2 mutants did not reveal the presence 

of any mutations (Durdeavy, 2007). 

Sequence analysis of the other two ORFs encoding the hypothetical proteins 

was carried out. The cspl2 cells were found to contain a C to A mutation of 

nucleotide 259 in the N-terminal part of SPAC140.03. BLAST searches 

indicated that this protein had homology to maturases which are involved in 

the self-splicing of introns (Figure 4.11c). The mutation results in a 

tryptophan to STOP mutation in codon 87 (Figure 4.11c and d). This ORF 

was also sequenced in four cos2 mutant alleles but it appears that this 

mutation is not the cause of the cos2 phenotype. 

Again, a TAP-tagging approach was intended to be carried out so as to allow 

further characterisation of this protein. However, before this work could 

begin, SPAC140.03 was identified as Arbl which interacts with Agol and 

Arb2 in a complex named ARC for Argonaute siRNA chaperone (Buker et 

al., 2007). Indeed, Arbl is described as a conserved protein containing a C-

terminal domain similar to organellar maturases. The ARC complex, in 

contrast to RITS, contains mostly double-stranded siRNA (Buker et al., 2007). 

Arbl and Arb2 are thought to inhibit the release of an siRNA passenger 
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strand from Agol and hence the 'slicer' activity of Agol although the cellular 

purpose of this as yet remains unclear. Deletion of either Arbi or Arb2 

results in the loss of H3K9me2 and Swi6 from the centromere, in addition to 

defective siRNA production (Buker et al., 2007). cs p12 displays similar 

phenotypes to arblA; the cspl2 mutation causes alleviation of silencing at 

centromere 1 as an arblA mutant and is also sensitive to the microtubule 

destabilizing drug thiabendazole (Figure 4.12a and b). 

4.2.7 cspl3 is linked to dcr1 

Previous genetic analysis revealed that cspl3 was closely linked to dcr1 

(pers. comm. R.Allshire and W. Richardson). Dcrl is the ribonuclease 

thought to be responsible for the initiation of the RNAi pathway in fission 

yeast. Dcrl cleaves dsRNA into siRNAs which can then be incorporated into 

the RITS complex to target homologous RNAs and induce heterochromatin 

assembly (Motamedi et at, 2004; Noma et al., 2004; Sugiyama et at, 2005). 

Complementation of the cspl3 mutant using the Shimoda library has so far 

proved to be unsuccessful. This is perhaps in part due to the high 

background level, i.e. the high proportion of pink! red colonies observed 

when cspl3 strains are transformed with empty plasmid alone. Therefore, 

sequence analysis of dcr1 in a cspl3 mutant was carried out. Sequencing of 

the dcr1 ORF did not reveal any mutations in a cspl3 mutant. Previously, it 

was thought that histone 1-1213 contained a mutation in the cspl3 background 

(pers comm. R. Alishire and W. Richardson). However, upon repeating the 

sequence analysis, no mutations were discovered in the 1-1213 ORF. In 

addition, as dcr1 is close to prp45, a splicing factor involved in pre-mRNA 

processing, this ORF was also amplified from DNA extracted from cspl3 and 

sequenced. However, no mutation was evident and to date the cspl3 

mutation remains unknown. 
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Figure 4.12. csp 12 and arbIil display 

the same phenotypes. 

(a) csp 12 and arb I/i display the same defect in 

centromere silencing. (b) csp 12 and arb /A are 

both sensitive to TBZ. 
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4.2.8 Swi6 localises to centromeres in the csp mutants and their null alleles 

As demonstrated in Chapter3, all of the csp mutants retain Swi6 localisation 

at the centromere. It has previously been shown that RNAi mutants lose at 

least some Swi6 association with centromeres by ChIP (Volpe, 2003; Buker, 

2007). In order to examine whether any differences could be seen between 

the csp mutants and their equivalent null alleles, immunofluoresence staining 

using the Swi6 and Cnpl, the fission yeast CENP-A hornolog, antibodies was 

carried out. This analysis showed that both the csp point mutants and the 

null alleles behaved in a similar manner and that Swi6 was retained at 

centromeres despite defects in centromere silencing (Figure 4.13). 

4.2.9 csp mutants and their null alleles can produce siRNAs from an 

exogenous source. 

As shown in Chapter 3, csp7, 9, 10 and 12 are all able to process a dsRNA 

hairpin into siRNAs. Whether these siRNAs are taken up by RITS and thus 

capable of targeting chromatin-modifying activities to homologous DNA 

sequence remains to be investigated. As well as examining the csp mutants, 

their equivalent null alleles were also analysed for their ability to produce 

siRNAs from an exogenous source as it has previously been shown that they 

are unable to produce centromeric siRNAs (Motamedi, 2004; Verde!, 2004). 

GFP siRNAs are evident in all of the null alleles examined and also in a 

catalytic mutant of Rdpl (Figure 4.14). siRNAs are produced to varying 

degrees but this may be due to different levels of expression of the GFP 

hairpin in different mutants. 

4.2.10 Summary of identification of the csp genes 

A summary of the csp mutants identified so far is presented in Table 4.1. In-

depth analysis and cloning of cs psi to 6 was undertaken by a former PhD 

student, Manuela Portoso (Portoso, 2005). The csp3 and csp4 genes were 

identified by Karl Ekwall (Djupedal et al., 2005). The affected genes in the 

csp mutants identified so far are all involved in fundamental pathways of 
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Figure 4.13. csp mutants and their alleles retain Swi6 

localisation. 

Co-immunfluorescence staining using Swi6 antibody to stain 

heterochromatin and Cnp I antibody to stain kinetochores shows that all of 

the csp mutants and their equivalent null mutants retain Swi6 localisation at 

centromeres, despite having defective centromere silencing. Scale = 5tM 
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Figure 4.14. csp mutants and their alleles can produce siRNAs 

from an exogenous source. 

As shown in Chapter 3, csp 7, 9, 10 and 12 mutants are able to produce siRNAs 

from an exogenous source. Their equivalent null mutants also appear to be able 

to process the dsGFP hairpin, although to varying degrees. The rdp I-cat dead 

mutant contains a point mutation which renders its polymerase domain inactive, 

however it can also still produce siRNAs. 
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cspI unknown 

csp2 unknown 

csp3 RNA polymerase II subunit, Rbp7 

csp4 splicing factor, Cwf 10 

cspS splicing factor, Prp39 

csp6 unknown, suppressed by Hsp70 proteins 

csp7 RNA-dependant RNA polymerase, Rdpl 

csp9 RITS component, Ago I 

cspIO 	= csp8 RDRC component, Cidl2 

cspII unknown 

cspI2 ARC component, Arbi 

cspI3 unknown 

Table 4.1 Cloning of the csp genes. 
The progress of identification of the genes responsible for the csp mutant 

phenotypes so far. The ts csps are shaded in red and the non-ts are shaded in 

blue. 
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RNA metabolism and processing. It is therefore unsurprising that these 

genes are essential. csp3 is an allele of Rbp7 which is a conserved subunit of 

RNA polymerase II required to promote pre-siRNA transcription and RNAi-

mediated chromatin silencing (Djupedal et al., 2005). csp4 is an allele of 

CwfiO which is orthologous to the S. cerevisiae splicing factor Snui14. 

Snu114 is a GTP-binding component of the U5 snRNP which is involved in 

U4/U6 unwinding during spliceosome activation. csp5 is an allele of Prp39 

which is a Ui-associated protein involved in pre-rnRNA splicing. The 

affected genes in the cs p1. 2 and csp6 mutants remain to be identified 

although the phenotype of csp6 was found to be suppressed by the 

overexpression of several Hsp70 heat-shock proteins (Portoso, 2005). csp7 is 

an allele of the RNA-dependant RNA polyrnerase Rdpi, csp9 is an allele of 

the RITS component, Agoi, csplO is an allele of the putative poly(A) 

polyrnerase Cid12, and cspl2 is an allele of Arbi. So far, all of the identified 

non-ts csps have been found to be key factors of the RNAi-mediated 

heterochromatin assembly pathway (Figure 4.15). 

4.3 Discussion 

The use of genetic screens to identify new factors involved in 

heterochromatin formation and centromere function in S. pombe has proven 

to be highly successful. The csp screen was carried out in order to identify 

novel factors involved in heterochromatin formation, specifically at 

centromeric outer repeats, to avoid the isolation of factors which play a 

general role in heterochromatin assembly. In the case of the csp screen 

however, it has taken a huge effort to clone cognate genes. This may be 

because the csps are point mutants and show some variegation under normal 

growth conditions. The recent commercial availability of whole genome S. 

poinbe knock-out sets should allow such screens to become less difficult as 

this potentially allows mutants to be screened against more than one marker 

gene fairly quickly. 
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Despite difficulties in identifying the mutants, the csp screen has provided a 

great resource of factors involved in heterochromatin formation and 

centromere function. The non-ts csp mutants display phenotypes 

reminiscent of those seen in RNAi mutants and indeed all of those cloned so 

far appear to play a central role in RNAi-dependant heterochromatin 

assembly at centromeres (Figure 4.15). This supports the specificity of the 

screen as previously characterised RNAi components are known to have a 

minimal effect on silencing at the mating-type locus and at telorneres due to 

parallel pathways existing at these loci. It seems plausible the two remaining 

uncloned non-ts mutants will be involved in the same processes. 

The ts csp mutants have provided a previously unknown link between RNA 

processing and centromere function although whether this effect is specific 

remains to be seen. Elizabeth Bayne is currently following up the link 

between splicing factors and heterochromatin silencing and the effect does 

seem to be specific as mutations in several other splicing factors tested show 

no defect in heterochromatin silencing. Defects in silencing in these mutants 

occur both at restrictive and permissive temperatures whereas the splicing 

defect occurs only at restrictive temperatures. In addition, microarray 

analysis does not show any upregulation of unspliced ORFs which may be 

involved in heterochromatin assembly (pers. comm. Elizabeth Bayne and 

Karl Ekwall). Another fact which links splicing to heterochromatin assembly 

is that Cid12 is known to associate with splicing factors in the absence of 

rdpTI (Motamedi et al., 2004). This may indicate distinct roles for Cid12 

within the cell or may point to a more general role in RNA processing. 

In summary, genetic screening for novel mutants involved in centromere 

function has been greatly successful. The csp screen has provided insights 

into heterochromatin assembly at centromeres in fission yeast, despite the 

difficulty in their identification. The cloning of the remaining csp mutants 

may uncover further links between RNA processing and heterochromatin 

formation. 
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Figure 4.15. Non-ts csp mutants are involved in RNAi-directed 

heterochromatin formation. 

Outer repeats are transcribed by RNAPII, of which csp3 encodes a conserved 

subunit. The RITS complex containing Ago I, encoded by csp9, targets single-

stranded siRNAs in order to slice transcripts. The RDRC containing RdpI and 

Cidl2, encoded by csp7 and cspIO respectively, is involved in processing the 

centromere transcripts, perhaps by generating dsRNA substrates for Dcrl or by 

amplification of the siRNAs themselves. The ARC complex containing Arbi, 

encoded by cspI2, may be required for the transfer of double-stranded siRNA 

from Dcr I to Ago I (adapted from Moazed, 2007). 
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CHAPTER 5 
Investigating the role of the putative poly(A) 

polymerase Cid12 in RNAi-mediated heterochromatin 
formation 

5.1 Introduction 

5.1.1 Cid12 is part of the RDRC complex and is required for centromeric 

silencing, chromosome segregation and checkpoint control 

Cid12 is a conserved, putative poly(A) polymerase which has been identified 

as a component of the RNA-dependant RNA polymerase complex (RDRC). 

It was found to associate with Rdpl, the RNA-dependant RNA polymerase, 

and Hrrl, a putative helicase, by mass spectrometry analysis (Motamedi et 

al., 2004). As expected, Cid12 localises predominantly to the nucleus but can 

be observed by immunofluorescence to a lesser extent in the cytoplasm 

(Motamedi et al., 2004). All of the components of the RDRC are required for 

siRNA generation and complete methylation of histone H3 on lysine 9 and 

Swi6 association with heterochrorna tic loci (Motamedi et al., 2004; Sugiyama 

et al., 2005). Purifications of Cid12 in an rdpTLA mutant background revealed 

that Cidl2 also associates with 26 peptides which match known splicing 

factors (Motamedi et al., 2004). However, a detailed description of these 

splicing factors has not been published. Unpublished analysis suggests a 

role for several splicing factors in heterochromatic gene silencing and 

confirms that specific splicing factors associate with Cid12. Defects in several 

splicing factors, including Cwf10 4  and Prp39 	are known to affect 

silencing at centromeres but have variable effects on heterochrornatin 

structure (Bayne et al, Alishire lab submitted). 

What is the role of the Cid12 protein? As a putative poly(A) polymerase one 

could reasonably expect Cid12 to play a role in mRNA processing and/or 

regulation. Polyadenylation is known to target transcripts for degradation. 

Moreover, some mRNA transcripts are polyadenylated in the cytoplasm 

which stabilises them by preventing their degradation. It is possible that 

Cid12 is involved in regulating the level of non-coding centrornere repeat 

transcripts as it is known that all the components of the RDRC, including 

Cid12, associate with these RNA transcripts (Motamedi et al., 2004). One 
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idea is that Cid12 binds the 3' end of transcripts, producing a poly(A) tract 

which is able to prime RNA synthesis by Rdpl. A related poly(A) 

polymerase in C. elegans, RDE-3, has also been shown to be required for 

siRNA production and efficient RNAi (Chen et al., 2005). Polyadenylation 

by Cid12 might also play a role in RNA degradation since short poly(A) tails 

are known to attract the exosome and mediate 3'-5' degradation (Anderson, 

2005). 

During the course of this work, Win et a! (2006) demonstrated that in 

addition to its role in the RNAi-induced silencing pathway, Cid12 is required 

for correct chromosome segregation and plays a role in DNA replication 

checkpoint control. Furthermore, cells lacking Cid12 were shown to 

accumulate polyadenylated transcripts originating from centromeric 

heterochromatin (Win, et al., 2006). In this chapter, I will describe the 

phenotypes of c1d12 mutants and my attempts to elucidate the enzymatic 

activity of Cid12 in order to understand its role in RNAi-directed 

heterochromatin formation. 

5.1.2 Cid12 belongs to a family of non-canonical poly(A) polymerases 

The Cid family of proteins was identified initially through Cidi, a 

cytoplasmic poly(A) polymerase (Read et al., 2002). The S-M checkpoint is 

required to delay mitosis until DNA replication is complete. When cells 

defective in this checkpoint are also inhibited in DNA replication they lose 

viability. When overexpressed, Cidi (caffeine induced death suppressor) 

overcomes the detrimental effects of the combination of hydroxyurea which 

blocks replication and caffeine which overcomes the S-M checkpoint (Read et 

al., 2002). The other proteins in the Cidi family were discovered via BLAST 

searches of the S. poinbe database (Read et al. 2002). In total there are six 

members of the Cidi-like family in fission yeast, cidi, cidTIl, cid12, c1d13, c1d14 

and cid16 (Figure 5.1a) (Read et al., 2002; Stevenson and Norbury, 2006). 

The Cidi-like proteins belong to the polymerase f3 superfamily of enzymes 

and contain a nucleotidyltransferase (NTPase) domain and a poly(A) 

145 



Iiitii EK h:invstigating the ioic of Uie putative poly(A) poiyineiase iu!21  

P\Ttt. 1i'( 	teri 

 Nucleotidyftransferase domain77  

PAP-associated domain [j 

Cidi _- PT 	T1° 
Cid id 	L i1 j478 
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Protein Localisation Function 

Cid I Cytoplasmic checkpoint response to replication block 

Cid I I Nuclear and cytoplasmic unknown 

Cid 12 Nuclear and cytoplasmic RNAi-dependant transcriptional silencing 

Cid 13 Nuclear and cytoplasmic maintains dNTP pools via ribonucleotide 
reductase 

Cid 14 Nuclear/nucleolar mRNA targeting for exosome-mediated 
degradation/RNAi-independent silencing 

Cid 16 Mitochondrial mitochondrial RNA processing 

Figure 5.1. The Cid I -like family of non-canonical poly(A) 

polymerases. 

(a) The S. pombe Cid I-like family of non-canonical poly(A) polymerases contains a 

total of 6 members. The Cid I-like proteins all belong to the polymerase P family and 

contain the catalytic nucleotidyltransferase domain, shown as a shaded blue box, and a 
PAP-associated domain, shown as a shaded pink box. The predicted size in amino 
acids is also shown. (b) A summary of Cid I -like protein functions highlighting their 
varied roles within the cell (adapted from Stevenson and Norbury, 2006). 
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polymerase (PAP) domain. Polyadenylation of mRNAs is an essential 

process in eukaryotic cells and fulfills several functions. Poly(A) tails are 

required for mRNA stability, efficient transport of mRNA from the nucleus 

to the cytoplasm and for proper translation (Stevenson and Norbury, 2006). 

Shortening of the poly(A) tail can lead to translational repression and rapid 

degradation of the transcript (Stevenson and Norbury, 2006). The Cidi-like 

family of proteins have diverse functions within the cell and act both in the 

nucleus and the cytoplasm to target specific RNAs. The Cidi-like proteins 

are known to play vital roles in the checkpoint response to replication block, 

RNAi-mediated heterochromatin formation and in RNA surveillance 

pathways such as exosome-mediated degradation (Stevenson and Norbury, 

2006). A summary of their roles is shown in Figure 5.1h. 

As polyadenylation is an essential RNA processing event in eukaryotes, it is 

unsurprising that the Cidi family is highly conserved from yeast through to 

humans. An alignment of the Cidi-like protein family from S. pombe is 

shown in Figure 5.2a. The polymerase P superfamily to which these proteins 

belong are characterised by the sequence hG[G/S]X9-13D/i[D/E]/z (where X 

= any amino acid and Ii = hydrophobic residue) which forms the active site of 

the enzyme (Iyer et al., 2003). A conserved glycine serine motif is contained 

in a helical turn and the three aspartic acid residues form a catalytic triad. 

These conserved residues coordinate divalent metal cations which direct the 

formation of a phosphodiester bond between a 5' nucleoside triphosphate 

and a 3' hydroxyl of the preceding nucleotide (Iyer et al., 2003). All of the 

Cidi family proteins contain this motif. 

3-D modelling has suggested that the secondary structure of Cidi is most 

similar to the central catalytic 'palm' domain of rat Pol. However, many 

nucleolidyltransferases share this same 'palm' motif despite a lack of amino 

acid conservation, except for the motif described above (Date et al., 1991; 

Martin and Keller, 1996). The 3D structure of a classical C-shaped poly(A) 

polymerase with the three aspartic acid residues essential for catalysis in 

poly(A) polymerases and Polp shaded in yellow is shown in Figure 5.2b 
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GS motif 

n 
Cid I WVYNEIKISDKEFKEKUUTLRLCLKRISP--DAELVAFGSLESGLkLKNSDMDL 

Cid I 2 ----- YSFLEFVSPKIEELKYRKLLLEKLQTHIREWL- -DAELQVIGSM?IGTTLSISDVDV 

Cid I I LTNWWKLYMRLKPSNZEVSRRQQFVDKLRTILSTEIKDAKLDLFVFGSTENNLAIQQSDVDV 

Cid 13 !SSQLYELYDSIILNDSGLERR?AFVQKLEQILEF?UUKTSLFGSTQSLLASNASDIDL 

Cid 14 FHDLHFIDYITPTPEERAVRKTLVSRINQAVLQKWP--DVSLYVFGSFETKLYLPTSDLDL 

Cid I 6 LEQSLQNDIRPDTVRTTA(AI IKKLLKSLRIG--PVKIAC FGSRTGLMTK}SDLDL 

** 

Cid I CVLMDSR 	IALQFYE---ELIAEGF--IGKFLQRkRIPIIKLTSDTKNGFGASFQCDIG 

Cid I 2 SLKSPRVGELEK-R- 	--- VLR-ADADFRSSARVPRINLVDVS ------ GIGVDLT 

Cid I I CIITNGSKYLNS-TCQLAQ --- LLYSYGM-KQIVCVSRAVPIVKIDPQ-----FDIIICDLN 

Cid 13 CIITDPPQCAPT-TCEVSA --- AFARNGL-KKVVC ISTAKVPIVKVWDSE-----LQLSCDCN 

Cid 14 VIISPEHI1YRGT-KKDIffV 	 SEVQVITTANVPIIKJDPL-----TKVHVDIS 

Cid 16 VIYSSELLPY-YDRVKS--- - 	-SNV)PIRARIPIIKGQT------NIHCDLS 

* 
 

Figure 5.2. Cid I -like proteins share high homology. 
(a) The six Cid I -like proteins share homology over the nucleotidyltransferase 
domain. Three aspartic acid residues which are involved in coordinating the 
divalent cation in the active site are highlighted with an asterisk. It has been shown, 
at least for some of the Cid I-like proteins, that mutation of these residues causes a 
loss of poly(A) polymerase activity. Cid proteins were aligned using ClustaiW. (b) 
A 3-D representation of a poly(A) polymerase showing the residues required for 
NTP binding and catalysis in yellow and highlighted by a red arrow. This structure 

was predicted using MODBASE (Pieper et al 2006). 
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(Date et al., 1991; Martin and Keller, 1996). Cidi has been shown to possess 

both poly(A) and poly (U) polymerase activity. Mutation of the first two of 

the catalytic aspartic acid residues has been shown to abolish the polymerase 

activity of Cidi (Read et al., 2002; Rissland et al., 2007). 

Other Cidl family members have been shown to have poly(A) polymerase 

activity. Cid13 is a cytoplasmic poly(A) polymerase involved in regulating 

ribonucleotide reductase mRNA and has been shown to interact with the 

poly(A) binding protein Pabi (Saitoh et al., 2002). Cid14 is the functional 

homolog of the S. cerevisiae poly(A) polymerase Trf4. Cid14 is found in the 

nucleolus and is required for polyadenylation of rRNAs prior to their 

degradation via the exosome (Win et al., 2006). Additionally, Cid14 has been 

found to mediate the silencing of genes inserted into heterochromatin and is 

defective in siRNA production (Buhier et al., 2007). However, it is not 

required to maintain the structural integrity of heterochromatin (Buhier et 

al., 2007). Its role in gene silencing is dependant on its enzymatic activity, as 

mutation of two aspartic acid residues known to be required for catalytic 

activity, D298 and D230, abolishes heterochromatic gene silencing (Buhier et 

al., 2007). So far, no enzymatic activity has been demonstrated for Cidli, 

Cid12orCid16. 

5.2 Results 

5.2.1 csplO is an allele of cid12 

The csp mutants were placed in separate complementation groups by 

crossing to each other in all pairwise combinations (Ekwall et al., 1999). csp8 

and cspl 0 were subsequently determined to allelic. However, cspl 0 has been 

identified as an allele of c1d12 as detailed in Chapter 4. Sequence analysis of 

csplo demonstrated that c1d12 contains a C to C mutation which causes a 

premature STOP codon approximately halfway into the NTPase domain. 

Surprisingly, this same mutation was found in an independently isolated 

mutant, csp8 (Figure 5.3). Originally, csp8 and cspl0 were put into separate 

complementation groups. However, subsequent analysis has demonstrated 

these mutants are allelic. This error could be due to the fact that the csp 
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csp8cd 2  

CSpq Qcid 12 

- 
CGA 256 TGA 

R 86 STOP 

Figure 5.3. csp8 and csplO have identical mutations in 

cid 12. 
Sequence analysis of csp8 and csp I 0 shows that the two mutants 

share the same mutation, despite having originally been identified as 

independent alleles. 
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mutants display variegated expression of marker genes inserted at 

centromeric outer repeat sequences during mating. This variegation could be 

due to the occurrence of spontaneous mutations which affect the adenine 

biosynthesis pathway or may be due to a mutation which causes the 

variegating phenotype. 

5.2.2 cid12A alleviates silencing of ade6in centromeric outer repeats 

cspl 0c1h22  was found in a screen to identify mutants which specifically alleviate 

silencing at the centromeric outer repeats. During the course of this study, 

cidl2A was also shown to alleviate outer repeat silencing (Motamedi et al., 

2004). As csp10' 12  and c1d12 are allelic, c1d12A and several other members of 

the Cidi family were crossed to introduce the otu1R(Sp1iI):ade6 marker gene 

into the mutants to test their effect on centromere silencing. cidTl A and cidl 1 A 

were provided by Chris Norbury (University of Oxford). The c1d12A and 

cid14A strains were provided by Shao-Win Wang (University of Oxford). 

cidl3A was kindly donated by Paul Russell (Scripps Research Institute). Only 

cidl2A displays strong alleviation of silencing as illustrated by Figure 5.4a. 

However, a recent publication has demonstrated that c1d14A alleviates 

silencing of a ura4 marker gene inserted within the outer repeats (Buhier et 

al., 2007). Mutants which have defective centromere function are often 

sensitive to the microtubule destabilising drug TBZ. All of the Cidi-family 

members which were tested for centromere silencing were also tested for 

TBZ sensitivity. Again, only c1d12A showed sensitivity to TBZ comparable to 

that seen in a c1r4A mutant (Figure 5.4b). These data suggest that c1d12 is 

involved in centromeric heterochromatin formation and suggest that the 

other Cidi related proteins do not have a role here. 

5.2.3 cid12A centromeric silencing defects are partially complemented by 

an overexpressing plasmid 

In order to investigate the role of Cid12 in RNAi-mediated heterochromatin 

formation, plasmids overexpressing wild type Cidl2 and a putative 

catalytically dead Cid12 from the nmtl promoter in pREP1 were obtained 

from Shao-Win Wang (University of Oxford). The Cid12' mutant has the 
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Figure 5.4. cidI2L displays defects consistent with a role in 
centromere function. 

The CidI-like family members containing the marker gene 
otrIR(SphI):ade6 were tested for alleviation of silencing. Wild type colonies 
repress expression of this marker gene and therefore are red. Mutant colonies 
alleviating silencing are white. Only cid12ii was found to have a strong effect. 

Cid I -like family members were tested for sensitivity to the microtubule 
destabilising drug TBZ. Only cidI2Ll cells appear to be TBZ sensitive. 
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first two aspartic acid residues of the NTPase domain at codons 77 and 79 

mutated into alanine residues. This would be expected to abolish any 

predicted poly(A) polymerase activity of the Cid12 enzyme. These plasmids 

were used to investigate whether the putative enzymatic activity of Cid12 is 

required for its role in heterochromatic gene silencing. 

Overexpression of Cid12 is lethal in cid12A mutants but promoter activity can 

be attenuated by growing cells transformed with the plasmid in 15 tM 

thiamine (pers. comm. Shao-Win Wang). pREP1-Cid12 is able to rescue the 

TBZ sensitivity of c1d12L\ as demonstrated in Figure 5.5a. However, c1d12A 

containing the mutated plasmid, pREP1-Cid12, grows poorly on ThZ 

plates, indicating that these residues may be required for the function and 

activity of Cid12. cid12A also tends to grow less well than wild type strains 

in general (Figure 5.4b YES plate). 

These plasmids were also tested for their ability to restore the alleviation of 

silencing observed at the centromeric outer repeats in a cidl2A mutant 

containing otr1R(Sp1zTt):ura4. pREP1-Cid12 caused partial restoration of 

silencing of the ura4 insertion as shown by slight growth on plates 

containing FOA (Figure 5.5b). 

5.2.4 cid12A defects in the RNAi pathway are not complemented by an 

overexpressing plasmid 

To further examine the effect of Cid12 mutation on centromere function, I 

carried out centromeric transcript and siRNA northern analysis. cidl2A has 

previously been shown to accumulate non-coding centromeric transcripts 

from the outer repeats to levels similar to those seen in other RNAI mutants 

and to be defective in centromeric siRNA production (Motamedi et al., 2004) 

cid12A accumulates centromere transcripts by RT-PCR, at levels similar to a 

dcrlA mutant (Figure 5.6a). Upon transformation with either pREP1-Cid12 

or pREP1Cid121,  centromeric transcript levels decrease. However, in 

cid12A strains expressing pREP1-Cidl2, transcript levels do not return to that 
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Figure S.S. 	cidI2/ is partially complemented by a plasmid 
containing pREP I -Cid 12. 
(a) The TBZ sensitivity of cidI2L is complemented by pREPI-Cidl2 in the 
presence of I 5tM thiamine. Overexpression of Cid 12 is lethal (pers. comm. Shao-

Win Wang). Mutation of the two first predicted catalytic aspartic acid residues, 

PREP I -Cid !2°, results in less growth on TBZ. (b) cidI2L alleviates silencing of 

a ura4 gene, otrlR(Sph I):ura4t inserted at centromere I, as indicated by increased 

growth on -ura and less growth on the counter-selective FOA. This alleviation is 

partially repressed by pREPI-Cidl2 but not by pREPI-CidI2th', as indicated by 
increased growth on FOA and slower growth on -ura. Both (a) and (b) were 

carried out at 32°C. 
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Figure 5.6. Complementation of cidl2/i by pREP I -Cid 12 is partial. 

cidI2/i accumulates non-coding centromere transcripts from both strands, like 
other mutants defective in RNAi. The specific centromere transcript band is 

indicated by an arrow. In cidl2/i strains containing a plasmid expressing wild type 

Cid 12, centromere transcript levels are reduced but not to levels seen in wild type 

cells. Transcript levels remain high in cells containing a plasmid expressing 

Cid i2c 	mutant protein. 
Centromeric siRNAs are undetectable in cid12/i comparable to other RNAi 

mutants. In cidi2/i cells containing a plasmid expressing wild type Cid 12 the ability 

of cidI2Ll to synthesise centromeric siRNAs is not restored, indicating that 

complementation by this plasmid is only partial. 

155 



Chapter : Investigating the role or the putative poiyA) polymerase Loh 

in RNAi mdiated heterochromatin formation 

of wild type indicating that complementation by this plasmid is only partial 

(Figure 5.6a). 

Northern analysis confirms that, like an rdplA mutant, the cid12A mutant is 

unable to produce detectable levels of centrorneric siRNAs. 	On 

transformation of either pREP1-Cid12 or pREP1-Cid12 dad,,  into c1d12A, no 

siRNAs are observed (Figure 5.6b). It could be that the levels of siRNAs 

produced are so small as to be undetectable by this method or that 

misexpression of Cid12 causes an imbalance which causes collapse of the 

RNAi-induced heterochromatic silencing pathway. 	This data again 

demonstrates that the complementation of c1d12A by these plasmids is not 

complete and is consistent with previous results that inappropriate 

expression of Cid12 fails to completely restore silencing of a marker gene 

inserted into centromeric heterochromatin. 

5.2.5 A comparison of plasmids which complement cidi2t 

Previously, a plasmid containing c1d12, pAL-Cid12, was found to 

complement csp10 12. This has been described as plasmid A in Chapter 4, 

Figure 4.9b. This plasmid has an arsl element and therefore copy number 

varies from cell to cell. pAL-Cid12 was used in a side-by-side comparison 

with pREP1-Cid12 to examine levels of complementation with respect to 

otr1R(Sp1zI):ade6. pAL-Cid12 complements alleviation of silencing of the 

marker gene well in both csp10 12  and c1'd12A (Figure5.7). However, 

expression of pREP1-Cid12 does not completely complement either csp1Oc72 

or cidl2Li, in accordance with previous results, which indicates that 

inappropriate expression of Cid12 may be detrimental to centrornere 

silencing. 

5.2.6 Generating a putative catalytically dead cid12 dada mutant 

Since complementation with of c1d12A with pREP1-Cid12 is partial, it is 

difficult to assess the real impact of the Cid12 dd,  mutation. A more rigorous 

test is to generate a putative catalytically dead c1d12 in the endogenous gene 

expressed from its own promoter. To do this, the mutated c1d1281 ORF was 
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Figure 5.7. Complementation of cidI2L by p REP I-CidI2 is partial. The 

centromere silencing defects of csp!O are complemented by a plasmid, pAL-cidl2, 

which was recovered from a screen using a yeast high-copy genomic library (shown in 

Figure 4.9b as plasmid A). 	pAL-cid 12 complements the silencing defect at 

otrIR(SphI)ade6 in both csplO and cid12/i strains. However, using this marker gene, 

only very slight restoration of silencing is observed when either csplO or cidI2L is 

transformed with the pREPI-cidl2 plasmid, showing further evidence that 

misexpression of Cid 12 is detrimental to silencing at centromeres. 
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PCR amplified using proofreading Taq from the pREPl-cid12 dada  plasmid with 

primers which have 80 bp homology to either side of the endogenous c1d12 

ORF. This was co-transformed into a c1*d12::iira4 knockout strain along with 

a pLEU2 plasmid in order to recover transformants. Colonies which were 

leu+ and FOA resistant, and therefore should have the iira4 gene replaced 

by the mutated PCR fragment, were selected and sequenced for the presence 

of the mutations (Figure 5.8). The mutations changed codon 77 from CAT to 

GCT and codon 79 from GAC to GCT, both causing a D to A change (Figure 

5.8). The mutant strain is therefore named cid12. 

5.2.7 Phenotypes of the cid12 dad,  mutant 

Analysis of the c1d12d  mutant was carried out to examine its phenotypes. 

The cjd12 dad,  mutant is sensitive to the microtubule poison TBZ to the same 

extent as a cid12A mutant (Figure 5.9a). In addition, neither the cid12A or the 

cid12 dd,  mutant are able to synthesise detectable centrorneric siRNAs just like 

the csp1O 12  mutant and other mutants in components of the RDRC (Figure 

5.9b). 

Analysis of non-coding RNA transcripts originating from the centromere 

shows that all of the mutants in components of the RDRC and the c1d12' 

mutant accumulate these transcripts. 	hrrlA consistently shows less 

centromere transcripts than the other components, perhaps suggesting that 

some of the transcripts may be processed or that in an hrrlA strain fewer 

transcripts are produced (Figure 5.10). 

It is possible that the c1d12 mutation affects silencing but not chromosome 

segregation. To determine if the cid12 dada  mutant affects segregation to the 

same degree as cid12A chromosome segregation was quantified. The csp1O' 12  

mutant has previously been shown to have high rates of chromosome 

missegregation and was used here as a positive control (Ekwall et al., 1999; 

Pidoux et al., 2000). As expected, the cid12A mutant shows a similar 

percentage (around 20%)  of lagging chromosomes on late anaphase spindles 

as the csp1O' 12  mutant (Figure 5.11a and b). The c1d12' mutant shows 
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Figure 5.8. Generation of a putative catalytically dead genomic 

cidI2 mutant. A strain with CidI2 knocked out with the ura4 was 

transformed with a mutated Cid 12 PCR product. The PCR product was mutated 
at codon 77, GAT to GCT, and codon 79, GAC to GCT, to produce an aspartic 

acid to alanine change in both cases. The cidl2ei strain was co-transformed with 

a LEU2 plasmid and the mutated ORF, and transformants which were leu+ and 
FOA resistant were selected. These were then tested for the presence of the 
ORF by PCR and then sequenced to ensure the correct mutations were present. 

These mutants were called cidI2ddcbQ. 
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Figure 59, cidI I2d mutants display slmlar phenotypes 
to the null mutant, (a) cidI2° mutants are sensitive to TZ. 

(b) cIdI2d mutants are unable to synthesise centromeric sIRNJAs, 

160 



CHAPTER 5:Investigating the role of the putative poly(A) polymerase Cidi2 

in RNAi- mediated heteroc h romatin formation 

2.4 Kb— 	W qPW 

1.8 Kb- 	As V V 	
dg probe 

0 
0.6 Kb- 

adh I'  

Figure 5.10. Cid 1 211"" mutants accumulate centromere 

transcripts. Mutants in each of the RDRC components 

accumulate centromere transcripts. hrrIL consistently shows lower 
levels of accumulation than the other components. 	CidI2dbodo 

accumulates transcripts to the same levels as cid12ii. 
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Figure 5.11. Cid I 2dIdI  mutants display chromosome segregation 

defects. (a) Cells were stained with a-tubulin to mark spindle microtubules 

and DAM to stain DNA. Wild type cells show normal chromosome 

segregation whilst csplO, cidI2L and cid12'° mutants all display lagging 

chromosomes. (b) Quantification of lagging chromosome analysis shows that 

wild type cells display no lagging chromosomes on late anaphase spindles but 

csplO and cidI2/2 have around 20%. CIdI2dadi  mutants show a slightly lesser 

defect with around 16% lagging chromosomes. 200 cell were analysed for each 
sample. Scale bar = 5iM. 
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similar but slightly fewer lagging chromosomes (16%) than the c1d12A or 

cspi ocd12  mutants. 

5.2.8 Expressing epitope-tagged cid12' ada 

As no antibodies to Cid12 were available, the mutated gene was tagged in 

order to carry out biochemical analysis and to check the stability of the 

mutated protein in the cell. Cid12 has previously been shown to associate 

with splicing factors therefore it was proposed to FLAG-tag the Cid12 

protein in order to compare the effect of this mutation on its interactions with 

the wild type protein. The wild type c1d12 gene had previously been FLAG-

tagged by Alexander Kagansky (Allshire Lab). The mutated c1d12' gene 

was tagged using the same strategy. Briefly, the pFA6a-FLAG-NATMX6 

vector was used as a template in a PCR reaction containing primers with 80 

bp homology just upstream and downstream of the STOP codon of the 

mutated cjd12 gene. The PCR product was transformed into the c1d12 

mutant and cloNAT resistant colonies were selected. These were screened 

by PCR for insertion of the FLAG tag and sequenced to ensure no further 

mutations had occurred at any stage in the Cid12 ORF or tag (Figure 5.12). 

Colonies which were positive for the FLAG tag by PCR were analysed 

further. A c1d12 dad,  -FLAG strain was tested for TBZ sensitivity as shown in 

Figure 5.13a. The c1d12" -FLAG mutant may be expected to behave as a null 

mutant and indeed the mutant is sensitive to TBZ, like c1d12A (Figure 5.13a). 

Western blotting was carried out to determine the protein levels of wild type 

and mutant protein. Wild type Cid12-FLAG protein is readily detected on a 

western blot (Figure 5.13b). As the FLAG antibody produces a cross-reacting 

band at the size predicted for the Cid 12-FLAG protein, the FLAG-tagged 

proteins were first enriched using M2-FLAG agarose and eluted with 

peptide. Unfortunately, no c1d12 d,d,  -FLAG protein could be observed (Figure 

5.13b). This could mean that cid12' protein is itself unstable or that the tag 

causes the mutant protein to become unstable. 

163 



CHAPTER 5:Investigating the role of the putative poly(A) polymerase Cid12 

in RNAi- mediated heterochromatin formation 

80 bp homology 	 80 bp homology 

CX 	 upstream of STOP 	 downstream of STOP 

PCR 	 /cidI2 

cidI2' 	 FLAG 	CI0NATR 

Figure 5.12. Tagging the cidI2dada  mutant. 
A PCR product using a vector based on the pFaA-FLAG-NAT cassette as a template 
was made with 80bp homology both up and downstream of the cid12 d,I  ORF. 

cIoNAT resistant colonies were selected and checked by PCR for the presence of 
the FLAG tag. 
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TBZ 
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WT 

cidI2L 

cid! 2-FLAG 

Cjd!2d0dFLAG 

(b) 

49kD 	 anti-M2 FLAG 
HRP-coupled 
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Figure 5.13. Absence of CIdI2da protein suggests 

that mutant protein is unstable. (a) Wild type CidI2 was 

FLAG-tagged by Alexander Kagansky. cidI2'°'° was similarly FLAG-

tagged on the C-terminus. cid 12-FLAG grows as wild type on TBZ 

media and CidI2cb0dFLAG is TBZ sensitive. (b) Western blotting 

with anti-M2 FLAG antibody (Sigma) shows that wild type C012-

FLAG is expressed but CIdI2dld0 FMG is not. 
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To test whether the cid12 dada  protein was unstable due to the FLAG tag, 

another tag was substituted (Figure 5.14a). A TAP tag was inserted at the C-

terminus of the ORE and western analysis carried out to check for the 

production of protein. However, changing the tag on the mutant did not 

appear to make any difference and no cid12-TAP protein was detectable 

although wild type protein was observed (Figure 5.14b). To combat these 

problems, full-length Cid12 has been sent for immunisation to produce 

antibody against the protein and this is ongoing at the time of writing. 

5.2.9 In vitro characterisation of the nucleotidyltransferase activity of 

recombinant Cid12 proteins 

Mutation of the putative catalytic residues of Cid12 appears to render the 

protein unstable in S. pombe. Recombinant Hexahi sti di ne- tagged Cid12 wild 

type and c1d12(ld1  mutant proteins were expressed in E. colt and purified by 

nickel chelate chromatography. Coomassie stained gels of purified His-

tagged Cid12 and c1d12' protein demonstrate that both the mutant and wild 

type protein are expressed and appear to be stable in E. coli (Figure 5.15). 

The identity of the proteins were confirmed by MALDI mass spectrometry 

(Andy Cronshaw, University of Edinburgh). 

As Cid12 contains a putative nucleotidyltranferase domain it seemed likely 

that, like Cidl, Cid12 would possess ATPase activity. The assay used takes 

advantage of the fact that ATP hydrolysis is coupled to NADH oxidation 

which causes a decrease in absorbance at 340mn. This pathway is summarised 

in Figure 5.16a. Hexahistidine-tagged Cidl plasmid was a kind gift from 

Chris Norbury. Cidl shows a modest ATPase activity, confirming published 

results, whereas both wild type and mutant Cid12 protein show levels 

equivalent to background (Figure 5.16b) (Read et al., 2002). This assay was 

carried out in the presence and absence of an RNA substrate but in both 

cases, Cid12 proteins failed to display any detectable ATPase activity (Figure 

5.16b). It is possible that partner proteins are required or that in vivo 

posttranslational modification, such as phosphorylation, of the substrate is 

needed to activate Cid12. 
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Figure 5.14. Tagging the CjdI2(i0  mutant. (a) The FLAG tag of 
cjdl2dada was replaced by a TAP tag. A PCR product was made using a 
vector containing the TAP tag and a kanamycin resistance gene as a template 

with 80 bp homology either side of the cidI2d0c0 STOP codon. This was 

transformed into the FLAG tagged strain and colonies which were cIoNAT 
sensitive and kanamycin resistant were selected. These colonies were then 
analysed as before by PCR to check for the presence of the TAP tag and the 

absence of the FLAG tag. (b) cidI2°-TAP protein is not detectable by 

western blotting with peroxidase anti-peroxidase antibody compared to 

cid /2-TAP. 

167 



C1-!AJ?[ER 5:investigating the role of the putative poly(A) polymerase Cid12 

in RNA1- mediated heterochromatin formation 
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48.8 kD 

37.1 kD 

Figure 5.15. Expression of recombinant Cid 12 
proteins. 
Coomassie stained gels showing Cid 12 proteins His tagged at the 
C-terminus. Cid 12 has a molecular weight of 38.5 kD. These 
proteins were expressed and purified from E. coil and their identity 

confirmed by mass spectrometry. 
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Figure 5.16. Cid 12 does not display ATPase activity. (a) ATP 

hydrolysis and NADH oxidation are coupled. NADH oxidation causes a 
decrease in absorbance at 340 nm. (b) Cid I shows a modest ATPase activity 
in the absence and presence of an RNA substrate. Cid 12 proteins show no 

detectable activity under these conditions. 
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5.2.10 In vitro assays for poly(A) polymerase activity of recombinant Cid12 

proteins 

Several members of the Cidi-like protein family have been documented to 

display poly(A) polymerase activity (Wang et al., 2000; Win et al., 2006). To 

test whether recombinant Cid12 proteins have any poly(A) polymerase 

activity, a standard polymerase assay was used. In brief, recombinant 

proteins were incubated with a 32P end-labelled RNA substrate in the 

presence of individual nucleotide triphosphates. To begin with, a synthetic 

18-mer RNA oligo was used as a substrate. Reactions were incubated at 37°C 

for 1 hour, phenol/ chloroform extracted, run on a denaturing urea gel and 

autoradiographed. Commercially available poly(A) polymerase (PAP from 

USB) and recombinant Cidi protein were used as positive controls. 

However, using these conditions and a standard buffer in which Cidi is 

known to display activity (see Materials and Methods 2.6.9), Cid12 proteins 

displayed no detectable activity (not shown). 

A variety of parameters were altered in order to find experimental conditions 

that may be optimum for Cid12 activity. To begin with, all four nucleotide 

triphosphates were added to the reaction and compared to reactions where 

only ATP was removed (Figure 5.17a and b). As different buffers have been 

published with the other Cidl family members which have shown poly(A) 

polymerase activity these buffers were also tested. A poly(A) polymerase 

assay using a buffer containing 0.7 mM MnC12  and 15 mM MgCl2  is shown in 

Figure 5.17a. Cidi shows polymerase activity both in the presence and 

absence of ATP (+ and - respectively) but Cid12 proteins display no 

detectable activity. Initially, Cidi was characterised as a poly(A) polymerase 

but more recently it has been shown to form poly(U) tails which accounts for 

its activity in the absence of ATP (Rissland et al., 2007). Altering the buffer 

conditions to contain only 0.5 mM MnCJ2  causes Cidi activity to become 

more robust than in the presence of magnesium but Cid12 again showed no 

activity. 

Different polymerases have been shown to have varying requirements for 
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Figure 5.17. Poly(A) polymerase activity of Cid 12. 

(a) 32  P end-labelled single-stranded siRNA was used as a 

substrate for poly(A) polymerase reactions. 	Cid I shows 

modest poly(A) polymerase activity in buffer containing 0.7 mM 

MnC12  and 15  mM  MgCl2  but Cid 12 shows no activity. -F 

denotes reactions containing all NTPs, - denotes reactions 
containing all NTPs apart from ATP. (b) The same reaction 

set-up as above but buffer contains only 0.5 mM MnCl2  and no 

magnesium. In this instance Cid I activity appears more robust. 
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magnesium and manganese. However, manganese is known to affect the 

fidelity of DNA polymerases. A magnesium gradient was carried out using 

Cidl and Cid12 to determine if Cid12 activity required different ion 

conditions from Cidl (Beckman et al., 1985). Cid12 shows no poly(A) activity 

at the concentrations of magnesium tested, whilst Cidl shows some activity 

at all tested concentrations (Figure 5.18). In addition, Cidl is found to show 

most activity in buffer containing only manganese but this may be because 

manganese encourages promiscuous incorporation of NTPs (Goodman et al., 

1983). 

It has been shown in mammalian splicing assays that the yield of RNA 

products is greatly enhanced when potassium chloride is substituted by 

potassium glutamate or acetate (Reichert and Moore, 2000). This could be 

due to the relative physiological concentrations of the ions (Leirmo et al., 

1987). A potassium glutamate gradient was performed in order to test the 

effect of this on the Cid proteins. To begin with, the gradient was tested on 

PAP and Cidl as no activity had yet been observed with Cid12. This 

demonstrated that in buffer containing 80 mM potassium glutamate as 

opposed to 40 mM potassium chloride, Cidl showed more robust activity 

(Figure 5.19a). PAP showed variable activity as has been seen previously 

when using any buffer other than that commercially provided. However, 

altering the potassium concentration had no effect on Cid12 and again no 

poly(A) activity was observed under the conditions tested (Figure 5.19b). 

It is possible that Cid12 may require a specific type of RNA substrate in order 

to produce enzymatic activity. Therefore, in addition to altering the buffer 

composition in the poly(A) polymerase assays, a variety of RNA substrates 

were tested. Originally, a short single-stranded 18-mer synthetic oligo was 

used in all assays. A poly(A) polymerase assay using a short synthetic 20-

mer blunt-ended dsRNA was performed (Figure 5.20). Cidl shows some 

activity but Cid12 does not. A short synthetic dsRNA with 2 nt overhangs to 

mimic a naturally occurring siRNA was also used in the same assay and 

showed the same result (not shown). 
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Figure 5.18. Altering the magnesium concentration 
does not produce poly(A) polymerase activity with 

Cid 12. A magnesium gradient compared to manganese containing 

buffer using a short single-stranded RNA as a substrate. Cid I 
shows robust poly(A) activity in the presence of 5 mM to 15 mM 
magnesium but the greatest activity is observed in buffer containing 
manganese. Cid 12 fails to show detectable activity under any of 

the conditions assayed. 
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Figure 5.19. Substituting potassium glutamate for potassium chloride 
does not produce poly(A) polymerase activity with Cid 12. Splicing assays 
demonstrate that potassium glutamate increases the yield of RNA substrates (Reichert and 

Moore, 2000). (a) shows a gradient comparing potassium chloride to potassium glutamate. 
This demonstrates that the poly(A) polymerase activity of Cid I is increased when 

potassium glutamate is used. (b) A buffer containing 80 mM potassium glutamate was 

used in the same poly(A) assay as described previously. Cid I shows robust poly(A) 
activity in this buffer but Cid 12 proteins display no activity. 
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Figure 5.20. Altering the RNA substrate does not 
produce poly(A) polymerase activity with Cid 12. Using 
a dsRNA substrate, Cid I shows modest poly(A) activity. Cid 12 

shows no activity. 
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It is also conceivable that perhaps Cid12 requires some particularly modified 

RNA as a substrate and therefore complex mixtures of native RNA prepared 

from wild type S.poinbe were used as substrates. These were split into two 

fractions; a fraction of total RNA including ribosomal RNA and transcripts 

above around 200 nts and a fraction of small RNAs including tRNAs and 

siRNAs. Data shown here used the small RNA fraction as the substrate 

mixture, although preliminary results with the large RNA fraction were 

similar. Poly(A) polymerase assays were carried out slightly differently, 

using 32P labelled aATP and testing for incorporation both by running on an 

acrylarnide gel to look for size differences and by scintillation counting. In 

this instance, preliminary data suggests that slightly increased incorporation 

of ATP was observed with Cid12 by scintillation counting but this activity 

was never robust and not consistently reproducible (Figure 5.21). This 

requires more rigorous testing. 

In several of the assays shown, Cid12 appears to degrade the substrate rather 

than cause polyadenylation. This is characterised by smears or bands of 

degraded substrate and decrease in the substrate band. This may indicate 

that Cid12 may possess nuclease activity although as yet this has not been 

tested. 

Cid12 has been shown to form a complex with Rdpl and Hrrl. It is possible 

that Cid12 is only active when associated with these, or other, binding 

partners and thus no activity is seen with recombinant Cid12 alone. This is 

entirely plausible as C1d12 itself is not known to possess an RNA binding 

motif. It has been documented that other poly(A) polyrnerases such as g1d-2 

in nematodes and mammalian cells cannot act alone and may require a 

partner to first bind the RNA substrate and thus allow polyadenylation 

(Kwak et al,, 2004). To address this issue, a TAP purification of 002-TAP 

protein was undertaken in order to isolate the RDRC and any other binding 

partners of C1d12. The idea was to use this extract in a poly(A) polymerase 

assay and see if 0012 indeed requires to be in a complex in order to produce 

activity. Ci012-TAP purifications yielded only a single band of the size of 
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Figure 5.21. Poly(A) polymerase assay using a complex mixture 
of substrates. Incorporation of nucleotide was assayed by scintillation 
counting. A complex mixture of RNAs extracted from S. pombe were used as a 
substrate and 32P-ctATP was added. Reactions were then TCA precipitated and 

incorporation was counted. It appears here that Cid 12 has some activity 
however, this was not consistently reproducible. No protein was included in 

all experiments as a control. In one experiment a no substrate and Swi6 and 
SetI3-His tagged proteins were included as controls against promiscuous 

binding of nucleotide. 
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Cid12 protein by silver staining so strains which have Rdpl-TAP were 

utilised. A TAP purification was performed under conditions known to 

isolate the RDRC using a strain containing Rdpl-TAP and Cidl241A and 

another strain with Rdpl-TAP but Cid12 deleted. These extracts were 

subsequently used to carry out poly(A) polymerase assays under a variety of 

conditions as described above. However, no activity was observed under 

any of the conditions tested although this has not been rigorously 

investigated. 

5.2.11 Polyadenylation of centromere transcripts appears unaffected in 

cidTI2A 

If Cid12 is indeed a poly(A) polyrnerase it seems reasonable to assume that 

one of its targets would be the centromere repeat transcripts. Centromere 

transcripts have previously been shown to be polyadenylated and Cid12 has 

been shown to associate with these transcripts (Djupedal et at, 2005; 

Motamedi et al., 2004). In order to address the function of Cid12 from 

another angle, poly(A) RNA was extracted from RDRC mutants to see if any 

gross changes could be observed by northern analysis as it may be that the 

poly(A) tails of centromere transcripts would be shortened in a cid12A 

mutant. Strand-specific RNA probes were used so as to distinguish between 

forward and reverse strands (Figure 5.22). As previously observed, wild 

type shows very little accumulation of centromere transcripts whereas dcrlA 

shows significant accumulation. In previous northern analysis using a DNA 

probe which recognizes both centromere transcripts, little difference in 

intensity of bands is observed between different RNAI mutants, apart from 

hrrlzt which consistently appears to accumulate fewer transcripts than other 

mutants. It is apparent that rdplzl accumulates slightly more transcripts than 

a dcrlA mutant although this is more pronounced using the 5' probe than the 

3' probe (Figure 5.22). However, these observations must be quantified in 

order to properly examine the levels of transcripts in different mutants. In 

addition, one can observe variations between accumulation of transcripts of 

different sizes. The reason for this is as yet unclear but may reflect the 

varying roles of the RNAi components within the pathway. No significant 
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Figure 5.22. PoIy(A) transcripts do not show any gross changes in 
cidI2i. Strand-specific northern analysis demonstrates that cid12ii does not show any 
gross changes in centromere transcripts with regards to polyadenlyation. However, this 

method shows that mutants may vary in the amounts of transcript they accumulate as 
hrrILl appears to accumulate much less than other components of the RDRC. 	179 
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differences were seen in a c1d12zl mutant either in the total or the poly(A) 

RNA fraction as compared to other RDRC mutants which indicates that 

Cid12 may have little or no effect on polyadenylation of centromere 

transcripts (Figure 5.22). 

5.2.12 Cid12 is unable to complement the S. cerevisiae mutant trf4A 

Cid14 is the functional homolog of the S. cerevisiae poly(A) polymerases 

Trf4/Trf5 (Buhier et al., 2007). Trf4 is part of the TRAMP complex which is 

required to polyadenylate RNA transcripts in order to target them for 

degradation via the exosome (LaCava et al., 2005; Vanacova et al., 2005). 

Deletion of both Trf4 and Trf5 is lethal however, the enzymatic activity of 

Trf4 is not required for cell viability as trf5A cells which contain mutations 

within the catalytic domain of Trf4 are still viable (Castano et al., 1996; Wyers 

et al., 2005). Trf4 and Trf5 are thought to have redundant roles within the 

yeast cells. The same could also be true for Cid12 and Cid14. 

To investigate whether Cid12 could complement a known poly(A) 

polymerase mutant, the following strategy was adopted. The Cid12 ORF 

was cloned into the S. cerevisiae vector pNOPpA which contains a LEU2 

marker and an N-terminal TAP tag (a gift from Jon Houseley). This was 

transformed into a trf4A strain which expresses Trf5 from a galactose 

promoter which grows well on media containing galactose but fails to grow 

on media containing glucose. In addition, this strain was transformed with 

plasmids containing wild type Trf4 and catalytically dead Trf4, both of which 

should complement loss of viability when grown on glucose media. Both 

forms of Trf4 are able to complement the trf4A strain but Cid12 shows no 

such complementation (Figure 5.23a). Cid12 protein is expressed at 

comparable levels to Trf4 and therefore the lack of complementation is not 

due to lack of protein (Figure 5.23b). This indicates that Cid12 is unable to 

produce the poly(A), or indeed any, activity required for S. cerevisiae viability 

in the absence of Trf4 and Trf5. 
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Figure 5.23. Cid 12 cannot complement an S. cerevisiae trf4A 

strain. (a) Deletion of both Trf4 and TrfS is lethal in S. cerevisiae. The strain 

used here has Trf4 deleted and Trf5 under the control of the galactose 
promoter and is therefore not viable when grown on media containing 
glucose. Transformation of wild type or catalytically dead Trf4 can rescue the 
loss of viability but Cid 12 cannot. (b) Western analysis demonstrating that 

TAP-tagged Cid 12 protein is produced to levels equivalent to TAP-tagged 

Trf4. 
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5.2.13 Microarray analysis 

In order to attempt to identify additional potential RNA targets of Cidl2 and 

to perhaps obtain further insight as to its role in viva, microarray analysis 

was undertaken in collaboration with the lab of Karl Ekwall (Stockholm). 

RNA was made from wild type and c1d12A strains which was used to probe 

the S. pombe Tiling 1.0FR array (Affymetrix) (Djupedal, I and Ekwall, K., 

Karolinska Institute, Stockholm). Unfortunately, no significant differences 

were observed other than the increased centromere transcripts previously 

observed by RT-PCR and northern analysis (Figure 5.24). This is surprising 

as it is known that Cid12 associates with numerous splicing factors and may 

have been expected to play a more general role in RNA processing. 

However, it could be that the differences in transcription may be too small to 

be deemed significant or that this technology is not sensitive enough to 

detect any changes. Nonetheless, it would seem from this data that the main 

role of Cidl2 is at regulating the levels of centromere transcripts. 

5.2.14 Mass spectrometry analysis of Cid12 

Mass spectrometry analysis of Cidl2-FLAG purifications has been 

undertaken in collaboration with Alexander Kagansky (Allshire Lab) and 

Juri Rappsilber (WTCCB, University of Edinburgh). The results of 3 such 

purifications are documented in Table 5.1. 	It has previously been 

documented that Cidl2 interacts with splicing factors in an rdplA 

background (Motamedi et al., 2004). In the analyses shown here, it is clear 

that Cid12 associates with numerous splicing factors. 	Co- 

immunoprecipitation experiments have been performed to try and confirm 

several of these interactions (pers corn Elizabeth Bayne, Alishire Lab). 

However, these have been unsuccessful which may indicate that the 

Cid12/splicing factor interactions are transient or may reflect the relative 

amounts of Cidl2 to splicing factors within the cell. As well as splicing 

factors, Cid12 also displays interactions with various RNA-binding and 

processing factors. The fact that Cidl2 interacts with several RNA binding 

proteins supports the idea that its activity may be dependant on its 

LL 



CHAPTER 5:Investigating the role of the putative poly(A) polymerase Cid12 

in RNAi- mediated heterochromatin formation 

centromere I 

WT 
— 	 •: 	 L_I_ 

4 	PcI 

dg dh imr cc imr dh dg 

centromere II 

WPM 
WT 

---- 

dh dg dh dg imr 	cc 	imr dg dh 

centromere

IF  

III 

-•• 	 - ww 	 w- - 

	 WT 

Ph 	imr 	cc imr 	 L dg dh J 

Figure 5.24. Microarray analysis of cidI2ji. 
A comparison of the transcription of the centromeres between and cid I 25 (yellow) and 
wt (blue). This data shows the mean of the array performed 3 times with seperate 
samples. Green bars shows annotated genes. The position of the centromere domain 
bars are approximate. 
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Protein 
Average 
peptide 
number 

Splicing factors 
Brr2 22 
Cwfl I 20 
Cdc5 17 
Cwf4 Ii 
Cwf3 9 
CwfI3 7 
Prpl7 7 
Cwfl7 6 
Cwf5 6 
Cwf7 6 
SPBC3E7. 13 splicing factor, 
SYF2 family 6 
Cwf2 5 
CwfI2 5 
Leal 4 
CwfI9 4 
Prp22 3 
Cwf2l 3 
PrplO 3 
Cwfl5 3 
Prp43 2 
Cwfl8 2 
RDRC 

4 
Gdi2 j 3 
Heatshock proteins 
Hspl6 4 
Ssal 4 
RNA 
Rsdl 3 
Puf3 3 
SPACI486.03 RNA-binding 3 
SPAC20114.09 ATP-dependant 
RNA helicase 2 
Other 

lvi 4 
gpd3 4 
ckal 3 
cypi 3 

Table 5.1 Mass spectrometry of Cid 12-FLAG. 
Mass spectrometry analysis of Cid I 2-FLAG purifications shows that Cid 12 
associates with many splicing factors as well as the RDRC. In addition, Cid 12 
also associates with proteins involved in RNA processing as well as several 
others. This table shows the average number of peptides identified in three 

experiments. Of particular interest is prp JO, marked with an asterisk, as this 
have been shown to affect heterochromatic gene silencing at centromeres 
(Elizabeth Bayne, Allshire Lab). 
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association with a binding partner. The presence of RNA-helicases within 

the purifications also may support a role for Cid12 in more general RNA 

processing. These interactions must be confirmed and their relevance is still 

under scrutiny but nonetheless these analyses offers some insights into the 

role of Cid12 within the cell. 

5.2.15 Cid12 may play a role at the central core 

It has recently been documented that as well as transcripts originating from 

heterochrornatic outer repeats at centromeres, a low level of transcription 

also occurs across the central core (ES Choi and R Allshire, pers. comm). 

Preliminary results from qRT-PCR analysis show that cid12A cells 

accumulate a significant amount of these central core transcripts compared to 

other Cidl-family mutants and a component of the nuclear exosome, rrp6A 

(Eun Shik Choi, Allshire Lab) (Figure 5.25b). These transcripts are not 

detectable by microarray and thus would not have been detected in the 

experiment detailed in 5.2.13. 

To test whether Cid12 plays a role in central core silencing, TMI::arg3 and 

TM1::i,ra4 gene insertions were used. Initially, cid12A was compared to other 

Cidi-family member deletions containing the TMTI::arg3 insertion to test 

alleviation of silencing. It appears that cid12A is the only member of the 

Cidl-family to alleviate silencing at the central core (Figure 5.26a). This 

alleviation is comparable to sim3, a mutant isolated for its ability to alleviate 

silencing at the central core. To ensure that this is not specific to the argY 

gene and to examine if other members of the RDRC act in the same fashion, 

the TM1::ura4 insertion was also used. It appears that with respect to 

TM1::arg3, dcrlA, cid12A and cspTlO alleviate silencing at the centromere 

although in this experimental set-up, the effect of c1d12A is not so strong 

(Figure 5.26b). With respect to TM1::ura4, dcrlA does not appear to alleviate 

silencing but all of the RDRC mutants fail to grow on FOA and grow 

strongly on —ura plates (Figure 5.26b). However, this may simply reflect a 

slight alleviation at the central core as c1r4A, swi6ii and rikTlLt display this 

same phenotype but ura4 transcripts are not seen to increase (Ekwall et al 
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Figure 5.25. qRT-PCR analysis of central core transcripts. 
(a) Schematic diagram showing the position of central core primers specific to 
centromere I used in qRT-PCR. (b) qRT-PCR analysis using RNA primer with both 
random hexamers and oligo dT. cidI2/ and cidI2L1rrp6L both show a significant 
accumulation of transcripts originating from the central core (Eun Shik Choi). 
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Figure 5.26. cid12A appears to alleviate silencing at the central 

core. 	(a) A schematic diagram showing the marker gene insertions, 

TMI(NcoI):arg3 and TMI(NcoI):ura4. (b) cid12.6 appears to alleviate silencing of 

TM I (Nco I):arg3 at levels comparable to sim3, a mutant known to affect central 

core silencing. (c) Components of the RDRC appear to alleviate silencing at the 
central core. This may be a non-specific effect as other heterochromatin 

components are known to appear to allevate silencing of TMI:ura4 with no 

increase in ura4 transcription. 
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1995). It may be that a very slight increase in zira4 transcription is enough to 

allow increased growth on —ura plates. 

Another way to test the integrity of the central core is to examine Cnpl 

occupancy by ChIP. In many mutants which have defective central core 

silencing, Cnpl fails to associate correctly. ChIP was carried out on the 

components of the RDRC to investigate the association of Cnpl with the 

central core. No change in Cnpl association is evident in any of the RDRC 

components which may be expected as Cnpl has been shown to be localised 

correctly, at least in rdpTlA and cid12A mutants by immunofluorescence 

(Figure 5.27 and Figure 4.13). Additionally, it is known that in mutants 

which show comparatively high levels of central core transcripts Cnpl levels 

are unaffected, indicating that it may be transcription and not the transcripts 

themselves which is important for Cnpl deposition (Eun Shik Choi, Allshire 

Lab). 

5.3 Discussion 
I have demonstrated that Cid12 is required to maintain silencing of marker 

genes inserted at centromeric outer repeats. Cid12 may also affect silencing 

at the central core but this must be investigated more fully. cid12A cells 

accumulate non-coding centromere transcripts and fail to generate 

centromeric siRNAs. In addition, cid12A cells display defective chromosome 

segregation. The enzymatic activity of Cid12 remains unknown and I have 

as yet failed to demonstrate any ATPase or poly(A) polymerase activity of 

the protein. Cid12 is unable to complement an S. cerevisiae trf4A/trf5t. strain 

and therefore may lack poly(A) polymerase activity. Cid12 associates with 

splicing factors although its direct interactors and function with respect to 

splicing is not known. 

Cid12 clearly contributes to RNAi-mediated heterochromatin formation in S. 

poinbe. However, its exact role has yet to be identified. Cid12 may be 

required for the specific processing of non-coding transcripts originating 
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Figure 5.27. Cnp I associates with the central core in RDRC 
mutants. (a) Schematic representation of primers used in this assay. (b) 

Cnp I is able to associate with the central core in all of the RDRC mutants at 
a level comparable to that observed in wild type cells. 
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from heterochromatin or may aid with the provision of a template for Rdpl 

(Figure 5.28). In light of recent evidence that Cid14 may act to degrade 

heterochromatic transcripts it is possible that these proteins perform 

overlapping roles within the cell (Bayne et at., 2007; l3uhler et al., 2007). 

So far, the enzymatic activity of Cid12 has proven elusive. It is possible that 

Cid12 may be a DNA polymerase or may possess nuclease activity, although 

these activities remain to be tested. Several poly(A) polymerase assays 

indicate that Cid12 may in fact degrade the substrate rather than 

polyadenyate it but it must be confirmed that this effect is due specifically to 

Cid12 rather than a contaminant of the protein extract. One explanation as to 

why no Cid12 activity has been found may be that it requires other proteins 

for its activity. Indeed, robust poly(A) polymerase activity of Trf4 requires 

other members of the TRAMP complex to bind the RNA substrate as do the 

mammalian GLD-2 homologs which require an RNA binding protein for 

their activity (Kwak et al,, 2004; LaCava et al., 2005). However, the fact that 

catalytically dead Trf4 is still able to complement the trf4A/tif54 mutant 

suggests that Trf4 may possess another activity which can compensate for 

the loss of its poly(A) polymerase activity. It would be interesting to carry 

out eletrophoretic mobility shift assays to examine whether Cid12 alone or 

with its binding partners bind RNA. 

Initial attempts to use a TAP-purified Cid12 complex for S. pombe in a 

poly(A) assay to look for elongation of an RNA oligo were unsuccessful 

although this approach is worth pursuing. It could be that conditions used 

for purifying Cid12-FLAG protein for mass spectrometry may be useful with 

respect to poly(A) and ATPase assays. It may be that the function of Cid12 

differs when it is associated with splicing factors as opposed to the RDRC. 

Alternatively, it may be that Cid12 provides a link between the splicing 

machinery and the RNAi pathway as it has been demonstrated that splicing 

factors also affect siRNA production (Elizabeth Bayne, Alishire Lab). 

The cellular RNA targets of Cid12 remain elusive. One can presume that it 
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Figure 5.28. Possible roles of Cidl2. (a) siRNAs target an initial round of 

mRNA cleavage. Agol 'slices' the nascent transcript exposing the 3' end for 

polyadenylation by Cid I 2. This may stabilise the intermediate and allow siRNA 
amplification via Rdpl. (b) In the absence of Cid12, aberrant RNA accumulation 
could lead to activation of silencing pathways. Transcripts with short (or absent) 
poly(A) tails may allow production of 'aberrant' siRNAs thus titrating out factors 

required for efficient RNAi. 
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will act on the centromeric non-coding RNA but its action on these 

transcripts is still unknown. One way to investigate this would be to tether 

Cid12 to a piece of centromeric RNA and examine how/if the RNA changes 

with respect to polyadenylation and cleavage. Another way would be to pull 

down and identify the RNAs associated with Cidl2, and/or the RDRC 

although given that Cid12 also interacts with splicing factors it may be 

difficult to observe any specific effect. 

Cid12 has been demonstrated to interact with numerous splicing factors. It 

may be that Cid12 has several roles in the cell or acts on many RNAs as a 

general processing factor. If Cid12 acts on many transcripts, as one might 

expect from interactions with splicing factors, one would expect to see many 

transcripts either up or downregulated although this is not the case. Cid12 

could act on non-coding RNA transcripts which are expressed at a very low 

level and are therefore undetectable in comparison to the high levels of 

centromere transcripts observed. However, it has been proposed that a sub-

spliceosomal complex may act as a platform for siRNA amplification as 

mutations in specific splicing factors impairs processing of centromeric 

transcripts and siRNA production. Cid12 may interact with a specific pool of 

splicing factors to facilitate RNAi-mediated silencing. 

There are many questions remaining about the role of Cid12 within the cell. 

For instance, does a 'catalytically dead' Cid12 protein still associate with the 

other members of the RDRC and RITS complexes? Is the RDRC complex still 

capable of RNA polymerase activity or is Cid12 activity also required? It 

may be that the complex is unstable when Cid12 is mutated. In light of the 

fact that the Cid12'° mutant is unable to produce stable protein in S. poinbe, it 

is possible that the stability of the protein depends upon its interaction with 

binding partners or it may simply be that tagging at the C-terminus renders 

the mutant protein, but not the wild type. unstable. One would assume that 

if the instability of Cid12"' were due to gross misfolding that the protein 

would not be produced in E. coli but this is not the case. The production of a 

Cidl2 antibody will undoubtedly be useful in solving some of these issues. 
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However, it would also be beneficial to try and tag Cid12 on its N-terminus. 

More work is required to investigate and solve these issues. 

It would be interesting to investigate under which circumstances Cid12 

associates with proteins other than those in the RDRC and whether these 

interactions also impact on heterochromatin formation. The role of several 

splicing factors in heterochrornatic gene silencing is being investigated in the 

lab although efforts to identify with which factors Cid12 associates directly 

with have proven inconclusive (Elizabeth Bayne, Alishire Lab). This may be 

due to the fact that Cid12 may be expressed at much lower levels than the 

splicing factors, or may indicate that these interactions are transient. The 

answers to these questions will ultimately elucidate the role of Cid12 in 

RNAi-directed heterochrornatin formation in fission yeast. 
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 

Fission yeast centromeres are similar to their more complex metazoan 

counterparts in composition and organisation and therefore provide an 

excellent model for the dissection of centromere structure and function. 

Metazoan centromeres appear to be epigenetically regulated in that they do 

not seem to require a defined DNA sequence for their formation and 

kinetochores can be formed on 'non-centromeric' DNA (Karpen and Alishire, 

1997). However, it has been demonstrated in mammalians cells that de novo 

centromere formation requires the presence of a-satellite DNA containing 

binding motifs for the centromere protein CENP-B (Okada et al., 2007). 

Primary sequence may contribute in some way to define the site where 

centromeres are formed as centromere associated DNA is frequently AT-rich 

and highly repetitive (Sullivan et al., 2001). 

Heterochromatin is associated with regions of highly repetitive DNA, such 

as centromeres and telomeres. The heterochromatin structure is thought to 

contribute to genome stability by reducing recombination and transcription 

across these important regions (Buhier and Moazed, 2007). However, it has 

been demonstrated in plants that transcription occurs across centromeric 

repeats and induces DNA methylation of these repeats (Ebbs et at, 2005). 

Furthermore, RNA transcripts from cc-satellite DNA in human cells have 

been shown to be required for the correct localisation of centromere proteins 

(Wong et al., 2007). The outer repeats of fission yeast centromeres (and 

homologous regions) are transcribed and processed by the RNAi machinery 

which causes H3K9 methylation via Clr4 and effects silent chromatin 

formation at these regions (Buhler and Moazed, 2007). Paradoxically, it 

appears that transcription is a requirement for heterochromatin assembly 

and thus transcriptional repression. 

RNAi, or post-transcriptional gene silencing (PTGS), is a conserved 

phenomenon which occurs in mammals, plants and fungi and plays 

important roles in diverse processes such as chromatin remodelling and 
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antiviral defence (Hannon, 2002). In fission yeast, it is clear that the RNAi 

pathway feeds back onto chromatin to induce H3K9 methylation (Buhier and 

Moazed, 2007). In plants it has been demonstrated that genes may be 

silenced both transcriptionally and post-transcriptionally (Matzke et al., 

2001). It has been shown that siRNAs guide the methylation of homologous 

DNA sequences thus regulating both transgene and endogenous gene 

transcription (Matzke et al., 2007). Transcriptional gene silencing also occurs 

in Drosophila and C. elegans (Finnegan and Matzke, 2003). In human tissue 

culture cells it has been reported that siRNA can transmit DNA methylation, 

H3K9Me and transcriptional silencing to homologous promoter-CpG 

island/DNA (Bayne and Allshire, 2005). 

A general model now exists whereby dsRNAs are processed by RNaseIII Dcr 

proteins into siRNAs which become incorporated into RISC (or JUTS) and 

promote silencing via mRNA degradation, translational repression or 

chromatin remodelling (Filipowicz et al., 2005). However, there are many 

subtleties that are apparent in different organisms and in the way which 

distinct pathways induce gene silencing. Most organisms contain several 

copies of the key components of the RNAi pathway, Argonaute, Dicer and 

RNA-dependant RNA polymerase, and these different proteins are involved 

in specific pathways (Qi and Hannon, 2005). For instance, Arabidopsis has 

four Dicer-like proteins and two of these are known to produce siRNA 

populations of two discrete size classes (Qi and Hannon, 2005). Drosophila 

contains two Dcr proteins which are involved in generating siRNAs and 

miRNAs (Filipowicz et al., 2005). Fission yeast is an attractive model for 

dissecting events that occur during RNAi-mediated heterochromatin 

formation as it contains only one copy of each of the key components. 

The heterochromatic element of fission yeast centromeres has allowed the 

development of screens which utilise the transcriptional repression across 

this region as a readout for chromatin integrity and thus centromere 

function. In this thesis I have detailed the identification and analysis of 
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several mutants produced using such a screen. In addition, I describe in-

depth analysis of Cid12, a putative poly(A) polymerase required for effective 

RNAi-mediated heterochromatin formation at centromeres. 

6.1 Identifying novel factors affecting centromere function 

Silencing based screens to identify novel factors involved in centromere 

structure and function have proven to be highly successful. Previous screens 

for mutants that affect outer repeat silencing and silencing in the central 

domain (csp and sun mutants respectively) have resulted in the identification 

of genes that affect the integrity of these specialised regions within the 

centromere (Ekwall et al., 1999; Pidoux et al., 2003). The csp screen has 

uncovered previously unknown links between transcription, RNA 

processing as well as RNAi components, and heterochromatin formation 

(Djupedal et al., 2005; Volpe et al., 2003). However, as with many such 

screens, the identification of the affected genes has been a limitation. Several 

different approaches can now be employed to identify additional 

components involved in centromere function. 

The Shimoda library used to identify the csp mutants was chosen because it 

has a relatively small insert size and high level of genorne coverage (Tanaka 

et al., 2000). It is possible that the genes mutated in the uncloned csps, 1, 2, 6, 

11 and 13, have been disrupted during construction of the library and 

therefore these csps will not be identified in this way. However, it is more 

likely that the high-copy number of the genes affecting the csp mutants 

interferes in the silencing pathway and therefore these plasmids do not 

display complementation. Several other libraries have been used to try and 

identify the csps but the transformation efficiency has always been low 

compared with the Shimoda library and no complementing plasmids were 

identified. Mating the csp mutants with likely candidates is not helpful in 

this instance as upon self-mating the csp mutants variegate making genetic 

analyses difficult. However, the recent advent of high throughput 

sequencing technology makes it possible to sequence the entire genome of a 
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mutant in order to identify the affected gene. This approach is currently 

underway to uncover the identity of the remaining csps. Hopefully this will 

reveal as yet uncharacterised genes. 

Several other approaches can be applied and are indeed underway to 

identify additional factors involved in heterochromatin formation. A screen 

similar to the csp screen is currently being carried out (Fernke Simmer and 

Alessia Buscaino, Allshire Lab). A tester strain containing a marker gene 

within the centromeric outer repeats has been mutagenised using UV 

irradiation and temperature-sensitive colonies alleviating silencing at 36°C, 

but not at 25°C, have been isolated. This provides a practical way of 

regulating silencing in a particular mutant to follow the order of events over 

time. These are being further characterised and efforts are being undertaken 

to identify the mutated genes. 

Since the generation of the csp mutants, a commercial knockout library has 

become available (Bioneer). This library contains over 2700 non-essential 

genes knocked—out with a known marker gene. High throughput screening 

by mating of this library to a tester strain has identified a number of genes 

that affect centromere silencing to some extent. This includes expected genes 

such as clr4 but did not isolate all previously known factors. As well as 

transcription factors and DNA binding factors, several sequence orphans 

were found. Obviously these are of particular interest as they may be novel 

factors involved in heterochromatin assembly. Several of these can be 

examined further and some may well correspond to the genes affected in the 

cspll and cspTI3 mutants (Elizabeth Bayne and Dominika Bijos, Allshire Lab). 

An alternative approach to identify additional factors that may be involved 

in centromere function has been to use comprehensive analyses of affinity 

purified proteins by mass spectrometry. This approach has been used with 

great success to identify members of a particular complex (Buker et al., 2007; 
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Hong et al., 2005; Horn et al., 2005; Jia et al., 2005; Motamedi et al., 2004; 

Verdel et al., 2004). Weaker interactions with other factors can also be 

identified using less stringent conditions (Alexander Kagansky, Allshire Lab 

and Juri Rappsilber, University of Edinburgh). Members of each of the 

complexes known to be important for heterochromatin assembly, RITS, 

RDRC, HULC, CLRC, are being purified in order to identify interactions 

between complexes as well as factors not previously known to affect 

silencing. It is anticipated that this will help to build up a network of 

interactions in parallel with screens of knockout libraries. 

6.2 The csp genes are involved in RNAi-mediated heterochromatin 

formation 

6.2.1 RDRC and transcription 

The RNAi pathway in S. poinbe has been subject to extensive investigation. 

In Chapter 4, I described the identification of several of the affected genes in 

csp7, 9, 10 and 12. Rdpl, Agol and Cidl2, csp7, 9 and 10 respectively, have 

all been shown to be essential for heterochromatin formation at centrorneres. 

Rdpl and Cid12 are part of the RDRC complex which has been shown to 

interact with the RITS complex and associate with the non-coding 

centromeric RNA transcripts (Motamedi et al 2004). The RDRC also contains 

the putative helicase Hrrl. All of the components of the RDRC are required 

for the correct processing of centrornenic transcripts into siRNAs and 

therefore fail to form correct heterochromatin structures at centromeres 

(Motamedi et al 2004; Sugiyama et al, 2005). In addition, it has been shown 

that truncation of part of the conserved polymerase domain or point 

mutation in a predicted catalytic residue of Rdpl causes loss of 

transcriptional silencing and heterochromatin formation (Motamedi et al 

2004; Sugiyama et al, 2005). 	csp7 and csplO also display loss of 

transcriptional silencing and heterochromatin formation and as such behave 

as the null alleles. 
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Rdpl is required for efficient RNAi in C. elegcms, plants and fungi (Hannon, 

2002). Mammals and Drosophila lack any Rdpl homologs, but Drosophila S2 

extracts have been shown to possess RdRP activity (Lipardi et al., 2005; Stein 

et al., 2003). However, it may be that mammals can acquire such activity 

from viral RdRPs and it has been demonstrated in mouse oocytes that RdRP 

is not required for an effective RNAi pathway (Stein et al., 2003). In plants 

and C. elegans the RdRP proteins act to amplify the siRNA signal by utilising 

the mRNA target as a template (Sijen et al., 2001). In S. pombe, surprisingly 

little is known about the action of Rdpl and the RDRC compared to R1TS. It 

has been documented in vitro that Rdpl possesses RNA polymerase activity 

but the target of this activity, although assumed to be the centromeric 

transcripts, has not been defined (Sugiyama et al., 2005). It has been 

hypothesised that Rdpl may use the noncoding transcripts as a template for 

dsRNA generation thus providing a source for Dcrl-mediated siRNA 

amplification. However, it is also possible that the sense and antisense 

noncoding transcripts may anneal and in this way provide a source of 

dsRNA. 

The RDRC associates with both centromeric DNA and RNA (Motarnedi et al, 

2004; Volpe et al 2002). Many RNA processing events are linked to 

transcription, such as capping, splicing and polyadenylation (Neugebauer, 

2002). It may be that the RDRC plays a role in the regulation of centromere 

transcript levels either by causing their degradation via the action of Cid12 

(and splicing factors) or their amplification via the action of Rdpl. Cid12 is a 

putative poly(A) polymerase which associates with subunits of the 

spliceosome (Stevenson and Norbury 2006; Motamedi et al 2004, pers comm. 

Elizabeth Bayne and Alexander Kagansky, Allshire Lab). This may indicate 

a role for Cid12 in general RNA processing. The possible functions of Cid12 

will be discussed later in this chapter. 

As the RDRC also contains a helicase, Hrrl, it seems clear that the complex is 

somehow involved in RNA processing, at least of the non-coding 
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centromeric RNA transcripts. Hrrl belongs to the DEAD! DEAH box family 

of helicases which are involved in all aspects of RNA metabolism from 

transcription to RNA decay and nucleocytoplasmic transport (Motemedi et 

al, 2004). Deletion of Hrrl may cause accumulation of fewer centrornere 

transcripts than observed in other mutants in components of the RNAi 

pathway (see Chapter 5 Figure 5.22). Hrrl could aid transcription of the 

centromeric outer repeats by unwinding DNA and allowing RNAPII access. 

Alternatively, Hrrl may act to induce conformational changes in the RNA 

substrate of Rdpl and thus enhance its processivity. Furthermore, Hrrl has 

been found to associate with Agol, albeit in substoichometric amounts 

(Motamedi et al, 2004). In human cells, RNA helicase A has been shown to 

act as an siRNA loading factor for RISC, perhaps by unwinding the siRNA 

duplex (Robb and Rana, 2007). Also in human cells, the P68 helicase has 

been shown to be required for the unwinding of the let-7 microRNA 

precursor duplex but does not act upon a related siRNA duplex (Salzman et 

al., 2007). It may be that Hrrl is required to unwind siRNAs prior to their 

loading into Agol in the RITS complex. More analysis of both the RDRC and 

centromere transcription is required to address these issues. 

6.2.2 Argonaute complexes and small RNA 

Argonaute proteins have been shown to mediate siRNA-directed RNA 

cleavage in RISC complexes and siRNA-directed transcriptional silencing in 

RITS (Hammond et al 2001; Verdel et al 2004). In addition, Argonaute 

proteins mediate mIRNA-directed translational repression (Filipowicz et al., 

2005). The outcome of these processes is ultimately the downregulation or 

silencing of the target rnRNA message. This is the critical event in the RNAi 

pathway. Contrary to this, it has been shown that miRNAs are able to 

induce upregulation of translation during cell cycle arrest expanding their 

role in regulation of expression (Vasudevan et al., 2007) 

Argonaute proteins are essential for efficient RNAi in C. elegans, plants, fungi 

and Drosophila (Hannon, 2002). Complex metazoans contain several 



Argonaute proteins which have distinct functions. In Drosophila, which has 

five Argonaute proteins, Ago2 is required for siRNA-mediated RNAi and 

Agol is required for miRNA biogenesis and thus miRNA-mediated RNAi 

(Okamura et al., 2004). In Arabidopsis, 10 Argonaute proteins exist and eight 

of these contain a motif characteristic of the 'slicer' domain, suggesting that 

these Argonaute proteins may interact with different subsets of small RNAs 

which contribute to different RNAi related silencing pathways (Qi and 

Hannon, 2005). 

In fission yeast, the single Agol is required for the correct processing of 

centromeric transcripts, siRNA production and heterochrornatin formation. 

Argonaute proteins contain a PAZ domain, which binds siRNA, and a PIWI 

domain which is specific to the Argonaute family (Buker et al 2007). As yet, 

the small RNA species which have been identified in fission yeast all appear 

to be siRNAs, however the presence of miRNAs cannot be ruled out (pers. 

comm. Elizabeth Bayne, Alishire Lab). The PIWI domain of Agol has been 

shown to be required for its 'slicing' activity which mediates cleavage of its 

target mRNA (Irvine et a!, 2006; Buker et al., 2007). This 'slicer' activity is 

required for efficient RNAi-mediated transgene silencing (Irvine et al, 2006 

;Buker et al., 2007). It is not known whether translational repression occurs 

in fission yeast. The RTTS complex has been shown to localise to centromeric 

RNA transcripts and to be required for the localisation of RDRC to these 

transcripts (Motamedi et al, 2004). As expected, csp9 also shows loss of 

processing of centromere transcripts and siRNA production and behaves like 

an agolA mutant. More recently, Agol has been shown to be part of another 

complex, the ARC complex (Buker et a!, 2007). This complex has been 

proposed to transfer double-stranded siRNAs from Dcrl to the RITS complex 

and in this way perhaps play a role in the turnover and regulation of 

centromere transcripts (Buker et al, 2007). 

The other components of the ARC complex are Arbi and Arb2. Arbi has 

homology with maturases which are involved in the self-splicing of introns 
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(Buker et al., 2007). I have shown that cspl2 contains a mutation in the Arbi 

ORF. Both cspl2 and arblA display similar phenotypes to the other RNAi 

and csp mutants. In mammalian cells and Drosophila, siRNAs are transferred 

into RISC as a duplex (Preall and Sontheimer, 2005). In Drosophila, the 'slicer' 

activity of Ago2 is required for the cleavage and release of the passenger 

siRNA and its ejection from RISC (Preall and Sontheirner, 2005). It has been 

proposed that this may form the basis of the activation of RISC. In fission 

yeast, the Arb proteins are thought to regulate the conversion of ds siRNA to 

ss siRNA and hence the transfer of siRNA into R1TS (Buker et al, 2007). In 

keeping with this, Arbi has been demonstrated to block the slicer activity of 

Agol and allows Agol to hold siRNAs in a duplex until transfer into RITS 

(Buker et al, 2007). 

To summarise, the csp screen has provided a source of mutants involved in 

RNAi-mediated heterochromatin formation. These mutants have allowed 

the investigation of the RNAi pathway in fission yeast although 

disappointingly at the time of their identification novel factors were not 

discovered in the non-ts class. However, these mutants have allowed the 

analyses of phenotypes associated with defective RNAi and the two 

remaining unidentified non-ts mutants may yet provide more insight into 

this pathway, although this may be superseded by high throughput screens 

of non-essential genes. 

6.3 Chromatin structure is linked to RNA processing 

Much of the focus of this thesis has been to dissect the role of the putative 

poly(A) polymerase Cid12 in RNAi-mediated heterochromatin formation. 

There are outstanding issues relating to the mechanism by which Cid12 

mediates RNAi-directed heterochromatin assembly as the activity of this 

protein has proven difficult to ascertain. However, attempts have by no 

means been exhaustive and there are many experiments which remain to be 

attempted. Despite this, I have demonstrated here that Cid12 is essential for 

proper transgene silencing at centromeres, correct chromosome segregation 
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and is required for the correct processing of centromere transcripts into 

siRNAs via the RNAi machinery. 

The enzymatic activity of Cid12 continues to be elusive. Several poly (A) 

polymerases require their binding partners for their activity. The C. elegans 

GLD-2 has very low poly(A) polymerase activity alone but in association 

with GLD-3, an RNA binding protein with no poly(A) polymerase, this 

activity is significantly enhanced (Kwak et al., 2004). This is also true of the 

mammalian GLD-213 homologs which require to be associated for their 

activity (Kwak et al, 2004). Indeed, the budding yeast poly(A) polymerase 

Trf4 has virtually no activity alone but when incorporated into the TRAMP 

complex it displays robust poly(A) polymerase activity (LaCava et al 2005). 

It is entirely possible that Cid12 must be in a complex or associate with a 

binding partner to perform its cellular function. This problem can be 

addressed as we now have conditions where Cid12-FLAG can be purified 

with the RDRC and numerous splicing factors (Alexander Kagansky, 

Alishire Lab). These interactions may provide an environment required for 

the activity of Cid12 and such purifications can be utilised in assays similar 

to those described in Chapter 5 to examine if this is the case. 

It is conceivable that Cid12 could have a function distinct from that of a 

poly(A) polymerase. Scrutiny of several poly(A) polymerase assays, where 

Cid12 specifically appeared to cause degradation of substrate rather than 

polyadenylation, suggest that Cid12 may possess a nuclease activity. This is 

further substantiated by evidence demonstrating that the 2'-5' oligoadenylate 

synthetase family of enzymes, including the budding yeast Trf4 and fission 

yeast Cidi, has a conserved C-terminal domain which could have nuclease 

activity (Rogozin et al., 2003). Nuclease activity of Cid12 remains to be tested 

and a putative nuclease mutant has been generated that requires further 

analyses. 
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The possible role of a nuclease activity of Cid12 may be akin to that of the 

TRAMP complex (Buhier et al., 2007). In budding yeast, the TRAMP 

complex polyadenylates RNA and attracts the exosome to cause degradation 

of structured substrates (Haracska et al., 2005; LaCava et al., 2005). 

However, another member of the Cidi-fanily, Cid14, has been shown to 

form a fission yeast TRAMP complex together with homologs of budding 

yeast Airl, a RING finger protein which may bind RNA, and Mtr4, an ATP-

dependant RNA 5'-3' helicase (Buhier et al., 2007). It may be that instead of 

polyadenylaling RNA substrates for their degradation, Cid12 may itself 

degrade noncoding centromere RNA transcripts and/or other unidentified 

substrates and thus provide an alternative way of regulating transcript 

levels. 

The fission yeast homolog of Trf4 is Cid14 which is proposed to activate 

Rdpl by polyadenylating centromere transcripts or their cleavage products 

(Buhier et al., 2007). However, Cid14 mutants display normal 

polyadenylation and have not been shown to associate with centromere 

RNA (Buhler et al, 2007; Wang et al, 2008). It could be that Cid12 and Cid14 

perform overlapping roles within the cell similar to that seen in budding 

yeast with the Trf4 and Trf5 proteins. As yet no double mutants of Cid12 

and Cidl4 have been analysed but given that trf4zi/tif5A mutation is lethal it 

would be interesting to investigate this. 

The budding yeast poly(A) polymerase Trf4 was originally thought to be a 

DNA polymerase although this has now been refuted and it is apparent that 

Trf4 is required for polyadenylation (Haracska et al., 2005; LaCava et al., 

2005; Wang et al., 2000). However, DNA polymerase activity has not been 

ruled out for Cid12. DNA polymerase assays should be performed with 

Cid12 to investigate this although it is unclear how DNA polymerase activity 

would contribute to heterochrornatin assembly. Trf4 has been shown to be 

required for chromosome condensation, DNA replication and sister 

chromatid cohesion although exactly how its poly(A) polymerase activity 



contributes to these processes is unknown (Wang et a! 2000). S. cerevisiae Trf4 

has been shown to associate with cohesin subunits but Cid12 does not 

display any such interactions by mass spectrometry analysis (Wang et al., 

2000). Such interactions may be transient or occur at an undetectable level 

(Alexander Kagansky, Allshire Lab). 

An alternative explanation as to why Cid12 has not shown activity in any of 

the assays performed is that it may have a very narrow substrate specificity 

which has not yet been fulfilled. siRNAs in plants and flies are known to be 

2'-O-methylated at their 3' terminus by methyltransferases such as Heni 

(Matranga and Zamore, 2007). As yet no such modification has been 

identified in fission yeast but it may be that Cid12 requires this or perhaps a 

specific length of 5' or 3' overhang for its activity on a substrate. This may 

now be addressed somewhat as Agol-FLAG purifications which have 

recently become successful can provide a source of more physiological RNA 

substrates (Alexander Kagansky, Alishire Lab). In addition, purification of 

Cid12-FLAG and its associated RNAs may give a clue as to its cellular 

activities. 

Although it has not been proven here that Cid12 has poly(A) polymerase 

activity, the idea that polyadenylation is important for heterochrornatin 

assembly is still an attractive hypothesis. In C. elegans, a protein which 

shares homology with Cid12, RDE-3, is required for the efficient RNAI and 

siRNA generation (Chen et a!, 2005). In addition, depletion of Ago2 in 

Drosophila results in stabilisation of transgene mRNA with a concomitant 

shortening of poly(A) tails (Siomi et al., 2005). Whatever its role within the 

cell it is clear that Cid12, along with the splicing factors, provides a link 

between RNAi, RNA processing, the formation of heterochromatin and thus 

centrornere function in fission yeast. 
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6.4 Outlook 

Although much is known about RNAi-mediated heterochromatin in fission 

yeast many issues remain unresolved. The initial discovery that the RNAi 

pathway directly contributes to heterochromatin formation and function in 

fission yeast was surprising. However, it is now clear that small RNAs direct 

chromatin and DNA modifications in a number of systems. Despite the 

identification of the RTTS, RDRC and Riki I C1r4 complexes our knowledge of 

how non-coding transcripts are processed to bring about chromatin 

modifications and heterochromatin assembly is still rudimentary. For 

instance, it is not known how RDRC contributes to RNA processing and 

siRNA production. In addition, we do not know how the key histone 

methyltransferase C1r4 or HDACs are recruited by RNAi factors to bring 

about methylation of histone H3 on lysine 9 on chromatin homologous to 

siRNA borne by RITS. It is not known why or how residual H3K9 

methylation persists in cells lacking RNAi components. How much 

methylation is enough? It is known that Swi6 is required to "recruit" cohesin 

to centromere and other heterochromatin but it is not known exactly how 

this occurs. Dissection of the process is hampered by the fact the entire 

RNAi-mediated heterochromatin assembly pathway appears to collapse 

upon any intervention. New more subtle assays will be required to work out 

the intricate details of how endogenous transcripts from repetitive DNA 

elements are processed to siRNAs and how these siRNAs direct chromatin 

modification to induce silent chromatin assembly. 
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Abstract 

In plants, animals and fungi, active centromeres are associated with arrays of repetitive DNA sequences. 
The outer repeats at fission yeast (Sc'/uzosac'c'/iaromi'c'es poinbe) centrorneres are heterochromatic and 
are required for the assembly of an active centromere. Components of the RNA interference (RNAi) 
machinery process transcripts derived from these repeats and mediate the formation of silent chromatin. 
A subiragment of the repeat (dg) is known to induce silencing of marker genes at euchromatic sites 
and is required for centromere formation. We show that the RNAi components, Argonaute (Agol), Dicer 
(Dcrl) and RNA-dependent RNA polyrnerase (Rdpl), are required to maintain silencing, lysine 9 meth-
ylation of historic 1-13 and association of Swi6 via this cig ectopic silencer. Deletion of Agol, Dcrl or Rdpl 
disrupts chromosome segregation leading to a high incidence of lagging chromosomes on late anaphase 
spindles and sensitivity to a microtubule poison. Analysis of dg transcription indicates that csp mutants, 
previously shown to abrogate centromere silencing and chromosome segregation, are also defective in 
the regulation of non-coding centrorneric RNAs. In addition, his/one H3 lysine 9 methylation at, and 
recruitment of Swi6 and cohesin to, centrorneric repeats is disrupted in these mutants. Thus the formation 
of silent chromatin on dg repeats and the development of a fully functional centromere is dependent 
on RNAi. 

Introduction 

Arrays of repetitive DNA are found at active 
centromeres in many organisms and such repeats 
are frequently heterochromatic (Richards & Dawe 
1998, Sullivan ci al. 2001). In the fission yeast, 

Sc/nzosacclia,'omvce.s' pombe, centromeres are 
composed of outer repeat sequences (cig and (1li) 
that flank the central kinetochore domain 
(Matsumoto ci al, 1990, Takahashi ci cii. 1992, 
Steiner ci cii, 1993) (see Figure 4C), Deletion 
analyses and testing of various plasmid constructs 
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Loss of Dicer fowls up centromeres 
Sharon A. White and Robin C. Alishire 

Centromeres, specialized regions on chromosomes, are essential for accurate chromosome segregation during cell 

division. In fission yeast, the RNA interference machinery has a pivotal function in the assembly of centromeric 

heterochromatin, which mediates sister centromere cohesion. Studies in vertebrate cells now suggest that many 

aspects of this process are conserved. 

RNA interference (RNAi) is an evolutionarily 
conserved mechanism whereby double-
stranded RNAs (dsRNAs) target homologous 
transcripts for degradation. Long dsRNAs are 
cleaved by the endonuclease Dicer to produce 
small interfering RNAs (siRNAs) of around 
21 nucleotides in length. These siRNAs 
become incorporated into the RNA-induced 
silencing complex (RISC), which directs them 
to their homologous RNA target. RNAi func-
tions in several cellular processes, such as gene 
silencing, protection of genome stability from 
viruses and transposable elements and the 
assembly of silent chromatin, including hetc-
rochromatin at centromeres 

Centromeres are sites on chromosomes 
where the kinetochore complex assembles and 
mediates interactions with spindle micro-
tubules thus ensuring accurate chromosome 
segregation. In many eukaryotes, the kineto-
chore is embedded in heteroch romatin4. 
Human centromeric DNA is primarily com-
posed of a-satellite repeats arranged in tandem 
arrays of 1,000-5,000 kb4. Arrays of perfect 
alphoid repeat DNA provide a good substrate 
for the c/c novo assembly of active centromeres. 
This correlates with the presence of intact 
binding sites for CENP-B, an a-satellite-bind-
ing protein'. Remarkably, human centromeres 
maintain their activity when transferred into 
chicken DT40 cells by somatic cell fusion to 
form hybrid cell lines. This suggests that host 
chicken centromere proteins can recognize and 
propagate a pre-existing kinetochore on intro-
duced human chromosomes 4. 

In fission yeast, the assembly of heterochro-
matin at centromeres is vital for tight physical 
cohesion between sister centromeres, and is 
therefore critical for accurate chromosome 
segregation'. Observations in metazoans also 
suggest a link between heterochromatin for-
mation and sister chromatid cohesion 6. 
Evidence in fission yeast, plants and flies sug- 
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gests that siRNAs function to recruit histone-
H3-Lys-9 m ethyl transferases, and DNA 
methyltransferases, to specific loci to direct 
the chromatin- and DNA modifications 
required for heterochromatin forma-
tion 1-3,7-9. 

orma-
tion 379. In fission yeast and in flies, muta-
tions in components of the RNAi pathway 
result in defective heterochromatin as seen by 
loss of silencing, loss of specific histone 
methylation and delocalization of the hete-
rochromatin-associated proteins HP  or Swi6 
(refs 2,3,7-11). In fission yeast, defects in the 
RNAi pathway also cause loss of Rad2l and 
thus cohesion at centromeres, resulting in 
aberrant chromosome segregation5'10". 

It is not known whether RNAi mediates the 
assembly of centromeric heterochromatin in 
vertebrates. On page 784 of this issue 12, 
Fukagawa and colleagues demonstrate that the 
link between RNAi, heterochromatin forma-
tion and centromeric cohesion is conserved in 
vertebrates. They show that a conditional loss-
of-function mutant of Dicer in chicken DT40 
cells causes defects in heterochromatin forma-
tion and chromosome segregation, similar to 
those observed in fission yeast. Depletion of 
Dicer ultimately results in cell death, with an  

accumulation of abnormal mitotic cells. 
Previous analyses demonstrated that a hete-

rochromatin-related structure at mammalian 
centromeres is RNase sensitive, consistent with 
a role for RNA in heterochromatin forma-
tion13. In agreement with this idea, non-cod-
ing transcripts homologous to centromeric 
repetitive DNA elements have been observed in 
both mouse embryonic fibroblasts and fission 
yeast',". In their studies, the authors used a 
chicken DT40 hybrid cell line carrying human 
chromosome 21. Consistent with observations 
in other systems, transcripts homologous to 
the centromeric repeats of human chromo-
some 21 clearly accumulate in Dicer-deficient 
DT40 cells. Extremely low levels of these 
human centromeric transcripts are also seen in 
Dicer hybrid cells, in accordance with data 
from fission yeast suggesting that centromeric 
transcripts are rapidly turned over in wild-type 
cells 12. As chicken centromeric DNA has not 
been characterized, the authors were unable to 
test if transcripts are also produced from 
endogenous chicken centromeres. 

In fission yeast, centromeric transcripts are 
processed into siRNAs by the RNAi pathway. 
The detection of short RNAs (-30 

MeK 
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Figure 1. A model for RNAi-mediated heterochromatin assembly in vertebrates. Centromeric 

non-coding transcripts form dsRNAs that are processed by Dicer to produce siRNAs. 

Incorporation of siRNAs into RISC recruits the histone met hyltransferase Suv39h, which 

methylates histone H3-K9 resulting in HP1 binding. The formation of heterochromatin results in 

recruitment of cohesin and ensures accurate chromosome segregation. 
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generations'. A priori, one might think that 

these alleles have residual CDC-14 activity. 

However, the he] 18 allele introduces a non-

sense mutation that is predicted to eliminate 

6011/o of the protein length'. The hc'141 allele, 

which was isolated in a separate polymerase-

chain -reaction -based screen, is a deletion that 

removes 1.2 kilobases of the a/c- 14 gene 6) 

including critical catalytic residues of the 

phosphatase domain 2. The heI4l allele is a 

null by genetic criteria and produces no pro-

tein (as assessed by western blot analysis), 

suggesting that it is a molecular nul'. 

Interestingly, cdc-14 RNAi in the hands of 

Saito Ct al. produces a larval phenotype simi-

lar to the cdc-14 mutants with no embryonic 

lethality or mitotic defects 6. 

The studies differ in their conclusions 

about whether CDC-14 is required for central 

spindle formation and embryonic viability, 

and more curiously they even vary in the phe-

notype produced by cdc-14 RNAi when the 

same clones are used to prepare dsRNA 5,1. 

Gruneberg ci al. observed 100% embryonic 

arrest upon in 	of ale- 14 dsRNA-`. Saito 

n ci al., o the other hand, observed a convinc-

ing concurrence in the phenotypes of the null 

allele, a truncation allele, and RNAi, all of 

which produced extra postembryonic cells 

but no embryonic lethality'. Two possibilities 

could account for the divergent cdc-14 RNAi 

results. First, cross-RNAi may have inactivated 

other genes required for mitosis. In C. elegaits, 

the RNAi effect is amplified through the 

action of an RNA-directed RNA polymcrase, 

so that only a few dsRNA molecules per cell 

can eliminate a vast excess of mRNA' 4 . 

Although there are no C. elegans genes closely 

related to cdc- 14, cross-RNAi would only 

require a match of around 22 nucleotides'3. 

The potential for cross-RNAi may have been 

exacerbated by the high level of dsRNA that 

Gruneberg ci (1f. used for injection, that is, 3-5 

mg ml' compared with the more conven-

tional concentration of 0.5-1 mg m1' (ref. 5). 

The second possibility is that the two groups 

used C. cicgaizs strains that differ in their sus-

ceptibility to loss of CDC- 14. Part of the a/c-

14 RNAi analysis by Gruneherg ci al. and all of 

the ale- 14 RNAi analysis in Mishima t't al. 

used a temperature sensitive zen-4-mutant 

strain that contains a rescuing zeo-4::GFP 

transgene to allow the observation of ZEN-4 

localization5 ' 3. Recent experiments in the 

Glotzer laboratory indicate that cdc-14 RNAi 

is more effective at producing the mitotic 

phenotype in this strain: multiple non-over-

lapping regions of cdc-14 dsRNA can elicit the 

RNAi response in this strain, but not in wild-

type W. Pavicic and M. Glotzer, personal 

comniunication ). Therefore, strain differ-

ences and the use of high dsRNA concentra-

tions, potentially producing cross-RNAi 

effects, may have independently contributed 

to the mitotic phenotype. Nevertheless, the 

increased RNAi effect in the temperature-sen-

sitive zen-4IZEN-4—GFP background suggests 

that CDC-14 functions in a ZEN-4-depend-

ent process". Coupling this with the ability of 

CDC- 14 to dephosphorylate ZEN-4 iii vitrot 3, 

the observation that cdc-14 RNAi works at the 

level of ZEN-4 dephosphorylation 13,  and the 

coincident localization of CDC- 14 and ZEN-

4 to the central spindle5, provides consider-

able evidence that CDC-14 functions in viva 

to dephosphorylate ZEN-4. 

In summary, it appears that these seemingly 

opposed studies have in fact identified two dis-

tinct functions for CDC-14 in C. efegans: pre-

venting extra cell divisions during periods of 

cell quiescence by stabilizing CKI-1 and pro-

moting ZEN-4 localization to microtubules to 

create the central spindle, athough there seems 

to be genetic redundancy for the latter func-

tion. Thus, these two contradictory results 

have enhanced our understanding of two cen- 

tral cell-cycle processes. 	 Ei 
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iucleotides) homologous to human cen-
rorneric a-satellite repeat DNA in Dicer' 
ells, which decline in Dicer-deficient cells, 
uggests that Dicer and the RNAi machinery 
re required to cleave these human cen-
romere repeat transcripts. However, these 
hort RNAs persist to some extent in 
)icer-depleted cells, perhaps due to some 
esidual Dicer activity 12. 

Fission yeast centromeres contain a clearly 
lemarcated central domain where kinetochores 
issemble, which is flanked by hetcrochro-
iatin4. In contrast, vertebrate centromeres 

ack a clear boundary between hetcrochromatin 
md the CENP-A- kin etocho re- specific chro-
yiatin that marks the site of kinetochore assern-
)1y4. Therefore, it is possible that centromeric 
-t-satellite transcripts in vertebrate cells have a 
unction in kinetochore assembly. Perhaps only 
i subset of the u-satellite array repeats are tran-
cribed, triggering patches of heterochromatin 
issembly with kinctochore proteins being 
oaded in between; but in this scenario it is 
.mnclear how the boundaries for this would be 
cstahlished and maintained. Regardless, the 
,ocalization of the kinetochore-specific proteins 
CENP-A and CENP-C seems to be normal in 
Dicer-deficient cells, suggesting that defective 
RNAi does not completely disrupt kinetochore 
.nssemhly and that the presence of kinetochore 
proteins does not impede transcription of the 
centromeric repeats in vertebrate cells. 
However, the authors found that heterochro-
matin formation is perturbed in Dicer-deficient 
cells. In Dicer cells, HP1 proteins colocalize to 
discrete nuclear foci in the vicinity of CENP-C 
at both endogenous and human centromeric 
heterochromatin. In contrast, although HP1 
signals are still detectable in Dicer-deficient 
cells, HP1 becomes diffusely distributed and 
seems to associate non-specifically with all 
chromatin, similar to the redistribution of FIPI 
and HP2 observed in RNAi fly mutants'. It is 
probable that specific histone modifications 
associated with centromeric heterochromatin, 
such as H3-K9 and H4-K20 methylation, are 
also disrupted, but this was not tested. 

Further analyses revealed that the Rad21 
cohesin does not concentrate at endogenous 
or human chromosome 21 centromeres, but  

displays a more dispersed localization in 
Dicer-deficient cells. This suggests that Dicer-
dependent heterochromatin is required for 
cohesion between sister centromeres, as found 
in fission yeast3' 0,U  Consistent with this, 
these cells exhibit premature sister centromere 
separation and arrest in mitosis. As HP1 local-
ization and cohesion seems to be defective at 
all centromeres in these DT40 Dicer-deficient 
cells, this suggests that RNAi is also required 
for heterochromatin assembly and cohesion at 
endogenous chicken centromeres1  2.  

The data presented in this study suggest a 
general model for heterochromatin formation, 
and suggest that RNAi-mediated heterochro-
matin assembly has a direct and conserved role 
in recruiting cohesin (Fig. 1). Surprisingly, the 
budding yeast gcnomc does not encode any 
known RNAi components and it also lacks 
centromeric heterochromatin, although 
cohesin is enriched around centromercst'. So 
why is RNAi-dependcnt heterochromatin 
required in higher eukaryotes? In metazoans, 
cohesin is removed from along chromosome 
arms early in mitosis. It is possible that hete-
rochromatin functions in the protection of 
centromeric cohesin from this removal 
process until it is cleaved at anaphase 6. 

However, there must be other roles for this 
centromeric heterochromatin as, similarly to 
budding yeast, all cohesion between sister 
chromatids is lost simultaneously at anaphase 
in fission yeast. Centroineres in fission yeast, 
plants and animal cells in mitosis are contact-
ed by multiple spindle microtubules, whereas 
in budding yeast, mitotic centromeres only 
attach to one spindle fibre. Therefore, it is pos-
sible that centromeric heterochromatin has a 
structural role in organising and orienting 
mutiple microtubule-binding sites at sister 
centromeres 4.  In this case, RNAi-dependent 
chromatin modifications would probably be 
required for the formation of such a structure. 

This and other studies raise many questions. 
First, it is unclear precisely how siRNA nude-
ates heterochromatin assembly. Observations 
in plants suggest that siRNA may participate in 
RNA-DNA interactions that result in 
chromatin modifications. Alternatively, it is 
possible that nascent chromatin  -associated  

transcripts are targeted by siRNAs and a RISC-
like complex in the nucleus to form hete-
rochromatin. Interestingly, in plants, the silent 
state can be propagated in the absence of a 
dsRNA trigger, suggesting that RNAi functions 
to nucleate and establish silent chromatin, and 
also that it can be subsequently propagated by 
chromatin-associated factors. Second, how 
often centromere repeats are transcribed is not 
known. They may be transcribed occasionally 
in a stochastic manner, allowing re-establish-
ment of heterochromatin when required, or, 
transcription may occur at a particular stage of 
the cell cycle allowing reformation of robust 
heterochromatin in conjunction with, or fol-
lowing, replication. Finally, exactly how cen-
tromere repeats are transcribed, and whether 
transcription occurs across the entire cen-
tromere repeat region, is not known. It is pos-
sible that centromere-repeat-binding proteins 
such as CENP-B promote repeat transcription, 
but this and other issues await further investi-
gation. 

The ablation of Dicer function in chicken 
cells underscores the conserved role of RNAi 
in heterochromatin assembly and centronlere 
function. Further analyses may ruffle feathers 
regarding how RNAi promotes heterochro- 
matin assembly. 	 El 
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Focus on Cytoskeletat Dynamics - August 2004  

Nature Reviews Molecular Cell Biology is pleased to announce that the August issue contains a 
Focus on Cytoskeletal Dynamics, featuring the following articles by leaders in the field: 

Chemotaxis: signalling the way forward 

Peter]. M. Van Haastert and Peter N. Devreates 

Intermediate filaments mediate cytoskeletal crosstalk 
Lynne Chang and Robert D. Goldman 

Foot and mouth: podosomes, invadopodia and 
circular dorsal ruffles 

Roberto Buccione, James D. Orth and Mark A. McNiven 

a-catenin: at the junction of intercellular adhesion 
and actin dynamics 

Agnieszka Kobielak and Elaine Fuchs 

The co-workers of actin filaments: from cell 
structures to signals 

Ce/me Revenu, Rafika Athman, Sylvie Robine and 
Daniel Louvard 

Cytoskeletal regulation: rich in lipids 
Paul A. ]anmey and Uno Lindberg 

Cell motility under the microscope: Vorsprung 
durch Technik 

Graham A. Dunn and Gareth E. ]ones 

Visit www.nature.com/nrm/focus/cytoskeletaldynamics  for more details 

Nature Reviews Molecular Cell Biology new Impact Factor: 35.011*  - 
the no. i monthly review journal in cell biology 

*2003 Impact Factor: Thomson PSI, PA, USA 2004 	 nature publishing group ev 



DegrAAAded into Silence 
Elizabeth H. Bayne,' Sharon A. White,' and Robin C. Allshirel,* 
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Edinburgh, EH9 3JR, UK 
*Correspondence: robin.allshire@ed.ac.uk  
DOl 10.1016/j.celI.2007.05.004 

In fission yeast, RNA interference (RNAi)-dependent heterochromatin formation silences 
transgenes inserted at centromeres. In this issue, Bühler et al. (2007) demonstrate that the 
RNAi machinery directly targets transgene transcripts. Furthermore, they link transgene 
silencing to a protein complex resembling the TRAMP complex of budding yeast, which 
promotes transcript degradation via the exosome. Thus, RNAi-independent transcript 
degradation may also contribute to heterochromatin gene silencing. 

The packaging of chromosomal DNA 
into heterochromatin is important for 
cellular processes such as regula-
tion of gene expression and accurate 
chromosome segregation. In the fis-
sion yeast, Schizosaccharomyces 
pombe, heterochromatin is found at 
the mating-type locus, telomeres, 
and centromeres. Regions of hetero-
chromatin are generally associated 
with transcriptional repression, and 
consistent with this finding, marker 

genes inserted into fission yeast het-
erochromatin are silenced. 

Heterochromatin assembly involves 
an ordered series of events in which 
lysine 9 on histone H3 becomes 
methylated by the histone methyl-
transferase C1r4 (equivalent to meta-
zoan Suv39), creating a binding site 
for chromodomain proteins such as 
Swi6, Chpl, and Chp2 (HP1-related 
proteins). RNAi is required to estab-
lish and maintain heterochromatin at  

centromeres but is dispensable for 
maintenance of heterochromatin at 
the mating-type locus (Grewal and Jia, 
2007). In mutants of the RNAi pathway 
centromeric small interfering (si)RNA 
production is defective and homolo-
gous centromeric repeat transcripts 
accumulate. This has led to a model 
whereby siRNAs generated from cen-
tromere transcripts are required to tar-
get chromatin-modifying machinery 
to the centromere, resulting in tran- 
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scriptional repression (Grewal 

and Jia, 2007). However, it is 

paradoxical that transcriptional 

"silencing" should require tran-

scription itself. Recent evi-

dence suggests that levels of 

transcription of centromere 

repeats are largely unaffected 

by their assembly into "silent" 

heterochromatin (Buhler et al., 
2006; Volpe et al., 2002). In 
this issue of Cell, Bühler et al. 
(2007) shed new light on the 

mechanism of heterochroma-
tin silencing in fission yeast, 

presenting evidence for post-

transcriptional silencing by an 
RNAi-independent pathway. 

Bühler et al. (2007) set 
out to address an outstand-

ing question: How do marker 

genes inserted into regions 

that surround heterochromatin 
become silenced? Although 

siRNAs corresponding to cen-

tromere repeat sequences are 

abundant, siRNAs from a ura4 
marker gene inserted within 

centromere repeats have pre-

viously been undetectable. 

Consequently, it has been unclear 

whetherthe RNAi-dependent silencing 

machinery is recruited directly to the 
ura4 gene or whether heterochromatin 
simply spreads into this gene from the 

surrounding centromeric sequence. To 

enrich for siRNAs, Bühler et al. (2007) 
exploit the 5iRNA-binding activity of 

the RNAi component Agol (Argo-

naute) and also delete the ribonucle-

ase er/i—which is normally required 
to suppress high levels of siRNAs. In 

this way the authors could detect a 

low level of siRNAs corresponding to 
centromeric ura4t This result demon-
strates that transcripts from this ura4" 
gene are processed into siRNAs and 

therefore that the transgene could be 
a direct target of the RNAi machinery. 

The authors hypothesized thatthese 
ura4 siRNAs alone are insufficient to 

direct silencing of the transgene for 

two reasons: (1) the very low abun-
dance of siRNAs from ura4 relative to 
those from centromeric sequences 

and (2) the siRNAs detected are pre-

dominantly of sense orientation and 

therefore unable to target Agol to the  

ura4 mRNA. These observations led 

the authors to investigate the role of 
an additional RNA degradation path-

way in heterochromatin silencing. In 

the budding yeast Saccharomyces 
cerevisiae, polyadenylation can stim-

ulate RNA degradation by the exo-

some. This polyadenylation is medi-

ated by the TRAMP complex, which 

contains the poly(A) polymerases, 

Trf4 and Trf5 (LaCava et al., 2005). 

Fission yeast has six members of the 

Cidi family of noncanonical poly(A) 

polymerases. One of these, Cid12, 

has previously been implicated in 
heterochromatin silencing (Mota-

medi et al., 2004; Stevenson and 

Norbury, 2006). Cid12 is found in the 
RNAi complex RDRC (RNA-depend-

ent RNA polymerase complex) along 

with Rdpl and Hrrl. Moreover, cid12 
mutants alleviate silencing in a similar 

way to other RNAi mutants, although 

the exact role of Cidl2 in heterochro-

matin silencing has yet to be eluci-

dated (Motamedi et at., 2004). In their 

new work, BOhler et at. (2007) investi-

gate the role of a second member of 

the family, Cid14, which is the 

S. pombe functional homolog 

of S. cerevisiae Trf4/Trf5. The 
authors find that functional 

Cid14 is required for intact 

silencing at centromeres and 
for the generation of centro-

meric siRNAs. Unlike RNAi 

mutants, deletion of the cidi4" 

gene also alleviates silenc-

ing at the mating-type locus. 
Curiously, the cid14 mutant 
shows a less marked effect 
on the levels of H3K9 meth- 

ylation and Swi6 associated 
with heterochromatin than do 

RNAi mutants. Bühler et al. 
(2007) also confirm that Cid14 

has poly(A) polymerase activ-
ity in vitro and that mutations 

in the catalytic residues of the 

enzyme alleviate silencing in 

vivo. Thus, the authors pro-

pose a model in which Cid14-

mediated polyadenylation of 
heterochromatin transcripts 

is required for silencing by the 
RNAi machinery, the exosome, 

or both (Figure 1). 

Biochemical purification of 
Cid14 did not reveal any association 

with known RNAi or heterochromatin 
components. Instead Cid14 associ-

ates with fission yeast homologs of 
other TRAMP complex components, 

Mtr4 and Airl, as well as ribosome 

synthesis factors, consistent with the 

known role of Cid14 in rRNA polya-

denylation (Win et al., 2006a). These 

findings suggest that cid14 might 
act as part of a fission yeast TRAMP 

complex (spTRAMP) to target hetero-

chromatin transcripts for degradation. 
Deletion of air1 shows no effect on 
heterochromatin silencing, whereas 
mutation of mtr4 alleviates silencing at 
the mating-type locus but not at cen-

tromeres, indicating that the compo-

nents of spTRAMP play varying roles 
in heterochromatin silencing. 

To further investigate the possibil-

ity that Cid14 directs degradation of 

heterochromatin transcripts by the 
exosome, the authors also tested het-

erochromatin silencing in the absence 

of a component of the nuclear exo-

some, Rrp6. Deletion of rrp6 alleviates 
silencing both at centromeres and at 

:H3 K:9 m ].2 

AIicd14 

-A 	) 	 Cid12 

Exosome 

Dcrl siRNAs 

Transcript 	 Transcript 
degradation 	 degradation 

Figure 1. Silencing Heterochromatin in Fission Yeast 
Noncoding RNA transcripts originating from heterochroma-
tin repeats, or transgene insertions within heterochromatin, 
may be polyadenylated by Cid14. The transcript may be 
polyadenylated directly upon termination of transcription, 
or alternatively transcripts may be first sliced by Agol and 
then polyadenylated by Cidl4. This may "mark" the transcript 
for degradation and/or processing via the RNAi machinery, 
IR000/Dcrl, or the exosome. 
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the mating-type locus. This is consist-
ent with recent findings that Dis3, an 
exosome-associated ribonuclease, 
is also required for silencing at cen-
tromeres and the mating-type locus 
(Murakami et al., 2007). Unlike cid14, 
neither of these exosome components 
is required to generate siRNAs that 
are homologous to heterochromatin 
regions, suggesting that the role of 
cid14 may be more complex than sim-
ply exosome recruitment. 

The findings of Buh!er et al. (2007) 
strongly suggest that Cid14 is involved 
in targeting centromere transcripts for 
degradation. However, it remains to be 
determined whether heterochromatin 
transcripts are bona fide substrates 
for Cidi 4 polyadenylation. Centromere 
transcripts are known to have poly(A) 
tails, and these tails are unchanged 
in cells lacking Cidl2, so it might be 
revealing to check their status in a 
cid14 mutant (Win et al., 2006b). It 
would also be informative to examine 
whether C1d14 or the whole TRAMP 
complex associates with centromeric  

transcripts. Another outstanding ques-
tion is the relationship between Cid14 
and Cidl2. Based on their observation 
of a large RNA species associated 
with Agol in cells lacking Cid14, the 
authors suggest that Cid14 may be 
required to convert single-stranded 
precursor RNA into dsRNA. This is a 
role also proposed for the RDRC com-
plex raising the possibility that Cid12 
and Cidl4 may have some functional 
redundancy, analogous to Trf4 and 
Trf5. Such an effect might explain how 
Cid14 can be intimately associated 
with the RNAi pathway despite having 
a distinct mutant phenotype. 

Clearly much remains to be 
revealed about the mechanisms 
underlying RNAi-directed hetero-
chromatin formation and silencing. 
Nevertheless, the analyses by Bühler 
et al. (2007) reveal that siRNAs are 
made from transgene insertions at 
centromeres, and expose intriguing 
connections between heterochroma-
tin silencing and general RNA turno-
ver mechanisms. 
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Summary 

Centromeres exert vital cellular functions in mitosis 
and meiosis. A specialized histone and other chroma-
tin-bound factors nucleate a dynamic protein assem-
bly that is required for the proper segregation of sister 
chromatids. In several organisms, including the fis-
sion yeast, Schizosaccharomyces pombe, the RNAI 
pathway contributes to the formation of silent chroma-
tin in pericentromeric regions. Little is known about 
how chromatin-remodeling factors contribute to het-
erochromatic integrity and centromere function. Here 
we show that the histone chaperone and remodeling 
complex FACT is required for centromeric-heterochro-
matin integrity and accurate chromosome segrega-
tion. We show that Spt16 and P0b3 are two subunits 
of the S. pombe FACT complex. Surprisingly, yeast 
strains deleted for pob3+ are viable and alleviate 
gene silencing at centromeric repeats and at the silent 
mating-type locus. Importantly, like heterochromatin 
and RNAi pathway mutants, Pob3 null strains exhibit 
lagging chromosomes on anaphase spindles. 
Whereas the processing of centromeric RNA tran-
scripts into siRNAs is maintained in Pob3 mutants, 
Swi6-association with the centromere is reduced. 
Our studies provide the first experimental evidence 
for a role of the RNA polymerase II cofactor FACT in 
heterochromatin integrity and in centromere function. 

Results and Discussion 

FACT Is an Evolutionarily Conserved Nuclear 
Complex 
Centromeres are composed of specialized chromatin 
in which the histone H3 variant CENP-A underpins 

Correspondence: ladumer@embl.de  

the kinetochore and is flanked by heterochromatic 
regions. This heterochromatin is known to attract 
cohesin and contribute to centromere function by 
ensuring physical cohesion between sister chroma-
tids [1]. Significant progress has been made in dis-
secting the connections between heterochromatin 
and centromere function. it is known that specific 
histone modifications [2] and RNAi-related pro-
cesses [3] contribute to an "epigenetic" mechanism 
that defines the heterochromatic nature of centro-
meric DNA. 

We wish to further investigate how the correct nude-
osomal structure is established and maintained over 
centromeric repeats. In fission yeast, P01 II is also 
required for centromere function because it transcribes 
complementary regions of the centromeric outer re-
peats [41, but it is not known whether P0111 requires 
coactivating factors. Evidence already implicates the 
transcriptional cofactors and chromatin-remodeling 
complexes RSC (remodeling and spacing complex) 
and PBAF (polybromo, brahma-related gene 1-associ-
ated factor) in centromere-related functions [5, 6]. P01 
II transcription is stimulated by the chromatin-remodel-
ing complex FACT (facilitates chromatin transcription) 
[7]. In order to investigate the possible role of this factor 
in centromeric chromatin, we first identified the fission 
yeast FACT complex. 

FACT from a variety of organisms contains two core 
proteins (Sptl 6 and Pob3/SSRP1). We identified a single 
set of closely related sequences for these subunits in the 
S. pombe genome (Figure Si in the Supplemental Data 
available online). A strain was constructed to express 
S. pombe Pob3 fused to a FLAG-PreScission-HA 
epitope (FPH-Pob3). Western blots reveal expression 
of the functional FPH-Pob3 fusion protein. To check 
whether FPH-Pob3 forms a FACT-like complex with 
Spti 6, we coexpressed green fluorescent protein 
(GFP)-tagged Spti 6 (Figure S2). a-HA antibodies immu-
noprecipitate Sptl 6-GFP (Figure 1A). Thus Pob3 and 
Spti 6 associate in vivo. 

We next biochemically purified SpFACT from cellular 
extracts. Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) analysis revealed two 
specific bands in the FPH-Pob3 extracts (Figure 1 B). 
Mass-spectrometry analysis identified the two bands 
as Pob3 and Sptl 6. To verify whether the two FACT 
subunits interact, we performed glutathione S-transfer-
ase (GST) pulldowns. This demonstrated that Spt16 
and Pob3 associate in vitro and that the interaction 
requires the Spti 6-M domain (Figure 1 Q. Our biochem-
ical data show that S. pombe contains a FACT complex 
similar to other eukaryotes. 

To determine whether SpFACT localizes to the 
nucleus, we imaged functional Spt16- and Pob3-GFP 
fusions (Figure S213). Pob3-GFP and Spt16-GFP are 
nuclear factors (Figure 1 D). Together, our biochemical 
and localization data are consistent with nuclear func-
tions of the SpFACT complex. 
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Figure 1. S. pombe FACT Is  Heterodimenc, 
Nuclear-Protein Complex 

Coimmunoprecipitation between tagged 
S. pombe Pob3 and Sptl 6. Extracts prepared 
from FPH-Pob3 Sptl6-GFP strains were in-
cubated with HA-antibody-coupled agarose. 
Fractions were analyzed by western blotting 
with either HA polyclonal or GFP monoclonal 
antibody. Lanes labeled "V show the equiv-
alent of 10% extract used in the IP. 

Biochemical purification of FPH-Pob3 
and identification of copurifying proteins. IPs 
from WT and FPH-pob3+-tagged strains were 
performed with FLAG-epitope affinity purifi-
cation. Silver staining resolves two specific 
bands. Peptide sequencing by tandem MS 
identifies Pob3 and Spt16. 

GST pulldowns map necessary interac-
tion domains within SpFACT. Immobilized 
GST-fusion proteins were incubated with 
in vitro translated Pob3 and Sptl 6. GST-
Pob3-N (1-448) and GST-Sptl 6-M (477-937). 
The input lane contains 10% of the 35S—pro-tens. 

(0) Nuclear localization of Pob3-GFP and 
Spt16-GFP. The overlay shows the merge 
between DNA (4',6-diamidino-2-phenylindole 
[DAPI]) and SpFACT (GFP). 

The Small FACT Subunit Pob3 Is Not Essential 
for Viability in S. pombe 
In S. cerevisae, both subunits of the FACT Complex are 
essential, and mutant alleles with phenotypes in 
genome stability have been described [8]. As expected, 
the S. pombe ortholog for the large FACT subunit sptl6+ 
is essential (Figure S3). Surprisingly, a strain bearing the 
deletion of pob3+ is viable (Figure 2A, Figures S4 and 
S5), though it shows temperature sensitivity. No paralog 
that might account for genetic redundancy can be iden-
tified with genomic basic local alignment search tool 
(BLAST) searches (data not shown). Because the 
pob3t strain is viable, we tested its role in distinct chro-
matin-based events. Cells lacking Pob3 are sensitive to 
hydroxyurea (HU), camptothecin (CPT), ultraviolet (UV), 
and (mildly) to 6-azauracil (6ALJ), suggesting DNA repli-
cation, DNA repair, and transcription phenotypes (Fig-
ure S6). The sensitivity of pob3A to these stress agents 
indicates that SpFACT is involved in multiple chromatin-
based cellular functions and participates in genome 
stability. Yet, its deletion in S. pombe is viable. 

Deletion of pob3 Results in 
Transcriptional-Silencing Defects 
In vitro observations have shown that the FACT complex 
aids P01 II to overcome the nucleosome barrier to 
transcription M. In fission yeast, it is known that P0111 
is required to transcribe centromeric, noncoding outer 
repeats (otr) and to form silent heterochromatin [4]. 

We therefore checked whether the loss of Pob3 
affects transcriptional silencing within centromeres. 
Fission-yeast strains with reporter genes inserted at 
distinct locations within the centromere (Figure 2) allow 
the assessment of the repressive state of chromatin at 
these locations [9]. We tested two mutant pob3I strains 
with ura4+ inserted either at the imrIR(Ncol):ura4+ or at 
otr1R(Sphl)::ura4+ repeats. Strains with an active ura4+ 
gene grow well in the absence of uracil (—Ura) but are  

unable to grow on counterselective plates containing 
5-fluoro-orotic acid (FOA) [9]. Plating assays show that 
pob3A strains grow slower than does a wild-type (WT) 
strain on FDA medium (Figure 2B). Contrary to FACT's 
known roles as a transcriptional elongation factor, our 
results reveal that the loss of Pob3 function allows 
higher levels of ura4+ gene expression relative to that 
of the WT (Figure 213), with a strong effect at imrlR 
and a weaker one at otriR. This suggests that Pob3 
has a novel, repressive role in centromeric transcription. 
In comparison, mutant strains cIr4Li and tas3b, display 
the complete alleviation of silencing at both loci. Further, 
ade6+ reporter assays show that pob3t loss of silencing 
is not a ura4+ gene-specific phenotype (Figure S2). Only 
a mild effect of pob3+ deletion is observed when arg3+ 
is inserted at the central core region (cntl::arg3+; 
Figure 2B). The silencing assays show that the pob3i 
mutation distinctly affects the expression level of cen-
tromeric reporter genes, depending on their location. 
Importantly, these data reveal an unexpected in vivo 
role for SpFACT in heterochromatin integrity. 

We next determined whether pob3+ deletion affects 
the silencing of marker genes placed in other transcrip-
tionally silent regions [10, 11]. The results show that 
pob3i. causes derepression of reporter silencing at the 
mating-type locus (Figure 2C). In contrast, the pob3 
mutation does not affect the silencing of rDNA and telo-
meric reporters. Pob3 thus has a role in the formation or 
maintenance of heterochromatin at the mating locus 
and at centromeres. 

FACT is a general transcription and remodeling factor. 
Recently, the human Pob3 ortholog, SSRP1,was shown 
to regulate the expression of a specific subset of genes 
[12]. The pob3A loss-of-silencing phenotype could 
therefore be indirect, altering the expression of specific 
heterochromatin factors. Thus, we performed gene-
expression profiling on pob3A cells. The results reveal 
that no such genes were up- or downregulated 
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Figure 2. Viability and Heterochromatic Silencing Phenotype of the 
S. pombe pob3+ Deletion Strain 

Deletion of the small subunit of the chromatin-remodeling 
complex FACT does not affect S. pombe viability. 

pob3+ deletion alleviates heterochromatic silencing at imrlR and 
mildly at otrlFI centromeric repeats and at the central core (cntl). 
Mutants in the histone methyl-transferase (cir4A), in the nkl+ gene 
(rik1), and in a RITS subunit (tas3) serve as positive controls. 

Gene-silencing phenotype of the pob3+ deletion in other hetero-
chromatic regions, such as the mating loci (mat), ribosomal DNA 
repeats (rDNA), and the telornere. 

significantly (Table Si). Importantly, the few genes 
whose expression is altered are similarly affected in mu-
tants that play a role in heterochromatin integrity, such 
as cIrl+, cIr3+, cIr6+, and rpb7+ (Table S2) [13].  For ex-
ample, a significant fraction of pob3A upregulated 
genes are also upregulated in rpb7-G150D and in cIr3A 
(Table S2). Because Clr3, Clr6, and Rpb7 are required 
for heterochromatin formation at centromeres, it is likely 
that FACT cooperates with these histone deacetylase 
(HDAC) enzymes and Pol II in centromere function. 

Our data show that the SpFACT complex has a new 
role in gene silencing at centromeric heterochromatin. 
Also, the transcriptional phenotype of pob3A signifi-
cantly overlaps that of known heterochromatin mutants. 
Together, our data strongly suggest that Pob3 plays 
a specific and direct role in the establishment and/or 
maintenance of heterochromatin. 

Pob3 Is Required for Accurate 
Chromosome Segregation 
The observed centromeric-silencing defects in pob3i 
cells suggest that centromeric heterochromatin is dis-
rupted. It is well established that mutants affecting 

heterochromatin integrity at fission-yeast centromeres 
also exhibit specific defects in mitotic segregation [14, 
15]. We therefore conducted three types of test to iden-
tify mitotic defects. First, we checked for lagging chro-
mosomes on anaphase spindles. lmmunofluorescence 
staining shows thatpob3A cells display a high incidence 
of lagging chromosomes (10%) in anaphase (Figure 3A). 
This represents a more than 200-fold increase over that 
of the WT (Figure 313). 

Second, we determined whether pob3+ is required 
for minichromosome maintenance over several cell 
divisions. We measured the fidelity of chromosome 
segregation with two distinct minichromosome-loss 
assays [14]. In WI cells, the 530 kb linear Ch16 minichro-
mosome is mitotically stable [16]. Removal of Pob3 
function increases the rate of minichromosome loss by 
more than 20-fold (Figure 3C). Because this phenotype 
could be due to defective telomere function in linear 
minichromosomes, we also tested the mitotic stability 
of the 30 kb circular minichromosome CM3112 [16]. 
The loss rate of CM31 12 is increased by approximately 
30-fold in pob3/ compared to that of the WI 
(Figure 3C). Thus, the mitotic segregation of both mino-
chromosomes is severely affected in cells lacking 
pob3+. 

pob3+ deletion might affect chromosome segregation 
by altering mitotic spindle function, as is seen in hetero-
chromatin mutants [15]. We thus examined the growth 
and viability of pob3A in the presence of the microtu-
bule-destabilizing drug thiabendazole (TBZ) [15]. The 
plating assays clearly reveal that, compared with the 
WI, pob3A cells are IBZ-sensitive (Figure 3D), although 
to a lesser extent than are c1r4A cells. 

Together, these assays demonstrate that pob3+ plays 
a new and important role in accurate chromosome 
segregation. Pob3's role in centromeric silencing might 
account for its mitotic functions by contributing to het-
erochromatin integrity. 

Loss of Pob3 Does Not Affect the RNAi Pathway 
To investigate the molecular mechanism underlying 
FACT's novel repressive function, we analyzed the 
effect of pob3A on the RNAi-mediated heterochromatin 
formation at centromeres. In fission yeast, the RNAi 
pathway directs transcriptional gene silencing to the 
centromeric outer repeats and is required to assemble 
intact centromeric heterochromatin [3].  In this pathway, 
RNA transcripts are generated from otr regions and 
are processed into 5IRNA5 by Dcrl. These siRNAs are 
incorporated into the ribonucleic acid-induced tran-
scriptional silencing (RITS) effector complex, which is 
required to establish heterochromatin [3]. 

Mutants in the RNAi pathway, such as dcr1A and 
ago 1i, are defective in processing noncoding centro-
meric outer-repeat transcripts to homologous siRNA 
molecules. As a consequence, unprocessed otr tran-
scripts accumulate [3].  In principle, apob3t.i strain could 
display altered levels of the primary transcript and/or 
show changes in siRNA accumulation. Any of these phe-
notypes could explain the centromere-silencing and 
chromosome-segregation defects. 

Northern blots show a clear accumulation of unpro-
cessed otr transcripts in dcr1A cells, but they are not 
detected in pob3/ or WI cells (Figure 4A). This could 
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Figure 3. S. pombe FACT Subunit Pob3 Is Required for Accurate 
Chromosome Segregation 

pob3A mutant cells display lagging chromosomes in late ana-
phase. Cells grown at 251C were subjected to anti-tubulin (Tati) 
immunodetection and DAPI staining. The arrowhead indicates a 
lagging chromosome in the midzone of the microtubule spindle in 
pob3A mutants. 

pob3A deletion increases the frequency of abnormal anaphases. 
The percentage indicates the fraction of anaphase cells with lagging 
chromosomes. 

Enhanced minichromosome loss in pob3A mutant versus WT 
strains. 

pob3+ deletion strains display a pronounced sensitivity to the 
tubulin-depolymerizing drug TBZ. cIr4A serves as a positive control. 

also be because of an important role of Pob3 in tran-
script generation. We therefore tested cells lacking 
both Dcii and Pob3. The results show that these tran-
scripts appear to accumulate to the same extent as 
observed in dcrlA single mutants (Figure 4A). Outer-
repeat transcripts thus accumulate in a dcr11 strain 
independently of Pob3. Consistently, centromere-
repeat-homologous siRNAs are detected at similar 
levels in WT and pob3a cells, but not in dcrIA cells 
(Figure 4B). Taken together, our results indicate that 
Pob3 function at the centromere does not appear to af-
fect the production or accumulation of both unpro-
cessed transcripts and siRNAs. FACT may thus affect 
centromeric silencing through changes in the integrity 
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Figure 4. Pob3 Probably Acts Downstream of Dicer and Influences 
the Deposition of the Neterochromatic Swi6 Protein on Silenced 
Chromosomal Regions 

Northern analysis of noncoding centromeric dg-dh transcripts 
detects no measurable changes in the accumulation of these tran-
scripts in pob3A mutant strains, in contrast to dcrl+ deletion. The 
pob3A dcr1A double mutant does not alter the noncoding dg RNA 
levels. Centromenc transcripts were detected with a probe specific 
for the dg-dh repeat (top). RNA loading controls indicate the total 
RNA added (ethidium bromide staining, bottom). 

Centromeric siRNAs are unaffected by pob3+ deletion. A north-
em blot of small RNAs extracted from WI, pob3A, and dcrlA strains 
was probed with a centromeric (dg-dh) probe. U6 snRNA serves as 
a loading control. 

In pob3A mutants, Swi6 association is altered at centromeric 
outer repeats, whereas histone H3K9 me2 levels are maintained. 
ChIP of H3K9 me2 and Swi6 in WI, pob3, and heterochromatin 
mutants c1r4a and swi6A detects a significant loss of Swi6 both at 
the uraFL transgene and at the endogenous cent locus (uraDS/E 
and fop serve as euchromatic control regions, respectively). The fig-
ure shows a representative example of three independent biological 
experiments. The relative enrichment of IP/Input is calculated as 
shown. 

of silent chromatin itself and by acting either down-
stream of (or parallel to) the RNAI machinery. 

The Sw16 Heterochromatin Mark Is Altered 
In the pob3A Mutant 
To further dissect FACT-mediated heterochromatiniza-
tion, we analyzed chromatin structure at the centromeric 
repeats in the pob3A strain. Other fission-yeast mutants, 
such as c1r3A and sir2, also affect RNAi-directed silent 
chromatin without affecting the production or abun-
dance of centromeric-repeat siRNAs (unpublished data). 
In such mutants, the H3K9 me2 levels are reduced, and 
consequently less Swi6 associates with centromeric re-
peats [17]. We therefore used chromatin immunoprecip-
itation (ChIP) assays to determine the levels of H3K9 
me2 and Swi6 at centromeric outer repeats. In cells lack-
ing Pob3, the ChIP assays reveal normal levels of his-
tone H3K9 me2 on both the otrlR::ura4+ marker gene 
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and directly on the outer repeats (Figure 4C). Thus, Pob3 
is not required to maintain normal levels of H3K9 me2 
methylation at centromeres. Because the H3K9 me2 
mark is unaffected, we expected the Swi6 protein levels 
to be maintained in pob3A. Surprisingly, we find that 
Swi6 association shows a moderate but reproducible 
decrease over both the reporter gene and the endoge-
nous centromeric region (Figure 4C). This shows that 
although centromeric Swi6 association still occurs to 
some level, its association is disturbed in pob3A strains. 
Consistent with this partial effect, we observe that Swi6-
GFP remains localized to heterochromatic loci in pob3A 
cells, as is seen in several RNAi-pathway mutants (Fig-
ure S7) [18].  Thus, although the key histone H3K9 me2 
mark is retained on centromeric repeats in cells lacking 
Pob3, Swi6 association is reduced. SpFACT might thus 
play a role in assembling or retaining Swi6 on centro-
meric heterochromatin. 

Conclusions 
Here we have identified and characterized the SpFACT 
complex. Surprisingly, we show that deletion of the 
SpFACT subunit Pob3 is viable. This has allowed us to 
critically assess Pob3's functions in vivo. Our experi-
ments reveal a conserved biochemical protein assembly 
that functions in chromatin-based processes. Impor-
tantly, we provide the first biological evidence that 
Pob3 is required for accurate chromosome segregation. 
We find that this might be because of a novel role of the 
SpFACT complex in heterochromatin integrity at centro-
meres. pob3+ deletion does not affect H3K9 me2 levels, 
but it leads to decreases in Swi6 association at otr 
repeats. Together, our genetic and biochemical data 
implicate the chromatin-remodeling complex FACT in 
forming functional centromeres. 

FACT is known to facilitate transcription through 
chromatin. It has been proposed that FACT can disas-
semble H2A-H2B from nucleosomes in front of an ad-
vancing Pol II enzyme and reassemble H2A-H2B in its 
wake [19]. At centromeres, mutations in the SpFACT 
histone chaperone might affect H2A/H213 dimer incor-
poration and thus change the structural integrity of 
heterochromatin. Any alterations in the positioning or 
composition of nucleosomes could interfere with 
Swi6 association and/or spreading. This could alleviate 
silencing without noticeably changing H3 K9 methyla-
tion, as we observe. Alternatively, FACT might recruit 
Swi6 directly to otr regions. Decreased binding of Swi6 
to heterochromatic would be expected to impair sister-
chromatid cohesion, resulting in defective chromo-
some segregation [1]. 

In summary, our results show that the small subunit of 
the SpFACT complex is required to form normal silent 
chromatin on the centromeric repeats and for accurate 
chromosome segregation. Recent studies have shown 
that both subunits of the human FACT complex 
biochemically interact with centromeric CENP-A 
nucleosomes [20, 21]. Although the biological role of 
this interaction is unclear, our in vivo data now suggest 
that FACT might use its histone chaperone activity to 
assemble and maintain the structural integrity of cen-
tromeric heterochromatin. Given the high degree of 
conservation in FACT subunit sequences and in 
biochemical functions, it is likely that our data point to  

an important and evolutionarily conserved role for 
FACT in maintaining centromere integrity. 

Experimental Procedures 

Strains, Media, Transformation, and Genetic Techniques 
Strains are listed in Table S3. Standard genetic techniques were 
used [22]. Calls were grown in yeast extracts supplemented with 
adenine (YES) or in synthetic minimal medium [Piperazine-1 4-
bis(2-ethanesulfonic acid), MgSO4, glycerol (PMG)]. When required, 
phloxin B, 6AU, CPT, HU, or TBZ was added. Damage assays [23], 
minichromosome loss rates [14], silencing assays, comparative 
plating, and 5-fold serial dilution experiments [9] were performed 
as described. 

Expression Profiling and Chip Assays 
Microarrays were carried out as described [13].  RNA was extracted 
with a standardized acid phenol protocol. cDNA was generated with 
S. pombe-specific primers and random hexamers and labeled with 
Cy3 or Cy5. Dye swaps were done for all experiments. Hybridized 
slides were scanned (Biorad scanner), quantified (ImageQuant 4.2 
[Imagene]), and analyzed (Gene Spring [Silicon Genetics]). Similar 
gene lists were identified with hypergeometric distribution tests 
(rable S2). Swi6 and H3K9 me2 Chip assays were performed as 
described [4]. Bands were quantified with the Eastman Kodak 
EDAS 290 system and 1 D image-analysis software. 

lmmunofiuorescence Microscopy 
Cell-growth conditions, TAT1 immunofluorescence, and staining 
protocol have been described [15]. images were collected on 
a Carl Zeiss Microimaging Axioplan 2 IE fluorescence microscope. 
Image acquisition was controlled with Metamorph (Universal 
Imaging). 

Northern Blots 
.RNA was extracted from log-phase cells by acid phenol protocol, 
and polyethylene glycol (PEG) precipitation to separate high-
(HMW) from low-molecular-weight (LMW) RNA followed. Twenty 
micrograms of HMW RNA and 40 ig of LMW RNA were resolved 
on 6% formaldehyde gels containing 1% agaroae and on 8% urea-
denaturating PAGE, respectively. Gels were blotted overnight to 
a Hybond-XL membrane (GE). DNA probes, complementary to 
centromeric dg-dh repeats, and U6 snRNA were generated with 
High-Prime labeling (Roche) and T4 polynucleotide kinase (Prom-
ega), respectively. HMW and LMW RNA blots were hybridized 
overnight in a rotating oven at 650C and 421C, respectively. Phos-
phorscreens or films were exposed for between 3 hr and 3 days. 

Protein Methods 
immunoprecipitations (iPs) with anti-HA agaroae (Sigma) on whole-
cell extracts were performed as recommended (Sigma). For GST 
pulldowns, S-Met proteins were expressed by TnT Quick-coupled 
in vitro transcription and translation (Promega). 20 jil of reaction and 
160 Al buffer (lx HEMG, 0.15 M KCI, 1 mM dithiothreitol PTT], 0.1% 
NP40) were added to 10-30 jig of immobilized GST fusions, incu-
bated for 1 hr at 41C, and washed 5 x. Gels were exposed on Kodak 
X-Omat AR. SpFACT was purified with yeast-cell extracts [24]. 
Lysates were incubated with anti-FLAG M2 agarose (Sigma) for 
6 hr. at 4C and washed in ice-cold phosphate buffered saline 
(PBS), elution was performed with FLAG peptide (Sigma), and 
SDS-PAGE or mass spectrometry (MS) analysis (Innova Proteomics) 
followed. 

Supplemental Data 
Seven figures and three tables are available at http://www. 
current-biology.com/cgi/content/fuIV17/14/1219/DCl /.  
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