

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Abstract Interpretation and Optimising Transformations

for Applicative Programs

Alan Mycroft

Doctor of Philosophy

University of Edinburgh

1981

2

Abstract

This thesis describes methods for transforming applicative
programs with the aim of improving their efficiency. The general
justification for these techniques is presented via the concept of
abstract interpretation. The work can be seen as providing
mechanisms to optimise applicative programs for sequential von
Neumann machines. The chapters address the following subjects.

Chapter 1 gives an overview and gentle introduction to the

following technical chapters.

Chapter 2 gives an introduction to and motivation for the

concept of abstract interpretation necessary for the detailed
understanding of the rest of the work. It includes certain

theoretical developments, of which I believe the most important is

the incorporation of the concept of partial functions into our

notion of abstract interpretation. This is done by associating
non-standard denotations with functions just as denotational
semantics gives the standard denotations.

Chapter 3 gives an example of the ease with which we can talk

about function objects within abstract interpretive schemes. It
uses this to show how a simple language using call-by-need

semantics can be augmented with a system that annotates places in a

program at which call-by-value can be used without violating the

call-by-need semantics.

Chapter 4 extends the work of chapter 3 by showing that under
some sequentiality restriction, the incorporation of call-by-value
for call-by-need can be made complete in the sense that the

resulting program will only possess strict functions except for the

conditional.

Chapter 5 is an attempt to apply the concepts of abstract

interpretation to a completely different problem, that of

incorporating destructive operators into an applicative program.
We do this in order to increase the efficiency of implementation
without violating the applicative semantics by introducing

destructive operators into our language.

Finally, chapter 6 contains a discussion of the implications of
such techniques for real languages, and in particular presents
arguments whereby applicative languages should be seen as whole
systems and not merely the applicative subset of some larger
language.

3

Table of Contents

Abstract 2

Acknowledgments 6

Chapter 1: Overview 8

1.1 Abstract Interpretation 8

1.2 The theory and practice of transforming call-by-need into 10

call-by-value
1.3 Call-by-need = Call-by-value + Conditional 12

1.4 Introduction of destructive operators into applicative 14

programs
Chapter 2: Introduction to Abstract Interpretation 17

2.1 Introduction to abstract interpretation 20
2.2 Abstract Interpretation for the Flowchart Idiom 26

2.2.1 Flowchart schema 26

2.2.2 Flowchart semantics 27

2.2.3 Abstract flowchart interpretation 29

2.2.4 Static Semantics 31

2.2.5 Val is naturally a set 32

2.3 Mathematical basis for Abstraction 32

2.3.1 Abstraction of Functions 33

2.3.2 Abstraction for Interpretations 34

2.4 Flowchart Abstract Interpretation 35
2.4.1 Example 36

2.4.2 Lattice of Interpretations 37

2.5 Abstract Interpretation for the Applicative Idiom 37
2.5.1 Recursion equation schema 38
2.5.2 Recursion equation semantics 39
2.5.3 The collecting interpretation 39

2.6 An Approximating Interpretation 42

2.6.1 Formal Definition of Abstraction 44

2.6.2 An alternative view of Conc and Abs 47

2.6.3 The Abstraction of Functions 47

2.6.4 Correctness of an Abstraction 48

2.6.5 Proof of the Correctness Theorem 49

2.7 Some Example Abstract Interpretations 51

2.7.1 Application: The Independent Attribute Formulation 51

2.7.2 Application: Abstracting Termination 52

2.7.3 Application: Power Sets are an Abstraction of Power 54
Domains

2.8 The Lattice of Interpretations 55
2.9 Notes on the Abstraction Relation 58
2.10 Deducing Properties of Applicative Programs 60

Chapter 3: The Theory and Practice of Transforming 62
Call-by-need into Call-by-value

3.1 Abstract 62
3.2 Motivation 63

3.3 Formalism 68
3.4 Notation and Definitions 69

3.5 Example 70

3.6 Pragmatics 77

3.7 Transforming programs to use call-by-value 79

3.8 Non-discrete domains 81

3.9 Discussion of runtime errors in applicative languages. 82

Chapter 4: Call-by-Need = Call-by-Value + Conditional 86

4.1 Introduction 86

4

4.2 Overview
4.3 Basic Definitions

4.3.1 Conventions
4.3.2 Operational Semantics
4.3.3 Definition of Sequentiality

4.4 Method
4.4.1 Total reduction to call-by-value
4.4.2 Production of the oracles FI
4.4.3 The FI exhibited
4.4.4 Operational extension of ai
4.4.5 Denotational extension of ai
4.4.6 Definition of FI
4.4.7 Definition of the system oracles AI
4.4.8 Proof of correctness

4.5 Getting rid of the 1.i
4.5.1 Proof of correctness of the overloading

4.6 Example
4.7 Computational Costs
4.8 Conclusions
Chapter 5: On Introducing Destructive

Applicative Programs
5.1 Abstract
5.2 Developments from previous work
5.3 General Overview of the Development
5.4 Formalism and General Ideas

5.4.1 Does CONS have a side effect?
5.4.2 Destructive Operators

5.4.2.1 Simple Example

Operators

86
87

89
90
90
92
93
94
94
95
96
98
98

100
102
105
106
107
109

into 111

111
112
113
114
117
118
118
119

121
123
126

Examines 131

5.4.2.2 The choice of destructive operators
5.4.3 Order of evaluation
5.4.4 Occurrences and other Basic Ideas

5.5 The Extent of Possible Use of Arguments
5.5.1 Correctness of the Uses and

Interpretations
5.6 Usage counts
5.7 Isolation classes: abstract interpretations modelling 134

usage counts
5.7.1 The Isolation Ordering
5.7.2 Isolation properties of functions
5.7.3 The problems of variables
5.7.4 The treatment of variables
5.7.5 The details of variable sharing
5.7.6 Irrelevant paths

5.8 Useful Transformations
5.8.1 Transformations to insert FREE
5.8.2 Transformations for IF

5.8.3 Replacing FREE with RPLACA/D
5.9 Correctness with respect to the semantics

5.9.1 Proof of correctness of 'real' FREE
5.10 Producing destructive versions of user functions
5.11 Worked example: Derivation of NCONC from APPEND

5.11.1 Producing more efficient versions of SUBST
5.12 Syntax and Semantics of LISP-D

5.12.1 Notation
5.12.1.1 Data Classes
5.12.1.2 Syntactic equations

132

136

138
140
141
142
147
148
148
149
151
151

153
155
158
161

164
164
164
165

5

5.12.1.3 Semantic Functions 165
5.12.2 Semantic Equations 165

5.12.2.1 Semantic modifications to add usage counts 169
5.12.3 A Store-less semantics for LISP-A 169

Chapter 6: Conclusions 171

6.1 Efficiency in Applicative Languages 171

6.2 Suggestions for Further Work 173
References 175

6

Acknowledgments

I would like to thank the following people and authorities, each

of whom have contributed something to this work, either directly,

or by their inspirational presence.

Firstly I must thank my supervisors Rod Burstall and Robin

Milner for being so kind and tolerant of a somewhat independently

spirited supervisee. Their influence, together with the research

setting of Edinburgh University, have contributed much to the style

and content of this thesis. I must thank both the Department of

Artificial Intelligence, and the Department of Computer Science for

providing such a congenial atmosphere for research.

Many of the members, past and present, of these departments are

responsible, via their comments, for the detailed presentation of

this work. In particular I would thank Martin Feather, Dave

MacQueen and Chris Mellish at Artificial Intelligence, and also

Luca Cardelli, Mike Gordon, Matthew Hennessy, Gordon Plotkin, David

Rydeheard, Don Sannella and Chris Wadsworth at Computer Science.

Thanks must also be given to John Darlington of Imperial

College, London, who provided both supervision and ideas during the

time I spent in London.

I would also like to thank the Algebra Group at the Computer

Laboratory, Cambridge University for their part in this work. They

were always willing to discuss my work and particular thanks are

due to Arthur Norman (who supervised me for my previous Diploma in

Computer Science) for a suggestion which led to the work presented

7

in chapter 3.

I am grateful for the close relationship between Edinburgh

University and INRIA (Institut National de Recherche en

Informatique et en Automatique) which permitted me to talk to

Gerard Huet and Jean-Jacques Levy.

Also deserving of thanks is the Datalogisk Afdeling of Aarhus

University, which provided an especially valuable workshop on

data-flow analysis, and the participants in that workshop

especially Neil Jones (the organiser), Patrick and Radhia Cousot,

and Flemming Nielson.

The SRC provided finance for this research via studentship

B/78/313640.

Finally, I, and this work, owe a great deal to the personal

support of my wife, Hilary, whose cheerfulness kept me going

through the darker moments of research.

8

Chapter 1: Overview

This chapter gives a detailed, but non-technical introduction to

the remainder of this thesis. The sections discuss the work

presented in corresponding chapters.

The work presented in this thesis attempts to strike reasonable

balance between theory and practice. This is a difficult aim, and

achieved in few works. Clearly it is extremely hard to satisfy

both the requirement for rigour and that for applicability. Here

we attempt to do so by developing the idea of 'abstract

interpretation' in both theoretical and practical directions, but

inevitably the more practical aspects must lack rigour and the more

theoretical ones seem remote from practice. We hope to convince

the reader that this work exhibits practical uses of abstract

interpretation for analysing applicative programs, which are well

founded in theory. We would also hope that the theoretical

developments are considered relevant.

1.1 Abstract Interpretation

This chapter performs two roles. Firstly it is an introduction

to abstract interpretation in its own right, and secondly it

exhibits the changes to the theory that are necessary to enable us

to discuss applicative languages, thereby giving a theoretical

basis for the remaining chapters.

Essentially, we will follow the work of Cousot & Cousot [9]

which itself is based on ideas as old as Sintzoff [47J and Naur

136J, but which is also found in the 'rule of signs' given below.

9

Suppose we have a complicated system, for example the set of

integers under addition (+) and multiplication (*), and we want to

know certain properties about a computation in such a system, for

example the sign of the result of (-345)*1067. Then we can either

compute the result naively and take its sign, or employ the rule of

signs (ne)*(pos)=(neg) to deduce that the result must be negative.

Similarly this type of reasoning can show that a2+b2 is never

negative, however consideration of a2+b2-2*a*b, shows us that all

we can say is that the result is either p, ne or zero, which we

knew already.

Clearly the price paid for calculating in such a simple domain

{pos,neg,zero} is that our answers to questions about the more

complicated integer domain can never be exact, however we will

choose our interpretations in such a manner that they imply results

about corresponding calculations in the standard interpretation of

symbols, as in the above cases.

Computationally, we are not interested in abstract

interpretation as an alternative method of performing such simple

calculations, but rather as a tool for showing that certain

conditions will hold about a certain function or program point at

execution time. For example, as in the work in the next section,

it will enable us to show that a certain function cannot have a

defined result unless a certain parameter is defined and hence that

that parameter can be evaluated out of the standard order.

10

1.2 The theory and practice of transforming call-by-need into

call-by-value

In this chapter, which has also been published as a paper of the

same name [347, we consider the question of transforming a program

written in a call-by-need language to one which uses call-by-value

for as many of the parameter passing instances as is consistent

with the call-by-need semantics. We provide some motivation for

why this is a desirable thing to do, for example call-by-need is a

more natural semantics for applicative languages, whereas

call-by-value produces much more efficient code in situations where

the two regimes are equivalent.

In the next two paragraphs the assumed mode of parameter passing

will be call-by-need. We note that there are two situations where

a parameter can be passed to a function, F, say, using

call-by-value without disturbing the call-by-need semantics.

Firstly suppose a certain function, F, say, has the property

that it always evaluates its k'th formal parameter (an operational

view), or in comparable denotational terms

F(... i ...) = i

(where i, the undefined value, occurs in the k'th position)

regardless of the values of the remaining parameters.

Then it is clear that we cannot affect the termination properties

of F by evaluating its k'th actual parameter prior to any call.

Alternatively suppose we can show, for some actual parameter, e,

say, that e has the property that, regardless of the environment in

which it is evaluated, its evaluation always terminates (for

11

example e is of the form x+1 where we can show that the variable x

is never j, as would be the case if it had been passed by value).

Then we can safely (without disturbing the call-by-need semantics)

evaluate this parameter before passing it to the called function,

saving the possibly greater expense of constructing and evaluating

a closure. Of course, if (in a particular program) all actual

parameters corresponding to a particular formal parameter of a

certain function have this form, we can change the function to

expect a value parameter which will enhance the efficiency further.

These views must be tempered a little by the question of what

equivalence means, as for example, if a program has two distinct

possible run time errors that it may become ensnared upon, then

such transformations as given in the preceding two paragraphs may

cause a transformed program to give a different error message.

Accordingly the problem of errors in applicative languages is

discussed in some detail, but if we adopt the notion of error

values rather than error jumpouts then the equivalence hinted at

above holds. The statement of equivalence would be that the

call-by-need program annotated with hints that certain parameters

could be evaluated according to call-by-value would be strongly

equivalent to its purely call-by-need ancestor.

The technique for propagating information about which parameters

have certain termination properties is based on abstract

interpretation (9] and two alternative evaluation functions E1 and

E O are constructed by reference to the standard evaluation function

E, and shown to have the properties that they reflect the behaviour

12

of E by giving safe lower and upper bounds on the definedness of

expressions.

The fixpoint structure of the meaning of functions within these

alternative interpretations is also discussed, and a section is

devoted to the problem of transforming an applicative program to

maximise the number of parameters susceptible to our methods. A

test of the system on a 1100 line applicative program (written

without knowledge of the system) showed a promising 'hit rate' of

around 75%.

Since the work was completed, it has been extended by Jones [27]

to be applicable to the whole lambda calculus, rather than the

minimal system of recursion equations which were used here, however

the extension necessarily requires a more complicated setup than

the simple one adopted in this work, and hence should not be

regarded as supplanting it.

1.3 Call-by-need = Call-by-value + Conditional

This chapter extends the work described in the previous chapter

by showing that the idea of transforming the program to increase

the number of places call-by-value can be used is complete, in the

sense that a given applicative call-by-need program can be simply

transformed (not interpreted) into an equivalent program for a

language which has strict (call-by-value) semantics for all

functions except the distinguished conditional function.

We need slight (sequentiality) restrictions on our system

functions as compared to the work of the previous chapter, but

13

otherwise the two works address identical call-by-need languages.

The interest of this work is both theoretical and practical, in

that it provides an alternative formulation of call-by-need in

terms of call-by-value and also in that it provides a practical

alternative to thunks (or closures) for an implementation of a

call-by-need language. Plotkin [40] uses the concept of closures

to show the equivalence of call-by-name and call-by-value

interpreters for the lambda-calculus by showing we can model

call-by-name within a call-by-value interpreter. He does this by

the use of lambda "buffers" which are forced to be evaluated when

required.

Our transformation consists of four stages. Firstly we show

that a given call-by-need program is strongly equivalent to one of

the possible execution paths of a non-deterministic interpreter.

This equivalence was also given by de Roever [43].

Secondly we show that it is possible to define oracles for this

system of non-deterministic equations, which predict the path the

computation will follow, and enable us to derive a result without

using a parallel interpreter. However the oracles rely on

extending the domain of discourse to include certain 'squib'-like

elements to trace risky computations.

Thirdly we show that it is possible to map the extra elements

added in the previous paragraph into our standard domain of

discourse, by using a form of overloading. This is really

necessary, both for practical and theoretical reasons since the run

14

time tests of domain membership are likely to be as expensive as

testing whether a parameter is a closure or an evaluated closure,

and also we would be open to the criticism that we are not really

comparing like with like.

Finally it is necessary to discuss how expensive this process

can be, and we will show that whilst it can increase the size of

the program by an exponential factor of its complexity, the new

program has a running time linearly related to the original.

Figures (for the program cited in the previous section) suggest

that the expense is rather less in practice than these worst case

estimates, and costs less than a factor of two, both in time and

space complexity. Moreover, due to the smaller cost (in both time

and space) of call-by-value operations compared with equivalent

call-by-need ones as implied by current machine architectures, the

transformed program may actually be faster and smaller.

1.4 Introduction of destructive operators into applicative programs

Now we turn our mind to a rather different aspect of optimising

applicative programs, and consider their implementation in terms of

structure creation and destruction. In a purely applicative

language our objects of discourse are merely values and

correspondingly the concepts of location and reference do not enter

the semantics. However an implementation will in general need to

introduce these concepts in order to perform the management of (the

finite amount of) store in a real machine. Having implemented a

store allocation scheme of some sort, we will find that it is

necessary to include some form of store de-allocator and also that

15

data objects must share their store with each other in order to fit
the computation into a real machine.

Store de-allocation is often performed by some form of garbage

collection (a separate process which collects all data objects

which cannot influence the future computation and returns them to

free store). However garbage collection can be quite expensive,

and as machines become larger takes longer.

Here we seek to reduce the overhead imposed by garbage

collection by determining some of the points in a program where a

structure is used for the last time before losing its last

reference. There has been other work done on this area but mainly

for languages without procedures, a good account being given in

[28]. However Schwarz [45, 46] and Pettorossi [38, 39] have

considered the problem for applicative languages. Pettorossi's

work addresses the situation where structures do not share store,

unlike a real implementation. Schwarz's work does consider the

problem of sharing, however he uses an operational model of a term

re-writing system, which is not close enough to the standard

semantics to enable simple proofs to be constructed, and also

suffers from the deficiency that the user must declare the

possibilities for destroying objects along with the program. Here

we form a more denotational model which enables us to exhibit, as

fixpoints, the amount of sharing present in certain structures.

The technique is to construct an alternative interpretation for

the program, which we use instead of the standard semantics. The

16

objects in this alternative interpretation are isolation classes,

which model the sharing in the original language. The terminology

is borrowed from Schwarz.

For simplicity the theory is developed for a single constructor

function (CONS), however this can be simply extended. On the other

hand we deviate strongly from standard practice and make the

important choice of only permitting a single destructive operator,

which we will call FREE. The intention is that FREE will return

its CONS node argument back onto the free list for re-allocation,

and thus, in a LISP-like syntax we can see that RPLACA and RPLACD

(and hence all destructive operators) can be written in terms of

FREE. For example

(RPLACD X Y) _ (DCONS X (CAR X) Y)

where

(DCONS X Y Z) _ (PROG2 (FREE X) (CONS Y Z))

Unfortunately, this type of definition is not very amenable to

proof, and therefore, instead of adopting a direct approach, we

choose a two stage construction whereby we define FREE in the

semantics to merely mark its CONS node argument, so that it
produces a run-time error on further reference. This enables us to

insert FREE's freely, subject to the restriction that we must be

able to show that the resultant program cannot actually produce

such a run time error. Then we show that the two versions of FREE

produce the same results for any original program from which they

are both derived.

17

Chapter 2: Introduction to Abstract Interpretation

The purpose of this chapter is twofold, firstly it introduces

the general concept of abstract, or non-standard, interpretation.

This was applied to computation by Sintzoff [47] (although Naur

used a special case for type checking [36]) and greatly developed

by Cousot & Cousot [8, 9, 10]. Wegbreit [52] seems to have been

the first to use a lattice theoretic model for the objects in our

abstract domain. Having said this, we should note that the idea of

abstract interpretation as manifested in the 'rule of signs'

discussed below pre-dates computation.

Equally importantly, this chapter extends and re-expresses many

of these ideas in forms more suitable for applicative languages,

rather that the usual flowchart idiom. In particular it forms a

technical basis for the following chapters. However much of the

formal development needs considerable mathematical skill not

required for the applications presented in later chapters. It is

recommended that this chapter is omitted from section 2.2 on first

reading.

The standard work on abstract interpretation is either

operationally based [8, 9, 10, 27] or denotationally based but

suffering from the drawback of being unable to express the concept

of recursive functions [11, 37]. In either case flow analytic

methods fail to build a natural strong theory including partial

functions. Here we use the concept of power domain, rather than

that of power set used in the above works, to build a theory which

naturally considers partial functions and termination. We indicate

18

how the standard power set based theory can be seen as an

abstraction (in the usual sense due to Cousot) of our theory based

on power domains. Donzeau-Gouge [11] and Nielson [37] both use

continuation semantics [48] for their model which enables them to

use similar structures to Cousot. It could be argued that for

applicative languages we should merely choose that subset of

continuation semantics that is required, however we will defend the

opposite point of view, that an applicative style of semantics is

required. The main reason for this is that we would like a direct

semantics which follows the natural applicative semantics as

closely as possible. This will enable simple and general proof

rules to be derived for the correctness of any interpretations we

may care to develop, rather than a more distant semantics which

inhibits correctness proofs.

This chapter is structured in the following manner. Firstly we

undertake a review of flowchart programs, and a particular

non-standard interpretation called the collecting interpretation.

Next we present some lattice mathematics which will be used in the

following section to derive more abstract interpretations than the

collecting interpretation. In passing we note that the question of

domain structure does not really arise in a flowchart setting since

all our basic flowchart operations are total. This corresponds to

the ability to use power sets for our model of abstract

interpretation.

In section 2.5 we review the idea of a recursive program scheme,

1, together with a standard interpretation. This is followed by

19

showing that there is a canonical induced interpretation (the

collecting interpretation) on a power domain which represents

computations in (the standard interpretation of) 2 using sets of

values. Sections 2.6.1 and 2.6.3 develop the idea of an

abstraction of the collecting interpretation which calculates (a

representation of) a superset of the values which would be computed

in the collecting interpretation. As in the flowchart scheme

presented above this abstracted domain will be simpler to compute

in. We give several examples of the use of such interpretations,

including the representation of the Cousot collecting

interpretation as an abstraction of our collecting interpretation.

Finally we will examine some ideas for extending the relation of

abstraction to all pairs of abstract interpretations, rather than

the use above which just compares abstract interpretations with the

standard collecting interpretation. This will enable us to build a

lattice of interpretations as developed by the Cousots for

flowchart programs.

One interestingly intermediate work is that of Jones [27J in

which he applies the notions of abstract interpretation to the

lambda-calculus. However he does this by showing that a lambda-

calculus program can be considered to possess program points by

virtue of noting thatrthe pieces of code handled by the interpreter

are all either substructures of the original code for the program

or substructures of the result of a base (system) function or a

constant. Essentially he models the states that would be processed

by the mathematical interpreter presented by Plotkin [40J. This

20

enables him to discuss questions of termination within a power set

based model. However the disadvantages of such an approach are

similar to the objections to the use of continuation semantics

given above - namely that our model is removed from the natural

semantics.

2.1 Introduction to abstract interpretation

A (standard) simple example is the most useful way of setting

the scene. Let us suppose that we need a certain amount of

information about the result of the calculation

(-357) * 1078

in order to optimise the details of performing the calculation, for

example if multiplication (*) were an expensive operation. The

classical 'rule of signs'

can be used to infer that the result of the above calculation is

negative, without the need to perform a (possibly expensive)

multiplication, but rather by performing a calculation in a simpler

domain. This is not the only possible abstract calculation we can

perform, for example we can deduce that the result is even by

performing

ODD * EVEN = EVEN

or even show that the magnitude of the result is between 105 and

107 by using the calculation

(3 digit number) * (4 digit number) = (6 or 7 digit number).

The work of Patrick and Radhia Cousot, which will be discussed

in more detail later, shows that the set of possible

interpretations forms a partial order under a certain relation

21

called abstraction and a suitable restriction on the elements of

this set gives us a lattice structure.

Readers familiar with the slide rule, and the more astute users

of calculators, will recognise the above calculations as typical

'checking' calculation performed by the user in order to verify the

actual calculations. (Or to choose decimal points for slide rule

calculations.) In this work however, we do not consider these

non-standard calculations for the purpose of checking other

calculations, but rather for the selection of efficient evaluation

mechanisms for our real calculation.

To formalise the above rule of signs example we will define our

domains (for the purposes of arithmetic these will be sets, but for

computation complete partial orders (cpo's) will be required). We

will consider

*: Int X Int --> Int

to be the standard interpretation of multiplication on integers.

Now we may introduce a new set

Sign = {(+), (-)}

together with an operation

e: Sign X Sign -4 Sign

defined by

a e b = (+) if a= b

a e b = (-) otherwise

Since no misunderstanding can arise it is common to write the

symbol '*' in both domains. This can be regarded (computationally)

as overloading '*' or (mathematically) as providing a new

interpretation or semantics for '*'. However we will distinguish

22

'*' and 'o' for the remainder of this section.

Clearly this new interpretation of symbols is of no use unless

we can relate the effects of '*' and '®' in some manner. We will

do this by defining functions

Abs: Int-{O} -4 Sign (Abstraction)

Conc: Sign --> 2Int (Concretisation)

with definitions

Abs(i) _ (+) if i > 0

(-) if i < 0

and

Conc(p) = {i E Int: Abs(i) = p}.

(We will omit the 0 element of Int from the discussion temporarily

and discuss it later - it is associated with neither (+) nor (-) as

far as the rule of signs is concerned.) This enables us to derive

Abs(a * b) = Abs(a) o Abs(b)

and hence

a * b E Conc(Abs(a) o Abs(b))

This is most easily visualised as

Int X Int ----------> Int
i r

Abs X Abs Conc

Y ® i

Sign X Sign -----------> Sign

The reader should keep this form of picture in mind as we develop

the following details.

However, in general such a simple model is insufficient for the

reason that begins to show itself in the "number of digits" example

above in that we cannot satisfactorily take as our abstract

23

universe Num of Digits since the interpretation of '* cannot be

treated as a map

®: Num of Digits X Num of digits -4 Num of Digits

since the example above shows that

3 ® 4 = 6 or 7

and so the abstract multiplication operation cannot be closed.

Hence, in this case it would be necessary to choose 2Num of Digits

or some similar set to model the abstract domain.

example, if we extend our signs universe

{(+), (-)}

to cover addition we would derive

(+) + (-) _ (±) = (unknown sign).

Again we see the desirability of using 2{(+)'(-)}

As a similar

in that it allows

us to include such concepts. We can now re-introduce the 0 element

of Int and treat Abs(O) as (±), or for more accuracy in our

abstract computations at the expense of a more complicated domain

we could change our Sign set to be {(+),(-),(0)} and use the

absorbtive properties of 0 under * to define

Abs(O) _ (0)

x ® (0) (0) ® x = (0)

in our abstract domain. Computationally the inclusion of {}, the

empty set, in 2{(+)'(-)} is often a good thing since it naturally

corresponds to "No possible associated concrete values" such as

would be formed after an unavoidable error or a non-referenced

variable.

While we are extending our abstraction process in such a manner

it is desirable to remove the annoyance of Conc(Abs(x)) not having

the same 'type' as x (it is a set type) and change the definition

24

of Abs to account for this deriving
Aval = {(+), (-), (±)}

Abs: 2lnt -4 AVal

Conc: AVal - 2lnt

defined (for non-empty sets) by

Abs(S) _ (+) if Abs'(s) = (+) `¢ s in S

if Abs'(s) _ (-) '` s in S

_ (t) otherwise

and

Conc(A) = U {S: Abs(S) = A}

where Abs' is the old version of Abs defined previously.

This idea is reasonable when we are merely considering a single

abstract interpretation, though we will later want to discuss

classes of interpretations and their relationship to one another.

Therefore we will adopt a slightly different strategy and define a

canonical abstract interpretation, called the 'collecting'

interpretation, which models the concrete interpretation with no

loss of information (the two interpretations determine one

another). The collecting interpretation will have abstract value

domain (AVal) the power set (or power domain in our later work) of

the concrete value domain (CVal) and the basic operations defined

as the set extension of functions, for example for given

f: CVal X CVal -4 CVal

we define

f' : AVal X AVal -4 AVal

f'(X,Y) _ {f(x,y): x E X, y E Y}

The collecting interpretation will represent the top element of

a lattice (ordered by a relation called abstraction) of

25

interpretations modelling the standard interpretation as in the

above. The maps between abstract interpretations can then be

simple maps not involving power sets. A suitable diagram is:

Collect
CVal ---------> Collecting AVal

r
Abs Conc

? ------------> Abstracting AVal
r

Abs Conc

? ------------> More Abstract AVal

The ?'s are given in this diagram to illustrate the fact that

abstract interpretations may, or may not, be collecting

interpretations for some other standard interpretation (AVal's

corresponding to collecting interpretations can only have certain

specific numbers of elements). One other feature of the above

representation is that is permits a more symmetric notation which

removes the constant reference to power sets.

We choose not to force AVal to be a power set (as was used in

the examples above) since this reduces the generality. As an

example of why we may not desire AVal to be a full power set, let

us return to the Num of Digits example above and observe (at least

if we just use it for repeated multiplication) that any abstract

value can be considered to be an interval
[a,b]

with a and b numbers representing the upper and lower bounds of

number of digits in the result. This would suffice to ensure that

the abstract multiplication operation is closed. It would be given

by an interval arithmetic operation:

[a,b] ® [c,d] _ [a+c-1, b+d]

26

2.2 Abstract Interpretation for the Flowchart Idiom

It is recommended that the remainder of this chapter is skipped

on first reading in order to become acquainted with the

applications that motivate the theory.

This section follows the development presented by the Cousots in

[8, 91 in which the program under analysis is written in flowchart

style. Therefore the interesting compile time problems are those

based on the possible sets of values associated with particular

variables (and possibly their interrelation) at a particular

program point.

2.2.1 Flowchart schema

Firstly, we will define the syntax of a simple flowchart

language. A flowchart program, P, is a labelled directed graph,

(Node,Arc) where Arc is a subset of Node X Node giving the edges,

together with a labelling of Node with statements. Arcs (in Arc)

will also be called program points and referred to by Q label:j.

We define functions

Pred, Succ: Node -i 2Arc

by

Pred(n) = {(a,n) E Arc}

Succ(n) _ {(n,a) E Arc}

We denote the cardinality of a set S by Card(S). We also assume

the existence of syntactic categories Var of variables and Exp of

expressions.

The possible statements, and the corresponding restrictions on

the nodes they can label are:

An entry node: There is only one of these (called Entry). It has

27

Card(Pred(Entry)) = 0 and Card(Succ(Entry))

We will define the program point Start by

{Start} = Succ(Entry)

= 1.

An exit node: This has Succ(n) = {Stop} _ {(Exit,Exit)}. Again,

without loss of generality we can assume there is

just one of these, called Exit.

An assignment node:

These have Card(Succ(n))

the form

Dar := Expl].

= 1. Their label is of

A test node: These have Card(Succ(n)) = 2. They have a test

part in Exp, and Succ(n) is labelled as: a true

branch SuccT(n), and a false branch SuccF(n).

Because the values of variables change at nodes, it is only

generally sensible to talk about the value of a variable at program

points.

2.2.2 Flowchart semantics

We will assume the existence of a set Val, of values, including

an uninitialised value '?'. There is no point in using the

conventional lattice structure for Val, since undefined values can

only occur due to the program looping, and Val is not a suitable

place to put them. (See section 2.2.5.) We will also require a

concept of environments:

Env = Var -4 Val.

Thus giving a variable a value at a program assignment node means

the environments at the program points around that node differ on

the assigned variable. Similarly will we assume the existence of

an evaluation function for elements of Exp which occur in tests and

assignments:

Eval: Exp -4 Env -4 Val.

28

A program state, then, is given by a pair
State = Arc X Env

describing the program point and current environment. We now

define a function
NState: State -k State

which describes the one step state transformation function. The

definitions of the flowchart state transformations are quite

simple:

For an assignment node, n, say,

[El: x e; m:]

we define the transformer to be

NState(l,r) _ (m,r')
where r' QxI1 = Eva1QeI1(r)

r' QyII = rQyIl for all y x

This states that the environment r' on the arc, m, leading from n

is the same as the environment r on the arc, 1, leading to n except

for the variable x, which takes the value of the expression e,

evaluated in the environment r.

Similarly for a choice node

E a: if e .then goto 1 else goto mI]

we derive

NState(a,r) (l,r) if Eval[Iell(r) = true
(m,r) if EvalQell(r) = false

For the Exit node, we can define

Nstate(Stop,r) _ (Stop,r)

and note that the Entry node action has already been defined as we

will start the program at Start where

{Start} = Succ(Entry).

29

Now we need to specify the initial (empty) environment present

at the entry node:

InitEnv = X var. ?

We choose here to avoid the convention of using ,l for the value

of an uninitialised variable for two reasons. Firstly the notion

of error we get by referring to a variable without a value is

distinct from the idea of a program looping, and secondly later

formalism will require ,i to be treated carefully (see section

2.2.5).

These definitions of NState give a standard operational style

flowchart semantics with an initial state

InitState = (Start,InitEnv)

Thus, if the limit of
NStaten(InitState) as n -+ co

exists and is of the form

(Stop,AnswerEnv)

then AnswerEnv gives the final values of the variables after

executing P. If the limit does not exist or has a Arc component

not Stop then the program loops forever.

2.2.3 Abstract flowchart interpretation

We will now exhibit a canonical abstract interpretation (called

the 'collecting' interpretation) associated with this standard

interpretation.

The possible contexts in our program are given by

Context = 2Env

and will model the set of environments which will occur at a

30

program point during execution. The context vectors are given by

ContextVector = Arc -i 2Env

in other words, given a context vector cv then, for each program

point, p, cv(p) gives the set of possible environments which can

exist at p.

Now it is necessary to define a method to form the context

vector corresponding to the set of run time environments. We will

do this by defining

InitContext = X arc. arc=Start -4 {InitEnv}, {}

which gives the initial context vector associated with starting at

Start, and a fixpoint iteration whose limit is the desired context.

(This can also be seen as stating that the desired context is the

least fixpoint of a certain equation.) The previous section gives

a method (NState) by which, given an environment before the

evaluation of a particular node, we are able to derive a

corresponding environment which would exist after the execution of

the code at that node. We must now 'lift' this idea from a map

NState: State -4 State

to a map

NContext: ContextVector -4 ContextVector

for our fixpoint formulation. NContext will correspond to our

NState function which gives the next state from a given state, but

instead will show how a context vector is affected by 'one step'

execution. We define
NContext(cv) = a arc. cv(arc) V

{env: (arc,env)=NState(a,e), e E cv(a), a E Arc}

Since 2Env has a natural subset ordering and NContext is

continuous with respect to this ordering we can form the limit

LimCV = NContextn(InitContext) as n --i oo

which exists, and gives the exact set of environments associated

with each program point during the standard computation of P. This

explains the name of 'collecting' interpretation. Note the close

relationship between the two interpretations: the set given by

LimCV(Stop)

is empty if the standard computation is non-terminating,, and

otherwise is the singleton set (AnswerEnv} as defined above.

2.2.4 Static Semantics

Taking the idea of the collecting interpretation further, we can

now consider running a program on a set of input values, rather

than defining a single program execution as above. We will do this

by considering that the program, P, can be started (at Start) with

any one of a given set of initial variable binding environments.

(Alternatives are providing a 'read' statement and allowing more

than one Entry node.) To do this let InitEnvSet be a set of

elements of Env and consider

LimCVSet = {lim NContextn(cv): cv G InitCVSet}

which gives the set of possible final context vectors, where

InitCVSet = {(O arc. arc=Start --> {e},{}): e E InitEnvSet}

We can now propagate the 'set-ness' of LimCVSet to Context (which

is a set of environments) by defining

LimStaticCV: ContextVector (= Arc -> 2Env)

LimStaticCV(p) = U {f(p): f G LimCVSet}.

This interpretation is called the static semantic interpretation

of P and generalises the collecting interpretation (one can

32

retrieve the collecting interpretation by merely restricting

InitCVSet to singleton sets).

The static semantic interpretation is very useful because it has

the property that all other semantic interpretations can be

considered as abstractions of it. See [9] (where it is called ISS)

and section 2.3.2.

2.2.5 Val is naturally a set

Note that this exposition, which corresponds to the Cousots

work, never uses the ordering of Val. Their work does, but as a

mechanism to allow the standard semantic ideas to be simply used,

rather than in an essential manner. To us Val is just a set

(including an error element considered to be incomparable with

other elements of Val). Note that defining a partial order on Val

(and hence on dependent concepts like Env) would make difficulties

in deciding what we mean by
2Env.

It is not obvious which ordering

on subsets should be used. This problem clearly has to be tackled

in a more direct manner for applicative languages where the concept

of partial function is central (see section 2.5).

2.3 Mathematical basis for Abstraction

In this section we will follow the Cousots and introduce the

concepts of abstraction and concretisation functions between two

general lattices, although in general these will just be subsets of

a power set. Nielson [37] examines the reasons behind the choice

of, and the possibilities for weakening, the following definitions

in much greater detail.

Here the term "lattice" will mean complete lattice

33

Let L and M be lattices, then we will define Abs and Conc to be

adjoined if they satisfy the conditions that

Abs: L--4M
Conc: M - L
Abs and Conc are monotonic

Abs(l) E m q 1 E Conc(m)

These conditions ensure that L and M in some sense model one

another. The notion of adjoinedness is essentially the same as

that of a 'Galois connection' used in classical lattice theory (see

[11). In such circumstances Abs and Conc determine each other and

thus only one need be specified. Explicitly
Conc(m) U" {l: Abs(l) C m}

Abs(1) l; {m: 1 C Conc(ur)}

(see Nielson [371).

Further we will say that Abs and Conc are exactly adjoined if
the final condition for adjoined is strengthened to

Conc(Abs(x)) x

Abs(Conc(x)) = x

The purpose of this is to ensure that M does not contain redundant

elements and much of the theory goes through without it. However

with exactness we can view Conc o Abs as an upper closure operator

on L. It also enables us to write

Conc(m) ;_.; {1: Abs(l) = m}.

2.3.1 Abstraction of Functions

Let L1 and L2 be two lattices, and M1 and M2 be lattices

abstracting L1 and L2 respectively via functions Absi and Conci as

above. Now consider a function g: L -4 L and a function h: M -4 M

which we will want to consider as abstracting g. (There is an

34

algebra theoretic view of all this which will be given in the

corresponding sections when our more general power domain based

theory is developed.)

Just as we said Conc and Abs are exactly adjoined if
Conc o Abs D id we will require that computations in the Mi have a

similar property relative to computations in the Li. We will say

that h abstracts g (more properly (h,M1,M2) abstracts (g,L1,L2)

with respect to the Absi and Conci) if we have

Conc2(h(Abs1(x))) 9 g(x)

or

Conc2 o h o Abs1 D g.

Given g we can always find such an h, for example, take h: Mi -4 M2

defined by h(x) = T where T is the top element of M2. However such

a definition will not tell us a great deal about the computation we

are modelling and as such it is worth noting that there exists a

'best' (in the sense of preserving most information) abstraction

function defined by

h = Abs2 o g o Conc1

2.3.2 Abstraction for Interpretations

The abstraction relation given above for functions may be shown

to be preserved by both composition and by taking of least fixed

points. (For proof adapt the more general proof given in section

2.6.5 by taking C = C and L; = U. A direct proof is fairly

simple.) This gives a general basis and justification for

performing computation in an abstract domain and inferring results

about a real computation.

35

2.4 Flowchart Abstract Interpretation

We will now apply the mathematical model of adjoined functions

on lattices and functions respecting them to the problem of

constructing abstract interpretations for our flowchart scheme.

We have defined Context to be the set of possible environments

at a given program point in our flowchart schema. For the purpose

of determining an approximation to the set of states which can

exist at any given program point we can now follow the Cousots'

idea and use the mathematical model of adjoined functions given

above.

At any given program point we have a lattice of possible

environments, namely Context ordered by set inclusion. Now suppose

that we have another lattice AbsCtxt which is an abstraction of

Context. Then we can define AbsCtxtVector corresponding to

ContextVector above by

AbsCtxtVector = Arc -4 AbsCtxt.

The lattice structures of Context and AbsCtxt carry across to

ContextVector and AbsCtxtVector in the standard ordering of

functions by their images. Now the NContext function maps

ContextVector onto itself and, by the general theory above, has a

corresponding AbsNCtxt which maps AbsCtxtVector onto itself and is

an abstraction of NContext. Because of the properties of

abstraction any computation carried out in ContextVector (such as

computing the collecting interpretation result) can be modelled by

a corresponding calculation in AbsCtxtVector and concretising the

latter will give an element higher in the lattice (= subset)

36

ordering than the former. That is we have modelled in our abstract

domain all the computations which can occur in the collecting

interpretation (together, in all probability, with some which

cannot).

2.4.1 Example

As an example, we will show the independent attribute method

(IAM) given by Jones and Muchnick [291 (but also used in the

Cousots' original formulation [81) is an abstraction of the

collecting interpretation (which Jones and Muchnick call the

relational attribute method). In the collecting interpretation

(COL), given above, we define the set of contexts to be

Ctxt-COL = 2Var -4 Val

thus giving the set of environments possible at a program point.

In IAM we define contexts by

Ctxt-IAM = Var -> 2Val

which gives the set of possible values associated with each

variable. We can see intuitively that IAM is weaker in that it
does not allow us to represent the fact that a variable may not

have a certain value when another variable takes a specified value.

We can set up the abstraction function

Abs: Ctxt-COL --4 Ctxt-IAM

by

Abs(C) X v. {f(v): f C C}.

This defines

Conc(C') {f E Ctxt-COL: f(x) E C'(x) b x E Var}.

For more examples see the Cousots' expository paper C91, but we

will press on to consider applicative languages.

37

2.4.2 Lattice of Interpretations

The abstraction relation on interpretations just defined is

transitive and reflexive and therefore forms a quasi-partial order

(for proof consider composition and the identity function). We can

define an equivalence relation on interpretations by identifying

interpretations which are both abstractions of each other.

Upon identifying such equivalent interpretations we derive a

quotient relation on equivalence classes of interpretations of a

given schema which is now a partial order on the lattice of

equivalence classes.

2.5 Abstract Interpretation for the Applicative Idiom

This section develops a variant of the Cousot style of abstract

interpretation presented in [9] which is more suitable for

applicative languages. In applicative languages the notion of

program point is not immediately available, although Jones [27]

presents an interesting use of dataflow analysis for the lambda

calculus in which he essentially constructs a representation of

program points by modelling the states processed by the

mathematical operational interpreter of Plotkin [40]. His work is

of interest because it represents a half way house between the

formalism of this section and that used for flowcharts, albeit in

an operational formulation.

For applicative languages then, with no notion of program point,

the important concepts are:

- the meaning of functions

38

- the possible values of their parameters and results.

We would therefore like to derive methods which will enable us

to approximate the possible sets of binding environments which can

exist at a certain function call, just as it is natural to consider

the set of environments which could exist at a program point in the

flowchart idiom. For functions we will examine

f(S) {f(x1 ... xk):'(xl ... Xk) E S}

(or superset approximations thereto) for sets S of tuples of

values. This will be used to construct (an approximation to) the

set of values computed by a function when given (an approximation

to) a set of possible argument tuples.

2.5.1 Recursion equation schema

Let {Fi; 1<i<n} be a set of uninterpreted function symbols, with

arity ki; [Ail be base function symbols, with arity ri; and {Xi) be

a countable set of individual parameters.

A program schema, 2, is a set of recursion equations

{Fi(X1 ... Xk) = Ui; 1<i<n}

with the Ui members of WFF(ki) where the WFF(p) are the sets of

well formed terms constructed from

{Ai;Fj;X1 ... X
p

)

These equations provide a functional environment for the

evaluation of terms from WFF(O) under a given interpretation.

However, for definiteness, we will assume that k1=0 and the

'program' consists of evaluating

QF1011

in this environment.

39

2.5.2 Recursion equation semantics

An interpretation, I, of a program schema is a pair <D,ai> where

D is a domain (here cpo), and the

ai : D -> D

are functions interpreting the Ai and hence define constants and

base functions. They must satisfy some suitability condition (here

continuity). Such an interpretation naturally defines a semantic

function

EvalI: Expressions -> Denotations

by providing meanings to atomic terms, and thence to compound

expressions. This provides meanings, f to the Fi by the standard

least fixpoint method.

As a parenthetic remark oriented at the reader familiar with

universal algebra we may view {Ai} and {Ai}U {Fi} as the operator

parts of signatures (V,{Ai}) and (V,{Ai}U{Fi}) of algebras with a

single sort, V say. By abuse of notation we will use the name

A-algebra to refer to a (V, {Ai })-algebra and the name AF-algebra

similarly. Thus an interpretation (D,ai) is (a carrier and

functions for) an A-algebra. A recursive program scheme 2 induces

an algebra morphism (which we shall also call 1) from A-algebras to

AF-algebras by composition and taking of fixpoints. In general,

except for the carriers (which will be called D, L, M), we will use

capitals for sorts and operators of the signature, and lower case

for elements of the carrier and functions.

2.5.3 The collecting interpretation

This section differs from the treatment given elsewhere (only

40

Cousot [10] and Jones [27] consider functions) in that we extend

the theory to cover partial functions. Partial functions are

represented in the standard mathematical manner as returning .L, the

bottom element of some CPO, when the conceptual partial function is

undefined. This enables us to derive a strong theory, rather than

in the Cousots' work above where we have to qualify results with

"if the expression terminates". The latter has a correspondence

with theories of partial correctness such as Floyd's flowchart

proofs [14], further developed by Hoare [24]. There termination

must be established independently rather than being naturally

considered as part of a theory of strong correctness. The Cousots'

paper above uses recursive procedures (not functions) so that it is

quite suitable for applying Floyd-like rules to derive weak

properties of functional behaviour.

Here we will apply such considerations to derive a 'collecting'

interpretation in a different manner from the Cousots. This will

require that we use a power domain rather than their use of a power

set ordered by inclusion. This gives a more natural collecting

interpretation, which can be justly claimed to be more suitable on

the grounds that the power set interpretation is an abstraction of

our power domain interpretation (see section 2.7.3).

In order to build a collecting interpretation for 2 which

considers sets of values we must first define what we mean by the

set of all subsets of D. Let

E = 2D

be the power domain (see Plotkin C411) of the CPO (D,9;). If D is

41

flat, then E is just the set of non-empty subsets of D such that

all infinite elements of E contain i.

E is associated with the Egli-Milner ordering C which is defined

by

P C Q iff (''p E P. 3q E Q. pCq) &

(b' q C Q. Bp E P. pCq)

For a flat domain D, that is
p C q iff P=i or p=q

this reduces to

P C- Q iff P=Q or

i E P & P-1i) C Q.

E also has an induced subset ordering, and here we will follow

Hennessy and Plotkin [23] and define a nd-cpo (non-deterministic

cpo) (L,EL,U L) to be a cpo with a continuous operation called

union U : L X L - L satisfying the standard (set) axioms for union

(commutativity, associativity and idempotency (x U x = x)). The

union operation naturally defines a subset relation on L given by

11 C 12 iff 11 U 12 = 12

which we shall assume available when required.

We will define the collecting interpretation, J, say, to be

(2D , bi) where the bi are given by the following derivations from

the definitions of the ai:
bi: 2D -4 2D

which is defined by

bi(S) _ {ai(x1 ... xr,): (x1 ... xr) E S}.

The bi are continuous under the Egli-Milner ordering.

42

This correspondingly induces collecting definitions gi for the

Fi given by (the least fixpoint of)

gi(S) _ {Eva1JQUiIJ[{xj}/Xjl: (x1 ... xki) E S}

Eva1JQXi1) r = rLXill
EvalJEAi(e1...erl)II r = bi[Tuple(Eval LEe1I1r...EvalJQer1lr)I
Eva1JQFi(e1...ekl)Il r = gi[Tuple(Eva1JQe1I1r...EvalJQekiIr)I
Tuple(S1 ... Sk) = S1 X ... X Sk

Note that these equations only represent a monotonic functional

under the Egli-Milner ordering. The power set (inclusion) ordering

does not have this property, since we wish the first approximation

to the gi to be NS. {-L}.

As in the flowchart formulation of abstract interpretation we

have that the denotation of program schema S under I is the value,

x, say, if and only if the denotation of 2 under J is the set X =

{x}. Because of this property, we will study the relations of

abstract interpretations with J, rather than I.

2.6 An Approximating Interpretation

Let (L,bi) such an interpretation (L,bi), with L = (L,CL,UL),

and (M,C) be a cpo (we will not yet require a union operation in

M) , and we consider what it means for M to be an approximation to

(abstraction of) L.

Before we can consider the notion of abstraction between

interpretations we have to discuss the ordering we wish to place on

our objects. Here, we will find, there is a difference between the

concept of "is less defined than" and that of "will produce a

smaller result set". This difference is not present in the

43

standard semantics of our deterministic recursion equations (since

programs always give a single result). Neither is it present in

the Cousots' work. However it is present in non-deterministic

schemes (see Plotkin [41] or Hennessy [221).

This difference is represented by the fact that a nd-cpo (here

power domain) (L,CL,U L) has two different associated orderings:

firstly it has a power domain ordering C and secondly an induced

subset ordering C. We need the power domain ordering to set up

our collecting interpretation in order that the least fixpoint

functional should be continuous. For example in (221,C-,U) we wish

that

{2,3,x} c {2,3}

in order to represent an improvement in evaluation.

However, when we wish to discuss the accuracy with which one

interpretation models another, we will find that we need to use the

subset ordering

{4,6} C {4,6,1} and {4,6} C {4,5,6}

This is motivated by consideration of an example. Suppose the

collecting interpretation of a schema gives {4,6} as the set of

possible results. Now, due to our using an approximate version of

the collecting interpretation, we may derive a result which

corresponds to {4,5,6} in the collecting interpretation. For

example consider the evaluations of

Ex + x where x = {2,3}I1 to produce {4,6}

and

Q{2,3} + {2,3}I1 to produce {4,5,6}.

These correspond to the relational and independent attribute

44

approximations to the collecting interpretation for "+" (see

section 2.7.1). Since we want to use the abstract interpretation

to infer results about our collecting interpretation, by giving us

a superset of possible results, it is clear that we will need to

use the subset ordering of power domains to compare

interpretations.

To summarise, if M is to model computation in L, we require two

different orderings to represent the two ways a computation might

be approximated:

- C models inaccuracy due to insufficient length of
computation.

- C models 'inaccuracy due to inaccurate steps in a

computation.

2.6.1 Formal Definition of Abstraction

Let (L,CL,U L) be a nd-cpo (cpo with a continuous union

operation), and (M,SM) be a cpo. (Adding the axiom U I in the

following will force L to be a lattice and hence simplify to the

standard definition of abstraction.) For the reader acquainted

with universal algebra the abstraction we define below is a map

between the carriers L and M. We consider maps between the

associated functions later.

We now examine the hypotheses that we will impose upon

abstraction and concretisation maps: (these conditions given are

quite likely to be over cautious, however they will allow us to

formulate our abstraction relation)
Abs: L -4 M

Conc: M - L.

45

Firstly, in order that Abs can model abstraction of computation

into a simpler domain we will require that Abs is (CL9CM)

continuous. This is necessary to enable fixpoints over L and M to

be related (fixpoints use C). Furthermore we require that Conc is

continuous.

We will also require that M has no indistinguishable objects

(this is the concept of exactness isolated by Nielson [371).

Abs(Conc(m)) = m for all m in M

This implies that Abs is surjective and Conc injective and that

Conc o Abs is idempotent. Functions with this property are

sometimes called projections in the literature but no standard

nomenclature appears to exist. Functions satisfying the additional

property that

Conc o Abs C idL

are often called retractions and those satisfying

Conc o Abs id =-L

are called (upper) closure operators. In our work we will choose a

rather different extra property as described in the next paragraph.

For the purposes of abstract interpretation we need to be able

to deduce properties of programs over L by considering those over

M. In particular we wish the result of a computation over L to be

a subset of Conc applied to the result of a corresponding

computation over M, in order to consider at least as many values as

can actually occur in the L computation. This will require, by

considering the empty (identity) computation, that

Conc(Abs(l)) 3 1 for all 1 in L

We will also require that Conc o Abs is CL monotonic.

46

These arguments motivate:

Definition

We say that continuous functions Abs: - - > - and Conc: M --j_L

for an nd-cpo (L,9; L, UL) and a cpo Kg; M) are exactly power

adjoined in the following circumstances:

- Abs o Conc = idM

- Conc o Abs 3 L idL

- Conc o Abs is CL monotonic

Note that now, if we temporarily assume CL = =L, then L and M

are exactly adjoined lattices, as used by the Cousots in [9]. In

this situation we would have

Conc(m) _ U {l: Abs(l) = m}.

Here this is independent, and in fact U will not even be defined

for all such sets since we do not insist that L is a lattice.

However we do have the corresponding

Theorem

Conc(m) = U {1: Abs(l) = m}.

Proof

Since Abs(Conc(m)) = m we have that the union contains Conc(m)

thus giving

Conc(m) C U {1: Abs(l) = m}.

Now suppose Abs(1) = m then we have

1 C Conc(Abs(l)) = Conc(m)

and hence

U {l: Abs(l) = m} C Conc(m)

as required.

47

2.6.2 An alternative view of Conc and Abs

Since Conc(M) is isomorphic (as a cpo) to M (the isomorphism is

given by Abs restricted to Conc(M) and Conc) we can consider Abs

and Conc to be a continuous function Clo: L -> L satisfying the

axioms for a (set) upper closure operator: Clo is idempotent,

C monotonic and Clo 3 idL.

2.6.3 The Abstraction of Functions

Suppose (L 1 , CL1 , U L
1

) and (L2, CL2, U L
2

) are nd-cpo's and M 1 and

M2 are respectively abstractions of these domains via exactly power

adjoined functions (Absi,Conci). Then we will say, for continuous

functions g and h, that h: M1 -4 M2 is an abstraction of

g: L1 -4 L2 if we have

Conc2(h(Abs1(1))) 3 g(l) '' 1 in L

or, removing references to elements

Conc2 o h o Abs1 3 g.

This condition ensures that any computation performed in the Mi

represents a superset of the possible results of the corresponding

computation in the Li, thereby providing sufficiency conditions for

correctness, or optimisation of the Li computation. (For the

reader acquainted with universal algebra we are extending the idea

of abstraction from carriers to functions.)

Note that such an abstraction, h, always exists, since defining
Abs(g) = h = Abs2 o g o Conc1

gives

g' Conc2 o h o Abs1

_ (Conc2 o Abs2) o g o (Conc1 o Abs1)

7 g o (Conc1 o Abs1)

48

Now that g is monotonic with respect to C. That is

a C b g(a) C g(b)

since g is a function in the collecting interpretation defined by

g(l) _ {f(x): x E 1}.

(When we consider abstractions of interpretations more general than

the collecting interpretation we will need to add this as an axiom

about g.) Further, since

Conc o Abs 3 id

we have

g' 3 g o (Conc o Abs1) Z g

as required.

Note that Abs is not an algebra morphism in the usual sense of

the word since in general we will not have

Abs(g2 o 91) = Abs(g2) o Abs(g1).

An example of why this is so is given in section 2.7.2.

2.6.4 Correctness of an Abstraction

Let the Lr be
2(Dr),

then the collecting interpretation defines

bi : Lr --a L
1 i

from the definitions of the ai. Now let Mr be abstractions of the

Lr (via functions Absr and Concr). As in the previous section we

have definitions
ci: Mr -4 M,

i

induced from the bi, the Concr and the Absr.

However we have two possible ways of forming the semantics, hi

of the Fi on the Mr. Firstly they have a natural fixpoint

definition induced by our scheme, 2. Secondly, they can be formed

in the above manner, by abstraction of the meanings, gi, of the Fi

49

over the Lr. Clearly, from the point of view of computing the hi

we would like to derive them from the fixpoint equations from the

oil since the Mr are simpler domains. Therefore, as in the

flowchart case, correctness is simply a matter of showing that the

hi are always abstractions of the gi.

We can formulate this (for the interested reader) in the general

algebraic framework as:

Correctness Theorem

Let (L,bi) and (M,ci) be A-algebras such that (M,c) abstracts

(L,b). We have a algebra morphism 5 induced by our recursive

program scheme mapping (L,b) and (M,c) onto AF-algebras (L,b U g)

and (M,cUh). Now (M,cUh) is an abstraction of (L,bUg).

2.6.5 Proof of the Correctness Theorem

The proof of correctness is done inductively: the base case,

for system functions, is immediate from the definition in section

2.6.3.

We next show (the inductive step) that composition of the hi

gives an abstraction of composition of the gi. Let g, g': L -4 L

be composible with abstractions h and h': M ---> M. We must show

that h' o h is an abstraction of g' o g. We have that

g C Conc o h o Abs.

We have a corresponding inequation for g' and h' (we elide the

subscripts on Abs and Conc for simplicity). We now observe that

g o g' C g o Conc o h' o Abs

since we require g to preserve C, that is

x C x' a g(x) C g(x'),

as in section 2.6.3. Substituting for g in the right hand side of

50

the above gives

g o g' C Conc o h o Abs o Conc o h' o Abs

= Conc o h o h' o Abs

as required.

Finally we perform the induction by considering the n-depth

approximations of functions defined by fixpoints and passing to the

limit. Let g* and h* be the limits of sequences of gl and hi

produced by the same fixpoint scheme. Now, the least functions in

the domains are given by

g0(x) = i
h0(x) = Abs(i)

and h0 is an abstraction of g0 since

Conc o h0 o Abs (x) = Conc(Abs(i))

i = g(x).

Moreover we showed above that composition preserved abstraction.

Therefore we have that h1 abstracts g1 for all i, since hj+1 is

defined in terms of a composition possibly including Now we

turn our attention to the sequence

p1 = Conc o h1 o Abs

which is increasing with limit
* *

p = Conc o h o Abs

due to the continuity of Conc (with respect to =). The fact that

the h1 abstract the g1 can be written as p1 U g1 = pi. Continuity
* * of U implies that p*

U g = p or, re-phrasing again, that
* *

g C p or
* *

g C Conc o h o Abs

as required.

51

2.7 Some Example Abstract Interpretations

This section gives three applications of our idea of power

domain based abstraction. However, they should not be simply

treated as examples since they embellish the theory. For example

section 2.7.3 shows how our formulation is more general than the

Cousots'.

2.7.1 Application: The Independent Attribute Formulation

As in the flowchart scheme (see section 2.4.1 for definitions),

we can define an independent attribute method (IAM) formulation of

the collecting interpretation. We will show that this is an

abstraction of the given (relational attribute) formulation.

(These terms are taken from Jones and Muchnick [29].) Let

E = 2D

then we define the IAM interpretation by defining the base

functions

where

ci(X1 ... Xk) {ai(x1 ... xk). x1 E X1, ...,
bi(X1 X ... X Xk)

Xk E Xk}

Again the ci so defined are continuous with respect to the

Egli-Milner ordering (see [41]). Similarly this induces meanings

hi: E* ---> E

via the fixpoint equations.

Note that such a general definition of the ci would be

impossible for the method given in the Cousot paper [10] since the

natural image of i in their framework of 2D-{1} ordered by

inclusion is {}, the empty set. This would imply that any function

52

so modelled would be strict because, for ci so defined,

ci(X1 ... Xk) _ {} if Xi = {} for any i.

Therefore in such a case we would need to treat non-strict

functions as special cases, contrary to our desire to build a

natural theory of denotational abstract interpretation

incorporating partial functions. We will show later (section

2.7.3) that the Cousot collecting interpretation is an abstraction

of (ie less general than) our version.

2.7.2 Application: Abstracting Termination

Here we show that it is possible, in our theory, to abstract

termination conditions (just as we will later show that we can

abstract value properties ignoring termination when we show that

the Cousots' collecting interpretation is an abstraction of ours).

We consider the 1/ and b functions to be considered in chapter 3.

Both # and b are particular versions of the 'Abs' functions

discussed and their associated Conc functions will be called #' and

We will leave chapter 3 in its original form because it is then

easier to read independently and provides an alternative to the

more abstract definition given below. As in the above, we will use

the ai for semantics of the base function, bi for the collecting

interpretation of these, and ci for abstractions thereto. Let T =

{0, 1 } be ordered by 0<1 . Let D be a flat domain, then the # and

functions lift (to L = 2D) the

Halt: D - T

Halt() = 0

Halt(x) = 1 if x

Halt function given by

t7

53

We define

#, b: L --> T

S# = 0 if S = {j.}

S# = 1 otherwise

S = 0 if i E S

S V = 1 otherwise

Note that these definitions are only monotonic with respect to

(c,<).

The concretisation method given above (section 2.6.1) defines

#', : T -- L

1#' = D; 0#' _ {l}
1 y = D-{_L} 0'y = D

This enables us to define functions

c# and cy: T* --> T

by

c(x1 "' Xk) # b(xiT ... xk')

c "(x1 ... Xk) _ b(x7' ... xk")

where

b(s1 .., SO _ {a(x1 ... xk): xi E si}

We check that the (#,#') and (7,5') pairs are power adjoined,

and the ci abstract the bi. Then for meanings h of defined

functions F, under # or S we have that h# and h'I4 give only valid

properties of programs.

At this point it is convenient to give an example (# above) of

an abstraction function which is not an algebra morphism. Consider

the function definition

F() = IF(true,i,91)

we have that (see chapter 3 for more details)

54

F#() = 0

IF#(x,y,z) = x A (y V z)

true# = 91#
1# = 0. i

but

IF o (true '91 1.

This phenomenon occurs in other circumstances than the above use of

undefined functions.

2.7.3 Application: Power Sets are an Abstraction of Power Domains

We will here indicate that our power domains generalise the

standard power set method used by the Cousots by showing that their

collecting interpretation can be represented as an abstraction of

ours. We will assume that D is a flat domain both for simplicity

and for the reason that the theory has only been developed for such

domains. The maps we consider are sufficiently natural (in the

mathematical sense) that we would expect the extension to general

domains to be straightforward, however power domains at higher

types can pose difficulties.

Take our nd-cpo (L,LL,U L), then, on putting U = u we find

that L is a lattice (all lowest upper bounds exist by definition)

and the rules for Abs and Conc reduce to

Abs o Conc = id

Conc o Abs i id

This is merely the Cousots' definition of (exactly) adjoined pair

on which they base their theory - thus our work does represent a

generalisation.

Clearly we have a natural map from

L1 = (2D,L) qua power domain

55

to

M1 =
(2D-{,1},<)

qua power set

given by

Abs: L1 --> M1: 1 -p 1-

Section 2.6.1 gives conc as

Conc : M 1 -i L 1: m --> m U

This shows that the Cousot power set collecting interpretation is

an abstraction of our power domain one.

Similarly we can set up Lr and Mr to give respectively the power

domain of Dr and its strict approximation 2[D"{y}]k, The Absi are

a kind of smash operation identifying (in the Mr) all elements (in

the Lr) which have any undefined component.

Again, merely checking that this does in fact define a valid

interpretation will give us the power to deduce properties in L

(and hence in D) from those in M. Here however we can use the

Cousots' abstraction relation defined on an abstraction, N, say, of

M (in their sense) to prove properties of the computation in M from

computation in N; and thence, by our abstraction, in L.

This provides the idea of composing abstraction which the

Cousots use to derive a lattice of abstractions of a given

collecting interpretation. The next section indicates some

possible methods which allow us to set up the framework of a

lattice of abstract interpretations under our formulation of

abstraction.

2.8 The Lattice of Interpretations

As in the Cousots' work, given our abstraction relation as

56

developed in the previous section, it is natural to want to extend

it to compare any two interpretations, rather than simply building

the set of all abstractions abstracting the collecting

interpretation. There are at least two possibilities for doing

this, firstly a simple and general comparison method and secondly a

more sophisticated method of composing two abstractions to give a

third. 1

Firstly, there is the general construction which enables us to

put an order (the finest possible) on the images under abstraction

of a given nd-cpo L. Let M1 and M2 be such images abstracted by

Abs and Abs2. We can define (M1,Abs1) < (M2,Abs2) if there is a
1

(continuous) map F, say, F: M2 -4 M1 such that Abs = F o Abs2.
1

However, such maps do not seem to preserve enough structure of L in

the Mi .

Alternatively, we might consider the natural suggestion of

insisting that Abs and Conc preserve more of the nd-cpo structure,

since the problem in wishing to define a chain of abstractions

Abs1: (L,!L,UL) -> (M,CM); Abs2: (M,CM) -> (N,1ZN)

is that M does not have the union operator which we require to

define abstraction. Otherwise there is no problem - we can compose

the Abs. and Conc. without restriction. From the view that M is

isomorphic to Conc1(M), the natural union operator U M is given by

mi UM m2 = Abs1(Conc1(m1) UL Conc1(m2)).

1For universal algebraicists this is just the statement that our
A-algebras with our abstraction relation form a category.
Similarly we have a category of AF-algebras with morphisms again
abstraction. Furthermore the map 5 (induced by the recursive
program scheme) is now a functor between these categories.

57

However in general there seems to be no reason why this should be a

union operator (associativity is not guaranteed). A solution is to

insist that Abs preserves unions (such functions are called linear

by Hennessy and Plotkin [23]), thereby ensuring that such a

definition does indeed define a union operator:

Abs1(l1 UL 12) = Abs1(l1) UM Abs1(12).

This is quite consistent with the Cousots' formulation since there

we have that Abs is a distributive continuous function with

Abs(u{li}) _ u {Abs(li)} ,

and this work can be considered to be a method of separating the

uses of U and U which are identified in the their work. Actually

we will only use the following weaker conditions relating the union

operators:

Abs1(11 UL 12) = Abs1(11) UM Abs1(12) Y 11,12 in Conc(M)

Abs1 is (CL,CM) monotonic

Finally, it appears that we also require a condition on Conc,

again generalising the Cousots' lattice based theory which has Conc

monotonic with respect to F, and accordingly we insist that Conc is

C monotonic. This enables us to prove

Theorem

The composition of abstraction maps

Abs1: (L,SL, UL) -> (M,LM, UM)

Abs2: (M,CM, UM) -> (N,cN, UN)

gives an abstraction map

Abs2 o Abs1 : L --> N.

Proof

Let Conc1 and Conc2 be the (uniquely determined) concretisation

maps corresponding to Abs1 and Abs2. Now we will show that

58

Conc1 o Conc2 acts as an concretisation map for Abs2 o Abs1. We

must show

- Abs2 o Abs1 o Conc1 o Conc2 = idN

- Comp = Conc1 o Conc2 o Abs2 o Abs1

has Comp 2 idL and Comp is C monotonic.

- Abs2 o Abs1 distributes over U

Conc1 o Conc2 is C monotonic

The first and third of these is trivial (composition preserves the

properties). Now

Conc2 o Abs2 o Abs1 2 Abs1

due to the fact that
Conc2 o Abs2 2 id.

Using C monotonicity of Conc1 gives

Comp 2 Conc1 o Abs1 2 id

as required. To prove C monotonicity of Comp we note the Absi are

C monotonic and so are the Conci. Hence so is Comp.

One final remark is to the effect that our assumptions as to the

C monotonicity of Abs and Conc render the axiom

Conc o Abs is C monotonic

(given in section 2.6.1) superfluous.

2.9 Notes on the Abstraction Relation

We here mention a few points which could not conveniently be

given in the text due to their ability to confuse.

Firstly, we use the notion of a nd-cpo which is a domain with

continuous operation, called union, satisfying the axioms of

associativity, commutativity and idempotency. However these are

exactly the same axioms that categorise an intersection operation.

59

Therefore our work has a natural dual (just as the Cousots' work on

complete lattices has the (u ,fl) duality). This could be used to

infer a subset of the results of a program instead of the above

work which aimed to model a superset of the possibilities. This

would be useful to prove that run-time errors do occur, and hence

the program under analysis is incorrect, just as our work shows

that certain states did not occur in order to validate certain

optimisations.

Note that our use of cpo's (for semantic domains) rather than

complete lattices is absolutely essential in that the power domain

construction does not properly work for lattices. For example, it

can be shown that if D is a cpo containing three elements related

by a ! b ! c then the power domain of D has {a,b,c} _ {a,c}.

Thus, if we use a lattice then any subset containing the top and

bottom elements is equivalent to any other - this fact makes

unusable much of the strong abstract interpretations we have

developed above for power domains. However, we would not claim

that this represents a weakness of our work, but merely indicates

how artificial elements (top elements have no semantic basis) can

cause artificial problems. We note that the modern style is to use

cpo's to set up semantic domains rather than the older Scott style

lattice-based semantics.

One final point concerns the fact that our work requires union

operators where the Cousots' theory does not. As indicated their

theory uses lattices which automatically have two natural union

operators (L; and ;-;) and using either of these in the source of

60

both Abs and Conc ensures that our additional axioms are satisfied.

2.10 Deducing Properties of Applicative Programs

This section gives a quick introduction as to how we might use

the work above for transforming programs to improve their

efficiency and is not central to the rest of the thesis. We

discuss how we can use the non-standard interpretations of user

defined function symbols in order to obtain global properties on

applicative program execution as the non-standard interpretations

are less useful in themselves.

The work on abstract interpretation for the applicative idiom

given in section 2.5 concentrates entirely on finding meanings

within the abstract interpretation for functions. That is, given

r
ai: D i -4 D, the meaning of a base function, we deduce an abstract

meaning c i : Mr ---> M1, for a base function symbol, via the
i

n
collecting interpretation bi: Lr ---> L1, where Ln m 2D . We then

i

use this to infer, via the least fixpoint equation in our abstract

universe, an approximate meaning gi: Mk -4 M1 for user function
i

definitions.

We now wish to calculate more directly relevant properties of

functions, for example the set of possible parameters supplied to,

or results given by, a given function. We do this by noting that

the meanings ci and gi define an evaluation function, as given

previously. Therefore the set of possible parameters to a given

function in a given call QF(e1 ... ek)I is just given by

(concretising)

S = EvalMQeill X ... X EvalMQekID

61

similarly the set of possible results produced by this call is

simply Conc(g(S)) where g is the abstract meaning of F.

The set of possible parameters passed to F from all calls within

the program is just the union, over all calls to F in the program,

of the terms like S given above. The set of all possible results

from F within this program is given similarly. Producing highly

optimised code for applicative languages can be seen as

partitioning this union suitably, and then producing versions for F

for each of these cases by partial evaluation of the standard

definition.

Note that the optimising described here is at a middle level,

intermediate to machine dependent 'peep-hole optimisation' and full

program transformation which acts by changing the algorithm as

described by Burstall and Darlington [6]. However we would claim

that our method has a greater chance of being used automatically

than any algorithm changing method.

62

Chapter 3: The Theory and Practice of Transforming Call-by-need

into Call-by-value

3.1 Abstract

Call-by-need (which is an equivalent but more efficient

implementation of call-by-name for applicative languages) is quite

expensive with current hardware and also does not permit full use

of the tricks (such as memo functions and recursion removal)

associated with the cheaper call-by-value. However, the latter

mechanism may fail to terminate for perfectly well-defined

equations and also invalidates some program transformation

schemata.

Here a method is developed which determines lower and upper

bounds on the definedness of terms and functions, this being

specialised to provide sufficient conditions to change the order

and position of evaluation keeping within the restriction of strong

equivalence. This technique is also specialised into an algorithm

analogous to type-checking for practical use which can also be used

to drive a program transformation package aimed at transforming

call-by-need into call-by-value at 'compile' time.

We also note that many classical problems can be put in the

framework of proving the strong equivalence where weak equivalence

is easy to show (for example the Darlington/Bur stall fold/unfold

program transformation).

63

3.2 Motivation

For a purely applicative language (no assignment or GOTO)

call-by-need [511 is a highly desirable parameter passing

mechanism, since Vuillemin[501 shows it is a safe evaluation

mechanism in that it will give the mathematical result whenever the

latter is defined and is more efficient than call-by-name.

Basically call-by-need is the same as call-by-name (passing of

an expression bound in the calling environment) but with the

proviso that the first reference to the parameter causes not only

its evaluation but also the replacement of the parameter with the

result of the evaluation thus making subsequent accesses much

cheaper. It also has the advantage that it corresponds closely to

the method a mathematician would use to evaluate an expression.

Note that it retains the advantages of call-by-name in that

parameters that are not referenced in a particular activation of

the function will not be evaluated: this point is very important

since evaluating an argument which should not be evaluated may

result in the evaluator looping. To summarise, we have that

- call-by-value evaluates a parameter exactly once,
- call-by-name evaluates a parameter zero or more times,
- call-by-need evaluates a parameter at most once.

The main disadvantage of call-by-value is that it may produce

undefined values for (mathematically) well defined expressions, for

example consider evaluating

f(1,0) WHERE f(x,y) = IF x=O THEN 0 ELSE f(x-1,f(x,y))

using call-by-value.

64

Note that this point is especially relevant to the typical user

of a symbolic algebraic manipulation (SAM) system, who is

mathematically sophisticated but computationally naive, because he

will write similar (but less contrived) recursive definitions and

find the system merely moans that time is up!

For the user of a SAM system it is desirable to use call-by-need

as the parameter passing mechanism in order that

1. The recursive definitions are as fully defined as

possible.

2. The print program may drive the evaluation process so

that printing an infinite expression will run out of
time when printing it and not during the evaluation
prior to printing.

The counter arguments favouring call-by-value are:

1. Call-by-need is clumsy to implement on current
architectures (in that each parameter to a function
needs to carry a closure around with it). This leads to

differences in efficiency which are put by various

sources at factors of between 2 and 10. The situation
becomes rather worse in a full lazy evaluator[15, 21]

where an evaluation of an expression can be suspended

with unevaluated sub-expressions.

2. With call-by-value the system can use memo-functions

(due to Michie[32]) to avoid recomputation. These will

be (semantically) invisible to the user, and encourage

the development of clean "mathematical" rather than

"sequential" programs. For example consider:

f(n) = IF n<2 THEN 1 ELSE f(n-1)+f(n-2)

(Fibonacci numbers)

or

C(n,r) = 1 IF r=O OR r=n

= C(n-1,r-1) + C(n-1,r) OTHERWISE

(Pascal's triangle)

65

Here evaluation (with r = n/2 in the second example)

requires in the order of 2n function calls using the

standard implementation. This cost can be made linear

in n in exchange for storage by saving the

(arguments, result) pairs for previously computed values

of f or C. (This technique is called 'memo'ing the

function). Unfortunately when using call-by-need, we

cannot look at the argument values since to do so causes

evaluation effectively at the time of call and hence is

equivalent to a call-by-value regime. Thus

call-by-value has advantages which extend far beyond

current hardware limitations - since exponential costs

can rarely be tolerated.

3. Call-by-need does not permit the standard methods of

recursion removal to be used, for example:

f(x,y) = IF x=O THEN y ELSE f(x-l,y+l)

requires one new closure to be created for y in each

recursive call; these all being evaluated 'domino

fashion' when y is finally used. For further discussion

see LangE311.

It is worth noting the great similarity between the

optimisations furnished by call-by-need over call-by-name and by

using memo functions. In both cases the effect is to avoid

recalculation of known values, and both are optimisations which can

convert an exponential cost into a linear one (unlike traditional

compiler optimisations to remove common sub-expressions which can

only save at most a linear factor in the cost).

Another reason for using the call-by-need parameter passing

mechanism is that call-by-value invalidates some program

transformation schemata. For example consider the fold/unfold

transformation of Darlington and BurstallE61 which replaces a call

66

of a function by its body or vice versa.

The program segment

IF el THEN e2 ELSE e3 ... (1)

is equivalent to the segment

f(el,e2,e3) WHERE f(x,y,z) = IF x THEN y ELSE z ... (2)

only if the call-by-need (or name) parameter passing regime is used

since the, early evaluation of e2 or e3 otherwise necessitated by

call-by-value in (2) may cause infinite looping. For example

compare

fact(n) = IF n=0 THEN 1 ELSE n*fact(n-1)

with

fact(n) = f(n=0, 1, n*fact(n-1))
WHERE f(b,x,y) = IF b THEN x ELSE y

the latter being undefined for all n when using call-by-value.

The above arguments suggest that call-by-value is more efficient

but call-by-need preferable on aesthetic/definedness

considerations. So techniques are herein developed which allow the

system to present a call-by-need interface to the user but which

performs a pre-pass on his program annotating those arguments which

can validly be passed using call-by-value. Thus the spirit is

similar to, and unifies and implements some of the ideas in

Schwarz[44].

Note that the technique only provides the information "It is

safe to pass certain parameters by value" and is not claimed to

detect all such cases. The problem of detecting all such cases is

actually not effectively computable, for example consider:

F(x,y) = IF P(x) THEN y ELSE 0

67

where P(x) is true for all values of x. The argument y will, then,

always be evaluated and so could be safely passed by value. This

fact is impossible to detect uniformly since, in any sufficiently

rich domain, there are tautologies which cannot be detected by any

(pre-specified) algorithm (eg "The halting problem" for Turing

machines). We make no attempt to detect similar tautologies and

hence the system "plays safe" and suggests that y is passed by

need. In practice this limitation does not stop most cases of

call-by-value being detected (see section 3.6 on pragmatics).

There is a analogy between the system described here and the

"most general type" inference system used in a language such as ML

[171 which even extends to cover the sort of example above; for

example consider the declaration

LET x = IF true THEN 1 ELSE NIL

then the ML type rules will produce an error for the type of x

whereas in fact it is well (but inelegantly) defined.

In order to be able to change the order of evaluation (eg

changing call-by-need into call-by-name) without changing the

semantics we require referential transparency in the language under

study. Applicative languages normally possess this property, with

the proviso that error situations (eg 1/0) do not result in

'jumpout' action and merely return a special error value to the

calling function. Further discussion of this point may be found in

section 3.9.

The central stage in the development of the call-by-value

detection system is the definition of maps # and y which are

68

semi-decision procedures for termination on recursion equations.

The idea is that # will map ALL terminating closed forms onto 1,

and SOME non-terminating terms onto 0, and maps ALL

non-terminating terms onto 0 and SOME terminating terms onto 1. By

investigating the effect of # and b with their semi-homomorphic

properties on recursion equations we can see the gross structure of

the recursion and occurrences of references to arguments without

the clutter of detail present in the original equations.

3.3 Formalism

The formal system in which the theory is developed is that of a

scheme, S, of recursion equations together with one standard and

two non-standard interpretations.
S = {Fi(X1 ... Xk) = U i ; 1<i<n}

i
where the Ui are (finite) terms defined by the grammar with start

symbol T and axioms

- T ::= Xj (individual parameters)

- T ::= Aj(T1 ... Tr) (system functions)
J

- T :.= Fj(T1 ... Tk) 1<j<n (user functions)
J

We insist that Ui contains no Xr for r>ki. Here all base

constructs (including the conditional which is normally regarded as

syntax) are considered to be members of the (Ai); note that the Ai

are base constants when ri = 0.

An interpretation I, of S, consists of a pair <D,(aj)> where D

is a domain and the ai are continuous functions from Dr-->D where

r = r i is the arity of Ai.

69

An interpretation I induces for S an interpretation of the

function symbols Fi defined in the usual manner as the least

fixpoint.

Now let 2 = {0,1} be the two element Boolean lattice ordered by

0<1 and use the standard Boolean connectives (we use 0 and 1 to

avoid confusion with elements of D).

3.4 Notation and Definitions

We use the following notation to simplify expressions:

1. [P,QJ is a partition of a set U if U is the disjoint
union of P and Q.

2. Let F be a function with arity k then for a partition
[P,QJ of {1 ... k} we define F(a/P, b/Q) to mean

F(x1 ... xk) where xi = a if i in P

= b otherwise

3. We will also use R(xQ) to mean R(xi) for all i in Q,

where R is a predicate.

We next define two more interpretations in terms of I = <D,(aj)> by

I = <2, (at)>

and

<2, (a'1>

in the following manner: [the definitions are to be seen as

monotonic functional extensions of the function

HALT: D -> 2 defined by

HALT(x) = 0 if x = 1

1 otherwise]

For all partitions [P,QJ of {1,2 ... ri} we define

al '(0/Q, 1/P) = 0 if for all {xj in D: 1<j<ri} such that

xQ = 1, xP 1 we have ai(x1 ... xr) = l
i

1 otherwise

70

and

a r(0/Q,1/P) = 0 if there exists {xj in D: 1<j<ri} such that
xQ = 1, xp i and ai(x1 ... xr.)

i

= 1 otherwise.

Clearly the (alb) and (ai) are monotonic since we assume the (ai)

are computable. For any function g: Dr --,i D we will write3

g# , g b: 2r --, 2

to denote the functions constructed from g by the above technique.

3.5 Example

Here we use the standard meaning for IF as the 3 argument

sequential conditional; and PLUS as the usual (strict) operation on

integers:

IF#(p, x, Y) = p A (xVy)
IFb(p, x, y) = p A x A y

PLUS#(x, y) = x A y
PLUS'' (x, y) = x A y

It is useful to observe that these equations can be read in

English to help understanding: the first one (for IF# and IF7)

reads

IF(p,x,y) needs to evaluate both p AND at least one of x OR y.

IF(p,x,y) terminates if p AND x AND y do.

We can also cope with parallelism, for example

PIF#(p, x, y) _ (pVx) A (pVy) A (xVy)

where

PIF(p,x,y) = x if p = TRUE

= y if p = FALSE

= x if x = y

=
1

otherwise.

This approach of identifying all non-undefined values can be

3Here 2r means 2 X ... X 2.

71

further justified by noting that any two partially correct

evaluation mechanisms (those that give the same result when both

terminate) are weakly equivalent (ie LUB(E1,E2) exists where the Ei

are the results from the two evaluation mechanisms) and hence it is

only necessary to discover places where undefinedness can creep in.

In passing we note that this point is still relevant in higher

order languages since in a well typed language with flat base

domains the universe of discourse is
D0 is flat and

Di+1 ° Di
+ (Di -4 Di)

Dn for some n where

Note (see section on non-discrete domains) that allowing D to be

non-discrete might mean that we fail to obtain a very close bound

here without more machinery.

I# and I b are (non-comparable) interpretations abstracting I in

the sense of Cousot and Cousot[91. However here we use the two

non-standard interpretations to "sandwich" the standard

interpretation and thus it is important to note that one of the

interpretations is "upside-down" relative to the above work.

We naturally define f# and f b corresponding to the Fi as the

least fixpoints of their defining equations in S under the

interpretations I# and Is'.

Let E, E#, Eb be respectively the denotation functions for terms

under I, II Then for all terms e (possibly with free

variables) we can associate functions

E E e 11 : DK --> D; E#QeII, OQeII: 2K - 2

where K is a set containing all the free variables of e.

72

We have that
,crr_,,.# , #m_ EbPrr b < (EQeD) <

for all terms e, the centre inequality reducing to an equality if e

has no free variables. This is a consequence of the general theory

of abstract interpretation developed in chapter 2, but can also be

shown by a simple "depth of computation" induction left to the

reader. The outermost inequalities reduce to equalities if e is of

the form Ai(X1 ... Xri).

This result enables us to deduce that the definition of # and 'y-

on the Ai extends to the Fi to give useful information on

termination in I. The result is, for all partitions CP,Q] of

{1,2 ... ki},

F#(0/Q, 1/P) = 0 implies
for all (xi) such that xQ = 1 we have

Fi(x1 ... xki) = j

and

F(0/Q, 1/P) = 1 implies

for all (xi) such that xp .i we have

Fi(x1 ... xki) 1

Note that we lose the half of the if and only if of the definition

- this is due to the operation of composition rather than

recursion, for example take

e = QIF true THEN _L ELSE 911

which gives

E11Qe]] = 1

in spite of the fact that EQeD = 1.

Now these are exactly the two conditions required for the

detection of situations where call-by-need may be optimised to

73

call-by-value. The first gives us conditions on a function such

that (some of) its formal parameters may uniformly over calls be

evaluated before evaluation of the function body and the second

gives us conditions on actual parameters which may be evaluated

prior to calling uniformly over the head function symbol. We now

consider these remarks in more detail with examples:

A condition for the actual parameter ei associated to formal

parameter x i in a call F(e1 ... ek) to be safely (ie without

disturbing the meaning of the call - see Vuillemin(50J) evaluated

before calling F is precisely that F(x1 ... xk) is undefined

whenever x i is. Taking Q = {i} in the above equation for F# gives

us a useful sufficiency condition for this to hold.

Similarly, to illustrate the use of FO, suppose we have the

following equation:

F(x,y) = G(x, y+1) + y

Consideration of F# in the above manner (using the fact that

+#(x,y) = x A y

in the usual interpretation of +) enables us to deduce that y may

be passed by value to F. Now this fact means that y J. in the

body of F and correspondingly there we have that
EVQYI1 = 1.

Now we use the fact that (giving + its standard meaning)

+tr(x,y) = x A y

and hence that

EbT (y+1) Il = 1 since EbE 1 II = 1

This shows that the second parameter to G in the call

QG(x, y+1)I1 always terminates and hence in implementation terms we

74

may choose to evaluate y+1 prior to the call and give G an

evaluated call-by-need thunk rather than the standard unevaluated

thunk to be evaluated on its first reference, without disturbing

the semantics of the call. A further optimisation is that, if all

calls to G have the above property then we know that x2 in

<body> where

G(x1, x2) = body

and accordingly that x2 may be classed as a value parameter to

G. So, having established this we then have

E#Qx211 = Et7[Ix211 = 1.

See also the section on transforming programs to use call-by-value

below.

To derive solutions for the fly and f b which are fixpoints of the

systems <S,I#> and <S,I> we develop the following theory: (the

aim is not to derive solutions by evaluation but rather by

examination of their textual definition by forming

lim Ti(BOTTOM)

where T is the functional to be defined below).

Define L by:

L = (2k1 -4 2) X (2k2 2) X ... X (2kn --> 2)

The space L has a natural lattice structure defined componentwise

by

(p1, ... pn) < (q1, ... qn) if and only if
(pi & `qi is identically zero; (1<i<n))

Now define T, a transformation on L by

T: (H1 ... Hn) -4 (H. ... Hn)

where

Hi(x1, "' xk) = Ui[Hj/Fj; 1<j<n;
a#/A]

i

75

Defining

BOTTOM = (X x1 ...

X1 ...

xk
1

Xk2

X x1 ..* xk . 0)
n

and TOP = BOTTOM[1/0]

gives the top and bottom of the lattice L, respectively.

The sequence

BOTTOM, T(BOTTOM), T(T(BOTTOM))

gives Kleene's ascending chain (AKC) on the finite lattice L. Hence

all these terms are the same from some point onwards with limit

value- T*(BOTTOM) say. Define T*(TOP) similarly. Now by

construction T*(BOTTOM) and T*(TOP) are fixpoints of <S, I# > with

all other fixpoints between these two. The fixpoints of <S, IV>

are similarly defined.

Note now a couple of interesting points;

1. T*(TOP) and T(BOTTOM) are in general distinct

2. Not all points such that T*(BOTTOM) < X < T (TOP) are

fixpoints of <S, I#>

For proof consider

F(x,y,z) = IF x=0 THEN y*z ELSE F(x-1,z,y)

This gives

f#(x,y,z) = x A (yAz V f#(x,z,Y))

and hence

T*(BOTTOM)(x,y,z) = x A y A z

T*(TOP)(x,y,z) = x

also

H(x,y,z) = x A y

76

is between T*(TOP) and T*(BOTTOM) but is not a fixpoint.

The difference between the modes of parameter passing implied by

T*(BOTTOM) and T*(TOP) is merely the difference in how the

calculation proceeds in the evaluation of F(-1, i, 0); the first
case implying passing (x,y,z) by value and the second just W. In

the call-by-value (for x,y,z) manner F is i initially (upon

evaluation of the value parameter j), but in call-by-need (for y,z)

i is never referenced, however the evaluator loops since the

termination condition x=0 is never true. This corresponds to the

inductive argument that if F is to terminate then the second

argument in the initial call must be evaluated and its evaluation

terminate. Thus we see that the fact that T has more than one

fixpoint allows the system to be undefined in more than one way,

but of course any two undefined values are indistinguishable

(except by looking at the internal computation history), and hence

the minimal fixpoint of T gives a valid mode of evaluation of

parameters. In fact it follows (Vuillemin [501) that any point

above the minimal fixpoint defines a mode of evaluation which gives

the correct result but there may be differences in the way

undefined results are achieved. (Ie which particular infinite

computation the system pursues.)

The existence of points (like H in the above example) which are

above the minimal fixpoint (and so define safe evaluation

strategies) but which are not themselves fixpoints is now

explained:

77

The fixpoints of T correspond to the "consistent" modes of

evaluation in the following sense:

A mode of evaluation is consistent if it is safe and no argument

which is passed by need to a function will inevitably (after a

bounded number of further passing by need) be evaluated.

To return to the case of H we can see that it is not a

consistent point of T, and so cannot define a sensible mode of

evaluation of parameters for F.

The standard proof that F (as above) terminates only if it
references its second and third arguments is based on induction on

the computation path. Our # functions, however, has the induction

'built into' the non-standard denotation F# and so the proof merely

consists of case analysis to see how 0 (= j#) can propagate.

3.6 Pragmatics

For use of the theory above in an algorithm the iteration

produced is refined to be both more convenient and more rapidly

convergent.

Define

Z(H) = Zn(Zn-1(... (Z1(H))...))

where

Zi(H1 ... Hn) _ (H1 ... Hi-1' H', Hi+1 ... Hn)

where

H'(x1 ... xk) = Ui[Hi/F j; 1<j<n; a#/A]

Note that Z (like T) is monotonic since it is the result of tupling

and composing monotonic functions. We prove that Z*(BOTTOM) _

T*(BOTTOM) to show that Z and T give the same result. Z is also

78

more convenient for implementing the iteration as it can be written

as n single assignments in a loop rather than the one n-way

multiple assignment required by T.

Further improvement in the speed may be effected by the

following technique: firstly associate the call-structure graph

with the function definitions (the call-structure graph is the

directed graph obtained by considering function names as vertices

and having an edge from f to g if and only if f contains a call to

g in its body). Now partition this graph into its strongly

connected components; giving a directed acyclic quotient graph; the

strongly connected subgraphs can be analysed by the use of the Z

(or T) iteration and the quotient graph is trivial to analyse - we

flatten its partial order into a total order and analyse the

strongly connected subgraphs according to this order.

A program has been written by the author (in LISP) to implement

the above algorithm. A sample run is given below for a simple

example and the system has been used on a text-formatter written by

Martin Feather in NPL [51 without knowledge of this system. NPL

normally has a call-by-value semantics and as a guide to the

utility of the system, 132 of the 188 parameters in the paginator

were detected as being safely passable by value upon assuming the

program should conform to call-by-need semantics (there were 136

functions covering some 1100 lines of code, the system detecting

that 93 of them were strict).

79

3.7 Transforming programs to use call-by-value

The outstanding cases where the system did not detect

call-by-value were due to the following form of recursion in which

we test one parameter to give a 'default' value or embark upon a

recursive call:

LET mult(x,y) = IF x:O THEN 0 ELSE mult(x-1,y)+y

the trouble about this case being that it is impossible (without

further knowledge) to discover whether the user intended mult(O, .i)

to give 0 or 1 - the call-by-need semantics indicate 0 and so y

cannot be passed by value without extra knowledge. Of course for

any particular call b may be used to detect if the actual parameter

terminates and hence optimise the call.

The rest of this section suggests a method by which a program

transformation system (for example Burstall and Darlington's

fold/unfold method [61) might be driven in order to transform out

such non-strict functions by replacing them with strict functions

and the basic non-strict conditional function (which is well known

to compile and interpret efficiently).

Note that the "ELSE" branch of the above conditional expression

satisfies
E# Qmult(x-1,y) + yIl = x A y

and hence is strict. So we can replace all calls mult(e e2) with

IF e1=0 THEN 0 ELSE multl(el,e2)
WHERE multl(x, y) = mult(x-1, y) + y

and compile all calls to multl using call-by-value. But now a

priori all calls to mult have the property that the second actual

parameter must terminate (if it does not then neither can multl by

80

considering b). Hence mult can also be treated as a strict

function and compiled appropriately.

We can actually do rather better that this by unfolding the call

to mutt in multl and refolding to use the definition of multl to

get

multl(x,y) _ (IF x-1 = 0 THEN 0 ELSE multl(x-1,y)) + y

to obtain a strict version of mult to replace the original

non-strict version at the expense of doing the test before calling

mult. This cost is significantly cheaper than the cost of merely

setting up the closure for the second argument for mult.

I call the above technique rotational refolding of the function

mult. This has an intuitive meaning seen by noting that the

infinite tree representation for mult has alternate '+' and 'IF'

nodes in its infinite backbone. Then the definition of multl is

just obtained by taking a different ('+' instead of 'IF') starting

point for the folding into finite form. The proof of strong

correctness for this type of fold/unfold is much easier than the

general case.

This idea can be extended to replace all uses of call-by-need by

call-by-value by the use of appropriate conditionals, and this is

the subject of chapter 4.

81

The following short insert gives a sample run of the

implementation of the ideas given above.

.R VALARG

*(DEF FACT1 (X)

(IF (EQ X 0) 1 (TIMES X (FACT1 (SUB1 X)))))
FACT 1

*(DEF FACT2 (X Y)
* (IF (EQ X 0) Y (FACT2 (SUB1 X) (TIMES X Y))))
FACT2

*(DEF G (X Y Z) (IF X (PLUS Y Z) (DIFFERENCE Y Z)))
G

*(DEF H (X) 3)
H

*(DEF UNDEF (X) (IF (EQ X 0) (UNDEF X) (UNDEF (SUB1 X))))
UNDEF

*(DEF MY-IF (B X Y) (IF B X Y))
MY-IF

*(START) {; see if it all works}
MY-IF : Args (1) may be passed by value
UNDEF : *** totally undefined
H : *** independent of args
G : Args (1) (2) (3) may be passed by value
FACT2 : Args (1) (2) may be passed by value
FACT1 : Args (1) may be passed by value

(2 ITERATIONS)

3.8 Non-discrete domains

Here we will consider the problems caused by trying to extend

the above work to a lazy evaluation system (see for example

[15, 21]). In a call-by-need system an expression is either fully

evaluated or a fully unevaluated suspension (closure). This

corresponds to the set of values a variable may take being an

element of a flat (or discrete) domain whose elements, x and y,

satisfy
x<y q x=y OR x=I.

82

However in a lazy evaluator a term can be evaluated to give a CONS

node (say) without evaluation of its sub-terms, which will be

evaluated when required for printing of deciding program flow.

This implies the underlying data domain is not flat which gives us

some problems since, using the above notation we get

CONS#(x,y) = CONS b(x,y) = 1

Hd#(x) = x

Hdb(x) =0.

This unfortunately gives us a very bad bound on definedness and we

now need to have some knowledge of list structures as our

homomorphic image, instead of just {0, 11, in order to deduce those

substructures whose evaluation can be safely moved.

Suitable further research would be to examine the possibility of

using the notion of regular trees to approximate the limits of the

(possibly infinite) Kleene sequences in the obvious image domain

D where D = 2 + D X D

to tackle this problem.

Since this work was published Jones[271 has shown how to extend

the ideas given here to the lambda-calculus by considering the

states processed by the mathematical interpreter given by

Plotkin[401.

3.9 Discussion of runtime errors in applicative languages.

This section (which is of the nature of an appendix to this

chapter) suggests that the best way to handle errors from system

functions is by returning special 'error' values. This method has

the great advantage of preserving referential transparency and

allows code transformations (such as the call-by-need to

83

call-by-value transformation discussed here) without changing the

semantics of the language.

Consider the error which results when some system function is

called with argument vector out of the defined range - eg the

"division by zero" error from evaluating 1/0. In traditional

languages this usually leads to a trap, often at the hardware level

and possibly a jumpout to a user provided exit routine to diagnose

and correct the error. Indeed in that case this often seems the

most appropriate action to take.

However such jumpout action is far removed from the spirit of

applicative languages and can destroy the referential transparency

which they otherwise possess. Similarly operators which are

normally commutative can lose this property and the order of

evaluation becomes visible to the user. For example if A and B are

(closed) terms whose evaluations lead to distinct errors, then the

programs A+B and B+A may yield different results. Note that this

last point is important in the system described herein since we

want to be able to move a calculation without changing the

semantics.

As an alternative the following scheme is much more attractive:

Firstly extend the universe of discourse, D, with error elements

{errorl, error2, error3 }

which are produced by the failure of system (and possibly user)

functions. These objects should be treated as "first class

citizens" so that evaluation of
[1/0, Hd(NIL), 3+57

84

will result in
[Error: division by zero, Error: Hd of NIL, 8]

as output, rather than a jumpout interrupt so beloved by operating

system designers. Note that this scheme is also much more suited

to systems with more than one processor.

Another benefit of this scheme is that, when taken to its

logical conclusion, it leads to a backtrace of the error being

built up automatically. Eg:

1/0 + 3

might result in

Error: Arg for PLUS not number: {error} + 3

Error: Division by zero: 1/0

being printed in a system with an appropriate print program which

knows about error objects.

Note that some system functions would allow error objects as

parameters which do not change the form of the result. Eg: we

would want

CONS(1/0, CONS(5+4,NIL))

to print as

[Error: division by zero, 9]

rather than CONS giving an error result. This scheme would

probably find favour amongst users who often find systems only

allow one error, or upon an error 'correct' it badly so that the

output consists of many error reports from one error. Providing

the function ISERROR(x) to test whether x evaluates to an error

value and if so return some descriptor of the error (possibly a

string) would enable provision of the ML [17] failure catching

85

mechanism.

Finally note that the error caused by non-halting programs is a

much nastier object since it is impossible to test for in a uniform

manner, and even though we may detect it in certain cases (eg

memo-functions may detect a recursive call with the same arguments

whilst still evaluating for those arguments) we must not give it

the high status of ordinary run-time errors but produce a special

error value, {no-halt} say, which cannot be tested for (ie

ISERROR(no-halt) = no-halt) to guarantee uniform treatment- of I.

By this process we may sometimes anticipate an Operating System

time-out without the waste of waiting for it to happen and, in this

case, do something else (like evaluating the next expression in the

input stream).

86

Chapter 4: Call-by-Need : Call-by-Value + Conditional

4.1 Introduction

This work demonstrates that a large class of programs designed

to be run on a call-by-name interpreter In can be simply and

effectively transformed into strongly equivalent ones for a

call-by-value interpreter Iv in which all functions (including

system functions) except the distinguished conditional function are

strict.

This class of programs includes all those written in first order

applicative languages with sequential base functions (in particular

those with strict non-conditional base functions).

The results presented herein can be seen to generalise the

results of de Roever [43].

This result has both practical and theoretical importance in

that it provides for an alternative to closures (thunks) for

implementing call-by-need or call-by-name, and in that it relates

the two computation rules in terms of strong equivalence to enable

the carrying across of proof techniques. The definition of

sequentiality also seems to be of more general use.

4.2 Overview

The overall structure can be visualised as four separate stages:

Firstly we make the observation that a system of call-by-need

equations is strongly equivalent to one of the possible

computational paths of a non-deterministic similar system. A

similar equivalence was also given by de Roever[43].

87

Secondly we derive a set of 'oracles' for this non-deterministic

system which enable us to predict the computation path by insertion

of tests (Conditionals). However to do this we must add extra

elements to our domain and extend all base functions to cover them.

Thirdly we note that the extra elements introduced in the

previous paragraph may be mapped into any set of distinct 'atoms'

already present in the original system by using a form of

overloading.

Finally we discuss the computational costs of this technique,

since it may cause an exponential increase in the size of the

program (but not of the running time), however we present arguments

(as in chapter 3) to suggest that the actual increase in size is

not so large and probably corresponds to less code at current

machine level. See section 4.7.

The difficulties involved in the proof of correctness are due to

the requirement to prove equivalence between two different program

schemes under differing (operational) interpretations, and as such

we must adopt a rather indirect technique of showing equivalence

for the "before" and "after" versions of calls.

4.3 Basic Definitions

Let (Fi; 1<i<n} be a set of uninterpreted function symbols, with

arity ki; {Ai} be base function symbols, with arity ri; and {Xi} be

a countable set of individual parameters.

Consider the equations

{Fi(Xi ... Xk) = Ui; 1<i<n}

88

with the Ui members of WFF(ki) where the WFF(p) are the set of well

formed terms constructed from

{Ai; Fj; X1 ... X
p

)

These equations provide a functional environment for the

evaluation of terms from WFF(O) under a given interpretation.

However, for definiteness, we will assume that k1 =0 and the

'program' consists of evaluating

1F1 () 11

in this environment.

We will take a domain D and functions {ai} {ai:D i--->D} as the

standard semantics of the above equations. This naturally defines

a function EvalD giving meanings to terms. Currently we will also

assume D is flat.

We will also use the annotation ':value' on actual parameters to

indicate a particular parameter should be evaluated prior to the

call of its enclosing function. Similarly ':need' will be used to

clarify the default case of call-by-need. The idea of annotations

as a means of describing how something is to be done dates from the

Algol60 report. Schwarz explores their use for specifying

evaluation mechanisms for applicative languages in [1414].

We will adopt the standard semantic practice of using [[...II to

enclose program text. Furthermore we will use the notation

QF(ui:need; uj:value; i E I; j E J)II

or

[[F(ui:need/I, uj:value/J)I]

to stand for

[[F(ui ... uk) 11

89

annotated with uj:value if j is a member of J. This notation will

be extended to allow us to write

QF(uj1/J1 ... ujn/Jn)I1

to give us a named, rather than positional parameter association

for disjoint subsets J1 in whose union is Cl ... arity(F)}.

4.3.1 Conventions

In the following '?' will be used to denote an arbitrary (but

unspecified) non--L' value of D. The value will not be used in the

computation, but is used to simplify functionality considerations.

We will use the following conventions to simplify the formalism

and reduce the explicit indication of set membership:

- di to range over D

- ei to range over E

- ui and vi to range over terms in any WFF(j)

We will also admit the syntactic sugar of using

Qselect u from

u1: v1

u2: v2

uk: vk else w]}

to stand for

Qif u=u1 then v1

elseif u=u2 then v2

elseif u=uk then vk

else w]}

We here assume that select is not present in our original language.

This is merely a technical convenience to ensure that we are

talking about objects introduced by an earlier transformation.

90

4.3.2 Operational Semantics

Here we give a (very) brief introduction to operational

semantics which will be used to justify our transformations. As we

indicate elsewhere it would be preferable to use denotational

semantics, but the concept of sequentiality which we require does

not seem to be easily accessible there.

Operational semantics specify the result of a computation by

repeatedly performing re-write rules until reduction to a constant

occurs. Excellent descriptions are given by Plotkin (40, 421.

Here we will adopt the notation of writing for the "re-writes in

a single step to give" relation. For example, if n is a numeral

and n the corresponding element of the domain of numbers, we may

write

QnII n.

This is true without any pre-conditions.

We will write => * for the transitive closure of the relation

and proceed to define the evaluation of larger terms in the

following manner, exemplified for '+'.

[Eel]] ::>* nl, Qe2IJ n2

[Ee1+e2l] n1+n2

4.3.3 Definition of Sequentiality

We define a base (system) function symbol Ai to be sequential

under an interpretation if we can write the semantics ai for Ai

operationally as

Const(i)

QAi(ul ... uk)D EC(i)II i

91

Qup11 =>* d, " Const(i)

QAi(u1 ... ukl)I1 =>* EAj(u1 ... up_1, up+1 ... ukl)Il
with Aj sequential
where j = N(i,d) and p = P(i)

for some functions
N: Int X D ---> Int

P: Int -4 Int

C: Int-4D
and some predicate Const. This simply says that the semantics of a

function shall be expressible in the form: If a function does not

require to evaluate any of its parameters then it is constant;

otherwise evaluate the parameter required first (depending on i),

and call a new function (dependent on i and the evaluated

parameter) with the remaining unevaluated arguments. Thus we could

show that '+' is sequential by showing that its semantics can be

written in the form (roughly)

Qe1I1 =>* n1, IIe2]] =>* n2

Qe1+e2I1
=>

* ADDn1Qe2I1 =>* n1+n2.

Thus the evaluation of (our program) Q5+3I1 would proceed via

ADD5 E311 to 5+3 (in our mathematics) which is 8.

We will assume that this operational definition of the semantics

agrees with the denotational version given in section 4.3, and feel

free to use EvalD to refer to either.

Note that here we assume that the Ai include members whose

interpretations ai correspond to all possible partial applications

of members of Ai. Thus if '+' and 1 1 ' are present in the Ai then

92

we would require that 'ADD1' given by

ADD1(x) = x+1

was present too. This does not reduce the generality since we

allow the Ai to be an infinite set (although we can only use a

finite number in our program).

This definition seems to be equivalent to the one given by

Milner in (331.

4.4 Method

Let C = QF(u1 ... uk)11 be a call occurring in the Ui.

We write this as

QF(ui:need; i E {1,2 ... k})II

showing that all arguments have need (non-strict) semantics.

We now note that one of the following must take place on

evaluation of the call: (this depends on the assumption of

sequentiality)

1. F evaluates (actual) parameter uj first (1<j<k)

2. F returns without evaluating any ui

3. F computes forever without evaluating any of the ui

Actually, without extra difficulty, we may allow that the order of

evaluation of parameters may not only depend on the function, F,

and the previously evaluated parameters, but also on the textual

form of unevaluated parameters.

This indicates that if we have an oracle F*, say, (a nullary

function) which for the above cases respectively

93

1. returns j

2. returns 0

3. computes forever

then the call is strongly equivalent to

Qselect F () from 1: F(ul:value, up:need; p E {1...k}-{1})

k: F(uk:value, up:need; p E {1...k}-{k})
else F(?:value ... ?:value)]]

where the Vs stand for any non-1 value from D. The reason for the

use of the '?'s here in the else clause (invoked when the oracle

returns 0) is that their values will not be used in the subsequent

computation due to the assumed truth of the oracle.

We now show that the above technique can be inductively extended

to reduce all the parameters of a call to :value ones, and also how

to effectively compute the F .

4.4.1 Total reduction to call-by-value

We observe that the above technique is just a special case of

the following equivalence:

QF(ui:need, uj:value, j E J; i E I)]]

is equivalent to

Qselect FI(uj:value; j E J) from

p: F(uj:value, ui:need; j E J U {p}, i E I-{p})

else F(uj:value, ?/I; j E J)]]

with p varying through I for non-empty I, giving an inductive step

for reducing the number of :need parameters. The base case of
QF(ul:value ... uk:value)]]

corresponding to I={}, is already of the required call-by-value

94

form. Thus we have produced a new program schema

Gi(X1 ... Xki) = Vi

from our {Fi} schema, by replacing all the Fi in the above terms by

G. The Fi and Gi schemata will be strongly equivalent under

call-by-value and call-by-need interpretations respectively,

subject to our defining the oracles FI for all F in {Fi} and for

all subsets I of {1 ... k} required by the above process.

The proof of this is given is section 4.4.8 after we have

defined the oracles.

Note that this process will (wastefully) re-write the

conditional function as a select, however here we are concerned

with correctness - efficiency will be considered in section 4.7.

4.4.2 Production of the oracles FT

We will produce the oracles in two stages; first showing that we

can introduce oracle-like objects FI at the expense of extending

the domain of discourse, D, (and of course also the base function

definitions) and then further showing that this extension can be

ignored at run time by using a form of overloading to produce the

FI (see section 4.5).

4.4.3 The FI exhibited

Consider a call
C = QF(ui:need, uj:value; iEI, jEJ)D

which produces, as an intermediate inductive call in the above

method

Qselect FI(uj:value) from ...

We now define a countable set of new elements

E _ {-i1Ii2 ...}

95

We will only use a bounded number of these elements - the reason

for the names will become clearer later.

We will now define

FI(uj:value) = F(uj:value,
,Li/I)

which requires us to extend the semantics {ai} of the {Ail from D

to D+E in such a manner to model the computational effects of I.
For example, we want to model the statement that

F(x,y) = e

requires x to be evaluated, by the equation

F(i,u) = I

(modulo some discussion about the termination of F). Here the

intention is that the ,ii will act as bombs which explode when used

in a calculation, thus indicating which parameters are evaluated

during the call. We will now define an interpretation, by giving

its semantics, which will ensure that the FI return ii to indicate

that parameter i will be evaluated in the 'real' computation. Thus

the FI will be oracles for the extended domain D+E.

4.4.4 Operational extension of ai

We augment the operational rules (see section 4.3.2 for

definitions) for the base function semantics

Const(i)

QAi(u1 ... uk)I] z EC(') J1 i

Qupl] 2* d, -Const(i)

QAi(u1 ... ukl)Il EAj(u1 ... up-11 up+1 ... ukl)Il

with Aj sequential
where j = N(i,d) and p = P(i)

96

with

LCup11 => * Iij]]

[IAi(u1 ... uki)]] =>* Eiji]

It is not necessary to define the effect of the
-'-i

on the Fi scheme

since we can simply use the standard call-by-name substitution

semantics as this is equivalent to call-by-need in applicative

languages, and use:

[CFi(u1 ... ukl)]J QUi[u1/X1] ... [ukl/Xkl]]]

4.4.5 Denotational extension of ai

This section gives an alternative (denotational) definition to

the previous one. It is not central to the work, however it does

avoid some problems with the over-specification inherent in

operational semantics.

Consider a map

a: Dk ->D

which is the standard interpretation of a symbol, A, say.

We wish to extend this map to the sum domain D+E given by adding

the elements of E to the domain D together with the coarsest

compatible domain structure (ie the addition of only y<x for all x

in E, to the partial order). The extension has functionality

a': (D+E)k --> (D+E)

thus providing an alternative interpretation for A preserving the

behaviour of a on D.

We define the extension componentwise by

a.'(e1, d2 ... dk) = a(1, d2 ... dk) if a(l, d2 ... dk) 1

= 1 if a(dJ, d2 ... dk) = -L Y d1 E D

ei otherwise

97

and similarly for the other parameters. This definition is

monotonic because of the flatness of D and the sequentiality of the

{ai}. The proof of this is somewhat outside the scope of this

chapter.

We can now define at when a set I, of its parameters are members

of E by

a'(ei/I, di /J)

JOIN {STRICT[a'(ei/I-{k},
if ;I; > 1

ai(ei/I, d/J)

if I = {i} as above

a(di /J)

where

di /J, x/{k})]: k e I}

STRICT(f(x)) = JOIN{f(x): x E D-{.L}}

if f(x) E E, `d x E D-{s.}

= 0 otherwise

and

JOIN{x1 ... xn} = xp for some xp in E.

There are several notes to be made on this definition. Firstly the

definition of JOIN is well, if non-deterministically defined, since

again flatness of D and sequentiality imply its argument is a

non-empty set. The intention in this denotational definition is to

avoid the over-specification of detail present in the operational

version: for example consider the definition of '+' operationally

as in section 14.3.3. We need to specify in which order the

parameters to '+' are evaluated to provide operational semantics,

however this is irrelevant to the program (in either its

call-by-need or call-by-value form), although it does effect the

internal flow of computation in the call-by-value version, since

98

the oracles have to report the order of examination of parameters.

Of course it is reasonable to observe that the oracles could return

subsets of the function parameter set which can be evaluated

together, thus avoiding this problem and being more in spirit with

chapter 3; however this complicates the above work which already

has notational problems for no clear gain in flexibility. Also

there are problems in doing this operationally. Thus the

non-determinism in the definition of JOIN reflects the arbitrary

choice of evaluation order in the operational definition of a

strict function.

Note that this provides a reason for the names ii for elements

of E: they model the behaviour of i in a computable (continuous)

way in that they model the way i propagates through a program.

4.4.6 Definition of FI

It is now obvious that we can define

FI(uj/J) = Index(FI(uj/J))

where Index is the D+E disjoint sum extraction operation given by

Index(,') = i

Index(ii) = i

Index(x) = 0 otherwise

This defines the oracle FI to use the original set of equations

(Fi), however, we can now see that we can define

G(xj/J) Index(G(xj/J, ii/I))

thus giving us an oracle whose (internal) calculations are

performed using call-by-value via the Gi schema.

4.4.7 Definition of the system oracles AI

For a system function Ai we will derive the corresponding

99

oracles

Ai,I

directly from the (operational) semantics given in section 4.3.2.

We can define

Ai1I(x1 ... xr) 0 if Const(i).

This merely says that if Ai reduces directly to a constant without

evaluating any of its parameters, then the corresponding Ai,I

should return 0 to indicate that this is the case.

On the other hand, if -Const(i) we have given by the semantics

p = P(i) such that up is evaluated first in order to see how the

computation progresses (that is which Ai, j = N(i,Eval(up)) is

called on the remaining parameters). In this case we can see that

an appropriate definition is

A(x1 ... xr) = xp if p E I
i

This case corresponds to evaluating a parameter which Ai,I has been

called to enquire about.

Otherwise xp corresponds to a value of D (non-,l due to the use

of call-by-value) and hence the operational re-writing rules

produce a definition

AiII(x1 ... xrl) = AJI'(x1 ... xp-1' xp+1 ... xri)

where j = N(i,xp)

and I' {k: k E I, k<p} V {k-1: k E I, k>p}

This definition now casts some light on the reasoning behind our

rather pedantic form of semantics given in section 4.3.2. For

example, the reduction in the number of parameters during

re-writing of a system function ensures that the above definition

of Ai,I is primitive recursive, and hence total.

100

The reason for requiring sequentiality of the base functions is

that the oracular versions of the base functions must be provided

for the use of the evaluator. This would mean that a

non-sequential function, eg the "Parallel IF" function defined by

PIF(p,x,y) = x if p=true

= y if p=false
= x if x=y

= i otherwise

would require an oracle to interpret the call
QPIF{12,3}(,L1,12,i3)I1

in order to predict the actual parameter to PIF which will be

evaluated first. This is clearly impossible. Huet and Levy

provide more general and detailed argument in [251.

4.4.8 Proof of correctness

We will perform the proof of correctness by showing each of the

one-step transformations given in section 4.4.1 produce a strongly

equivalent result. Thus after a finite number of such

transformations the overall result must be strongly equivalent to

the original program. The reasoning given below for a function F

applies equally well for system functions Ai and user functions Fi.

We wish to show that
EvalD E[F(ui:need/I, ui :value/J)I1 =

EvalD+E Qselect Index(F(uj:value/J,,l.i:value/I)) from

p: F(uj:value/J U {p}, ui:need/I-{P})

else F(ui :value/J, .::need/I)I1

Note that here we use l's in the else clause, rather than the

101

'?'s given in section 4.4.1. We do this to simplify the proof,

which will show (case 3 below) that the '?' values are not involved

in the calculation.

Firstly we will state a simple observation about the behaviours

of EvalD and EvalD+E'

Lemma:

EvalD and EvalD+E agree on terms not containing any ii.
Proof

Just consider the operational definition of EvalD+E on terms,

noting that terms cannot produce 1.,i unless they contain ii.

Therefore this implies that
EvalDQF(ui:need/I, ui:value/J)1] >

EvalD+E Qselect Index (F(uj:value/J, ii:value/I)) from

p: F(uj:value/J U {p}, ui:need/I-{p})

else F(u,:value/J, 1.:need/I)]

where > represents domain ordering. This is so since both

Eva1DQF(uj:value/JU {p}, ui:need/I-{p})D

and

EvalDQF(uj:value/J, 1.:need/I)1]

are dominated by

EvalD QF(uJ:value/J, ui:need/I)1]

(see Vuillemin's work [50]) and the calculation of the oracle for

the select clause further reduces the result of the select clause

in the > ordering.

In order to show the converse we will trace the step-by-step

evaluation of terms using EvalD and EvalD+E' We require to show

102

the following consistency conditions on the oracle

1. Eva1D+EQF(uj:value/J,_Ii:value/I)II = 1

Z> EvalD QF(uj:value/J, ui:need/I)II

2. Eva1D+E[TF(uj:value/J, .'i:value/I)II = ip

a EvalDQF(uj:value/J, ui:need/I-{p}, .L/{p})T = .L

3. Eva1D+E IIF(ui :value/J, ' :value/I)II i I, ip

EvalDIIF(uj:value/J, ui:need/I)II i, ; ip

The corresponding proofs are

1. Eva1D+E re-writes its argument infinitely, and EvalD

performs the same re-writings unless a li is produced by

EvalD+E' However this would terminate the EvalD+E'

Contradiction.

2. EvalD and EvalD+E perform corresponding re-writes until
EvalD+E first produces li as a parameter to be

evaluated. At this point EvalD has I to evaluate. Thus

EvalD gives I.

3. Again consider performing the re-writes of EvalD and

EvalD+E step-by-step. They both follow the same

reduction sequence and hence, since EvalD+E terminates

without encountering a ii, Eva1D will terminate without
encountering a corresponding I. (Actually both

calculations will produce the same non-,L value in D.)

4.5 Getting rid of the ii
We would now like to remove the explicit tests necessary to

determine whether an element is a member of D or E (usually called

IsD and IsE) since in any practical implementation the extension to

the base functions will be done by first testing (as in the

operational definition above) if a parameter is a member of E, and

if so taking special action. However these tests will likely be at

103

least as expensive as the "IsClosure" test implementation of

call-by-need. For theoretical reasons it is also rather

distasteful to add extra elements to our domain of discourse.

We wish to exhibit the definition of an oracle FI which only

uses the elements in D, rather that FI which requires the 1,i to be

added to the universe of discourse. We will use the integers

{1 ... n} to model {11 ... _LnJ and use specific instances of F to

ensure type security just like a type-checker would ensure that bit

patterns representing objects in D are not used as bit patterns

representing objects in E. Thus the code we produce must always

ensure we always know whether an integer represents a member of D

or E.

We will now exhibit FI in terms of G, the call-by-value version

of F produced

QG(x1 ...
in section 4.4.1 and given by

xk) = uI]

We will define corresponding versions, for

of {1 ... k} by

EF*(x/J) = G(xj/*, i/I)
GI(x1 ... Xk) = uII]

with

uI = P2IQu11

all required subsets I

where P21 is given by the following transformation:

The effect on variables is to produce the corresponding integer

if the variable corresponds to an oracular parameter, otherwise 0

to indicate that the evaluation does not require parameter

evaluation.

P2IQxil] = Qxil1 if i E I
_ E0I1 otherwise

104

For function applications, both of user and system functions we

define

P2I11g(us/S)I] = TIQg(us/S)I] {} S

where

TIQg(us/S)I] J K

QgJ(us/S-J)] if K = {}

Qif c=0 then v else wI] otherwise

where

p = max(K)

c=P2IQupI1
v = TIQg(u1 ... uk)] J (K-{P})

w = TIQg(u 1 ... up-1' c' up+1 ... uk) Il (J U {p}) (K-{P})

The intention here is that we scan through the arguments, S, of

(1)

g+

evaluating them in oracle context (as evaluated in the terms given

by c) building up a set J of parameters to g which will need to be

oracles, and then selecting the appropriate version gJ of g

For a select clause it is necessary to choose the correct

version of the oracle function since the construction given in

section 4.4.1 assumed we could tell the difference between an

oracular value and a 'real' value in D. We must also translate the

consequents, in order that they perform their calculations in

oracle context.

P2IQselect g(u/S) from 1:v1 ... n:vn else vol

Qselect w' from 1:v1 l ... n:vn else v?]

where

vi = P2IQviI]
w' = TIQg(ui/S)] J S

*
Note that the replacement of gI by g in the definition of w' is not

accidental in that line (1) in the definition of TI re-supplies

them.

105

Hence, the above shows that we can apply a form of overloading

(generic definition) in which we define separate functions for

different combination of parameter types, and simply return

integers (as in section 4.4) indicating which parameter will be

evaluated next (actually any set of k distinct objects will do for

a k-adic call).

4.5.1 Proof of correctness of the overloading

The proof of the removing the ii in favour of objects already

present in our language requires proof. However the details are

tedious and not illuminating. Basically the proof is most easily

factored into two stages. Firstly we change the ii into

corresponding integers, but also add an extra (set) parameter, I,

to each function explicitly, thus using

F*(x1 ... xk, I)

instead of

F*(x1 ... xk).

This enables us always to tell whether an integer represents an

oracle value or a domain integer. The semantics of these two

methods of representing disjoint sums can easily be seen to be

equivalent.

Then, we observe that the type parameter, I, can only take on

finitely many values, and hence we can produce versions

FI(x1 ... Xk)

for all possible I. Thus we have achieved our aim.

* of F

Of course in practice we hope not to behave in quite such a

profligate manner.

106

4.6 Example

Consider applying this theory to a call

C = Tmult(u,v)]]

where u and v are closed terms, in an environment given by the

definition

Q mult(x,y) = if x=0 then 0 else mult(x-1,y) + yI]

We thus expand this call-by-need expression into a call C' with

C ' (select mult{
1 , 2} (i1 ,l2) from

i1: (if mult{2}(u,i2)=i2 then mult(u,v)

else mult(u,?))

i2: (if mult{1}(i1,v)=i1 then mult(u,v)

else mult(?,v))

else mult(?,?)]]:value

This can clearly lead to an exponential increase in the size of

the code. However, using the techniques described in chapter 3,

has the effect of removing the unnecessary tests from C'. (For

example, we can see that the term Q uI] will always be evaluated

first in the standard interpretation of functions and hence the

select will always take the first branch.) This produces C" given

by

C" Qif mult{2}(u,i2)=i2 then mult(u,v)

else mult(u,?)]]

and a new version of mult given by

Q mult(x,y) = if x=0 then 0 else mult(x-1,y) + yll:value.

(Here there is no need to expand the recursive call of mult as in C

since we may use y equally well as a '?' value, since y must be a

non--L value in call-by-value.) These definitions rely on the

extension of the domain to incorporate the ii values.

We must now define the oracle mult{2}(x,y) in terms of mult.

107

Applying section 4.4.2 gives us

Q mult{2}(x,y) = if x=0 then 0 else y]]

Thus we can replace the initial call C:need by C"', where

C"' = Qif u=0 then mult(u,?) else mult(u,v)I1

which provides a general solution to the problem partially solved

in section 3.7. Note that the above form for C"' suggests that the

term u should be evaluated three times. Again, however, these will

produce the same result and hence standard compiling techniques

will produce only one evaluation.

We might at this point stop to look at the view, in that the

above C"' represents the standard call-by-value version of the

non-strict multiplication function.

The reader is strongly advised to work through this particular

example ensuring he sees the justification behind each step - it is

very easy to succumb to invalid optimisations. A program has been

developed which performs a rather more sophisticated algorithm

based on this work.

4.7 Computational Costs

As was hinted above, much of this translation technique runs the

risk of exponentially increasing the size of a program (although I

believe it can only increase the running time by a constant

factor). However I now wish to present the argument that, for a

large class of programs, the increase in space and time will be

fairly small. Certainly it is the case that we write parameters to

functions which can possibly be evaluated, for example a dispatch

routine which behaves like a conditional, and often we know that

108

certain parameters will be evaluated. However we do not write

parameters which can never be evaluated. Hence the attitude of

this work which can be summarised as partitioning parameters into

two subsets, those which will, and those which might-be evaluated;

is justified on pragmatic grounds. We will also probably be quite

happy if the increase in complexity is less than a factor of two or

so, in that the- overhead for compiling traditional call-by-need

closures (or 'thunks') is quite considerable- compared to

call-by-value, both in the space for the code, and in the time

taken to switch environments to evaluate a closure.

The following results were derived by analysing the cost of

performing the ideas given here on a large (1100 line) applicative

program written by Feather[13]. The program is an applicative text

formatter (like ROFF or RUNOFF) as described in "Software

Tools"[30]. The program size (for an abstract machine) grew from

12746 cells to 26632 cells upon applying the transformation. The

computation speed - (measured in abstract evaluator cycles for a

standard input) was 3417 cycles for the original code under

call-by-need and 4995 cycles for the call-by-value code resulting

from the transformation. For some indication of efficiency, the

original code took 3695 cycles to perform the same action under

call-by-value. These figures concur with the suggestions made

earlier that the cost is mainly of size rather than execution time,

however we should note again that under current machine

architecture it is quite possible that the call-by-value

transformed code performs better than the original in both space

and time. This is so because our abstract call-by-need cycles

109

represent more real machine cycles than our abstract call-by-value

-cycles.

One small point to be noted is that the. above figures are

derived from running on an interpreter which recognises multiple

occurrences of a- single expression (as can easily be produced by

this work) and only evaluates them- once. This is justified in that

compilers usually perform some common sub-expression analysis.

4.8 Conclusions

I believe the above results show that the work presented is not

only a pretty theoretical toy, analogous to "Static and Dynamic

Binding Strategies have Equal Power"[20J, but also provides a

practical alternative to the traditional closure implementation of

call-by-need.

However the scope of this work is somewhat restricted and it
would be extremely useful to be able to extend it to a full "lazy

CONS"[15, 211 language, from our simple call-by-need recursion

equations. For example, consider the following simple program in a

lazy-evaluation language:

let f(n) = n :: f(n+1)

in f(O)

(:: is an infix CONS). In a lazy evaluation scheme this program

would print
[0,1,2,3,4,5,6

without stopping. Unfortunately, in a more eager evaluation

strategy (even call-by-need), this program would calculate the full

result (ie the list of all numbers) before attempting to print it

out.

110

It is desirable (again both for theoretical and practical

reasons) to be able to transform this program into the following

iterative version (the only non-applicative feature is the

existence of a PRINT procedure which is only slightly

non-functional):

let g(n) = PRINT(n); g(n+1)

in g(0)

This is an equivalent program, which can be evaluated quite safely

using the most eager of evaluation strategies, call-by-value.

111

Chapter 5: On Introducing Destructive Operators into Applicative

Programs

5.1 Abstract

In this chapter we study methods to introduce destructive

operators into applicative programs. The work is based on the

concept of "Abstract Interpretation" developed by Cousot & Cousot

[8, 9] and generalises previous results of Schwarz [45, 46] and

Pettorossi [38, 39]. It also provides a more semantically oriented

framework for the work of Jones & Muchnick [28] which only applied

to flowchart schemata.

The intention is not to produce a single method of introducing

destructive operators, but rather to study a schema or class of

methods, and hence we will need general correctness proofs.

We share Schwarz's and Pettorossi's attitude that destructive

operators should be used for the means that they provide of

optimising otherwise applicative programs, leaving their meaning

unchanged, rather than sanctioning their use for causing side

effects on other objects, which is often criticised as producing

programs which are difficult to read and modify. (See for example

Backus's Turing lecture [2]).

This work develops alternative semantics for programs modelling

the standard "ad hoc" ideas of collections of CONS nodes being

shared or unshared, but the semantic formulation simplifies proof

rules. The general proof rules for shared data objects (for

example Burstall [4]) can be difficult to apply.

112

5.2 Developments from previous work

The work of Schwarz [145J was based on an (operational) rewrite

rule semantics whereas this chapter will attempt to develop the

theory of sharing within a denotational framework. This has the

advantages that

1. Fixpoint methods are much more easily discussed

denotationally. Accordingly we are able to develop

techniques here which exhibit as fixpoints certain
properties which had to be supplied by the user in
Schwarz's model.

2. Correctness proofs are very much easier denotationally
in that we can apply the general abstract interpretation
mechanism [8, 93.

We also extend the work of Pettorossi 138, 391 by considering

the problem of incorporating destructive operators in situations

where substructures may share. In essence this work handles DAGs

(directed acyclic graphs) where Pettorossi's only handled trees.

Pettorossi's work was concerned with the problem of introducing

destructive versions of system functions (like plus, times etc)

which took their arguments by reference and wrote their results in

one of the argument locations rather than creating a new location

to hold the result. To this end he introduced a marking tuple

associated with each system function call, with elements of the

tuple indicating whether or not the corresponding parameter may be

destroyed. The work was denotationally based and the best (most

destructive) safe version could be seen as a fixpoint of a certain

set of equations. However the work did not address the problems

113

involved with the partial degrees of sharing associated with list

structures.

Schwarz's work, on the other hand, considered the list based

formalism immediately, but via an operational style semantics based

on treating all functions as specifying re-write rules. The

operational formulation inhibited the view of certain properties as

fixpoints and so the programmer had to provide sharing and

destructiveness declarations for each function he provided.

Another problem is that it is difficult to see how to give any form

of correctness proof - Schwarz gives none. On the positive side,

the concepts of structure usage given by non-standard

interpretations Euses' Eexam' Eisol
are very similar to the ones we

use in a denotational setting here.

We also give credit to Wegbreit [521 who suggested that one

possible use for non-standard interpretations was to model storage

allocation-in the real world.

5.3 General Overview of the Development

First we introduce our langauge of recursion equations and its

associated semantics, together with such auxiliary notions as an

occurrence within an expression. We also discuss the most

appropriate form for destructive operators.

Next we introduce two non-standard interpretations Euses and

Eexam' The former gives (upper bounds on) the set of CONS cells

which the standard interpretation would build into the result of an

expression and the latter indicates similarly which cells are

114

traversed in order to build this result. These two interpretations

are then specialised into (non-standard) semantic functions USES-L

and USES-R respectively. These are merely derived for their

convenience of use over Euses and Eexam'

We now introduce the notion of 'isolation classes' which

represent the extent of sharing of a given structure. We then lift
this idea to an interpretation Eisol which specifies the sharing

properties of an expression in terms of the sharing properties of

its free variables.

These results are then used to justify the validity of a small

number of transformation rules which insert destructive operators

into expressions without changing their semantics.

5.4 Formalism and General Ideas

We will define a language called LISP-D (D for destructive)

which consists of a first order language of recursion equations in

a LISP-like syntax based on the signature

- {Ai: i>O} Atoms

- {Xi: i>O} Variables

- {Bi: i>0} Base functions (of arity ri).

- {Fi: O<i<n} Defined functions (of arity ki).

We will identify certain distinguished elements of the {Bi}

which will be written as

{CONS, CAR, CDR, ATOM, IF, FREE}

which are the standard list processing primitives for building

(CONS), selecting (CAR, CDR), discriminating (ATOM), the three

115

parameter conditional (IF), together with an operator (FREE) for

destroying list cells. We will use a single constructor function

(CONS). The extension to multiple constructor functions poses no

theoretical problems, though it does require a more complicated

algorithm to analyse them. Similarly we will use a single

destructive operator (FREE) and the motivation for this will be

detailed in section 5.4.2.2. We will also define a language LISP-A

which is identical to LISP-D except that the signature will not

contain any destructive base functions and hence will be purely

applicative. It is possible to give LISP-A a semantics which does

not involve stores and locations, and this is discussed in section

5.12.3.

We choose the somewhat barbarous LISP syntax, rather than a

higher level applicative language because LISP already has a well

established set of names and intuitive concepts for destructive

operators, and also because LISP is quite near to machine level

which enforces us to make explicit certain choices glossed over in

a purely applicative language. (For example the amount of sharing

present and the method used for building objects with mainly

constant data as discussed in the SUBST worked example in section

5.11.1.) We will discuss semantics in more detail later.

The aim throughout will be to treat system functions in as

general a manner as possible in order to permit defined functions

having similar properties to be treated similarly.

We now define a program scheme to be a set of equations

{(Fi X1 ... Xk) = Ui: 1<i<n}

116

where the Ui are terms respecting the arities of the {Fi} and {Bi}

and the free variables of Ui are contained in {X1
... Xki}'

We will follow standard applicative semantic practice and

associate a standard semantics with this syntax by first choosing a

domain D (including L, the undefined value, and ?, an error value)

and then associating functions bi:D
r1-4D

with the Bi in the usual

k-
manner. This then induces meanings fi:D 1-4D for the Fi by the

usual fixpoint method. However the wish to discuss destructive

operators will mean that our denotations will actually have an

extra store component (both as an argument and result) to model the

side effects of a function thus:

fi: D* X Store -> D X Store

Elements of Store will actually be triples <s1,s2,m> with si(l)

giving the CAR of a location 1, 52(1) giving its CDR and m giving

the next location to be allocated by CONS. The standard LISP-D

semantics models a subset of LISP and is given denotationally in

section 5.12.

We adopt the (slightly unorthodox) convention of writing the

objects (locations) constructed by (CONS e1 e2) as [v1 . v2] where

the ei evaluate to the vi, to avoid confusion between program text

and values.

Since the intention is that our external (applicative) world

will solely concern itself with values, not locations, our

semantics contains such a "print" semantic function which "forgets"

locations, abstracting only their values.

117

This work requires some model of sharing, and we will choose to

follow Schwarz and call the elements of these models isolation

classes. The result of an expression will be categorised as being

in a certain isolation class if certain sharing properties hold

(see section 5.7).

5.4.1 Does CONS have a side effect?

This is an interesting question, especially in the context of

the recent upsurge of interest in applicative languages, and more

so due to the fact that there are two opposing viewpoints. It

would seem to be clear that, mathematically at least, CONS merely

produces a value which is already present in the universe of

discourse and just happens to be a pair of two other values.

Similarly it is just as clear from the description of CONS as

"producing a new object whose components are its parameters" must

have a side effect on something so that we can elaborate the

details of "new".

The resolution of this apparent paradox is that CONS necessarily

has a side effect in any direct style semantics involving

locations, for example the LISP-D semantics given in section 5. 12.

However the semantics given in section 5.12.3 uses mathematical

tupling rather than locations and so has no side effect.

A closely related point to be noted is that any LISP-A program

can be considered as a program in LISP-D, however in the former

CONS is pure, and in the latter CONS has side effects, whereas

(hopefully) they should both give the same results. This paradox

is resolved by noting that the effect of the 'Print' semantic

118

function is to hide the mode of evaluation, by mapping the two

different actual results of calculation (one involves locations,

the other tuples) onto the same output form on paper. In general

this "print the same result" is the notion of equivalence we seek.

More discussion of the effect of printing can be found in section

5.9.1.

5.4.2 Destructive Operators

The intention is to introduce 'standard' destructive operators,

for example RPLACA or RPLACD instead of CONS (the reader

is referred to section 5.12), or NCONC instead of APPEND to

implement safely these operators, but with a saving of space, time

or garbage collection. However it seems that to do so directly is

more complicated than adopting the strategy given below in section

5.4.2.2. First however we will consider a little worked example.

5.4.2.1 Simple Example

Suppose we define a function F, say, by

(F Z) _ (IF (ATOM Z) (ERROR)
(CONS (G (CAR Z)) (CDR Z)))

where G is a previously defined function. Now suppose that for a

class of calls to F the actual parameter is of the form

(CONS E1 E2)

where E1 and E2 are expressions. This parameter necessarily

evaluates to give a location 1 containing, say,

[a . b]

However we know that CONS has the property that 1 does not occur

either as a variable binding, r, or within the store, s, which is

passed to CONS. Therefore, for this class of calls, we have that Z

will be bound to the only pointer to 1.

119

Clearly then, the evaluation of F also produces a new location

m, say, containing

Cc . b]

where c is the result of evaluating (G (CAR Z)). However it is

apparent that the node 1 will have no further pointers to it when F

returns and Z is no longer bound to 1. Therefore we may use a

destructive version of CONS, which is traditionally called RPLACA

(see section 5.12), and write

(F Z) (IF (ATOM Z) (ERROR)
(RPLACA Z (G (CAR Z))))

We may also view this as an optimisation of the following code,

which is simpler is some respects and will be discussed in more

detail later:

(F Z) _ (IF (ATOM Z) (ERROR)
(CONS (G (CAR Z))

(PROG1 (CDR Z) (FREE Z))))

where FREE is the function which requires a CONS location for a

parameter and returns it to the CONS free list.

Note that our new destructive code relies heavily on

call-by-value semantics (so that (CAR Z) is evaluated before the

RPLACA) and left-to-right evaluation (in the use of PROG1).

The arguments presented here will be formalised by the rest of

this chapter.

5.4.2.2 The choice of destructive operators

Here I wish to deviate from what seems to be the standard

technique of introducing many destructive operators, and instead

merely introduce a single destructive operator just as we

introduced a single constructor (CONS). The intention is to factor

120

the problems of actually inserting destructive operators into two

parts, by separating the concept of detecting unused nodes from

that of re-allocating them.

Firstly introduce a single destructive operator

(FREE n)

where n is a term we will require to evaluate to a CONS node. The

intended interpretation of FREE is to supply the information "This

node is available for re-use" to the run-time system. However it
will be necessary for us to define its semantics somewhat

differently in the standard interpretation in order to ensure that

it is only used in situations where this is indeed the case. In

fact the standard semantics will merely mark a cell as having been

FREE'd and produce an error upon further reference to the contents

(as opposed to location) of that cell.

Secondly, we will regard all the other destructive operators as

compound forms of FREE. The idea is that we shall regard the

conversion of FREE into RPLACA, NCONC etc. as merely one of local

allocation, which is (currently at least) conceptually much simpler

and more in the province of traditional compiler analysis. For

example, given that we are using RPLACD to optimise store re-use

rather than for its side effects, we can define

(RPLACD x y) _ (DCONS x (CAR x) y)

where

(DCONS x xc y) _ (PROG2 (FREE x) (CONS xc y))

Here PROG2 represents sequencing (see section 5.4.3), and returns

the value of its second term. In fact, our semantics will provide

121

exactly the same result2 for the two definitions provided the first

parameter to RPLACD is never referenced again (excepting via the

location returned by RPLACD). In an actual implementation, we

would of course define FREE to return CONS nodes to the free list

rather than the approach taken in section 5.12 of simply marking

the node as unusable and causing an error when such a node is

referred to. This definition was adopted to provide a means to

ensure that our program respects the given (applicative) semantics.

This two level scheme corresponds to the factorisation of the

correctness proof, which is otherwise much more involved.

It is important to note that since all destructive operators can

be built from RPLACA and RPLACD, the above definition allows us to

define any destructive operator in terms of FREE.

Another advantage of using FREE as our destructive operator is

that we can always insert it to release a CONS node we can show to

be unused. This is not the case for RPLACA/D since we must not

only find such a CONS node but also an occurrence of CONS to re-use

it in.

5.4.3 Order of evaluation

Note that our (applicative) LISP-A is independent of order of

evaluation provided we treat the IF form correctly. This is

because changing the Seq form which handles the case of multiple

parameters to a single function then can only give rise to a

2modulo changes of locations which are not directly visible to

the external world

122

permutation of addresses in Loc, and the act of printing "forgets"

the actual locations used.

However in LISP-D we have to specify an order of evaluation in

order to define the semantics, due to the fact that we have

introduced a function FREE which has a side-effect on Store. We

here will (somewhat arbitrarily) choose left to right evaluation by

default. This is the purpose of Seq in the semantics.

Thus we may see that, when using left to right evaluation

EQ(PROG2 (FREE X) (CAR X))D(r,s) = (?,s')

whereas

EQ(PROG1 (CAR X) (FREE X))D(r,s) = (A1,s")

in a store s and an environment r where X is bound to

[A1 . A2] = EQ(CONS A
1

A2)I1.

PROG1 and PROG2 are the natural projections which return (the value

of) respectively their first or second parameter. The second term

above may also be considered to be

E'Q(PROG2 (FREE X) (CAR X))D(r,s)

evaluated using a right to left strategy, E'.

Note that we here consider PROG1 and PROG2 as pure functions,

defined by

(PROG1 X Y) = X

(PROG2 X Y) = Y,

and treat the sequencing normally associated with them as part of

the semantics of constructing an argument tuple, thus making this

sequencing explicit for all functions.

A point worth examining in a little more detail is the

possibility of exploiting the flexibility inherent in the

123

independence of LISP-A semantics with respect to order of

evaluation. We could then produce a LISP-D version whose

evaluation strategy is effectively to evaluate the parameters to a

function in such a manner as to maximise the re-use of store. This

is worthy of further research and not considered here.

5.4.4 Occurrences and other Basic Ideas

This section introduces the idea of labelling a particular

occurrence (see Donzeau-Gouge [12]) of a term within an expression.

We need this to talk about program transformations to insert

destructive operators. It is also required to enable us to model

denotationally the effect of execution ordering. In order to

discuss the effect of sharing we define the idea of active terms in

an expression (these are the only ones which can contribute to the

result).

We define the notion of occurrence of a term in an expression.

Occurrences are tuples, written <p1 ... Pn> with <p;q> denoting the

tuple whose first element is p and the remainder given by the tuple

q. We will write @ for infixed append on tuples. We will say q is

an initial segment of p if p = q @ r for some r. The occurrence

<p1...Pn> in an expression e is defined recursively in the

following manner.

occ(<>, [Eel]) = e

occ(<p;q>, [[(G e1 ... ek)I]) = occ(q,Q ep]]) if 1<p<k

occ(p,Qe]]) is otherwise not defined

This defines the set of valid occurrences and their corresponding

terms in an expression. Now define an ordering on Occ, the set of

valid occurrences within an expression, by the standard

124

lexicographic post-ordering on tuples given by

x < <>

<a; x> < <b; y> if a < b or (a = b and x < y)

Note that this also specifies our left to right execution ordering

except for the case of the of the IF form, which differs because

the 2nd and 3rd sons are exclusively evaluated rather than being

sequentially executed. We use the post ordering to account for the

fact our semantics uses the LISP style depth-first (call-by-value)

evaluation order. The concept of execution ordering is defined to

be that modification of the lexicographic ordering to consider the

IF form correctly. We define p to be executed before q, written

p << q, if p preceeds q in the above lexicographic ordering and p

and q are not (sub-terms of) different consequent branches of any

conditional. Formally, p << q if p < q and for no common initial

segment, r, of p and q do we have

occ(r,U) _ (IF e1 e2 e3) with

p = r @ <2> @ 1 and

q = r@<3>@m.

This defines << to be a partial order. We must take care with this

definition of execution ordering - it neither implies that

evaluation of p inevitably precedes that of q, nor that evaluation

of q inevitably follows that of p, even for terminating

evaluations. The set of execution paths through an expression U is

the set of maximal chains of occurrences with respect to the

execution ordering on occurrences.

For an occurrence p we define the set of active occurrences at p

in U by

Active(p,U) {p} V Uncles(p,U)

125

Uncles(<>, U) _ {}

Uncles(q @ <i>, U) = Uncles(q,U) V Brothers(q,t,U)

Brothers(q, i, U) = {} if f=IF & (i=2 or i=3)

where Q(f e1

{q <j>: 1<j<r & jai}

... er)13 = occ(q,U).
otherwise

The active occurrences wrt p in U are the brothers of initial

segments of p, together with p itself. For example, if p labels

the occurrence of (CAR X) in

(FUN (CDR W)

(IF (P X) (CONS (CAR X) Y) (FOO Y))
(ATOM Z))

then the active occurrences with repect to p in this term are

(labels of) the terms

(CDR W), (CAR X), Y, (ATOM Z).

The reason for the importance of active occurrences is that any

CONS node associated with a variable Xi must appear in the result

of an active occurrence if it is to form part of the result of U,

given that execution passes through p. That this is so is a

consequence of the fact that in our first order applicative

language CONS nodes returned as a result of functions must either

be new CONS nodes created by the function or appear as part of one

of its actual parameters. Inductively this means that CONS nodes

associated with the Xi can only occur in the result of U if they

occur as part of the result of an active occurrence. The special

treatment of the conditional is merely an optimisation based on the

fact that the result of a conditional can only involve CONS nodes

occurring in the current consequent. It is helpful to observe that

126

q being active at p implies p«q or q« p.

For transformations we will need the concept of substituting one

term for another at a given occurrence within an expression. This

will be done by

subst[p,U, QeDI

which gives a term identical to U except that the (valid)

occurrence p in U is replaced with e. We will refer to this as

replacing occ(p,U) by e.

5.5 The Extent of Possible Use of Arguments

Following Schwarz's terminology, though not his definitions, we

will now define two abstract interpretations called Euses and

Eexam.
These will respectively describe (upper bounds on) the

extent to which a term may build in structure from its parameters,

and examine parts of its parameters in order to produce a result.

Archetypal examples of these two notions are respectively the

second and first positional parameters in the three parameter

conditional

(IF condition trueresult falseresult).

We introduce a semantic function to describe which CONS nodes,

present in structure bound to variables, are built into the the

result of the real computation before introducing (superset)

approximations to these. Let v be a value and s a store, then the

set of CONS nodes present in the structure of v is given by

Nodes(v,s) where Nodes(v,s) is the smallest set of locations

satisfying

v E Loc * v E Nodes(v,s)

n E Nodes(v,s) & s1(n) E Loc s1(n) E Nodes(v,s)

n E Nodes(v,s) & s2(n) E Loc s2(n) E Nodes(v,s)

127

where <s1,s21m> = s. Therefore, we can now define BuiltIn Q ell(r,s)

to be the set of CONS nodes present in structure bound to variables

which will be incorporated into the result of evaluating e in

environment r with store s. It is given by

Ui Nodes(rQXill,s) n Nodes(EQeII(r,s)).

Now we wish to have some algebraic formulation of the concept of

CAR/CDR selected sub-structure of parameters which may be traversed

at run time. We will define the set of paths to be that produced

by the grammar

{h,t}* Var {h,t}*

where h (head) and t (tail) are regarded as free symbols, and Var

the set of variables. The intent is that the h's and is before

the variable indicate routes to the variable, and those after show

how the variable is selected upon with CAR and CDR. Thus for

example (see the semantics below) we would have that
(CONS (CAR (CDR Y)) (CONS (CAR Y) Z))

has paths {h.Y.t.h, t.h.Y.h, t.t.Z}.

Of course, we will only be able to derive an approximation to

the set of paths which will actually exist at run time, but as

usual in abstract interpretation (see chapter 2) the paths we infer

will be a superset of those which can occur at run time.

In the following X will range over Var. The evaluations are

128

EUses EA11 = {}

EUses EX]] _ {X}

E

Euses I(ATOM e) 11 = {}

Euses Q(F e 1 ... ek)I] = compose[Fuses, <Euses l eiI]>]
Fuses

EusesIU]J where (F X1 ... Xk) = U

where

8D (S) {x: h.x E S} U {X.x.h: X.x E S)

TL(S) {x: t.x E S} U {X.x.t: x.x E S}

h.S _ {h.x: x E S}

t.S = {t.x: x E S}

compose[S, <Ti>] = U {compl[s,<Ti>]: s E S}

compl[x.Xi.y, <t1 ... tk>] = x.comp2[y, til

comp2[h.y, t] = comp2[y, HD(t)]

comp2[t.y, t] = comp2[y, TL(t)]

comp2[(), tl = t

These provide recursive definitions for the Fuses in the domain of

sets of paths ordered by inclusion, with least element {}. We must

show that the system functions given above abstract the standard

semantics in the sense of chapter 2. This is merely a matter of

ensuring the consistency of the Euses evaluation with the standard

evaluation by showing that every possibility of the real

calculation is modelled in the abstract system.

Note that the general theory of abstract interpretation

establishes this correctness result for user defined functions,

given the corresponding correctness proof for the base functions.

We show the consistency for the IF function above. Suppose that

Uses E(CAR e) 11 = HD(Euseslel])
EUses I(CDR e) I] = TL(Euseslell)
Euses1(CONS e1 e2)IJ

= h.Eusesleill U t.Eusesle2l]

Euse.%UIF e1 e2 e3)I1 = Eusesle2]] U Eusesle3]]

we have a term Q(IF e1 e2 e3)Il, then Euses says that each term

129

built into the result comes from the evaluation of e2 or e3. This

is clearly the case as the standard semantics provide no way for

any CONS node occurring in the result of e1 to occur in the result

of IF unless it also occurs in the result of e2 or e3. However we

might note that our approximation, although safe, is not accurate

since in Q(IF True e2 e3)I1 CONS nodes occuring in e3 cannot be

incorporated in the result of the IF unless they also occur in e2.

More detailed discussion of the correctness of the E uses

interpretation will be given after the introduction of Eexam'

The examines interpretation is similarly defined to take account

of nodes passed through for the purpose of determining the result

of an expression. For example in

[[(IF (ATOM (CAR X)) (CDR Y) Z)I1

the CONS nodes referred to by X and Y will need their contents to

be intact in order that the standard semantics give the correct

result for this evaluation. We will later seek ways to return a

node to a CONS free-list and this will be viewed as destroying its

contents, but otherwise leaving it alone. The semantic equations

for the examines interpretation, Eexam' are given below. We use

the Euses interpretation as the work-horse but require a separate

interpretation to ensure that the IF form and call-by-value are

treated correctly.

130

E exarn1AI = {}

EexarnIXI _ {X}

EexarAT(CAR e)Il =

EexarAQ (CDR e) l =

Eexa1Q(ATOM e) 11 = Eexamlel

EexamQe]l U HD(EusesTell)

Eexam[Lell U TL(Euses Tell)

EexarAQ (CONS e1 e2)11 = Eexam
Tell U EexamTe2l]

EexarA1(IF el e2 e3)Il = EexamTell] U Eexamle2l] U EexamLe3Il
U EexarnQ(F el ... ek)Il = <EusesileiIl>]

Fexani
U1<i<k Eexamileill

= EexamLUl] where (F X1 Xk) = U

These equations again give a fixpoint equation for the meanings,

Fexam
1 , of the Fi, in the domain of sets of paths with {} as the

bottom element.

It will be useful to separate out the concept of arguments (ie

paths of the form X.x) being used or examined from the general

schemes given above which described how arguments and new CONS

nodes constructed in defining equations are used or examined. Thus

we will define

USED-L[e,X7 = {y.z: x.X.y E Euseslell, z C {h,t}*}
USED-R[e,X] _ {y: x.X.y.z E Eexam Qell, for some z Cl.

In the case of USED-L we include all CONS nodes which can be

reached from a path given by the E uses interpretation. We do this

on the grounds that although a function may only return a single

structure, the calling environment may then extract any sub-

structure. By similar reasoning we wish to include in USED-R the

selector path leading to our desired node, however we do not wish

to include the node itself (this is the purpose of z 0), since

the contents of such a node are not extracted unless it is

described elsewhere in USED-R. For example in

e = Q(CONS (ATOM (CAR X)) (CDR Y))]]

131

we have that

USED-L[e,X] {}

USED-R[e,X]

USED-L[e,Y]
+t t. [h, t}

USED-R[e,Y] = {()}

We will further say the path X.y.z is USED-L in a term, e, if there

is a path x.X.y in Euses Tell. Similarly we will say X.y is USED-R

in e if there is a path x.X.y.z (z()) in Eexam Q e11. These terms

are taken from the classical concepts of L-mode referring to a

location and R-mode referring to its contents.

5.5.1 Correctness of the Uses and Examines Interpretations

The statement of correctness of the uses interpretation is that

no CONS node accessible from an environment through the store can

possibly occur in the result of an expression (evaluated in this

environment and store) unless it is represented in E
uses

Tell. In

other words, recalling that Nodes(v,s) is the set of CONS nodes

accessible from a value v, then what we want is that for all r, s,

and e;

BuiltInEe11(r,s) = Ui Nodes(rQXill,s) n Nodes(EQel1(r,s))

is contained in

Ui Rep(riXil1, s, USED-L(Qe11,1IXi:0))

where Rep(v,s,P) defined similarly to Nodes(v,s) but restricting

our attention only to nodes obtained by following CAR/CDR chains

given by the paths in P. It is formally defined by

Rep(v,s,P) = U {Rep2(v,s,y): y E P}

132

Rep2(v,s,y) = Rep3(v,s,y) if v E Loc

{} otherwise

Rep3(v,s,y) = Rep2(s1(v),s,x) if y=h.x

Rep2(s2(v),s,x) if y=t.x

{v} otherwise

where s = <s1,s2,1>.

Note that Nodes(v,s) = Rep(v,s,{h,t}).

The statement of correctness of the examines interpretation is

that if we FREE all CONS nodes specified by variables in a term e,

which do not correspond to any member of the Eexam Qell then we make

no difference to the evaluation of e. More formally

EQe]J(r,s) = EQe]J(r,s')

where s' is a version of s = <s1,s2,m> modified by replacing s1(l)

and s2(l) by '?', the error value, for all locations 1 in

Ui Nodes(rQXill,s) - Ui Rep(rQXi11, s, USED-R(Qe]],QXi11)).

5.6 Usage counts

Usage counts are a method of associating integers with every

CONS node to count the number of pointers to that node. The

intention is that upon creation of a new pointer to a CONS node, we

increment the usage count associated with that node. Similarly

upon destroying a pointer to a node, we decrement the usage count,

the node being returned to free storage upon the counter being

decremented to zero.

In general reference counts provide a sufficient condition for

returning a node to free space, however the existence of circular

or re-entrant structures created by destructive operators could

133

mean that a set of nodes can no longer be referred to in spite of

their reference counts all being non-zero. In (current)

applicative languages we cannot create circularities in this

manner, and a usage count provides a necessary and sufficient

condition for the re-use of store.

In our semantic model (section 5.12) it is possible to define

usage counts for CONS nodes in the following manner

U: Loc X Store X VarEnv* -4 Number

U(l,s,r*) = U1(l,s) + U2(l,s) + UV(l,r*)

where

U1(l,<s1,s2,m>) = Card{x E L: s1(x) = 1}

U2(l,<s1,s2,m>) = Card{x E L: s2(x) = 1}

UV(l,r*) _ 2 Card{X E Var: rcXI] = l}

rEr*
L U {Nodes(rcXf,s): r E r*, X E Var}

The only problem in this formulation is that our semantics as given

in section 5.12 only allows us to access the current environment

and provides no method by which we can access the set of
*

environments which are currently dynamically active (r in the

above). The simple solution to this problem is to change the

environment syntactic category (Env) to include a component which

contains environments which are active but inaccessible from the

current function. This is not done here to permit the semantics to

be as simple as possible.

An alternative to the above method is to include a usage count

component in the store, as shown in section 5.12.2.1.

We are careful to break down the usage count into its components

134

given by other CONS nodes (U1,U2), and those given by variables UV.

We emphasise this because variables represent a disciplined form of

sharing (being of limited scope), and also because as noted in

section 5.7.4 all sharing in structures originates from multiple

uses of variables. This aspect of usage counts makes our model a

little more difficult to handle than Schwarz's rewrite model [451

which only uses variables to indicate substitutions, and hence

requires no variable binding component in the usage count formulae.

However, I believe that the extra benefits of denotational style

greatly outweigh the disadvantages.

5.7 Isolation classes: abstract interpretations modelling usage

counts

In order to insert destructive operators, we must have some

notion of how shared an object might be. Isolation classes provide

this notion.

We will first introduce a simple isolation class one, taken from

Schwarz. The meaning of saying an expression, e say, is in

(isolation) class one is that the result of e should either be a

non-CONS object, or should have the property that the usage count

of the CONS node given by e is 1 (excepting irrelevant paths - see

section 5.7.6).

For inductive style reasoning we will need rather more

expressive concepts than merely being able to say that a result of

a term is isolated at the top level. For example it is desirable

to express the idea that a whole structure has no external

pointers. To this end we introduce a set of isolation classes.

135

For us the set of isolation classes are the set of subsets of

{h,t}*, where {h,t} gives the set of finite strings of h's and

t's. We will call the elements of isolation classes paths. To tie

this in with the idea given above, we will say that a value, v, in

store, s, is in isolation class I, if all members of Rep(v,s,I) are

of isolation class one. This is just another way of saying that

for all paths x in I, when v.x exists it is in isolation class one.

Note that we can recover the isolation class one given above as the

isolation class {()} where () denotes the empty string. Henceforth

we will use one for either. We will give names to some other

isolation classes

arb = {}

ti = {h,t}
onelist = {t}

onehlst = {h}

These will enable us to discuss (arb) objects with no restrictions,

(ti) objects totally unshared from other objects and (onelist and

onehlst) objects representing lists in CAR or CDR directions with

unshared tails.

The isolation classes that we use will be consistent in the

following sense: if x.y is a member of I then x is a member of I.

We will find no use for CONS nodes that have a single pointer to

them, but that pointer comes from a CONS node with a high usage

count.

It is clear that the run-time behaviour described by the above

isolation classes cannot be exactly modelled at compile-time due to

problems of computability (we can simulate numbers as linear lists

136

within the model). Therefore we will be interested in deriving

methods which give sufficiency conditions to show that particular

nodes in the run-time state will satisfy these requirements. The

works of Cousot & Cousot [8, 9] give us a very general model for

this which is discussed in detail in chapter 2. One possible

candidate for consideration is to use the sets of objects which can

be described by regular trees [49] for the actual isolation class

models we can handle at compile time. Regular trees are a

generalisation of regular expressions, and have many similar

computable properties.

We will use C as an ordering on isolation classes. It is

defined by I Q J if and only if I D J. Our least element will be

ti.

5.7.1 The Isolation Ordering

The problem of "which way up" to arrange our abstract value

domain of isolation classes is rather a tricky one, especially so

due to the fact that we have simultaneously two different concepts

of ordering which often indicate their presence by suggesting that

the whole lattice should be upside down. For example we can choose

one of the two following (dual) configurations:

arb ti

one onelist onehlst

onelist onehlst one

ti arb

It is very tempting (and fatal) to follow Schwarz and opt for

the second structure which orders isolation classes by set

137

inclusion. The reason why this is wrong is concerned with deriving

fixpoint expressions for our sharing structure in that we will want

a recursive function definition to start off from the premise that

its result is isolated, and change this if it is contradicted by

the definition. For example

(F X) (IF (P X) (F (Q X))
(CONS X NIL))

never returns a shared CONS node. The first model domain given

above has the property that we can use ti to start our fixpoint

iteration and thus derive a LEAST fixpoint. However if we use the

second model, we will find that the least fixpoint of such a

structure would produce arb for the isolation property of F, due to

the fact that arb would be the initial value for the fixpoint

iteration and that the IF function must be pessimistic about

sharing and satisfy if(x,arb,y) = arb (see section 5.7.2). The

alternative solution of using a MAXIMAL fixpoint approach is valid

but suffers from the great disadvantage of being much harder to

prove correct, since our standard semantics uses minimal fixpoints.

A connected matter is the inclusion of the non-CONS value sets

Atom and {?} in all isolation classes (that this is so is a

consequence of Rep(v,s,I) being empty if v not a location). The

reasoning is similar to that given in the above in that we might

wish to argue that whenever a function returns a CONS result then

this node is isolated. Certainly we do not wish to consider a

function as possibly returning a shared node merely because we

cannot show it can never result in a run time error (? in the

semantics), similarly list processing functions often have to

138

return NIL for some inputs, and we will want such functions to

return isolated results. It is much simpler, both for the

development and proof, to consider non-CONS items as being of class

one. What the class one really means, then, is that the object

described cannot be a shared CONS node, and we gain efficiency

(more results for little analysis) by lumping together (in one) all

objects that are not shared CONS nodes. Furthermore this

formulation shows that the above definition of one is natural,

rather than being ad hoc as at first appearance.

5.7.2 Isolation properties of functions

In order to use the isolation classes just introduced, we must

define how they behave in expressions. To this end we will seek

non-standard interpretations Fisol describing the isolation class

of the result of a function in terms of the classes of its

parameters. We define the isolation class interpretation for a

given base function, B, say, following the Cousots' formulation

detailed in chapter 2. Let Isol be our set of isolation classes

and

Abs: Val --4 Isol

give the isolation class of a value. Then we define the isolation

semantics Bisol by

Bisol(x1
... xk) = u {Abs[b(y1 ... yk)]: Abs(yi) = xi}

where b is the standard semantics of B. That is, Bisol, given by

Bisol(x1 ... xk), is the least upper bound (in the isolation class

ordering) of the isolation classes whose values represented include

all the elements which can be constructed by b(y1 ... yk) as the

tuple (y,) ranges over all values represented by the isolation
1

139

class tuple (xi).

Henceforth we will not refer to the standard semantics again and

accordingly use b instead of gisol (and similarly for other

functions). Thus the above defines

cons(I,J) {() } U h.I U t.j
car(I) _ {x: h.x E I}
cdr(I) = {x: t.x I}
if(I,J,K) = J n K

atom(I) = ti.

For example

cons(arb, onelist) = onelist.

We will now formalise this introduction into an interpretation

by defining a new abstract interpretation,
Eisol'

Firstly,

however, we will include an isolation environment which associates

variables (parameters) to isolation classes, defined by

IsolEnv = Var -4 Isol.

This enables us to define functions Fisol for user functions.

Unfortunately the semantics given below is only correct for terms

in which variables only occur at most once. This will be corrected

in section 5.7.5 after we find the difficulties in the 'obvious'

interpretation. The functionality of Eisol is now

Eisol:
Exp -4 IsolEnv --4 Isol

with definitions

140

iso1 QAi I1R = ti
Eisol tX i I1R = R EX .

1

isolQ(CAR e)IJR = car(EisolellR)
Eiso1Q(CDR e)IJR _ cdr(EisolTe11R)

EisolQ(CONS e1 e2)IJR = cons(EisolIe111R, Eiso1Ee2I1R)

Eisol 1I (ATOM e)1)R ti
iso1Q(IF e1 e2 e3)I1R = Eisolle21JR u EisolIIe3I1R

Eiso1 II (F e) I1R = Fisol (Eisol I I1R ... Eisol IekI1R)
Fisol

= Xx*.EisolTU11()IX*.x
where (F X*) = U.

This provides a fixpoint definition of the isolation class of a

function in terms of the isolation classes of its parameters and

its textual definition. We use the textual definition for user

functions rather than the approach taken for system functions,

since computability restrictions imply the inability to calculate

the standard denotation of a user function at compile-time.

However, as indicated, the above semantics is wrong because

variables might occur twice and produce the problems given in the

next section.

5.7.3 The problems of variables

Consider the two program fragments:

T(F X) = (G X X);

(F (CONS A
1

A2))I1

T (G (CONS A
1

A2) (CONS A
1

A2)) I1

with G defined elsewhere.

(1)

(2)

In (2) G may freely destroy the CONS node which constitutes the,

top-level of either (or both) of its parameters. However, in (1) G

may only destroy the CONS node corresponding to one of its

parameters, and even then only if (and when) it has finished using

141

the other one. Therefore we find that our abstract interpretation

cannot be referentially transparent due to the fact that a

location-CONS based semantics cannot of itself be referentially

transparent (although the external world view can be - provided

that we ensure that the exact locations used in Loc cannot be

distinguished by the program or the printing routines).

5.7.4 The treatment of variables

The problem of variables not fitting into the standard framework

of abstract interpretation is due to the non-referential

transparency of a location-CONS based semantics. However as we

will see, it is possible to use the abstract interpretation idea by

treating variables rather cautiously and using an environment which

takes account of multiple uses of a single variable. This will be

discussed in section 5.7.5. It is worth spending some time

considering variables for the reason that variables are the cause

of all sharing in a program3 in the sense that, if any two

3 To ensure that variables are the only possible cause of sharing it is necessary to put some (mild) restriction on the objects we

are willing to accept as system functions. These restrictions are
not central to the work on introducing destructive operators, but
are given merely for the correctness of the view that variables
cause all sharing. A small example will show that sharing may
arise without using variables if some restriction is not placed on
system functions. Suppose we had a system function CONSXX whose
semantics were the same as those given by the user function

(CONSXX Y) _ (CONS Y Y)

We would then be able to produce shared substructure without using
variables (system functions are defined by their effect rather than
by their textual definition). Thus, to make the above claim
watertight, it is necessary to include an assumption to the effect
that all system functions have the property that every CONS node
existing before the call to that function does not have its usage
count increased by the call.

142

substructures share then at one time they must have been associated

with the same variable. That this is the case can be seen by

observing that our language only permits a function to return a

(possibly structured) single result. Hence the only way to produce

two references to the same structure (not copies), is to associate

the result of a function with a variable, and then use the variable

two or more times.

Furthermore, variables represent a much more disciplined form of

sharing than does arbitrary sharing of CONS nodes by different

substructures. Variables are of limited scope and so it is always

possible to identify points at which they release their grip on

list structure. Moreover the information on uses of a variable is

explicitly available in the textual form of the program, whereas

that fQr CONS nodes has to be deduced from a rather more detailed

analysis of program structure.

5.7.5 The details of variable sharing

Returning to the problem raised in section 5.7.3 in which X is

effectively a where variable, we will develop the following

solution, which makes use of the fact that the isolation properties

of a variable depend on the other occurrences of that variable.

We will explain our method with reference to a simple example:

(G Y Z) U

(F X) _ (G (CAR X) X)

where U is a term not further specified. We will further suppose

that for some class of calls to F we have that the parameter X will

be of class ti. That is, the isolation environment, R, passed to F

143

will have RQXI1 = ti. Now we will consider the implied isolation

properties of Y and Z for the calls of G from the above calls to F.

Firstly, the isolation interpretation for CAR has car(ti) = ti

however, we see that X.h (which is the path for (CAR X)) is also

USED-L by X (the second parameter to G), and thus the sharing

properties of the two occurrences of X should really modify the

isolation class for (CAR X) to

Eisolt(CAR X)I] R = arb.

(We cannot do any better than this because every node of the

structure Y accessible by G in U can also be accessed by Z).

Similarly when we look at the second argument, Z, of G and its

corresponding actual parameter, X, we see that it is indeed shared

(with Y), but only paths of the form X.h.y have this property.

Indeed we still have that the paths X.h.z, and X.t.y are unshared

for any y, z in {h,t} (class ti precludes sharing within X).

Hence we could say that

Eiso1EXI1 R = ti - h.ti = cons(arb,ti).

If our choice of isolation classes was {arb, one, onelist, onehlst,

ti} the nearest to this value we can represent is onelist.

As the above example indicates the abstract evaluation function

Eisol
for variables will have to take into account the number of

times and in which contexts a variable occurs. Specifically we

want something like

Eisol[EXiI R = RQXiII - Shared(p,U)

where p labels the particular occurrence of Xi in the term U which

is the (whole) right hand side of the definition in which p occurs.

144

Shared(p,U) will indicate which portions of X might be shared. The

first apparent objection to this definition is that it is not

denotational in that the meaning of a term containing variables is

not just dependent on its sub-terms but also on its enclosing

expression. We will counter this objection by changing Eisol to be

of higher order, and passing the enclosing expression around

between all recursive uses, thus making it available when required.

Similarly the occurrence p used above can be carried around

explicitly as a parameter to Eisol - no magic is involved. This

technique of making functions higher order to have terms available

when required is standard in denotational semantics and for further

information the reader is directed to Mike Gordon's book on

semantics [16], and in particular to chapter 11 where he examines

the subject of Algol-60 OWN variables which require 'position

dependent denotations' and receive very similar semantic treatment.

Thus we are led to introduce a semantic function 'Deisolate'

which modifies isolation environments according to the possible

sharing induced by multiple uses of a particular variable. It is

this trick which enables us to model the non-referential

transparency of our language in a direct manner. I would claim

that the invention of the following denotational formulation is one

of the major developments of this chapter over the work of Schwarz.

145

isolTA iI1R p U ti
isolQXiI1R p U * RQX{Il

iso1 Q (CAR e) IJR p U =

car(EisolTel(Deisolate
R p 1 U) p@<1> U)

iso1 Q (CDR e)]]R p U =

cdr(EisolLeJ3(Deisolate R p 1 U) p@<l> U)

isolQ(CONS e1 e2)IIR p U =

cons(Eisol Qellj(Deisolate R p 1 U) p@<1> U,

Eisolle2I1(Deisolate R p 2 U) p@<2> U)

Eiso1 Q (ATOM e)]]R p U = ti
EisolQ(IF e1 e2 e3)I1R p U =

Eiso1Te2Il(Deisolate R p 2 U) p@<2> U U

EisolLe3]](Deisolate R P 3 U) P@<3> U

Eisol Q (F e*) IJR p U =

Fisol(Eisoluel11(Deisolate
R p 1 U) p@<1> U ...

EisolleklJ(Deisolate R p k U) p@<k> U)
F1so1

= Xx Eiso1QU1(.X*.x*) <> QU]1

where (F X*) = U.

where

Deisolate R p i U _ R[r1 .., rk/X1 ... Xk]

where ri = Irrelevant(R QXJIl,p@<i>,U,Xi)

and

Irrelevant(I,p,U,X) _

I - U {USED-L[occ(q,U),X]: q E Active(p,U)-{p}}

- U {USED-R[occ(q,U),X]: q E Active(p,U)-{p}, q>>p}.

We separate the notion of Irrelevant so that it can be used later.

The name Irrelevant is used because we only consider X as being

isolated along paths which are irrelevant to the side computations

of occurrence p. This definition of Eisol is essentially the same

as before and the only serious change (apart from the ubiquitous

introduction of U and p) is to change the isolation environment to

account for other uses of a variable. Given a variable, X say, we

reduce its isolation properties for sub-expressions of a given term

146

by treating as shared all paths of X which can possibly affect the

computation (USED-R) or be built into the result (USED-L). We will

now justify the choice of occurrences, q, ranged over in the above

definition of R'. Now, as noted in the definition of active

occurrences, given we are evaluating a term at occurrence p within

expression U, the only way for a CONS node which forms part of one

of the variables to appear in the result of U, is by it appearing

in the result of an active occurrence. We exclude p itself since

the recursive use of Eisol will deal with it. Therefore we infer

that we should treat as shared any node that might occur in the

result of any active occurrence except p itself. However it is

worth noting that the union of USED-L terms can be restricted to

Brothers(p,i,U), if we desire, since brothers of initial segments

of p will have already been considered by the uses of Deisolate on

the terms corresponding to those initial segments in the recursive

application of Eisol'

Similarly, we now consider in which circumstances the examining

of the contents of a CONS node can require us to treat the node as

shared. The point to note is that passing a parameter to a

function with the information that it lies within a certain

isolation class is a invitation for the corresponding structure to

be destroyed. Hence we must ensure that the corresponding CONS

nodes are not USED-R after the call of the (possibly destructive)

function. We have set up our E
exam

interpretation in such a manner

that if a path X.y is USED-R in a subterm of a given term then it
is USED-R in the given term. Therefore the required condition is

147

that paths should be treated as shared if they are USED-R at any

active occurrence q wrt p which can follow the execution of p. Due

to our definition of execution ordering this condition can be

simply expressed as q» p. Again it would be equivalent for the

formula for Deisolate to merely consider the Brothers of p rather

than all active occurrences since the recursive formulation of

Eisol ensures that an earlier Deisolate will have considered them.

5.7.6 Irrelevant paths

One point which should be made now, is that, contrary to what we

suggested in the naive introduction to FREE, FREE can never operate

on a CONS node of usage count zero since the structure being FREE'd

has to be referenced to be passed as a parameter. For example,

consider evaluating

(F (CONS e1 e2))

in
(F X) _ (G X)
(G Y) = U

for some term U. We would like to argue that Y is of isolation

class one within U in this invocation of G via F. However during

the evaluation of U the usage count of the node referred to by Y is

at least 2 (X and Y each refer to it). So what we see ourselves as

doing, then, is to propagate backward the (notional) unbinding of

variables to the point at which they can last affect the

computation. This situation not only affects variable bindings,

but can also be exhibited with CONS structure. Consider

(F X) (H1 (H2 (CAR X)) (CDR X))

and suppose that the parameter X to F can be shown to be ti. We

wish to argue that the parameter to H2 is isolated but we cannot

148

argue that X is used for the last time at the call to H2, because

it is also required for the later occurrence of (CAR X) in H1.

What we can say is that the paths X.h.y become irrelevant after

calling H2 and so H2 can destroy objects on those paths. Similarly

all paths X.y become irrelevant upon completing the call to H1.

Since we do not want to destroy structure shared by the function

calling F we had better insist that structure can only be

irrelevant if it corresponds to a path within the isolation class

for X.

This notion of irrelevance has been described previously. We

will say that a path X.y for a variable X of isolation class I is

irrelevant at an occurrence p within a term U if y is a member of
Irrelevant(I,p,U,X).

Note well that this backwards propagation of unbinding information

is dependent on the order of evaluation (section 5.4.3), and

provides another reason for the strict semantic formalism.

5.8 Useful Transformations

This section introduces the transformations which we will use in

our simple examples. However, it is claimed that they are also

useful for larger programs, and accurately capture typical uses of

destructive operators when inserted by hand.

5.8.1 Transformations to insert FREE

We will now define the transformations of the code of a

definition of F, say, given by

(F X1 ... Xk) = U.

In the following we will assume that X1 has been shown to be always

119

bound to a value in a particular non-arb isolation class, (for

example one), for each of the calls of F under consideration.

Similar transformations apply to the other Xi.

Our first transformation replaces occurrence p given by

occ(p,U) _ (G e1 ... ek)

with the term

(G e1 ... er-1 (PROG1 er (FREE X1)) er+1 "' ek)

which FREE's X1 after er, for any non-IF function G, under the

conditions that

- X1 is not USED-L at any active occurrence (wrt p@<r>).

- X1 is not USED-R at any active occurrence q (wrt p@<r>)

such that q >> p@<r>, q p@<r>.

The first condition is there to ensure that (the possible location

referred to by) X1 cannot occur in the result of U. The fact that

X1 is not arb ensures that it is not shared (at top level) with any

other variable which does occur in the result. The second ensures

that the contents of X1 are not corrupted by the FREE in the case

that, say, (CAR X1) is tested later in the execution of U. Note

that we do not need to worry about X1 being USED-R before or at

p@<r> since such references to the contents of X1 have already made

their effect on the computation. Note that these conditions are

equivalent to the path X.() for X being Irrelevant at p@<r> in U,

with the added restriction that X.() being not USED-L in

occ(p@<r>,U).

5.8.2 Transformations for IF

The above transformation is valid if G = IF, but we can find a

stronger transformation which takes advantage of the special

150

properties of the conditional. Suppose that there is a occurrence

p in U given by

occ(p,U) = (IF e1 e2 e3)

then we can replace occ(p,U) in U by the term

(IF e1 (PROG2 (FREE X1) e2) e3)

which FREE's X1 before e2, under the following conditions:

- X1 is not USED-L at any active occurrence (wrt p@<2>).

- X1 is not USED-R at any active occurrence q (wrt p@<2>)

such that q >> p@<2>.

Note that these are essentially the same conditions that allow us

to replace

Q (G e 1 e2) I]

by

Q (G (PROG1 e 1 (FREE X 1)) e2) II.

This represents the fact that the conditional can only return

results via the selected consequent. We have to move the (FREE X1)

to immediately before e2 rather than immediately after e1 in order

that X1 is not affected in the case that the e3 branch is taken.

Moreover, in normal left to right sequencing we have that
(G e1 ... (PROG1 er (FREE X1)) er+1 "' ek)

is equivalent to

(G e1 ... er (PROG2 (FREE X1) er+1) ... ek)

from the semantic definitions, and also intuitively from the

observation that both terms FREE X1 between er and er+1'

Similarly we can replace occ(p,U) in U by the term

(IF e1 e2 (PROG2 (FREE X1) e3))

mutatis mutandis.

151

5.8.3 Replacing FREE with RPLACA/D

One transformation, which will be used in the examples in spite

of the fact that this chapter does not address it in detail is the

following simple case of store re-use. Suppose we transform U into

V, say, then we can optimise FREE/CONS pairs in V as indicated in

the following. Let p and q be respectively occurrences of

(FREE X1) and (CONS e1 e2) with the property that p<<q and that p

appears in every execution path in which q appears. Our

transformation is given by removing the FREE and changing occ(V,q)

into

(DCONS X1 e 1 e2)

where

(DCONS X Y Z) _ (PROG2 (FREE X) (CONS Y Z)).

In a 'real' FREE implementation (section 5.9.1) we would use

(DCONS X Y Z) _ (RPLACD (RPLACA X Y) Z).

Removing the FREE is simpler than at first sight because it always

occurs within a PROG1 or PROG2 in the form

(PROG1 e (FREE X1)) or (PROG2 (FREE X1) e)

and such a removal merely consists of replacing the occurrence of

PROG1 or PROG2 by e. The main reason why we do not consider in

detail such transformations is that it is not clear, in general,

how to optimally associate FREE/CONS pairs.

5.9 Correctness with respect to the semantics

I have not worked out the full details of the following sketch

of how a proof of correctness of the transformations described here

would go, however it is hoped that the following gives some

intuitive insight into their correctness.

152

The first step in the proof is to consider a program, P say, and

transform it into a program Q by the above techniques. We now

consider the equivalence of P and Q. Because the definition of

FREE which we give in our semantics (see section 5.12) merely marks

the FREE'd CONS node and gives an error on further reference, we

thus have that the result of running P is identical to that of

running Q (even down to which locations are used) excepting the

possibility that Q gives a run-time error whilst P does not. (This

is due to the fact that all functions are strict with respect to

the value of a run-time error.) Therefore the only thing to

be proved is that Q cannot produce an error when P does not. We

discuss the effect of using a 'real' FREE which returns items to a

free-list in the next section.

Now we will argue that the possible run-time error referred to

above cannot actually occur if we use our transformations when they

are valid. To do this we will use the definition of a CONS node

being irrelevant (see section 5.7.6). We recall that a node is

irrelevant at occurrence p if it is of isolation class one and it
cannot further affect computation in the current function, nor can

it be returned as a result of the current function except via p.

However, and this is the cornerstone of the proof, the fact that

the node has been passed to the current function as a member of

isolation class one means that it is irrelevant at the occurrence

of the call in the calling function (otherwise Deisolate would have

reduced it from class one to arb). Now we have two cases to

consider. Firstly the node may be USED-L in the current function.

153

In this case the rules for inserting destructive operators will

forbid the use of FREE on this node. Therefore a run-time error

cannot arise from this cause. Secondly if the mode is not USED-L

in the current function it may be destroyed, however it can never

occur in the result in this function, nor therefore in the result

of any calling function. To complete the argument we observe that

the release of the node in the current function implies that it is

not USED-R there after the FREE, and hence an error cannot occur

there. Since we therefore can never take the contents of this node

we cannot produce the error given by accessing a FREE'd CONS node.

Therefore CONS nodes FREE'd by our transformations really cannot

affect the computation.

5.9.1 Proof of correctness of 'real' FREE

Having a general setup which enables us to prove the correctness

of the transformations given above for the FREE function (given in

the semantics) which only marks its argument as being unusable is

one thing, but for practical use it is now necessary to show the

correctness when using a real FREE function. We will say a FREE

function is real if it returns its (location) argument to the free

list in order that it might be re-allocated for future CONS'ing.

Here we will discuss in detail the formulation of the proofs of

equivalence, and also consider the question of how much remains to

be proved for a particular choice of isolation classes.

It is important to see that the reason that this work is ever

valid (except in a totally vacuous sense of never being applicable)

is in the nature of the PRINT function. The PRINT function has the

154

property of losing much of the information of machine

representation (including which locations are used and which

substructures share). We can see its behaviour as a many-one

homomorphism from DAGs labelled with addresses, to trees, the

standard method of printing a structure. Trees (or rather their

flattened forms) are the only permitted method of printing objects

in a applicative language whose denotations do not include

locations (even though clearly their implementations might use

locations). In a sense the PRINT program merely forgets locations.

Of course this is why debugging a system using sharing often

requires a DUMP containing rather more information than that

present in a PRINT.

This fact, together with the requirement for the ability to

prove equivalence, explains why the LISP-D semantics has been given

in such detail in section 5.12. For example, if we had omitted to

specify the semantics of the print function then this work would

have been open to the objection of being made inapplicable by

choosing a suitable (location preserving) print function.

Let us consider the step by step evaluation of a program

resulting from our transformation, using for one a real FREE and

for the other our marking FREE, clearly the exact locations

involved in the computations will differ, but under the assumption

that both programs are implementations of an original applicative

program, there is no possibility of the execution sequence

depending on this (since we do not introduce any functions for

testing equality of locations). Hence the two programs will follow

155

corresponding sequences of interpreter states with the only

possibility of divergence occuring at a reference to a location

which has been FREE'd. Upon referencing the contents of such a

location the marking FREE interpreter will give a run time error,

whereas the real FREE interpreter will extract whatever contents

(in D) are present in the cell. However upon assuming the absence

of such a run time error in the marking FREE version, as implied by

the correctness of inserting marking FREE's, then we are led to the

conclusion that the execution paths can never diverge, and hence

that real FREE is equivalent to marking FREE for all programs

resulting from transformations of an originally applicative

version.

5.10 Producing destructive versions of user functions

This section details the considerations necessary to decide

which functions we will build destructive versions of, and also

applies to non-primitive system functions (eg APPEND).

Consider again the example given earlier
(F (CONS X Y)) _ (CONS A Y)

in which we argued that F could destroy its parameter and hence be

modelled by

(F Z) (RPLACA Z A)

in the event that we could show that (the location denoted by) the

actual parameter to F could never be further referenced in the

computation.

However, the following complication may arise where we have two

calls

156

C1 = Q(F u1)I]
C2 Q (F u2) I)

where u1 and u2 are terms such that u1 always produces an isolated

result and u2 may sometimes produce a result which is shared.

The problem is that we would like to use a destructive version

of F for C1, but that it is unsafe (incorrect) to do so for C2.

This gives us a choice of pursuing either of the following

strategies.

Firstly we may adopt the policy of using the destructive version

of F for C1 and the non-destructive version of F for C2. This

produces more code, especially in the case of a large function

which is only used twice and performs very little CONS'ing.

Secondly we may choose not to produce a destructive version of F

(because it cannot be used everywhere), but instead use our

knowledge of sharing to FREE the parameter to C1 immediately after

the call to F. (Of course we cannot FREE the parameter in C2.)

This is most easily done by changing the call C1 into

Q (F-DEST u 1)17 where

(F-DEST X) _ (F X)

and then using our FREE inserting transformation to produce

(F-DEST X) = (PROG1 (F X) (FREE X))

since X can no longer be used. This method avoids the risk of

producing several large versions of each function, but,

unfortunately, it can increase the storage requirement during the

evaluation of F in C1 above that which would be required by a

destructive version of F. For example, consider the following

157

function

(MAPA X) _ (IF (ATOM X) NIL
(CONS A (MAPA (CDR X))

which has the effect of producing a result list of the same length

as its argument, L say, but with all the elements replaced with

A's. If the argument to MAPA is not shared with other structure

then it is permissible to merely replace in situ (with RPLACA) the

elements of L with A's. However, in the above case, where we are

required to use a non-destructive version of MAPA on an unshared

list we will want to FREE each CONS node on L after the call to

MAPA. This requires (LENGTH L) extra CONS nodes to perform the

calculation of MAPA, whilst the destructive version of MAPA

requires no working space.

It is now fairly clear that the choices given above represent

extremes of a range of choices by which we insert destructive

operations, and neither can be considered absolutely 'better' than

the other. We should note at this point that we can define a

continuum of behaviours intermediate to these two extremes in that

we are free to choose between the two strategies given above at

different points within a list structure. A further development is

to achieve this effect by adding an extra parameter to each

(potentially) destructive operation indicating the extent of

destructiveness to be allowed on each particular invocation of the

function. Thus we may have a parameterised JOIN(l,m,d) whose

extremal behaviours are those of APPEND(l,m) and NCONC(l,m), as

directed by the parameter d. Again this leaves the question of how

detailed the information carried by d is to be; making d take only

158

two values could model the above situation, whereas computatibility

restrictions imply the inability to model the run time behaviour

exactly. Here we only observe these possibilities and do not

consider their development. However the worked examples will be

examined under the former strategy given above - that is, we will

produce destructive versions of functions and retain their

applicative version for use in situations where the destructive

ones cannot be used. We note that this flavour of idea has been

explored by Lang [31] in the case of the continuum of behaviours

between fully eager and fully lazy evaluation.

5.11 Worked example: Derivation of NCONC from APPEND

APPEND may be defined by

(APPEND X Y) (IF (ATOM X) Y
(CONS (CAR X)

(APPEND (CDR X) Y))).

Now let us suppose we have discovered, using the techniques

given earlier, that each of a particular set of calls to APPEND has

a first parameter which evaluates to a value which is in isolation

class onelist. That is, the usage counts for the nodes X, (CDR X),

..., (CD...DR X), ... are all equal to 1. (For example the result

of a MAP function is in general of class onelist.) We will now

derive a destructive version of APPEND suitable for use in this

case, and will call it NCONC in accordance with the standard

parlance.

Firstly, let us consider the occurrence, p say, of (CDR X) in

the true branch of the above. The active occurrences wrt p are

(CAR X), Y and (CDR X) itself. Since X is not USED-L in any of

159

these, and it is not USED-R in any later occurrence (there are

none), then we can embed p within (PROG1 ... (FREE X)) to derive

(NCONC X Y) (IF (ATOM X) Y

(CONS (CAR X)
(APPEND (PROG1 (CDR X) (FREE X))

Y))).

Now we consider the question of which version of APPEND we should

use in the recursive call in this definition. Since NCONC has been

defined so that X is always bound to a value in isolation class

onelist, we have that the isolation environment for NCONC has

R QX D = onelist and therefore Eisol¢(CDR X)IIR in the above will

also yield onelist. The other occurrences of X within the body of

APPEND do not affect R since (ATOM X) is not active and

USED-L[X,(CAR X)] = h.ti

Thus our use of APPEND in the above definition can be replaced

by NCONC, as we are deriving a version of APPEND which can only be

applied to items of class onelist. Hence we have

(NCONC X Y) (IF (ATOM X) Y
(CONS (CAR X)

(NCONC (PROG1 (CDR X) (FREE X))
Y))).

This version may seem more complicated than the original version,

but it has been achieved with simple transformations and is just as

efficient in CONS use as the versions we will now develop, which

return something of the elegance and simplicity of APPEND.

Having achieved the above we can now see that the FREE in NCONC

is perfectly able to supply the location required by the CONS

(replacing FREE/CONS by DCONS), and so we can write
(NCONC X Y) _ (IF (ATOM X) Y

(DCONS X (CAR X)

(NCONC (CDR X) Y)))

160

thus explicitly using the node X to hold the result which was

previously produced in a new CONS node.

We can produce a further optimisation of this version by using

the property of the ('real') definition of DCONS in terms of RPLACA

and RPLACD, given by

(DCONS X Y Z) _ (RPLACD (RPLACA X Y) Z).

This gives the identities
(DCONS X (CAR X) Y) _ (RPLACD X Y)
(DCONS X Y (CDR X)) _ (RPLACA X Y),

thus we derive

(NCONC X Y) _ (IF (ATOM X) Y
(RPLACD X (NCONC (CDR X) Y))).

This is very close to the standard definition of NCONC which can be

given as NCONC-S defined by

(NCONC-S X Y) = (IF (ATOM X)
Y

(PROG2 (NCONC-S1 X Y) X))

(NCONC-S1 X Y) (IF (ATOM (CDR X))
(RPLACD X Y)
(NCONC-S1 (CDR X) Y)).

This again requires no working space in CONS cells, but has the

further advantages of using tail recursion (thus requiring no stack

space either) and also uses the fact that only the last element of

the list X has to be smashed with a RPLACD. NCONC-S relies much

more heavily on non-applicative properties, in particular, on how

smashing the final element in a list affects any sharing list (the

second X in the PROG2 above). Discussion of how to achieve this

final definition is outside the scope of this chapter which only

considers the optimisation of CONS nodes. However it does seem to

be an interesting area for research.

161

I am indebted to Neil Jones for the suggestion of deriving NCONC

from APPEND, using the techniques developed here.

5.11.1 Producing more efficient versions of SUBST

We will now show that our techniques are capable of handling the

more sophisticated example of deriving destructive versions of

SUBST, and at the same time illustrate one possible extra research

direction which could be pursued to enhance our capabilities for

optimising store usage in a completely orthogonal direction from

that given in this work.

We may define

(SUBST U X E) (IF (ATOM E)
(IF (EQUAL E X) U E)

(CONS (SUBST U X (CAR E))

(SUBST U X (CDR E))))

or, in words, (SUBST U X E) produces a new structure in which each

occurrence of the atom X in the structure E is replaced with the

structure U. Note that the applicative version given here does

this as wastefully as possible in that sharing is neither

considered (in the sense that E may be modified in place) nor

exploited (in the sense that SUBST need not create a copy of any

part of E which contains no occurrences of X). This second point

will be illustrated later (in MSUBST).

One possible reason why E may be unshared (and this provides

another reason why we adopted a language close to LISP) is that it
is often more convenient to write

(SUBST U 'X '(F Y (G X Y) X))

rather than

(LIST 'F 'Y (LIST 'G U 'Y) U)

162

in LISP, to produce

[F Y [G <U> Y] <U>] where <U> represents the value of U.

Note that choosing a different applicative language which allows us

to write (say)

[F Y CG U Y] U]

in an environment where F, G, and Y are constants does not enable

us to express these choices in our program. However the

implementation must still address the space-time trade-off inherent

in the choice and this provides another method by which this work

could help to optimise programs in a purer applicative language.

Now let us suppose that we have identified a class of calls to

SUBST in which the third argument has no external pointers (that is

it is in class ti), then by similar arguments to those used for

APPEND we may derive

(DSUBST U X E) (IF (ATOM E)
(IF (EQUAL E X) U

(DCONS E (DSUBST
E)

U X (CAR E))

(DSUBST U X (CDR E)))))

which has the effect of constructing the new tree while destroying

the old one.

Whilst this is as good as we can get by merely considering

improving algorithms using the technique of spotting where garbage

is produced, we should really note that other techniques might be

useful here too (for example the production of a minimal CONS'ing

SUBST routine from the applicative routine given above). The idea

is that we might want a version of SUBST defined by

163

(MSUBST U X E) _ (IF (ATOM E)

(IF (EQUAL E X) U E)
(MSUBST-1 E (MSUBST U X (CAR E))

(MSUBST U X (CDR E))))

(MSUBST-1 E N1 N2) (IF (AND (EQ N1 (CAR E))

(EQ N2 (CDR E))

E

(CONS N1 N2))

where we borrow from LISP the EQ function which tests for equality

of locations (another dirty function which we would like to

incorporate automatically rather than pollute our applicative

language design by introducing the foreign concept of locations)

and also the boolean AND function. This version has the great

advantage of only constructing new CONS nodes for those parts of

the structure which must be created - all other parts are shared

with the argument E. It is true that such effects can be created by

making CONS into a memo-function (originally due to Michie 1323), a

technique often called hash-cons'ing because it usually requires a

hash to make the associative lookup tolerable (see Goto [193 for

more details). However the great drawbacks of hash-cons'ing are

that they are expensive, and also one can never guarantee that a

new CONS is unshared, thereby invalidating most of the work

presented here as well as producing 'stray' sharing. One very

promising solution which needs to be investigated is the

development of work similar to that presented here, but which

performs compile time hash-cons'ing. It is clear how such a scheme

would work in a simple case: for example

(COPY X) = (IF (ATOM X)
X

(CONS (COPY (CAR X)) (COPY (CDR X))))

can be transformed to the identity function in an applicative

164

language because

(CONS (CAR X) (CDR X))

is EQUAL to X is such regimes.

5.12 Syntax and Semantics of LISP-D

This section gives a (possible) semantics for our toy language

LISP-D. For further details and background Mike Gordon's book [16]

is to be recommended.

The semantics given below is somewhat complicated (but made more

general) by the fact that we have included error handling cases in

the semantics rather than merely producing i on an error. The

reader is welcome to read ? and ?? as i if he does not care to

distinguish failure, as in (CAR X) where X is an atom, from

looping.

5.12.1 Notation

If X is a data class we will use X to stand for the class of

sequences of elements of X. Correspondingly we will use <> to

represent the empty sequence and <a;x> to represent the sequence

whose first element is a and x is the sequence of the remaining

elements.

165

5.12.1.1 Data Classes

Atom = {True, False, A1, A2 ...}
Var = {x1, x2 ...}
Fun = {f1 , f2 ... }
Token = Atom + Error}
Val = Atom + Loc + {?}

TupleVal = (Val - {?}) * + {??}

Loc = {Loczero} + Succ(Loc)

Store = (Loc -4 Val) X (Loc -4 Val) X Loc

Env = VarEnv X FunEnv

VarEnv = (Var -4 Val)

FunEnv = Fun -> (Val* X Store) -4 (Val X Store)

5.12.1.2 Syntactic equations

Exp Var ; Atom

(CAR Exp) (CDR Exp) ; (CONS Exp Exp)

(ATOM Exp) (IF Exp Exp Exp)

(ERROR) ; (FREE Exp)

(Fun Exp*)

Dcl (Fun Var*) = Exp
*

Prog :.= Dcl Exp.

5.12.1.3 Semantic Functions

E: Exp -4 (Env X Store) -4 (Val X Store)

Seq: Exp* -4 (Env X Store) -4 (TupleVal X Store)
P: Prog -4 Token*

D: Dcl* -4 FunEnv
* *

Bind: Var -i Val -i VarEnv

Print: Val X Store -4 Token*

5.12.2 Semantic Equations

EQAIJ(r,s) (A,s)

EQxII(<r1,r2>, s) _ (r1(x), s)

166

EQ (CAR e) 11 (r, s) = i if EQeIl (r,s) _ L

= (s1(v), s') if v E Loc

= (?,s') otherwise
where (v,s') = E [Eel](r,s)
and <s1 ,s2,m> = s'

EQ(CDR e)I1(r,s) _ ,L if E[Eell(r,s) = I
(s2(v), s') if v E Loc

(?,s') otherwise
where (v,s') = E[Eell(r,s)
and

<S1 32,m> s'

EQ(CONS e1 e2)I1(r,s) = i if SegQ<e1,e2>I1(r,s) _

_ (m, <s1[v1/m], s2[v2/m], succ(m)>)

if v = <v1,v2>

(?, s') otherwise

where (v, s') =

SegQ<e1, e2>I1(r,s)
and <s1,s2,m> = s'

EQ (ATOM e) I1(r,s) = 1 if EQeIl (r,s) = .L

_ (True, s') if v E Atom

= (False, s') if v E Loc

= (?,s') otherwise
where (v,s') = E[Eel] (r, s)

EQ (FREE e) I1(r,s) _ j. if EQeIl (r,s) = j..

_ (v, <s1[?/v], s2[?/v], m>) if v E Loc

(?,s') otherwise
where (v,s') = E[Eel](r,s)
and <s1,s2,m> = s'

167

EQ (IF e1 e2 e
3

) 7] (r,s) = 1 if Eae17] (r,s) = a'-

E Qe2I(r,s') if v = True

EQe3]] (r,s') if v = False

(?,s') otherwise

where (v,s') = E Qe7](r,s)

E I(ERROR)]](r,s) _ (?,s)

EQ (F e *) 7] (r,s) i if SegQe*7] (r,s) = 1,

(?,s') if SegQe]l(r,s) _ (??, s')
r2(F)[Seq Qe](r,s)] otherwise

where <r1,r2> = r

SegL<>]](r,s) (<>, s)
SegQ<e ; e*>]](r,s) = 1, if EQe7](r,s) = i

(??,s') if E Qe7](r,s) (?,s')
i if SegQe](r,s') = 1
(??,s") if SegQe*]](r,s') _ (??,s")
(<v ; v >, s") otherwise

where (v,s') = EQe7] (r,s)
and (v S11) = SegQe*](r,s')

Print(a,s) _ <> if a = .1

_ <a> if a E Atom

_ <"["> @ Print(s1(a),s) @ <".">

Print(s2(a),s) @ <"]"> if a E Loc

_ <"Error"> otherwise

where <s1,s2,m> = s

and @:Token* X Token* Token*

<> @ x = x

<a;b> @ x = <a ; b@x>

168

P[[d*eI = Print (ETell «rO,D[[d*]]>, <s0,s0,LocZero>>)

where r0(x) _ ?
*

and sO(x) _ X<v s> . <?,s>

D [[d*ll = FixFunEnv[X r. a f.
X<v*,s>. Valid(f,d*)

-->

E Tell (<Bind [[X* 1v*, r>, 5),
(?,s)

*
where

Valid(f,d*) is true iff there exists (in d)
*

a unique d = [[(f X) = ell

and e is as given by Valid
* *

and Bind [[X 11v gives the environment
induced by the match.

Although we do not allow programs to use RPLACA and RPLACD they

will be used in the discussions. Their semantics are given by

EI(RPLACA e1 e2)11 (r, s)

if Segt<e1,e2>D(r,s)
*

? if v = ??

_ (v1, <s1[v2/v1], s2, m>) if v1 t Loc

? otherwise

where (v*,s') = Seq [[<e1,e2>11 (r, s)

and <s1,s2,m> s'

and <v1,v2> = v*

169

E Q (RPLACD e1 e2) 11 (r, s)

i if SegQ<e1,e2>jl(r,s)
? if v*=??
(v1, <s1, s2(v2/v1], m>) if v1 C Loc

_ ? otherwise

where (v *,s') = SegQ<e1,e2> D(r,s)

and <s1,32,m> = s'

*
and <v1,v2> = v

5.12.2.1 Semantic modifications to add usage counts

The semantic modifications to describe usage counts directly

associated with each CONS node are very simple and merely consist

of the following additions.

Firstly we must change the definition of Store to

Store = (Loc -4 Val) X (Loc --> Val) X (Loc --> Number) X Loc.

This provides a Store value with a component which gives the number

of pointers to each location.

Secondly we must alter all semantic clauses involving Store to

increment or decrement the relevant entry in the third component of

Store accordingly. Since our semantic Loc is infinite we do not

have to worry about actually using the information given by the

usage counts, unlike the situation in a real machine.

5.12.3 A Store-less semantics for LISP-A

This section sketches the changes that have to be made to the

semantic functions and objects in order to give LISP-A a semantics

not involving stores.

170

Firstly the following changes are required to semantic

categories

Val = Atom + (Val X Val) + {?}

VarEnv = Var -4 Val

Funenv = Fun --> Val --> Val

This of course requires that the functionality of the semantic

functions changes to (we give only the important changes)

E: Exp -4 Env -> Val

Seq: Exp* - Env -> TupleVal

Print: Val --> Token*

Most semantic functions remain unchanged except for the need to

remove the Store components of their parameters and results. The

only functions to undergo radical change are CONS (as might be

expected) and FREE (which we can no longer discuss). We derive

EQ(CONS el e2)Il r = j. if SegE<el, e2>Il = i
_ ? if SegQ <e1, e2>Il = ??

SegQ<e1, e2 >2 otherwise

171

Chapter 6: Conclusions

We hope to have convinced the reader, in the last few chapters,

that there are techniques, well founded in theory, by which we can

undertake systematic optimising transformations of applicative

programs. It is now time to address side issues such as where we

progress from here.

6.1 Efficiency in Applicative Languages

Much of the material in the preceding chapters has been oriented

towards improving the efficiency of applicative languages. It is

now desirable that we consider why this is useful.

Firstly, let us observe, for the purposes of compilation (or

sophisticated interpretation), that applicative languages are a

double-edged sword.

On one hand (the traditional viewpoint) applicative languages

are difficult to compile efficiently because they are rather

distant from the notion of a von Neumann architecture machine, the

basis of all current computers.

On the other, applicatives languages offer us much greater

potentialities for improved compilation due to their reduced

specification of exactly how (operationally) a computation is to be

performed. This is only possible for pure applicative languages

and not for an.applicative subset of a language (such as LISP)

because in the latter case the applicative semantics has to be

rather constrained in order to tie in with the sequential semantics

in the rest of the language. For example, we cannot remove, or

172

optimise the order of evaluation of, a certain piece of code due to

(the risk of) side-effects. However applicative languages greatly

ease the problems of considering whether a proof or transformation

is valid. Many of the most effective theorem proving or program

transformation systems have an applicative target language, for

example Feather's ZAP system [13], Boyer and Moore's theorem prover

[3] or the Edinburgh LCF system [18].

The objection to permitting 'mixed' languages, as in the above

notion of 'applicative subset', also extends to considerations of

parallelism, and we will spend a few moments considering the

potential of ADA [26] in this respect. ADA is an imperative

language which allows the programmer to specify how a program is to

be broken up into a set of co-operating processes. However the

number of processes chosen will very probably depend on the

particular target machine the programmer has in mind. Hence,

acceptable efficiency may only be achieved on a single machine.

Moreover, there are several research projects in progress

developing machines containing thousands of processors. It will

surely be impossible to write an ADA program which uses such a

machine to its full potential. It does not even appear possible to

decompose a multi-tasking program into a larger number of tasks due

to the complicated semantics of full tasking (ADA's tasking will

not even be formally specified). We are much more likely to be

able to decompose a sequential program into tasks than one already

unsuitably partitioned. We would even go further than this and

argue that it will be practically impossible to incorporate

173

automatically a reasonable degree of tasking within a given

sequential imperative program due to the difficulties of detecting

whether two computations can, in fact, be performed in parallel

without invalidating the semantics. The objections to the

programmer performing this breakdown are firstly the machine

dependency implied and secondly the extra work involved.

In an applicative language, with no notion of a global von

Neumann store, we are free to evaluate any two expressions in

parallel, and the implied data dependencies provide the

communication between processes. We can summarise this by saying

that it is very difficult to achieve acceptable parallelism in

imperative languages, whereas the main problem in applicative

languages seems to be that of cutting down the vast number of

parallel processes that the above method of using a task for each

sub-expression would generate.

6.2 Suggestions for Further Work

The first observation to be made is that the techniques

described here are too oriented towards 'toy' systems. For

example, the techniques for implementing call-by-need using

call-by-value described in chapter 4 have not been tested by a

practical implementation in a large system. Similarly, the merit

of the theory of inserting destructive operators into applicative

programs (chapter 5) must be decided by its application to a large

system (such as the HOPE [71 system here at Edinburgh). It is not

sufficient to argue that the techniques are correct - we must also

show that they are applicable sufficiently often to make a

174

significant improvement to the performance of the system as a

whole. It is to the author's regret that there has not yet been an

opportunity to make such a large-scale trial.

On the other hand, we can find places where the theoretical

basis is not quite satisfactory. This is not meant to imply that

we consider the work unrigorous, but rather that the theory of

sharing given in chapter 5) leans too heavily on computational

insights rather than on an independent basis. Similarly the

theoretical work on abstract interpretation for the applicative

idiom described in chapter 2 is presented as a first development of

the theory of abstract interpretation for this style, and

inevitably will lack the elegance of a full theory developed with

hindsight.

We will turn now to chapters 3 and 4 which discuss the use of

eager evaluation strategies to implement lazier ones at a gain of

efficiency with respect to current machine architectures. Our work

presents results only for the case of a flat domain, where a

parameter (or sub-computation) is either unevaluated, or evaluated

to completion. As we observed in these chapters it would be highly

desirable to extend such results to a fully lazy evaluation scheme

where expressions may be evaluated to yield a partial result,

leaving (possibly many) unevaluated sub-expressions.

175

References

1. Abbott, J.C. Sets, Lattices and Boolean Algebras. Allyn and

Bacon, 1969.

2. Backus, J. Can Programming be Liberated from the von Neumann

Style? A Functional Style and its Algebra of Programs. Comm. ACM

21, 8 (August 1978), 613-641.

3. Boyer, R.S. and Moore, J.S. A Computational Logic. Academic

Press, 1980.

4. Burstall, R.M. Some Techniques for Proving Correctness of
Programs which alter Data Structures. Machine Intelligence 7

(1972), 23-50.

5. Burstall, R.M. Design Considerations for a Functional

Programming Language. Infotech State of the Art Conference: The

Software Revolution, Copenhagen, October, 1977.

6. Burstall, R.M. and Darlington, J. A Transformation System for

Developing Recursive Programs. J. ACM 24, 1 (January 1977), 44-67.

7. Burstall, R.M., MacQueen, D. and Sannella, D.T. HOPE: an

Experimental Applicative Language. Conference Record of the 1980

LISP Conference, 1980. Also internal report CSR-62-80, Dept. of

Computer Science, Edinburgh University.

8. Cousot, P. and Cousot, R. Static Determination of Dynamic

Properties of Programs. Proc. 2nd Int. Symp. on Programming, 1976.

9. Cousot, P. and Cousot, R. Abstract Interpretation: a Unified

Lattice Model for Static Analysis of Programs by Construction or

Approximation of Fixpoints. Proc. 4th ACM Symp. on Principles of

Programming Languages, Los Angeles, 1977.

10. Cousot, P. and Cousot, R. Static Determination of Dynamic

Properties of Recursive Procedures. Proc. IFIP conf. on Formal

Descriptions of Programming Concepts, 1978, pp. 237-277.

176

11. Donzeau-Gouge, V. Utilisation de la S6mantique D6notationelle
pour 1'6tude d'Interpr6tations non-standard. IRIA-Laboria,
78150-Rocquencourt, France, 1978.

12. Donzeau-Gouge, V. Denotational Definition of Properties of
Program Computations. In Muchnick, S.S. and Jones, N.D., Ed.,

Program Flow Analysis, Prentice-Hall, 1981.

13. Feather, M.S. A System for Developin_g Programs

Transformation. Ph.D. Th., University of Edinburgh, 1979.

14. Floyd, R.W. Assigning Meanings to Programs. Amer. Math. Soc.

19 (1967), 19-32.

15. Friedman, D.P. and Wise, D.S. CONS should not Evaluate its
Arguments. Proc. 3rd Int. Colloq. on Automata, Languages and

Programming, Edinburgh, 1976.

16. Gordon, M.J.C. The Denotational Descripion of Programming

Languages. Springer-Verlag, 1979.

17. Gordon, M.J.C., Milner, A.J.R.G., Morris, L., Newey, M. and

Wadsworth, C. A Metalanguage for Interactive Proof in LCF. Proc.

5th ACM Symp. on Principles of Programming Languages, Tucson,

Arizona, 1978.

18. Gordon, M.J., Milner, A.J.R. and Wadsworth, C.P. Edinburgh

LCF: Lecture Notes in Computer Science. Springer-Verlag, 1979.

19. Goto, E. Monocopy and Associative Algorithms in an Extended

LISP. University of Tokyo, May, 1974.

20. Harel, H. On Folk Theorems. Comm. ACM 23, 7 (July 1980),

379-389. (Folk theorems have no known authors, but are widely
known results.)

21. Henderson, P. and Morris, J. A Lazy Evaluator. Proc. 3rd ACM

Symp. on Principles of Programming Languages, Atlanta, Georgia,

1976, pp. 95-103.

177

22. Hennessy, M.C.B. Power Domains and Non-determinstic Recursive

Definitions. In preparation (submitted to 5th Int. Symp. on

Programming).

23. Hennessy, M.C.B. and Plotkin, G.D. Full Abstraction for a

simple Parallel Programming Language. Proc. 7th Int. Symp. on

Mathematical Foundations of Computer Science, 1978, pp. 108-120.

24. Hoare, C.A.R. An Axiomatic Basis for Computer Programming.

Comm. ACM 12, 10 (1969), 576-583.

25. Huet, G. and Levy J.-J. Call-by-need Computations in
Non-ambiguous Linear Term Rewriting Systems. IRIA-Laboria,
78150-Rocquencourt, France, July, 1979.

26. Ichbiah, J.D. et al. Preliminary ADA Reference Manual.

SIGPLAN Notices 14, 6A (June 1979), .

27. Jones, N.D. Flow Analysis of Lambda Expressions. DAIMI

report PB-128, Dept. of Computer Science, Aarhus University,

January, 1981.

28. Jones, N.D. and Muchnick, S.S. Flow Analysis and Optimisation

of LISP-like Structures. TR 78-2, Dept. of Computer Science,

University of Kansas, 1978.

29. Jones, N.D. and Muchnick, S.S. Complexity of Flow Analysis,

Inductive Assertion Synthesis, and a Language Due to Dijkstra.

Proc. 20th Conf. on Foundations of Computer Science, 1979, pp.

185-190.

30. Kernighan, B.W. and Plauger, P.J. Software Tools. Addison-

Wesley, 1976.

31. Lang, B. Threshold Evaluation and the Semantics of Call by

Value, Assignment and Generic Procedures. Proc. 4th ACM Symp. on

Principles of Programming Languages, Los Angeles, 1977.

178

32. Michie, D. Memo Functions: a Language Feature with Rote

Learning Properties. Research Memorandum MIP-R-29, Machine

Intelligence Research Unit, Edinburgh University, 1967.

33. Milner, R. Fully Abstract Models of Typed Lambda Calculi.

Theor. Comp. Sci. 4, 1 (February 1977), 1-23.

34. Mycroft, A. The Theory and Practice of Transforming

Call-by-need into Call-by-value. Proc. 4th Int. Symp. on

Programming: Lecture notes in Computer Science number 83, Paris,
April, 1980, pp. 269-281.

35. Mycroft, A. Call-by-Need = Call-by-Value + Conditional.

Internal report CSR-78-81, Dept. of Computer Science, Edinburgh

University, 1981. Presented at IUCC conference at Exeter, Sept

1980.

36. Naur, P. Checking of Operand Types in ALGOL compilers. BIT 5

(1965), 151-163.

37. Nielson, F. Semantic Foundations of Data Flow Analysis. DAIMI

report PB-131, Dept. of Computer Science, Aarhus University,

February, 1981.

38. Pettorossi, A. Destructive Marking: A Method and some Simple

Heuristics for Improving Memory Utilisation in Recursive Programs.

Informatica proceedings, Bled, 1978.

39. Pettorossi, A. Improving Memory Utilisation in Transforming

Recursive Programs. Proc. 7th Int. Symp. on Mathematical

Foundations of Computer Science, Zakopane, Poland, 1978.

40. Plotkin, G.D. Call-by-name, Call-by-value and the Lambda

Calculus. Theor. Comp. Sci. 1, 2 (December 1975), 125-159.

41. Plotkin, G.D. A Powerdomain Construction. SIAM J. Comput. 5,

3 (1976), 452-487.

179

42. Plotkin, G.D. A Structural Approach to Operational Semantics.

Lecture notes 1981, Dept. of Computer Science, Aarhus University.

43. de Roever, W.P. First Order reduction of Call-by-name to

Call-by-value. Proving and Improving Programs, Arc et Senans,

1975.

44. Schwarz, J. Using Annotations to make Recursion Equations

behave. DAI research report 43, Dept. of Artificial Intelligence,

Edinburgh University, 1977. Revised 1981 at Bell Labs, to appear.

45. Schwarz, J. Verifying the Safe Use of Destructive Operators in

Applicative Programs. Proc. 3rd Int. Symp. on Programming, Paris,

1978. Also published as DAI research report 55, Dept. of

Artificial Intelligence, Edinburgh University.

46. Schwarz, J. Destructive Operations in Applicative Languages.

Unpublished manuscript.

47. Sintzoff, M. Calculating Properties of Programs by Valuations

on Specific Models. Proceedings on an ACM conference on Proving

Assertions about Programs, Las Cruces, Mexico, January, 1972.

48. Strachey, C. and Wadsworth, C.P. Continuations - a

Mathematical Semantics for Handling Full Jumps. Technical

monograph PRG11, Programming Research Group, Oxford University,
1974.

49. Thatcher, J.W. Tree Automata: an Informal Survey. In

Currents in the Theory of Computing, Prentice-Hall, 1973, PP.

143-172.

50. Vuillemin J. Correct and optimal implementations of recursion

in a simple programming language. Journal of Computer and System

Sciences 9 (1974), 332-354. Also PhD thesis: Proof techniques for

recursive programs (chapter 2).

180

51. Wadsworth, C.P. Semantics and Pragmatics of the Lambda
Calculus. Ph.D. Th., Programming Research Group, Oxford

University, 1971.

52. Wegbreit, B. Property Extraction in Well Founded Property
Sets. IEEE Trans. on Software Eng. SE-1, 3 (September 1975),
270-285.

	PhD coversheet April 2012
	EDI-INF-PHD-81-006.pdf

