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Abstract 

This thesis describes methods for transforming applicative 
programs with the aim of improving their efficiency. The general 
justification for these techniques is presented via the concept of 
abstract interpretation. The work can be seen as providing 
mechanisms to optimise applicative programs for sequential von 
Neumann machines. The chapters address the following subjects. 

Chapter 1 gives an overview and gentle introduction to the 

following technical chapters. 

Chapter 2 gives an introduction to and motivation for the 

concept of abstract interpretation necessary for the detailed 
understanding of the rest of the work. It includes certain 

theoretical developments, of which I believe the most important is 

the incorporation of the concept of partial functions into our 

notion of abstract interpretation. This is done by associating 
non-standard denotations with functions just as denotational 
semantics gives the standard denotations. 

Chapter 3 gives an example of the ease with which we can talk 

about function objects within abstract interpretive schemes. It 
uses this to show how a simple language using call-by-need 

semantics can be augmented with a system that annotates places in a 

program at which call-by-value can be used without violating the 

call-by-need semantics. 

Chapter 4 extends the work of chapter 3 by showing that under 
some sequentiality restriction, the incorporation of call-by-value 
for call-by-need can be made complete in the sense that the 

resulting program will only possess strict functions except for the 

conditional. 

Chapter 5 is an attempt to apply the concepts of abstract 

interpretation to a completely different problem, that of 

incorporating destructive operators into an applicative program. 
We do this in order to increase the efficiency of implementation 
without violating the applicative semantics by introducing 

destructive operators into our language. 

Finally, chapter 6 contains a discussion of the implications of 
such techniques for real languages, and in particular presents 
arguments whereby applicative languages should be seen as whole 
systems and not merely the applicative subset of some larger 
language. 
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Chapter 1: Overview 

This chapter gives a detailed, but non-technical introduction to 

the remainder of this thesis. The sections discuss the work 

presented in corresponding chapters. 

The work presented in this thesis attempts to strike reasonable 

balance between theory and practice. This is a difficult aim, and 

achieved in few works. Clearly it is extremely hard to satisfy 

both the requirement for rigour and that for applicability. Here 

we attempt to do so by developing the idea of 'abstract 

interpretation' in both theoretical and practical directions, but 

inevitably the more practical aspects must lack rigour and the more 

theoretical ones seem remote from practice. We hope to convince 

the reader that this work exhibits practical uses of abstract 

interpretation for analysing applicative programs, which are well 

founded in theory. We would also hope that the theoretical 

developments are considered relevant. 

1.1 Abstract Interpretation 

This chapter performs two roles. Firstly it is an introduction 

to abstract interpretation in its own right, and secondly it 

exhibits the changes to the theory that are necessary to enable us 

to discuss applicative languages, thereby giving a theoretical 

basis for the remaining chapters. 

Essentially, we will follow the work of Cousot & Cousot [9] 

which itself is based on ideas as old as Sintzoff [47J and Naur 

136J, but which is also found in the 'rule of signs' given below. 
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Suppose we have a complicated system, for example the set of 

integers under addition (+) and multiplication (*), and we want to 

know certain properties about a computation in such a system, for 

example the sign of the result of (-345)*1067. Then we can either 

compute the result naively and take its sign, or employ the rule of 

signs (ne )*(pos)=(neg) to deduce that the result must be negative. 

Similarly this type of reasoning can show that a2+b2 is never 

negative, however consideration of a2+b2-2*a*b, shows us that all 

we can say is that the result is either p, ne or zero, which we 

knew already. 

Clearly the price paid for calculating in such a simple domain 

{pos,neg,zero} is that our answers to questions about the more 

complicated integer domain can never be exact, however we will 

choose our interpretations in such a manner that they imply results 

about corresponding calculations in the standard interpretation of 

symbols, as in the above cases. 

Computationally, we are not interested in abstract 

interpretation as an alternative method of performing such simple 

calculations, but rather as a tool for showing that certain 

conditions will hold about a certain function or program point at 

execution time. For example, as in the work in the next section, 

it will enable us to show that a certain function cannot have a 

defined result unless a certain parameter is defined and hence that 

that parameter can be evaluated out of the standard order. 
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1.2 The theory and practice of transforming call-by-need into 

call-by-value 

In this chapter, which has also been published as a paper of the 

same name [347, we consider the question of transforming a program 

written in a call-by-need language to one which uses call-by-value 

for as many of the parameter passing instances as is consistent 

with the call-by-need semantics. We provide some motivation for 

why this is a desirable thing to do, for example call-by-need is a 

more natural semantics for applicative languages, whereas 

call-by-value produces much more efficient code in situations where 

the two regimes are equivalent. 

In the next two paragraphs the assumed mode of parameter passing 

will be call-by-need. We note that there are two situations where 

a parameter can be passed to a function, F, say, using 

call-by-value without disturbing the call-by-need semantics. 

Firstly suppose a certain function, F, say, has the property 

that it always evaluates its k'th formal parameter (an operational 

view), or in comparable denotational terms 

F(... i ...) = i 

(where i, the undefined value, occurs in the k'th position) 

regardless of the values of the remaining parameters. 

Then it is clear that we cannot affect the termination properties 

of F by evaluating its k'th actual parameter prior to any call. 

Alternatively suppose we can show, for some actual parameter, e, 

say, that e has the property that, regardless of the environment in 

which it is evaluated, its evaluation always terminates (for 
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example e is of the form x+1 where we can show that the variable x 

is never j, as would be the case if it had been passed by value). 

Then we can safely (without disturbing the call-by-need semantics) 

evaluate this parameter before passing it to the called function, 

saving the possibly greater expense of constructing and evaluating 

a closure. Of course, if (in a particular program) all actual 

parameters corresponding to a particular formal parameter of a 

certain function have this form, we can change the function to 

expect a value parameter which will enhance the efficiency further. 

These views must be tempered a little by the question of what 

equivalence means, as for example, if a program has two distinct 

possible run time errors that it may become ensnared upon, then 

such transformations as given in the preceding two paragraphs may 

cause a transformed program to give a different error message. 

Accordingly the problem of errors in applicative languages is 

discussed in some detail, but if we adopt the notion of error 

values rather than error jumpouts then the equivalence hinted at 

above holds. The statement of equivalence would be that the 

call-by-need program annotated with hints that certain parameters 

could be evaluated according to call-by-value would be strongly 

equivalent to its purely call-by-need ancestor. 

The technique for propagating information about which parameters 

have certain termination properties is based on abstract 

interpretation (9] and two alternative evaluation functions E1 and 

E O are constructed by reference to the standard evaluation function 

E, and shown to have the properties that they reflect the behaviour 
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of E by giving safe lower and upper bounds on the definedness of 

expressions. 

The fixpoint structure of the meaning of functions within these 

alternative interpretations is also discussed, and a section is 

devoted to the problem of transforming an applicative program to 

maximise the number of parameters susceptible to our methods. A 

test of the system on a 1100 line applicative program (written 

without knowledge of the system) showed a promising 'hit rate' of 

around 75%. 

Since the work was completed, it has been extended by Jones [27] 

to be applicable to the whole lambda calculus, rather than the 

minimal system of recursion equations which were used here, however 

the extension necessarily requires a more complicated setup than 

the simple one adopted in this work, and hence should not be 

regarded as supplanting it. 

1.3 Call-by-need = Call-by-value + Conditional 

This chapter extends the work described in the previous chapter 

by showing that the idea of transforming the program to increase 

the number of places call-by-value can be used is complete, in the 

sense that a given applicative call-by-need program can be simply 

transformed (not interpreted) into an equivalent program for a 

language which has strict (call-by-value) semantics for all 

functions except the distinguished conditional function. 

We need slight (sequentiality) restrictions on our system 

functions as compared to the work of the previous chapter, but 
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otherwise the two works address identical call-by-need languages. 

The interest of this work is both theoretical and practical, in 

that it provides an alternative formulation of call-by-need in 

terms of call-by-value and also in that it provides a practical 

alternative to thunks (or closures) for an implementation of a 

call-by-need language. Plotkin [40] uses the concept of closures 

to show the equivalence of call-by-name and call-by-value 

interpreters for the lambda-calculus by showing we can model 

call-by-name within a call-by-value interpreter. He does this by 

the use of lambda "buffers" which are forced to be evaluated when 

required. 

Our transformation consists of four stages. Firstly we show 

that a given call-by-need program is strongly equivalent to one of 

the possible execution paths of a non-deterministic interpreter. 

This equivalence was also given by de Roever [43]. 

Secondly we show that it is possible to define oracles for this 

system of non-deterministic equations, which predict the path the 

computation will follow, and enable us to derive a result without 

using a parallel interpreter. However the oracles rely on 

extending the domain of discourse to include certain 'squib'-like 

elements to trace risky computations. 

Thirdly we show that it is possible to map the extra elements 

added in the previous paragraph into our standard domain of 

discourse, by using a form of overloading. This is really 

necessary, both for practical and theoretical reasons since the run 
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time tests of domain membership are likely to be as expensive as 

testing whether a parameter is a closure or an evaluated closure, 

and also we would be open to the criticism that we are not really 

comparing like with like. 

Finally it is necessary to discuss how expensive this process 

can be, and we will show that whilst it can increase the size of 

the program by an exponential factor of its complexity, the new 

program has a running time linearly related to the original. 

Figures (for the program cited in the previous section) suggest 

that the expense is rather less in practice than these worst case 

estimates, and costs less than a factor of two, both in time and 

space complexity. Moreover, due to the smaller cost (in both time 

and space) of call-by-value operations compared with equivalent 

call-by-need ones as implied by current machine architectures, the 

transformed program may actually be faster and smaller. 

1.4 Introduction of destructive operators into applicative programs 

Now we turn our mind to a rather different aspect of optimising 

applicative programs, and consider their implementation in terms of 

structure creation and destruction. In a purely applicative 

language our objects of discourse are merely values and 

correspondingly the concepts of location and reference do not enter 

the semantics. However an implementation will in general need to 

introduce these concepts in order to perform the management of (the 

finite amount of) store in a real machine. Having implemented a 

store allocation scheme of some sort, we will find that it is 

necessary to include some form of store de-allocator and also that 
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data objects must share their store with each other in order to fit 
the computation into a real machine. 

Store de-allocation is often performed by some form of garbage 

collection (a separate process which collects all data objects 

which cannot influence the future computation and returns them to 

free store). However garbage collection can be quite expensive, 

and as machines become larger takes longer. 

Here we seek to reduce the overhead imposed by garbage 

collection by determining some of the points in a program where a 

structure is used for the last time before losing its last 

reference. There has been other work done on this area but mainly 

for languages without procedures, a good account being given in 

[28]. However Schwarz [45, 46] and Pettorossi [38, 39] have 

considered the problem for applicative languages. Pettorossi's 

work addresses the situation where structures do not share store, 

unlike a real implementation. Schwarz's work does consider the 

problem of sharing, however he uses an operational model of a term 

re-writing system, which is not close enough to the standard 

semantics to enable simple proofs to be constructed, and also 

suffers from the deficiency that the user must declare the 

possibilities for destroying objects along with the program. Here 

we form a more denotational model which enables us to exhibit, as 

fixpoints, the amount of sharing present in certain structures. 

The technique is to construct an alternative interpretation for 

the program, which we use instead of the standard semantics. The 
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objects in this alternative interpretation are isolation classes, 

which model the sharing in the original language. The terminology 

is borrowed from Schwarz. 

For simplicity the theory is developed for a single constructor 

function (CONS), however this can be simply extended. On the other 

hand we deviate strongly from standard practice and make the 

important choice of only permitting a single destructive operator, 

which we will call FREE. The intention is that FREE will return 

its CONS node argument back onto the free list for re-allocation, 

and thus, in a LISP-like syntax we can see that RPLACA and RPLACD 

(and hence all destructive operators) can be written in terms of 

FREE. For example 

(RPLACD X Y) _ (DCONS X (CAR X) Y) 

where 

(DCONS X Y Z) _ (PROG2 (FREE X) (CONS Y Z)) 

Unfortunately, this type of definition is not very amenable to 

proof, and therefore, instead of adopting a direct approach, we 

choose a two stage construction whereby we define FREE in the 

semantics to merely mark its CONS node argument, so that it 
produces a run-time error on further reference. This enables us to 

insert FREE's freely, subject to the restriction that we must be 

able to show that the resultant program cannot actually produce 

such a run time error. Then we show that the two versions of FREE 

produce the same results for any original program from which they 

are both derived. 
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Chapter 2: Introduction to Abstract Interpretation 

The purpose of this chapter is twofold, firstly it introduces 

the general concept of abstract, or non-standard, interpretation. 

This was applied to computation by Sintzoff [47] (although Naur 

used a special case for type checking [36]) and greatly developed 

by Cousot & Cousot [8, 9, 10]. Wegbreit [52] seems to have been 

the first to use a lattice theoretic model for the objects in our 

abstract domain. Having said this, we should note that the idea of 

abstract interpretation as manifested in the 'rule of signs' 

discussed below pre-dates computation. 

Equally importantly, this chapter extends and re-expresses many 

of these ideas in forms more suitable for applicative languages, 

rather that the usual flowchart idiom. In particular it forms a 

technical basis for the following chapters. However much of the 

formal development needs considerable mathematical skill not 

required for the applications presented in later chapters. It is 

recommended that this chapter is omitted from section 2.2 on first 

reading. 

The standard work on abstract interpretation is either 

operationally based [8, 9, 10, 27] or denotationally based but 

suffering from the drawback of being unable to express the concept 

of recursive functions [11, 37]. In either case flow analytic 

methods fail to build a natural strong theory including partial 

functions. Here we use the concept of power domain, rather than 

that of power set used in the above works, to build a theory which 

naturally considers partial functions and termination. We indicate 
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how the standard power set based theory can be seen as an 

abstraction (in the usual sense due to Cousot) of our theory based 

on power domains. Donzeau-Gouge [11] and Nielson [37] both use 

continuation semantics [48] for their model which enables them to 

use similar structures to Cousot. It could be argued that for 

applicative languages we should merely choose that subset of 

continuation semantics that is required, however we will defend the 

opposite point of view, that an applicative style of semantics is 

required. The main reason for this is that we would like a direct 

semantics which follows the natural applicative semantics as 

closely as possible. This will enable simple and general proof 

rules to be derived for the correctness of any interpretations we 

may care to develop, rather than a more distant semantics which 

inhibits correctness proofs. 

This chapter is structured in the following manner. Firstly we 

undertake a review of flowchart programs, and a particular 

non-standard interpretation called the collecting interpretation. 

Next we present some lattice mathematics which will be used in the 

following section to derive more abstract interpretations than the 

collecting interpretation. In passing we note that the question of 

domain structure does not really arise in a flowchart setting since 

all our basic flowchart operations are total. This corresponds to 

the ability to use power sets for our model of abstract 

interpretation. 

In section 2.5 we review the idea of a recursive program scheme, 

1, together with a standard interpretation. This is followed by 
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showing that there is a canonical induced interpretation (the 

collecting interpretation) on a power domain which represents 

computations in (the standard interpretation of) 2 using sets of 

values. Sections 2.6.1 and 2.6.3 develop the idea of an 

abstraction of the collecting interpretation which calculates (a 

representation of) a superset of the values which would be computed 

in the collecting interpretation. As in the flowchart scheme 

presented above this abstracted domain will be simpler to compute 

in. We give several examples of the use of such interpretations, 

including the representation of the Cousot collecting 

interpretation as an abstraction of our collecting interpretation. 

Finally we will examine some ideas for extending the relation of 

abstraction to all pairs of abstract interpretations, rather than 

the use above which just compares abstract interpretations with the 

standard collecting interpretation. This will enable us to build a 

lattice of interpretations as developed by the Cousots for 

flowchart programs. 

One interestingly intermediate work is that of Jones [27J in 

which he applies the notions of abstract interpretation to the 

lambda-calculus. However he does this by showing that a lambda- 

calculus program can be considered to possess program points by 

virtue of noting thatrthe pieces of code handled by the interpreter 

are all either substructures of the original code for the program 

or substructures of the result of a base (system) function or a 

constant. Essentially he models the states that would be processed 

by the mathematical interpreter presented by Plotkin [40J. This 
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enables him to discuss questions of termination within a power set 

based model. However the disadvantages of such an approach are 

similar to the objections to the use of continuation semantics 

given above - namely that our model is removed from the natural 

semantics. 

2.1 Introduction to abstract interpretation 

A (standard) simple example is the most useful way of setting 

the scene. Let us suppose that we need a certain amount of 

information about the result of the calculation 

(-357) * 1078 

in order to optimise the details of performing the calculation, for 

example if multiplication (*) were an expensive operation. The 

classical 'rule of signs' 

can be used to infer that the result of the above calculation is 

negative, without the need to perform a (possibly expensive) 

multiplication, but rather by performing a calculation in a simpler 

domain. This is not the only possible abstract calculation we can 

perform, for example we can deduce that the result is even by 

performing 

ODD * EVEN = EVEN 

or even show that the magnitude of the result is between 105 and 

107 by using the calculation 

(3 digit number) * (4 digit number) = (6 or 7 digit number). 

The work of Patrick and Radhia Cousot, which will be discussed 

in more detail later, shows that the set of possible 

interpretations forms a partial order under a certain relation 
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called abstraction and a suitable restriction on the elements of 

this set gives us a lattice structure. 

Readers familiar with the slide rule, and the more astute users 

of calculators, will recognise the above calculations as typical 

'checking' calculation performed by the user in order to verify the 

actual calculations. (Or to choose decimal points for slide rule 

calculations.) In this work however, we do not consider these 

non-standard calculations for the purpose of checking other 

calculations, but rather for the selection of efficient evaluation 

mechanisms for our real calculation. 

To formalise the above rule of signs example we will define our 

domains (for the purposes of arithmetic these will be sets, but for 

computation complete partial orders (cpo's) will be required). We 

will consider 

*: Int X Int --> Int 

to be the standard interpretation of multiplication on integers. 

Now we may introduce a new set 

Sign = {(+), (-)} 

together with an operation 

e: Sign X Sign -4 Sign 

defined by 

a e b = (+) if a= b 

a e b = (-) otherwise 

Since no misunderstanding can arise it is common to write the 

symbol '*' in both domains. This can be regarded (computationally) 

as overloading '*' or (mathematically) as providing a new 

interpretation or semantics for '*'. However we will distinguish 
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'*' and 'o' for the remainder of this section. 

Clearly this new interpretation of symbols is of no use unless 

we can relate the effects of '*' and '®' in some manner. We will 

do this by defining functions 

Abs: Int-{O} -4 Sign (Abstraction) 

Conc: Sign --> 2Int (Concretisation) 

with definitions 

Abs(i) _ (+) if i > 0 

(-) if i < 0 

and 

Conc(p) = {i E Int: Abs(i) = p}. 

(We will omit the 0 element of Int from the discussion temporarily 

and discuss it later - it is associated with neither (+) nor (-) as 

far as the rule of signs is concerned.) This enables us to derive 

Abs(a * b) = Abs(a) o Abs(b) 

and hence 

a * b E Conc(Abs(a) o Abs(b)) 

This is most easily visualised as 

Int X Int ----------> Int 
i r 

Abs X Abs Conc 

Y ® i 

Sign X Sign -----------> Sign 

The reader should keep this form of picture in mind as we develop 

the following details. 

However, in general such a simple model is insufficient for the 

reason that begins to show itself in the "number of digits" example 

above in that we cannot satisfactorily take as our abstract 
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universe Num of Digits since the interpretation of '* cannot be 

treated as a map 

®: Num of Digits X Num of digits -4 Num of Digits 

since the example above shows that 

3 ® 4 = 6 or 7 

and so the abstract multiplication operation cannot be closed. 

Hence, in this case it would be necessary to choose 2Num of Digits 

or some similar set to model the abstract domain. 

example, if we extend our signs universe 

{(+), (-)} 

to cover addition we would derive 

(+) + (-) _ (±) = (unknown sign). 

Again we see the desirability of using 2{(+)'(-)} 

As a similar 

in that it allows 

us to include such concepts. We can now re-introduce the 0 element 

of Int and treat Abs(O) as (±), or for more accuracy in our 

abstract computations at the expense of a more complicated domain 

we could change our Sign set to be {(+),(-),(0)} and use the 

absorbtive properties of 0 under * to define 

Abs(O) _ (0) 

x ® (0) (0) ® x = (0) 

in our abstract domain. Computationally the inclusion of {}, the 

empty set, in 2{(+)'(-)} is often a good thing since it naturally 

corresponds to "No possible associated concrete values" such as 

would be formed after an unavoidable error or a non-referenced 

variable. 

While we are extending our abstraction process in such a manner 

it is desirable to remove the annoyance of Conc(Abs(x)) not having 

the same 'type' as x (it is a set type) and change the definition 
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of Abs to account for this deriving 
Aval = {(+), (-), (±)} 

Abs: 2lnt -4 AVal 

Conc: AVal - 2lnt 

defined (for non-empty sets) by 

Abs(S) _ (+) if Abs'(s) = (+) `¢ s in S 

if Abs'(s) _ (-) '` s in S 

_ (t) otherwise 

and 

Conc(A) = U {S: Abs(S) = A} 

where Abs' is the old version of Abs defined previously. 

This idea is reasonable when we are merely considering a single 

abstract interpretation, though we will later want to discuss 

classes of interpretations and their relationship to one another. 

Therefore we will adopt a slightly different strategy and define a 

canonical abstract interpretation, called the 'collecting' 

interpretation, which models the concrete interpretation with no 

loss of information (the two interpretations determine one 

another). The collecting interpretation will have abstract value 

domain (AVal) the power set (or power domain in our later work) of 

the concrete value domain (CVal) and the basic operations defined 

as the set extension of functions, for example for given 

f: CVal X CVal -4 CVal 

we define 

f' : AVal X AVal -4 AVal 

f'(X,Y) _ {f(x,y): x E X, y E Y} 

The collecting interpretation will represent the top element of 

a lattice (ordered by a relation called abstraction) of 
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interpretations modelling the standard interpretation as in the 

above. The maps between abstract interpretations can then be 

simple maps not involving power sets. A suitable diagram is: 

Collect 
CVal ---------> Collecting AVal 

r 
Abs Conc 

? ------------> Abstracting AVal 
r 

Abs Conc 

? ------------> More Abstract AVal 

The ?'s are given in this diagram to illustrate the fact that 

abstract interpretations may, or may not, be collecting 

interpretations for some other standard interpretation (AVal's 

corresponding to collecting interpretations can only have certain 

specific numbers of elements). One other feature of the above 

representation is that is permits a more symmetric notation which 

removes the constant reference to power sets. 

We choose not to force AVal to be a power set (as was used in 

the examples above) since this reduces the generality. As an 

example of why we may not desire AVal to be a full power set, let 

us return to the Num of Digits example above and observe (at least 

if we just use it for repeated multiplication) that any abstract 

value can be considered to be an interval 
[a,b] 

with a and b numbers representing the upper and lower bounds of 

number of digits in the result. This would suffice to ensure that 

the abstract multiplication operation is closed. It would be given 

by an interval arithmetic operation: 

[a,b] ® [c,d] _ [a+c-1, b+d] 
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2.2 Abstract Interpretation for the Flowchart Idiom 

It is recommended that the remainder of this chapter is skipped 

on first reading in order to become acquainted with the 

applications that motivate the theory. 

This section follows the development presented by the Cousots in 

[8, 91 in which the program under analysis is written in flowchart 

style. Therefore the interesting compile time problems are those 

based on the possible sets of values associated with particular 

variables (and possibly their interrelation) at a particular 

program point. 

2.2.1 Flowchart schema 

Firstly, we will define the syntax of a simple flowchart 

language. A flowchart program, P, is a labelled directed graph, 

(Node,Arc) where Arc is a subset of Node X Node giving the edges, 

together with a labelling of Node with statements. Arcs (in Arc) 

will also be called program points and referred to by Q label:j. 

We define functions 

Pred, Succ: Node -i 2Arc 

by 

Pred(n) = {(a,n) E Arc} 

Succ(n) _ {(n,a) E Arc} 

We denote the cardinality of a set S by Card(S). We also assume 

the existence of syntactic categories Var of variables and Exp of 

expressions. 

The possible statements, and the corresponding restrictions on 

the nodes they can label are: 

An entry node: There is only one of these (called Entry). It has 
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Card(Pred(Entry)) = 0 and Card(Succ(Entry)) 

We will define the program point Start by 

{Start} = Succ(Entry) 

= 1. 

An exit node: This has Succ(n) = {Stop} _ {(Exit,Exit)}. Again, 

without loss of generality we can assume there is 

just one of these, called Exit. 

An assignment node: 

These have Card(Succ(n)) 

the form 

Dar := Expl]. 

= 1. Their label is of 

A test node: These have Card(Succ(n)) = 2. They have a test 

part in Exp, and Succ(n) is labelled as: a true 

branch SuccT(n), and a false branch SuccF(n). 

Because the values of variables change at nodes, it is only 

generally sensible to talk about the value of a variable at program 

points. 

2.2.2 Flowchart semantics 

We will assume the existence of a set Val, of values, including 

an uninitialised value '?'. There is no point in using the 

conventional lattice structure for Val, since undefined values can 

only occur due to the program looping, and Val is not a suitable 

place to put them. (See section 2.2.5.) We will also require a 

concept of environments: 

Env = Var -4 Val. 

Thus giving a variable a value at a program assignment node means 

the environments at the program points around that node differ on 

the assigned variable. Similarly will we assume the existence of 

an evaluation function for elements of Exp which occur in tests and 

assignments: 

Eval: Exp -4 Env -4 Val. 
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A program state, then, is given by a pair 
State = Arc X Env 

describing the program point and current environment. We now 

define a function 
NState: State -k State 

which describes the one step state transformation function. The 

definitions of the flowchart state transformations are quite 

simple: 

For an assignment node, n, say, 

[El: x e; m:] 

we define the transformer to be 

NState(l,r) _ (m,r') 
where r' QxI1 = Eva1QeI1(r) 

r' QyII = rQyIl for all y x 

This states that the environment r' on the arc, m, leading from n 

is the same as the environment r on the arc, 1, leading to n except 

for the variable x, which takes the value of the expression e, 

evaluated in the environment r. 

Similarly for a choice node 

E a: if e .then goto 1 else goto mI] 

we derive 

NState(a,r) (l,r) if Eval[Iell(r) = true 
(m,r) if EvalQell(r) = false 

For the Exit node, we can define 

Nstate(Stop,r) _ (Stop,r) 

and note that the Entry node action has already been defined as we 

will start the program at Start where 

{Start} = Succ(Entry). 
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Now we need to specify the initial (empty) environment present 

at the entry node: 

InitEnv = X var. ? 

We choose here to avoid the convention of using ,l for the value 

of an uninitialised variable for two reasons. Firstly the notion 

of error we get by referring to a variable without a value is 

distinct from the idea of a program looping, and secondly later 

formalism will require ,i to be treated carefully (see section 

2.2.5). 

These definitions of NState give a standard operational style 

flowchart semantics with an initial state 

InitState = (Start,InitEnv) 

Thus, if the limit of 
NStaten(InitState) as n -+ co 

exists and is of the form 

(Stop,AnswerEnv) 

then AnswerEnv gives the final values of the variables after 

executing P. If the limit does not exist or has a Arc component 

not Stop then the program loops forever. 

2.2.3 Abstract flowchart interpretation 

We will now exhibit a canonical abstract interpretation (called 

the 'collecting' interpretation) associated with this standard 

interpretation. 

The possible contexts in our program are given by 

Context = 2Env 

and will model the set of environments which will occur at a 
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program point during execution. The context vectors are given by 

ContextVector = Arc -i 2Env 

in other words, given a context vector cv then, for each program 

point, p, cv(p) gives the set of possible environments which can 

exist at p. 

Now it is necessary to define a method to form the context 

vector corresponding to the set of run time environments. We will 

do this by defining 

InitContext = X arc. arc=Start -4 {InitEnv}, {} 

which gives the initial context vector associated with starting at 

Start, and a fixpoint iteration whose limit is the desired context. 

(This can also be seen as stating that the desired context is the 

least fixpoint of a certain equation.) The previous section gives 

a method (NState) by which, given an environment before the 

evaluation of a particular node, we are able to derive a 

corresponding environment which would exist after the execution of 

the code at that node. We must now 'lift' this idea from a map 

NState: State -4 State 

to a map 

NContext: ContextVector -4 ContextVector 

for our fixpoint formulation. NContext will correspond to our 

NState function which gives the next state from a given state, but 

instead will show how a context vector is affected by 'one step' 

execution. We define 
NContext(cv) = a arc. cv(arc) V 

{env: (arc,env)=NState(a,e), e E cv(a), a E Arc} 

Since 2Env has a natural subset ordering and NContext is 



continuous with respect to this ordering we can form the limit 

LimCV = NContextn(InitContext) as n --i oo 

which exists, and gives the exact set of environments associated 

with each program point during the standard computation of P. This 

explains the name of 'collecting' interpretation. Note the close 

relationship between the two interpretations: the set given by 

LimCV(Stop) 

is empty if the standard computation is non-terminating,, and 

otherwise is the singleton set (AnswerEnv} as defined above. 

2.2.4 Static Semantics 

Taking the idea of the collecting interpretation further, we can 

now consider running a program on a set of input values, rather 

than defining a single program execution as above. We will do this 

by considering that the program, P, can be started (at Start) with 

any one of a given set of initial variable binding environments. 

(Alternatives are providing a 'read' statement and allowing more 

than one Entry node.) To do this let InitEnvSet be a set of 

elements of Env and consider 

LimCVSet = {lim NContextn(cv): cv G InitCVSet} 

which gives the set of possible final context vectors, where 

InitCVSet = {(O arc. arc=Start --> {e},{}): e E InitEnvSet} 

We can now propagate the 'set-ness' of LimCVSet to Context (which 

is a set of environments) by defining 

LimStaticCV: ContextVector (= Arc -> 2Env) 

LimStaticCV(p) = U {f(p): f G LimCVSet}. 

This interpretation is called the static semantic interpretation 

of P and generalises the collecting interpretation (one can 
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retrieve the collecting interpretation by merely restricting 

InitCVSet to singleton sets). 

The static semantic interpretation is very useful because it has 

the property that all other semantic interpretations can be 

considered as abstractions of it. See [9] (where it is called ISS) 

and section 2.3.2. 

2.2.5 Val is naturally a set 

Note that this exposition, which corresponds to the Cousots 

work, never uses the ordering of Val. Their work does, but as a 

mechanism to allow the standard semantic ideas to be simply used, 

rather than in an essential manner. To us Val is just a set 

(including an error element considered to be incomparable with 

other elements of Val). Note that defining a partial order on Val 

(and hence on dependent concepts like Env) would make difficulties 

in deciding what we mean by 
2Env. 

It is not obvious which ordering 

on subsets should be used. This problem clearly has to be tackled 

in a more direct manner for applicative languages where the concept 

of partial function is central (see section 2.5). 

2.3 Mathematical basis for Abstraction 

In this section we will follow the Cousots and introduce the 

concepts of abstraction and concretisation functions between two 

general lattices, although in general these will just be subsets of 

a power set. Nielson [37] examines the reasons behind the choice 

of, and the possibilities for weakening, the following definitions 

in much greater detail. 

Here the term "lattice" will mean complete lattice 
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Let L and M be lattices, then we will define Abs and Conc to be 

adjoined if they satisfy the conditions that 

Abs: L--4M 
Conc: M - L 
Abs and Conc are monotonic 

Abs(l) E m q 1 E Conc(m) 

These conditions ensure that L and M in some sense model one 

another. The notion of adjoinedness is essentially the same as 

that of a 'Galois connection' used in classical lattice theory (see 

[11). In such circumstances Abs and Conc determine each other and 

thus only one need be specified. Explicitly 
Conc(m) U" {l: Abs(l) C m} 

Abs(1) l; {m: 1 C Conc(ur)} 

(see Nielson [371). 

Further we will say that Abs and Conc are exactly adjoined if 
the final condition for adjoined is strengthened to 

Conc(Abs(x)) x 

Abs(Conc(x)) = x 

The purpose of this is to ensure that M does not contain redundant 

elements and much of the theory goes through without it. However 

with exactness we can view Conc o Abs as an upper closure operator 

on L. It also enables us to write 

Conc(m) ;_.; {1: Abs(l) = m}. 

2.3.1 Abstraction of Functions 

Let L1 and L2 be two lattices, and M1 and M2 be lattices 

abstracting L1 and L2 respectively via functions Absi and Conci as 

above. Now consider a function g: L -4 L and a function h: M -4 M 

which we will want to consider as abstracting g. (There is an 
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algebra theoretic view of all this which will be given in the 

corresponding sections when our more general power domain based 

theory is developed.) 

Just as we said Conc and Abs are exactly adjoined if 
Conc o Abs D id we will require that computations in the Mi have a 

similar property relative to computations in the Li. We will say 

that h abstracts g (more properly (h,M1,M2) abstracts (g,L1,L2) 

with respect to the Absi and Conci) if we have 

Conc2(h(Abs1(x))) 9 g(x) 

or 

Conc2 o h o Abs1 D g. 

Given g we can always find such an h, for example, take h: Mi -4 M2 

defined by h(x) = T where T is the top element of M2. However such 

a definition will not tell us a great deal about the computation we 

are modelling and as such it is worth noting that there exists a 

'best' (in the sense of preserving most information) abstraction 

function defined by 

h = Abs2 o g o Conc1 

2.3.2 Abstraction for Interpretations 

The abstraction relation given above for functions may be shown 

to be preserved by both composition and by taking of least fixed 

points. (For proof adapt the more general proof given in section 

2.6.5 by taking C = C and L; = U. A direct proof is fairly 

simple.) This gives a general basis and justification for 

performing computation in an abstract domain and inferring results 

about a real computation. 
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2.4 Flowchart Abstract Interpretation 

We will now apply the mathematical model of adjoined functions 

on lattices and functions respecting them to the problem of 

constructing abstract interpretations for our flowchart scheme. 

We have defined Context to be the set of possible environments 

at a given program point in our flowchart schema. For the purpose 

of determining an approximation to the set of states which can 

exist at any given program point we can now follow the Cousots' 

idea and use the mathematical model of adjoined functions given 

above. 

At any given program point we have a lattice of possible 

environments, namely Context ordered by set inclusion. Now suppose 

that we have another lattice AbsCtxt which is an abstraction of 

Context. Then we can define AbsCtxtVector corresponding to 

ContextVector above by 

AbsCtxtVector = Arc -4 AbsCtxt. 

The lattice structures of Context and AbsCtxt carry across to 

ContextVector and AbsCtxtVector in the standard ordering of 

functions by their images. Now the NContext function maps 

ContextVector onto itself and, by the general theory above, has a 

corresponding AbsNCtxt which maps AbsCtxtVector onto itself and is 

an abstraction of NContext. Because of the properties of 

abstraction any computation carried out in ContextVector (such as 

computing the collecting interpretation result) can be modelled by 

a corresponding calculation in AbsCtxtVector and concretising the 

latter will give an element higher in the lattice (= subset) 
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ordering than the former. That is we have modelled in our abstract 

domain all the computations which can occur in the collecting 

interpretation (together, in all probability, with some which 

cannot). 

2.4.1 Example 

As an example, we will show the independent attribute method 

(IAM) given by Jones and Muchnick [291 (but also used in the 

Cousots' original formulation [81) is an abstraction of the 

collecting interpretation (which Jones and Muchnick call the 

relational attribute method). In the collecting interpretation 

(COL), given above, we define the set of contexts to be 

Ctxt-COL = 2Var -4 Val 

thus giving the set of environments possible at a program point. 

In IAM we define contexts by 

Ctxt-IAM = Var -> 2Val 

which gives the set of possible values associated with each 

variable. We can see intuitively that IAM is weaker in that it 
does not allow us to represent the fact that a variable may not 

have a certain value when another variable takes a specified value. 

We can set up the abstraction function 

Abs: Ctxt-COL --4 Ctxt-IAM 

by 

Abs(C) X v. {f(v): f C C}. 

This defines 

Conc(C') {f E Ctxt-COL: f(x) E C'(x) b x E Var}. 

For more examples see the Cousots' expository paper C91, but we 

will press on to consider applicative languages. 
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2.4.2 Lattice of Interpretations 

The abstraction relation on interpretations just defined is 

transitive and reflexive and therefore forms a quasi-partial order 

(for proof consider composition and the identity function). We can 

define an equivalence relation on interpretations by identifying 

interpretations which are both abstractions of each other. 

Upon identifying such equivalent interpretations we derive a 

quotient relation on equivalence classes of interpretations of a 

given schema which is now a partial order on the lattice of 

equivalence classes. 

2.5 Abstract Interpretation for the Applicative Idiom 

This section develops a variant of the Cousot style of abstract 

interpretation presented in [9] which is more suitable for 

applicative languages. In applicative languages the notion of 

program point is not immediately available, although Jones [27] 

presents an interesting use of dataflow analysis for the lambda 

calculus in which he essentially constructs a representation of 

program points by modelling the states processed by the 

mathematical operational interpreter of Plotkin [40]. His work is 

of interest because it represents a half way house between the 

formalism of this section and that used for flowcharts, albeit in 

an operational formulation. 

For applicative languages then, with no notion of program point, 

the important concepts are: 

- the meaning of functions 
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- the possible values of their parameters and results. 

We would therefore like to derive methods which will enable us 

to approximate the possible sets of binding environments which can 

exist at a certain function call, just as it is natural to consider 

the set of environments which could exist at a program point in the 

flowchart idiom. For functions we will examine 

f(S) {f(x1 ... xk):'(xl ... Xk) E S} 

(or superset approximations thereto) for sets S of tuples of 

values. This will be used to construct (an approximation to) the 

set of values computed by a function when given (an approximation 

to) a set of possible argument tuples. 

2.5.1 Recursion equation schema 

Let {Fi; 1<i<n} be a set of uninterpreted function symbols, with 

arity ki; [Ail be base function symbols, with arity ri; and {Xi) be 

a countable set of individual parameters. 

A program schema, 2, is a set of recursion equations 

{Fi(X1 ... Xk ) = Ui; 1<i<n} 

with the Ui members of WFF(ki) where the WFF(p) are the sets of 

well formed terms constructed from 

{Ai;Fj;X1 ... X 
p 

) 

These equations provide a functional environment for the 

evaluation of terms from WFF(O) under a given interpretation. 

However, for definiteness, we will assume that k1=0 and the 

'program' consists of evaluating 

QF1011 

in this environment. 
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2.5.2 Recursion equation semantics 

An interpretation, I, of a program schema is a pair <D,ai> where 

D is a domain (here cpo), and the 

ai : D -> D 

are functions interpreting the Ai and hence define constants and 

base functions. They must satisfy some suitability condition (here 

continuity). Such an interpretation naturally defines a semantic 

function 

EvalI: Expressions -> Denotations 

by providing meanings to atomic terms, and thence to compound 

expressions. This provides meanings, f to the Fi by the standard 

least fixpoint method. 

As a parenthetic remark oriented at the reader familiar with 

universal algebra we may view {Ai} and {Ai}U {Fi} as the operator 

parts of signatures (V,{Ai}) and (V,{Ai}U{Fi}) of algebras with a 

single sort, V say. By abuse of notation we will use the name 

A-algebra to refer to a (V, {Ai })-algebra and the name AF-algebra 

similarly. Thus an interpretation (D,ai) is (a carrier and 

functions for) an A-algebra. A recursive program scheme 2 induces 

an algebra morphism (which we shall also call 1) from A-algebras to 

AF-algebras by composition and taking of fixpoints. In general, 

except for the carriers (which will be called D, L, M), we will use 

capitals for sorts and operators of the signature, and lower case 

for elements of the carrier and functions. 

2.5.3 The collecting interpretation 

This section differs from the treatment given elsewhere (only 
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Cousot [10] and Jones [27] consider functions) in that we extend 

the theory to cover partial functions. Partial functions are 

represented in the standard mathematical manner as returning .L, the 

bottom element of some CPO, when the conceptual partial function is 

undefined. This enables us to derive a strong theory, rather than 

in the Cousots' work above where we have to qualify results with 

"if the expression terminates". The latter has a correspondence 

with theories of partial correctness such as Floyd's flowchart 

proofs [14], further developed by Hoare [24]. There termination 

must be established independently rather than being naturally 

considered as part of a theory of strong correctness. The Cousots' 

paper above uses recursive procedures (not functions) so that it is 

quite suitable for applying Floyd-like rules to derive weak 

properties of functional behaviour. 

Here we will apply such considerations to derive a 'collecting' 

interpretation in a different manner from the Cousots. This will 

require that we use a power domain rather than their use of a power 

set ordered by inclusion. This gives a more natural collecting 

interpretation, which can be justly claimed to be more suitable on 

the grounds that the power set interpretation is an abstraction of 

our power domain interpretation (see section 2.7.3). 

In order to build a collecting interpretation for 2 which 

considers sets of values we must first define what we mean by the 

set of all subsets of D. Let 

E = 2D 

be the power domain (see Plotkin C411) of the CPO (D,9;). If D is 
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flat, then E is just the set of non-empty subsets of D such that 

all infinite elements of E contain i. 

E is associated with the Egli-Milner ordering C which is defined 

by 

P C Q iff (''p E P. 3q E Q. pCq) & 

( b' q C Q. Bp E P. pCq) 

For a flat domain D, that is 
p C q iff P=i or p=q 

this reduces to 

P C- Q iff P=Q or 

i E P & P-1i) C Q. 

E also has an induced subset ordering, and here we will follow 

Hennessy and Plotkin [23] and define a nd-cpo (non-deterministic 

cpo) (L,EL,U L) to be a cpo with a continuous operation called 

union U : L X L - L satisfying the standard (set) axioms for union 

(commutativity, associativity and idempotency (x U x = x)). The 

union operation naturally defines a subset relation on L given by 

11 C 12 iff 11 U 12 = 12 

which we shall assume available when required. 

We will define the collecting interpretation, J, say, to be 

(2D , bi) where the bi are given by the following derivations from 

the definitions of the ai: 
bi: 2D -4 2D 

which is defined by 

bi(S) _ {ai(x1 ... xr,): (x1 ... xr ) E S}. 

The bi are continuous under the Egli-Milner ordering. 
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This correspondingly induces collecting definitions gi for the 

Fi given by (the least fixpoint of) 

gi(S) _ {Eva1JQUiIJ[{xj}/Xjl: (x1 ... xki) E S} 

Eva1JQXi1) r = rLXill 
EvalJEAi(e1...erl)II r = bi[Tuple(Eval LEe1I1r...EvalJQer1lr)I 
Eva1JQFi(e1...ekl)Il r = gi[Tuple(Eva1JQe1I1r...EvalJQekiIr)I 
Tuple(S1 ... Sk) = S1 X ... X Sk 

Note that these equations only represent a monotonic functional 

under the Egli-Milner ordering. The power set (inclusion) ordering 

does not have this property, since we wish the first approximation 

to the gi to be NS. {-L}. 

As in the flowchart formulation of abstract interpretation we 

have that the denotation of program schema S under I is the value, 

x, say, if and only if the denotation of 2 under J is the set X = 

{x}. Because of this property, we will study the relations of 

abstract interpretations with J, rather than I. 

2.6 An Approximating Interpretation 

Let (L,bi) such an interpretation (L,bi), with L = (L,CL,UL), 

and (M,C) be a cpo (we will not yet require a union operation in 

M) , and we consider what it means for M to be an approximation to 

(abstraction of) L. 

Before we can consider the notion of abstraction between 

interpretations we have to discuss the ordering we wish to place on 

our objects. Here, we will find, there is a difference between the 

concept of "is less defined than" and that of "will produce a 

smaller result set". This difference is not present in the 
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standard semantics of our deterministic recursion equations (since 

programs always give a single result). Neither is it present in 

the Cousots' work. However it is present in non-deterministic 

schemes (see Plotkin [41] or Hennessy [221). 

This difference is represented by the fact that a nd-cpo (here 

power domain) (L,CL,U L) has two different associated orderings: 

firstly it has a power domain ordering C and secondly an induced 

subset ordering C. We need the power domain ordering to set up 

our collecting interpretation in order that the least fixpoint 

functional should be continuous. For example in (221,C-,U) we wish 

that 

{2,3,x} c {2,3} 

in order to represent an improvement in evaluation. 

However, when we wish to discuss the accuracy with which one 

interpretation models another, we will find that we need to use the 

subset ordering 

{4,6} C {4,6,1} and {4,6} C {4,5,6} 

This is motivated by consideration of an example. Suppose the 

collecting interpretation of a schema gives {4,6} as the set of 

possible results. Now, due to our using an approximate version of 

the collecting interpretation, we may derive a result which 

corresponds to {4,5,6} in the collecting interpretation. For 

example consider the evaluations of 

Ex + x where x = {2,3}I1 to produce {4,6} 

and 

Q{2,3} + {2,3}I1 to produce {4,5,6}. 

These correspond to the relational and independent attribute 
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approximations to the collecting interpretation for "+" (see 

section 2.7.1). Since we want to use the abstract interpretation 

to infer results about our collecting interpretation, by giving us 

a superset of possible results, it is clear that we will need to 

use the subset ordering of power domains to compare 

interpretations. 

To summarise, if M is to model computation in L, we require two 

different orderings to represent the two ways a computation might 

be approximated: 

- C models inaccuracy due to insufficient length of 
computation. 

- C models 'inaccuracy due to inaccurate steps in a 

computation. 

2.6.1 Formal Definition of Abstraction 

Let (L,CL,U L) be a nd-cpo (cpo with a continuous union 

operation), and (M,SM) be a cpo. (Adding the axiom U I in the 

following will force L to be a lattice and hence simplify to the 

standard definition of abstraction.) For the reader acquainted 

with universal algebra the abstraction we define below is a map 

between the carriers L and M. We consider maps between the 

associated functions later. 

We now examine the hypotheses that we will impose upon 

abstraction and concretisation maps: (these conditions given are 

quite likely to be over cautious, however they will allow us to 

formulate our abstraction relation) 
Abs: L -4 M 

Conc: M - L. 
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Firstly, in order that Abs can model abstraction of computation 

into a simpler domain we will require that Abs is (CL9CM) 

continuous. This is necessary to enable fixpoints over L and M to 

be related (fixpoints use C). Furthermore we require that Conc is 

continuous. 

We will also require that M has no indistinguishable objects 

(this is the concept of exactness isolated by Nielson [371). 

Abs(Conc(m)) = m for all m in M 

This implies that Abs is surjective and Conc injective and that 

Conc o Abs is idempotent. Functions with this property are 

sometimes called projections in the literature but no standard 

nomenclature appears to exist. Functions satisfying the additional 

property that 

Conc o Abs C idL 

are often called retractions and those satisfying 

Conc o Abs id =-L 

are called (upper) closure operators. In our work we will choose a 

rather different extra property as described in the next paragraph. 

For the purposes of abstract interpretation we need to be able 

to deduce properties of programs over L by considering those over 

M. In particular we wish the result of a computation over L to be 

a subset of Conc applied to the result of a corresponding 

computation over M, in order to consider at least as many values as 

can actually occur in the L computation. This will require, by 

considering the empty (identity) computation, that 

Conc(Abs(l)) 3 1 for all 1 in L 

We will also require that Conc o Abs is CL monotonic. 
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These arguments motivate: 

Definition 

We say that continuous functions Abs: - - > - and Conc: M --j_L 

for an nd-cpo (L,9; L, UL) and a cpo Kg; M) are exactly power 

adjoined in the following circumstances: 

- Abs o Conc = idM 

- Conc o Abs 3 L idL 

- Conc o Abs is CL monotonic 

Note that now, if we temporarily assume CL = =L, then L and M 

are exactly adjoined lattices, as used by the Cousots in [9]. In 

this situation we would have 

Conc(m) _ U {l: Abs(l) = m}. 

Here this is independent, and in fact U will not even be defined 

for all such sets since we do not insist that L is a lattice. 

However we do have the corresponding 

Theorem 

Conc(m) = U {1: Abs(l) = m}. 

Proof 

Since Abs(Conc(m)) = m we have that the union contains Conc(m) 

thus giving 

Conc(m) C U {1: Abs(l) = m}. 

Now suppose Abs(1) = m then we have 

1 C Conc(Abs(l)) = Conc(m) 

and hence 

U {l: Abs(l) = m} C Conc(m) 

as required. 
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2.6.2 An alternative view of Conc and Abs 

Since Conc(M) is isomorphic (as a cpo) to M (the isomorphism is 

given by Abs restricted to Conc(M) and Conc) we can consider Abs 

and Conc to be a continuous function Clo: L -> L satisfying the 

axioms for a (set) upper closure operator: Clo is idempotent, 

C monotonic and Clo 3 idL. 

2.6.3 The Abstraction of Functions 

Suppose (L 1 , CL1 , U L 
1 

) and (L2, CL2, U L 
2 

) are nd-cpo's and M 1 and 

M2 are respectively abstractions of these domains via exactly power 

adjoined functions (Absi,Conci). Then we will say, for continuous 

functions g and h, that h: M1 -4 M2 is an abstraction of 

g: L1 -4 L2 if we have 

Conc2(h(Abs1(1))) 3 g(l) '' 1 in L 

or, removing references to elements 

Conc2 o h o Abs1 3 g. 

This condition ensures that any computation performed in the Mi 

represents a superset of the possible results of the corresponding 

computation in the Li, thereby providing sufficiency conditions for 

correctness, or optimisation of the Li computation. (For the 

reader acquainted with universal algebra we are extending the idea 

of abstraction from carriers to functions.) 

Note that such an abstraction, h, always exists, since defining 
Abs(g) = h = Abs2 o g o Conc1 

gives 

g' Conc2 o h o Abs1 

_ (Conc2 o Abs2) o g o (Conc1 o Abs1) 

7 g o (Conc1 o Abs1) 
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Now that g is monotonic with respect to C. That is 

a C b g(a) C g(b) 

since g is a function in the collecting interpretation defined by 

g(l) _ {f(x): x E 1}. 

(When we consider abstractions of interpretations more general than 

the collecting interpretation we will need to add this as an axiom 

about g.) Further, since 

Conc o Abs 3 id 

we have 

g' 3 g o (Conc o Abs1) Z g 

as required. 

Note that Abs is not an algebra morphism in the usual sense of 

the word since in general we will not have 

Abs(g2 o 91) = Abs(g2) o Abs(g1). 

An example of why this is so is given in section 2.7.2. 

2.6.4 Correctness of an Abstraction 

Let the Lr be 
2(Dr), 

then the collecting interpretation defines 

bi : Lr --a L 
1 i 

from the definitions of the ai. Now let Mr be abstractions of the 

Lr (via functions Absr and Concr). As in the previous section we 

have definitions 
ci: Mr -4 M, 

i 

induced from the bi, the Concr and the Absr. 

However we have two possible ways of forming the semantics, hi 

of the Fi on the Mr. Firstly they have a natural fixpoint 

definition induced by our scheme, 2. Secondly, they can be formed 

in the above manner, by abstraction of the meanings, gi, of the Fi 
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over the Lr. Clearly, from the point of view of computing the hi 

we would like to derive them from the fixpoint equations from the 

oil since the Mr are simpler domains. Therefore, as in the 

flowchart case, correctness is simply a matter of showing that the 

hi are always abstractions of the gi. 

We can formulate this (for the interested reader) in the general 

algebraic framework as: 

Correctness Theorem 

Let (L,bi) and (M,ci) be A-algebras such that (M,c) abstracts 

(L,b). We have a algebra morphism 5 induced by our recursive 

program scheme mapping (L,b) and (M,c) onto AF-algebras (L,b U g) 

and (M,cUh). Now (M,cUh) is an abstraction of (L,bUg). 

2.6.5 Proof of the Correctness Theorem 

The proof of correctness is done inductively: the base case, 

for system functions, is immediate from the definition in section 

2.6.3. 

We next show (the inductive step) that composition of the hi 

gives an abstraction of composition of the gi. Let g, g': L -4 L 

be composible with abstractions h and h': M ---> M. We must show 

that h' o h is an abstraction of g' o g. We have that 

g C Conc o h o Abs. 

We have a corresponding inequation for g' and h' (we elide the 

subscripts on Abs and Conc for simplicity). We now observe that 

g o g' C g o Conc o h' o Abs 

since we require g to preserve C, that is 

x C x' a g(x) C g(x'), 

as in section 2.6.3. Substituting for g in the right hand side of 
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the above gives 

g o g' C Conc o h o Abs o Conc o h' o Abs 

= Conc o h o h' o Abs 

as required. 

Finally we perform the induction by considering the n-depth 

approximations of functions defined by fixpoints and passing to the 

limit. Let g* and h* be the limits of sequences of gl and hi 

produced by the same fixpoint scheme. Now, the least functions in 

the domains are given by 

g0(x) = i 
h0(x) = Abs(i) 

and h0 is an abstraction of g0 since 

Conc o h0 o Abs (x) = Conc(Abs(i)) 

i = g(x). 

Moreover we showed above that composition preserved abstraction. 

Therefore we have that h1 abstracts g1 for all i, since hj+1 is 

defined in terms of a composition possibly including Now we 

turn our attention to the sequence 

p1 = Conc o h1 o Abs 

which is increasing with limit 
* * 

p = Conc o h o Abs 

due to the continuity of Conc (with respect to =). The fact that 

the h1 abstract the g1 can be written as p1 U g1 = pi. Continuity 
* * of U implies that p* 

U g = p or, re-phrasing again, that 
* * 

g C p or 
* * 

g C Conc o h o Abs 

as required. 
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2.7 Some Example Abstract Interpretations 

This section gives three applications of our idea of power 

domain based abstraction. However, they should not be simply 

treated as examples since they embellish the theory. For example 

section 2.7.3 shows how our formulation is more general than the 

Cousots'. 

2.7.1 Application: The Independent Attribute Formulation 

As in the flowchart scheme (see section 2.4.1 for definitions), 

we can define an independent attribute method (IAM) formulation of 

the collecting interpretation. We will show that this is an 

abstraction of the given (relational attribute) formulation. 

(These terms are taken from Jones and Muchnick [29].) Let 

E = 2D 

then we define the IAM interpretation by defining the base 

functions 

where 

ci(X1 ... Xk) {ai(x1 ... xk). x1 E X1, ..., 
bi(X1 X ... X Xk) 

Xk E Xk} 

Again the ci so defined are continuous with respect to the 

Egli-Milner ordering (see [41]). Similarly this induces meanings 

hi: E* ---> E 

via the fixpoint equations. 

Note that such a general definition of the ci would be 

impossible for the method given in the Cousot paper [10] since the 

natural image of i in their framework of 2D-{1} ordered by 

inclusion is {}, the empty set. This would imply that any function 
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so modelled would be strict because, for ci so defined, 

ci(X1 ... Xk) _ {} if Xi = {} for any i. 

Therefore in such a case we would need to treat non-strict 

functions as special cases, contrary to our desire to build a 

natural theory of denotational abstract interpretation 

incorporating partial functions. We will show later (section 

2.7.3) that the Cousot collecting interpretation is an abstraction 

of (ie less general than) our version. 

2.7.2 Application: Abstracting Termination 

Here we show that it is possible, in our theory, to abstract 

termination conditions (just as we will later show that we can 

abstract value properties ignoring termination when we show that 

the Cousots' collecting interpretation is an abstraction of ours). 

We consider the 1/ and b functions to be considered in chapter 3. 

Both # and b are particular versions of the 'Abs' functions 

discussed and their associated Conc functions will be called #' and 

We will leave chapter 3 in its original form because it is then 

easier to read independently and provides an alternative to the 

more abstract definition given below. As in the above, we will use 

the ai for semantics of the base function, bi for the collecting 

interpretation of these, and ci for abstractions thereto. Let T = 

{0, 1 } be ordered by 0<1 . Let D be a flat domain, then the # and 

functions lift (to L = 2D) the 

Halt: D - T 

Halt() = 0 

Halt(x) = 1 if x 

Halt function given by 

t7 
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We define 

#, b: L --> T 

S# = 0 if S = {j.} 

S# = 1 otherwise 

S = 0 if i E S 

S V = 1 otherwise 

Note that these definitions are only monotonic with respect to 

(c,<). 

The concretisation method given above (section 2.6.1) defines 

#', : T -- L 

1#' = D; 0#' _ {l} 
1 y = D-{_L} 0'y = D 

This enables us to define functions 

c# and cy: T* --> T 

by 

c(x1 "' Xk) # b(xiT ... xk') 

c "(x1 ... Xk) _ b(x7' ... xk") 

where 

b(s1 .., SO _ {a(x1 ... xk): xi E si} 

We check that the (#,#') and (7,5') pairs are power adjoined, 

and the ci abstract the bi. Then for meanings h of defined 

functions F, under # or S we have that h# and h'I4 give only valid 

properties of programs. 

At this point it is convenient to give an example (# above) of 

an abstraction function which is not an algebra morphism. Consider 

the function definition 

F() = IF(true,i,91) 

we have that (see chapter 3 for more details) 
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F#( ) = 0 

IF#(x,y,z) = x A (y V z) 

true# = 91# 
1# = 0. i 

but 

IF o (true '91 1. 

This phenomenon occurs in other circumstances than the above use of 

undefined functions. 

2.7.3 Application: Power Sets are an Abstraction of Power Domains 

We will here indicate that our power domains generalise the 

standard power set method used by the Cousots by showing that their 

collecting interpretation can be represented as an abstraction of 

ours. We will assume that D is a flat domain both for simplicity 

and for the reason that the theory has only been developed for such 

domains. The maps we consider are sufficiently natural (in the 

mathematical sense) that we would expect the extension to general 

domains to be straightforward, however power domains at higher 

types can pose difficulties. 

Take our nd-cpo (L,LL,U L), then, on putting U = u we find 

that L is a lattice (all lowest upper bounds exist by definition) 

and the rules for Abs and Conc reduce to 

Abs o Conc = id 

Conc o Abs i id 

This is merely the Cousots' definition of (exactly) adjoined pair 

on which they base their theory - thus our work does represent a 

generalisation. 

Clearly we have a natural map from 

L1 = (2D,L) qua power domain 
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to 

M1 = 
(2D-{,1},<) 

qua power set 

given by 

Abs: L1 --> M1: 1 -p 1- 

Section 2.6.1 gives conc as 

Conc : M 1 -i L 1: m --> m U 

This shows that the Cousot power set collecting interpretation is 

an abstraction of our power domain one. 

Similarly we can set up Lr and Mr to give respectively the power 

domain of Dr and its strict approximation 2[D"{y}]k, The Absi are 

a kind of smash operation identifying (in the Mr) all elements (in 

the Lr) which have any undefined component. 

Again, merely checking that this does in fact define a valid 

interpretation will give us the power to deduce properties in L 

(and hence in D) from those in M. Here however we can use the 

Cousots' abstraction relation defined on an abstraction, N, say, of 

M (in their sense) to prove properties of the computation in M from 

computation in N; and thence, by our abstraction, in L. 

This provides the idea of composing abstraction which the 

Cousots use to derive a lattice of abstractions of a given 

collecting interpretation. The next section indicates some 

possible methods which allow us to set up the framework of a 

lattice of abstract interpretations under our formulation of 

abstraction. 

2.8 The Lattice of Interpretations 

As in the Cousots' work, given our abstraction relation as 
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developed in the previous section, it is natural to want to extend 

it to compare any two interpretations, rather than simply building 

the set of all abstractions abstracting the collecting 

interpretation. There are at least two possibilities for doing 

this, firstly a simple and general comparison method and secondly a 

more sophisticated method of composing two abstractions to give a 

third. 1 

Firstly, there is the general construction which enables us to 

put an order (the finest possible) on the images under abstraction 

of a given nd-cpo L. Let M1 and M2 be such images abstracted by 

Abs and Abs2. We can define (M1,Abs1 ) < (M2,Abs2) if there is a 
1 

(continuous) map F, say, F: M2 -4 M1 such that Abs = F o Abs2. 
1 

However, such maps do not seem to preserve enough structure of L in 

the Mi . 

Alternatively, we might consider the natural suggestion of 

insisting that Abs and Conc preserve more of the nd-cpo structure, 

since the problem in wishing to define a chain of abstractions 

Abs1: (L,!L,UL) -> (M,CM); Abs2: (M,CM) -> (N,1ZN) 

is that M does not have the union operator which we require to 

define abstraction. Otherwise there is no problem - we can compose 

the Abs. and Conc. without restriction. From the view that M is 

isomorphic to Conc1(M), the natural union operator U M is given by 

mi UM m2 = Abs1(Conc1(m1) UL Conc1(m2)). 

1For universal algebraicists this is just the statement that our 
A-algebras with our abstraction relation form a category. 
Similarly we have a category of AF-algebras with morphisms again 
abstraction. Furthermore the map 5 (induced by the recursive 
program scheme) is now a functor between these categories. 
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However in general there seems to be no reason why this should be a 

union operator (associativity is not guaranteed). A solution is to 

insist that Abs preserves unions (such functions are called linear 

by Hennessy and Plotkin [23]), thereby ensuring that such a 

definition does indeed define a union operator: 

Abs1(l1 UL 12) = Abs1(l1) UM Abs1(12). 

This is quite consistent with the Cousots' formulation since there 

we have that Abs is a distributive continuous function with 

Abs(u{li}) _ u {Abs(li)} , 

and this work can be considered to be a method of separating the 

uses of U and U which are identified in the their work. Actually 

we will only use the following weaker conditions relating the union 

operators: 

Abs1(11 UL 12) = Abs1(11) UM Abs1(12) Y 11,12 in Conc(M) 

Abs1 is (CL,CM) monotonic 

Finally, it appears that we also require a condition on Conc, 

again generalising the Cousots' lattice based theory which has Conc 

monotonic with respect to F, and accordingly we insist that Conc is 

C monotonic. This enables us to prove 

Theorem 

The composition of abstraction maps 

Abs1: (L,SL, UL) -> (M,LM, UM) 

Abs2: (M,CM, UM) -> (N,cN, UN) 

gives an abstraction map 

Abs2 o Abs1 : L --> N. 

Proof 

Let Conc1 and Conc2 be the (uniquely determined) concretisation 

maps corresponding to Abs1 and Abs2. Now we will show that 
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Conc1 o Conc2 acts as an concretisation map for Abs2 o Abs1. We 

must show 

- Abs2 o Abs1 o Conc1 o Conc2 = idN 

- Comp = Conc1 o Conc2 o Abs2 o Abs1 

has Comp 2 idL and Comp is C monotonic. 

- Abs2 o Abs1 distributes over U 

Conc1 o Conc2 is C monotonic 

The first and third of these is trivial (composition preserves the 

properties). Now 

Conc2 o Abs2 o Abs1 2 Abs1 

due to the fact that 
Conc2 o Abs2 2 id. 

Using C monotonicity of Conc1 gives 

Comp 2 Conc1 o Abs1 2 id 

as required. To prove C monotonicity of Comp we note the Absi are 

C monotonic and so are the Conci. Hence so is Comp. 

One final remark is to the effect that our assumptions as to the 

C monotonicity of Abs and Conc render the axiom 

Conc o Abs is C monotonic 

(given in section 2.6.1) superfluous. 

2.9 Notes on the Abstraction Relation 

We here mention a few points which could not conveniently be 

given in the text due to their ability to confuse. 

Firstly, we use the notion of a nd-cpo which is a domain with 

continuous operation, called union, satisfying the axioms of 

associativity, commutativity and idempotency. However these are 

exactly the same axioms that categorise an intersection operation. 
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Therefore our work has a natural dual (just as the Cousots' work on 

complete lattices has the (u ,fl) duality). This could be used to 

infer a subset of the results of a program instead of the above 

work which aimed to model a superset of the possibilities. This 

would be useful to prove that run-time errors do occur, and hence 

the program under analysis is incorrect, just as our work shows 

that certain states did not occur in order to validate certain 

optimisations. 

Note that our use of cpo's (for semantic domains) rather than 

complete lattices is absolutely essential in that the power domain 

construction does not properly work for lattices. For example, it 

can be shown that if D is a cpo containing three elements related 

by a ! b ! c then the power domain of D has {a,b,c} _ {a,c}. 

Thus, if we use a lattice then any subset containing the top and 

bottom elements is equivalent to any other - this fact makes 

unusable much of the strong abstract interpretations we have 

developed above for power domains. However, we would not claim 

that this represents a weakness of our work, but merely indicates 

how artificial elements (top elements have no semantic basis) can 

cause artificial problems. We note that the modern style is to use 

cpo's to set up semantic domains rather than the older Scott style 

lattice-based semantics. 

One final point concerns the fact that our work requires union 

operators where the Cousots' theory does not. As indicated their 

theory uses lattices which automatically have two natural union 

operators (L; and ;-;) and using either of these in the source of 
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both Abs and Conc ensures that our additional axioms are satisfied. 

2.10 Deducing Properties of Applicative Programs 

This section gives a quick introduction as to how we might use 

the work above for transforming programs to improve their 

efficiency and is not central to the rest of the thesis. We 

discuss how we can use the non-standard interpretations of user 

defined function symbols in order to obtain global properties on 

applicative program execution as the non-standard interpretations 

are less useful in themselves. 

The work on abstract interpretation for the applicative idiom 

given in section 2.5 concentrates entirely on finding meanings 

within the abstract interpretation for functions. That is, given 

r 
ai: D i -4 D, the meaning of a base function, we deduce an abstract 

meaning c i : Mr ---> M1, for a base function symbol, via the 
i 

n 
collecting interpretation bi: Lr ---> L1, where Ln m 2D . We then 

i 

use this to infer, via the least fixpoint equation in our abstract 

universe, an approximate meaning gi: Mk -4 M1 for user function 
i 

definitions. 

We now wish to calculate more directly relevant properties of 

functions, for example the set of possible parameters supplied to, 

or results given by, a given function. We do this by noting that 

the meanings ci and gi define an evaluation function, as given 

previously. Therefore the set of possible parameters to a given 

function in a given call QF(e1 ... ek)I is just given by 

(concretising) 

S = EvalMQeill X ... X EvalMQekID 
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similarly the set of possible results produced by this call is 

simply Conc(g(S)) where g is the abstract meaning of F. 

The set of possible parameters passed to F from all calls within 

the program is just the union, over all calls to F in the program, 

of the terms like S given above. The set of all possible results 

from F within this program is given similarly. Producing highly 

optimised code for applicative languages can be seen as 

partitioning this union suitably, and then producing versions for F 

for each of these cases by partial evaluation of the standard 

definition. 

Note that the optimising described here is at a middle level, 

intermediate to machine dependent 'peep-hole optimisation' and full 

program transformation which acts by changing the algorithm as 

described by Burstall and Darlington [6]. However we would claim 

that our method has a greater chance of being used automatically 

than any algorithm changing method. 
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Chapter 3: The Theory and Practice of Transforming Call-by-need 

into Call-by-value 

3.1 Abstract 

Call-by-need (which is an equivalent but more efficient 

implementation of call-by-name for applicative languages) is quite 

expensive with current hardware and also does not permit full use 

of the tricks (such as memo functions and recursion removal) 

associated with the cheaper call-by-value. However, the latter 

mechanism may fail to terminate for perfectly well-defined 

equations and also invalidates some program transformation 

schemata. 

Here a method is developed which determines lower and upper 

bounds on the definedness of terms and functions, this being 

specialised to provide sufficient conditions to change the order 

and position of evaluation keeping within the restriction of strong 

equivalence. This technique is also specialised into an algorithm 

analogous to type-checking for practical use which can also be used 

to drive a program transformation package aimed at transforming 

call-by-need into call-by-value at 'compile' time. 

We also note that many classical problems can be put in the 

framework of proving the strong equivalence where weak equivalence 

is easy to show (for example the Darlington/Bur stall fold/unfold 

program transformation). 
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3.2 Motivation 

For a purely applicative language (no assignment or GOTO) 

call-by-need [511 is a highly desirable parameter passing 

mechanism, since Vuillemin[501 shows it is a safe evaluation 

mechanism in that it will give the mathematical result whenever the 

latter is defined and is more efficient than call-by-name. 

Basically call-by-need is the same as call-by-name (passing of 

an expression bound in the calling environment) but with the 

proviso that the first reference to the parameter causes not only 

its evaluation but also the replacement of the parameter with the 

result of the evaluation thus making subsequent accesses much 

cheaper. It also has the advantage that it corresponds closely to 

the method a mathematician would use to evaluate an expression. 

Note that it retains the advantages of call-by-name in that 

parameters that are not referenced in a particular activation of 

the function will not be evaluated: this point is very important 

since evaluating an argument which should not be evaluated may 

result in the evaluator looping. To summarise, we have that 

- call-by-value evaluates a parameter exactly once, 
- call-by-name evaluates a parameter zero or more times, 
- call-by-need evaluates a parameter at most once. 

The main disadvantage of call-by-value is that it may produce 

undefined values for (mathematically) well defined expressions, for 

example consider evaluating 

f(1,0) WHERE f(x,y) = IF x=O THEN 0 ELSE f(x-1,f(x,y)) 

using call-by-value. 
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Note that this point is especially relevant to the typical user 

of a symbolic algebraic manipulation (SAM) system, who is 

mathematically sophisticated but computationally naive, because he 

will write similar (but less contrived) recursive definitions and 

find the system merely moans that time is up! 

For the user of a SAM system it is desirable to use call-by-need 

as the parameter passing mechanism in order that 

1. The recursive definitions are as fully defined as 

possible. 

2. The print program may drive the evaluation process so 

that printing an infinite expression will run out of 
time when printing it and not during the evaluation 
prior to printing. 

The counter arguments favouring call-by-value are: 

1. Call-by-need is clumsy to implement on current 
architectures (in that each parameter to a function 
needs to carry a closure around with it). This leads to 

differences in efficiency which are put by various 

sources at factors of between 2 and 10. The situation 
becomes rather worse in a full lazy evaluator[15, 21] 

where an evaluation of an expression can be suspended 

with unevaluated sub-expressions. 

2. With call-by-value the system can use memo-functions 

(due to Michie[32]) to avoid recomputation. These will 

be (semantically) invisible to the user, and encourage 

the development of clean "mathematical" rather than 

"sequential" programs. For example consider: 

f(n) = IF n<2 THEN 1 ELSE f(n-1)+f(n-2) 

(Fibonacci numbers) 

or 

C(n,r) = 1 IF r=O OR r=n 

= C(n-1,r-1) + C(n-1,r) OTHERWISE 

(Pascal's triangle) 
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Here evaluation (with r = n/2 in the second example) 

requires in the order of 2n function calls using the 

standard implementation. This cost can be made linear 

in n in exchange for storage by saving the 

(arguments, result) pairs for previously computed values 

of f or C. (This technique is called 'memo'ing the 

function). Unfortunately when using call-by-need, we 

cannot look at the argument values since to do so causes 

evaluation effectively at the time of call and hence is 

equivalent to a call-by-value regime. Thus 

call-by-value has advantages which extend far beyond 

current hardware limitations - since exponential costs 

can rarely be tolerated. 

3. Call-by-need does not permit the standard methods of 

recursion removal to be used, for example: 

f(x,y) = IF x=O THEN y ELSE f(x-l,y+l) 

requires one new closure to be created for y in each 

recursive call; these all being evaluated 'domino 

fashion' when y is finally used. For further discussion 

see LangE311. 

It is worth noting the great similarity between the 

optimisations furnished by call-by-need over call-by-name and by 

using memo functions. In both cases the effect is to avoid 

recalculation of known values, and both are optimisations which can 

convert an exponential cost into a linear one (unlike traditional 

compiler optimisations to remove common sub-expressions which can 

only save at most a linear factor in the cost). 

Another reason for using the call-by-need parameter passing 

mechanism is that call-by-value invalidates some program 

transformation schemata. For example consider the fold/unfold 

transformation of Darlington and BurstallE61 which replaces a call 
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of a function by its body or vice versa. 

The program segment 

IF el THEN e2 ELSE e3 ... (1) 

is equivalent to the segment 

f(el,e2,e3) WHERE f(x,y,z) = IF x THEN y ELSE z ... (2) 

only if the call-by-need (or name) parameter passing regime is used 

since the, early evaluation of e2 or e3 otherwise necessitated by 

call-by-value in (2) may cause infinite looping. For example 

compare 

fact(n) = IF n=0 THEN 1 ELSE n*fact(n-1) 

with 

fact(n) = f(n=0, 1, n*fact(n-1)) 
WHERE f(b,x,y) = IF b THEN x ELSE y 

the latter being undefined for all n when using call-by-value. 

The above arguments suggest that call-by-value is more efficient 

but call-by-need preferable on aesthetic/definedness 

considerations. So techniques are herein developed which allow the 

system to present a call-by-need interface to the user but which 

performs a pre-pass on his program annotating those arguments which 

can validly be passed using call-by-value. Thus the spirit is 

similar to, and unifies and implements some of the ideas in 

Schwarz[44]. 

Note that the technique only provides the information "It is 

safe to pass certain parameters by value" and is not claimed to 

detect all such cases. The problem of detecting all such cases is 

actually not effectively computable, for example consider: 

F(x,y) = IF P(x) THEN y ELSE 0 
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where P(x) is true for all values of x. The argument y will, then, 

always be evaluated and so could be safely passed by value. This 

fact is impossible to detect uniformly since, in any sufficiently 

rich domain, there are tautologies which cannot be detected by any 

(pre-specified) algorithm (eg "The halting problem" for Turing 

machines). We make no attempt to detect similar tautologies and 

hence the system "plays safe" and suggests that y is passed by 

need. In practice this limitation does not stop most cases of 

call-by-value being detected (see section 3.6 on pragmatics). 

There is a analogy between the system described here and the 

"most general type" inference system used in a language such as ML 

[171 which even extends to cover the sort of example above; for 

example consider the declaration 

LET x = IF true THEN 1 ELSE NIL 

then the ML type rules will produce an error for the type of x 

whereas in fact it is well (but inelegantly) defined. 

In order to be able to change the order of evaluation (eg 

changing call-by-need into call-by-name) without changing the 

semantics we require referential transparency in the language under 

study. Applicative languages normally possess this property, with 

the proviso that error situations (eg 1/0) do not result in 

'jumpout' action and merely return a special error value to the 

calling function. Further discussion of this point may be found in 

section 3.9. 

The central stage in the development of the call-by-value 

detection system is the definition of maps # and y which are 
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semi-decision procedures for termination on recursion equations. 

The idea is that # will map ALL terminating closed forms onto 1, 

and SOME non-terminating terms onto 0, and maps ALL 

non-terminating terms onto 0 and SOME terminating terms onto 1. By 

investigating the effect of # and b with their semi-homomorphic 

properties on recursion equations we can see the gross structure of 

the recursion and occurrences of references to arguments without 

the clutter of detail present in the original equations. 

3.3 Formalism 

The formal system in which the theory is developed is that of a 

scheme, S, of recursion equations together with one standard and 

two non-standard interpretations. 
S = {Fi(X1 ... Xk ) = U i ; 1<i<n} 

i 
where the Ui are (finite) terms defined by the grammar with start 

symbol T and axioms 

- T ::= Xj (individual parameters) 

- T ::= Aj(T1 ... Tr ) (system functions) 
J 

- T :.= Fj(T1 ... Tk ) 1<j<n (user functions) 
J 

We insist that Ui contains no Xr for r>ki. Here all base 

constructs (including the conditional which is normally regarded as 

syntax) are considered to be members of the (Ai); note that the Ai 

are base constants when ri = 0. 

An interpretation I, of S, consists of a pair <D,(aj)> where D 

is a domain and the ai are continuous functions from Dr-->D where 

r = r i is the arity of Ai. 
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An interpretation I induces for S an interpretation of the 

function symbols Fi defined in the usual manner as the least 

fixpoint. 

Now let 2 = {0,1} be the two element Boolean lattice ordered by 

0<1 and use the standard Boolean connectives (we use 0 and 1 to 

avoid confusion with elements of D). 

3.4 Notation and Definitions 

We use the following notation to simplify expressions: 

1. [P,QJ is a partition of a set U if U is the disjoint 
union of P and Q. 

2. Let F be a function with arity k then for a partition 
[P,QJ of {1 ... k} we define F(a/P, b/Q) to mean 

F(x1 ... xk) where xi = a if i in P 

= b otherwise 

3. We will also use R(xQ) to mean R(xi) for all i in Q, 

where R is a predicate. 

We next define two more interpretations in terms of I = <D,(aj)> by 

I = <2, (at)> 

and 

<2, (a'1> 

in the following manner: [the definitions are to be seen as 

monotonic functional extensions of the function 

HALT: D -> 2 defined by 

HALT(x) = 0 if x = 1 

1 otherwise] 

For all partitions [P,QJ of {1,2 ... ri} we define 

al '(0/Q, 1/P) = 0 if for all {xj in D: 1<j<ri} such that 

xQ = 1, xP 1 we have ai(x1 ... xr ) = l 
i 

1 otherwise 
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and 

a r(0/Q,1/P) = 0 if there exists {xj in D: 1<j<ri} such that 
xQ = 1, xp i and ai(x1 ... xr.) 

i 

= 1 otherwise. 

Clearly the (alb) and (ai) are monotonic since we assume the (ai) 

are computable. For any function g: Dr --,i D we will write3 

g# , g b: 2r --, 2 

to denote the functions constructed from g by the above technique. 

3.5 Example 

Here we use the standard meaning for IF as the 3 argument 

sequential conditional; and PLUS as the usual (strict) operation on 

integers: 

IF#(p, x, Y) = p A (xVy) 
IFb(p, x, y) = p A x A y 

PLUS#(x, y) = x A y 
PLUS'' (x, y) = x A y 

It is useful to observe that these equations can be read in 

English to help understanding: the first one (for IF# and IF7) 

reads 

IF(p,x,y) needs to evaluate both p AND at least one of x OR y. 

IF(p,x,y) terminates if p AND x AND y do. 

We can also cope with parallelism, for example 

PIF#(p, x, y) _ (pVx) A (pVy) A (xVy) 

where 

PIF(p,x,y) = x if p = TRUE 

= y if p = FALSE 

= x if x = y 

= 
1 

otherwise. 

This approach of identifying all non-undefined values can be 

3Here 2r means 2 X ... X 2. 
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further justified by noting that any two partially correct 

evaluation mechanisms (those that give the same result when both 

terminate) are weakly equivalent (ie LUB(E1,E2) exists where the Ei 

are the results from the two evaluation mechanisms) and hence it is 

only necessary to discover places where undefinedness can creep in. 

In passing we note that this point is still relevant in higher 

order languages since in a well typed language with flat base 

domains the universe of discourse is 
D0 is flat and 

Di+1 ° Di 
+ (Di -4 Di) 

Dn for some n where 

Note (see section on non-discrete domains) that allowing D to be 

non-discrete might mean that we fail to obtain a very close bound 

here without more machinery. 

I# and I b are (non-comparable) interpretations abstracting I in 

the sense of Cousot and Cousot[91. However here we use the two 

non-standard interpretations to "sandwich" the standard 

interpretation and thus it is important to note that one of the 

interpretations is "upside-down" relative to the above work. 

We naturally define f# and f b corresponding to the Fi as the 

least fixpoints of their defining equations in S under the 

interpretations I# and Is'. 

Let E, E#, Eb be respectively the denotation functions for terms 

under I, II Then for all terms e (possibly with free 

variables) we can associate functions 

E E e 11 : DK --> D; E#QeII, OQeII: 2K - 2 

where K is a set containing all the free variables of e. 
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We have that 
,crr_,,.# , #m_ EbPrr b < (EQeD) < 

for all terms e, the centre inequality reducing to an equality if e 

has no free variables. This is a consequence of the general theory 

of abstract interpretation developed in chapter 2, but can also be 

shown by a simple "depth of computation" induction left to the 

reader. The outermost inequalities reduce to equalities if e is of 

the form Ai(X1 ... Xri ). 

This result enables us to deduce that the definition of # and 'y- 

on the Ai extends to the Fi to give useful information on 

termination in I. The result is, for all partitions CP,Q] of 

{1,2 ... ki}, 

F#(0/Q, 1/P) = 0 implies 
for all (xi) such that xQ = 1 we have 

Fi(x1 ... xki) = j 

and 

F(0/Q, 1/P) = 1 implies 

for all (xi) such that xp .i we have 

Fi(x1 ... xki) 1 

Note that we lose the half of the if and only if of the definition 

- this is due to the operation of composition rather than 

recursion, for example take 

e = QIF true THEN _L ELSE 911 

which gives 

E11Qe]] = 1 

in spite of the fact that EQeD = 1. 

Now these are exactly the two conditions required for the 

detection of situations where call-by-need may be optimised to 
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call-by-value. The first gives us conditions on a function such 

that (some of) its formal parameters may uniformly over calls be 

evaluated before evaluation of the function body and the second 

gives us conditions on actual parameters which may be evaluated 

prior to calling uniformly over the head function symbol. We now 

consider these remarks in more detail with examples: 

A condition for the actual parameter ei associated to formal 

parameter x i in a call F(e1 ... ek) to be safely (ie without 

disturbing the meaning of the call - see Vuillemin(50J) evaluated 

before calling F is precisely that F(x1 ... xk) is undefined 

whenever x i is. Taking Q = {i} in the above equation for F# gives 

us a useful sufficiency condition for this to hold. 

Similarly, to illustrate the use of FO, suppose we have the 

following equation: 

F(x,y) = G(x, y+1) + y 

Consideration of F# in the above manner (using the fact that 

+#(x,y) = x A y 

in the usual interpretation of +) enables us to deduce that y may 

be passed by value to F. Now this fact means that y J. in the 

body of F and correspondingly there we have that 
EVQYI1 = 1. 

Now we use the fact that (giving + its standard meaning) 

+tr(x,y) = x A y 

and hence that 

EbT (y+1) Il = 1 since EbE 1 II = 1 

This shows that the second parameter to G in the call 

QG(x, y+1)I1 always terminates and hence in implementation terms we 
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may choose to evaluate y+1 prior to the call and give G an 

evaluated call-by-need thunk rather than the standard unevaluated 

thunk to be evaluated on its first reference, without disturbing 

the semantics of the call. A further optimisation is that, if all 

calls to G have the above property then we know that x2 in 

<body> where 

G(x1, x2) = body 

and accordingly that x2 may be classed as a value parameter to 

G. So, having established this we then have 

E#Qx211 = Et7[Ix211 = 1. 

See also the section on transforming programs to use call-by-value 

below. 

To derive solutions for the fly and f b which are fixpoints of the 

systems <S,I#> and <S,I> we develop the following theory: (the 

aim is not to derive solutions by evaluation but rather by 

examination of their textual definition by forming 

lim Ti(BOTTOM) 

where T is the functional to be defined below). 

Define L by: 

L = (2k1 -4 2) X (2k2 2) X ... X (2kn --> 2) 

The space L has a natural lattice structure defined componentwise 

by 

(p1, ... pn) < (q1, ... qn) if and only if 
(pi & `qi is identically zero; (1<i<n)) 

Now define T, a transformation on L by 

T: (H1 ... Hn) -4 (H. ... Hn) 

where 

Hi(x1, "' xk ) = Ui[Hj/Fj; 1<j<n; 
a#/A] 

i 
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Defining 

BOTTOM = (X x1 ... 

X1 ... 

xk 
1 

Xk2 

X x1 ..* xk . 0) 
n 

and TOP = BOTTOM[1/0] 

gives the top and bottom of the lattice L, respectively. 

The sequence 

BOTTOM, T(BOTTOM), T(T(BOTTOM)) .... 

gives Kleene's ascending chain (AKC) on the finite lattice L. Hence 

all these terms are the same from some point onwards with limit 

value- T*(BOTTOM) say. Define T*(TOP) similarly. Now by 

construction T*(BOTTOM) and T*(TOP) are fixpoints of <S, I# > with 

all other fixpoints between these two. The fixpoints of <S, IV> 

are similarly defined. 

Note now a couple of interesting points; 

1. T*(TOP) and T(BOTTOM) are in general distinct 

2. Not all points such that T*(BOTTOM) < X < T (TOP) are 

fixpoints of <S, I#> 

For proof consider 

F(x,y,z) = IF x=0 THEN y*z ELSE F(x-1,z,y) 

This gives 

f#(x,y,z) = x A (yAz V f#(x,z,Y)) 

and hence 

T*(BOTTOM)(x,y,z) = x A y A z 

T*(TOP)(x,y,z) = x 

also 

H(x,y,z) = x A y 
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is between T*(TOP) and T*(BOTTOM) but is not a fixpoint. 

The difference between the modes of parameter passing implied by 

T*(BOTTOM) and T*(TOP) is merely the difference in how the 

calculation proceeds in the evaluation of F(-1, i, 0); the first 
case implying passing (x,y,z) by value and the second just W. In 

the call-by-value (for x,y,z) manner F is i initially (upon 

evaluation of the value parameter j), but in call-by-need (for y,z) 

i is never referenced, however the evaluator loops since the 

termination condition x=0 is never true. This corresponds to the 

inductive argument that if F is to terminate then the second 

argument in the initial call must be evaluated and its evaluation 

terminate. Thus we see that the fact that T has more than one 

fixpoint allows the system to be undefined in more than one way, 

but of course any two undefined values are indistinguishable 

(except by looking at the internal computation history), and hence 

the minimal fixpoint of T gives a valid mode of evaluation of 

parameters. In fact it follows (Vuillemin [501) that any point 

above the minimal fixpoint defines a mode of evaluation which gives 

the correct result but there may be differences in the way 

undefined results are achieved. (Ie which particular infinite 

computation the system pursues.) 

The existence of points (like H in the above example) which are 

above the minimal fixpoint (and so define safe evaluation 

strategies) but which are not themselves fixpoints is now 

explained: 
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The fixpoints of T correspond to the "consistent" modes of 

evaluation in the following sense: 

A mode of evaluation is consistent if it is safe and no argument 

which is passed by need to a function will inevitably (after a 

bounded number of further passing by need) be evaluated. 

To return to the case of H we can see that it is not a 

consistent point of T, and so cannot define a sensible mode of 

evaluation of parameters for F. 

The standard proof that F (as above) terminates only if it 
references its second and third arguments is based on induction on 

the computation path. Our # functions, however, has the induction 

'built into' the non-standard denotation F# and so the proof merely 

consists of case analysis to see how 0 (= j#) can propagate. 

3.6 Pragmatics 

For use of the theory above in an algorithm the iteration 

produced is refined to be both more convenient and more rapidly 

convergent. 

Define 

Z(H) = Zn(Zn-1( ... (Z1(H))...)) 

where 

Zi(H1 ... Hn) _ (H1 ... Hi-1' H', Hi+1 ... Hn) 

where 

H'(x1 ... xk ) = Ui[Hi/F j; 1<j<n; a#/A] 

Note that Z (like T) is monotonic since it is the result of tupling 

and composing monotonic functions. We prove that Z*(BOTTOM) _ 

T*(BOTTOM) to show that Z and T give the same result. Z is also 
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more convenient for implementing the iteration as it can be written 

as n single assignments in a loop rather than the one n-way 

multiple assignment required by T. 

Further improvement in the speed may be effected by the 

following technique: firstly associate the call-structure graph 

with the function definitions (the call-structure graph is the 

directed graph obtained by considering function names as vertices 

and having an edge from f to g if and only if f contains a call to 

g in its body). Now partition this graph into its strongly 

connected components; giving a directed acyclic quotient graph; the 

strongly connected subgraphs can be analysed by the use of the Z 

(or T) iteration and the quotient graph is trivial to analyse - we 

flatten its partial order into a total order and analyse the 

strongly connected subgraphs according to this order. 

A program has been written by the author (in LISP) to implement 

the above algorithm. A sample run is given below for a simple 

example and the system has been used on a text-formatter written by 

Martin Feather in NPL [51 without knowledge of this system. NPL 

normally has a call-by-value semantics and as a guide to the 

utility of the system, 132 of the 188 parameters in the paginator 

were detected as being safely passable by value upon assuming the 

program should conform to call-by-need semantics (there were 136 

functions covering some 1100 lines of code, the system detecting 

that 93 of them were strict). 
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3.7 Transforming programs to use call-by-value 

The outstanding cases where the system did not detect 

call-by-value were due to the following form of recursion in which 

we test one parameter to give a 'default' value or embark upon a 

recursive call: 

LET mult(x,y) = IF x:O THEN 0 ELSE mult(x-1,y)+y 

the trouble about this case being that it is impossible (without 

further knowledge) to discover whether the user intended mult(O, .i) 

to give 0 or 1 - the call-by-need semantics indicate 0 and so y 

cannot be passed by value without extra knowledge. Of course for 

any particular call b may be used to detect if the actual parameter 

terminates and hence optimise the call. 

The rest of this section suggests a method by which a program 

transformation system (for example Burstall and Darlington's 

fold/unfold method [61) might be driven in order to transform out 

such non-strict functions by replacing them with strict functions 

and the basic non-strict conditional function (which is well known 

to compile and interpret efficiently). 

Note that the "ELSE" branch of the above conditional expression 

satisfies 
E# Qmult(x-1,y) + yIl = x A y 

and hence is strict. So we can replace all calls mult(e e2) with 

IF e1=0 THEN 0 ELSE multl(el,e2) 
WHERE multl(x, y) = mult(x-1, y) + y 

and compile all calls to multl using call-by-value. But now a 

priori all calls to mult have the property that the second actual 

parameter must terminate (if it does not then neither can multl by 
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considering b). Hence mult can also be treated as a strict 

function and compiled appropriately. 

We can actually do rather better that this by unfolding the call 

to mutt in multl and refolding to use the definition of multl to 

get 

multl(x,y) _ (IF x-1 = 0 THEN 0 ELSE multl(x-1,y)) + y 

to obtain a strict version of mult to replace the original 

non-strict version at the expense of doing the test before calling 

mult. This cost is significantly cheaper than the cost of merely 

setting up the closure for the second argument for mult. 

I call the above technique rotational refolding of the function 

mult. This has an intuitive meaning seen by noting that the 

infinite tree representation for mult has alternate '+' and 'IF' 

nodes in its infinite backbone. Then the definition of multl is 

just obtained by taking a different ('+' instead of 'IF') starting 

point for the folding into finite form. The proof of strong 

correctness for this type of fold/unfold is much easier than the 

general case. 

This idea can be extended to replace all uses of call-by-need by 

call-by-value by the use of appropriate conditionals, and this is 

the subject of chapter 4. 
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The following short insert gives a sample run of the 

implementation of the ideas given above. 

.R VALARG 

*(DEF FACT1 (X) 

(IF (EQ X 0) 1 (TIMES X (FACT1 (SUB1 X))))) 
FACT 1 

*(DEF FACT2 (X Y) 
* (IF (EQ X 0) Y (FACT2 (SUB1 X) (TIMES X Y)))) 
FACT2 

*(DEF G (X Y Z) (IF X (PLUS Y Z) (DIFFERENCE Y Z))) 
G 

*(DEF H (X) 3) 
H 

*(DEF UNDEF (X) (IF (EQ X 0) (UNDEF X) (UNDEF (SUB1 X)))) 
UNDEF 

*(DEF MY-IF (B X Y) (IF B X Y)) 
MY-IF 

*(START) {; see if it all works} 
MY-IF : Args (1) may be passed by value 
UNDEF : *** totally undefined 
H : *** independent of args 
G : Args (1) (2) (3) may be passed by value 
FACT2 : Args (1) (2) may be passed by value 
FACT1 : Args (1) may be passed by value 

(2 ITERATIONS) 

3.8 Non-discrete domains 

Here we will consider the problems caused by trying to extend 

the above work to a lazy evaluation system (see for example 

[15, 21]). In a call-by-need system an expression is either fully 

evaluated or a fully unevaluated suspension (closure). This 

corresponds to the set of values a variable may take being an 

element of a flat (or discrete) domain whose elements, x and y, 

satisfy 
x<y q x=y OR x=I. 
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However in a lazy evaluator a term can be evaluated to give a CONS 

node (say) without evaluation of its sub-terms, which will be 

evaluated when required for printing of deciding program flow. 

This implies the underlying data domain is not flat which gives us 

some problems since, using the above notation we get 

CONS#(x,y) = CONS b(x,y) = 1 

Hd#(x) = x 

Hdb(x) =0. 

This unfortunately gives us a very bad bound on definedness and we 

now need to have some knowledge of list structures as our 

homomorphic image, instead of just {0, 11, in order to deduce those 

substructures whose evaluation can be safely moved. 

Suitable further research would be to examine the possibility of 

using the notion of regular trees to approximate the limits of the 

(possibly infinite) Kleene sequences in the obvious image domain 

D where D = 2 + D X D 

to tackle this problem. 

Since this work was published Jones[271 has shown how to extend 

the ideas given here to the lambda-calculus by considering the 

states processed by the mathematical interpreter given by 

Plotkin[401. 

3.9 Discussion of runtime errors in applicative languages. 

This section (which is of the nature of an appendix to this 

chapter) suggests that the best way to handle errors from system 

functions is by returning special 'error' values. This method has 

the great advantage of preserving referential transparency and 

allows code transformations (such as the call-by-need to 
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call-by-value transformation discussed here) without changing the 

semantics of the language. 

Consider the error which results when some system function is 

called with argument vector out of the defined range - eg the 

"division by zero" error from evaluating 1/0. In traditional 

languages this usually leads to a trap, often at the hardware level 

and possibly a jumpout to a user provided exit routine to diagnose 

and correct the error. Indeed in that case this often seems the 

most appropriate action to take. 

However such jumpout action is far removed from the spirit of 

applicative languages and can destroy the referential transparency 

which they otherwise possess. Similarly operators which are 

normally commutative can lose this property and the order of 

evaluation becomes visible to the user. For example if A and B are 

(closed) terms whose evaluations lead to distinct errors, then the 

programs A+B and B+A may yield different results. Note that this 

last point is important in the system described herein since we 

want to be able to move a calculation without changing the 

semantics. 

As an alternative the following scheme is much more attractive: 

Firstly extend the universe of discourse, D, with error elements 

{errorl, error2, error3 .... } 

which are produced by the failure of system (and possibly user) 

functions. These objects should be treated as "first class 

citizens" so that evaluation of 
[1/0, Hd(NIL), 3+57 
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will result in 
[Error: division by zero, Error: Hd of NIL, 8] 

as output, rather than a jumpout interrupt so beloved by operating 

system designers. Note that this scheme is also much more suited 

to systems with more than one processor. 

Another benefit of this scheme is that, when taken to its 

logical conclusion, it leads to a backtrace of the error being 

built up automatically. Eg: 

1/0 + 3 

might result in 

Error: Arg for PLUS not number: {error} + 3 

Error: Division by zero: 1/0 

being printed in a system with an appropriate print program which 

knows about error objects. 

Note that some system functions would allow error objects as 

parameters which do not change the form of the result. Eg: we 

would want 

CONS(1/0, CONS(5+4,NIL)) 

to print as 

[Error: division by zero, 9] 

rather than CONS giving an error result. This scheme would 

probably find favour amongst users who often find systems only 

allow one error, or upon an error 'correct' it badly so that the 

output consists of many error reports from one error. Providing 

the function ISERROR(x) to test whether x evaluates to an error 

value and if so return some descriptor of the error (possibly a 

string) would enable provision of the ML [17] failure catching 
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mechanism. 

Finally note that the error caused by non-halting programs is a 

much nastier object since it is impossible to test for in a uniform 

manner, and even though we may detect it in certain cases (eg 

memo-functions may detect a recursive call with the same arguments 

whilst still evaluating for those arguments) we must not give it 

the high status of ordinary run-time errors but produce a special 

error value, {no-halt} say, which cannot be tested for (ie 

ISERROR(no-halt) = no-halt) to guarantee uniform treatment- of I. 

By this process we may sometimes anticipate an Operating System 

time-out without the waste of waiting for it to happen and, in this 

case, do something else (like evaluating the next expression in the 

input stream). 
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Chapter 4: Call-by-Need : Call-by-Value + Conditional 

4.1 Introduction 

This work demonstrates that a large class of programs designed 

to be run on a call-by-name interpreter In can be simply and 

effectively transformed into strongly equivalent ones for a 

call-by-value interpreter Iv in which all functions (including 

system functions) except the distinguished conditional function are 

strict. 

This class of programs includes all those written in first order 

applicative languages with sequential base functions (in particular 

those with strict non-conditional base functions). 

The results presented herein can be seen to generalise the 

results of de Roever [43]. 

This result has both practical and theoretical importance in 

that it provides for an alternative to closures (thunks) for 

implementing call-by-need or call-by-name, and in that it relates 

the two computation rules in terms of strong equivalence to enable 

the carrying across of proof techniques. The definition of 

sequentiality also seems to be of more general use. 

4.2 Overview 

The overall structure can be visualised as four separate stages: 

Firstly we make the observation that a system of call-by-need 

equations is strongly equivalent to one of the possible 

computational paths of a non-deterministic similar system. A 

similar equivalence was also given by de Roever[43]. 
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Secondly we derive a set of 'oracles' for this non-deterministic 

system which enable us to predict the computation path by insertion 

of tests (Conditionals). However to do this we must add extra 

elements to our domain and extend all base functions to cover them. 

Thirdly we note that the extra elements introduced in the 

previous paragraph may be mapped into any set of distinct 'atoms' 

already present in the original system by using a form of 

overloading. 

Finally we discuss the computational costs of this technique, 

since it may cause an exponential increase in the size of the 

program (but not of the running time), however we present arguments 

(as in chapter 3) to suggest that the actual increase in size is 

not so large and probably corresponds to less code at current 

machine level. See section 4.7. 

The difficulties involved in the proof of correctness are due to 

the requirement to prove equivalence between two different program 

schemes under differing (operational) interpretations, and as such 

we must adopt a rather indirect technique of showing equivalence 

for the "before" and "after" versions of calls. 

4.3 Basic Definitions 

Let (Fi; 1<i<n} be a set of uninterpreted function symbols, with 

arity ki; {Ai} be base function symbols, with arity ri; and {Xi} be 

a countable set of individual parameters. 

Consider the equations 

{Fi(Xi ... Xk ) = Ui; 1<i<n} 
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with the Ui members of WFF(ki) where the WFF(p) are the set of well 

formed terms constructed from 

{Ai; Fj; X1 ... X 
p 

) 

These equations provide a functional environment for the 

evaluation of terms from WFF(O) under a given interpretation. 

However, for definiteness, we will assume that k1 =0 and the 

'program' consists of evaluating 

1F1 () 11 

in this environment. 

We will take a domain D and functions {ai} {ai:D i--->D} as the 

standard semantics of the above equations. This naturally defines 

a function EvalD giving meanings to terms. Currently we will also 

assume D is flat. 

We will also use the annotation ':value' on actual parameters to 

indicate a particular parameter should be evaluated prior to the 

call of its enclosing function. Similarly ':need' will be used to 

clarify the default case of call-by-need. The idea of annotations 

as a means of describing how something is to be done dates from the 

Algol60 report. Schwarz explores their use for specifying 

evaluation mechanisms for applicative languages in [1414]. 

We will adopt the standard semantic practice of using [[...II to 

enclose program text. Furthermore we will use the notation 

QF(ui:need; uj:value; i E I; j E J)II 

or 

[[F(ui:need/I, uj:value/J)I] 

to stand for 

[[F(ui ... uk) 11 
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annotated with uj:value if j is a member of J. This notation will 

be extended to allow us to write 

QF(uj1/J1 ... ujn/Jn)I1 

to give us a named, rather than positional parameter association 

for disjoint subsets J1 in whose union is Cl ... arity(F)}. 

4.3.1 Conventions 

In the following '?' will be used to denote an arbitrary (but 

unspecified) non--L' value of D. The value will not be used in the 

computation, but is used to simplify functionality considerations. 

We will use the following conventions to simplify the formalism 

and reduce the explicit indication of set membership: 

- di to range over D 

- ei to range over E 

- ui and vi to range over terms in any WFF(j) 

We will also admit the syntactic sugar of using 

Qselect u from 

u1: v1 

u2: v2 

uk: vk else w]} 

to stand for 

Qif u=u1 then v1 

elseif u=u2 then v2 

elseif u=uk then vk 

else w]} 

We here assume that select is not present in our original language. 

This is merely a technical convenience to ensure that we are 

talking about objects introduced by an earlier transformation. 
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4.3.2 Operational Semantics 

Here we give a (very) brief introduction to operational 

semantics which will be used to justify our transformations. As we 

indicate elsewhere it would be preferable to use denotational 

semantics, but the concept of sequentiality which we require does 

not seem to be easily accessible there. 

Operational semantics specify the result of a computation by 

repeatedly performing re-write rules until reduction to a constant 

occurs. Excellent descriptions are given by Plotkin (40, 421. 

Here we will adopt the notation of writing for the "re-writes in 

a single step to give" relation. For example, if n is a numeral 

and n the corresponding element of the domain of numbers, we may 

write 

QnII n. 

This is true without any pre-conditions. 

We will write => * for the transitive closure of the relation 

and proceed to define the evaluation of larger terms in the 

following manner, exemplified for '+'. 

[Eel]] ::>* nl, Qe2IJ n2 

[Ee1+e2l] n1+n2 

4.3.3 Definition of Sequentiality 

We define a base (system) function symbol Ai to be sequential 

under an interpretation if we can write the semantics ai for Ai 

operationally as 

Const(i) 

QAi(ul ... uk )D EC(i)II i 
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Qup11 =>* d, " Const(i) 

QAi(u1 ... ukl)I1 =>* EAj(u1 ... up_1, up+1 ... ukl)Il 
with Aj sequential 
where j = N(i,d) and p = P(i) 

for some functions 
N: Int X D ---> Int 

P: Int -4 Int 

C: Int-4D 
and some predicate Const. This simply says that the semantics of a 

function shall be expressible in the form: If a function does not 

require to evaluate any of its parameters then it is constant; 

otherwise evaluate the parameter required first (depending on i), 

and call a new function (dependent on i and the evaluated 

parameter) with the remaining unevaluated arguments. Thus we could 

show that '+' is sequential by showing that its semantics can be 

written in the form (roughly) 

Qe1I1 =>* n1, IIe2]] =>* n2 

Qe1+e2I1 
=> 

* ADDn1Qe2I1 =>* n1+n2. 

Thus the evaluation of (our program) Q5+3I1 would proceed via 

ADD5 E311 to 5+3 (in our mathematics) which is 8. 

We will assume that this operational definition of the semantics 

agrees with the denotational version given in section 4.3, and feel 

free to use EvalD to refer to either. 

Note that here we assume that the Ai include members whose 

interpretations ai correspond to all possible partial applications 

of members of Ai. Thus if '+' and 1 1 ' are present in the Ai then 
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we would require that 'ADD1' given by 

ADD1(x) = x+1 

was present too. This does not reduce the generality since we 

allow the Ai to be an infinite set (although we can only use a 

finite number in our program). 

This definition seems to be equivalent to the one given by 

Milner in (331. 

4.4 Method 

Let C = QF(u1 ... uk)11 be a call occurring in the Ui. 

We write this as 

QF(ui:need; i E {1,2 ... k})II 

showing that all arguments have need (non-strict) semantics. 

We now note that one of the following must take place on 

evaluation of the call: (this depends on the assumption of 

sequentiality) 

1. F evaluates (actual) parameter uj first (1<j<k) 

2. F returns without evaluating any ui 

3. F computes forever without evaluating any of the ui 

Actually, without extra difficulty, we may allow that the order of 

evaluation of parameters may not only depend on the function, F, 

and the previously evaluated parameters, but also on the textual 

form of unevaluated parameters. 

This indicates that if we have an oracle F*, say, (a nullary 

function) which for the above cases respectively 
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1. returns j 

2. returns 0 

3. computes forever 

then the call is strongly equivalent to 

Qselect F () from 1: F(ul:value, up:need; p E {1...k}-{1}) 

k: F(uk:value, up:need; p E {1...k}-{k}) 
else F(?:value ... ?:value)]] 

where the Vs stand for any non-1 value from D. The reason for the 

use of the '?'s here in the else clause (invoked when the oracle 

returns 0) is that their values will not be used in the subsequent 

computation due to the assumed truth of the oracle. 

We now show that the above technique can be inductively extended 

to reduce all the parameters of a call to :value ones, and also how 

to effectively compute the F . 

4.4.1 Total reduction to call-by-value 

We observe that the above technique is just a special case of 

the following equivalence: 

QF(ui:need, uj:value, j E J; i E I)]] 

is equivalent to 

Qselect FI(uj:value; j E J) from 

p: F(uj:value, ui:need; j E J U {p}, i E I-{p}) 

else F(uj:value, ?/I; j E J)]] 

with p varying through I for non-empty I, giving an inductive step 

for reducing the number of :need parameters. The base case of 
QF(ul:value ... uk:value)]] 

corresponding to I={}, is already of the required call-by-value 
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form. Thus we have produced a new program schema 

Gi(X1 ... Xki ) = Vi 

from our {Fi} schema, by replacing all the Fi in the above terms by 

G. The Fi and Gi schemata will be strongly equivalent under 

call-by-value and call-by-need interpretations respectively, 

subject to our defining the oracles FI for all F in {Fi} and for 

all subsets I of {1 ... k} required by the above process. 

The proof of this is given is section 4.4.8 after we have 

defined the oracles. 

Note that this process will (wastefully) re-write the 

conditional function as a select, however here we are concerned 

with correctness - efficiency will be considered in section 4.7. 

4.4.2 Production of the oracles FT 

We will produce the oracles in two stages; first showing that we 

can introduce oracle-like objects FI at the expense of extending 

the domain of discourse, D, (and of course also the base function 

definitions) and then further showing that this extension can be 

ignored at run time by using a form of overloading to produce the 

FI (see section 4.5). 

4.4.3 The FI exhibited 

Consider a call 
C = QF(ui:need, uj:value; iEI, jEJ)D 

which produces, as an intermediate inductive call in the above 

method 

Qselect FI(uj:value) from ... 

We now define a countable set of new elements 

E _ {-i1Ii2 ...} 
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We will only use a bounded number of these elements - the reason 

for the names will become clearer later. 

We will now define 

FI(uj:value) = F(uj:value, 
,Li/I) 

which requires us to extend the semantics {ai} of the {Ail from D 

to D+E in such a manner to model the computational effects of I. 
For example, we want to model the statement that 

F(x,y) = e 

requires x to be evaluated, by the equation 

F(i,u) = I 

(modulo some discussion about the termination of F). Here the 

intention is that the ,ii will act as bombs which explode when used 

in a calculation, thus indicating which parameters are evaluated 

during the call. We will now define an interpretation, by giving 

its semantics, which will ensure that the FI return ii to indicate 

that parameter i will be evaluated in the 'real' computation. Thus 

the FI will be oracles for the extended domain D+E. 

4.4.4 Operational extension of ai 

We augment the operational rules (see section 4.3.2 for 

definitions) for the base function semantics 

Const(i) 

QAi(u1 ... uk )I] z EC(') J1 i 

Qupl] 2* d, -Const(i) 

QAi(u1 ... ukl)Il EAj(u1 ... up-11 up+1 ... ukl)Il 

with Aj sequential 
where j = N(i,d) and p = P(i) 
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with 

LCup11 => * Iij]] 

[IAi(u1 ... uki )]] =>* Eiji] 

It is not necessary to define the effect of the 
-'-i 

on the Fi scheme 

since we can simply use the standard call-by-name substitution 

semantics as this is equivalent to call-by-need in applicative 

languages, and use: 

[CFi(u1 ... ukl)]J QUi[u1/X1] ... [ukl/Xkl]]] 

4.4.5 Denotational extension of ai 

This section gives an alternative (denotational) definition to 

the previous one. It is not central to the work, however it does 

avoid some problems with the over-specification inherent in 

operational semantics. 

Consider a map 

a: Dk ->D 

which is the standard interpretation of a symbol, A, say. 

We wish to extend this map to the sum domain D+E given by adding 

the elements of E to the domain D together with the coarsest 

compatible domain structure (ie the addition of only y<x for all x 

in E, to the partial order). The extension has functionality 

a': (D+E)k --> (D+E) 

thus providing an alternative interpretation for A preserving the 

behaviour of a on D. 

We define the extension componentwise by 

a.'(e1, d2 ... dk) = a(1, d2 ... dk) if a(l, d2 ... dk) 1 

= 1 if a(dJ, d2 ... dk) = -L Y d1 E D 

ei otherwise 
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and similarly for the other parameters. This definition is 

monotonic because of the flatness of D and the sequentiality of the 

{ai}. The proof of this is somewhat outside the scope of this 

chapter. 

We can now define at when a set I, of its parameters are members 

of E by 

a'(ei/I, di /J) 

JOIN {STRICT[a'(ei/I-{k}, 
if ;I; > 1 

ai(ei/I, d/J) 

if I = {i} as above 

a(di /J) 

where 

di /J, x/{k})]: k e I} 

STRICT(f(x)) = JOIN{f(x): x E D-{.L}} 

if f(x) E E, `d x E D-{s.} 

= 0 otherwise 

and 

JOIN{x1 ... xn} = xp for some xp in E. 

There are several notes to be made on this definition. Firstly the 

definition of JOIN is well, if non-deterministically defined, since 

again flatness of D and sequentiality imply its argument is a 

non-empty set. The intention in this denotational definition is to 

avoid the over-specification of detail present in the operational 

version: for example consider the definition of '+' operationally 

as in section 14.3.3. We need to specify in which order the 

parameters to '+' are evaluated to provide operational semantics, 

however this is irrelevant to the program (in either its 

call-by-need or call-by-value form), although it does effect the 

internal flow of computation in the call-by-value version, since 
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the oracles have to report the order of examination of parameters. 

Of course it is reasonable to observe that the oracles could return 

subsets of the function parameter set which can be evaluated 

together, thus avoiding this problem and being more in spirit with 

chapter 3; however this complicates the above work which already 

has notational problems for no clear gain in flexibility. Also 

there are problems in doing this operationally. Thus the 

non-determinism in the definition of JOIN reflects the arbitrary 

choice of evaluation order in the operational definition of a 

strict function. 

Note that this provides a reason for the names ii for elements 

of E: they model the behaviour of i in a computable (continuous) 

way in that they model the way i propagates through a program. 

4.4.6 Definition of FI 

It is now obvious that we can define 

FI(uj/J) = Index(FI(uj/J)) 

where Index is the D+E disjoint sum extraction operation given by 

Index(,') = i 

Index(ii) = i 

Index(x) = 0 otherwise 

This defines the oracle FI to use the original set of equations 

(Fi), however, we can now see that we can define 

G(xj/J) Index(G(xj/J, ii/I)) 

thus giving us an oracle whose (internal) calculations are 

performed using call-by-value via the Gi schema. 

4.4.7 Definition of the system oracles AI 

For a system function Ai we will derive the corresponding 
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oracles 

Ai,I 

directly from the (operational) semantics given in section 4.3.2. 

We can define 

Ai1I(x1 ... xr ) 0 if Const(i). 

This merely says that if Ai reduces directly to a constant without 

evaluating any of its parameters, then the corresponding Ai,I 

should return 0 to indicate that this is the case. 

On the other hand, if -Const(i) we have given by the semantics 

p = P(i) such that up is evaluated first in order to see how the 

computation progresses (that is which Ai, j = N(i,Eval(up)) is 

called on the remaining parameters). In this case we can see that 

an appropriate definition is 

A(x1 ... xr ) = xp if p E I 
i 

This case corresponds to evaluating a parameter which Ai,I has been 

called to enquire about. 

Otherwise xp corresponds to a value of D (non-,l due to the use 

of call-by-value) and hence the operational re-writing rules 

produce a definition 

AiII(x1 ... xrl) = AJI'(x1 ... xp-1' xp+1 ... xri) 

where j = N(i,xp) 

and I' {k: k E I, k<p} V {k-1: k E I, k>p} 

This definition now casts some light on the reasoning behind our 

rather pedantic form of semantics given in section 4.3.2. For 

example, the reduction in the number of parameters during 

re-writing of a system function ensures that the above definition 

of Ai,I is primitive recursive, and hence total. 
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The reason for requiring sequentiality of the base functions is 

that the oracular versions of the base functions must be provided 

for the use of the evaluator. This would mean that a 

non-sequential function, eg the "Parallel IF" function defined by 

PIF(p,x,y) = x if p=true 

= y if p=false 
= x if x=y 

= i otherwise 

would require an oracle to interpret the call 
QPIF{12,3}(,L1,12,i3)I1 

in order to predict the actual parameter to PIF which will be 

evaluated first. This is clearly impossible. Huet and Levy 

provide more general and detailed argument in [251. 

4.4.8 Proof of correctness 

We will perform the proof of correctness by showing each of the 

one-step transformations given in section 4.4.1 produce a strongly 

equivalent result. Thus after a finite number of such 

transformations the overall result must be strongly equivalent to 

the original program. The reasoning given below for a function F 

applies equally well for system functions Ai and user functions Fi. 

We wish to show that 
EvalD E[F(ui:need/I, ui :value/J)I1 = 

EvalD+E Qselect Index(F(uj:value/J,,l.i:value/I)) from 

p: F(uj:value/J U {p}, ui:need/I-{P}) 

else F(ui :value/J, .::need/I)I1 

Note that here we use l's in the else clause, rather than the 
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'?'s given in section 4.4.1. We do this to simplify the proof, 

which will show (case 3 below) that the '?' values are not involved 

in the calculation. 

Firstly we will state a simple observation about the behaviours 

of EvalD and EvalD+E' 

Lemma: 

EvalD and EvalD+E agree on terms not containing any ii. 
Proof 

Just consider the operational definition of EvalD+E on terms, 

noting that terms cannot produce 1.,i unless they contain ii. 

Therefore this implies that 
EvalDQF(ui:need/I, ui:value/J)1] > 

EvalD+E Qselect Index (F(uj:value/J, ii:value/I)) from 

p: F(uj:value/J U {p}, ui:need/I-{p}) 

else F(u,:value/J, 1.:need/I)] 

where > represents domain ordering. This is so since both 

Eva1DQF(uj:value/JU {p}, ui:need/I-{p})D 

and 

EvalDQF(uj:value/J, 1.:need/I)1] 

are dominated by 

EvalD QF(uJ:value/J, ui:need/I)1] 

(see Vuillemin's work [50]) and the calculation of the oracle for 

the select clause further reduces the result of the select clause 

in the > ordering. 

In order to show the converse we will trace the step-by-step 

evaluation of terms using EvalD and EvalD+E' We require to show 
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the following consistency conditions on the oracle 

1. Eva1D+EQF(uj:value/J,_Ii:value/I)II = 1 

Z> EvalD QF(uj:value/J, ui:need/I)II 

2. Eva1D+E[TF(uj:value/J, .'i:value/I)II = ip 

a EvalDQF(uj:value/J, ui:need/I-{p}, .L/{p})T = .L 

3. Eva1D+E IIF(ui :value/J, ' :value/I)II i I, ip 

EvalDIIF(uj:value/J, ui:need/I)II i, ; ip 

The corresponding proofs are 

1. Eva1D+E re-writes its argument infinitely, and EvalD 

performs the same re-writings unless a li is produced by 

EvalD+E' However this would terminate the EvalD+E' 

Contradiction. 

2. EvalD and EvalD+E perform corresponding re-writes until 
EvalD+E first produces li as a parameter to be 

evaluated. At this point EvalD has I to evaluate. Thus 

EvalD gives I. 

3. Again consider performing the re-writes of EvalD and 

EvalD+E step-by-step. They both follow the same 

reduction sequence and hence, since EvalD+E terminates 

without encountering a ii, Eva1D will terminate without 
encountering a corresponding I. (Actually both 

calculations will produce the same non-,L value in D.) 

4.5 Getting rid of the ii 
We would now like to remove the explicit tests necessary to 

determine whether an element is a member of D or E (usually called 

IsD and IsE) since in any practical implementation the extension to 

the base functions will be done by first testing (as in the 

operational definition above) if a parameter is a member of E, and 

if so taking special action. However these tests will likely be at 
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least as expensive as the "IsClosure" test implementation of 

call-by-need. For theoretical reasons it is also rather 

distasteful to add extra elements to our domain of discourse. 

We wish to exhibit the definition of an oracle FI which only 

uses the elements in D, rather that FI which requires the 1,i to be 

added to the universe of discourse. We will use the integers 

{1 ... n} to model {11 ... _LnJ and use specific instances of F to 

ensure type security just like a type-checker would ensure that bit 

patterns representing objects in D are not used as bit patterns 

representing objects in E. Thus the code we produce must always 

ensure we always know whether an integer represents a member of D 

or E. 

We will now exhibit FI in terms of G, the call-by-value version 

of F produced 

QG(x1 ... 
in section 4.4.1 and given by 

xk) = uI] 

We will define corresponding versions, for 

of {1 ... k} by 

EF*(x/J) = G(xj/*, i/I) 
GI(x1 ... Xk) = uII] 

with 

uI = P2IQu11 

all required subsets I 

where P21 is given by the following transformation: 

The effect on variables is to produce the corresponding integer 

if the variable corresponds to an oracular parameter, otherwise 0 

to indicate that the evaluation does not require parameter 

evaluation. 

P2IQxil] = Qxil1 if i E I 
_ E0I1 otherwise 
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For function applications, both of user and system functions we 

define 

P2I11g(us/S)I] = TIQg(us/S)I] {} S 

where 

TIQg(us/S)I] J K 

QgJ(us/S-J)] if K = {} 

Qif c=0 then v else wI] otherwise 

where 

p = max(K) 

c=P2IQupI1 
v = TIQg(u1 ... uk)] J (K-{P}) 

w = TIQg(u 1 ... up-1' c' up+1 ... uk) Il (J U {p} ) (K-{P} ) 

The intention here is that we scan through the arguments, S, of 

(1) 

g+ 

evaluating them in oracle context (as evaluated in the terms given 

by c) building up a set J of parameters to g which will need to be 

oracles, and then selecting the appropriate version gJ of g 

For a select clause it is necessary to choose the correct 

version of the oracle function since the construction given in 

section 4.4.1 assumed we could tell the difference between an 

oracular value and a 'real' value in D. We must also translate the 

consequents, in order that they perform their calculations in 

oracle context. 

P2IQselect g(u/S) from 1:v1 ... n:vn else vol 

Qselect w' from 1:v1 l ... n:vn else v?] 

where 

vi = P2IQviI] 
w' = TIQg(ui/S)] J S 

* 
Note that the replacement of gI by g in the definition of w' is not 

accidental in that line (1) in the definition of TI re-supplies 

them. 
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Hence, the above shows that we can apply a form of overloading 

(generic definition) in which we define separate functions for 

different combination of parameter types, and simply return 

integers (as in section 4.4) indicating which parameter will be 

evaluated next (actually any set of k distinct objects will do for 

a k-adic call). 

4.5.1 Proof of correctness of the overloading 

The proof of the removing the ii in favour of objects already 

present in our language requires proof. However the details are 

tedious and not illuminating. Basically the proof is most easily 

factored into two stages. Firstly we change the ii into 

corresponding integers, but also add an extra (set) parameter, I, 

to each function explicitly, thus using 

F*(x1 ... xk, I) 

instead of 

F*(x1 ... xk). 

This enables us always to tell whether an integer represents an 

oracle value or a domain integer. The semantics of these two 

methods of representing disjoint sums can easily be seen to be 

equivalent. 

Then, we observe that the type parameter, I, can only take on 

finitely many values, and hence we can produce versions 

FI(x1 ... Xk) 

for all possible I. Thus we have achieved our aim. 

* of F 

Of course in practice we hope not to behave in quite such a 

profligate manner. 
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4.6 Example 

Consider applying this theory to a call 

C = Tmult(u,v) ]] 

where u and v are closed terms, in an environment given by the 

definition 

Q mult(x,y) = if x=0 then 0 else mult(x-1,y) + yI] 

We thus expand this call-by-need expression into a call C' with 

C ' (select mult{ 
1 , 2} (i1 ,l2) from 

i1: (if mult{2}(u,i2)=i2 then mult(u,v) 

else mult(u,?)) 

i2: (if mult{1}(i1,v)=i1 then mult(u,v) 

else mult(?,v)) 

else mult(?,?) ]]:value 

This can clearly lead to an exponential increase in the size of 

the code. However, using the techniques described in chapter 3, 

has the effect of removing the unnecessary tests from C'. (For 

example, we can see that the term Q uI] will always be evaluated 

first in the standard interpretation of functions and hence the 

select will always take the first branch.) This produces C" given 

by 

C" Qif mult{2}(u,i2)=i2 then mult(u,v) 

else mult(u,?)]] 

and a new version of mult given by 

Q mult(x,y) = if x=0 then 0 else mult(x-1,y) + yll:value. 

(Here there is no need to expand the recursive call of mult as in C 

since we may use y equally well as a '?' value, since y must be a 

non--L value in call-by-value.) These definitions rely on the 

extension of the domain to incorporate the ii values. 

We must now define the oracle mult{2}(x,y) in terms of mult. 
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Applying section 4.4.2 gives us 

Q mult{2}(x,y) = if x=0 then 0 else y]] 

Thus we can replace the initial call C:need by C"', where 

C"' = Qif u=0 then mult(u,?) else mult(u,v)I1 

which provides a general solution to the problem partially solved 

in section 3.7. Note that the above form for C"' suggests that the 

term u should be evaluated three times. Again, however, these will 

produce the same result and hence standard compiling techniques 

will produce only one evaluation. 

We might at this point stop to look at the view, in that the 

above C"' represents the standard call-by-value version of the 

non-strict multiplication function. 

The reader is strongly advised to work through this particular 

example ensuring he sees the justification behind each step - it is 

very easy to succumb to invalid optimisations. A program has been 

developed which performs a rather more sophisticated algorithm 

based on this work. 

4.7 Computational Costs 

As was hinted above, much of this translation technique runs the 

risk of exponentially increasing the size of a program (although I 

believe it can only increase the running time by a constant 

factor). However I now wish to present the argument that, for a 

large class of programs, the increase in space and time will be 

fairly small. Certainly it is the case that we write parameters to 

functions which can possibly be evaluated, for example a dispatch 

routine which behaves like a conditional, and often we know that 
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certain parameters will be evaluated. However we do not write 

parameters which can never be evaluated. Hence the attitude of 

this work which can be summarised as partitioning parameters into 

two subsets, those which will, and those which might-be evaluated; 

is justified on pragmatic grounds. We will also probably be quite 

happy if the increase in complexity is less than a factor of two or 

so, in that the- overhead for compiling traditional call-by-need 

closures (or 'thunks') is quite considerable- compared to 

call-by-value, both in the space for the code, and in the time 

taken to switch environments to evaluate a closure. 

The following results were derived by analysing the cost of 

performing the ideas given here on a large (1100 line) applicative 

program written by Feather[13]. The program is an applicative text 

formatter (like ROFF or RUNOFF) as described in "Software 

Tools"[30]. The program size (for an abstract machine) grew from 

12746 cells to 26632 cells upon applying the transformation. The 

computation speed - (measured in abstract evaluator cycles for a 

standard input) was 3417 cycles for the original code under 

call-by-need and 4995 cycles for the call-by-value code resulting 

from the transformation. For some indication of efficiency, the 

original code took 3695 cycles to perform the same action under 

call-by-value. These figures concur with the suggestions made 

earlier that the cost is mainly of size rather than execution time, 

however we should note again that under current machine 

architecture it is quite possible that the call-by-value 

transformed code performs better than the original in both space 

and time. This is so because our abstract call-by-need cycles 
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represent more real machine cycles than our abstract call-by-value 

-cycles. 

One small point to be noted is that the. above figures are 

derived from running on an interpreter which recognises multiple 

occurrences of a- single expression (as can easily be produced by 

this work) and only evaluates them- once. This is justified in that 

compilers usually perform some common sub-expression analysis. 

4.8 Conclusions 

I believe the above results show that the work presented is not 

only a pretty theoretical toy, analogous to "Static and Dynamic 

Binding Strategies have Equal Power"[20J, but also provides a 

practical alternative to the traditional closure implementation of 

call-by-need. 

However the scope of this work is somewhat restricted and it 
would be extremely useful to be able to extend it to a full "lazy 

CONS"[15, 211 language, from our simple call-by-need recursion 

equations. For example, consider the following simple program in a 

lazy-evaluation language: 

let f(n) = n :: f(n+1) 

in f(O) 

(:: is an infix CONS). In a lazy evaluation scheme this program 

would print 
[0,1,2,3,4,5,6 ..... 

without stopping. Unfortunately, in a more eager evaluation 

strategy (even call-by-need), this program would calculate the full 

result (ie the list of all numbers) before attempting to print it 

out. 
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It is desirable (again both for theoretical and practical 

reasons) to be able to transform this program into the following 

iterative version (the only non-applicative feature is the 

existence of a PRINT procedure which is only slightly 

non-functional): 

let g(n) = PRINT(n); g(n+1) 

in g(0) 

This is an equivalent program, which can be evaluated quite safely 

using the most eager of evaluation strategies, call-by-value. 
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Chapter 5: On Introducing Destructive Operators into Applicative 

Programs 

5.1 Abstract 

In this chapter we study methods to introduce destructive 

operators into applicative programs. The work is based on the 

concept of "Abstract Interpretation" developed by Cousot & Cousot 

[8, 9] and generalises previous results of Schwarz [45, 46] and 

Pettorossi [38, 39]. It also provides a more semantically oriented 

framework for the work of Jones & Muchnick [28] which only applied 

to flowchart schemata. 

The intention is not to produce a single method of introducing 

destructive operators, but rather to study a schema or class of 

methods, and hence we will need general correctness proofs. 

We share Schwarz's and Pettorossi's attitude that destructive 

operators should be used for the means that they provide of 

optimising otherwise applicative programs, leaving their meaning 

unchanged, rather than sanctioning their use for causing side 

effects on other objects, which is often criticised as producing 

programs which are difficult to read and modify. (See for example 

Backus's Turing lecture [2]). 

This work develops alternative semantics for programs modelling 

the standard "ad hoc" ideas of collections of CONS nodes being 

shared or unshared, but the semantic formulation simplifies proof 

rules. The general proof rules for shared data objects (for 

example Burstall [4]) can be difficult to apply. 
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5.2 Developments from previous work 

The work of Schwarz [145J was based on an (operational) rewrite 

rule semantics whereas this chapter will attempt to develop the 

theory of sharing within a denotational framework. This has the 

advantages that 

1. Fixpoint methods are much more easily discussed 

denotationally. Accordingly we are able to develop 

techniques here which exhibit as fixpoints certain 
properties which had to be supplied by the user in 
Schwarz's model. 

2. Correctness proofs are very much easier denotationally 
in that we can apply the general abstract interpretation 
mechanism [8, 93. 

We also extend the work of Pettorossi 138, 391 by considering 

the problem of incorporating destructive operators in situations 

where substructures may share. In essence this work handles DAGs 

(directed acyclic graphs) where Pettorossi's only handled trees. 

Pettorossi's work was concerned with the problem of introducing 

destructive versions of system functions (like plus, times etc) 

which took their arguments by reference and wrote their results in 

one of the argument locations rather than creating a new location 

to hold the result. To this end he introduced a marking tuple 

associated with each system function call, with elements of the 

tuple indicating whether or not the corresponding parameter may be 

destroyed. The work was denotationally based and the best (most 

destructive) safe version could be seen as a fixpoint of a certain 

set of equations. However the work did not address the problems 
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involved with the partial degrees of sharing associated with list 

structures. 

Schwarz's work, on the other hand, considered the list based 

formalism immediately, but via an operational style semantics based 

on treating all functions as specifying re-write rules. The 

operational formulation inhibited the view of certain properties as 

fixpoints and so the programmer had to provide sharing and 

destructiveness declarations for each function he provided. 

Another problem is that it is difficult to see how to give any form 

of correctness proof - Schwarz gives none. On the positive side, 

the concepts of structure usage given by non-standard 

interpretations Euses' Eexam' Eisol 
are very similar to the ones we 

use in a denotational setting here. 

We also give credit to Wegbreit [521 who suggested that one 

possible use for non-standard interpretations was to model storage 

allocation-in the real world. 

5.3 General Overview of the Development 

First we introduce our langauge of recursion equations and its 

associated semantics, together with such auxiliary notions as an 

occurrence within an expression. We also discuss the most 

appropriate form for destructive operators. 

Next we introduce two non-standard interpretations Euses and 

Eexam' The former gives (upper bounds on) the set of CONS cells 

which the standard interpretation would build into the result of an 

expression and the latter indicates similarly which cells are 
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traversed in order to build this result. These two interpretations 

are then specialised into (non-standard) semantic functions USES-L 

and USES-R respectively. These are merely derived for their 

convenience of use over Euses and Eexam' 

We now introduce the notion of 'isolation classes' which 

represent the extent of sharing of a given structure. We then lift 
this idea to an interpretation Eisol which specifies the sharing 

properties of an expression in terms of the sharing properties of 

its free variables. 

These results are then used to justify the validity of a small 

number of transformation rules which insert destructive operators 

into expressions without changing their semantics. 

5.4 Formalism and General Ideas 

We will define a language called LISP-D (D for destructive) 

which consists of a first order language of recursion equations in 

a LISP-like syntax based on the signature 

- {Ai: i>O} Atoms 

- {Xi: i>O} Variables 

- {Bi: i>0} Base functions (of arity ri). 

- {Fi: O<i<n} Defined functions (of arity ki). 

We will identify certain distinguished elements of the {Bi} 

which will be written as 

{CONS, CAR, CDR, ATOM, IF, FREE} 

which are the standard list processing primitives for building 

(CONS), selecting (CAR, CDR), discriminating (ATOM), the three 
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parameter conditional (IF), together with an operator (FREE) for 

destroying list cells. We will use a single constructor function 

(CONS). The extension to multiple constructor functions poses no 

theoretical problems, though it does require a more complicated 

algorithm to analyse them. Similarly we will use a single 

destructive operator (FREE) and the motivation for this will be 

detailed in section 5.4.2.2. We will also define a language LISP-A 

which is identical to LISP-D except that the signature will not 

contain any destructive base functions and hence will be purely 

applicative. It is possible to give LISP-A a semantics which does 

not involve stores and locations, and this is discussed in section 

5.12.3. 

We choose the somewhat barbarous LISP syntax, rather than a 

higher level applicative language because LISP already has a well 

established set of names and intuitive concepts for destructive 

operators, and also because LISP is quite near to machine level 

which enforces us to make explicit certain choices glossed over in 

a purely applicative language. (For example the amount of sharing 

present and the method used for building objects with mainly 

constant data as discussed in the SUBST worked example in section 

5.11.1.) We will discuss semantics in more detail later. 

The aim throughout will be to treat system functions in as 

general a manner as possible in order to permit defined functions 

having similar properties to be treated similarly. 

We now define a program scheme to be a set of equations 

{(Fi X1 ... Xk ) = Ui: 1<i<n} 
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where the Ui are terms respecting the arities of the {Fi} and {Bi} 

and the free variables of Ui are contained in {X1 
... Xki}' 

We will follow standard applicative semantic practice and 

associate a standard semantics with this syntax by first choosing a 

domain D (including L, the undefined value, and ?, an error value) 

and then associating functions bi:D 
r1-4D 

with the Bi in the usual 

k- 
manner. This then induces meanings fi:D 1-4D for the Fi by the 

usual fixpoint method. However the wish to discuss destructive 

operators will mean that our denotations will actually have an 

extra store component (both as an argument and result) to model the 

side effects of a function thus: 

fi: D* X Store -> D X Store 

Elements of Store will actually be triples <s1,s2,m> with si(l) 

giving the CAR of a location 1, 52(1) giving its CDR and m giving 

the next location to be allocated by CONS. The standard LISP-D 

semantics models a subset of LISP and is given denotationally in 

section 5.12. 

We adopt the (slightly unorthodox) convention of writing the 

objects (locations) constructed by (CONS e1 e2) as [v1 . v2] where 

the ei evaluate to the vi, to avoid confusion between program text 

and values. 

Since the intention is that our external (applicative) world 

will solely concern itself with values, not locations, our 

semantics contains such a "print" semantic function which "forgets" 

locations, abstracting only their values. 
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This work requires some model of sharing, and we will choose to 

follow Schwarz and call the elements of these models isolation 

classes. The result of an expression will be categorised as being 

in a certain isolation class if certain sharing properties hold 

(see section 5.7). 

5.4.1 Does CONS have a side effect? 

This is an interesting question, especially in the context of 

the recent upsurge of interest in applicative languages, and more 

so due to the fact that there are two opposing viewpoints. It 

would seem to be clear that, mathematically at least, CONS merely 

produces a value which is already present in the universe of 

discourse and just happens to be a pair of two other values. 

Similarly it is just as clear from the description of CONS as 

"producing a new object whose components are its parameters" must 

have a side effect on something so that we can elaborate the 

details of "new". 

The resolution of this apparent paradox is that CONS necessarily 

has a side effect in any direct style semantics involving 

locations, for example the LISP-D semantics given in section 5. 12. 

However the semantics given in section 5.12.3 uses mathematical 

tupling rather than locations and so has no side effect. 

A closely related point to be noted is that any LISP-A program 

can be considered as a program in LISP-D, however in the former 

CONS is pure, and in the latter CONS has side effects, whereas 

(hopefully) they should both give the same results. This paradox 

is resolved by noting that the effect of the 'Print' semantic 
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function is to hide the mode of evaluation, by mapping the two 

different actual results of calculation (one involves locations, 

the other tuples) onto the same output form on paper. In general 

this "print the same result" is the notion of equivalence we seek. 

More discussion of the effect of printing can be found in section 

5.9.1. 

5.4.2 Destructive Operators 

The intention is to introduce 'standard' destructive operators, 

for example RPLACA or RPLACD instead of CONS (the reader 

is referred to section 5.12), or NCONC instead of APPEND to 

implement safely these operators, but with a saving of space, time 

or garbage collection. However it seems that to do so directly is 

more complicated than adopting the strategy given below in section 

5.4.2.2. First however we will consider a little worked example. 

5.4.2.1 Simple Example 

Suppose we define a function F, say, by 

(F Z) _ (IF (ATOM Z) (ERROR) 
(CONS (G (CAR Z)) (CDR Z))) 

where G is a previously defined function. Now suppose that for a 

class of calls to F the actual parameter is of the form 

(CONS E1 E2 ) 

where E1 and E2 are expressions. This parameter necessarily 

evaluates to give a location 1 containing, say, 

[a . b] 

However we know that CONS has the property that 1 does not occur 

either as a variable binding, r, or within the store, s, which is 

passed to CONS. Therefore, for this class of calls, we have that Z 

will be bound to the only pointer to 1. 
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Clearly then, the evaluation of F also produces a new location 

m, say, containing 

Cc . b] 

where c is the result of evaluating (G (CAR Z)). However it is 

apparent that the node 1 will have no further pointers to it when F 

returns and Z is no longer bound to 1. Therefore we may use a 

destructive version of CONS, which is traditionally called RPLACA 

(see section 5.12), and write 

(F Z) (IF (ATOM Z) (ERROR) 
(RPLACA Z (G (CAR Z)))) 

We may also view this as an optimisation of the following code, 

which is simpler is some respects and will be discussed in more 

detail later: 

(F Z) _ (IF (ATOM Z) (ERROR) 
(CONS (G (CAR Z) ) 

(PROG1 (CDR Z) (FREE Z)))) 

where FREE is the function which requires a CONS location for a 

parameter and returns it to the CONS free list. 

Note that our new destructive code relies heavily on 

call-by-value semantics (so that (CAR Z) is evaluated before the 

RPLACA) and left-to-right evaluation (in the use of PROG1). 

The arguments presented here will be formalised by the rest of 

this chapter. 

5.4.2.2 The choice of destructive operators 

Here I wish to deviate from what seems to be the standard 

technique of introducing many destructive operators, and instead 

merely introduce a single destructive operator just as we 

introduced a single constructor (CONS). The intention is to factor 
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the problems of actually inserting destructive operators into two 

parts, by separating the concept of detecting unused nodes from 

that of re-allocating them. 

Firstly introduce a single destructive operator 

(FREE n) 

where n is a term we will require to evaluate to a CONS node. The 

intended interpretation of FREE is to supply the information "This 

node is available for re-use" to the run-time system. However it 
will be necessary for us to define its semantics somewhat 

differently in the standard interpretation in order to ensure that 

it is only used in situations where this is indeed the case. In 

fact the standard semantics will merely mark a cell as having been 

FREE'd and produce an error upon further reference to the contents 

(as opposed to location) of that cell. 

Secondly, we will regard all the other destructive operators as 

compound forms of FREE. The idea is that we shall regard the 

conversion of FREE into RPLACA, NCONC etc. as merely one of local 

allocation, which is (currently at least) conceptually much simpler 

and more in the province of traditional compiler analysis. For 

example, given that we are using RPLACD to optimise store re-use 

rather than for its side effects, we can define 

(RPLACD x y) _ (DCONS x (CAR x) y) 

where 

(DCONS x xc y) _ (PROG2 (FREE x) (CONS xc y)) 

Here PROG2 represents sequencing (see section 5.4.3), and returns 

the value of its second term. In fact, our semantics will provide 
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exactly the same result2 for the two definitions provided the first 

parameter to RPLACD is never referenced again (excepting via the 

location returned by RPLACD). In an actual implementation, we 

would of course define FREE to return CONS nodes to the free list 

rather than the approach taken in section 5.12 of simply marking 

the node as unusable and causing an error when such a node is 

referred to. This definition was adopted to provide a means to 

ensure that our program respects the given (applicative) semantics. 

This two level scheme corresponds to the factorisation of the 

correctness proof, which is otherwise much more involved. 

It is important to note that since all destructive operators can 

be built from RPLACA and RPLACD, the above definition allows us to 

define any destructive operator in terms of FREE. 

Another advantage of using FREE as our destructive operator is 

that we can always insert it to release a CONS node we can show to 

be unused. This is not the case for RPLACA/D since we must not 

only find such a CONS node but also an occurrence of CONS to re-use 

it in. 

5.4.3 Order of evaluation 

Note that our (applicative) LISP-A is independent of order of 

evaluation provided we treat the IF form correctly. This is 

because changing the Seq form which handles the case of multiple 

parameters to a single function then can only give rise to a 

2modulo changes of locations which are not directly visible to 

the external world 
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permutation of addresses in Loc, and the act of printing "forgets" 

the actual locations used. 

However in LISP-D we have to specify an order of evaluation in 

order to define the semantics, due to the fact that we have 

introduced a function FREE which has a side-effect on Store. We 

here will (somewhat arbitrarily) choose left to right evaluation by 

default. This is the purpose of Seq in the semantics. 

Thus we may see that, when using left to right evaluation 

EQ(PROG2 (FREE X) (CAR X))D(r,s) = (?,s') 

whereas 

EQ(PROG1 (CAR X) (FREE X))D(r,s) = (A1,s") 

in a store s and an environment r where X is bound to 

[A1 . A2] = EQ(CONS A 
1 

A2)I1. 

PROG1 and PROG2 are the natural projections which return (the value 

of) respectively their first or second parameter. The second term 

above may also be considered to be 

E'Q(PROG2 (FREE X) (CAR X))D(r,s) 

evaluated using a right to left strategy, E'. 

Note that we here consider PROG1 and PROG2 as pure functions, 

defined by 

(PROG1 X Y) = X 

(PROG2 X Y) = Y, 

and treat the sequencing normally associated with them as part of 

the semantics of constructing an argument tuple, thus making this 

sequencing explicit for all functions. 

A point worth examining in a little more detail is the 

possibility of exploiting the flexibility inherent in the 
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independence of LISP-A semantics with respect to order of 

evaluation. We could then produce a LISP-D version whose 

evaluation strategy is effectively to evaluate the parameters to a 

function in such a manner as to maximise the re-use of store. This 

is worthy of further research and not considered here. 

5.4.4 Occurrences and other Basic Ideas 

This section introduces the idea of labelling a particular 

occurrence (see Donzeau-Gouge [12]) of a term within an expression. 

We need this to talk about program transformations to insert 

destructive operators. It is also required to enable us to model 

denotationally the effect of execution ordering. In order to 

discuss the effect of sharing we define the idea of active terms in 

an expression (these are the only ones which can contribute to the 

result). 

We define the notion of occurrence of a term in an expression. 

Occurrences are tuples, written <p1 ... Pn> with <p;q> denoting the 

tuple whose first element is p and the remainder given by the tuple 

q. We will write @ for infixed append on tuples. We will say q is 

an initial segment of p if p = q @ r for some r. The occurrence 

<p1...Pn> in an expression e is defined recursively in the 

following manner. 

occ(<>, [Eel]) = e 

occ(<p;q>, [[(G e1 ... ek)I]) = occ(q,Q ep]]) if 1<p<k 

occ(p,Qe]]) is otherwise not defined 

This defines the set of valid occurrences and their corresponding 

terms in an expression. Now define an ordering on Occ, the set of 

valid occurrences within an expression, by the standard 
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lexicographic post-ordering on tuples given by 

x < <> 

<a; x> < <b; y> if a < b or (a = b and x < y) 

Note that this also specifies our left to right execution ordering 

except for the case of the of the IF form, which differs because 

the 2nd and 3rd sons are exclusively evaluated rather than being 

sequentially executed. We use the post ordering to account for the 

fact our semantics uses the LISP style depth-first (call-by-value) 

evaluation order. The concept of execution ordering is defined to 

be that modification of the lexicographic ordering to consider the 

IF form correctly. We define p to be executed before q, written 

p << q, if p preceeds q in the above lexicographic ordering and p 

and q are not (sub-terms of) different consequent branches of any 

conditional. Formally, p << q if p < q and for no common initial 

segment, r, of p and q do we have 

occ(r,U) _ (IF e1 e2 e3) with 

p = r @ <2> @ 1 and 

q = r@<3>@m. 

This defines << to be a partial order. We must take care with this 

definition of execution ordering - it neither implies that 

evaluation of p inevitably precedes that of q, nor that evaluation 

of q inevitably follows that of p, even for terminating 

evaluations. The set of execution paths through an expression U is 

the set of maximal chains of occurrences with respect to the 

execution ordering on occurrences. 

For an occurrence p we define the set of active occurrences at p 

in U by 

Active(p,U) {p} V Uncles(p,U) 
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Uncles(<>, U) _ {} 

Uncles(q @ <i>, U) = Uncles(q,U) V Brothers(q,t,U) 

Brothers(q, i, U) = {} if f=IF & (i=2 or i=3) 

where Q(f e1 

{q <j>: 1<j<r & jai} 

... er)13 = occ(q,U). 
otherwise 

The active occurrences wrt p in U are the brothers of initial 

segments of p, together with p itself. For example, if p labels 

the occurrence of (CAR X) in 

(FUN (CDR W) 

(IF (P X) (CONS (CAR X) Y) (FOO Y)) 
(ATOM Z)) 

then the active occurrences with repect to p in this term are 

(labels of) the terms 

(CDR W), (CAR X), Y, (ATOM Z). 

The reason for the importance of active occurrences is that any 

CONS node associated with a variable Xi must appear in the result 

of an active occurrence if it is to form part of the result of U, 

given that execution passes through p. That this is so is a 

consequence of the fact that in our first order applicative 

language CONS nodes returned as a result of functions must either 

be new CONS nodes created by the function or appear as part of one 

of its actual parameters. Inductively this means that CONS nodes 

associated with the Xi can only occur in the result of U if they 

occur as part of the result of an active occurrence. The special 

treatment of the conditional is merely an optimisation based on the 

fact that the result of a conditional can only involve CONS nodes 

occurring in the current consequent. It is helpful to observe that 
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q being active at p implies p«q or q« p. 

For transformations we will need the concept of substituting one 

term for another at a given occurrence within an expression. This 

will be done by 

subst[p,U, QeDI 

which gives a term identical to U except that the (valid) 

occurrence p in U is replaced with e. We will refer to this as 

replacing occ(p,U) by e. 

5.5 The Extent of Possible Use of Arguments 

Following Schwarz's terminology, though not his definitions, we 

will now define two abstract interpretations called Euses and 

Eexam. 
These will respectively describe (upper bounds on) the 

extent to which a term may build in structure from its parameters, 

and examine parts of its parameters in order to produce a result. 

Archetypal examples of these two notions are respectively the 

second and first positional parameters in the three parameter 

conditional 

(IF condition trueresult falseresult). 

We introduce a semantic function to describe which CONS nodes, 

present in structure bound to variables, are built into the the 

result of the real computation before introducing (superset) 

approximations to these. Let v be a value and s a store, then the 

set of CONS nodes present in the structure of v is given by 

Nodes(v,s) where Nodes(v,s) is the smallest set of locations 

satisfying 

v E Loc * v E Nodes(v,s) 

n E Nodes(v,s) & s1(n) E Loc s1(n) E Nodes(v,s) 

n E Nodes(v,s) & s2(n) E Loc s2(n) E Nodes(v,s) 
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where <s1,s21m> = s. Therefore, we can now define BuiltIn Q ell(r,s) 

to be the set of CONS nodes present in structure bound to variables 

which will be incorporated into the result of evaluating e in 

environment r with store s. It is given by 

Ui Nodes(rQXill,s) n Nodes(EQeII(r,s)). 

Now we wish to have some algebraic formulation of the concept of 

CAR/CDR selected sub-structure of parameters which may be traversed 

at run time. We will define the set of paths to be that produced 

by the grammar 

{h,t}* Var {h,t}* 

where h (head) and t (tail) are regarded as free symbols, and Var 

the set of variables. The intent is that the h's and is before 

the variable indicate routes to the variable, and those after show 

how the variable is selected upon with CAR and CDR. Thus for 

example (see the semantics below) we would have that 
(CONS (CAR (CDR Y) ) (CONS (CAR Y) Z) ) 

has paths {h.Y.t.h, t.h.Y.h, t.t.Z}. 

Of course, we will only be able to derive an approximation to 

the set of paths which will actually exist at run time, but as 

usual in abstract interpretation (see chapter 2) the paths we infer 

will be a superset of those which can occur at run time. 

In the following X will range over Var. The evaluations are 
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EUses EA11 = {} 

EUses EX]] _ {X} 

E 

Euses I(ATOM e) 11 = {} 

Euses Q(F e 1 ... ek)I] = compose[Fuses, <Euses l eiI]>] 
Fuses 

EusesIU]J where (F X1 ... Xk) = U 

where 

8D (S) {x: h.x E S} U {X.x.h: X.x E S) 

TL(S) {x: t.x E S} U {X.x.t: x.x E S} 

h.S _ {h.x: x E S} 

t.S = {t.x: x E S} 

compose[S, <Ti>] = U {compl[s,<Ti>]: s E S} 

compl[x.Xi.y, <t1 ... tk>] = x.comp2[y, til 

comp2[h.y, t] = comp2[y, HD(t)] 

comp2[t.y, t] = comp2[y, TL(t)] 

comp2[(), tl = t 

These provide recursive definitions for the Fuses in the domain of 

sets of paths ordered by inclusion, with least element {}. We must 

show that the system functions given above abstract the standard 

semantics in the sense of chapter 2. This is merely a matter of 

ensuring the consistency of the Euses evaluation with the standard 

evaluation by showing that every possibility of the real 

calculation is modelled in the abstract system. 

Note that the general theory of abstract interpretation 

establishes this correctness result for user defined functions, 

given the corresponding correctness proof for the base functions. 

We show the consistency for the IF function above. Suppose that 

Uses E(CAR e) 11 = HD(Euseslel]) 
EUses I(CDR e) I] = TL(Euseslell) 
Euses1(CONS e1 e2)IJ 

= h.Eusesleill U t.Eusesle2l] 

Euse.%UIF e1 e2 e3)I1 = Eusesle2]] U Eusesle3]] 

we have a term Q(IF e1 e2 e3)Il, then Euses says that each term 
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built into the result comes from the evaluation of e2 or e3. This 

is clearly the case as the standard semantics provide no way for 

any CONS node occurring in the result of e1 to occur in the result 

of IF unless it also occurs in the result of e2 or e3. However we 

might note that our approximation, although safe, is not accurate 

since in Q(IF True e2 e3)I1 CONS nodes occuring in e3 cannot be 

incorporated in the result of the IF unless they also occur in e2. 

More detailed discussion of the correctness of the E uses 

interpretation will be given after the introduction of Eexam' 

The examines interpretation is similarly defined to take account 

of nodes passed through for the purpose of determining the result 

of an expression. For example in 

[[(IF (ATOM (CAR X)) (CDR Y) Z)I1 

the CONS nodes referred to by X and Y will need their contents to 

be intact in order that the standard semantics give the correct 

result for this evaluation. We will later seek ways to return a 

node to a CONS free-list and this will be viewed as destroying its 

contents, but otherwise leaving it alone. The semantic equations 

for the examines interpretation, Eexam' are given below. We use 

the Euses interpretation as the work-horse but require a separate 

interpretation to ensure that the IF form and call-by-value are 

treated correctly. 
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E exarn1AI = {} 

EexarnIXI _ {X} 

EexarAT(CAR e)Il = 

EexarAQ (CDR e) l = 

Eexa1Q(ATOM e) 11 = Eexamlel 

EexamQe]l U HD(EusesTell ) 

Eexam[Lell U TL(Euses Tell) 

EexarAQ (CONS e1 e2)11 = Eexam 
Tell U EexamTe2l] 

EexarA1(IF el e2 e3)Il = EexamTell] U Eexamle2l] U EexamLe3Il 
U EexarnQ(F el ... ek)Il = <EusesileiIl>] 

Fexani 
U1<i<k Eexamileill 

= EexamLUl] where (F X1 Xk) = U 

These equations again give a fixpoint equation for the meanings, 

Fexam 
1 , of the Fi, in the domain of sets of paths with {} as the 

bottom element. 

It will be useful to separate out the concept of arguments (ie 

paths of the form X.x) being used or examined from the general 

schemes given above which described how arguments and new CONS 

nodes constructed in defining equations are used or examined. Thus 

we will define 

USED-L[e,X7 = {y.z: x.X.y E Euseslell, z C {h,t}*} 
USED-R[e,X] _ {y: x.X.y.z E Eexam Qell, for some z Cl. 

In the case of USED-L we include all CONS nodes which can be 

reached from a path given by the E uses interpretation. We do this 

on the grounds that although a function may only return a single 

structure, the calling environment may then extract any sub- 

structure. By similar reasoning we wish to include in USED-R the 

selector path leading to our desired node, however we do not wish 

to include the node itself (this is the purpose of z 0), since 

the contents of such a node are not extracted unless it is 

described elsewhere in USED-R. For example in 

e = Q(CONS (ATOM (CAR X)) (CDR Y))]] 
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we have that 

USED-L[e,X] {} 

USED-R[e,X] 

USED-L[e,Y] 
+t t. [h, t} 

USED-R[e,Y] = {()} 

We will further say the path X.y.z is USED-L in a term, e, if there 

is a path x.X.y in Euses Tell. Similarly we will say X.y is USED-R 

in e if there is a path x.X.y.z (z()) in Eexam Q e11. These terms 

are taken from the classical concepts of L-mode referring to a 

location and R-mode referring to its contents. 

5.5.1 Correctness of the Uses and Examines Interpretations 

The statement of correctness of the uses interpretation is that 

no CONS node accessible from an environment through the store can 

possibly occur in the result of an expression (evaluated in this 

environment and store) unless it is represented in E 
uses 

Tell. In 

other words, recalling that Nodes(v,s) is the set of CONS nodes 

accessible from a value v, then what we want is that for all r, s, 

and e; 

BuiltInEe11(r,s) = Ui Nodes(rQXill,s) n Nodes(EQel1(r,s)) 

is contained in 

Ui Rep(riXil1, s, USED-L(Qe11,1IXi:0)) 

where Rep(v,s,P) defined similarly to Nodes(v,s) but restricting 

our attention only to nodes obtained by following CAR/CDR chains 

given by the paths in P. It is formally defined by 

Rep(v,s,P) = U {Rep2(v,s,y): y E P} 
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Rep2(v,s,y) = Rep3(v,s,y) if v E Loc 

{} otherwise 

Rep3(v,s,y) = Rep2(s1(v),s,x) if y=h.x 

Rep2(s2(v),s,x) if y=t.x 

{v} otherwise 

where s = <s1,s2,1>. 

Note that Nodes(v,s) = Rep(v,s,{h,t} ). 

The statement of correctness of the examines interpretation is 

that if we FREE all CONS nodes specified by variables in a term e, 

which do not correspond to any member of the Eexam Qell then we make 

no difference to the evaluation of e. More formally 

EQe]J(r,s) = EQe]J(r,s') 

where s' is a version of s = <s1,s2,m> modified by replacing s1(l) 

and s2(l) by '?', the error value, for all locations 1 in 

Ui Nodes(rQXill,s) - Ui Rep(rQXi11, s, USED-R(Qe]],QXi11)). 

5.6 Usage counts 

Usage counts are a method of associating integers with every 

CONS node to count the number of pointers to that node. The 

intention is that upon creation of a new pointer to a CONS node, we 

increment the usage count associated with that node. Similarly 

upon destroying a pointer to a node, we decrement the usage count, 

the node being returned to free storage upon the counter being 

decremented to zero. 

In general reference counts provide a sufficient condition for 

returning a node to free space, however the existence of circular 

or re-entrant structures created by destructive operators could 
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mean that a set of nodes can no longer be referred to in spite of 

their reference counts all being non-zero. In (current) 

applicative languages we cannot create circularities in this 

manner, and a usage count provides a necessary and sufficient 

condition for the re-use of store. 

In our semantic model (section 5.12) it is possible to define 

usage counts for CONS nodes in the following manner 

U: Loc X Store X VarEnv* -4 Number 

U(l,s,r*) = U1(l,s) + U2(l,s) + UV(l,r*) 

where 

U1(l,<s1,s2,m>) = Card{x E L: s1(x) = 1} 

U2(l,<s1,s2,m>) = Card{x E L: s2(x) = 1} 

UV(l,r*) _ 2 Card{X E Var: rcXI] = l} 

rEr* 
L U {Nodes(rcXf,s): r E r*, X E Var} 

The only problem in this formulation is that our semantics as given 

in section 5.12 only allows us to access the current environment 

and provides no method by which we can access the set of 
* 

environments which are currently dynamically active (r in the 

above). The simple solution to this problem is to change the 

environment syntactic category (Env) to include a component which 

contains environments which are active but inaccessible from the 

current function. This is not done here to permit the semantics to 

be as simple as possible. 

An alternative to the above method is to include a usage count 

component in the store, as shown in section 5.12.2.1. 

We are careful to break down the usage count into its components 
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given by other CONS nodes (U1,U2), and those given by variables UV. 

We emphasise this because variables represent a disciplined form of 

sharing (being of limited scope), and also because as noted in 

section 5.7.4 all sharing in structures originates from multiple 

uses of variables. This aspect of usage counts makes our model a 

little more difficult to handle than Schwarz's rewrite model [451 

which only uses variables to indicate substitutions, and hence 

requires no variable binding component in the usage count formulae. 

However, I believe that the extra benefits of denotational style 

greatly outweigh the disadvantages. 

5.7 Isolation classes: abstract interpretations modelling usage 

counts 

In order to insert destructive operators, we must have some 

notion of how shared an object might be. Isolation classes provide 

this notion. 

We will first introduce a simple isolation class one, taken from 

Schwarz. The meaning of saying an expression, e say, is in 

(isolation) class one is that the result of e should either be a 

non-CONS object, or should have the property that the usage count 

of the CONS node given by e is 1 (excepting irrelevant paths - see 

section 5.7.6). 

For inductive style reasoning we will need rather more 

expressive concepts than merely being able to say that a result of 

a term is isolated at the top level. For example it is desirable 

to express the idea that a whole structure has no external 

pointers. To this end we introduce a set of isolation classes. 



135 

For us the set of isolation classes are the set of subsets of 

{h,t}*, where {h,t} gives the set of finite strings of h's and 

t's. We will call the elements of isolation classes paths. To tie 

this in with the idea given above, we will say that a value, v, in 

store, s, is in isolation class I, if all members of Rep(v,s,I) are 

of isolation class one. This is just another way of saying that 

for all paths x in I, when v.x exists it is in isolation class one. 

Note that we can recover the isolation class one given above as the 

isolation class {()} where () denotes the empty string. Henceforth 

we will use one for either. We will give names to some other 

isolation classes 

arb = {} 

ti = {h,t} 
onelist = {t} 

onehlst = {h} 

These will enable us to discuss (arb) objects with no restrictions, 

(ti) objects totally unshared from other objects and (onelist and 

onehlst) objects representing lists in CAR or CDR directions with 

unshared tails. 

The isolation classes that we use will be consistent in the 

following sense: if x.y is a member of I then x is a member of I. 

We will find no use for CONS nodes that have a single pointer to 

them, but that pointer comes from a CONS node with a high usage 

count. 

It is clear that the run-time behaviour described by the above 

isolation classes cannot be exactly modelled at compile-time due to 

problems of computability (we can simulate numbers as linear lists 



136 

within the model). Therefore we will be interested in deriving 

methods which give sufficiency conditions to show that particular 

nodes in the run-time state will satisfy these requirements. The 

works of Cousot & Cousot [8, 9] give us a very general model for 

this which is discussed in detail in chapter 2. One possible 

candidate for consideration is to use the sets of objects which can 

be described by regular trees [49] for the actual isolation class 

models we can handle at compile time. Regular trees are a 

generalisation of regular expressions, and have many similar 

computable properties. 

We will use C as an ordering on isolation classes. It is 

defined by I Q J if and only if I D J. Our least element will be 

ti. 

5.7.1 The Isolation Ordering 

The problem of "which way up" to arrange our abstract value 

domain of isolation classes is rather a tricky one, especially so 

due to the fact that we have simultaneously two different concepts 

of ordering which often indicate their presence by suggesting that 

the whole lattice should be upside down. For example we can choose 

one of the two following (dual) configurations: 

arb ti 

one onelist onehlst 

onelist onehlst one 

ti arb 

It is very tempting (and fatal) to follow Schwarz and opt for 

the second structure which orders isolation classes by set 
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inclusion. The reason why this is wrong is concerned with deriving 

fixpoint expressions for our sharing structure in that we will want 

a recursive function definition to start off from the premise that 

its result is isolated, and change this if it is contradicted by 

the definition. For example 

(F X) (IF (P X) (F (Q X)) 
(CONS X NIL)) 

never returns a shared CONS node. The first model domain given 

above has the property that we can use ti to start our fixpoint 

iteration and thus derive a LEAST fixpoint. However if we use the 

second model, we will find that the least fixpoint of such a 

structure would produce arb for the isolation property of F, due to 

the fact that arb would be the initial value for the fixpoint 

iteration and that the IF function must be pessimistic about 

sharing and satisfy if(x,arb,y) = arb (see section 5.7.2). The 

alternative solution of using a MAXIMAL fixpoint approach is valid 

but suffers from the great disadvantage of being much harder to 

prove correct, since our standard semantics uses minimal fixpoints. 

A connected matter is the inclusion of the non-CONS value sets 

Atom and {?} in all isolation classes (that this is so is a 

consequence of Rep(v,s,I) being empty if v not a location). The 

reasoning is similar to that given in the above in that we might 

wish to argue that whenever a function returns a CONS result then 

this node is isolated. Certainly we do not wish to consider a 

function as possibly returning a shared node merely because we 

cannot show it can never result in a run time error (? in the 

semantics), similarly list processing functions often have to 
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return NIL for some inputs, and we will want such functions to 

return isolated results. It is much simpler, both for the 

development and proof, to consider non-CONS items as being of class 

one. What the class one really means, then, is that the object 

described cannot be a shared CONS node, and we gain efficiency 

(more results for little analysis) by lumping together (in one) all 

objects that are not shared CONS nodes. Furthermore this 

formulation shows that the above definition of one is natural, 

rather than being ad hoc as at first appearance. 

5.7.2 Isolation properties of functions 

In order to use the isolation classes just introduced, we must 

define how they behave in expressions. To this end we will seek 

non-standard interpretations Fisol describing the isolation class 

of the result of a function in terms of the classes of its 

parameters. We define the isolation class interpretation for a 

given base function, B, say, following the Cousots' formulation 

detailed in chapter 2. Let Isol be our set of isolation classes 

and 

Abs: Val --4 Isol 

give the isolation class of a value. Then we define the isolation 

semantics Bisol by 

Bisol(x1 
... xk) = u {Abs[b(y1 ... yk)]: Abs(yi) = xi} 

where b is the standard semantics of B. That is, Bisol, given by 

Bisol(x1 ... xk), is the least upper bound (in the isolation class 

ordering) of the isolation classes whose values represented include 

all the elements which can be constructed by b(y1 ... yk) as the 

tuple (y,) ranges over all values represented by the isolation 
1 
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class tuple (xi). 

Henceforth we will not refer to the standard semantics again and 

accordingly use b instead of gisol (and similarly for other 

functions). Thus the above defines 

cons(I,J) {() } U h.I U t.j 
car(I) _ {x: h.x E I} 
cdr(I) = {x: t.x I} 
if(I,J,K) = J n K 

atom(I) = ti. 

For example 

cons(arb, onelist) = onelist. 

We will now formalise this introduction into an interpretation 

by defining a new abstract interpretation, 
Eisol' 

Firstly, 

however, we will include an isolation environment which associates 

variables (parameters) to isolation classes, defined by 

IsolEnv = Var -4 Isol. 

This enables us to define functions Fisol for user functions. 

Unfortunately the semantics given below is only correct for terms 

in which variables only occur at most once. This will be corrected 

in section 5.7.5 after we find the difficulties in the 'obvious' 

interpretation. The functionality of Eisol is now 

Eisol: 
Exp -4 IsolEnv --4 Isol 

with definitions 
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iso1 QAi I1R = ti 
Eisol tX i I1R = R EX . 

1 

isolQ(CAR e)IJR = car(EisolellR) 
Eiso1Q(CDR e)IJR _ cdr(EisolTe11R) 

EisolQ(CONS e1 e2)IJR = cons(EisolIe111R, Eiso1Ee2I1R) 

Eisol 1I (ATOM e)1)R ti 
iso1Q(IF e1 e2 e3)I1R = Eisolle21JR u EisolIIe3I1R 

Eiso1 II (F e ) I1R = Fisol (Eisol I I1R ... Eisol IekI1R ) 
Fisol 

= Xx*.EisolTU11()IX*.x 
where (F X*) = U. 

This provides a fixpoint definition of the isolation class of a 

function in terms of the isolation classes of its parameters and 

its textual definition. We use the textual definition for user 

functions rather than the approach taken for system functions, 

since computability restrictions imply the inability to calculate 

the standard denotation of a user function at compile-time. 

However, as indicated, the above semantics is wrong because 

variables might occur twice and produce the problems given in the 

next section. 

5.7.3 The problems of variables 

Consider the two program fragments: 

T(F X) = (G X X); 

(F (CONS A 
1 

A2))I1 

T (G (CONS A 
1 

A2) (CONS A 
1 

A2)) I1 

with G defined elsewhere. 

(1) 

(2) 

In (2) G may freely destroy the CONS node which constitutes the, 

top-level of either (or both) of its parameters. However, in (1) G 

may only destroy the CONS node corresponding to one of its 

parameters, and even then only if (and when) it has finished using 
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the other one. Therefore we find that our abstract interpretation 

cannot be referentially transparent due to the fact that a 

location-CONS based semantics cannot of itself be referentially 

transparent (although the external world view can be - provided 

that we ensure that the exact locations used in Loc cannot be 

distinguished by the program or the printing routines). 

5.7.4 The treatment of variables 

The problem of variables not fitting into the standard framework 

of abstract interpretation is due to the non-referential 

transparency of a location-CONS based semantics. However as we 

will see, it is possible to use the abstract interpretation idea by 

treating variables rather cautiously and using an environment which 

takes account of multiple uses of a single variable. This will be 

discussed in section 5.7.5. It is worth spending some time 

considering variables for the reason that variables are the cause 

of all sharing in a program3 in the sense that, if any two 

3 To ensure that variables are the only possible cause of sharing it is necessary to put some (mild) restriction on the objects we 

are willing to accept as system functions. These restrictions are 
not central to the work on introducing destructive operators, but 
are given merely for the correctness of the view that variables 
cause all sharing. A small example will show that sharing may 
arise without using variables if some restriction is not placed on 
system functions. Suppose we had a system function CONSXX whose 
semantics were the same as those given by the user function 

(CONSXX Y) _ (CONS Y Y) 

We would then be able to produce shared substructure without using 
variables (system functions are defined by their effect rather than 
by their textual definition). Thus, to make the above claim 
watertight, it is necessary to include an assumption to the effect 
that all system functions have the property that every CONS node 
existing before the call to that function does not have its usage 
count increased by the call. 
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substructures share then at one time they must have been associated 

with the same variable. That this is the case can be seen by 

observing that our language only permits a function to return a 

(possibly structured) single result. Hence the only way to produce 

two references to the same structure (not copies), is to associate 

the result of a function with a variable, and then use the variable 

two or more times. 

Furthermore, variables represent a much more disciplined form of 

sharing than does arbitrary sharing of CONS nodes by different 

substructures. Variables are of limited scope and so it is always 

possible to identify points at which they release their grip on 

list structure. Moreover the information on uses of a variable is 

explicitly available in the textual form of the program, whereas 

that fQr CONS nodes has to be deduced from a rather more detailed 

analysis of program structure. 

5.7.5 The details of variable sharing 

Returning to the problem raised in section 5.7.3 in which X is 

effectively a where variable, we will develop the following 

solution, which makes use of the fact that the isolation properties 

of a variable depend on the other occurrences of that variable. 

We will explain our method with reference to a simple example: 

(G Y Z) U 

(F X) _ (G (CAR X) X) 

where U is a term not further specified. We will further suppose 

that for some class of calls to F we have that the parameter X will 

be of class ti. That is, the isolation environment, R, passed to F 
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will have RQXI1 = ti. Now we will consider the implied isolation 

properties of Y and Z for the calls of G from the above calls to F. 

Firstly, the isolation interpretation for CAR has car(ti) = ti 

however, we see that X.h (which is the path for (CAR X)) is also 

USED-L by X (the second parameter to G), and thus the sharing 

properties of the two occurrences of X should really modify the 

isolation class for (CAR X) to 

Eisolt(CAR X)I] R = arb. 

(We cannot do any better than this because every node of the 

structure Y accessible by G in U can also be accessed by Z). 

Similarly when we look at the second argument, Z, of G and its 

corresponding actual parameter, X, we see that it is indeed shared 

(with Y), but only paths of the form X.h.y have this property. 

Indeed we still have that the paths X.h.z, and X.t.y are unshared 

for any y, z in {h,t} (class ti precludes sharing within X). 

Hence we could say that 

Eiso1EXI1 R = ti - h.ti = cons(arb,ti). 

If our choice of isolation classes was {arb, one, onelist, onehlst, 

ti} the nearest to this value we can represent is onelist. 

As the above example indicates the abstract evaluation function 

Eisol 
for variables will have to take into account the number of 

times and in which contexts a variable occurs. Specifically we 

want something like 

Eisol[EXiI R = RQXiII - Shared(p,U) 

where p labels the particular occurrence of Xi in the term U which 

is the (whole) right hand side of the definition in which p occurs. 
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Shared(p,U) will indicate which portions of X might be shared. The 

first apparent objection to this definition is that it is not 

denotational in that the meaning of a term containing variables is 

not just dependent on its sub-terms but also on its enclosing 

expression. We will counter this objection by changing Eisol to be 

of higher order, and passing the enclosing expression around 

between all recursive uses, thus making it available when required. 

Similarly the occurrence p used above can be carried around 

explicitly as a parameter to Eisol - no magic is involved. This 

technique of making functions higher order to have terms available 

when required is standard in denotational semantics and for further 

information the reader is directed to Mike Gordon's book on 

semantics [16], and in particular to chapter 11 where he examines 

the subject of Algol-60 OWN variables which require 'position 

dependent denotations' and receive very similar semantic treatment. 

Thus we are led to introduce a semantic function 'Deisolate' 

which modifies isolation environments according to the possible 

sharing induced by multiple uses of a particular variable. It is 

this trick which enables us to model the non-referential 

transparency of our language in a direct manner. I would claim 

that the invention of the following denotational formulation is one 

of the major developments of this chapter over the work of Schwarz. 
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isolTA iI1R p U ti 
isolQXiI1R p U * RQX{Il 

iso1 Q (CAR e) IJR p U = 

car(EisolTel(Deisolate 
R p 1 U) p@<1> U) 

iso1 Q (CDR e) ]]R p U = 

cdr(EisolLeJ3(Deisolate R p 1 U) p@<l> U) 

isolQ(CONS e1 e2)IIR p U = 

cons(Eisol Qellj(Deisolate R p 1 U) p@<1> U, 

Eisolle2I1(Deisolate R p 2 U) p@<2> U) 

Eiso1 Q (ATOM e) ]]R p U = ti 
EisolQ(IF e1 e2 e3)I1R p U = 

Eiso1Te2Il(Deisolate R p 2 U) p@<2> U U 

EisolLe3]](Deisolate R P 3 U) P@<3> U 

Eisol Q (F e*) IJR p U = 

Fisol(Eisoluel11(Deisolate 
R p 1 U) p@<1> U ... 

EisolleklJ(Deisolate R p k U) p@<k> U) 
F1so1 

= Xx Eiso1QU1(.X*.x*) <> QU]1 

where (F X*) = U. 

where 

Deisolate R p i U _ R[r1 .., rk/X1 ... Xk] 

where ri = Irrelevant(R QXJIl,p@<i>,U,Xi ) 

and 

Irrelevant(I,p,U,X) _ 

I - U {USED-L[occ(q,U),X]: q E Active(p,U)-{p}} 

- U {USED-R[occ(q,U),X]: q E Active(p,U)-{p}, q>>p}. 

We separate the notion of Irrelevant so that it can be used later. 

The name Irrelevant is used because we only consider X as being 

isolated along paths which are irrelevant to the side computations 

of occurrence p. This definition of Eisol is essentially the same 

as before and the only serious change (apart from the ubiquitous 

introduction of U and p) is to change the isolation environment to 

account for other uses of a variable. Given a variable, X say, we 

reduce its isolation properties for sub-expressions of a given term 
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by treating as shared all paths of X which can possibly affect the 

computation (USED-R) or be built into the result (USED-L). We will 

now justify the choice of occurrences, q, ranged over in the above 

definition of R'. Now, as noted in the definition of active 

occurrences, given we are evaluating a term at occurrence p within 

expression U, the only way for a CONS node which forms part of one 

of the variables to appear in the result of U, is by it appearing 

in the result of an active occurrence. We exclude p itself since 

the recursive use of Eisol will deal with it. Therefore we infer 

that we should treat as shared any node that might occur in the 

result of any active occurrence except p itself. However it is 

worth noting that the union of USED-L terms can be restricted to 

Brothers(p,i,U), if we desire, since brothers of initial segments 

of p will have already been considered by the uses of Deisolate on 

the terms corresponding to those initial segments in the recursive 

application of Eisol' 

Similarly, we now consider in which circumstances the examining 

of the contents of a CONS node can require us to treat the node as 

shared. The point to note is that passing a parameter to a 

function with the information that it lies within a certain 

isolation class is a invitation for the corresponding structure to 

be destroyed. Hence we must ensure that the corresponding CONS 

nodes are not USED-R after the call of the (possibly destructive) 

function. We have set up our E 
exam 

interpretation in such a manner 

that if a path X.y is USED-R in a subterm of a given term then it 
is USED-R in the given term. Therefore the required condition is 
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that paths should be treated as shared if they are USED-R at any 

active occurrence q wrt p which can follow the execution of p. Due 

to our definition of execution ordering this condition can be 

simply expressed as q» p. Again it would be equivalent for the 

formula for Deisolate to merely consider the Brothers of p rather 

than all active occurrences since the recursive formulation of 

Eisol ensures that an earlier Deisolate will have considered them. 

5.7.6 Irrelevant paths 

One point which should be made now, is that, contrary to what we 

suggested in the naive introduction to FREE, FREE can never operate 

on a CONS node of usage count zero since the structure being FREE'd 

has to be referenced to be passed as a parameter. For example, 

consider evaluating 

(F (CONS e1 e2)) 

in 
(F X) _ (G X) 
(G Y) = U 

for some term U. We would like to argue that Y is of isolation 

class one within U in this invocation of G via F. However during 

the evaluation of U the usage count of the node referred to by Y is 

at least 2 (X and Y each refer to it). So what we see ourselves as 

doing, then, is to propagate backward the (notional) unbinding of 

variables to the point at which they can last affect the 

computation. This situation not only affects variable bindings, 

but can also be exhibited with CONS structure. Consider 

(F X) (H1 (H2 (CAR X)) (CDR X)) 

and suppose that the parameter X to F can be shown to be ti. We 

wish to argue that the parameter to H2 is isolated but we cannot 
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argue that X is used for the last time at the call to H2, because 

it is also required for the later occurrence of (CAR X) in H1. 

What we can say is that the paths X.h.y become irrelevant after 

calling H2 and so H2 can destroy objects on those paths. Similarly 

all paths X.y become irrelevant upon completing the call to H1. 

Since we do not want to destroy structure shared by the function 

calling F we had better insist that structure can only be 

irrelevant if it corresponds to a path within the isolation class 

for X. 

This notion of irrelevance has been described previously. We 

will say that a path X.y for a variable X of isolation class I is 

irrelevant at an occurrence p within a term U if y is a member of 
Irrelevant(I,p,U,X). 

Note well that this backwards propagation of unbinding information 

is dependent on the order of evaluation (section 5.4.3), and 

provides another reason for the strict semantic formalism. 

5.8 Useful Transformations 

This section introduces the transformations which we will use in 

our simple examples. However, it is claimed that they are also 

useful for larger programs, and accurately capture typical uses of 

destructive operators when inserted by hand. 

5.8.1 Transformations to insert FREE 

We will now define the transformations of the code of a 

definition of F, say, given by 

(F X1 ... Xk) = U. 

In the following we will assume that X1 has been shown to be always 
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bound to a value in a particular non-arb isolation class, (for 

example one), for each of the calls of F under consideration. 

Similar transformations apply to the other Xi. 

Our first transformation replaces occurrence p given by 

occ(p,U) _ (G e1 ... ek) 

with the term 

(G e1 ... er-1 (PROG1 er (FREE X1)) er+1 "' ek) 

which FREE's X1 after er, for any non-IF function G, under the 

conditions that 

- X1 is not USED-L at any active occurrence (wrt p@<r>). 

- X1 is not USED-R at any active occurrence q (wrt p@<r>) 

such that q >> p@<r>, q p@<r>. 

The first condition is there to ensure that (the possible location 

referred to by) X1 cannot occur in the result of U. The fact that 

X1 is not arb ensures that it is not shared (at top level) with any 

other variable which does occur in the result. The second ensures 

that the contents of X1 are not corrupted by the FREE in the case 

that, say, (CAR X1) is tested later in the execution of U. Note 

that we do not need to worry about X1 being USED-R before or at 

p@<r> since such references to the contents of X1 have already made 

their effect on the computation. Note that these conditions are 

equivalent to the path X.() for X being Irrelevant at p@<r> in U, 

with the added restriction that X.() being not USED-L in 

occ(p@<r>,U). 

5.8.2 Transformations for IF 

The above transformation is valid if G = IF, but we can find a 

stronger transformation which takes advantage of the special 
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properties of the conditional. Suppose that there is a occurrence 

p in U given by 

occ(p,U) = (IF e1 e2 e3) 

then we can replace occ(p,U) in U by the term 

(IF e1 (PROG2 (FREE X1) e2) e3) 

which FREE's X1 before e2, under the following conditions: 

- X1 is not USED-L at any active occurrence (wrt p@<2>). 

- X1 is not USED-R at any active occurrence q (wrt p@<2>) 

such that q >> p@<2>. 

Note that these are essentially the same conditions that allow us 

to replace 

Q (G e 1 e2) I] 

by 

Q (G (PROG1 e 1 (FREE X 1)) e2) II. 

This represents the fact that the conditional can only return 

results via the selected consequent. We have to move the (FREE X1) 

to immediately before e2 rather than immediately after e1 in order 

that X1 is not affected in the case that the e3 branch is taken. 

Moreover, in normal left to right sequencing we have that 
(G e1 ... (PROG1 er (FREE X1)) er+1 "' ek) 

is equivalent to 

(G e1 ... er (PROG2 (FREE X1) er+1) ... ek) 

from the semantic definitions, and also intuitively from the 

observation that both terms FREE X1 between er and er+1' 

Similarly we can replace occ(p,U) in U by the term 

(IF e1 e2 (PROG2 (FREE X1) e3)) 

mutatis mutandis. 
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5.8.3 Replacing FREE with RPLACA/D 

One transformation, which will be used in the examples in spite 

of the fact that this chapter does not address it in detail is the 

following simple case of store re-use. Suppose we transform U into 

V, say, then we can optimise FREE/CONS pairs in V as indicated in 

the following. Let p and q be respectively occurrences of 

(FREE X1) and (CONS e1 e2) with the property that p<<q and that p 

appears in every execution path in which q appears. Our 

transformation is given by removing the FREE and changing occ(V,q) 

into 

(DCONS X1 e 1 e2) 

where 

(DCONS X Y Z) _ (PROG2 (FREE X) (CONS Y Z)). 

In a 'real' FREE implementation (section 5.9.1) we would use 

(DCONS X Y Z) _ (RPLACD (RPLACA X Y) Z). 

Removing the FREE is simpler than at first sight because it always 

occurs within a PROG1 or PROG2 in the form 

(PROG1 e (FREE X1)) or (PROG2 (FREE X1) e) 

and such a removal merely consists of replacing the occurrence of 

PROG1 or PROG2 by e. The main reason why we do not consider in 

detail such transformations is that it is not clear, in general, 

how to optimally associate FREE/CONS pairs. 

5.9 Correctness with respect to the semantics 

I have not worked out the full details of the following sketch 

of how a proof of correctness of the transformations described here 

would go, however it is hoped that the following gives some 

intuitive insight into their correctness. 
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The first step in the proof is to consider a program, P say, and 

transform it into a program Q by the above techniques. We now 

consider the equivalence of P and Q. Because the definition of 

FREE which we give in our semantics (see section 5.12) merely marks 

the FREE'd CONS node and gives an error on further reference, we 

thus have that the result of running P is identical to that of 

running Q (even down to which locations are used) excepting the 

possibility that Q gives a run-time error whilst P does not. (This 

is due to the fact that all functions are strict with respect to 

the value of a run-time error.) Therefore the only thing to 

be proved is that Q cannot produce an error when P does not. We 

discuss the effect of using a 'real' FREE which returns items to a 

free-list in the next section. 

Now we will argue that the possible run-time error referred to 

above cannot actually occur if we use our transformations when they 

are valid. To do this we will use the definition of a CONS node 

being irrelevant (see section 5.7.6). We recall that a node is 

irrelevant at occurrence p if it is of isolation class one and it 
cannot further affect computation in the current function, nor can 

it be returned as a result of the current function except via p. 

However, and this is the cornerstone of the proof, the fact that 

the node has been passed to the current function as a member of 

isolation class one means that it is irrelevant at the occurrence 

of the call in the calling function (otherwise Deisolate would have 

reduced it from class one to arb). Now we have two cases to 

consider. Firstly the node may be USED-L in the current function. 
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In this case the rules for inserting destructive operators will 

forbid the use of FREE on this node. Therefore a run-time error 

cannot arise from this cause. Secondly if the mode is not USED-L 

in the current function it may be destroyed, however it can never 

occur in the result in this function, nor therefore in the result 

of any calling function. To complete the argument we observe that 

the release of the node in the current function implies that it is 

not USED-R there after the FREE, and hence an error cannot occur 

there. Since we therefore can never take the contents of this node 

we cannot produce the error given by accessing a FREE'd CONS node. 

Therefore CONS nodes FREE'd by our transformations really cannot 

affect the computation. 

5.9.1 Proof of correctness of 'real' FREE 

Having a general setup which enables us to prove the correctness 

of the transformations given above for the FREE function (given in 

the semantics) which only marks its argument as being unusable is 

one thing, but for practical use it is now necessary to show the 

correctness when using a real FREE function. We will say a FREE 

function is real if it returns its (location) argument to the free 

list in order that it might be re-allocated for future CONS'ing. 

Here we will discuss in detail the formulation of the proofs of 

equivalence, and also consider the question of how much remains to 

be proved for a particular choice of isolation classes. 

It is important to see that the reason that this work is ever 

valid (except in a totally vacuous sense of never being applicable) 

is in the nature of the PRINT function. The PRINT function has the 
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property of losing much of the information of machine 

representation (including which locations are used and which 

substructures share). We can see its behaviour as a many-one 

homomorphism from DAGs labelled with addresses, to trees, the 

standard method of printing a structure. Trees (or rather their 

flattened forms) are the only permitted method of printing objects 

in a applicative language whose denotations do not include 

locations (even though clearly their implementations might use 

locations). In a sense the PRINT program merely forgets locations. 

Of course this is why debugging a system using sharing often 

requires a DUMP containing rather more information than that 

present in a PRINT. 

This fact, together with the requirement for the ability to 

prove equivalence, explains why the LISP-D semantics has been given 

in such detail in section 5.12. For example, if we had omitted to 

specify the semantics of the print function then this work would 

have been open to the objection of being made inapplicable by 

choosing a suitable (location preserving) print function. 

Let us consider the step by step evaluation of a program 

resulting from our transformation, using for one a real FREE and 

for the other our marking FREE, clearly the exact locations 

involved in the computations will differ, but under the assumption 

that both programs are implementations of an original applicative 

program, there is no possibility of the execution sequence 

depending on this (since we do not introduce any functions for 

testing equality of locations). Hence the two programs will follow 
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corresponding sequences of interpreter states with the only 

possibility of divergence occuring at a reference to a location 

which has been FREE'd. Upon referencing the contents of such a 

location the marking FREE interpreter will give a run time error, 

whereas the real FREE interpreter will extract whatever contents 

(in D) are present in the cell. However upon assuming the absence 

of such a run time error in the marking FREE version, as implied by 

the correctness of inserting marking FREE's, then we are led to the 

conclusion that the execution paths can never diverge, and hence 

that real FREE is equivalent to marking FREE for all programs 

resulting from transformations of an originally applicative 

version. 

5.10 Producing destructive versions of user functions 

This section details the considerations necessary to decide 

which functions we will build destructive versions of, and also 

applies to non-primitive system functions (eg APPEND). 

Consider again the example given earlier 
(F (CONS X Y)) _ (CONS A Y) 

in which we argued that F could destroy its parameter and hence be 

modelled by 

(F Z) (RPLACA Z A) 

in the event that we could show that (the location denoted by) the 

actual parameter to F could never be further referenced in the 

computation. 

However, the following complication may arise where we have two 

calls 
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C1 = Q(F u1)I] 
C2 Q (F u2) I) 

where u1 and u2 are terms such that u1 always produces an isolated 

result and u2 may sometimes produce a result which is shared. 

The problem is that we would like to use a destructive version 

of F for C1, but that it is unsafe (incorrect) to do so for C2. 

This gives us a choice of pursuing either of the following 

strategies. 

Firstly we may adopt the policy of using the destructive version 

of F for C1 and the non-destructive version of F for C2. This 

produces more code, especially in the case of a large function 

which is only used twice and performs very little CONS'ing. 

Secondly we may choose not to produce a destructive version of F 

(because it cannot be used everywhere), but instead use our 

knowledge of sharing to FREE the parameter to C1 immediately after 

the call to F. (Of course we cannot FREE the parameter in C2.) 

This is most easily done by changing the call C1 into 

Q (F-DEST u 1)17 where 

(F-DEST X) _ (F X) 

and then using our FREE inserting transformation to produce 

(F-DEST X) = (PROG1 (F X) (FREE X)) 

since X can no longer be used. This method avoids the risk of 

producing several large versions of each function, but, 

unfortunately, it can increase the storage requirement during the 

evaluation of F in C1 above that which would be required by a 

destructive version of F. For example, consider the following 
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function 

(MAPA X) _ (IF (ATOM X) NIL 
(CONS A (MAPA (CDR X)) 

which has the effect of producing a result list of the same length 

as its argument, L say, but with all the elements replaced with 

A's. If the argument to MAPA is not shared with other structure 

then it is permissible to merely replace in situ (with RPLACA) the 

elements of L with A's. However, in the above case, where we are 

required to use a non-destructive version of MAPA on an unshared 

list we will want to FREE each CONS node on L after the call to 

MAPA. This requires (LENGTH L) extra CONS nodes to perform the 

calculation of MAPA, whilst the destructive version of MAPA 

requires no working space. 

It is now fairly clear that the choices given above represent 

extremes of a range of choices by which we insert destructive 

operations, and neither can be considered absolutely 'better' than 

the other. We should note at this point that we can define a 

continuum of behaviours intermediate to these two extremes in that 

we are free to choose between the two strategies given above at 

different points within a list structure. A further development is 

to achieve this effect by adding an extra parameter to each 

(potentially) destructive operation indicating the extent of 

destructiveness to be allowed on each particular invocation of the 

function. Thus we may have a parameterised JOIN(l,m,d) whose 

extremal behaviours are those of APPEND(l,m) and NCONC(l,m), as 

directed by the parameter d. Again this leaves the question of how 

detailed the information carried by d is to be; making d take only 
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two values could model the above situation, whereas computatibility 

restrictions imply the inability to model the run time behaviour 

exactly. Here we only observe these possibilities and do not 

consider their development. However the worked examples will be 

examined under the former strategy given above - that is, we will 

produce destructive versions of functions and retain their 

applicative version for use in situations where the destructive 

ones cannot be used. We note that this flavour of idea has been 

explored by Lang [31] in the case of the continuum of behaviours 

between fully eager and fully lazy evaluation. 

5.11 Worked example: Derivation of NCONC from APPEND 

APPEND may be defined by 

(APPEND X Y) (IF (ATOM X) Y 
(CONS (CAR X) 

(APPEND (CDR X) Y))). 

Now let us suppose we have discovered, using the techniques 

given earlier, that each of a particular set of calls to APPEND has 

a first parameter which evaluates to a value which is in isolation 

class onelist. That is, the usage counts for the nodes X, (CDR X), 

..., (CD...DR X), ... are all equal to 1. (For example the result 

of a MAP function is in general of class onelist.) We will now 

derive a destructive version of APPEND suitable for use in this 

case, and will call it NCONC in accordance with the standard 

parlance. 

Firstly, let us consider the occurrence, p say, of (CDR X) in 

the true branch of the above. The active occurrences wrt p are 

(CAR X), Y and (CDR X) itself. Since X is not USED-L in any of 
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these, and it is not USED-R in any later occurrence (there are 

none), then we can embed p within (PROG1 ... (FREE X)) to derive 

(NCONC X Y) (IF (ATOM X) Y 

(CONS (CAR X) 
(APPEND (PROG1 (CDR X) (FREE X)) 

Y))). 

Now we consider the question of which version of APPEND we should 

use in the recursive call in this definition. Since NCONC has been 

defined so that X is always bound to a value in isolation class 

onelist, we have that the isolation environment for NCONC has 

R QX D = onelist and therefore Eisol¢(CDR X)IIR in the above will 

also yield onelist. The other occurrences of X within the body of 

APPEND do not affect R since (ATOM X) is not active and 

USED-L[X,(CAR X)] = h.ti 

Thus our use of APPEND in the above definition can be replaced 

by NCONC, as we are deriving a version of APPEND which can only be 

applied to items of class onelist. Hence we have 

(NCONC X Y) (IF (ATOM X) Y 
(CONS (CAR X) 

(NCONC (PROG1 (CDR X) (FREE X)) 
Y))). 

This version may seem more complicated than the original version, 

but it has been achieved with simple transformations and is just as 

efficient in CONS use as the versions we will now develop, which 

return something of the elegance and simplicity of APPEND. 

Having achieved the above we can now see that the FREE in NCONC 

is perfectly able to supply the location required by the CONS 

(replacing FREE/CONS by DCONS), and so we can write 
(NCONC X Y) _ (IF (ATOM X) Y 

(DCONS X (CAR X) 

(NCONC (CDR X) Y))) 



160 

thus explicitly using the node X to hold the result which was 

previously produced in a new CONS node. 

We can produce a further optimisation of this version by using 

the property of the ('real') definition of DCONS in terms of RPLACA 

and RPLACD, given by 

(DCONS X Y Z) _ (RPLACD (RPLACA X Y) Z). 

This gives the identities 
(DCONS X (CAR X) Y) _ (RPLACD X Y) 
(DCONS X Y (CDR X)) _ (RPLACA X Y), 

thus we derive 

(NCONC X Y) _ (IF (ATOM X) Y 
(RPLACD X (NCONC (CDR X) Y))). 

This is very close to the standard definition of NCONC which can be 

given as NCONC-S defined by 

(NCONC-S X Y) = (IF (ATOM X) 
Y 

(PROG2 (NCONC-S1 X Y) X)) 

(NCONC-S1 X Y) (IF (ATOM (CDR X)) 
(RPLACD X Y) 
(NCONC-S1 (CDR X) Y)). 

This again requires no working space in CONS cells, but has the 

further advantages of using tail recursion (thus requiring no stack 

space either) and also uses the fact that only the last element of 

the list X has to be smashed with a RPLACD. NCONC-S relies much 

more heavily on non-applicative properties, in particular, on how 

smashing the final element in a list affects any sharing list (the 

second X in the PROG2 above). Discussion of how to achieve this 

final definition is outside the scope of this chapter which only 

considers the optimisation of CONS nodes. However it does seem to 

be an interesting area for research. 
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I am indebted to Neil Jones for the suggestion of deriving NCONC 

from APPEND, using the techniques developed here. 

5.11.1 Producing more efficient versions of SUBST 

We will now show that our techniques are capable of handling the 

more sophisticated example of deriving destructive versions of 

SUBST, and at the same time illustrate one possible extra research 

direction which could be pursued to enhance our capabilities for 

optimising store usage in a completely orthogonal direction from 

that given in this work. 

We may define 

(SUBST U X E) (IF (ATOM E) 
(IF (EQUAL E X) U E) 

(CONS (SUBST U X (CAR E)) 

(SUBST U X (CDR E)))) 

or, in words, (SUBST U X E) produces a new structure in which each 

occurrence of the atom X in the structure E is replaced with the 

structure U. Note that the applicative version given here does 

this as wastefully as possible in that sharing is neither 

considered (in the sense that E may be modified in place) nor 

exploited (in the sense that SUBST need not create a copy of any 

part of E which contains no occurrences of X). This second point 

will be illustrated later (in MSUBST). 

One possible reason why E may be unshared (and this provides 

another reason why we adopted a language close to LISP) is that it 
is often more convenient to write 

(SUBST U 'X '(F Y (G X Y) X)) 

rather than 

(LIST 'F 'Y (LIST 'G U 'Y) U) 
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in LISP, to produce 

[F Y [G <U> Y] <U>] where <U> represents the value of U. 

Note that choosing a different applicative language which allows us 

to write (say) 

[F Y CG U Y] U] 

in an environment where F, G, and Y are constants does not enable 

us to express these choices in our program. However the 

implementation must still address the space-time trade-off inherent 

in the choice and this provides another method by which this work 

could help to optimise programs in a purer applicative language. 

Now let us suppose that we have identified a class of calls to 

SUBST in which the third argument has no external pointers (that is 

it is in class ti), then by similar arguments to those used for 

APPEND we may derive 

(DSUBST U X E) (IF (ATOM E) 
(IF (EQUAL E X) U 

(DCONS E (DSUBST 
E) 

U X (CAR E)) 

(DSUBST U X (CDR E))))) 

which has the effect of constructing the new tree while destroying 

the old one. 

Whilst this is as good as we can get by merely considering 

improving algorithms using the technique of spotting where garbage 

is produced, we should really note that other techniques might be 

useful here too (for example the production of a minimal CONS'ing 

SUBST routine from the applicative routine given above). The idea 

is that we might want a version of SUBST defined by 
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(MSUBST U X E) _ (IF (ATOM E) 

(IF (EQUAL E X) U E) 
(MSUBST-1 E (MSUBST U X (CAR E)) 

(MSUBST U X (CDR E)))) 

(MSUBST-1 E N1 N2) (IF (AND (EQ N1 (CAR E)) 

(EQ N2 (CDR E)) 

E 

(CONS N1 N2)) 

where we borrow from LISP the EQ function which tests for equality 

of locations (another dirty function which we would like to 

incorporate automatically rather than pollute our applicative 

language design by introducing the foreign concept of locations) 

and also the boolean AND function. This version has the great 

advantage of only constructing new CONS nodes for those parts of 

the structure which must be created - all other parts are shared 

with the argument E. It is true that such effects can be created by 

making CONS into a memo-function (originally due to Michie 1323), a 

technique often called hash-cons'ing because it usually requires a 

hash to make the associative lookup tolerable (see Goto [193 for 

more details). However the great drawbacks of hash-cons'ing are 

that they are expensive, and also one can never guarantee that a 

new CONS is unshared, thereby invalidating most of the work 

presented here as well as producing 'stray' sharing. One very 

promising solution which needs to be investigated is the 

development of work similar to that presented here, but which 

performs compile time hash-cons'ing. It is clear how such a scheme 

would work in a simple case: for example 

(COPY X) = (IF (ATOM X) 
X 

(CONS (COPY (CAR X)) (COPY (CDR X)))) 

can be transformed to the identity function in an applicative 



164 

language because 

(CONS (CAR X) (CDR X)) 

is EQUAL to X is such regimes. 

5.12 Syntax and Semantics of LISP-D 

This section gives a (possible) semantics for our toy language 

LISP-D. For further details and background Mike Gordon's book [16] 

is to be recommended. 

The semantics given below is somewhat complicated (but made more 

general) by the fact that we have included error handling cases in 

the semantics rather than merely producing i on an error. The 

reader is welcome to read ? and ?? as i if he does not care to 

distinguish failure, as in (CAR X) where X is an atom, from 

looping. 

5.12.1 Notation 

If X is a data class we will use X to stand for the class of 

sequences of elements of X. Correspondingly we will use <> to 

represent the empty sequence and <a;x> to represent the sequence 

whose first element is a and x is the sequence of the remaining 

elements. 
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5.12.1.1 Data Classes 

Atom = {True, False, A1, A2 ...} 
Var = {x1, x2 ...} 
Fun = {f1 , f2 ... } 
Token = Atom + Error} 
Val = Atom + Loc + {?} 

TupleVal = (Val - {?}) * + {??} 

Loc = {Loczero} + Succ(Loc) 

Store = (Loc -4 Val) X (Loc -4 Val) X Loc 

Env = VarEnv X FunEnv 

VarEnv = (Var -4 Val) 

FunEnv = Fun -> (Val* X Store) -4 (Val X Store) 

5.12.1.2 Syntactic equations 

Exp Var ; Atom 

(CAR Exp) (CDR Exp) ; (CONS Exp Exp) 

(ATOM Exp) (IF Exp Exp Exp) 

(ERROR) ; (FREE Exp) 

(Fun Exp*) 

Dcl (Fun Var*) = Exp 
* 

Prog :.= Dcl Exp. 

5.12.1.3 Semantic Functions 

E: Exp -4 (Env X Store) -4 (Val X Store) 

Seq: Exp* -4 (Env X Store) -4 (TupleVal X Store) 
P: Prog -4 Token* 

D: Dcl* -4 FunEnv 
* * 

Bind: Var -i Val -i VarEnv 

Print: Val X Store -4 Token* 

5.12.2 Semantic Equations 

EQAIJ(r,s) (A,s) 

EQxII(<r1,r2>, s) _ (r1(x), s) 
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EQ (CAR e) 11 (r, s) = i if EQeIl (r,s) _ L 

= (s1(v), s') if v E Loc 

= (?,s') otherwise 
where (v,s') = E [Eel](r,s) 
and <s1 ,s2,m> = s' 

EQ(CDR e)I1(r,s) _ ,L if E[Eell(r,s) = I 
(s2(v), s') if v E Loc 

(?,s') otherwise 
where (v,s') = E[Eell(r,s) 
and 

<S1 32,m> s' 

EQ(CONS e1 e2)I1(r,s) = i if SegQ<e1,e2>I1(r,s) _ 

_ (m, <s1[v1/m], s2[v2/m], succ(m)>) 

if v = <v1,v2> 

(?, s') otherwise 

where (v, s') = 

SegQ<e1, e2>I1(r,s) 
and <s1,s2,m> = s' 

EQ (ATOM e) I1(r,s) = 1 if EQeIl (r,s) = .L 

_ (True, s') if v E Atom 

= (False, s') if v E Loc 

= (?,s') otherwise 
where (v,s' ) = E[Eel] (r, s) 

EQ (FREE e) I1(r,s) _ j. if EQeIl (r,s) = j.. 

_ (v, <s1[?/v], s2[?/v], m>) if v E Loc 

(?,s') otherwise 
where (v,s') = E[Eel](r,s) 
and <s1,s2,m> = s' 
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EQ (IF e1 e2 e 
3 

) 7] (r,s) = 1 if Eae17] (r,s) = a'- 

E Qe2I(r,s') if v = True 

EQe3]] (r,s') if v = False 

(?,s') otherwise 

where (v,s') = E Qe7](r,s) 

E I(ERROR)]](r,s) _ (?,s) 

EQ (F e *) 7] (r,s) i if SegQe*7] (r,s) = 1, 

(?,s') if SegQe ]l(r,s) _ (??, s') 
r2(F)[Seq Qe ](r,s)] otherwise 

where <r1,r2> = r 

SegL<>]](r,s) (<>, s) 
SegQ<e ; e*>]](r,s) = 1, if EQe7](r,s) = i 

(??,s') if E Qe7](r,s) (?,s') 
i if SegQe ](r,s') = 1 
(??,s") if SegQe*]](r,s') _ (??,s") 
(<v ; v >, s") otherwise 

where (v,s') = EQe7] (r,s) 
and (v S11) = SegQe*](r,s') 

Print(a,s) _ <> if a = .1 

_ <a> if a E Atom 

_ <"["> @ Print(s1(a),s) @ <"."> 

Print(s2(a),s) @ <"]"> if a E Loc 

_ <"Error"> otherwise 

where <s1,s2,m> = s 

and @:Token* X Token* Token* 

<> @ x = x 

<a;b> @ x = <a ; b@x> 
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P[[d*eI = Print (ETell «rO,D[[d*]]>, <s0,s0,LocZero>>) 

where r0(x) _ ? 
* 

and sO(x) _ X<v s> . <?,s> 

D [[d*ll = FixFunEnv[X r. a f. 
X<v*,s>. Valid(f,d*) 

--> 

E Tell (<Bind [[X* 1v*, r>, 5), 
(?,s) 

* 
where 

Valid(f,d*) is true iff there exists (in d ) 
* 

a unique d = [[(f X ) = ell 

and e is as given by Valid 
* * 

and Bind [[X 11v gives the environment 
induced by the match. 

Although we do not allow programs to use RPLACA and RPLACD they 

will be used in the discussions. Their semantics are given by 

EI(RPLACA e1 e2)11 (r, s) 

if Segt<e1,e2>D(r,s) 
* 

? if v = ?? 

_ (v1, <s1[v2/v1], s2, m>) if v1 t Loc 

? otherwise 

where (v*,s') = Seq [[<e1,e2>11 (r, s) 

and <s1,s2,m> s' 

and <v1,v2> = v* 
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E Q (RPLACD e1 e2) 11 (r, s) 

i if SegQ<e1,e2>jl(r,s) 
? if v*=?? 
(v1, <s1, s2(v2/v1], m>) if v1 C Loc 

_ ? otherwise 

where (v *,s') = SegQ<e1,e2> D(r,s) 

and <s1,32,m> = s' 

* 
and <v1,v2> = v 

5.12.2.1 Semantic modifications to add usage counts 

The semantic modifications to describe usage counts directly 

associated with each CONS node are very simple and merely consist 

of the following additions. 

Firstly we must change the definition of Store to 

Store = (Loc -4 Val) X (Loc --> Val) X (Loc --> Number) X Loc. 

This provides a Store value with a component which gives the number 

of pointers to each location. 

Secondly we must alter all semantic clauses involving Store to 

increment or decrement the relevant entry in the third component of 

Store accordingly. Since our semantic Loc is infinite we do not 

have to worry about actually using the information given by the 

usage counts, unlike the situation in a real machine. 

5.12.3 A Store-less semantics for LISP-A 

This section sketches the changes that have to be made to the 

semantic functions and objects in order to give LISP-A a semantics 

not involving stores. 
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Firstly the following changes are required to semantic 

categories 

Val = Atom + (Val X Val) + {?} 

VarEnv = Var -4 Val 

Funenv = Fun --> Val --> Val 

This of course requires that the functionality of the semantic 

functions changes to (we give only the important changes) 

E: Exp -4 Env -> Val 

Seq: Exp* - Env -> TupleVal 

Print: Val --> Token* 

Most semantic functions remain unchanged except for the need to 

remove the Store components of their parameters and results. The 

only functions to undergo radical change are CONS (as might be 

expected) and FREE (which we can no longer discuss). We derive 

EQ(CONS el e2)Il r = j. if SegE<el, e2>Il = i 
_ ? if SegQ <e1, e2>Il = ?? 

SegQ<e1, e2 >2 otherwise 
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Chapter 6: Conclusions 

We hope to have convinced the reader, in the last few chapters, 

that there are techniques, well founded in theory, by which we can 

undertake systematic optimising transformations of applicative 

programs. It is now time to address side issues such as where we 

progress from here. 

6.1 Efficiency in Applicative Languages 

Much of the material in the preceding chapters has been oriented 

towards improving the efficiency of applicative languages. It is 

now desirable that we consider why this is useful. 

Firstly, let us observe, for the purposes of compilation (or 

sophisticated interpretation), that applicative languages are a 

double-edged sword. 

On one hand (the traditional viewpoint) applicative languages 

are difficult to compile efficiently because they are rather 

distant from the notion of a von Neumann architecture machine, the 

basis of all current computers. 

On the other, applicatives languages offer us much greater 

potentialities for improved compilation due to their reduced 

specification of exactly how (operationally) a computation is to be 

performed. This is only possible for pure applicative languages 

and not for an.applicative subset of a language (such as LISP) 

because in the latter case the applicative semantics has to be 

rather constrained in order to tie in with the sequential semantics 

in the rest of the language. For example, we cannot remove, or 
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optimise the order of evaluation of, a certain piece of code due to 

(the risk of) side-effects. However applicative languages greatly 

ease the problems of considering whether a proof or transformation 

is valid. Many of the most effective theorem proving or program 

transformation systems have an applicative target language, for 

example Feather's ZAP system [13], Boyer and Moore's theorem prover 

[3] or the Edinburgh LCF system [18]. 

The objection to permitting 'mixed' languages, as in the above 

notion of 'applicative subset', also extends to considerations of 

parallelism, and we will spend a few moments considering the 

potential of ADA [26] in this respect. ADA is an imperative 

language which allows the programmer to specify how a program is to 

be broken up into a set of co-operating processes. However the 

number of processes chosen will very probably depend on the 

particular target machine the programmer has in mind. Hence, 

acceptable efficiency may only be achieved on a single machine. 

Moreover, there are several research projects in progress 

developing machines containing thousands of processors. It will 

surely be impossible to write an ADA program which uses such a 

machine to its full potential. It does not even appear possible to 

decompose a multi-tasking program into a larger number of tasks due 

to the complicated semantics of full tasking (ADA's tasking will 

not even be formally specified). We are much more likely to be 

able to decompose a sequential program into tasks than one already 

unsuitably partitioned. We would even go further than this and 

argue that it will be practically impossible to incorporate 
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automatically a reasonable degree of tasking within a given 

sequential imperative program due to the difficulties of detecting 

whether two computations can, in fact, be performed in parallel 

without invalidating the semantics. The objections to the 

programmer performing this breakdown are firstly the machine 

dependency implied and secondly the extra work involved. 

In an applicative language, with no notion of a global von 

Neumann store, we are free to evaluate any two expressions in 

parallel, and the implied data dependencies provide the 

communication between processes. We can summarise this by saying 

that it is very difficult to achieve acceptable parallelism in 

imperative languages, whereas the main problem in applicative 

languages seems to be that of cutting down the vast number of 

parallel processes that the above method of using a task for each 

sub-expression would generate. 

6.2 Suggestions for Further Work 

The first observation to be made is that the techniques 

described here are too oriented towards 'toy' systems. For 

example, the techniques for implementing call-by-need using 

call-by-value described in chapter 4 have not been tested by a 

practical implementation in a large system. Similarly, the merit 

of the theory of inserting destructive operators into applicative 

programs (chapter 5) must be decided by its application to a large 

system (such as the HOPE [71 system here at Edinburgh). It is not 

sufficient to argue that the techniques are correct - we must also 

show that they are applicable sufficiently often to make a 
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significant improvement to the performance of the system as a 

whole. It is to the author's regret that there has not yet been an 

opportunity to make such a large-scale trial. 

On the other hand, we can find places where the theoretical 

basis is not quite satisfactory. This is not meant to imply that 

we consider the work unrigorous, but rather that the theory of 

sharing given in chapter 5) leans too heavily on computational 

insights rather than on an independent basis. Similarly the 

theoretical work on abstract interpretation for the applicative 

idiom described in chapter 2 is presented as a first development of 

the theory of abstract interpretation for this style, and 

inevitably will lack the elegance of a full theory developed with 

hindsight. 

We will turn now to chapters 3 and 4 which discuss the use of 

eager evaluation strategies to implement lazier ones at a gain of 

efficiency with respect to current machine architectures. Our work 

presents results only for the case of a flat domain, where a 

parameter (or sub-computation) is either unevaluated, or evaluated 

to completion. As we observed in these chapters it would be highly 

desirable to extend such results to a fully lazy evaluation scheme 

where expressions may be evaluated to yield a partial result, 

leaving (possibly many) unevaluated sub-expressions. 



175 

References 

1. Abbott, J.C. Sets, Lattices and Boolean Algebras. Allyn and 

Bacon, 1969. 

2. Backus, J. Can Programming be Liberated from the von Neumann 

Style? A Functional Style and its Algebra of Programs. Comm. ACM 

21, 8 (August 1978), 613-641. 

3. Boyer, R.S. and Moore, J.S. A Computational Logic. Academic 

Press, 1980. 

4. Burstall, R.M. Some Techniques for Proving Correctness of 
Programs which alter Data Structures. Machine Intelligence 7 

(1972), 23-50. 

5. Burstall, R.M. Design Considerations for a Functional 

Programming Language. Infotech State of the Art Conference: The 

Software Revolution, Copenhagen, October, 1977. 

6. Burstall, R.M. and Darlington, J. A Transformation System for 

Developing Recursive Programs. J. ACM 24, 1 (January 1977), 44-67. 

7. Burstall, R.M., MacQueen, D. and Sannella, D.T. HOPE: an 

Experimental Applicative Language. Conference Record of the 1980 

LISP Conference, 1980. Also internal report CSR-62-80, Dept. of 

Computer Science, Edinburgh University. 

8. Cousot, P. and Cousot, R. Static Determination of Dynamic 

Properties of Programs. Proc. 2nd Int. Symp. on Programming, 1976. 

9. Cousot, P. and Cousot, R. Abstract Interpretation: a Unified 

Lattice Model for Static Analysis of Programs by Construction or 

Approximation of Fixpoints. Proc. 4th ACM Symp. on Principles of 

Programming Languages, Los Angeles, 1977. 

10. Cousot, P. and Cousot, R. Static Determination of Dynamic 

Properties of Recursive Procedures. Proc. IFIP conf. on Formal 

Descriptions of Programming Concepts, 1978, pp. 237-277. 



176 

11. Donzeau-Gouge, V. Utilisation de la S6mantique D6notationelle 
pour 1'6tude d'Interpr6tations non-standard. IRIA-Laboria, 
78150-Rocquencourt, France, 1978. 

12. Donzeau-Gouge, V. Denotational Definition of Properties of 
Program Computations. In Muchnick, S.S. and Jones, N.D., Ed., 

Program Flow Analysis, Prentice-Hall, 1981. 

13. Feather, M.S. A System for Developin_g Programs 

Transformation. Ph.D. Th., University of Edinburgh, 1979. 

14. Floyd, R.W. Assigning Meanings to Programs. Amer. Math. Soc. 

19 (1967), 19-32. 

15. Friedman, D.P. and Wise, D.S. CONS should not Evaluate its 
Arguments. Proc. 3rd Int. Colloq. on Automata, Languages and 

Programming, Edinburgh, 1976. 

16. Gordon, M.J.C. The Denotational Descripion of Programming 

Languages. Springer-Verlag, 1979. 

17. Gordon, M.J.C., Milner, A.J.R.G., Morris, L., Newey, M. and 

Wadsworth, C. A Metalanguage for Interactive Proof in LCF. Proc. 

5th ACM Symp. on Principles of Programming Languages, Tucson, 

Arizona, 1978. 

18. Gordon, M.J., Milner, A.J.R. and Wadsworth, C.P. Edinburgh 

LCF: Lecture Notes in Computer Science. Springer-Verlag, 1979. 

19. Goto, E. Monocopy and Associative Algorithms in an Extended 

LISP. University of Tokyo, May, 1974. 

20. Harel, H. On Folk Theorems. Comm. ACM 23, 7 (July 1980), 

379-389. (Folk theorems have no known authors, but are widely 
known results.) 

21. Henderson, P. and Morris, J. A Lazy Evaluator. Proc. 3rd ACM 

Symp. on Principles of Programming Languages, Atlanta, Georgia, 

1976, pp. 95-103. 



177 

22. Hennessy, M.C.B. Power Domains and Non-determinstic Recursive 

Definitions. In preparation (submitted to 5th Int. Symp. on 

Programming). 

23. Hennessy, M.C.B. and Plotkin, G.D. Full Abstraction for a 

simple Parallel Programming Language. Proc. 7th Int. Symp. on 

Mathematical Foundations of Computer Science, 1978, pp. 108-120. 

24. Hoare, C.A.R. An Axiomatic Basis for Computer Programming. 

Comm. ACM 12, 10 (1969), 576-583. 

25. Huet, G. and Levy J.-J. Call-by-need Computations in 
Non-ambiguous Linear Term Rewriting Systems. IRIA-Laboria, 
78150-Rocquencourt, France, July, 1979. 

26. Ichbiah, J.D. et al. Preliminary ADA Reference Manual. 

SIGPLAN Notices 14, 6A (June 1979), . 

27. Jones, N.D. Flow Analysis of Lambda Expressions. DAIMI 

report PB-128, Dept. of Computer Science, Aarhus University, 

January, 1981. 

28. Jones, N.D. and Muchnick, S.S. Flow Analysis and Optimisation 

of LISP-like Structures. TR 78-2, Dept. of Computer Science, 

University of Kansas, 1978. 

29. Jones, N.D. and Muchnick, S.S. Complexity of Flow Analysis, 

Inductive Assertion Synthesis, and a Language Due to Dijkstra. 

Proc. 20th Conf. on Foundations of Computer Science, 1979, pp. 

185-190. 

30. Kernighan, B.W. and Plauger, P.J. Software Tools. Addison- 

Wesley, 1976. 

31. Lang, B. Threshold Evaluation and the Semantics of Call by 

Value, Assignment and Generic Procedures. Proc. 4th ACM Symp. on 

Principles of Programming Languages, Los Angeles, 1977. 



178 

32. Michie, D. Memo Functions: a Language Feature with Rote 

Learning Properties. Research Memorandum MIP-R-29, Machine 

Intelligence Research Unit, Edinburgh University, 1967. 

33. Milner, R. Fully Abstract Models of Typed Lambda Calculi. 

Theor. Comp. Sci. 4, 1 (February 1977), 1-23. 

34. Mycroft, A. The Theory and Practice of Transforming 

Call-by-need into Call-by-value. Proc. 4th Int. Symp. on 

Programming: Lecture notes in Computer Science number 83, Paris, 
April, 1980, pp. 269-281. 

35. Mycroft, A. Call-by-Need = Call-by-Value + Conditional. 

Internal report CSR-78-81, Dept. of Computer Science, Edinburgh 

University, 1981. Presented at IUCC conference at Exeter, Sept 

1980. 

36. Naur, P. Checking of Operand Types in ALGOL compilers. BIT 5 

(1965), 151-163. 

37. Nielson, F. Semantic Foundations of Data Flow Analysis. DAIMI 

report PB-131, Dept. of Computer Science, Aarhus University, 

February, 1981. 

38. Pettorossi, A. Destructive Marking: A Method and some Simple 

Heuristics for Improving Memory Utilisation in Recursive Programs. 

Informatica proceedings, Bled, 1978. 

39. Pettorossi, A. Improving Memory Utilisation in Transforming 

Recursive Programs. Proc. 7th Int. Symp. on Mathematical 

Foundations of Computer Science, Zakopane, Poland, 1978. 

40. Plotkin, G.D. Call-by-name, Call-by-value and the Lambda 

Calculus. Theor. Comp. Sci. 1, 2 (December 1975), 125-159. 

41. Plotkin, G.D. A Powerdomain Construction. SIAM J. Comput. 5, 

3 (1976), 452-487. 



179 

42. Plotkin, G.D. A Structural Approach to Operational Semantics. 

Lecture notes 1981, Dept. of Computer Science, Aarhus University. 

43. de Roever, W.P. First Order reduction of Call-by-name to 

Call-by-value. Proving and Improving Programs, Arc et Senans, 

1975. 

44. Schwarz, J. Using Annotations to make Recursion Equations 

behave. DAI research report 43, Dept. of Artificial Intelligence, 

Edinburgh University, 1977. Revised 1981 at Bell Labs, to appear. 

45. Schwarz, J. Verifying the Safe Use of Destructive Operators in 

Applicative Programs. Proc. 3rd Int. Symp. on Programming, Paris, 

1978. Also published as DAI research report 55, Dept. of 

Artificial Intelligence, Edinburgh University. 

46. Schwarz, J. Destructive Operations in Applicative Languages. 

Unpublished manuscript. 

47. Sintzoff, M. Calculating Properties of Programs by Valuations 

on Specific Models. Proceedings on an ACM conference on Proving 

Assertions about Programs, Las Cruces, Mexico, January, 1972. 

48. Strachey, C. and Wadsworth, C.P. Continuations - a 

Mathematical Semantics for Handling Full Jumps. Technical 

monograph PRG11, Programming Research Group, Oxford University, 
1974. 

49. Thatcher, J.W. Tree Automata: an Informal Survey. In 

Currents in the Theory of Computing, Prentice-Hall, 1973, PP. 

143-172. 

50. Vuillemin J. Correct and optimal implementations of recursion 

in a simple programming language. Journal of Computer and System 

Sciences 9 (1974), 332-354. Also PhD thesis: Proof techniques for 

recursive programs (chapter 2). 



180 

51. Wadsworth, C.P. Semantics and Pragmatics of the Lambda 
Calculus. Ph.D. Th., Programming Research Group, Oxford 

University, 1971. 

52. Wegbreit, B. Property Extraction in Well Founded Property 
Sets. IEEE Trans. on Software Eng. SE-1, 3 (September 1975), 
270-285. 


	PhD coversheet April 2012
	EDI-INF-PHD-81-006.pdf

