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Abstract 

Aspects of higher order chromatin structure such as replication timing, 
lamina association and Hi-C inter-locus interactions have been recently studied in 
several human and mouse cell types and it has been suggested that most of these 
features of genome organisation are conserved over evolution. However, the extent 
of evolutionary divergence in higher order structure has not been rigorously 
measured across the mammalian genome, and little is known about the 
characteristics of any divergent loci defined. Here we generate an orthologous 
dataset combining multiple measurements of chromatin structure and organisation 
over many embryonic cell types for both human and mouse that, for the first time, 
allows a comprehensive assessment of the extent of structural divergence between 
different mammalian genomes. Comparison of orthologous regions confirms that all 
measurable facets of higher order structure are conserved between human and 
mouse, across the majority of the orthologous genome. This broad similarity is 
observed in spite of the substantial time since the species diverged, differences in 
experimental procedures among the datasets examined, and the presence of cell 
type specific structures at many loci. However, we also identify hundreds of regions 
showing consistent evidence of divergence between these species, constituting at 
least 10% of the orthologous mammalian genome and encompassing many 
hundreds of human and mouse genes. Divergent regions are enriched in genes 
implicated in vertebrate development, suggesting important roles for structural 
divergence in mammalian evolution. They are also relatively enriched for genes 
showing divergent expression patterns between human and mouse ES cells, 
implying these regions may underlie divergent regulation. Divergent regions show 
unusual shifts in compositional bias, sequence divergence and are unevenly 
distributed across both genomes. We investigate the mechanisms of divergence in 
higher order structure by examining the influence of sequence divergence and also 
many features of primary level chromatin, such as histone modification and DNA 
methylation patterns. Using multiple regression, we identify the dominant factors 
that appear to have shaped the physical structure of the mammalian genome. These 
data suggest that, though relatively rare, divergence in higher order chromatin 
structure has played important roles during evolution. 
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1. Chapter 1: Introduction 

Chapter 1  

Introduction 

 

 

Topics included in this section: 

o An introduction of the hierarchical layers of chromatin structure in 
mammals from the nucleosome to multi megabase structural 
domains. 

o Primary level chromatin structure is subject to a number of different 
biochemical modifications, which alter the folding, and structure of 
chromatin. 

o Chromatin structure can be regarded as bipolar in nature: open and 
accessible or compacted and inactive. These different chromatin 
environments harbour different properties such as replication timing, 
spatial positioning and expression levels. 

o Comparative analyses across all facets of chromatin structure reveal 
correlations in structural features and domains across different 
species and experimental methods. 

o The rate of mutation is not constant across the genome and has links 
to chromatin environments. 

o Genes or loci that are identical in sequence but have different 
chromatin states, appear to be heritable and may underpin some 
disease states. 
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1.1. THE STRUCTURAL ORGANISATION OF THE EUKARYOTIC 
GENOME 

1.1.1. THE NUCLEOSOME AND PRIMARY LEVEL CHROMATIN 
The mammalian genome exists as an intricately structured three-

dimensional environment comprised of linear DNA sequences that are compacted 
and organised in several hierarchical layers. Each layer is based on interactions 
between the DNA helix and proteins, and the term ‘chromatin structure’ covers all 
of these layers up to the chromosomal level. Each structural layer is subject to 
differing modifications and it is the relationships between the modifications at all 
levels of chromatin structure that create an ‘epigenomic landscape’. The epigenome 
creates a bridge between genotype and phenotype, regulating the way the genome 
is expressed in different cell types, developmental stages and disease states 
(Goldberg et al., 2007).  

At the primary level of chromatin structure, the eukaryotic nucleosome core 
particle is the key structural subunit. It is formed by a 147 bp section of DNA that is 
wrapped around an octomer of eight histone proteins This octamer is comprised of 
two copies of each of four histones: H2A, H2B, H3 and H4. The nucleosome is the 
primary unit of chromosome structure and the folding and chemical modification of 
long nucleosome arrays forms the basis for all higher order chromatin structures 
(Woodcock et al., 2006) (Figure 1.1). A linker histone (H1) is associated with the 
intervening stretch of DNA between nucleosomes and has a role in defining 
nucleosomal repeat length (Woodcock et al., 2006). Together, the folding of 
nucleosomes and linker DNA regions yield the 10 nm chromatin fiber, known as the 
'beads on a string' array, which is hierarchically further compacted down into the 
chromosomes. It has been thought that an in between layer of compaction involves 
the formation of a 30 nm helical chromatin fiber via the addition of linker histones, 
but the existence of this step remains controversial (Wu et al., 2007). After 
discovering evidence of the 30 nm fiber from in vitro experiments, new experimental 
approaches including chromatin conformation capture and cryo-electron 
microscopy have failed to find evidence of the 30 nm fiber in situ (Fussner et al., 
2011). Attempts to analyse this further have identified a family of different 
chromatin fibers highlighting the dynamic and complex nature of chromatin 
structure and the need to consider alternative models of chromatin folding (Bian 
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and Belmont, 2012). However, chromatin structure can be summarised as having at 
least three hierarchical layers. The first is the nucleosome array and the organization 
of nuclear processes such as transcription, the second is the higher-order 
organization of the chromatin fiber, and finally, the spatial arrangement of 
chromosomes within the cell nucleus (Misteli, 2007).  

 

Figure 1.1 Compaction of primary level chromatin into nucleosomes. Each stage is 

shown from the assembly of DNA and histones into nucleosome arrays, structural 

organisation of the arrays and further compaction into the chromosomes (Open 

access image. Courtesy: National Human Genome Research Institute (NHGRI, 

2010). 

Genome-wide data relating to primary levels of chromatin structure, which 
include nucleosome occupancy, and histone modifications, in a variety of 
mammalian cell types are now abundant, due to the ability to map these chromatin 
features by combinations of new technological methods. These include Micrococcal 
Nuclease (MNase) digestion, which preferentially cuts linker DNA connecting two 
nucleosomes and is a useful tool for mapping nucleosome positioning. Chromatin 
Immunoprecipitation (ChIP) is a method for determining which specific proteins 
are associated with specific genomic regions, such as histones, transcription factors 
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or other DNA binding proteins. This can be coupled with high-throughput 
sequencing to identify which sequences of the genome are interacting with 
chromatin (Zhang and Pugh, 2011). 

Nucleosome positioning plays a key role in chromatin organisation and gene 
regulation. It can regulate many DNA dependent processes, including transcription, 
replication and repair by physically limiting the access of binding proteins to 
incorporated DNA (Jiang and Pugh, 2009). Because of this, nucleosome free regions 
are often accessible sites of transcription factors. Some chromatin remodelling 
complexes are known to facilitate transcription initiation by regulating the 
formation and/or size of nucleosome free regions. These primarily work by either 
adding covalent post-translational modifications to nucleosomal histones or by 
moving, removing or restructuring nucleosomes in an ATP-dependent manner 
(Jiang and Pugh, 2009). This can include replacing core histones H2A and H3 with 
the variants H2A.Z and H3.3, which have been found to be enriched at nucleosome 
free regions at active promoters (Jin et al., 2009). It is thought that nucleosomes with 
these double variants disrupt the periodicity of nucleosome spacing leading to free 
and accessable chromatin regions for transcriptional access (Jin et al., 2009). 

There are numerous histone modifications which can be incorporated into 
nucleosomes and alter the local properties of chromatin structure and function. 
They can be categorised by two main properties, those that affect interaction sites 
for binding proteins and those that change the charge of chromatin altering its 
compaction potential and can involve a variety of specialised protein complexes 
containing enzymes and chaperones (Sarma and Reinberg, 2005). The functional 
consequences of a number of histone modifications have been studied in detail. The 
most understood post-translational histone modifications are on the unstructured N 
and C-terminal tails that protrude from the nucleosome core. These harbour sites for 
modifications or 'marks' such as phosphorylation, methylation, acetylation and 
ubiquitination. Histones also contain a conserved histone-fold domain that may 
contain histone modifications although these are much less well understood 
(Tropberger and Schneider, 2013). They occur on surface of the histone octamer, 
close to the nucleosomal DNA, and they have the potential to alter histone-DNA 
interactions which can have a direct affect on chromatin dynamics (Tropberger and 
Schneider, 2013). The core histones that make up the nucleosome are known to be 
subject to many different posttranslational modifications (Tan et al., 2011). 
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Figure 1.2 Sites of common histone tail post-translational modifications. The 

modifications shown include acetylation (pink), methylation (red), phosphorylation 

(blue), and ubiquitination (orange). Original image from (Zhang and Reinberg, 

2001). 

Modification of chromatin structure often results in either compaction and 
inactivation, creating a transcriptionally repressive chromatin environment or 
activating and opening, creating an accessible chromatin environment. This bipolar 
nature of chromatin structure is seen genome wide and can often span hundreds of 
kilobases. At the chromatin level, active domains correspond to high levels of 
histone acetylation, such as H3ac (Roh et al., 2005) and are often the earliest 
replicated in the cell cycle. Repressed domains have low H3ac and undergo 
relatively late replication (Birney et al., 2007). Acetylation of lysine residues on 
histones is also generally associated with activation of transcription, since this 
neutralizes the positive charge of the lysine residues on the nucleosome and reduces 
the affinity of histones for DNA, which causes the chromatin to unravel for a more 
accessible chromatin structure (Kouzarides, 2007). Methylation is another class of 
histone modification whereby a methyl group is added to the N terminal tail of 
histone and is more complex in its function. Monomethylations of H3K27, H3K9, 
H4K20 and H2BK5 are all linked to mechanisms involved in gene activation (Barski 
et al., 2007). Additionally, trimethylation of H3K4 is an indicator for active human 
promoters (Vermeulen et al., 2007). However, trimethylations of H3K27 and 
H3K9are linked to repression (Barski et al., 2007). For example, at polycomb 
repressive complex (PRC) targets, including Hox loci, H3K27 methylation 
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(H3K27me3) provides the binding site for the chromodomain of polycomb 
homologues as part of the PRC1 complex, which is required to maintain a closed 
chromatin state (Eskeland et al., 2010). However, defining functional chromatin 
environments by the type of histone marks present is far from simple. From 
genome-wide profiling of histone modifications, regions of chromatin have been 
discovered that contain both repressive H3K27 methylation and activating H3K4 tri-
methylation in mouse embryonic stem cells (Bernstein et al., 2006). It is suggested 
that these genes, so called bivalent, keep genes in a transcriptionally 'poised' state at 
low expression levels. During cell differentiation, one of the modifications is 
preserved while the other is lost leading to silencing or activation. This can serve as 
a means of preserving pluripotency and maintaining tight transcriptional control 
(Bernstein et al., 2006). However, ChIP assays are unable to unequivocally establish 
the coexistence of both marks on the same allele in a given cell. Thus, it has been 
argued that in some cases, the observed bivalency might reflect cellular 
heterogeneity arising from the averaging of cells that carry either, but not both, 
marks at a given locus (Voigt et al., 2013). 

DNA methylation, which involves the addition of a methyl group to 
cytosine bases, largely at CG dinucleotides, is an epigenomic feature that influences 
transposon silencing, X chromosome inactivation, and imprinting, however it is 
predominantly known for important roles in maintaining transcriptional repression 
(Bird, 2011). DNA methyltransferase enzymes facilitate the addition of methyl 
groups to DNA and vertebrates have almost genome-wide methylation apart from 
at CpG islands at promoter regions (Suzuki and Bird, 2008). Recently, technological 
advances in sequencing methods have enabled large-scale mapping of eukaryotic 
methylation profiles. Complex, multi-cellular organisms have been shown to have 
higher levels of genomic methylation; this may provide additional layers of 
regulation to control development in complex organisms (Zemach et al., 2010). 
DNA methylation patterns are variable between cell types and can alter during cell 
differentiation indicating they play important roles in the cell type specific 
expression. Similarly, polycomb group proteins form chromatin-associated 
complexes that act as repressors for genes involved in embryonic development and 
cell-fate (Bernstein et al., 2006). It is now known that these two epigenetic processes 
are closely linked as DNA methylation plays a critical role in genomic distribution 
of H3K27me3 which is important for the genomic targeting of the PRC2 polycomb 
complex (Lister et al., 2009, Eskeland et al., 2010). This has recently been shown to 
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be required for polycomb-mediated gene repression (Reddington et al., 2013). 

The combined relationships between histone modifications and DNA 
methylation have a cumulative effect on the architecture of higher order chromatin 
structure. This in turn affects DNA interactions and gene expression. Given the vast 
number of possible combinations of known chromatin marks, fully understanding 
the information they encode is a huge challenge. Integrative studies combining 
different epigenomic datasets have shown that multiple chromatin states can affect 
gene expression status (Ernst et al., 2011, Ram et al., 2011). Recently, large scale, 
genome-wide mapping of histone modifications and related structures have 
emerged as an effective method for characterizing the functional consequences of 
chromatin structure. Large ChIP-seq datasets show strong combinatorial signals, 
such that groups of correlated histone marks indicate regions belonging to distinct 
functional classes. A study carried out on chromatin associated proteins in 
Drosophila defined five types of chromatin organisation within large domain like 
structures (Filion et al., 2010). They found closed structures that covered half the 
genome and further defined different aspects of open structure by the presence of 
particular classes of histone modifications. A ChIP study of 29 human chromatin 
associated proteins revealed six predominant combinations (Ram et al., 2011), but 
no associations were made to histone marks. Most notable among recent studies 
have been the efforts of the ENCODE consortium which has sought to define 
chromatin environments using computational methods to summarise biologically-
meaningful combinations of chromatin marks (Ernst and Kellis, 2012). Using this 
method, there have been 25 different chromatin states defined that can be grouped 
into seven classes, emphasizing biological differences, these are transcription start 
site (TSS), promoter flanking (PF), enhancer (E), weak enhancer (WE), CTCF 
binding (CTCF), transcribed region (T) and repressed (R) (Hoffman et al., 2013). The 
ENCODE project has produced integrated maps of chromatin elements across 
differing resolutions, making it possible to explore chromatin states at single-
nucleotide resolution. Focusing on 12 histone modifications in 46 cell types the 
ENCODE consortium has also found that the presence of particular combinations 
could accurately predict weakly and strongly activated promoter and enhancer 
regions (Dunham et al., 2012). Even more striking results demonstrated that 
combinations of histone marks at promoters could be used to quantitatively predict 
transcriptional output, with such combinations explaining around 90% of 
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expression variation across all genes in the genome (Dunham et al., 2012).  

1.1.2. HIGHER ORDER CHROMATIN STRUCTURE  
Higher order chromatin structure concerns the spatial conformation of 

nucleosome arrays and the relative accessibility of multi megabase domains of DNA 
sequence. Early studies of higher order chromatin structure defined a bipolar 
organisation of the genome whereby structure was seen as either relatively 
compacted and ‘closed’ or accessible and ‘open’. One of the first investigations of 
higher order chromatin structure was carried out by using sucrose sedimentation 
and hybridization to genomic microarrays (Gilbert et al., 2004). Using this technique 
relatively closed and open chromatin fiber structures in the human genome were 
defined at a low resolution (1 Mb spaced BAC clones arrayed across the genome). 
High throughput methods have revolutionized the understanding of higher order 
chromatin structures over the past few years, portraying a variety of epigenomic 
landscapes across the range of relatively open and closed structures down to single 
base pair resolution.  

From the outset, links have been made between higher order structure and 
gene expression. Genome wide studies directly examining higher order chromatin 
structure in human have indicated that protein coding genes are enriched in open 
chromatin where there is an accessible environment for transcriptional machinery 
(Gilbert et al., 2004). This open structure may provide an environment to maintain 
clusters of widely expressed genes together throughout evolution (Sproul et al., 
2005). It has been found that chromatin environments contribute directly to 
expression levels of embedded genes. Identical transgenes integrated in different 
chromosomal regions may acquire expression levels that strongly correlate with the 
expression levels of the large (containing up to 80 genes) domains of integration 
(Gierman et al., 2007).  
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Figure 1.3 Fractal globule formation of higher order chromatin structure as 

reported in Lieberman-Aiden et al (2009). Regions in close proximity are visible 

and chromosome territories are represented by a single colour. Original image 

from Lieberman-Aiden et al (2009). 

More recent studies of higher order structure employ Hi-C, a technique 
based on formaldehyde cross linking frequency, which is used to map the three-
dimensional organization of chromosomes by coupling DNA proximity ligation 
with high throughput sequencing (de Wit and van Steensel, 2009). These studies 
have rediscovered the domain structures previously seen across the genome. The 
first Hi-C study suggested a model of genome organisation that was 
compartmentalised, with chromatin occupying two different types of spatial 
compartment (Lieberman-Aiden et al., 2009). One compartment was composed of 
regions of gene rich, relatively open, actively transcribed chromatin, and another 
contained regions with opposing features. Nuclear organisation of chromatin was 
reported to be consistent with an untangled 'fractal globule' conformation allowing 
genomic regions to loop in and out of foci for transcriptional activation (Figure 1.3; 
See also Figure 3.3, Figure 3.4) (Lieberman-Aiden et al., 2009). Similar structures 
have since been reported in other organisms (Duan et al., 2010), and at much higher 
resolution within the human genome (Kalhor et al., 2012, Sexton et al., 2012), 
although the organisation of the fractal globule remains a subject of debate (Mirny, 
2011). Higher resolution Hi-C data has suggested the genome is organized into 
“large, megabase-sized local chromatin interaction domains”, where the vast 
majority of regulatory interactions structures between ESC and IMR90 (lung 
fibroblasts) found that most of the boundary locations were shared. This indicates 
that the domain structure between cell types is stable but regions within each 
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domain take part in cell type-specific regulatory events (Dixon et al., 2012).  

 

 

Figure 1.4 Hi-C interactions reveal topologically associated domains. The 

heatmaps represent interaction frequencies of the underlying genomic DNA (y 

axis) where interaction frequencies within domains are higher than between. The 

bars at the top represent topological domains. Interaction maps obtained from 

(http://chromosome.sdsc.edu/mouse/hi-c/database.php). 

One of the major features of nuclear organisation rediscovered in Hi-C 
analyses is that each chromosome is spatially positioned in its own individual 
territory within the nucleus. It has been known for some time that transcriptionally 
active genes within each chromosome territory are often positioned at the centre of 
the nucleus whereas silent genes are located at the periphery (Boyle et al., 2001). 
These early studies involved fluorescence in situ hybridization (FISH), a technique 
that uses fluorescent probes to bind to specific regions of DNA, which can then be 
spatially identified and visualised using microscopy. Some genomic regions within 
open chromatin are visible cytologically as relatively decondensed loci that 'loop 
out' to a new physical position in the nucleus (Mahy et al., 2002). This is consistent 
with previous observations at individual loci. For example, when transcriptionally 
active, the entire mouse HoxB locus decondenses cytologically and loops out from 
its usual nuclear position within the territory (Chambeyron and Bickmore, 2004). 
There is now substantial experimental evidence for the looping of chromatin to 
facilitate interactions at a distance, such as those between transcriptional activators 
bound to enhancers and the transcriptional machinery at a promoter (Tolhuis et al., 
2002, Cullen et al., 1993). In fact it has become clear that there are many long-range 
interactions both between and within chromosomes that are associated with 
whether genes at these loci are transcriptionally active or not (Simonis et al., 2006). 
This is consistent with observations that multiple active genes are often found 
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together at locations in the nucleus that have high local concentrations of 
transcriptional and mRNA-processing machinery. These are known as 'transcription 
factories’ (Rieder et al., 2012). Some intra or interchromosomal interactions appear 
to be mediated by regulatory elements, perhaps via direct protein-protein 
interactions between loci, to promote or repress transcription by restricting the 
movement of genes (Fraser and Bickmore, 2007).  

At the higher level of chromatin organisation there are vital genomic 
functions that have close relationships to chromatin environments. Replication 
timing refers to the coordinate replication of segments of DNA within S-phase of the 
cell cycle via the synchronised firing of clusters of replication origins (replicons) 
(Hiratani et al., 2008). These often form replication domains ranging in size from a 
few hundred kilobases to several megabases and undergo replication at distinct 
times during the cell cycle. Such domains have been characterized across both 
human and mouse genomes in a variety of different cell types (Hiratani et al., 2008, 
Hiratani et al., 2010, Ryba et al., 2010). Up to 45% of the mouse genome has been 
shown to have significant changes in replication timing during development 
highlighting the cell type specific nature of replication timing (Hiratani et al., 2010). 
Changes in replication timing are accompanied by a change in spatial positioning 
and transcription of the genomic region involved and may be a mechanism for 
genome wide transcriptional changes upon lineage commitment (Hiratani et al., 
2010). It has been found that replication domains that replicate at different times 
occupy different spatial compartments within the nucleus. Regions that replicate 
early are more centrally located and regions that replicate later are located at the 
nuclear periphery (Hiratani et al., 2008). Also, early replicating regions tend to be 
GC and gene rich whereas late replicating regions are GC and gene poor (Woodfine 
et al., 2004). Late replicating domains are enriched for the histone modification 
H3K9 dimethylation but cells lacking H3K9me2 do not have their replication timing 
or their spatial positioning disrupted (Yokochi et al., 2009) In contrast, the gene Rif1, 
which is a telomere binding protein that binds chromatin and associates with 
nuclear scaffold structures during interphase, has been shown to dramatically affect 
replication timing profiles within cells (Yamazaki et al., 2013). 

Spatial positioning of genomic locations is another important aspect of 
higher order chromatin organisation. Genomic regions occupy different spatial 
compartments within the nucleus and differ in their proximity to the nuclear 
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periphery, and again it seems that megabase scale domains are the unit of 
organisation. Nuclear lamina associating domains (LADs) are strongly associated 
with the nuclear periphery, contain around half of the human genome, and are 
between 40 Kb to 15 Mb in size (Guelen et al., 2008). Their locations and their sizes 
appear to be largely constant over cell types although there are domain boundaries 
that appear to be cell type specific (Peric-Hupkes et al., 2010). The majority of genes 
enriched in LADs have low transcriptional activity, which suggests a repressive 
chromatin environment (Peric-Hupkes et al., 2010), and this repressive state is 
found in LADS from human, mouse and Drosophila cells (Peric-Hupkes et al., 2010, 
Pickersgill et al., 2006, Guelen et al., 2008). Using experimental methods to 
artificially tether an active locus to the nuclear lamina has been shown to lead to 
reduced gene expression (Finlan et al., 2008). Genes within LADS are also enriched 
for repressive histone modifications such as H3K9me2, which is also true of genes 
within late replicating domains (Guelen et al., 2008, Ryba et al., 2010). H3K9me2 has 
also been shown to have an important relationship to LAD positioning in mouse 
cells (Kind et al., 2013).  

Remarkably, given the diverse methodologies used to investigate them, 
significant correlations have been found among the very different facets of higher 
order chromatin that have been measured. There is a strong correlation between the 
regions that replicate together during the same temporal window of S phase, and 
those sequences that can be captured together by Hi-C (Ryba et al., 2010, Yaffe et al., 
2010). This is consistent with the idea that genomic regions in close proximity tend 
to replicate at similar times and thereby define important features of chromosome 
organisation. This has been substantiated by more detailed analysis using 
fluorescence in situ hybridisation of specific loci (Hiratani et al., 2008, Ryba et al., 
2010). There is also a strong correlation between late replicating chromosomal 
domains and LAD organisation, but the relationship tends to breakdown the 
borders of the domains and at particular genes (Peric-Hupkes et al, 2010). This is 
unsurprising considering the dynamic nature of higher order structure, where 
hundreds of genes within LADs change their genomic locations during, for example 
cellular differentiation, such as moving from a peripheral location to a central 
position where the gene becomes transcriptionally active (Peric-Hupkes et al., 2010). 
Similar transitions in state have also been observed for replication timing domains, 
where whole regions of DNA change their replication timing upon differentiation 
from early to late, or late to early replication (Hiratani et al., 2008, Ryba et al., 2010). 
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Early to late changing regions have been shown to have compact, inaccessible 
structure possibly as a means of stable gene silencing (Takebayashi et al., 2012). The 
fact that significant correlations between different facets of higher order structure 
are found in spite of these ‘moving targets’ is remarkable. 

1.2. COMPARATIVE EPIGENOMICS OF PRIMARY LEVEL CHROMATIN 

Evolutionary comparisons of epigenomic features between species are a 
powerful tool for understanding the conservation of genome organisation. The 
relationship between divergence in the epigenome and the divergence in the 
underlying DNA sequence can be studied and may shed light on regulatory 
features of the genome that cannot be discerned from sequence comparisons alone. 
A number of studies have been undertaken to compare the structures of 
orthologous loci between species using a variety of chromatin data. One of the first 
comparative epigenomic studies between human and mouse examined human 
‘islands’ of histone acetylation and found that similar islands were present at most 
orthologous regions in mouse, but often with no detectable DNA sequence 
conservation underlying them (Roh et al., 2007). Histone modification states 
coupled with polycomb binding sites within human and mouse orthologous 
promoters have been studied genome-wide with widespread conservation of 
chromatin states seen between species (Ku et al., 2008). On a broader scale, patterns 
of enrichment for common histone modifications across the orthologous 
mammalian genome also appear to be generally conserved between human and 
mouse (Woo and Li, 2012). The first genome-wide maps of DNA methylation for 
over 20 eukaryotic species were completed to investigate evolutionary patterns, and 
again conservation of chromatin is evident (Feng et al., 2010, Zemach et al., 2010). 
Methylation of the gene body is a particularly ancient feature of eukaryote genomes, 
predating the divergence of plants and animals around 1.6 billion years ago 
(Zemach et al, 2010). It may have originated to prevent transcriptional initiation 
within the gene body, however this does not extend to transposons and repeat 
elements which show increased divergence in DNA methylation patters across 
species (Zemach et al., 2010). Non-methylated CpG islands are also present at 
orthologous regions within seven diverse vertebrate species indicating conservation 
across vast evolutionary distances. They are usually present at gene promoters but 
some cell type specific CpG islands are found in other regulatory sequences such as 
enhancers (Long et al., 2013). 
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Transcription factors are key elements of chromatin structure as their 
binding patterns are central to the expression of genes. Sequence-specific 
transcription factor binding sites appear to evolve rapidly in mammals, with 
binding events in a particular tissue shared only 10-22% of the time between 
human, mouse and dog genomes (Schmidt et al., 2010). The spread of transposons 
with integral binding sites contributes to much of this rapid divergence between 
human and mouse cells (Schmidt et al., 2012). In addition, the divergence of 
transcription factor binding patterns between human and chimpanzee greatly 
exceeds the level of sequence variation between the two species suggesting that 
divergence in chromatin structure itself may play an important role in species 
divergence (Kasowski et al., 2010). A more recent comparative study has examined 
high resolution chromatin data including eight histone modifications/variants, 
DNA methylation patterns and the binding patterns of four transcription factors in 
stem cells from three different mammals - human, mouse and pig (Xiao et al., 2012). 
Epigenomic maps for each species were constructed that could then be compared at 
orthologous regions. They again found evidence for conservation of chromatin 
features, such that the intensity of a histone modification, or of DNA methylation, 
found at a genomic region was generally correlated across species. In addition, the 
combinations of chromatin features predictive of gene expression levels were almost 
identical between species, including H3K4me3, H3K36me3, H3K27me3, and 
H3K27ac. As this implies, changes in chromatin structure between species were also 
predictive of gene expression changes. This offers a stark contrast with sequence 
divergence, which has been found to correlate poorly with expression divergence 
between species, including human and mouse (Chan et al., 2009).  
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1.3. COMPARATIVE EPIGENOMICS OF HIGHER ORDER CHROMATIN 
STRUCTURE 

Conservation of higher order chromatin structure across species is less well 
studied than primary level chromatin features, such as histone modification 
patterns, but a number of studies have been carried out recently. As mentioned 
previously, genome wide studies of lamin associating domains (LADs) and 
replication timing domains, both important aspects of higher order structural 
organisation, have been carried out in human and mouse cell types (Hiratani et al., 
2008, Guelen et al., 2008, Peric-Hupkes et al., 2010, Ryba et al., 2010). These domains 
adopt similar sizes between species and also display broad conservation between 
species. In replication timing domains, orthologous regions show coordinate 
replication late or early in the cell cycle. This conservation has been maintained in 
spite of the numerous large-scale genome rearrangements separating the two 
species (Yaffe et al., 2010), and is reflected in similar compositional biases in these 
genomes. Where domains of replication timing are divergent between species, it is 
thought that differences in the underlying DNA sequence may play a primary role 
(Pope et al., 2012).  

Comparisons of mouse and human lamina interaction maps have shown 
that the sizes and genomic positions of these domains are strongly conserved. 
Constitutive LADs (cLADs), seen as constant features across differing cell types, are 
particularly depleted of synteny breakpoints and are characterized by long stretches 
of AT rich genomic sequence (Meuleman et al., 2013). The degree of cell type 
specificity varies among these datasets. Replication timing similarity between 
species is dependent on the particular cell type examined (Ryba et al., 2010). Some 
regions of the genome have been shown to have a constant replication profile while 
there are other more plastic domains that show variation across differing cell types 
(Hansen et al., 2010). However, the numbers and size distributions of LADs in 
human lung fibroblasts are reported to be similar to those seen in mouse embryonic 
fibroblasts, as well as several other mouse cell types (Peric-Hupkes et al., 2010). A 
recent Hi-C study examined mouse and human ES cells in parallel and found 
further evidence for megabase sized domain organisation of higher order chromatin 
structure. These domains were broadly stable across cell types and conserved across 
species (Dixon et al., 2012). As mentioned above, these ‘topological’ domains are 
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enriched in mutually interacting subregions, presumably reflecting the presence of 
genes and associated regulatory elements. Topological domain boundaries were 
also compared to LADs and replication timing domains and were found to be 
related, but independent, chromatin features (Dixon et al., 2012). There are also 
correlations between higher order chromatin structures and chromatin features at a 
finer scale of organisation, for example histone modifications and transcription 
factor binding patterns (de Wit and van Steensel, 2009). A key question arising from 
these findings is how are all the various chromatin features related and to what 
extent are they all aspects of the same entity? I present data directly addressing this 
question in Chapter 6. It is also increasingly apparent that correlations can be found 
between any published higher order chromatin dataset and underlying patterns of 
histone modifications, although the extent to which lower level features are 
responsible for higher order structure remains a subject of debate (Figure 1.5). I will 
consider this question further in Chapter 8. 
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Figure 1.5 Higher order chromatin structure and histone modifications. The 

relationships between the densities of various histone modifications (Xiao et al., 

2012) and replication timing data in human ES cells (Ryba et al., 2010). Replication 

timing and histone modification data is averaged over 100 Kb windows. Adapted 

from (Chambers and Semple, 2013). 

1.4. DNA VARIATION WITHIN CHROMATIN DOMAINS 

There are now many examples of the interplay of chromatin structure with 
the underlying DNA sequence, such as the broad compositional bias of GC rich 
sequence in open regions mentioned already (Yaffe et al., 2010, Meuleman et al., 
2013). There are also clear examples of sequence divergence impacting chromatin, 
such as the spread of transposons affecting mammalian CTCF binding sites 
(Schmidt et al., 2012). However, it has also become clear that chromatin structure is 
associated with unusual patterns of genomic sequence divergence. Higher order 
structure has been compared to various measures of mutation rate and is 
consistently correlated. Divergence between human and chimpanzee sequence at 
intronic sites, intergenic sites and ancient repeats have indicated higher mutation 
rates in relatively closed domains (Prendergast et al., 2007). A similar correlation has 
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been observed between mutational rate and human DNA replication timing, with 
higher mutation rates occurring in late replicating regions (Stamatoyannopoulos et 
al., 2009). Single nucleotide polymorphism (SNP) density is also used to infer 
mutation rates as it is presumed that there has been little time for selection to act on 
the majority of SNPs and therefore the density of SNPs within a region should 
generally reflect underlying mutation rates. Again, SNP density shows a similar 
relationship to other mutational measures and is at a higher level in closed 
chromatin structures (Prendergast et al., 2007). This implies that variation in the rate 
of mutation across the genome has a relationship to higher order chromatin, 
however, the mechanisms underlying this association are not clear. It has been 
suggested that the silent chromatin located at the nuclear periphery may act as a 
'bodyguard', absorbing mutational damage and protecting the centrally located 
genes (Gazave et al., 2005). An alternative theory states that open chromatin is more 
accessible to the DNA repair machinery, allowing any mutagenic alterations to the 
DNA to be repaired. This is consistent with a study, which showed homology 
directed repair machinery has restricted access to compact chromatin (Cummings et 
al., 2007).  

On the other hand, other studies have observed relatively high substitution 
rates at small sites of particularly open chromatin structure such as DNase 
hypersensitive sites (Birney et al., 2007) and core promoter regions immediately 
upstream of transcription start sites (Taylor et al., 2006). This raises the possibility 
that while large open chromatin domains are resistant to mutation, there are smaller 
sites with unusually accessible structures that are particularly prone to mutation. 
Mutation rates have also been found to vary according to human nucleosome 
occupancy patterns, where it seems that less accessible sequences, such as those 
wrapped around the nucleosome cores, accumulate mutations more rapidly than 
sequences in the open linker regions (Prendergast and Semple, 2011). This has also 
been observed in studies of medaka fish (Sasaki et al., 2009) and yeast (Warnecke et 
al., 2008, Washietl et al., 2008). There is also significant evidence for both positive 
and negative selection linked to human nucleosome positioning once mutational 
biases are accounted for, implicating a widespread and important role for DNA 
sequence in the location of well-positioned nucleosomes (Prendergast and Semple, 
2011). Chromatin domains possessing particular structures also differ significantly 
in their gene content, suggesting that higher order chromatin may play roles in the 
evolution of gene clustering and synteny. Relatively accessible open chromatin is 
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enriched for broadly expressed, ‘housekeeping’ genes, while more closed 
conformations are enriched for particular classes of noncoding RNA (ncRNA) genes 
(Prendergast et al., 2007). Also, particular chromatin signatures have been used to 
successfully predict functional ncRNAs (Guttman et al., 2009). However, chromatin 
structure does not always diverge in parallel with the underlying DNA sequence. It 
has been found that chromatin structure can be well conserved whether it is 
associated with genomic sequences showing accelerated or reduced substitution 
rates (Xiao et al., 2012).  

1.5. NATURAL VARIATION IN CHROMATIN STRUCUTRE 

Studies of transgenerational epigenetic inheritance have provided insights 
into how inherited features of chromatin structure may be capable of evolving 
independently of the underlying DNA sequence. This process has been studied 
more in plants than animals, where the study of epigenetic variants, or epialleles, 
over many generations is well established (Schmitz and Ecker, 2012). Studies of a 
collection of Arabidopsis mutation accumulation lines over 30 generations have 
revealed just under one sequence mutation per line per generation. In contrast the 
level of spontaneous generation of epialleles (variation in DNA methylation 
patterns) was at least four orders of magnitude greater and often resulted in 
significant transcriptional variation at the affected loci (Schmitz and Ecker, 2012). 
DNA methylation patterns have also been studied in Arabidopsis plants from 
several different populations and the methylomes showed marked differences 
suggesting heritable epialleles may be involved in adaptations to diverse 
environments (Schmitz et al., 2013). Until recently it was thought that the 
inheritance of such variations was impossible in mammals and, if it did occur was 
likely to be functionally irrelevant, however those views have been challenged by 
recent data. Genome-wide epigenomic reprogramming takes place in early 
embryos, where their chromatin structure is changed to allow cellular 
differentiation later in development. It seems that thousands of loci can escape 
reprogramming, maintaining their DNA methylation status, and a small proportion 
of these include promoters and regulatory elements (Hackett et al., 2013). There 
have been few studies of the inheritance of human chromatin, but it has been shown 
that around 10% of DNase sensitive sites and CTCF binding sites mapped are 
specific to individuals and are often associated with the activation or repression of 
neighbouring genes (McDaniell et al., 2010). These individual variations in 
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chromatin structure were also often observed to be inherited between parents and 
children, and some could not be related to underlying sequence variation 
(McDaniell et al., 2010). A significant degree of heterogeneity can also be present 
between the chromatin states of different genomic sequence alleles. We are only at 
the beginning of understanding epigenetic inheritance in mammals but it suggests 
new links between genes and the environment mediated by chromatin structure 
and RNA biology (Daxinger and Whitelaw, 2012). 

1.6. AIMS OF INVESTIGATION 

It has now been over a decade since the completion of the human genome 
project, but it is clear that much of its potential in the field of scientific and medical 
research is still to be understood. With the advent of low-cost, high-throughput 
sequencing technologies, there is now an abundance of genomic, transcriptomic and 
epigenomic data. The flood of new data and analysis techniques is causing major 
shifts in bioinformatics and has direct implications for this project. 

The studies mentioned above provide complementary views of higher order 
chromatin structure. Each shows that the mammalian genome is organised into 
large, discrete domains of higher order chromatin with relatively open or closed 
conformations. These forms have opposing properties, which include levels of 
expression and accessibility, spatial positioning, replication timing, histone marks 
and mutational rates. These domains appear to be broadly similar across the 
different cells that have been examined, although many regions across the genome 
show cell type specific structure. However, the actual extent to which these datasets 
intersect, and how they relate to one another across cell types and species, is poorly 
understood. The degree of evolutionary divergence in higher order structure has 
not been rigorously measured across the mammalian genome until now. The 
relevant studies published so far have generally examined a single feature of 
chromatin structure in isolation. Similarly, the genomic loci underlying divergence 
in chromatin structure between species, and the mechanisms underlying 
divergence, are unknown. 

In this investigation, a large number of diverse mouse and human datasets 
are collated to provide the most comprehensive overview of higher order chromatin 
structure in mammals to date. A systematic study of all orthologous regions in the 
mammalian genome is undertaken and the extent of conservation in higher order 
chromatin structure between cell types and during evolution is estimated. The 



Introduction 

 21 

analysis identifies large tracts of structurally divergent chromatin, unevenly 
distributed across the genome, and containing intriguing enrichments of particular 
classes of genes.
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2. Chapter 2: Methodology 

Chapter 2  

Methodology 

 

 

Topics included in this section: 

o Summary of the data used and methods of defining orthology and 
divergence. 

o Methods involved in defining the distribution of structurally 
divergent regions and clusters of divergent regions. 

o Techniques for identifying densities of different gene classes and 
functional gene enrichments. 

o Identification of sequence level correlates of chromatin divergence, 
including base composition, repeat densities, sequence level 
divergence, segmental duplications and synteny. 

o Multiple linear regression modelling to identify the most influential 
variables underlying chromatin divergence. 

o Primary processing and integrative analysis of multiple ChIP-seq 
datasets for epigenomic comparisons of chromatin data across three 
species. 

o Summary of programming languages, software and online resources 
used for this investigation. 
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2.1. METHODS FOR DEFINING ORTHOLOGOUS HIGHER ORDER 

STRUCTURES 

Detailed descriptions of datasets used including cell types and experimental 
procedures are detailed in Chapter 3 and Table 3.1. Full details of methods 
developed to define structural orthology and divergence are also detailed in this 
chapter. A summary is included below. 

2.1.1. SUMMARY OF DATASETS USED 
Replication timing data in human and mouse embryonic cells were obtained 

from (Hiratani et al., 2008) and (Ryba et al., 2010) as log2(early replicating/late 
replicating) values. Full details of cell types involved can be seen in Table 3.1. 
Nuclear lamina association data in human and mouse embryonic cells were 
obtained from (Guelen et al., 2008) and (Peric-Hupkes et al., 2010). Both studies 
were based upon the DamID technique for labelling lamina associated sequences, 
where relative lamina association is represented by log2(Dam-fusion/Dam-only) 
values. Lastly, 100 Kb window genomic interaction probability matrix eigenvalues 
were defined for human lymphoblastoid cells using Hi-C data (Lieberman-Aiden et 
al., 2009). These values were found to reflect open and closed higher order 
chromatin structures positioned in different nuclear compartments. Although these 
data were not derived from embryonic cells it appears that many of the higher order 
patterns (as represented by interaction matrix eigenvectors) in Hi-C datasets are 
consistent between cell types (Lieberman-Aiden et al., 2009, Dixon et al., 2012).  

Other Hi-C datasets (Kalhor et al., 2012) were examined to test for the 
presence of systematic biases that can affect Hi-C data (Yaffe and Tanay, 2011). 
These include the distance between restriction enzyme cut positions, the GC content 
of fragments, and uniqueness of short sequence reads which can cause biases within 
the Hi-C method (Yaffe and Tanay, 2011). However, it was concluded that the biases 
present in the Lieberman-Aiden et al (2009) dataset have little effect on the two 
compartment classification of the genome based upon these data, and therefore that 
the search for structurally divergent regions is unaffected. This is detailed further in 
Chapter 3. 

2.1.2. ORTHOLOGY AND DIVERGENCE 
Probe based replication timing and nuclear lamina association data 
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coordinates were translated to the latest human or mouse genome assembly 
coordinates (Human Feb. 2009 (GRCh37/hg19) and Mouse Jul. 2007 
(NCBI37/mm9)) using UCSC liftOver transformations (Kent et al., 2002). For each 
dataset the structural data values were averaged across probes into consecutive 
non-overlapping 100 Kb regions, but regions represented by fewer than 10 probes 
were discarded as they are underrepresented by the data and potentially unreliable. 
This allowed comparisons between the probe based datasets and the Hi-C data, 
which has a fixed resolution of 100 Kb. Within each species 100 Kb regions were 
collated across datasets where their coordinates overlapped by 50% or more. The 
result was a set of 24,711 mouse and 28,786 human 100 Kb regions represented by 
higher order structural values from multiple datasets. Orthologous 100 Kb regions 
were defined as those regions with at least a 50% coordinate overlap between 
mouse and human genomes using reciprocal liftOver transformations. A total of 
16,820 100 Kb orthologous regions, covering 54% of the human genome and 62% of 
the mouse genome, were defined in this way. A total of 11,966 human and 7,891 
mouse regions, lacking an orthologous mapping using this protocol, were excluded 
as lineage specific regions. Examination of several normalisation techniques in R 
revealed that standard quantile normalisation procedures (R/Bioconductor limma 
package) (Smyth, 2005), used to normalise across different microarray experiments, 
were effective across the different experimental platforms and cell types here, 
therefore this normalisation technique was implemented across all structural 
datasets for all 100 Kb regions (See Chapter 3, Figure 3.8). Note that this rather 
aggressive form of normalisation may obscure subtler differences between datasets 
and is therefore likely to make our divergence results (see below) conservative. 
Relationships across the 100 Kb orthologous dataset and between mean higher 
order structure values and other chromatin features was tested using Spearman’s 
rho non-parametric correlation tests which do not rely on any underlying structural 
model for the data. Hierarchical clustering of divergent regions were performed 
using the R package pvclust (Suzuki and Shimodaira, 2006) with 1-rho as a distance 
metric and heatmaps were constructed using the gplots package in R (Warnes et al., 
2010).  

Structurally divergent regions were defined as orthologous 100kb regions 
that showed a consistent difference in higher order structural values across human 
and mouse data. Non-parametric tests from the SAM package (Tusher et al., 2001), 
analogous to two class unpaired t-tests with permutation derived p-values, were 
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used to define divergent regions (R package samr). These tests were developed for 
microarray data analysis but are appropriate for other types of non-microarray 
derived data (Tusher et al., 2001). Full details of the method development for this 
technique can be found in Chapter 3. To summarise, statistical tests analogous to t-
tests were carried out for each 100 Kb orthologous region, with the various 
normalised structural values for that region compared between species. 100,000 
permutations of the test results were used to estimate the false discovery rate (FDR). 
The FDR threshold was set to be relatively low (FDR = 2e-04) to ensure a very low 
number of false positives. 1719 100 Kb regions, showing a strong and consistent 
difference between species were defined despite the inherently noisy, variable 
nature of the collated dataset. The results are necessarily bipolar with positive and 
negative divergent regions defined to indicate human open/mouse closed or 
human closed/mouse open divergence respectively. Relatively static, non-divergent 
regions were defined as those with p values that did not pass the FDR threshold.  

The 100 Kb detectably orthologous regions defined above (using a 50% 
overlap threshold) will necessarily vary in the degree of similarity they show 
between species, it was therefore a concern that this might influence the 
measurement of structural divergence. Specifically it was important to show that 
the regions identified as structurally divergent are not simply those most poorly 
aligned between species at the sequence level. On closer examination the 
distributions of overlaps (aligned nucleotides minus gaps) were found to be very 
similar between structurally divergent and non-divergent regions, whether viewed 
in terms of the human (GRCh37/hg19) genome (divergent overlap mean = 0.80, 
median = 0.81; non-divergent overlap mean = 0.79, median = 0.80), or the mouse 
(NCBI37/mm9) genome (divergent overlap mean = 0.73, median = 0.72; non-
divergent overlap mean = 0.72, median = 0.71) sequence assemblies, based upon 
UCSC whole genome alignments. We concluded that the estimates of structural 
divergence are not simply a reflection of sequence divergence. 

2.2. GENOMIC DISTRIBUTION OF DIVERGENT REGIONS 

2.2.1. LARGE DOMAINS OF DIVERGENT REGIONS 
The degree of topological clustering among the divergent regions was 

formally investigated by measuring the length distribution of consecutive runs of 
divergent 100 Kb regions observed, relative to the distribution expected using a 
permutation strategy. To do this, all consecutive runs of two or more significantly 
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divergent regions were first identified across the orthologous human genome using 
Perl scripts. These domains were required to maintain the polarity of divergence 
(i.e. all regions involved must be either human open/mouse closed or vice versa). 
The loci of the orthologous divergent regions were then permuted within 
chromosomes 10,000 times, and length of any consecutive runs within each 
permuted genome was noted. The frequency with which a run of a particular length 
was seen in the permuted datasets was taken as an approximate p value for runs of 
that length in the observed dataset. Runs of divergent regions greater than or equal 
to 400 Kb were never seen in the permutated data (p < 0.0001) and therefore runs of 
this size were regarded as significant large divergence domains in the observed 
data. 159 unexpectedly large divergent domains in the human genome and 160 in 
the mouse were defined in the way. This strategy is likely to be conservative in 
detecting large regions of divergent chromatin as it does not allow for gaps, (e.g. 
regions that may have marginally failed to reach significance in the test for 
divergence above), within runs of divergent regions. Full details of the 159 large 
human divergent domains and 160 large mouse divergent domains can be seen in 
Appendix 10.1. 

2.2.2. DISTRIBUTION WITHIN CHROMOSOMES 
The distribution of divergent regions across chromosomes was examined to 

find chromosomes that were particularly enriched or depleted for higher order 
structural divergence. This was done by comparing the expected numbers of 
divergent regions, given the proportion of orthologous 100 Kb regions on each 
chromosome, with those observed using chi-squared tests, and we identified 
chromosomes of interest as those generating standardized residuals > 1.96. This was 
done for divergent regions within the mouse and human genomes, and for the 
distributions of large divergence domains (see above) in both genomes. 

Enrichment or depletion of 100 Kb divergent regions within subtelomeric or 
pericentromeric regions was assessed using a circular permutation strategy. Each 
permuted dataset was generated by shifting the locations of all divergent regions on 
each chromosome by a random number less than the length of the chromosome. 
Regions assigned a shifted position greater than the final base pair of the 
chromosome are re-inserted at the start of the chromosome plus the number of 
bases by which they exceeded the final base pair. This was done for 10,000 
permutations. For the purposes of the permutations, the chromosomes are regarded 
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as circular and maintain the degree of clustering seen among the observed 
divergent regions. The number of permuted datasets, n, possessing a number of 
divergent regions within subtelomeric (or pericentromeric) regions greater than or 
equal to the observed number were noted, and used to calculate approximate p-
values (n/10,000) for enrichment. The significance of depletion was calculated 
analogously, according to the number of permuted datasets possessing the same or 
fewer divergent regions. Subtelomeric regions were defined as regions within 1 Mb, 
5 Mb and 10 Mb of the first and final base pairs of the chromosome assemblies, and 
within the final base pair of the (acrocentric) mouse assemblies. Pericentromeric 
regions were defined as regions within 1 Mb, 5 Mb and 10 Mb of the first base pair 
of mouse and human chromosome q arm assemblies, and within the final base pair 
of human p arm assemblies. It is important to note that the density of orthologous 
100 Kb regions within subtelomeric regions was not significantly different from the 
genome as a whole, either for human (5 Mb subtelomeric region mean density = 
23.70; mean density across all genomic 5 Mb bins = 28.10) or mouse (5 Mb 
subtelomeric region mean density = 34.60; mean density across all genomic 5 Mb 
bins = 34.20). The same circular permutation approach was used to measure the 
enrichment or depletion of divergent regions within domains that are structurally 
dynamic during cellular differentiation (Hiratani et al., 2008). We also used a similar 
permutation strategy to compare the similarity (i.e. proximity) of domain 
boundaries between chromatin-mediated regulatory domains (Dixon et al., 2012) 
and the boundaries of divergent clusters. The median distance between divergent 
cluster boundaries and the nearest regulatory domain boundaries was compared to 
the median distance seen in 10,000 datasets that had undergone circular 
permutation. The proportion of datasets generating a median distance less than or 
equal to the observed median distance was taken as an approximate p-value. Full 
details of the enrichment of divergent regions within subtelomeric and 
pericentromeric regions can be seen in Table 4.4. 

2.3. CHROMATIN STRUCTURE CORRELATES 

2.3.1. GENE DENSITY AND GENE ONTOLOGY ENRICHMENTS 
Gene densities were calculated per orthologous region for divergent and 

non-divergent datasets. This involved examining overlaps of Ensembl (Flicek et al., 
2013) annotated gene lists for protein coding genes within divergent and non-
divergent regions for all 100 Kb orthologous regions defined. Densities per 
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divergent 100 Kb region were then compared using nonparametric (Mann-Whitney) 
test statistics. 

Functional enrichments for protein coding genes were calculated using The 
Database for Annotation, Visualization and Integrated Discovery (DAVID) (Dennis 
et al., 2003). Ensembl gene annotations were used to describe genes in divergent 
regions of interest against a background of Ensembl annotated genes in all 
orthologous regions. This was done for all 1719 divergent regions using the total 
human and mouse genes present within the 16,820 orthologous 100 Kb regions as 
background sets for human and mouse enrichment analyses respectively, and also 
for the divergent regions within various clusters of interest. Enrichment of each 
annotation term in the set of human or mouse genes present within divergent 
regions was assessed using default options (p-values calculated using the 
hypergeometric distribution with FDR correction). Enrichment of these gene sets 
within cytogenetic bands was also examined as this can reflect the clustering of 
divergent regions. Full details of gene enrichments in divergent regions and 
divergent clusters are in Appendix 10.2, 10.3 and 10.4. 

RNA genes were also annotated by Ensembl and different RNA gene 
densities were established per 100 Kb orthologous region. Observed RNA gene 
densities were compared to expected RNA gene densities for divergent regions 
using the overall density of RNA genes for all orthologous regions. 

Differential gene expression datasets were obtained in order to compare 
structural divergence to expression divergence between human and mouse. This 
was examined using three different divergent expression datasets. The first 
expression dataset calculated differential expression in a relatively low number of 
genes (497 divergent and 126 conserved) within human and mouse ES cells (Cai et 
al., 2010). Gene lists were compiled that contained three different types of 
orthologous genes. These were genes upregulated in human, genes that were 
upregulated in mouse and genes that were conserved in expression across both 
species. Numbers of genes showing divergent or conserved expression across 
human and mouse were calculated within the regions of interest. Fisher’s Exact test 
was then used to calculate significant odds ratios for over or under representation of 
differentially expressed genes in 100 Kb regions with divergent higher order 
chromatin. The second study contained a higher number (186 divergent, 972 
conserved) of differentially expressed genes in macrophage cells (Schroder et al., 
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2012). Again, Fisher’s Exact test was used to determine over or under representation 
of divergently regulated genes in divergent 100 Kb regions. Lastly, a dataset 
consisting of log2 fold change measurements for 7,673 mouse-human gene pairs 
was constructed using reads per kilobase per million reads (RPKM) expression 
values for human H1 ES cells (Lister et al., 2009) and mouse E14 ES cells (Xiao et al., 
2012). These were used to calculate log2(human RPKM/mouse RPKM) for all one to 
one orthologous mouse human Ensembl gene pairs, as an estimate of fold change in 
expression. 

2.3.2. BASE COMPOSITION AND REPEATS 
To determine GC content, alignments of human (GRCh37/hg19) and mouse 

(NCBI37/mm9) were obtained from UCSC MultiZ 46-way alignment blocks using 
the Galaxy project website (Goecks et al., 2010). The alignments were restricted to 
intergenic regions using Ensembl gene predictions for each of the 16,820 100kb 
chromatin regions. This was to counteract the GC bias in gene coding regions. 
Where there were overlapping alignment blocks for a region, alignments with the 
best quality score were kept and blocks within each region were concatenated. Perl 
scripts were used to define the ratio of GC content per aligned intergenic sequence 
in a 100kb region. Repeat content of orthologous regions was identified using UCSC 
RepeatMasker annotation (Smit et al., 1996) and densities of specific repeat classes 
were calculated per 100kb structural regions using Perl scripts. 

2.3.3. SEQUENCE LEVEL DIVERGENCE ESTIMATES 
Human-mouse substitution rate was measured by using UCSC chain and net 

pair-wise sequence alignments (GRCh37/hg19 and NCBI37/mm9) (Kent et al., 
2002). Gene predictions from the Ensembl project were used to identify the 
intergenic sequences between genes to avoid different rates of divergence within 
genic regions. All intergenic human/mouse sequence alignments within each 100kb 
orthologous chromatin structure region were identified and concatenated to 
determine the overall substitution rate for each region. This was measured by using 
baseml from the PAML package using the REV model (Yang, 1997). All bases that 
overlapped a CG dinucleotide in either species were removed from the alignments 
to conservatively calculate non-CpG rates of divergence. 

Indel rate analysis was performed using three-way alignments for human 
(GRCh37/hg19), mouse (NCBI37/mm9) and dog (Broad/canFam2). The alignments 
were extracted from MultiZ 46 way alignment blocks and restricted to intergenic 
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regions (outside Ensembl gene models) using Galaxy (Goecks et al., 2010). Where 
there were overlapping alignment blocks for a region, alignments with the best 
quality score were kept. Alignment blocks for each 100kb region were defined and 
Perl scripts were used to define and filter lineage specific insertions and deletions. 
An indel was only defined if a minimum of three bases flanking each side of a gap 
were present and gaps occurring at orthologous locations but having unequal 
length in different species were also excluded (Kvikstad et al., 2007). Insertion and 
deletion rates were then calculated as the number of indel bases per aligned 
intergenic human base per 100 Kb divergent and non-divergent structural region.  

SNP data from the 1000 Genomes Project (Abecasis et al., 2012) was used to 
calculate SNP density within the 100 Kb regions of interest. To do this, VCFtools 
(Danecek et al., 2011), a package used for manufacturing variant call format files, 
was used to identify SNP densities per 100 Kb region. The low coverage SNP 
database was used as this contained SNPs accurately predicted between many 
individuals sequenced to a depth of between 3 and 5X coverage. The SNP density 
option within VCFtools was used to reliably find SNP densities per 100 Kb region. 
1,443 Loss of function (LOF) SNPs, were independently downloaded from the 1000 
Genomes Project  

ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_07/low_coverage/sn
ps/low_coverage.snps.LOF.txt and Perl scripts were used to calculate densities per 
100 Kb region.  

2.3.4. SEGMENTAL DUPLICATIONS AND SYNTENY 
Segmental duplication data was obtained from UCSC genome browser (Kent 

et al., 2002) for both human and mouse. UCSC define segmental duplications as 
genomic regions larger than 1 Kb with at least 90% sequence homology that are 
present at multiple copies within a genome. Perl scripts were used to calculate 
overlaps between segmental duplications and the 16,820 orthologous non-divergent 
and divergent regions. This was also done in the 11,966 human and 7,891 mouse 
regions, lacking an orthologous mapping. Proportion of duplications in non-
divergent compared to divergent structural regions and orthologous compared to 
non-orthologous regions were carried out in R using chi-squared tests. 

Syntenic regions were defined as the regions that form top level whole 
genome alignments from the Ensembl Compara database, between human 
(GRCh37/hg19) and mouse (NCBI37/mm9). Lower level alignments were not used 
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in this investigation. Syntenic blocks were obtained using the perl application 
programme interface (API) to the Ensembl Compara database (Ensembl 60) (Flicek 
et al., 2013). Again, Perl scripts were used to define overlaps, a synteny break was 
defined as a syntenic block starting or ending within a single orthologous 100 Kb 
region. Proportion of synteny breaks in non-divergent compared to divergent 
structural regions and orthologous compared to non-orthologous regions were 
carried out in R using chi-squared tests. 

2.4. LINEAR REGRESSION 

Multiple linear regression was carried out for all suitable chromatin and 
sequence features investigated. This was done by collating each feature into a new 
dataset containing the 16,820 orthologous regions and each feature measure per 100 
Kb region. The full list of features entered into the model are detailed in Table 2.1. 
Where delta (Δ) values were used, the feature entered in the model was the 
difference in density of that particular chromatin or sequence feature between 
human and mouse for each orthologous 100 Kb region. 

Class Feature Included in Δ model? 
 GC density ΔGC 
 Gene density ΔGene density 

SNP density   
Indel - deletions   
Indel - insertions   

Sequence 
divergence 
estimates Substitution rate ΔSubstitution rate 

H2AZ ΔH2AZ 
H3K27ac ΔH3K27ac 
H3K27me3 ΔH3K27me3 
H3K36me3 ΔH3K36me3 
H3K4me1 ΔH3K4me1 
H3K4me2 ΔH3K4me2 
H3K4me3 ΔH3K4me3 
H3K9me3 ΔH3K9me3 
NANOG ΔNANOG 
p300 Δp300 
TAF1 ΔTAF1 
Oct-04 ΔOCT4 
MeDIP ΔMeDIP 

Primary level 
chromatin 
features MRE.seq ΔMRE.seq 

DNA ΔDNA 
LINE ΔLINE 
LTR ΔLTR 
Low_complexity   
SINE ΔSINE 

Repeats Simple ΔSimple 
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Table 2.1 List of all chromatin features and sequence level variables incorporated 

into the multiple linear regression model.  

Multiple linear regression was implemented using the glm() package in R 
and stepwise searches for the best models were performed according to the 
(generalised) Akaike Information Criterion (AIC). The aim was to find the 
chromatin variables with the most influence on both higher order chromatin 
structure and higher order chromatin structural divergence, and also to calculate to 
what extent chromatin structure/divergence can be explained by the features 
included. The AIC was used to optimise the model and identify successful 
combinations of variables. The AIC takes into account redundant or missing data in 
the model and indicates how well the model fits the data. Standardised r-squared 
values for the variables in the best models were then calculated using the beta 
coefficients. 

2.5. EPIGENOMIC COMPARISONS 

2.5.1. PROCESSING SEQUENCING DATA 
A multispecies epigenomic dataset from embryonic and pluripotent stem 

cells of humans, mice, and pigs was created in a similar manner to Xiao et al 2012. In 
this study the orthologous genomic distributions of epigenomic features from 
human, mouse and pig were compared. The features included DNA methylation, 
from Methylation-sensitive Restriction Enzyme Sequencing (MRE-Seq) and 
Methylated DNA Immunoprecipitation (MeDIP-seq), which identify DNA 
methylation genome wide at high resolution. Also high resolution profiles of 
histone modifications/variants associated with repression (H3K9me3 and 
H3K27me3), enhancers (H3K4me1, H3K4me2, H3K27ac), promoters (H3K4me3, 
H2AZ) and gene bodies (H3K36me3) were acquired from chromatin 
immunoprecipitation (ChIP) with massively parallel DNA sequencing (ChIP-seq). 
In addition, ChIP-seq profiles of four transcriptional regulators (NANOG, OCT4, 
P300, and TAF1) were also obtained. In total 15 different epigenomic features were 
compared across the three species. The raw data involved were all obtained from 
previous studies via the NCBI Sequence Read Archive (SRA) (Table 2.2). 
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Feature Mark Method Human Accession Reads 
processed 

% 
mapped 

H3K27me3 ChiP-seq Lister et al, 2009 GSE16256 91,076,733 70.87 
Repression 

H3K9me3 ChiP-seq Lister et al, 2009 GSE16256 193,583,168 78.64 
H3K4me1 ChiP-seq Lister et al, 2009 GSE16256 69,962,590 88.80 
H3K4me2 ChiP-seq Lister et al, 2009 GSE16256 38,030,958 73.62 Enhancer 
H3K27ac ChiP-seq Lister et al, 2009 GSE16256 42,382,986 81.70 

Promoter H3K4me3 ChiP-seq Lister et al, 2009 GSE16256 66,500,991 77.25 
Gene body H3K36me3 ChiP-seq Lister et al, 2009 GSE16256 141,190,603 79.29 
Promoter H2AZ ChiP-seq Xiao et al, 2012 GSE36114 25,786,431 95.90 

MeDIP-seq Bernstein et al, 2010 GSE16368 35,182,811 87.49 
Methylation 

MRE-seq Bernstein et al, 2010 GSE16368 77,386,795 75.94 
Promoter TAF1 ChiP-seq Encode,2012 GSE32465 32,189,724 79.21 
Enhancer P300 ChiP-seq Encode,2012 GSE32465 53,920,750 68.22 

OCT4 ChiP-seq Encode,2012 GSE32465 46,880,412 87.78 
Pluripotency 

Nanog ChiP-seq Encode,2012 GSE32465 53,920,750 68.22 

       

Feature Mark Method Mouse Accession Reads 
mapped 

% 
mapped 

H3K27me3 ChiP-seq Xiao et al, 2012 GSE36114 12,932,668 88.87 
Repression 

H3K9me3 ChiP-seq Goren et al, 2010 GSE12241 31,654,344 82.84 
H3K4me1 ChiP-seq Xiao et al, 2012 GSE36114 23,895,406 93.29 
H3K4me2 ChiP-seq Xiao et al, 2012 GSE36114 19,366,374 90.92 Enhancer 
H3K27ac ChiP-seq Xiao et al, 2012 GSE36114 18,351,814 92.78 

Promoter H3K4me3 ChiP-seq Xiao et al, 2012 GSE36114 6,911,600 92.47 
Gene body H3K36me3 ChiP-seq Xiao et al, 2012 GSE36114 31,258,590 92.07 
Promoter H2AZ ChiP-seq Xiao et al, 2012 GSE36114 17,641,837 88.48 

MeDIP-seq Xiao et al, 2012 GSE36114 88,311,720 78.94 
Methylation 

MRE-seq Xiao et al, 2012 GSE36114 25,728,829 96.16 
Promoter TAF1 ChiP-seq Xiao et al, 2012 GSE36114 27,736,348 90.15 
Enhancer P300 ChiP-seq Chen et al, 2008 GSE11431 23,450,889 69.41 

OCT4 ChiP-seq Chen et al, 2008 GSE11431 17,413,416 72.47 
Pluripotency 

Nanog ChiP-seq Chen et al, 2008 GSE11431 11,785,618 41.77 

       

Feature Mark Method Pig Accession Reads 
processed 

% 
mapped 

H3K27me3 ChiP-seq Xiao et al, 2012 GSE36114 10,868,857 76.41 
Repression 

H3K9me3 ChiP-seq Xiao et al, 2012 GSE36114 13,927,780 69.76 
H3K4me1 ChiP-seq Xiao et al, 2012 GSE36114 20,705,775 79.30 
H3K4me2 ChiP-seq Xiao et al, 2012 GSE36114 4,322,782 79.50 Enhancer 
H3K27ac ChiP-seq Xiao et al, 2012 GSE36114 17,741,434 79.26 

Promoter H3K4me3 ChiP-seq Xiao et al, 2012 GSE36114 21,512,279 76.91 
Gene body H3K36me3 ChiP-seq Xiao et al, 2012 GSE36114 38,013,146 76.28 
Promoter H2AZ ChiP-seq Xiao et al, 2012 GSE36114 4,417,656 78.26 

MeDIP-seq Xiao et al, 2012 GSE36114 68,357,687 68.92 
Methylation 

MRE-seq Xiao et al, 2012 GSE36114 16,832,623 33.93 
Promoter TAF1 ChiP-seq Xiao et al, 2012 GSE36114 10,700,034 77.63 
Enhancer P300 ChiP-seq Xiao et al, 2012 GSE36114 33,455,621 77.98 

OCT4 ChiP-seq Xiao et al, 2012 GSE36114 5,074,592 77.59 
Pluripotency 

Nanog ChiP-seq Xiao et al, 2012 GSE36114 18,575,267 77.15 
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Table 2.2 Chromatin features used in the three-way analysis of human, mouse and 

pig. The table shows values associated with the primary processing of the ChIP-

seq data including numbers of reads mapped and percentages aligned. 

ChIP-seq, MRE-seq and MeDIP-seq were mapped to genome assemblies 
GRCh37/hg19, NCBI37/mm9, and SGSC Sscrofa9.2/susScr2 using Bowtie 
(Langmead et al., 2009). This was incorporated into a Perl pipeline, which unpacked 
the files into FASTQ format, which contains DNA sequence and a corresponding 
quality score. The FastQC tool (Babraham Bioinformatics, 2010) was used to assess 
the quality of the mapped reads. The human binding site data for TAF1, P300, OCT4 
and NANOG (Xiao et al., 2012) were found to have low FASTQC quality reports 
and a poor percentage of mapped reads (48.70, 47.24, 20.38 and 45.94 respectively). 
Alternative data was found from ENCODE (The ENCODE Project Consortium, 
2011) that had much higher percentages of mapped reads (79.21, 68.22, 87.78, 68.22). 
Once the reads were aligned, SAMTools (http://samtools.sourceforge.net) was 
used to index and convert FASTQ files into bam and the bigwig format. The data 
was converted into bedgraph files for analysis of density per 100 Kb using UCSC 
tool bigwigtobedgraph. 

2.6. SOFTWARE, ONLINE RESOURCES AND DATASETS 

2.6.1. PROGRAMMING LANGUAGES AND PACKAGES 
The R Project for Statistical Computing (http://www.r-project.org/) is a 

publicly available language and software environment for statistical calculations 
and graphics. Originally developed in 1996 (Ihaka and Gentlemen, 1996) to be a 
portable, efficient language for statistical analyses, it has now evolved to carry out 
high performance computing for handling complex large datasets (R Core Team, 
2013). The standard R functions in conjunction with extension packages have been 
used for the majority of statistical analysis used in this project. These include linear 
regression, statistical tests, hierarchical clustering, data handling and normalisation. 
It has also been used to present the data graphically using various standard and 
extension packages.  

The R extension packages used are detailed below. 

o gplots is a R package containing specialised tools for plotting data. 
The function heatmap.2 was mainly used from this package to 
plot false colour diagrams for correlation matrices (Warnes et al., 
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2010). 

o Bioconductor; a free open development software project for the 
bioinformatic analysis of genomic data in R (Gentleman et al., 
2004). It contains a number of R add-on packages specifically 
used for the analysis of microarray data. The packages used for 
this investigation are further detailed. 

o pvclust is used for performing hierarchical clustering with 
accompanying p-values (Suzuki and Shimodaira, 2006). This was 
used for the hierarchical clustering of the 1719 divergent 
chromatin regions by divergence class.  

o Limma, part of the Bioconductor toolset, is specialised for the 
analysis, linear modelling and differential expression of 
microarray data. In this instance, it was mainly for quantile 
normalisation across differing datasets (Smyth, 2005). 

o Samr is used for performing SAM analysis to define divergent 
regions on 100 Kb orthologous dataset (Tibshirani et al., 2011). 

o MASS is used to perform stepwise model selection by the Akaike 
Information Criterion (AIC) which measured the goodness of fit 
for linear models (Venables and Ripley, 2002). 

The Perl programming language (www.perl.org/) is a general purpose 
programming language popular for bioinformatic analyses. Perl, Version 5.10 
(2007), was used throughout this project to quickly collate, and parse large datasets 
for further analysis, usually in R. Perl pipelines were also used for the ChIP-seq 
analysis as mentioned above. 

2.6.2. ONLINE TOOLS AND RESOURCES 

The 1000 Genomes Project  

The 1000 Genomes Project (www.1000genomes.org) is an international 
consortium set up to discover human genetic variants by aiming to sequence many 
individuals using next generation sequence techniques (Abecasis et al., 2012). The 
goal of the project is to find most genetic variants that have frequencies of at least 
1% in the populations studied by sequencing many individuals. SNP data was used 
from the 1000 Genomes Project to analyse SNP densities in divergent and non-
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divergent regions. This was done by using VCFTools (Danecek et al., 2011) to find 
densities of SNPs per 100 Kb region. 1443 loss of function SNPs were also 
downloaded from the 1000 Genomes Project. 

Database for Annotation, Visualization and Integrated Discovery 
(DAVID)  

The Database for Annotation, Visualization and Integrated Discovery 
(DAVID) is a web based bioinformatic resource developed by the Laboratory of 
Immunopathogenesis and Bioinformatics (http://david.abcc.ncifcrf.gov) (Dennis et 
al., 2003). It was designed to provide functional analysis of genome-scale datasets 
derived from high-throughput methods. For the purposes of this investigation, the 
DAVID functional annotation tool (v6.7) was used for gene-annotation enrichment 
analysis. 

Galaxy 

Galaxy is an open, web-based platform for biomedical analysis developed by 
Emory University and Penn State University (Goecks et al., 2010) 
(http://galaxy.psu.edu). Although Galaxy incorporates a variety of inbuilt tools for 
genomic analysis, the main ones used in this investigation were simple tools for 
genomic data manipulation. These include extraction of MAF blocks from MultiZ 46 
way alignment blocks for indel analysis, restricted to intergenic regions (outside 
Ensembl gene models).   

Bowtie 

Bowtie is an open source, memory-efficient short read aligner designed for 
rapid alignment of large sets of short DNA sequences (reads) to large genomes 
(Langmead et al., 2009). It was used to do the primary processing of the three-way 
primary chromatin data from Xiao et al (2012). Bowtie was used to do the read 
mapping for the ChIP-seq histone modification data in all three species; human, 
mouse and pig. 

 SAMtools 

The SAM (Sequence Alignment/Map) format is a generic format for storing 
large nucleotide sequence alignments. It is easily converted to other storage formats 
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and easily manipulated for further analysis. SAMtools 
(http://samtools.sourceforge.net) is a library and software package for parsing and 
manipulating alignments in the SAM format. This library can convert from other 
alignment formats, sort and merge alignments, call SNPs and show alignments in a 
text-based viewer. SAMtools was used to index and convert FASTQ files into the 
bam format. 

BEDtools 

BEDtools is a suite of utilities that enable genomics tasks such as 
intersecting, merging and shuffling of genomic intervals from multiple files in 
widely-used genomic file formats such as BAM, BED, GFF and VCF (Quinlan and 
Hall, 2010). It also allows for converting between different genomic file formats. The 
mergeBed tool was used for merging histone modification data from multiple 
sources. It was also used to convert bam formatted files to bed files. 

FastQC 

FastQC is a quality control tool for high throughput sequence data 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (Babraham 
Bioinformatics, 2010). It reads sequence data in a variety of formats and can either 
provide an interactive application to review the results of several different QC 
checks, or create an HTML based report. It was used to independently verify the 
quality of the mapped reads for the chromatin feature data from Xiao et al (2012). 

Sequence Read Archive (SRA) 

The Sequence Read Archive (SRA) is a bioinformatics database that provides 
a public repository for DNA sequencing data produced from published studies. It is 
particularly used for short read sequences generated by High-throughput 
sequencing, which are typically less than 1000 base pairs in length. The SRA was the 
source of the ChIP-seq datasets used in Xiao et al (2012). 

The Encyclopedia of DNA Elements (ENCODE)  

The Encyclopedia of DNA Elements (ENCODE) Consortium is an 
international collaboration of research groups. The goal of ENCODE is to build a 
comprehensive map of all the functional and regulatory elements in the human 
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genome and present the data in public databases. The pilot phase, carried out in 
2007, analysed functional elements in a portion of the genome equal to about 1% 
(Birney et al., 2007). Since then the project has been extended and currently over 
1,000 genome-wide data sets have been produced by the ENCODE project (Dunham 
et al., 2012). ENCODE ChIP-seq data relating to transcription factor binding sites 
were used in this investigation for the three-way species analysis. 

Ensembl 

Ensembl is a joint project between European Bioinformatics Institute (EBI) 
and the Wellcome Trust Sanger Institute (WTSI) to develop a system, which 
produces and maintains automatic genomic annotation on selected eukaryotic 
genomes. The Ensembl Project produces detailed genome data for vertebrates and 
other eukaryotic species available online (http://www.ensembl.org) (Flicek et al., 
2013). Ensembl BioMart is a highly customisable data mining tool used for 
downloading specific genome data. Ensembl (Release 64) was used to obtain 
accurate gene models and IDs for the human and mouse genomes. Top level 
synteny breaks were also obtained using the Perl Application Programme Interfaces 
(API) to the Ensembl Compara database. 

UCSC Genome Bioinformatics Site 

The UCSC Genome Bioinformatics Site is an online resource that contains a 
vast number of species’ genome assemblies and annotations 
(http://genome.ucsc.edu) (Kent et al., 2002). It also has a library of tools for viewing 
and manipulating different genomes. Segmental duplication tracks were used from 
UCSC. Human-mouse substitution rates were determined through the use of 
pairwise human-mouse alignment tracks from UCSC. The web resource also 
provided various genomic manipulation tools such as LiftOver (discussed below) 
and some conversion tools. The program bigWigToBedGraph was used to convert 
bigWig files to ASCII bedGraph format for formatting histone modification datasets. 

UCSC LiftOver  

UCSC LiftOver (Kent et al., 2002) is an online utility and executable script 
that is part of the UCSC website. Its function is to convert genome coordinates 
between different assemblies with the appropriate UCSC generated chained 
pairwise-alignment files. Conversions are possible within species (i.e mm8 to mm9) 
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and between species (i.e mm9 to hg19) using whole genome sequence alignments.  

Phylogenetic Analysis by Maximum Likelihood (PAML)  

Phylogenetic Analysis by Maximum Likelihood (PAML) is a package for 
phylogenetic analyses of DNA using maximum likelihood 
(abacus.gene.ucl.ac.uk/software/paml.html), currently in version 4 (Yang, 2007). 
The program Baseml using the REV model, was used for the substitution rate 
analysis between human and mouse intergenic regions. 

VCFtools 

VCFtools is a package specifically designed for working with data from the 
1000 Genomes Project (Abecasis et al., 2012). Variant Call Format (VCF) files have 
been developed with the advent of large-scale genotyping and are used in 
bioinformatics for storing gene sequence variations and SNP data. For these 
purposes the SNPdensity option was used to calculate the number and density of 
SNPs in 100 Kb bins from SNP variant call files (Danecek et al., 2011). 
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3. Chapter 3: Discovery of divergent 

higher order chromatin structure 

Chapter 3  

Results: Discovery of divergent higher 

order chromatin structure 

 

Topics included in this section: 

o Summary of the data and methods that were involved in producing 
RT, LA and Hi-C data. 

o Creation of a comprehensive orthologous 100 Kb higher order 
structure dataset across all human and mouse cell and data types. 

o Assessment of the degree of conservation across all orthologous 100 
Kb regions. 

o Development of methodology involved in divergence metrics. 

o Estimation of the degree of structural divergence between cell types 
and species. 
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3.1. INTRODUCTION 

The aim of this chapter is to gain insights into the conservation and 
divergence of various aspects of higher order chromatin structure across human and 
mouse cell types. There has been a recent influx of studies that provide 
complementary views of higher order chromatin structure. Each shows that the 
mammalian genome is organised into large, discrete domains of higher order 
chromatin with opposing properties (levels of expression and accessibility, spatial 
positioning, and replication timing). These domains appear to be broadly similar 
across the different cells that have been examined, although many regions across the 
genome show cell type specific structure (Lieberman-Aiden et al., 2009, Hiratani et 
al., 2010, Peric-Hupkes et al., 2010). However, the actual extent to which these 
datasets intersect, and how they relate to one another across cell types and species, 
is poorly understood. Similarly, the genomic loci underlying divergence in 
chromatin structure between species, and the mechanisms underlying divergence, 
are unknown. Until recently, this type of analysis has been limited by a lack of 
genome-wide data for higher order chromatin structure.  

In this section, a large number of diverse mouse and human datasets are 
collated to provide the most comprehensive overview of higher order chromatin 
structure in mammals to date. A systematic study of all orthologous regions in the 
mammalian genome is undertaken to evaluate the extent of conservation in higher 
order chromatin structure between cell types and during evolution.  

3.2. STRUCTURAL DATA TYPES 

A higher order structural orthologous dataset was collated using previously 
published data from five different studies. These studies generated 36 different 
datasets across different (though predominantly embryonic) cell types in human 
and mouse: replication timing (RT) (Ryba et al., 2010, Hiratani et al., 2010), nuclear 
lamina association (LA) (Guelen et al., 2008, Peric-Hupkes et al., 2010) and genome-
wide inter-locus contact preferences (Hi-C) (Lieberman-Aiden et al., 2009). Thus, 
throughout this thesis higher order structure is seen in terms of these three data 
types: RT, LA and Hi-C. The methodology used to produce these three different 
data types is summarised briefly: 

RT data 
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Embryonic, epiblast, induced pluripotent stem cells and pluripotent stem 
cells were labelled with Bromodeoxyuridine (BrdU). The cells were then separated 
into early and late S-phase fractions by flow cytometry. BrdU-labelled DNA from 
these cells was then immunoprecipitated, differentially labelled, and cohybridized 
to a human/mouse whole-genome oligonucleotide microarray (NimbleGen). This 
generated a replication-timing ratio (log2 (Early/Late)) for each of the tiled probes, 
which were positioned at every 5.8 kilobases (Kb) in mouse and 1.1 Kb in human. 
These replication timing ratios were then normalised and scaled to an equivalent 
median-absolute deviation (Hiratani et al., 2008) (Figure 3.1). 

 

 

Figure 3.1 Example of replication timing domains across 3 Mb section of mouse 

chromosome 6 (x axis). Y axis values represent log2 (Early/Late) replication timing 

values. Image courtesy of www.replicationdomain.org (Weddington et al., 2008). 

LA data 

Genome-wide maps of nuclear lamina interactions were made for both 
human and mouse cell types using DamID of Lamin B1. In this method, a fusion 
protein is created to target genomic regions at the nuclear periphery. This is 
comprised of Lamin B1, which is part of the protein structure of the nuclear lamina 
at the periphery of the nucleus, and E. coli DNA adenine methyltransferase (Dam). 
The fusion protein was expressed in cultured cells and immunofluorescence and 
confocal microscopy confirmed that the DAM-tagged lamin B1 appears to be 
incorporated into the nuclear lamina. The Dam adenine-methylates GATC DNA 
sequences that are in close contact with the nuclear lamina. Methylated GATC was 
then cut by DpnI restriction endonucleases and then ligated to known sequences, 
which can then be amplified and hybridized to oligonucleotide microarrays. This 
leads to the specific selection of genomic fragments flanked by methylated GATCs, 
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which will be at the nuclear periphery (Vogel et al., 2007). In human lung 
fibroblasts, the median probe spacing was about 200 base pairs and in mouse, 
median intervals of 1.2 kb. In both these hybridizations, methylated DNA fragments 
from cells expressing un-fused Dam, which is present throughout the nucleus, were 
used as a reference. The relative contact frequency of each probed sequence to the 
nuclear lamina was taken as log2(DamID/Dam only). The data was quantile 
normalised across all cell types (Guelen et al., 2008). 

 

Figure 3.2 Example of smoothed lamin association data across a 30 Mb section of 

human chromosome 1. Y-axis values represent log2(DamID/Dam only), x-axis 

values are chromosomal coordinates. Data taken from Guelen et al (2008). 

Hi-C data 

Finally, the Hi-C method involved cross-linking lymphoblastoid cells with 
formaldehyde, which forms covalent links between spatially adjacent chromatin 
segments. The chromatin was then digested with a restriction enzyme and the ends 
were biotinylated and ligated. Biotinylated junctions were isolated and identified by 
paired-end sequencing. This provided a genome-wide contact matrix whereby the 
genome was divided into 1 Mb and 100 Kb regions and the matrix entry for each 
region defined as the number of ligation products between locus a and locus b 
(Figure 3.3).  

 



Results 

 44 

 

Figure 3.3 Diagrammatic overview of the Hi-C method. Adapted from (Lieberman-

Aiden et al., 2009).  

Most signal in these data has been found to reflect interacting loci on the 
same chromosome, thus the main interest was in intrachromosomal contact 
probabilities, which were derived from the contact matrix (Figure 3.4). These 
revealed two large areas in the contact matrix, where interactions within each area 
were enriched but enrichments between them were depleted. These ‘compartments’ 
were found to correspond to relatively active, open and relatively inactive, closed 
chromatin. The two compartments were found to be well defined by the 
eigenvectors of the contact probability matrices (Lieberman-Aiden et al., 2009) 
(Figure 3.4). 
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Figure 3.4 Example of Hi-C interaction matrix data. The matrix illustrates the 

interaction frequencies between the intrachromosomal interaction profiles of 

every pair of 100 Kb loci along a section of human chromosome 14. Image 

courtesy of The Hi-C Data Browser http://hic.umassmed.edu/. 

Other data considered 

Hansen et al, 2009 - A human replication timing dataset produced in human 
ESC, fibroblast and lymphoblastoid cell lines. A new technique - Repli-Seq is used 
in which BrdU labelled DNA is sorted into 6 fractions – G1, S1, S2, S3, S4, G2. 
Massively parallel sequencing is then used to get sequence reads, which are 
converted, into percent-normalised density values for a region of DNA per cell cycle 
phase (Hansen et al., 2010). This data was not included in this investigation due to 
the availability of new human replication timing data produced by the same 
method as the mouse replication timing data (Ryba et al., 2010). 

Kalhor et al, 2012 - Re-analysis of the Hi-C method revealed the presence of 
systematic biases that obscure additional, finer scale structural compartments (Yaffe 
and Tanay, 2011). These biases include restriction enzyme cutting frequencies, GC 
content and the uniqueness of the DNA sequence. A high degree of Hi-C interaction 
frequencies are reported near restriction sites because of size selection, similarly a 
higher GC density near the restriction site can disrupt accurate mapping as can the 
uniqueness of fragment ends. There is no doubt that these biases can cause 
problems in interpretating of Hi-C pairwise interaction probabilities. In this 
investigation the focus is on eigenvectors summarising the two-compartment 
division between open and closed regions, rather than interaction probabilities 
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themselves. However, it was possible that the eigenvectors might be affected by 
these same biases. Consequently, an independent interaction probability map was 
examined which was produced for a similar lymphoblastoid cell line, using a 
modified Hi-C method designed to mitigate the biases inherent in previous data 
(Kalhor et al., 2012). When the original (Lieberman-Aiden et al., 2009) interaction 
data were substituted with the new, nominally unbiased data, very similar 
correlations with all other chromatin structure datasets were observed. It was 
concluded that any biases present in the Lieberman-Aiden et al (2009) dataset have 
little effect on a course grained, two compartment classification of the genome based 
upon eigenvectors, and therefore the original Lieberman-Aiden (2009) dataset was 
used. 

The final data chosen to include in this study (detailed in Table 3.1) included 
13 human and 23 mouse higher order chromatin datasets. 

3.2.1. CELL TYPES 
The datasets used in this investigation comprised of experimental data from 

a variety of different cell types. These include embryonic stem cells (ESC), epiblast 
derived stem cells (EpiSC), induced pluripotent stem cells (iPSC), neural progenitor 
cells (NPCs), fibroblasts and lymphoblasts, which are detailed briefly (Table 3.1). 
ESC cells are pluripotent stem cells that are able to differentiate when undergoing 
development. Replication timing in human and mouse and lamin association in 
mouse have been established across ESC cells. iPS cells are cells in which an adult 
differentiated cell has been reverted back to the pluripotent state, these have 
replication timing profiles across both human and mouse cells. Comparison of 
replication timing profiles between ESC and iPSC cells in mouse found that the 
replication timing profiles were virtually unchanged showing that replication-
timing profiles in ESCs could provide a unique signature for the pluripotent state 
(Hiratani et al., 2008). However, replication profiles have been shown to alter more 
dramatically between mouse ESCs and pluripotent EpiSCs, which are only a few 
days older, a difference that does not correlate with changes in expression levels 
(Hiratani et al., 2010). In both species, replication timing profiles in ESCs was shown 
to undergo alteration upon differentiation to NPCs and in lymphoblast cells, which 
are antigen specific cells within the lymphoid tissue. Up to 45% of the mouse 
genome has been shown to have significant changes in replication timing during 
development highlighting the cell type specific nature of replication timing 
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(Hiratani et al., 2010). When analysing the replication timing maps of human ESCs it 
was found that they more closely correlate with mouse EpiSCs than ESCs, 
suggesting human ESCs are stabilized in a more epiblast-like epigenetic 
conformation (Ryba et al., 2010). This indicates that replication timing maps are a 
reliable indicator of the chromatin environments of the cell.  

Due to the variability of chromatin structure across al the different cell types 
examined, robust normalisation was needed to ensure comparisons across all 
datasets was appropriate. This is explored further in section 3.3.2.   

Author Data Type Species Cell Type 
46C-ESC, D3-ESC, TT2-ESC, iPSC 
D3-EPL, D3-EMB3 
EpiSC5, EpiSC7  
D3-EBM6, 46-NPC, TT2-NPC, D3-
EMB9  
Mesoderm 
Endoderm 

Hiratani et 
al. 2009 

Replication Timing 
Log2(Early/Late) Mouse 

MEFF, MEFM, MyoBlast 
BG01-ESC, BG02-ESC, H7, iPSC4, 
iPSC5 
BGO2-NPC 

Ryba et al. 
2010 

Replication Timing 
Log2(Early/Late) Human 

Lymphoblast (C0202) 
ESC 
NPC 
Astrocytes (AC) 

Peric-
Hupkes et 
al. 2010 

Lamin Association 
Log2(Lamin 
Associating/Input) 

Mouse 

MEF 

Guelen et al. 
2008 

Lamin Association 
Log2(Lamin 
Associating/Input) 

Human Tig3 Human embryonic lung 
fibroblasts 

Lieberman-
Aiden et al. 
2009 

Eigenvector Intra-
chromosomal 
contact probability 

Human Lymphoblast (GM06990)  

Table 3.1 Details of the individual studies, cell lines and data types used. 

3.3. CONSTRUCTION OF A HIGHER ORDER CHROMATIN 

STRUCTURE DATASET 

3.3.1. SCALING UP PROBE-BASED DATA 
Higher order domain structures had previously been defined in replication 

timing and lamin association data (Hiratani et al., 2008, Peric-Hupkes et al., 2010). 
For the RT data, a segmentation algorithm was used to define co-ordinately early or 
late replicating regions in ESC and NPC cells. This method defined domains 
ranging from 200 Kb to 2 Mb in size (Hiratani et al, 2010). For the LA data, a sliding 
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window approach with a permutation strategy was used, which yielded similar 
sized Lamin Associating Domains (LADs) - 80 Kb to 30 Mb (Peric-Hupkes et al., 
2010). To investigate appropriate scale to examine higher order structure in this 
investigation, the distributions of replication timing domains and LADs were 
examined (Figure 3.5). 

 

Figure 3.5 Size distribution of previously defined replication and lamin association 

domains (LADs). Domain sizes range from 30 Kb to 30 Mb (domains up to 1 Mb 

shown). ESC and NPC LAD (Peric-Hupkes et al., 2010), ESC and NPC RT domains 

(Hiratani et al., 2010). 

It is clear from Figure 3.5 that very few domains are below 100 Kb in size 
with many being much larger. For this reason, a region size of 100 Kb was chosen as 
the scale up to examine the probe-based datasets. In addition to this, the Hi-C 
dataset was produced at 100 Kb resolution and could be integrated more easily at 
this resolution. Firstly, the probe-based data was converted to the latest human or 
mouse assembly coordinates (i.e. from mm8 to mm9 for mouse RT data) using the 
UCSC liftOver utility (See Chapter 2 Methodology). Custom perl scripts were then 
used to average the structural data values into consecutive non-overlapping 100 Kb 
regions. Regions represented by fewer than 10 probes were discarded as potentially 
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unreliable. This was done for each dataset and resulted in 13 human 
(GRCh37/hg19) and 23 mouse (NCBI37/mm9) comparable 100 Kb resolution 
datasets. 

 

Figure 3.6 Overview of methodology. Replication timing, lamin association and Hi-

C data from 36 datasets are converted to consistent genome assemblies 

(GRCh37/hg19 and NCBI37/mm9), averaged into 100 Kb regions and collated into 

16,820 orthologous regions represented in all structural datasets. 

The result was a set of 24,711 mouse and 28,786 human 100 Kb regions 
represented by higher order structural values from multiple datasets. To collate the 
human and mouse datasets together, firstly the coordinates for the human datasets 
were converted to the orthologous coordinates in the latest mouse assembly 
(GRCh37/hg19 to NCBI37/mm9) and vice versa for the mouse datasets using UCSC 
whole genome alignments (Kent et al., 2002). This involved pairing the USCS 
liftOver utility with Perl scripts to conservatively ensure correct mapping between 
species. Regions that did not correctly map reciprocally (i.e. forwards and 
backwards) between species, or that substantially changed in size (<80% or >120% 
of the original region) when re-mapped were discarded. A complete orthologous 
dataset was made in both species (i.e. one based upon human and one based upon 
mouse coordinates), with a 50% coordinate overlap used to define orthologous 
regions. The level of overlap does necessarily vary somewhat between orthologous 
regions, and it was a concern that this might later influence the measurement of 
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structural divergence. Specifically it was important to show that the regions later 
identified as structurally divergent were not simply those most poorly aligned (i.e. 
close to the 50% minimum overlap) between species at the sequence level. On closer 
examination, the distributions of overlaps (aligned nucleotides minus gaps) were 
found to be very similar between structurally divergent and non-divergent regions, 
whether viewed in terms of human (GRCh37/hg19) genome (divergent overlap 
mean = 0.80, median = 0.81; non-divergent overlap mean = 0.79, median = 0.80), or 
mouse (NCBI37/mm9) genome (divergent overlap mean = 0.73, median = 0.72; non-
divergent overlap mean = 0.72, median = 0.71) coordinates. It was concluded that 
the estimates of structural divergence are not a simple reflection of sequence 
divergence. 

The final orthologous dataset was defined as the 100 Kb regions that were 
successfully collated in both species and amounted to a total of 16,820 100kb 
orthologous regions, covering around 56% of the human genome (Figure 3.6). A 
total of 11,966 human and 7,891 mouse regions, lacking an orthologous mapping 
using this protocol, were designated putatively lineage specific regions. 

3.3.2. NORMALISATION ACROSS DATASETS 
The distributions of the datasets were examined to ensure direct 

comparisons and therefore global normalisation was appropriate. Notably, each 
individual dataset within the orthologous structural regions showed bimodal 
distributions (Figure 3.7). These values were found to reflect the relatively open and 
closed nuclear compartments of higher order chromatin, consistent with previous 
observations (Gilbert et al., 2004, Lieberman-Aiden et al., 2009, Hiratani et al., 2008, 
Hiratani et al., 2010, Peric-Hupkes et al., 2010). 
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Figure 3.7 Structural data distributions. The bimodal distributions of higher order 

structural data before normalisation indicating two distinct populations of higher 

order structure across the mammalian genome. Human and mouse RT data, LA 

data, and human Hi-C data are shown. 

The data from the Hi-C interaction method showed the weakest bimodality, 
with open and closed chromatin less distinctly segregated. Given the diversity of 
samples and methodologies across these datasets, strict normalisation must be 
imposed before directly comparing their features. As all the data show a degree of 
bimodality, global normalisation was deemed to be appropriate. Three different 
normalisation techniques were investigated to ensure the correct method for the 
data was chosen (Figure 3.8). 

1. Scaled normalisation, where each dataset is centred and scaled to have a 
mean of 0 and a standard deviation of 1. 

 

2. Minimum-maximum normalization, where each dataset is transformed so 
that each value in a dataset has its minimum value subtracted and is 
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divided by the range of values in the dataset. This gives uniform minimum 
and maximum values across all datasets of 0 and 1.  

 

3. Quantile normalisation is a common method for normalising microarray 
data. This method involves making two or more datasets statistically 
identical by having the same empirical distribution. This involves sorting 
the data values in order and then averaging across each ordered value. So 
the highest value in all cases becomes the mean of the highest values, the 
second highest value becomes the mean of the second highest values, etc…  

After examination of the performance of these normalisation techniques 
(Figure 3.8), quantile normalisation was chosen as the most appropriate 
normalisation technique and implemented across all structural datasets for all 100 
Kb regions. Transforming all the datasets so that they cover the same range of 
values, as in quantile normalisation, would best nullify any experimental biases 
present within the data and allow for more accurate comparisons across datasets. 
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 Figure 3.8 Normalisation techniques examined for appropriate scaling across all 

datasets. Boxplots represent the distributions of each dataset with A) No 

normalisation B) Scale normalisation, C) Min-max normalisation and D) Quantile 

normalisation. Different datasets are represented by different colours, mouse 

lamin interactions (green), human lamin interactions (light blue), human Hi-C 

(purple), mouse replication timing (purple) and human replication timing (red). 

3.4. CONSERVATION AND DIVERGENCE OF HIGHER ORDER 
CHROMATIN STRUCTURE 

3.4.1. WIDESPREAD CONSERVATION OF HIGHER ORDER CHROMATIN 
STRUCTURE 
We initially sought to answer two related questions. Firstly, how well do 

these diverse datasets agree quantitatively? And secondly, what fraction of the 
mammalian genome can confidently be identified as structurally divergent? 
Similarities were expected between RT, LA and Hi-C datasets as they reflect 
somewhat overlapping aspects of higher order chromatin structure, but the precise 
extent of the correlations between them was unknown. A Spearman’s Rho 
correlation matrix across all 36 available datasets showed that the degree of 
agreement is indeed strong and significant across all datasets (Rho: 0.38 to 0.98, p < 
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2.2 x 10-16), in spite of differing experimental procedures, platforms, cell types, and 
species. The highest agreement was observed between similar cell types from the 
same species, even across experimental platforms. For instance mouse RT data for a 
variety of ES and induced pluripotent stem cell (iPSC) types showed strong 
correlations (Rho: 0.7-0.9, p < 2.2 x 10-16) with lamin data from mouse ES cells, and 
together they form a coherent cluster in the correlation matrix (Figure 3.9). 

However, there are also interesting exceptions to this rule, such as the 
human embryonic fibroblast LA data. Although this dataset showed the weakest 
correlations to all other datasets, the best agreement was to the mouse fibroblast LA 
and RT data and not to other human cell types. The reason for this may lie in cell 
cycle variation: ES and iPS data may be strongly influenced by the fact that these 
cells are almost entirely in S phase, whereas fibroblasts divide slowly and are 
mainly in G0/G1. In any case it seemed that certain aspects of higher order 
structure in particular cell types, such as association with the nuclear periphery in 
fibroblasts, have been more strongly conserved than others during evolution.
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Figure 3.9 Global correlation matrix of higher order chromatin datasets. The 

heatmap and dendrogram show the relationships among 36 chromatin structure 

datasets (Spearmanʼs rho: 0.38 to 0.98, p < 2.2 x 10-16). Datasets are labelled 

according to the experimental platform and species of origin: light grey = mouse 

RT, light pink = human RT, dark grey = mouse LA, medium pink = human LA, dark 

pink= human Hi-C.
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Striking evidence of structural conservation across the mammalian genome 
was evident at the level of genome wide correlations (Figure 3.9). This suggests that 
many aspects of higher order chromatin structure have been conserved in 
embryonic cell types, over the ~80 million years since the divergence of rodents and 
primates. However, apparent divergence in higher order chromatin structure 
between species was also evident in specific regions. This was most simply seen as 
loci demonstrating a strong, consistent difference in mean normalised structure 
between the two species across all of the available datasets (see representative 
regions depicted in Figure 3.10. Although there are high correlations between many 
of these datasets, reflecting similar overall trends in structure, this can mask 
substantial variation between datasets at the level of the absolute normalised 
structural values for a given 100 Kb region (Figure 3.10). The critical question is 
therefore, which 100 Kb regions vary between species to an unexpected degree, 
given the extent of variation seen among all datasets? This question is addressed 
below using a novel divergence metric based upon permutations of the original 
data. 
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Figure 3.10 Specific human and mouse regions show significant divergence in 

higher-order chromatin structure. Human (pink) and mouse (grey) higher order 

chromatin structure across all cell types assayed, shown for two regions of 

the human genome: chromosome 11p15.2-15.4 (1.2-15 Mb) with the location of 

an OR gene cluster indicated by an asterisk (A); chromosome 7p14.3-15.3 (24-

32 Mb) with the location of the HOXA gene cluster indicated by an asterisk (B). 

Consecutive, orthologous 100kb regions are positioned on the y-axis with 

heatmap colours representing relatively open (blue) and closed (red) 

chromatin structures. Regions displaying significantly divergent chromatin 

structure are highlighted in yellow. 
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3.4.2. DEVELOPING THE DIVERGENCE METRIC 
Genomic regions were sought that showed strong and consistent structural 

divergence between species, across all cell types. Several techniques for identifying 
divergent regions were investigated: 

1. Means difference 

Simply subtracting the mean of the mouse chromatin values from the human 
mean would give a means difference distribution with the most divergent structural 
regions occupying the extreme tails of the distribution. The most consistent or non-
divergent regions would occupy the centre of the distribution with means difference 
closest to 0. From this distribution the divergent regions could be selected using a 
quantile cut offs of 0.95 and 0.05, thereby choosing 10% of the data that is the most 
divergent. One caveat of this method is the fact that averaging the data in this way 
will be insensitive to subtle differences in chromatin structure across datasets. On 
the other hand an extreme value in one particular dataset may disproportionately 
influence the mean, and therefore also influence the means difference.  

2. T-tests 

The t statistic was also considered as a simple metric whereby independent 
t-tests between human and mouse cell types could be carried out on each 100 Kb 
region with divergent regions defined as those with the highest magnitude of t. In 
this method, t-tests were carried out on the normalised data for all human versus all 
mouse datasets giving a t-test statistic for each 100 Kb region. The values of t 
obtained showed an approximately normal distribution around a median of 0.026 
(Figure 3.11). This leads to a bipolar classification of divergence at either end of the 
distribution, so either the human data is relatively open in structure and closed in 
mouse or the human data is relatively closed and the mouse is open. To define the 
regions where there is a significant structural difference between the species a 
threshold value of t was needed. One simple strategy is to use the interquartile 
range (IQR), the difference between the upper Q1 and lower Q3 quartiles within a 
dataset, to find outlier values. Outliers are classically defined as observations that 
fall 1.5(IQR) below Q1 or 1.5(IQR) above Q3. Similarly, extreme outliers might 
indicate more extreme structural divergence where values of t < Q1-3(IQR), or t > 
Q3+3(IQR). The main drawback to using such strategies to define divergent regions 
was the lack of any estimate of statistical significance for the divergent regions 
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identified. Ideally one would want a nonparametric estimate of significance and an 
indication of the expected false discovery rate (FDR). 

 

Figure 3.11 Distribution of t-test statistics of human and mouse data from each 

100 Kb normalised region. The red bars show outlier, putatively divergent, regions 

at the ends of the distribution with t values greater than or less than threshold 

values based upon IQR. 

3. Statistical analysis of microarrays (SAM) 

The final method was chosen to combine t-tests and permutation testing by 
combining both together in a non-parametric test from the SAM package (Smyth, 
2004). This uses both the strengths of the t test as a divergence metric and 
permutation testing as a method for defining divergence. This method was adopted 
to define divergent regions across the orthologous structural dataset and is detailed 
further below. 

3.4.3. A PERMUTATION DERIVED DIVERGENCE METRIC 
The approaches used in the SAM package (R package samr) (Tibshirani et 

al., 2011) were originally designed to pick out genes where the expression level is 
significantly different between two groups of samples. It is particularly useful when 
there is an expectation that some genes will have significantly different mean 
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expression levels between different sets of samples. For example, if looking at 
differential gene expression between tissue types or between different species. 
However it was also designed to be flexible enough to be applied to other, 
comparable datasets (Tusher et al., 2001).  

The SAM test used here is analogous to a two class unpaired t-test with 
permutation derived p-values. In the two-class design, the chromatin structural 
values are separated into two groups by species (human and mouse) and therefore 
one group is considered to be “positive significant” if their mean chromatin values 
are significantly higher than the other. They are considered “negative significant” 
their mean chromatin values are significantly lower than the other. The normalised 
data for each 100 Kb region were permuted 100,000 times, and a test statistic d is 
computed for both the original and the permuted data for each region. The value d 
is analogous to the t-statistic in a t-test, in that it is calculated from the difference 
among mean chromatin structural values, scaled by a measure of variance in the 
data. SAM in R generates a plot of the observed versus expected (based on the 
permuted data) d-values (Figure 3.12). From this plot, the parameters of SAM can be 
fine-tuned to set the cut-off for significance by altering the delta value, which 
represents the vertical distance of the line on the graph where observed equals 
expected (Figure 3.12).  
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Figure 3.12 Quantifying human-mouse divergence in higher-order chromatin 

structure. The Q-Q plot from the two class unpaired SAM tests for each 

orthologous 100 Kb region. Significantly divergent regions (highlighted in green 

and red) generate unexpectedly extreme observed test scores relative to the 

expected (permutation based) scores. 

The False Discovery Rate (FDR) in this instance is defined as the proportion 
of regions likely to have been identified by chance as being significant which is 
calculated as the median number of false positive divergent regions expected (given 
the permuted datasets), divided by the total number of divergent regions called. As 
SAM is interactive, it allows for the distribution of the test statistic, d, to be checked 
and then the thresholds set for significance (through the tuning parameter delta). 
The FDR threshold was set to be relatively low (FDR = 2 x 10-4) to ensure that no 
false positives expected within the 1719 divergent regions found. The results are 
necessarily bipolar with positive and negative divergent regions called to indicate 
human open/mouse closed or human closed/mouse open divergence respectively. 
Relatively static, non-divergent regions were classed as those with p values that did 
not pass the FDR threshold. The ability to dynamically alter the input parameters 
based feedback from the plots and FDR, even before completing the analysis makes 
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the resulting divergent regions defined more robust. 

3.5. STRUCTURAL DIVERGENCE BETWEEN SPECIES AND CELL 
TYPES  

It was important to establish how much of the variation in divergent regions 
is due to differences between cell types within the two species analysed. To do this, 
a smaller dataset was constructed using the large volume of normalised RT data, 
available across both species for the ESC and NPC cell types. This allowed for a 
rigorous comparison of mouse and human structures across a smaller platform. It 
also enabled the estimation of the relative degree of divergence in structure between 
species compared to that seen between cell types within a particular species.  

For this analysis, means difference was used as a divergence metric due to 
the reduced number of cell types used in this RT dataset. The structural divergence 
between NPC and ESC cell types were assessed within each species, and also 
species divergence between human and mouse datasets within each cell type 
(Figure 3.13). The resulting distributions of divergence showed characteristic 
patterns. The cell type differences within human and mouse RT data showed 
narrower and more peaked distributions (kurtosis 4.02, 5.20), whereas species 
differences within a single cell type displayed broader distributions (kurtosis 3.75, 
3.69) with inflated tails of divergent regions. In other words, in data from the same 
experimental platform, concerning the same orthologous regions, differences 
between species are skewed to relatively high values. These statistically significant 
(Kolmogorov-Smirnov test, p < 1.05 x 10-07) differences in distributions strongly 
suggest that divergence in higher order chromatin structure between these species 
exceeds the divergence seen between cell types.  
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Figure 3.13 The distributions of means differences for replication timing between 

cell types and species. Red – cell type differences, mouse. Green – cell type 

differences, human. Navy, species differences, ESCs. Purple – species 

differences, NPCs. 

The genic content of the regions implicated in differences between species 
and cell types showed similarities to gene enrichments in the divergent regions of 
the full dataset and this is discussed in Chapter 5. 
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4. Chapter 4: A spectrum of 

divergence in chromatin structure 

Chapter 4 

 

Results: A spectrum of divergence in 

chromatin structure 

 

Topics included in this section: 

o The chromosomal distribution of all 1719 structurally divergent 
regions. 

o The discovery of spatial clustering of divergent 100 Kb regions into 
large divergent domains. 

o The discovery that large divergent domains are unevenly distributed 
across chromosomes and are enriched at telomeres. 

o Comparison of large divergent domains to previously established 
topological domains (Dixon et al., 2012). 

o The demonstration that divergent regions can be clustered by their 
modes and patterns of divergence across all cell types. 
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4.1. INTRODUCTION 

In this chapter, the distribution of structurally divergent regions is examined 
across chromosomes. We also examine their propensity to cluster spatially into large 
domains and the clustering of divergent regions by patterns of chromatin values. It 
is known that patterns of domain level chromatin structure can differ across 
chromosomes within a species. Human chromosome 19 is known to be significantly 
more open and accessible than other chromosomes corresponding to higher levels 
of GC composition and gene density (Castresana, 2002). Conversely, chromosome 
18 is known to be relatively gene poor, more peripherally located and enriched in 
closed chromatin(Croft et al., 1999). It could be expected, therefore, that structural 
divergence will not be randomly distributed and may be at a higher density on 
particular chromosomes.  

Chromatin structure has increasingly been shown to be organised into large 
domains (Ryba et al., 2010, Hiratani et al., 2010, Dixon et al., 2012). So it may be 
expected that some of the structurally divergent 100 Kb regions might group 
together spatially to form large divergent domains between human and mouse. The 
extent and distribution of chromatin structure divergence is examined for the first 
time, and we are also able to identify regions showing similar patterns of 
divergence.  

4.2. DISTRIBUTION OF STRUCTURAL DIVERGENCE 

The distribution of all structurally divergent regions, defined by SAM, was 
examined across all chromosomes. The expected numbers of divergent regions, 
given the proportion of orthologous 100 Kb regions on each chromosome, were 
compared with those observed using chi-squared tests, and chromosomes of interest 
were identified as those generating standardized residuals > 1.96 (Table 4.1, Table 
4.3).   
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Chr 
Chromosome 
Length 

Orthologous 
Coverage 

Ratio 
Covered Observed Expected 

Chi-
Square 
Residuals 

1 2.49E+08 1.33E+08 0.53 91 136.21 -2.12 
2 2.43E+08 1.54E+08 0.63 154 157.38 -0.14 
3 1.98E+08 1.32E+08 0.67 159 134.88 0.99 
4 1.91E+08 1.17E+08 0.62 118 120.15 -0.10 
5 1.81E+08 1.19E+08 0.66 179 122.10 2.32 
6 1.71E+08 1.08E+08 0.63 112 110.85 0.05 
7 1.59E+08 9.71E+07 0.61 135 99.29 1.65 
8 1.46E+08 9.07E+07 0.62 71 92.75 -1.20 
9 1.41E+08 7.11E+07 0.5 61 72.71 -0.72 

10 1.36E+08 8.60E+07 0.63 129 87.94 1.97 
11 1.35E+08 8.11E+07 0.6 77 82.93 -0.33 
12 1.34E+08 7.38E+07 0.55 55 75.47 -1.27 
13 1.15E+08 6.16E+07 0.54 44 62.99 -1.30 
14 1.07E+08 6.00E+07 0.56 59 61.36 -0.15 
15 1.03E+08 5.12E+07 0.5 45 52.36 -0.53 
16 9.03E+07 5.08E+07 0.56 53 51.95 0.07 
17 8.12E+07 5.03E+07 0.62 40 51.44 -0.85 
18 7.80E+07 5.14E+07 0.66 67 52.56 0.93 
19 5.91E+07 1.81E+07 0.31 20 18.51 0.17 
20 6.30E+07 3.77E+07 0.6 39 38.55 0.04 
21 4.81E+07 1.90E+07 0.39 5 19.43 -2.06 
22 5.12E+07 1.78E+07 0.35 7 18.20 -1.58 

Table 4.1 Significant enrichment or depletion of divergent higher order chromatin 

across human chromosomes. Significant standardised chi-squared residuals over 

1.96 in magnitude are highlighted in red (depletion) or green (enrichment) In the 

human genome. 
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Chr 
Chromosome 
Length 

Orthologous 
Coverage 

Ratio 
Covered Observed Expected 

Chi-Square 
Residuals 

1 1.95E+08 1.30E+08 0.67 116 133.24 -0.77 
2 1.82E+08 1.32E+08 0.72 144 134.78 0.39 
3 1.60E+08 1.07E+08 0.67 92 109.01 -0.85 
4 1.57E+08 1.04E+08 0.67 71 106.66 -1.89 
5 1.52E+08 1.01E+08 0.67 106 103.69 0.11 
6 1.50E+08 1.01E+08 0.68 139 103.79 1.60 
7 1.45E+08 7.98E+07 0.55 104 81.60 1.16 
8 1.29E+08 9.07E+07 0.70 85 92.75 -0.41 
9 1.25E+08 8.71E+07 0.70 71 89.07 -1.01 

10 1.31E+08 9.28E+07 0.71 89 94.90 -0.31 
11 1.22E+08 9.14E+07 0.75 82 93.46 -0.61 
12 1.20E+08 8.29E+07 0.69 86 84.77 0.07 
13 1.20E+08 7.60E+07 0.63 125 77.72 2.35 
14 1.25E+08 8.65E+07 0.69 85 88.45 -0.19 
15 1.04E+08 7.42E+07 0.71 52 75.88 -1.49 
16 9.82E+07 7.14E+07 0.73 60 73.01 -0.80 
17 9.50E+07 5.80E+07 0.61 72 59.31 0.78 
18 9.07E+07 7.00E+07 0.77 80 71.58 0.48 
19 6.14E+07 4.53E+07 0.74 61 46.32 1.00 

Table 4.2 Significant enrichment or depletion of divergent higher order chromatin 

across mouse chromosomes. Significant standardised chi-squared residuals over 

1.96 in magnitude are highlighted in red (depletion) or green (enrichment) In the 

mouse genome. 

Divergence was far from uniform over the genome, with several human 
chromosomes showing higher than expected densities of divergent regions (Figure 
4.1). In both species, the distribution observed between chromosomes was 
significantly different to the expectation given the number of 100 Kb regions per 
chromosome (Chi-squared test in human p = 4.34 x 10-06, in mouse p = 1.19 x 10-03). 
For instance, human chromosomes 5 and 10 were found to have a 50% excess of 
divergent regions, while chromosomes 21 and 22 were found to have a greater than 
60% depletion (Figure 4.1,Table 4.1). In the mouse genome, only chromosome 13 
was found to have a significant enrichment of divergent regions, over 60% more 
than expected (Figure 4.1, Table 4.2). This raised the question: are divergent regions 
also clustered within chromosomes? That is, does the distribution of divergent 
regions within chromosomes reflect larger tracts of divergent chromatin? 
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Figure 4.1 Frequency of divergent 100 Kb regions across all human (green) and 

mouse (red) chromosomes. The bar graph represents the observed (darker colour) 

and expected (lighter colour) number of divergent regions per chromosome.  

4.3. CLUSTERING BY SPATIAL PROXIMITY (LARGE DOMAINS) 

From a cursory examination of the data from the regions depicted in Figure 
3.10, it appeared that a number of divergent 100 Kb regions were clustered together 
in the genome at particular loci. The degree of spatial clustering among the 
divergent regions was formally investigated by measuring the length distribution of 
consecutive runs of divergent 100 Kb regions observed, relative to the distribution 
expected using a permutation strategy. All consecutive runs of two or more 
significantly divergent regions were first identified across the orthologous human 
genome using Perl scripts. These clusters were required to maintain the polarity of 
divergence (i.e. all regions involved must be either human open/mouse closed or 
vice versa). The loci of the orthologous divergent regions were then permuted 
within chromosomes 10,000 times, and the length of any consecutive runs within 
each permuted genome was noted. The frequency with which a run of a particular 
length was seen in the permuted datasets was taken as an approximate p value for 
runs of that length in the observed dataset (Table 4.3). This strategy is likely to be 
conservative in detecting large domains of divergent chromatin as it does not allow 
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for gaps, (e.g. intervening regions that may have marginally failed to reach 
significance in the test for divergence above), within runs of divergent regions. 

Size (Regions) Observed Expected P-Value 
1 303 1368.953 1 
2 132 146.1667 0.9215 
3 83 16.4976 0.0001 
4 56 1.927 0.0001 
5 35 0.2443 0.0001 
6 29 0.0269 0.0001 
7 13 0.0045 0.0001 
8 11 0.0006 0.0001 
9 9 0 0.0001 
10 1 0 0.0001 
11 1 0 0.0001 
12 3 0 0.0001 
13 0 0 0.0001 
14 1 0 0.0001 

Table 4.3 Spatial clustering of large divergent regions. The number of consecutive 

divergent regions indicates the size of the large domain. The expected distribution 

is the mean frequency of large regions in the permuted data. The frequency with 

which a domain of particular size was seen in the permuted datasets was taken as 

an approximate p value. 

The clustering observed was found to be significant (p < 1 x 10-4). 159 
unexpectedly large domains were identified in the human genome (160 in mouse) 
that were at least 400 Kb in size. The mean size was 800 Kb, (Appendix 10.4). The 
same large orthologous domains were detected in human and mouse genomes 
when the 100 Kb divergent regions in each genome were clustered independently, 
and again using the same chi-squared approach as above, large domains were not 
evenly distributed across chromosomes. For example human chromosomes 3 and 5 
had around twice the density expected, but in contrast chromosomes 1 and 9 had 
around half the density expected (Figure 4.2).  
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Figure 4.2 Frequency of divergent 100 Kb regions within the 159 large spatial 

divergent domains across all human (green) and mouse (red) chromosomes. The 

bar graph represents the observed (darker colour) and expected (lighter colour) 

number of divergent regions per chromosome.  

Although the mean size of the large domains was 800 Kb, some were much 
larger. The three largest domains of divergent chromatin were between 2.1 and 2.7 
Mb in size and were found to occupy subtelomeric regions of human chromosomes 
2, 6 and 9 (Figure 4.3). However, in each case the orthologous mouse domains were 
not proximal to the telomeres, occupying positions long distances (80-100 Mb) 
away. This appeared to reflect the distribution of chromatin divergence across the 
human genome in general, with unexpected excesses of divergence towards the 
ends of some human chromosomes (Figure 4.4).  
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Figure 4.3 The three largest divergent domains on human chromosomes. The line 

plot shows mean, normalised human (black) and mouse (red) higher order 

chromatin structure across human chromosomes. Unexpectedly large divergent 

areas are highlighted in grey. 

4.4. LARGE DIVERGENT DOMAINS ARE ENRICHED AT TELOMERES 

To investigate this further, subtelomeric regions were designated as genomic 
areas within 5 Mb of the first and final base pairs of the chromosome assemblies, 
and within the final base pair of the acrocentric mouse assemblies. To robustly 
calculate enrichment or depletion of large structurally divergent domains with 
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subtelomeric areas, a circular permutation strategy was used. This involved 
revolving the positions of the large divergent domains within each circularised 
chromosome by a random number for 10,000 permutations. Regions assigned a new 
position greater than the final base pair of the chromosome with this method are re-
inserted at the start of the chromosome (plus the number of bases by which they 
exceeded the final base pair). For the purposes of the permutations, the 
chromosomes are regarded as circular and maintain the degree of clustering seen 
among the observed divergent regions. The number of permuted datasets, n, 
possessing a number of divergent regions within subtelomeric (or pericentromeric) 
regions greater than or equal to the observed number were noted, and used to 
calculate approximate p-values (n/10,000) for enrichment. The significance of 
depletion was calculated analogously, according to the number of permuted 
datasets possessing the same or fewer divergent regions within the areas of interest.  
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  Human Mouse 
Chr Observed Expected P-value Observed Expected P-value 

1 7 1.98 3.00E-03 1 4.48 6.10E-02 
2 10 3.32 1.00E-03 1 3.50 1.13E-01 
3 13 9.74 1.58E-01 4 2.26 1.69E-01 
4 6 6.77 4.61E-01 4 1.90 1.11E-01 
5 2 7.55 1.20E-02 4 3.50 4.72E-01 
6 9 4.55 2.70E-02 1 3.08 1.65E-01 
7 11 8.33 1.88E-01 24 11.82 1.00E-03 
8 0 3.75 1.50E-02 1 3.09 1.58E-01 
9 11 5.31 1.20E-02 1 1.75 4.61E-01 

10 14 10.93 1.79E-01 0 2.22 1.08E-01 
11 8 6.33 2.73E-01 8 5.30 1.51E-01 
12 3 3.53 5.24E-01 4 2.89 3.07E-01 
13 6 0.86 0.00E+00 0 5.68 2.00E-03 
14 1 2.11 3.56E-01 1 4.48 5.40E-02 
15 4 3.10 3.80E-01 1 2.36 3.00E-01 
16 5 5.85 4.56E-01 1 2.64 2.26E-01 
17 7 4.83 2.10E-01 2 4.15 1.91E-01 
18 25 7.82 0.00E+00 2 4.38 1.57E-01 
19 1 1.97 3.74E-01 11 5.38 1.10E-02 
20 6 6.19 5.69E-01    
21 1 0.59 4.71E-01       
22 2 1.14 3.15E-01       

 

Table 4.4 Distribution of divergent regions across telomeres. Numbers of 

divergent regions within human (left) and mouse (right) telomeres are indicated in 

the observed column. The expected distribution is the mean frequency of 

telomeric divergent regions in the permuted data. The frequency with which a 

domain of particular size was seen in the permuted datasets was taken as an 

approximate p value. 

The density of orthologous 100 Kb regions within subtelomeric regions was 
not significantly different from the genome as a whole, either for human (5 Mb 
subtelomeric region mean density = 23.70; mean density across all genomic 5 Mb 
bins = 28.10) or mouse (5 Mb subtelomeric region mean density = 34.60; mean 
density across all genomic 5 Mb bins = 34.20). The excess of divergent regions was 
most pronounced within the subtelomeric regions of four human chromosomes (1, 
2, 13, 18), and was also seen overall for the human genome (p = 0.016) (Table 4.4, 
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Figure 4.4). In contrast, most mouse subtelomeric regions showed a relative 
depletion of divergence, with none showing significant enrichment, and non-
significant depletion over the mouse genome in general. Pericentromeric regions 
were also examined, similarly these were designated as regions falling within 5 Mb 
of the centromeres in human and for the mouse, which has telocentric 
chromosomes, regions falling within 5 Mb of just the p arm of each chromosome. 
No significant enrichment or depletion was found overall for pericentromeric 
regions in either species. This may be due to well-characterised differences in the 
chromatin structures found at human and mouse telomeres. Subtelomeric regions 
are known to be amongst the most rapidly evolving DNA sequences in the genome 
and have been subject to extensive divergence recently in the primate lineage 
(Linardopoulou et al., 2005). The current data suggest that the higher order 
chromatin structures at some primate subtelomeric regions have also been subject to 
dramatic change. 

 

Figure 4.4 Chromosomal distribution of large divergent domains. The Ideogram 

shows the distribution of significantly large structurally divergent domains (red) 

across all human chromosomes. 

The size distribution of the large divergent domains appeared similar to the 
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ES cell chromatin-mediated regulatory topological domains recently reported in the 
mouse and human genomes (Dixon et al., 2012). The topological domains had a 
median size of 880 Kb, similar to the 800 Kb mean size of the large divergent 
domains which may suggest that the domains of divergent chromatin may 
represent divergent regulatory domains. To investigate this further the similarity in 
domain boundaries between these regulatory topological domains and the 
divergence clusters was examined using a circular permutation approach. The 
median distance between divergent cluster boundaries and the nearest regulatory 
domain boundaries was compared to the median distance seen in 10,000 datasets 
that had undergone circular permutation. The proportion of datasets generating a 
median distance less than or equal to the observed median distance was taken as an 
approximate p-value. The relatively large sizes of both the topological and large 
divergent domains meant that the distances between all reported domain 
boundaries are estimates within tens or hundreds of kilobases. In the human 
genome, the median distance between the boundaries of divergence clusters and the 
nearest ES cell regulatory domain boundaries was 207,852 bp, which was somewhat 
less, though not significantly different (p = 0.054) from the expected median 
distance given 10,000 permuted datasets (235,581 bp). Similarly, in the mouse 
genome, the equivalent median distance was 260,000 bp, which is not significantly 
different (p = 0.087) from the expected distance given 10,000 permuted datasets 
(290,095 bp). Thus overall there is no strong association between divergent regions 
and these regulatory domains, which is consistent with most structural divergence 
being selectively neutral.  

Particular genomic locations are known to change their replication timing 
status upon differentiation from ESC to NPC cells (Hiratani et al., 2010). These 
changes involve a dynamic switch in replication timing either from late in the cell 
cycle to early (LtoE) or early in the cell cycle to late (EtoL) upon differentiation. 
These changes are also coincident with repositioning of loci toward (in EtoL) or 
away (in LtoE) from the nuclear periphery. This suggests that significant epigenetic 
changes can occur to facilitate cell-type-specificity of genome organization and may 
be a prerequisite for large-scale transcription changes upon lineage commitment. 
The correspondence between the divergent domains and regions known to change 
replication timing during cellular differentiation was examined. Of the 1719 
divergent regions, 60 overlapped these structurally dynamic regions. This 
represented a significant depletion compared with an expected number generated 
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derived from mean overlaps in 10,000 permutated datasets of 99.73 which 
represents a significant depletion (p < 0.013). Therefore, regions structurally 
divergent between species are not enriched for regions that alter their replication 
timing status upon differentiation, which have been shown to have conserved size 
and function between species (Ryba et al., 2010). 

4.5. CLUSTERING BY DIVERGENCE TYPE 

In addition to spatially grouped clusters of divergence, evidence was sought 
for subclasses of structurally divergent genomic regions showing unexpectedly 
similar patterns of divergence across all cell types. This was approached by 
hierarchically clustering all 1149 divergent regions according to their normalised 
chromatin structure values across all datasets using with 1-Rho as a distance metric. 
The statistical significance of clusters was assessed using multiscale bootstrap 
resampling, which provides a better approximation to an unbiased p-value than 
normal bootstrap resampling (Suzuki and Shimodaira, 2006). In total 22 significant 
clusters of regions, showing unexpectedly similar patterns of divergence were 
identified. These clusters all involved regions situated on multiple chromosomes, 
but despite this they often showed strikingly similar patterns of divergence across 
the structural data as well as stark separations of mouse and human structures. Of 
these 22 clusters, 4 contain genes that show significant enrichments of functional 
annotation (Figure 4.5), this is further investigated in Chapter 5.  

From the results so far, the picture that emerges is of widespread 
conservation of higher order chromatin structure across the mammalian genome 
with a small proportion of orthologous regions showing strong evidence of 
divergence consistently across cell types. These regions show greater divergence 
between species than between cell types and are non-randomly distributed across 
the genome. They cluster together in larger stretches of divergent chromatin and 
can also be hierarchically clustered by patterns of divergence. 
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Figure 4.5 Hierarchical clustering indicates chromatin divergence subclasses. The 

heatmap represents open (blue) and closed (red) higher order chromatin for each 

100 Kb divergent region (x-axis) over all datasets (y-axis). Datasets are labelled 

according to the experimental platform of origin: light grey = mouse RT, light pink 

= human RT, dark grey = mouse LA, medium pink = human LA, dark pink= human 

Hi-C. Divergent loci are clustered by structural similarity as reflected in the 

dendrogram and significant (unexpectedly similar) clusters are highlighted in red.  
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5. Chapter 5: Divergent higher order 

chromatin and gene function 

Chapter 5 

Results: Divergent higher order chromatin 

and gene function 

Topics included in this section: 

o Examination of protein coding gene densities across all 100 Kb 
orthologous structural regions and structurally divergent 
regions. 

o Examination of the densities of different RNA gene classes across 
all 100 Kb orthologous structural regions and structurally 
divergent regions. 

o Investigation of functional enrichments within different groups 
of divergent and non-divergent higher order chromatin 
structure. These include: 

o All 1719 divergent higher order chromatin regions. 

o Regions identified as divergent between species and cell type 
within replication timing data. 

o Large divergent region clusters. 

o Divergent regions clustered by similarity of divergence type. 

o Exploration of the correspondence between structural divergence 
and divergently expressed orthologous human and mouse gene 
pairs.  
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5.1. INTRODUCTION 

In this chapter, the genic content and functional enrichments of regions with 
known higher order chromatin structure, including structurally divergent regions, 
are examined. From previous studies, it has been found that the density of genes 
across the genome is non-randomly distributed with strong correlations observed to 
higher order chromatin structure (Gilbert et al, 2004). A higher density of protein 
coding genes is observed in relatively open, active, early replicating (Craig and 
Bickmore, 1994), chromatin environments, possibly providing increased 
accessibility to transcription factors (Gilbert et al, 2004). This analysis is replicated in 
the current mammalian orthologous chromatin dataset with the intention of 
providing new insights into gene density across chromatin structure and also within 
the divergent chromatin regions. Enrichments of functional annotation of genes 
present in the different classes of divergent and non-divergent chromatin structure 
are also examined. To complement the gene density and functional enrichment 
analysis, relative densities of different RNA classes in non-divergent and divergent 
regions are also explored, to shed light on the types of genes that have evolved in 
structurally variable regions and potential mechanisms of structural regulation. 
Finally, we examine the expression of orthologous gene pairs using previously 
published data within the orthologous regions of known structure, to study the 
correspondence between higher order structural divergence and gene expression 
divergence. 

5.2. GENIC CONTENT OF STRUCTURAL REGIONS 

To investigate the relationships between genic content and non-divergent 
and divergent higher order chromatin structure, gene densities from Ensembl were 
compared in both species. Confirming previous results, gene density per grouped 
class of chromatin structure increased with structural openness (Gilbert et al., 2004) 
(Figure 5.1). In both species, the difference in gene density between both sets of 
regions was non-significant (Mann-Whitney test in human p = 0.17, in mouse p = 
0.52). Human gene densities in non-divergent regions (2.34 per 100 Kb on average) 
were not significantly different from either human open divergent regions (2.09 per 
100 Kb; Mann-Whitney p = 0.45), or human closed divergent regions (2.43 per 100 
Kb; Mann-Whitney p = 0.72). Similarly, mouse gene densities in non-divergent 
regions (1.77 per 100 Kb) were not significantly different from either mouse open 
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divergent regions (1.91 per 100 Kb; Mann-Whitney p = 0.97), or mouse closed 
divergent regions (1.33 per 100 Kb; Mann-Whitney p = 0.51) (Figure 5.1).  

 

Figure 5.1 Gene densities across categorised bins of chromatin structure. 

Increasing values of chromatin structure across the x-axis indicate increased 

accessibility of chromatin structure. Gene densities are shown in non-divergent 

chromatin (grey), open divergent (blue) and closed divergent (red). 

To investigate the genic relationship to higher order structure further, 
specific RNA gene classes (rRNA, snoRNA, snRNA, miRNA, lincRNA), also 
obtained from Ensembl, were analysed in the same way. Of all RNA classes, only 
lincRNAs showed significant differences between divergent and non-divergent 100 
Kb regions. There were higher densities of lincRNA genes in both human (divergent 
mean density: 0.31 genes/Mb; non-divergent mean density: 0.20 genes/Mb; 
Wilcoxon p = 1.48 x 10-8) and mouse (divergent mean density: 0.12; non-divergent 
mean density: 0.09; Mann-Whitney p = 3.68 x 10-4) divergent (human closed/mouse 
open) regions. This particular class of RNA molecules is thought to regulate 
embryonic stem cell differentiation via the assembly of chromatin complexes and 
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the establishment of activating or repressive domains (Yaffe et al., 2010). The current 
data tentatively suggest they may also have played roles in chromatin divergence. 
The main caveat to this suggestion is the so far lack of complete knowledge of 
lincRNAs in either genome. 

 

Figure 5.2 Densities (genes/Mb) of different types of RNA classes in non-divergent 

(grey), closed divergent (red) and open divergent (blue) regions in the human (top) 

and mouse (bottom) genome. 

Functional enrichment was not carried out for RNA genes, as most RNA 
genes are poorly functionally annotated. 

5.3. FUNCTIONAL ENRICHMENTS ACROSS DIVERGENT CHROMATIN 

5.3.1. ALL DIVERGENT REGIONS 
The 907 divergent human open/mouse closed 100 Kb regions contained 1142 

human genes and 757 mouse genes, and both showed significant enrichments for 
multiple terms associated with olfactory receptors (ORs), implicating particular loci 
(Table 5.1). These loci can often be seen as enrichments for genes within particular 
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gene clusters. The mouse genes involved were disproportionately those located in 
particular OR gene clusters on chromosome 7E3 and 6B1-B2.1, while the human 
genes were clustered at the orthologous locations at 11p15.4 and 7q35 respectively. 
The 7E3 region is late replicating across all mouse cell types, but the orthologous 
human OR cluster at 11p15.4 is within relatively early replicated chromatin, and at 
least three of the human OR genes present are pseudogenes. This is consistent with 
the active maintenance of the repressive, late replicating chromatin state necessary 
for OR function (McClintock, 2010) in the mouse lineage, contrasting with OR 
pseudogenisation and loss of selective constraint on chromatin structure in the 
human lineage. Notably, recent work indicates a similar unusual primary chromatin 
structure (involving H3K9me3 and H4K20me3) at OR containing loci and KRAB-
ZNF containing loci in the mouse genome (Magklara et al., 2011). This raised the 
possibility of an association between divergent higher order chromatin structures 
and particular classes of histone modifications. It also suggests that the repressive, 
relatively closed higher order chromatin structures consistently seen at this region 
of the mouse genome, but not evident in human cells, could have evolved as part of 
the regulatory landscape associated with OR gene cluster evolution in rodents. 
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Species Divergence Term Description Gene  FDR 

CYTOBAND 11p15.4 15 2.17E-07 

GO:0007606 Sensory perception of chemical stimulus 21 4.15E-06 

GO:0050877 Neurological system process 41 2.36E-04 

CYTOBAND 10p13 8 4.44E-04 

Human Human open/ 
Mouse closed 

GO:0007186 G-protein coupled receptor signalling p-way 36 6.34E-04 

IPR001827 Homeobox protein, antennapedia type 10 7.33E-04 

CYTOBAND 18q23 6 7.52E-03 

GO:0003002 Regionalization 21 1.50E-02 

CYTOBAND 6q27 6 4.15E-02 

Human 
Human 
closed/ 
Mouse open 

CYTOBAND 2q37.3 9 4.38E-02 

GO:0007606 Sensory perception of chemical stimulus 39 3.58E-15 

GO:0007608 Sensory perception of smell 34 9.10E-13 

IPR000725 Olfactory receptor 33 1.15E-12 

GO:0004984 Olfactory receptor activity 33 3.45E-12 

Mouse Human open/ 
Mouse closed 

IPR017452 GPCR, rhodopsin-like superfamily 47 5.58E-12 

GO:0003002 Regionalization 32 3.39E-06 

GO:0009952 Anterior/posterior pattern formation 27 3.97E-06 

GO:0007389 Pattern specification process 36 9.09E-06 

CYTOBAND 2 45.0 cM 9 1.89E-05 

Mouse 
Human 
closed/Mouse 
open 

CYTOBAND 19 D2 12 4.84E-05 

Table 5.1 The top five enriched human and mouse annotation terms for protein 

coding genes within the 1719 divergent regions of higher order chromatin. Full list 

in Appendix 10.2. 

Other enriched terms included those related to a protocadherin (Pcdh) gene 
cluster present at 5q31.3 in the human genome, and to the orthologous mouse Pcdh 
cluster on mouse chromosome 18qB3 (See Appendix 10.2). Recent work has shown 
this region adopts distinct chromatin environments in different mouse neuronal 
cells to coordinate Pcdh gene expression and thereby plays critical roles in 
establishing neuronal diversity and connectivity during development (Hirayama et 
al., 2012). A third cluster of genes coincides with this class of divergent regions on 
mouse chromosome 8D3 (and human 16q21) and is enriched for genes encoding 
MARVEL, a transmembrane domain involved in membrane apposition (See 
Appendix 10.2). The family of chemokine-like proteins containing this domain have 
been implicated in inflammation, immunity and development but most are not well 
characterised. Of the five MARVEL containing genes within the 8D3 divergent 
cluster, three are unstudied, but Cmtm2a and Cmtm3 are both implicated in the 
proliferation and development of particular testicular cells (Wang et al., 2008, 
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Qamar et al., 2010). The human ortholog of Cmtm3 was present in the orthologous 
human divergent region at 16q21 and is a known tumour suppressor gene that 
shows frequent inactivation via chromatin-mediated silencing in several cancers 
(Wang et al., 2009). It is evident that developmental gene clusters showing cell type 
specific regulation are unexpectedly common at regions displaying divergent higher 
order chromatin. 

The genes within the divergent human closed/mouse open 812 orthologous 
regions contained 1285 human genes and 1102 mouse genes. These also showed 
significant enrichment for genomic regions harbouring particular gene clusters. 
Both human and mouse genes in these regions showed significant enrichment for 
terms associated with developmental genes containing Antennapedia type 
homeobox domains (IPR001827) (See Appendix 10.2). The genes involved are 
developmental genes present at the HOXA (human HOXA1-A7; Figure 2B) and 
HOXD (human HOXD1-4) clusters. Both clusters are implicated in multiple cancers 
and other disorders, and are tightly regulated by higher order chromatin 
environments (Wang et al., 2011, Tschopp et al., 2011). It is thought that structural 
divergence within the chromatin domains harbouring these clusters underlies many 
important innovations in the vertebrate body plan (Montavon and Duboule, 2013). 
Again, it seems that developmentally regulated genes are over-represented within 
regions of divergent chromatin. However, it is worth noting that the proportion of 
divergent regions generating significant functional enrichments (that is, those 
divergent regions possessing the genes responsible for the functional enrichments 
seen) was modest overall, constituting 6% of human and 11% of mouse divergent 
regions in total. 

5.3.2. SPECIES AND CELL TYPE SPECIFIC DIVERGENT CHROMATIN 
There were marked differences in the genic content of regions showing 

structural divergence between cell types and those divergent between species. As 
detailed in Chapter 3 we identified regions showing evidence for structural 
divergence between cell types and species using RT mouse and human datasets in 
matched (ES and NPC) cells. 
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Divergence Term Description Gene  FDR 
IPR007237 CD20/IgE Fc receptor 8 7.31E-05 
GO:0000786 Nucleosome 11 8.73E-04 
GO:0065004 Protein-DNA complex assembly 12 2.68E-03 
CYTOBAND 11q12.2 10 7.42E-03 

ESC 

GO:0006334 Nucleosome assembly 11 1.04E-02 
CYTOBAND 1q42.13 12 2.73E-07 
CYTOBAND 1p36.33 14 5.30E-07 
IPR012287 Homeodomain-related 38 3.31E-06 
CYTOBAND 14q11 12 4.03E-06 

Species 
Differences 

NPC 

IPR001356 Homeobox 34 1.70E-04 
CYTOBAND 14q11 12 1.63E-07 
CYTOBAND 7p15-p14 10 5.19E-05 
IPR012287 Homeodomain-related 30 6.62E-05 
IPR001356 Homeobox 28 8.62E-05 

Human 

IPR017970 Homeobox, conserved site 28 3.77E-04 
CYTOBAND 11 A4 15 1.16E-04 
CYTOBAND 3 A1 11 4.91E-03 
CYTOBAND 7 24.0 cM 6 7.65E-02 
CYTOBAND 3 B 11 1.48E-01 

Cell Type 
Differences 

Mouse 

CYTOBAND 13 A1 10 1.90E-01 

Table 5.2 The top five enriched human and mouse annotation terms for genes 

within regions of higher order chromatin divergent between species and between 

cell types. Full list in Appendix 10.3. 

Regions divergent between human ESC and NPC cell types were enriched 
for homeodomain containing genes (IPR001356), including the HOXA cluster as 
before. This reflects the finding that the HOXA cluster possesses higher order 
chromatin structures that can be conserved across mammals and yet are variable 
between embryonic cells and NPC (Kim et al., 2011). However, the results also show 
genes at the HOXD cluster on 2q31 and a variety of other homeodomain containing 
genes across the genome have divergent structures between these two cell types, 
suggesting a widespread modulation of chromatin landscapes at such loci during 
neural differentiation.  

There was however no detectable enrichment of homeodomain genes at the 
regions structurally divergent between ESC and NPC types within the mouse RT 
data, even though large–scale changes in higher-order chromatin conformation are 
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seen at HOX loci during neuronal differentiation of ES cells (Morey et al., 2007). This 
suggests that higher order chromatin may play different roles in development 
between rodent and primate lineages, and reflects differences in the exact nature of 
the NPCs that arise from the differentiation of human and mouse ES cells. 
Consistent with this, in comparisons of RT data between species, homeodomain 
genes were again implicated: the most divergent regions between mouse and 
human NPCs implicate a similar set of 34 homeodomain genes including those at 
HOXA and HOXD clusters (See Appendix 10.3). Again, it seems that gene clusters 
with functions in mammalian development appear to be a focus of structural 
alterations during evolution. 

5.3.3. LARGE DIVERGENT DOMAINS 
In Chapter 4 it was discovered that structurally divergent 100 Kb regions 

cluster within the mammalian genome, forming large divergent domains with mean 
size 800 Kb. As might be expected these large divergence domains showed similar 
patterns of functional enrichments as those discussed above (Table 5.3, Appendix 
10.4). For example, the divergent region mentioned already at 11p15.4 containing an 
OR gene cluster was rediscovered as part of a larger 800 Kb domain. Similarly the 
divergent region containing the 7p15.2 HOXA genes was found to extend to 800 Kb, 
and to include neighbouring lincRNA genes such as HOTAIRM1 which is active in 
HOXA regulation during neurogenesis and differentiation (Lin et al., 2008). An 
additional 800 Kb region at 7q21.3 showing a novel functional enrichment also 
emerged, which contains the paraoxonase gene cluster, these genes are imprinted in 
the mouse genome and exhibit unusual, allele-specific expression dependent on 
developmental stage in human cells (Parker-Katiraee et al., 2008). 
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Table 5.3 The top five enriched human annotation terms for genes within five large 

clustered regions of divergent higher order chromatin. Full list in Appendix 10.4. 

The large divergent domain at 16q11.2, which spans 1.5 Mb, is enriched for 
Iroquois-class homeodomain genes expressed during development. The genes 
involved here (IRX3, IRX5 and IRX6) are conserved transcription factors involved in 
patterning and regionalization of the vertebrate embryo, particularly in neural and 
cardiac tissues (Zhang et al., 2011). They have also been the focus of innovation in 
the patterns and timing of their expression during vertebrate embryogenesis 

Large spatial 
region Term Description Gene  FDR 

CYTOBAND 11p15.4 15 2.05E-25 
PIRSF038651 G Protein-Coupled Olfactory Receptor 7 1.96E-07 
GO:0007608 Sensory Perception Of Smell 8 2.02E-05 
GO:0007606 Sensory Perception Of Chemical Stimulus 8 8.59E-05 

chr11 
5900000 
6699999 

IPR000725 Olfactory Receptor 7 5.77E-05 
IPR003893 Iroquois-Class Homeodomain Protein 3 1.34E-04 
IPR001356 Homeobox 3 9.32E-02 
IPR017970 Homeobox, Conserved Site 3 9.45E-02 
IPR012287 Homeodomain-Related 3 1.01E-01 

chr16 
54000000 
55499999 

CYTOBAND 16q11.2-Q13 2 1.22E-01 
IPR008253 Marvel 5 7.09E-07 
GO:0042330 Taxis 5 8.71E-04 
GO:0006935 Chemotaxis 5 8.71E-04 
GO:0005125 Cytokine Activity 5 5.41E-03 

chr16 
66500000 
66899999 

GO:0007626 Locomotory Behaviour 5 1.04E-02 
CYTOBAND  7q31.3-Q32 3 7.37E-04 
GO:0008527 Taste Receptor Activity 3 7.98E-03 
IPR007960 Mammalian Taste Receptor 3 6.12E-03 
GO:0050909 Sensory Perception Of Taste 3 9.20E-02 

chr7 
141100000 
141899999 

GO:0007186 G-Protein Receptor Signalling Pathway 4 2.28E+00 
IPR001827 Homeobox Protein, Antennapedia Type 7 4.44E-14 
CYTOBAND 7p15-P14 6 4.41E-11 
GO:0048562 Embryonic Organ Morphogenesis 7 7.55E-09 
GO:0009952 Anterior/Posterior Pattern Formation 7 9.70E-09 

chr7 
26400000 
27199999 

GO:0048568 Embryonic Organ Development 7 2.55E-08 
CYTOBAND 7q21.3 4 1.17E-05 
GO:0004063 Aryldialkylphosphatase Activity 3 3.35E-04 
IPR002640 Arylesterase 3 2.94E-04 
GO:0004064 Arylesterase Activity 3 6.69E-04 

chr7 
94500000 
95299999 

PIRSF016435 Paraoxonase 3 1.29E-04 
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(McDonald et al., 2010). 

 

Figure 5.3 Clustering of divergent chromatin in the human genome. The line plot 

shows mean, normalised human (black) and mouse (red) higher order chromatin 

structure across human chromosomes. Unexpectedly large divergent areas are 

highlighted in grey. Asterisks indicate the positions of functionally enriched gene 

clusters listed in Table 5.3. 

5.3.4. DIVERGENT REGIONS CLUSTERED BY DIVERGENCE TYPE 
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The final divergent subgroups examined for functional gene enrichment 
were groups derived from hierarchically clustering all divergent 100 Kb regions 
according to the similarity of their divergence patterns across all structural datasets. 
Many of these clusters show strong divergence between mouse and human across 
all available structural datasets, while others show evidence for divergence in a 
subset of datasets. Significant hierarchical clusters were identified using multiscale 
bootstrap resampling and all 24 significant clusters were found to contain regions 
from multiple chromosomes. Of these 24 significant clusters, 6 contained genes 
showing significant functional enrichments (Table 5.4). Again, many of these gene 
enrichments were previously seen in the enrichment analyses performed above 
(Figure 5.4). 

 

Figure 5.4 Hierarchical clusters (7, 9, 13, 17, 22 and 23) showing significant gene 

enrichments. The heatmap represents relatively open (blue) and closed (red) 

higher order chromatin for each 100 Kb divergent locus (x-axis) over all datasets 

(y-axis). Datasets are coloured according to experiment: light grey = mouse RT, 

light pink = human RT, dark grey = mouse LA, medium pink = human LA, dark 

pink= human Hi-C.  

 Cluster 13 shows notable divergence between species across LA and RT 
datasets and is again enriched for genes containing Iroquois-Class homeodomains. 
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Several divergence clusters show a shift in replication timing but little change in 
lamin association profiles between species. An example of this is cluster 7 (Figure 
5.4), which again contains regions that are significantly enriched for OR genes.  

Table 5.4 Annotation enrichment within hierarchical clusters of structurally 

divergent orthologous loci. Gene related annotation terms enriched within clusters 

of loci with showing similar patterns of divergence; in each case the cluster ID, 

annotation term ID, number of genes involved, and FDR corrected p-values are 

provided. Enrichments are calculated relative to the annotation found in all 

orthologous regions examined. 

Again, it seems that structural divergence is disproportionately associated 
with particular developmental gene clusters, which follow tightly regulated 
expression patterns targeting specific cell types, and are often known to occupy 

Cluster Term Description Gene  FDR 
CYTOBAND 7q31.3-Q32 3 2.22E-04 
GO:0008527 Taste Receptor Activity 3 2.26E-02 
IPR007960 Mammalian Taste Receptor 3 3.61E-02 
GO:0050909 Sensory Perception Of Taste 3 3.00E-01 

7 

CYTOBAND 3p14.2 2 2.93E+00 
CYTOBAND 11q12.2 9 4.33E-17 
CYTOBAND 7p22.1 4 2.01E-03 
IPR007237 CD20/IgE Fc Receptor Beta Subunit 3 1.14E-01 
CYTOBAND 1q42.2 2 8.09E+00 

9 

GO:0031224 Intrinsic To Membrane 13 1.76E+01 
IPR003893 Iroquois-Class Homeodomain Protein 3 4.13E-05 
IPR017970 Homeobox, Conserved Site 3 7.37E-02 
IPR001356 Homeobox 3 7.56E-02 
IPR012287 Homeodomain-Related 3 7.76E-02 

13 

CYTOBAND 16q11.2-Q13 2 6.71E-02 
CYTOBAND 5q14.1 6 5.92E-10 
IPR017226 Betaine-Homocysteine S-Methyltransferase, BHMT 2 1.07E+00 
GO:0047150 Betaine-Homocysteine S-Methyltransferase Activity 2 1.21E+00 
PIRSF037505 Betaine-Homocysteine S-Methyltransferase, BHMT 2 7.74E-01 

17 

PIRSF037505 Betaine_HMT 2 7.74E-01 
CYTOBAND 11p15.1 5 5.35E-07 
CYTOBAND 9p24.1 2 4.46E+00 
GO:0016021 Integral To Membrane 6 3.87E+01 

22 

GO:0031224 Intrinsic To Membrane 6 4.37E+01 
CYTOBAND 18q11.2 8 1.14E-15 
GO:0019887 Protein Kinase Regulator Activity 2 1.66E+01 
GO:0019207 Kinase Regulator Activity 2 1.88E+01 
GO:0006869 Lipid Transport 2 3.68E+01 

23 

GO:0010876 Lipid Localization 2 3.91E+01 
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unusual chromatin environments. Many of these genes have also been implicated in 
developmental adaptations during vertebrate evolution and in human disease 
processes. This may suggest that regions of divergent chromatin structure have 
evolved different chromatin conformations to facilitate functional divergence at 
these loci. However it is not possible to exclude non-adaptive hypotheses, for 
example where divergence in chromatin structure is a neutral consequence of gene 
family or repeat expansions or other changes in the underlying genomic sequences. 
Indeed, since the majority of divergent regions show no detectable functional 
enrichments, selectively neutral divergence appears to be the most probable 
scenario in most cases. 

5.4. CHROMATIN DIVERGENCE ASSOCIATED WITH EXPRESSION 
DIVERGENCE 

To further investigate whether genes within divergent regions have 
undergone regulatory divergence, enrichment of genes showing divergent 
expression patterns between human and mouse cells was assessed in structurally 
divergent regions. An expression dataset from Cai et al (2010) was examined first, 
which sought significant differences in ES cell expression patterns in orthologous 
gene pairs. The authors compiled gene lists that contained three different types of 
orthologous gene pairs. Those pairs with genes upregulated in human, those with 
genes that were upregulated in mouse and those containing genes that were 
unusually conserved in expression across species. Unfortunately, the ES cell types 
involved were not the same as any of the ES cell types used to generate the 
chromatin data.  
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Figure 5.5 Observed (lighter colour) distribution of orthologous genes from Cai et 

al 2010 within human divergent regions (Human div), mouse divergent regions 

(Mouse div) and non-divergent regions (Conserved) compared to expected (darker 

colour) given the distribution of genes across all structural regions. Genes 

upregulated in human only (purple), genes upregulated in mouse only (pink) and 

genes with conserved expression (green). 

Although the numbers of genes identified by Cai et al (2010) that were also 
present within the orthologous regions were low (497 divergent and 126 conserved), 
there was significant enrichment (odds ratio: 1.30; Fisher’s Exact test p = 0.04) of 
divergently regulated genes within the 100 Kb regions of divergent higher order 
chromatin reported here. Genes with conserved regulation were also under-
represented in divergent regions (odds ratio = 0.76; p = 0.331). These patterns were 
observed in spite of the fact that the data of Cai et al (2010) is based upon human 
and mouse embryonic cell lines that are not represented in the chromatin data 
studied here. Another more recent study of expression divergence between 
orthologous human and mouse genes has been carried out in macrophages (a cell 
type very different from ES cells) and identified 186 divergent and 972 conserved 
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gene pairs (Schroder et al., 2012). These data were examined in the same way and 
revealed no significant enrichment of divergently regulated genes in divergent 100 
Kb regions. Indeed the genes divergently regulated in these macrophage data 
showed the opposite trend, and were somewhat under-represented in regions of 
divergent chromatin (odds ratio: 0.78; p = 0.46). This suggests that the relationship 
between higher order chromatin divergence and expression divergence is specific to 
embryonic cell types. 

Lastly, a larger orthologous gene dataset was constructed which also 
measured differential expression between mouse and human ES cells (see Chapter 2 
Methodology) and was based upon previous RNAseq studies (Lister et al., 2009). 
These data provide a higher coverage dataset consisting of log2 fold change 
measurements for 7,673 mouse-human gene pairs occurring within the orthologous 
100 Kb structural regions. This allowed us to assess the extent of expression 
divergence within the two categories of divergent regions, relative to non-divergent 
regions (Figure 5.6). There was a striking contrast, with regions open in human but 
closed in mouse showing a expression divergence consistent with upregulation of 
human genes (non-divergent median log fold change: -0.48; divergent: -0.33; 
Wilcoxon p = 0.23), while the human closed but mouse open regions showed 
evidence of upregulation of mouse genes (non-divergent: -0.48; divergent: -1.00; 
Wilcoxon p = 3.41 x 10-6).  
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Figure 5.6 Chromatin divergence and expression divergence. Distributions of log2 

fold change (log2(human/mouse expression)) for orthologous gene pairs within 

non-divergent regions (grey), human open/mouse closed (blue) and human 

closed/mouse open (red). For each plot the bottom and top of the box show the 

lower and upper quartiles respectively around the median, outliers outside 1.5 x 

interquartile range are represented as dots. 

This pattern of gene expression divergence is expected within divergent 
regulatory domains demonstrating a respectively active or repressive environment 
for transcription of human genes. Again, these expression data were generated in 
embryonic cells similar to, but not identical to those used to derive the chromatin 
divergence data. It is important to note that there may be a distinct difference 
between the relative bipolar classification of divergent regions (human open/mouse 
closed and vice versa) and their absolute normalised chromatin values. For 
example, it is possible for a region that is relatively open in human and relatively 
closed in mouse to possess absolute values consistent with a closed conformation in 
both species. It might be expected that using such absolute values to construct more 
specific divergent region categories there may be an increase in the correlations to 
expression divergence. This was indeed the case in spite of the associated 
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reductions in sample sizes. Regions open in human but closed in mouse (where the 
absolute human value > 0 and the absolute mouse value < 0) showed a much 
stronger expression divergence consistent with upregulation of human genes (non-
divergent median log fold change: -0.48; divergent: 5.03; Wilcoxon p < 2.2 x 10-16), 
while the opposite category (restricted to those with absolute human value < 0 and 
absolute mouse value > 0) showed stronger evidence of upregulation of mouse 
genes (non-divergent: -0.48; divergent: -4.77; Wilcoxon p > 2.2 x 10-16).  

 

Figure 5.7 Chromatin divergence corrected for absolute open/closed values and 

expression divergence. Distributions of log2 fold change (log2(human/mouse 

expression)) for orthologous gene pairs within non-divergent regions (grey), 

absolute human open (>0)/absolute mouse closed (<0) (blue) and absolute human 

closed (<0)/absolute mouse open (>0)(red). For each plot the bottom and top of the 

box show the lower and upper quartiles respectively around the median, outliers 

outside 1.5 x interquartile range are represented as dots. 

These comparisons to expression data provide independent validation of our 
methodology and suggest a direct link between the regions of divergent chromatin 
identified and the regulation of resident genes within ES cells
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6. Chapter 6: Higher order chromatin 

and sequence level features 

Chapter 6 

Results: Higher order chromatin and 

sequence level features 

Topics included in this section: 

o Investigation of the relationships between higher order chromatin 
structure and structural divergence with DNA sequence features. 
Major features of genomic sequence are explored including base 
composition and repeat densities. 

o Investigation of the relationship between higher order chromatin 
structure divergence and sequence divergence. Sequence divergence 
measures include substitution rate, SNP density and indel 
frequencies. 

o Estimation of the proportion of segmental duplications and synteny 
breaks across regions of higher order chromatin and the relationships 
to structural divergence. 
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6.1. INTRODUCTION 

This investigation allows for the most comprehensive study so far of the 
relationships between higher order chromatin structure, structural divergence and 
divergence at the DNA level. It has been known for some time that higher order 
chromatin structure has strong correlations with DNA features. For example, base 
composition within relatively open chromatin domains is GC rich and gene dense 
(Gilbert et al., 2004). However, relatively closed chromatin domains are 
comparatively AT rich and gene sparse. Previous studies have also suggested 
relationships between higher order structures and repeat content and base 
composition, and have shown that SINE and LINE elements tend to accumulate in 
GC rich regions (enriched for open chromatin) and GC poor (often closed 
chromatin) respectively (Versteeg et al., 2003). There are also known correlations 
between higher order structures and divergence at the DNA sequence level. 
Evolutionary rates are not constant across the human genome and it is known that 
substitution rates are higher in closed chromatin domains than in open domains 
(Prendergast et al., 2007). In this chapter, we aim to look closely at the individual 
relationships between DNA features including base composition and the densities 
of different DNA repeat classes to higher order chromatin structure and structural 
divergence. This will allow us to assess whether these relationships change when 
examining structurally divergent regions. We will also examine, several measures of 
sequence level divergence and their relation to higher order chromatin structure. 
These include substitution rates, single-nucleotide polymorphism (SNP) density, 
insertion and deletion (indel) density, and repeat densities.  

6.2. STRUCTURAL DIVERGENCE ASSOCIATED WITH DNA 
COMPOSITION 

6.2.1. DIVERGENCE AND GC CONTENT 
It has been previously shown that higher order chromatin structure shows 

strong positive correlations with GC content, such that relatively open regions are 
more GC rich and gene dense (Gilbert et al., 2004). Total GC density in orthologous, 
intergenic regions was examined in both species and as expected significant 
correlations were found, confirming the previous observation. Human GC density is 
higher in open chromatin (Spearman’s rho = 0.57, p < 2.2 x 10-16), and following this 
trend, mouse GC density is also enriched in open chromatin (Spearman’s rho = 0.75, 
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p < 2.2 x 10-16) (Figure 6.1). For the first time, using the current data, we can also 
examine whether GC content is associated with divergence in higher order 
structure. Comparison of the percentage of GC nucleotides between divergent and 
non-divergent regions across all orthologous 100 Kb regions shows intriguing 
contrasts between the human and mouse genomes (Figure 6.1). In the human 
genome, there is a significant shift in human GC content between divergent and 
non-divergent regions, across the entire spectrum of normalised chromatin 
structure. Furthermore, this shift is to higher GC content (40.5%) within divergent 
human closed regions, and lower GC content (34.9%) within divergent human open 
regions, relative to non-divergent regions (37.5%; human divergent open GC versus 
human non-divergent GC Mann-Whitney p < 2.2 x 10-16; human divergent closed 
GC versus human non-divergent GC Mann-Whitney p < 2.2 x 10-16). Thus, the two 
divergence classes show the opposite human GC content bias to the expectation 
(Figure 6.1. These patterns are not seen in the GC content of the mouse genome, 
where there is no contradictory shift in the compositional biases of mouse sequences 
within divergent regions. Instead mouse divergent open regions are relatively GC 
rich (38.7%) and divergent closed regions are relatively GC poor (33.4%), relative to 
non-divergent regions (35.5%). Thus overall, divergent regions are consistent with 
the GC content trends seen in the mouse genome, but show a complete contrast 
with the GC trends in the human genome. This may reflect higher human variability 
in GC content, however it is not possible to disentangle cause and effect using the 
current data. This is fundamentally because it cannot be established whether 
changes in GC content drive structural change or vice versa. It is also not possible to 
establish which of the two species has the derived or ancestral chromatin state 
without an outgroup. However, these observations do suggest that chromatin 
divergence is often associated with unusual shifts in GC content in the human 
lineage, which may reflect fluctuations in mutation or selection during primate 
evolution. 
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Figure 6.1 Chromatin divergence and GC content. Percentage of GC nucleotides 

within all 16,820 100 Kb orthologous regions across the spectrum of normalised 

chromatin structure value in human (top) and mouse (bottom). Three classes of 

regions are shown: non-divergent (grey), divergent open (blue) and divergent 

closed (red). The green line represents the regression line of the overall non-

divergent trend.  

6.2.2. DIVERGENCE AND REPEAT DENSITY 
Repetitive DNA elements are widespread and thought to cover up to two 

thirds of the human genome (de Koning et al., 2011). With such broad coverage it is 
unsurprising that there are known relationships to GC content and other genomic 
features. One type of repeat sequence derived from transposable elements (TE), 
which includes long interspersed elements (LINEs) and short interspersed elements 
(SINEs), dominate the landscape of mammalian genomes and can affect gene 
expression by disrupting transcription and translation (Cordaux and Batzer, 2009). 
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As mentioned above previous studies have suggested a relationship between repeat 
content and base composition (Versteeg et al., 2003). The current data show the 
same trends using direct measures of higher order chromatin structure, with LINE 
repeat densities showing a negative correlation (Rho = -0.44 , p < 2.2 x 10-16), and 
SINE repeats a positive correlation (Rho = 0.69, p < 2.2 x 10-16) to both human 
(Figure 6.2) and mouse chromatin structure (Figure 6.3). Other major repeat classes 
were also assessed including DNA and long terminal repeats (LTR) which showed 
less consistent relationships in mouse and human chromatin structure (DNA: Rho = 
-0.05 Hs, 0.14 Mm p < 9.2 x 10-13; LTR: Rho = -0.34 Hs, -0.06 Mm p < 4.9 x 10-15). 
Simple repeats, which are repeated arrays of short runs of DNA, were examined 
more closely in order to establish whether particular classes of simple repeats 
showed a strong relationship to chromatin structure. Low complexity and simple 
repeat densities were found to reflect the known compositional biases of open and 
closed chromatin structure, with AT rich repeats showing a negative correlation to 
chromatin structure, reflecting the relatively AT rich nature of closed chromatin 
(Rho = -0.32, p < 2.2 x 10-16) (Figure 6.4).  

 

Figure 6.2 Human repeat densities (DNA, LINE, LTR, Low complexity, SINE and 

Simple repeat) for all orthologous 100 Kb structural regions. Divergent human 

open (blue) and human closed (red) regions are shown with non-divergent (black) 

regions. Non-divergent regression lines are shown in green. 
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Figure 6.3 Mouse repeat densities (DNA, LINE, LTR, SINE and Simple repeat) for all 

orthologous 100 Kb structural regions. Divergent mouse open (blue) and mouse 

closed (red) regions are shown with non-divergent (black) regions. Non-divergent 

regression lines are shown in green. 

 

Figure 6.4 Densities of AT simple repeats and AT rich low complexity repeats in 

higher order chromatin structure. In each graph divergent mouse open (blue) and 

mouse closed (red) regions are shown with non-divergent (black) regions. Non-

divergent regression lines are shown in green. 

Having established the relationship between base composition, repeat 
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density and chromatin structure we went on to look at the relationship between 
these elements and structural divergence. Three classes of repeat were found to 
show generalised shifts (across the spectrum of higher order structure) in their 
densities between divergent and non-divergent regions: LINE and SINE elements, 
and particularly AT rich low complexity regions. Usually these shifts are seen in 
human repeat densities and are less clear or absent in mouse repeat data. As for 
DNA composition, repeat densities show shifts in divergent regions that are the 
opposite of the expected trend, given the overall relationships of these repeat classes 
to chromatin structure. For example, human SINE elements are enriched in open 
chromatin but relatively depleted in divergent open chromatin (Figure 6.2, Figure 
6.5) (Mann-Whitney p < 2.2 x 10-16). However this discrepancy is not seen in mouse 
where divergent regions more closely follow the expected trend (Figure 6.5). As 
with GC content, this apparent shift in repeat densities within human divergent 
regions cannot yet be reliably identified as a cause or effect of structural divergence. 
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Figure 6.5 Mean repeat densities for each of the major repeat classes in human 

(top) and mouse (bottom). The four separate groups represent average repeat 

densities for non-divergent open structure (light green), divergent open structure 

(dark green), non-divergent closed structure (light blue) and divergent closed 

structure (dark blue). (Low complexity DNA data is not available in mouse UCSC 

RepeatMasker annotation.) 

6.3. CHROMATIN STRUCTURE IS CORRELATED WITH SEQUENCE 
DIVERGENCE 

The current data allow for a thorough investigation of the coupling between 
higher order chromatin structure divergence and divergence at the DNA level. It is 
has been shown that human-chimpanzee substitution rates are not constant across 
the genome, and are significantly correlated with higher order chromatin structure 
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(Prendergast et al., 2007), but other classes of mutation are not well studied. 
Pairwise sequence alignments of human and mouse were used to assess the 
substitution rate of intergenic regions (see Methodology) within each 100 Kb 
orthologous structural region (Figure 6.6). There was a significant negative 
correlation between human-mouse substitution rate and chromatin structure (Rho = 
-0.45, p < 2.2 x 10-16). This reaffirms the relationship seen between human-
chimpanzee substitution rate and human chromatin structure albeit using much 
lower resolution structural data and a smaller dataset of substitutions (Prendergast 
et al., 2007). 

The density of single nucleotide polymorphisms (SNPs) per structural region 
was calculated using data from the 1000 Genomes Project (Abecasis et al., 2012) and 
showed a similar relationship to chromatin structure (Rho = -0.33, p < 2.2 x 10-16), 
such that divergence is highest in relatively closed regions.  

 

Figure 6.6 Chromatin structure and genomic sequence divergence. Intergenic 

substitution rates, SNP densities and indel densities are displayed for all 

orthologous human 100 Kb structural regions. In each graph divergent human 

open (blue) and human closed (red) divergent regions are shown with non-

divergent (black) regions. Non-divergent regression lines are shown in green 

The fact that substitution rate and SNP density show the same relationship 
to higher order chromatin suggests that similar mutational biases have existed 
across 100 million years of evolution and still operate in current human populations. 
We also examined 1,443 loss of function (LOF) SNPs, also from the 1000 Genomes 
Project, and higher order structure, which induce a stop, splice-site disruption or 
frame shift where they occur in the genome. Due to the low number of LOF SNPs 
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we averaged groups of regions by class (openness) of higher order chromatin to 
calculate the proportion of regions containing a LOF SNP per class. It was found 
that LOF SNPs had an opposing relationship to chromatin structure with most 
occurring in open structures (Rho = 0.8, p <4 x 10-34), consistent with the higher 
numbers of protein coding genes in open chromatin. However, there was no clear 
relationship to structural divergence. 

 

Figure 6.7 Proportion of regions containing at least one loss of function SNP (LOF) 

across different classes of human chromatin structure (Rho= 0.8, p <4 x 10-34). 

Average proportions across divergent human open (blue) and human closed (red) 

regions are shown with non-divergent (black) regions. 

Indel densities were calculated using UCSC derived whole genome 
alignments of human, mouse and dog. Lineage specific human and mouse indel 
events were inferred using the dog as an outgroup (see Methods) to calculate indel 
densities (number of indel bp per aligned intergenic human bp). Total indel density 
(total number of bases involved in insertions of deletions per aligned intergenic bp) 
across chromatin structure (Figure 6.6) showed no significant correlation to 
chromatin structure, in contrast to previous results for substitution rates. Within 
lineage specific indels, mouse deletions were the most prevalent type of indel event 
and showed a modest positive correlation to chromatin structure correlation (Rho = 
0.14, p < 2.2 x 10-16) (Figure 6.8). Interestingly, this positive relationship to open 
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chromatin structure is not apparent when comparing the frequency of mouse 
deletion events, rather than the proportion of deleted bases (Rho = -0.08, p < 2.2 x 
10-16). This indicates that the number of deleted mouse bases per deletion event 
tends to be larger in open chromatin but smaller in closed. As expected, human 
indels were found to be an order of magnitude less frequent than mouse indels 
(mean proportion mouse indel – 0.038, mean proportion human indel – 0.004). Both 
mouse and human insertion rates were less frequent than deletion rates (0.003 to 
0.004 human and 0.03 to 0.05 mouse) and showed negative relationships to 
chromatin structure as seen in the other divergence estimates (Rho = -0.15 human 
insertion, Rho = -0.08 mouse, p < 2.2 x 10-16)(Figure 6.8). However, the proportions 
were so infrequent that it is difficult to draw meaningful conclusions.  

 

Figure 6.8 Linage specific indel densities (human deletions, human insertions, 

mouse deletions and mouse insertions) across higher order chromatin structure. 

In each graph divergent human open (blue) and human closed (red) regions are 

shown with non-divergent (black) regions. Non-divergent regression lines shown 

in green 

If substitution rates, SNP densities and indel rates are important correlates of 
structural divergence we might expect to see a generalised shift in these rates within 
regions of divergent structure, relative to the expected rates seen in the non-
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divergent regions. However this is not the case, instead the divergent regions show 
trends that are very close to the trends in non-divergent regions. Thus, although 
substitution, SNP and specific indel rates are significantly correlated with higher 
order chromatin structure they are not consistently associated with structural 
divergence. It follows that they are also unlikely to be major determinants of 
structural divergence.  

6.4. SEGMENTAL DUPLICATIONS AND CONSERVATION OF 

SYNTENY 

The mammalian genome contains numerous segmental duplications: blocks 
of homologous duplicated sequences that are greater than 1 Kb and map to multiple 
loci, sharing at least 90% sequence homology. They often contain low copy repeat 
sequences that can cause regions of genomic instability associated with copy 
number differences (Kim et al., 2008). Again, due to the relatively low number of 
segmental duplications, proportion of regions containing a duplication per 
chromatin class was used and there is a strong positive correlation to chromatin 
structure in both species (Rho = 0.94 in human and 0.92 in mouse p < 3.7 x 10-6). This 
indicates that there are higher densities of duplicated segments in more open 
chromatin domains. Human divergent regions showed no significant deviations 
from this trend, however this was not the case for the mouse genome. Mouse open 
divergent regions showed a significant (p < 0.004) depletion in segmental 
duplications (Figure 6.9). 
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Figure 6.9 Proportion of regions containing at least one segmental duplication 

across human (top) and mouse (bottom) chromatin structure (Rho = 0.91 in human 

and 0.69 in mouse p < 10-16). Proportions are shown across divergent human open 

(blue) and human closed (red) regions are shown with non-divergent (black) 

regions. 

Segmental duplications are associated with large-scale genomic 
rearrangements between species, which is likely to affect patterns of sequence 
orthology between human and mouse. The number of regions containing a 
segmental duplication was compared between the orthologous 16,820 regions and 
the non-orthologous, lineage specific, 100 Kb regions (defined in Chapter 3) from 
both species. It was found that the orthologous dataset contained substantially 
fewer segmental duplications than the non-orthologous data (14% of orthologus 
regions and 27% non orthologus for human segmental duplications, 18% of 
orthologus regions and 40% non orthologus for mouse segmental duplications p < 
2.2 x 10-16 (Figure 6.10). Thus it seems that segmental duplications play a more 
important role in sequence divergence than in structural divergence between these 
species. 
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Figure 6.10 Segmental duplications in non-orthologus and orthologous regions. 

Proportion of regions containing different numbers of segmental duplications in 

human (left) and mouse (right) orthologous 16,800 regions (blue) and non-

orthologous structural regions (green). 

The human and mouse genomes contain many regions showing the same 
ordering of orthologous genes along chromosomes, that is, conservation of synteny. 
During evolution, genome rearrangements may separate two loci, resulting in the 
disruption of synteny (synteny breaks). To investigate whether chromatin structure 
conservation patterns are related to synteny breaks, top level synteny breaks (the 
primary level of alignments between human and mouse, see Chapter 2) were 
obtained from the Ensembl Compara database. It was found that less than 1% of all 
regions contained a top level synteny break. To ascertain whether synteny breaks 
were more prevalent in the divergent chromatin regions, chi squared tests were 
done on the orthologous divergent classes in both human and mouse chromatin 
structure. There was no significant enrichment or depletion of synteny breaks in 
orthologous human and mouse divergent regions. This was not surprising as 
synteny breaks are, by definition, non-orthologous. We then went on to look at the 
lineage specific human and mouse non-orthologous regions (see Chapter 3) that 
were not included in the 16,820 region dataset and found a marked contrast. In both 
species there were enrichments with 5-6% of non-orthologous regions containing a 
top level synteny break (p-value 9.5 x 10-11 human and 6.2 x 10-09 mouse 
respectively).  

We conclude that higher order chromatin structure itself is associated with 
many aspects of the underlying DNA sequence, including measures of sequence 
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divergence, which complicates attempts to identify which features are significantly 
associated with structural divergence. The challenge is to unpick the associations 
due to chromatin structure itself from those of structural divergence. The approach 
we have adopted is to examine each sequence level correlate between divergent and 
non-divergent structures across the entire spectrum of observed chromatin 
structure. Shifts in a sequence-based variable between divergent and non-divergent 
classes that are seen consistently implicate that variable in structural divergence. 
This thinking is formalised in multiple regression analyses in Chapter 8, which also 
allow us to distinguish the most important combinations of variables among the 
many possibilities. 
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7. Chapter 7: Comparative 

investigation of locus level 

chromatin 

Chapter 7 

Results: Comparative investigation of 

locus level chromatin  
 

Topics included in this section: 

o Construction of a three species locus level chromatin feature dataset 
containing histone modification, methylation and transcription factor 
data in human, mouse and pig. 

o Analysis of the relationships among the chromatin features across 
each species and a comparison to the findings in Xiao et al 2012. 

o Further examination of read density patterns within each species and 
clustering of chromatin features by type, for example, promoter 
associated features. 

o Examination of suitability of the data for applying a divergence 
metric. 

o Comparisons between the locus level feature data to the previous 100 
Kb higher order chromatin structure data. 
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7.1. INTRODUCTION 

One of the main caveats of the higher order chromatin structure divergence 
detected is that due to data availability the analysis is restricted to just two species. 
This makes it impossible to detect which lineage possesses the ancestral or derived 
structural state when examining structural divergence. The emergence of a new 
three species dataset containing chromatin features in human, mouse and pig (Xiao 
et al., 2012) allows such comparisons to be made, though for aspects of chromatin 
structure not examined thus far in this thesis. Rather than higher order structures 
the data concern locus level features such as histone modification and DNA 
methylation patterns. This dataset also enables a three-way examination of 
chromatin features in the structurally divergent regions examined so far. Key 
questions can be addressed about how the many different levels and facets of 
chromatin structure are related to one another, and also the mechanisms underlying 
divergence in higher order structure.  

The study by Xiao et al (2012) has provided matched data for human and 
mouse ES cell locus level chromatin together with complementary data for an 
outgroup species, pig, in pluripotent stem cells. The main focus of their study was 
on the epigenomic conservation of chromatin features across different classes of 
genomic regions. They also found that conserved colocalisation of different 
epigenomic marks within a region can be used to discover regulatory sequences and 
concluded that comparative epigenomics may reveal regulatory features of the 
genomes under study. 

Although large divergent regions of mammalian chromatin structure were 
reliably identified in earlier chapters, the mechanisms underlying divergence 
remain unknown. There are known to be strong correlations between the extent of 
histone modification patterns and other lower level features and the variations seen 
at the level of higher order structures (Zhou et al., 2011). In this chapter, the 
importance of a large number of lower level structural level variables in the 
divergence of higher order structure during mammalian evolution is directly 
assessed. The main dependencies between different structural levels across the 
genome and their relative importance are also examined.  

7.2. OVERVIEW OF LOCUS LEVEL CHROMATIN DATA 

Genome wide human mouse and pig data for 14 different chromatin features 
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was available in human H1 ESCs, mouse E14 ESCs and pig pIPC cells (Lister et al 
2009; Bernstein et al, 2010, Xiao et al, 2012; ENCODE, 2012, Goren et al, 2010). These 
included the histone modifications H3K27ac, H3K27me3, H3K4me1, H3K4me2, 
H3K4me3, H3K9me3 H3K36me3 and the histone variant H2AZ. There were also 
ChIP-seq transcription factor binding site datasets for TAF1, OCT4, p300 and 
NANOG and finally DNA methylation datasets generated using MeDIP-seq and 
MRE-seq (Table 7.1). 

Feature Mark Method Human Mouse Pig 
H3K27me3 ChIP-seq Lister et al, 2009 Xiao et al, 2012 Xiao et al, 2012 

Repression 
H3K9me3 ChIP-seq Lister et al, 2009 Goren et al, 2010 Xiao et al, 2012 
H3K4me1 ChIP-seq Lister et al, 2009 Xiao et al, 2012 Xiao et al, 2012 
H3K4me2 ChIP-seq Lister et al, 2009 Xiao et al, 2012 Xiao et al, 2012 Enhancer 
H3K27ac ChIP-seq Lister et al, 2009 Xiao et al, 2012 Xiao et al, 2012 

Promoter H3K4me3 ChIP-seq Lister et al, 2009 Xiao et al, 2012 Xiao et al, 2012 
Gene body H3K36me3 ChIP-seq Lister et al, 2009 Xiao et al, 2012 Xiao et al, 2012 
Promoter H2AZ ChIP-seq Xiao et al, 2012 Xiao et al, 2012 Xiao et al, 2012 

MeDIP-seq Bernstein et al, 2010 Xiao et al, 2012 Xiao et al, 2012 
Methylation 

MRE-seq Bernstein et al, 2010 Xiao et al, 2012 Xiao et al, 2012 
Promoter TAF1 ChIP-seq ENCODE, 2012 Xiao et al, 2012 Xiao et al, 2012 
Enhancer P300 ChIP-seq ENCODE, 2012 Chen et al, 2008 Xiao et al, 2012 

OCT4 ChIP-seq ENCODE, 2012 Chen et al, 2008 Xiao et al, 2012 
Pluripotency 

NANOG ChiP-seq ENCODE, 2012 Chen et al, 2008 Xiao et al, 2012 

Table 7.1 Descriptions and origins of each chromatin feature dataset similar to the 

data produced by Xiao et al (2012). 

The raw sequence data archives for each chromatin feature in each species 
were downloaded from the NCBI Sequence Read Archive (SRA), converted to 
FASTQ format and examined for sequence read quality using FastQC. The FastQC 
reports for the human transcription factor datasets showed poor read mapping 
(<40% mapped) so alternative data was sought from ENCODE (The ENCODE 
Project Consortium, 2011) that showed better quality alignment (>70% mapped). 
The total numbers of reads and percentages of reads mapped is shown in Table 7.2.
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Human 

(GRCh37/hg19) 
Mouse 

(NCBI37/mm9) 
Pig 

(SGSCSscrofa9.2/susScr2) 

Feature Reads % 
mapped Reads % 

mapped Reads % mapped 

H3K27me3 91,076,733 70.87 31,654,344 82.84 10,868,857 76.41 

H3K9me3 193,583,168 78.64 23,895,406 93.29 13,927,780 69.76 

H3K4me1 69,962,590 88.80 19,366,374 90.92 20,705,775 79.30 

H3K4me2 38,030,958 73.62 18,351,814 92.78 4,322,782 79.50 

H3K27ac 42,382,986 81.70 6,911,600 92.47 17,741,434 79.26 

H3K4me3 66,500,991 77.25 31,258,590 92.07 21,512,279 76.91 

H3K36me3 141,190,603 79.29 17,641,837 88.48 38,013,146 76.28 

H2AZ 25,786,431 95.90 88,311,720 78.94 4,417,656 78.26 

MeDIP-seq 35,182,811 87.49 25,728,829 96.16 68,357,687 68.92 

MRE-seq 77,386,795 75.94 27,736,348 90.15 16,832,623 33.93 

TAF1 32,189,724 79.21 23,450,889 69.41 10,700,034 77.63 

P300 53,920,750 68.22 17,413,416 72.47 33,455,621 77.98 

OCT4 46,880,412 87.78 11,785,618 41.77 5,074,592 77.59 

NANOG 53,920,750 68.22 12,932,668 88.87 18,575,267 77.15 

Table 7.2 Numbers of sequence reads acquired for each chromatin feature in each 

species. Also shown is the percentage of reads that were successfully mapped to 

the reference genome. 

 The reads were mapped to GRCh37/hg19, NCBI37/mm9 and SGSC 
Sscrofa9.2/susScr2 genome assemblies using Bowtie (Langmead et al., 2009). The 
mapped reads were converted to bedgraph files using BEDtools (Quinlan and Hall, 
2010), which are designed for displaying continuous data. All data was binned to 
100 Kb resolution and allow comparisons between locus level chromatin features 
and the higher order structure data described in earlier chapters. Read densities 
were averaged within the genomic intervals of the consecutive 100 Kb bins used for 
higher order data. This resulted in three separate 100 Kb genome wide chromatin 
feature sets, one for each species with 28,796 regions in the human dataset, 25,684 in 
the mouse and 22,637 in pig. UCSC liftOver (Kent et al., 2002) and Perl scripts were 
then used to reciprocally map orthologous regions between the different species. 
Regions that did not correctly map reciprocally (i.e. forwards and backwards) 
between species, or that substantially changed in size (<80% or >120% of the 
original region) when re-mapped were discarded. The resulting orthologous dataset 
contained 8,900 100 Kb regions in human, mouse and pig genomes. Quantile 
normalisation was imposed across all datasets as for previous analyses. 
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7.3. WIDESPREAD DIVERGENCE OF MAMMALIAN LOCUS LEVEL 
CHROMATIN 

Xiao et al (2012) found that locus level features of chromatin were detectably 
conserved between human, mouse and pig within promoters and exons, however, 
they reported that the levels of conservation were more variable within intergenic 
and intronic regions (i.e. the vast majority of the genome), suggesting that these 
features may be more modestly conserved on a genome wide scale. In addition, the 
definition of conservation was limited to a binary measure: whether or not the same 
chromatin feature was found within each orthologous 200 bp sequence between 
species. This ignores the wide variation in read density across the genome (Figure 
1.1). To address this, a global correlation matrix was constructed for all orthologous 
100 Kb chromatin features to examine the levels of conservation according to read 
densities. The data was hierarchically clustered by similarity of read densities and 
the resulting heatmap showed a wide range of Spearman’s Rho values (-0.25 < Rho 
< 0.88) (Figure 7.1).  
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Figure 7.1 Genome wide correlation matrix of all 8,900 orthologous chromatin 

regions. The datasets are hierarchically clustered by similarity of genome-wide 

read densities. Each chromatin feature is labelled with h, m and p representing 

human (red), mouse (blue) and pig (green) datasets respectively. Red colours 

indicate positive correlation (Rho) scores and blue indicate negative. 

The correlation matrix shows many, small species-specific subclusters where 
correlations were as high as Rho = 0.88, p < 2.2 x 10-16. Apart from these subclusters, 
the correlations were varied (Rho min -0.25, max 0.54) between chromatin features 
of different species but usually indicated modest (mean Rho = 0.21, p < 2.2 x 10-16) 
overall conservation at the genome-wide level. These observations are not 
necessarily in disagreement with Xiao et al (2012), since it is likely that the 100 Kb 
resolution masks locus level patterns across the data. However it is clear that the 
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widespread conservation seen for higher order chromatin structure is not matched 
by similar patterns of conservation in locus level chromatin features. 

To further assess the degree of clustering within species, two separate 
correlation matrices were produced for the chromatin feature data in human and 
mouse. Mean higher order chromatin structure data for each species, (defined in 
Chapter 3) was included with the current data and all datasets were again 
hierarchically clustered according to genome-wide correlations (Figure 7.2). In both 
human and mouse, higher order chromatin structure showed a varying degree of 
correlation to the lower-order chromatin features (Rho min -0.06, max 0.82). The 
most highly correlated subcluster contained transcription associated histone 
modifications such as H3K4me2 and H3K4me3 in both species. The repressive 
histone modification H3K9me3 also, showed the strongest negative correlations 
with other chromatin features in both species (Rho -0.25 human, -0.10 mouse). It 
appears that while there is some degree of similarity between the two correlation 
matrices the patterns of clusters and inter-relationships within each species are often 
distinct. Histone modifications of the same classification did not show a propensity 
to cluster together as expected, probably due to insufficient resolution. 

-­‐  
Figure 7.2 Correlation matrices for the locus level chromatin data and mean higher 

order structural data for human (left) and mouse (right). The coloured bar 

indicates the chromatin feature classification type taken from Xiao et al (2012). 

Red colours indicate positive correlation (Rho) scores and blue indicate negative. 
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7.4. LOCUS LEVEL CHROMATIN COMPARED TO HIGHER ORDER 
STRUCTURE 

The common 100 Kb resolution of all datasets allowed the levels of histone 
modifications and transcription factors to be assessed across different classes of 
higher order chromatin structure and structural divergence in both human and 
mouse (Figure 7.3, Figure 7.4). 

 

Figure 7.3 Median read densities of human histone modification and transcription 

factors across: All 100 Kb orthologous regions, Open chromatin structure 

(positive chromatin values), Closed chromatin structure (negative chromatin 

values), Open divergent chromatin structure, and Closed divergent chromatin 

structure. 
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 It was found that some locus level chromatin features (H3K9me3, H2AZ in 
human, H3K9me3, NANOG, TAF1 in mouse) showed relatively little change in 
intensity across different classes of higher order chromatin structure and structural 
divergence but in others change was more pronounced (Figure 7.3, Figure 7.4). 
However, most showed an increase in read density within mean open chromatin 
structure relative to mean closed chromatin structure in both species. Given the 
histone modifications involved, this appears to be a result of the fact that genes and 
their regulatory regions are more often found in accessible (open) regions of 
chromatin (Black and Whetstine, 2011). This relationship was also reflected in open 
and closed divergent structural classes with few exceptions. Human H3K27me3, a 
repressive mark, was enriched in open chromatin structure but also enriched in 
closed divergent structure (Mann-Whitney p < 2.2 x 10-16), a relationship that was 
not reflected in the mouse dataset. H3K27me3 is known to be important for the 
genomic targeting of the PRC2 polycomb complex to its target gene promoters 
including hox gene clusters which are enriched in repressive regions (Eskeland et 
al., 2010). 
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Figure 7.4 Median read densities of mouse histone modification and transcription 

factors across: All 100 Kb orthologous regions, Open chromatin structure 

(positive chromatin values), Closed chromatin structure (negative chromatin 

values), Open divergent chromatin structure, and Closed divergent chromatin 

structure. 

These data provide a basis to quantitatively explore the mechanisms 
underlying structural divergence in higher order chromatin. To investigate the most 
important factors in higher order structural divergence a regression modelling 
approach was chosen, to account for the inter-correlated nature of locus level 
chromatin features discussed above. This is discussed further in Chapter 8. 
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8. Chapter 8: Multiple regression 

modelling of chromatin structure 

Chapter 8 

Results: Multiple regression modelling of 

chromatin structure 

Topics included in this section: 

o Multiple regression modelling of DNA sequence features and 
locus level chromatin features to predict higher order structure. 

o Multiple regression modelling of DNA sequence features and 
locus level chromatin features to predict higher order structural 
divergence. 

o The addition of DNA sequence divergence to models for the 
prediction of higher order structural divergence. 
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8.1. INTRODUCTION 

A striking result of the analyses performed so far is that the majority of 
sequence level features examined show significant correlations with higher order 
structure. Some of these features also show intriguing shifts in these correlation 
patterns when comparing structurally divergent and non-divergent regions (see 
Chapter 6). These results suggest that structural divergence is associated with 
regional shifts in repeat content and compositional bias, but the overall picture 
remains unclear. These associations vary with the polarity of the structural 
divergence and it is possible that other sequence features or forms of sequence 
change play more minor roles. In addition, many sequence level features of the 
genome (including compositional bias and repeat densities) are known to be 
interdependent. In order to tease apart the most influential factors for higher order 
chromatin structure and higher order divergence between human and mouse, a 
multiple regression modelling approach was used. This allows us to understand the 
importance of each variable in situations where many variables are expected to 
interact to determine a dependent variable, in this case higher order structure. Also, 
redundancy and independence of the different sequence features can be explored 
and quantified. In this chapter, several multiple linear regression models are 
examined. For the first time we are able to combine all sequence variables studied so 
far and quantitatively describe the extent to which they individually and 
collectively explain higher order structure. We also examine the extent to which the 
same variables can explain higher order chromatin divergence. Lastly, we build a 
regression model that also includes measures of sequence divergence to explain 
higher order divergence, to explicitly examine the coupling between chromatin and 
sequence divergence during mammalian evolution. 

8.2. LINEAR MODELLING OF HIGHER ORDER CHROMATIN 
STRUCTURE 

We initially examined multiple regression models aiming to predict the 
normalised higher order chromatin structure measurements themselves, to discover 
how well sequence level variables predict structure. Linear models were created by 
collating all suitable factors investigated so far and using standard multiple linear 
regression analysis in R. Stepwise optimisation for the best models was performed 
according to the Akaike Information Criterion (AIC). The aim was to find the 
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chromatin variables with the most influence on both higher order chromatin 
structure and also to calculate to what extent the variables could explain chromatin 
structure. The AIC was used to optimise the model and identify successful 
combinations of variables. The R package stepAIC (Venables and Ripley, 2002) was 
used which works by adding and removing variables in a stepwise manner within 
the model to determine which combination most successfully explains the response 
variable. The AIC takes into account redundant or missing data in the model and 
indicates how well the model fits the data. The main caveat of using such 
optimisation methods is that where two variables are mutually dependant it can be 
difficult to determine which ends up in the optimised model. Q-Q plots of the 
standardised residuals were used to assess the suitability of the combined factors 
for modelling higher order structure. The linear nature of the plots demonstrated 
that linear relationships were present between the sequence variables and higher 
order structure, validating the approach (Figure 8.1). 

 

Figure 8.1 Factors affecting chromatin structure for both human and mouse 

models. The Q-Q plot displays the normality of the residuals in human (red) and 

mouse (blue). The linearity of the points suggests that the residuals are normally 

distributed and therefore suitable for multiple linear regression modelling. 

 The results suggest that linear models are reasonably successful in 
explaining structural variation (overall adjusted R-squared: 0.63 for human model, 
0.77 for mouse) with a large number of variables contributing generally modest 
explanatory power (Table 8.1). Most prominent among these variables in both 
species were SINE element density (individual standardised R-squared: 0.252 in 
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human, 0.317 in mouse), gene density (R-squared: 0.111 in human, 0.097 in mouse), 
and GC content (R-squared: 0.138 in human, 0.229 in mouse), while other factors 
were somewhat less influential (Table 8.1). These data extend previous analyses 
(Chapter 6) showing strong pairwise correlations between chromatin structure and 
sequence features, and suggest that repeat content (particularly SINE repeat 
densities) and GC content have strong, independent associations with structure. The 
higher adjusted R-squared value for the mouse chromatin model than in the human 
model suggests that these features provide a better explanation for mouse 
chromatin structure than for human. This seems to be particularly driven by the 
higher contributions of SINE elements and GC content in the mouse model. In 
contrast, other variables such as gene density have a similar influence in both 
models. 
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  Feature Coefficients R squared 
SINE 3.76E-05 0.25 
Genes 5.47E-01 0.11 
GC 3.51E+00 0.14 
H3K27ac 1.66E-02 0.03 
Substitutions -4.04E+00 0.04 
H2AZ 1.45E-02 0.01 
H3K36me3 2.20E-02 0.04 
SNP -2.52E-02 0.02 
H3K4me1 1.01E-02 0.02 

Human 

Simple -7.52E-05 0.00 
SINE 5.73E-05 0.32 
GC 5.80E+00 0.23 
Genes 5.16E-01 0.10 
H2AZ 3.88E-02 0.06 
LTR 1.30E-05 0.00 
Deletions 8.01E+00 0.02 
Simple repeat -5.20E-05 -0.01 
H3K36me3 -1.04E-02 -0.01 
LINE -3.00E-06 0.03 

Mouse 

MRE.seq 7.68E-03 0.01 

 

Table 8.1 Regression coefficients and standardised r-squared values for optimised 

models of human and mouse higher order chromatin structure. R squared values 

indicate how well each chromatin feature describes chromatin structure. If a 

chromatin feature is absent in either species, its influence on the linear model was 

negligible 

8.3. LINEAR MODELLING OF HIGHER ORDER CHROMATIN 

DIVERGENCE 

Attempts to model divergence in higher order chromatin structure in the 
same way as chromatin structure itself were substantially less successful (overall 
adjusted R-squared: 0.10 in human, 0.08 in mouse). Examination of regression 
residuals displayed less linearity in the standardised residuals, particularly in the 
human model, compared to the model for chromatin structure (Figure 8.2). This 
indicates that the residuals contain structure that is not accounted for in the model 
and therefore that there is less suitability within the data for linear modelling 
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(Figure 8.2). The slight “S” shaped curve shown for the residuals of the model 
containing the divergent chromatin data indicate a bimodal distribution of 
residuals.  

 

Figure 8.2 Factors affecting chromatin structure divergence for both human and 

mouse models. The Q-Q plot displays the normality of the residuals in human (red) 

and mouse (blue). 

The most influential explanatory variable for modelling chromatin 
divergence was GC content in both species (individual standardised R-squared: 0.06 
in human, 0.05 in mouse). However, it seems that there are no strong sequence level 
predictors of chromatin divergence among these variables. This is unsurprising 
given the low explanatory power of the overall model.  
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 Feature Coefficients R squared 
GC -1.20E+01 0.06 
H3K27ac 8.50E-02 0.01 
H3K4me1 3.30E-02 0.00 
SNP -4.55E-02 0.00 
OCT4 2.34E-02 0.00 
Simple -1.47E-04 0.00 
DNA -5.55E-05 0.00 
H3K4me3 -3.60E-02 0.00 
H3K36me3 3.74E-02 0.00 

Human 

H2AZ 2.45E-02 0.00 
GC -9.45E+00 0.05 
Simple repeat -1.61E-04 0.01 
Substitutions -1.45E+01 0.01 
LINE 2.44E-05 0.03 
Gene 4.06E-01 0.00 
H2AZ -7.23E-02 0.01 
H3K4me2 7.58E-02 0.00 
H3K27ac -7.10E-02 0.01 
H3K36me3 4.95E-02 0.00 

Mouse 

MeDIP -3.67E-02 0.00 

Table 8.2 Regression coefficients and standardised r-squared values for optimised 

models of human and mouse structural divergence. R squared values indicate 

how well each chromatin feature describes chromatin divergence. If a chromatin 

feature is absent in either species, its influence on the linear model was negligible 

8.4. MODELLING STRUCTURAL DIVERGENCE IN TERMS OF 
SEQUENCE DIVERGENCE 

For the final regression model, examining the correspondence between 
divergence at the levels of sequence and chromatin, a new dataset of differences 
between many sequence features in human and mouse was constructed. These 
included differences in GC density, substitution rate, repeat densities, gene 
densities, histone modification densities and transcription factor binding site 
densities for each orthologous 100 Kb region. These were calculated by simply 
subtracting the mouse from the human sequence level feature value for each 100 Kb 
region. From this, the quantitative relationships between divergence in sequence 
and divergence in higher order structure in human and mouse could be directly 
examined. If changes in GC content or repeat densities drive structural change we 
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would expect to see this reflected in the new model. However, this exercise offered 
only a modest increase in the fit of a model to chromatin divergence (individual 
standardised R-squared: 0.10) over the previous model of chromatin divergence 
discussed above (Table 2).  

Feature Coefficients R squared 
∆LINE -2.94E-05 0.03 
∆H3K27ac 8.72E-02 0.02 
∆H3K4me3 -4.73E-02 0.00 
∆H2AZ 3.58E-02 0.01 
∆Simple repeat 2.27E-04 0.02 
∆SINE 3.81E-05 0.01 
∆GC -4.36E+00 0.00 
∆Gene density 6.67E-01 0.00 
∆OCT4 2.73E-02 0.00 
∆NANOG -2.97E-02 0.00 

Table 8.3 Regression coefficients and standardised r-squared values for models of 

divergence in orthologous DNA sequence features, represented by ∆, and 

chromatin structural divergence. 

It can be concluded that the sequence features measured in the current 
investigation provide reasonable accuracy to predict higher order structure in both 
human and mouse. This is particularly true for GC content and specific repeat 
densities and shows that sequence level features and chromatin environments can 
be closely associated. This is expected given the previously reported associations of 
chromatin domains with mutational bias and the insertion preferences of repeat 
elements. On initial inspection, the results might also seem to suggest that structural 
divergence is most strongly associated with base composition. However chromatin 
divergence occurs within a particular spectrum of chromatin structure, so such 
results may be a reflection of higher order structure itself, rather than divergence. 
When measures of divergence in sequence features between the two species were 
explicitly included in the modelling there were no strong, convincing associations. 
For both regression models for chromatin divergence, the low R squared values 
meant that the explanatory power of the model was weak, implying that divergence 
in chromatin structure and genomic sequence are largely uncoupled.
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9. Chapter 9: Discussion 

Chapter 9  

Discussion 
	
  

9.1. DIVERGENT CHROMATIN IS RELATIVELY RARE IN THE 

GENOME  

Until now, the degree of structural divergence between different mammalian 
species had not been measured. It has been previously established that relationships 
exist between different facets of higher order chromatin structure. For example large 
multi-megabase regions that co-ordinately replicate late in the cell cycle have been 
correlated to regions positioned at the periphery of the nucleus (Ryba et al., 2010). In 
addition, there is correspondence between regions with similar replication timing 
profiles and clusters of spatial proximity, reported in a Hi-C study (De and Michor, 
2011). There is also evidence of conservation across species when measuring the 
same aspect of structure. Human and mouse replication timing profiles have been 
shown to be conserved, along with the stability of domain boundaries between 
similar cell types (Ryba et al., 2010). In a similar vein, there is a striking similarity 
between patterns of nuclear lamina interactions and spatial positioning between 
mouse and human ESCs, although there is evidence of some cell type specificity 
when examining conservation across different cell types (Meuleman et al., 2013). 
However, the quantitative extent and mechanisms of structural divergence between 
species had not been formally investigated prior to this study. One of the main focal 
points of this investigation was to carry out a comprehensive assessment of the level 
of agreement across all these heterogeneous datasets and, if any, the extent of 
divergent between different human and mouse cell types. The analyses presented 
extend the studies discussed so far and demonstrate the same signal across diverse 
datasets from studies that set out to observe nominally different aspects of 
structural organisation in many different embryonic cell types. It can be concluded 
that most measurable aspects of chromatin are remarkably well conserved across 
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the vast majority of the detectably orthologous genome, this is in spite of differences 
between species, cell types and experimental methods used.  

Structural divergence was investigated by using a conservative approach 
which required consistent evidence of divergence between species over all cell types 
and all structural datasets assayed. It was found that divergent chromatin is 
relatively rare in the mammalian genome, representing 10.22% of orthologous 100 
Kb genomic regions examined and encompassing over 170 Mb and including many 
hundreds of human and mouse genes. This suggests that structural divergence has 
played a major role in the evolution of many loci occupying these unusually 
divergent genomic regions. Many of the regions identified form unexpectedly large 
(>400 Kb) tracts of divergent chromatin, and were non-randomly distributed 
between and within chromosomes, and this clustering appears particularly 
pronounced at human subtelomeric regions. Across all types of divergent region 
clustering examined, the divergent regions of embryonic chromatin identified are 
consistently enriched for genes active in vertebrate development. These include 
homeodomain gene clusters, which have been implicated in evolutionary 
innovations to vertebrate developmental programmes, suggesting that selection 
may have modulated their regulation during evolution via alterations to chromatin. 
Specifically, HoxD clusters, important for limb development, have been previously 
shown to be within a ‘regulatory archipelago’ where expression can be tissue 
specific suggesting that the spatial conformation of loci may change as a result of 
interactions between promoters and enhancers, resulting in the creation of cell-type 
specific patterns of gene expression and organization (Montavon et al., 2011). 
Additionally, different levels of H3K27me3, important for the regulation of HoxD 
via polycomb targeting complexes, have been established across the developing 
limb. This indicates that different levels of chromatin compaction and enhancer-
gene colocalisation are present across the developing limb (Williamson et al., 2012). 
The results from this study are consistent with this as developmental loci appear to 
be some of the most dynamic and most divergent across mammals. Olfactory 
receptors were also enriched in divergent structures; they are known to have tightly 
regulated expression patterns during development in mouse cells and are therefore 
dependent upon repressive chromatin structures (Magklara et al., 2011). This 
suggests that some repressive environments seen in mouse, but not in human, may 
have evolved as part of the regulatory landscape. Recent work has shown that there 
is a high degree of cell type specificity of olfactory receptor expression, where foci of 
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olfactory receptor genes are often found on the borders of heterochromatic regions. 
Cell type specificity is reported to be tightly regulated by higher order chromatin 
reorganisation and association to the nuclear lamina, which ensures only one 
olfactory receptor allele per cell, can be expressed (Clowney et al., 2012). So it seems 
that higher order chromatin reorganisation is critical for the tissue-specific 
regulation of some developmental gene expression programs.  

9.2. THE MECHANISMS OF STRUCTURAL DIVERGENCE 

The biological mechanisms underlying divergence in higher order chromatin 
structure remain unknown. Changes in the diversity or abundance of relatively 
rapidly evolving ncRNAs, which can mediate chromatin remodelling between cell 
types (Guttman and Rinn, 2012), could provide a molecular basis for divergence. 
However, given our present ignorance about the universe of ncRNAs this is a 
hypothesis for future work. Also the strong sequence-level correlates of human 
chromatin structure (Prendergast et al., 2007), and the unusual, lineage specific 
shifts in GC content seen here, suggest it is possible that sequence divergence 
underlies some degree of chromatin divergence. There is a strong association 
between mutation rate and higher order chromatin structure, such that higher 
mutation rates are found within more closed, gene poor, late replicating domains. 
This may reflect differences in the accessibility of some structures to the cellular 
repair machinery, or differences in their propensities to mutation itself. The fact that 
human-mouse substitution rate and SNP density show the same negative 
relationship to higher order chromatin indicates that similar mutational biases 
across 100 million years of evolution are still present. Consistent correlations have 
been observed between sequence divergence and nucleosome occupancy in studies 
of medaka fish (Sasaki et al., 2009), yeast (Teytelman et al., 2008) and human 
(Prendergast and Semple, 2011) such that nucleosome free regions undergo less 
sequence divergence that occupied regions and there is evidence that this reflects 
the action of selection (Semple and Taylor, 2009). This suggests that multiple 
structural levels can alter the mutation rates undergone by underlying DNA. 
However, the links between higher order and lower order chromatin structure and 
sequence divergence remain unclear. Compositional biases have previously been 
shown at multiple facets of the genome and genome organisation. GC rich regions 
are significantly enriched in genic regions, regulatory sites and open, accessible 
areas of chromatin (Gilbert et al., 2004). Nucleosomes have been shown to 
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preferentially associate with localised GC rich regions of DNA (Tillo and Hughes, 
2009) and nucleosome positioning may be maintained by a balance of GC base pair 
gaining substitutions maintained by selection (Prendergast and Semple, 2011). 
Again, GC content has been shown to be one of the major correlates of chromatin 
structure in this investigation, underlining its importance across all the hierarchical 
layers of chromatin organisation. There have been no studies of how mutational 
bias related to nucleosome occupancy is related to the differences in mutation 
among higher order structures examined here. 

One of the most striking features of all genomic features examined, whether 
based upon sequence or chromatin, was that the vast majority showed strong and 
significant correlations with higher order chromatin structure in both human and 
mouse. These observations were examined further by linear regression modelling. 
SINE repeat densities and DNA base composition were found to be the most 
important variables when defining chromatin structure. It may be relevant that 
SINE retrotransposons have recently been found at the boundaries of higher order 
chromatin domains, indicating that they may have a role in establishing the 
topological domain structure of the genome (Dixon et al., 2012). There were also 
generalised shifts in SINE and LINE repeat elements in human divergent chromatin 
although this could not be confirmed as an important aspect of chromatin 
divergence by linear modelling. Consistent with this, it has recently been suggested 
that transposon element derived repeat sequences, such as SINEs, are responsible 
for nearly half of all accessible chromatin regions, containing the majority of primate 
specific regulatory sequences (Jacques et al., 2013). There was also some evidence 
for the enrichment of ncRNAs in divergent chromatin structure in both human and 
mouse genomes. It is increasingly apparent that vertebrate genomes contain a large 
number of long non-coding RNA genes (lincRNAs) that are important for gene 
regulation. These have also recently been shown to be spread in a lineage specific 
manner by retrotransposon activity implying that the regulatory networks in which 
lincRNA genes act may be rapidly diverging between species (Kapusta et al., 2013). 
However, the lack of complete knowledge of lincRNAs in both human and mouse 
genomes mean that exploration of the link between lincRNAs and structural 
divergence must await further data. 

It was not possible to link divergence in higher order structures to a variety 
of sequence level and locus level chromatin variables using linear modelling, and 
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the models constructed using such variables had low explanatory and predictive 
power. Overall, there was no convincing evidence for structural divergence driven 
by divergence in the underlying DNA sequence. However, there is clear evidence of 
particular patterns of sequence level divergence within particular chromatin 
structures. It is possible that divergent regions encounter altered mutational spectra 
as they assume a new conformation, giving rise over evolutionary time to the strong 
associations seen between chromatin structure and sequence level divergence. 

9.3. LOWER ORDER AND HIGHER ORDER DIVERGENCE 

In spite of data presented here, it is possible that fluctuations in locus level 
chromatin features such as histone modifications evolve in concert with structural 
divergence, but substantially more research is needed to examine this further. Locus 
level chromatin structure is known to have strong relationships DNA sequence and 
higher order structure. For example, LADs are linked with higher levels of 
H3K9me2 (Kind et al., 2013). Activating histone marks, H3K4me3 and H3K36me3 
are known to be enriched in genomic regions that replicate early in the cell cycle 
(Hiratani et al., 2008). The two different structural compartments defined by Hi-C 
analyses also have opposing marks such that the open chromatin compartment is 
enriched for active histone marks, and the closed chromatin compartment was 
enriched for repressive histone marks, such as H3K27me3 (Lieberman-Aiden et al., 
2009). H3K27me3 is needed to ensure compact chromatin environments for gene 
silencing (Eskeland et al., 2010). It may also be relevant that larger scale variation in 
chromatin structure within the mammalian genome is often associated with 
alterations in the spectrum of histone modifications at a region (de Wit and van 
Steensel, 2009), and OR gene clusters are now known to possess an unusual 
signature of histone modifications involving the molecular hallmarks of constitutive 
heterochromatin (Magklara et al., 2011). It is therefore possible that divergence in 
chromatin domains during evolution is caused by alterations in the constellations of 
histone modifications present. Although this was not seen in the linear model in 
Chapter 8 but this may be due to the low predictive power of the model. Recent 
comparative analysis have compared the extent of conservation across histone 
marks in three different species (Xiao et al., 2012), but as of yet, levels of divergence 
of histone modifications and locus level divergence compared to higher order 
divergence has not been measured. Using the same three-way (human, mouse and 
pig) dataset a similar analysis was set up to define conservation and divergence 
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across lower order features in order to compare findings directly to higher order 
structure and divergence. However it was clear that the widespread conservation 
seen for higher order chromatin structure is not matched by similar patterns of 
conservation in locus level chromatin features. This analysis may be improved in 
the future by focusing on particular genes or promoters present in divergent higher 
order chromatin to see if the patterns of epigenomic features present at divergent 
genes/promoters are different to those in conserved.  

9.4. IMPLICATIONS OF DIVERGENT CHROMATIN STRUCTURE 

This investigation was the first study to comprehensively and quantitatively 
investigate the degree of mammalian higher order structural divergence in the 
emerging field of epigenomic research. Epigenomics in the form of chromatin 
biology has long been an important area of science, central to genomic regulation 
and function. The ENCODE project consortium has stated that 80% of the genome is 
functional, a much higher figure than previously thought given the vast non-coding 
sequences in the genome (Dunham et al., 2012). This remains a controversial topic, 
with some researchers suggesting this to be evolutionarily impossible (Niu and 
Jiang, 2013) and may rest on the definition of functionality used. It can be certain, 
however, that the full functionality of the genome can only be realised in the context 
of chromatin structure. The flood of new high-resolution genome-wide data from 
projects such as ENCODE will undoubtedly prompt many further comparative 
studies of chromatin structure. The investigation also has important links to 
emerging medical research. As chromatin and nuclear organization is known to 
affect regulation it is not surprising that defects in higher-order chromatin and 
chromosome organization cause disease. For example, open chromatin regions have 
been identified within pancreatic cells (Gaulton et al., 2010) that harbour active 
regulatory elements. A type 2 diabetes–associated SNP has been found within a 
region of allele-specific open chromatin and shows allele-specific enhancer activity, 
which may suggest a potential disease mechanism (Gaulton et al., 2010). Histone 
modification profiles have been used to map regulatory elements in different cell 
types and have been used to analyse a wide variety disease SNPs in enhancers 
(Ernst et al., 2011). Chromatin state profiles such as these can be used to predict 
target genes whose expression may be affected by disease associated SNPs and 
therefore aid discovery of disease mechanisms. Chromatin structure is already well 
established as an area of study in cancer biology with DNA methylation and histone 



Discussion 

 135 

modifications as the most well researched chromatin features that differ between 
normal cells and tumour cells in humans (Sharma et al., 2010). Aberrant DNA 
methylation causing gene silencing has been thought to be a mechanism for cancer 
cell survival (De Carvalho et al., 2012), however other studies have shown that this 
is not the major contributor and that the mechanisms might be more complex 
(Sproul et al., 2012). It is thought that unstable regulation could be at the centre of 
some cancer processes which then drives tumour growth (Pujadas and Feinberg, 
2012). Recent studies have also found a dominant influence of higher order 
chromatin structures in shaping the mutational landscape of cancer genomes (De 
and Michor, 2011). So it is possible that anomalies in higher order chromatin 
structure, identified in comparative studies, may be useful indicators for cancer 
research. 

9.5. FUTURE RESEARCH 

There is extensive scope for this research to be extended with the addition of 
new higher resolution datasets. One of the main caveats to the comparative analysis 
carried out here is the inability to assign lineage specificity to chromatin divergence 
defined between human and mouse. Lineage specificity of DNA features such as 
indels and fluctuations in base composition can be readily discovered by using 
three-way analyses of genome-wide sequence alignment data, using the dog 
genome as an outgroup for example. Locus level chromatin structure features such 
as histone modifications, DNA methylation and transcription factor binding sites 
are also increasingly mapped genome-wide in a range of different species due to the 
emergence of ChIP-seq, MeDIP-seq and other high throughput sequencing 
techniques. This has enabled lineage specific comparative epigenomic analyses such 
as those carried out by Xiao et al (2012). Aspects of higher order chromatin structure 
are also now studied using high throughput methods, most notably Hi-C, revealing 
the importance of domain level chromatin architecture. For example, the discovery 
of topological domains of higher order chromatin structure categorised by high 
frequencies of intra-domain interactions but infrequent inter-domain interactions 
(Dixon et al., 2012). These domains have been further characterised by developing 
algorithms that can classify these domains further and associate chromatin domains 
with other chromatin level and sequence level features (Hu et al., 2013). 
Development of this sort of algorithm could further augment the investigations 
carried out here. Higher order structure mapped in an outgroup species such as pig 
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or dog would enable the designation of lineage specificity to divergent chromatin 
i.e. whether the divergence had occurred in the rodent or primate lineage. Lineage 
specific aspects of DNA might then be related to lineage specific chromatin 
divergence adding a new dimension to understanding the co-evolution of DNA 
sequence and the epigenome.  
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10. Appendix 

Appendix 
Appendix 10.1 Full details of the 159 human large divergent domains and 160 

mouse large divergent domains.

Human    Mouse   
Chr Start End SAM  Chr Start End SAM 
chr1 2800000 3199999 5.04  chr1 107400000 107799999 -3.99 
chr1 81400000 81799999 -5.36  chr1 92000000 92399999 5.52 
chr1 115100000 115699999 5.80  chr10 114000000 114399999 -4.14 
chr1 115900000 116999999 5.31  chr10 124700000 125199999 -5.15 
chr1 178700000 179399999 4.92  chr10 27000000 27399999 -4.69 
chr10 6400000 7099999 -6.53  chr10 69600000 70199999 5.50 
chr10 14700000 15399999 -5.09  chr11 46600000 46999999 -4.89 
chr10 60800000 61599999 5.50  chr11 54000000 54699999 5.47 
chr10 91900000 92299999 -5.26  chr11 66600000 66999999 4.38 
chr10 100800000 101399999 4.38  chr11 86700000 87199999 5.16 
chr10 113700000 114199999 5.07  chr11 89000000 89399999 4.57 
chr10 115200000 116199999 6.03  chr12 111100000 111499999 4.30 
chr10 123800000 124599999 6.73  chr12 120200000 120799999 -6.73 
chr10 126900000 127699999 6.29  chr12 59000000 59499999 -5.05 
chr10 131200000 132299999 4.96  chr13 13700000 14599999 -5.03 
chr11 5900000 6699999 -5.48  chr13 48100000 48499999 5.22 
chr11 12700000 13799999 4.87  chr13 85400000 85999999 -4.09 
chr11 17900000 18799999 5.35  chr13 89800000 90199999 -4.53 
chr11 43700000 44199999 4.81  chr14 11200000 11699999 -4.77 
chr11 112300000 113299999 4.70  chr14 32600000 33499999 4.19 
chr12 59500000 60099999 -5.15  chr14 64800000 65199999 6.55 
chr12 72500000 72899999 -4.14  chr14 71100000 71499999 4.74 
chr12 78800000 79499999 -6.94  chr14 72600000 73099999 -5.10 
chr12 106100000 107199999 5.19  chr15 29200000 29699999 -4.89 
chr13 44400000 44999999 4.57  chr16 41900000 42299999 -5.42 
chr13 49600000 50099999 -5.15  chr17 52100000 52599999 -5.00 
chr13 60200000 60799999 -4.75  chr17 78200000 78599999 -6.65 
chr13 60900000 61399999 -4.28  chr18 15600000 16299999 -4.60 
chr13 111900000 112799999 6.42  chr19 35400000 35899999 -5.26 
chr14 31900000 32899999 5.85  chr19 55000000 55399999 5.07 
chr14 38400000 38899999 -5.05  chr2 116600000 116999999 4.28 
chr14 88500000 89199999 4.37  chr2 131500000 131899999 5.29 
chr14 95300000 95999999 5.35  chr2 139000000 139399999 -5.29 
chr14 101600000 101999999 4.30  chr2 93600000 93999999 4.81 
chr15 35000000 35899999 -5.36  chr3 102500000 102999999 5.80 
chr15 38100000 38599999 4.28  chr3 149100000 149499999 -5.36 
chr15 55200000 56999999 5.78  chr3 25000000 25599999 -5.24 
chr15 69700000 70699999 5.27  chr3 63200000 63599999 -4.40 
chr16 48300000 49199999 4.74  chr4 153800000 154199999 5.04 
chr16 50700000 51399999 5.02  chr5 142500000 143099999 6.46 
chr16 54000000 55499999 5.34  chr5 19200000 19599999 -5.33 
chr16 66500000 66899999 -4.31  chr5 42000000 42399999 -4.18 
chr16 73900000 74299999 4.59  chr5 64800000 65199999 4.95 
chr17 9100000 9699999 5.50  chr5 75200000 75699999 4.43 
chr17 10400000 10899999 4.38  chr5 82100000 82499999 -5.11 
chr17 54400000 54799999 4.57  chr6 100000000 100499999 5.54 
chr17 56800000 57499999 5.16  chr6 25600000 26299999 -4.16 
chr18 4100000 4899999 -6.01  chr6 49700000 50199999 -5.29 
chr18 20300000 21799999 -5.70  chr6 64000000 64399999 -4.52 
chr18 24500000 25099999 -4.60  chr6 97400000 97799999 4.97 
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chr18 59700000 60099999 -3.99  chr7 53800000 54399999 5.35 
chr18 73700000 74699999 5.53  chr8 106700000 107099999 -4.31 
chr18 76300000 77899999 5.77  chr8 110100000 110499999 4.59 
chr19 30200000 31199999 4.82  chr8 30000000 30399999 -4.96 
chr19 32500000 33199999 4.81  chr8 36400000 36799999 -4.64 
chr2 17400000 17899999 -5.90  chr9 102900000 103299999 4.67 
chr2 36200000 36599999 -6.65  chr9 91800000 92199999 -5.07 
chr2 63200000 64299999 -5.93  chr1 79100000 79699999 -5.12 
chr2 71900000 72599999 6.01  chr10 50100000 50999999 -5.80 
chr2 76400000 77599999 -4.82  chr10 53100000 53799999 -4.52 
chr2 154100000 154599999 -4.43  chr11 21100000 21999999 -5.93 
chr2 157600000 158199999 -5.19  chr11 36400000 36899999 -4.47 
chr2 166200000 166999999 -5.34  chr11 67600000 68099999 5.50 
chr2 167800000 169099999 -5.48  chr12 11300000 11799999 -5.90 
chr2 200800000 201399999 -5.03  chr13 37500000 37999999 4.62 
chr2 224200000 224699999 -5.12  chr13 56100000 56699999 5.32 
chr2 237400000 237799999 5.52  chr13 90800000 91299999 -4.37 
chr2 239600000 241999999 5.80  chr13 91700000 93099999 -4.75 
chr20 4400000 4799999 5.29  chr14 19200000 19799999 -6.44 
chr20 12700000 13099999 -5.29  chr14 87700000 88199999 -4.28 
chr20 19500000 20199999 5.28  chr16 30500000 30999999 5.60 
chr20 41600000 42599999 4.35  chr16 75000000 75499999 -4.79 
chr20 51000000 51599999 4.69  chr18 47800000 48299999 -5.08 
chr3 17600000 18299999 -5.04  chr19 14300000 14799999 4.32 
chr3 18600000 18999999 -5.00  chr19 43300000 43799999 4.38 
chr3 23200000 23799999 -6.44  chr2 162300000 163099999 4.35 
chr3 60500000 60899999 -4.77  chr2 3000000 3599999 -5.09 
chr3 62500000 63099999 -4.41  chr2 53700000 54199999 -4.43 
chr3 69400000 69799999 4.97  chr2 57400000 57899999 -5.19 
chr3 72200000 72799999 5.54  chr3 137300000 137799999 5.94 
chr3 75900000 76499999 -4.79  chr3 22800000 23399999 -4.87 
chr3 115400000 115799999 -5.42  chr4 15500000 16099999 -5.50 
chr3 126700000 127999999 4.47  chr4 23600000 24099999 -4.95 
chr3 133300000 133699999 4.67  chr5 14300000 14799999 -4.80 
chr3 146200000 146599999 -5.07  chr6 4800000 5499999 4.13 
chr3 148700000 149299999 -5.30  chr6 55700000 56199999 -4.73 
chr3 154900000 155299999 -4.40  chr6 62800000 63599999 -4.13 
chr3 172700000 173599999 -4.95  chr7 36300000 36899999 4.81 
chr3 173700000 174199999 -5.24  chr8 11800000 12499999 6.42 
chr3 175800000 176299999 -4.87  chr8 89200000 89899999 4.74 
chr3 190700000 192099999 -5.10  chr9 72100000 73199999 5.78 
chr3 193200000 194199999 4.75  chr9 79500000 79999999 -5.61 
chr3 194300000 194799999 5.60  chr1 158300000 158899999 4.92 
chr4 13400000 13799999 -4.18  chr1 57400000 58099999 -5.03 
chr4 16600000 17399999 -5.32  chr11 34800000 35399999 4.78 
chr4 23900000 24999999 -4.53  chr12 105700000 106299999 5.35 
chr4 38200000 38699999 4.95  chr12 99500000 100099999 4.37 
chr4 54600000 55299999 4.43  chr13 68700000 69399999 -4.69 
chr4 62800000 63199999 -5.11  chr13 77200000 77999999 -5.80 
chr4 89600000 90799999 -6.00  chr14 13300000 13899999 -4.41 
chr4 93000000 93699999 -4.13  chr14 76900000 77499999 4.57 
chr4 94100000 94499999 -4.52  chr14 87000000 87599999 -4.75 
chr4 100500000 101099999 5.94  chr15 23900000 24499999 -5.09 
chr4 147300000 148099999 4.57  chr17 11900000 12699999 6.13 
chr4 182600000 183299999 -5.23  chr17 51200000 51799999 -5.04 
chr5 7100000 7899999 -4.69  chr17 70000000 70699999 -6.01 
chr5 12200000 12799999 -4.89  chr18 82700000 83499999 5.53 
chr5 18300000 18899999 -5.09  chr19 19200000 19799999 -4.74 
chr5 37900000 38899999 4.59  chr2 145300000 145899999 5.28 
chr5 73100000 73799999 4.73  chr2 168900000 169499999 4.69 
chr5 78200000 79399999 -4.68  chr2 27100000 28099999 5.34 
chr5 80000000 80899999 -4.75  chr3 25700000 26699999 -4.95 
chr5 81300000 81799999 -4.37  chr4 27600000 28499999 -4.29 
chr5 82400000 82899999 -4.53  chr6 21200000 21799999 -4.75 
chr5 86100000 86599999 -4.09  chr6 40100000 40799999 -4.41 
chr5 87000000 88399999 -5.86  chr6 51500000 52199999 5.78 
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chr5 93300000 93999999 -5.80  chr6 84100000 84699999 6.01 
chr5 116200000 116699999 -5.08  chr7 137700000 138399999 6.73 
chr5 130500000 131499999 5.47  chr7 140400000 141099999 6.29 
chr5 134600000 135299999 5.32  chr8 80500000 81199999 4.57 
chr5 146700000 147499999 -5.22  chr1 14400000 15499999 -4.71 
chr5 156000000 156399999 -4.89  chr1 93600000 95199999 5.80 
chr5 166600000 167099999 -4.47  chr10 108200000 108899999 -6.94 
chr5 168200000 168899999 4.78  chr12 53100000 53899999 5.85 
chr6 6700000 7199999 4.62  chr13 98100000 98799999 4.73 
chr6 19500000 19999999 5.22  chr2 10600000 11299999 -6.53 
chr6 75800000 76399999 -5.61  chr2 113800000 114499999 -5.36 
chr6 94300000 94999999 -4.29  chr2 65600000 66299999 -5.34 
chr6 97900000 98399999 -4.95  chr4 6100000 6999999 -5.23 
chr6 100600000 101499999 -5.80  chr5 52000000 52899999 -4.53 
chr6 114200000 114999999 -4.87  chr6 57700000 60799999 -6.06 
chr6 119000000 119699999 -4.52  chr6 8100000 8899999 -4.58 
chr6 129100000 129599999 -4.69  chr8 49700000 50399999 -5.23 
chr6 160800000 162099999 6.13  chr8 91100000 91799999 5.02 
chr6 163200000 164299999 4.85  chr10 35800000 36799999 -4.87 
chr6 168200000 170899999 8.85  chr15 6800000 7699999 4.59 
chr7 4100000 4999999 6.46  chr16 29500000 30399999 4.75 
chr7 7500000 8499999 -4.58  chr18 43400000 44199999 -5.22 
chr7 20100000 20699999 -6.73  chr19 56300000 57099999 6.03 
chr7 24200000 24799999 -5.29  chr5 44900000 45699999 -5.32 
chr7 26400000 27199999 5.78  chr6 88300000 89299999 4.47 
chr7 31500000 31999999 -4.73  chr7 112200000 112999999 -5.48 
chr7 78200000 78599999 -5.33  chr7 144000000 144899999 4.96 
chr7 82500000 82999999 -4.80  chr9 49200000 50199999 4.70 
chr7 94500000 95299999 4.13  chr10 83500000 84399999 5.19 
chr7 119900000 120499999 -4.75  chr15 58000000 59199999 4.53 
chr7 124400000 125099999 -4.16  chr17 10100000 10999999 4.85 
chr7 141100000 141899999 -4.41  chr17 12900000 15699999 7.40 
chr8 8600000 8999999 -4.64  chr18 80300000 81499999 5.77 
chr8 9800000 10199999 6.55  chr3 101300000 102199999 5.31 
chr8 21400000 21799999 4.74  chr6 80100000 81299999 -4.82 
chr8 35000000 35399999 -4.96  chr7 119800000 120799999 4.87 
chr8 59300000 60099999 -5.23  chr7 38100000 38999999 4.82 
chr8 72400000 73699999 -4.71  chr9 60900000 61799999 5.27 
chr8 90800000 91399999 -5.50  chr2 67100000 68299999 -5.48 
chr8 124500000 126099999 4.53  chr13 93500000 94599999 -4.68 
chr9 76500000 77099999 -4.74  chr13 83400000 84999999 -5.86 
chr9 82100000 82599999 4.32  chr16 27100000 28399999 -5.10 
chr9 136600000 138699999 5.25  chr8 94100000 95299999 5.34 
     chr18 11600000 12999999 -5.70 
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Appendix 10.2 The full list of significant functional gene enrichments and 

annotation terms within the 1719 divergent human and mouse structural regions.  

Species Divergence Enrichment Description Genes p-value FDR 

Human 
Human closed/ 
Mouse open IPR001827 

Homeobox Protein, Antennapedia 
Type, Conserved Site 10 4.80E-07 7.33E-04 

Human 
Human closed/ 
Mouse open CYTOBAND CYTOBAND 18q23 6 5.63E-06 7.52E-03 

Human 
Human closed/ 
Mouse open GO:0003002 Regionalization 21 8.65E-06 1.50E-02 

Human 
Human closed/ 
Mouse open CYTOBAND CYTOBAND 6q27 6 3.11E-05 4.15E-02 

Human 
Human closed/ 
Mouse open CYTOBAND CYTOBAND 2q37.3 9 3.28E-05 4.38E-02 

Human 
Human open/ 
Mouse closed CYTOBAND CYTOBAND 11p15.4 15 1.70E-10 2.17E-07 

Human 
Human open/ 
Mouse closed GO:0007606 

Sensory Perception Of Chemical 
Stimulus 21 2.50E-09 4.15E-06 

Human 
Human open/ 
Mouse closed GO:0050877 Neurological System Process 41 1.42E-07 2.36E-04 

Human 
Human open/ 
Mouse closed CYTOBAND CYTOBAND 10p13 8 3.47E-07 4.44E-04 

Human 
Human open/ 
Mouse closed GO:0007186 

G-Protein Coupled Receptor Protein 
Signaling Pathway 36 3.81E-07 6.34E-04 

Human 
Human open/ 
Mouse closed GO:0007608 Sensory Perception Of Smell 16 7.79E-07 1.30E-03 

Human 
Human open/ 
Mouse closed IPR000725 Olfactory Receptor 15 1.31E-06 1.89E-03 

Human 
Human open/ 
Mouse closed IPR017452 GPCR, Rhodopsin-Like Superfamily 24 2.46E-06 3.56E-03 

Human 
Human open/ 
Mouse closed GO:0004984 Olfactory Receptor Activity 15 2.67E-06 3.83E-03 

Human 
Human open/ 
Mouse closed IPR000276 7TM GPCR, Rhodopsin-Like 24 2.83E-06 4.09E-03 

Human 
Human open/ 
Mouse closed CYTOBAND CYTOBAND 7q35 7 4.72E-06 6.04E-03 

Human 
Human open/ 
Mouse closed PIRSF800006 

Rhodopsin-Like G Protein-Coupled 
Receptors 24 5.98E-06 7.12E-03 

Human 
Human open/ 
Mouse closed GO:0007600 Sensory Perception 27 7.90E-06 1.31E-02 

Human 
Human open/ 
Mouse closed GO:0050890 Cognition 29 1.33E-05 2.21E-02 

Mouse 
Human closed/ 
Mouse open GO:0003002 Regionalization 32 1.96E-09 3.39E-06 

Mouse 
Human closed/ 
Mouse open GO:0009952 Anterior/Posterior Pattern Formation 27 2.29E-09 3.97E-06 

Mouse 
Human closed/ 
Mouse open GO:0007389 Pattern Specification Process 36 5.25E-09 9.09E-06 

Mouse 
Human closed/ 
Mouse open CYTOBAND CYTOBAND 2 45.0 CM 9 1.29E-08 1.89E-05 

Mouse 
Human closed/ 
Mouse open CYTOBAND CYTOBAND 19 D2 12 3.31E-08 4.84E-05 

Mouse 
Human closed/ 
Mouse open IPR001356 Homeobox 30 3.48E-08 5.46E-05 

Mouse 
Human closed/ 
Mouse open IPR012287 Homeodomain-Related 30 5.95E-08 9.34E-05 

Mouse 
Human closed/ 
Mouse open GO:0009954 Proximal/Distal Pattern Formation 11 6.60E-08 1.14E-04 

Mouse 
Human closed/ 
Mouse open IPR017970 Homeobox, Conserved Site 29 1.00E-07 1.57E-04 

Mouse 
Human closed/ 
Mouse open IPR001827 

Homeobox Protein, Antennapedia 
Type, Conserved Site 11 1.45E-07 2.27E-04 
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Mouse 
Human closed/ 
Mouse open GO:0043565 Sequence-Specific DNA Binding 48 2.58E-07 3.80E-04 

Mouse 
Human closed/ 
Mouse open GO:0048598 Embryonic Morphogenesis 37 7.13E-07 1.23E-03 

Mouse 
Human closed/ 
Mouse open GO:0001501 Skeletal System Development 31 2.08E-06 3.61E-03 

Mouse 
Human closed/ 
Mouse open GO:0048705 Skeletal System Morphogenesis 20 3.88E-06 6.71E-03 

Mouse 
Human closed/ 
Mouse open CYTOBAND CYTOBAND 2 C3|2 45.0 CM 6 1.03E-05 1.50E-02 

Mouse 
Human closed/ 
Mouse open CYTOBAND CYTOBAND 17 A2 6 2.61E-05 3.81E-02 

Mouse 
Human closed/ 
Mouse open GO:0003700 Transcription Factor Activity 53 3.01E-05 4.44E-02 

Mouse 
Human open/ 
Mouse closed GO:0007606 

Sensory Perception Of Chemical 
Stimulus 39 2.19E-18 3.58E-15 

Mouse 
Human open/ 
Mouse closed GO:0007608 Sensory Perception Of Smell 34 5.80E-16 9.10E-13 

Mouse 
Human open/ 
Mouse closed IPR000725 Olfactory Receptor 33 7.94E-16 1.15E-12 

Mouse 
Human open/ 
Mouse closed GO:0004984 Olfactory Receptor Activity 33 2.41E-15 3.45E-12 

Mouse 
Human open/ 
Mouse closed IPR017452 GPCR, Rhodopsin-Like Superfamily 47 3.73E-15 5.58E-12 

Mouse 
Human open/ 
Mouse closed GO:0007186 

G-Protein Coupled Receptor Protein 
Signaling Pathway 58 4.64E-15 7.65E-12 

Mouse 
Human open/ 
Mouse closed IPR000276 7TM GPCR, Rhodopsin-Like 44 3.50E-13 5.18E-10 

Mouse 
Human open/ 
Mouse closed GO:0007600 Sensory Perception 42 1.26E-12 2.07E-09 

Mouse 
Human open/ 
Mouse closed GO:0050890 Cognition 43 1.12E-11 1.83E-08 

Mouse 
Human open/ 
Mouse closed GO:0050877 Neurological System Process 49 1.34E-10 2.20E-07 

Mouse 
Human open/ 
Mouse closed CYTOBAND CYTOBAND 13 C3 11 1.29E-09 1.78E-06 

Mouse 
Human open/ 
Mouse closed CYTOBAND CYTOBAND 7 E3 13 1.82E-07 2.52E-04 

Mouse 
Human open/ 
Mouse closed PIRSF003152 

G Protein-Coupled Olfactory 
Receptor, Class II 19 2.78E-07 3.43E-04 

Mouse 
Human open/ 
Mouse closed IPR015493 Protocadherin Beta 6 2.81E-07 4.15E-04 

Mouse 
Human open/ 
Mouse closed GO:0007166 

Cell Surface Receptor Linked Signal 
Transduction 63 6.49E-07 1.06E-03 

Mouse 
Human open/ 
Mouse closed CYTOBAND CYTOBAND 6 A3.1 7 8.00E-07 1.11E-03 

Mouse 
Human open/ 
Mouse closed CYTOBAND CYTOBAND 18 B3 12 8.48E-07 1.17E-03 

Mouse 
Human open/ 
Mouse closed PIRSF800006 

Rhodopsin-Like G Protein-Coupled 
Receptors 30 1.27E-06 1.57E-03 

Mouse 
Human open/ 
Mouse closed IPR008253 Marvel 7 1.47E-05 2.17E-02 

Mouse 
Human open/ 
Mouse closed GO:0016021 Integral To Membrane 137 3.56E-05 4.60E-02 
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Appendix 10.3 The full list of significant functional gene enrichments and 

annotation terms within the cell type/ species specific divergent structural 

regions.  

Divergence Enrichment Description Gene p-value FDR 

INTERPRO 
IPR007237:CD20/IgE Fc receptor beta 
subunit 8 4.66E-08 7.31E-05 

GOTERM_CC_FAT GO:0000786~nucleosome 11 6.31E-07 8.73E-04 

GOTERM_BP_FAT 
GO:0065004~protein-DNA complex 
assembly 12 1.52E-06 2.68E-03 

CYTOBAND 11q12.2 10 5.22E-06 7.42E-03 
GOTERM_BP_FAT GO:0006334~nucleosome assembly 11 5.95E-06 1.04E-02 
GOTERM_BP_FAT GO:0031497~chromatin assembly 11 5.95E-06 1.04E-02 

GOTERM_BP_FAT 
GO:0034728~nucleosome 
organization 12 6.63E-06 1.16E-02 

Species 
Difference 
ESC 

GOTERM_CC_FAT GO:0032993~protein-DNA complex 12 9.33E-06 1.29E-02 
CYTOBAND 1q42.13 12 1.90E-10 2.73E-07 
CYTOBAND 1p36.33 14 3.68E-10 5.30E-07 
INTERPRO IPR012287:Homeodomain-related 38 2.06E-09 3.31E-06 
CYTOBAND 14q11 12 2.80E-09 4.03E-06 
CYTOBAND 10q23.31 11 6.40E-08 9.21E-05 
INTERPRO IPR001356:Homeobox 34 1.06E-07 1.70E-04 
INTERPRO IPR017970:Homeobox, conserved site 34 1.26E-07 2.02E-04 
CYTOBAND 19q13.11 10 1.87E-07 2.69E-04 
SMART SM00389:HOX 34 2.16E-07 2.77E-04 
CYTOBAND 7p15-p14 10 4.81E-07 6.93E-04 

GOTERM_BP_FAT 
GO:0048598~embryonic 
morphogenesis 38 2.39E-06 4.28E-03 

GOTERM_MF_FAT 
GO:0003700~transcription factor 
activity 79 3.02E-06 4.64E-03 

GOTERM_MF_FAT 
GO:0043565~sequence-specific DNA 
binding 58 6.97E-06 1.07E-02 

CYTOBAND 5q31 15 1.31E-05 1.89E-02 

GOTERM_BP_FAT 
GO:0031328~positive regulation of 
cellular biosynthetic process 61 1.39E-05 2.50E-02 

GOTERM_BP_FAT 
GO:0048562~embryonic organ 
morphogenesis 23 1.44E-05 2.58E-02 

GOTERM_BP_FAT 
GO:0009891~positive regulation of 
biosynthetic process 61 1.89E-05 3.39E-02 

Species 
Difference 
NPC 

CYTOBAND 9q22.33 7 3.41E-05 4.90E-02 
CYTOBAND 14q11 12 1.16E-10 1.63E-07 
CYTOBAND 7p15-p14 10 3.70E-08 5.19E-05 
INTERPRO IPR012287:Homeodomain-related 30 4.22E-08 6.62E-05 
INTERPRO IPR001356:Homeobox 28 2.41E-07 3.77E-04 
INTERPRO IPR017970:Homeobox, conserved site 28 2.79E-07 4.36E-04 
SMART SM00389:HOX 28 9.03E-07 1.13E-03 

INTERPRO 
IPR001827:Homeobox protein, 
antennapedia type, conserved site 10 3.25E-06 5.10E-03 

Cell Type 
Differences 
Human 

GOTERM_BP_FAT 
GO:0048812~neuron projection 
morphogenesis 21 3.11E-05 5.46E-02 

CYTOBAND 11 A4 15 7.45E-08 1.16E-04 Cell Type 
Differences 
Mouse CYTOBAND 3 A1 11 3.16E-06 4.91E-03 
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Appendix 10.4 The full list of significant function gene enrichments and annotation 

terms within the 159 large divergent domains.  

File Cluster Category Term Genes P-value FDR 
chr11 5900000 6699999 16 CYTOBAND CYTOBAND 11p15.4 15 3.74E-28 2.05E-25 
chr2 239600000 241999999 68 CYTOBAND CYTOBAND 2q37.3 8 1.30E-17 4.97E-15 

chr7 26400000 27199999 141 IPR001827 

Homeobox Protein, 
Antennapedia Type, 
Conserved Site 7 1.54E-16 4.44E-14 

chr3 133300000 133699999 84 CYTOBAND CYTOBAND 3q22.1 6 1.24E-14 2.81E-12 
chr7 26400000 27199999 141 CYTOBAND CYTOBAND 7p15-P14 6 1.16E-13 4.41E-11 
chr5 78200000 79399999 111 CYTOBAND CYTOBAND 5q14.1 6 2.20E-13 1.37E-10 
chr18 20300000 21799999 49 CYTOBAND CYTOBAND 18q11.2 6 3.34E-13 2.27E-10 
chr5 146700000 147499999 121 CYTOBAND CYTOBAND 5q32 5 1.45E-11 4.57E-09 

chr7 26400000 27199999 141 GO:0048562 
Embryonic Organ 
Morphogenesis 7 6.27E-12 7.55E-09 

chr7 26400000 27199999 141 GO:0009952 
Anterior/Posterior Pattern 
Formation 7 8.06E-12 9.70E-09 

chr7 26400000 27199999 141 IPR001356 Homeobox 7 2.39E-11 1.04E-08 
chr7 26400000 27199999 141 IPR017970 Homeobox, Conserved Site 7 2.49E-11 1.08E-08 
chr7 26400000 27199999 141 IPR012287 Homeodomain-Related 7 3.06E-11 1.33E-08 

chr7 26400000 27199999 141 GO:0048568 
Embryonic Organ 
Development 7 2.11E-11 2.55E-08 

chr7 26400000 27199999 141 GO:0048704 
Embryonic Skeletal System 
Morphogenesis 6 3.94E-11 4.74E-08 

chr7 26400000 27199999 141 GO:0003002 Regionalization 7 4.64E-11 5.58E-08 

chr11 5900000 6699999 16 PIRSF038651 
G Protein-Coupled 
Olfactory Receptor, Class I 7 2.76E-10 1.96E-07 

chr7 26400000 27199999 141 GO:0048706 
Embryonic Skeletal System 
Development 6 1.77E-10 2.13E-07 

chr7 26400000 27199999 141 GO:0007389 
Pattern Specification 
Process 7 1.86E-10 2.24E-07 

chr7 26400000 27199999 141 GO:0048598 Embryonic Morphogenesis 7 4.63E-10 5.57E-07 
chr16 66500000 66899999 42 IPR008253 Marvel 5 1.10E-09 7.09E-07 

chr7 26400000 27199999 141 GO:0048705 
Skeletal System 
Morphogenesis 6 1.11E-09 1.33E-06 

chr17 10400000 10899999 45 CYTOBAND CYTOBAND 17p13.1 5 1.51E-08 5.76E-06 
chr7 94500000 95299999 145 CYTOBAND CYTOBAND 7q21.3 4 3.06E-08 1.17E-05 

chr7 26400000 27199999 141 IPR017995 
Homeobox Protein, 
Antennapedia Type 4 3.34E-08 1.45E-05 

chr7 26400000 27199999 141 GO:0043565 
Sequence-Specific DNA 
Binding 7 3.29E-08 1.57E-05 

chr10 115200000 
116199999 12 CYTOBAND CYTOBAND 10q25.3 4 4.21E-08 1.83E-05 

chr11 5900000 6699999 16 GO:0007608 
Sensory Perception Of 
Smell 8 1.43E-08 2.02E-05 

chr3 126700000 127999999 83 CYTOBAND CYTOBAND 3q21.3 4 5.51E-08 3.74E-05 
chr11 5900000 6699999 16 IPR000725 Olfactory Receptor 7 6.10E-08 5.77E-05 

chr11 5900000 6699999 16 GO:0007606 
Sensory Perception Of 
Chemical Stimulus 8 6.09E-08 8.59E-05 

chr11 5900000 6699999 16 GO:0050877 
Neurological System 
Process 12 8.61E-08 1.21E-04 

chr7 26400000 27199999 141 GO:0001501 
Skeletal System 
Development 6 1.07E-07 1.29E-04 

chr7 94500000 95299999 145 PIRSF016435 Paraoxonase 3 1.29E-06 1.29E-04 

chr16 54000000 55499999 41 IPR003893 
Iroquois-Class 
Homeodomain Protein 3 4.26E-07 1.34E-04 

chr11 43700000 44199999 19 CYTOBAND CYTOBAND 11p11.2 4 3.57E-07 1.36E-04 

chr7 26400000 27199999 141 GO:0043009 
Chordate Embryonic 
Development 6 1.30E-07 1.57E-04 
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chr7 26400000 27199999 141 GO:0009792 

Embryonic Development 
Ending In Birth Or Egg 
Hatching 6 1.37E-07 1.65E-04 

chr7 26400000 27199999 141 GO:0003700 
Transcription Factor 
Activity 7 3.52E-07 1.68E-04 

chr7 94500000 95299999 145 IPR002640 Arylesterase 3 5.11E-07 2.94E-04 
chr11 5900000 6699999 16 GO:0004984 Olfactory Receptor Activity 7 2.83E-07 3.17E-04 
chr14 95300000 95999999 33 CYTOBAND CYTOBAND 14q32.13 3 1.47E-06 3.32E-04 

chr7 94500000 95299999 145 GO:0004063 
Aryldialkylphosphatase 
Activity 3 4.22E-07 3.35E-04 

chr7 94500000 95299999 145 GO:0004064 Arylesterase Activity 3 8.44E-07 6.69E-04 
chr7 141100000 141899999 148 CYTOBAND CYTOBAND 7q31.3-Q32 3 1.69E-06 7.37E-04 
chr11 5900000 6699999 16 GO:0050890 Cognition 10 5.60E-07 7.90E-04 
chr16 66500000 66899999 42 GO:0006935 Chemotaxis 5 8.79E-07 8.71E-04 
chr16 66500000 66899999 42 GO:0042330 Taxis 5 8.79E-07 8.71E-04 

chr11 5900000 6699999 16 IPR017452 
GPCR, Rhodopsin-Like 
Superfamily 8 9.52E-07 9.00E-04 

chr11 5900000 6699999 16 IPR000276 7TM GPCR, Rhodopsin-Like 8 1.01E-06 9.50E-04 

chr7 26400000 27199999 141 GO:0030528 
Transcription Regulator 
Activity 7 4.24E-06 2.03E-03 

chr5 130500000 131499999 119 CYTOBAND CYTOBAND 5q31.1 3 1.18E-05 2.68E-03 
chr11 5900000 6699999 16 GO:0007600 Sensory Perception 9 2.38E-06 3.36E-03 

chr7 26400000 27199999 141 GO:0006355 

Regulation Of 
Transcription, DNA-
Dependent 7 3.48E-06 4.19E-03 

chr7 26400000 27199999 141 GO:0051252 
Regulation Of RNA 
Metabolic Process 7 3.95E-06 4.75E-03 

chr16 66500000 66899999 42 GO:0005125 Cytokine Activity 5 6.40E-06 5.41E-03 
chr7 141100000 141899999 148 IPR007960 Mammalian Taste Receptor 3 1.02E-05 6.12E-03 
chr7 141100000 141899999 148 GO:0008527 Taste Receptor Activity 3 9.84E-06 7.98E-03 
chr16 66500000 66899999 42 GO:0007626 Locomotory Behavior 5 1.04E-05 1.04E-02 
chr7 26400000 27199999 141 GO:0006350 Transcription 7 9.09E-06 1.09E-02 
chr7 26400000 27199999 141 GO:0003677 DNA Binding 7 2.37E-05 1.14E-02 

chr7 94500000 95299999 145 GO:0019439 
Aromatic Compound 
Catabolic Process 3 1.67E-05 1.64E-02 

chr11 5900000 6699999 16 PIRSF800006 
Rhodopsin-Like G Protein-
Coupled Receptors 8 2.66E-05 1.89E-02 

chr16 66500000 66899999 42 CYTOBAND CYTOBAND 16q22.1 4 3.19E-05 1.99E-02 

chr7 94500000 95299999 145 IPR011042 
Six-Bladed Beta-Propeller, 
TolB-Like 3 4.68E-05 2.69E-02 

chr3 193200000 194199999 92 CYTOBAND CYTOBAND 3q29 3 5.23E-05 2.87E-02 

chr7 26400000 27199999 141 PIRSF002612 
Homeotic Protein Hox 
A5/D4 3 9.63E-05 4.61E-02 

chr7 26400000 27199999 141 GO:0045449 Regulation Of Transcription 7 4.06E-05 4.89E-02 
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Divergence of Mammalian Higher Order Chromatin
Structure Is Associated with Developmental Loci
Emily V. Chambers, Wendy A. Bickmore, Colin A. Semple*

MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom

Abstract

Several recent studies have examined different aspects of mammalian higher order chromatin structure – replication timing,
lamina association and Hi-C inter-locus interactions — and have suggested that most of these features of genome
organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not
been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of
any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and
organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive
assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions
confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast
majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type
specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent
evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and
encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are
unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also
relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these
regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate
development, suggesting important roles for structural divergence in the evolution of mammalian developmental
programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order
chromatin structure has played important roles during evolution.
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Introduction

Chromatin structure plays critical roles in genome functions
such as transcription, replication and repair, it can mediate human
disease processes [1] and is implicated in ageing [2]. The primary
level of eukaryotic chromatin structure involves the DNA sequence
wrapped around nucleosomes and the covalent modification of
histones within the nucleosomes. Interactions between nucleo-
somes give rise to secondary structures, which may include a
30 nm chromatin fibre, and which vary in their degree of
compaction across the genome [3]. Multiple higher levels of
topological organisation, further structuring the genome, are also
known to exist but their precise nature and their inter-relationships
are the subjects of intense study and debate [4].
Genome-wide data relating to primary levels of chromatin

structure (nucleosome occupancy, histone modifications etc) in a
variety of mammalian cell types are abundant, due to the ability to
profile these chromatin features by combinations of MNase
digestion, chromatin immunoprecipitation and high-throughput
sequencing [5]. However, the diversity of higher order structure
across the genome is less well studied. An early genome-wide
survey of higher order chromatin structure in the human genome

discovered an undulating landscape of domains from hundreds of
kilobases to many megabases in size; some relatively accessible or
‘open’ and others adopting a spectrum of more ‘closed’ condensed
structures [3]. The most open domains corresponded to regions of
relatively high gene density, replicating early in the cell cycle, and
they may create an environment that facilitates transcriptional
activation [6]. In contrast, more closed regions were relatively late
replicating and gene poor. Replication timing profiles measured
across the genome in multiple human and mouse cell types have
also revealed the presence of domains on a similar scale, ranging
from a few hundred kilobases to several megabases, that show
coordinated replication timing during the cell cycle [7,8]. Other
studies have examined different facets of higher order chromatin
structure and organisation. Genomic regions interacting with
tagged nuclear lamina components, and hence considered to be
located at the nuclear periphery, have been mapped across the
human and mouse genomes [9,10]. These lamina-associated
domains (LADs) are relatively late replicating, gene poor regions
from 40 Kb to 15 Mb in length and harbour genes with low
transcriptional activity [10]. Overall LADs encompass around
40% of the genome and their locations and extent appear to be
largely similar over cell types [10]. More recently, 3C-type
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physical contact maps, based on cross-linking frequencies, have
been used to infer the spatial proximities and 3D- architecture
between all possible 1 Mb segments of the human genome [11–
13]. A familiar pattern of two spatial compartments within the
nucleus also emerged from these data. One compartment
composed of regions of gene rich, open, actively transcribed
chromatin, and another containing regions with opposing features.
These broad patterns emerge at the genome wide level, in spite of
many regions that adopt cell type specific structures.
Remarkably, given the diverse methodologies used to investi-

gate them, significant correlations have been found among some of
these coarse-grained facets of higher-order genome organisation
and function. There is a strong overlap between the sequences that
replicate together during the same temporal window of S phase,
and those sequences that can be captured together by Hi-C
[12,14], consistent with the idea that genomic regions in close
proximity tend to replicate at similar times and thereby define
important features of chromosome organisation. These may well
equate to the replication foci visible in the nucleus [15]. It has long
been known that globally late replication tends to occur at the
nuclear periphery [16,17] and this has been substantiated by more
detailed analysis using fluorescence in situ hybridisation (FISH) of
specific loci [7,14]. There is also a correlation between late
replicating chromosomal domains and LADs [10] but it is not
absolute and the relationship tends to breakdown at LAD borders
and at particular genes. Moreover, such correlations present a
moving target as genomic patterns of replication timing domains
and LADs change upon differentiation and re-programming
[8,10]. We also lack a comprehensive view of how genome-wide
chromatin structure varies across cell types. Although cell type
specific structures are clearly present, it seems that the higher
order domains reflected in replication timing and Hi-C data
remain largely unchanged over a variety of cell types and
throughout the cell cycle [18,19]. Key questions in chromatin
structure and nuclear organisation therefore relate to the ontology
of the various structural domains that are known – namely how
are they related and to what extent are they all aspects of the same
entity?
Until recently there has been a lack of comparable, genome-

wide chromatin structure data across species and comparative
studies have therefore generally examined a single feature of

chromatin structure in isolation. Ku et al [20] studied genome-
wide Polycomb binding sites and histone modification data in
mouse and human embryonic stem (ES cells) within orthologous
promoter regions. They stressed the widespread conservation of
chromatin states between species, with more than half of
promoters showing the same state. Similarly, regions across the
orthologous mammalian genome that are enriched for common
histone modifications appear to be broadly conserved between
human and mouse [21]. In contrast, sequence-specific transcrip-
tion factor binding patterns appear to evolve rapidly in mammals,
with binding events in a particular tissue shared only 10–22% of
the time between human, mouse and dog genomes [22]. Higher
order chromatin structures are generally assumed to show much
less divergence, although detailed studies are rare. The numbers
and size distributions of LADs in human lung fibroblasts are
reported to be similar to those seen in mouse embryonic
fibroblasts, as well as several other mouse cell types [10]. However
it is not clear how the extent of divergence between cell types
compares with divergence between species, or which genomic
regions are involved in either. Replication timing appears
generally conserved between human and mouse within large
genomic regions showing conserved synteny, but notably less so
than between orthologous human and mouse promoters [14]. This
conservation has been maintained in spite of the numerous large-
scale genome rearrangements separating the two species [23]. It
also appears that the similarity in replication timing between
species is heavily dependent on the particular cell type examined
[14]. On the other hand, Hi-C data has suggested that the mouse
and human genomes are separated into largely conserved,
megabase sized interaction domains, that are similar between cell
types [24].
The studies mentioned above provide complementary views of

higher order chromatin structure. Each shows that the mamma-
lian genome is organised into large, discrete domains of higher
order chromatin with opposing properties (levels of expression and
accessibility, spatial positioning, and replication timing). These
domains appear to be broadly similar across the different cells that
have been examined, although many regions across the genome
show cell type specific structure [8,10,14]. However, the actual
extent to which these datasets intersect, and how they relate to one
another across cell types and species, is poorly understood.
Similarly, the genomic loci underlying divergence in chromatin
structure between species, and the mechanisms underlying
divergence, are unknown. Here we collate a large number of
diverse mouse and human datasets to provide the most
comprehensive overview of higher order chromatin structure in
mammals to date. We undertake a systematic study of all
orthologous regions in the mammalian genome and document
the extent of conservation in higher order chromatin structure
between cell types and during evolution. Our analysis identifies
large tracts of structurally divergent chromatin, unevenly distrib-
uted across the genome, and containing intriguing enrichments of
particular classes of genes.

Results/Discussion

We conducted our analyses on 36 genome-wide datasets that
measure three aspects of higher order chromatin structure and
function in mouse and human: replication timing (RT) [7,14],
nuclear lamina association (LA) [9,10] and genome-wide inter-
locus contact preferences (Hi-C) [11,13]. The datasets were all
generated using embryonic or pluripotent cells, with the exception
of the Hi-C data (see Methods). All probe-based data were
mapped to the latest genome assemblies using UCSC whole

Author Summary

The mammalian genome is organised into large multi-
megabase domains defined by their physical structure, or
higher order chromatin structure. Although these struc-
tures are believed to be well conserved between species,
there have been few studies attempting to quantify such
conservation, or identify divergent structures. We find that
regions showing clear evidence of divergence in higher
order chromatin structure encompass at least 10% of the
mammalian genome, and include many hundreds of genes
whose regulation may have been affected. At least some
of these genes have been directly implicated in evolu-
tionary innovations to vertebrate developmental pro-
grammes, so divergent regions may have been dispropor-
tionately important during evolution. In addition, we show
that divergent regions occur in large stretches of more
than 2 Mb in the human genome and are enriched
towards telomeres at the ends of human chromosomes.
This may reflect shifts in the nuclear organisation and
regulatory functions of chromatin domains between
human and mouse.

Higher Order Chromatin Divergence
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genome alignment data (hg19 and mm9), averaged into consec-
utive non-overlapping 100 Kb regions and collated by their
genomic coordinates separately for human and mouse. Ortholo-
gous 100 Kb regions were identified conservatively by requiring
reciprocal best match overlaps, both at the probe level and
100 Kb region level, between human and mouse genomes (see
Methods). This resulted in 16,820 100 Kb regions represented in
all higher order structure datasets in both mouse and human
genomes. These orthologous regions encompass 54% of the
human genome and 62% of the mouse genome. The distributions
of the higher order data were examined to ensure global
normalisation and scaling was appropriate and quantile normal-
isation was imposed across all datasets (see Methods). Prior to
normalisation all primary datasets showed bimodal distributions
with two peaks representing two distinct populations of higher
order structure across the mammalian genome (Figure S1),
consistent with previous observations [3,8,10,11]. We then
addressed two related questions. Firstly, how well do these diverse
datasets agree quantitatively? And secondly, what fraction of the
mammalian genome can confidently be identified as structurally
divergent?

Widespread conservation of mammalian higher order
chromatin structure
Significant correlations were expected between replication

timing (RT), lamin association (LA) and interlocus contact patterns
(Hi-C) as they appear to reflect somewhat overlapping aspects of
higher order chromatin structure [10,14,23]. The degree of

agreement overall among the 36 datasets is indeed strong and
significant (Spearman’s Rho: 0.38 to 0.98, p,1e-16). In spite of
differing experimental procedures, platforms, cell types, and
species, moderate to strong positive correlations are ubiquitously
observed (Figure 1). The highest agreement is usually observed
between similar cell types from the same species, even across
experimental platforms. For instance mouse RT data for a variety
of ES and induced pluripotent stem cell (iPSC) types show strong
correlations (Rho: 0.7–0.9, p,2.2e-16) with LAD data from
mouse ES cells, and together they form a coherent cluster in the
correlation matrix (Figure 1). However, there are also interesting
exceptions to this rule, such as the human embryonic fibroblast LA
data. Although this dataset shows the weakest correlations to all
other datasets, the best agreement is to the mouse fibroblast LA
and RT data and not to other human cell types. The reason for
this may lie in cell cycle variation: ES and iPS data may be
strongly influenced by the fact that these cells are almost entirely in
S phase, whereas fibroblasts divide slowly and are mainly in G0/
G1. In any case it seems that certain aspects of higher order
structure in particular cell types, such as association with the
nuclear periphery in fibroblasts, have been more strongly
conserved than others during evolution.
Striking evidence of structural conservation across the mam-

malian genome is evident when examining contiguous stretches of
orthologous regions (Figure 2). This suggests that many aspects of
higher order chromatin structure have been conserved in
embryonic cell types, over the ,80 million years since the
divergence of rodents and primates. However apparent divergence

Figure 1. Global correlation matrix of higher order chromatin datasets. The heatmap and dendrogram show the relationships among 36
chromatin structure datasets (Spearman’s rho: 0.38 to 0.98, p,1e-16). Datasets are labelled according to the experimental platform of origin: light
grey =mouse RT, light pink = human RT, dark grey =mouse LA, medium pink= human LA, dark pink =human Hi-C.
doi:10.1371/journal.pcbi.1003017.g001
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in higher order chromatin structure between species is also evident
in specific regions. This is most simply seen as loci demonstrating a
strong, consistent difference in mean normalised structure between
the two species across all of the available datasets (see represen-
tative regions depicted in Figure 2). Although there are high
correlations between many of these datasets, reflecting similar
overall trends in structure as we traverse chromosomes, this can
mask substantial variation between datasets at the level of the
absolute normalised structural values for a given 100 Kb region
(Figure 2). The critical question is therefore, which 100 Kb regions
vary between species to an unexpected degree, given the extent of
variation seen among all datasets? This is the question we address
below using a novel divergence metric based upon permutations of
the original data.
We systematically sought genomic regions showing strong and

consistent structural divergence between species, across all cell
types, using non-parametric tests for each orthologous 100 Kb
region (see Methods). The resulting p values were conservatively
thresholded to ensure a low false discovery rate (FDR) and robust
results. We defined two broad categories of regions based upon
their levels of divergence: divergent regions (generating significant
p-values passing the FDR threshold) and relatively static non-
divergent regions (nonsignificant) (Figure 2; Figure S2). Viewed in
this way divergence is necessarily bipolar, containing regions with
mean structure values that are relatively open in human but closed
in mouse, and vice versa. Such estimates of structural divergence
are likely to be inherently conservative, since they depend upon
strong consistent evidence for divergence over multiple cell types
and experimental platforms. The divergent regions were found to
constitute 10.22% (1,719 out of 16,820) of the orthologous regions
examined, and possessed a similar (Mann-Whitney test in human
p= 0.17, in mouse p= 0.52) protein-coding gene density to non-
divergent regions. Human gene densities in nondivergent regions
(2.34 per 100 Kb on average) were not significantly different from

either human open divergent regions (2.09 per 100 Kb; Mann-
Whitney p= 0.45), or human closed divergent regions (2.43 per
100 Kb; Mann-Whitney p= 0.72). Similarly, mouse gene densities
in nondivergent regions (1.77 per 100 Kb) were not significantly
different from either mouse open divergent regions (1.91 per
100 Kb; Mann-Whitney p= 0.97), or mouse closed divergent
regions (1.33 per 100 Kb; Mann-Whitney p= 0.51). The distri-
bution of divergent regions was far from uniform over the genome,
with several chromosomes showing higher than expected densities
(see Methods; Chi-squared test in human p= 4.34e-06, in mouse
p= 1.19e-03). For instance, human chromosomes 5 and 10 were
found to have a 50% excess of divergent regions, while
chromosomes 21 and 22 were found to have a greater than 60%
depletion. This raises the question: does the distribution of
divergent regions within chromosomes reflect larger tracts of
divergent chromatin?

Divergent chromatin is clustered within chromosomes
Cursory examination of these data (e.g. the regions depicted in

Figure 2), suggests that a number of divergent 100 Kb regions are
clustered in the genome at particular loci. We formally investi-
gated the degree of clustering by measuring the length distribution
of consecutive runs of divergent 100 Kb regions observed, relative
to the distribution expected using a permutation strategy (see
Methods). The clustering observed was found to be highly
significant, and we identified 159 unexpectedly large (at least
400 Kb; p,1e-04) clusters of divergent regions with a median size
of 800 Kb (Figure 3; Table S2). The same large orthologous
clusters were detected in human and mouse genomes when the
100 Kb divergent regions in each genome were clustered (Figure
S3), but were not evenly distributed across all chromosomes, for
example human chromosomes 3 and 5 had around twice the
density expected, but in contrast chromosomes 1 and 9 had
around half the density expected. The size distribution of

Figure 2. Specific human and mouse regions show significant divergence in higher-order chromatin structure. Human (pink) and
mouse (grey) higher order chromatin structure across all cell types assayed, shown for two regions of the human genome: chromosome 11p15.2–15.4
(1.2–15 Mb) with the location of an OR gene cluster indicated by an asterisk (A); chromosome 7p14.3–15.3 (24–32 Mb) with the location of the HOXA
gene cluster indicated by an asterisk (B). In each case the chromosome ideogram indicates the region expanded in the heatmaps with a square
bracket. Consecutive, orthologous 100 kb regions are positioned on the y-axis with heatmap colours representing relatively open (blue) and closed
(red) chromatin structures. Regions displaying significantly divergent chromatin structure are highlighted in yellow.
doi:10.1371/journal.pcbi.1003017.g002
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divergence clusters appeared similar to the ES cell chromatin-
mediated regulatory domains (median size 880 Kb) recently
reported in the mouse and human genomes [24], suggesting that
these stretches of divergent chromatin may represent divergent
regulatory domains. We therefore examined the similarity in
domain boundaries between these regulatory domains and the
divergence clusters using a permutation approach (see Methods).
An important caveat is the resolution of these datasets, which

means that all reported domain boundaries are estimates within
tens or hundreds of kilobases. In the human genome the median
distance between the boundaries of divergence clusters and the
nearest ES cell regulatory domain boundaries was 207,852 bp,
which is somewhat less, though not significantly different
(p = 0.054) from the expected median distance given 10,000
permuted datasets (235,581 bp). Similarly, in the mouse genome,
the equivalent median distance was 260,000 bp, which is not

Figure 3. Clustering of divergent chromatin in the human genome. The line plot shows mean normalised human (black) and mouse (red)
higher order chromatin structure values across human chromosomes. Unexpectedly large divergent areas are highlighted in grey. Asterisks indicate
the positions of functionally enriched gene clusters listed in Table 2.
doi:10.1371/journal.pcbi.1003017.g003
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significantly different (p = 0.087) from the expected distance given
10,000 permuted datasets (290,095 bp). We conclude that overall
there is no strong association between divergent regions and these
regulatory domains, which is consistent with most structural
divergence being selectively neutral. We also examined the
correspondence between the divergent clusters and regions known
to be structurally variable during cellular differentiation from ES
cells [7]. Of the 1719 divergent regions, 60 overlapped these
structurally dynamic regions, compared with an expected number
(mean overlaps in 10,000 permutated datasets) of 99.73 which
represents a significant depletion (p,0.013).
The three largest (2.1–2.7 Mb) regions of divergent chromatin

were found to occupy subtelomeric regions of human chromo-
somes 2, 6 and 9 (Figure S4), but in each case the orthologous
mouse regions were long distances (80–100 Mb) from mouse
telomeres. This was found to reflect the distribution of chromatin
divergence across the human genome in general, with unexpected
excesses of divergence towards the ends of some human
chromosomes (Figure S5; Table S3). This excess was most
pronounced within the subtelomeric regions (within 5 Mb of the
ends of each chromosome sequence assembly) of 4 human
chromosomes (1, 2, 13, 18), and was also seen overall for the
human genome (p = 0.016). In contrast most mouse (5 Mb)
subtelomeric regions showed a relative depletion of divergence,
with none showing significant enrichment, and (nonsignificant)
depletion over the mouse genome in general. (No significant
enrichment or depletion was found overall for pericentromeric
regions in either species.) There are well-characterised differences
in the chromatin structures found at human and mouse telomeres,
and mammalian telomere biology appears to have been a focus for
evolutionary adaptation [25]. Subtelomeric regions are known to
be amongst the most rapidly evolving DNA sequences in the
genome and have been subject to extensive divergence recently in
the primate lineage [26]. The current data suggest that the higher
order chromatin structures at some primate subtelomeric regions
have also been subject to dramatic change.
Higher order chromatin structure itself is known to show strong

positive correlations with GC content, such that relatively open
regions are more GC rich and gene dense, and this is also seen
here (Figure 4; Human GC density versus chromatin structure
Spearman’s rho= 0.57, p,2.2e-16; Mouse GC density versus
chromatin structure Spearman’s rho= 0.75, p,2.2e-16). Similar-
ly, the human genome shows greater variability in GC content
overall than in the mouse, consistent with the poor conservation of
mammalian isochore structure in rodents [27]. The current data
allow us to ask, for the first time, whether GC content is also
associated with divergence in higher order structure. Comparison
of the percentage of GC nucleotides between divergent and
nondivergent regions across all orthologous 100 Kb regions shows
intriguing contrasts between the human and mouse genomes
(Figure 4). In the human genome there is a significant shift in
human GC content between divergent and nondivergent regions,
across the entire spectrum of normalised chromatin structure.
Furthermore, this shift is to higher GC content (40.5%) within
divergent human closed regions, and lower GC content (34.9%)
within divergent human open regions, relative to nondivergent
regions (37.5%; human divergent open GC versus human
nondivergent GC Mann-Whitney p,2.2e-16; human divergent
closed GC versus human nondivergent GC Mann-Whitney
p,2.2e-16). Thus the two divergence classes show the opposite
human GC content bias to the expectation e.g. although open
chromatin in the human genome is relatively GC rich (Figure 4),
divergent regions that are open in human actually tend to be GC
poor. These patterns are not seen in the GC content of the mouse

genome, where there is no contradictory shift in the compositional
biases of mouse sequences within divergent regions. Instead mouse
divergent open regions are relatively GC rich (38.7%) and
divergent closed regions are relatively GC poor (33.4%), relative
to nondivergent regions (35.5%). Correspondingly there is no
global shift in mouse GC content between divergent and
nondivergent regions (Figure 4). Thus overall, divergent regions
are consistent with the GC content trends seen in the mouse
genome, but show a complete contrast with the GC trends in the
human genome. The magnitude of the human GC content shift
varies between chromatin categories, as reflected in the varying
separation between divergent and nondivergent regression lines
(Figure 4). Further examination of these data suggests that the
largest shifts are seen for regions towards the extreme ends (i.e.
unusually open or closed) of the spectrum of chromatin structure
categories (Table S1). It is not possible to disentangle cause and
effect using the current data, to establish that changes in GC
content drive structural change or vice versa. It is also not possible
to establish which species has the derived or ancestral chromatin
state. However, these observations do suggest that chromatin
divergence is often associated with unusual shifts in GC content in
the human lineage, which may reflect fluctuations in mutation or
selection during primate evolution.

Chromatin divergence is associated with gene expression
divergence in embryonic cells
If genes within divergent regions have undergone regulatory

divergence we might expect to see some evidence of this in
appropriate expression data. Although perfectly matched expres-
sion data is not available, the present data are mainly derived from
embryonic cell types and previous studies have examined genome-
wide regulatory divergence in human and mouse ES cells. Cai et al
(2010) [28] sought significant differences in time-course expression
patterns between mouse and human ES cells to rigorously measure
regulatory divergence across orthologous genes. They were able to
compile classes of genes showing either conserved regulation or
divergent regulation in either mouse or human. We examined the
distribution of these gene classes across all regions of divergent and
nondivergent chromatin. Although the numbers of genes identified
by Cai et al (2010) [28] that were also present within the
orthologous regions studied here were modest (497 divergent and
126 conserved), we found enrichment (odds ratio: 1.30; Fisher’s
Exact test p = 0.04) of divergently regulated genes within the
100 Kb regions of divergent higher order chromatin reported
here. Genes with conserved regulation were also under-represent-
ed in divergent regions (odds ratio = 0.76; p= 0.331). These
patterns were observed in spite of the fact that the data of Cai et al
(2010) [28] is based upon human and mouse embryonic cell lines
that are not represented in the chromatin data studied here.
Another more recent study of expression divergence between
human and mouse genes, examined expression over a time course
in specialised immune (macrophage) cells induced by exposure to
bacterial lipopolysaccharide, and reported significant results for
larger numbers (186 divergent, 972 conserved) of orthologous gene
pairs [29]. We examined these data in the same way and found no
significant enrichment of divergently regulated genes in divergent
100 Kb regions. Indeed the genes divergently regulated in these
macrophage data showed the opposite trend, and were somewhat
under-represented in regions of divergent chromatin (odds ratio:
0.78; p = 0.46). This suggests that the correspondence between
chromatin divergence and expression divergence is specific to
embryonic cell types.
We also constructed a larger dataset measuring differential

expression between mouse and human ES cells for orthologous
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gene pairs (see Methods), based upon previous RNAseq studies
[30,31]. These data provide a higher coverage dataset consisting of
log fold change measurements for 7,673 gene pairs occurring

within the orthologous 100 Kb regions studied here. This allowed
us to examine the extent of expression divergence within the two
possible bipolar categories of divergent regions, relative to

Figure 4. Chromatin divergence and GC content. Percentage of GC nucleotides within all 16,820 100 Kb orthologous regions across the
spectrum of mean normalised chromatin structure values. The GC content and higher order structure values for human (left panel) are compared
with the GC content and higher order structure values for mouse (right panel). Three classes of regions are shown with their least squares regression
lines: nondivergent (grey), divergent open (blue) and divergent closed (red). Note that the bipolar classification of orthologous divergent regions (see
text) means that human divergent open regions correspond to mouse divergent closed regions, and vice versa.
doi:10.1371/journal.pcbi.1003017.g004

Figure 5. Chromatin divergence and expression divergence. Distributions of log2 fold change (log2(human/mouse expression)) for
orthologous gene pairs within nondivergent regions (grey) and two classes of divergent regions: open in human but closed in mouse (blue), closed
in human but open in mouse (red). For each class the bottom and top of the box show the lower and upper quartiles respectively around the
median, and the width of the notches is proportional to the interquartile range.
doi:10.1371/journal.pcbi.1003017.g005
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nondivergent regions (Figure 5). We found a striking contrast, with
regions open in human but closed in mouse showing a expression
divergence consistent with upregulation of human genes (non-
divergent median log2 fold change: 20.48; divergent: 20.33;
Wilcoxon p= 0.23), while the opposite category (closed in human,
open in mouse) showed evidence of upregulation of mouse genes
(nondivergent: 20.48; divergent: 21.00; Wilcoxon p= 3.41e-06).
This is the pattern of gene expression divergence expected within
divergent regulatory domains conferring a respectively permissive
or repressive environment for transcription of human genes.
Again, these expression data were generated in embryonic cells
similar to, but not identical to those used to derive the chromatin
divergence data. It is important to note that there is a distinction
between the relative bipolar classification of divergent regions
(human open/mouse closed and vice versa) and their absolute
normalised chromatin values. Thus, it is possible for a region that
is relatively open in human and relatively closed in mouse to
possess absolute values consistent with a closed conformation in
both species. One might expect that using such absolute values to
construct more specific divergent region categories might increase
the differences seen (Figure 5). This was indeed the case in spite of
the associated reductions in sample sizes. Regions open in human
but closed in mouse (where the absolute human value . 0 and the
absolute mouse value , 0) showed a stronger expression
divergence consistent with upregulation of human genes (non-
divergent median log2 fold change: 20.48; divergent: 5.03;
Wilcoxon p,2.2e-16), while the opposite category (restricted to
those with absolute human value,0 and absolute mouse value.0)
showed stronger evidence of upregulation of mouse genes
(nondivergent: 20.48; divergent: 24.77; Wilcoxon p.2.2e-16).
These comparisons to expression data provide independent
validation of our methodology and suggest a direct link between

the regions of divergent chromatin identified and the regulation of
resident genes.

Regions of divergent chromatin structure harbour
developmental gene clusters
Using standard enrichment analyses, we identified over-

representation of particular functional classes of genes in the
divergent orthologous regions, and the results establish interesting
themes. The 907 divergent 100 Kb regions relatively open in
human (but closed in mouse) contain 1142 human genes and 757
mouse genes, and both show significant enrichments for multiple
terms associated with olfactory receptors (ORs) at particular loci
(seen as enrichments for genes mapping to particular cytogenetic
bands) (Table 1; Table S2). The mouse genes involved are
disproportionately those located in particular OR gene clusters on
chromosome 7E3 and 6B1-B2.1, while the human genes are
clustered at the orthologous locations at 11p15.4 (Figure 2A) and
7q35 respectively, within extended regions of conserved synteny.
Mouse OR genes have been shown to exhibit tightly regulated
expression patterns during development, dependent upon repres-
sive chromatin structures spanning clusters of OR genes [32],
including histone modifications associated with constitutive
heterochromatin [33]. This raises the intriguing possibility of an
association between divergent higher order chromatin structures
and particular histone modifications. It also suggests that the
repressive, relatively closed higher order chromatin structures
consistently seen at this region of the mouse genome, but not
evident in human cells, could have evolved as part of the
regulatory landscape associated with OR gene cluster evolution in
rodents.
Other enriched terms include those related to a protocadherin

(Pcdh) gene cluster present at 5q31.3 in the human genome, and to

Table 1. The top 5 enriched human and mouse annotation terms for genes within divergent regions of higher order chromatin.

Annotation Divergent regions Term Description Gene # P FDR

Human Human open/Mouse closed CYTOBAND 11p15.4 15 1.70E-10 2.17E-07

GO:0007606 Sensory perception of chemical stimulus 21 2.50E-09 4.15E-06

GO:0050877 Neurological system process 41 1.42E-07 2.36E-04

CYTOBAND 10p13 8 3.47E-07 4.44E-04

GO:0007186 G-protein coupled receptor protein signaling
pathway

36 3.81E-07 6.34E-04

Human Human closed/Mouse open IPR001827 Homeobox protein, antennapedia type 10 4.80E-07 7.33E-04

CYTOBAND 18q23 6 5.63E-06 7.52E-03

GO:0003002 Regionalization 21 8.65E-06 1.50E-02

CYTOBAND 6q27 6 3.11E-05 4.15E-02

CYTOBAND 2q37.3 9 3.28E-05 4.38E-02

Mouse Human open/Mouse closed GO:0007606 Sensory perception of chemical stimulus 39 2.19E-18 3.58E-15

GO:0007608 Sensory perception of smell 34 5.80E-16 9.10E-13

IPR000725 Olfactory receptor 33 7.94E-16 1.15E-12

GO:0004984 Olfactory receptor activity 33 2.41E-15 3.45E-12

IPR017452 GPCR, rhodopsin-like superfamily 47 3.73E-15 5.58E-12

Mouse Human closed/Mouse open GO:0003002 Regionalization 32 1.96E-09 3.39E-06

GO:0009952 Anterior/posterior pattern formation 27 2.29E-09 3.97E-06

GO:0007389 Pattern specification process 36 5.25E-09 9.09E-06

CYTOBAND 2 45.0 cM 9 1.29E-08 1.89E-05

CYTOBAND 19 D2 12 3.31E-08 4.84E-05

doi:10.1371/journal.pcbi.1003017.t001
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the orthologous mouse Pcdh cluster on mouse chromosome 18qB3
(Table S2). Recent work has shown this region adopts distinct
chromatin architectures in different mouse neuronal cell types to
affect Pcdh gene expression and thereby plays critical roles in
establishing neuronal diversity and connectivity during develop-
ment [34]. A third cluster of genes coincides with this class of
divergent regions (open in human, closed in mouse) on mouse
chromosome 8D3 (and human 16q21) and is enriched for genes
encoding MARVEL, a transmembrane domain involved in
membrane apposition. The family of chemokine-like proteins
containing this domain have been implicated in inflammation,
immunity and development but most are not well characterised.
Of the five MARVEL containing genes within the 8D3 divergent
cluster, three are unstudied, but Cmtm2a and Cmtm3 are both
implicated in the proliferation and development of particular
testicular cells [35,36]. The human ortholog of Cmtm3 is present
in the orthologous human divergent region at 16q21 and is a
known tumour suppressor gene that shows frequent inactivation
via chromatin-mediated silencing in several cancers [37].It seems
that developmental gene clusters showing cell type specific
regulation are unexpectedly common at regions displaying

divergent higher order chromatin. Other clusters of genes,
enriched at other divergent regions are also present in the results
but lack sufficient functional annotation to generate significant
enrichment results after multiple testing corrections (Table S2).
The genes within the divergent 812 orthologous human closed

(mouse open) regions contain 1285 human genes and 1102 mouse
genes. These also showed significant enrichment for genomic
regions harbouring particular gene clusters. Both human and
mouse genes in these regions show significant enrichment for
terms associated with developmental genes containing Antenna-
pedia type homeobox domains (IPR001827). The genes involved
are exemplar developmental genes present at the HOXA (human
HOXA1-A7; Figure 2B) and HOXD (human HOXD1-4) clusters.
Both clusters are implicated in multiple cancers and other
disorders, and are tightly regulated via higher order chromatin
domains [38,39]. It is thought that structural divergence within the
chromatin domains harbouring these clusters underlies many
important innovations in the vertebrate body plan [40]. Other,
relatively poorly studied, homeodomain containing genes at other
loci are also present within this class of (human closed, mouse
open) divergent regions (Table S2). Again, it seems that

Table 2. The top 5 enriched human annotation terms for genes within large regions of divergent higher order chromatin.

Cluster Term Description Gene # P FDR

chr11:5900000–6699999 CYTOBAND 11p15.4 15 3.74E-28 2.05E-25

PIRSF038651 G Protein-Coupled Olfactory Receptor, Class I 7 2.76E-10 1.96E-07

GO:0007608 Sensory Perception Of Smell 8 1.43E-08 2.02E-05

GO:0007606 Sensory Perception Of Chemical Stimulus 8 6.09E-08 8.59E-05

IPR000725 Olfactory Receptor 7 6.10E-08 5.77E-05

chr16:54000000–55499999 IPR003893 Iroquois-Class Homeodomain Protein 3 4.26E-07 1.34E-04

IPR001356 Homeobox 3 2.96E-04 9.32E-02

IPR017970 Homeobox, Conserved Site 3 3.00E-04 9.45E-02

IPR012287 Homeodomain-Related 3 3.21E-04 1.01E-01

CYTOBAND 16q11.2-Q13 2 3.88E-04 1.22E-01

chr16:66500000–66899999 IPR008253 Marvel 5 1.10E-09 7.09E-07

GO:0042330 Taxis 5 8.79E-07 8.71E-04

GO:0006935 Chemotaxis 5 8.79E-07 8.71E-04

GO:0005125 Cytokine Activity 5 6.40E-06 5.41E-03

GO:0007626 Locomotory Behavior 5 1.04E-05 1.04E-02

chr7:141100000–141899999 CYTOBAND 7q31.3-Q32 3 1.69E-06 7.37E-04

GO:0008527 Taste Receptor Activity 3 9.84E-06 7.98E-03

IPR007960 Mammalian Taste Receptor 3 1.02E-05 6.12E-03

GO:0050909 Sensory Perception Of Taste 3 9.69E-05 9.20E-02

GO:0007186 G-Protein Coupled Receptor Protein Signaling Pathway 4 2.43E-03 2.28E+00

chr7:26400000–27199999 IPR001827 Homeobox Protein, Antennapedia Type, Conserved Site 7 1.54E-16 4.44E-14

CYTOBAND 7p15-P14 6 1.16E-13 4.41E-11

GO:0048562 Embryonic Organ Morphogenesis 7 6.27E-12 7.55E-09

GO:0009952 Anterior/Posterior Pattern Formation 7 8.06E-12 9.70E-09

GO:0048568 Embryonic Organ Development 7 2.11E-11 2.55E-08

chr7:94500000–95299999 CYTOBAND 7q21.3 4 3.06E-08 1.17E-05

GO:0004063 Aryldialkylphosphatase Activity 3 4.22E-07 3.35E-04

IPR002640 Arylesterase 3 5.11E-07 2.94E-04

GO:0004064 Arylesterase Activity 3 8.44E-07 6.69E-04

PIRSF016435 Paraoxonase 3 1.29E-06 1.29E-04

doi:10.1371/journal.pcbi.1003017.t002
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developmentally regulated genes are over-represented within
regions of divergent chromatin. However, it is worth noting that
the proportion of divergent regions generating significant func-
tional enrichments (that is, those divergent regions possessing the
genes responsible for the functional enrichments seen) is modest
overall, constituting 6% of human and 11% of mouse divergent
regions in total.
Most RNA genes are poorly functionally annotated which

makes analogous enrichment analyses impossible, but we did
examine the densities of the main RNA gene classes (rRNA,
snoRNA, snRNA, miRNA, lincRNA) in structurally divergent
regions. Only the lincRNA class showed significant differences,
with higher densities of both human (divergent mean density: 0.31
genes/Mb; nondivergent mean density: 0.20 genes/Mb; Wilcoxon
p= 1.48e-08) and mouse (divergent mean density: 0.12; non-
divergent mean density: 0.09; Mann-Whitney p= 3.68e-04)
lincRNA genes found in divergent (human closed/mouse open)
regions. These molecules are thought to regulate ES cell
differentiation via the assembly of chromatin complexes and the
establishment of activating or repressive domains [23]. The
present data suggest they may also have played roles in chromatin
divergence.
As expected the large divergence clusters showed similar

patterns of functional enrichments as those discussed above
(Table 2; Table S2). For example, the divergent regions mentioned
already at 11p15.4 (containing an OR gene cluster) and 16q12.2
(containing an IRX gene cluster) were found to extend across
800 Kb and 1.5 Mb respectively. Similarly the divergent region
containing the 7p15.2 HOXA genes was found to encompass
800 Kb, and to include neighbouring lincRNA genes such as
HOTAIRM1 which is active in HOXA regulation during
neurogenesis and differentiation [41]. An additional region at
7q21.3 showing a novel functional enrichment also emerged,
which contains the paraoxonase gene cluster (Table 2), these genes
are imprinted in the mouse genome and exhibit unusual, allele-
specific expression dependent on developmental stage in human
cells [42]. Again, it seems that structural divergence is dispropor-
tionately associated with particular developmental gene clusters,
which follow tightly regulated expression patterns targeting
specific cell types, and are often known to occupy unusual
chromatin environments. Many of these genes have also been
implicated in developmental adaptations during vertebrate evolu-
tion and in human disease processes. This may suggest that regions
of divergent chromatin structure have evolved different chromatin
conformations to facilitate functional divergence at these loci.
However it is not possible to exclude non-adaptive hypotheses, for
example where divergence in chromatin structure is a neutral
consequence of gene family or repeat expansions or other changes
in the underlying genomic sequences. Indeed, since the majority of
divergent regions show no detectable functional enrichments,
selectively neutral divergence appears to be the most likely
scenario in most cases.

Conclusions
Individual studies of various aspects of higher order chromatin

structure have suggested widespread conservation across the
mammalian genome, in spite of many interesting structural
differences between cell types [10,14,23]. The comprehensive
analyses presented here are consistent with this, and demonstrate
the same signal across diverse datasets from studies that set out to
observe nominally different aspects of structural genome organi-
sation in many different embryonic cell types. We conclude that
most measurable aspects of chromatin are conserved across the
vast majority of the detectably orthologous genome. However,

using a conservative approach (requiring consistent evidence of
divergence between species over all cell types and all structural
datasets assayed) we also observe divergent chromatin structure at
10.22% of orthologous 100 Kb genomic regions examined,
encompassing over 170 Mb and including many hundreds of
human and mouse genes. This suggests that structural divergence
has played a major role in the evolution of many loci occupying
these unusual genomic regions. Many of the regions identified
form unexpectedly large tracts of divergent chromatin, nonran-
domly distributed between and within chromosomes, and this
clustering appears particularly pronounced at human subtelomeric
regions. Overall the divergent regions of embryonic chromatin
identified are significantly enriched for genes active in vertebrate
development. These include homeodomain gene clusters, which
have been implicated in evolutionary innovations to vertebrate
developmental programmes, suggesting that selection may have
modulated their regulation during evolution via alterations to
chromatin. Consistent with this we find that genes showing
evidence of regulatory divergence between human and mouse are
over-represented within regions of divergent higher order chro-
matin structure.
The mechanisms underlying divergence in higher order

chromatin structure remain unknown, but one may speculate that
alterations at lower levels of chromatin are likely to be involved.
For example, changes in the diversity or abundance of relatively
rapidly evolving ncRNAs, which can mediate chromatin remod-
elling between cell types [43], could provide a molecular basis for
divergence. Also the strong sequence-level correlates of human
chromatin structure [44,45] and the unusual, lineage specific shifts
in GC content seen here, suggest it is possible that sequence
divergence underlies chromatin divergence. It may also be
relevant that larger scale variation in chromatin structure within
the mammalian genome is often associated with alterations in the
spectrum of histone modifications at a region. For example,
human LADs are reported to show enrichments of H3K9 and
H3K27 methylation [46], and OR gene clusters are now known to
possess an unusual signature of histone modifications involving the
molecular hallmarks of constitutive heterochromatin [33]. It is
therefore possible that divergence in chromatin domains during
evolution is caused by alterations in the constellations of histone
modifications present. However, definitive evidence of the
mechanisms underlying evolutionary divergence in higher order
chromatin structure will require substantial future investigations.

Methods

Higher order chromatin structure data
All cell types and datasets, and their abbreviations are listed in

Table S5. Replication timing data in human and mouse
embryonic cells were obtained from Hiratani et al [7], and Ryba
et al [14] as log2(early relicating/late replicating) values. Nuclear
lamina association data in human and mouse embryonic cells were
obtained from Guelen et al [9] and Peric-Hupkes et al [10]. Both
studies were based upon the DamID technique for labelling
lamina associated sequence, where relative lamina association is
represented by log2(Dam-fusion/Dam-only) values. Finally,
100 Kb window genomic interaction probability matrix eigenval-
ues were defined for human lymphoblastoid cells using Hi-C by
Lieberman-Aiden et al [11]. These values were found to largely
reflect two relatively open and closed nuclear compartments of
higher order chromatin. Although these data were not derived
from embryonic cells it appears that many of the higher order
patterns (as represented by interaction matrix eigenvectors) in Hi-
C datasets are consistent between cell types [11,24]. Re-analysis of
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these interaction data has revealed the presence of systematic
biases that afflict the Hi-C method, obscuring additional, finer
scale structural compartments [12]. Although our analysis only
concerns the course grained, two-compartment division between
open and closed regions (since we use eigenvalues of interaction
matrices not interaction probabilities themselves) we were
concerned that our results might be affected by these biases.
Consequently we examined an independent genomic interaction
map produced for a similar lymphoblastoid cell line using a
modified Hi-C method designed to mitigate the biases inherent in
previous data [13]. When the original [11] interaction data were
substituted with these new, nominally unbiased [13] data we
observed very similar correlations with all other chromatin
structure datasets. We conclude that the biases present in the
Lieberman-Aiden et al [11] dataset have little effect on a course
grained, two compartment classification of the genome based upon
these data, and therefore that our search for structurally divergent
regions is unaffected.

Orthology and divergence
Probe based replication timing and nuclear lamina association

data coordinates were translated to the latest human or mouse
genome assembly coordinates (hg19 and mm9) using reciprocal
liftOver transformations to ensure accurate remapping [47].
Probes failing to map reciprocally to overlapping coordinates
between mouse and human genomes were discarded as unreliable.
For each dataset the structural data values were averaged across
probes into consecutive non-overlapping 100 Kb regions, but
regions represented by fewer than 10 probes were discarded as
potentially unreliable. This allowed comparisons between the
probe based datasets and the Hi-C data, which has a fixed
resolution of 100 Kb. Within each species 100 Kb regions were
collated across datasets where their coordinates overlapped by
50% or more. The result was a set of 24,711 mouse and 28,786
human 100 Kb regions represented by higher order structural
values from multiple datasets. Orthologous 100 Kb regions were
defined as those regions with at least a 50% coordinate overlap
between mouse and human genomes using reciprocal liftOver
transformations. A total of 16,820 100 Kb orthologous regions,
covering 54% of the human genome and 62% of the mouse
genome, were defined in this way. A total of 11,966 human and
7,891 mouse regions, lacking an orthologous mapping using this
protocol, were designated putatively lineage specific regions. As
expected, lineage specific regions were highly enriched for
segmental duplications, repeats and duplicated gene families,
whereas orthologous regions were relatively rich in protein coding
genes [48]. Examination of several techniques revealed that
standard quantile normalisation procedures (R/Bioconductor
limma package) [49] used to normalise across different microarray
experiments were effective across the different experimental
platforms and cell types here, therefore this normalisation
technique was implemented across all structural datasets for all
100 Kb regions (Figure S1; Figure S7). The normalised structural
data and chromosome coordinates for all 16,820 orthologous
regions are provided in Table S6.
Structurally divergent regions were defined as orthologous

100 kb regions that showed a consistent difference in higher order
structural values across human and mouse data. Non-parametric
tests from the SAM package [50], analogous to two class unpaired
t-tests with permutation derived p-values, were used to assess
divergence (R package samr). These tests were developed for
microarray data analysis but are appropriate for other types of
non-microarray derived data [50]. The approach was developed
to identify unusual genes that show a strong and consistent

expression difference between treatments, given many variable
replicate measurements. In the present case we identify unusual
100 Kb regions, showing a strong and consistent difference
between species, given the many variable measurements of
chromatin structure. In both cases the aim is to identify significant
differences between states (treatments, species) for the measured
entities (genes, 100 Kb regions) given a number of inherently
noisy, variable observations. The permutation approach ensures
that the observed variability in the observations is accounted for in
the significance of the test result. Tests were carried out for each
100 Kb orthologous region, with the various normalised structural
values for that region compared between species. 100,000
permutations of the normalised structure dataset were used to
estimate the false discovery rate (FDR), defined in this instance as
the median number of false positive divergent regions expected
(given the permuted datasets), divided by the total number of
divergent regions called. The FDR threshold was set to be
relatively low (FDR=2e-04) to ensure that less than 1 false positive
was expected within the 1719 divergent regions found. The results
are necessarily bipolar with positive and negative divergent regions
called to indicate human open/mouse closed or human closed/
mouse open divergence respectively. Relatively static, nondiver-
gent regions were classed as those with p values that did not pass
the FDR threshold. The mean normalised structure values for
100 Kb regions, over all of the available datasets in a species, were
calculated as a useful guide to trends in structure across
chromosomes and the genome overall.
The 100 Kb detectably orthologous regions defined above

(using a 50% overlap threshold) will necessarily vary in the degree
of similarity they show between species, it was therefore a concern
that this might influence the measurement of structural diver-
gence. Specifically it was important to show that the regions
identified as structurally divergent are not simply those most
poorly aligned between species at the sequence level. On closer
examination the distributions of overlaps (aligned nucleotides
minus gaps) were found to be very similar between structurally
divergent and nondivergent regions, whether viewed in terms of
the human (hg19) genome (divergent overlap mean=0.80,
median = 0.81; nondivergent overlap mean= 0.79, medi-
an = 0.80), or the mouse (mm9) genome (divergent overlap
mean=0.73, median= 0.72; nondivergent overlap mean=0.72,
median = 0.71) sequence assemblies, based upon UCSC whole
genome alignments. We concluded that our estimates of structural
divergence are not a simple reflection of sequence divergence.

Distribution and gene content of divergent regions
We examined the distribution of divergent regions across

chromosomes by comparing the expected numbers, given the
proportion of orthologous 100 Kb regions on each chromosome,
with those observed using chi-squared tests, and identified
chromosomes of interest as those generating standardized resid-
uals.1.96. To define divergence clusters (i.e. clustered groups of
divergent 100 Kb regions) we first identified all consecutive runs of
significantly divergent regions across the orthologous human (and
separately the mouse) genome, and the observed distribution of
their lengths. Consecutive runs were required to maintain the
polarity of divergence (i.e. all regions involved must be either
human open/mouse closed or vice versa). We then permuted the
divergence data among orthologous 100 Kb regions within
chromosomes 10,000 times, and noted the length distributions of
consecutive runs within each permuted genome. The frequency
with which a run of n consecutive divergent 100 Kb regions was
seen in the permuted datasets was taken as an approximate p value
for runs of length n in the observed dataset. Observed runs of
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divergent regions greater than or equal to 400 Kb were never seen
in the permutated data (p,0.0001) and were taken to be
significant divergence clusters. This strategy is likely to be
conservative in detecting large regions of divergent chromatin as
it does not allow for gaps (e.g. regions that may have marginally
failed to reach significance in the test for divergence above) within
runs of divergent regions. 159 large divergent regions were
discovered at the same, orthologous locations in the human and
mouse genomes (Table S3). An additional 1.4 Mb divergent
region (at chr18: 11600000–12999999) was found in the mouse
genome that lacked a reciprocally orthologous human region.
Enrichment or depletion of 100 Kb divergent regions within

subtelomeric or centromeric regions was assessed using a circular
permutation strategy [51] to preserve the observed degree of
clustering, over 10,000 permuted datasets. Each permuted dataset
was generated by shifting the locations of all divergent regions on
each chromosome by a random number (less than the length of the
chromosome). Regions assigned a shifted position greater than the
final base pair of the chromosome are reassigned to the start of
that chromosome (plus the number of bases by which they
exceeded the final base pair). Thus the permutations regard
chromosomes as circularised, and thereby maintain the degree of
clustering seen among the observed divergent regions. The
number of permuted datasets, n, possessing a number of divergent
regions within subtelomeric (or centromeric) regions greater than
or equal to the observed number were noted, and used to calculate
approximate p-values (n/10,000) for enrichment. The significance
of depletion was calculated analogously, according to the number
of permuted datasets possessing the same or fewer divergent
regions. Subtelomeric regions were defined as regions within
1 Mb, 5 Mb and 10 Mb of the first and final base pairs of the
chromosome assemblies, and within the final base pair of the
(acrocentric) mouse assemblies. Centromeric regions were defined
as regions within 1 Mb, 5 Mb and 10 Mb of the first base pair of
mouse and human chromosome q arm assemblies, and within the
final base pair of human p arm assemblies. It is important to note
that the density of orthologous 100 Kb regions within subtelo-
meric regions was not significantly different from the genome as a
whole, either for human (5 Mb subtelomeric region mean
density = 23.70; mean density across all genomic 5 Mb
bins = 28.10) or mouse (5 Mb subtelomeric region mean densi-
ty = 34.60; mean density across all genomic 5 Mb bins = 34.20).
The same circular permutation approach was used to measure the
enrichment or depletion of divergent regions within domains that
are structurally dynamic during cellular differentiation [7]. We
also used a similar permutation strategy to compare the similarity
(i.e. proximity) of domain boundaries between chromatin-mediat-
ed regulatory domains [24] and the boundaries of divergent
clusters. The median distance between divergent cluster bound-
aries and the nearest regulatory domain boundaries was compared
to the median distance seen in 10,000 datasets that had undergone
circular permutation. The proportion of datasets generating a
median distance less than or equal to the observed median
distance was taken as an approximate p-value.
Gene densities were calculated per Mb for divergent and

nondivergent datasets and tested using nonparametric (Mann-
Whitney/Wilcoxon test) statistics. Functional enrichments for
protein coding genes were calculated using DAVID [52] using the
total human and mouse genes present within the 16,820
orthologous 100 Kb regions as background sets for human and
mouse enrichment analyses respectively. Enrichment of each
annotation term in the set of human or mouse genes present within
divergent regions was assessed using default options (p-values
calculated using the hypergeometric distribution with FDR

correction). Enrichment of these gene sets within cytogenetic
bands was also examined as this can reflect the clustering of
divergent regions. Both protein coding and RNA genes were
annotated by Ensembl (http://www.ensembl.org) and include
lincRNAs predicted according to combinations of histone
modifications and complementary EST and cDNA data. RPKM
expression values for human H1 ES cells [30] and mouse E14 ES
cells [31] were used to calculate log2(human RPKM/mouse
RPKM) for all one to one orthologous mouse human Ensembl
gene pairs, as an estimate of fold change in expression.

Supporting Information

Figure S1 Structural data distributions. The bimodal
distributions of higher order structural data for all orthologous
100 Kb regions before normalisation with two peaks representing
two distinct populations of higher order structure across the
mammalian genome. Human and mouse RT data, LA data, and
human Hi-C data are shown.
(JPG)

Figure S2 Quantifying human-mouse divergence in
higher-order chromatin structure. The Q-Q plot from the
two class unpaired SAM tests (see Methods) for each orthologous
100 Kb region. Significantly divergent regions (highlighted in
green and red) generate unexpectedly extreme observed test scores
relative to the expected (permutation based) scores.
(JPG)

Figure S3 Distribution of mammalian divergence clus-
ters. Large human divergent regions (red) are shown with the
orthologous positions of large mouse (blue) divergent regions in the
human genome.
(JPG)

Figure S4 The three largest divergence clusters on
human chromosomes. The line plot shows mean normalised
human (black) and mouse (red) higher order chromatin structure
across human chromosomes. Unexpectedly large divergent areas
are highlighted in grey.
(JPG)

Figure S5 Distribution of structural divergence across
the human and mouse genomes. The occurrence of
divergent orthologous 100 Kb regions across human (top panel)
and mouse (bottom panel) chromosomes. In each species the
divergent regions found to be relatively open (blue) or relatively
closed (red) within that species are indicated.
(JPG)

Figure S6 Enriched functional classes within divergent
regions. The relationships between enriched GO terms for genes
within divergent 100 Kb regions, related terms are coloured
similarly and the areas ascribed to each term reflect the
significance of their enrichment.
(JPG)

Figure S7 Structural data distributions after normal-
isation. The identical bimodal distributions of higher order
structural data across all orthologous 100 Kb regions, after
quantile normalisation. Representative datasets of human (BG01)
and mouse (iPSC V3) RT data, human (Tig3) and mouse
(NIH3T3) LA data, and human Hi-C data (GM06990) are shown,
both separately and together (All).
(JPG)

Table S1 GC content and structural divergence. Percent-
age of GC nucleotides within all 16,820 100 Kb orthologous
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regions across the spectrum of normalised chromatin structure
values as in Figure 4. The GC content difference between
divergent and nondivergent regions is shown for each binned
category of higher order structure, together with the significance of
the difference according to Mann-Whitney tests.
(DOCX)

Table S2 Full functional enrichment results. Functional
enrichment results for all classes and clusters of divergent
regions.
(XLS)

Table S3 Full divergent region details. All divergent
orthologous regions discovered.
(XLS)

Table S4 Enrichment of divergence clusters at subtelo-
meric regions. Results of permutation tests (see Methods)
assessing the significance of observed relative to expected
numbers of divergence clusters at a variety of proximities
(1 Mb, 5 Mb, 10 Mb) to telomeres in human and mouse
genomes. Significant (p,0.05) enrichments (labelled E) or

depletions (labelled D) in observed relative to expected numbers
are highlighted in yellow.
(XLS)

Table S5 Cell types and datasets. Details of the cell lines,
data types and embryonic stages in this study.
(DOC)

Table S6 Full orthologous region details. Structural data
for all orthologous regions examined.
(CSV)
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