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ABSTRACT

It was hypothesized that Respiratory heat and moisture loss (RHML) would be altered in

patients with Asthma and Chronic obstructive pulmonary disease (COPD) due to the
effects of airway inflammation and re-modeling. By creating a novel device

incorporating humidity, temperature and flow sensors, RHML was measured in 25 normal
controls, 33 asthmatics and 17 patients with COPD. In normal subjects RHML was found
to be dependent on breathing pattern as defined by tidal volume and minute ventilation
whereas no association was found between RHML and body surface area or forced

expiratory volume in one second (FEV1). At matched breathing patterns asthmatics
whether in exacerbation or stable showed a small but significant increase in RHML

compared to controls (exacerbation asthmatics -93.2 ± 0.8 (SD), p=0.003, stable asthma -

89.3 ± 7.4, p=0.025 and controls 85 ± 4.3 Joules/L). No significant difference was found
in RHML between the asthmatics with an exacerbation and those with stable disease.

COPD patients showed no significant difference in RHML (stable group- 83 ± 4.8,

p=0.23 and exacerbation group - 81 ± 5.8 Joules/L, p=0.06) compared to controls or

between exacerbation and stable groups. Evaporative heat loss was the major heat
transfer modality (up to 3-times the dry convective heat loss). It can be concluded that
asthma is associated with a measurable increase in heat and moisture loss in breath and

that this may reflect the inflammatory and vascular changes known to occur in the
asthmatic airway. Further longitudinal studies are required to assess whether the

technique developed in this study can provide a practical means to measure inflammation
in asthma.
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Nomenclature

A airway cross-sectional area

BSA body surface area (m2)

cp specific heat capacity at constant pressure (kJ/kgK)

k Thermal conductivity (kJ/kgK)

h enthalpy (kJ/kg)

hfg Heat of vaporization (kJ/kg)

M Metabolic rate (watts)

m mass flowrate (kg/s)

Pa ambient water vapour pressure (mmHg)

ni molar amount of substance (kmol)

P is the airway perimeter

Q Total heat flow (Watts)

q heat flow (Watts)

T Temperature (°C)

Te Exhaled breath temperature (°C)

Tj Inspired air temperature (°C)

v Gas velocity (m/s)
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V Volumetric flowrate (1/s)

Vco2 rates of co2 production

Vo2 rate of o2 production

w Absolute humidity (mg/kg)

p Density (kg/m3)

DEFINITIONS

Term Definition Units

Absolute humidity or moisture content is the ratio
of the mass ofwater vapour to
the mass of dry air for any
given volume.

g per kg dry air

Relative humidity is the ratio of the actual partial
pressure of the vapour to the
partial pressure of the vapour
when the air is saturated with
water, at the same temperature.

%

Enthalpy describes the 'useable' energy kJ/kg
(dry and latent) in air
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INTRODUCTION

The earliest thoughts on heat transfer in relation to human physiology can be traced back

to the ancient Greek physiologists and Doctors of the 5th century BC. At this time nature

was seen to be made up of the primary and opposing fundamental quantities of hot and

cold; wet and dry. These forces were thought to be in competition so that if any one

dominated then disease would ensue. Aristotle and later Hippocrates shared this view

and proposed that the heart was the site of a 'central fire', which produced 'vital heat'.

This fire was cooled by the overlying lungs, which drew in the 'pneuma' or inhaled air

and conveyed this to the heart via the pulmonary vessels thus providing a balance

between hot and cold . This early concept, although flawed, represents the first view of

a circulatory heat source to the lungs and the exchange of heat with the respired air.

Galen in the 2nd century described a blood supply from the aorta to the lungs, however

many centuries passed before the pulmonary and bronchial circulations were correctly

described 2. It was not until the 16th century that the concept of temperature

measurement emerged with the development of Galileo's thermoscope and later

Sanctorius 3 applied the use of a thermometer to the measurement of temperature in

man. Following this, in the mid 18th century the idea of thermo-regulation in man was

described by Blayden 3. In the late 19th century the nature of the heat sources in the

human body viz a viz the metabolism of carbohydrate, fat and protein and mechanical

work was elucidated. Following on from this into the 20th century a more quantitative

analysis on heat transfer in tissues emerged. The landmark work of Pennes 4 and the

'bioheat equation' formed the basis for much of the bioheat transfer analysis over the

second half of the 20lh century. With regard to the study of heat transfer in the human
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airway, Magendie 3 in 1829 was the first to propose the concept of air being heated and

humidified on its path through the respiratory tract. Goodale 6 in 1896 measured exhaled

air temperatures below body temperature, which led to our current understanding of the

respiratory tract recovering heat from expired air. The early part of the 20th century saw

further quantitative measurements of respiratory heat loss (Burch 1945 7) and the factors
• 8 36

affecting breath temperatures (Webb , McCutchan ). Over the last 20 to 30 years

much has been done to advance our understanding of the mechanisms of thermally

induced asthma. McFadden 9 performed detailed bronchoscopic temperature

measurements in humans, which together with several mathematical models of

respiratory heat exchange 10-18 have provided useful data regarding intra-airway heat and

water flux. The work of Baile 37-59, Solway 19-20 and more recently Serikov 21-23 has

advanced our understanding of the bronchial and pulmonary circulations and their

relation to airway heat exchange.

The aim of this work was to examine the effect of airways disease on the heat and

moisture transfer characteristics in the respiratory tract. Chronic obstructive pulmonary

disease (COPD) and asthma are caused by inflammation within the airways.

Inflammation was classically described by Celsus in the 1st century AD to comprise

rubor, calor, dolor and tumour. It is this 'calor' or heat that represents a final common

pathway in inflammation and derives from local vasodilatation resulting from the release

of inflammatory mediators such as cytokines, histamine, leukotrienes and nitric oxide

among others. The principal hypothesis of the present work is that increased blood flow

in inflamed airway mucosa will be detectable as increased heat flux into the lumen when

potential confounding influences are carefully controlled
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As demonstrated in Chapters 1 and 2 although much has been discovered through

invasive measurements and mathematical models of intra-airways heat transfer, there is

still a striking lack of data from measurements on patients with asthma, chronic

obstructive pulmonary disease (COPD); conditions associated with both acute and

chronic inflammatory changes in the airways. A novel means of easily measuring the

heat and moisture loss in breath was devised (Chapter 3) and applied firstly to the study

of healthy subjects. This allowed definition of the normal range and estimation of the

effects of breathing pattern, inhaled air condition and body surface area (chapter 4).

Measurements were then made on subjects with asthma and COPD to test the hypothesis

that this property would be altered in these conditions (chapter 5).
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CHAPTER 1

PRINCIPLES OF HEAT AND MOISTURE EXCHANGE IN THE HUMAN

AIRWAY

1.1 Anatomy of the Respiratory tract

The respiratory tract conveys air from the environment to deep within the lung in order

for gas exchange to take place. The upper respiratory tract comprises the nasal cavities,

para-nasal sinuses, oral cavity, pharynx and larynx that are continuous with the lower

respiratory tract consisting of trachea and bronchial tree. The nasal cavity is surrounded

by air-filled paranasal sinuses, which communicate with the cavity itself. The pharynx

and larynx convey air from oral and nasal cavities to the trachea, which is a tube-like

structure on average about 12 cm long and of 18mm internal diameter 24 composed of a

fibrous membrane and shaped cartilaginous rings. It bifurcates at the carina into left and

right main bronchi, and they in turn divide into lobar branches supplying upper and lower

lobes of the left and right lung plus an additional middle lobe on the right. The bronchi

further divide by dichotomy down to the terminal bronchioles with an internal diameter of

less than 1 mm. Approximately 200 mis of air is contained in the conducting airways to

this point, in contact with a total surface area of approximately 0.6 m2. Each terminal

bronchiole opens into the respiratory lobule or acinus consisting of alveolar ducts,

alveolar sacs and alveoli. These structures collectively form the lung parenchyma, which

occupies 90% of the volume of the whole lung, the remaining 10% being non-

parenchymal structures such as the conductive airways, blood vessels, septae and pleura.
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95% of the parenchymal volume is alveolar air contained within an estimated 300 million

alveoli providing a total surface area of approximately 140 m2 for gas exchange.

The nasal cavity, trachea, bronchi and bronchioles are lined by ciliated mucosa. Sub¬

mucosal glands and mucosal goblet cells secrete a visco-elastic gel that forms the mucous

layer forming the air-wall interface. The cilia are tiny projections bathed in low viscosity

fluid that beat at a rate of 17-25 Hz in synchrony with the cilia of neighbouring cells. The

cilia therefore propel the mucous blanket in the direction of the pharynx so that particles

trapped in the mucous can be cleared. The mucous consists of long glycoproteins which

form the framework of the gel together with other inorganic ion species. Gel hydration is

controlled by membrane transport of ions and water in a Donan type equilibrium process

25

The bronchial circulation nourishes the airway epithelium and glands. In the majority of

humans two bronchial arteries supply each lung taking their origin from the aorta directly

or the upper intercostal arteries. Rarely they may derive from the internal mammary or

coronary arterial system. The bronchial arteries give branches to mediastinal structures

such as the oesophagus, hilar lymph nodes and the vagus nerve. They enter through the

hila and divide on reaching the main segmental bronchi and thereafter follow the branches

of the bronchial tree (see Figure 1.1). Normally 2 to 3 branches are given to each

bronchus following down as far as the terminal bronchioles. These branches anastomose

with each other forming a peribronchial plexus. In addition small arterioles derived from

this supply penetrate the muscular layer to form a submucosal plexus (Figure 1.2).

The bronchial capillary network merges with the pulmonary capillary network beyond the

level of the pulmonary lobule. The degree of anastomosis between the two circulations is

5



thought to increase with increasing numbers of bronchi towards the lung periphery. The

intra-pulmonary venous drainage of the bronchial circulation is mainly via the pulmonary

circulation. The right and left pulmonary arteries are divisions of the pulmonary trunk

below the arch of the aorta, which divide and accompany segmental and sub-segmental

bronchi, lying mostly dorsolaterally to them. They terminate in dense capillary networks

in the walls of the alveolar sacs and alveoli. Pulmonary veins (2 per lung) drain the

capillary networks. Smaller venous branches traverse the lung independent of the

arteries.
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Airway lumen

Smooth muscle fibre

Elastic network

Bronchial nerve

Bronchial artery

Terminal bronchiole

Alveolar septae

Sub-mesothelial
connective tissue
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alveolar wall

Pulmonary vein
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wall
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Alveolar duct
Respiratory bronchiole

Pulmonary artery

Visceral cartilaee

Mucosal gland

Figure 1.1. Schematic illustration (not to scale) of the anatomy of the airways

showing relation of bronchial and pulmonary arterial systems 26. The bronchial

arteries divide on reaching the main segmental bronchi and thereafter follow the

branches of the bronchial tree. The right and left pulmonary arteries are divisions of

the pulmonary trunk below the arch of the aorta which divide and accompany

segmental and sub-segmental bronchi, lying mostly dorsolateral^ to them. They

terminate in dense capillary networks in the walls of the alveolar sacs and alveoli.
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Figure 1.2. Illustration of the ultra-structure of the respiratory

bronchiole showing arrangement of bronchial artery supply and

peribronchial and sub-mucosal plexus. Normally 2 to 3 branches of

the bronchial artery are given to each bronchus following down as far as

the terminal bronchioles. These branches anastomose with each other

forming a peribronchial plexus. In addition, small arterioles derived from

this supply penetrate the muscular layer to form a sub-mucosal plexus.
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1.2 Air-conditioning and heat recovery within the airway

The respiratory tract and the skin represent the body's interface with its environment.

Across this interface the internal energy generated is ultimately dissipated. The skin loses

heat by conduction, convection, radiation and evaporation of sweat, which combined

forms about 90% of total body heat loss at rest. The remaining 10% is lost via the

respiratory tract. Despite its large surface area and blood supply, a number of features of

the respiratory tract serve to minimize the loss of moisture and heat. The enclosed

airways prevent radiative loss. The branching system of bronchi and bronchioles results

in an increasing surface area to volume ratio as air moves deeper into the lung thereby

increasing the efficiency of heat transfer during inspiration and minimizing losses on

expiration. The cooling of the mucosa during inspiration allows heat recovery from the air

by condensation as it passes over the same surface on expiration. As well as exchanging

metabolic heat the respiratory tract serves a crucial air conditioning function. It is able to

warm and saturate inspired air so that at an alveolar level, air is fully saturated with water

vapour and attains core temperature. This ensures the integrity of the alveolar membrane

and its optimum function in gas exchange. Remarkably, this is achieved under extremes

of climatic conditions. McFadden 9 mapped the human airway by measuring the

intraluminal temperatures to sub-segmental level from bronchoscopically placed

temperature sensors. As shown in figure 1.3, even under extreme sub-zero temperatures

(-18°C) inspired air is warmed to 32°C by the time it reaches the carina.

Heat exchange within the airways comprises inspiratory and expiratory phases. Inspired

air is warmed and humidified to 37°C and 100% relative humidity 27'28. Heat is
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transferred to the inspired air by means of convection and evaporation of water from the

mucosal surface. As water evaporates to humidify the inspired air its latent heat is

transferred and the mucosa is cooled. During quiet breathing this process is mostly

achieved by the airway proximal to the trachea 9. However with colder or dryer ambient

conditions or at higher minute ventilation the airway is further thermally stressed and the

point at which the inspirate is fully conditioned moves deeper within the bronchial tree 9

(see figure 1.3). This is sometimes referred to as the isothermal saturation boundary

(ISB). This boundary is dynamic and will vary with inspiration and expiration as well as

with ambient conditions of temperature, moisture content and breathing pattern. Studies

have shown that under extreme conditions of cold dry air at high minute ventilation,

airways down to 1mm diameter actively participate in heat and water exchange 9.

During expiration, air at 37°C and fully saturated will cool and its water vapour condense

on the mucosa downstream of the ISB enabling recovery of some of its latent heat and

water content. The air will then exit at a certain temperature (Te) below deep airway

temperature. Te has been shown to be directly proportional to the inspired temperature

(T,) and inspired moisture content (wNumerous studies have proposed predictive

equations relating Te as a function of T, and w, based on experimental data. For example,

taking the equation of Varene et al 47, for T, between 10 to 30°C and relative humidity of

inspired air of 50%, Te = 26 + 0.25 7). This equation would yield an expired air

temperature of 31,5°C (for 7) = 22°C).
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Figure 1.3. Invasive measurements of temperature during inspiration

and expiration within the airways of subjects breathing frigid air (-

18°C) at minute ventilations of 15, 30, 60 and 100 l/min. McFadden et

al9. Even under extreme sub-zero temperatures inspired air is warmed to

32°C by the time it reaches the carina.
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Figure 1.4. Water content of expirate as a function of volume as

10
t

measured using mass spectrometry (Ferrus ). The expirate is

initially unsaturated and then rises to full saturation exponentially

with expiratory volume in a similar way to temperature profiles. The

degree of unsaturation is slight and limited to the first part of the

expiratory cycle so that for the purpose of energy exchange analysis

expired air can be assumed to be fully saturated at Te.
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There is disagreement in the literature regarding the moisture content of expired air.

Some authors assume expired air to be fully saturated 29-31 whilst others have found it to

be unsaturated 32-35. Ferrus et al. 48 looked at instantaneous variations in relative humidity

of expired air using rapid response thermometry and mass spectrometry. They

demonstrated (figure 1.4) that the expirate is initially unsaturated and then rises to full

saturation exponentially with expiratory volume in a similar way to temperature profiles.

They conclude that the degree of unsaturation is slight and limited to the first part of the

expiratory cycle and imply that for the purpose of energy exchange analysis expired air
48 • •

can be assumed to be saturated at Te. Ferrus et al also found that the absolute humidity

of the expired air was independent of minute ventilation but was a direct function of tidal

volume and an inverse function of respiratory rate. The authors propose a bi-

compartmental model of expiration whereby the first compartment comprises an

unsaturated, cooler 'dead space', which on expiration mixes with the larger warmer

saturated compartment. It would follow that at lower tidal volumes (and higher

respiratory rates) the unsaturated 'dead space' would form a proportionally greater

contribution to the expirate. The converse would be true for higher tidal volumes with

lower respiratory rates.

1.3 Mathematical Models of heat-exchange in the airways

A number of mathematical models have been developed in the study of respiratory heat

exchange for a variety of reasons. Firstly, the heat balance and predictive equations have

evolved from the study of human body energetics and thermal comfort. They seek to

13



quantify heat loss from the respiratory tract under various environmental conditions and

conditions of exercise. Secondly, more complex models have been developed to examine

the heat and moisture transfer processes within the airways. The invasive nature of

measurement in humans prevents detailed measurements of local heat and moisture fluxes

deep within the respiratory tract. These models have proved useful in estimating the

intra-airways effects of cold air hyperventilation and explaining the mechanisms of

exercise induced asthma. Finally, the lumped heat capacity model considers the coupled

process of airway heat exchange and pulmonary blood flow to propose a non-invasive
21index of cardiac output and lung thermal volume .

1.3.1 Overall Heat Balance Equation

At a fundamental level, heat exchange from the respiratory tract can be thought of as a

closed process at steady state where air enters with a temperature and moisture content (Tj

and Wj) and exits with the altered condition Te and Wj following the process of evaporation

and condensation within the airway. The total heat exchanged with the environment can

then be described according to the equation;

Total heat exchange (q)
Change in dry
air sensible
heat

+
Change in water
sensible heat +

Heat required
to evaporate
water

C1 = ck + qe = tncpa (Te-Ti) + mcpw (we-w,)(Te-T,) + m(we-Wj)hfg (1.1)
Dry Convective 'evaporative' component
component

14



Where, q = total (convective + latent) heat flow from the airway, cpa= heat capacity of air,

m = mass flow rate of air, cpw =latent heat capacity of water, hfg = latent heat of

evaporation of water, (Te-T i) = temperature difference between inspired and exhaled air,

(we-Wf) = difference in moisture content between inspired and exhaled air.

This assumes a closed system where inspiratory and expiratory ventilations are equal and

the difference in water vapour concentrations between inspired and expired gases to be

due only to condensation and evaporation processes. If a respiratory quotient of 0.85 is

assumed, and the difference in CO2 content between inspired and exhaled air is of the

order 4%. This would imply a net volume change of (l-0.85)x4/100= 0.6%. The

magnitude of this error is therefore considered small. In addition the density and specific

heat capacity of inspired and expired gases are assumed constant. If the boundary of this

closed system is extended to the gas exchange portion of the lung, the heat flux due to gas

exchange must be included in the above equation. The evolution of CO2 from blood to

alveoli is endothermic and the combination of O2 with blood is exothermic. The heat

balance equation would then become;

q = qc+qe +ico2 +q„2

where;

Vc02 , A VO? ,
qco = — h and qc = -h

22 3 22 4

22.3 and 22.4 are the molar volumes of CO2 and 02 respectively (/), hco2 and ho2 are the

heats of reaction in kcal/mol,Vco2 and V02 are rates of C02 and 02 production (l/min).

15



1.3.2 Predictive Equations

Based on experimental data, predictive equations have been derived by a number of

authors in an attempt to quantify overall respiratory heat and moisture loss under various

ambient conditions and exercise. These are useful in the area of human body energetics

and heat balance. McCutchan and Taylor 36 established a relationship between the

condition of inspired and expired air of the form Te =f(Tj, w,) or we = f(Tit w).

Substituting this in equation (1.1) above gives q =f(Tb w,). They proposed the following

predictive equation (adapted to SI units) based on their data.

q = m (0. 799 T, + 1884 w, -98.3) (1.2)

m = mass flowrate kg/s

Tj = inspired temperature (°C)

Wj = humidity ratio (kg moisture per kg dry air)

Therefore for a subject breathing with a minute ventilation (Ve) of 151/min, air at 7°C

with absolute humidity 5.8 g/kg dry air. Now,

m = pVe = 1.25x— x 1CT3 =3.125xl(T4 kg/s
60

Then from equation 1.2;

q = 3.125 x 10"4 x (0.799 x 7 + 1884 x 0.0058 - 98.3) = 25.5 watts

Thus for a range of ambient conditions and ventilation rates the overall respiratory heat
37 • 36loss can be predicted. Fanger ' used the equations of McCutchan and Taylor and

16



combined them with a relation between ventilatory exchange and oxygen uptake to obtain

the following equation.

q = 0.00023 M (44 -pj (1.3)

Where M = metabolic rate (watts) and pa is the ambient water vapour pressure (mmHg).
• • • TO

A similar model is proposed by Welch .

17



1.3.3 Local temperature, moisture, heat and water flux models

Quasi steady-state model

Hanna and Sherer 11 propose a model based on the

idealised airway shown;

Steady-state heat balance at mucous-air interface at

distance x along airway;

r?
I
§
u

qb

Tb

<7e

V;,,Ta,Wa

qb = qc + qe

where qb is the heat conducted through the airway wall, qc is the heat convected from the

mucosal surface and qe is the heat due to evaporation of water at the surface. These

quantities can be expressed in terms of their respective temperature and moisture

gradients thus;

9,'~[Ux)-Tw(x)}
4y

q,=Kx)[T„(.x)-T„(x)\

18



^ = km(x)(ww-wa)hff.

where k(x) is the thermal conductivity of the idealised airway wall, h(x) is a surface-air

convective heat transfer coefficient and km (x) is the local water vapour mass transfer

coefficient and h/g is the latent heat of vaporization ofwater.

Therefore,

——[Th -rH,(x)]= h(x)\Tw(x)-Ta(x)\ +km(x)(ww-wa)hf
Ay

A mass balance on an airway element yields,

0-4)
ax A(x)

where v(x) is the local mean air-stream velocity, P(x) is the airway perimeter and A fx) is

the airway cross-sectional area.

Similarly an energy balance on the element gives,

dx pc.,A(x) 1

where cpw and cpa = specific heat capacity ofwater and air respectively (KJ/kgK)

19



assuming the breath to be fully saturated at the airway wall and assuming a temperature

range of 15°C about body temperature, then from the Clausius-Clapeyron equation, the

water vapour content and temperature at the mucous-air interface are related by;

ww = 22.4 exp
4.97 xlQ3

T.
(1.6)

We thus have a system of 4 coupled, non-linear differential and algebraic equations which

can be solved numerically to yield temperature and moisture profile as a function of

distance (x) through the respiratory tract. Solution requires estimation of the transfer

coefficients h(x), k(x) and km(x). Hannah and Shearer 11 used the experimentally derived

values of h(x) from cast models. Mass transfer coefficients, km(x), were derived from the

heat transfer coefficients assuming a complete analogy between heat and mass transfer.

The blood temperature distribution along the airways was taken to follow a linearly

increasing value from expired air temperature at the portal to a plateau body temperature

at the bronchial periphery. Geometrical variables were taken from the detailed

measurements of Weibel 24. Intra-airways temperature and moisture profiles generated

from this model showed good agreement with the invasive measurements ofMcFadden 9.
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Non-steady state Model

Daviskas, Gonda and Anderson 14 developed a time-dependent model of heat and

moisture transport in the airways. They

emphasise the importance of residence

time of air as a dominant factor for heat

transfer. The mean air residence time

(t) is therefore defined as;

t = mass of air / mean mass flowrate rate in airway (s)

An energy and mass balance for air flowing through a tube (as shown above) gives a

second order partial differential equation relating temperature or water vapour

concentration (X) as a function of time and position (radius r, angle 9 and distance z) as

follows;

dX SX
+ v = D

dt dz

1 dX d2X 1 d2X d2X
1 ' T 7" ^ T~

r dr dr~ r 39' dz'

If heat and water vapour transport in the radial direction only is considered and diffusion

is angle independent this reduces to

21



dX_
dt

J1 dX d2XA
= D +

v r dr dr~
/

X(r,t) is temperature (°C) or water vapour concentration (mg/1) and D is either the thermal

diffusivity of air (Da) or the water vapour diffusivity in air (Dw). This second order

differential equation has an analytical solution of the form;

w n=I n

which relates the mean airway condition, X, as a function of residence time (t), radius (r),

airway wall condition (Xw), the constant X and the thermal or water vapour diffusivity, D.

Daviskas et aI. 14 took wall temperature to be related to inspired temperature, Tm, air

flowrate V and distance along the airway, L according to the equation

^ (37 __ 7^ ^-(0.00564ri?+0.276)Z, / V j

The water vapour concentration at the airway wall (C„) was calculated according to the

airway temperature (Tw) and assuming 99.5% saturation.

The diffusivity, D is analogous to the convective heat and mass transfer coefficients in the

steady-state model of Hanna 11. They are related to local geometry and flow conditions
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and derived from empirical relationships. The model was evaluated numerically allowing

prediction of intra-airways temperature and moisture profiles as shown in Figure 1.5.

Further models with increasing degrees of complexity have been developed by other
n 10

# # .... . .

authors " . At resting levels of ventilation during inspiration the main regions of air

conditioning are the nasal cavity, naso and oropharynx, larynx and the upper trachea.

These models tell us that the point at which the air is fully conditioned shifts at least six or

seven generations depending on ventilation, and inspired conditions. For example, data

from invasive measurements and mathematical models 46 would suggest that at minute

ventilations of 151/min and inspirate temperatures of 7°C, airways down to the 9th

generation take part actively in heat and moisture exchange, with the lower airway

(trachea to distal bronchi) contributing at least 50% of the total respiratory heat and

moisture loss under these conditions. A decrease in inspired air temperature and water

content at fixed minute ventilation produces a proportionately larger increase in heat loss

from the extra-thoracic airways relative to intra-thoracic whereas an increase in minute

ventilation at fixed inspired conditions produces the opposite pattern. Mathematical

models would also suggest that an increase in simulated bronchial blood flow when

coupled to an increase in mucosal thickness would produce a pronounced increase in

airway temperatures. For example, Tsai et al. 18 looked at modeling the effects of

changes in the mucosal and sub-mucosal layer. If the thickness of this layer was

increased from 0.2mm to 0.9mm this would produce a 0.7°C increase in airway

temperature. If this effect is combined with an increase in mucosal blood flow to

maximal values (as might be seen in asthma) this could lead to an estimated increase of

1.7 °C in exhaled temperature.
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Figure 1.5. Theoretical predictions of intra-airway temperatures during

inspiration and expiration from the model of Tsu et al l7. Temperatures

are calculated assuming inspired air at 26.7 °C, rh=50%. Values are

calculated for minute ventilations (Ve) of 15, 30, 50 and 1001/min as shown.
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1.3.4 Lumped heat capacity model

The Heat capacity model of Serikov 21 is not

concerned with intra-airway temperature and

moisture profiles but rather seeks to relate

pulmonary blood flow and lung 'heat capacity'

to airway thermal loading. Such a model

proposes the use of airway temperatures as a

non-invasive index of cardiac output and lung heat capacity or 'thermal volume'.

Consider an element of airway tissue of volume dV as shown below which is subject to a

cooling load applied by a step decrease in respired air temperature and humidity.

The change in tissue temperature is related to the balance of heat fluxes according to the

equation;

dvP,cpw = J( qb ~ ( qc + CL ))ds (1 -7)

where; qb = heat flux to the lung tissue from the pulmonary blood flow.

qe +qc= ventilatory heat flux (convective + evaporative components).

S = surface area, T„= tissue temperature, qb is defined according to the bioheat equation;
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Rb =krP,cPSTh-T,)-VP (1.8)

where kj = tissue thermal conductivity, Tb = mean capillary blood

temperature, Vp = pulmonary blood flow

The ventilatory heat flux (qe+qc) is given by;

Re + Re = K \pGcpa {Tr,o ~T)+ (TGQcpw™o ~ Tcpww)+ {w() - w)hfg j (1.9)

Serikov et al 21 relate mean integrated temperature (T„) to expired air temperature (7)

using a coefficient of proportionality Kr ,

Tti=KRT

Where, KR=Tb / To, Tb = body temperature and T0 = temperature of expired air at the

beginning of ventilatory loading. Substituting this in equations (1.8) and (1.9) yields a

first order differential equation relating the change in expired air temperature with time

under conditions of ventilatory cooling load

]T
—— + AT + 5 = 0 (1.10)
dt

where the constants A and B are given by
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A.l
V

vpkt
PwCpw

+ VEX2 and B =

V

VT.K,
-JLi-L + VJa0X,+VeX3
PwCpw

(1.11)

Y = p>>cr« x -x \ q-0018^ x3 0-02hfg
PwCpw PwCpw PwCpw

The solution to equation (1.10) is given by

Tit)
v *TOJ

T0e~At-~ (1.12)
A

which can be represented graphically (Figure 1.8). The measurement of the time

constant, A, in the temperature decay curve will allow evaluation of pulmonary blood

flow (and hence cardiac output) and thermal volume from equations (1.8) and (1.12).

1.3.5 In-vivo measurements of contribution of bronchial and pulmonary circulations

to respiratory heat exchange.

99 • • ■» •

Serikov made airway temperature measurements in human subjects on cardiopulmonary

bypass; a situation effectively representing selective bronchial artery lung perfusion.

Following the application of a cooling load, by switching subjects from breathing warm to

cold dry air, the temperature decay was observed. With bronchial perfusion alone

(cardiopulmonary bypass) the time constant for temperature decay increased from 35s

(prior to c-p bypass) to 56s and the peak expired temperature decreased by l.4°C. This
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evidence supports the idea that bronchial perfusion alone is not sufficient to supply the

heat transferred to the airway under moderate cooling loads and that the pulmonary

circulation forms the major contribution.
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Figure 1.8. Idealised curve of maximal expired air temperature

against time under cooling load provided by step change to

ventilation with frigid air.
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CHAPTER 2

THE MEASUREMENT OF AIRWAYS HEAT AND MOISTURE LOSS

2.1 Quantifying Respiratory heat and moisture loss

A number of studies have been conducted over the 20th century aimed at measuring the

heat loss from the human respiratory tract. The earliest and largest study was conducted

by Burch 1. Essentially all studies since this have employed similar measurement

48
methods. Figure 2.1 shows the technique of Ferrus . A heat balance is performed

according to equation (1.1). By measuring inspired and expired temperature and water

content together with mass/volumetric flowrate the total heat tlux from the respiratory

tract can be calculated under conditions of steady state. Temperature measurements were

made using thermometers, thermistors or thermocouples, flowrate by pneumotachometer

or total body plethysmography. Water content in expired air was measured in all studies

by the 'freeze-out' method of condensing the breath water vapour by passing it through

tubes immersed in a frozen media. The condensate was then weighed and expressed as a

fraction of flow volume. Inlet conditions were in some cases controlled by means of

environmental chambers or the use of dry compressed gas mixtures. The results of these

studies are summarised in Table 2.1. Parameters have been expressed in SI units to allow

comparison.

Burch 7 in the largest of the studies employed a 'freeze-out' technique (aluminium coils

immersed in flask of solid CCb) to measure the moisture content of inspired and expired

air. Thermocouples recorded inspired and expired air temperatures. Low-pressure
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positive displacement gasometers measured volume flowrate. The heat loss, comprising

sensible and latent components could thus be calculated from the steady-state heat

balance equation (1.1). Subjects were monitored under 'room conditions'. No strict

control of ambient conditions was made. The dominance of the evaporative (qe) over the

convective heat loss (qc) modality is clearly seen from the results. Under ambient

conditions of 20-21 °C and rh 50-60% an average of 166.8-mg/min water loss representing

6.7 W of evaporative heat versus 1.6 W of convective exchange was found. McCutchan
36

employed a similar technique to Burch 7 but provided stricter control over inspired

conditions by means of an environmental chamber. This study measured the effects of

normal and high temperatures at a range of moisture contents on the respiratory heat

exchange. Results were in good agreement with those of Burch 7; the slightly dryer

inspirate accounting for the higher moisture and heat loss. With reference to Table (2.1),

the studies of Ferrus and Varene 48 Caldwell 49, and Cain "° further demonstrate the

importance of the evaporative heat loss component to overall respiratory heat exchange.

This component can account for between 70 to 95% of the overall heat exchange

depending on the inspired conditions. Decreasing the moisture content of the inspirate

will increase this component as will increasing the minute volume according to these

studies. From these data it can be estimated that on average, in a temperate climate, the

heat loss from the human airway is between 10-15 W with 70-80 % of this being due to

the evaporation ofwater from the airway leading to a daily water loss of around 350 mis.

31



Figure 2.1. Schematic of the apparatus for the measurement ofRHML by
Ferrus et al. . By measuring inspired and expired temperature and water
content together with mass/volumetric flowrate the total heat flux from the

respiratory tract can be calculated under conditions of steady state.

Temperature measurements were made using thermometers, thermistors
or thermocouples, flowrate by pneumotachometer or total body

plethysmography. Water content in expired air was measured in all
studies by the 'freeze-out' method of condensing the breath water vapour

by passing it through tubes immersed in a frozen media. Inspired air
water content was measured by means of a wet bulb thermometer.
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STUDY Design

No.of

subjects

Inspired
Conditions
Ti (°C)/ rh(%)/ventilation

Water loss

(gl/min)
Respiratory Heat
Loss (Watts)
4e 9c 4'(

Burch 1945 7 56 20-21/50-60 /6.9 166 6.7 1.6 8.3

McCutchan 1950 36 5 21-24/20-40/7.5 227 8.5 2.6 11.1

Caldwell 1969 49 5 25-27/0/ 9.85 282 11.9 0.9 12.8

Ferrus and Varene
1986 48

5 24.8 / 0/ 6.74 179 7.0 0.5 7.5

Cain 1990 50 5 0 101 8.7 440 26.7 1.2 28.0

Table 2.1. Comparison of measurements of respiratory heat and moisture loss (RHML).
Lower inspired temperature and humidity is associated with higher measured heat and
moisture loss. At similar inspired air temperatures but with dryer inspired conditions there
is a greater evaporative heat loss compared to convective heat loss.
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2.2 Factors affecting Respiratory Heat Loss

Considering Figure 2.2 it can be seen that both external and internal factors will alter the

quantity of heat lost via the respiratory tract. The metabolic heat generated within the

lung tissue (Qg) is thought to amount to approximately < 5% of the total heat lost and is

normally neglected in heat balance calculations. Total heat loss will vary between

individuals depending on size. Most studies therefore express the heat loss according to

total body surface area as calculated from height and weight.

2.2.1 Inspired air conditions.

As with heat loss from the skin, the temperature and relative humidity of the external

environment will affect the rate of heat and moisture loss. Lower inspired air

temperatures and moisture contents place an increased thermal burden on the airway

whereby more heat and moisture will be transferred under these conditions. Table 1

illustrates this point. Burch 7 was unable to measure any significant effect of lowering

inspired air temperature and humidity perhaps due to the lack of controllability and only

very slight degree of change in these parameters (15°C, rh 60%) for comparison.

However under conditions of hot, dry inspirate (50°C, rh 18%) an increased evaporative

loss was measured. This was found to be smaller if at the same temperature more

moisture was present (50°C, rh 49%).

The study of Cain 5 shows that dry inspired air at 0°C results in an excess of two-fold

increase in respiratory heat loss over dry warmer air (Caldwell49) and an approximate 3-

fold increase over wanner wetter air (Burch 7). The proportion of 'evaporative' heat loss

36
over convective is even higher under the more extreme conditions. McCutchan found
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that in subjects at rest, respiratory heat loss correlated strongly with inlet temperature and

humidity. They proposed the following predictive equation (adapted to SI units) based on

their data.

Q = m(0.799 T, + 1884 w,~ 98.3) (W)

m = mass flowrate kg/s

Tj = inspired temperature (°C)

This demonstrates that a set of conditions exist where heat can be gained by the

respiratory tract. Interestingly, even with air temperatures equal to core temperature, if

the air is dry enough there can still be a net heat loss from the respiratory tract due to the

dominance of evaporative cooling over convective warming.
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Figure 2.2: Schematic diagram showing respiratory heat flux

components and heat delivery via bronchial and pulmonary
circulations. Heat is generated through cellular metabolism (Qg) in

lung tissue which is thought to amount to <5% of the total. Heat is
also transferred through gas exchange - the evolution of CO2 from
blood to alveoli is endothermic (QCO2) and the combination of O2
with blood is exothermic (QO2).
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2.2.2. Ventilatory Pattern

Minute ventilation has been shown to correlate with respiratory heat loss. In the study of

7 • • 2Burch , minute volume varied for the group of 56 subjects, with a mean 3.8 1/m /min and

a range 2.8 to 5.3 l/m2/min. A high degree of correlation was found for the group

between minute volume and respiratory water loss. In smaller groups of subjects Burch 7

looked at the effect of breathing pattern and various ambient conditions on respiratory

water loss. Although not quantified, slow deep breathing was associated with more water

• 4R • •

loss per litre respired than rapid shallow breathing. Ferrus et al. did quantify the water

loss in relation to breathing pattern and found the water loss (per litre respired) not to vary

with changes in minute ventilation but to increase with increasing tidal volume patterns.

2.2.3 Exercise

Exercise involves a number of physiological changes that will increase respiratory heat

loss. Exercise results in an increase in the heat generated by the body through increased

muscle work and metabolic rate. The raised cardiac output delivers increased blood flow

to the lungs via the bronchial and pulmonary circulations. Minute ventilation will be

raised to meet the requirement of increased O2 uptake and CO2 excretion.

Cain et al. ?0 measured respiratory heat loss at various ambient conditions and work rates.

They found that at 0°C, raising the metabolic rate (through exercise) four-fold resulted in

an increase in respiratory heat loss from 28 W to 82 W. Interestingly, some studies show

exercise work rates do not affect expired air temperature or water content33"36. However,

others found expired air temperature and water content to decline with increasing work
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rates. A strong correlation is found between respiratory heat loss and minute ventilation

52when exercising. Mitchell et al. ~ measured respiratory water loss at various work loads.

They found a strong correlation between water loss and oxygen uptake (V02), which was

in good agreement with the empirical equation proposed by Fanger 37 up to 70% VO2

53 • • •

max. Tahka et al. ' investigated the time course of respiratory heat exchange during

exercise and rest conditions. They found that when breathing warm dry ambient air at

rest or during exercise there was a fall in the water content of the expired air over the first

15 minutes of testing followed by a recovery period where moisture loss was found to

return to original rates. The authors related this to dehydration of the bronchial mucosa

followed by an adaptive response restoring hydration; the mechanism of which is unclear.

This phenomenon may explain the disagreement cited above regarding the exhaled air

condition during exercise.

2.2.4 Core temperature

It has long been established that an increased or increasing body temperature is associated

with increased minute ventilation. Barltrop 34 found an increase of 3.8 1/min for a 2°C rise

in core temperature. The increase in minute volume is mainly due to an increase in tidal

volume rather than respiratory rate. It was Walker 53 who first proposed that pyrexial

patients would have a warmer bronchial mucosa with the result that expired air

temperatures and water loss would be elevated. Hanson 36 addressed this point in his

study where subjects' core temperatures were raised by immersion in hot water baths.

Dressing the subjects in a vapour immersion suit with a controllable air inlet allowed core

temperature to be set at a steady level. Various ambient conditions were set by means of

a climatic chamber. A clear increase in respiratory heat loss was found at increasing core
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temperatures. This was found to be mainly due to the effect of increased minute volume

accompanying increased core temperature. Exhaled air temperature was not found to be

affected by changes in core temperature.

2.2.5 Pulmonary and bronchial blood flow

Heat is delivered to the airways via the bronchial and pulmonary circulations. The

anatomy was described earlier - the bronchial circulation with its sub-mucosal and peri¬

bronchial plexuses being in more intimate contact with the airway compared to the

pulmonary circulation down to airways of 1 mm diameter. The bronchial arterial system

however has a low flowrate, carrying less than 1% of the cardiac output at systemic

pressure whereas the pulmonary circulation carries the entire cardiac output at lower

pressure. The relative contribution of each circulation to respiratory heat exchange was

studied by Baile et al ' . In this study anaesthetised and ventilated dogs were used.

Respiratory heat loss was evaluated by measuring inlet and outlet conditions and

ventilation rate and applying the heat balance equation (1.1). The tracheo-bronchial heat

transfer (Qb) was calculated by measuring bronchial blood flow (BBF) using a radio¬

isotope microsphere technique, measuring blood and tracheal temperatures (Tb, Tt) and

applying the equation;

Qb = BBF cp (Tb-Tt)

where cp is the specific heat capacity of blood. Their results showed that under conditions

of hyperventilation with cold air, respiratory heat loss amounted to around 42 Watts under

conditions of steady state. A 60% increase in tracheo-bronchial blood flow was measured

over baseline corresponding to a tracheo-bronchial heat transfer (Qb) of 10 Watts. This
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would imply an additional heat source (pulmonary circulation) was supplying the

remainder of heat (32 Watts) to the airway.

Solway et al l9'20 reached a similar conclusion in a study comparing the effects of

temporary occlusion of a single lower lobe artery or interrupting the bronchial arterial

supply on airway temperatures. Dogs mechanically hyperventilated with cold air had

their left lower lobe pulmonary artery occluded by balloon catheter. This produced an

ipsilateral fall in airstream temperatures. The contralateral airstream temperatures

remained unchanged. On release of the occlusion temperatures were restored. Under

similar conditions the bronchial circulation was occluded using vascular clamps, which

had no effect on airstream temperatures. The authors interpret this to indicate that the

pulmonary circulation is the dominant source of heat over the bronchial circulation to the

respiratory tract. This evidence would certainly suggest that the pulmonary circulation

has an effect on airway temperature at this level of the respiratory tract in dogs. However

no measurements were made of airway humidity or moisture transport in this study.

Moisture transport is known to form the major portion of respiratory heat exchange. It is

therefore debateable whether this evidence can be extrapolated to the human lung in

health or disease.

22More recently Serikov et al. provides further support for the lesser contribution of the

bronchial circulation as a heat source for the airways under moderate cooling loads. They

further extend their investigations to explore the functional implication of this and

conclude that the major role of the bronchial circulation is in water transport to the

bronchial mucosa. By selectively perfusing the bronchial and pulmonary circulations of

isolated dog lungs and making simultaneous airway temperature measurements they were
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able to show that for a fixed pulmonary arterial flow, increasing the bronchial flow to a

value exceeding the upper limit of the normal range resulted in no significant increase in

airway temperature compared to that with pulmonary perfusion alone. They also looked

at airway temperature measurements in human subjects on cardiopulmonary bypass; a

situation effectively representing selective bronchial artery lung perfusion. As described

earlier they use a lumped heat capacity model to relate the rate of temperature decay and

drop in exhaled air temperature to tissue perfusion and thermal volume (see previous

section). Following the application of a cooling load, by switching subjects from

breathing warm to cold dry air, the temperature decay was observed. With bronchial

perfusion alone (cardiopulmonary bypass) the time constant for temperature decay

increased from 35s (prior to c-p bypass) to 56s and the peak expired temperature

decreased by 1.4°C. This evidence supports the animal study showing that bronchial

perfusion alone is not sufficient to supply the heat transferred to the airway under

moderate cooling loads. By measuring the rate of equilibration of tritiated water (THO)

between the circulations and the lung parenchyma and respired air they found the time

constant for equilibration between pulmonary perfusate alone and lung parenchyma was

four times greater than that between combined bronchial and pulmonary perfusate. This

would imply that the increased rate of filtration of water from the high-pressure bronchial

circulation promotes water exchange in the lung interstitium. In addition, a higher ratio

of tracer gas to perfusate was found indicating that bronchial vessels were contributing

significantly more to mucosal hydration.
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2.3 The effect of airways disease on respiratory heat and moisture loss

It was Walker 55 in 1961 who pointed out that the ability of the respiratory tract to

condition inspired air and to conserve heat and water during expiration rests mainly on the

integrity of the airway mucosa and its normal water content and that airway disease is

bound to interfere with this function. At that time there was a paucity of data from

measurements on patients with respiratory disease. Since that time a large body of data

has emerged mainly exploring the mechanisms of exercise induced asthma. However

there is still little known about the thermal and moisture transfer characteristics found in

conditions such as asthma, COPD and Bronchiectasis.

Thermally induced asthma

Exercise induced asthma is the term used to describe the occurrence of airflow obstruction

following exercise or hyperventilation. It should perhaps more correctly be termed

thermally induced asthma as it has been demonstrated that both exercise and voluntary

hyperventilation produce the same effect in individuals with this tendency 61. A

substantial body of evidence supports increased airway heat flux and mucosal cooling

triggered by increased minute ventilation as important initiators in airway narrowing 62"66.

Two main theories concerning the mechanism of airway narrowing exist; namely, the

osmotic or airway drying hypothesis 67'68 and the thermal hypothesis 70. The osmotic

hypothesis supports the idea that mucosal drying results in a hyperosmolar surface lining

fluid, which leads to intracellular water flux and cell shrinkage. This is said to stimulate

the release of inflammatory mediators and thereby cause smooth muscle contraction. The

thermal hypothesis would propose that airway cooling followed by rapid rewarming

stimulates a vasoconstrictive followed by a reactive hyperaemic response in the bronchial
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microcirculation. Some studies implicate nitric oxide 70 and IL-8 71 and even interactions
• • 79 . . . . . .

with surfactant function in the mechanism of thermally induced airway inflammation.

This in turn would lead to airway wall oedema and airway narrowing. Some would

support a unified hypothesis given that it is difficult to separate the processes of cooling

and drying as detailed earlier in this review.

Asthma, COPD and Cystic Fibrosis

It is now known that subjects with even mild stable asthma have increased vascularity in

their airways 73"7\ This would suggest that there would be increased respiratory heat and

moisture loss in this group compared to a control group. Furthermore, the degree of

inflammation should correlate with the level of heat and moisture loss. At present there

are no published data on this question. Similarly, marked hyperaemia of the mucosa is

seen at bronchoscopy in the airways of patients with COPD during acute exacerbations.

Some studies have sought to measure the bronchial blood flow in patients with chronic

bronchitis and emphysema 76" °. The results are inconclusive partly due to technical

difficulties in measuring bronchial blood flow accurately and in part due to the co¬

existence of both the inflammatory bronchitic process together with the destructive

emphysematous process (which would cause a reduced bronchial flow in the area of lung

affected). Caldwell 49 in a small study measured the heat and moisture loss in a group of

patients with COPD versus controls and found a marginally increased heat loss in the

COPD group when expressed as a fraction of total heat production. The patient numbers

were small, there was no distinction between disease types (bronchitic or

emphysematous) and no assessment made of disease severity. Bronchiectasis is another

airway disease process that might be expected to alter the heat and moisture exchange

process. It is well described that there is marked proliferation of the bronchial vasculature
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•• 81* ••in this patient group . This may provide the increased water requirements needed for the

large volume sputum production seen in this condition. A small study by Primiano et al.

82 looked at breath temperature and moisture contents at the airway opening in 4 patients

with stable Cystic Fibrosis. They failed to show any difference in exhaled temperature or

moisture content between subjects breathing air at 22°C ± 2°C. Inlet conditions were not

strictly controlled in this study and were set at a value whereby the isothermal saturation

boundary (ISB) would be proximal to the trachea. The part of the bronchial tree of most

interest would not be engaged in significant heat or moisture transfer due to the low

thermal burden therefore it would be unlikely that differences in breath temperatures and

moisture content would occur between the CF and control groups. Few studies have

looked at measuring aspects of heat and moisture exchange in airways disease. Recent

studies have looked at the nasal mucosa and found an impaired ability of patients with
••• . • . . . 82

allergic rhinitis to humidify inspired air . In asthmatic patients, studies have reported a

faster rise in exhaled breath temperature and higher exhaled plateau temperatures '

o/

compared to controls whereas in COPD the converse was found suggesting altered heat

loss patterns in these airway diseases. Flowever, these studies did not attempt to quantify

evaporative heat loss. Breath temperatures alone, do not take into account heat loss due to

water transport processes, which form the major part of the total airway heat exchange

36,48,49,50
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C HAPTER 3

A NEW TECHNIQUE TO MEASURE RESPIRATORY HEAT AND MOISTURE

LOSS

3.1 Introduction

As was described in the previous chapter there have been a number of studies carried out

over the last hundred years or so aimed at quantifying the net heat lost from the human

respiratory tract. Respiratory heat loss comprises convective and evaporative

components; the former requires knowledge of the temperature difference between the

inspired and exhaled air whereas the latter requires measurement of the net moisture lost

in breath. Accurate and quick response thermocouples and thermistors have been around

for some time and allow reliable measurement of breath temperatures. However it has

only been relatively recently that small electronic humidity sensors have been made

available offering a means to accurately measure breath moisture content without having

to employ the cumbersome wet bulb thermometer or the fairly elaborate 'freeze-out and

weigh' equipment previously used - techniques which do not lend themselves easily to

larger clinical studies. Previous studies have demonstrated the site of airway heat and

moisture exchange and that inspired air condition and ventilation are important
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determinants of this. The aim of the new technique outlined here was to draw on the

advances in electronic moisture sensors, provide a controllable inspired air condition and

breathing pattern and thus allow a more precise and convenient measurement of

respiratory heat and moisture loss in a large number of human subjects including those

with airways disease.

3.2 Equipment design

3.2.1 Rationale for equipment design

The data of McFadden et al. 9 suggests that unless subjects breathe cooled inspirate and at

elevated minute ventilation, the bulk of heat and moisture transfer will take place in the

upper airway (above the glottis). Data from invasive measurements and mathematical

models 46'47 would suggest that at minute ventilations of 151/min and inspirate

temperatures of 7°C, airways down to the 9th generation take part actively in heat and

moisture exchange, with the lower airway (trachea to distal bronchi) contributing at least

50% of the total respiratory heat and moisture loss under these conditions. Alterations in

RHML brought about by pathological changes in the lower airways should therefore have

significant impact on the total RHML measured.

In the present study therefore the degree of thermal loading (i.e. Ve = 151/min. Ti=7°C)

was chosen in order to engage enough of the bronchial tree in heat and moisture exchange

to reflect differences in the lower airways. That said, it is well recognized that the thermal

loading associated with isocapnic hyperventilation can induce changes in airway

resistance and indeed bronchial blood flow in subjects with exercise induced asthma 46
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and even in normal subjects 109 and that a test such as the one described here could

potentially alter the very parameter it seeks to measure. However, the level of thermal

loading used in this test was low (-20W) representing approximately 10% of values

found by most studies to induce changes in FEVi in asthmatics and equivalent to those

found not to induce a measurable increase in bronchial blood flow in normals l09. It is

therefore unlikely that the ventilatory pattern and inspired air condition used here would

have a significant effect on inducing changes in airway resistance and airway circulation.
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3.2.2. Compact air-conditioning unit

The new device was designed (shown in Figure 3.1) to comprise a purpose-built air-

conditioning module delivering air at up to 1500ml/s with a controllable temperature (3 to

40°C) and moisture content (5 to 40g/kg dry air). The cooler/de-humidifier was

constructed using Peltier heat pumps fitted to flat plates in contact with cooling fin plates

as shown. Fans attached to the inlet of the finned section generated the air-flow which

could pass directly to the outlet of the cooler or could be directed via a circuit containing a

reheater and humidifier thereby allowing control of the temperature and moisture content

of the inspired air.

3.2.3. Breathing circuit

Subjects breathed through a 2-way valve (Hans-Rudolf). Inspired air was supplied in a

flow-past configuration from the air-conditioning unit at a flowrate exceeding the peak

inspiratory flowrate. Dead-space (valve plus mouthpiece and filter) was 30ml and was

further minimized by the placement of a divider separating inhaled and exhaled air-

streams. To ensure eucapnia the exhaled CO2 was measured continuously and then CO2

was added to the inspiratory limb of the circuit during the course of a typical 6 minute

test.
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3.2.4. Instrumentation

Exhaled water content is difficult to measure, because if air is allowed to cool in the

equipment, moisture is lost by condensation. To overcome this problem, exhaled breath

(Figure 3.1) first passed a temperature sensor close to the mouth (measuring exhaled

temperature) then down a 15cm heated tube at the end of which humidity and temperature

were measured. These distal measurements yielded breath water content, and allowed

back-calculation of exhaled humidity at the mouth. The small valve dead-space volume,

the presence of a divider within this dead space and the use of the heated tube section

ensured negligible loss of moisture through condensation in the circuit.

Temperature sensors were K-type thermocouples (chromel-alumel bead type), with a 90%

response time of 50ms. All sensors were calibrated whilst connected to their signal

amplifier and data acquisition channel against a mercury standard in a water bath between

0 to 40 °C. Humidity sensors were of thermoset polymer capacitance construction (model

HIH-3602-A, Honeywell, USA) supplied factory calibrated giving relative humidity with

an accuracy of ±2% and an estimated 95% response time of 5s. Expiratory air flow was

measured using an ultrasonic phase-shift flow meter (model FR-413, BRDL, Birmingham,

UK), which was calibrated for volume (litres ATPS) using standard volume syringes

(■vitalograph, UK). The sensor's 100% response time was 12ms; linearity was <2% and

the residual error due to temperature variation <1% in the temperature range 0-40°C.

Thermocouple and humidity sensor output were amplified and sampled at 100Hz and

captured on a 16-channel computerized data acquisition system (model 1401, CED,

Cambridge, UK, software: spike 2, CED, Cambridge, UK) to allow real time signal

display and storage of data to disk.
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3.2.5. Ventilation pattern targeting.

In order to compare measurements between subjects, specific ventilatory patterns were

imposed by feeding the expiratory flow signal into a PC with purpose built breath-

targeting software, which generated a visual and auditory target for expiratory flow-rate

and respiratory rate respectively. Inspiratory to expiratory ratio was set at unity.

Eucapnia was maintained at the higher minute ventilations by measuring end-tidal CO2

and adding CO2 to the inspirate.
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Ventilation

Figure 3.1. Schematic of apparatus and instrumentation for the measurement of

respiratory heat and moisture loss (RHML). Subjects breathe through a non-

rebreathing 2-way valve at a pattern set by the ventilation targeting system

which generates an audiovisual feedback signal setting ventilation rate and

expiratory flow respectively. An air-conditioning unit controls the temperature

and moisture content of the respired air. Temperature and moisture sensors are

located as shown. At higher minute ventilations eucapnia is maintained by

monitoring exhaled CO2 and adding CO2 to the circuit as required.
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Figure 3.2. Photograph showing apparatus for the measurement of respiratory
heat and moisture loss (RHML). The device was designed to be trolley-
mounted and portable but the data acquisition and display equipment could

easily be miniaturised for clinical application .
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Figure 3.3. Photograph showing the author seated at apparatus for the
measurement of respiratory heat and moisture loss (RHML). The subjects
follow an audio-visual target for ventilation on a PC monitor.
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Figure 3.4. Expiratory temperature and flow-rate signals showing time to steady-
state following imposition of a cooling load associated with isocapnic

hyperventilation of cold air. The inset shows an single breath expiratory

temperature and flow signal - the flow signal approximating to the square wave

target.
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s

Figure 3.5. Thermocouple and humidity sensor output was conditioned by

purpose built multichannel amplifiers. All signals were sampled at 100Hz
and captured on a 16-channel computerized data acquisition system (model
1401, CED, Cambridge, UK), which interfaced with software {spike 2, CED,

Cambridge, UK) to allow real time signal display and storage of data to disk.
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3.3 Analysis

3.3.1. The thermodynamics of the respiratory cycle

Atmospheric air, and indeed breath, as well as comprising the main constituent gases

nitrogen, oxygen and carbon dioxide also contain water that exists as a superheated

vapour. Water in this state can be treated as a gas. A mixture of such gases can be

regarded as a single substance provided the constituents do not react chemically with each

other. The thermodynamic properties of moist air can be determined experimentally, just

as for single substances, and tabulated or represented graphically. When considering a

• • 89mixture of gases the Gibbs-Dalton law states ;

The pressure and internal energy of a mixture of gases are respectively

equal to the sums of the pressures and internal energies of the individual

constituents when each occupies a volume equal to that of the mixture at

the temperature ofthe mixture.

Thus,

Pa = P02 +Pc02+ Pn2+Ph20

where, Pa =air pressure, Psubscript ~ partial pressure of constituent gas.

The pressure that each gas component exerts is called its partial pressure. Pressure,

volume and temperature can be related according to the perfect gas equation;

PiV=niRT
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where P\ = partial pressure of constituent, n,— molar amount of substance (kmol), R =

universal gas constant, T= temperature.

The perfect gas equation therefore defines the thermodynamic state of both air and its

constituents individually.

The term water vapour pressure represents the partial pressure of water vapour in air

and will be proportional to the absolute amount of vaporised water and the temperature of

the air. Specific humidity (or moisture content) is the ratio of the mass of water vapour

to the mass of dry air for any given volume. Relative humidity is the ratio of the actual

partial pressure of the vapour to the partial pressure of the vapour when the air is saturated

with water, at the same temperature. Enthalpy is a useful term that describes the

'useable' energy (dry and latent) in air. The enthalpy of moist air is given by

H = ha + whs,

Where H = total enthalpy, ha = enthalpy of dry air (dependent on temperature and

pressure), w = specific humidity, hs = enthalpy ofwater vapour.

The term wh depends on both the temperature and pressure of the air. If air pressure is

fixed, w and temperature can be regarded as the only independent variables that define the

thermodynamic state of the moist air. A psychrometric chart can thus be constructed for

air at atmospheric pressure plotting specific humidity versus temperature with constant

enthalpy lines overlaid. This allows easy visualisation of the thermodynamic state of air

water mixtures and calculation of heat transfer. Consider the respiratory cycle shown in

Figure 3.5; Air at the typical indoor ambient condition of 22°C and relative humidity 40%

contains approximately 5mg per litre dry air of water. Inspiration raises the tidal air to
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37°C, fully saturated. The airway mucosa therefore provides around 35mg of water per

litre dry air inspired. On expiration around 15mg of water condenses on the airway

returning around 30% of the mucosal water resulting in a net loss of approximately 20mg

ofwater per litre respired.
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Temperature (°C)

Figure 3.6. The thermodynamics of the respiratory cycle. A 'psychrometric chart'

plots absolute humidity versus temperature for air at atmospheric pressure with the
curves of constant relative humidity overlaid. Enthalpy (h), which is a measure of the
'useable energy', associated with both air temperature and moisture content are

included. During inspiration, of room air its temperature and moisture content is raised
to core temperature, as heat and moisture are lost from the respiratory mucosa. During

expiration, air from the deep airways is cooled and some of its water condenses

resulting in a partial recovery of some of the heat and moisture lost on inspiration but
nevertheless a net loss of heat and moisture (Ah).
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If this system is assumed to be at steady-state and closed whereby inspiratory and

expiratory ventilations are equal (see section 1.3.1) and the difference in water vapour

concentrations between inspired and expired gases to be due only to condensation and

evaporation processes alone then the respiratory heat loss (Q,) can be expressed as;

Qt= pV (he-hj) 3.2

where p=air density (kg/m3'ATPS), F=flow rate (m3/s ATPS), he, hi = enthalpy (kJ/kg) of

exhaled and inhaled air respectively (derived from temperature and humidity sensor

measurements referred to the psychrometric properties of air at atmospheric pressure .

The convective heat loss (Qc) is calculated from;

Qc= pVcp (Te-Ti) 3.3

The specific heat capacity of air at constant pressure (cp) was taken as 1.008 kJ/kgK (an

average between values for inspired air and alveolar gas). Te and T, are the mean

temperatures of the exhaled and inhaled air respectively.

3.3.2. Calculating respiratory heat and moisture loss (RHML)

To calculate the respiratory heat and moisture loss it is necessary first to calculate the

energy content (enthalpy, h) of the expirate and inspirate as described above. Exhaled

temperature varies slightly within breaths due to pulsatile flow and the effects of

anatomical and equipment dead space (Figure 5.2). To calculate the exhaled enthalpy,

temperature is first averaged for the duration of expiration and this value, together with
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the exhaled humidity, is used to derive exhaled enthalpy using a psychrometric chart 90.

Inspirate enthalpy is derived from inspirate temperature and humidity using the same

chart. Total respiratory heat and moisture loss (RHML) was then calculated as the

product of minute volume x air density x difference between inspirate and expirate

enthalpy (equation 3.2 above). Total RHML comprises heat used to raise dry air

temperature (convective) and heat used to evaporate moisture (evaporative). The

convective component (Qc) was calculated from the product; minute volume x air density

specific heat capacity of air x difference between inspired and expired temperature

(equation 3.3 above).

The evaporative component (Qe) was then calculated as;

Qe = RHML - Qc

Because RHML depends on minute ventilation, and because (despite targeting) not all

subjects will achieve identical ventilation, respiratory heat loss can also be expressed as

the energy loss (Joules) per litre ATPS ventilation, Q' thus;

Q' = ■— x 101 Joules / litre
V

Worked example

Figure 3.7 shows the signals obtained from measurements taken from a subject following

a ventilation pattern with target minute ventilation, Vm =151/min and tidal volume, Vt
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=1500 ml. A 6 minute sampling period is chosen to allow equilibration of signals to

steady-state (Fig 3.7(a)). The final 3 respiratory cycles were chosen for analysis (Fig

3.7(b)).

Referring to Fig 3.7 (c), for each of the 3 respiratory cycles, the mean exhaled breath

temperature is calculated as;

f Tdt
y _J)

1'"

This mean value is evaluated by the data analysis software as;

Te = 28.5 "C at location 1 and Te=35.5 °C at location 2.

The measured relative humidity of the exhaled air at location 4 (distal end of heated tube)

is;

rhe= 71.5%

From the thermodynamic properties of moist air at atmospheric pressure (psychrometric

chart90) the absolute humidity of the exhaled for rh2= 71.5% and T4 =35.5°C is;

W2=26.4 g/kg dry air

Since no mass is lost between location 3 and 4 this is also the absolute humidity of the

exhaled air at location 3 (mouthpiece). From the psychrometric chart for moist air at

atmospheric pressure the enthalpy of the exhaled air at location 3 (he) is found to be:
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he=96.0 kJ/kg

The mean temperature and relative humidity of the inhaled air in this example were;

T2=6.5°C and rhi=95%

This yields the absolute humidity and enthalpy of the inspired air to be;

w i =5.6 g/kg dry air and hi=20.6 kJ/kg

The enthalpy difference between the inhaled and exhaled air (Ah) is therefore given by;

Ah =96 - 20.6= 75.4 kJ/kg

Now the mass flowrate of air is given by;

m = pV

where V= the mean volumetric flowrate during each respiratory cycle and p is the density

of air at T4.
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Figure 3.7. The evaluation of mean exhaled temperature from
pulsatile temperature signals at steady state. (A) Showing time to
steady-state, (B) showing breaths analysed and (C) showing
calculation ofmean exhaled breath temperature.
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In this example V = 349.7 ml/s and p = 1.097 kg/m3 giving;

m = 383.7 mg/s

Finally the total respiratory heat loss (Q) is calculated as;

Q = m Ah =29.3 watts

The convective heat loss is calculated from equation (3.3) as

Qc = mcp (T3-T2) =8.5 watts

Therefore the evaporative heat loss is;

qe = q - qc = 20.4 watts

The total rate ofmoisture loss is given by;

Wt = m (w2 — Wi) =478 jul/min
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CHAPTER 4

THE MEASUREMENT OF RESPIRATORY HEAT AND MOISTURE LOSS

(RHML) IN NORMAL SUBJECTS

4.1 Introduction

Measuring respiratory heat and moisture loss has been studied in the past mainly in the

context of human body energetics where it has been found to account for around 10% of

total body heat loss. As described in Chapter 2 RHML has been shown to increase with

exercise and with lowered inspired temperature and humidity. The process of heat

exchange in the airways is complex and dependent on factors such as; temperature and

moisture gradients between lumen and airway mucosa, heat and moisture transfer

coefficients, flow regime and velocity, gas-wall residence time and airway geometry.

These factors are affected by breathing pattern, such as, minute ventilation and tidal

volume, body surface area (BSA) and airway resistance. The extent to which these

factors influence overall RHML has not yet been quantified. As previously described,

invasive measurements have helped to demonstrate the sites of intra-airway heat and

moisture flux under varying ventilation and inspired air conditions and mathematical

models have offered similar insights into this complex process. However, precise non¬

invasive measurements of steady state respiratory heat and moisture loss in humans
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breathing at controlled ventilatory patterns have not been reported. Therefore the

influence of factors such as tidal volume, minute ventilation, and body size has yet to be

quantified.

The aim of this study was to employ the technique described in the previous section to

measure precisely respiratory heat and moisture loss in normal subjects and to quantify

the effects of ventilatory pattern (minute volume and tidal volume), body surface area

(BSA) and forced expiratory volume in 1-second (FEV1).

4.2 Methods

Subjects

The Lothian Regional Ethics Committee granted study approval for tests on human

subjects. Subjects free from known cardio-respiratory disease were enrolled in the study.

To ensure subjects were close to a basal metabolic state they were requested not to have a

meal within 2 hours of testing and were rested for at least half an hour in the laboratory

prior to measurements.

Measurementprotocols

Measurements were made on two groups of subjects according to protocols 1, 2 and 3

shown in Table 4.1. The effect of nasal conditioning was removed by requiring subjects

to wear a nose-clip. Height, weight, blood pressure, pulse and aural temperature were

recorded. Spirometry was then performed prior to and following respiratory heat and

moisture loss measurements.
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The effect ofminute ventilation on RHML

As described in Chapter 3 subjects were requested to follow a visual target on a computer

screen, which set expiratory flowrate and an auditory cue, which set ventilatory rate. To

assess the effect of minute ventilation (protocol 1) on RHML, 10 subjects were instructed

to follow flowrate targets of 250, 500, and 750ml/s at ventilatory rates of 5, 10, 15 breaths

per minute such that with ideal targeting, subjects would achieve a minute ventilation of

7.5, 15 and 22.51/minute respectively at a tidal volume of 1500ml. Data recordings were

made for at least 6 minutes which allowed breath and circuit temperatures to achieve a

steady state

The effect oftidal volume on RHML

To assess the effect of tidal volume on RHML (protocol 2) subjects were instructed to

maintain a square-wave expiratory signal adhering to a flowrate target of 500ml/s at a

ventilatory rate of 10, 15 and 30 breaths per minute such that with ideal targeting, subjects

would achieve a tidal volume of 1500, 1000, and 500ml respectively at a minute

ventilation of 15 litres/min.

The effect of inspired air temperature

10 subjects were required to breathe at targets of Vt =1500ml and Ve = 151/min with

inspired air conditions of 7.2°C, absolute humidity 5.8 g/kg. This allowed comparison

with the subjects in protocol 1 who had matching breathing pattern but inspired air

conditions of 21°C and absolute humidity of 6.7 g/kg.
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Protocol No. of Sex Height Age FEV1 Inspired air Ventilatory pattern

subjects (m:D (cm) (yrs) (litres) temperature Minute Tidal

(°C) Ventilation(l) volume (ml)

7.5

1 10 4:6 167 34 3.9 21 15 1500

22.5

500

2 20 13:12 171 37 3.8 7.2 15 1000

1500

3 10 4:6 173 37 3.7 7.3 15 1500

Table 4.1. Test subject details and protocols 1, 2 and 3. In protocol 1 subjects
breathed at low, intermediate and high minute ventilation for a fixed tidal volume

target. Subjects in protocol 1 breathed at low, intermediate and high tidal volume
for a fixed minute volume target. In protocol 3 subjects breathed at matching
ventilation to the intermediate pattern in protocol 1 but at the lower inhaled

temperature.
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Analysis.

Statistical analysis was performed using Sigmastat and SigmaPlot 2001 for Windows

version 8.0 (SPSS Science Inc, USA). Linear regression and correlation coefficients were

calculated with the same program. One-way analysis of variance (ANOVA) was used to

analyse the relationship between ventilation pattern and RHML. This was performed on

Minitab software.

Body surface area was calculated using the formula ofMosteller,

where, BSA=body surface area (m2), H= height (cm), wt=weight (cm).
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4.3 Results

Overall Respiratory heat and moisture loss in normal subjects.

For normal subjects at a ventilatory target of 15L/min breathing air at 21°C, RHML

measurements were found to be normally distributed with an overall mean of 21.4

Watts (SD=7.1). Evaporative heat loss was 15.5 (±4.7) Watts and convective 6 (±5.8)

Watts. Evaporative loss accounted for 72% of the total RE1ML.

The effect ofminute ventilation on RHML

Higher minute ventilations were associated with increased RHML (Fig4.1). For target

minute ventilations of 7.5, 15 and 22.5L subjects achieved 8.9 (±2.4), 16.4 (±5.6), 23.7

(±2.7) L and RHML was measured as 11.6 ± 2.9, 21.4 ±7.1, and 29.5 ±3.0 Watts

respectively (p<0.001, one-way ANOVA). For the same breathing patterns respiratory

water loss was 230 (±57), 417 (±126) and 581 (±58) microlitres per minute (p<0.001).

The effect oftidal volume on RHML

The lowest tidal volume target pattern of breathing was associated with significantly

lower RHML (Fig 4.2) than the highest tidal pattern (18.8 ±2.4 vs 21.1 ±1.1 W, p<0.001).

However the difference between the intermediate pattern and the two extreme patterns

failed to achieve statistical significance (20.0±1.4 vs 18.8±2.4 and 21. 1± 1.1 W, p>0.05,

one-way ANOVA). As described in section since RHML is strongly dependent on
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minute ventilation, RHML can be usefully expressed in Joules per litre respired which

would translate to low, intermediate and high values of 75.3 ±9.5, 80.2 ±5.7 and 84.2 ±4.4

J/L respectively.

72



Minute ventilation target

Figure 4.1 Protocol 1 - Measured RHML at low, intermediate and high
minute ventilations (Vm). One way ANOVA shows significant increase
in RHML with Vm, p<0.001. Measurements also show the evaporative

component ofRHML to be much greater than the convective component.

Limits indicate standard deviation.
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1/ /l evaporative

Target tidal volume (ml)

Figure 4.2. Protocol 2 - Measured RHML in Watts at low, intermediate and high
tidal volume patterns for a fixed minute volume target of 151/min. The lowest
tidal volume target pattern of breathing was associated with significantly lower
RHML (Fig 4.2) than the highest tidal pattern (18.8 ±2.4 vs 21.1 ±1.1 W,

p<0.001). However the difference between the intermediate pattern and the two

extreme patterns failed to achieve statistical significance (20.0±1.4 vs 18.8±2.4
and 21. 1±1.1 W, p>0.05, one-way ANOVA).
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The effect of inspired air temperature.

For subjects breathing at equivalent tidal and minute volume patterns the effect of

breathing cooler air was found to yield increased RHML (Fig 4.3). Comparing protocol 1

and 3 — matching ventilation patterns were achieved (Vt =1.65 and Vt = 1.7L

respectively)). The cooler inspired conditions produced a total RHML of 24.3±3.8 watts

versus 21.4 watts (p<0.01) for the warmer more moist air. Evaporative heat loss was 17.4

vs 15.5 watts and convective loss 6.9 vs 5.7 watts.

The effect ofBody surface area (BSA) on RHML

For the group of 20 controls in protocol 2 the BSA was normally distributed about a mean

2 / . .of 1.9 m SD=0.21). No significant correlation was found between body surface area and

RHML (Fig.4.4. R2= 0.0036)

The relation between FEV1 andRHML

For the group of 20 controls in protocol 2 FEV1 was normally distributed about a mean of

3.6 litres (SD=0.85). There was no significant dependence found between RHML and

FEV1 (Fig 4.4, R2=0.014).

Exhaled air condition

For subjects breathing the warmer more moist air the exhaled air was found to be 100%

saturated with a mean temperature of 31.0°C and the absolute humidity of the exhaled

breath was 29.2 g/kg dry air. Under the cooler conditions the exhalate was just into the

supersaturated region of the psychrometric chart with a mean exhaled temperature of

27.7°C and absolute humidity of 25.8 g/kg dry air. Water recovery under the warmer
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conditions is calculated as 34% of the total water added during inspiration. This

compares to 43% under the cooler inhaled conditions.
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P < 0.01

Ti=21°C
wi= 6.7g/kg

Ti=7.2°C
wi= 5.8g/kg

Total
RHML

Inspired air condition

Figure 4.3. Protocol 3 - The effect of inhaled air temperature on

respiratory heat and moisture loss. Subjects breathing colder air
at equivalent ventilatory patterns lost more heat than those

breathing the warmer air.
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Figure 4.3. Relationship of FEV1 and BSA to RHML. No significant
correlation was found implying the residence time effects of physical
size and airway calibre on RHML are negligible compared to ventilation

pattern and inspired air temperature and humidity.
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4.4 Discussion

This novel technique proved successful in being easily applied to multiple measurements

of respiratory heat and moisture loss (RHML) in human subjects by controlling and

measuring ventilatory pattern and inspired and exhaled air condition. The real time

measurement of air temperatures and moisture content allowed accurate measurements at

steady state.

Mean exhaled air condition with subjects breathing room air (21°C) was 100% saturation

at 31 °C. This is good agreement with the predictive models 29 and comparable with other

published measurements 31" 2. Under the cooler dryer inspirate conditions the exhalate

was found to be supersaturated. This was also found in the studies of Livingstone et al. 34

although not reported in other studies 35'36. The type of mouthpiece or facemask and the

position of the thermocouple in relation to the mouth are important in this regard. The

temperature was measured just distal to the 3-way valve rather than within the mouth. If

the inhaled air is cold enough the effect of this mixing will be to push the exhalate just

into the supersaturated region of the psychrometric chart for a short time until it is

warmed within the heated-tube section. This is commonly seen as people breathe on a

cold winter's day where the exhaled breath is visible as a supersaturated vapor.

Although more net heat and moisture is lost under the cooler conditions, proportionally

more heat is recovered on expiration, which illustrates the ability of the human respiratory

tract to regulate losses. This adaptation is more effective in other mammals where

conservation of respiratory water loss is more important. For example, the kangaroo rat, a

desert animal that does not drink but relies on the water in plant material has been found
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to conserve its respiratory heat and water losses. It has been shown that it is able to

recover around 54% of the water that was added to humidify air on inspiration 42.

Similarly the camel is estimated to recover around 70% of the potential respiratory loss 42.

Interestingly it is thought to achieve this by virtue of its large nasal turbinate surface area

• 2 2*estimated at around 1000cm (compared to 12cm for humans), which allows more

efficient water recovery on exhalation.

Measurements made in this study give the overall mean RHML at resting ventilations in

normal human subjects to be 11.3 watts, 72% of which is lost through evaporation of

moisture from the respiratory tract and 28% from convective cooling. Using the data on

overall human body heat balance, heat loss from the respiratory tract represents around

10% of total human body heat loss. 10% ofmetabolic heat is therefore dissipated through

respiration under typical indoor conditions. The mean evaporative water loss was found

to be 230 pl/min which would translate to a daily respiratory water loss of around 330ml.

These values are in good agreement with other studies (Table 4.2), which employed the

more elaborate 'freeze-out' techniques; in particular between the present study and

studies 1 and 2. Results from the other studies generally give higher values probably due

to the cooler dryer inspired conditions used. They also show that at the lower inspired

humidities the evaporative component forms a greater proportion of RHML over the dry

convective component.

The technique devised in this study was found to be sufficiently sensitive to detect

differences in RHML with ventilatory pattern. The effect of minute ventilation (Vm) on

RHML was quantified whereby respiratory heat and moisture loss was found to rise with

Vm. Low tidal volume breathing was associated with lower RHML per litre than high
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tidal volume breathing for the same minute volume target. This implies that shallow

breathing liberates less heat and moisture from the mucosa than slow deep breathing for

the same minute ventilation. At low tidal volumes the breathing valve dead-space and

that volume of inspired air in contact with areas of the oral cavity not participating in heat

and moisture exchange form a larger proportion of the tidal breath resulting in less heat

exchange per litre of respired gas. These results suggest that the optimum ventilatory

pattern to allow direct comparisons of RHML between subjects would be a tidal volume

of approximately 1500ml at a minute ventilation of 15 litres per minute. No correlation

was found between BSA and RHML implying the residence time effects of physical size

and airway caliber are negligible compared to the dominant effects of ventilation pattern

and inspired air temperature and humidity on RHML.

In this study, for the purpose of comparison, the inspiratory to expiratory (IE) ratio was

set at 1:1 with subjects also being required to reproduce a square-wave expiratory

waveform. It is recognised that ventilatory pattern is not solely defined by minute
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STUDY Design

No.of

subjects

Inspired
Conditions
Ti (°C)/ rh(%)/ventilation

Waterloss

(pl/min)
Respiratory Heat Loss
(Watts)
4e 9c Or

l.Burch 1945 7 56 20-21/50-60/6.9 166 6.7 1.6 8.3

2.McCutchan 1950 ,6 5 21-24/20-40/7.5 227 8.5 2.6 11.1

3.Caldwell 1969 51 5 25-27/0 / 9.8 282 11.9 0.9 12.8

4.Ferms and Varene
1986 48

5 24.8/0 / 6.7 179 7.0 0.5 7.5

5.Cain 1990 51 5 0/0/8.7 440 26.7 1.2 28.0

6.McCafferty 2005 20 21 / 40/8.9 230 8.6 2.9 11.5

Table 4.2. Comparison of study results with those of previous studies.
RHML increases with lower inspired temperature and humidity. At
lower inspired humidities the evaporative component forms a greater

proportion of RHML over the dry convective component. Good

agreement is found between the present study and studies 1 and 2.
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ventilation and tidal volume values but that factors such as IE ratio and the shape of the

inspiratory/expiratory flow rate signals may also be important in the context of airway

heat and water transport. Mathematical models of this complex process 14 would suggest

that a low IE ratio pattern would result in a lower expiratory water vapour concentration

compared to a high IE pattern for the same tidal volume and minute ventilation. Further

studies are required to assess the significance of this effect on measured RHML

This novel technique offers advantages over previous methods of quantifying RHML and

was able to quantify the effect of differences in ventilatory pattern and inspired air

condition on this parameter. It is likely therefore that this technique would possess

sufficient sensitivity to be usefully applied to measurements in patients with airways

disease.
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CHAPTER 5

RESPIRATORY HEAT AND MOISTURE LOSS IN ASTHMA AND COPD

5.1 INTRODUCTION

As described in Chapter 1, heat is delivered to the airways via the bronchial and

pulmonary circulations. The bronchial circulation with its sub-mucosal and peri¬

bronchial plexuses is in more intimate contact with the airway compared to the pulmonary
• • • 7f\
circulation down to airways of 1mm diameter . The bronchial circulation is also the

dominant source of the airway lining fluid, evaporation of which is a major contributor to

respiratory heat exchange. The interaction between airway disease and heat and moisture

loss has been most extensively studied in exercise-induced asthma 63-70 where the effect of

high thermal and hydration burdens has been thought to induce an abnormal airway

response associated with vasoconstriction followed by reactive hyperaemia in the

bronchial microcirculation. The effect of the spontaneously inflamed airway on

respiratory heat and moisture exchange is less clear. It is now known that subjects with
• .... 77

asthma have increased vascularity in their airways and increased bronchial blood flow ,

which may cause some degree of dysregulation in mucosal heat and water transport. The

effect of chronic obstructive pulmonary disease (COPD) on respiratory heat exchange is

less clear as this disease is heterogeneous in its pathophysiology involving on the one

hand the emphysematous process of destruction of the pulmonary capillary bed. airway
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wall thickening, mucous hypersecretion, and loss of bronchial vascularity and on the

other hand the acute effects of inflammatory mediators causing bronchial vasodilatation,

mucosal capillary engorgement and leakage. Few studies have looked at measuring

aspects of heat and moisture exchange in airways disease. Recent studies looking at the

nasal mucosa have found an impaired ability of patients with allergic rhinitis to humidify

inspired air 83. In asthmatic patients, studies have reported a faster rise in exhaled breath

temperature 84 compared to controls whereas in COPD the converse was found 85. In

another study exhaled plateau temperature was reported to correlate with exhaled nitric

oxide levels in asthmatic children , suggesting respiratory heat loss may reflect airway

inflammation in asthma. However, these studies did not control inspirate conditions or

ventilation nor did they attempt to quantify evaporative heat loss. As demonstrated in the

present study, breath temperatures alone do not take into account heat loss due to water

transport processes, which form the major part of the total airway heat exchange.

The aim of this study was to investigate the respiratory heat transfer characteristics of

patients with asthma and COPD compared to healthy controls with particular emphasis on

quantifying both the respiratory heat and moisture loss (RHML) under carefully

controlled conditions of inspirate and ventilation.

5.2 METHODS

Subjects

Thirty-three asthmatic patients, 17 patients with COPD and 25 control subjects were

studied (Table 1). The asthmatic and COPD groups were further subdivided into those

with a current exacerbation and those with stable disease and were drawn from hospital
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inpatient and outpatient populations respectively. Review of medical records, patient

questionnaire and pulmonary function tests confirmed the diagnosis of asthma according
• • • 87 .

to the American Thoracic Society criteria and in the COPD group according to the
• • • 88

Global Initiative for Chronic Obstructive Lung Disease criteria . For both asthma and

COPD, an exacerbation was defined by hospitalisation as a result of increased symptom

severity (dyspnoea, cough, increased sputum production or wheeze) and the requirement

for oral corticosteroid therapy. Subjects with heart disease, lung cancer, pulmonary

embolus, recent upper respiratory tract infection, coryzal illness, pregnancy or focal chest

X-Ray changes were excluded from the study. All subjects who were pyrexial as

determined by an aural temperature greater than 37°C were not enrolled in the study.
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Group Number Age Sex FEV1 Therapy
(M:F)

Bi-agonist inhaled steroid oral steroid
(% pred)

Controls 25 37(10) 12:3 107(14) 0 0 0

Asthmatics
exacerbation 13 44(10) 5:8 66(20) 13 13 13
Stable 20 52(10) 9:11 70(22) 20 20 0

COPD
exacerbation 7 68(5) 4:3 35(9) 7 0 7
Stable io 68(7) 5:5 47(17) 10 7 0

Table 5.1: Patient and control group characteristics. All asthmatics met the ATS 88
criteria for the diagnosis of asthma and the COPD group complied with the GOLD89
criteria. An exacerbation was defined by hospitalisation as a result of increased

symptom severity (dyspnoea, cough, increased sputum production or wheeze) and the

requirement for oral corticosteroid therapy. Data are given as group mean with
standard deviation (SD) in parenthesis.
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Test Protocol

Study approval for tests on human subjects was granted by the Lothian Regional Ethics

committee. Informed consent was obtained from all patients.

To ensure patients were close to basal metabolic state they were requested not to have a

meal within 2 hours of testing and rested for at least half an hour in the laboratory prior to

measurements. Height, weight, blood pressure, pulse and aural temperature were

recorded. Spirometry was performed before and after respiratory heat and moisture loss

measurements. To assess with-subject variation, eighteen normal subjects underwent

three repeat measurements ofRHML within a 2-week period.

RHML Measurements

To optimise the thermal challenge to the airway (see page 38), subjects breathed

conditioned air (7°C) through a 2-way valve as shown in Figure 5.1. The effect of nasal

conditioning was removed by requiring subjects to wear a nose-clip. Subjects were

requested to follow a visual target on a computer screen, which set expiratory flowrate

and an auditory cue, which set respiratory rate. They were instructed to maintain a

square-wave expiratory signal adhering to a flowrate target of 500ml/s at a respiratory rate

of 10 breaths per minute such that with ideal targeting, subjects would achieve a tidal

volume of 1500ml at a minute ventilation of 15 litres/min. Data recordings were made for

at least 6 minutes which was the time found to be required to allow breath and circuit

temperatures to achieve a steady state (Figure 5.2).
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StatisticalAnalysis.

Statistical analysis was performed using SigmaPlot and SigmaStat software (SPSS

Science Inc, USA). Un-paired t-tests were used to compare the data and a value of p<0.05

was considered significant.

5.3 RESULTS

All subjects in the control and disease groups were apyrexial and no difference was found

between groups in the mean core temperature as assessed by mean tympanic temperature

(table 5.2). Spirometry performed before and following measurement of RHML showed

no significant change in FEV i as a result of isocapnic hyperventilation of air at 7°C.

Reproducibility in normal subjects

The repeatability of RHML measurements was analysed using a one-way analysis of

variance for repeated measures 93. For three repeat measurements on 18 normal subjects

the within subject standard deviation (measurement error) was 2.1 J/L. Therefore in an

individual the difference between a subject's measurement and the true value could be

expected to be less than 4.1 J/L for 95% ofmeasurements.

Comparison ofnormal subjects with asthma and COPD patients (Figure 5.1)

Asthmatics whether the exacerbation or stable group showed significantly increased

RHML compared to controls (Figure 5.3); exacerbation group-93.2 J/L (SD=8.0),
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p=0.003 (versus controls) stable group - 89.3 (SD=7.4), p=0.025 (versus controls) and

controls 85 (SD=4.3) Joules/L. No significant difference was found in RHML between

the asthmatics with an exacerbation and those with stable disease. Breath targeting was

successful in achieving matching between asthmatics and controls with all groups

breathing at 10 breaths per minute (exacerbation group-tidal volume, Vt =1.7L (SDK).3),

stable group - 1.8L (SD=0.4) and controls 1.7L (SDK).3)).

No significant difference was found in RHML between COPD patients (stable group-83

(SD=4.8), p=0.23 and exacerbation group-81 (SD=5.8), p=0.06 Joules/L) over controls or

between exacerbation and stable groups. COPD patients found targeting harder. Mean Vt

was lower in COPD groups compared to controls (stable group-1.4L (SD=0.3) and

exacerbation group-1.4L (SD=0.2)).

Evaporative heat loss (Figure 5.2) accounted for the major heat transfer modality (up to 3-

times the dry convective component) and accounted for the difference seen between

controls and asthmatics (p<0.05), table 5.3) whereas no significant difference was found

in the convective component. This translates to a mean mucosal water loss of 395

pl/minute (controls), 455 pl/minute (asthmatics) and 320 pl/minute (COPD) for a target

tidal volume of 1500ml and a minute ventilation of 15 litres/min.

No correlation was found between FEVi and RHML for control (R =0.0147), asthmatic

(R2=0.0045), or COPD (R2=0.015) groups.
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Controls Asthma COPD

Exacerbation stable Exacerbation stable

Aural Temperature (°C) 36.3 36.3 36.3 36.2 36.2

Pre-test FEV1(L) 3.81 1.91 2.03 0.88 1.04

Post-test FEV1(L) 3.8 1.9 2.01 0.91 1.02

Tidal volume (L) 1.7 ±0.3 1.7 ±0.3 1.8 ±0.4 1.4 ±0.2 1.4 ±0.3

Resp rate (bpm) 10 10 10 10 10

Inspired
air
conditions

Temp (°C) 7.5±1.3

6.7 ±0.4

7.3 ±1.0

6.0 ±0.7

7.2± 0.9

6.2 ±0.8

7.9 ±1.1

6.5± 0.5

7.7 ±1.3

6.5± 0.8moisture(mg/L)

Exhaled
air
condition

Temp (°C) 27.9±1.0

30.4±1.2

28.7 ±1.0

32.2±1.9

28.7±1.2

31.3±2.0

27.9 ±1.1

29.6±1.3

27.8±1.3

29.6±1.8moisture(mg/L)

RHML

(J/L)
85.0±4.3 93.2±8.0 89.3±7.4 81.0±5.8 83.0±4.8

Table 5.2 Patient and control group data (±SD) showing a
groups to be apyrexial and to have comparable mean aural
temperatures. The level of isocapnic hyperventilation of cool air
used was found not to produce significant changes in FEV1 in
controls, asthmatics and patients with COPD.
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Figure 5.1: Total Respiratory heat and moisture loss (RHML) in Joules per

litre ATPS ventilation in patients with Asthma and COPD compared to

controls. Values plotted are group means with ± 95% confidence intervals
denoted by error bars. P-values represent significance level based on

unpaired t-tests between group data. 1 Joule = 0.239 calories.
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Figure 5.2. Total respiratory heat and moisture loss (RHML) together with
convective and evaporative components in controls, patients with asthma
and COPD. Heat loss by evaporation from the airway mucosa accounts for
the major component. 1 Joule = 0.239 calories.
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Convective (J/L) Evaporative (J/L) Total RHML (J/L)

Controls

Asthma-stable

Asthma-exacerbation

COPD-stable

COPD-exacerbation

23.9 ±1.6

25.3 ±1.3

25.2 ±1.9

23.8 ±1.7

23.5 ±0.98

61.1 ±3.5

64.0 ±6.9

68.0± 6.5

59.3 ±4.1

58.7 ±5.2

85.0 ±4.3

89.3 ±7.4

93.2 ±8.0

81.0 ±4.8

83.0 ±5.8

Table 5.3: Comparison of mean (± SD) convective, evaporative and total heat loss

(RHML) between control, asthmatic and COPD groups. Significantly more heat is
lost in asthmatics compared to controls which derives from the evaporative rather
than the convective component (P<0.01). No difference was found between controls
and those with COPD.

94



5.4 DISCUSSION

Asthmatics were found to have higher levels of respiratory heat and moisture loss

compared to controls. Possible underlying mechanisms include airway inflammation,

mucosal vascularity and bronchial blood flow increasing heat flux, increased pulmonary

blood flow (cardiac output) or an effect of medication on airway heat transfer in these

patient groups.

Although animal studies 20' 57 suggest that in health the pulmonary circulation is the

dominant heat source under moderate cooling loads these conclusions are derived from

studies on the normal airway. More recently, studies in patients on cardio-pulmonary

22 • • •

bypass, again with normal lungs suggest a lesser contribution of the healthy bronchial

circulation as a heat source but a greater role in water transport to the bronchial mucosa

under moderate cooling loads. In the present studies, we found increased heat and

moisture loss in asthmatics, the majority (approx 75%) of which is evaporative heat loss.

This may indicate that the bronchial circulation in asthmatics is 'upregulated' and thereby

contributes more as a heat and water source to the airway. If these results for moisture

transfer are extrapolated over time, asthmatics, in the course of an exacerbation, may be

losing in excess of a litre per day ofwater from the respiratory tract - an important factor

to consider in the overall fluid balance of this patient group. This also highlights the

importance of quantifying moisture loss when looking at heat exchange within the airway.

The size of the fluid compartment from which airway water is lost can be estimated from

the airway dimensional data of Weibel 24. If it is assumed that airways down to 0.5mm

diameter are involved in moisture transport under moderate ventilatory loads and

assuming the depth of airway lining fluid to vary from 10 microns down to 2 microns in
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the more distal airways then the airway water compartment comprises around 640 pi.

The present study found the mean respiratory moisture loss in controls to be 395 pi /min.

Together these results highlight the dynamic nature of airway surface liquid with over

60% of the liquid being lost by evaporation and being replaced by the mucosa each

minute.

Necessarily, all the asthmatics were receiving inhaled beta-2 agonists, which are known

to have vasodilating properties on the bronchial circulation and could theoretically have

contributed to the measured increases in RHML. However, drug effects are unlikely to be

a major contributor as a similar increase in RHML was found in patients with chronic

asthma, who had not received high dose beta-2 agonists in the previous 24 hours (none

use home nebulisers), compared to the group with exacerbation, all of whom were

receiving high nebulised doses at the time of study. Furthermore, we have attempted to

detect a treatment effect by comparing RHML before and after 2.5mg nebulised

salbutamol and found no change in two stable asthmatics and four normal subjects.

All asthmatics were on inhaled corticosteroids, which are known to have transient

vasoconstrictive effects on the airway 94 and therefore the potential to reduce the heat and

moisture loss. Although this may have partially masked the differences found between

asthmatics and controls or stable and exacerbation groups this effect is likely to have been

small and transient against the inflammatory and vascular mechanism already discussed.

Although ideally we would have standardized the dose and timing of inhaled steroids

between groups, our intention was to study patients in a real clinical setting where such

strict controls are not practical.
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We were unable to demonstrate a statistically significant difference in RHML between

the stable and asthma exacerbation group. The stable group was drawn from patients, on

average older, with moderately severe disease, many with a degree of fixed airflow

obstruction associated with chronic inflammation and remodeling. Conclusions regarding

differences between patients with acute exacerbations and stable disease would be best

achieved in a longitudinal study on the same cohort.

One further possible confounding effect in asthmatic patients is cold-induced

bronchoconstriction. The data of McFadden et al. 9 suggest that unless subjects breathe

cooled inspirate and at elevated minute ventilation, the bulk of heat and moisture transfer

will take place in the upper airway (above the glottis). In the present study the degree of

thermal loading (i.e. Ve =151/min. Tj=7°C) was chosen in order to engage enough of the

bronchial tree in heat and moisture exchange to reflect differences in the lower airways.

That said, it is well recognised that the thermal loading associated with isocapnic

hyperventilation can induce changes in airway resistance and indeed bronchial blood flow

in subjects with exercise induced asthma 103 and even in normal subjects 110 and that a test

such as the one described here could potentially alter the very parameter it seeks to

measure. However, the level of thermal loading used in this test was low (~25W)

representing approximately 10% of values found by most studies to induce changes in

FEV i in asthmatics and equivalent to those found not to induce a measurable increase in

bronchial blood flow in normals l03. FEV i was measured before and after each test and no

change was seen. It is therefore unlikely that the ventilatory pattern and inspired air

condition used here had a significant effect on inducing changes in airway resistance and

airway circulation.
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In the COPD group we found no significant difference in RHML between patients and

controls. COPD is diverse in its pathophysiology; there is acute inflammation associated

with the release ofmediators such as bradykinin, prostaglandins among others, which can

certainly be seen as the hyperaemic airways at bronchoscopy. However, histological and

flow studies 76-79 have demonstrated reduced pulmonary and bronchial vascularity in the

lungs of patients with COPD as a result of chronic inflammation and remodeling.

Destruction of conducting airway surface area by emphysema will also reduce RHML. It

is therefore possible that these mechanisms counteract each other resulting in the

observed normal respiratory heat and moisture loss. This heterogeneity of phenotype in

COPD may also have contributed to the increased variation in RHML measured in this

group.

No difference was found in RHML between stable COPD and those with an exacerbation.

Numbers were smaller in these groups as patients with advanced airflow obstruction were

less able to target their ventilation at the required level. Also those with exacerbations had

received nebulised therapy and oral steroids for at least 24 hours prior to testing. These

factors may have confounded any differences between these groups. Again, longitudinal

measurements in the same patients during the stable and exacerbation phases of disease

may be a more sensitive way to examine the association between RHML and airway

inflammation

In conclusion, this study has employed a novel technique in the measurement of

respiratory heat and moisture loss (RHML) in patients with asthma and COPD and shown

the asthmatic group to have increased RHML over controls. This may represent a useful
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marker of inflammation in asthma. Further study should be directed at longitudinal

measurements in asthmatics in order to evaluate the clinical utility of this technique.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

Our understanding of the process of heat and moisture loss from the respiratory tract has

advanced since the early concepts of Hippocrates and Aristotle. It has now been

established that the airways have two circulatory systems, namely the bronchial and

pulmonary circulations which both contribute to heat and moisture transport. However,

the relative contribution of each circulation to respiratory heat exchange has still to be

fully quantified and it has still to be firmly established how lung disease processes which

are known to alter both pulmonary and bronchial circulations may as a consequence affect

local and overall respiratory heat and moisture exchange.

It has also been shown that inspired air is warmed and humidified on its course to the

distal airways and alveoli and that exhaled air cools and its water content partially

condenses on the proximal airway allowing partial recovery of the heat and moisture lost

during inspiration. Invasive measurements 9 have told us something about sites of heat

exchange under certain inspired conditions and breathing rates and offered an insight into

the possible mechanisms of exercise (or thermally) induced asthma. Mathematical models

have shown reasonable correlation with these measurements in normal subjects. However

models by their nature make assumptions such as the temperature and moisture gradients

between airway mucosa and lumen and flow regimes deep within the lung and are limited

in their ability to build in the large number of pathological changes known to affect the

airway such as changes in airway caliber, wall thickness, mucous hypersecretion,
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pulmonary capillary and mucosal blood flow. Notwithstanding the limitations of such

models, simulation of the conditions thought to occur in airway inflammation, such as

changes in mucosal wall thickness and mucosal blood flow, would suggest that there

would be measurable changes in the resultant airway heat exchange. For example, the

data of McFadden et al. 9 and others would suggest that at minute ventilations of 151/min

and inspirate temperatures of 7°C, airways down to the 9th generation take part actively in

heat and moisture exchange, with the lower airway (trachea to distal bronchi) contributing

at least 50% of the total respiratory heat and moisture loss under these conditions.

Alterations in RHML brought about by pathological changes in the lower airways should

therefore have significant impact on the total RHML.

There have been few studies looking at the measurement of respiratory heat and moisture

loss in subjects with airways disease. The techniques used in the past (mainly in the study

of normal subjects) were cumbersome and as a result limited the size of studies and made

them difficult to apply to groups of patients. Invasive measurements by their nature were

not suitable for patients often with fairly advanced lung disease. With this in mind the

present study covered new ground by designing a compact device capable of making real

time measurements ofRHML non-invasively whilst controlling inspired air condition and

breathing pattern. By using relatively recent developments in moisture sensor technology

the time consuming and cumbersome techniques of freezing and weighing exhaled breath

was avoided allowing significant improvement in measurement time and thereby allowing

multiple measurements on subjects and an ease of measurement in patients with in some

cases severe lung disease. The aim of this study was to measure non-invasively the

respiratory heat and moisture loss in normal subjects and in patients with airways disease.

In this clinical setting, we were successful in obtaining measurements in almost all of
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asthmatic patients admitted with an acute exacerbation and around 80% of COPD

patients. Only a small proportion of COPD patients with severe air-flow limitation were

unable to meet the ventilation targets imposed demonstrating the success of this method

as a practical measurement technique in a real clinical setting. The results in normals

show good agreement with previous studies employing more elaborate techniques. For

the first time the effect of ventilatory pattern was quantified and controlled during

measurements. It was also found that physical factors such as body surface area (BSA)

and forced expiratory volume in one second (FEV1) were negligible compared to the

effect of ventilatory pattern and inspired air condition.

It was hypothesized that Respiratory heat and moisture loss (RHML) would be altered in

patients with Asthma and Chronic obstructive pulmonary disease (COPD) compared to

normal controls due to the effects of airway inflammation and re-modeling. Increased

RHML was found in asthmatics over controls as discussed in detail in chapter 5. The

difference, although significant, is small (of the order of 10-15%) even for patients with

moderately severe exacerbations of their disease (as judged by FEV1 % predicted) and no

difference was found between the stable and exacerbation groups. As discussed in

chapter 5 this may be due to the influence of many factors such as medications (beta

agonist or steroid). Another possible cause for such a small difference between these

groups may have been the degree of recruitment of the lower airway in heat exchange. It

may be that the efficiency of the upper airway in the conditioning and recovering heat has

a significantly greater contribution to overall heat exchange or that variations in upper

airway effects between subjects mask the lower airway effects even under the conditions

of moderate cooling load employed in this study. Further studies would be best directed

towards longitudinal measurements on patients during the stable and exacerbation phases
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of disease to help control for these confounders and improve the sensitivity of this

technique.

Recent published studies have advocated a temperature washout technique whereby the

rate of temperature rise in exhaled breath during a forced expiratory maneuver is

measured. In asthmatic patients, studies have reported a faster rise in exhaled breath

temperature 84 and higher exhaled plateau temperatures 8:1 compared to controls whereas
Q/- t #

in COPD the converse was found suggesting altered heat loss patterns in these airway

diseases. The results of the present study and others have demonstrated that heat is

consumed in two ways during inspiration; approximately 25% of the energy is used in

heating the air (convective) and 75% in evaporating moisture from the mucosal surface to

humidify the air stream (evaporative). On expiration the reverse of both processes occurs,

namely, convective cooling and condensation of water vapour on the mucosa. This

dominance of energy transfer through evaporation and condensation suggests that to

characterize the thermodynamic performance of the airways by temperature measurement

alone, without accompanying humidity measurements, may be misleading.

Inflammation is classically defined by 'rubor, calor, dolor and tumour'. It is the 'calor' or

heat that is the final common pathway in inflammation. It would therefore seem that

measurement of this physical property of the airway would offer the most sensitive gauge

of inflammation. However as we have seen from this study the process of heat loss from

the airways is complex involving not just the dry, convective warming of air but the

transfer of heat by evaporation and condensation. This process is dependent on many

factors as discussed earlier. Most importantly the relative roles of the bronchial and

pulmonary circulations and their contributions as a source of heat and moisture transfer
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has yet to be fully quantified particularly in patients with lung diseases. Although this

study supports the idea that the differences seen between asthmatics and controls was due

to 'upregulation7 of the bronchial circulation due to airway inflammation, differences in

pulmonary blood flow were not controlled or quantified between subjects. It could be

argued that the differences seen were brought about by differences in pulmonary blood

flow or cardiac output as a consequence of a hyperdynamic circulation resulting from the

systemic inflammatory response. Further work is therefore required to control for these

variables.

This technique would lend itself to use in an intensive care setting with ventilated

patients. Here the ventilation pattern could be strictly controlled and invasive

measurements of pulmonary artery pressure and cardiac output would allow assessment

of the influence of these variables. Patients on cardio-pulmonary bypass effectively are

on selective bronchial perfusion only. Under these conditions the relative contributions of

the bronchial and pulmonary circulations could be evaluated more precisely.

As well as further longitudinal studies (discussed in chapter 5) it would be useful for

future studies to look at the effect of beta-2 agonists and inhaled corticosteroids on

RHML. Both short-term and longer-term effects in steroid naive patients could easily be

carried out to assess the possible vasoconstrictor effects of these drugs. The different

phenotypes within the asthmatic group could be further explored by making

measurements in patients with exercise induced wheeze to see whether this group has a

more pronounced RHML signal.
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The pathophysiology of bronchiectasis in cystic fibrosis, which is thought to involve

changes in the airway lining fluid and mucous hypersecretion would seem to be good

model of altered airway heat and moisture transfer. The future application of the

technique described in this thesis to measurements in this group of patients might yield

useful insight into the effect of this disease on RHML during stable and exacerbation

phases.

The development of a breath test that allows measurement of inflammatory activity in

lung diseases such as asthma, COPD and bronchiectasis has obvious attractions. Such a

test would allow non-invasive diagnosis and assessment of inflammatory activity. The

response to therapy could also be gauged in an easy non-invasive way. The possibility

exists of one day having a hand-held device that could even be used by patients at home

or in the primary care setting to measure inflammatory activity in advance of it becoming

clinically apparent thereby allowing earlier therapeutic intervention, and improved

treatment efficacy. Currently, there has been an explosion of interest in techniques

looking at the gaseous (nitric oxide, carbon monoxide) and molecular (hydrocarbons,

vasoactive amines, lipid peroxidation products and pH) content of breath and its relation

to airway inflammation. Such markers derive from the many inflammatory pathways

thought to occur in asthma, COPD and cystic fibrosis. The more promising of these are

NO and pH. However, as with the present study there is still considerable overlap

between disease and control groups confining these methods as research tools for the time

being and leaving the discovery of the definitive breath test to gauge airway inflammation

as a goal yet to be achieved.
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APPENDIX 1

INSTRUMENTATION

Al.l Measurement of temperature

K-type (Chromel-alumel) thermocouples were used for the measurement of air and breath

temperatures. They were ofminiature welded bead construction offering a 95% response

time of 50ms. A compensated reference temperature system was used whereby dedicated

temperature indicators terminate each thermocouple at a connection panel inside the
chassis and use a compensated network to inject a signal, which compensates for the

temperature of the panel before calculating the temperature. The output signal was then

amplified and fed into a 16-channel data acquisition system (Fig A2.1). All

thermocouples were calibrated whilst connected to their channels and amplifiers. They
were calibrated using a water-bath arrangement against a mercury standard to within ±

0.1°C.

chromel

L
Welded
bead \ To amplifier and data

, . acquisition system
alumel

Figure Al.l. Choice of thermocouple for measurement of exhaled air
temperatures. The thermocouple consists of two dissimilar metals joined,
which generate a net thermoelectric voltage between the open pair according
to the size of the temperature difference between the ends and the relative
thermoelectric properties of the metal wires used.
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Figure A1.2. Typical thermocouple signal showing exhaled breath
temperature in relation to flowrate.
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A1.2 Humidity sensors

The sensors are of a 3-layered capacitance construction as shown in Fig A1.2. Water

vapour in the active capacitor's dielectric layer equilibrates with the surrounding gas. In
so doing the dielectric property is altered in proportion to the absolute concentration of
water vapour in the surrounding air. This will be reflected in changes in the output voltage
of the device. The porous platinum layer shields the dielectric response from external
influences while the protective polymer over layer provides mechanical protection for the

platinum layer from contaminants.

U-0,030 REF.
(076)

. 0.030 REF.
ENSOR TANG

0.360 PIA. REF.
_ (9,14)

0.25 DIA. (6.35) REF.
FILTER DISC. SST
SENSOR CAP, NICKEL 100

0.260 REF
(6.60)

0.3S0
_

(6.69)
0.010
(0,25)

Figure A1.2. Detail of humidity sensor construction. Based on the
principle of altered capacitance in proportion to the absolute amount
of water vapour that the dielectric layer equilibrates with, the
humidity sensor replaces the elaborate freeze and weigh techniques
used in the past to measure respiratory moisture loss.
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Relative Humidity (%)

Figure A1.3. Relationship of humidity sensor output voltage to

relative humidity. Over the operating range of the sensor (35-40 °C,
rh 65-75%) the variation of gain with temperature is ±2%.
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A1.3 Phase-shift ultrasonic flowmeter

The flowmeter comprises two ultrasonic transducers which are mounted diagonally across

a tube through which subjects breathe. Each transducer can emit and receive sound
across the moving airstream. The frequency of the received signal will be altered by the
fact that it is being transmitted through a moving stream of air. This alteration is termed
the phase shift of the transmitted signal and will depend on the velocity of the airstream,
the physical dimensions of the tube, the angle at which the transducer is set and the

frequency of the transmitted signal and the speed of sound in air. If the functions of the
transducers are reversed a similar relation can be found. The difference between the 2

phase shifts (Acp) with the ultrasound traveling in each direction can be expressed as a

direct linear function of air velocity thus;

Where c = speed ofsound in air, f=frequency, d= diameter oftube.

Ultra-sonic transducers
inclined at angle 9 to flow

v

1

Cylindrical housing,
diameter, d
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The relationship between the flow velocity and phase shift is inversely proportional to air

temperature because of the velocity of sound being proportional to the square root of

temperature. Coincidentally the resultant variation in gain of the instrument corrects the
volume flowrate for changes in temperature.

This type of flowmeter lends itself to this application in particular as it has low resistance
to air flow, minimal dead space, good linearity, stability, robustness and lack of sensitivity
to contamination with condensation. The specification of the device is summarized
below.

Manufacturer Flowmetrics Division

Birmingham Research and Development
Ltd

Birmingham Research Park
Vincent Drive

Birmingham Bl5 2SQ

Linearity < 2% of reading
Baseline stability
Inhaled:exhaled < 0.2% fsd

Temperature (ambient) <2% fsd / °C < 0.2% fsd/°C

Noise, zero flow < 0.07% fsd, rms (0-60Hz)
Gain stability
Ambientrexhalate (20°C) +0.16% gain change
Temperature (25-35°C) -0.27%/°C

Response time 12ms (100%)
All output impedances lOOohms
Power requirements 9-15V, 250mA. AC or DC
Flow range +/- 20 1/s
Dead space 30ml
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APPENDIX 2

DATA ACQUISITION

Sensor detail

• Temperature sensor
□ Moisture sensor

o end-tidal C02 inlet port

To PC

S
0)
+->
to

00

c
o

3
cr
o

<
cS

C3

a

Thermocouple
Amplifier with
temperature
comDensation

Signal amplifier

Figure A2.1. Schematic of instrumentation in breathing circuit. Thermocouple and

humidity sensor output was conditioned by purpose built multichannel amplifiers. All

signals were sampled at 100 Hz and captured on a 16-channel computerized data
acquisition system (model 14011, CED. Cambridge, UK), which interfaced with
software (spike 2, CED, Cambridge, UK) to allow real time display of signals and

storage of data to disk.
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Figure A2.2. Real-time display of expired volume, end-tidal C02, inspired
and exhaled relative humidity, inhaled and exhaled temperature and
flowrate. Signals taken from subjects breathing at a target ventilation
pattern. The real-time signals allow steady state conditions to be
established and hence measurement of respiratory heat and moisture loss.
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APPENDIX 3

Experimental Error

Calculation of Hans Rudolf valve dead-space effect - 'wash-in and washout' effect.

'Wash-in' Effect

The inhaled and exhaled air mixes with the small amount of dead-space air within the
Hans-Rudolf valve. During inspiration this dead-space air will be warmer and more

saturated than the colder dryer inspirate whereas during expiration it will be cooler and

dryer than the exhaled air. There will therefore be a small gain in enthalpy across the
valve during inspiration and a loss during expiration. The following quantifies this effect
as a source of error in the overall measurement of respiratory heat and moisture loss

(RHML).

Assuming adiabatic mixing between inspired air and valve dead space air i.e. no net gain
or loss of energy in mixing process, an energy balance is expressed as;

t

mihl + mdhd = (mi + md ) h:

, r ' mh +mdhdtherefore, ht = ——
ml + md

where m, = mass flowrate of inspired air (kg/s), mc/ = mass flowrate of dead-space air

(kg/s), hj=enthalpy of inspired air (kJ/kg), hd=enthalpy of dead-space air (kJ/kg)
f

/?, =enthalpy ofmixed inhaled air (kJ/kg)

A.ssuming the inspired air to be at 7"C and with an absolute humidity of5.8g/ kg a minute ventilation (V)

of 15litres/min, a tidal volume of 1500ml and the valve dead-space volume to be 30ml at a temperature of
27.7"C with absolute humidity 28.5g/kg.

m = pfy , where pa — densiy ofair kg/m !
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Then, m,. = 1.129x— x 10"3 = 3.125x 10~4%/j
60 15

m. = 1.25x— xlO"3 =5.64x 10~6 ksjsd
60 &

From Psychrometric chart 90, for Tj = 7°C, w,=5.8 g/kg then hj=21.6 kJ/kg. Similarly hd
=88.1 kJ/kg

Therefore,

,/^A+mA =22.Skllkg
m, + md

t

The small enthalpy gain across the valve during inspiration is therefore h, - hi =1.2 kJ/kg

which accounts for 1.7% of the total enthalpy change across the system.

'Wash-out'Effect

Using the same assumption as above, there will be a small enthalpy loss across the valve
due to the mixing of exhaled air with the colder valve dead-space air.

h ' _ mff + mdhd
me + md

where m, = mass flowrate of inspired air (kg/s), he=enthalpy of exhaled air (kJ/kg),
t

hd=enthalpy ofdead-space air (kJ/kg) hc =enthalpy of mixed exhaled air (kJ/kg). This

leads to;

K =86.5A/%

r

The small enthalpy loss across the valve during inspiration is therefore hc - he =1.5 kJ/kg,

representing 2.2% of the total enthalpy difference.
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The 'wash-in' and 'wash-out' effects can therefore be considered small (~2%) compared
to the magnitude of overall energy exchange and can be ignored for the purpose of
measurement of individual RHML.

Humidity Sensor Response time error

The response time for the humidity sensor (5 s) is such that for the breathing patterns used
in this study, inter-breath variations in relative humidity were not detected. The position
of the humidity sensor distal to the mouth and at the end of the heated tube section means

that the sensor will 'see" a damped signal as a result of more efficient mixing between
exhaled dead-space gas. Measurements were taken over a prolonged period to allow

steady state conditions to be achieved. Potential error may arise due to the sensor not

detecting inter-breath variation in relative humidity. If we consider a bi-compartmental
model of expired air whereby the initial portion of exhaled air is unsaturated and the
second compartment comprises fully condition gas. Then the ideal RH signal from a

sensor placed next to the mouth will rise exponentially to 100%RH from an initial value
determined largely by inspired air condition. In order to estimate the magnitude of this
error we can consider the 'worst case scenario' (Figure A3) where the sensor placed at the
mouth fails to detect the extreme inter-breath variation in RH due to the first-compartment

48 •

effect. We know from the studies of Ferrus et al using mass spectrometry (Figure 1.4)
that the first compartment is approximately 10% of the tidal volume. Considering Figure

A3, the ideal moisture sensor detects the change in moisture (we-Wj) over the first

compartment whereas the sensor with the slow response time detects the steady state

plateau value. Assuming a linear rise in sensor signal, the moisture loss per breath (m,)
from the ideal sensor is given by;

m, = (% -wiW-w<)

Whereas the moisture loss per breath from the damped sensor is given by;

t

ml = {we -wJV
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The % difference between ideal and dampedmeasurements is therefore;

m, - m,

m,

AV

2V

If for a tidal breath of 1500ml we assume the first compartment comprises 150ml then the

% difference between the sensors would be of the order
150

= 5 %. This represents
2x1500

a maximum theoretical error assuming the sensor is positioned in close proximity to the
mouth where it will be exposed to extreme variation in moisture levels. As described
earlier in the present study the sensor was positioned distal to the mouth at the end of a
heated tube section. At this location due to improved dead space mixing the sensor is

exposed to much less variation in humidity levels breath to breath and therefore this error

is likely to be much less than 5%.

We

Humidity

Wi

Ideal sensor response
'damped' response

Volume

(ml)
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Comparison of measured water loss against 'freeze and weigh' standard

To test the accuracy of the moisture sensors measurements were made on 10 normal

controls over a range of minute ventilations and compared with the data obtained by the
'freeze and weigh' technique (Ferrus et al 48) under similar conditions. The results are

shown in Figure A4. As can be seen from the data there is excellent agreement between
sensor measurements and 'freeze and weigh' measurements under matched conditions

(agreement to within < 2%). The error due to the sensor response time is considered

negligible.
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1000

• MEASURED WATER atVt = 819ml
— Ferrus etal. 1980

—i—
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Minute ventilation (litres)
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Cumulative error in calculated respiratory heat and moisture loss (RHML)

Referring to section 3.3.2 outlining the calculation of the overall RHML; this worked

example forms the basis for the following evaluation of the cumulative error in the
calculation of this quantity.

From the example section (3.3.2),

RHML (Q) = m Ah =m (he-h)

As described in section (3.3.1), enthalpy (h) is a linear function of the 2 independent
variable w and T. In this example;

we =24.4 g/kg ± 2%, Te = 28.5 ± 0.1"C, he =96.5 Id/kg

The associated error in the calculation ofhe is therefore given by;

Therefore he =96.5 ± 1.95 kJ/kg

Similarlyfor w, =5.6 g/kg ± 2%, T, = 6.5 ±0.1°C, h, =20.6 kJ/kg

Therefore he =20.6 ± 0.52 kJ/kg

A(^ ^
= J(0.02)2 + (0.025)2 = 0.03

K - h,

he-hi = 96.5- 20.6 =73.4 ±2.34 kJ/kg

m = pV, V=349.7 ± 3.5 ml/s
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^ == V(0.0l)2 +(0.03)2 = 0.032
0 = 29.3 ± 0.92 Watts
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APPENDIX 4

VENTILATORY FLOW TARGETING SOFTWARE

Software was written in QuickBasic in order to generate on screen a visual and auditory

target for expiratory flowrate and breath frequency respectively for subjects to follow.
The software takes as input the signal from an ultrasonic flowmeter (described in

Appendix 1.2) which is conditioned via an Amplicon pc26ad Card. The subject's

breathing pattern is displayed in real time and in addition the expiratory flowrate is

displayed against a target flowrate set by the user (FigA3.2). The user can also set the

subject's breathing rate by means of an auditory cue (beeps). A 2-tone system cues

inspiration and expiration. The duration of inspiration and expiration is set equal.
Flowrate targeting was chosen over volume targeting to avoid the tendency of subjects to

dynamically hyperinflate. If subjects are instructed to adhere to a square wave expiratory

pattern then effectively minute volume and tidal volume target patterns can be set. The

operator is offered a succession of screens, which prompt for the ventilation target pattern

as shown in Figure A3.1.
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VENTILATORY FLOW TARGETING

John NcCafferty
Respiratory Medicine
University of Edinburgh

VENTILATORY FLOW TARGETING
Please set target parameters by
answering the following

Uhat is your target aaxiMin tidal
-flowrate (itl/s)...

9.M06?

reak expiratory flourate target 550 ml/i

Figure A3.1. Ventilation targeting software
These prompt the user for ventilation tamet "•
expiratory flowrate and breaths per m

screen displays.
target parameters such as
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Minute
ventilation
-counter

Expiratory
flowratc

^—signal

Volume

"signal

Expiratory flowrate target
-tine

Position of 'ball1 at zero flow.

Expiratory flow displaces the "ball'
upwards towards target line

Figure A3.2. Ventilation targeting system. The subject's breathing
pattern is displayed in real time and the expiratory flowrate is
displayed against a target flowrate set by the user. The user can also
set the subject's breathing rate by means of a an auditary cue (beeps).
The system allows standardization of breathing pattern for
measurement of respiratory heat and moisture loss (RHML).
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BREATH FLOWRATE TARGETING SOFTWARE (© JB McCafferty 2002)

DECLARE SUB targetdravv ()
DECLARE SUB targetfreqlO ()
DECLARE SUB targetfreqlS ()
DECLARE SUB targetfreq20 ()
DECLARE SUB targetfreq25 ()
DECLARE SUB targetfreq30 ()
DECLARE SUB targetfreq35 ()
DECLARE SUB targetfreq40 ()
DECLARE SUB SCRDRAW ()
DECLARE SUB CLEARSCREEN (MAXX, MAXY, SIZ, DL)
DECLARE SUB DRWBOX1 ()
DECLARE SUB fprint (TextS, textx%, texty%, colour%, file%)
DECLARE SUB CLEARSCREEN (MAXX, MAXY, SIZ, DL)
DECLARE SUB fopen (file$, file%)
DECLARE SUB Delay (A AS SINGLE)
DECLARE SUB DisplayBox (X AS INTEGER, Y AS INTEGER, FrameColourA AS INTEGER, FrameColourB AS INTEGER,
TextColourA AS INTEGER, TextColourB AS INTEGER, FrameColour AS INTEGER, FrameLabel AS STRING, Text AS
STRING, Size AS INTEGER, Speed AS SINGLE, _

WaitKey AS INTEGER)
DECLARE SUB CloseBox (X AS INTEGER, Y AS INTEGER, Size AS INTEGER, Lines AS INTEGER. Speed AS SINGLE)

DIM SHARED OnScreen(25, 80) AS INTEGER
DIM SHARED OnColour(25, 80) AS INTEGER
DIM SHARED Lines AS INTEGER

Start:
'SINCLUDE: 'c:\qb45\pc26at.bi'
INTRO GRAPHICS
SCREEN 12
PAINT (1, I), 10
CLEARSCREEN 640, 480, 3. 0
SLEEP 1
CLS

1 SIGNATURE SCREEN
A$ = "C:\JOHN\QBWINFNT\"
fopen A$ + "IMPACT.qbf", 1
fopen A$ + "roman.qbf', 2
fopen A$ + "terminal.qbf', 3
fprint "VENTILATORY FLOW TARGETING", 100. 150, 7, 1
fprint "John McCafferty", 250, 350,2, 3
fprint "Respiratory Medicine", 250, 375, 2, 3
fprint "University of Edinburgh", 250, 400, 2, 3
CLOSE
DO UNTIL INK.EYS <> ""
LOOP

flagl:

WINDOW (0. -150)-(4000, 500)

DIM newaddr AS INTEGER
DIM numchans AS INTEGER
DIM NumScans AS INTEGER
DIM result AS INTEGER
DIM VOLTS( 16, 3) AS SINGLE
DIM SHARED target(2000)
DIM F AS SINGLE
CONST PI = 3.141593
DIM SHARED tvol AS INTEGER
DIM SHARED tfreq AS INTEGER

v% = 1

pg%= I

CLS

134



'INPUT TARGET DATA
SCREEN 0
COLOR 7, 0
'

Display Header
CALL DisplayBox(5, 10, 9, 1,7, 1, 15, "VENTILATORY FLOW TARGETING ", "Please set target parameters by answering the
following", 40, .05, 0)
'

Display Text
CALL DisplayBox(10, 25, 7, 1, 15, 1, 0,"What is your target maximum tidal tlowrate (ml/s)...", 40, .05, 0)
LOCATE 15,27
INPUT " tvol
CALL CloseBox(10, 25, 40. Lines, .05)
CALL DisplayBox(10, 25, 7, 1, 15, 1, 0,"What is your target ventilatory rate (bpm)", 40. .05, 0)
LOCATE 16, 27
INPUT " tfreq
CALL CloseBox(10, 25, 40, Lines, .05)

'initialise ADC
chanNo = 1
newaddr = &H300
CALL InitAddr(newaddr)

'set channels to be read
FOR chan = 0 TO (chanNo - 1)
chans(chan) = chan
NEXT chan
numchans = chanNo
CALL SetAdChans(chans(). numchans)

'zeroing of the flowmeter
zero: CALL DisplayBox(10, 25, 7, 1, 15, 1, 0, "Do you want to zero the flowmeter ?", 40, .05, 0)
LOCATE 17,27
INPUT " zero$
IF zeroS = "y" THEN
CLS
GOTO getdat
END IF
IF zeroS = "n" THEN GOTO store
IF zeroS <> "n" AND zeroS <> "y" THEN GOTO zero

CALL CloseBox(10, 25, 40, Lines, .05)
getdat: CALL SoftScanAd(ConvData(), 1)
result = (ConvData(chans(0), 0))
IF result < 2048 THEN
zero = 2 * (result / 2047)
ELSE
zero = -2 * (4096 - result) / 2048
END IF
'convert to L/sec
F = zero / .2
LOCATE 22, 5
PRINT INT(F * 100)/100
CALL DisplayBox(10, 25, 7, I, 15, 1, 0,"press z when zero is steady", 40, .05, 0)
IF INK.EYS = "z" THEN GOTO store
GOTO getdat

CALL CloseBox(10,25, 40. Lines, .05)
"open file on d: for output

store: CALL DisplayBox( 10, 25, 7. 1. 15, 1, 0. "filename for storing data", 40, .05, 0)
LOCATE 18,27
INPUT fileS
CALL CloseBox(10, 25. 40, Lines, .05)
fileS = "c:\temp\" + fileS + ".asc"
OPEN fileS FOR OUTPUT AS #1

"pause prior to data sampling
pause: CALL DisplayBox(10, 25, 7, 1, 15. 1, 0, "press s to proceed and e to stop", 40, .05, 1)

DO
LOOP UNTIL INK.EYS = "s"
'restore screen mode
SCREEN 12
w = 1

135



v% = I

'

set clock controlled sampling
control = newaddr + 7
counterO = newaddr + 4
counter! = newaddr + 5
counter2 = newaddr + 6

OUT control, 52
OUT control, 116
OUT control, 180

OUT counterO, &H10
OUT counterO, &H27
OUT counter 1, &HFF
OUT counterl, &HFF
OUT counter2, &HFF
OUT counter2, &HFF

"draw target lines
CLS
CALL SCRDRAW
CALL targetdraw

"call breath frequency auditory target sounds
scue:

IF tfreq = 10 THEN
CALL targetfreqlO
ELSEIF tfreq = 15 THEN
ELSE1F tfreq = 20 THEN
ELSEIF tfreq = 25 THEN
ELSEIF tfreq = 30 THEN
ELSEIF tfreq = 35 THEN
ELSEIF tfreq = 40 THEN
END IF
'Data acquisition loop
DO UNTIL INKEYS = "e"
gettime:
oldtim = tim

gettim2:
OUT control, 68
tim = INP(counterl): hi = INP(counterl)
IF tim = oldtim GOTO gettim2

'

sample flow at 100Hz, plot FV loop and vol/time, put flow readings into
'

array
getdat2:
CALL SoftScanAd(ConvData(), 1)
'Convert all data to volts and save in array Volts(channel no.sample number)
FOR chan = 0 TO (numchans - I)
p% = ConvData(chan, 0)

IF p% < 2048 THEN
VOLTS(chan, 0) = 2 * (p% / 2047)
ELSE

VOLTS(chan, 0) = -2 * (4096 - p%) / 2048
END IF
NEXT chan

"print flow data and target display on screen
IF INICEYS = "c" THEN
GOTO scue

END IF

FOR chan = 0 TO (numchans - 1)
PSET (v%, (VOLTS(chan, 0) * 100) + 300), 15

CIRCLE (1850, (VOLTS(chan, 0) * 400) + 50), 50, 5
PAINT (1850, (VOLTS(chan, 0) * 400) + 50), 50, 5
CIRCLE (1850, (VOLTS(chan, 0) * 400) + 50), 50, 0

CALL targetfreql5
CALL targetfreq20
CALL targetfreq25
CALL targetfreq30
CALL targetfreq35
CALL targetfreq40
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PAINT (1850, (VOLTS(chan, 0) * 400) + 50), 50, 0

"save data to file
PRINT # 1, v%; " VOLTS(chan, 0)
NEXT chari
'reset screen display
v% — v% + 1
IF v% > 4000 THEN
CLS
v% = 1

pg% = pg% + 1
CALL targetdraw
CALL SCRDRAW
LOCATE 1,1: PRINT pg%

END IF

'end data acquisition loop
LOOP

repeat: LOCATE 30, 15: INPUT "Press r to repeat, x to exit"; repeats
IF repeats = "r" THEN
CLEAR
GOTO flag 1
ELSE1F repeats = "x" THEN
END
ELSE
LOCATE 28,2: PRINT "Invalid key enter again"
GOTO repeat
END IF

END

'SUBROUTINES

SUB CLEARSCREEN (MAXX, MAXY, S1Z, DL)
IF SIZ> 100 THEN SIZ = 100
FOR S = 0 TO 500 / (SIZ * 2)
Y = 0 + (S * SIZ)
FOR X = 0 + S TO MAXX - S STEP SIZ
LINE (X, Y)-(X + SIZ, Y + SIZ), 0, BF
FOR I = 1 TO DL: NEXT I
NEXT X
X = MAXX - (S * SIZ)
FOR Y = 0 + S TO MAXY - S STEP SIZ
LINE (X, Y)-(X + SIZ, Y + SIZ), 0, BF
FOR I = 1 TO DL: NEXT I
NEXT Y
Y = MAXY - (S * SIZ)
FOR X = MAXX - S TO 0 + S STEP -SIZ
LINE (X, Y)-(X + SIZ, Y + SIZ), 0, BF
FOR I = 1 TO DL: NEXT I
NEXT X
X = 0 + (S * SIZ)
FOR Y = MAXY - S TO 0 + S STEP -SIZ
LINE (X, Y)-(X + SIZ, Y + SIZ), 0, BF
FOR I = 1 TO DL: NEXT I
NEXT Y
NEXTS
CLS
END SUB

SUB CloseBox (X AS INTEGER, Y AS INTEGER, Size AS INTEGER, Lines AS INTEGER, Speed AS SINGLE) STATIC

Size = Size + 10
IF Speed >0 THEN
'

Descending Soud
FOR I = 1500 TO 500 STEP -(35 - (Lines * 5))
SOUND I, I / 20000
NEXT
END IF
FOR A = (Lines + X) TO (X - 1) STEP -1
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Delay between line draws
CALL Delay(Speed)
LOCATE A + 2, Y
FOR E = Y TO (Y + Size - 4)
COLOR 8, 0
IF A = X - 1 THEN

Foreground = OnColour(A + 2, E) AND 15
Background = OnColour(A + 2, E) \ 16
COLOR Foreground, Background
PRINT CHR$(OnScreen(A + 2, E));
ELSE
COLOR 8, 0
LOCATE ((A - 1) + Lines), E
PRINT CHR$(OnScreen(((A - 1) + Lines), E));
' Fix first two Y co-ordinates after dimming
LOCATE (A - 1 + Lines), Y
FOR F = Y TO Y + 1

Foreground = OnColour(A + 1, F) AND 15
Background = OnColour(A + 1, F) \ 16
COLOR Foreground, Background
PRINT CHR$(OnScreen(A + 1, F));
NEXT F
" Draw Full Coloured Pulled Line
LOCATE A + 2, E
Foreground = OnColour(A + 2, E) AND 15
Background = OnColour(A + 2, E) \ 16
COLOR Foreground, Background
PRINT CHR$(OnScreen(A + 2, E));
END IF
NEXT E
NEXT A

LOCATE X, Y
FOR F = Y TO (Y + Size - 4)
' Draw Full Coloured Pulled Line

Foreground = OnColour(X, F) AND 15
Background = OnColour(X, F) \ 16
COLOR Foreground, Background
PRINT CHR$(OnScreen(X, F));
NEXT F
ERASE OnColour
ERASE OnScreen
Lines = 0

END SUB
SUB Delay (A AS SINGLE) STATIC
Start! = TIMER
DO
LOOP UNTIL TIMER - Start! >= A

END SUB

SUB DisplayBox (X AS INTEGER. Y AS INTEGER, FrameColourA AS INTEGER, FrameCoIourB AS INTEGER, TextColourA
AS INTEGER, TextColourB AS INTEGER, FrameColour AS INTEGER. FrameLabel AS STRING, Text AS STRING, Size AS
INTEGER, Speed AS SINGLE, WaitKey AS _

INTEGER) STATIC

DisplayBox(X,Y,FrameColourA,FrameCoIourB,TextColourA,TextColourB,FrameColour. "FrameLaber,"Text",Max Columns,
Speed of Roll, Pause Toggle)

' Initialize all variables

CharProg = 1
OrgX = X
NewX = X
Lines = LEN(Text) / Size
Lines = INT(Lines + .5)

• Determine if Sound is on... if so: Ascending Sound
IF WaitKey = 1 OR Speed > 0 THEN
FOR I = 500 TO 1500 STEP (35 - Lines * 5)
SOUND I, I / 20000
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NEXT
END IF
1

Capture Text to be Over-Written by Box and Shadow
FOR A = Y TO (Y + Size + 6)
FOR B = X TO (X + Lines + 2)
OnScreen(B, A) = SCREEN(B, A)
OnColour(B, A) = SCREEN(B, A, 1)
NEXT B
NEXT A
' Draw Box
LOCATE NewX, Y: COLOR FrameColourA, FrameColourB: PRINT " UA";
' Display Frame Header
IF LEN(FranteLabel) < Size THEN
COLOR FrameColour
PRINT FrameLabel;
COLOR FrameColourA, FrameColourB
FOR A = I TO (Size - LEN(FrameLabel) - 1)
PRINT "A";
NEXT A
ELSE
' Draw Top Text Border
FOR A = 1 TO Size - 1
PRINT "A";
NEXT A
END IF
PRINT "Ai "
FOR A = 1 TO Lines
NewX = NewX + 1
COLOR FrameColourA, FrameColourB
LOCATE NewX, Y
PRINT " AA";
FOR C = 1 TO Size - 1
PRINT "A";
NEXT C
PRINT "AU "
COLOR 8, 0
' Draw dimmed bottom
FOR B = Y TO (Y + Size + 6)
LOCATE ((NewX - 1) + Lines), B
PRINT CHR$(OnScreen(((NewX - 1) + Lines), B));
NEXT B
CALL Delay(Speed / 2)
COLOR FrameColourA, FrameColourB
LOCATE NewX, Y
PRINT "3
COLOR TextColourA, TextColourB
PRINT SPACE$(Size - 1);
COLOR FrameColourA, FrameColourB
PRINT "3

' Draw dimmed edges
COLOR 8, 0:
FOR B = (Y + Size + 5) TO (Y + Size + 6)
PRINT CHR$(OnScreen(NewX, B));
NEXT B
NEXT A
NewX = NewX + 1
COLOR FrameColourA, FrameColourB
LOCATE NewX, Y
PRINT " AA";
FOR C = 1 TO Size - 1
PRINT "A";
NEXT C
PRINT "'AO
' Draw final dimmed edge
COLOR 8, 0
FOR B = (Y + Size + 5) TO (Y + Size + 6)
PRINT CHR$(OnScreen(NewX, B));
NEXT B
' Draw dimmed bottom
FOR B = Y + 2 TO (Y + Size + 6)
LOCATE (X + Lines + 2), B
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PRINT CHR$(OnScreen((X + Lines + 2), B));
NEXT B
'

Display Text
FOR D = 1 TO Lines
COLOR TextColourA, TextColourB
DO

TempS = MID$(Text, CharProg, Size)
IF LEN(Text) - CharProg <= Size THEN
X = X+I
LOCATE X, Y + 3
PRINT MID$(Text, CharProg, Size)
CharProg = CharProg + LEN(TempS)
ELSE
X = X+ 1
LOCATE X, Y + 3
FOR Cent = LEN(TempS) TO 1 STEP -1
IF MID$(Temp$, Cent, 1) = " " THEN EXIT FOR
NEXT Cent
PRINT LEFT$(Temp$, Cent)
CharProg = CharProg + Cent
END IF
LOOP UNTIL CharProg >= LEN(Text)
NEXT D
IF WaitKey = 1 THEN
DO WHILE INKEYS = ""
LOOP
END IF

END SUB
SUB DRWBOX1
draws box around text

square5$ = "S15 BM110,50 R100 D15 L100 U15"
DRAW "C5 X" + VARPTR$(square5$)

END SUB
SUB fopen (file$, File%)
OPEN file$ FOR RANDOM AS file% LEN = 2

END SUB
SUB fprint (TextS, textx%, texty%, colour%, file%)
Tpi: lines per integer
'fws: font word spacing
"fls: font letter spacing
"p% : pointer
GET file%, 1, lpi%
GET fde%, 2, fws%
GET fde%, 3, fls%
FOR count% = 1 TO LEN(TextS)
m% = ASC(MID$(Text$, count%, 1)) - 29
IF m% > 3 THEN
GET file%, m%, al%
GET fde%, m% + 1, a2%
FOR N% = al% TO a2% - 1 STEP Ipi%
FOR z% = 0 TO lpi% - 1
GET file%, N% + z%, 1%
LINE (p% + textx%, (16 * z%) + texty%)-(p% + textx%, (16 * z%) + 15 + texty%), colour%,, 1%
NEXT z%

p% = p% + 1
NEXT N%

p% — p% + fls%
ELSE

p% = p% + fws%
END IF
NEXT count%
END SUB

SUB SCRDRAW
"draws flowrate trace box

square 1 $ = "S17 BM315.95 R70 D32 L140 U32 R70"
DRAW "'C4 X" + VARPTR$(square 1 $)
scalelS = "'BL70 BD4 R140 BD4 L140 BD4 RI40 BD4 L140 BD4 R140 BD4 L140 BD4 R140"
DRAW "C4 X" + VARPTR$(scale 1 $)
'draws target box
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square2$ = "S15 BM300,420 R10 U40 L20 D40 R10"
DRAW "C3 X" + VARPTR$(square2$)
square3$ = "BD2 R12 U44 L24 D44 R12"
DRAW "C3 X" + VARPTR$(square3$)
'draws screen border

square4$ = "S25 BM5.5 R100 D75 LI00 U75"
DRAW "C5 X" + VARPTR$(square4$)
square6$ = "S24 BM15,15 R100 D75 LI00 U75"
DRAW "C7 X" + VARPTR$(square6$)

END SUB
SUB targetdraw
LOCATE 3, 10: PRINT "Peak expiratory flowrate target"; tvol; "ml/s"
LOCATE 5, 10: PRINT "Respiratory rate target"; tfreq; "bpm"
WINDOW (0, -150)-(4000, 500)
LINE (1600, 50 +(tvol * ,08))-(2150, 50 +(tvol * .08))
LINE (1600, 50 - (tvol * ,08))-(2150, 50 - (tvol * .08))
END SUB
SUB targetfreqlO
PLAY "MBMST80L1O2CACACACACACACACACACA"
END SUB
SUB targetfreql5
PLAY "MBMST60L2O2CACACACACACACACACACA"
END SUB
SUB targetfreq20
PLAY "MBMST80L2O2CACACACACACACACACACA"
END SUB
SUB targetfreq25
PLAY "MBMST100L2O2CACACACACACACACACACA"
END SUB
SUB targetfreq30
PLAY "MBMST60L4O2CACACACACACACACACACA"
END SUB

SUB targetfreq35
PLAY "MBMST140L2O2CACACACACACACACACACA"
END SUB

SUB targetfreq40
BR$="CACACACACACACACACACA"
PLAY "MBMST80L4O2 X" + VARPTR$(BR$)
END
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APPENDIX 4

ABSTRACTS AND PUBLICATIONS

This study resulted in a number of abstracts and publications listed below.

1. McCafferty J, Kew PA, Haston A, and Innes JA. A novel device for the precise
measurement of respiratory heat and moisture loss. Thorax 2002; 57: Siii (32).

2. Tate S, McCafferty J, Innes JA and Greening AP. Effect of varying respiratory
pattern on exhaled breath condensate collection. Thorax 2002; 57: Siii (33).

3. McCafferty JB and Innes JA. Quantifying airway heat and moisture loss in
health and lung disease. Am J Respir Crit Care Med 2003; 167(7):A975.

4. McCafferty JB, Bradshaw T, Tate S, Greening AP and Innes JA. Effect of
ventilatory pattern and inspired air condition on exhaled breath condensate
collection. Eur Respiratory Journal 2003;

5. McCafferty J.B.; Innes J.A.; Paredi P.; Kharitonov S.A.; Barnes P.J. Exhaled
breath temperature in airways disease. European Respiratory Journal 2003; 22
(2): 393-395.

6. McCafferty JB, Bradshaw T, Tate S, Greening AP and Innes JA Effects of
breathing pattern and inspired air conditions on breath condensate volume, pH,
nitrite, and protein concentrations. Thorax 2004; 59:694-698._

7. McCafferty JB and Innes JA. Respiratory heat and moisture loss (RHML) in
health, asthma and COPD. Respiratory Research. In submission.

142



694
Downloaded from thorax.bmjjoumals.com on 23 November 2005

RESPIRATORY PHYSIOLOGY

Effects of breathing pattern and inspired air conditions on
breath condensate volume, pH, nitrite, and protein
concentrations
J B McCafferty, T A Bradshaw, S Tate, A P Greening, J A Innes

Thorax 2004;59:694-698. doi: 10.1136/thx.2003.016949

Background: The effects of breathing pattern and inspired air conditions on the volume and content of
exhaled breath condensate (EBC) were investigated.
Methods: Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured
in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations
(Vm), tidal volumes (Vt), and inspired air conditions.
Results: The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 1/
min, mean (SD) EBC was 627 (258) pi, 1019 (313) pi, and 1358 (364) pi, respectively (p<0.001) and
TEW was 1879 (378) pi, 2986 (496) pi, and 4679 (700) pi, respectively (p<0.001). TEW was
significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which
reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 pl/l, mean
difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v7.6 pl/l, mean difference
3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less
breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on
EBC protein and nitrite concentrations and pH.
Conclusion: These results show that condensate volume can be increased by using high Vt and increased
Vm without compromising the dilution of the sample.
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Exhaled breath condensate (EBC) has been proposed as anon-invasive means of measuring airway inflammation.
Unlike traditional methods of sampling secretions from

the lower respiratory tract such as bronchoalveolar lavage,
EBC analysis has the advantage of being simple to perform,
may be repeated frequently, and can be applied to patients
during both the stable and exacerbation phase of disease.
The condensate derives from expired water vapour and
volatile gases, but the presence of non-volatile solutes
suggests that droplets of airway lining fluid have also been
collected due to aerosolisation during turbulent airflow.
Analysis of these solutes may potentially provide insights
into the pathophysiology of lung diseases such as asthma,1 5
cystic fibrosis,4 5 and chronic obstructive pulmonary
disease.4 7
While EBC shows promise as a source for biomarkers in

pulmonary diseases, large variability has been reported in the
concentration of solutes in EBC samples with considerable
overlap between normal subjects and disease groups.4 7 In the
absence of supporting data, much of this has been attributed
to variations in the proportion of water vapour diluting the
airway lining fluid or variations in flow affecting the amount
of aerosolised solute. The dilution effect was recently studied
by Effros et al8 who sought to quantify this by measuring ion
concentrations in EBC. By assuming the airway lining fluid to
be isosmolar to plasma, they estimated that variations in
dilution may affect analyte concentrations by a factor of up to
100 or more. Previous studies of respiratory pattern and
breath condensate have been inconclusive. Schleiss et af
found that the concentration of the volatile solute hydrogen
peroxide was dependent on flow rate, whereas Montuschi
et al,a found 8-isoprostane levels to be independent of flow
rate. They also found a high degree of variability in repeated
samples even under controlled conditions, suggesting a
mechanism other than dilution as a cause.

Although the major determinant of exhaled water vapour
volume is minute ventilation (Vm) and duration of collec¬
tion," the effect of differences in ventilatory pattern (such as
tidal volume (Vt)) has not been quantified. It is also well
established that cooler and drier inspired air produces a lower
concentration of water vapour in the exhaled breath,12 yet
this has not been quantitatively assessed in the context of
EBC collection.
The aim of this study was therefore to determine the effect

of ventilatory pattern (Vm and Vt) and inspired air con¬
ditions on the volume of condensate collected and the
concentration of certain non-volatile solutes (nitrite and
protein) and pH in EBC.

METHODS
Collection of EBC
EBC was collected on a commercial breath condenser

(EcoScreen, Jaeger, Germany). Samples were collected in
interchangeable sampling tubes (one per sample) with
subjects breathing (with nose clip) through a non-rebreath-
ing two way valve. All sampling tubes were disinfected for
30 minutes using 1% potassium monopersulphate solution
(Virkon, Antec International Ltd, UK), rinsed for 2 hours by
flushing with tap water, then rinsed with ultrapure water
(ELGA Labwater, UK) and air dried prior to use. Samples
were centrifuged (2000 rpm, 2 minutes) before measurement
of volume, immediately frozen, and stored refrigerated at
-80 °C.

pH of EBC
The pH of the EBC was measured immediately after
collection (without deaeration) using a calibrated pH meter

Abbreviations: EBC, exhaled breath condensate; TEW, total exhaled
water; Vm, minute ventilation; Vt, tidal volume
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incorporating an ISFET sensor with temperature compen¬
sation (model KS723, Camlab, Cambridge, UK) with an
accuracy of +0.1 pH.

EBC nitrite concentration
The nitrite concentration was determined by a colorimetric
assay based on the Griess reaction" in which triplicates of
100 pi EBC were reacted with 25 pi Griess reagent and
measured at absorbance of 570 nm with a microplate reader
(MR 710, Dynatec). Assay sensitivity was 0.5 pmol/1. Samples
were stored in polypropylene containers and analysed within
4 weeks to minimise contamination and problems of
instability.

EBC protein concentration
The protein concentration was measured based on the
bicinchoninic acid method using a commercially available
protein assay reagent kit (Micro BCA Protein Assay, Pierce,
Rockford, 1L, USA). Assay sensitivity was 0.5 pg/ml.

Measurement of flow, temperature, and humidity
To control and test for the effects of inspired air temperature
and humidity the breath condenser was attached to a custom
built device housing temperature, humidity, and flow sensors
as shown in fig 1. Subjects breathed through a two way valve
with temperature and humidity sensors located on the
inspiratory and expiratory sides allowing measurement of
the condition of the air inspired and the moisture content of
the exhaled breath. Inspired air was supplied in a flow-past
configuration from an air conditioning unit providing control
over the air temperature and moisture content. Temperature
sensors were K-type thermocouples (accuracy ±0.1°C).
Humidity sensors were of thermoset polymer capacitance
construction (accuracy of +2%, Model H1H-3602-A, Honey¬
well, USA). Expiratory flow was measured using an ultra¬
sonic phase shift flow meter (Model FR-413, BRDL,
Birmingham, UK). The linearity of the sensor was <2% and
the residual error due to temperature variation <1% in the
temperature range 0-40°C. Together these measurements
make possible calculation of the total quantity of exhaled
water (TEW, see below).

Ventilation
targeting
system

Breath condenser

Signal
amplifier

Sensor detail
► Temperalure sensor

□ Moislure sensor

O End-tidal C02
sampling port

Data acquisition
system and PC

Gas
analyser
(C02)

Figure 1 Schematic of apparatus and instrumentation for measurement
of total exhaled water and collection of exhaled breath condensate.
Subjects breathe through a non-rebreathina two way valve at a pattern
set by the ventilation targeting system which generates an audiovisual
feedback signal setting ventilatory rate and expiratory flow, respectively.
An air conditioning unit controls ihe temperature and moisture content of
the inspired air. Temperature and humidity sensors are located as
shown.

Ventilation pattern targeting
Ventilatory patterns were set by feeding the expiratory flow
signal into a PC with purpose built breath targeting software
which generated a visual and auditory target for expiratory
flow rate and respiratory rate, respectively. Inspiratory to
expiratory ratio was set at unity. Eucapnia was maintained at
the higher minute ventilations by measuring end tidal C02
and adding C02 in the inspirate as necessary.
Thermocouple and humidity sensor output was condi¬

tioned by purpose built multichannel amplifiers. All signals
were captured on a 16-channel computerised data acquisition
system (Model 1401, CED, Cambridge, UK) which interfaced
with software (Spike 2, CED, Cambridge, UK) to allow real
time signal display and storage of data to disk.

Effect of additional circuit and instrumentation on EBC
collection
To assess any effects from the added dead space associated
with the flow meter and other instrumentation, EBC collec¬
tions were taken at equivalent ventilatory patterns with 10
subjects breathing directly through the standard two way
non-rebreathing valve attached to the breath condenser alone
and flow measured at the expiratory port of the condenser.

Effects of breathing pattern on EBC collection
To test the effect of Vm, EBC was collected from 10 healthy
non-smoking subjects over timed 6 minute intervals at three
target Vm values (table 1, protocol 1), each at high and lower
target Vt. The conditions of the inspired air were measured
and maintained at 22 °C.
To test the effects of Vt, EBC was collected from 10 healthy

non-smoking subjects over timed 6 minute intervals for a
fixed target Vm at high and low target Vt patterns at an
inspired temperature of 7°C.

Effect of inspirate temperature and humidity
At a fixed ventilatory pattern (Vt 1500 ml, 10 breaths/min),
6 minute collections of EBC were taken with 10 subjects
breathing warm room air (20°C) and colder, drier air (9°C)
(table 1, protocol 3).

Analysis of data
Total exhaled water (pi) for each 6 minute collection period
was calculated as:

TEW =—VTw
Pw

where w = absolute humidity of exhaled air (g/kg), Vt = total
respired volume (litres ATPS from integrated flow meter
signal), pa = air density (20°C), and pw = water density
(20°C). The absolute humidity of expired air was derived
from the mean temperature and moisture sensor signal
(measuring relative humidity) which were referred to the
physical properties of moist air at atmospheric pressure.
Statistical analysis was performed using SigmaFlot 2001

for Windows version 8.0 and Sigmastat 2001 for Windows
(SPSS Science Inc, USA). Paired t tests were used to compare
the EBC data and a value of p<0.05 was considered signi¬
ficant. Two way ANOVA was used for the analysis of Vm data
and Friedman's two way analysis of variance for data which
were not normally distributed (Minitab release 14, Statistical
Software, Minitab lnc, USA) was used for the relationship
between ventilation and EBC protein, nitrite, and pH.
Study approval for tests on human subjects was granted by

the Lothian regional ethics committee and consent was
obtained from all participating subjects.
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Table 1 Protocol designs showing ventilatory patterns and inspired air conditions

Target ventilation pattern Inspired air conditions
Protocol No of Mean Temperature Moisture content
no subjects FEV, (1 Vt |ml] Vm |1| It) (mg/g|
1 10 3.9 1500 7.5,15,22.5 22(1.2| 6 (0.3)

750 7.5,15,22.5
2 10 3.9 1500 15 7 (0.5) 5.6 (0.2)

500 15
3 10 3.6 1500 15 20 (1.8) 9(1.1)

9(1.8) 5 (0.5)

Vt—tidal volume; Vm -minute ventilation; FEVi =forced expiratory volume in 1 second.

RESULTS
Effect of additional circuit and instrumentation on EBC
collection
No difference was found in the volume of EBC ot the pH,
nitrite and protein concentrations when subjects breathed
with or without the instrumented tubing section joined to the
condenser based on paired t tests where a p value of >0.05
was not considered statistically significant (EBC: 1155 pi
with and 1029 pi without, mean difference 136 pi (95% CI
— 14 to 286); pH: 6.3 v 6.4, mean difference 0.1 (95% CI -0.15
to 0.35); nitrite: 4.1 v 4.0, mean difference 0.1 (95% CI -0.72
to 0.92); protein: 8.1 v 5.1, mean difference 3.5 (95% CI -0.3
to 7.3)).

(p<0.001). Water vapour availability (TEW) was significantly
higher than EBC, giving a condenser efficiency of 40% at Via
7.5 i/min which decreased to 29% at Vm 22.5 1/min.

Effect of Vt at fixed Vm
For target Vt values of 500 ml and 1500 ml, subjects achieved
actual target volumes of 578 (98) ml and 1540 (232) ml. The
effect of Vt is shown in fig 3 where lower Vt patterns gave
significantly less TEW (peT litre respired) than higher Vt
(26.6 v 30.7 pl/1, mean difference 4.1 (95% CI 2.6 to 5.6),
p<0.001). This was also reflected in the volume of EBC
collected (4.3 v 7.6 pl/1, mean difference 3.4 (95% CI 2.3 to
4.5), p<0.001).

Effect of Vm on TEW
For target Vm values of 7.5, 15 and 22.5 1 (all at Vt 1.5 1),
subjects achieved mean (SD) values of 8.6 (1.95), 15.1 (2.55),
and 22.8 (3.27) 1/min, respectively. The effect of Vm on TEW
and EBC volumes is shown in fig 2. These data were analysed
using two way analysis of variance with repeated measures
and 151116/5 method for multiple comparisons. For all values
of Vm the volume of TEW was significantly greater than the
EBC volume (p<0.001). For both TEW and EBC there was a
significant increase in volume with increased Vm (p<0.05).
The volume of TEW rose significantly more with Vm than did
the volume of EBC (p<0.001).
For Vm values of 7.5, 15 and 22.5 1/min the mean (SD)

volume of EBC was 627 (258) pi, 1019 (313) pi, and 1358
(364) pi, respectively (p<0.001) and the volume of TEW was
1879 (378) pi, 2986 (496) pi, and 4679 ( 700) pi, respectively

Effect of inspired air conditions
Subjects breathing at equivalent ventilatory patterns but with
cooler, drier inspirate were found to yield less water vapour
(TEW 33.4 v 35.6 pi /l, mean difference 2.2 pi /I (95% CI 0.2 to
4.2), p<0.05) and less breath condensate (EBC 8.6 v 10.1 pl/1,
mean difference 1.5 pi /I (95% CI 0.3 to 2.7), p<0.05).

Effect of ventilatory pattern on exhaled pH, nitrite and
protein
Despite the effects of Vm and Vt on condensate volume (figs 2
and 3), the ventilatory pattern had no significant effect on
condensate pH, nitrite and protein concentrations using
Freidman's two way analysis of variance (since data were not
normally distributed). Overall mean (SD) concentrations of
protein and nitrite in the EBC were 6.0 (3.4) pg/ml and 3.9
(2.2) pM, respectively, and pH was 6.3 (0.3); fig 4.
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Figure 2 Volumes of total exhaled water (TEW) and exhaled breath
condensate (EBC) collected from 10 subjects breathing at three minute
ventilation (Vm) targets. Using two way analysis of variance with
repeated measures and Tukey's method for multiple comparisons, the
volume of TEW was significantly greater than the EBC volume at all
values of Vm (p<0.001). For both TEW and EBC there was a significant
increase in volume with increasing Vm (p<0.05). The volume of TEW
rose significantly more with increased Vm than did the volume of EBC
(p<0.001). Limits denote standard error of the mean.

DISCUSSION
The volumes of both TEW and EBC increased significantly
with Vm. The volume of EBC varied between 627 pi and
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Figure 3 Effect of tidal volume (Vt) on measured volumes of exhaled
water and breath condensate. At lower Vt subjects yielded less exhaled
water and breath condensate per litre respired for the same minute
ventilation; p values denote the level of significance based on paired
t tests. Limits denote standard error of the mean.
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■ Target tidal volume 1500 ml
□ Target tidal volume 750 ml
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Figure 4 Mean EBC protein and nitrite concentrations and pH (or each
target minute ventilation (Vm) and tidal volume (Vt). Despite the effects of
Vm and Vt on condensate volume (figs 2 and 3), Friedman's analysis of
variance showed that Vm and Vt had no effect on EBC concentrations of
protein, nitrite, or pH (all p>0.05).

1358 )il for a 6 minute collection in the Vm range 7.5-22.5 1/
min. This indicates that, for this collection device with
subjects breathing at a typical resting Vm of 10 l/min, a
6 minute collection would generate a sample of approxi¬
mately 900 pi. The volume of TEW was significantly higher
than the volume of EBC throughout the Vm range studied.
This indicates that the condenser efficiency is far from 100%
(range 40-29%). It would be reasonable to suppose that this
inefficiency also applies to the trapping of aerosolised
droplets and that a device with improved efficiency would
yield an increased quantity of solutes, thereby enhancing the
sensitivity of this technique. A mean reduction of 962 ml in
Vt was associated with a 15% reduction in TEW for the same

Vm; however, no corresponding effect was seen on solute
dilution. This would imply that, at lower Vt, proportionally
less solute is aerosolised for a given Vm and therefore the
concentrations of solutes are maintained constant.

Inspired air conditions were found to have a small but
significant effect on volumes of TEW and EBC. A fall in the
inspired air temperature and humidity was associated with a
reduction of up to 6% in TEW and EBC, implying a similar
degree of reduction in the dilution of solutes under cooler,
drier conditions. However, this was not seen in the con¬

centrations of nitrite and protein measured, probably because
the effect—although significant—was small relative to the
measurement error associated with assays of very small
quantities of solutes. It is therefore unlikely that variations
in inspired air conditions commonly encountered in the
laboratory would account for significant measurement error.
The absence of an effect of ventilatory pattern on the

protein concentration suggests that non-volatile solute con¬
centrations are independent of breathing pattern. This is
supported by the findings of Montuschi et a I"' foT 8-
isoprostane. pH is influenced by volatile solutes yet still
showed no variance with breathing pattern, which suggests
that breathing pattern is not an important determinant of
either volatile or non-volatile solute concentrations in EBC.

However, this finding is in contrast to the results of Schleiss
et af for hydrogen peroxide in EBC. They proposed a bi-
compartmental model which argues that, if solute concen¬
tration is not flow dependent, then this would imply that
solutes were arising from the more distal airway and alveolar

region. An alternative explanation is that the aerosolisation
is flow dependent, occurring in the proximal airway during
inspiration and expiration with the net expiratory flux
contributing to EBC. This process occurs in parallel with
evaporation and condensation of water from the airway
lining fluid, thereby maintaining constant the ratio of analyte
to water vapour dilution.
For the purpose of comparison, the inspiratory to expira¬

tory (IE) ratio in this study was set at 1:1 with subjects
also being required to reproduce a square wave expiratory
waveform. It is recognised that the ventilatory pattern is not
solely defined by Vm and Vt, but that factors such as IE ratio
and the shape of the inspiratory/expiratory flow rate signals
may also be important in the context of airway water
transport. Mathematical models of this complex process14
would suggest that a low IE ratio pattern would result in a
lower expiratory water vapour concentration than a high IE
pattern for the same Vt and Vm. It is also likely that the IE
ratio will have an effect on the net flux of aerosolised

droplets. Further studies are required to assess the signifi¬
cance of this effect on water vapour and analyte concentra¬
tions in EBC collections.
This study has shown that the effect of ventilatory pattern

and inspired air conditions on exhaled water vapour and EBC
volume to be significant but insufficient to explain the high
degree of variability in solute concentrations seen in the
studies by Effros et al* and others."7 9 Likely sources of this
variability include variation in aerosolisation, capture of
droplets, and assay variability TatheT than water vapour
dilution. Future attention must therefore be directed towards

minimising these sources of variability in order to improve
the overall sensitivity of this technique.
In conclusion, these results suggest that condensate yield

can be significantly augmented by targeting the ventilatory
pattern to higher tidal volumes (>1000 ml)) and minute
ventilations over 15 l/min. Such augmentation will not
significantly affect analyte concentrations.
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LUNG ALERT
The "hygiene hypothesis" revisited
▲ Benn CS, Melbye M, Wohlfahrt J, ef al. Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis
during first 18 months of life. BMJ 2004;328:1223-7
A Tulic MK, Fiset P-O, Manoukian JJ, ef al. Role of toll-like receptor 4 in protection by bacterial lipopolysaccharide in the
nasal mucosa of atopic children but not adults. Lancet 2004;363:1689-97

The "hygiene hypothesis" suggests that decreasing exposure to micro-organisms duringinfancy is responsible for the increasing prevalence of atopy. However, while a decreased
risk of atopic disease is associated with various surrogate markers ofmicrobial exposure

including early attendance at day care, a gTeater number of siblings and living on a farm,
specific associations between clinical episodes of infection and atopy remain ill defined and
the possible mechanisms obscure.
Two recent papers have sought to characterise further the links between infection and

atopy. At a population level, Benn and colleagues used a series of four interviews to study
24 341 mother-child pahs from 12 weeks gestation until the child was 18 months old.
Relationships between atopic dermatitis and the incidence of clinically apparent infections
were investigated. By 6 months of age 54% of children had experienced at least one
infectious episode (most commonly a cold) and at the age of 18 months 11% of the children
had atopic dermatitis. While inverse correlations between the presence of atopic dermatitis
and a greater number of siblings, living on a farm, pet keeping, and early day care were
confirmed, the occurrence of a clinically apparent infection did not result in a decreased risk
of atopy. Indeed, the risk was slightly increased. Periiaps exposure to environmental
organisms in the absence of clinically apparent disease is a more important phenomenon?
At a molecular level, Tulic and co-workers report the results of a study investigating the

response of ex vivo nasal mucosal samples to stimulation with allergen in the presence and
absence of lipopolysaccharide (LPS). The subjects comprised 22 children and 17 adults, both
with and without atopy. LPS, a major component of gTam negative bacterial cell walls,
interacts with host tissue via the toll-like receptor TLR-4. This provides an important link
between the innate and acquired immune responses and may be one way in which exposure
to micro-organisms could modulate the subsequent risk of atopy. In the presence of LPS,
allergen stimulation of the nasal mucosa from atopic children (but not adults) resulted in a
Thl type response ratheT than the Th2 phenotype observed with allergen alone. This effect
was shown to be mediated via TLR-4, with upregulation of the immunoregulatory cytokine
interleukin-10. Since atopy is classically associated with a Th2 type response, the results
suggest a mechanism by which exposure to microbial products might protect from atopic
disease.
Debate surrounding the "hygiene hypothesis" continues. These two papers, rigorously

conducted and using very different approaches, provide interesting insights into the possible
underlying mechanisms.

J R Hurst

Lung Alert Editor, Thorax; jrhurst@lineone.net

www.thoraxjnl.com



143


