

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429734157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient Cross-architecture Hardware

Virtualisation

Tom Spink

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Computing Systems Architecture

School of Informatics

University of Edinburgh

2016

Abstract

Hardware virtualisation is the provision of an isolated virtual environment that

represents real physical hardware. It enables operating systems, or other system-

level software (the guest), to run unmodified in a “container” (the virtual ma-

chine) that is isolated from the real machine (the host).

There are many use-cases for hardware virtualisation that span a wide-range

of end-users. For example, home-users wanting to run multiple operating sys-

tems side-by-side (such as running a Windows® operating system inside an OS

X environment) will use virtualisation to accomplish this. In research and de-

velopment environments, developers building experimental software and hard-

ware want to prototype their designs quickly, and so will virtualise the platform

they are targeting to isolate it from their development workstation. Large-scale

computing environments employ virtualisation to consolidate hardware, en-

force application isolation, migrate existing servers or provision new servers.

However, the majority of these use-cases call for same-architecture virtualisa-

tion, where the architecture of the guest and the host machines match—a situ-

ation that can be accelerated by the hardware-assisted virtualisation extensions

present on modern processors. But, there is significant interest in virtualising

the hardware of different architectures on a host machine, especially in the

architectural research and development worlds.

Typically, the instruction set architecture of a guest platform will be different

to the host machine, e.g. an ARM guest on an x86 host will use an ARM instruc-

tion set, whereas the host will be using the x86 instruction set. Therefore, to

enable this cross-architecture virtualisation, each guest instruction must be em-

ulated by the host CPU—a potentially costly operation. This thesis presents a

range of techniques for accelerating this instruction emulation, improving over

a state-of-the art instruction set simulator by 2.64×. But, emulation of the guest

platform’s instruction set is not enough for full hardware virtualisation. In fact,

this is just one challenge in a range of issues that must be considered. Specif-

ically, another challenge is efficiently handling the way external interrupts are

managed by the virtualisation system. This thesis shows that when employ-

ing efficient instruction emulation techniques, it is not feasible to arbitrarily

divert control-flow without consideration being given to the state of the emu-

lated processor. Furthermore, it is shown that it is possible for the virtualisation

environment to behave incorrectly if particular care is not given to the point

at which control-flow is allowed to diverge. To solve this, a technique is de-

veloped that maintains efficient instruction emulation, and correctly handles

external interrupt sources.

Finally, modern processors have built-in support for hardware virtualisation

in the form of instruction set extensions that enable the creation of an abstract

computing environment, indistinguishable from real hardware. These exten-

sions enable guest operating systems to run directly on the physical processor,

with minimal supervision from a hypervisor. However, these extensions are

geared towards same-architecture virtualisation, and as such are not imme-

diately well-suited for cross-architecture virtualisation. This thesis presents a

technique for exploiting these existing extensions, and using them in a cross-

architecture virtualisation setting, improving the performance of a novel cross-

architecture virtualisation hypervisor over state-of-the-art by 2.5×.

Lay Summary

Processors are at the centre of any computer system, and they can be found

in surprising places. Laptops, smart phones, fridges, toasters, televisions and

ovens are all examples of where computer processors can be found in the mod-

ern world. A significant problem is that these processors all need to be designed

and tested by someone, but how can you test the design for a processor that has

not been created yet? The answer to this is to simulate the processor, and real-

istically, the simulator should be fast.

The easiest way to simulate a new processor is to make a computer program

that pretends to be this new processor, and runs it step-by-step. But, this kind

of approach to simulation is not very fast, so the underlying goal of this thesis

is to speed it up. A standard technique to improve this is to convert a whole

sequence of individual steps into one larger (but more efficient) step. However,

this technique can be implemented in a number of ways, and the first key idea

is to look at the connections between the steps in more detail, to make jumping

between them more efficient.

If you want to simulate an entire computer system, however, this approach

is still not good enough, because there are a lot more things to consider. For

example, when you use a keyboard, it tells the processor to stop what it is doing,

and look at the key that was pressed. This kind of behaviour also slows down

simulators, so another idea presented is a fast means of handling this.

Finally, the key idea presented at the end of this thesis is that instead of

writing a program that pretends to be a processor, you can take the similarities

between a real processor and the simulated processor, and use this to speed up

the simulation.

Acknowledgements

There are a range of people that I would like to acknowledge for their support

during my time as a PhD student, and I would like to begin by thanking the

residents of office 1.34, who made my time at the University of Edinburgh thor-

oughly enjoyable, and were an excellent forum for ideas. Specifically, I would

like to extend my thanks to Oscar Almer, Matthew Bielby, Bruno Bodin, Tobias

Edler von Koch, Stephen Kyle and Volker Seeker for their excellent company

and support. Deserving a special mention is my friend Harry Wagstaff, whom I

have collaborated with over the past few years.

I would also like to extend my deepest thanks and gratitude to Björn Franke,

who has been a fantastic supervisor—his guidance has been invaluable and

his support and encouragement has made this research a thoroughly enjoyable

experience.

And finally, I would like to thank my family, and especially my wife Jennifer,

for the encouragement, the support and the patience they have continually

shown me throughout this escapade.

Declaration

I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and that

this work has not been submitted for any other degree or professional qualifi-

cation except as specified.

(Tom Spink)

Publications
The following publications have been made during the course of this PhD, some

of which are used as the basis for chapters:

• Tom Spink, Harry Wagstaff and Björn Franke

“Hardware Accelerated Cross-Architecture Full-System Virtualization”

In ACM Transactions on Architecture and Code Optimization (TACO) 13, 4,

Article 36, October 2016

— This publication forms the basis of Chapter 6

• Tom Spink, Harry Wagstaff and Björn Franke

“Efficient Asynchronous Interrupt Handling in a Full-system Instruction

Set Simulator”

In Proceedings of the 2016 SIGPLAN/SIGBED conference on Languages, com-

pilers and tools for embedded systems (LCTES’16), Santa Barbara, CA, USA,

June 2016.

— This publication forms the basis of Chapter 5

• Tom Spink, Harry Wagstaff, Björn Franke and Nigel Topham

“Efficient Dual-ISA Support in a Retargetable, Asynchronous Dynamic Bi-

nary Translator”

In Proceedings of the 2015 International Conference on Embedded Computer

Systems, Architectures, Modeling and Simulation (SAMOS’15), Samos Is-

land, Greece, July 2015.

• Tom Spink, Harry Wagstaff, Björn Franke and Nigel Topham

“Efficient code generation in a region-based dynamic binary translator.”

In Proceedings of the 2014 SIGPLAN/SIGBED conference on Languages, com-

pilers and tools for embedded systems (LCTES’14), Edinburgh, UK, June

2014.

— This publication forms the basis of Chapter 4

• Harry Wagstaff, Tom Spink and Björn Franke

“Automated ISA branch coverage analysis and test case generation for re-

targetable instruction set simulators”

In Proceedings of the 2014 International Conference on Compilers, Archi-

tecture and Synthesis for Embedded Systems (CASES’14), New Delhi, June

2014.

Table of Contents

1 Introduction 1

1.1 Background . 3

1.2 Motivation . 5

1.3 Overview & Contributions . 7

2 Background & Related Work 9

2.1 Terminology . 9

2.1.1 Overview . 9

2.1.2 Definitions . 10

2.2 Instruction Emulation . 12

2.2.1 Interpretation . 12

2.2.2 Dynamic Binary Translation 14

2.2.3 Translation Granularity 15

2.2.4 Region-based DBT Systems 16

2.2.5 Code Generation and Optimisation in DBT Systems 16

2.2.6 DBT Systems using LLVM for JIT Compilation 18

2.3 Interrupt Handling . 18

2.3.1 Virtual Machines . 21

2.4 MMU Virtualisation . 21

2.5 User-mode Simulation . 22

2.6 Hardware Virtualisation . 25

2.6.1 Same-architecture Virtualisation 25

2.6.2 Cross-architecture Virtualisation 28

2.7 Summary . 31

3 Infrastructure 33

3.1 GENSIM . 33

3.1.1 High-level Architecture Description 35

3.1.2 Output Components . 37

3.1.3 Automated Model Testing 38

3.2 ARCSIM . 38

3.2.1 LLVM Compiler Infrastructure 40

3.3 CAPTIVE . 40

3.3.1 KVM . 41

3.3.2 Intel VT . 42

3.4 QEMU . 43

3.5 Evaluation . 43

3.5.1 Guest Architecture and Platform 44

3.5.2 SPEC-CPU2006 Benchmark Suite 45

3.5.3 EEMBC Benchmark Suite 46

3.5.4 Choice of Benchmarks . 46

4 Efficient Dynamic Binary Translation 47

4.1 Introduction . 48

4.1.1 Key Ideas . 48

4.1.2 Motivating Example . 49

4.1.3 Contributions . 53

4.1.4 Overview . 53

4.2 Background . 54

4.2.1 Region Compilation . 54

4.2.2 Region Selection . 55

4.3 Methodology . 56

4.3.1 Region Entry Optimisation 56

4.3.2 Translation Lookup Cache 57

4.3.3 Branching . 57

4.3.4 Region Chaining . 60

4.3.5 Region Registration in Translation Caches 61

4.3.6 Continuous Profiling and Recompilation 61

4.3.7 Host Machine Code Generation 62

4.4 Experimental Evaluation . 65

4.4.1 Experimental Methodology 65

4.4.2 Experimental Results for SPEC-CPU2006 66

4.4.3 Impact of Optimisations 67

4.4.4 JIT Compilation Performance 69

4.5 Summary & Conclusions . 69

5 Efficient Interrupt Virtualisation 71

5.1 Introduction . 72

5.1.1 Key Idea . 74

5.1.2 Motivating Example . 74

5.1.3 Contributions . 78

5.1.4 Overview . 78

5.2 DBT Granularity and the Problem of Inserting Interrupt Checks . 79

5.3 Region-based Interrupt Checking 81

5.3.1 Avoiding Interrupt Edge Bloat 81

5.3.2 Interrupt Check Placement Schemes 82

5.3.3 Servicing an Interrupt . 84

5.4 Experimental Evaluation . 86

5.4.1 Experimental Methodology 86

5.4.2 Experimental Setup . 86

5.4.3 Key Results for I/O-bound Workloads 88

5.4.4 Key Results for CPU-bound Workloads 88

5.4.5 Further Analysis . 89

5.5 Summary & Conclusions . 93

6 Hardware Accelerated Cross-architecture Virtualisation 95

6.1 Introduction . 95

6.1.1 Key Idea . 98

6.1.2 Motivating Example . 98

6.1.3 Contributions . 101

6.1.4 Overview . 101

6.2 Background . 102

6.2.1 KVM . 102

6.2.2 Intel VT . 102

6.3 Virtualisation Infrastructure . 102

6.3.1 System Components . 105

6.3.2 Overview . 106

6.3.3 CPU Virtualisation . 108

6.3.4 MMU Virtualisation . 116

6.3.5 Device Virtualisation . 123

6.3.6 IRQ Virtualisation . 128

6.4 Experimental Evaluation . 129

6.4.1 Experimental Setup . 130

6.4.2 Key Results . 130

6.4.3 Comparison to Existing Techniques 132

6.4.4 I/O Performance . 133

6.4.5 Additional Hardware Support for MMU Virtualisation . . . 134

6.4.6 Slow-down over Native Execution on High-End Hardware 135

6.5 Summary & Conclusions . 136

7 Conclusions 137

7.1 Contributions . 138

7.1.1 Efficient Dynamic Binary Translation 138

7.1.2 Efficient Interrupt Virtualisation 138

7.1.3 Hardware Accelerated Cross-architecture Virtualisation . . 139

7.2 Critical Analysis . 140

7.2.1 GENSIM Limitations . 140

7.2.2 Significantly Different Memory Management Units 140

7.2.3 Assumptions . 141

7.3 Future Work . 141

7.3.1 Efficient Interrupt Virtualisation 142

7.3.2 Hardware Accelerated Cross-architecture Virtualisation . . 143

7.4 Summary and Final Remarks . 146

Bibliography 147

List of Figures

1.1 Real hardware vs. virtual hardware 2

1.2 Types of hypervisors . 4

2.1 A typical fetch, decode, execute sequence. 12

2.2 Example loop-based and threaded interpreter implementations. . 13

2.3 Example synchronous and hybrid dynamic binary translator im-

plementations. 14

2.4 An illustration of how interrupt checking might work in an interpreter-

based system. 19

3.1 A high-level overview of the GENSIM generation tool. 34

3.2 Main execution loop of ARCSIM. 39

3.3 High-level overview of CAPTIVE. 41

4.1 Two methods of instruction emulation: an interpreter, and a dy-

namic binary translator. 47

4.2 An example ARM function that calculates the factorial of a number. 50

4.3 Sub-optimal and optimal host machine code generated by two

different code generation strategies. 52

4.4 Example control-flow graphs. 54

4.5 Interaction between regions via the global jump table and the

internal interactions between basic blocks, either directly or via

the local jump table. 57

4.6 Sub-optimal code resulting from incomplete alias analysis. 64

4.7 Absolute performance figures in MIPS for the long-running SPEC-

CPU2006 integer benchmarks. 66

4.8 A breakdown of the performance impact of different optimisations. 67

4.9 Absolute performance figures in MIPS for the shorter-running

EEMBC benchmarks. 68

5.1 Differences between user-mode simulation and hardware virtu-

alisation. 71

5.2 A comparison between synchronous and asynchronous interrupts. 72

5.3 Interrupt checks inserted by various interrupt check placement

schemes. 75

5.4 Comparison of user-mode simulation performance between ARC-

SIM and QEMU. 76

5.5 Example code that depends on interrupt checking. 77

5.6 Flow of region forming when an interrupt occurs. 82

5.7 Optimised interrupt check placement algorithm for arbitrary code

regions. 84

5.8 LLVM IR emitted for interrupt checking at the head of a basic block. 85

5.9 Absolute I/O throughput in MB/s, measured with the hdparm

benchmark. 87

5.10 Relative reduction in wall-clock run-time of the SPEC-CPU2006

integer benchmark. 88

5.11 Reduction in static and dynamic interrupt checks for I/O and

CPU bound workloads. 90

5.12 Absolute interrupt latency in µs. 91

5.13 Cumulative distribution of interrupt latencies for the optimised

placement scheme. 91

5.14 Comparison of the full placement scheme versus the optimised

placement scheme using a range of interrupt frequencies. 92

6.1 Hardware-assisted cross-architecture hardware virtualisation. . . 96

6.2 Distribution of operations in the SPEC-CPU2006 integer bench-

marks. 98

6.3 The operation of an ARMv7-A MMU. 99

6.4 The operation of an x86 MMU. 100

6.5 ARCSIM is a software-based hardware virtualisation system, and

CAPTIVE is hardware-accelerated. 103

6.6 A high-level overview of CAPTIVE’s infrastructure. 104

6.7 Example inputs and outputs during the JIT compilation phase of

CPU virtualisation. 111

6.8 An overview of the operation of the CAPTIVE JIT. 112

6.9 An example of guest system mode tracking for two different sce-

narios. 114

6.10 Operation when virtualising memory accesses. 118

6.11 An example mapping of an ARM L2 descriptor to an x86 page

table entry. 120

6.12 Address-space identifier tracking implementation. 120

6.13 Native VM physical and virtual memory organisation. 120

6.14 An example of a PC-relative load instruction being translated by

CAPTIVE and QEMU. 123

6.15 An illustration of the fast device access operation. 125

6.16 An illustration of the injection of an IRQ into the native virtual

machine. 128

6.17 Key results, showing relative speed-up and absolute run time. . . 131

6.18 Relative performance improvement of SPEC benchmarks by HSPT

and CAPTIVE, over the Android Emulator baseline. 132

6.19 Relative performance improvement gained by turning on Intel’s

extended page tables. 134

6.20 Relative slow-down of QEMU and CAPTIVE over native execution

on a physical ARM platform. 136

List of Tables

2.1 Comparison of user-mode simulators. 23

2.2 Comparison of same-architecture hardware virtualisers. 26

2.3 Comparison of hardware virtualisers. 28

3.1 A list of the integer benchmarks in the SPEC-CPU2006 bench-

mark suite. 45

3.2 Benchmark categories included in the EEMBC v1.1 benchmark

suite. 46

4.1 Host configuration. 65

4.2 ARCSIM configuration. 65

5.1 Host configuration. 86

5.2 ARCSIM configuration. 86

6.1 Host configuration. 130

6.2 Absolute I/O throughput for various execution environments. . . 133

Chapter 1
Introduction
There are many uses for hardware virtualisation in today’s modern computing

environments. Data centres wanting to lower their hardware costs and increase

resource utilisation will look to virtualisation as a way to consolidate servers

[119], users wanting the convenience of running multiple operating systems on

their computers without the inconvenience of rebooting will often use virtuali-

sation to run two (or more) operating systems side-by-side [47] and hardware

and software developers wanting to prototype, debug and benchmark their de-

signs will use virtualisation to create an isolated test environment [64, 112]

that represents the target platform.

Hardware virtualisation is the process of creating a virtual representation

of a particular hardware platform, providing an environment that appears to

be a separate physical machine. Virtualising an entire platform can be quite

straightforward when the guest machine is of the same architecture as the host

machine—modern processor vendors provide hardware support [65, 4] out-of-

the-box for this, allowing unmodified guest operating systems to run in virtual

machines at near-native speeds [117]. But, when the need arises for cross-

architecture virtualisation, there is no longer a one-to-one mapping of architec-

tural components from the guest to the host, and these mismatched components

need to be emulated in software.

2 Chapter 1. Introduction

x86
Development
Workstation

Embedded
ARM
Device

x86
Development
Workstation

ARM
Virtual
Machine

Figure 1.1: Instead of debugging applications on real hardware, virtualisation enables

creating a virtual version of the hardware on which application development and test-

ing can occur.

There is quite a large market for cross-architecture hardware virtualisation.

It is used extensively during hardware development for rapidly prototyping

platforms that may not yet exist, or to make modifications to an existing plat-

form to observe how it may affect applications. Imperas [64] produce a suite

of tools for developers that enable unmodified guest operating systems to run

in a so-called virtual platform. This allows developers to boot an entire operat-

ing system compiled for a different architecture, in a virtual machine on their

development workstation.

Software engineers use cross-architecture virtualisation to obtain a virtual

representation of the platform their applications are targeting, allowing them to

rapidly test and debug applications on their development workstation, without

having to deploy it to a real device. Synopsys® produce tools under their Vir-

tual Prototyping [112] offering that enables simulation of hardware platforms

still under development, so that developers can begin producing applications

for a platform that has not yet been materialised. Similarly, ARM® produce a

configurable simulation tool called Fast Models [12] that enables developers to

construct a virtual platform out of multiple architectural building blocks.

One of the most widely used [8] cross-architecture virtualisation systems is

the Android® Emulator, which enables software developers to test their appli-

cations in the context of an unmodified ARM® Android® environment (Figure

1.1). This is important when developing native applications designed to run di-

rectly on ARM® processors, as it is time consuming and costly to continuously

deploy to a real device for testing.

In order to support cross-architecture hardware virtualisation, it is necessary

to emulate the behaviour of the hardware of the target platform on the host.

This involves providing faithful emulation of guest instructions, and software

1.1. Background 3

implementations of architectural components (such as the memory management

unit (MMU) and interrupt controller). It also involves emulating platform de-

vices, such as disk or network devices. If an unmodified guest operating system

is to be booted in this virtual environment, these components must all behave

exactly as they would in a physical environment.

Virtualisation requires support from a virtual machine monitor (VMM) or hy-

pervisor, which allocates and manages physical resources for the virtual guest.

There are many open-source and commercial hypervisors available for same-

architecture virtualisation, and the wide availability of hardware-accelerated

extensions for virtualisation makes it a viable technology for production use.

However, the majority of hypervisors that support cross-architecture virtualisa-

tion are for research purposes or detailed simulation—the most notable excep-

tion being QEMU [21].

1.1 Background

Support for hardware virtualisation appeared in systems as early as 1972 (on

the IBM System/370 mainframe), and was used as a method of partitioning the

physical machine into multiple virtual machines that appeared to users as their

own private system. But, towards the end of the 1970s, virtualisation lost trac-

tion due to a significant increase in computing power on commodity processors

(coupled with more modern forms of process isolation) effectively negating the

need for it at that time. Thus, virtualisation became a software problem, and

in fact software solutions for virtualisation of x86 processors outperformed the

initial hardware support provided by Intel® and AMD® in the early 2000s. A

resurgence of interest in the virtualisation space has led to improvements in

hardware support, and now modern processor vendors provide instruction set

extensions (ISEs) that can be used to present an abstract computing platform,

allowing unmodified guest operating systems of the same architecture to run

virtualised at near-native speeds—an important property for businesses want-

ing to deploy virtualised systems.

The requirements for hardware virtualisation were formalised in 1974 by

Popek and Goldberg [101], who identified two types of hypervisor (shown in

Figure 1.2) and made three key insights about the operation of virtual ma-

chines:

4 Chapter 1. Introduction

Host MachineHost Machine

Virtual Machine 1

Physical Hardware

Operating System

Virtual Machine Monitor

Operating System

Virtual Machine N

Operating System

Type 2: Hosted VMM

Physical Hardware

Virtual Machine 1

Virtual Machine Monitor

Operating System

Virtual Machine N

Operating System

Type 1: Native VMM

Guest Machines

Guest Machines

Figure 1.2: Popek and Goldberg identified two different types of virtual machine mon-

itor. A type 1 or native VMM runs directly on the host hardware, whereas a type 2 or

hosted VMM runs within the confines of an operating system.

1. A virtual machine must not exhibit a difference in behaviour to the physi-

cal machine it is modelling.

2. A virtual machine must be fast and efficient.

3. The virtual machine monitor (VMM) or hypervisor must remain in control

of the physical machine’s resources.

Whilst the authors applied these characteristics to virtual machines in general

(without specifically targeting the same-architecture or cross-architecture use-

case), the consequence of (2) is that software-based emulators and simulators

were excluded from being classified as VMMs, since at the time of publication

they could not satisfy the “efficiency” requirement. Unfortunately, this is a prob-

lem for cross-architecture virtualisation, as a software-based instruction set sim-

ulator (ISS) is necessary for performing the emulation of guest instructions. This

is because the guest platform has a different instruction set architecture (ISA) to

the host, and therefore guest instructions cannot execute natively on the host’s

physical processor. However, this observation assumed a slow interpreter-based

ISS was used to emulate guest instructions, and so software emulation was dis-

counted as a viable VMM for this reason.

However, more recent improvements to dynamic binary translation (DBT)

have made software-based virtualisation systems more competitive with—and

1.2. Motivation 5

in some cases more efficient than—hardware-assisted virtualisation. This means

that a suitably engineered software-based virtualisation system can meet the

requirements for hardware virtualisation, and hence cross-architecture virtual-

isation can be considered a viable form of virtualisation.

There are four major challenges that need to be addressed when developing

a cross-architecture hardware virtualisation hypervisor, each with their own

impact on the performance and correctness of such a system:

1. Instruction emulation: The faithful and efficient execution of guest ma-

chine instructions.

2. Interrupt handling: The timely, and correct, handling of external inter-

rupts, by altering control-flow (e.g. to interrupt handlers) as required.

3. Memory management unit virtualisation: Performing efficient memory

address translation for guest architectures with an MMU, or access permis-

sion checking for those with an MPU.

4. Device emulation: Providing implementations of devices that may exist

on the platform.

Each of these virtualisation challenges shall be visited over the course of this

thesis, and techniques to improve the efficiency of their implementation shall

be presented.

1.2 Motivation

It is clear to see that cross-architecture virtualisation is a desirable technology

across a range of disciplines, and it follows that due to the necessity of emulat-

ing architectural components in software, there is an unavoidable performance

penalty. As mentioned previously, in the same-architecture case, modern pro-

cessors from a range of vendors (Intel®, AMD®, ARM®, MIPS®, PowerPC®)

provide hardware accelerated support for virtualisation, enabling unmodified

guest operating systems to run natively on the host machine with very little

supervision. This is because architectural behaviour is the same between guest

and host, and platform devices can (if desired) be passed straight through to

the guest. But, when the architecture of the guest is different to the host, there

is no longer the possibility of mapping guest platform behaviour directly to host

6 Chapter 1. Introduction

platform behaviour, and the mismatched components of the guest system must

be emulated.

Consider the use of the Android Emulator in a development environment.

Developers want to debug and test their applications locally without having to

deploy to real devices constantly. Deploying an application to a device can be

time consuming, but so can using a slow emulator. In fact, Intel have recognised

this particular issue and developed their own technique for improving the per-

formance of the Android Emulator [109]. Whilst their technique uses hardware

acceleration for virtualisation, it relies on an x86 version of Android, and so is

not a cross-architecture solution. Therefore, this does not solve the problem of

efficiently developing and debugging native ARM applications in an emulator.

Furthermore, this is application specific, and does not solve the general problem

of efficiently virtualising platforms that may not even exist yet.

Many architecture design companies that provide tools (such as compilers)

for their architectures supply simulators as a basic tool. For example, ARM

provide a development suite called DS-5 Development Studio that is available

with a technology called Fast Models. This tool can be user-configured to virtu-

alise an ARM platform, and can reach speeds that are close to native platform

speeds. However, when additional components are enabled, the system quickly

loses traction as its implementation is based on an event-driven framework.

Synopsys provide a virtualisation tool called Virtual Prototyping, used to aid

development on their own platforms.

QEMU [21] is a popular open-source full-system virtualisation hypervisor

that supports a wide range of guest machine architectures, and is used through-

out academia and the software/hardware development industry. In fact, it

forms the basis of the Android Emulator as supplied as part of the Android

software development kit (SDK). Out-of-the-box, QEMU supports many different

guest architectures, but the software itself is not easily retargetable. Porting

QEMU to another architecture requires manually coding an instruction decoder

and building a translation routine that uses the internal tiny code generator

(TCG) DBT to translate decoded instructions into QEMU’s own intermediate rep-

resentation.

1.3. Overview & Contributions 7

Goal

The goal of this thesis is to develop techniques that can be used by hypervisors

for fast and efficient cross-architecture hardware virtualisation, with an addi-

tional focus on ease of use and retargetability.

1.3 Overview & Contributions

Chapter 2 shall introduce terminology associated with the virtualisation of com-

puter systems, along with existing techniques for both same-architecture and

cross-architecture virtualisation. These techniques shall be accompanied by re-

lated work in the area, relevant to the challenges that are being tackled in later

chapters.

Following this, in Chapter 3, an introduction to the software tools devel-

oped and extended as part of this research shall be presented, along with de-

scriptions of the frameworks used and the general methodology employed for

performance evaluation.

Chapter 4 will tackle the initial challenge of efficient guest instruction em-

ulation, by seeking to introduce techniques to increase the performance of a

software-based instruction set simulator (ISS). This introduces fundamental and

significant improvements to dynamic binary translation (DBT), which are neces-

sary for efficient emulation of guest instructions.

In Chapter 5, the challenges associated with extending this ISS to support

hardware virtualisation will be investigated, by focussing on asynchronous in-

terrupts that are necessary for emulating a guest platform, and cause perfor-

mance regressions in DBT-based virtualisation systems.

Chapter 6 exploits hardware-assisted virtualisation technology that is present

on modern processors to develop a novel hypervisor for fast and efficient cross-

architecture virtualisation. The four major factors for cross-architecture virtu-

alisation are considered and novel techniques for accelerating each of these are

presented.

Finally, Chapter 7 will summarise, conclude and present future work in the

field of efficient hardware virtualisation.

Chapter 2
Background & Related Work

This chapter shall first define terminology that will be used throughout the

remainder of this thesis, followed by a brief introduction to some important

concepts involved in cross-architecture hardware virtualisation. These concepts

shall be supplemented with related work in the area of hypervisor performance

and implementation strategies.

2.1 Terminology

There is a range of terminology in use when discussing virtualisation of com-

puter systems, and this section shall define and describe the terms that will be

used throughout the remainder of this thesis. The majority of these terms are

widely used in literature, but due to the complex, multi-layered and potentially

confusing nature of hardware virtualisation systems, it is important to define at

this point how the particular term is intended to be perceived.

2.1.1 Overview

The three main terms that are used throughout this area of research are:

• Virtualisation: The provision of a virtual version of an existing physical

component.

• Emulation: The imitation of the behaviour of a particular component.

• Simulation: The emulation of a particular component, but coupled with

the ability to instrument and inspect the behaviour of that component.

10 Chapter 2. Background & Related Work

This thesis is primarily concerned with virtualisation, but emulation of some

form is a necessity for cross-architecture virtualisation. Simulation is an over-

lapping area, and is an important technique for debugging and monitoring pur-

poses, however this thesis is not concerned with precise simulation, but shall

introduce it as future work in Section 7.3.

2.1.2 Definitions

Definition 1 (Architecture). The architecture of a computer system describes how

the system functions, and how it is organised. Typically it also defines the instruc-

tion set architecture (ISA), which describes what instructions are available, how

they are encoded, and how they behave.

Definition 2 (Platform). The platform is how a particular computer system is con-

figured, i.e. which architecture it is built upon, what features are employed from

that architecture, what type of processor(s) are in use, what devices are available

and generally how the system “fits together”.

Definition 3 (Virtual Machine). A virtual machine (VM) is an isolated, virtual

representation of a computer system.

Definition 4 (Host Machine). The host machine is the physical computer, on

which a virtual machine is intended to be created.

Definition 5 (Guest Machine). The guest machine is the particular computer

system that is being virtualised and being represented by a virtual machine.

Definition 6 (User-mode Simulation). User-mode simulation, as shall be de-

scribed in Section 2.5, is the act of simulating a computer program that is de-

signed to be run on a particular architecture, on a different architecture (although

the architectures could be the same). This kind of simulation is limited to sin-

gle programs running inside an operating system, and requires the simulator to

emulate the behaviour of the original guest operating system.

Definition 7 (Full-system Simulation). Full-system simulation is the act of sim-

ulating an entire computer system. This term can be synonymous with hardware

virtualisation but as mentioned previously, simulation implies that some form of

instrumentation or inspection is involved to gain insight into the behaviour of the

system.

2.1. Terminology 11

Definition 8 (Hardware Virtualisation). As described in Section 2.6, and as will

be presented throughout the remainder of this thesis, hardware virtualisation is

the act of providing a virtual machine that represents a real physical machine—

including all of the architectural behaviour and hardware devices present on the

platform being virtualised.

Definition 9 (Same-architecture Virtualisation). Virtualisation when the guest

machine and the host machine are of the same architecture.

Definition 10 (Cross-architecture Virtualisation). Virtualisation when the guest

machine and the host machine are of different architectures.

Definition 11 (Hardware-assisted Virtualisation). Not to be confused with hard-

ware virtualisation, hardware-assisted virtualisation is when the host machine

architecture provides additional support for performing hardware virtualisation,

e.g. Intel VT [65] or AMD-V [4].

Definition 12 (Hypervisor). Sometimes termed a virtual machine monitor, a hy-

pervisor is a piece of software that is responsible for managing the lifecycle of a

virtual machine. Normally, the hypervisor creates and starts the VM, along with

allocating and managing host machine resources (such as memory) that will be

virtualised.

Furthermore, there are two types of hypervisor that are relevant to hardware

virtualisation:

Type 1 (native): A hypervisor that runs directly on the host machine hardware.

Type 2 (hosted): A hypervisor that runs inside a normal operating system.

Definition 13 (Instruction Emulation). Instruction emulation is the act of exe-

cuting a guest machine instruction, on the host machine, causing the state of the

virtual machine to change as it would if the instruction was executed on a real

guest machine.

Definition 14 (Device Emulation). Device emulation is generally a software im-

plementation of a real hardware device that emulates the behaviour of that device

when the virtual machine accesses it.

12 Chapter 2. Background & Related Work

Fetch Decode Execute

01 00 a0 e1 00 20 80 e0
01 30 42 e0 00 00 91 e5
00 20 88 e5 11 02 a0 e1
0a 80 89 e0 72 69 62 75

00 00 91 e5 ldr r0, [r1]
addr = read_register(R1)
value = read_memory(addr)
write_register(R0, value)

Figure 2.1: A typical fetch, decode, execute sequence.

2.2 Instruction Emulation

Any form of cross-architecture simulation or virtualisation requires the emula-

tion of guest machine instructions, as these instructions cannot directly execute

on the host machine. Typically, a guest machine will be in a particular state,

and executing an instruction causes that state to change. The behaviour of a

particular instruction is defined by the instruction set architecture (ISA).

From a functional perspective, processors execute instructions by fetching

an instruction from memory (pointed to by the program counter (PC) register),

decoding it into its constituent fields, and then executing the associated be-

haviour. This is shown in Figure 2.1. In reality, the situation is much more com-

plex, with e.g. superscalar processors, pipelines, out-of-order execution, specu-

lation, branch prediction and etc. all contributing to a highly complex execution

model. However, this high-level sequence is typically the basis for the variety of

execution models available to cross-architecture virtualisation systems.

There are various approaches to implementing the execution model in a

virtualisation system, each with their own benefits and drawbacks. The two

most common approaches are interpretation and dynamic binary translation,

and these have further possible implementation choices. An overview of each of

these approaches shall be given in the following sections, along with associated

related work in the area.

2.2.1 Interpretation

An interpreter is effectively the implementation of the fetch-decode-execute cy-

cle described above. It has the benefit of being a very straightforward approach

to instruction emulation, but suffers from performance limitations.

Listing 2.1 shows a typical loop-based interpreter, where each instruction

2.2. Instruction Emulation 13

Listing 2.1: Interpreter Loop

1 do {
2 insn = FETCH();
3 opcode = DECODE();
4

5 switch (opcode) {
6 case OPCODE_ADD:
7 <behaviour>
8 break;
9 case OPCODE_SUB:

10 <behaviour>
11 break;
12 }
13 } while (true)

Listing 2.2: Threaded Interpreter

1 jump_table = [&OPCODE_ADD, &OPCODE_SUB];
2

3 insn = FETCH();
4 opcode = DECODE();
5 goto &jump_table[opcode];
6

7 OPCODE_ADD:
8 <behaviour>
9 insn = FETCH();

10 opcode = DECODE();
11 goto &jump_table[opcode];
12

13 OPCODE_SUB:
14 <behaviour>
15 insn = FETCH();
16 opcode = DECODE();
17 goto &jump_table[opcode];

Figure 2.2: A typical interpreter-based virtualisation system. Listing 2.1 shows a loop-

based interpreter, and Listing 2.2 shows a more efficient threaded implementation.

is fetched from the guest machine’s memory, decoded, then a branch is made

to the behaviour for that instruction. After the behaviour completes, the in-

terpreter loops around and starts again. Even if the individual instruction be-

haviours are optimised aggressively, the rate at which instructions execute is

effectively fixed.

A more efficient approach is to dispatch to the behaviour for the next instruc-

tion, immediately after the current instruction has finished executing, instead

of looping around. This type of implementation is called a threaded interpreter,

and is shown in Listing 2.2. Instead of executing in a loop, control-flow threads

from one instruction behaviour to the next, by dispatching to instruction be-

haviour via a jump table.

A further optimisation that can be made is to introduce a decode cache,

eliminating the cost of decoding guest instructions, if the instruction has been

recently seen. This is important for looping control-flow in the guest, where the

same instructions will be executed many times in quick succession.

Even if control-flow is improved, and decode caches are used, an interpreter

will always reach a performance ceiling. This is because this method of exe-

cution considers each instruction individually, and invokes a distinct emulation

for each instruction type.

14 Chapter 2. Background & Related Work

Basic block translation
in cache?

Execute Translation

Translate basic block

Store translation in cache

YES

NO

(a)

Basic block translation
in cache?

Execute Translation

Interpret basic block

Is basic block hot?

NO

Translate basic block

YES

YES

NO

(b)

Figure 2.3: Two examples of possible dynamic binary translation implementations. (a)

shows a synchronous DBT that translates guest basic blocks on demand. (b) shows a

DBT that initially executes guest basic blocks in an interpreter, until they become hot.

At this point, the basic block is translated.

2.2.2 Dynamic Binary Translation

Dynamic binary translation is an execution model that translates guest machine

instructions into corresponding host machine instructions as the virtual ma-

chine is running. This technique opens up the scope for executing many guest

instructions as a unit, because (unlike an interpreter) it is no longer constrained

to operating on an instruction-by-instruction basis.

For example, a typical unit of translation in a DBT system is a basic block,

where a basic block is a straight-line, single-entry, single-exit region of instruc-

tions. A DBT will decode each instruction in a guest basic block, and produce

host machine code that represents the behaviour of that entire instruction se-

quence. There is not necessarily a one-to-one mapping between guest basic

blocks and host basic blocks, as some instructions may raise exceptions (that

require early exiting from the block) or the guest architecture may support

predicated instructions (that only execute if certain flags are set).

Figure 2.3 shows two examples of possible DBT implementations. Figure

2.3a shows a synchronous block-based DBT, where the DBT will translate guest

basic blocks on-demand, i.e. when a translation does not exist. Figure 2.3b

shows a DBT/interpreter hybrid, where execution will initially proceed through

an interpreter, until a block becomes “hot”. At this point, the block will be

translated, and execution will transition to native code, until a translation does

not exist.

A modification may be made to the hybrid approach, by turning the transla-

tion of hot blocks into an asynchronous operation [24], meaning that execution

2.2. Instruction Emulation 15

of the guest system can progress (in the interpreter) whilst translations are be-

ing performed in the background, hiding the compilation latency.

2.2.3 Translation Granularity

An important detail to consider when developing a DBT system is the granu-

larity of the translation, or what comprises a translation unit. For example, is

the translation performed instruction-by-instruction, or are entire basic blocks

translated?

Typically, the more guest instructions that are considered in a translation

unit, the more efficient the translated code will be. This is because optimisa-

tions can be applied across the translation unit as a whole, leading to highly

efficient host machine code. The trade-off, however, is between translated code

quality and compilation latency. Spending more time translating code (or sim-

ply translating more instructions at-a-time) results in a longer compilation time,

impacting on the overall throughput of the system. However, the performance

gains of DBT greatly outweigh the added latency of a translation phase, when

compared to an interpreter-based system.

Translation granularity can be broadly classified into four different schemes:

• Instruction: A single guest instruction is translated into one or (usually)

more host instructions. This is no better than an interpreter, however, and

would in fact perform much worse due to the added translation penalty.

• Basic Block: A straight-line, single-entry, single-exit region of guest in-

structions are translated into multiple host instructions.

• Linear Trace: A sequence of guest basic blocks that only jump forward

(i.e. there are no loops) are translated.

• Region: A multi-entry, multi-exit region of guest instructions, possibly

comprising cyclic control flow, is translated to corresponding host ma-

chine code.

A region-based DBT offers the most scope for generating high-quality native

code, but it requires dynamic profiling during the application’s run in order to

form regions and determine which discovered basic blocks are worth translat-

ing. Region forming is the process of determining which basic blocks should be

16 Chapter 2. Background & Related Work

logically considered part of a particular region, and various schemes have been

proposed for this purpose [26, 55, 57, 62]. An asynchronous form of this style

of DBT will be discussed further in Chapter 4.

2.2.4 Region-based DBT Systems

Region-based JIT compilation has been used for some time in Java virtual ma-

chines, e.g. Suganuma et al. [110, 111], but has only been considered more

recently for DBT systems [69, 24, 72]. The reason for this late adoption of re-

gion based policies has been presumably the increased latency for compilation

and optimisation of larger regions, which has only been addressed recently with

the introduction of decoupled, latency-hiding JIT compilation task farms [24].

The bulk of the work in this field has focussed on region selection though, and

less on code generation and optimisation for dynamically discovered regions. In

Jones and Topham [69] large translations units (i.e. regions) are introduced for

dynamic binary translation, and region selection policies based on strongly con-

nected components, control flow graph fragments and OS pages are compared.

A refined page based region selection scheme is developed in Böhm et al. [24]

and combined with a parallel JIT compilation task farm. Specific optimisations

for a DBT system, which compiles guest- to host code via Java Virtual Machine

(JVM) bytecode, are considered in Kaufmann and Spallek [72].

2.2.5 Code Generation and Optimisation in DBT Systems

Most DBT systems appear to have adopted a code generation strategy operating

on individual basic blocks or linear traces of basic blocks. For example, QEMU

[21] implements such an approach using its own tiny code generator (TCG) and

additional block chaining, translation caching and lazy condition evaluation.

Dynamo [17] is a dynamic optimisation system, i.e. the input is a native in-

struction stream. Dynamo uses an interpreter for initial execution until a “hot”

instruction sequence is identified. At that point, Dynamo generates an opti-

mised version of the trace into a software code cache. Dynamo treats backward

branches as trace delimiters, i.e. traces are by definition linear. After trans-

lation it emits an optimised single-entry, multi-exit, contiguous sequence of in-

structions for each trace. Trace optimisation in Dynamo considers branch types,

2.2. Instruction Emulation 17

but is generally less aggressive than what can be achieved when considering a

region that contains cyclic control-flow.

DynamoRio [27] is a successor of Dynamo. DynamoRio operates on two

kinds of code sequences: basic blocks and traces. Both have linear control

flow, with a single entrance and potentially multiple exits, but no internal join

points. Optimisations are restricted to the linear control flow present in traces.

The single-entry multiple-exit format simplifies analysis algorithms, but limits

the scope of optimisations that can be applied.

Strata [56] is a retargetable DBT system offering additional uses for dy-

namic instrumentation and optimisation. Different fragment selection policies

[57] have been evaluated for Strata, but all of these policies are based on linear

traces, possibly spanning branch or function call boundaries. Strata uses chain-

ing of traces to avoid overheads associated with returning to the main execution

loop after every native trace. An ARM port of Strata considers architecture-

specific optimisations, e.g. relating to the exposed PC [92].

The optimisations performed by UQDBT – a machine-adaptable dynamic

binary translator – are discussed in Cifuentes and Emmerik [35], Ung and Ci-

fuentes [116]. This tool uses an algorithm for finding hot paths using edge

weight profiles, and optimises code in a machine-independent way, based on

hot path information. Whilst units of translation in UQDBT are basic blocks,

for its hot path (re)optimisation it groups hot basic blocks and their connecting

control flow edges into regions. The paper focuses primarily on newly discov-

ered hot paths and locality transformations, but does not provide a complete

code generation strategy. A particular aspect of code generation in DBT sys-

tems, namely recovery of jump table case statements, is discussed in Cifuentes

and Emmerik [34].

Rosetta [2] is a DBT that translates PowerPC G3, G4 and AltiVec instructions

to x86 instructions. It is based on QuickTransit by Transitive [1], and was re-

leased by Apple in 2006, after the ISA of their Macintosh platform was changed

from PowerPC to x86. Rosetta is a user-mode DBT, as its primary purpose was

to allow legacy PowerPC-based Macintosh applications to run on modern Intel-

based Macintosh computers.

Liu et al. [82] introduce a translation system based on “hybrid binary trans-

lation”, which involves an offline static binary translation phase and falling back

to a run-time dynamic binary translation system to handle untranslated code.

18 Chapter 2. Background & Related Work

2.2.6 DBT Systems using LLVM for JIT Compilation

LLVM [77] is a popular open-source compilation framework, that can be em-

ployed as a JIT compiler for DBT. It contains a wide range of high-quality opti-

misation passes that lead to the production of highly efficient machine code.

A parallel and concurrent JIT compilation task farm for use in DBT systems

is presented by Böhm et al. [24]. The JIT compiler is based on the LLVM frame-

work, which is used for translation of paged regions of target instructions to

host instructions. The paper discusses a particular region selection scheme and

parallel JIT compilation, but provides no details of the actual code generation

approach used.

LnQ [61] extends QEMU with an LLVM-based JIT compiler, but does not

consider code regions for translation, instead it uses linear traces.

HQEMU [59] is a multi-threaded dynamic binary translator, which extends

QEMU with multiple instances of the LLVM compiler for JIT compilation. HQEMU

builds on top of LLVM, but it only operates on linear traces and does not support

region-based compilation.

Guo et al. [50] look at a particular DBT challenge, which is mapping the

behaviour of guest machine vector instructions onto host machine vector in-

structions. Specifically, they look at optimising the dynamic translation of ARM

Neon and vector floating point (VFP) into corresponding host machine instruc-

tions. Their approach is to generate LLVM bytecode that closely models the

vector-specific behaviour of the guest instruction, which is highly amenable to

lowering into host machine vector instructions.

2.3 Interrupt Handling

Virtualising an entire computer system means honouring the multitude of ar-

chitectural behaviours that exist on the target platform. A particular challenge

for virtualisation is the efficient handling of asynchronous interrupts, i.e. those

interrupts that are raised by external signals (such as devices), and not related

to the directly executing instruction.

In order to maintain consistency, virtualisation systems can only handle in-

terrupts at well-defined points during execution, which at a minimum is an

instruction boundary. Diverting control-flow during the execution of an instruc-

2.3. Interrupt Handling 19

Fetch

Decode

Execute

End of
basic block?

Interrupt
pending?

Handle Interrupt

NO NO

YES YES

Figure 2.4: An illustration of how interrupt checking might work in an interpreter-

based system. In this example, a pending interrupt is checked for after the interpreter

has executed one basic block of guest instructions.

tion would lead to corruption of guest machine state, as guest instructions must

appear to execute atomically.

As shown in Figure 2.4, in an interpreter based system, interrupt checking

is very straightforward—a check can be made after each instruction, or after a

certain number of instructions (which in the example is a basic block). How-

ever, for DBT-based systems, diverting control-flow to an interrupt handler, as

specified by the architectural behaviour, requires adding interrupt checks to the

translated code, ensuring any pending interrupts are handled. As shall be de-

scribed in Chapter 5, it is not possible to arbitrarily place these interrupt checks

without considering the effect they have on the behaviour and performance of

the virtual machine.

The optimal placement of interrupt checks can be compared to the opti-

mal insertion of profiling counters. However, updating profiling counters does

not introduce additional control-flow—since the majority of cases are simple

counter updates. Whilst reducing the number of counter updates can lead to

performance improvements by reducing the amount of memory accesses, the

problem for DBT is slightly different in that extra control-flow must be added to

perform interrupt checks, thus causing additional latency in the optimiser, and

resulting in less optimal code being generated. The technique described by Ball

and Larus [18] addresses the optimal placing problem, but does not address the

issues that are encountered with additional exit points being introduced.

Whilst there are a number of full-system simulators available, either open-

source (e.g. QEMU [21], ARM-Iss [84] or MARSSx86 [97]) or under a commer-

cial license (e.g. Simics [87]), only a few papers on interrupt handling in DBT

20 Chapter 2. Background & Related Work

systems have been published [25].

Older versions of QEMU utilised a zero-overhead interrupt checking scheme,

which suffered from serious race-conditions. However, later versions have ad-

dressed these issues by inserting checks at the head of every basic block.

ARM-Iss [84] is an instruction set simulator for the ARM architecture. It is

based on an interpretive execution model with additional instruction caching.

ARM-Iss checks for pending interrupts after each instruction. Whilst accurate,

this further exacerbates the performance penalty of a DBT-based system.

MARSSx86 [97] is a full-system simulator for x86 CPUs. Under the hood,

MARSSx86 uses QEMU for functional simulation and PTLsim for cycle-accurate

modelling, using decomposition of x86 instructions into RISC-like µ-ops and

using basic block buffers to form traces of x86 µ-ops. MARSSx86 delays the in-

terrupt issued to the CPU until the CPU comes into the stable state, defined at op-

code commit boundaries. Once the interrupts are issued to the CPU MARSSx86

switches from detailed simulation to functional emulation for correctly decod-

ing the interrupt. The emulator mode sets up the correct CPU context to handle

the interrupt but it does not start executing the interrupt handler. After the

correct CPU context is set up, MARSSx86 switches back to the detailed simula-

tion and starts simulating the interrupt handler code in kernel mode. Due to

its cycle-accurate approach interrupt handling in MARSSx86 is precise, but it

only operates at a throughput of about 200 kilo instruction commits per second

(KIPS).

An improved mechanism for the precise simulation of interrupts in cycle-

accurate simulators has been presented by Brandner [25]. The simulator spec-

ulatively executes instructions of the emulated processor assuming that no in-

terrupts will occur. At restore-points this assumption is verified and the proces-

sor state reverted to an earlier restore-point if an interrupt did actually occur.

Whilst effective at speeding up cycle-accurate simulation this is still too costly

for high-speed functional ISS.

A software simulator based on COTSon [7] that faithfully simulates x86

hardware at a speed in the tens of MIPS range has been described by Ryckbosch

et al. [104]. Details on interrupt handling are not provided, though. Similarly,

the strategies for interrupt checking are not further specified for Giano [45],

SimFlex [52] or Graphite [91]. Gem5 [22] performs per-instruction interrupt

checking due to its ambition to support cycle-accurate simulation.

2.4. MMU Virtualisation 21

2.3.1 Virtual Machines

Somewhat related to interrupt checking in an ISS is exception handling in a

Java VM. Java exceptions are synchronous, though, i.e. they are related to the

currently executing instruction and not triggered externally. Two techniques

for dealing with Java exceptions during JIT compilation, namely on-demand

translation of exception handlers and exception handler prediction are presented

by Lee et al. [78].

A notable exception are yield points in the JikesRVM [68] Java VM, where

interrupt checks are inserted in method prologues and epilogues, and on back-

edges. These checks are inserted to facilitate user-space scheduling of Java

threads, but have been deprecated (as of version 3.1.0) in favour of native

threading. JikesRVM inserts a yield point in a method prologue and epilogue,

and on a control-transfer instruction (such as an if) when the target is back-

wards.

2.4 MMU Virtualisation

Virtualisation of the guest system’s memory management unit (MMU) is arguably

one of the most challenging parts of cross-architecture virtualisation. Memory

accesses in a target program occur frequently, and so an inefficient implementa-

tion of the MMU will lead to severe performance penalties. MMU virtualisation

involves translating the address of every memory access from a virtual address

into a physical address, along with checking the permissions of the translation

to see if the currently executing code is permitted to perform the particular

operation.

On real hardware, these translations are defined by page tables, which map

pages of virtual memory onto pages of physical memory and define flags that

specify access permissions. Generally, an operating system will create a virtual

memory area (VMA) for each process, and apply the necessary protection flags,

for example, to ensure user code cannot interfere with kernel data structures.

For same-architecture virtualisation, modern processor vendors have recog-

nised the performance penalty that emulating an MMU introduces, and have

designed hardware support for accelerating virtualised MMUs. This hardware

support is termed second-level address translation (SLAT), and examples of this

22 Chapter 2. Background & Related Work

are Intel’s Extended Page Tables (EPT) and AMD’s Rapid Virtualization Indexing

(RVI).

However, for cross-architecture virtualisation, all of the approaches to MMU

virtualisation are software-based, employing techniques such as caching, ex-

ploitation of host memory protection features and shadow page tables in an

attempt to accelerate costly memory address translations. Most of the work on

accelerating virtualised MMUs is based on QEMU and aims to improve over its

default software MMU implementation and caching strategy.

Early work in the context of Simics [86] introduced a software caching

mechanism, which improved the performance of interpreted memory opera-

tions by reducing the number of calls to complex memory simulation code [85].

More recently, Chang et al. [31], Wang et al. [125], Hong et al. [60] have

presented novel schemes for speeding up address translation in full-system sim-

ulators, by utilising shadow page tables and co-ercing the host operating system

into maintaining a virtual memory mapping with mmap-based shared memory.

In Chang et al. [31], a shadow page table – called embedded shadow page

table (ESPT) – is embedded into the address space of a cross-ISA dynamic binary

translation (DBT) system. ESPT uses the hardware memory management unit

in the CPU to translate memory addresses, instead of software translation.

However, the original ESPT approach has a few drawbacks. For example,

its implementation relies on a loadable kernel module (LKM) to manage the

shadow page table. Using LKMs is less desirable for system virtual machines

due to portability, security and maintainability concerns. Hence, a different

implementation – called HSPT – adopts a shared memory mapping scheme to

maintain the shadow page table using only mmap system calls [125].

Dynamic resizing of a software TLB is proposed in [60]. Using per-page-

table utilisation information, the size of the software TLB is adjusted for each

process separately.

2.5 User-mode Simulation

Most instruction set simulators, either academic or commercial, are user mode

simulators, which do not provide support for privileged instructions, interrupt

handling, devices or a memory management unit. As such they are not capable

of hosting an operating system, but only a single process which interacts with

2.5. User-mode Simulation 23

Simulator Engine Multi-core Detailed Target ISA

CMP$im Bin. Instr. Yes Cache Intel x86

FastSim Direct Exec. No Yes SPARC v9

Graphite Direct Exec. Yes Yes Intel x86

HORNET Interpreter Yes Yes MIPS

Shade DBT No No SPARC v8/9, MIPS 1

SimpleScalar Interpreter Yes Yes Alpha, PISA, ARM, x86

SlackSim Interpreter Yes Yes SimpleScalar/PISA

Sniper Direct Exec. Yes Yes Intel x86

QEMU DBT Yes No Multiple available

WWT II Direct Exec. Yes Yes SPARC v9

ZSim Direct Exec. Yes Yes Intel x86

Table 2.1: Comparison of user-mode simulators: techniques and capabilities.

the simulator though emulated system calls. This form of simulation is not ap-

plicable to hardware virtualisation, but it is related to the instruction emulation

requirement for cross-architecture virtualisation.

A number of user mode simulators are listed in Table 2.1 and are briefly

discussed in the following paragraphs.

CMP$im [66] uses binary instrumentation as an alternative to execution-

driven and trace-driven simulation methodologies. Using the binary instrumen-

tation tool Pin [83], CMP$im is used to characterise cache performance and

data sharing behaviour of multi-threaded workloads at speeds of 4-10 MIPS.

FastSim [107] is a cycle-accurate, direct-execution simulator of an out-of-

order uni-processor. It models a SPARC v8 instruction set running on a MIPS

R10000-like microarchitecture and simulates a single processor. FastSim’s pro-

cessor model supports out-of-order instruction execution, speculative execu-

tion, and an aggressive non-blocking cache.

Graphite [91] is an open-source distributed parallel multi-core simulator in-

frastructure. Graphite combines several techniques including: direct execution,

seamless multi-core and multi-machine distribution, and lax synchronisation.

Graphite is capable of accelerating simulations by distributing them across mul-

tiple commodity Linux machines. When using multiple machines, it provides

the illusion of a single process with a single, shared address space, allowing it

to run off-the-shelf pthread applications with no source code modification.

HORNET [80] is a configurable, cycle-level multi-core simulator with sup-

24 Chapter 2. Background & Related Work

port for a variety of memory hierarchies, interconnect routing and virtual chan-

nel (VC) allocation algorithms, as well as accurate power and thermal mod-

elling. Its multi-threaded simulation engine divides the work equally among

available host processor cores, and permits either cycle-accurate precision or

increased performance, at the cost of some accuracy, via periodic synchronisa-

tion. HORNET can be driven in network-only mode by synthetic patterns or

application traces, or in full multi-core mode using a built-in MIPS core simula-

tor.

Shade [36] is an instruction-set simulator and custom trace generator. Ap-

plication programs are executed and traced under the control of a user-supplied

trace analyser. To reduce communication costs, Shade and the analyser are run

in the same address space. To further improve performance, code which simu-

lates and traces the application is dynamically generated and cached for reuse.

It runs on SPARC systems and, to varying degrees, simulates the SPARC (Ver-

sions 8 and 9) and MIPS I instruction sets.

The SimpleScalar tool set [14] is a system software infrastructure used to

build modelling applications for program performance analysis, detailed mi-

croarchitectural modelling, and hardware-software co-verification. Using the

SimpleScalar tools, users can build modelling applications that simulate real

programs running on a range of modern processors and systems. The tool

set includes sample simulators ranging from a fast functional simulator to a

detailed, dynamically scheduled processor model that supports non-blocking

caches, speculative execution and state-of-the-art branch prediction. These

SimpleScalar simulators can emulate the Alpha, PISA, ARM, and x86 instruc-

tion sets. The tool set includes a machine definition infrastructure that permits

most architectural details to be separated from simulator implementations.

Slacksim [33] is a parallel simulation technique to accelerate microarchitec-

ture simulation of chip multiprocessors (CMPs) by exploiting the inherent paral-

lelism of CMPs. It simulates each core of a target CMP in one thread and then

spreads the threads across the hardware thread contexts of a host CMP. Start-

ing with cycle-by-cycle simulation Slacksim relaxes synchronisation conditions

around using POSIX threads using a number of schemes, resulting in improved

simulation performance for multi-threaded workloads.

Sniper [29] is a parallel, high-speed and accurate x86 simulator. This multi-

core simulator is based on the interval core model and the Graphite [91] sim-

2.6. Hardware Virtualisation 25

ulation infrastructure, allowing for fast and accurate simulation and for trad-

ing off simulation speed for accuracy to allow a range of flexible simulation

options when exploring different homogeneous and heterogeneous multi-core

architectures. The Sniper simulator allows one to perform timing simulations

for both multi-program workloads and multi-threaded, shared-memory appli-

cations with 10s to 100+ cores.

The Wisconsin Wind Tunnel II [93] is a parallel, discrete-event, direct exe-

cution simulator supporting a wide range of platforms, such as desktop work-

stations, a SUN Enterprise server, a cluster of workstations, and a cluster of

symmetric multiprocessing nodes.

The recent ZSim [105] simulator parallelises the core of the simulator. ZSim

simulates applications in two phases, a bound and a weave phase, the phases

are interleaved and only work on a small number of instructions at a time.

The bound phase executes first and provides a lower bound on the latency

for the simulated block of instructions. Simulated threads can be executed in

parallel since no interactions are simulated in this phase. The simulator then

executes the weave phase that uses the traces from the bound phase to simulate

memory system interactions. This can also be done in parallel since the memory

system is divided into domains with a small amount of communication that

requires synchronisation. Since ZSim is built using the Intel Pin instrumentation

framework, it only supports user-space x86 code and does not simulate any

devices (e.g., storage and network). The main focus of ZSim is simulating large

parallel systems.

2.6 Hardware Virtualisation

2.6.1 Same-architecture Virtualisation

Same-architecture virtualisation is well supported by modern hypervisors, and

as mentioned in Chapter 1, the technology is used for a wide range of purposes.

Table 2.2 shows a list of some of the most popular same-architecture virtu-

alisers, and summarises their features. The majority of these systems support

hardware-assisted virtualisation, but in some cases they also support a limited

form of DBT, where privileged instructions are re-written. In VMware’s case,

a scan before execute (SBE) strategy is employed that determines if code that

26 Chapter 2. Background & Related Work

Hypervisor Engine Multi-core Hardware Accelerated Arch.

VirtualBox DBT/HVM Yes Intel VT, AMD-V x86

Parallels Desktop HVM Yes Intel VT x86

Xen(*) HVM/PV Yes Intel VT, AMD-V x86, ARM

QEMU/KVM HVM/PV Yes Intel VT, AMD-V, ARM Virt. Ex. x86, ARM

VMware ESXi SBE/PV Yes Intel VT, AMD-V x86

Hyper-V HVM Yes Intel VT, AMD-V x86
(*) Xen previously had support for PowerPC and Intel IA-32/64, and has experimental support

for MIPS.

Table 2.2: Comparison of same-architecture hardware virtualisers: techniques and

capabilities. DBT: dynamic binary translation, HVM: hardware virtual machine, PV:

para-virtualisation, SBE: scan before execute.

is about to be executed contains any special handling. Many of these systems

also support para-virtualisation of some form, enabling modified guests to run

at higher speeds.

Oracle VirtualBox [94] is an open-source hypervisor that virtualises the x86

architecture. It has support for hardware-assisted virtualisation (either Intel VT

or AMD-V) and also supports second level address translation for efficient virtual-

isation of the MMU. VirtualBox runs on Linux, OS X, Windows and Solaris, and

supports running many different guest operating systems, including Windows,

Linux and BSD variants.

Parallels Desktop for Mac [47] is a popular commercial product for running

virtual machines on an Intel-based Macintosh computer. The typical use-case is

to run a Microsoft Windows virtual machine, so that users can run Windows-

only software on their Mac computers, but Parallels Desktop also supports other

guest operating systems, such as Linux. It also supports seamless integration of

the guest graphical subsystem, to make it appear as though guest Windows ap-

plications are running natively in the OS X environment. Since Parallels Desktop

is designed for the Intel Mac, it only supports hardware-assisted virtualisation

through the use of Intel VT.

Xen [19] is an open-source type 1 (native) hypervisor that is widely used for

server consolidation, rapid provisioning, fault tolerance and virtual machine

migration. Xen supports a number of operating modes, including hardware-

assisted virtualisation and para-virtualisation. It is based on a microkernel

design, and partitions guest operating systems into so-called “domains”. The

2.6. Hardware Virtualisation 27

first domain (dom0) is a privileged domain, with full access to the host system

hardware. Typically, dom0 is started with a Linux or BSD-based system, and

it is used to manage the hypervisor and launch unprivileged (domU) domains.

Unprivileged domains can be unmodified operating systems (where privileged

instructions are trapped by the host’s hardware extensions), or para-virtualised

operating systems (where the guest operating system uses hypercalls to com-

municate with the hypervisor).

QEMU/KVM [74] is a particular operating mode of the popular QEMU type 2

(hosted) hypervisor that interfaces with the Kernel Virtual Machine (KVM) for

hardware-assisted virtualisation on Linux host systems. Previously, a custom

kernel module called KQEMU was developed to accelerate QEMU by allowing

guest machine code to run directly on the processor and emulating privileged

system instructions. However, shortcomings in its design and implementation

led to it being phased out, preferring KVM for acceleration instead.

VMware ESXi [120] is another commercial hypervisor, but in contrast to

Parallels it is a type 1 native hypervisor and more closely related to Xen. Similar

to Xen, it operates on a bare-metal system, and relies on the Linux kernel for

infrastructure support. VMware ESXi supports unmodified and para-virtualised

guests, but takes a significant performance penalty for unmodified operating

systems, due to overhead associated with its virtualisation strategy.

Hyper-V is a commercial Microsoft Windows-based hypervisor. Although it is

a type 1 native hypervisor, it requires a 64-bit variant of Windows to operate, as

it is closely tied with Microsoft’s server operating system offering. Additionally,

hardware-assisted virtualisation technology from Intel VT or AMD-V is required,

and the system can utilise second-level address translation technology. Hyper-

V, much like the majority of other commercial hypervisors, includes a para-

virtualisation technology that enables efficient device I/O (branded Enlightened

I/O), by enabling direct access to devices from the guest.

Penneman et al. [99] investigate DBT techniques for same-architecture vir-

tualisation on ARM platforms that do not support the more modern ARM Vir-

tualization Extensions. Similarly, Gorgovan et al. [48] introduce an efficient

dynamic binary modification tool, but target instrumentation of applications

and not hardware virtualisation.

28 Chapter 2. Background & Related Work

Simulator Engine
Multi-

Detailed
Hardware

Target ISA
Core Accelerated

ARCSIM Async. DBT Yes Config. No User Retargetable

CAPTIVE DBT Yes Yes Yes User Retargetable

Embra DBT Yes Cache No MIPS R3000/R4000

gem5 Discr. Event Yes Yes No User Retargetable

MARSS DBT Yes Yes No Intel x86

OVPSim DBT Yes No No Multiple available

pFSA Direct Exec. No Sampling Same ISA Intel x86

PTLsim Virtualisation No Yes No Intel x86-64

QEMU/DBT DBT No No No Multiple available

PQEMU DBT Yes No No ARM11MPCore

XEMU DBT Yes No No Multiple available

Simics Interpreter Yes Approx. No Multiple available

Simit-ARM DBT No No No ARMv5

SimNow DBT Yes (COTSon) No Intel x86, AMD64

Table 2.3: Comparison of hardware virtualisers: techniques and capabilities.

2.6.2 Cross-architecture Virtualisation

Cross-architecture virtualisation, often described as full system simulation, is

an active field of research and a large number of techniques for the efficient

implementation of these systems have been published, e.g. Böhm et al. [24],

Böhm et al. [23], Witchel and Rosenblum [127], Binkert et al. [22], Patel et al.

[96], Sandberg et al. [106], Yourst [130], Bellard [21], Ding et al. [39], Mag-

nusson et al. [86], Qin and Malik [102], AMD Developer Central [5]. Table 2.3

provides an overview of well-known full-system simulators, their capabilities

and implementation techniques.

ARCSIM [24] is a configurable simulator, supporting both user mode and

full system simulation, and which can be retargeted by means of a high-level

architecture description [121]. It uses a parallel, optimising JIT compiler for

the translation of non-linear regions of guest code to efficient host code [108].

Multi-core target platforms [3] as well as cycle-accurate performance modelling

[23] are supported for a class of in-order processors. ARCSIM shall be described

further in the following chapters.

CAPTIVE (Chapter 6) is a hardware virtualisation hypervisor, that supports

hardware accelerated cross-architecture virtualisation. It uses the Linux Kernel-

2.6. Hardware Virtualisation 29

based Virtual Machine (KVM) [74] framework available in modern Linux dis-

tributions to speed-up critical hardware virtualisation operations, required for

virtualising a guest architecture that is different to the host architecture.

Embra [127] is an early example of a full system simulator, pioneering dy-

namic binary translation principles and chaining of translation units. Embra

targets both uni-processors and cache-coherent multiprocessors, and can be

configured to include a processor cache model. Address translation is supported

by a software cache, which causes an eight instruction overhead per memory

operation (for a cache hit).

gem5 [22] provides a highly configurable simulation framework, multiple

ISAs, and diverse CPU models, complemented with a detailed and flexible mem-

ory system, including support for multiple cache coherence protocols and in-

terconnect models. gem5 can be used either in user- or full system simula-

tion mode, and similar to ARCSIM, it can be retargeted by means of an ISA

description language. Depending on the mode of execution and accuracy of

simulation detail the nominal simulation speed of gem5 varies between ∼ 3

MIPS (fast-forwarding/ISS mode) and ∼ 300 KIPS (detailed CPU and memory

system), making it orders of magnitude slower than functional simulators such

as ARCSIM, Embra, QEMU or CAPTIVE.

MARSS [96] is a full system simulation tool built on QEMU to support cycle-

accurate simulation of superscalar homogeneous and heterogeneous multi-core

x86 processors. MARSS includes detailed models of coherent caches, intercon-

nections, chipsets, memory and I/O devices.

OVPsim is a commercial full system simulator, which uses dynamic binary

translation technology and allows users to create their own processor, periph-

eral and platform models.

pFSA [106] extends gem5 with a new CPU module that uses the hardware

virtualisation support available in current ARM- and x86-based hardware to

execute directly on the physical host CPU. Similar to CAPTIVE, it uses stan-

dard Linux interfaces, such as KVM that exposes hardware virtualisation to user

space. pFSA offers Virtual Fast-Forwarding (VFF), which executes instructions

to a point-of-interest anywhere in an application and then switch to a different

CPU module for detailed simulation, or take a checkpoint for later use. Whilst

mainly concerned with sampling based performance estimation for same-ISA

simulation, it does not offer the same hardware-assisted cross-ISA virtualisation

30 Chapter 2. Background & Related Work

capabilities of e.g. CAPTIVE.

PTLsim [130] uses para-virtualisation to run the target system natively. Due

to the use of para-virtualisation, PTLsim requires the guest operating system

to be aware of the hypervisor. The guest system must therefore use a special

para-virtualisation interface to access page tables and certain low-level hard-

ware. This also means that PTLsim does not simulate low-level components

like timers and storage components. A draw-back of PTLsim is that it practi-

cally requires a dedicated machine since the host operating system must run

inside the para-virtualisation environment. PTLsim uses a fast virtualised mode

for fast-forwarding and supports detailed processor performance models.

QEMU [21] is an open-source, full system simulator and virtualisation hyper-

visor, using a portable just-in-time (JIT) translation engine for cross-architecture

emulation. For same-ISA virtualisation QEMU builds on top of KVM and uses

hardware virtualisation extensions if available, whereas for cross-ISA emulation

it relies on DBT and its own software MMU (with software caching). Wang et al.

[124] extend QEMU further for high-performance cross-architecture virtualisa-

tion.

PQEMU [39] extends QEMU with more efficient multi-core target support.

QEMU itself runs DBT-based multi-core simulations in a single-thread, with each

virtual CPU being executed in a round-robin fashion.

XEMU [123] is a cross-architecture full-system simulator that is designed to

be high-performance for multi-core simulation. XEMU pays special attention

to the translation of atomic instructions, and the communication overheads

associated with multi-core simulation.

The commercial Simics simulator [86] employs a software caching mech-

anism, which improves the performance of interpreted memory operations by

reducing the number of calls to complex memory simulation code. This is also

supported by a lazy memory allocation scheme, which reduces the size of the

simulator process. Overall, Simics’ interpreter, based on threaded code, is not

competitive any more when compared to state-of-the-art JIT based simulators,

which provide a magnitude or more better simulation performance.

Simit-ARM [102] is an instruction-set simulator that runs both system-level

and user-level ARM programs. It supports interpretation and dynamic-compiled

simulation. SimIt-ARM supports the ARMv5 architecture, including the mem-

ory management unit and some fundamental I/O devices. On a Pentium D

2.7. Summary 31

2.8GHz desktop, the interpreter runs at around 30 MIPS. The dynamic-compiled

simulator runs even faster, especially for long simulation tasks or when a multi-

core workstation is used, but it does not reach the performance of QEMU or

CAPTIVE. Compared to the direct translation approach in QEMU, the GCC-based

approach in Simit-ARM is easier to implement, but at the cost of translation

speed. To reduce translation delay, SimIt-ARM distributes translation tasks to

other CPUs or workstations via either pthreads or sockets.

COTSon [6] combines AMD SimNow [5] (a JIT-based functional x86 sim-

ulator) with a set of performance models for disks, networks, and CPUs. The

simulator achieves good performance by using a dynamic sampling strategy

that uses online phase detection to exploit phases of execution in the target.

Penneman et al. [98] review the formal virtualisation requirements for the

ARM architecture. In Liu et al. [81] the CASL hypervisor for the ARM architec-

ture is presented.

STAR [100] is an open-source hypervisor for ARMv7-A with full virtualisa-

tion using DBT.

Gutierrez et al. [51] investigate the sources of error in full system simu-

lation. They concentrate their effort on identifying the underlying causes for

inaccuracies of several key microarchitectural statistics. As this thesis is not

concerned with microarchitectural simulation, but aims at providing a high-

performance virtualisation system, the sources of error identified in [51] do not

apply to this work.

2.7 Summary

There is a significant amount of related work in the area of simulation and

virtualisation, with a lot of effort going into performance improvements for

functional virtualisation. Of primary concern in this thesis is cross-architecture

virtualisation, and the following chapters shall describe new approaches and

techniques that enable efficient virtualisation of a guest architecture that is dif-

ferent to the host’s.

Chapter 3
Infrastructure

The work being presented in the following chapters depends on certain existing

and new tools, and this chapter shall describe the frameworks and infrastruc-

ture used in the remainder of this thesis.

Throughout the following chapters, there will be three main tools used to

implement the ideas and techniques being presented:

• GENSIM: A tool that generates hypervisor components from a high-level

architecture description.

• ARCSIM: A high-performance instruction set simulator, with support for

hardware virtualisation.

• CAPTIVE: A hardware accelerated cross-architecture hypervisor.

GENSIM and ARCSIM are pre-existing tools, but have been extended throughout

the course of this research. CAPTIVE is a new tool that has been developed

specifically for the techniques presented in Chapter 6. Each of these tools shall

now be described in turn.

3.1 GENSIM

Any form of cross-architecture virtualisation requires a description of the archi-

tecture being virtualised, and hard-coding this description into a hypervisor is

time consuming, error prone, hard to debug and can lead to poor code quality.

For this reason, GENSIM was created as a tool that accepts a high-level architec-

ture description (in an ArchC-like [16] architecture description language (ADL))

34 Chapter 3. Infrastructure

High-level
Architecture Description

Register File

Instruction Formats

Instruction Behaviours Disassembly Format

Architectural
Behaviours

Instruction Encoding

GenSim

Decoder Generator

Interpreter Generator

JIT Generator

Parser

Source CodeVirtualisation/Simulation Software

Figure 3.1: A high-level overview of the GENSIM generation tool. GENSIM accepts a

high-level architecture description, which is parsed and used by generators to produce

source-code as output. This source-code can be included in simulation or virtualisation

software, to provide services (such as instruction decoding, or JIT compilation) specific

to the architecture being described.

and produces source-code as output that can be included in simulation or vir-

tualisation systems. This leads to a very fast turn-around time for producing

simulators for architectures that may or may not exist (enabling rapid proto-

typing of hardware platforms), along with benefits such as automated model

testing, guest application debugging and ease of development.

Figure 3.1 shows the basic operation of GENSIM. The ADL describes the

architecture’s register file, instruction formats and encodings, instruction be-

haviours, assembly-language formats and architecture-specific behaviours, such

as how page faults are handled. GENSIM parses the ADL and maintains an in-

ternal representation of this description. The output of GENSIM is governed by

generators, which interrogate the internal representation, and produce output

files (which are usually source code files) that perform actions specific to the

described architecture.

GENSIM is designed to produce modules that contain implementations of a

particular “service” that is found in a generic simulation framework. For exam-

ple, a simulator needs to have the ability to decode guest machine instructions

(e.g. for interpretation) and GENSIM can produce a module that implements an

instruction decoder for the described architecture. The following list contains

examples of the kind of modules that can be produced:

3.1. GENSIM 35

• High-speed instruction decoders: Used for decoding guest instructions,

for example, in order to execute associated behaviours or for dynamic

binary translation.

• Disassemblers: Used primarily for debugging during development of ap-

plications, or even the simulator itself.

• Interpreters: Used for simple, but slow, guest instruction emulation.

• JIT compilers for DBT: Used for efficient, guest instruction emulation.

• Support infrastructure: Used to provide a representation of the target

CPU state (e.g. the register file), and for implementing specific architec-

tural behaviours.

Internally, the generator system in GENSIM is pluggable, and so it is trivial

to develop a generator that produces, for example, an instruction decoder to

be used as part of a particular application. GENSIM also optimises much of

the internal representation, to ensure generators produce output modules that

contain highly optimal code.

This thesis will focus on virtualising an ARM guest system on an x86 host

system, and the following sections will give an overview of the high-level ar-

chitectural model used throughout, and how GENSIM is employed to generate

the guest architecture specific components. The description in use has been de-

veloped over a number of years by a range of individuals, and has been further

extended to support hardware virtualisation as part of this thesis.

3.1.1 High-level Architecture Description

The ADL is structured such that the top-level description file describes certain

architecture-wide definitions. Listing 3.1 shows an extract from the ARMv7-A

model that describes the register file present on the ARM guest CPU. In this

example, lines 2–5 define the general purpose register bank, and in particular

identifies the register that is the program counter (PC). This identification is

required, as simulators generally need knowledge of the PC for control-flow

purposes. Lines 8–15 define the CPU flags, which are updated by instructions

that set flags after an operation. The most common flags (C-carry, Z-zero, N-

negative, V-overflow) are specially identified for simulators that support flag

setting optimisations.

36 Chapter 3. Infrastructure

1 // General Purpose Registers
2 ac_regspace(64) {
3 bank RB (uint32, 16, 4, 4, 0);
4 slot PC (uint32, 4, 60) PC;
5 }
6

7 // General Flags
8 ac_regspace (6) {
9 slot C (uint8, 1, 0) C;
10 slot Z (uint8, 1, 1) Z;
11 slot N (uint8, 1, 2) N;
12 slot V (uint8, 1, 3) V;
13 slot Q (uint8, 1, 4);
14 slot A (uint8, 1, 5);
15 }

Listing 3.1: High-level architectural register description.

1 // Define the MOVTW instruction format: 4-bit condition, 4-bit operand, ...
2 ac_format<Type_MOVTW> = "%cond:4 %op:4 %subop:4 %rn:4 %rd:4 %imm32:12";
3

4 // Link movt, movw instructions to the Type_MOVTW instruction format
5 ac_instr<Type_MOVTW> movt, movw;
6

7 // Define the ARM instruction set architecture
8 ISA_CTOR(arm) {
9 // Instruction: movt, where (op = 0x3) and (subop = 0x4)
10 movt.set_decoder(op = 0x3, subop = 0x4);
11 // Assembly mnemonic
12 movt.set_asm("movt[%cond] %reg, #%imm", cond, rd, imm32);
13 // Instruction behaviour is defined in the "movt_behaviour" function
14 movt.set_behaviour(movt_behaviour);
15

16 // Instruction: movw, where (op = 0x3) and (subop = 0x0)
17 movw.set_decoder(op = 0x3, subop = 0x0);
18 // Assembly mnemonic
19 movw.set_asm("movw[%cond] %reg, #%imm", cond, rd, imm32);
20 // Instruction behaviour is defined in the "movw_behaviour" function
21 movw.set_behaviour(movw_behaviour);
22 }

Listing 3.2: High-level instruction format description.

Listing 3.2 shows an extract of an instruction format description, again from

the ARMv7-A model. Line 2 contains a bit-level representation of the instruction

format, and line 5 declares two instructions (movt and movw) that conform to

this pattern. Lines 10 and 17 further specialise the pattern, specific to the two

instructions, by placing constraints on the values of the fields defined in the in-

struction format. Lines 12 and 19 assist debugging by producing a disassembly

format for the instructions, in a printf-style declaration. Finally, lines 14 and

21 attach semantic behaviours to the instructions.

The semantic behaviour of instructions is defined in a C-like domain specific

language (DSL) called GENC. Listing 3.3 shows the GENC that describes the

3.1. GENSIM 37

1 // Instruction behaviour for "movt"
2 execute(movt_behaviour)
3 {
4 uint32 orig = read_register_bank(RB, inst.rd) & 0xffff;
5 uint32 rn = inst.imm32 | (inst.rn << 12);
6

7 uint32 result = orig | (rn << 16);
8 write_register_bank(RB, inst.rd, result);
9 }

10

11 // Instruction behaviour for "movw"
12 execute(movw_behaviour)
13 {
14 uint32 result = inst.imm32 | (inst.rn << 12);
15 write_register_bank(RB, inst.rd, result);
16 }

Listing 3.3: Semantic description of the behaviour of the movt and movw instructions.

behaviours of the corresponding instructions.

The semantic instruction behaviours are parsed by GENSIM, and an internal

static single assignment (SSA) form is maintained for each behaviour. This SSA

is analysed so that the partial evaluation technique described by Wagstaff et al.

[121] can be employed, and then optimised so that generators that utilise it can

produce efficient output.

3.1.2 Output Components

GENSIM produces source-code as output, which can be compiled directly into

the virtualisation system or compiled into a shared library that is loaded by the

system dynamically. As GENSIM is employed for both ARCSIM and CAPTIVE,

command-line options dictate the target of the output, causing the appropriate

generators to be invoked.

When generating modules for ARCSIM, a high-speed instruction decoder,

interpreter, LLVM-based JIT compiler, a disassembler (for debugging purposes)

and a CPU model are generated. GENSIM outputs a number of C++ source-

code files that contain the generated implementations of the various services.

For example, a particular source-code file contains the implementation of an

instruction decoder for the described architecture and another contains a dis-

assembler. After generation, these files are then compiled and linked to pro-

duce a single shared object. This shared object is loaded by ARCSIM at start-

up, and accessed by the generic simulation framework, when the appropriate

architecture-specific service is required.

38 Chapter 3. Infrastructure

A similar output is produced for CAPTIVE, the difference being that the gen-

erators produce source-code that targets the CAPTIVE API.

3.1.3 Automated Model Testing

A particular benefit of using a high-level architecture description is that the

model is amenable to automated testing. Testing of a high-level architectural

model is described by Wagstaff et al. [122], with this technique being devel-

oped and used throughout the engineering of the ARM model. Employing this

testing process significantly reduces the amount of debugging required to lo-

cate problems (such as bugs in instruction implementations), by verifying the

behaviour of the model against a reference platform and simulator.

3.2 ARCSIM

ARCSIM is a high-performance instruction set simulator, developed at the Uni-

versity of Edinburgh. It supports both user-mode and full-system simulation.

It employs a region-based asynchronous DBT system for obtaining high simu-

lation throughput rates, and uses LLVM to generate highly efficient native code.

Originally, ARCSIM was designed solely to simulate the EnCore microprocessor

[114], but has since been extended to accept modules generated by GENSIM in

order to simulate other architectures. Even though ARCSIM has been extended

further, and can now simulate much more than the ARC architecture, the name

remains.

Figure 3.2 shows the main execution loop of ARCSIM, which employs an

interpretive component and farm of concurrent JIT compiler threads to achieve

maximum speed. Execution begins by running the target program through the

interpreter and collecting profiling information about the basic blocks by build-

ing a region-oriented control flow graph (CFG). A heuristic decides if a region

is eligible for compilation, by considering the number of basic blocks discov-

ered within the region, and the heat (the number of times a basic block has

been executed) of those blocks. It will then be dispatched to a JIT compiler

worker thread, which will translate the region to native code. This process is

asynchronous, and the target program will continue executing in the interpreter

while the region is being translated. Once the native code has been compiled, it

3.2. ARCSIM 39

Not Found

Found Execute JITed
region

Decode and
Execute

Basic Block

Add block to
region trace

Dispatch hot
regions to JIT

compiler

Fetch next
instruction

Look for block
translation

in metadata

Found Update translation cache
and global jump table

Not Found

Look up in
translation cache

Compiler Work Queue

n-threadsJIT Compiler Worker JIT Compiler Worker

Figure 3.2: Main execution loop of ARCSIM with decoupled, concurrent JIT compila-

tion threads. Initially, execution of guest basic blocks is performed with an interpreter,

but profiling information is collected to identify basic blocks that are “hot”. Once a re-

gion of “hot” basic blocks has been discovered, it is dispatched to a JIT worker thread,

which compiles the region to native code. Then, execution transitions into native code,

if a translation is available.

will be made available by registering region entry points in block metadata, and

when the interpreter encounters a registered block, it will update the trans-

lation cache and begin executing the native code. Once inside native code,

execution will remain there as long as blocks are available to execute. If a basic

block is encountered that has not yet been compiled, control will return to the

interpreter and profiling information updated accordingly. Gathering further

profiling information about a region may lead to a region becoming eligible for

recompilation, which gives rise to progressively optimal code, much like tiered

or staged compilation [70].

40 Chapter 3. Infrastructure

3.2.1 LLVM Compiler Infrastructure

LLVM [77] is a modern framework for compiler development. The core frame-

work consists of a high-level intermediate representation (IR), a number of trans-

formation passes, and a wide range of back-end machine code generators,

targeting many different architectures. Various front-ends (such as the Clang

C/C++ compiler) produce LLVM IR, which is then passed through a series of

optimisation passes, until finally being lowered to machine code by the back-

end. LLVM also provides a JIT compilation interface, making it suitable for use

in a DBT system.

LLVM is widely used by scientific and research institutions, as well as being

used in commercial deployments. Its design is highly amenable to extension

and modification, and can be conveniently integrated into new and existing

software—unlike GCC, which is notoriously less flexible. Although there have

been recent efforts to improve the extensibility of GCC [63], the nature of LLVM

is such that it still remains the compilation framework of choice for modern

research.

In ARCSIM, JIT compilation of the guest basic blocks is performed by trans-

lating the guest instructions in those blocks into corresponding LLVM IR. At this

point, the guest instructions have already been decoded, so for each instruc-

tion its translation function is called, which generates the IR that represents its

behaviour. The translation functions are generated by GENSIM, as described

previously. Once the IR has been generated for a region, it is passed through

the standard LLVM optimisations, until finally being compiled into native host

machine code using the LLVM JIT compiler.

3.3 CAPTIVE

CAPTIVE is a new cross-architecture hardware virtualisation hypervisor that has

been developed as part of this research. It is designed to utilise host machine

hardware extensions for virtualisation, e.g. Intel VT, and it accesses these ex-

tensions through the KVM framework (see Section 3.3.1). Figure 3.3 gives a

high-level overview of the interaction of the main components in CAPTIVE.

Since virtualisation extensions are primarily designed for same-architecture

virtualisation, the key idea is to map the behaviour of a guest machine, onto the

3.3. CAPTIVE 41

Linux Kernel Intel VT/AMD-V

CAPTIVEHypervisor Virtual Machine

KVM

Architectural
Model

Execution
Engine

Platform
Devices

Virtual
Machine Monitor

Figure 3.3: CAPTIVE uses KVM to create a same-architecture virtual machine on the

host system. An architectural model (generated by GENSIM) maps the behaviour of

the guest machine to behaviour of the host machine. The CAPTIVE hypervisor provides

software implementations of platform devices, for use by the guest system.

behaviour of a host machine. For example, when using CAPTIVE to virtualise an

ARM platform on an x86 host machine, the behaviour of the ARM memory man-

agement unit (MMU) is mapped onto the behaviour of the x86 MMU, enabling

high performance memory address translation.

CAPTIVE can easily be retargeted to different host and guest machines. Re-

targeting to a different host requires the host Linux kernel to support KVM,

the implementation of host-specific machine setup code and the development

of a back-end to the JIT compiler. The guest machine is retargeted by creating

an architectural model, and using GENSIM to generate the architecture-specific

components. Additionally, CAPTIVE contains software implementations of vari-

ous devices, so that guest platforms that require them can be fully virtualised.

This device model is pluggable, enabling new device implementations to be

developed externally, and loaded dynamically.

3.3.1 KVM

Hardware accelerated virtualisation is well supported by multiple processor

vendors, e.g. Intel with Intel VT, AMD with AMD-V and ARM with ARM Vir-

tualization Extensions. Whilst these extensions all produce the same effect, i.e.

they create an abstract computing platform on which to run unmodified oper-

ating systems, they are implemented and accessed completely differently. All

of these extensions are geared towards creating a virtual machine of the same

architecture as the host machine, by enabling operating system software to run

42 Chapter 3. Infrastructure

directly on the host hardware, with minimal supervision.

KVM [74] is a virtual machine monitor implemented as part of the Linux

kernel, which can utilise any supported hardware accelerated virtualisation ex-

tensions, on any platform. Its job is to abstract the details of the virtualisation

extensions, and to provide a generic interface for creating and managing a vir-

tualisation environment. KVM also fully supports additional virtualisation ex-

tensions present on x86 platforms, such as Intel extended page tables (EPT), or

AMD rapid virtualization indexing (RVI), which are used to accelerate virtualised

MMUs. KVM itself is only an interface to hardware virtualisation extensions, it

will not work in the absence of these.

A common misconception is that KVM depends on (or requires) QEMU [21]

to be used, but although KVM was developed in tandem with QEMU, it is an

independent technology that is part of the standard Linux kernel, and available

for use by any developer wishing to create a platform-independent hypervisor,

an example being the Native Linux KVM tool [53].

3.3.2 Intel VT

Intel VT [65] is a set of hardware extensions introduced by Intel to provide

support for virtualising x86 processors. It provides new instructions for setting

up and managing virtual machines, transitioning between hypervisor and vir-

tualised execution, and support for virtualising the guest MMU with extended

page tables (EPT). EPT provides an extra level of page tables that are walked

by hardware when a virtual memory address that is not present in the TLB is

encountered while running in the virtual machine.

This technology consists of a number of “sub-technologies” that enable effi-

cient virtualisation of hardware resources:

• Intel VT-x: This is the CPU virtualisation technology, that enables efficient

virtualisation of a physical processor. It provides the isolated run-time

environment for operating system software.

– EPT: EPT or extended page tables is part of Intel VT-x, and is hardware

acceleration for MMU virtualisation.

• Intel VT-d: This technology enables efficient virtualisation of devices on

the host platform.

3.4. QEMU 43

• Intel VT-c: This technology gives the ability to virtualise network and

communication devices efficiently.

3.4 QEMU

QEMU [21] is an open-source hardware virtualisation system that is widely used

in academia and industry. It supports both user-mode simulation, and hardware

virtualisation by means of dynamic binary translation. QEMU can also use KVM

to perform highly efficient same-architecture hardware virtualisation, using the

host machine’s hardware virtualisation extensions.

In DBT mode, QEMU employs a custom JIT compiler called the tiny code gen-

erator (TCG). The guest architecture implementation produces TCG ops, which

are then optimised and lowered into host machine code. However, it does sup-

port many different guest architectures, and it has an extensive library of device

implementations.

QEMU is not easily retargetable, as the guest architecture is developed di-

rectly in the main source-code distribution, and the instruction decoder is hard-

coded into the translation implementation.

The majority of the related work presented in Chapter 2 uses QEMU as a

baseline for comparing their own techniques, making QEMU suitable for the

performance comparisons in this thesis, as it is widely accepted as state-of-the-

art in the existing scientific literature.

3.5 Evaluation

The evaluation of the techniques described in the following chapters are all

made in a similar fashion, and since the underlying idea is to increase the

performance of virtualisation systems, the key results take the form of a per-

formance comparison between the ideas presented and existing state of the

art implementations. In general, the direct competitor is QEMU, but in cer-

tain cases, more recent and related work that has extended QEMU to improve

performance is considered.

Each individual chapter describes the specific methodology used during eval-

uation, but in general performance measurements are made by running the

44 Chapter 3. Infrastructure

SPEC-CPU2006 benchmark suite, described in Section 3.5.2.

3.5.1 Guest Architecture and Platform

Implementing the behaviour of a guest architecture is a time-consuming and

error-prone process, and so a particular architecture is chosen for the basis of

the experiments in this thesis. The chosen architecture is ARM, as this architec-

ture sees widespread real-world usage, and much of the related work uses this

architecture for their research. It is a very popular architecture, with detailed

information freely available from ARM making development of application and

system software very easy, and therefore also the development of simulators.

Being the architecture of choice for modern mobile phones, it is well supported

by the Linux kernel, on which the Android® operating system is built, making

it an ideal target for virtualisation.

The choice of architecture itself is not enough for performing hardware vir-

tualisation, as it is a particular platform that dictates the implementation of

the architecture. The platform describes the type and configuration of the CPU

core(s), along with the versions of the various architectural components in use.

The platform also describes the configuration and location of the devices that are

present in the system. These platform devices may be I/O devices, such as disk,

network and graphics devices or they may be internal devices such as timers,

debugging and control interfaces.

In Chapter 5, the ARM platform implemented is an ARM Versatile Appli-

cation Baseboard [11], and in Chapter 6, the platform is an ARM RealView

Platform Baseboard for Cortex-A8 [9]. These two platforms have quite similar

device requirements, i.e. the majority of the devices are the same, but they are

located in a different place in physical memory. The two most notable differ-

ences between the platforms are the version of the interrupt controller and the

memory management unit (MMU).

These platforms were chosen because, like the ARM architecture itself, de-

tailed information about them are freely available from ARM, including the be-

haviour of the platform devices. This makes the implementation quite straight-

forward.

3.5. Evaluation 45

Benchmark Application

400.perlbench Mail filtering using the Perl programming language

401.bzip2 Data compression using the BZIP2 algorithm

403.gcc C Compilation

429.mcf Vehicle scheduling using combinatorial optimisation

445.gobmk Artificial intelligence for the ‘Go’ board game

456.hmmer Protein sequencing using hidden Markov models

462.libquantum Prime factorisation by simulated quantum computation

464.h264ref The h.264 video codec

471.omnetpp Networked system simulation

473.astar The A* Pathfinding algorithm

483.xalancbmk XSLT transformation

Table 3.1: A list of the integer benchmarks in the SPEC-CPU2006 benchmark suite.

Each benchmark is designed to be representative of a real-world workload.

3.5.2 SPEC-CPU2006 Benchmark Suite

As mentioned previously, the SPEC-CPU2006 benchmark suite is used through-

out the evaluation sections to benchmark performance of the system being de-

scribed. This particular benchmark suite is developed by SPEC (The Standard

Performance Evaluation Corporation), who also produce a range of other bench-

mark suites for various workloads/platforms. The suite itself contains a number

of realistic workloads, designed to test integer and floating point performance

of the system being benchmarked. The SPEC benchmarks are widely accepted

by the research community and appear in the majority of related literature for

performance comparisons.

To simplify the implementation of the guest platform, the floating point

workloads are not used for evaluation purposes. This is because implement-

ing the required instructions to support floating point instructions in the guest

platform would be a significant time investment. It is possible to compile the

floating point benchmarks for software-emulated floating point (soft-fp), how-

ever this simply produces code that emulates floating point instructions with

integer instructions, and hence does not add value to the evaluation. The spe-

cific benchmarks used in this thesis, along with their classification, are listed in

Table 3.1.

46 Chapter 3. Infrastructure

Category Description

Automotive FFTs, cosine transforms, and general compute benchmarks.

Consumer JPEG encoding/decoding and image filtering kernels.

Networking Pathing and packet handling kernels common in network

equipment.

Office Text and image processing and manipulation kernels.

Telecom Signal processing kernels including Viterbi and FFT

transformations.

Table 3.2: The EEMBC v1.1 benchmark suite contains over thirty benchmarks suit-

able for use in embedded systems. This table summarises the categories that these

benchmarks fall into.

3.5.3 EEMBC Benchmark Suite

Another benchmark suite that is used in Chapter 4 is the EEMBC (The Embed-

ded Microprocessor Benchmark Consortium) v1.1 benchmark suite [37, 79],

which are a series of benchmarks designed for embedded systems. The indi-

vidual benchmarks are much smaller than those in SPEC-CPU2006 as they are

designed to be run on power-, compute- and memory constrained embedded

systems, which may or may not host an operating system. The benchmark suite

comprises over thirty benchmarks, and so for brevity Table 3.2 only lists the

categories that they fall into.

3.5.4 Choice of Benchmarks

As mentioned previously, the SPEC and EEMBC benchmarks are widely ac-

cepted in literature for computational performance measurements, but bench-

marks for embedded platforms (such as those found in the Android operating

system) would require a significant engineering effort to implement. This is be-

cause there would be additional work required to develop the target platform

in the virtualisation systems.

Chapter 4
Efficient Dynamic Binary Translation

For cross-architecture virtualisation, the emulation of guest machine instruc-

tions is a necessity. A straightforward approach to this is interpretation, where

the execution behaviour of each instruction is defined as a function, which is

called when that instruction is encountered at run-time. Whilst it is possible

to build more efficient interpreters [20], their underlying nature cannot be

avoided and a performance ceiling is reached without any realistic opportu-

nity of exceeding. This is because interpreters only consider single instructions

at-a-time without performing any optimisations across instruction sequences.

To improve on this, dynamic binary translation translates sequences of guest in-

structions to host instructions at run-time, producing host machine instructions

that closely resemble guest machine instructions. This technique has a lot of

scope for optimisation, and this chapter presents a complete strategy that can

be employed in an efficient dynamic binary translation system.

ldr r2, [r0, #8]

ldr r1, [r2, #64]

ldr ip, [r0, #12]

lsl r3, r1, #16

lsr r3, r3, #16

add r2, ip, r3, lsl #3

ldrb r3, [ip, r3, lsl #3]

ldrb ip, [r2, #1]

ldr r2, [r0, #8]
ldr r1, [r2, #64]
ldr ip, [r0, #12]
lsl r3, r1, #16
lsr r3, r3, #16
add r2, ip, r3, lsl #3
ldrb r3, [ip, r3, lsl #3]
ldrb ip, [r2, #1]

movl (%rdi), %edx
movl 8(%rsi,%rdx), %eax
movl %eax, 8(%rdi)
movl 64(%rsi,%rax), %eax
movl %eax, 4(%rdi)
movl 12(%rsi,%rdx), %ecx
movzwl %ax, %eax
movl %eax, 12(%rdi)
leal (%rcx,%rax), %edx
sall $3, %eax
movl %ecx, 52(%rdi)
addq %rsi, %rax
sall $3, %edx
movl %edx, 8(%rdi)
movzbl (%rax,%rcx), %eax
movl %eax, 12(%rdi)
movzbl 1(%rsi,%rdx), %eax
movl %eax, 52(%rdi)

Interpreter Dynamic Binary Translator

Figure 4.1: An interpreter will consider each guest instruction in turn, and execute

an associated behaviour. A dynamic binary translator will take a sequence of guest

instructions and produce a corresponding sequence of (optimised) host instructions.

48 Chapter 4. Efficient Dynamic Binary Translation

4.1 Introduction

Efficient dynamic binary translation (DBT) relies heavily on Just-in-Time (JIT)

compilation for the translation of guest machine instructions to host machine in-

structions. Although JIT compiled code generally executes much faster than in-

terpreted code, JIT compilation incurs an additional overhead, namely the cost

of compilation, or the compilation latency. For this reason, normally only the

most frequently executed code fragments are translated to native code whereas

less frequently executed code is still interpreted. Of central concern are the size

and shape of these translation units presented to the JIT compiler. While smaller

code fragments such as individual instructions or basic blocks take less time for

JIT compilation, larger fragments such as linear traces or regions comprising

control flow offer more scope for aggressive code optimisation [15]. For this

reason, many modern DBT systems rely on regions as translation units for JIT

compilation and several different region selection schemes have been proposed

in the literature [26, 55, 57, 62]. However, it remains an open question as how

to efficiently exploit such regions of any size and shape for JIT code generation,

to ultimately result in improved performance.

4.1.1 Key Ideas

This chapter presents a complete, region-based, JIT code generation strategy

considering optimised handling of branch type information and region exits,

registration of JIT compiled code in translation caches, continuous profiling

and recompilation, region chaining, and host code generation including domain

specific alias analysis. These key ideas are summarised as follows:

• Branch type information is collected during code discovery and profiling,

and is used to make decisions about how to generate optimised control-

flow from the end of a basic block. Branches that occur within a region

are kept internal, which directly improves code quality as unnecessarily

exposed branch targets defeat control and data flow analysis.

• Only identified region entry points are registered in the translation lookup

cache—arbitrary entry to a region is not allowed, again aiding control and

data flow analysis and widening the scope for aggressive code optimisa-

tion.

4.1. Introduction 49

• A form of region chaining is implemented, to improve performance when

branching between regions.

• Execution is continuously profiled, growing and recompiling regions us-

ing up-to-date profiling information to include newly discovered guest

basic blocks and control flow.

• Domain-specific alias-analysis is used during guest to host code trans-

lation, exploiting knowledge about the structure of the code, which is

difficult to uncover using standard alias analysis techniques.

4.1.2 Motivating Example

Most DBT systems will use some form of CPU state structure that lives in mem-

ory and contains the active state of the register file and any CPU flags, along

with various other control information. Similar to an interpreter-based ISS, a

DBT that works on an instruction-by-instruction basis will usually access this

structure for every target instruction being executed, as most instructions will

involve a read or write to one or more registers and may or may not alter flags.

However, a DBT that translates on a block-by-block basis (such as QEMU [21])

will typically treat the execution of a basic block as an atomic operation, and

will introduce optimisations that only update the CPU state structure once the

entire basic block has been executed. This is because intermediate values

from the results of guest instructions can be kept in host registers, and re-used

throughout the block until the last moment. This important optimisation signif-

icantly reduces the amount of reads and writes to memory, and can therefore

greatly increase performance.

Traditional region-based DBTs still work on a block-by-block basis, and will

allow entry to the region via any block that is part of the region, however the

consequence of this is that the native code address of each basic block must

be taken, and doing so hinders inter-block optimisations1. Whilst intra-block

optimisations2 can still be applied, more aggressive inter-block optimisations

cannot, as guarantees about CPU state must be maintained on entry to and

exit from each block. In contrast, trace-based DBTs generate inherently linear

control-flow graphs, which are only ever entered from the top (the trace head)

1Optimisations across basic blocks within a region.
2Optimisations within a single basic block as a unit.

50 Chapter 4. Efficient Dynamic Binary Translation

BEGIN: mov r2, #1
LOOP: cmp r0, #0
 beq END
 mul r2, r2, r0
 sub r0, r0, #1
 b LOOP
END: mov r0, r2
 bx lr

1
2
3
4
5
6
7
8

1: mov r2, #1
2: cmp r0, #0
3: beq END

4: mul r2, r2, r0
5: sub r0, r0, #1
6: b LOOP

2: cmp r0, #0
3: beq END

7: mov r0, r2
8: bx lr

Predicated
Branch

Fallthrough

Target

Predicated
Branch

Non-predicated
Branch

T

F

A

B
C

D Non-predicated
Indirect Branch

(same guest instruction)

Figure 4.2: An example ARM function that calculates the factorial of a number. The

control flow graph shows the guest basic blocks and dynamic control flow discovered

by the profiler, along with meta-information about the branch instructions.

and are usually only exited at the bottom. This enables optimisations to be

applied across the entire trace but due to the lack of interesting control-flow,

they miss out on loop optimisations.

The benefit of a region-based DBT is that non-linear control-flow is allowed

within the region, which can lead to optimisations that would not be possible

with linear control-flow, but this benefit is restricted if addresses of individual

blocks within the region are taken and, e.g. inserted into an indirect branch

target table (IBTT). This limits the ability of the optimiser to keep intermediate

values (such as loop induction variables) in host registers, and to defer updating

the CPU state structure until an exit point is reached.

Figure 4.2 shows an extract of an ARM function that calculates the factorial

of a number (supplied in guest register r0), along with the dynamic control flow

graph (CFG) discovered by the profiling engine. Meta-information about the

control flow instructions (i.e. the branch instructions) is stored in the profile,

which records whether or not the branch is predicated, and whether or not

the branch is direct or indirect. For both predicated and non-predicated direct

branches, the target PCs of the branch and of the fallthrough are known, and

so these values are stored in the profile. For indirect branches, the target PC is

not known at compilation time, but if the branch is predicated, the fallthrough

PC is known.

If native code was to be generated for this sequence, and entry was per-

mitted via any basic block, then the native code generated for each basic block

would need to load the values of the registers in use from the emulated reg-

4.1. Introduction 51

ister file, and cannot re-use values held in a host register from a predecessor.

Furthermore, at the end of a basic block, the register file must be updated with

any changes in register values. This particular problem can pollute native code

with unnecessary loads and stores when certain blocks are not actually region

entries, and with careful profiling and capturing of CFG edge information, it can

be determined which blocks are internal to the region.

Definition 15 (Region Entry). A region entry is a guest basic block within a

region that has been observed by the profiler to have been entered from a different

region.

In the example CFG given in Figure 4.2, block A is a region entry, and blocks

B, C and D are only branched to by control-flow from other blocks within the

region. Two branch fall-through edges exist as
−→
AB and

−−→
CB, and two direct

branches exist as
−−→
BC and

−−→
CD. There is one indirect branch out of block D (on

line 8 of the code), which is a standard ARM function return sequence. It is

important to note that there are two basic blocks (A and C) discovered with

overlapping code. This is because (given the input r0 ≥ 1) the profiler will

discover the fall-through edge
−→
AB first, and then discover the direct edge

−−→
BC

that branches inside A, and will hence create a new basic block C containing

the latter half of A.

If entry to the region was allowed via any basic block, guest register values

would need to be loaded from the CPU state structure when required in each

block. This would be detrimental to performance, especially in the case of the

loop between B and C, as the value of the induction variable in r0 would need

to be read from memory in C and written to memory in B, rather than keeping

r0 in a host register.

However, if the constraints are changed to only allow entry via basic block

A, and keep B, C and D as region local basic blocks, then an optimised form

can be generated that loads initial register values into host CPU registers, which

are reused throughout the loop. When the code sequence exits, the updated

register values are written back into the CPU state structure.

This difference is clearly demonstrated in Listings 4.1 and 4.2, where List-

ing 4.1 shows an example of x86 assembly generated for the code sequence

presented in Figure 4.2. When every basic block has its address taken, the gen-

erated code must access memory to request the value of the target machine

52 Chapter 4. Efficient Dynamic Binary Translation

Listing 4.1: Native code with block ad-

dresses taken

1 BLOCK_A:
2 movl $0x1, 8(%rdi)
3 mov 0(%rdi), %eax
4 test %eax, %eax
5 jz BLOCK_D
6 BLOCK_B:
7 mov 8(%rdi), %ecx
8 mov 0(%rdi), %eax
9 imul %eax, %ecx
10 mov %ecx, 8(%rdi)
11 sub $1, %eax
12 mov %eax, 0(%rdi)
13 BLOCK_C:
14 mov 0(%rdi), %eax
15 test %eax, %eax
16 jnz BLOCK_B
17 BLOCK_D:
18 mov 8(%rdi), %eax
19 mov %eax, 0(%rdi)
20 mov 56(%rdi), %eax
21 and $0xfffffffe, %eax
22 mov %eax, 60(%rdi)

Listing 4.2: Native code without block

addresses taken

1 BLOCK_A:
2 mov $0x1, %ecx
3 mov 0(%rdi), %eax
4 test %eax, %eax
5 jz END
6 LOOP:
7 imul %eax, %ecx
8 sub $1, %eax
9 jnz LOOP

10 END:
11 mov %ecx, 0(%rdi)
12 mov %ecx, 8(%rdi)
13 mov 56(%rdi), %eax
14 and $0xfffffffe, %eax
15 mov %eax, 60(%rdi)

Figure 4.3: Host machine code generated using a naïve scheme and using the inte-

grated, region-based code generation methodology. Listing 4.1 shows that guest regis-

ters need to be read from the register file in each basic block, but Listing 4.2 shows that

guest registers can remain live in host registers by keeping some basic blocks internal.

register from the CPU state structure. In Listing 4.2, an optimised form is gen-

erated where host registers are used to track the state of the target machine

register, until the end of the sequence, at which point the values are written

back to memory. In this example, the x86 register EAX is chosen to shadow the

loop induction variable, which for the guest machine exists in ARM register r0.

This removes all memory accesses from the loop between block B and C, and

can exploit host ISA features to generate an extremely efficient loop.

In general, the guiding principle is speculation and optimisation for the com-

mon case, i.e. profiling information on branch types, region entries, and in-

direct branch targets is used immediately for code optimisation even if there

is the possibility of later updates of this information, possibly initiating re-

compilation.

4.1. Introduction 53

4.1.3 Contributions

This chapter is not concerned with developing new ways of region selection,

but its focus is on a strategy for efficient code generation and optimisation for

regions, once these have been formed using any of the techniques presented in

the literature [26, 55, 57, 62]. Furthermore, it does not seek to propose new

techniques for resolving indirect branches, but rather it is shown how branch

type and control-flow information can be exploited on top of any of the existing

mechanisms for resolving indirect branches [58, 38, 75, 128, 67]. Overall, this

chapter makes the following contributions:

1. A novel approach to region-based JIT code generation, that involves keep-

ing region-local basic blocks internal, and aggressively optimising across

these blocks.

2. The exploitation of branch type profiling information to improve back-

end code generation (by means of loop optimisations, for example).

3. Employing two caches with different translation granularities to imple-

ment efficient and light-weight region chaining.

4. A new domain-specific alias analysis that allows more accurate separa-

tion of independent memory accesses, enabling improved back-end code

generation.

4.1.4 Overview

The remainder of this chapter is structured as follows:

• Section 4.2 builds upon the background of the DBT system ARCSIM intro-

duced in Section 3.2 and, in particular, the region selection scheme used

throughout this chapter.

• Section 4.3 describes the novel code generation strategy used to achieve

high performance.

• Section 4.4 presents an empirical evaluation of an implementation of the

techniques developed in Section 4.3.

• Section 4.5 summarises and concludes the chapter.

54 Chapter 4. Efficient Dynamic Binary Translation

Region Boundary

Region Boundary

A B C

Figure 4.4: A Example of a (static) whole-program control flow graph. B Parts of

the control flow graph from A dynamically discovered after some time of execution,

including region limits at page boundaries. C Additional control flow has been dy-

namically discovered after some more time executing the program.

4.2 Background

4.2.1 Region Compilation

As previously described in Section 3.2, a JIT worker thread is responsible for

translating a region into native code. It dequeues a translation work unit from

the work queue and builds an LLVM function that represents the region to be

translated, passes it through the LLVM optimiser and finally lowers it to na-

tive machine code. During translation, the compiler uses profiling information

passed in with the translation work unit to make decisions about how to gener-

ate the LLVM IR that represents the basic blocks within the region.

The translation work unit consists of a list of basic blocks to compile (which

represents the discovered basic blocks within the region), the associated control-

flow graph connecting those basic blocks together, and a list of the blocks which

are region entries. The compiler then translates each block in turn (on an

4.2. Background 55

instruction-by-instruction basis) into LLVM IR. Finally, when each basic block

has been translated, a local jump table (sometimes also referred to in literature

as an indirect branch target buffer (IBTB)) is generated, which contains the ad-

dresses of each basic block that is a region entry, and each block that has been

observed by the profiler to be the target of an indirect jump.

The region prologue is a small piece of set-up code common to each region

function, which loads values that are reused throughout the native code (such

as pointers to the various CPU state structures). Following this setup, an indi-

rect branch via the previously generated local jump table is performed to begin

execution at the desired basic block. A region function therefore, contains the

translated native code for every block discovered (and marked as hot) in the re-

gion, and invoking this function will branch to the block that is to be executed,

by accessing the program counter from the CPU state structure.

In Figure 4.4, the control-flow graph labelled A describes the static control-

flow of the target program, where B and C show the discovered control-flow,

along with region boundaries. The shaded portion of B is magnified in Figure

4.5, which shows how blocks within a region are compiled to a region function,

and how the function chains to other region functions by means of the global

jump table.

4.2.2 Region Selection

In a DBT system, region selection is concerned with forming the shape of trans-

lation units, where a region is typically a collection of basic blocks connected by

control flow edges. This stage follows code discovery and profiling, and it de-

termines the boundaries of a fragment of recently discovered guest code which

is then prepared for translation into native host code. A number of region se-

lection schemes for use in JIT compilers and DBT systems have been developed

(e.g. Bruening and Duesterwald [26], Hiniker et al. [55], Hiser et al. [57], Hsu

et al. [62]), but the focus of these papers has been on policies for region se-

lection, i.e. decisions on how far and for how long to grow a region and they

do not explore code generation strategies for regions. Often regions are distin-

guished from traces, whilst technically traces are degenerate regions they are

often treated separately due to their linear shape, i.e. the absence of multiple

control flow successors and, in particular, loops.

56 Chapter 4. Efficient Dynamic Binary Translation

JIT compilers present in e.g. Java VMs would have meta-information about

the structure of the program being executed, and could use this information

for method-based region selection techniques. But, the presence of this meta-

information is not guaranteed and cannot be relied upon, and indeed is not

present in a raw instruction stream, so the DBT must rely on dynamic profiling

information to effectively perform region selection [126]. In this chapter, a

page-based region selection scheme is used, similar to the one presented by

Böhm et al. [24]. Such a scheme enables efficient MMU emulation and detection

of self-modifying code through page protection mechanisms provided by the

host OS.

As shown in Figure 4.4 B a dynamic CFG is built, and basic blocks are in-

serted with corresponding control flow edges between wherever dynamic con-

trol flow is encountered. After a certain interval (in terms of number of basic

blocks executed in the interpreter) the CFG is scanned and regions are formed,

depending on their heat, and whether this is above a certain, adaptive thresh-

old. In this scheme, page boundaries are also compulsory region boundaries.

Regions are then passed to the JIT compiler for code generation, and profiling

execution continues, possibly extending the dynamically discovered CFG further

(see Figure 4.4 C).

4.3 Methodology

4.3.1 Region Entry Optimisation

As described in the motivating example (Section 4.1.2), allowing arbitrary entry

to a region via any basic block hinders the ability of the code optimiser to pro-

duce efficient host code. Therefore, to improve code quality, only basic blocks

that need to be visible externally should be registered in the local jump table.

These externally visible basic blocks are termed region entries, and are identi-

fied during the profiling phase. Keeping other blocks internal allows LLVM to

be more aggressive during the optimisation, phase—potentially even merging

basic blocks together and performing inter-block optimisations.

During construction of the LLVM region function, initially an LLVM basic

block is produced for each guest basic block that is part of the region profile. If

the profile indicates that the block is a region entry, then a corresponding LLVM

4.3. Methodology 57

Native CodeMain Execution Loop

Translation Lookup Cache

A

B C

D E

F

G

I

Translated Region

Global Jump Table

&A
&F
&H
&I

Region Prologue
Local Jump Table

(empty)

Region Function

(empty)

Region Function

(empty)

r0

r1

r2

r3

r4

(empty)rn

r3 Region Function

r1 Region Function

A

Maps Region Index to
Region Function Pointer

B

C

D

E

F

G

H

I

r3 Region Function

(empty)

(empty)

(empty)

(empty)

r3 Region Function

(empty)

(empty)

(empty)Found Invoke
region function

Determine block
address from PC

Look up block
address in

translation cache

Not Found

Look for block
translation

in metadata

Found Update translation cache
and global jump table

Not Found

Maps Block Address to
Region Function Pointer

H

From Native Code
or Interpreter

To Native Code

To Interpreter

Figure 4.5: Interaction between regions via the global jump table and the internal

interactions between basic blocks, either directly or via the local jump table. The control

flow graph represents the region in the shaded area in Figure 4.4 B .

block address is obtained, and inserted into the local jump table.

4.3.2 Translation Lookup Cache

The translation lookup cache is a structure that lives in the execution engine

component of the DBT and is used to resolve addresses of guest basic blocks to

native code. In fact, it is a mapping of block addresses to the region function

that contains the native translation of a particular block. Only region entry

blocks are entered in to the translation lookup cache, as it is only possible to

branch to region entry blocks from the local jump table.

4.3.3 Branching

A basic block is defined as a single-entry, single-exit linear code sequence, and

as such the terminating instruction is always a branch to one or more basic

blocks. There are two types of branches that can be made out of a basic block:

1. Direct: A branch whose destination is known at JIT compilation time, i.e.

the destination is a PC-relative or absolute address.

2. Indirect: A branch whose destination is not known at JIT compilation

time, i.e. the destination address is calculated from the value a guest reg-

ister.

58 Chapter 4. Efficient Dynamic Binary Translation

These two cases can further be classified as predicated and non-predicated, which

impose additional constraints on the control-flow out of a basic block. When

a branch is predicated, the fall-through block for the branch not taken case can

be treated as a direct branch to the following instruction, as the fall-through

address can be trivially computed at compilation time.

In Figure 4.5, each node in the CFG (except for E) has been discovered by

the profiler, and as such the CFG has been compiled to LLVM IR on a block-

by-block basis. Node E and the corresponding edge
−−→
CE have not yet been

discovered by the profiler, i.e. they have not yet executed, or have not exceeded

the compilation threshold.

Nodes A and F are region entries, and H and I are the targets of indirect

branches. As such, these nodes have their block addresses taken, and a cor-

responding entry added to the local jump table. The other nodes are never

accessed by an indirect jump (as far as the current profiling information is con-

cerned) so their block addresses are not taken, and no entry is registered in the

local jump table.

This leads to the case where native code may be available for a basic block,

i.e. it has been compiled, but it is not reachable from outside the region.

4.3.3.1 Direct Branches

Where there is a direct branch from basic block A to B, (and B has no indirect

branch predecessors), it is not required to add the address of B to the local

jump table and instead LLVM IR can be emitted to perform a direct branch to

B.

There are two approaches that can be taken when generating the proper

control-transfer sequence, and they depend on whether or not the terminating

branch is predicated or non-predicated.

For a non-predicated branch, given the jump target is known at compile time,

if the target lies outside the region boundary, code is generated that transfers

control via the global jump table—as shown by node H. This means it is pos-

sible to chain directly to the region containing the destination block, if it is

available. If the target lies within the region, as shown by node A, then if that

particular block is present in the current work unit, LLVM IR is emitted that

directly branches to it. If the destination block is not in the work unit, then an

4.3. Methodology 59

exit sequence is emitted that returns immediately to the interpreter, as a native

translation is not available in this round of compilation.

For a predicated branch, the same sequence applies as before, except it must

be determined whether or not the branch is to be taken. If the branch is not

taken, then the fall-through block is directly branched to (if present in the work

unit).

4.3.3.2 Indirect Branches

Naturally, at JIT compilation time, the destination of an indirect branch is not

known, since it depends on the run-time value of a guest register. However, the

profiling phase can provide insight into possible destinations and by considering

the previously seen destinations of an indirect branch, it is possible to speculate

where the branch may land. Indirect branch instructions that are predicated

can be considered to have a direct edge to the fall-through block, and may be

treated as in the direct branch case (Section 4.3.3.1).

If there is no edge information for the branch, then control must be trans-

ferred via the global jump table. This is demonstrated in Figure 4.5 as node

I, and is because it is known that the local jump table cannot satisfy the jump

(since an entry would only be available if that particular edge was encountered

by the profiler). Exiting via the global jump table is required because the indi-

rect branch may be to a different region. If it turns out that this speculation

is incorrect (or if the destination region does not contain a translation for the

target block), control is returned to the interpreter.

If the edge information contains exactly one edge, then a simple comparison

instruction is emitted to determine whether or not that edge should be taken. If

the edge is correct, a direct branch to that basic block occurs, otherwise control

falls back to the global jump table.

Node C (before discovery of E) is an example of this, where there is a single

indirect edge
−−→
CD, but

−−→
CE has not (yet) been discovered.

Finally, for a block with multiple indirect successors (such as node G), code

is emitted to check that the target block lies within the same region, and if so

an indirect branch via the local jump table is performed. If the target block lies

outside the current region, control is transferred via the global jump table.

Other implementations of local jump tables are possible, e.g. some of the

60 Chapter 4. Efficient Dynamic Binary Translation

techniques presented in Hiser et al. [58], Koju et al. [75], Jia et al. [67], Yin

et al. [128], Dhanasekaran and Hazelwood [38] could act as drop-in replace-

ments, however, this implementation has been found to provide sufficiently low

lookup times and high hit rates.

4.3.4 Region Chaining

Chaining is becoming a common feature in trace based JIT compilation systems,

such as in the Dalvik VM [42] and TraceMonkey [43]. This technique typically

involves profiling execution flow between compiled traces, and updating the

translated code for hot edge source nodes of inter-trace jumps, to jump directly

to the destination translation unit. In this strategy, trace chaining is extended

to region chaining, which deals with hot control flow between regions. This

can be the result of hot inter-region edges emerging only after some warm-up

time, where region selection has already partitioned code into regions, or due

to unavoidable region limits such as page boundaries introduced by the region

selection scheme (see also Section 4.2.2).

To simplify code generation a weak form of region chaining is implemented,

where a global jump table tracks the native code of translated regions. It is im-

portant to distinguish this from the translation lookup cache—the global jump

table is only a jump table at region (page) granularity and is not used when

transitioning from the interpreter into native code. Conversely, the translation

lookup cache contains translation information at basic block granularity and is

only used when transitioning from the interpreter to native code.

The global jump table contains one entry (initially empty) for each possible

region. Each entry consists of a single function pointer. In ARCSIM, there is

at most one region per guest memory page, and given that in this example the

guest platform is 32-bit, the global jump table contains 4GB/4kB = 1, 048, 576

entries, and so is 8MB in size. These entries are updated when a miss occurs

in the translation lookup cache described above. When a region is retranslated,

the corresponding translation cache entry for that region is invalidated, ensur-

ing that the global jump table always points to the most up-to-date translation

for each region.

The global jump table is used when it is determined that a translated branch

might have another region as its destination. This determination is made dif-

4.3. Methodology 61

ferently depending on the branch type information:

1. For a direct branch: if the target is outside the current region, then the

global jump table is used if the branch is taken.

2. For an indirect branch:

i) If no targets within the current region have been encountered so far:

the global jump table is used immediately.

ii) if one or more targets within the current region have been encoun-

tered: if the branch resolves to an address within the current region,

then the local jump table is used, otherwise the global jump table is

used.

Since the global jump table is initialised with blank entries, the requested entry

must be checked before it is used (essentially a null-pointer check), and if the

requested entry is null, execution flow leaves translated code and returns to the

interpreter.

4.3.5 Region Registration in Translation Caches

Every basic block that is encountered by ARCSIM has metadata held about it,

which describes certain properties about the block (e.g. whether or not the

block is a region entry), and contains a pointer to the region function contain-

ing its implementation (if it has been identified as a region entry). When the

execution engine begins executing a block, it first looks up the block metadata

and checks to see if a native translation exists—if so, the translation cache is

updated and native code is entered. Additionally, the global jump table is up-

dated with a pointer to the function for the region containing the block. If a

region is recompiled, the block metadata will be updated to reflect the new

function pointer and the change would propagate through to the translation

lookup cache.

4.3.6 Continuous Profiling and Recompilation

The mixing of instructions and data, and the presence of indirect branching

make it impossible to fully and accurately determine the precise control flow of

62 Chapter 4. Efficient Dynamic Binary Translation

a program from machine code only. Although techniques exist which attempt

to extract control flow information from programs statically [73] these often

must be extremely conservative and thus DBT systems using them suffer from

poor performance.

On the other hand, techniques for extracting control flow information at run

time are becoming increasingly effective [70]. These techniques often do not

capture all possible control flow paths through a program in their first pass –

thus, it is necessary to profile continuously.

It is therefore possible to discover new control flow within regions which

have already been translated and compiled. If the relevant regions are not

retranslated when such control flow is encountered at run time, it can only be

evaluated sub-optimally. For example, a block which was previously excluded

from the region local jump table may in fact be a region entry. In this case,

control is returned to the interpreter to execute this block, since a translation

cache entry does not exist.

This technique does not require any special treatment for the retranslation

of regions. Instead, the profiling system does not distinguish between already

translated and non-translated regions. If previously untranslated code or con-

trol flow is encountered in a translated region, it is executed using the inter-

preter and profiled. If it is frequently executed and becomes hot, the full region

will be retranslated in order to include the new code and control flow.

4.3.7 Host Machine Code Generation

A translation work unit is the unit provided to a JIT compiler worker thread and

consists of a list of basic block descriptors, along with basic block edge infor-

mation, representing a particular region. The basic block descriptors contain a

list of decoded instructions. Each instruction in a block is translated to LLVM

IR one-by-one, using a technique similar to Wagstaff et al. [121] and once the

instructions have been translated, a block epilogue is emitted. This epilogue is

generated based on the type of control-flow associated with the block (as de-

scribed in the previous sections), and essentially consists of the LLVM IR that

transfers control to the next block.

Finally, after all the blocks in the translation work unit have been compiled,

and the region prologue has been generated, a single LLVM function remains

4.3. Methodology 63

that represents the region just compiled. This function is then passed through

the LLVM optimiser, as described in Section 4.3.7.1.

After the optimisation passes have completed, the LLVM IR is compiled to

native machine code using the LLVM JIT compiler interface, and when the native

code is available, each basic block that is marked as a region entry has a pointer

to the newly compiled function stored in its metadata.

4.3.7.1 LLVM Optimisation Passes

During the translation phase, an LLVM module is built containing the function

that represents the region being translated. The module also contains helper

functions, which are highly amenable to inlining. All the helper functions are

marked as internalisable, and an inlining pass is applied. Typically, the helper

functions will provide a very small function (such as reading the PC register, or

writing to target machine memory), and are easily inlined.

After inlining, the resulting module is subjected to a number of LLVM passes,

based on the standard Clang -O3 optimisation level. The main difference is that

instead of using an LLVM provided alias analysis implementation, a specialised

implementation (described in Section 4.3.7.2) is employed.

Since some basic blocks are not region entry points, this has opened up more

scope for aggressive loop optimisation, which yields the full benefit of a region-

based DBT. With a trace-based DBT, loop optimisations rarely happen, as traces

are inherently linear. However, with the region-based approach, a significant

amount of loop optimisations can be performed across the entire control-flow

within a region that would not be possible if entry was allowed to the region

from any basic block.

4.3.7.2 Alias Analysis

Alias analysis of pointers is an important phase that enables further program

optimisations to reason better about data flow. For example, a dead store elim-

ination pass uses pointer aliasing information to determine whether or not a

redundant store to a memory location can be eliminated, based on any memory

accesses that happen between those stores.

Listing 4.3 shows how incomplete pointer aliasing information can lead to

the optimiser being unable to remove dead stores. The stores on lines 1 and

64 Chapter 4. Efficient Dynamic Binary Translation

Listing 4.3

1 store i32 36076, i32* %4
2 %42 = load i64* inttoptr (i64 61931224 to i64*)
3 %43 = add i64 %42, 6
4 store i64 %43, i64* inttoptr (i64 61931224 to i64*)
5 store i32 36076, i32* %4
6 ...
7 store i32 36092, i32* %4

Listing 4.4

1 movl $37076, 60(%r12)
2 addq $6, 61931224
3 movl $37076, 60(%r12)
4 ...
5 movl $36092, 60(%r12)
6

7

Figure 4.6: Remaining dead-stores in LLVM IR (Listing 4.3) after optimisation, and

resulting x86 machine code (Listing 4.4) due to incomplete alias analysis.

5 are killed by the store on line 7, but because the optimiser cannot detect

that the operations on pointers in lines 2-4 do not alias, it cannot remove the

stores. This directly translates to machine code as shown in Listing 4.4, which

is safe (and correct), but in this case not at all optimal and severely impacts

performance.

In the example shown in Figure 4.6, the problem stems from the alias analy-

sis implementation (quite correctly) being unable to determine whether or not

the pointer held in %4 aliases with the constant pointer value 61931224. As-

suming that %4 and 61931224 alias is a safe assumption and as such generates

safe code. But, armed with the knowledge about the implementation of ARC-

SIM, it is known that %4 contains a pointer to an emulated CPU register (present

in the CPU state structure), and that the constant pointer is an address that does

not intersect with the CPU state structure. Hence, it can be said that they do

not alias. Providing this guarantee to LLVM’s dead store elimination optimisa-

tion pass enables the pass to remove the redundant stores, and generate better

code. The particular example described above is important for region-based

compilation, as redundant updates to the CPU state are eliminated, hence re-

ducing the number of memory operations occurring in a particular sequence

and improving execution throughput.

When a loop is involved, keeping target machine register values in host reg-

isters instead of constantly reading and writing to the CPU state structure im-

proves performance significantly—but this kind of loop optimisation can only

work to its full potential when combined with the jump table optimisation tech-

nique described in Section 4.3.3.

4.4. Experimental Evaluation 65

Vendor & Model Dell™ PowerEdge™ R610

Architecture x86-64

Processor Model 2× Intel© Xeon™ X5660

Number of cores 2× 6

Clock Frequency 2.80 GHz

FSB Frequency 1.33 GHz

L1-Cache 2× 6× 32K

L2-Cache 2× 6× 256K

L3-Cache 2× 12 MB

Memory 36 GB

Operating System Linux 2.6.32

User Space Scientific Linux 6.6

Table 4.1: Host configuration.

DBT Parameter Setting

Target architecture ARMv5T

Host architecture x86-64

Translation Model Asynchronous

Tracing Scheme Region-based [24]

Tracing Interval 30000 blocks

Translation Cache 8192 Entries

JIT compiler LLVM 3.4

Compilation Threads 10

IR Generation Part. Eval. [121]

JIT Optimisation -O3

JIT Threshold 20 (Adaptive [24])

Table 4.2: ARCSIM configuration.

4.4 Experimental Evaluation

This section evaluates the DBT/JIT code generation approach using the SPEC-

CPU2006 integer benchmark suite, with its reference input set. This benchmark

suite is widely used and considered to be representative of a broad spectrum of

application domains. The benchmarks have been compiled using the gcc 4.6.0

C/C++ cross-compilers, targeting the ARMv5T architecture (without hardware

floating-point support) and with -O2 optimisation settings.

4.4.1 Experimental Methodology

The elapsed real time between invocation and termination of each benchmark

in ARCSIM has been measured using the UNIX time command on the host

machine described in Table 4.1 with ARCSIM configured as in Table 4.2. The

dynamic guest instruction count (which is invariant) and the average elapsed

wall clock time across ten runs of each benchmark is used to calculate execution

rates (using MIPS in terms of target instructions) and speedups. For summary

figures, the harmonic mean weighted by dynamic target instruction count is

presented. For the comparison to the state-of-the-art, the ARM target of QEMU

1.4.2 is used as a baseline.

Additionally, ARCSIM’s performance is evaluated using the EEMBC-1.1 bench-

mark suite. These benchmarks are typically shorter running and serve to eval-

uate the performance of the JIT compiler portion of the DBT system. In order

66 Chapter 4. Efficient Dynamic Binary Translation

 0

 200

 400

 600

 800

 1000

 1200

 1400

400.perlbench
401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

H
arm

. m
ean

A
b
so

lu
te

 P
er

fo
rm

an
ce

 (
in

 M
IP

S
)

QEMU
ArcSim

Figure 4.7: Absolute performance figures (in MIPS) for the long-running SPEC-

CPU2006 integer benchmarks for both QEMU-ARM and ARCSIM—higher is better. In

all cases, ARCSIM outperforms QEMU.

to normalise performance to a particular duration, the iteration count of each

benchmark was adjusted so that it ran for approximately ten seconds in QEMU,

then the benchmark was invoked with the same iteration count in ARCSIM, and

performance was measured in the same manner as for SPEC.

4.4.2 Experimental Results for SPEC-CPU2006

Figure 4.7 gives an overview of the absolute performance of QEMU vs. ARCSIM.

In every case, ARCSIM improves over QEMU, and on average achieves a 2.64×
improvement in absolute performance.

The biggest improvement is achieved for 473.astar, which can be attributed

to the benchmark responding well to the ability to apply loop optimisations

within a region. The relative performance improvement of 473.astar when re-

gion chaining is enabled is negligible, and so indicates that the majority of time

is spent in region local code. Aggressive loop optimisations are performed

within this region (where the bulk of the algorithm lies). This explains the

excellent performance improvement over QEMU, which performs no such op-

timisations. This explanation can also be applied to 464.h264ref, which also

benefits greatly from the ability to optimise loops better than QEMU.

The smallest improvement is for 462.libquantum, which may be due to the

benchmark itself being heavy in arithmetic instructions, but not so much in

4.4. Experimental Evaluation 67

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

400.perlbench
401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

H
arm

. m
ean

P
er

fo
rm

an
ce

 I
m

p
ro

ve
m

en
t

ov
er

 B
as

el
in

e

RC
RC & JTO
RC & AA

RC & JTO & AA

Figure 4.8: A breakdown of the performance impact of different optimisations. The

baseline is standard LLVM -O3 and partial evaluation [121] at JIT compilation time.

Additional region chaining (RC), jump table optimisation (JTO) and alias analysis (AA)

complement each other.

looping constructs. This particular characteristic explains the excellent perfor-

mance of QEMU, and hence why there is only a 1.2× improvement in this case.

QEMU’s block-based optimisations work well here, due to the linear nature of

the arithmetic instructions and larger basic block sizes.

Interestingly, the relative performance improvements as optimisations are

enabled (shown in Figure 4.8 and detailed in Section 4.4.3) of 462.libquantum

are similar to that of 473.astar, and the absolute performance of both the bench-

marks are within the same area - but 462.libquantum is already fast in QEMU.

4.4.3 Impact of Optimisations

Figure 4.8 shows how combinations of the strategies described in Section 4.3

affect the relative performance of ARCSIM. The baseline is using standard LLVM

-O3 optimisation and partial evaluation, but without any of the optimisations

described in this chapter applied.

Overall, the addition of custom alias analysis improves every benchmark,

except for 429.mcf. On average this gives a 1.32× performance improvement,

but it is the combination of all the strategies that yield the best result. Jump

table optimisation on its own does not give rise to a significant performance

improvement, but responds well when combined with alias analysis. This may

68 Chapter 4. Efficient Dynamic Binary Translation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

a2tim
e01

aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitm

np01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fft00
idctrn01
iirflt01
m

atrix01
ospf
pktflow
pntrch01
puw

m
od01

rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
H
arm

. m
ean

A
b
so

lu
te

 P
er

fo
rm

an
ce

 (
in

 M
IP

S
)

QEMU
ArcSim

Figure 4.9: Absolute performance figures (in MIPS) for the shorter-running EEMBC

benchmarks for both QEMU-ARM and ARCSIM, indicating that JIT startup time and

compilation performance of ARCSIM is more than competitive with QEMU-ARM, despite

the use of aggressive code optimisations.

be due to the fact that the most interesting optimisation to apply across basic

blocks is to remove dead stores and to keep host registers live with frequently

used values (potentially from the CPU state structure). Without the precise

aliasing information this kind of optimisation is not possible to do effectively,

and so the combination of both jump table optimisation and custom alias analysis

gives rise to the best performance improvements.

473.astar remains at baseline performance when the region chaining optimi-

sation is applied, and this may be due to the majority of execution being spent in

region-local code. It has an absolute performance figure of > 1000 MIPS, which

indicates fast running code, but the benefits of region chaining are minimal, due

to the lack of inter-region control-flow.

403.gcc is a particularly control-flow heavy benchmark, and responds well

to the combination of all the optimisations together. Also of interest is the

429.mcf benchmark, which does not consistently improve in performance like

the majority of the other benchmarks. Despite this, 429.mcf is more than 1.5×
faster in ARCSIM than in QEMU.

4.5. Summary & Conclusions 69

4.4.4 JIT Compilation Performance

The execution time of the SPEC-CPU2006 benchmarks with their reference data

sets is dominated by the time spent executing native code, whereas the fraction

accounted for JIT compilation time is small. For such long-running benchmarks

code quality is paramount and this is where region-based code optimisations

outperform simpler basic block or trace based schemes. However, JIT compi-

lation time is still important for shorter-running applications, or programs that

exhibit phased behaviour and, hence, exercise the JIT compiler more heavily.

To evaluate JIT compilation performance of ARCSIM, results are shown for

smaller, shorter running benchmarks, where time for JIT compilation constitutes

a larger portion of the overall execution time (see Figure 4.9). In every case,

ARCSIM beats QEMU in absolute execution performance, but as in the SPEC

results, the relative performance improvements vary greatly. As can be seen,

the most significant result here is that fft00 is executing at a rate of 6138 MIPS,

compared to QEMU’s 3897.95. However, this only shows a modest relative per-

formance gain of 1.5×, whereas idctrn01 outperforms QEMU by 2.85×. These

variances can again be attributed to the characteristics of individual bench-

marks in the suite, where benchmarks that are amenable to loop optimisations,

i.e. contain more intra-region loops, show a greater relative performance im-

provement.

Overall, these results demonstrate that even for shorter-running applications

where JIT compilation latency plays a greater role than absolute code quality,

ARCSIM is highly competitive despite its use of larger translation units and ag-

gressive code optimisations.

4.5 Summary & Conclusions

This chapter has presented a novel, integrated approach to JIT code generation

within region-based DBT systems. Branch type information is exploited to opti-

mise end-of-block control flow, region chaining is introduced to improve control

flow between code regions, selective region registration in translation caches is

developed to improve intra-region code generation, continuous profiling and

recompilation is employed to produce more optimal native code representative

of the behaviour of the target program, and finally custom alias analysis is em-

70 Chapter 4. Efficient Dynamic Binary Translation

ployed to enable aggressive code optimisations, which would not be possible in

a DBT scheme based on linear traces. The region-based JIT code generation ap-

proach is implemented in ARCSIM, and is evaluated using the SPEC-CPU2006

benchmarks, compiled for the ARMv5T ISA. In comparison to state-of-the-art

QEMU, an average speedup of 2.64× is achieved, and up to 4.25× for individual

benchmarks. Each of the techniques developed in this chapter on their own

contributes to increased code quality, but it is the particular combination of

code generation steps that results in performance improvements greater than

the sum of its parts.

This chapter has been concerned with efficient instruction emulation, but with-

out considering the additional challenges present in full hardware virtualisa-

tion. The next chapter shall extend ARCSIM with support for hardware virtual-

isation, and describe a particular challenge that can directly affect the perfor-

mance gains made by the techniques described in this chapter.

Chapter 5
Efficient Interrupt Virtualisation

As presented in the previous chapter, emulating guest instructions is necessary

for cross-architecture virtualisation, and is generally sufficient for the straight-

forward execution of a guest binary on a host system (i.e. user-mode simula-

tion). However, supporting hardware virtualisation requires extended capabili-

ties that go beyond the simple execution of a stream of user-mode instructions.

Cross-architecture hardware virtualisation needs to support additional guest

architectural features including emulating a memory management unit (MMU),

handling the operation of privileged system instructions, emulating platform

devices and handling asynchronous interrupts—all of which are necessary for

the virtualisation of a complete system capable of hosting an unmodified op-

erating system (OS). Asynchronous interrupts (e.g. those raised by a timer de-

vice) present a challenge to efficient DBT, as they introduce adverse control-flow,

which unpredictably diverts the current execution path of the emulated proces-

sor. This chapter develops a strategy to mitigate the performance impact of

interrupt handling for DBT-based cross-architecture hardware virtualisation.

User Mode Virtualisation

Guest Program
Binary

System Call
Emulation

DBT/Interpreter

Simulator

Full-system Virtualisation

Disk

Network

Graphics

Timers

D
ev

ic
e

Em
ul

at
io

n

CPU MMU

Physical Memory

Figure 5.1: User-mode simulation only requires the emulation of guest instructions,

and an OS system-call emulation layer. Cross-architecture hardware virtualisation re-

quires emulating guest platform devices, supporting privileged system instructions, im-

plementing memory management units and handling other architectural nuances.

72 Chapter 5. Efficient Interrupt Virtualisation

push {r3, r4, r5, r6}
ldr r4, [pc, #1992]
mov r9, r0
ldr ip, [r4]
mov r5, r1
add ip, ip, #1

Timer
Interrupt

sub sp, sp, #76
tst sp, #4
subeq sp, sp, #4

Guest Instructions Platform Behaviour

mov r1, ip
ldr r0, [pc, #1972]
mov r6, r2
mov r7, r3
svc #0
bl 8298

push {r3, r4, r5, r6}
ldr r4, [pc, #1992]
mov r9, r0
ldr ip, [r4]
mov r5, r1
add ip, ip, #1
mov r1, ip
ldr r0, [pc, #1972]
mov r6, r2
mov r7, r3
svc #0

Software Interrupt

sub sp, sp, #76
tst sp, #4
subeq sp, sp, #4

Guest Instructions Platform Behaviour

Synchronous Interrupt Asynchronous Interrupt

Figure 5.2: An extract of ARM machine code that demonstrates the behaviour of a

synchronous interrupt in the form of a system call instruction (svc), versus an asyn-

chronous interrupt that is invoked by an external timer device. Synchronous inter-

rupts happen predictably, based on the currently executing instruction, whereas asyn-

chronous interrupts happen unpredictably at any time during execution.

5.1 Introduction

In operational terms, it is relatively straightforward to build an instruction set

simulator (ISS) that will run a user-space program compiled for one instruction

set architecture (ISA) on another. These ISSs are termed user-mode simulators,

as they simply execute a stream of user-mode instructions and emulate system

calls by providing an OS emulation layer. This is acceptable for running pro-

grams that are normally run inside an OS, but if the goal is to run an entire,

unmodified guest OS, a simple ISS is no longer sufficient and hardware virtuali-

sation is required.

Operating systems naturally expect to be running on top of real hardware,

and subsequently expect that hardware to behave in a particular way, e.g. the

OS will control the MMU to implement virtual memory systems, provide abstrac-

tions for hardware devices, handle interrupts coming in from those devices,

manage TLBs and take care of other architectural concerns that a user-mode

program generally has no knowledge of. To be able to support this, the virtual-

isation environment must emulate these architectural features faithfully.

5.1. Introduction 73

A particular feature that requires attention when virtualising hardware is

asynchronous interrupts. These are generally raised by devices at unspecified

times. As shown in Figure 5.2, a synchronous interrupt (or exception) is the

diversion of control-flow to an interrupt handler that is expected, e.g. a guest

instruction that invokes a software interrupt, or a divide instruction that may

raise a divide-by-zero exception. These synchronous interrupts can be easily

handled, as it is known at instruction execution time that control-flow may

diverge. However, asynchronous interrupts may be raised at any time, during

any instruction, and without warning.

For an interpreter-based hardware virtualisation system, this is generally not

a problem. After each instruction has executed, the system can check to see if

an interrupt request (IRQ) is pending, and if so, instead of progressing to the

next instruction, the necessary platform-specific behaviour will be invoked to

divert control-flow to the interrupt handler. For DBT-based systems, however,

the situation becomes more complex as facilities to handle pending IRQs must

be built into translated code.

The efficiency of interrupt handling is of particular importance as interrupts

need to be processed frequently and require a fast response time. Unfortunately,

efficient interrupt handling is at odds with the region-based DBT presented in

the previous chapter, as interrupts interfere unpredictably with the “natural”

control flow of an application and divert it away from the current region of

code to another. To capture this behaviour, additional checks need to be in-

serted into translated code, which initiate an interrupt handling sequence if an

IRQ is pending. These additional checks are costly to perform and can inhibit

aggressive region-based optimisations, resulting in a reduction of virtualisation

performance by more than an order of magnitude, if inserted naïvely e.g. af-

ter each guest instruction. Typically, translated guest instructions will map to

multiple host instructions, meaning that it is not possible to arbitrarily divert

control-flow when executing native code. This is because the CPU state may

be left inconsistent if a guest instruction is only partially executed, and guest

instructions must appear to be atomic. Thus, the minimum granularity for in-

terrupt checking is a single guest instruction.

By their very nature, pending IRQs can be deferred by a small period of time

until a more “convenient” moment. For example, an OS might mask certain

interrupts during critical sections and only process pending IRQs after leaving

74 Chapter 5. Efficient Interrupt Virtualisation

such a section. This particular trait can be exploited to reduce the number of

interrupt checks inserted into generated code, thus reducing the overall perfor-

mance impact. The central questions being answered in this chapter are:

• What is the minimum number of interrupt checks that need to be inserted

to maintain correctness?

• Where in generated code should interrupt checks be inserted?

5.1.1 Key Idea

This chapter presents a new scheme for interrupt check placement, that indicates

to a JIT compiler where asynchronous interrupt checks should be inserted into

translated code. To evaluate this, ARCSIM is extended from user-mode simula-

tion to support hardware virtualisation, and this scheme is implemented as part

of the region-based DBT strategy presented in Chapter 4. The key idea can be

summarised as follows:

• During the profiling and compilation phase, control flow loops within a

region are identified, and interrupt checks are inserted within each control

flow cycle to maintain correctness.

This is important for loops which depend on interrupt handling for their ter-

mination. Whilst inserting a strictly minimal number of interrupt checks is an

NP-hard problem [32], an existing approximation algorithm that is suitable for

use in a performance-critical JIT environment is used instead, which for most

practical cases computes an almost optimal solution.

5.1.2 Motivating Example

A basic block-based DBT is one which translates guest basic blocks one-at-a-time

into corresponding host code (see Figure 5.3a). These blocks are treated as

independent units, and control-flow is performed by jumping to existing code

in a cache, or causing an on-demand translation if the code has not yet been

seen. Extending a basic block-based DBT to consider multiple blocks along a

path leads to a trace-based DBT, which allows for optimisations to cross basic

block boundaries, as the trace is considered its own unit (see Figure 5.3b).

Whilst trace-based DBTs only consider linear control flow, a region-based DBT

5.1. Introduction 75

(a) Block-based (b) Trace-based (c) Region-based

(optimal)

(d) Region-based

(suboptimal)

Figure 5.3: Interrupt checks, represented by bars on control flow edges, inserted by

various interrupt check placement schemes in the control flow graph representing the

example program from Figure 5.5. Translation units (basic blocks, linear traces, re-

gions) are highlighted.

can exploit cyclic control-flow (such as loops) within a particular region of code

(see Figures 5.3c and 5.3d).

User-mode simulation of applications requires only that a target binary is

emulated on the host, and does not usually depend on interrupts or device em-

ulation. Generally, a simple OS emulation layer is enough to execute most user

binaries. Notable exceptions are applications that utilise asynchronous Unix sig-

nals, but the majority of benchmarks (and certainly those present in the SPEC-

CPU2006 suite [54]) do not depend on this behaviour and so are ill-suited for

testing this important requirement of hardware virtualisation. Figure 5.4 shows

that in user-mode simulation, where interrupt checks can be ignored, ARCSIM

performs on average 2.23× faster than QEMU [21], also in user-mode configu-

ration.

Region-based DBTs blur the mapping between dynamically discovered guest

basic blocks and translated host basic blocks, as some optimisations may involve

merging or splitting the guest basic blocks to improve control-flow and enable

further cross-block optimisations. Normally, these kind of optimisations are

not a problem when a region of code is considered as a unit, with only a few

entry and exit points into and out of the region—the optimiser is free to do any

kind of transformation provided that upon region exit, the CPU state is correct.

However, it is possible to hinder these optimisations by inserting additional

76 Chapter 5. Efficient Interrupt Virtualisation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

400.perlbench
401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

H
arm

. m
ean

R
u
n
 T

im
e

(s
)

QEMU
ArcSim

Figure 5.4: In user-mode simulation ARCSIM clearly outperforms QEMU. Aggressive

region-based optimisations substantially reduce absolute run times (in seconds, lower

is better) of the SPEC-CPU2006 benchmarks. Region-based DBT, however, presents a

challenge to hardware virtualisation, where interrupt checks need to be performed. This

chapter presents a methodology, which is (a) correct and (b) retains the performance

advantage of region-based DBT in a hardware virtualisation context.

side exits into a region, such as an interrupt check. Typically, these checks

test a flag to determine if an IRQ is pending, and then exit the region so that

the virtualisation system may process the pending interrupt. It is therefore

desirable to reduce the amount of these side exits, so that aggressive region

optimisations can continue to be effective for hardware virtualisation, where

interrupt checks are mandatory. For user-mode simulation that does not depend

on asynchronous signals, these interrupt checks can be removed entirely. But

this is not possible for hardware virtualisation, as interrupt checks must be

placed in native code, and their cost tolerated.

As of more recent versions, QEMU’s approach to interrupt checking is to

insert a check at the head of every translation block, resulting in a check before

a guest basic block is executed. If an event occurs which requires QEMU to leave

native code, a flag is set and the native code will exit to the main execution loop

where the event is processed. The approach in ARCSIM is similar, in that a flag

is maintained that indicates if an asynchronous action is pending, and a check of

this flag is inserted into a basic block to determine if the flag is non-zero. If this

condition is met, execution will leave native code and return to the interpreter,

where the event will be handled.

5.1. Introduction 77

1 void main()
2 {
3 // Wait for some hardware signal
4 while (received_irq == 0) usleep(10);
5

6 // Now do some computation in a loop
7 for (int i = 0; i < 10; i++) {
8 output[i] = inputa[i] * inputb[i];
9

10 if ((i & 1) == 0) {
11 output[i] += inputc[i];
12 } else {
13 output[i] -= inputc[i];
14 }
15 }
16 }

Figure 5.5: Example code requiring interrupt checking. Termination of the while loop

in main() is dependent on an interrupt, hence an interrupt check must be inserted

inside this loop. Termination of the for loop is not dependent on an interrupt, but

delaying interrupt checking until after the loop may introduce an unacceptably large

interrupt latency.

The difference arises, and opportunities are presented, when the alterna-

tive approaches taken to native code generation between ARCSIM and QEMU

are considered. As QEMU does not apply any form of inter-block optimisation,

inserting an interrupt check would only introduce an easily predicted branch-

not-taken penalty. However, since ARCSIM considers regions of basic blocks

as a unit, the insertion of interrupt checks can inhibit certain optimisations

that could be made in the absence of these checks, significantly increasing the

amount of code the JIT compiler must translate.

5.1.2.1 Correct Handling of Interrupt Dependent Behaviour

The code given in Figure 5.5 contains a loop that waits for an interrupt handler

to run (line 4) followed by a loop-based computation on three input arrays

(lines 7–15). The control flow graph for this code is given in Figure 5.3. These

two loops demonstrate two distinct scenarios:

5.1.2.1.1 Interrupt Dependent Behaviour The while loop on line 4 de-

pends on an interrupt to proceed, therefore for correctness, an interrupt check

must be placed somewhere in this loop. In the absence of a check, a pending

IRQ would never be detected, and hence the loop would never terminate.

78 Chapter 5. Efficient Interrupt Virtualisation

This kind of behaviour is present in hardware virtualisation, most promi-

nently in operating system kernels, which may wait for an external device to

indicate that a buffer is full and ready for processing.

5.1.2.1.2 Non-interrupt Dependent Behaviour The computation inside, and

the termination of the for loop on lines 7–15 is not dependent on an interrupt,

but an interrupt check must nonetheless be inserted to avoid an unacceptably

large interrupt latency1, should an IRQ be raised.

Checking for interrupts in an interpreter-based system is straightforward—a

check can simply be made at the end of each interpreted instruction or basic

block, or alternatively check after a given number of instructions have been

executed. These all produce correct behaviour, and impose varying latencies

on servicing the interrupts depending on the scheme in use. However, for a

DBT based system, there are many more opportunities for determining where

to place an interrupt check, along with the challenges of minimising latency

and ensuring correctness.

5.1.3 Contributions

This chapter makes the following contributions:

1. A new scheme for the optimised handling of asynchronous interrupts in

the context of a region-based DBT is presented.

2. The algorithm for inserting interrupt checks is efficient and suitable for JIT

processing, and does not introduce unbounded interrupt response times.

3. The scheme improves virtualisation performance and I/O throughput in

ARCSIM, when virtualising an ARM guest platform running Linux.

5.1.4 Overview

The remainder of this chapter is structured as follows:

• Section 5.2 briefly introduces the problem of interrupt check placement

present in a DBT.

1Interrupt latency is the time taken from an interrupt being raised, to the interrupt being
serviced by the operating system.

5.2. DBT Granularity and the Problem of Inserting Interrupt Checks 79

• Section 5.3 gives an overview of the various schemes available, and a de-

scription of a new interrupt check placement scheme.

• Section 5.4 presents an empirical evaluation of the schemes described in

Section 5.3.

• Section 5.5 summarises and concludes the chapter.

5.2 DBT Granularity and the Problem of Inserting

Interrupt Checks

There are many more options for placing interrupt checks in a DBT system,

compared to an interpreter-based system. One of the biggest details, and thus

one of the biggest factors in how interrupts are addressed, is whether the DBT

translates on a basic block basis, a trace basis, or a region basis (see Figure 5.3).

Basic block-based DBTs must check for interrupts at least once per basic

block, as shown in Figure 5.3a. Since each block is permitted to be entered

from any predecessor, then if an interrupt check was not performed at the end

of a block, the program may get stuck in a loop waiting for an interrupt which is

never detected. As control-flow between basic blocks in this kind of DBT is rela-

tively straightforward (usually a map lookup from virtual address to translated

code), returning from interrupt handlers is also straightforward as the next in-

struction to be executed will be the head of a basic block and can be looked up

from the mapping.

Trace based DBTs have slightly more flexibility in that checks for pending

interrupts can either be made at the end of each basic block within a trace, or

at the start of a trace. This is illustrated in 5.3b. Control-flow within a trace is

linear, but there may be multiple exit points and so checking at the trace head

ensures that if a trace is exited early, there is a check for pending interrupts

in the head of the next trace. Checking more frequently may reduce interrupt

latency but will impact performance. Checking less frequently may result in the

same problem as in the basic block case, where an interrupt necessary for the

simulated program to proceed is never detected.

An extension of this can be seen in previous versions of QEMU [21], where

the DBT system is built on chained block translations. Each block translation

80 Chapter 5. Efficient Interrupt Virtualisation

contains a list of pointers to the address of possible next block translations, and

is able to cause a translation to be produced if one does not already exist. Until

recently, an asynchronous interrupt initiated a recursive tree walk (which races

with the native code execution) from the currently executing block to erase the

next block pointers of all child blocks. When the execution engine finished ex-

ecuting a block (and cannot proceed due to the lack of next block pointers),

the default case is invoked which causes an interrupt check to be performed.

This method, whilst highly optimal for the non-interrupt case (zero overhead,

in fact), is an extreme solution to the problem and introduces significant over-

head when an interrupt actually does occur. Additionally, as admitted in the

source-code (as of version 1.4.0), it suffers from serious race conditions when

executing an symmetric multi-processor (SMP) emulation. Whilst these issues

have been fixed in later versions of QEMU, this comparison aims not to single

out QEMU, but to address performance penalties that may occur in any ISS that

does not implement intelligent handling of interrupts.

Although the strategies discussed so far work effectively for block and trace

based DBT systems, they are inadequate for region based DBTs, which take ad-

vantage of dynamically-extracted control-flow information to optimise the gen-

erated code across basic block boundaries, and to apply certain loop optimisa-

tions to a region of code (Figures 5.3c and 5.3d). An optimisation phase may

even split or merge guest program basic blocks during a transformation pass,

which will produce highly optimised and correct behaviour, but the representa-

tion of the original basic block will be lost.

Unlike in basic block or trace based DBT systems, the generated translations

are able to contain looping control flow, which means some care must be taken

to ensure interrupts are serviced in a timely manner. A naïve DBT system may

decide to insert interrupt checks at the end of each translated basic block. How-

ever, this negates many of the benefits of a region based DBT as each interrupt

check may result in an exit from translated code, making optimisations which

span loops and basic blocks much less effective. Making interrupt checks on en-

try to or exit from a region (as in tracing DBT systems) will also cause incorrect

behaviour, as interrupt dependent loops may be encountered within a region,

as shown in the example in Figure 5.5.

Instead, analysing the control flow graph of the region will identify the min-

imum set of blocks that must contain interrupt checks, while still ensuring cor-

5.3. Region-based Interrupt Checking 81

rect behaviour. In this case, it must be ensured that there is at least one interrupt

check in at least one unconditional basic block of each loop in the CFG. If the

JIT fails to insert an interrupt check into a very long running loop, an interrupt

may be postponed for an unacceptable length of time (potentially indefinitely).

Furthermore, if the JIT fails to insert an interrupt check into a loop that has be-

haviour which depends on an interrupt being serviced, then the DBT will behave

incorrectly.

An algorithm for computing the minimum set of blocks which must con-

tain interrupt checks can be based on computing the minimum feedback arc set

[71, 32] of the control flow graph. This identifies the minimum set of edges in

the CFG which, when cut, remove all cycles from the CFG. Inserting interrupt

checks into the root blocks (source nodes) of these edges ensures that the min-

imum number of interrupt checks necessary are placed, thus ensuring correct

behaviour while maintaining good performance. In the example above, this

would yield the interrupt checks seen in Figure 5.3c.

However, in order to ensure good performance in ARCSIM, the warm-up

time of the JIT must also be considered. That is to say, the performance of gen-

erated code against how quickly that code can be produced must be balanced.

Computing the exact feedback arc set of a graph is expensive (the problem is

NP-hard [32]), whereas computing an approximation is much faster [44], and is

unlikely to result in a significant degradation of performance in generated code

versus computing the exact feedback arc set. An approximation of the feed-

back arc set algorithm in this example might yield the interrupt checks shown

in Figure 5.3d, but of course there are many other possibilities.

5.3 Region-based Interrupt Checking

This section builds upon the operation of ARCSIM described in Chapter 4, and

details the challenges associated with interrupt handling in a region-based DBT.

5.3.1 Avoiding Interrupt Edge Bloat

Asynchronous interrupts are a source of adverse control-flow and can signif-

icantly degrade collected profiling information by introducing spurious edges

from profiled basic blocks. To account for this, an interrupt stack is maintained,

82 Chapter 5. Efficient Interrupt Virtualisation

A'

B' C'

D'

5

1

Interrupt Stack Interrupt Stack

2

3

4

Active Region

A A

B

C

D

A A

Active Region Active Region

Figure 5.6: Flow of region forming when an interrupt occurs. At (1), while executing

the IRQ-detection loop (and before any other code has been discovered), an interrupt

is detected. At (2), the current region state is pushed onto the interrupt stack. At (3),

the interrupt handler is executed, treating it as a totally distinct region to the original

region. At (4), the system returns to normal execution and pops the previous region

state from the stack. At (5), the tight loop is exited, and the profiler continues forming

the original region. Crucially, no superfluous edges which link the ‘normal’ region to

the ‘interrupt’ region have been created.

which allows for control-flow to be profiled at the currently executing interrupt

level. By default, execution begins in a special no interrupt level and profiling

information is collected as execution progresses. When an interrupt check indi-

cates an IRQ is pending, the interrupt level is pushed to the interrupt stack and

execution continues in the interrupt handler with the profiler now collecting

information in the new level. Once the interrupt handler completes (possibly

returning to user-code), the interrupt level is popped from the stack and execu-

tion continues from where it left off, with profiling information from the point

of interrupt maintained. A stack is used to accommodate nested interrupts.

Figure 5.6 shows how the region forming process proceeds in the presence of

interrupts. Rather than superfluous edges being formed between block A and

block A′, and D′ and B, control flow is discovered as it exists in the original

executable.

5.3.2 Interrupt Check Placement Schemes

Region-based DBT gives rise to a number of opportunities for the placement of

the interrupt check. The following three schemes can be used to place interrupt

5.3. Region-based Interrupt Checking 83

checks within a region, and are implemented in ARCSIM for evaluation:

1. Full Placement: An interrupt check is placed before every basic block

within a region. This scheme produces correct behaviour, as every block

will check for pending IRQs.

2. Backwards Placement: An interrupt check is placed before every basic

block that is the target of a backwards branch within a region. Backward

branches indicate looping control-flow, and so this scheme produces cor-

rect behaviour, as a pending IRQ cannot be missed.

3. Optimised Placement: An interrupt check is placed before the basic

blocks that are selected by the algorithm described in Figure 5.7.

Whilst the most accurate algorithm for computing the feedback arc set of the

region graph could be used to select basic blocks in which to emit interrupt

checks, instead an approximation based on Tarjan’s Strongly Connected Compo-

nents (SCC) [113] algorithm as described in Figure 5.7 is used. The use of the

approximation ensures that ARCSIM retains its fast warm-up time, by reducing

the latency introduced in employing this analysis phase.

Interrupts are always checked for after a basic block has been executed by

the interpreter (regardless of the scheme in use)—these schemes apply to how

interrupt checks are inserted by the JIT compiler, as it is the performance of

translated native code that is important.

During the compilation phase, a compilation work unit (containing guest

basic blocks and their control-flow information) is subjected to analysis by the

selected interrupt checking scheme, which determines which blocks should con-

tain interrupt checks. Once those blocks are identified, interrupt checks are

inserted where necessary by the translator, as each block is translated.

Tarjan’s SCC algorithm requires a minor modification to work with ARC-

SIM. In particular, self-loops (a basic block with itself as a successor) must be

detected, which the algorithm proper does not. Additionally, the algorithm im-

plements the suggestion by the authors for testing whether or not a node is

on the stack in constant time by maintaining an OnBlockStack flag for each

node. Otherwise, the algorithm remains unmodified.

84 Chapter 5. Efficient Interrupt Virtualisation

1 define ApplyChecks(WorkUnit):
2 NextIndex := 0 # Initialise algorithm state
3 do:
4 RMCount := 0 # Reset remaining counter
5

6 foreach Block in WorkUnit.Blocks:
7 if Block.HasSelfLoop: # If the block is a self-loop, then
8 Block.HasInterruptCheck := True # make it have an interrupt check.
9 else if not Block.HasInterruptCheck: # Otherwise, if it doesn’t already have
10 call StrongConnect(WorkUnit, Block) # an interrupt check, run the algorithm.
11 while RMCount != 0 # Loop until nothing remains
12

13 define StrongConnect(WorkUnit, StartBlock):
14 StartBlock.Index := NextIndex # Give the block an index.
15 StartBlock.LowLink := NextIndex # Assume the block is a root block.
16 StartBlock.Seen := True # Mark the block as seen.
17 NextIndex++ # Consume an index number.
18

19 BlockStack.Push(StartBlock) # Add the block to the stack.
20 StartBlock.OnBlockStack := True # Mark the block as being on the stack.
21

22 # Loop over each successor
23 foreach Successor in StartBlock.SuccessorBlocks:
24 if Successor.HasInterruptCheck: # Ignore blocks that already have checks.
25 continue
26

27 if not Successor.Seen:
28 # If the block has not been seen, recursively visit it.
29 StrongConnect(WorkUnit, Successor)
30 StartBlock.LowLink := min(StartBlock.LowLink, Successor.LowLink)
31 else if Successor.OnBlockStack:
32 # If the block is on the stack, it is part of this SCC
33 StartBlock.LowLink := min(StartBlock.LowLink, Successor.Index)
34

35 if StartBlock.LowLink == StartBlock.Index: # If the block is a root node...
36 Count := 0
37 do: # Pop the stack to build the SCC.
38 StackedBlock := BlockStack.Pop()
39 StackedBlock.OnBlockStack := False
40 Count++
41 while StackedBlock != StartBlock
42

43 if Count > 1: # If the SCC contains > 1 blocks,
44 StartBlock.HasInterruptCheck := True # make the root block have an
45 RMCount++ # interrupt check.

Figure 5.7: Optimised interrupt check placement algorithm for arbitrary code regions,

based on Tarjan’s [113] algorithm. The algorithm maintains a flag for each node to

determine if it exists on the block stack, and a test to handle basic blocks that loop to

themselves.

5.3.3 Servicing an Interrupt

Asynchronous interrupts may be asserted by any emulated component at any

time, and from any host machine thread. In order to abstract asynchronous

events (which may not necessarily be IRQs), the concept of pending actions is

introduced to indicate the presence of an action that must interrupt normal

execution. A bitfield in the CPU state structure is used to indicate what type

5.3. Region-based Interrupt Checking 85

block_0x00001000:
 %1 = load i32* %actions_pending_ptr
 %2 = icmp ne i32 %1, 0
 br i1 %2, label %handle_actions, label %proceed_with_block

handle_actions:
 tail call void @cpuHandlePendingActions(i8* %cpu_state_val)

proceed_with_block:
 ...

Execution Engine

Emulation Model

leave native code
return to native code

Figure 5.8: LLVM IR emitted for interrupt checking at the head of a block determined

to be an interrupt check block. If the CPU state structure indicates that an action is

pending, control leaves native code via a tail-call back to the execution engine, where

the pending action is handled.

of action may be pending. It is this bitfield that is queried when determining

whether or not an IRQ is pending, and the native code emitted for interrupt

checking simply tests the bitfield. If the value is determined to be non-zero,

then it is known that an asynchronous action is pending, and that execution

must leave native code to service it.

A pending action may be an IRQ (in hardware virtualisation), a Unix signal

(in user-mode simulation) or a special internal signal such as abort or dump

state. This allows a user-mode guest program, for example, to register signal

handlers and have a host signal propagated through. In hardware virtualisa-

tion, usually a guest operating system (during the OS initialisation phase) will

populate an interrupt vector table (IVT) with locations to branch to when a par-

ticular IRQ is pending. When an emulated platform device asserts an interrupt,

control-flow will branch via this IVT to the location specified by the guest OS.

Figure 5.8 shows that when an interrupt check block is executed, and the

pending actions bitfield is non-zero, control returns from native code via a tail-

call back into the execution engine. The execution engine then invokes the

necessary routines to service the pending action. As handling the action may

result in adverse control-flow, (i.e. an unexpected change to the PC), execution

cannot return to native code from where it left, and instead must continue ex-

ecution via the normal execution engine path. This may result in returning to

native code, but if the interrupt service routines (ISR) have not yet been com-

piled, then execution will proceed through the interpreter (potentially marking

the ISR as hot and leading to compilation).

86 Chapter 5. Efficient Interrupt Virtualisation

Vendor & Model Dell™ PowerEdge™ R610

Architecture x86-64

Processor Model 2× Intel© Xeon™ X5660

Number of cores 2× 6

Clock Frequency 2.80 GHz

FSB Frequency 1.33 GHz

L1-Cache 2× 6× 32K

L2-Cache 2× 6× 256K

L3-Cache 2× 12 MB

Memory 36 GB

Operating System Linux 2.6.32

User Space Scientific Linux 6.6

Table 5.1: Host configuration.

DBT Parameter Setting

Target architecture ARMv5T

Target OS ARM Linux 3.17.0

Translation Model Asynchronous

Tracing Scheme Region-based [24]

Tracing Interval 30000 blocks

Translation Cache 8192 Entries

JIT compiler LLVM 3.4

Compilation Threads 10

IR Generation Part. Eval. [121]

JIT Optimisation -O3

JIT Threshold 20 (Adaptive [24])

Table 5.2: ARCSIM configuration.

5.4 Experimental Evaluation

5.4.1 Experimental Methodology

Measurements are made on two different types of workloads to evaluate the

impact of the various interrupt check placement schemes. One workload is

an interrupt-heavy workload in the form of an I/O benchmark, using the stan-

dard Linux I/O benchmarking tool hdparm [88], another is a compute-heavy

workload using the SPEC-CPU2006 integer benchmarks. This comparison will

evaluate the impact of the different placement schemes on workloads that re-

quire low-latency interrupt servicing, and those that do not rely on interrupts

and hence are not sensitive to interrupt latency.

5.4.2 Experimental Setup

All of the workloads are executed as applications running inside an ARM Linux

3.17.0 guest operating system, running an Arch Linux ARM user-space on ARC-

SIM in hardware virtualisation mode. The host machine for simulation is de-

scribed in Table 5.1, and the configuration of ARCSIM is described in Table 5.2.

A comparison is also made to the state-of-the-art full-system DBT QEMU ver-

sion 2.1.50. This comparison is to indicate that the region-based approach

to compilation can yield significant performance improvements, even with the

added complexity of inserting interrupt checks.

5.4. Experimental Evaluation 87

 0

 5

 10

 15

 20

 25

 30

 35

QEMU Full Backwards Optimised

I/
O

 T
h
ro

u
gh

p
u
t

(M
B
/s

)

18

27.34 27.50
29.12

Figure 5.9: Absolute I/O throughput in MB/s measured with the hdparm benchmark—

higher is better. In all cases, ARCSIM has a higher I/O throughput than QEMU, and

improves over the baseline full placement scheme by 7%.

5.4.2.1 Platform Configuration

An unmodified (vanilla) Linux 3.17.0 kernel is used as the guest operating sys-

tem to host the experiments. The kernel is configured for an ARM Versatile

Application Baseboard [11], but the platform as specified includes only 128MB

of physical memory, which is not enough to run the SPEC-CPU2006 benchmark

suite. For this reason the platform is modified in both ARCSIM and QEMU to

include additional memory, enabling the benchmarks to run. The default ker-

nel configuration for the platform is used, except for the addition of the VirtIO

block device module. This kernel boots unchanged on both ARCSIM and QEMU.

The VirtIO specification, as detailed in [103], is implemented in ARCSIM in

order to provide a block device implementation to the guest Linux operating

system. This block device contains the root filesystem for booting, and is also

used as the target of the I/O benchmark for testing.

The ARM Versatile Application Baseboard includes a single ARM926 CPU,

as well as many external devices such as timers and I/O modules. Most of

these devices are supported by ARCSIM, excluding those which are irrelevant to

the experiments (such as the FPGA), or for which no documentation is publicly

available.

88 Chapter 5. Efficient Interrupt Virtualisation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

QEMU Full Backwards Optimised

3.01

1
0.87 0.87

Figure 5.10: Relative reduction in wall-clock run-time of the SPEC-CPU2006 integer

benchmark against the baseline full placement scheme—lower is better. In all cases,

ARCSIM is faster than QEMU, and improves over itself by 13% using the optimised

placement scheme.

5.4.3 Key Results for I/O-bound Workloads

For measuring I/O throughput, it is not the performance of the underlying stor-

age device that’s important, but rather the performance of interrupt handling

in the DBT. For this reason, the hdparm benchmark is suitable for stressing the

interrupt system as the I/O device is implemented as a VirtIO [103] block device

which uses interrupts to convey I/O completion information back to the guest.

Measuring the performance of ARCSIM can be accomplished by measuring I/O

throughput, as this will correspond directly to the rate at which interrupts can

be serviced. Testing different I/O access patterns (such as sequential, random,

etc) is also not important, as this will not have any effect on the interrupt sys-

tem.

Figure 5.9 shows a 61% improvement in I/O throughput on the hdparm

benchmark over QEMU, and a 7% relative improvement when using the opti-

mised placement scheme versus the backwards and full checking schemes.

5.4.4 Key Results for CPU-bound Workloads

For hardware virtualisation, it is not possible to remove all interrupt checks—

even when there are no interrupts are raised for some time—and as such CPU-

bound workloads will incur a small performance penalty due to occasional in-

terrupt checking. Therefore, this experiment considers the impact the place-

5.4. Experimental Evaluation 89

ment schemes have on the run-time of a CPU-bound workload. Figure 5.10

shows that ARCSIM experiences a 13% reduction in the run-time of the SPEC

CPU2006 integer benchmarks when employing the more optimal placement al-

gorithms. This can be attributed to the higher quality of native code that is

generated as a result of inserting fewer interrupt checks.

5.4.4.1 Comparison to QEMU

As demonstrated, ARCSIM improves over itself when using the more optimal

placement algorithms, but it is also important to consider the effect that this

has on the benefits of the region-based strategy presented in the previous chap-

ter. A comparison to the state-of-the-art QEMU is made, to show that ARCSIM

maintains its performance advantage. Figure 5.10 shows that against the base-

line full placement scheme, QEMU is 3× slower in full-system mode, confirming

that the region-based DBT approach maintains its ability to optimise code across

block boundaries, despite the inserted interrupt checks.

Furthermore, an advantage of using the VirtIO infrastructure is that QEMU

can be configured to use exactly the same kernel image, filesystem and block

device, enabling a direct comparison of I/O throughput between ARCSIM and

QEMU.

5.4.5 Further Analysis

5.4.5.1 Static and Dynamic Interrupt Checks

A static interrupt check corresponds to the decision to place an interrupt check

in a given basic block, where a dynamic interrupt check corresponds to the

execution of a static interrupt check at run-time. The aim of the optimal place-

ment scheme is to minimise the number of static interrupt checks placed, and

correspondingly reduce the number of dynamic checks made. A reduction in

static interrupt checks serves two purposes:

1. The amount of IR the LLVM JIT compiler is presented with is lower, thereby

reducing the amount of work the optimiser and compiler have to do and

subsequently improving compilation time, and

2. the optimiser is free to perform more aggressive optimisations within the

90 Chapter 5. Efficient Interrupt Virtualisation

 0

 0.2

 0.4

 0.6

 0.8

 1

Full Backwards Optimised

R
el

at
iv

e
C
h
ec

k
C
ou

n
t

Static Checks
Dynamic Checks

(a) I/O bound workload

 0

 0.2

 0.4

 0.6

 0.8

 1

Full Backwards Optimised

R
el

at
iv

e
C
h
ec

k
C
ou

n
t

Static Checks
Dynamic Checks

(b) CPU bound workload

Figure 5.11: Reduction in static and dynamic interrupt checks for I/O and CPU-bound

workloads on the three different interrupt checking schemes—lower is better. For I/O-

bound workloads, the optimised placement scheme reduces the amount of static checks

by 66% and dynamic checks by 73%. For CPU-bound workloads, static checks are

reduced by 63% and dynamic checks by 69%.

region, and produce higher quality (and subsequently more performant)

native code.

Figures 5.11a and 5.11b both show that fewer static interrupt checks are placed,

and as a consequence generally perform fewer dynamic checks. The exception

to this is when using the backwards branch scheme in a CPU bound workload

where an increase in dynamic checks is observed. This can be attributed to

CPU-bound workloads spending more time in hot looping control-flow, where

the scheme will have necessarily inserted an interrupt check, and therefore

increase the dynamic interrupt check count. The optimised placement scheme

places 66% less interrupt checks than the baseline scheme, and causes 73%

fewer dynamic checks to occur.

5.4.5.2 Interrupt Latency

The interrupt latency is the time it takes for a simulated interrupt to be raised,

until the point at which the execution engine begins executing the ISR. A reduc-

tion in interrupt latency will improve the throughput of an I/O bound workload,

as data requests are served more quickly. These results show the impact that

the placement schemes have on interrupt latency, to ensure IRQs are not being

deferred for an unacceptable period of time. These measurements are taken for

the I/O-bound workload, as interrupt latency will not affect the throughput of

CPU-bound workloads.

5.4. Experimental Evaluation 91

 0

 20

 40

 60

 80

 100

 120

Full Backwards Optimised

In
te

rr
u
p
t

L
at

en
cy

 (
u
s) 108

80 80

Figure 5.12: Absolute interrupt latency in µs as measured when running the hdparm

I/O benchmark—lower is better. The backwards and optimised placement schemes

reduce interrupt latency by 26%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

Interrupt Latency (in us)

Full
Optimised

Figure 5.13: Cumulative distribution of interrupt latencies for the optimised placement

scheme, compared against the full placement scheme.

Whilst it may seem that there should be a lower latency for the full place-

ment scheme (i.e. more checks, means more opportunities to respond to an in-

terrupt) the impact that the scheme has on generated code quality is such that

higher latencies are actually observed (108µs, over 80µs on average) when em-

ploying this. Figure 5.12 shows that interrupt latency is reduced in the schemes

which reduce the amount of static checks inserted, and for the optimised al-

gorithm, latency is reduced by 26%. The higher quality of native code that is

generated leads to faster execution rates, and accounts for the fact that inter-

rupts can be served more quickly.

92 Chapter 5. Efficient Interrupt Virtualisation

 750

 760

 770

 780

 790

 800

 810

 820

1 Hz 10 Hz 100 Hz 1 kHz

E
xe

cu
ti
on

 T
h
ro

u
gh

p
u
t

(i
n
 M

IP
S
)

Interrupt Frequency

Full
Optimised

Figure 5.14: Comparison of the full placement scheme versus the optimised placement

scheme using a range of interrupt frequencies from 1Hz to 1kHz. Using the full place-

ment scheme causes a significant performance overhead at high interrupt frequencies,

while the optimised policy continues to provide good performance.

5.4.5.3 Distribution of Interrupt Latencies

Figure 5.13 shows how various latencies for serviced interrupts are distributed

between execution with the full and optimised scheme. The cosine similarity

of the latencies produced between these schemes is cos θ = 0.999, indicating

that the differing schemes do not significantly vary in the latencies yielded by

the system. The cumulative latency distribution shown in Figure 5.13 is in fact

comparable to that of the ARM port of the popular Xen hypervisor running on

actual hardware [129].

5.4.5.4 Scalability

In order to determine the scalability of ARCSIM, a range of frequencies from 1Hz

to 1kHz were artificially inserted to test how ARCSIM scales to higher frequen-

cies, and Figure 5.14 shows that the optimised placement scheme consistently

performs better than the naïve full placement scheme. Furthermore, it can be

seen that ARCSIM maintains a relatively consistent level of performance across

the frequency range, only dropping by approximately 2%.

5.5. Summary & Conclusions 93

5.4.5.5 Comparison to Hardware

With simulation throughput approaching actual hardware performance, it is

important to ensure that interrupt handling in ARCSIM is on even terms with the

hardware being emulated, i.e. there is not an unacceptable amount of latency

being introduced.

Interrupt response time observed on actual, non-simulated systems is the

sum of a hardware dependent time and some operating system induced over-

head. The hardware dependent time is determined by the micro-architecture of

the processor and its current state, the system configuration and the type of in-

terrupt. Operating system overheads may vary greatly between best and worst

case scenarios, and are generally worst when the kernel (temporarily) disables

interrupts.

According to the manufacturer’s specification [13] the interrupt latency seen

by a Linux driver running on an ARM1176JZ(F)-S with two levels of cache is

approximately 5000 cycles. This is largely caused by overheads in the operating

system itself. 5000 cycles at 300MHz is 16.7µs, and ARCSIM yields an average

latency of 80µs when using the optimised placement scheme.

5.5 Summary & Conclusions

This chapter has developed an optimised scheme for the efficient placement of

asynchronous interrupt checks in a cross-architecture hardware virtualisation

system, that employs region-based dynamic binary translation. This technique

detects control flow loops of any structure and nesting level and inserts a near-

minimal number of interrupt checks. It also provides correctness through the

guarantee that at least one check for pending IRQs is performed for each it-

eration of any enclosing loop. On average, the number of dynamic interrupt

checks is reduced when virtualising an ARM platform by 73%, in comparison

to a scheme that checks for interrupts at the end of each basic block. Despite

the reduced frequency of interrupt checks the latency for servicing interrupts

is reduced by 26% due to increased opportunities for code optimisation be-

tween interrupt checks. ARCSIM also maintains a performance advantage over

state-of-the-art QEMU, where I/O throughput is improved by 1.6× and virtuali-

sation performance improved by 3.4× in hardware virtualisation across a range

94 Chapter 5. Efficient Interrupt Virtualisation

of benchmarks.

This chapter has introduced a specific challenge involved in efficient hardware

virtualisation, but there are many more concerns that need to be addressed.

The next chapter shall introduce a novel approach to cross-architecture hard-

ware virtualisation, considering the major factors that affect the performance

of such a system.

Chapter 6
Hardware Accelerated

Cross-architecture Virtualisation

The previous chapter tackled an important issue for efficient cross-architecture

hardware virtualisation in the form of asynchronous interrupt handling, but

this is just one challenge in a large problem space. Hardware virtualisation is

a popular technology used for workload consolidation, application sandboxing,

debugging software, prototyping hardware and simply running a different op-

erating system on a host machine. Modern processor vendors have introduced

architectural support for hardware virtualisation (so-called hardware assisted

virtualisation) in the form of instruction set extensions (ISE). These ISEs enable

very efficient virtualisation of host system hardware resources by permitting

guest operating systems to run directly on the physical hardware, with minimal

supervision. These extensions, however, are geared towards same-architecture

virtualisation, where a virtual guest machine is of the same architecture as the

physical host machine. This chapter develops a novel hypervisor called CAP-

TIVE that exploits the hardware accelerated virtualisation extensions present on

modern processors to efficiently virtualise an architecture that is different to the

host.

6.1 Introduction

Hardware virtualisation is the provision of an abstract, virtual computing envi-

ronment on a host machine, such that operating systems and system software

can run in isolation, under the impression that they are running on real hard-

96 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

Virtual Machine Monitor/Hypervisor

Operating System

CPU
(with Intel VT/AMD-v)

Host Machine (x86) Host Machine (x86)

x86 Virtual Machine

ARM Operating
System

Execution Engine

x86 Virtual Machine

ARM Operating
System

Execution Engine

x86 Virtual Machine

x86 Operating
System

x86 Virtual Machine

x86 Operating
System

CPU
(with Intel VT/AMD-v)

Linux with KVM

CAPTIVE Hypervisor

Figure 6.1: Modern processors support hardware assisted virtualisation, but these ex-

tensions are for same-architecture virtualisation only. CAPTIVE exploits these extensions

to accelerate cross-architecture virtualiation by mapping behaviour of a guest system,

to corresponding behaviour of the host.

ware. For this to work, and to ensure isolation, virtual machines must be moni-

tored by a so-called hypervisor (or virtual machine monitor (VMM)) that ensures

they can not interfere with the overall working of the physical machine.

A software-based solution, such as ARCSIM described in the previous chap-

ters or QEMU (without KVM), implements hardware virtualisation through dy-

namic binary translation and hardware device emulation, e.g. a virtual CPU

executes guest machine instructions, and when device accesses are made, they

are routed to software implementations. However, there are more challeng-

ing problems for DBT-based virtualisation than simple instruction and device

emulation.

As mentioned previously, hardware virtualisation requires emulation of ar-

chitectural components, such as the memory management unit (MMU), inter-

rupt controllers, devices, etc. and a software-based solution introduces a sig-

nificant amount of run-time overhead. For example, architectures that have a

virtual memory system must translate virtual memory addresses to their corre-

sponding physical addresses, along with checking access permissions, in order

to emulate this virtual memory model. Recognising these challenges, modern

processor vendors provide hardware extensions that are designed to support

same-architecture virtualisation, by allowing guest operating systems to run

unmodified directly on the physical CPU. Some examples of this technology are

6.1. Introduction 97

Intel VT and AMD-V on x86 processors and ARM Virtualization Extensions on

ARM processors.

However, these hardware-assisted virtualisation extensions are geared to-

wards same-architecture virtualisation, where both the guest VM and the physi-

cal host machine share the same architecture. For cross-architecture virtualisa-

tion (where the guest and host architectures are different), translation between

ISAs, emulation of the guest system’s MMU, interrupt handling and I/O devices

are typically implemented entirely in software, resulting in a substantial perfor-

mance loss. For example, in full-system mode the gem5 architectural simula-

tor [22] takes about 30 minutes to boot into Linux on a current, mid-range host

machine. While this performance level is sufficient for some computer archi-

tecture research, it is far too slow for any practical applications. QEMU [21], a

popular cross-architecture full-system virtualiser using dynamic binary transla-

tion (DBT), is substantially faster, but still suffers an up to 20× slow-down [69]

compared to native execution on the host.1

While same-architecture hardware virtualisation has become ubiquitous there

are fewer, but nonetheless important applications for cross-architecture virtu-

alisation, e.g. Android software development using the QEMU-based Android

Emulator shipped with the Android Studio [46], which provides an ARM en-

vironment for software developers using an x86 host machine; building ARM

Docker [89] containers on x86 machines; providing fast-forwarding in sam-

pling based simulators [106]; or early-stage software development without a

hardware target [30]. All of these applications critically depend on fast cross-

architecture virtualisation due to unavailability or deliberate absence of a hard-

ware platform supporting the chosen target ISA.

In this chapter, a novel approach for speeding up cross-architecture hard-

ware virtualisation is developed, and these ideas are implemented in a new hy-

pervisor called CAPTIVE. This chapter moves away from ARCSIM as described in

previous chapters, as these new ideas cannot be applied to this existing system.

However, many of the techniques previously described and used in ARCSIM are

carried into CAPTIVE, where appropriate.

1Native execution of a binary suitably compiled to the host ISA from the same sources,
which have been used to build the binary for the guest’s ISA.

98 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

 0

 20

 40

 60

 80

 100

400.perlbench
401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er
458.sjeng

462.libquantum
464.h264ref
471.om

netpp
473.astar

483.xalancbm
k

G
eom

. M
ean.

%
 o

f
m

em
or

y
in

st
ru

ct
io

n
s

Other
Read
Write

Read/Write

Figure 6.2: Distribution of operations in the SPEC-CPU2006 integer benchmarks. On

average, around 50% of all instructions executed perform memory operations (either

read, write, or both), which require expensive virtual-to-physical address translation

using a software MMU.

6.1.1 Key Idea

The key idea is to eliminate performance bottlenecks by exploiting the existing

virtualisation hardware extensions originally devised for same-architecture vir-

tualisation, and mapping guest architecture behaviour onto corresponding host

architecture behaviour.

6.1.2 Motivating Example

It has been well established [85, 31, 125, 60] that emulation of a guest MMU

is one of the most time-consuming parts of cross-architecture virtualisation,

therefore this motivating example will focus on the memory address translation

process required for virtualisation. For this, consider the diagram in Figure 6.2,

which shows the percentage of memory operations w.r.t. the total number of

executed instructions in the SPEC CPU2006 integer benchmarks. About 50%

of the instructions in these benchmarks perform memory accesses. This indi-

cates that when running these benchmarks in a virtualised ARM guest environ-

ment on an x86 host, on average, every other instruction demands an expensive

virtual-to-physical memory translation using a virtualised ARM MMU (typically

implemented in software). If these address translations can be sped-up, one of

the most severe cross-architecture virtualisation performance bottlenecks will

be eliminated.

Figure 6.3 shows that in a 32-bit ARMv7-A system with an ARMv7-A MMU,

6.1. Introduction 99

PAGE OFFSETL1 TABLE INDEX L2 TABLE INDEX

32-bit Virtual Address

L1 Page Table

L2 Page Table

TTBR

4kB page

Physical Address

Physical Address

31 2019 1211 0

Figure 6.3: The operation of an ARMv7-A MMU. A 32-bit virtual address is translated

to its corresponding physical address, by indexing an L1 and L2 page table. The TTBR

points to the base of the L1 page table, and the entry in the L1 page table points to the

base of the L2 page table. The entry in the L2 page table then points to the base of the

corresponding physical memory page.

there are at most two levels of page tables representing a virtual memory area.

To translate a virtual address into its corresponding physical address, the first-

level page table (an L1 page table), pointed to by the TTBR register, is indexed

by bits 20–31 of the virtual address and the entry interrogated to determine if

the mapping is to a section (a 1MB contiguous chunk of memory) or a small

page (a 4kB contiguous chunk of memory). If the page table entry indicates a

section, then the base address points to the physical base address of the memory.

If the page table entry indicates a small page, then the base address points to

the physical base address of a second-level page table (an L2 page table). The

L2 page table is indexed by bits 12–19 of the virtual address, and the base

address in the L2 page table entry points to the physical base address of the

page corresponding to the mapping. A page table entry in the L1 (if pointing

to a section) or L2 page table in addition to the base address pointer contains

flags that indicate the access permissions of the page, e.g. whether or not the

page is readable and writable, and if it is accessible whilst executing in the user

privilege level.

In a 64-bit x86 system, there are four levels of page tables that represent

a 48-bit virtual address space. Pointers are always 64-bit wide, but can only

access 48-bits of virtual address space. Virtual addresses must be in canonical

100 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

64-bit Virtual Address

cr3

PAGE OFFSETPT OFFSETPD OFFSETPDP OFFSETPML4 OFFSET(unused portion)

Physical Address

Physical Address
Physical Address

Physical Address

4kB PagePTPDPDPPML4

Figure 6.4: The operation of an x86 MMU. The cr3 register points to the base of the

page map level 4 table, which in turn points to the page descriptor pointer table, then the

page descriptor table, and finally the page table. The unused portion of the address (bits

48 to 63) are copies of bit 47, making this a virtual address in canonical form.

form, where bits 48–63 of the address are copies of bit 47. Any memory access

to a non-canonical address will result in a general protection fault. Address

translation operates in a similar fashion to ARM, with each level of page ta-

ble being traversed to translate a 64-bit virtual address into a 64-bit physical

address, subject to permissions which can be applied at any level of the page

table—the higher level permissions taking precedence over the lower levels.

To avoid a costly page table walk for every memory access, both architec-

tures employ a translation lookaside buffer (TLB), which caches the result of a

previous hardware translation. If the page tables are modified, or the pointer

to the top-level page table changed, the TLB must be flushed.

From this description it should be clear that the structure of the ARM and

x86 MMUs are substantially different, yet fundamentally they both provide a

mechanism for the translation of virtual addresses to physical addresses with

permission checking. This chapter proposes to exploit this hardware address

translation capability, and show how to map the behaviour of an ARM MMU

onto a virtualised Intel MMU. By intercepting ARM TLB invalidations and main-

taining entries in the x86 page table that represent entries in the ARM page

table, address translations can be accelerated. Instead of using a slow software

implementation of the ARM MMU, guest address translations are redirected to

the fast, host virtualised Intel MMU, which CAPTIVE keeps consistent with the

guest’s ARMv7-A MMU. Using existing extensions originally devised for same-

architecture virtualisation critical cross-architecture address translations can be

sped-up over a pure software MMU implementation.

6.1. Introduction 101

6.1.3 Contributions

This chapter targets four distinct cross-architecture virtualisation challenges,

and makes the following contributions:

1. Virtual-to-physical address translation is accelerated through the use of

virtualisation extensions, by mapping behaviour of the guest MMU onto

corresponding behaviour of the host MMU—despite substantial differences

between the two MMUs.

2. A DBT system for the translation from the guest to host ISA is presented,

where a fast, block-based, domain-specific, just-in-time (JIT) compiler that

lives inside the native virtual machine translates guest instructions to host

instructions, exploiting techniques not usually available to a user-space

JIT.

3. An efficient mechanism to emulate the guest’s memory mapped I/O de-

vices is developed, by exploiting the host’s MMU to detect device accesses.

4. Finally, an interrupt handling scheme is developed, which correctly hon-

ours the guest’s instruction boundaries, even if one guest instruction is

mapped onto several host instructions, thus implementing precise, yet ef-

ficient guest interrupts.

6.1.4 Overview

The remainder of this chapter is structured as follows:

• Section 6.2 will expand the background on MMU virtualisation in full-system

simulators, and introduce further detail on Intel virtualisation technology

(Intel VT), and KVM.

• Section 6.3 will present the novel cross-architecture virtualisation techniques,

and how they are implemented in the new hypervisor CAPTIVE.

• Section 6.4 will present the results from an empirical evaluation of the tech-

niques.

• Section 6.5 summarises and concludes the chapter.

102 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

6.2 Background

The technologies used by CAPTIVE have previously been introduced in Chapter

3, and this section shall extend these descriptions, and explain how they apply

to the implementation.

6.2.1 KVM

CAPTIVE requires a virtual machine backed by hardware extensions, and uses

the KVM infrastructure provided by the Linux kernel to accomplish this. As

described in Section 3.3.1, KVM provides a convenient abstraction for accessing

the hardware virtualisation extensions of the host system, and so works in the

presence of technologies such as Intel VT and AMD-V. KVM also supports other

host architectures such as ARM (with ARM Virtualization Extensions), PowerPC

and MIPS, meaning that porting CAPTIVE to other host architectures would be

quite straightforward.

The key idea is to create a regular same-architecture virtual machine on the

host (with KVM), and map the behaviour of a guest platform to the behaviour

of the host.

6.2.2 Intel VT

As described in Section 3.3.2, Intel VT (Intel Virtualization Technology) are the

collection of virtualisation extensions available on modern Intel processors, and

CAPTIVE depends on this technology for hardware acceleration. Generally, ac-

cess to virtualisation extensions requires operating system level (i.e. privileged)

access to the host machine and since CAPTIVE is started as user-space process,

it would require co-operation from the OS kernel to enable and run the exten-

sions. Access to Intel VT is mediated by KVM, with the alternative being to

develop a custom kernel module.

6.3 Virtualisation Infrastructure

ARCSIM is a well-engineered simulator that fully supports hardware virtuali-

sation, but it can not be readily adapted to support hardware-assisted virtuali-

sation. This is because ARCSIM operates entirely in software, within the con-

6.3. Virtualisation Infrastructure 103

ArcSim Captive

Host Machine

Operating System

Physical CPU

ArcSim Application

Captive
Hypervisor
Application

Host Virtual Machine

Guest Virtual
Machine

Guest Virtual
Machine

Virtual CPU

Execution Engine

Physical CPU Intel VT

Operating System KVM

Host Machine

Figure 6.5: ARCSIM is a software-based hardware virtualisation system, and CAPTIVE is

hardware-accelerated. ARCSIM provides a guest virtual machine by emulating the plat-

form in software, whereas CAPTIVE utilises host hardware extensions to map behaviour

of a guest platform to behaviour of the host system.

straints of an operating system, with its infrastructure tightly coupled to user-

space libraries such as glibc and llvm. The approach taken by CAPTIVE is to

instantiate a virtual machine on the host machine, in which the virtualisation

takes place, exploiting the ability to utilise all hardware features normally only

available to operating system software on the host system. The fundamental

purpose of each system is to provide a guest virtual machine, which represents

the platform being virtualised, and Figure 6.5 shows how both ARCSIM and

CAPTIVE realise this goal.

A consequence of this is that there is no operating system inside the vir-

tual machine, and as such CAPTIVE must itself perform architectural setup and

management that would normally be handled by an OS.

Figure 6.6 gives a high-level overview of how CAPTIVE is structured, with

the virtualisation infrastructure consisting of three main components:

1. A hypervisor component, which runs on the host machine and uses KVM

to control the host’s hardware virtualisation extensions.

2. An execution engine component, which runs inside a normal virtual ma-

chine on the host.

104 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

Hypervisor Execution Engine

Main Execution Loop

Architectural Implementation

Instruction
Behaviour

MMU
Behaviour

IRQ
Behaviour

DBT

Host Machine
Operating System

Bare-metal
Native Virtual Machine

KVM Platform Devices

Platform Configuration

Figure 6.6: A high-level overview of CAPTIVE’s infrastructure, showing the three main

components that make up the system. The hypervisor runs in the host machine’s oper-

ating system and the execution engine runs inside a native virtual machine.. The archi-

tectural implementation contains the configuration of the target platform, and specifies

architecture-specific behaviour.

3. An architectural implementation, which specifies the behaviour of the

architecture being virtualised and defines the configuration of the guest

platform.

The remainder of this chapter will assume that an ARMv7-A guest architecture

is being virtualised, based on an ARM RealView Platform Baseboard for Cortex-

A8 [9]. The host machine will be a standard x86-64 machine with Intel VT

virtualisation extensions and KVM support.

Due to the multi-layer nature of this system, it is important to define a par-

ticular term at this point, to identify exactly what aspect of the system is being

described.

Definition 16 (Native Virtual Machine). The hardware extensions provided by

the host machine naturally provide a same-architecture virtual machine, e.g. using

QEMU with KVM on x86 would result in an x86 virtual machine. In this case, the

Native Virtual Machine (Native VM) refers to the virtual machine provided by

these hardware extensions, which are utilised in the infrastructure. Therefore, in

this chapter, the Native VM is of the same architecture (x86-64) as the host.

6.3. Virtualisation Infrastructure 105

6.3.1 System Components

The following sections shall briefly describe the three main components that

make up CAPTIVE.

6.3.1.1 Hypervisor

The hypervisor component of CAPTIVE is the part of the system that runs inside

the (Linux) operating system of the host machine—it is the software that the

user directly operates to start a virtualisation session. It interfaces with KVM

to access the host platform’s hardware-assisted virtualisation extensions, and

contains software implementations of the devices that are to be virtualised for

the guest platform.

Typically, the user will provide a guest kernel and a disk image for the ar-

chitecture being virtualised, then indicate which type of architecture is being

virtualised. The CAPTIVE hypervisor is a generic component, and is not depen-

dent on either the host or guest architecture—it only depends on KVM being

supported by the host system’s Linux kernel.

6.3.1.2 Execution Engine

The execution engine is the core component that performs the virtualisation

of the guest platform’s CPU, and maps guest architectural behaviour to the host

architecture. It runs inside the native virtual machine and can be thought of as

a lightweight operating system.

The execution engine is specific to the host architecture, but independent

of the guest architecture. This is because the execution engine runs inside the

Native VM and must know how to configure the host MMU, install interrupt

handlers, and perform privileged operations (such as TLB flushes).

The engine also contains an optimising JIT compiler that translates a generic

intermediate representation (IR) (produced by the architectural implementation)

into the instruction set of the host machine.

6.3.1.3 Architectural Implementation

The architectural implementation is the component that defines the behaviour

of the guest architecture that is ultimately being virtualised. It is automatically

106 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

generated from a high-level description using GENSIM, as described is previous

chapters.

This component contains a virtual representation of the guest CPU, actions

to perform when architectural events (such as page faults and interrupts) occur

and a service that produces generic IR for a basic block of guest instructions.

The execution engine will invoke the IR generator when it needs to translate

guest instructions to host instructions.

The architectural implementation also contains the configuration of the guest

platform, which is used by the hypervisor component when initialising the plat-

form devices.

For the example virtualisation set-up described in this chapter, the archi-

tectural description from the previous chapters is used unmodified. The only

changes needed are to the GENSIM generators that produce the output mod-

ules.

6.3.2 Overview

This section shall give an overview of the operation of CAPTIVE, and will con-

tinue to use the example of an x86-64 host machine, with a RealView Platform

Baseboard Cortex-A8 [9] guest platform.

CAPTIVE starts by instantiating a native virtual machine on the host, using

the KVM framework. KVM is the interface to the Intel VT virtualisation exten-

sions, and starts by initialising the required structures that represent a virtual

machine on an Intel processor (e.g. creating the VMCS structure, and issuing

the VMXON instruction). Then, a single virtual x86-64 CPU is requested from

KVM which will ultimately represent the virtual ARM processor.

The native VM must be supplied with virtual physical memory, i.e. the phys-

ical memory space of the native VM must be backed by virtual memory from

the hosting application. This memory is allocated lazily2 by the hypervisor with

the mmap system call, and represents the physical memory provided by the

guest platform. In this particular case, 512MB of physical memory should be

allocated, but in order to run larger benchmarks (such as SPEC-CPU2006) for

evaluation purposes, the guest platform physical memory is artificially extended

to 2GB. An additional block of physical memory is also installed that contains

2Using the MMAP_NORESERVE and MMAP_ANON flags.

6.3. Virtualisation Infrastructure 107

the execution engine binary, heap space for memory allocations, critical archi-

tectural data structures (such as the global descriptor table (GDT) and the MMU

page tables), and the compiled code cache.

Once the physical memory has been configured, the execution engine is

loaded into its own region, and the guest kernel (an ARMv7-A Linux Kernel),

is copied into the location specified by the platform boot protocol. Finally, a

virtual memory mapping is created that maps the execution engine into virtual

memory, and the virtual x86-64 CPU is configured to start up in 64-bit mode,

with the instruction pointer at the entry-point of the execution engine. Control

is then transferred to the native VM, and the execution engine running inside

takes over.

Once inside the native VM, CAPTIVE has full control of a bare-metal x86-64

machine, the execution engine is essentially an x86-64 kernel, with full privi-

leged access to this virtual machine. The virtual memory of the native VM is

configured in such a way as that the lower 4GB portion represents either a one-

to-one mapping of guest physical memory (if the guest MMU is turned off) or

the actual virtual memory mapping of the guest machine (detailed in Section

6.3.4). The execution engine itself resides in the high portion of virtual memory,

and certain other virtual memory areas are mapped to the heap and stack.

When first started, the execution engine performs architectural initialisation

of the native VM, including setting up the x86 interrupt descriptor table (IDT),

and then begins executing guest ARM code. The guest kernel to be executed

has already been loaded into guest physical memory, so execution begins from

this entry-point, using JIT compilation of the guest ARM instructions to native

x86-64 instructions (detailed in Section 6.3.3).

Any access by guest instructions to the memory of the guest machine is per-

formed with a normal memory access, without having to translate/transform

any virtual memory addresses—they are simply made to the address to which

they would be made if running on a non-virtualised ARM system. The guest

platform being virtualised is a 32-bit platform and so any memory access can

only be in the 0-4GB (232) range of lower virtual memory. Virtualisation of a

64-bit platform is outside the scope of this chapter, but would require an extra

layer of software indirection and is planned for future work. When an access

to a particular virtual address occurs for the first time, a page fault is generated

and handled by installing a mapping of the corresponding virtual page to guest

108 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

physical memory (subject to the operation of the ARM guest MMU). The native

VM also tracks the currently executing mode of the guest system, by running in

either x86 ring 0 (when running in privileged mode), or x86 ring 3 (when run-

ning in user mode). This also enables the MMU to perform efficient permission

checking when dealing with user/kernel page table permissions.

External interrupts generated by devices (such as timer devices, network

devices, disk devices, etc) are propagated as real interrupts into the guest sys-

tem, which causes a flag to be set to indicate that translated code should stop

executing at the next safe point. At a minimum, a safe point is an instruction

boundary, but safe points are inserted at guest basic block boundaries as the

DBT scheme in use is basic block-based.

6.3.3 CPU Virtualisation

Same-architecture virtualisation is easily supported by modern processors that

include hardware support for virtualisation. Technologies such as Intel VT and

AMD-V allow guest code to run directly on the host processor, without modifi-

cation or instrumentation for maximum performance. Certain privileged oper-

ations (such as changes to control registers, and TLB invalidations) are trapped

by the host CPU and handled by a hypervisor (for example KVM).

This virtualisation is trivial in the same-architecture case, because both the

guest and the host have the same instruction set architecture (ISA) and are there-

fore binary compatible. However, this presents a problem for cross-architecture

CPU virtualisation, as the ISAs are different, and completely incompatible.

As shown in previous chapters, techniques such as interpretation or dynamic

binary translation (DBT) are used to virtualise the guest ISA on the host ISA, the

former being straightforward to implement, and the latter being recognised as

one of the fastest ways [115, 41, 21] to emulate guest instructions on a host

machine. Emulation of guest instructions is a necessity for cross-architecture

virtualisation, and techniques for doing so have been well studied and pre-

sented in DBT improvement articles such as [76, 49].

CAPTIVE’s approach to instruction emulation is based on a basic block just-

in-time (JIT) compiler engine, which takes guest basic blocks discovered at run-

time, and compiles them into corresponding host basic blocks. Block compila-

tion is synchronous to the execution of the guest system, and occurs on-demand

6.3. Virtualisation Infrastructure 109

when a translation for a particular guest basic block is not available. Generated

host code is stored in a code cache, for later use. This is similar to the approach

taken by QEMU, except for two important differences:

1. Code is generated in such a way that it is independent of the virtual ad-

dress of the guest basic block.

2. The JIT compiler lives inside the native virtual machine as part of the

execution engine.

This approach is clearly different to the more advanced region-based strategy

presented in Chapter 4, but there are a number of implementation challenges

that necessitate starting from a simpler approach:

1. The region-based approach relies on LLVM to perform JIT compilation, but

it is not feasible to incorporate such a large library inside the native VM,

as there is no operating system or C-library, which LLVM requires.

2. The execution engine has no concept of threads and so asynchronous com-

pilation inside the native VM cannot be performed.

3. LLVM cannot easily be made to perform some important optimisations

and generate specific code that a domain-specific JIT compiler can.

The first two restrictions all point to a region-based DBT having to live outside

the native VM, and inside the hypervisor component, but this would lead to

additional overhead when translating guest instructions. This would be due to

communication overheads between the hypervisor and execution engine when

regions are to be compiled. However, as will be shown in the evaluation section,

the choice of a synchronous basic block-based DBT strategy does not impede

the ability of CAPTIVE to operate at a high guest instruction throughput and

improve significantly over state-of-the-art. Future work would be to integrate

the region-based DBT strategy described in the previous chapters in CAPTIVE,

resulting in even more performance gains.

6.3.3.1 Translated Code Re-use

QEMU has implemented an advanced caching strategy that initially uses a fast

first-level cache indexed by virtual address to look up the code associated with

110 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

a guest basic block, which is invalidated when page mappings change. As ba-

sic blocks are translated for specific virtual addresses, the virtual PC may be

constant-folded into the translations. However, the translation cannot be re-

used if the same physical address is mapped to different virtual addresses. To

handle this situation, when a miss occurs in the first-level cache, a second-level

cache that is indexed by virtual PC, physical PC and memory access flags is

consulted. If this cache misses, then the guest basic block is translated. This

results in a guest basic block being translated for each distinct virtual address

mapping. QEMU can suffer this penalty because it has a very fast JIT compiler,

it is very cheap to produce a translation. In contrast, CAPTIVE always indexes

the code cache by physical PC, and translates code in a way that is independent

of its virtual address, meaning the same translation can be used for multiple

virtual addresses. The JIT in CAPTIVE contains more optimisations than QEMU,

and so naturally takes a slightly longer time to produce a translation. But, this

compilation latency is ameliorated by the high quality of code produced, and

the ability to keep translations around for a long time.

6.3.3.2 Domain-specific JIT Compiler

In DBT terms, the CAPTIVE JIT compiler operates in a similar fashion to the

ARCSIM JIT compiler, by translating guest instructions into an intermediate rep-

resentation (IR), optimising the IR and finally lowering the IR into host machine

code. However for the reasons described above, the CAPTIVE JIT is not based

on LLVM. In fact, it is a new JIT compiler built from scratch specifically for the

task of DBT. GENSIM is still used to generate the architecture-specific compo-

nent of the JIT compiler (i.e. the guest instruction to IR translator) from the

high-level architecture description, but instead of generating a JIT module that

produces LLVM IR, a new domain-specific IR is produced instead. This IR is

highly amenable to code generation for a DBT system, for example, it contains

instructions that directly work with the guest register file, eliminating the need

to perform special alias analysis to distinguish classes of memory access.

6.3.3.3 Guest Instruction Translation

The CAPTIVE execution engine compiles guest basic blocks at a time, but will

extend to a trace-based approach if the branch targets are static and land on

6.3. Virtualisation Infrastructure 111

Listing 6.1: ARM guest basic block

1 ldr r3, [r4] ; Load value from memory
2 cmp r3, #0x1000000 ; Compare value
3 movcs r0, #1 ; Set r0 to 1 (if carry)
4 bcs 5412dc ; Branch if carry

Listing 6.2: x86 host basic blocks

1 mov 0x10(%rdi),%eax
2 mov (%rax),%eax ; Load from memory
3 mov %eax,0xc(%rdi)
4 sub $0x1000000,%eax ; Compare to constant
5 setae 0x140(%rdi)
6 seto 0x143(%rdi)
7 sete 0x141(%rdi)
8 sets 0x142(%rdi)
9 lea 0x8(%r15d), %r15d ; Increment PC

10 cmpb $0, 0x140(%rdi)
11 jnz 1f ; Skip if not carry
12 movl $0x1,(%rdi) ; Set r0 to 1
13 lea 0x4(%r15d), %r15d ; Increment PC
14 lea -0x1d8(%r15d),%eax
15 and $0xfffffffe,%eax
16 mov %eax,%r15d ; Set PC to branch target
17 jmp 2f
18 1: lea 0x8(%r15d), %r15d ; Increment PC
19 2: // Epilogue

Listing 6.3: Execution Engine IR

1 // Load r4
2 b0: ldreg i4 $0x10, i4 v0
3 // Read memory
4 ldmem i4 v0, i4 v0
5 // Store value in r3
6 streg i4 v0, i4 $0xc
7 // Subtract, and update
8 // guest flags
9 sbc flags i4 $0x1000000,
10 i4 v0,
11 i1 $0x1
12 inc-pc i4 $0x8
13 // Read carry, and branch
14 ldreg i4 $0x140, i1 v0
15 branch i1 v0, b1, b2
16

17 // Set r0 to 1
18 b1: streg i4 $0x1, i4 $0x0
19 inc-pc i4 $0x4
20 // Calculate branch target
21 ldpc i4 v0
22 sub i4 $0x1d8, i4 v0
23 and i4 $0xfffffffe,
24 i4 v0
25 streg i4 v0, i4 $0x3c
26 jmp b3
27 // Increment PC
28 b2: inc-pc i4 $0x8
29 b3: ret

Figure 6.7: Example inputs and outputs during the JIT compilation phase of CPU

virtualisation. ARM guest code is initially translated to an internal representation for

optimisation, before x86 host code is generated and emitted.

the same guest memory page. Guest basic blocks are terminated at page bound-

aries for memory protection purposes. Normal control flow out of a block is

optimised utilising techniques presented in Chapter 4, which includes directly

chaining to other basic blocks that are part of the same memory page to avoid

costly returns to the main execution loop. If a translation does not exist, or

the destination does not live on the same page, control is returned to the main

execution loop, which will then handle the situation accordingly. A general pur-

pose x86 host register (specifically %r15d) is dedicated to tracking the guest

PC, instead of keeping this value up-to-date in the emulated register file. This

significantly improves performance by avoiding an increment to a memory lo-

cation (i.e. the emulated guest register file) on each instruction, and leads to

the generation of efficient PC-relative load instructions.

As in ARCSIM, GENSIM is used to generate the instruction decoder, and cor-

responding translation functions. This means that the partial evaluation tech-

112 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

Decode Instruction

Translate Instruction
to IR

Is Instruction
Block Terminator?

NO

Optimise IR

Allocate Registers

Eliminate Dead CodeLower Instructions

Host Architecture Generic Guest Architecture

YES

Assign Registers

Figure 6.8: An overview of the operation of the CAPTIVE JIT when translating a guest

basic block into host machine code.

nique described in [121] is again used to constant-fold values known at compi-

lation time into the IR.

Figure 6.8 gives a high-level overview of the actions performed when a

translation needs to be produced. The execution engine calls the guest archi-

tecture specific instruction decoder to decode a single instruction, then calls a

translation function to translate the particular instruction into CAPTIVE’s domain-

specific IR. Then, the next instruction is decoded and the translation continues.

This happens in a loop until the decoder indicates that the instruction was an

end-of-block instruction (or a page boundary has been reached). After produc-

ing the IR that represents the basic block being translated, the JIT then applies

a series of optimisation passes. These passes are designed to operate quickly on

the IR, to reduce compilation latency. The passes are selected and implemented

specifically to deal with the domain-specific IR, and consist of:

• Jump threading

• Dead code elimination

• Basic block merging

• Constant propagation

• Live value re-use

After this initial optimisation run, a linear-scan register allocator allocates reg-

isters, with assignment dealt with by the host-architecture specific code. A

6.3. Virtualisation Infrastructure 113

final dead code elimination pass is performed before the IR is passed to a host-

architecture specific instruction lowerer. The lowering pass is template-based

to optimally match sequences of IR instructions to corresponding host instruc-

tions, and directly emits host machine code—in this case it lowers CAPTIVE IR

into x86 instructions.

Listing 6.1 shows an example ARM guest basic block that is encountered

during the Linux kernel boot process. The IR emitter iterates over this block

and after the optimisation phase produces the IR shown in Listing 6.3. Finally,

a quick template-based lowering pass produces the native x86 machine code

shown in Listing 6.2.

It can be seen here that multiple host basic blocks are produced from a

single guest basic block. In this example, this occurs because of a predicated

ARM instruction (movcs) that may or may not be executed, depending on the

current state of the flags. Since predicated instructions are not classed as basic

block terminators, additional control flow is required to account for this.

6.3.3.4 Privilege Level Tracking

Given that the execution engine operates in a bare-metal environment, it has

full control of an x86 machine and so exploits system-level features that are

not normally available to a user-mode process running in the confines of an

operating system.

A particular feature that CAPTIVE can exploit is the ability to switch the

virtual x86 CPU into privileged (ring 0) mode, and into user (ring 3) mode.

ARM platforms also have two privilege levels, PL0 which is the lowest privilege

level and PL1 which is the highest privilege level.3

This feature is used to execute translated guest code in the corresponding

privilege mode that it would be running in on a real ARM CPU. For example,

ARM guest code that runs in ARM PL0 is executed in x86 ring 3, and code

that runs in ARM PL1 is executed in x86 ring 0. This mapping of guest plat-

form privilege levels to host system privilege levels enables CAPTIVE to utilise

the user/kernel memory protection available in x86 page tables, by mapping it

to the corresponding ARM page table permissions. Switching between ring 0

and ring 3 is implemented with the fast system call instructions (syscall and

3There is actually a third privilege level PL2 for use by hypervisors, but supporting nested
virtualisation is not considered in this chapter.

114 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

...

...

...

...
swi #0

...

...

...

...
movs pc, lr

...

...

...

...

...

...

PL0 (U
SR)

PL1 (SVC)

...

...

...

...
sysenter

...

...

...

...
sysret

...

...

...

...

...

...

RIN
G

 3
RIN

G
 0

RIN
G

 3

Virtual ARM
System

Physical x86
System

...

...

...

...
ldr r0, [r1]

...

...

...

...
movs pc, lr

...

...

...

...

...

PL1 (ABT)

...

...

...

...

...

...

...

...

...
sysret

...

...

...

...

...

RIN
G

 3
RIN

G
 0

RIN
G

 3

Virtual ARM
System

Physical x86
System

data abort page fault

PL0 (U
SR)

PL0 (U
SR)

PL0 (U
SR)

ARM Supervisor Call ARM Memory Access Fault1 2

Figure 6.9: An example of guest system mode tracking for two different scenarios. 1

tracks the mode when an ARM swi instruction is issued, and 2 tracks the mode when

an ARM memory access faults. Even though there are multiple execution modes, an

ARM system still uses only two privilege levels, PL0 and PL1. These privilege levels are

mapped respectively to the corresponding x86 privilege levels ring 3 and ring 0.

sysret) available on modern x86 processors, avoiding the overhead associ-

ated with a software interrupt instruction (int).

Figure 6.9 shows two situations where the ARM guest system changes mode

in response to some event, and so the privilege level of the native VM is changed

to match. In Figure 6.9 1 , when the ARM guest system makes a supervisor call

(with the swi instruction), SVC mode with privilege level PL1 is entered. A

sysenter instruction is generated by the JIT to transition into x86 ring 0.

When the guest system returns to USR mode with privilege level PL0 (using the

movs pc, lr instruction), an x86 sysret instruction is used to transition

back to ring 3.

Figure 6.9 2 shows how the mode changes when a memory access fault

occurs. In this case, a memory instruction (ldr) has attempted to access a

memory address that is not allowed, and so an ARM data fault occurs (along

with a corresponding x86 page fault). To handle this, the ARM system enters

ABT mode, and the native VM enters ring 0. Upon return from the data access

6.3. Virtualisation Infrastructure 115

abort handler (which is the ARM equivalent of the x86 page fault handler), the

guest returns to USR mode, and the native VM returns to ring 3.

6.3.3.5 Exploitation of Architectural Features

CAPTIVE makes use of the general purpose segment register FS to point to a

per-CPU data structure, which contains the state of the emulated ARM CPU. In

future work, this will help to enable multi-core virtualisation. Here, it conve-

niently keeps a pointer to the CPU state available, which is a structure that is

frequently accessed by translated code. Using a segment register for this pur-

pose keeps the general purpose registers free for use by the JIT compiler, and

the compiler will produce instructions that use the FS register when required.

The GS segment register is employed for efficient user-mode emulated memory

accesses as described in Section 6.3.4.4.

Another architectural feature that can be utilised is the x86 call gate mech-

anism. This feature is only available to privileged applications (e.g. operating

systems) as it requires inserting an entry into the global descriptor table (GDT).

Originally, call gates were intended to be used to implement system calls, as

they allow (controlled) arbitrary changes to the current privilege level (CPL).

CAPTIVE does indeed use them for this purpose, and such calls are generated

by the JIT for invoking helper functions from user mode that require kernel

mode permissions. The use of call gates is again an alternative to the slower

software-interrupt based mechanism (i.e. using the int instruction), as the fast

system call mechanism is already used by the execution engine to implement

fast privilege-level switching.

6.3.3.6 Code Cache

In order to improve execution performance, translated guest basic blocks are

kept in a code cache, indexed by physical address. The benefit of using physical

addressing is that if and when the guest system’s page tables are invalidated,

the translated code does not need to be invalidated, as the translation is still

valid. A cache indexed by virtual address would need to be invalidated each

time the guest page tables change, since virtual addresses across a page table

change can point to different physical pages (and hence to different guest code).

A downside to this approach is that the guest’s program counter (PC) contains a

116 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

virtual address, and so to lookup the corresponding translation from the cache

requires converting the virtual PC into a physical PC, which in the worst case

would require a walk of the guest’s page tables. However, employing same-page

block chaining helps to avoid this particular cost.

6.3.3.7 Self-modifying Code

The only time that translated code needs to be invalidated is in the presence of

self-modifying code, or more generally when a page that has previously been

executed is written to. To detect this occurrence, physical pages that have been

executed are marked with a flag, and those pages are protected from being

written to. When a page fault occurs because of a write, and the page has been

flagged, all cached translated code corresponding to that page is invalidated. A

special case is if the memory fault was to an address that is within the page that

is currently executing. This situation means that the translation that is being

executed may no longer be valid, as guest instructions that make it up have

potentially been modified. Instead of returning to executing the translation (as

would normally happen in the simple case), the memory access is emulated (to

ensure the write is performed) and then execution returns to the main execution

loop via a non-local jump.

6.3.4 MMU Virtualisation

One of the most important requirements for hardware virtualisation is the faith-

ful emulation of the memory management unit (MMU), which if implemented

incorrectly will lead to an unusable system, and if implemented poorly can lead

to severe performance penalties. Hardware extensions for same-architecture

virtualisation provide accelerated means of virtualising the MMU of a guest ma-

chine on the host, but a problem arises when virtualising a guest with a differ-

ent architecture. As described in the motivating example (Section 6.1.2), the

MMUs between two different architectures behave quite differently, and tradi-

tional cross-architecture hardware virtualisation uses a (correct, but slow) soft-

ware MMU implementation to emulate this subsystem. Thus, much work has

been done [125, 31, 60] in the area of software MMUs to reduce the address

translation penalty and hence increase overall throughput of the virtualisation

system.

6.3. Virtualisation Infrastructure 117

Fundamentally, the function of the MMU is to translate a virtual address to a

physical address, applying any permissions that may be defined for that access.

Usually, this mapping is represented with page tables, with various levels of indi-

rection to suit the granularity of the mapping. Hardware virtualisation requires

that every instruction that accesses virtual memory is subject to the behaviour

of the MMU. For the same-architecture case, memory instructions are mapped

one-to-one, and the hardware extensions take care of performing the virtual-

to-physical translation and permission checking, but for cross-architecture vir-

tualisation, each memory access must be emulated in such a way as to perform

the address translation and permission checking subject to the behaviour of the

guest platform.

Software approaches when faced with a memory access (in the base case),

will manually traverse the guest page table to resolve the physical address,

and check that the access satisfies the permissions imposed by the translation.

These accesses will be subsequently sped up by introducing a software cache,

much like a software translation lookaside buffer (TLB), so that future memory

accesses do not incur a penalty of a costly page table walk. When the guest

page tables change, the software TLB will be flushed, and the process will start

again.

In the unconstrained environment of the native VM, CAPTIVE has full control

of the x86 MMU, and uses it to reflect the mappings of the guest, allowing un-

modified guest virtual addresses to be used by the execution engine, to enforce

the same memory access permissions, and to emulate the memory access with

a single native instruction.

Definition 17 (Native MMU). The native MMU is the MMU that is part of the

Native VM. In this example, the MMU is an x86-64 MMU, which has a 4-level

hierarchy.

Definition 18 (Native Page Table Entry). A native page table entry is an entry

in the page table of the native MMU.

Definition 19 (Guest MMU). The guest MMU is a (software) implementation of

the MMU that is part of the guest machine. In this example it is an implementation

of an ARMv7-A MMU. It is implemented as a service that takes a virtual address

(along with access permissions), and returns either success (along with the corre-

sponding physical address and a bitmask of allowed permissions), or failure (along

118 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

Native Page Fault Handler

Consult Guest MMU

Is Access OK?

Fill in Native VM Page Table

YES NO

Main Execution Loop

Native Code
...
mov %(rax), %edx
...

Page Fault

Platform Specific MMU
Fault Behaviour

Safe Point

Retry Instruction

Virtual
Address

Physical
Address/

Error

Guest MMU

Walk Guest Page Tables

Generate Response

1

3

4

2

Return to Safe Point

Normal
Entry-point

Non-local
Jump Entry-point

Figure 6.10: Operation when virtualising memory accesses. A memory access 1 is

performed as a single native instruction, which when accessing a virtual address for

the first time will cause a page fault in the Native VM. The native page fault handler

will 2 consult the guest MMU implementation, to determine if the mapping is valid,

then either 3 fill in a native page table entry, or 4 perform a non-local jump from

the page fault handler back to a safe point to invoke platform specific memory fault

handling.

with the type of failure).

CAPTIVE’s approach to cross-architecture virtualisation of the MMU is to present

the lower 4GB (i.e. virtual addresses 0x0 to 0xffffffff in the native VM’s 48-

bit address space) of virtual memory to the execution engine, as the 4GB (232)

of virtual memory required for the 32-bit guest machine (see Figure 6.13). This

area is now an exact 1:1 mapping of guest virtual addresses to native VM virtual

addresses.

Figure 6.10 shows how the various components work together. When a

memory access from the guest is emulated (whether a load, store or fetch),

that access is performed on the unmodified memory address directly, which will

of course (for the 32-bit system being virtualised) lie in the lower 4GB region.

The first time a memory address is accessed, it will cause a page fault inside the

native VM, and at this point the software implementation of the guest’s MMU

is consulted. The response is either the corresponding guest physical address,

or a fault condition. If the access is to be allowed, the x86 page table of the

native VM is populated with an entry that maps the associated virtual page to

the corresponding physical page of the guest, and execution returns to retry the

6.3. Virtualisation Infrastructure 119

memory instruction (which will now succeed). Further accesses to this page will

no longer fault and will go via the native VM’s page tables, and the hardware

TLB.

To improve performance, when the guest MMU is asked for the translation,

it also returns the allowed permissions associated with that mapping (as de-

fined by the guest pages tables), so that the native VM’s page tables can be

pre-populated with this information. This means that a read to a page that is

also permitted to be written to will only fault once—the first time it is accessed.

On a 64-bit x86 machine, there are four levels of page tables, which shall

be referred to as L4 thru L1. The first entry in the (top-level) L4 page table

represents the lower 0–512GB of virtual memory, and this region is reserved

for the entire 4GB virtual address space of the guest, starting at virtual address

0. This simplification enables the use of a convenient feature of the x86 MMU,

in that each level of the x86 page table can specify permissions that govern

the lower levels. Therefore, to protect the whole 4GB guest virtual memory

space, only the flags of the first entry in the L4 page table need to be marked as

protected.

If the guest system alters the content of its page tables, just as on actual

hardware it is required to issue a TLB flush instruction, which is intercepted

and used as a signal to invalidate the native VM’s page tables. Using the native

VM page table hierarchy, access to the entire lower 4GB area of virtual memory

is denied, by clearing the page present flag in the first entry of the L4 page

table (followed by a native TLB flush). This makes invalidations very quick to

perform. The next time a memory access happens, a page fault will occur, and

the page tables will be rebuilt. Normally, this invalidation technique also applies

when the guest changes the value of their own page table base pointer (which

involves an implicit TLB flush), but can be optimised if the guest supports an

address-space identifier (described in Section 6.3.4.2).

6.3.4.1 Privilege Level Access Permissions

As mentioned in Section 6.3.3.4, the privilege level of the native VM is matched

with the privilege level of the guest. Tracking the mode in this way enables

an optimisation to be made when performing permission checking on guest

memory accesses, in that pages in the native x86 page tables can be marked

120 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

ARM L2 Descriptor x86 Page Table Entry

APX
AP

PHYSICAL ADDRESS
1
1

0x10005000
PL1 Read-only
PL0 No Access

USER/SUPERVISOR
READ/WRITE

PHYSICAL ADDRESS
0
0

0x110005000
Supervisor Mode
Read-only

PRESENT 1

Figure 6.11: An example mapping of an ARM L2 descriptor to an x86 page table entry.

In the ARM descriptor, read-only permission is granted when operating in a privileged

mode, and access from unprivileged mode is denied. This is reflected exactly by the

corresponding x86 page table entry, where permission is not granted in ring 3, and

write access is denied.

Top-level Page Table (L4)

First Entry1

ASID == 0

ASID == 1

ASID == 2

L3 Page Table

L3 Page Table

L3 Page Table

2

Native Page Table Base Pointer (cr3)

ASID == n
L3 Page Table

Figure 6.12: The top-level (L4) page

table remains static, and the pointer to

the L3 page tables 1 are tracked with

the ASID 2 .

Guest Virtual Memory (GVM)
0x000000000000

0x0000ffffffff

Secondary GVM
0x008000000000

0x0080ffffffff

Guest Physical Memory
0x010000000000

0x0100ffffffff
Heap/Stack Data

0x200000000

0x2ffffffff

Native Virtual Machine
Physical Memory

Native Virtual Machine
Virtual Memory

0xfff8ffffffff

0xfff800000000
Execution Engine Code

0x600000000000

0x6fffffffffff
Heap/Stack Data

Execution Engine
0x000000000

0x0ffffffff

Guest Physical Memory
0x1ffffffff

0x100000000

Global Memory Regions
(used by the execution engine)

Figure 6.13: Native VM Physical and

Virtual memory organisation. The bot-

tom 512GB contains the entire 4GB vir-

tual address space.

with the same privilege level that exists in the ARM page tables.

Figure 6.11 shows an example of this. If an entry in the ARM page table

specifies that a page is read-only and only accessible in PL1, then the corre-

sponding x86 page table entry that will be created for this mapping will have

both the READ/WRITE and USER/SUPERVISOR flag cleared.

6.3.4.2 Address-space Identifier

Usually, changing the page table base pointer naturally causes a TLB invalida-

tion, as the previous mappings are no longer valid. However, since the page

table base pointer is changed on every context switch, this can lead to a severe

performance penalty, especially in this virtualisation environment when the na-

6.3. Virtualisation Infrastructure 121

tive page tables need to be rebuilt each time. An approach to reduce this penalty

is described by [125] as “Private SPT”, which utilises the ARM address space

identifier (ASID) register to quickly switch between pre-populated mappings.

Inspiration is taken from this approach, and CAPTIVE uses the ASID register

to point to multiple L3 mappings, as shown in Figure 6.12. The top-level native

page table (the L4 page table) remains static, but when the current ASID is

changed by the guest, the base pointer to the L3 page table (in the first slot of

the L4 page table) is replaced, and the native TLB is invalidated. As previously

described, the first entry in the L4 page table is used solely for the purpose

of managing guest virtual memory, so even though it represents an address

space >4GB, it simplifies both the fast invalidation technique, and changing

the corresponding page tables that represent the guest 4GB address space.

If this is the first time the ASID has been seen, the normal page-fault lazy

resolution process will occur as described previously, but if the ASID has already

been encountered, the page tables already contain mappings ready to be used

(unless they were explicitly invalidated), without incurring any page faults.

The special invalidation instructions issued by the guest are trapped in order

to invalidate TLB entries by ASID, and these signals are used to invalidate the

page tables that are associated with that particular ASID.

This optimisation only holds for guest platforms that have the concept of

an ASID, and guest kernels that actually use it (a limitation also encountered

by [125]). However, it is possible to extend this approach to track the guest

platform’s page table base pointer, and maintain a set of mappings for “seen”

page table bases.

6.3.4.3 Native VM Memory Layout

As described previously, CAPTIVE has full control over the native VM’s virtual

memory space, and so exploits this opportunity for manipulating the virtual

page mappings arbitrarily. Page mappings are established for the execution

engine and heap/stack data areas, and these entries are marked as global, so

that they are not flushed from the TLB when the TLB is explicitly flushed. A

one-to-one mapping of guest physical memory is installed in the virtual memory

space so that data can be accessed by guest physical address. This mapping is

particularly useful for the emulated MMU, as it uses physical address pointers

122 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

to traverse the guest page tables.

6.3.4.4 Secondary Guest Virtual Memory

The secondary guest virtual memory mapping is part of an optimisation for

handling ARM ldrt and strt instructions, which perform memory accesses

subject to user-mode memory permission checking, whilst executing in kernel

mode. These instructions are notoriously difficult to optimise [40], as they

invoke behaviour that must be specially handled. As they are defined, there is

no direct mapping of this behaviour from an ARM system to an x86-64 system,

however to maintain performance a second region of guest virtual memory is

employed to optimise these accesses specially.

Since it is known at JIT compilation time that a particular memory access

has these special semantics, an optimised mov instruction is emitted, that offsets

the virtual memory address against a base pointer held in the x86 GS register.

This base pointer points to the base of the second virtual memory region, and

so all memory accesses are made into this second region. Then, when a page

fault occurs CAPTIVE applies the appropriate semantics when faulting the page

in. Whilst this may sound like a guest architecture-specific optimisation, it is

implemented independent of the target architecture, and so may be used (or

not) by any platform that requires it. It also opens up scope for more exotic

permission combinations that can not be mapped from a guest system to the

host system.

6.3.4.5 Comparison to QEMU

QEMU uses software-based MMU virtualisation, and Listing 6.4 shows an ex-

ample ARM instruction that accesses memory, from a PC-relative offset. This

instruction loads a value from memory, residing at the address PC + 92 + 8.

Listing 6.6 shows the QEMU generated native code for this single instruction,

which involves accessing a software cache, with a branch to a handler if a cache

miss occurs. The output code (shown in Listing 6.5) from CAPTIVE consists of

performing the memory access directly on memory itself, using the unmodified

value from the guest instruction.

The other slight difference is the optimisation performed for a PC-relative

lookup. In QEMU’s case, it can constant-fold the address of the memory access

6.3. Virtualisation Infrastructure 123

Listing 6.4: ARM input assembly

1 ; Read memory at address PC + 92 + 8
2 ; (0x100a0) into r0
3 ldr r0, [pc, #92]

Listing 6.5: CAPTIVE output assembly.

1 ; Read memory from PC + offset + 8
2 mov 0x64(%r15d), %eax
3 ; Store into r0
4 mov %eax, (%rdi)
5 ; Increment PC
6 lea 0x4(%r15d), %r15d

Listing 6.6: QEMU output assembly.

1 ; Prepare memory address
2 mov $0x100a0,%ebp
3 mov %rbp,%rdi
4 mov %ebp,%esi
5 ; Calculate cache entry address
6 shr $0x5,%rdi
7 and $0xfffffc03,%esi
8 and $0x1fe0,%edi
9 lea 0x2c18(%r14,%rdi,1),%rdi
10 cmp (%rdi),%esi ; Check cache tag
11 ; Restore destination address
12 mov %ebp,%esi
13 jne 0x7f4d682a718f ; Cache-miss?
14 add 0x10(%rdi),%rsi
15 mov (%rsi),%ebp ; Read memory
16 mov %ebp,(%r14) ; Store into r0

Figure 6.14: An example of a PC-relative load instruction being translated by CAPTIVE

and QEMU. CAPTIVE tracks the (virtual) PC in %r15d, and emits three instructions for

this memory access whereas QEMU emits 13 instructions that involve interrogating its

address cache.

(0x100a0) into the generated assembly because it generates basic blocks for

virtual pages. However, as CAPTIVE generates basic blocks for physical pages

(which may be accessed by any virtual address), a virtual address cannot be

constant folded in. But, since the guest PC is always mapped to a host register,

this improves code quality and adds virtually no performance penalty. This

improvement in code quality is not because of an improvement in the quality of

the JIT itself, but rather that memory accesses can be made in this fashion.

6.3.5 Device Virtualisation

In order to faithfully emulate a guest platform, the devices present on that plat-

form must also be emulated. Such devices may be timers, interrupt controllers,

I/O devices, etc. In order to do this, the hypervisor component of CAPTIVE con-

tains software emulations for the various devices that make up the platform.

On a real guest platform, these devices are accessed by the guest through the

memory subsystem; they are mapped into the physical memory space (and then

mapped by the guest operating system into the virtual address space) and de-

vice registers are written to and read from with normal memory accesses. This

approach to device communication increases flexibility (e.g. device accesses are

124 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

subject to MMU translations and permission checks), and reduces complexity for

operating systems, but adds a layer of complexity to virtualisation frameworks

wishing to emulate devices in a particular platform, as they must detect these

accesses to device memory, and handle them accordingly.

As the CAPTIVE device implementations live in the hypervisor (i.e. outside

of the native VM), memory accesses by the guest must be trapped back to the

hypervisor, so that they can be forwarded to the particular device being ac-

cessed. The most straightforward way to accomplish this with CAPTIVE would

be to use the memory-mapped I/O (MMIO) feature of KVM to intercept memory

accesses to regions of guest physical memory that correspond to devices, and

handle them accordingly. This approach works well, but suffers from a severe

performance penalty, as every access to a device must perform a costly VM exit,

then the native guest instruction must be emulated by the hypervisor to fill in

the data that was read, or to extract the data that is to be written.

Device accesses in a full-system occur quite frequently. For example, a Linux

system configured with a 100Hz timer will be interrupted 100 times a second,

and each interrupt requires the guest to interrogate the interrupt controller

device to ascertain the cause of the interrupt, then the timer device to read

timing related data, then write to the devices to acknowledge and complete the

interrupt.

Another approach is to make a hypercall using port-based I/O (PIO) instruc-

tions, which have slightly faster VM exit sequences, but this suffers from a fun-

damental problem: detecting a device access. As mentioned previously, a device

access to a memory-mapped device is indistinguishable from a normal memory

access at the instruction-level—it is performed with a normal memory access

instruction (e.g. ldr in ARM). Therefore, CAPTIVE needs to detect accesses to

device memory, and trap to the host using a faster hypercall mechanism. Utilis-

ing the native VM’s MMU again (and armed with the knowledge of the locations

of devices in physical memory—which is part of the platform configuration)

any device page is marked as inaccessible, so that every memory access traps in

the native VM, rather than in the hypervisor.

Now that page faults are being received in the native VM (which is faster

than trapping to the hypervisor), there are two approaches to take:

1. Translate the device access into a (slightly) faster PIO access, which still

results in a VM exit, or

6.3. Virtualisation Infrastructure 125

BARRIER 1

Hypervisor
Thread Waiting

Hypervisor
Performing

Device Access BARRIER 2

2a

Execution
Engine

Device Access
1 Write: <Address,Value>

Read: <Address>
Execution

Engine
Continuing

3
Read: <Value>
Write: (no result)

Executing
Engine Waiting

Hypervisor
Native VM

2b

Figure 6.15: An illustration of the fast device access operation. When a device access

is made 1 , barrier 1 is entered by the guest (at which the host is already waiting) and

the host performs the access on the emulated device 2a . Meanwhile, the guest waits

for the host to complete the operation 2b . Then, when the access is complete, barrier

2 is entered by the host and execution by the guest continues 3 .

2. use a message-passing implementation to communicate with the hypervi-

sor, avoiding a VM exit.

It is desirable to avoid VM exits as much as possible, as they introduce a sig-

nificant amount of overhead [95]. A VM exit with Intel VT and KVM requires

storing the entire state of the virtual machine, and performing a context switch

back to user-space code. Returning to the VM (a VM entry) involves restoring

this saved state.

For this reason, CAPTIVE implements (2), and once the native VM receives a

page fault to a device memory page, a synchronisation barrier system is used

to communicate with a hypervisor thread. This avoids a costly VM exit, as the

virtualised CPU is simply spinning on a barrier, waiting for a response from the

hypervisor. This sequence is shown in Figure 6.15. When a device access is

to be made Fig. 6.15 1 , a data structure is prepared by the execution engine

inside the native VM, and a synchronisation barrier is entered. A hypervisor

thread (which is already waiting on this barrier) resumes execution and deals

with the device access request Fig. 6.15 2a . Meanwhile, the guest waits on

a second barrier Fig. 6.15 2b whilst the hypervisor is servicing the request,

and when the request is complete, the hypervisor writes the result back into

the data structure, and enters the barrier. This causes the execution engine to

resume execution Fig. 6.15 3 , extracting the necessary data from the request

structure. The guest cannot proceed until the hypervisor has signalled that the

data has been processed by the emulated device, and this is the reason for the

second barrier.

126 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

6.3.5.1 Speculative Instruction Rewriting

A further optimisation opportunity is speculative device access instruction rewrit-

ing, where the (native) instruction that caused the device access is rewritten in

the hopes that it is only ever used to perform a device access. The rewritten

instruction will invoke the behaviour to perform the device access immediately,

instead of trapping in the memory management system. This speculative rewrit-

ing was implemented in CAPTIVE to test the idea, and it was actually observed

that speculation was correct 100% of the time, however, there are two major

flaws with this approach:

Instruction Size: The limited size of the native memory instructions (which in

the worst case was two bytes) meant that the instruction could only be

rewritten to something of equal (or smaller) size.

Address Translation: Device accesses are performed on physical addresses,

but the memory instructions operate on virtual addresses, and so a costly

virtual-to-physical translation must be performed for each access.

Each of these flaws are now considered in more detail.

6.3.5.1.1 Instruction Size The guest memory access instructions generated

by the JIT are typically x86 mov instructions (although other instructions can

have memory operands these are not produced), and the smallest memory ac-

cess instruction is three bytes in length. These three bytes contain a one byte

prefix, a one byte opcode, and a ModR/M byte that specifies the operands. Occa-

sionally, the instructions are longer if they use registers that require additional

prefixes, or additional encoding, but since the smallest size is three bytes, the

instruction rewriting approach is restricted to three bytes for encoding a new

instruction.

The new instruction must be chosen so that control-flow is diverted to the

device access handler, but it must also encode the original operands of the

memory access, so that the original instruction can be emulated. Therefore,

the only suitable instruction to use would be an architecturally undefined in-

struction (which is one byte in length) to replace the prefix byte, leaving the

second and third byte unchanged. Using an architecturally undefined instruc-

tion would cause an illegal opcode exception to occur when it is encountered,

6.3. Virtualisation Infrastructure 127

and so a special exception handler can be used to perform the device access.

However, trapping an illegal opcode is expensive, as it requires storing the ma-

chine state on the stack in order to enter an exception handler frame. This is also

a fundamental problem with instruction rewriting anyway, as to call a device

access function would require saving and restoring live registers to and from

the stack.

6.3.5.1.2 Address Translation The location of devices in physical memory

is specified by the platform configuration, but accesses to the devices are made

with virtual addresses. Therefore, as part of the device access handler, the

virtual address must be translated to a physical address. As shown in previous

sections, this operation is costly to perform.

6.3.5.2 Device Implementations

Unlike traditional same-architecture virtualisation, where the possibility exists

to para-virtualise hardware that exists on the host for use by the guest, or sim-

ply pass-through real hardware devices (e.g. using Intel VT-d) this same kind of

mapping does not exist for cross-architecture virtualisation as it is unlikely that

there are any 1-to-1 compatible devices available on the host system. There-

fore, all guest platform devices are implemented in software, which faithfully

emulate the behaviour of the device they represent. An example of a device

implemented by CAPTIVE in software is the ARM PrimeCell SP804, which is a

two-channel timer device. This device is configured and interrogated by the

guest through registers that are memory mapped. It is also capable of raising

interrupts when a timeout occurs, depending on the mode of operation of the

timer.

Future work would be to investigate mapping similar devices (e.g. a timer

device) to existing hardware devices. Even though their interfaces may be in-

compatible, it may be possible to configure the behaviour of the devices in sim-

ilar ways and avoid having to use full software implementations of the device.

6.3.5.3 Device Interrupts

Platform devices may raise interrupts to indicate that an event has occurred,

such as a timer has timed-out, or data is ready to be read. On a physical plat-

128 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

Raise Local
Interrupt Line

Native VM

Main Execution Loop

Native Code

Interrupt Pending?

NO

Platform-specific
Interrupt Behaviour

YES

YES

Native IRQ
Handler

Set Interrupt
Pending Flag

Hypervisor

Post IRQ to
Native VM

Clear Interrupt
Pending Flag

Device
Interrupt
Controller

Device

Raise Local
Interrupt Line

IRQ 0

IRQ n

IRQ

IRQ

IRQ

NATIVE VM
HOST

Emulated Devices

External IRQ

Return from interrupt
Native Code

Interrupt Pending?

NO

Figure 6.16: An illustration of the injection of an IRQ into the native virtual machine,

to indicate that an emulated IRQ line has gone high.

form, an interrupt controller would aggregate the individual interrupts from

each device, and trigger a physical interrupt line on the CPU, to indicate that an

interrupt has been raised. The CPU would enter its external interrupt handling

routine, and interrogate the interrupt controller to work out which device(s)

raised the interrupt. The RealView Platform Baseboard Cortex-A8 [9] has such

a setup with an ARM GIC (generic interrupt controller), that receives inter-

rupts from devices and posts these to the CPU. CAPTIVE implements the GIC in

software, but posts real IRQs to the guest system, when the interrupt controller

triggers a physical interrupt line on the CPU. This process is described in Section

6.3.6.

6.3.6 IRQ Virtualisation

As described in the previous section, emulated devices may issue interrupts to

the guest system by means of an interrupt controller. For the platform being

virtualised, the interrupt controller is an ARM generic interrupt controller (GIC),

which aggregates interrupts from other platform devices, and presents them to

the CPU.

Fundamentally, the CPU has a single physical interrupt line that is raised

6.4. Experimental Evaluation 129

when an interrupt is pending, and lowered when the interrupt is acknowledged.

This interrupt line is toggled by the emulated GIC, and is visible to the virtu-

alised CPU. On the rising edge of the interrupt line, a native IRQ is injected into

the native VM, to inform it that the line has been raised. These interrupts of

course happen asynchronously, e.g. a timer device will run as a separate thread

on the host machine, and when its timeout occurs, it will trigger its own inter-

rupt line, propagating through the interrupt controller and into the guest. The

ideal situation would be to immediately invoke the platform-specific interrupt

handling code, on the rising edge of the interrupt line, but this is not feasible

for two reasons:

1. The guest may not be running in translated code (it may be handling a

page fault, or performing some “book-keeping”).

2. Single guest instructions are generally compiled to multiple host instruc-

tions, which means the interrupt may happen part-way through the emu-

lation of a guest instruction.

This is unacceptable, as guest instructions are not necessarily re-entrant and

may have partially changed the state of the guest system mid-way through.

Guest instructions need to appear to be atomic, and so they must have com-

pleted before control-flow can be diverted to the interrupt handling behaviour.

This exact problem is described in Chapter 5, and the solution was to place an

interrupt check at particular block boundaries. However, since the CAPTIVE JIT

is no longer region based, the interrupt checks must be placed at every block

boundary.

The implementation in CAPTIVE is similar to ARCSIM, as an interrupt pending

flag is set when the native VM enters the x86 IRQ handler. This flag indicates

that the emulated interrupt line has gone high, and is checked by native code

at the end of a guest basic block before it chains to the next. If the flag is set, it

is immediately cleared and translated code is left to perform the guest platform

behaviour associated with servicing an interrupt.

6.4 Experimental Evaluation

This section shall evaluate CAPTIVE’s performance by using industry standard

benchmarks to compare its performance to the state-of-the-art cross-architecture

130 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

virtualiser QEMU. As in previous chapters, the SPEC CPU2006 integer bench-

mark suite is used. For the key results, the reference input set is used, which

requires a minor modification to the guest platform to increase the available

guest physical memory for running the benchmarks. The amount of physical

memory presented to the guest system is independent of the amount of physi-

cal memory available on the host system, as it is defined by the platform being

emulated. The platform implemented in CAPTIVE is a RealView Platform Base-

board Cortex-A8 [9], which specifies only 512MB of physical memory [10], but

this is insufficient for running the reference input set of the benchmark suite.

To overcome this limitation, the amount of physical memory in the guest plat-

form is artificially increased to 2GB in both CAPTIVE and QEMU, enabling the

benchmark suite to run.

6.4.1 Experimental Setup

The platform being virtualised is a RealView Platform Baseboard for Cortex-A8,

which is fully supported by QEMU. These experiments use a vanilla ARM Linux

4.3.0 kernel, with the default configuration for the platform, except for the

addition of a VirtIO block device to provide storage to the guest and an increase

in physical memory as described previously. The user-space is Arch Linux ARM.

The host machine is described in Table 6.1.

6.4.2 Key Results

These key results compare the performance of CAPTIVE to QEMU version 2.4.0.

Figure 6.17a shows the relative speed-up of CAPTIVE, compared to QEMU. In all

cases CAPTIVE outperforms QEMU, and on average by a factor of 2.5×. Figure

6.17b shows the absolute run-time of each benchmark in seconds.

System Dell™ PowerEdge™ R610

Architecture x86-64 Model Intel™ Xeon™ E5-1620

Cores/Threads 4/8 Frequency 3.50 GHz

L1-Cache 1× 4× 32kB (I$ & D$) L2-Cache 1× 4× 256kB

L3-Cache 1× 10 MB Memory 16 GB

Table 6.1: Host configuration.

6.4. Experimental Evaluation 131

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

R
el

at
iv

e
S
p
ee

d
-u

p

Captive

(a) Relative speed-up of CAPTIVE over QEMU, with the SPEC benchmark suite (using the refer-

ence input set)–higher is better.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

A
b
so

lu
te

 R
u
n
ti
m

e
(s

)

QEMU 2.4.0 ARM-softmmu
Captive

(b) Absolute run-time of the SPEC benchmark suite (using the reference input set) in seconds–

lower is better.

Figure 6.17: Key Results: (a) shows relative speed-up, and (b) shows absolute run

time. On average, CAPTIVE is 2.5× faster than QEMU.

Of interest is 429.mcf, which gains a performance improvement of 5.88×.

This is because the benchmark responds well to the optimising DBT system,

which produces highly optimised run-time code based on the dynamic behaviour

of the benchmark, versus the static optimisation that is performed at compile

time.

Only two out of twelve benchmarks show speed-ups less than 1.5×, yet still

outperform the baseline QEMU. Given the acceptance of SPEC as a realistic

workload, there are multiple characteristics that can affect simulation perfor-

mance, and it is clear that the range of benchmarks exercise the simulation

system in numerous ways, making it difficult to pin-point any particular feature

that causes fluctuations in performance.

132 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

R
el

at
iv

e
S
p
ee

d
-u

p

HSPT Private SPT
Captive

Figure 6.18: Relative performance improvement of SPEC benchmarks by HSPT and

CAPTIVE over the Android Emulator baseline–higher is better.

6.4.3 Comparison to Existing Techniques

One of the most recent efforts to improve memory address translation per-

formance in full-system simulators is presented in [125] (herein referred to

as HSPT), which describes a practical implementation of an embedded shadow

page table, using Linux system calls (specifically mmap) to create an efficient

guest-virtual to host-physical mapping similar to this approach, but operating in

QEMU, and hence unable to exploit the hardware MMU to its full potential. In

order to compare CAPTIVE to the HSPT implementation, the published results

from [125] have been extracted, and the same experimental setup has been

implemented. Comparing the performance of CAPTIVE to the same version and

configuration of the Android Emulator as used by HSPT, enables a relative per-

formance comparison against the same baseline to be presented, even in the

presence of different host machines.

Figure 6.18 shows that HSPT has achieved an average improvement of 1.94×
(geometric mean) over the Android Emulator, using the Private SPT technique,

whereas on average, CAPTIVE achieves a performance improvement of 2.05×
(geometric mean).

In the majority of cases, CAPTIVE equals or surpasses the speed-up presented

by HSPT, in particular 483.xalancbmk in CAPTIVE shows a much greater speed-up

of 2.88×, compared to 1.72× in HSPT. This is due in part to the I/O nature of

this particular benchmark, and the optimised I/O and IRQ handling techniques

giving a clear advantage here.

6.4. Experimental Evaluation 133

6.4.4 I/O Performance

This section aims to evaluate the performance of the I/O virtualisation strat-

egy, using the standard Linux I/O performance measuring tool hdparm. The

I/O performance of a variety of virtualisation configurations is measured, in-

cluding taking a measurement on the host system itself. This section also in-

troduces Oracle VirtualBox as another virtualisation platform that uses Intel

VT extensions, and as such only supports same-architecture virtualisation. For

measurement of same-architecture virtualisation I/O performance, VirtualBox

and QEMU are given an x86 Linux distribution containing the hdparm tool.

For cross-architecture virtualisation, QEMU and CAPTIVE are provided with a

file-system that exists as a normal file on the host machine’s file-system. For

QEMU/ARM and CAPTIVE/ARM, the platform device used to communicate this

data back and forth is a VirtIO block device, which is fully supported by both

hypervisors. VirtIO is a virtualisation technology that enables efficient paravir-

tualisation of various platform devices, such as network and disk devices. The

emulated disk device in CAPTIVE is based on a VirtIO block device, and is the

only paravirtualised device in the platform.

Table 6.2 shows the absolute I/O throughput of the virtualisation configu-

rations, along with throughput on the native host platform, using two distinct

metrics: cached and buffered.

Cached reads are subject to the Linux kernel page cache, and as such repre-

sent the performance at which disk data can be accessed from the page cache

in the guest system. VirtualBox and QEMU/KVM make these accesses at virtu-

ally the same rate as the host platform, since there is no virtualisation overhead

Hypervisor Execution Arch. Cached Buffered

None Native x86 12384.21 MB/s 173.52 MB/s

VirtualBox Intel-VT x86 11941.43 MB/s 91.64 MB/s

QEMU KVM x86 11881.06 MB/s 102.72 MB/s

QEMU DBT x86 1265.03 MB/s 79.80 MB/s

QEMU DBT ARM 157.02 MB/s 105.77 MB/s

CAPTIVE KVM/DBT ARM 1695.29 MB/s 155.72 MB/s

Table 6.2: Absolute I/O throughput for various configurations of execution environ-

ments. Cached reads are subject to the Linux kernel’s page cache, and buffered reads

go directly to the real or emulated disk device.

134 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

 0.95

 1

 1.05

 1.1

 1.15

 1.2

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum
464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

S
p
ee

d
-u

p
ov

er
 E

P
T

 o
ff

QEMU/KVM x86
VirtualBox x86

Captive

Figure 6.19: Relative performance improvement gained by turning on Intel’s extended

page tables (EPT) for the SPEC CPU2006 integer benchmark suite–higher is better.

These results show that the use of EPT has virtually no effect on the virtualisation

performance for the SPEC CPU2006 benchmark suite.

for memory accesses. For QEMU/DBT, the accesses to this cache are subject to

the software MMU implementation, and therefore incur an access penalty. For

QEMU/DBT, in the x86-on-x86 case this causes a slow-down of 9.79×, and a

slow-down of 78.87× for the ARM-on-x86 case. In CAPTIVE, the slow-down is

only 7.3×, improving over QEMU by 10.8×.

Buffered reads indicate the rate at which data can be accessed directly from

disk—bypassing the kernel page cache. For these experiments, host caching was

disabled in each hypervisor, causing all accesses to the virtual disk device to go

directly to the host file-system, and then onto the underlying storage medium.

All hypervisors suffer a slow-down over native for this case, as there will be

overhead in accessing the virtual disk on the host file-system, but the slow-

down over native for CAPTIVE is only 1.11×, compared to QEMU/ARM being

1.64×. Virtualisation of the x86 guest machines on VirtualBox, QEMU/KVM

and QEMU/DBT all have even worse slow-downs, but this may be due to the

implementation of the virtual disk device, which for these three hypervisors is

an emulated IDE disk drive, as opposed to the para-virtualised VirtIO device

used in QEMU/ARM and CAPTIVE.

6.4.5 Additional Hardware Support for MMU Virtualisation

The latest version of Intel VT includes hardware support for managing virtu-

alised guest page tables, which is branded as extended page tables (EPT). AMD

also have similar support, branded as rapid virtualisation indexing (RVI) (for-

merly NPT). KVM can make full use of this technology, and this section evalu-

6.4. Experimental Evaluation 135

ates the performance improvement of EPT over non-EPT backed virtualisation.

This evaluation uses QEMU/KVM and Oracle VirtualBox to measure the impact

of EPT on same-architecture virtualisation. To produce this data, six distinct ex-

periments have been ran: three with EPT disabled in the respective hypervisor,

and three with EPT enabled. Then, the relative speed-up of each hypervisor with

EPT enabled, over EPT disabled is presented in Figure 6.19. For QEMU/KVM and

Oracle VirtualBox the experiments were naturally made on a virtualised x86-64

system, with x86-64 versions of the SPEC benchmark suite. For CAPTIVE, the

same setup as described in Section 6.4.1 is used, with EPT enabled and disabled.

The data shows that in these experiments, EPT does not make any significant

improvement to the workloads being tested. This is contrary to some published

experiments, e.g. VMware have conducted a performance evaluation of EPT

in [118], which shows that EPT can improve performance of MMU-intensive

benchmarks by 48%, and MMU-microbenchmarks by up to 600%. However, the

measurement of the impact of EPT on the SPEC CPU2006 benchmarks shows

that the performance increase to be negligible, which is also the conclusion

drawn by [90, 28]. Figure 6.19 shows the relative performance improvement

of the SPEC benchmark suite, running on both a virtualised x86 system (us-

ing QEMU/KVM and Oracle VirtualBox) and on a virtualised ARMv7-A system

(using CAPTIVE). On average, there is virtually no improvement for QEMU and

VirtualBox, and only 3% for CAPTIVE.

6.4.6 Slow-down over Native Execution on High-End Hard-

ware

This section evaluates the performance of CAPTIVE, compared to execution of

the benchmarks on a physical ARM hardware platform. Run times for the

benchmarks were collected on an ODROID-XU, and Figure 6.20 shows the rel-

ative slow-down of both CAPTIVE and QEMU. On average, CAPTIVE is 1.4×
slower than native execution of SPEC on an ARM platform, whereas QEMU is

3.51× slower. Again, of interest is the 429.mcf benchmark that actually shows a

speed-up over native due to the JIT compiler discovering optimisations that can

be made dynamically, which work better than the compile-time optimisations

of the benchmark.

136 Chapter 6. Hardware Accelerated Cross-architecture Virtualisation

 1

 2

 3

 4

 5

 6

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

G
eom

. M
ean

S
lo

w
-d

ow
n

ov
er

 N
at

iv
e

A
R
M

QEMU ARM
Captive

Figure 6.20: Relative slow-down of QEMU and CAPTIVE over native execution on a

physical ARM platform (ODROID-XU using Samsung Exynos5422 Cortex-A15 2.0Ghz

quad-core and Cortex-A7 quad-core CPUs)–lower is better. On average, CAPTIVE is 1.4×
slower than the hardware platform, compared to a 3.51× slow-down for QEMU.

6.5 Summary & Conclusions

This chapter has introduced new techniques for cross-architecture hardware

virtualisation, using hardware accelerated virtualisation extensions originally

designed for same-architecture virtualisation, and has implemented these ideas

in a hypervisor called CAPTIVE. The key contribution is the mapping of guest

system MMU behaviour to host system MMU behaviour, and this improves over

the state-of-the-art simulator QEMU on average 2.5×.

Although the previous chapters built upon an existing simulator (ARCSIM),

the ideas presented in this chapter have required a brand new implementation

(CAPTIVE), as ARCSIM was built with software-based virtualisation in mind.

This new implementation is a dedicated hypervisor for cross-architecture virtu-

alisation, and benefits from being able to use existing architectural models.

Chapter 7
Conclusions

This thesis has sought to accelerate cross-architecture hardware virtualisation,

by focussing on four main challenges:

1. Instruction emulation: Executing guest machine instructions on the host

machine.

2. Interrupt handling: Correctly diverting guest machine control-flow when

asynchronous interrupts are pending.

3. Memory management unit virtualisation: Translating virtual memory

addresses into physical addresses, as per guest machine behaviour.

4. Device emulation: Fully emulating the behaviour of guest platform de-

vices.

Chapter 4 introduced techniques for efficient instruction emulation in a software-

based instruction set simulator, followed by the introduction of a particular

challenge for efficient full-system virtualisation in Chapter 5. Finally, Chapter

6 exploited hardware acceleration for same-architecture virtualisation, to build

a novel cross-architecture hypervisor that outperforms existing state-of-the art

cross-architecture hypervisors.

Each contribution has directly led to performance improvements over ex-

isting techniques, and opens up the scope for future work in this area. The

following sections shall describe the main contributions of this thesis in more

detail, followed by a critical analysis of these contributions and closing with

possible future work.

138 Chapter 7. Conclusions

7.1 Contributions

The underlying theme of this thesis is to improve the performance of cross-

architecture hardware virtualisation systems. These systems are particularly

important to those in development environments, who want to prototype soft-

ware for new and existing platforms that are different to their development

machine. Existing techniques for this purpose perform well, but can be vastly

improved by employing the techniques described.

7.1.1 Efficient Dynamic Binary Translation

Chapter 4 described a dynamic binary translation system for the emulation of

guest instructions, and contributed a complete strategy for a region-based DBT

system suitable for inclusion in a high-speed instruction-set simulator.

Existing region-based solutions do not perform adequate analysis to take

advantage of optimisations that can be made within a region, and so branch

type profiling information was used to improve back-end code generation, by

means of exploiting loop optimisations that could be kept local to the region.

A form of light-weight region chaining, borrowing concepts from trace chain-

ing, improved control-flow dramatically when transitioning between distinct

regions of code.

A problem with using an existing JIT compiler was overcome by employing a

custom domain-specific alias analysis phase, which identified memory accesses

that were part of the instruction execution behaviour, and distinguished them

from memory accesses that were part of the infrastructure. Classifying pointers

correctly leads to aggressive elimination of dead loads and stores, and hence to

much more performance in translated code.

7.1.2 Efficient Interrupt Virtualisation

Instruction emulation is one of the challenges faced when performing cross-

architecture virtualisation, and Chapter 5 extended the simulation infrastruc-

ture to support hardware virtualisation. However, the additional requirements

for hardware virtualisation introduce performance overheads in DBT systems,

and specifically, the handling of asynchronous interrupts causes adverse control-

flow to negate some of the control-flow optimisations made in Chapter 4.

7.1. Contributions 139

To minimise this disruption, Chapter 5 presented a new scheme for the opti-

mised handling of asynchronous interrupts in the context of a region-based DBT,

by optimising the placement of the necessary interrupt checks. The algorithm

is efficient and suitable for JIT processing, and does not introduce unbounded

interrupt response times. The scheme improves virtualisation performance and

I/O throughput in ARCSIM, when virtualising an ARM guest platform running

Linux.

7.1.3 Hardware Accelerated Cross-architecture Virtualisation

Finally, an observation is made that modern processor vendors support same-

architecture virtualisation with hardware extensions that enable unmodified

guest operating systems to run in an isolated virtual machine with minimal

supervision. These extensions are exploited in Chapter 6 to build a new cross-

architecture hypervisor that supports the virtualisation of a guest platform that

is significantly different to the host platform.

Tackling four important challenges, Chapter 6 accelerates normally software-

based virtual-to-physical address translation by mapping the behaviour of the

guest MMU onto corresponding behaviour of the host MMU—despite substantial

differences between the two MMUs.

For instruction emulation, a DBT system for the translation from the guest

to host ISA is presented, where a fast block-based, domain-specific, just-in-time

(JIT) compiler that lives inside the native virtual machine translates guest in-

structions to host instructions. The JIT compiler is designed specifically for DBT,

unlike a commodity compilation framework such as LLVM, and so can generate

highly efficient host machine code quickly. The DBT also takes advantage of the

fact that it can generate system-level instructions, and use architectural features

(such as privilege levels) to efficiently map guest to host execution behaviour.

Finally, an efficient mechanism to emulate the guest’s memory mapped I/O

devices is developed, by exploiting the host’s MMU to detect device accesses,

and using a message passing infrastructure to reduce guest-to-hypervisor com-

munication costs.

140 Chapter 7. Conclusions

7.2 Critical Analysis

When implemented, the techniques described clearly provide performance gains

over existing implementations, but they require a critical analysis to identify key

assumptions made, and possible limitations.

7.2.1 GENSIM Limitations

GENSIM is an excellent tool for generating simulation components from an ar-

chitectural description, but it currently lacks support for architectural features,

such as:

1. Branch delay slots.

2. Instruction prefixes, or specifically context-sensitive instruction decoding.

3. Non-standard control-flow (e.g. zero-overhead loops).

4. VLIW architectures.

5. Out-of-order execution.

This means that it is currently unable to express some guest architectures.

However, these limitations are purely engineering-based, and given suitable

resources the required functionality can be implemented. This may lead to fu-

ture research in the area of architecture description languages, and automatic

simulator generation.

7.2.2 Significantly Different Memory Management Units

The behavioural mapping of an ARM MMU to an x86 MMU works well, because

the configuration and operation, whilst incompatible, are similar in behaviour.

This may not necessarily be the case for other architectures, e.g. an implemen-

tation of the ARC architecture uses special instructions that access a separate

I/O space containing the virtual page mappings. This particular behaviour may

work in CAPTIVE’s favour, however, but it is reasonable to envisage a configura-

tion that does not map so well.

7.3. Future Work 141

7.2.3 Assumptions

The evaluation of these techniques imposed some assumptions on the guest

platform being virtualised, as experiments have been made throughout for a

particular architecture. Although the techniques as described can be applied

to other architectures, an ARMv7-A platform was chosen to model as architec-

tural information is readily available, and previous work in this area enables

straightforward modelling of the platform. Additionally, the benefit of choos-

ing this particular platform is that it is a 32-bit platform, and hence the guest

virtual address space fits well within the larger 64-bit address space of the host

machine. Additionally, the chosen platform was a single-core platform, as im-

plementing multi-core virtualisation directly (without first attempting single-

core virtualisation) would be unwise.

The hardware assisted virtualisation technique described in Chapter 6 re-

lies on the availability of KVM in the host machine operating system, but most

modern Linux distributions come with KVM available as default. KVM is a con-

venient abstraction for accessing hardware-assisted virtualisation extensions,

and makes an implementation much easier, but it must cater for the lowest

common denominator. As it turns out, most hardware virtualisation extensions

can be presented with a uniform interface and so in practice this is not a prob-

lem. KVM does, however, contain a mechanism that indicates what features are

available on the host platform, and in some cases provides architecture-specific

virtualisation controls.

Technically, it would be possible to interface directly with Intel VT or AMD-V

extensions, as this is the approach VirtualBox takes. However, for running on

a Linux operating system it would require developing a custom kernel mod-

ule, which would be a significant time investment and would restrict virtual-

isation to only those supported host systems. Furthermore, it would require

non-standard additions to a host platform, which may deter companies from

deploying the hypervisor.

7.3 Future Work

There is quite a bit of scope for future work in the area of cross-architecture

virtualisation, with potential users of systems ranging from software engineers,

142 Chapter 7. Conclusions

hardware developers, security/malware researchers and data centre adminis-

trators. The following sections shall describe expected future work in this area,

and the expected scale of this research.

7.3.1 Efficient Interrupt Virtualisation

7.3.1.1 Exact Check Placement

Chapter 5 described techniques for improving interrupt virtualisation, but there

are even more opportunities to investigate in this area. The technique was to

use an algorithm to place interrupt checks in the correct places, but an inves-

tigation to the effect that the exact placement of interrupt checks has on the

quality of generated code could be made. For example, does the placement of

an interrupt check enable the optimiser to produce better code when inserted

into a loop condition block, as opposed to the loop body?

—This work could lead to a research paper on the topic.

7.3.1.2 Dynamic Placement Schemes

The interrupt check placement schemes were inherently static, in that they

placed interrupt checks at region translation time. Triggering region recom-

pilation during high I/O bound workloads, and instructing the JIT to be more

aggressive in placing interrupt checks, may lead to higher throughput.

—This work could lead to a research paper on the topic.

7.3.1.3 Synchronous Exceptions

Clearly, asynchronous interrupts lead to unpredictable control-flow, but there

are also sources of inefficiency when diverging control-flow is known at JIT

compilation time. Such a source of this may be exceptions, where an instruc-

tion has the ability to divert control-flow to an exception handler in certain

cases. The possibility of divergence is known statically, because the instruction

description contains the control-flow that makes this happen. For example, a di-

vide instruction will divert to an exception handler if the denominator operand

is zero and a memory access instruction will divert to an exception handler if a

page fault occurs.

7.3. Future Work 143

Such conditions should be rare (they are exceptional) and as such, optimis-

ing for the common non-exceptional case is preferred. This work would investi-

gate opportunities for optimising control-flow through instructions that exhibit

this behaviour.

—This work could lead to a research paper on the topic.

7.3.2 Hardware Accelerated Cross-architecture Virtualisation

7.3.2.1 Integrating Region-based DBT/Domain-specific JIT

As has been shown in Chapter 4, the region-based approach to DBT is highly

efficient and so integrating this with CAPTIVE would clearly lead to even further

performance improvements. However, there is also scope for extending the

performance and code-generation quality of the current block-based JIT, and

by considering the domain-specific nature of JIT compilation for DBT, this could

lead to further advances in instruction emulation performance.

—This work could lead to one or two research papers on the topic.

7.3.2.2 64-bit Support

As noted in the critical analysis, a simplifying assumption was that the guest

platform is 32-bit. Now that 64-bit embedded systems are being developed and

deployed, it is becoming increasingly important for engineers to virtualise these

platforms. Therefore, a major route to extend this work would be to implement

support for 64-bit guest platforms, exploring efficient ways to support the larger

address space.

—This work could lead to a research paper on the topic.

7.3.2.3 Multi-core Support/Heterogeneous Modelling

Recently, there has been an explosion in the deployment of multi-core embed-

ded systems, with platforms sporting multiple processing cores, heterogeneity

and accelerators (such as DSPs). Although support was built into CAPTIVE from

the start for multi-core virtualisation, the engineering effort to implement a

multi-core platform (and the necessary interactions of the CAPTIVE infrastruc-

ture, e.g. the code cache) would lead to further research in this area—especially

if one wishes to model heterogeneous platforms.

144 Chapter 7. Conclusions

—This work could lead to a journal article on the topic.

7.3.2.4 Further Hardware Assistance

CAPTIVE has taken advantage of existing hardware assistance for performing

cross-architecture virtualisation, but as noted, these extensions were not origi-

nally designed to support this. A longer-term research project would be to in-

vestigate how these extensions could be modified to support cross-architecture

virtualisation, or what new extensions could be introduced to assist hypervisors

operating like this.

For example, instruction emulation is typically performed with DBT, and so

can hardware extensions be introduced that assist DBT? What do these exten-

sions look like? What other assistance can be provided by hardware to acceler-

ate the main cross-architecture virtualisation challenges?

—This work could lead to a PhD thesis.

7.3.2.5 Hardware-assisted Device Virtualisation

Whilst the emulated device implementations necessary for cross-architecture

hardware virtualisation may be efficient, it would be interesting to map devices

with similar behaviours (e.g. timer devices) from the guest system to the host

system, using a hybrid approach where guest platform devices are backed by

real hardware, as opposed to being purely software-based. This would keep

much of a device’s implementation internal to the VM, eliminating the need for

costly hypervisor communication.

—This work could lead to a research paper on the topic.

7.3.2.6 Nested Virtualisation

Many ARM-based platforms have hardware support for virtualisation them-

selves, so modelling this virtualisation would require exploring the nested vir-

tualisation capabilities of the host, and attempting to exploit this support for

modelling the virtualisation capabilities of a guest.

—This work could lead to a research paper on the topic.

7.3. Future Work 145

7.3.2.7 Cache Simulation

So far the described techniques have improved performance of hardware vir-

tualisation, but with a DBT-based system, and control of the operation of a

guest platform, it is possible to instrument certain guest architectural compo-

nents. An increasing concern for application developers is cache utilisation,

and existing cache simulators are quite slow. Building support into CAPTIVE for

efficient cache simulation would enable useful measurements to be taken, that

may assist developers in debugging performance regressions, or maximising

utilisation.

—This work could lead to one or two research papers on the topic.

7.3.2.8 Data Centre Virtualisation

The recurring example presented throughout this thesis was to virtualise an em-

bedded ARMv7-A system on a more powerful Intel x86 host machine. However,

an open question is how would this system translate to virtualising a larger, pos-

sibly distributed system? How would one virtualise a system on the scale of a

data centre? If the virtualisation itself was distributed over a cluster, what in-

frastructure would need to be built in to the hypervisors to support inter-nodal

communication? Can parts of the simulation be accelerated in some way? What

level of abstraction is used to model a data centre?

—This work could lead to a PhD thesis.

7.3.2.9 Compiler Generation from a High-level Architecture Description

The architecture description language (ADL) used by GENSIM to produce mod-

ules for ARCSIM and CAPTIVE has the potential for more than just simulator

generation. Already, GENSIM can produce a disassembler for the described ar-

chitecture, but it would be interesting to investigate if the description be used

to produce the back-end for a compiler. This would have further benefits for

embedded application developers, as not only could they be provided with a

virtual environment to test their application, but also a compiler for an archi-

tecture that may not even exist yet.

—This work could lead to a journal article on the topic.

146 Chapter 7. Conclusions

7.3.2.10 Automated Cost Modelling

Another benefit of the ADL is that detailed analysis of instruction behaviours

can be performed, and potentially used to generate an execution cost model. If

sufficient intrinsics are used, or particular code patterns can be detected, then it

may be possible to generate high-level profiling information for an instruction,

and use this to seed a simulator to perform accurate measurements of latency,

cycle counts, pipeline behaviour, etc.

This would require first analysing the semantic behaviour of an instruction,

extracting the features that contribute to architectural operations, and then

mapping these features to an architecture-specific model that describes how

they translate to the various profiling metrics.

—This work could lead to one or two research papers on the topic.

7.4 Summary and Final Remarks

This thesis has presented a range of techniques for accelerating cross-architecture

hardware virtualisation. It has shown that it is possible to improve virtualisa-

tion performance significantly, and exploit existing hardware support to build

an efficient cross-architecture hypervisor.

Bibliography

[1] Transitive Technology: The Rosetta Stone for binary translation. URL

http://www.cs.manchester.ac.uk/our-research/

research-impact/transitive-technology/. Retrieved

23-August-2016.

[2] Apple Rosetta (via Web Archive), 2011. URL

https://web.archive.org/web/20110107211041/http:

//www.apple.com/rosetta. Retrieved 23-August-2016.

[3] Oscar Almer, Igor Böhm, Tobias Edler Koch, Björn Franke, Stephen Kyle, Volker

Seeker, Christopher Thompson, and Nigel Topham. A parallel dynamic binary

translator for efficient multi-core simulation. International Journal of Parallel

Programming, 41(2):212–235, 2012. ISSN 1573-7640. doi:

10.1007/s10766-012-0222-9. URL

http://dx.doi.org/10.1007/s10766-012-0222-9.

[4] AMD. AMD Virtualization, 2016. URL

http://www.amd.com/en-us/solutions/servers/virtualization.

Retrieved 17-May-2016.

[5] AMD Developer Central. AMD SimNow simulator.

http://developer.amd.com/tools-and-sdks/cpu-development/simnow-

simulator/,

2010.

[6] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and

Daniel Ortega. COTSon: Infrastructure for full system simulation. SIGOPS

Oper. Syst. Rev., 43(1):52–61, January 2009. ISSN 0163-5980. doi:

10.1145/1496909.1496921. URL

http://doi.acm.org/10.1145/1496909.1496921.

http://www.cs.manchester.ac.uk/our-research/research-impact/transitive-technology/
http://www.cs.manchester.ac.uk/our-research/research-impact/transitive-technology/
https://web.archive.org/web/20110107211041/http://www.apple.com/rosetta
https://web.archive.org/web/20110107211041/http://www.apple.com/rosetta
http://dx.doi.org/10.1007/s10766-012-0222-9
http://www.amd.com/en-us/solutions/servers/virtualization
http://doi.acm.org/10.1145/1496909.1496921

148 Bibliography

[7] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and

Daniel Ortega. COTSon: Infrastructure for full system simulation. SIGOPS

Oper. Syst. Rev., 43(1):52–61, 2009. ISSN 0163-5980. doi:

http://doi.acm.org/10.1145/1496909.1496921.

[8] Ariel. App stores growth accelerates in 2014, 2015. URL http://blog.

appfigures.com/app-stores-growth-accelerates-in-2014/.

Retrieved 18-May-2016.

[9] ARM. RealView Platform Baseboard for Cortex-A8 user guide, 2011. URL

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.dui0417d/index.html. Retrieved 02-June-2016.

[10] ARM. About the PB-A8, 2011. URL http://infocenter.arm.com/help/

topic/com.arm.doc.dui0417d/BABCHBFC.html#CHDFGCFB. Retrieved

02-June-2016.

[11] ARM. Versatile Application Baseboard for ARM926EJ-S user guide, 2011. URL

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.dui0225d/index.html. Retrieved 20-July-2016.

[12] ARM. Fast Models, 2016. URL

http://www.arm.com/products/tools/models/fast-models/.

Retrieved 26-Auguest-2016.

[13] ARM Ltd. ARM security technology building a secure system using TrustZone

technology, 2005–2009. URL

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.prd29-genc-009492c/ch05s03s03.html.

[14] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure for

computer system modeling. Computer, 35(2):59–67, February 2002. ISSN

0018-9162. doi: 10.1109/2.982917. URL

http://dx.doi.org/10.1109/2.982917.

[15] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113,

June 2003. ISSN 0360-0300. doi: 10.1145/857076.857077. URL

http://doi.acm.org/10.1145/857076.857077.

[16] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano

Araujo, and Edna Barros. The ArchC architecture description language and

http://blog.appfigures.com/app-stores-growth-accelerates-in-2014/
http://blog.appfigures.com/app-stores-growth-accelerates-in-2014/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0417d/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0417d/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0417d/BABCHBFC.html#CHDFGCFB
http://infocenter.arm.com/help/topic/com.arm.doc.dui0417d/BABCHBFC.html#CHDFGCFB
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0225d/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0225d/index.html
http://www.arm.com/products/tools/models/fast-models/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch05s03s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch05s03s03.html
http://dx.doi.org/10.1109/2.982917
http://doi.acm.org/10.1145/857076.857077

Bibliography 149

tools. Int. J. Parallel Program., 33(5):453–484, October 2005. ISSN

0885-7458. doi: 10.1007/s10766-005-7301-0. URL

http://dx.doi.org/10.1007/s10766-005-7301-0.

[17] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A

transparent dynamic optimization system. In Proceedings of the ACM SIGPLAN

2000 Conference on Programming Language Design and Implementation, PLDI

’00, pages 1–12, New York, NY, USA, 2000. ACM. ISBN 1-58113-199-2. doi:

10.1145/349299.349303. URL

http://doi.acm.org/10.1145/349299.349303.

[18] Thomas Ball and James R Larus. Optimally profiling and tracing programs.

ACM Transactions on Programming Languages and Systems (TOPLAS), 16(4):

1319–1360, 1994.

[19] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. In ACM SIGOPS Operating Systems Review, volume 37, pages

164–177. ACM, 2003.

[20] James R Bell. Threaded code. Communications of the ACM, 16(6), 1973.

[21] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proceedings

of the Annual Conference on USENIX, ATEC ’05, pages 41–41, Berkeley, CA, USA,

2005. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=1247360.1247401.

[22] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,

Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay

Vaish, Mark D. Hill, and David A. Wood. The Gem5 simulator. SIGARCH

Comput. Archit. News, 39(2):1–7, August 2011. ISSN 0163-5964. doi:

10.1145/2024716.2024718. URL

http://doi.acm.org/10.1145/2024716.2024718.

[23] Igor Böhm, Björn Franke, and Nigel P. Topham. Cycle-accurate performance

modelling in an ultra-fast just-in-time dynamic binary translation instruction

set simulator. In Fadi J. Kurdahi and Jarmo Takala, editors, Proceedings of the

2010 International Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation (IC-SAMOS 2010), Samos, Greece, July 19-22, 2010,

pages 1–10. IEEE, 2010. ISBN 978-1-4244-7937-5. doi:

http://dx.doi.org/10.1007/s10766-005-7301-0
http://doi.acm.org/10.1145/349299.349303
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/2024716.2024718

150 Bibliography

10.1109/ICSAMOS.2010.5642102. URL

http://dx.doi.org/10.1109/ICSAMOS.2010.5642102.

[24] Igor Böhm, Tobias J.K. Edler von Koch, Stephen C. Kyle, Björn Franke, and

Nigel Topham. Generalized just-in-time trace compilation using a parallel task

farm in a dynamic binary translator. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’11,

pages 74–85, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8. doi:

10.1145/1993498.1993508. URL

http://doi.acm.org/10.1145/1993498.1993508.

[25] Florian Brandner. Precise simulation of interrupts using a rollback mechanism.

In Proceedings of the 12th International Workshop on Software and Compilers for

Embedded Systems, SCOPES ’09, pages 71–80, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-696-0. URL

http://dl.acm.org/citation.cfm?id=1543820.1543833.

[26] Derek Bruening and Evelyn Duesterwald. Exploring optimal compilation unit

shapes for an embedded just-in-time compiler. In In Proceedings of the 2000

ACM Workshop on Feedback-Directed and Dynamic Optimization FDDO-3, pages

13–20, 2000.

[27] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure

for adaptive dynamic optimization. In Proceedings of the international

symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization, CGO ’03, pages 265–275, Washington, DC, USA, 2003.

IEEE Computer Society. ISBN 0-7695-1913-X. URL

http://dl.acm.org/citation.cfm?id=776261.776290.

[28] Jeffrey Buell, Daniel Hecht, Jin Heo, Kalyan Saladi, and R Taheri. Methodology

for performance analysis of VMware vSphere under tier-1 applications.

VMware Technical Journal, 2(1), 2013.

[29] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven

Eeckhout. An evaluation of high-level mechanistic core models. ACM

Transactions on Architecture and Code Optimization (TACO), 2014. ISSN

1544-3566. doi: 10.1145/2629677.

[30] Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Anastasia Stulova, Rainer

Leupers, Gerd Ascheid, and Heinrich Meyr. A high-level virtual platform for

early MPSoC software development. In Proceedings of the 7th IEEE/ACM

http://dx.doi.org/10.1109/ICSAMOS.2010.5642102
http://doi.acm.org/10.1145/1993498.1993508
http://dl.acm.org/citation.cfm?id=1543820.1543833
http://dl.acm.org/citation.cfm?id=776261.776290

Bibliography 151

International Conference on Hardware/Software Codesign and System Synthesis,

CODES+ISSS ’09, pages 11–20, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-628-1. doi: 10.1145/1629435.1629438. URL

http://doi.acm.org/10.1145/1629435.1629438.

[31] Chao-Jui Chang, Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, and Pen-Chung

Yew. Efficient memory virtualization for cross-ISA system mode emulation. In

Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, VEE ’14, pages 117–128, New York, NY, USA,

2014. ACM. ISBN 978-1-4503-2764-0. doi: 10.1145/2576195.2576201. URL

http://doi.acm.org/10.1145/2576195.2576201.

[32] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc

set problem is NP-hard for tournaments. Comb. Probab. Comput., 16(1):1–4,

January 2007. ISSN 0963-5483. doi: 10.1017/S0963548306007887. URL

http://dx.doi.org/10.1017/S0963548306007887.

[33] Jianwei Chen, Murali Annavaram, and Michel Dubois. SlackSim: A platform

for parallel simulations of CMPs on CMPs. SIGARCH Comput. Archit. News, 37

(2):20–29, July 2009. ISSN 0163-5964. doi: 10.1145/1577129.1577134. URL

http://doi.acm.org/10.1145/1577129.1577134.

[34] Cristina Cifuentes and Mike Van Emmerik. Recovery of jump table case

statements from binary code. In Proceedings of the 7th International Workshop

on Program Comprehension, IWPC ’99, pages 192–, Washington, DC, USA,

1999. IEEE Computer Society. ISBN 0-7695-0179-6. URL

http://dl.acm.org/citation.cfm?id=520033.858247.

[35] Cristina Cifuentes and Mike Van Emmerik. UQBT: Adaptive binary translation

at low cost. IEEE Computer, 33(3):60–66, 2000.

[36] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for

execution profiling. In Proceedings of the 1994 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, SIGMETRICS ’94, pages

128–137, New York, NY, USA, 1994. ACM. ISBN 0-89791-659-X. doi:

10.1145/183018.183032. URL

http://doi.acm.org/10.1145/183018.183032.

[37] Embedded Microprocessor Benchmark Consortium et al. EEMBC benchmark

suite, 2009.

http://doi.acm.org/10.1145/1629435.1629438
http://doi.acm.org/10.1145/2576195.2576201
http://dx.doi.org/10.1017/S0963548306007887
http://doi.acm.org/10.1145/1577129.1577134
http://dl.acm.org/citation.cfm?id=520033.858247
http://doi.acm.org/10.1145/183018.183032

152 Bibliography

[38] Balaji Dhanasekaran and Kim Hazelwood. Improving indirect branch

translation in dynamic binary translators. In Proceedings of the ASPLOS

Workshop on Runtime Environments, Systems, Layering, and Virtualized

Environments, RESoLVE’11, pages 11–18, 2011.

[39] J. H. Ding, P. C. Chang, W. C. Hsu, and Y. C. Chung. PQEMU: A parallel system

emulator based on QEMU. In 2011 IEEE 17th International Conference on

Parallel and Distributed Systems (ICPADS), pages 276–283, Dec 2011. doi:

10.1109/ICPADS.2011.102.

[40] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang,

Wei-Chung Hsu, and Yeh-Ching Chung. ARMvisor: System virtualization for

ARM. In Ottawa Linux Symposium, 2012.

[41] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye. Dynamic binary

translation and optimization. IEEE Transactions on Computers, 50(6):529–548,

Jun 2001. ISSN 0018-9340. doi: 10.1109/12.931892.

[42] David Ehringer. The Dalvik virtual machine architecture. 2010.

[43] Brendan Eich. TraceMonkey: JavaScript lightspeed. Retrieved on August, 24:

2010, 2008.

[44] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan. Approximating minimum

feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174,

1998. ISSN 0178-4617. doi: 10.1007/PL00009191. URL

http://dx.doi.org/10.1007/PL00009191.

[45] A. Forin, B. Neekzad, and N. L. Lynch. Giano: The two-headed system

simulator. Technical Report MSR-TR-2006-130, Microsoft Research, WA, 2006.

[46] Adam Gerber and Clifton Craig. Learn Android Studio: Build Android Apps

Quickly and Effectively. Apress, Berkely, CA, USA, 1st edition, 2015. ISBN

1430266015, 9781430266013.

[47] Parallels IP Holdings GmbH. Parallels Desktop for Mac, 2016. URL

http://www.parallels.com/uk/products/desktop/. Retrieved

17-May-2016.

[48] Cosmin Gorgovan, Amanieu D’antras, and Mikel Luján. MAMBO: A

low-overhead dynamic binary modification tool for ARM. ACM Transactions on

Architecture and Code Optimization (TACO), 13(1):14, 2016.

http://dx.doi.org/10.1007/PL00009191
http://www.parallels.com/uk/products/desktop/

Bibliography 153

[49] Apala Guha, Kim Hazelwood, and Mary Lou Soffa. DBT path selection for

holistic memory efficiency and performance. In Proceedings of the 6th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

VEE ’10, pages 145–156, New York, NY, USA, 2010. ACM. ISBN

978-1-60558-910-7. doi: 10.1145/1735997.1736018. URL

http://doi.acm.org/10.1145/1735997.1736018.

[50] Yu-Chuan Guo, Wuu Yang, Jiunn-Yeu Chen, and Jenq-Kuen Lee. Translating the

ARM Neon and VFP instructions in a binary translator. Software: Practice and

Experience, 2016.

[51] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor N. Mudge,

Chander Sudanthi, Christopher D. Emmons, Mitchell Hayenga, and Nigel C.

Paver. Sources of error in full-system simulation. In 2014 IEEE International

Symposium on Performance Analysis of Systems and Software, ISPASS 2014,

Monterey, CA, USA, March 23-25, 2014, pages 13–22. IEEE Computer Society,

2014. ISBN 978-1-4799-3604-5. doi: 10.1109/ISPASS.2014.6844457. URL

http://dx.doi.org/10.1109/ISPASS.2014.6844457.

[52] Nikolaos Hardavellas, Stephen Somogyi, Thomas F. Wenisch, Roland E.

Wunderlich, Shelley Chen, Jangwoo Kim, Babak Falsafi, James C. Hoe, and

Andreas G. Nowatzyk. SimFlex: A fast, accurate, flexible full-system simulation

framework for performance evaluation of server architecture. SIGMETRICS

Perform. Eval. Rev., 31(4):31–34, March 2004. ISSN 0163-5999. doi:

10.1145/1054907.1054914. URL

http://doi.acm.org/10.1145/1054907.1054914.

[53] Asias He. Native Linux KVM tool, 2011. URL http://www.linux-kvm.

org/images/c/c5/2011-forum-native-linux-kvm-tool.pdf.

Retrieved 12-August-2016.

[54] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput.

Archit. News, 34(4):1–17, September 2006. ISSN 0163-5964. doi:

10.1145/1186736.1186737. URL

http://doi.acm.org/10.1145/1186736.1186737.

[55] David Hiniker, Kim Hazelwood, and Michael D. Smith. Improving region

selection in dynamic optimization systems. In Proceedings of the 38th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages

141–154, Washington, DC, USA, 2005. IEEE Computer Society. ISBN

http://doi.acm.org/10.1145/1735997.1736018
http://dx.doi.org/10.1109/ISPASS.2014.6844457
http://doi.acm.org/10.1145/1054907.1054914
http://www.linux-kvm.org/images/c/c5/2011-forum-native-linux-kvm-tool.pdf
http://www.linux-kvm.org/images/c/c5/2011-forum-native-linux-kvm-tool.pdf
http://doi.acm.org/10.1145/1186736.1186737

154 Bibliography

0-7695-2440-0. doi: 10.1109/MICRO.2005.22. URL

http://dx.doi.org/10.1109/MICRO.2005.22.

[56] Jason D. Hiser, Naveen Kumar, Min Zhao, Shukang Zhou, Bruce R. Childers,

Jack W. Davidson, and Mary Lou Soffa. Techniques and tools for dynamic

optimization. In Proceedings of the 20th International Conference on Parallel and

Distributed Processing, IPDPS’06, pages 279–279, Washington, DC, USA, 2006.

IEEE Computer Society. ISBN 1-4244-0054-6. URL

http://dl.acm.org/citation.cfm?id=1898699.1898797.

[57] Jason D. Hiser, Daniel Williams, Adrian Filipi, Jack W. Davidson, and Bruce R.

Childers. Evaluating fragment construction policies for SDT systems. In

Proceedings of the 2nd International Conference on Virtual Execution

Environments, VEE ’06, pages 122–132, New York, NY, USA, 2006. ACM. ISBN

1-59593-332-8. doi: 10.1145/1134760.1134778. URL

http://doi.acm.org/10.1145/1134760.1134778.

[58] Jason D. Hiser, Daniel Williams, Wei Hu, Jack W. Davidson, Jason Mars, and

Bruce R. Childers. Evaluating indirect branch handling mechanisms in software

dynamic translation systems. In Proceedings of the International Symposium on

Code Generation and Optimization, CGO ’07, pages 61–73, Washington, DC,

USA, 2007. IEEE Computer Society. ISBN 0-7695-2764-7. doi:

10.1109/CGO.2007.10. URL

http://dx.doi.org/10.1109/CGO.2007.10.

[59] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-Chung

Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung. HQEMU: A

multi-threaded and retargetable dynamic binary translator on multicores. In

Proceedings of the Tenth International Symposium on Code Generation and

Optimization, CGO ’12, pages 104–113, New York, NY, USA, 2012. ACM. ISBN

978-1-4503-1206-6. doi: 10.1145/2259016.2259030. URL

http://doi.acm.org/10.1145/2259016.2259030.

[60] Ding-Yong Hong, Chun-Chen Hsu, Cheng-Yi Chou, Wei-Chung Hsu, Pangfeng

Liu, and Jan-Jan Wu. Optimizing control transfer and memory virtualization in

full system emulators. ACM Trans. Archit. Code Optim., 12(4):47:1–47:24,

December 2015. ISSN 1544-3566. doi: 10.1145/2837027. URL

http://doi.acm.org/10.1145/2837027.

[61] Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-Jan Wu, Ding-Yong Hong,

http://dx.doi.org/10.1109/MICRO.2005.22
http://dl.acm.org/citation.cfm?id=1898699.1898797
http://doi.acm.org/10.1145/1134760.1134778
http://dx.doi.org/10.1109/CGO.2007.10
http://doi.acm.org/10.1145/2259016.2259030
http://doi.acm.org/10.1145/2837027

Bibliography 155

Pen-Chung Yew, and Wei-Chung Hsu. LnQ: Building high performance dynamic

binary translators with existing compiler backends. In Proceedings of the 2011

International Conference on Parallel Processing, ICPP ’11, pages 226–234,

Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4510-3.

doi: 10.1109/ICPP.2011.57. URL

http://dx.doi.org/10.1109/ICPP.2011.57.

[62] Chun-Chen Hsu, Pangfeng Liu, Jan-Jan Wu, Pen-Chung Yew, Ding-Yong Hong,

Wei-Chung Hsu, and Chien-Min Wang. Improving dynamic binary optimization

through early-exit guided code region formation. In Proceedings of the 9th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

VEE ’13, pages 23–32, New York, NY, USA, 2013. ACM. ISBN

978-1-4503-1266-0. doi: 10.1145/2451512.2451519. URL

http://doi.acm.org/10.1145/2451512.2451519.

[63] Yuanjie Huang, Liang Peng, Chengyong Wu, Yuriy Kashnikov, Jörn Rennecke,

and Grigori Fursin. Transforming GCC into a research-friendly environment:

Plugins for optimization tuning and reordering, function cloning and program

instrumentation. In 2nd International Workshop on GCC Research Opportunities

(GROW’10), Pisa, Italy, Jan 2010. URL

https://hal.inria.fr/inria-00451106.

[64] Imperas. DEV - virtual platform development and simulation, 2016. URL

http://www.imperas.com/

dev-virtual-platform-development-and-simulation. Retrieved

18-May-2016.

[65] Intel. Intel Virtualization Technology (Intel VT), 2016. URL

http://www.intel.com/content/www/us/en/virtualization/

virtualization-technology/

intel-virtualization-technology.html. Retrieved 26-April-2016.

[66] A. Jaleel, R.S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A Pin-based on-the-fly

single/multi-core cache simulator. In Proceedings of the 4th Annual Workshop

on Modeling, Benchmarking and Simulation, MoBS, 2008.

[67] Ning Jia, Chun Yang, Jing Wang, Dong Tong, and Keyi Wang. SPIRE: Improving

dynamic binary translation through SPC-indexed indirect branch redirecting.

In Proceedings of the 9th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, VEE ’13, pages 1–12, New York, NY, USA,

http://dx.doi.org/10.1109/ICPP.2011.57
http://doi.acm.org/10.1145/2451512.2451519
https://hal.inria.fr/inria-00451106
http://www.imperas.com/dev-virtual-platform-development-and-simulation
http://www.imperas.com/dev-virtual-platform-development-and-simulation
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html

156 Bibliography

2013. ACM. ISBN 978-1-4503-1266-0. doi: 10.1145/2451512.2451516. URL

http://doi.acm.org/10.1145/2451512.2451516.

[68] Jikes RVM. Threading and yieldpoints, 2007. URL

http://jikesrvm.org/Threading+and+Yieldpoints.

[69] Daniel Jones and Nigel Topham. High speed CPU simulation using LTU

dynamic binary translation. In Proceedings of the 4th International Conference

on High Performance Embedded Architectures and Compilers, HiPEAC ’09, pages

50–64, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-540-92989-5.

doi: 10.1007/978-3-540-92990-1_6. URL

http://dx.doi.org/10.1007/978-3-540-92990-1_6.

[70] Rahul Joshi, Michael D. Bond, and Craig Zilles. Targeted path profiling: Lower

overhead path profiling for staged dynamic optimization systems. In

Proceedings of the International Symposium on Code Generation and

Optimization: Feedback-Directed and Runtime Optimization, CGO ’04, pages

239–, Washington, DC, USA, 2004. IEEE Computer Society. ISBN

0-7695-2102-9. URL

http://dl.acm.org/citation.cfm?id=977395.977660.

[71] Richard M Karp. Reducibility among Combinatorial Problems. Springer, 1972.

[72] Marco Kaufmann and Rainer G. Spallek. Superblock compilation and other

optimization techniques for a Java-based DBT machine emulator. In

Proceedings of the 9th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, VEE ’13, pages 33–40, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-1266-0. doi: 10.1145/2451512.2451521. URL

http://doi.acm.org/10.1145/2451512.2451521.

[73] Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract

interpretation-based framework for control flow reconstruction from binaries.

In Proceedings of the 10th International Conference on Verification, Model

Checking, and Abstract Interpretation, VMCAI ’09, pages 214–228, Berlin,

Heidelberg, 2009. Springer-Verlag. ISBN 978-3-540-93899-6. doi:

10.1007/978-3-540-93900-9_19. URL

http://dx.doi.org/10.1007/978-3-540-93900-9_19.

[74] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM: The

Linux virtual machine monitor. In Proceedings of the Linux symposium,

volume 1, pages 225–230, 2007.

http://doi.acm.org/10.1145/2451512.2451516
http://jikesrvm.org/Threading+and+Yieldpoints
http://dx.doi.org/10.1007/978-3-540-92990-1_6
http://dl.acm.org/citation.cfm?id=977395.977660
http://doi.acm.org/10.1145/2451512.2451521
http://dx.doi.org/10.1007/978-3-540-93900-9_19

Bibliography 157

[75] Toshihiko Koju, Xin Tong, Ali Ijaz Sheikh, Moriyoshi Ohara, and Toshio

Nakatani. Optimizing indirect branches in a system-level dynamic binary

translator. In Proceedings of the 5th Annual International Systems and Storage

Conference, SYSTOR ’12, pages 5:1–5:12, New York, NY, USA, 2012. ACM.

ISBN 978-1-4503-1448-0. doi: 10.1145/2367589.2367599. URL

http://doi.acm.org/10.1145/2367589.2367599.

[76] Naveen Kumar, Bruce R. Childers, Daniel Williams, Jack W. Davidson, and

Mary Lou Soffa. Compile-time planning for overhead reduction in software

dynamic translators. Int. J. Parallel Program., 33(2):103–114, June 2005. ISSN

0885-7458. doi: 10.1007/s10766-005-3573-7. URL

http://dx.doi.org/10.1007/s10766-005-3573-7.

[77] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In Code Generation and Optimization,

2004. CGO 2004. International Symposium on, pages 75–86. IEEE, 2004.

[78] SeungIl Lee, Byung-Sun Yang, and Soo-Mook Moon. Efficient Java exception

handling in just-in-time compilation. Softw. Pract. Exper., 34(15):1463–1480,

December 2004. ISSN 0038-0644. doi: 10.1002/spe.v34:15. URL

http://dx.doi.org/10.1002/spe.v34:15.

[79] Markus Levy. EEMBC and the purposes of embedded processor benchmarking.

In Proceedings of the International Symposium on Performance Analysis of

Systems and Software,, page 1. IEEE, 2005. doi:

http://doi.ieeecomputersociety.org/10.1109/ISPASS.2005.1430553.

[80] Mieszko Lis, Pengju Ren, Myong Hyon Cho, Keun Sup Shim, Christopher W.

Fletcher, Omer Khan, and Srinivas Devadas. Scalable, accurate multicore

simulation in the 1000-core era. In Proceedings of the IEEE International

Symposium on Performance Analysis of Systems and Software, ISPASS ’11, pages

175–185, Washington, DC, USA, 2011. IEEE Computer Society. ISBN

978-1-61284-367-4. doi: 10.1109/ISPASS.2011.5762734. URL

http://dx.doi.org/10.1109/ISPASS.2011.5762734.

[81] Chien-Te Liu, Kuan-Chung Chen, and Chung-Ho Chen. CASL hypervisor and its

virtualization platform. In 2013 IEEE International Symposium on Circuits and

Systems (ISCAS), pages 1224–1227, May 2013. doi:

10.1109/ISCAS.2013.6572073.

http://doi.acm.org/10.1145/2367589.2367599
http://dx.doi.org/10.1007/s10766-005-3573-7
http://dx.doi.org/10.1002/spe.v34:15
http://dx.doi.org/10.1109/ISPASS.2011.5762734

158 Bibliography

[82] I-Chun Liu, I-Wei Wu, and Jean Jyh-Jiun Shann. Instruction emulation and OS

supports of a hybrid binary translator for x86 instruction set architecture. In

2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015

IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th

Intl Conf on Scalable Computing and Communications and Its Associated

Workshops (UIC-ATC-ScalCom), pages 1070–1077. IEEE, 2015.

[83] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation. In

ACM Sigplan Notices, volume 40, pages 190–200. ACM, 2005.

[84] Mingsong Lv, Qingxu Deng, Nan Guan, Yaming Xie, and Ge Yu. ARMISS: An

instruction set simulator for the ARM architecture. In International Conference

on Embedded Software and Systems, ICESS ’08, pages 548–555, 2008. doi:

10.1109/ICESS.2008.73.

[85] Peter S. Magnusson and Bengt Werner. Some efficient techniques for

simulating memory. Technical Report R94, Swedish Institute of Computer

Science technical report, 1994.

[86] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,

Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and

Bengt Werner. Simics: a full system simulation platform. j-COMPUTER, 35(2):

50–58, February 2002. ISSN 0018-9162 (print), 1558-0814 (electronic). URL

http://dlib.computer.org/co/books/co2002/pdf/r2050.pdf;

http://www.computer.org/computer/co2002/r2050abs.htm.

[87] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,

Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and

Bengt Werner. Simics: A full system simulation platform. Computer, 35(2):

50–58, February 2002. ISSN 0018-9162. doi: 10.1109/2.982916. URL

http://dx.doi.org/10.1109/2.982916.

[88] Mark Lord. hdparm(8): get/set SATA/IDE device parameters, 2012. URL

http://linux.die.net/man/8/hdparm.

[89] Dirk Merkel. Docker: Lightweight Linux containers for consistent development

and deployment. Linux J., 2014(239), March 2014. ISSN 1075-3583. URL

http://dl.acm.org/citation.cfm?id=2600239.2600241.

http://dlib.computer.org/co/books/co2002/pdf/r2050.pdf; http://www.computer.org/computer/co2002/r2050abs.htm
http://dlib.computer.org/co/books/co2002/pdf/r2050.pdf; http://www.computer.org/computer/co2002/r2050abs.htm
http://dx.doi.org/10.1109/2.982916
http://linux.die.net/man/8/hdparm
http://dl.acm.org/citation.cfm?id=2600239.2600241

Bibliography 159

[90] Timothy Merrifield and H. Reza Taheri. Performance implications of extended

page tables on virtualized x86 processors. In Proceedings of the 12th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

VEE ’16, pages 25–35, New York, NY, USA, 2016. ACM. ISBN

978-1-4503-3947-6. doi: 10.1145/2892242.2892258. URL

http://doi.acm.org/10.1145/2892242.2892258.

[91] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for

multicores. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th

International Symposium on, pages 1–12, Jan 2010. doi:

10.1109/HPCA.2010.5416635.

[92] Ryan W. Moore, José A. Baiocchi, Bruce R. Childers, Jack W. Davidson, and

Jason D. Hiser. Addressing the challenges of DBT for the ARM architecture. In

Proceedings of the 2009 ACM SIGPLAN/SIGBED Conference on Languages,

Compilers, and Tools for Embedded Systems, LCTES ’09, pages 147–156, New

York, NY, USA, 2009. ACM. ISBN 978-1-60558-356-3. doi:

10.1145/1542452.1542472. URL

http://doi.acm.org/10.1145/1542452.1542472.

[93] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow,

Mark D. Hill, David A. Wood, Steven Huss-Lederman, and James R. Larus.

Wisconsin Wind Tunnel II: A fast, portable parallel architecture simulator. IEEE

Concurrency, 8(4):12–20, October 2000. ISSN 1092-3063. doi:

10.1109/4434.895100. URL

http://dx.doi.org/10.1109/4434.895100.

[94] Oracle. VirtualBox, 2016. URL https://www.virtualbox.org/. Retreived

23-August-2016.

[95] David Ott. Virtualization and performance: Understanding VM exits, 2009.

URL https://software.intel.com/en-us/blogs/2009/06/25/

virtualization-and-performance-understanding-vm-exits.

Retrieved 07-June-2016.

[96] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSS: A full system simulator for

multicore x86 CPUs. In Design Automation Conference (DAC), 2011 48th

ACM/EDAC/IEEE, pages 1050–1055, June 2011.

http://doi.acm.org/10.1145/2892242.2892258
http://doi.acm.org/10.1145/1542452.1542472
http://dx.doi.org/10.1109/4434.895100
https://www.virtualbox.org/
https://software.intel.com/en-us/blogs/2009/06/25/virtualization-and-performance-understanding-vm-exits
https://software.intel.com/en-us/blogs/2009/06/25/virtualization-and-performance-understanding-vm-exits

160 Bibliography

[97] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSSx86: A Full

System Simulator for x86 CPUs. In Proceedings of the Design Automation

Conference, DAC ’11, 2011.

[98] Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne, Bjorn De Sutter,

and Koen De Bosschere. Formal virtualization requirements for the ARM

architecture. J. Syst. Archit., 59(3):144–154, March 2013. ISSN 1383-7621.

doi: 10.1016/j.sysarc.2013.02.003. URL

http://dx.doi.org/10.1016/j.sysarc.2013.02.003.

[99] Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne, Bjorn De Sutter,

and Koen De Bosschere. Evaluation of dynamic binary translation techniques

for full system virtualisation on ARMv7-A. Journal of Systems Architecture, 65:

30–45, 2016.

[100] Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne, Bjorn De Sutter,

and Koen De Bosschere. Evaluation of dynamic binary translation techniques

for full system virtualisation on ARMv7-A. Journal of Systems Architecture, 65:

30–45, 2016. doi: http://dx.doi.org/10.1016/j.sysarc.2016.03.001.

[101] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable

third generation architectures. Commun. ACM, 17(7):412–421, July 1974.

ISSN 0001-0782. doi: 10.1145/361011.361073. URL

http://doi.acm.org/10.1145/361011.361073.

[102] Wei Qin and S. Malik. Flexible and formal modeling of microprocessors with

application to retargetable simulation. In Design, Automation and Test in Europe

Conference and Exhibition, pages 556–561, 2003. doi:

10.1109/DATE.2003.1253667.

[103] Rusty Russell. VirtIO: Towards a de-facto standard for virtual I/O devices.

SIGOPS Oper. Syst. Rev., 42(5):95–103, July 2008. ISSN 0163-5980. doi:

10.1145/1400097.1400108. URL

http://doi.acm.org/10.1145/1400097.1400108.

[104] Frederick Ryckbosch, Stijn Polfliet, and Lieven Eeckhout. Fast, accurate, and

validated full-system software simulation of x86 hardware. IEEE Micro, 30(6):

46–56, November 2010. ISSN 0272-1732. doi: 10.1109/MM.2010.95. URL

http://dx.doi.org/10.1109/MM.2010.95.

http://dx.doi.org/10.1016/j.sysarc.2013.02.003
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/1400097.1400108
http://dx.doi.org/10.1109/MM.2010.95

Bibliography 161

[105] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and accurate

microarchitectural simulation of thousand-core systems. In Proceedings of the

40th Annual International Symposium on Computer Architecture, ISCA ’13,

pages 475–486, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2079-5.

doi: 10.1145/2485922.2485963. URL

http://doi.acm.org/10.1145/2485922.2485963.

[106] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and

D. Black-Schaffer. Full speed ahead: Detailed architectural simulation at

near-native speed. In 2015 IEEE International Symposium on Workload

Characterization (IISWC), pages 183–192, Oct 2015. doi:

10.1109/IISWC.2015.29.

[107] Eric Schnarr and James R. Larus. Fast out-of-order processor simulation using

memoization. In Proceedings of the Eighth International Conference on

Architectural Support for Programming Languages and Operating Systems,

ASPLOS VIII, pages 283–294, New York, NY, USA, 1998. ACM. ISBN

1-58113-107-0. doi: 10.1145/291069.291063. URL

http://doi.acm.org/10.1145/291069.291063.

[108] Tom Spink, Harry Wagstaff, Björn Franke, and Nigel Topham. Efficient code

generation in a region-based dynamic binary translator. In Proceedings of the

2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for

Embedded Systems, pages 3–12. ACM, 2014.

[109] Costas Stylianou. Speeding up the Android Emulator on Intel architecture,

2013. URL

https://software.intel.com/en-us/android/articles/

speeding-up-the-android-emulator-on-intel-architecture.

Retrieved 24-August-2016.

[110] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A region-based

compilation technique for a Java just-in-time compiler. In Proceedings of the

ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation, PLDI ’03, pages 312–323, New York, NY, USA, 2003. ACM.

ISBN 1-58113-662-5. doi: 10.1145/781131.781166. URL

http://doi.acm.org/10.1145/781131.781166.

[111] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. A region-based

compilation technique for dynamic compilers. ACM Trans. Program. Lang. Syst.,

http://doi.acm.org/10.1145/2485922.2485963
http://doi.acm.org/10.1145/291069.291063
https://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
https://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
http://doi.acm.org/10.1145/781131.781166

162 Bibliography

28(1):134–174, January 2006. ISSN 0164-0925. doi:

10.1145/1111596.1111600. URL

http://doi.acm.org/10.1145/1111596.1111600.

[112] Synopsys. Virtual Prototyping, 2016. URL https://www.synopsys.com/

Prototyping/VirtualPrototyping/Pages/default.aspx. Retrieved

17-May-2016.

[113] Robert Tarjan. Depth first search and linear graph algorithms. SIAM Journal on

Computing, 1972.

[114] N Topham. EnCore: A low-power extensible embedded processor. In

Presentation at HiPEAC Industrial Workshop, 2009.

[115] David Ung and Cristina Cifuentes. Machine-adaptable dynamic binary

translation. In Proceedings of the ACM SIGPLAN Workshop on Dynamic and

Adaptive Compilation and Optimization, DYNAMO ’00, pages 41–51, New York,

NY, USA, 2000. ACM. ISBN 1-58113-241-7. doi: 10.1145/351397.351414.

URL http://doi.acm.org/10.1145/351397.351414.

[116] David Ung and Cristina Cifuentes. Optimising hot paths in a dynamic binary

translator. SIGARCH Comput. Archit. News, 29(1):55–65, March 2001. ISSN

0163-5964. doi: 10.1145/373574.373590. URL

http://doi.acm.org/10.1145/373574.373590.

[117] VMware. A performance comparison of hypervisors. Technical report, VMware,

2007. URL

https://www.vmware.com/pdf/hypervisor_performance.pdf.

[118] VMware. Performance evaluation of Intel EPT hardware assist. Technical

report, VMware, 2009. URL

https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf.

[119] VMware. Server consolidation, 2016. URL

http://www.vmware.com/uk/consolidation/overview. Retrieved

18-May-2016.

[120] VMware. VMware ESXi, 2016. URL

http://www.vmware.com/products/esxi-and-esx.html. Retrieved

24-August-2016.

http://doi.acm.org/10.1145/1111596.1111600
https://www.synopsys.com/Prototyping/VirtualPrototyping/Pages/default.aspx
https://www.synopsys.com/Prototyping/VirtualPrototyping/Pages/default.aspx
http://doi.acm.org/10.1145/351397.351414
http://doi.acm.org/10.1145/373574.373590
https://www.vmware.com/pdf/hypervisor_performance.pdf
https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
http://www.vmware.com/uk/consolidation/overview
http://www.vmware.com/products/esxi-and-esx.html

Bibliography 163

[121] Harry Wagstaff, Miles Gould, Björn Franke, and Nigel Topham. Early partial

evaluation in a JIT-compiled, retargetable instruction set simulator generated

from a high-level architecture description. In Proceedings of the Annual Design

Automation Conference, DAC ’13, pages 21:1–21:6, New York, NY, USA, 2013.

ACM. ISBN 978-1-4503-2071-9. doi: 10.1145/2463209.2488760. URL

http://doi.acm.org/10.1145/2463209.2488760.

[122] Harry Wagstaff, Tom Spink, and Björn Franke. Automated ISA branch coverage

analysis and test case generation for retargetable instruction set simulators. In

Compilers, Architecture and Synthesis for Embedded Systems (CASES), 2014

International Conference on, pages 1–10. IEEE, 2014.

[123] Huang Wang, Chao Wang, and Huaping Chen. XEMU: A cross-ISA full-system

emulator on multiple processor architectures. International Journal of High

Performance Systems Architecture, 5(4):228–239, 2015.

[124] Huang Wang, Xianglan Chen, and Huaping Chen. A cross-ISA kernelized

high-performance parallel emulator. International Journal of Parallel

Programming, 44(6):1118–1141, 2016. ISSN 1573-7640. doi:

10.1007/s10766-015-0379-0. URL

http://dx.doi.org/10.1007/s10766-015-0379-0.

[125] Zhe Wang, Jianjun Li, Chenggang Wu, Dongyan Yang, Zhenjiang Wang,

Wei-Chung Hsu, Bin Li, and Yong Guan. HSPT: Practical implementation and

efficient management of embedded shadow page tables for cross-ISA system

virtual machines. In Proceedings of the 11th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, pages 53–64. ACM,

2015.

[126] John Whaley. Partial method compilation using dynamic profile information. In

Proceedings of the 16th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA ’01, pages

166–179, New York, NY, USA, 2001. ACM. ISBN 1-58113-335-9. doi:

10.1145/504282.504295. URL

http://doi.acm.org/10.1145/504282.504295.

[127] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine

simulation. In Proceedings of the 1996 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, SIGMETRICS

’96, pages 68–79, New York, NY, USA, 1996. ACM. ISBN 0-89791-793-6. doi:

http://doi.acm.org/10.1145/2463209.2488760
http://dx.doi.org/10.1007/s10766-015-0379-0
http://doi.acm.org/10.1145/504282.504295

164 Bibliography

10.1145/233013.233025. URL

http://doi.acm.org/10.1145/233013.233025.

[128] Liao Yin, Jiang Haitao, Sun Guangzhong, Jin Guojie, and Chen Guoliang.

Improve indirect branch prediction with private cache in dynamic binary

translation. In International Conference on High Performance Computing and

Communication and International Conference on Embedded Software and Systems

(HPCC-ICESS), pages 280–286, 2012. doi: 10.1109/HPCC.2012.45.

[129] Seehwan Yoo, Kuen-Hwan Kwak, Jae-Hyun Jo, and Chuck Yoo. Toward

under-millisecond I/O latency in Xen-ARM. In Proceedings of the Second

Asia-Pacific Workshop on Systems, APSys ’11, pages 14:1–14:5, New York, NY,

USA, 2011. ACM. ISBN 978-1-4503-1179-3. doi: 10.1145/2103799.2103816.

URL http://doi.acm.org/10.1145/2103799.2103816.

[130] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitectural

simulator. In Performance Analysis of Systems Software, 2007. ISPASS 2007.

IEEE International Symposium on, pages 23–34, April 2007. doi:

10.1109/ISPASS.2007.363733.

http://doi.acm.org/10.1145/233013.233025
http://doi.acm.org/10.1145/2103799.2103816

	cover sheet
	thesis
	Introduction
	Background
	Motivation
	Overview & Contributions

	Background & Related Work
	Terminology
	Overview
	Definitions

	Instruction Emulation
	Interpretation
	Dynamic Binary Translation
	Translation Granularity
	Region-based DBT Systems
	Code Generation and Optimisation in DBT Systems
	DBT Systems using LLVM for JIT Compilation

	Interrupt Handling
	Virtual Machines

	MMU Virtualisation
	User-mode Simulation
	Hardware Virtualisation
	Same-architecture Virtualisation
	Cross-architecture Virtualisation

	Summary

	Infrastructure
	GenSim
	High-level Architecture Description
	Output Components
	Automated Model Testing

	ArcSim
	LLVM Compiler Infrastructure

	Captive
	KVM
	Intel VT

	QEMU
	Evaluation
	Guest Architecture and Platform
	SPEC-CPU2006 Benchmark Suite
	EEMBC Benchmark Suite
	Choice of Benchmarks

	Efficient Dynamic Binary Translation
	Introduction
	Key Ideas
	Motivating Example
	Contributions
	Overview

	Background
	Region Compilation
	Region Selection

	Methodology
	Region Entry Optimisation
	Translation Lookup Cache
	Branching
	Region Chaining
	Region Registration in Translation Caches
	Continuous Profiling and Recompilation
	Host Machine Code Generation

	Experimental Evaluation
	Experimental Methodology
	Experimental Results for SPEC-CPU2006
	Impact of Optimisations
	JIT Compilation Performance

	Summary & Conclusions

	Efficient Interrupt Virtualisation
	Introduction
	Key Idea
	Motivating Example
	Contributions
	Overview

	DBT Granularity and the Problem of Inserting Interrupt Checks
	Region-based Interrupt Checking
	Avoiding Interrupt Edge Bloat
	Interrupt Check Placement Schemes
	Servicing an Interrupt

	Experimental Evaluation
	Experimental Methodology
	Experimental Setup
	Key Results for I/O-bound Workloads
	Key Results for CPU-bound Workloads
	Further Analysis

	Summary & Conclusions

	Hardware Accelerated Cross-architecture Virtualisation
	Introduction
	Key Idea
	Motivating Example
	Contributions
	Overview

	Background
	KVM
	Intel VT

	Virtualisation Infrastructure
	System Components
	Overview
	CPU Virtualisation
	MMU Virtualisation
	Device Virtualisation
	IRQ Virtualisation

	Experimental Evaluation
	Experimental Setup
	Key Results
	Comparison to Existing Techniques
	I/O Performance
	Additional Hardware Support for MMU Virtualisation
	Slow-down over Native Execution on High-End Hardware

	Summary & Conclusions

	Conclusions
	Contributions
	Efficient Dynamic Binary Translation
	Efficient Interrupt Virtualisation
	Hardware Accelerated Cross-architecture Virtualisation

	Critical Analysis
	GenSim Limitations
	Significantly Different Memory Management Units
	Assumptions

	Future Work
	Efficient Interrupt Virtualisation
	Hardware Accelerated Cross-architecture Virtualisation

	Summary and Final Remarks

	Bibliography

