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How deep do we dig, and for how coarse gold! 

And what other touchstone have we of our gold 

but comparison, whether we be as happy as others, 

or as ourselves at other times? 

John Donne (1624) 



ABSTRACT 

The inference of electrical conductivity at some 

depth within the Earth from a finite set of surface 

induction data is a non-unique problem in the sense that 

a range of conductivity distributions may conceivably 

give rise to such data. 	Interpreting surface data 

requires some form of generalized inversion procedure 

which can characterize the space of models which comprises 

this non-uniqueness. 	In this thesis we discuss the 

application of the generalized linear inverse formalism 

of Backus and Gilbert (1967, 1968, 1970) to the induction 

problem, and particular attention is directed to its 

application to the magnetotelluric response of a half-

space with a one-dimensional conductivity distribution. 

This inverse problem finds very simple expression 

analytically. 	Thus the magnetotelluric problem is 

particularly suitable for studying (by synthetic example) 

the inverse induction problem. 

The inverse formalism of Backus and Gilbert is easily 

discretized to accommodate models parameterized as 

horizontal strata. 	Under this discretization the 

relevant Frchet kernels are generated from well-known 

recursion formulae. 	The formalism requires a quasi- 

linear representation of a non-linear relationship between 

surface data and the model, and for simple cases it is 

possible to inspect some higher-order terms associated 



with this linearization. 	This can indicate some parts 

of the model space where the linearization loses validity. 

Some theoretical discussion is made of the uniqueness 

of the induction problem for discretized models. 	An 

instructive way of visualizing the impedance at the 

surface of a stratified conductor is offered. 

In order to locate acceptable models from reasonable 

guessed models, the least-squares inverse procedure 

(Backus and Gilbert, 1967) is applied to synthetic sets 

of magnetotelluric data. 	Since this optimization problem 

generally results in a system of equations both under-

determined and overconstrained, the iterative procedure 

often requires to be stabilized. 	The method of ranking 

and winnowing (Gilbert, 1971) is employed to effect such 

a stabilization. 	The procedure is applied to some 

experimental sets of data with a particular view to 

discovering the implication of phase data when it is added 

to a set of amplitude data. 

The model resolution -- as defined by Backus and 

Gilbert (1968) -- attached to a set of induction data is 

studied for some synthetic cases. 	Some comparison is 

made (in terms of model resolution) between magneto-

telluric data represented as amplitude and phase, and 

then as real and imaginary parts of the complex surface 

impedance. 	Study is also made of the implication of 

error to the resolution of magnetotelluric data. 	The 

inverse theory of Backus and Gilbert (1970) for erroneous 



data is described and various illustrations of the 

trade-off relationship between error and resolution of 

localized averages of the conductivity are presented. 

Various suggestions are offered about the directions 

in which this work could proceed. 
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r'TTA Thmr'T. I 

INTRODUCTION 

1.1 Preliminary Remarks 

There exists a class of geophysical problems which 

concern themselves with the inference of internal Earth 

structure from a set of measurements made at the Earth's 

surface. 	This inference problem can be described as an 

'inverse problem', since mathematically it can be posed as 

a problem of discovering a governing equation from 

knowledge of the solution to that equation on a closed 

boundary (i.e. on the Earth's surface). 	We shall be 

interested here in studying the inference of models for 

the Earth's electrical conductivity from measured surface 

values of the time-varying component of the geomagnetic 

field. 	Before entering into discussion of this inverse 

problem, a few general remarks of a somewhat philosophical 

nature will be directed towards the matter of finding 

models. 

Modelling is strictly the-simulation of natural 

structures (or natural processes) in a form which is 

adjustable. 	A simulation, or model, can be made to 

conform to evident reality by adjustment of a set of 

variables -- this set is called the space of model 

variables, or model space. 	Once a working model has been 

constructed, one can use trial and error methods to make 
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the model more 'realistic'. 	Alternatively one can 

systematize the problem of improving a model by posing it 

as an optimization problem. 	Also one can seek to find 

direct equations or mappings which will indicate adequate 

models. 	Whatever the mechanics of the modelling 

procedure, implicit in the design of any model there are 

arbitrary constraints. 	Of course, there are also 

constraints which are not arbitrary since they are 

determined by physical law. 	But in addition to these, 

there is also a class of constraints associated with the 

way in which the space of model parameters is ordered: 

that is, by considerations of geometry, efficiency, or 

mathematical convenience. 	Indeed, the 'material' out of 

which one constructs a model must itself be intrinsically 

constraining. 

For a model to be revealing, proper account must be 

taken of the arbitrary constraints within which one is 

allowing the model to vary. 	By way of historical 

illustration of this point, one might recall the great 

variety of pre-Copernican models which were proposed for 

the Earth. 	Differing in many respects, they form a 

strong consensus on the question of the Earth's shape. 

With the considerable advantage of hindsight, we can now 

recognize that those early geophysicists burdened their 

models with an unfortunate (and arbitrary) constraint. 

As a consequence, their models reveal less about the 

natural structure of the Earth than they do about the 
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preconceptions of their era. 	Always in one's mind must 

be the uncomfortable question: how can a given model 

reflect personal bias -- or more innocently reflect bias 

which is random, or structural, but nevertheless 

arbitrary. 

A. T. Price (1973) provides some cautionary advice: 

"One of the dangers we have to guard against is that of 

including some feature in our Earth model, for mathematical 

convenience or simplicity, and then drawing inferences 

from the results of our mathematical solution about some 

feature in the real Earth, whereas this stems only from 

the particular model we have chosen." 

Viewed in this cautious manner, modelling may seem a 

rather unattractive method of inferring Earth structure. 

Is there another way? 	Naively one can ask whether an 

equation or formula can be devised which would map our 

surface observations directly into an acceptable model. 

Such a mapping would have particular power if it possessed 

the property of uniqueness: we would then insert our 

surface data into the formula, and the formula would 

simply supply us with the conductivity distribution within 

the Earth. 	As we shall see (from a result by Bailey 

(1970) ), even if such a mapping exists, uniqueness need 

not be expected unless our surface data satisfy rather 

stringent conditions. 	Practically, we can expect a 

direct mapping to supply one of a family of possible 

models which are acceptable. 	Direct mappings have the 
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advantage that any bias which appears in the resulting 

model must be impersonal and intrinsic to the mathematics. 

It has been the particular insight of Backus and 

Gilbert (1967, 1968, 1970) that the inverse problem in its 

totality must involve not only the discovery of acceptable 

models, but also the characterization of the space of 

acceptable models. 	To this end they have developed a 

language with which to address the total inverse problem; 

the theory, called Generalized Inverse Theory, has found 

alternative formulation by Lanczos (1961) and others. 

This Generalized Inverse formulation is a theory designed 

to deal with the inference of models from a finite set of 

surface data -- as such it is an extension of modelling 

procedures which have been used previously. 	And, as a 

modelling procedure, the cautionary advice of Professor 

Price must still be borne in mind. 

Perhaps from induction data one can achieve only the 

most ambiguous notion of the general distribution of 

conductivity over the upper eight hundred or so kilometers 

of the Earth. 	Or, on a more local scale, perhaps 

inductive soundings may be acceptably explained by so many 

distinct conductivity structures that, in a word, our data 

resolves nothing about the conductivity structure in the 

Earth. 

Of course, this is to speculate rather bleakly. 	But 

if uncomfortable possibilities are to be meaningfully 

dispelled, one must learn to use a quantative language 
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with which to discuss resolution. 	Also, one must try to 

explore, qualitatively and systematically, the space of 

acceptable models associated with a given data set. 	One 

must seek to learn from our knowledge of the physics and 

mathematics of induction phenomena (and from an under-

standing of the total inverse problem) how one might 

improve the resolving power of our data. 	In this respect 

one may look profitably to the work of Parker (1970) for 

the direction in which we should proceed. 

1.2 The 'Forward Problem' and the 'Inverse Problem' 

Since the terms 'inverse problem' and 'inversion 

procedure' have come to assume a variety of meanings in 

geophysical literature, we shall here offer a brief formal 

explanation of the sense in which we shall use these 

expressions. 	We are interested to acquire some knowledge 

of a distribution of physical parameters in a (Cartesian 

or curvilinear) space V enclosed by a boundary V, by 

measuring the surface effects on V of physical processes 

taking place inside V. 

-av 

To approach this problem we can formulate two types of 

mathematical procedure. 	If the physical parameters are 



assumed to be known, one can set up the differential 

equation which describes the physical processes, and solve 

the resulting boundary value problem for the measurable 

effect on the surface aV. 	This is called the forward 

problem, and is a familiar pursuit of theoretical 

geophysicists. 	Expressed in crude terms, one can 

consider physical law as an 'operator' operating on the 

physica-1 parameters defined in V (as well as any other 

relevant physical variables which might, enter the problem). 

This maps these variables onto a space of responses 

defined on the surface ~V. 	Symbolically we can write: 

M 	
çphysical parameter s1 	 Isurface response

j  in 
. 	

j Y 	 on ?V 

The mapping will generally be unique, since a given 

specified physical situation will give rise to a single 

surface response. 	(If this were not the case one would 

be entering the realm of stochastic processes). 	For the 

induction problem the forward problem consists of solving 

Maxwell's equations in a given geometry and for a 

specified distribution of conductivity. 	One solves for 

electromagnetic fields at the surface V, or for some 

derivative of these fields, or perhaps some ratio of these 

fields. ' Some details of this problem are discussed in 

Chapter 3. 	It will be noted that in an important sense 

the 'forward' induction problem is linear: 	if 	is a 

solution to Maxwell's equations, and 'Y.'2 is an independent 

solution to Maxwell's equations, then the superposition of 
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+ 	is also a solution to Maxwell's equations. 

Thus the solution to the forward problem is said to be 

linear. 	The mapping, for the induction problem, can be 

described 

M: 	P(V, s ) 	 1-C( ~V) 

This is to say that a collection of real parameters 

associate.d with the space V and source, s, are mapped onto 

a (complex) space of responses defined over the boundary 

DV. 

How the forward mapping can be used to infer know-

ledge of the Earth's interior will be described in the 

following Section. 

Broadly speaking the inverse problem concerns itself 

with the operator M-1 

M _ 1 : 	-( D V ) 	 > P ( V , s 

With the knowledge of the surface response on )V, one 

seeks an operator which will map this response into the 

set of physical parameters defined in V (and very 

generally, also into those parameters associated with the 

source, s). 	Such a mapping, if it exists, may well not 

possess the property of uniqueness: a given response 

might be explicable in terms of a variety of physical 

variables. 	Even if the forward mapping, M, is linear in 

the sense we have discussed, it does not follow that the 

inverse mapping is in any sense linear. 	Indeed for a 

wide class of geophysical problems the inverse mapping is 
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decidedly non-linear in the following sense: if a 

variable distribution P 1  gives rise to the response 

and the distribution P 2  gives 	rise to the response 

then it may not be true that P 1  + P 2  gives rise 	to the 

response ''l + 

In general, to pursue the inverse problem, a rather 

intimate knowledge of the forward problem is required. 

In particular, one commonly requires some knowledge of the 

partial derivatives of the response with respect to all 

the chosen model parameters (either explicitly or in the 

form of some kernel). 

1.3 Direct Modelling 

In 1889 Schuster, acting upon a suggestion of Gauss, 

performed a spherical harmonic analysis of the time-

varying component of the geomagnetic field, considering 

specifically daily variations. 	He was able to show that 

the larger part of this field was of external origin (an 

origin since understood to be ionospheric) and the smaller 

part was consistent with that expected from current 

induced in the Earth by the external part of the field. 

Schuster relied upon Maxwell's general formulation (1873) 

of the electromagnetic forward problem, and Lamb's (1883) 

solution to the problem of induction in a uniformly 

conducting sphere. 	Chapman (1919)  made a quantative 

analysis of quiet-day variations, and by obtaining 

amplitude ratios of the internal to external parts of the 



field, and from the phase difference between these 

components, he was able to propose a model of the Earth's 

conductivity consisting of an inner sphere of radius 

0.96 a (a is the Earth's radius) and conductivity 

0.036 ohm 1 m 1 . 	This conducting sphere is overlain by a 

non-conductor of depth (approximately) 240 km. 	This was 

found, by trial and error, to be an acceptable model in 

the sense that it gave rise to a theoretical response in 

reasonable agreement with the analysed data. 	The set of 

models from which Chapman had to find an acceptable model 

was arbitrarily constrained to be that set of models 

consisting of non-conducting upper layer and a conducting 

inner sphere of radius q  a  (q < 1) and conductivity o 

Thus the matter of finding an acceptable model involved 

the adjustment of two parameters,q and a . 	This first 

attempt to infer the conductivity distribution of the 

Earth has proved very influential in subsequent research. 

Price (1970) has pointed out that the constraint imposed 

in 'the two-parameter modelling undertaken by Chapman was 

an expedient for achieving mathematical simplicity. 

Investigations subsequent to Chapman's have shown 

that as one considers less and less constrained models, 

there emerges an increasingly wide family of acceptable 

models. 	Chapman and Price (1930) studied the inductive 

response of the Earth to aperiodic variations, such as 

those associated with sudden commencement magnetic storms. 

Again performing spherical analysis, and applying trial 
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and error methods to the constrained two-parameter model 

previously considered by Chapman, they found an acceptable 

model to consist of an inner sphere of radius 0.94 a with 

conductivity 0.44 ohm 1m. 	This conductivity is an 

order of magnitude greater than was previously obtained by 

Chapman (1919) for the different sources associated with 

variations of daily periodicity. 	Sudden commencement 
(I 

storms are characteristically impulses with a time-width 

of a few hours, and a recovery time of several days. 

Chapman and Price showed that they penetrated to greater 

depth in the Earth than daily variations. 	They concluded 

that the higher conductivity associated with analyses of 

sudden commencement storm data indicated greater 

conductivity at depth. 	Of course, a model consistent 

with all data was sought. 	The discrepancy between the 

models obtained from periodic data with those obtained 

from aperiodic data has its explanation in the manner in 

which the space of conceivable models is constrained. 

To make the model space less constrained, Lahiri and 

Price (1939) examined the forward problem for a family of 

conductivity distributions given by 

- m 
r(r) = 	 (1.3.1) 

where .A = q a,  q < 1, and m is any real number. 	is a 

real constant. 	In this way a set of continuous 

distributions could be investigated which were specified 

by three discrete parameters ( ( , q, m). 	An attempt was 
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made to search out a model in this class which would 

satisfy both periodic daily variation data, and sudden 

commencement storm data. 	Lahiri and Price were not 

successful but found that, if a thin conducting layer were 

included at the Earth's surface, a range of acceptable 

conductivity profiles could be found (by trial and error). 

which would satisfy the complete data set. 	In Fig. 1-1 

models 'd' and 'e' are an illustration of such profiles. 

The models (now including the surface layer) consist of 

four adjustable parameters; even so the specific 

structure of equation (1.3.1) may effectively exclude a 

wider set of acceptable models. 

Since this pioneering work by Chapman, Price, Lahiri, 

and others, there have been many other attempts to infer 

the global conductivity distribution from wider ranges of 

variation fields (Rik..,take, 1950, 1966; Price and 

Wilkins, 1963; Yukutake, 1959; 	etc.). 	Price (1970) has 

pointed out that much of the work subsequent to Lahiri and 

Price (1939) has been based on the same parameterization 

of the model, i.e. equation (1.3.1). 	Of course, this 

parameterization is arbitrary. 	Most of the models 

proposed since Lahiri and Price resemble the models of 

Fig. 1-1 in the sense that they all indicate a sharp 

increase in conductivity between 400 km and 800 km from 

the Earth's surface. 	Despite this common feature, there 

is a wide range of models achieved from these analyses, 

as is shown in Fig. 1-2. 



FIG. 1-1 The models of Lahiri and Price. 	The 

conductivity distributions 'a', 'b' 	and 'C' 

satisfy daily variation data. Models 'd' 

and 'e' satisfy daily variation and storm 

(Dst) data; these latter have a conducting 

layer at the surface. 

and Price (1939) ). 

(Diagram after Lahiri 

FIG. 1-2 	Some more recent models for the Earth's 

conductivity. 	The model 'MI, the MacDonald- 

Price model, is determined from a composite 

data set of magnetic variation data, and the 

main geomagnetic field diffusion data. 

Model 'Y' (Yukatake (1959) ) is determined 

exclusively from main field diffusion. 

Model 'R' is determined from an analysis of 

various magnetic variations by Rikitake 

(1966). 	Figure after Riktake, 1966. 
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A recent analysis of periodic daily variation data, 

that of Banks (1969), does not rely on the four-parameter 

model family studied by Lahiri and Price. 	Banks 

generated his theoretical surface response from a set of 

concentric layers. 	By trial and error Banks then 

inferred the distribution indicated in Fig. 1-3. 	Again 

one observes the steep rise in conductivity at a depth of 

some 400 km (0.94 a). 

Price (1970, 1973) raises questions concerning the 

common feature of all the proposed models to date -- the 

steep rise in conductivity at 400 km. 	Price asks whether 

there is conclusive geomagnetic evidence for this 

(so-called) 'discontinuity'; 	or can it.be a pre- 

suppositibn (innocently originating from the two-layer 

models of Chapman (1919) and Chapman and Price (1930) 

which enters subjectively into our choice of models? 

Recent geothermal speculation and seismic models of the 

mantle may so subtly condition our search for plausible 

models, that the unifying feature of Figs. 1-1, 1-2, and 

1-3 may itself be unrelated to magnetic evidence. 	Price 

does add that, personally, he believes the 'discontinuity' 

to be real. 

We see from the beginning, a variety of global models 

were found to be consistent with geomagnetic data. 

Exactly what factors can contribute to this observed 

variety? 	Of course data collection has improved over the 

years, and harmonic analyses of data have become more 
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FIG. 1-3 Conductivity models determined from daily 

variation observatory data published and 

analysed by Banks (1969). 	The dashed line is 

the model of Banks. 	The dotted line indicates 

the model suggested by Parker (1970) in his 

application of Backus-Gilbert inversion to 

Banks' data. 
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sophisticated. 	But considerable differences of opinion 

still seem to exist, especially concerning the matter of 

attributing experimental and statistical error to response 

estimates. 	Presumptions about the source harmonics 

associated with particular variations may yet be proven 

incorrect or misleading. 	And surface structure -- 

particularly the oceans -- may significantly influence 

daily variation data (as Chapman and Whithead (1923) have 

predicted). 	But all these considerations arise from an 

imperfect understanding of the data. 	There is an equally 

fundamental question related to the range of non-

uniqueness to be expected from perfectly understood data. 

To address the question of what exactly geomagnetic 

evidence can infer (independently of all other evidence or 

speculation) one needs to characterize the space of 

acceptable conductivity models and to develop some 

quantitative notion of the resolving power of geomagnetic 

data. 	But these ideas are related to the inverse problem 

which will be discussed later. 

With the advent of computers the trial and error 

methods for finding acceptable models can be systematized. 

The problem of personal bias entering into the modelling 

problem can be mitigated by the process of selecting 

models randomly, then testing these models against some 

preset criteria of acceptability. 	The procedure, often 

called the 'Monte Carlo Procedure', has been applied to 

the global induction problem by Anderssen (1968, 1970) 
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but only for storm time data. 	If the selection of trial 

models is truly unbiased and sufficiently thorough, 

representative elements of the space of acceptable models 

may be isolated. 	In fact, to improve the efficiency of 

the search for models, some a priori bounds are usually 

constructed, within which the search for models is 

limited. 	It should be noted that Monte Carlo procedures 

(as in all modelling procedures) are still constrained by 

the chosen parameterization of the model. 

To investigate near-surface conductivity structure, 

Cagnaird (1953) introduced a method of single-station 

prospecting in which the conductivity distribution is 

inferred from measurements of the total tangential 

electric field at the surface of the Earth along with the 

orthogonal total tangential magnetic field. 	In fact, 

for the magnetotelluric method as it is called, one uses 

a response 

1 	'El 2  

fa 	-;- ;- Ii:çI (1.3.2) 

where w is the frequency (in rad-sec 1), 
	

the permea- 

bility, E is the x-component of the electric (or 

'telluric') field and Hy  denotes the orthogonal magnetic 

component. 	A Cartesian half-space has been assumed, with 

the z-direction taken to point downwards into the Earth. 

The response fa is called the apparent resistivity; 

which, along with the phase 0 (where 0 = arg (E/H) ) 

constitutes the surface response from which the 
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conductivity may be inferred. 	The nature of magneto- 

telluric response is described in more detail in Chapter 3. 

The method, originally developed in analogy with plane-

wave theory, has application for those frequencies which 

are sufficiently high that the Earth's curvature can be 

ignored, and a plane half-space approximates the Earth 

(Srivastava, 1966). 	A further requirement is associated 

with the spatial extent of the inducing source (Wait, 

1953; Price, 1962) -- the spatial extent of the source 

must be greater than the penetration depth of the field. 

The magnetotelluric method has been widely used to study 

near-surface conductivity (Srivastava, Douglass, and Ward, 

1965; Swift, 1967; Caner and Auld, 1968; Patrick and 

Bostick, 1969; Reddy and Rankin, 1971, 1972, 1973; 

Madden, 1972; Vozoff, 1972; and others). 	Reviews of 

the method may be found in Hermance (1973), and more 

recently in Porstendorfer (1976) in which the considerable 

work accomplished by Soviet researchers is described. 

Price (1970) has pointed out a similar feature of 

many models inferred from magnetotelluric data -- a high 

conductivity zone ( 0.01 ohm 1 m 1 ) situated at some 

50 km from the Earth's surface. 

It must be expected that magnetotelluric data will be 

strongly influenced by the near-surface inhomogeneities in 

the Earth's conductivity. 	It will not be surprising that 

surface measurements 
Of 
 -Pa can show strong anisotropy. 

The interpretation (by trial and error) of data arising 
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from two- and three-dimensional conductivity structures, 

requires the solution of a much less tractable forward 

problem. 	Solution of these problems usually requires 

purely numerical techniques, such as finite element 

methods (Coggan, 1971; Reddy and Rankin, 1973; etc.) or 

finite difference methods (Jones and Price, 1970; Jones, 

1971). 	If the one-dimensional global problem is subject 

to arbitrary parameter constraint, the two- and three-

dimensional problem is vulnerable to such constraint in a 

much more exaggerated and complicated way. 	Often, to 

come to some primitive understanding of anisotropic 

magnetotelluric data, one presupposes a 'strike' -- that 

is to say, a vertical fault in proximity to the magneto- 

meter station. 	Such a model (like the concentric spheres 

of Chapman (1919) ) imposes an enormous constraint on 

one's understanding of surface data, and restricts the 

space of models from which to choose acceptable models. 

The practice of assuming vertical faults below or in 

proximity to the magnetometer station often arises not so 

much from physical considerations, as from the necessity 

(in the absence of a clear physical and mathematical 

understanding of two- and three-dimensional induction 

problems) to confine oneself to simple models. 

A word must be said about 'simple models'. 	The case 

of the one-dimensional two-layer sphere is easily 

formulated since there are relatively few boundary 

conditions to be matched. 	However from an inverse point 
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of view, such a model is very highly structured. 	When 

one asks if a set of surface data can infer such a model, 

one may be demanding high resolving power of one's data. 

Such localized parameterizations may lead one to ask 

completely unprofitable questions such as: 	'what is the 

depth of the discontinuity?', when in fact one's data may 

at best be able to suggest only the most obscure notion of 

the actual conductivity in the Earth. 	Similar diffi- 

culties arise in the more 'complicated' model of a 

vertical fault. 	A vertical discontinuity may be 

conceptually simple to visualize and discuss -- but 

mathematically it is not really a simple model, and 

certainly from an inverse point of view, it is very 

localized and structured. 	It is conceivable that to 

resolve such a structure would require data of enormous 

accuracy and extent, data which itself would need to 

demonstrate great 'structure'. 	A vertical fault perhaps 

should be viewed as an extreme parameterization, and an 

attempt to infer such a structure might well lead to 

unprofitable questions. 

Of course, without a clear idea of the resolving 

power of geomagnetic data, 'it is difficult to assess the 

suitability of any given parameterization in this respect. 

But this brings us again to the question of the inverse 

problem. 
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1.4 Approximate Inversion 

Three general categories of inverse induction problem 

can be described: approximate inversion, exact inversion, 

and heuristic (linearized) inversion. 	In this Section 

we shall discuss two approximate inversion schemes. 

It would be very desirable if one could use a simple 

technique to infer the conductivity distribution of the 

Earth directly from surface data. 	Because of the evident 

non-uniqueness of the inverse problem such a mapping alone 

would not be a complete solution, but would serve as an 

indication of where some useful models might lie. 	In 

Section 1.5 it will be seen that such a mapping may be 

difficult to find unless one's data satisfy strict 

conditions. 	However a very useful insight of Schmucker 

(1970) (and rather later of Kuckes (1973a, 1973b) ) yields 

a technique for determining an approximate conductivity 

structure directly from a set of surface data. 

The method depends upon an understanding of the 

problem of the two-layer conductor. 	A non-conducting 

slab is assumed to overlay a good conductor. 	Schmucker 

determines an approximate response formula for the case 

where the depth of penetration in the underlying 

substratum is small compared with the spatial wavelength 

of the variation. 	This response can be written 

1,- 
c = h 

+ i t 
 

where h is the depth to the good conductor; 	S is the 
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skin-depth of the conducting layer, and i = j -1 	For 

magnetotelluric data, the response c is defined by 

C = - 
W 

1 

L 
(E 

X  /H y ) 	 (1.4.2) 

Comparison between (1.4.1) and (1.4.2) will show that in 

an inverse sense knowledge of the surface response E IH 
X y 

(for models which happen to conform to the conditions of 

the approximation) can determine uniquely the two 

quantities on the right hand side of equation (1.4.1); 

these are namely, 

and 

h = ( w1)_l f Im(E /H ) 	Re (E /H ) 	(1.4.3) x y 	x y 

= ()1 I 2Re ( E /H )? 	 (1.4.4) x yJ 

The real part of c is related to the imaginary part of 

E 
x y 
/H , and can be identified with the mean depth to the 

internal eddy currents. 	The imaginary part of c 

(inferred from the real part of E 
x  IH ) indicates (with c 

y 
the conductivity at that depth. 	Thus if one were to know 

a priori that the Earth consisted of a poor conductor 

overlaying a very good conductor, one could infer from the 

complex response directly the depth to the conductor and 

its conductivity. 	The physical idea of inferring the 

mean depth of the current distribution has application 

even in an Earth which were not two-layered. 	If one 

(conceptually) considers the conductivity of the bottom 

layer to be infinite, then E/H would be purely imaginary 
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(the phase of c in equation (1.4.1) would be Tr/2),  and 

the depth h*,  defined by 

h* = h + 4s  	
(1.4.5) 

determined from experimental data and equation (1.4.3) 

would take on the significance of the depth of the perfect 

substitute conductor. 	As such, this depth would repre- 

sent the geometric centre of the current distribution. 

If j(z) were the current density at depth z, then Weideldt 

(1972) shows formally 

h 	 h 
h* = fz Re fj(z)J dz/ JRe (j(z)j dz 	 (1.4.6) 

0 	 0 

This equation can be interpreted as the depth to the 

'centre of gravity' of the real part of the induced 

current distribution. 	The ambient conductivity at depth 

h* can be inferred from (1.4.4) for the particular 

frequency c 	 The approximate inversion of Schmucker 

can be performed individually on elements of a data set, 

and thus a set of model pairs (o.*, h*) can be built up 

for the various frequencies represented in the data set. 

This produces a conductivity distribution which is 

particularly reliable if the distribution of conductivity 

in the Earth monotonically increases with depth -- a 

condition which one cannot know a priori of course. 

A somewhat similar idea has been exploited by Jady 

(1974a)for global harmonic problems. 	He has considered 

the case of a poorly conducting slab of conductivity o 
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overlaying a perfectly conducting sphere situated at 

radial position q (i.e. the radial distance from the 

centre of the Earth normalized with respect to the Earth's 

radius). 	In a manner similar to the analysis leading to 

Schmucker's technique, knowledge of the real and imaginary 

parts of the surface response (for given frequency and 

harmonic) can lead to a unique solution for the depth q 

of the inner sphere, and for the conductivity of the slab. 

From variational principles, an expression is obtained 

Im[R 	d RTJ r=l 
 

= 	21212 
wa Jr lR

m 
 dr 

q 

where R is the radial part of the separated solution to 

the spherical Sturm-Liouville equation. 	The position q 

can be inferred independently of (1.4.7) directly from the 

surface response. 	Relying on the assumption that first 

order changes in the eigenfunction 4 give rise only to 
second-order changes in the model distribution a, an' 

iterative procedure can be initiated by assuming a 

conductivity 	0), calculating the theoretical response 

RT, and performing the calculation of (1.4.7) to yield the 

first iterate 	
1)• 	

Such a procedure was found by Jady 

to be rapidly convergent. 	This effectively systematized 

the problem of improving the Chapman (1919) Earth model in 

a manner which may be instructive from an inverse point of 

view. 	For different individual frequencies, and 

different harmonics, one can construct model 'pairs' 
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(q, a-),  and a collection of such models for a given set 

of data might indicate the region of the model space where 

compatible solutions lie. 	Of course, it has already been 

noted that treating such highly constrained models leads 

to difficulty when one comes to find models consistent 

with all data. 	Jady has extended his procedure to treat 

multilayer conductors (still overlaying a perfect 

conductor). 	For N such layers, a system of equations is 

obtained: 

m* d 	m 	-1 -1 -2 Im(R, 	R) 	M a dr 	r=1 

r 	 rNl 12 m2 	 12 m m 
= 	J r IR 	dr + 	f r fRft 1 	+ •. + N f 	r2 	

2 
jR / dr 

r 1 	 r2 	 q 

(1.4.8) 

for each w . 	If the coefficients of Q. 
1 

1 2 m2 
f r 1R 1 1 dr 	 etc. 

are considered to be independent of conductivity, the 

system of equations implied by (1.4.8) for N frequencies 

will be linear in the a-. 
1  's, and can be solved. 	The new 

0- .IS will constitute the first iterate in an iterative 
1 

procedure. 	It is not clear whether the layer depths 

(rl,r2,r3,...,rNl) can be uniquely determined from the 

response as was the case for the two-layer problem. 

However it would seem from example that the depths are 

chosen arbitrarily (Jady, 1974a). 	Within this same 
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formalism Jady has sought to discuss the effect of error 

on model estimates, and has developed a test for the 

consistency of data pairs (Jady, 1974b). 

1.5 Exact Inversions 

An exact inversion procedure is one which utilizes a 

mapping from the surface data directly into the model 

space. 	The study of such procedures is particularly 

valuable since they shed considerable light onto the 

problem of uniqueness in the inverse problem. 	In fact, 

both of the exact procedures which have been developed to 

deal with the inverse induction problem -- that of Bailey 

(1970) and the inverse Sturm-Liouville problem studied by 

Weideldt (1970, 1972) -- establish rigorous conditions 

for such procedures to yield a unique solution. 

Bailey, for the global problem, separates fields into 

parts of internal and external origin at some arbitrary 

radius r = fa within the Earth. 	Thus 

2(2+1) R  =m - (2+1) 
1  

I 
m 	• m 

--- (çR

m
) = e + 

where R is defined in the previous Section. 	In order to 

develop a relationship between conductivity and a modified 

response function defined in Fourier -.J-space, Bailey uses 

the fact that the linearity of Maxwell's equations implies 

m 
that the internal part i is linearly related to e2. 

(The response is in fact the solution to an equation 
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developed by Eckhardt (1963) for the forward problem.) 

Bailey used the causal nature of the response to derive 

an inverse formulation. 	We do not introduce any of 

Bailey's analysis here, but state his derived condition 

for uniqueness to the exact inverse formalism. 	The 

condition which must be satisfied is that the response be 

known for a complete range of frequencies 0. ,--'  -' 

Of course, such complete knowledge is not available from 

experimental data, reflecting as they do a finite set of 

frequencies. 	Bailey has developed an algorithm to deal 

with experimental data: he supplies the extreme branches 

of the response curve by using asymptotic techniques and 

gaps in the response curve by interpolation. 	However, it 

seems the solution is strongly affected by scatter in the 

data. 	The inversion of data generated (synthetically) 

from discontinuous models, shows that the algorithm tends 

to isolate smoothed conductivity distributions (Bailey, 

1973). 	In view of the implied non-uniqueness to be 

associated with a finite set of data, the use of 

asymptotic techniques may serve to restrict one's view of 

the space of acceptable models. 

Weideldt (1972) performed an inverse Sturm-Liouville 

analysis, analogous to that of Gel'fand and Levitan (1955) 

which was developed originally to infer scattering 

potentials in quantum mechanics. 	Weideldt's work is very 

illuminating concerning many aspects of both forward and 

inverse induction problems. 	The conditions for 
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uniqueness for solutions of this exact procedure are the 

same as Bailey's -- one must have complete knowledge over 

all frequencies of a spectral function, which is related 

closely to the response function. 	Weideldt introduces 

methods to uniquely infer conductivity distributions from 

experimental data (suitably completed and smoothed). 

However, he admits that finding one element in a family of 

possible models does not constitute a solution to the 

'total' inversion problem. 

1.6 Heuristic Linear Inversion 

In the previous Sections, the fundamental problems 

associated with finding acceptable Earth models have been 

discussed. 	Forward modelling techniques can be biased, 

and because of the non-uniqueness of the problem, 

individual models which are obtained can give an 

incomplete impression of the total space of acceptable 

models. 	Also, direct inversion procedures seem to 

require rather too much of typical experimental data, both 

in terms of frequency range, and in terms of the smooth- 

ness of the data. 	Even in circumstances where the data 

set may be completed and smoothed, and a solution found, 

this solution may be an individual element of a space of 

solutions of considerable diversity. 	Furthermore, exact 

inversion techniques take no account of experimental 

error. 

Clearly, it would be an advantage over the informed 
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guesswork of direct modelling to have a systematic process 

for improving a proposed model. 	It would be a powerful 

advantage if, within this same framework, one could also 

address questions about the consistency of data, or the 

resolvability of models, about uniqueness or about errors. 

Generalized linear inverse theory seems to have provided 

geophysicists with such a framework. 	The theory has 

found two formulations: 	that of Lanczos (1961) described 

by Wiggins (1972) and Jackson (1972), in which the model 

parameters are expressed discretely; and the formulation 

developed by Backus and Gilbert (1967, 1968, 1970) in 

which the model parameters are taken to be distributions. 

Both formalisms are equivalent (Wiggins, 1972) and both 

have become widely practised. 

Parker (1970), in a venturesome work, applied 

generalized linear inverse theory to global electro-

magnetic induction data (the data accumulated by Banks 

(1969) ), and since then a number of authors have followed 

his example: among them Hobbs (1972), Ward et al. (1974), 

Jupp and Vozoff (1975), Larsen (1975). 	Some authors are 

already considering two- and three-dimensional models 

(Weideldt, 1975) and some are treating models with 

anisotropic conductivity parameters (Abramovici et al., 

1976). 

The generalized inversion theory as formulated by 

Backus and Gilbert involves two useful procedures. 	If 

one is given a model which is 'close' to an exactly 
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fitting model (close in the least-squares sense), one may 

move iteratively towards the exactly fitting model. 	If 

one has found a model which exactly fits the data, one can 

describe quantjtively the power of the data to resolve the 

model at various points along the model profile. 	This 

resolving power will be related to the distribution and 

quantity of data; also it can be expressed as a function 

of the experimental error of the surface data. 

It must be pointed out that the generalized inversion 

theory is a linear one, depending as it does on the theory 

of linear operators. The mathematical outline of the 

theory is presented in Chapter 2. 	We present here, for 

purposes of an introductory discussion, some basic aspects 

of that formalism. 

a. Finding an acceptable model 

Model-fitting associated with induction data is 

often posed as a non-linear least-squares optimization 

problem. 	Typically, a Taylor expansion in the model 

space (here expressed in terms of M model parameters, m.) 

is made of a set of surface responses y. , so that 

M 
y. = 	+ LA.. 	+ 0 ISm(2  

J =1 

where A is the matrix whose elements consist of partial 

derivatives of y, with respect to m  

A. . =y./3m. 
1 	3 

Linearizing (1.6.1), one can proceed to minimize the sum 



of the squares of data residuals, 

- Yi 
 0 ) 2 

1 

If we define the ith component of a vector Sy to be 

y. - y ° , and the jth component of a vector Sm as Sm., 

then the minimization of data residuals gives rise to the 

solution for the increment Sm in 

Sm  = (AT A) 	AT . 
	

(1.6.2) 

In a non-linear problem, the addition of the perturbation 

Lm to the current model vector rn, yields a new improved 
model rn +,Em from which a new improved (i.e. diminished) 

data residual can be computed. 	Repeated application of 

this procedure constitutes an iterative procedure which 

may or may not be convergent. 

The problem thus expressed can be unstable for 

several reasons. 	The instability can arise from an 

inadequate linearization of equation (1.6.1). Marquardt 

(1963) supplies a more elaborate algorithm to deal with 

non-linear problems, based on the searching out of the 

maximum neighbourhood of the starting model in which the 

first term of the Taylor expansion (1.6.1) is valid. 

The data residual is constrained to decrease in consecu-

tive iterations. 	A number of researchers have performed 

model-fitting in this way, among them Wu (1968) and 

Patrick and Bostick (1969) for the magnetotelluric 

problem. 
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In addition to the instability which may arise from 

the non-linearity of the problem, there is another 

fundamental problem to be associated with equation 

(1.6.2). 	If one has parameterized the model space too 

intricately for the resolution power of the data, then the 

problem is said to be underdetermined. 	This is to say, 

the information contained in the data is not sufficient to 

resolve some of the parameters in the set fm.. 	This 

underdeterminacy leads to the matrix AAT  becoming 

singular and hence its inverse (A AT) 1 will not exist. 

An attempt to evaluate the inverse of a nearly singular 

matrix can give rise to very great numerical instability 

entering into the iterative procedure. 	This in turn can 

lead to great perturbations Sm., which may violate the 

conditions under which the Taylor expansion (1.6.1) was 

formed. 	Of course, one cannot know in advance what model 

parameterization will be appropriate (i.e. we cannot know 

how to make a singular matrix A non-singular by adjustment 

of Im3.?). 	On the other hand, if one makes the model too 
) 

crude for the information in the data, one may be over-

constraining the problem. 	In this case the full 

information available from the data is not exploited. 

Most of the Marquardt least-squares procedures carried out 

successfully have been in overconstrained situations (two_ 

and three-layer half spaces, for example). 

It is to deal with the general problem of under-

determined systems that generalized inverse theory has 
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been developed. 	Backus and Gilbert (1967) parameterize 

the model in a manner almost guaranteed to give rise to an 

underdetermined problem: a vector Earth model 

rn = (m 1 , m2 , m 3 , . . . , my ), the components of which are 

real-valued piecewise continuous functions of radius r 

(or depth z). 	This space is recognizably Hubert space, 

upon which one can define the inner product as 

a 

<rn, M 
	f (m(r)m(r) + m2 ( r)m ( r) + .. . J dr  

(1.6.3) 

and the norm 11 m 	<rn, rn,> 2 . 	If Y. indicates an 

element of the data set, and is defined in terms of a 

functional g., by 

= g. 
1 
 (m) 	 (1.6.4) 

then the functional equivalent to (1.6.1) is 

- g(! + Sm) = <G., 	rn> + 0 IJm 112  (1.6.5) 

where G. is a kernel which is also a member of the Hubert 
- 1 

space containing the m.(r)'s. 	Again an optimization 

problem can be posed; however it is the particular 

insight of Backus and Gilbert to exploit the non 

uniqueness of this problem. 	They formulate the problem 

as one of finding the model rn closest to a starting model 

m 	(The model m is constrained to satisfy the data.) 
Thus one clearly is finding an optimal model which is 

closest to the starting model. 	One develops a matrix 

solution similar to (1.6.2) 
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-v = 	g 	 (1.6.6) 

where V is a set of Lagrange multipliers, IT.. = <' G., C.> 

and 	is defined A gi - g.(m ° ). 	The model 

perturbation is hence given by 

S 	vc 

The iterative procedure is initiated by recalculating 

g, using m + Sm. 	Stability can be introduced to the 

system if F is decomposed by similarity transformation 

into a form 

IT 	BrBT 

where 1' is now diagonal. 	If the columns of matrix B 

contain the eigenvectors of F , then the diagonal elements 

of fl will be the corresponding eigenvalues of 1' . 	By 

excluding those eigenvalues near zero (which tend to make 

C singular), one can impose stability on the system. 

In fact, one can exclude sufficient eigenvalues to meet 

more stringent pre-set criteria. 	For example, one can 

make  the same constraint as suggested by Marquardt: 

that of restricting Sm in a given iteration in such a way 

that the data residual does not increase at that iteration. 

Thus instability can be smoothed whether that instability 

arises from the quality of the linearization, or from the 

singularity of P, or from both factors. 	Excluding 

eigenvalues effectively excludes certain linear 

combinations of the data from the procedure. 	Thereby 
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a degree of information is lost. 	The resolution of the 

data may also be degraded by this procedure, in exchange 

for a stable convergent process. 

b. Resolution 

Once one has isolated particular solutions to the 

inverse problem, one tries to characterize the space of 

acceptable solutions (Backus and Gilbert, 1968, 1970). 

For linear problems one can write a response Y as 

1 	
f = 	m(r) G 1  

.(r) dr 	 (1.6.9) 

this is to say, as a weighted average of the model 

distribution m(r). 	In fact, one can construct a further 

weighted average of the model by forming a linear 

combination of the surface data: 

a r . = f m(r)[2:a,G,(r)] dr 	 (1.6. 10) 

If the G.(r)'s form a complete set, any possible average 

of the model distribution which can be evaluated from 

combinations of data elements, can be constructed by 

choice of the N-tuple fa i l-

that the kernel 

La 	(r)  

If the N-tuple is chosen so 

resembles a delta-function centred at r = r 0  (i.e. the 

function is zero everywhere except at r = r 0 , where it is 

infinite), then the average which (1.6.10) represents is 

a local avera g e of the model at r 0 , i.e. 
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= <rn(r)) 	 (1.6.11) r 0  

How tlocalized' this average will really be, will depend 

upon the width of the delta-like function which has been 

achieved. The actual task of constructing a delta like 

function is posed by Backus and Gilbert (1968) as an 

optimization problem. 	One seeks to minimize the area 

under the kernel E  a 
1  
.G 

1 	 0 
. (r) away from r = r ; the area 

under the distribution is constrained to satisfy a 

unimodular condition 

f E a.G.(r) dr = 

If the optimum kernel which is achieved is broad, and 

rather unlike a delta-function, then the local average 

determined with this kernel is said to have a 

long resolving length, since the average draws upon the 

model distribution over a long range of depth. 	In such 

a case one can conclude that the data poorly resolves the 

model. 	On the other hand if the kernel is a sharp spike, 

the local average which is achieved from (1.6.11) is truly 

localized, and one can conclude that the model distribu- 

tion is well resolved at that depth. 	By way of making 

the matter of resolution quantitative, Backus and Gilbert 

introduce the spread of the kernel defined by 

2 
s = f J(r,r 0 ) [ L a 

 i 
G 

 i 
 (r)  I dr 

as a measure of the area beneath the kernel for r i r 0 . 

The function J(r,r 0 ) is an arbitrary function which is 
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zero at r = r 0 , and whose modulus increases monotonically 

away from r = r 0 . 	If the spread is large, then 

resolution is poor. 	If the spread is very small, then 

the resolution is good. 	The spread is directly related 

to the width of the delta-like distribution, and to the 

geometrical centre of the distribution. 	In fact, it is 

the spread which one seeks to minimize (by optimally 

choosing the N-tuple a) in order to construct a delta-like 

function out of the space (G.(r)J.. 

For non-linear responses, the situation is signifi-

cantly more complicated, since one must admit that the 

space formed by the kernels [C. (r) J.is  itself model- 

dependent. 	Furthermore, the equation (1.6.9) cannot be 

true. 	Thus the local average, which is achieved from a 

linear combination of kernels as they appear in equation 

(1.6.5), is fashioned out of a subspace of the space of 

all acceptable models; the subspace is called the space 

of C-acceptable models. 	The significance of this 

restriction to the general theory has been a matter of 

some concern (Sabatier, 1974; Anderssen, 1975). 

If the data is erroneous, error can be reflected by 

the local average represented by equation (1.6.11). 

Backus and Gilbert (1970) show that there is a trade-off 

relationship between resolution and such model error: 

if one wishes to improve the resolution of the model at a 

given depth, one can do so by increasing the error which 

can be attached to the model local average. 	They present 



35 

a scheme which facilitates the algebraic problem of 

performing this dual optimization of model resolution and 

model error. 

The details of Generalized Inversion Theory are 

outlined in the following Chapter. 

C. Using linear inversion to examine data 

As we have mentioned previously, Parker (1970) 

performed a Backus Gilbert inversion of data published by 

Banks (1969), and determined a model (described by Parker 

as an element of a family of such models) which satisfies 

the data within one standard deviation. 	This model is 

indicated in Fig. 1-3 along side Banks' model which we 

have discussed previously. 	Parker also determines a set 

of local averages, together with resolution lengths and 

error estimates to be associated with each local average. 

In this way he is able to address quanttively some of the 

questions raised by Price (1970) concerning the nature of 

the suspected 'discontinuity' at 400 km depth. 	For 

example, Parker claims that the levelling off of 

conductivity at the inner side of the 'discontinuity' (at 

0.7 ohm 1 m) occurs rather deeper than had been 

previously suggested -- namely at some 500 km depth 

instead of 400 km. 	Parker also suggests that the 

resolution is poor at this depth, but the flattening out 

of the profile is still barely resolvable. 	Parker's 

model differs from that of Banks significantly at the 
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surface. 	Again, Parker explains that near-surface 

resolution is poor, but any discrepancy below a depth of 

0.96 a should be resolvable from the data. 

Having developed a language designed to discuss 

resolution, error, and consistency of data, one can, with 

synthetic data (i.e. data generated theoretically from 

chosen models) use inversion theory to examine how one 

might improve the quality and resolving power of a data 

set. 

Parker seeks to see specifically how the data set of 

Banks might be improved. 	The suggestion he offers to an 

experimental researcher is that he strive for more 

accurate estimates of the response function. 	A modest 

improvement in the error will yield significant improve- 

ment in the resolving power at depth. 	(Incidentally, one 

might bear in mind that Parker describes an experimental 

error of 2% as attainable . . ) 	Furthermore, it seems 

that inclusion of accurate phase estimates may improve 

resolution at the surface. 	Parker's examination of how 

modifications to the data set can improve resolution, was 

confined to adjustments in the accuracy and to the 

inclusion of phase. 	His examination was not systematic; 

it is interesting to speculate whether such examinations 

can be put on a systematic basis by posing them as 

optimization problems. 	One can try to find how the 

data set can be improved by extension of the range of 

frequency and quantity of data. 	It would seem that many 
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questions can be asked of the data (in relation to a 

given space of G-acceptable models) which might greatly 

contribute to an improved strategy at the data gathering 

and data analysis stage. 

Parker (1972) shows how some questions concerning the 

consistency of data pairs can be posed systematically from 

the language of generalized inversion. Apart from these 

contributions, it would seem little attempt has been made 

to exploit the language in this way. 

Concerning the actual model Parker proposes -- it has 

aroused a certain amount of controversy. 	Anderssen 

(1975) has complained that the linearization may be 

misleading. 	Both Parker himself (1972) and Jady (1974b) 

have expressed doubts concerning the consistency of the 

Banks data. 	The current state of geothermal studies 

suggests that the conductivity inferred by Parker is 

rather too high (Duba, 1976), and the Parker conductivity 

at the Earth's surface is rather higher than that 

suggested by most magnetotelluric studies. 	The Banks 

data was collected from a global distribution of 

observatories, and Parker examines 28 daily variation 

responses without phase. 	One might recall the suggestion 

of Chapman and Whitehead (1923) that daily variation may 

be significantly affected by ocean edge effect if the 

observatory happens to be coastal; obviously the 

inclusion of magnetic storm data might supply a more 

promising data set for inversion, and work by a number of 



researchers is proceeding in this direction (Schmucker, 

1976). However, including storm data tends to increase 

the integrated conductivity at the surface, so Parker's 

model may become even more conductive with the inclusion 

of storm data! 

1.7 Work Covered in This Thesis 

Having attempted in this Introduction to establish 

the context for the linearized inversion problem, and to 

describe how inversion formalisms may be of use to achieve 

a more thorough understanding of geomagnetic data, in 

Chapter 2 we proceed to outline the principles of general 

linear inversion. 

In Chapter 3 we describe some of those aspects of the 

forward problem which enter into the application of 

inversion theory to electromagnetic induction responses 

associated with conductivity distributions which are 

one-dimensional. 	In particular, various expressions of 

the response functional are described. 	The remaining 

part of the thesis concentrates upon the inversion of the 

magnetotelluric response of a multi-layered half-space. 

The problem of how one might effect the linearization is 

considered. 	The technique which is finally adopted is to 

discretize the functional, and to employ differential 

calculus to the resulting function (of 2M-1 discrete model 

parameters including depth parameters) in order to 

determine a Frchet kernel, G. 
1 
(r). 	The linearization is 
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examined in somewhat close detail for the two-layer 

conductor, but extension of the analysis to multilayered 

conductors is trivial. 	For the two-layer halfspace an 

attempt is made to ascertain those parts of the model 

space which give rise to the intrusion of higher-order 

terms in (1.6.5). 	An examination is made of the paths 

of convergence in a least-squares procedure for an under-

determined problem, and this shows how the higher order 

terms can introduce instability into the process. 	The 

beneficial effect of ranking and winnowing is also 

demonstrated in this example. 

In Chapter 4, uniqueness is discussed for systems of 

discretely ordered model parameters entering the inverse 

Sturm-Liouville problem. 	The discussion draws heavily 

upon the work of Barcilon (1974) and Weideldt (1972). 

The nature of the inductive response as a continued 

fraction is illustrated. 	The response is also portrayed 

graphically as a combination of the discrete set of 

conductivity parameters: a combination with non-linear, 

complex coefficients. 	The graphs which result (in 

complex space) are given a simple energy interpretation. 

An analogy is suggested from circuit theory. 

In Chapter 5 the least-squares inverse problem is 

examined in more detail for magnetotelluric data. 	The 

stabilizing effect of ranking and winnowing data is 

demonstrated. 	Amagnetotelluric data set which is of 

demonstrable one-dimensional character (i.e. is isotropic) 



recorded and analysed by Jones (1976) is inverted, and 

various acceptable model solutions are generated. 	The 

effect of including phase information into the least- 

squares procedure is examined. 	Also, a data set which 

has been examined by Fournier (1968) and Weideldt (1972) 

is re-examined with the generalized inverse scheme 

presented in this thesis. 

The resolution associated with error-free magneto-

telluric data is considered in Chapter 6. 	The effect of 

including phase on the resolution parameters is demonst- 

rated. 	A comparison is made (in terms of resolution) 

between the use of the real and imaginary parts of the 

response, and the amplitude and phase of the response. 

In Chapter 7 the complication of erroneous data is 

introduced into the problem. 	The geometrical discussion 

of Backus and Gilbert (1970) is described. 	The 

application of their general theory is made to the 

induction problem, considering first absolute error, then 

the rather more complicated (but more appropriate for 

induction data) relative error. 	Some examples are 

displayed. 

In Chapter 8 some general conclusions for the thesis 

are summarized, indicating the direction future work might 

go. 
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GENERALIZED LINEAR INVERSE FORMULATIONS 

2.1 Some Preliminary Remarks 

Within the context of geophysical problems, the 

general inverse problem which inte rests us is that of 

inferring a model distribution (or alternatively aset of 

discrete model parameters) for the interior of the Earth, 

by making a set of measurements at the Earth's surface. 

We express this surface 'response' of the Earth as a 

functional of the form 

{mJ = 	f F(m(r) 	d 
3 
 r 
	

(2.1.1) 

where square brackets denote a functional; m(r) is the 

model distribution which is a function of position within 

the Earth, and d 3 r denotes an increment of volume. 	If a 

model is spherically symmetric, this symmetry can be 

exploited to transform the functional (2.1.1) into a 

scalar form 

= f F(m(r).,r) dr 
	

(2. 1.2) 

where r is the (scalar) radial position, and 'a' is the 

radius of the spherical Earth. 	As we have seen in the 

previous Chapter, such a functional can be approximated 

by dividing the interval (O,a) into M subintervals 

separated by the points 
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O,r 1 ,r 2 , ... ,r 	,r ,r 
n-i 	n 	n+1' ... ,a. 

Equation (2.1.2) becomes 

M 
g(m1,m2,. . .m) = 	F(m1 ,m2 .... ; h 1 ,h 2 ,...) h. 

j=l 	 3 

(2. 1.3) 

where m. 
3 
= m(r 

3  
.), and h 

3  
. = r 

3  
. 	

j -1 
- r 	• 	To study in a 

variational sense such functionals as (2.1.2), one can 

employ analytic procedures and differential calculus to 

the discretely ordered function (2.1.3), and then discover 

the implication of such analysis for the functional ON-  
If the ith surface response measurement is denoted by 

we can write following (2.1.2) the functional 

relationship between Y. 'and m by 

= g.m(r)] 	 (2.1.4) 

or alternatively by a function of Mmodel variables 

Yi = g.(m 1 ,m 2 , . .. , mM ) 	 (2.1.5) 

If g i  is linear, a possible expression for (2.1.4) is 

a 
( m(r) f(r) dr  i 	Jo 

and similarly, for the discrete case of equation (2,1,5), 

we may be able to write 

Y i = 	 (2.1.7) 

This latter equation can be written in tensor notation as 

;c= A'm 
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formulations of this approach: Generalized Linear Inverse 

Theory developed by Lanczos (1961) and described by 

Wiggins (1972) and Jackson (1971): 	in this formulation 

the model parameters are discretely defined. 	Another 

approach is the method of Backus and Gilbert (1967, 1968, 

1970) in which the models are taken to be piecewise 

continuous functions of depth. 	Both procedures have 

found fairly widespread use and Table 2.1 contains a brief 

list of some of the notable non-linear inverse problems 

which have been studied to date. 

2.2 The Formalism of Backus and Gilbert 

a. Notation 

We follow the notation and method developed by Backus 

and Gilbert in their papers of 1967, 1968, and 1970. 

Apart from a brief discussion, we do not introduce the 

complication that is presented to the formalism by 

experimental error in the surface data. 	For the most 

part the modifications to the theory required to treat 

erroneous data are discussed in Chapter 7. 	The inverse 

problem is posed, as one of finding a vector Earth model 

rn, rn = {m1 (r), m2 (r), .. . , mM(r)1 , whose components 

consist of real-valued, piece-wise continuous functions of 

radius r (or, in the case of Cartesian geometry, functions 

of the depth from the surface, z). 	The space of all 

conceivable models, c1' , is considered as an infinite- 



Surface Response Model parameter(s) Authors 	(date) Type of  
Inversion 

Normal modes of density, 	/M(r) Backus & Gilbert B-C 
free 	oscillation elastic 	moduli, K,/4, (1967,1968,1970) 

shear velocity, 	v Gilbert & 
compressional Dziewonski 	(1975) B-G 

velocity,v Wiggins 	(1972) Lancz. 
dissipation, 	Q 

Electromagnetic electrical Parker 	(1970) B-C 
induction in Earth conductivity, 	a(r) Sims 	et 	al 	(1970) Lancz. 

Ward 	et 	al 	(1974) Laflcz. 

Gravity anomaly mass 	density, y  (r) Parker & Heustis B-C 
(1974) 

Magnetic anomaly magnetic 	susceptibility, Courtillot 	et 	al Lancz/ 
.14 (1975) B-G 

Seismic 	travel- shear velocities, 	v5  Kennett 	(1976) B-G 
times compressional 

velocities, 	v 

TABLE 2.1 



45 

dimensional linear space on which the inner product is 

defined 

<rn,rn'> 	J(m 1m + m2m + ... + mMm4] d 	(2. 2.1) 

and the norm is defined by I m 	<rn , rn 2• 	 should 

be borne in mind that the model parameters are to be 

expressed in dimensionless units. 	The model rn is to be 

inferred from a finite set of N surface measurements, 

Yi.  and the model is related to this data set by a set of 

generally non-linear functionals, 	, whose elements g, 

are defined by 

= 
	

(2.2.2) 

Equation (2.2.2) constitutes a set of N restrictions to be 

imposed on an infinite-dimensional model space. 	The set 

of models which falls within these constraints are termed 

'acceptable mod e l s ? and this set is also infinite-

dimensional. 

The question relevant to the inverse problem as it 

has been stated is: how does a small change ccrn in the 

model affect the surface data we might measure? 	With a 

view to stating this question mathematically we define 

Frchet differentiable functionals to be that class of 

functionals which, for a given model perturbation fm, 

satisfy 

- g.{m±Sm] = K'2> + 0 11SM112 (2.2.3) 
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where the function G.= (G . m1( r ) ,  G . m2( r ) ,  .. . , G.(r) ), 

with i 	(1, 2, . . . , N] . 	The subscript i denotes the 

index associated with the ith element of the N-dimensional 

data set; the literal superscript denotes the component 

of C. associated with the jth model parameter, m.(r). 

The vector C. is called the Frchet kernel (sometimes also 
-1 

called the 'data kernel' in the literature) and it is 

itself a member of c,"L. 	To first order in the perturba- 

tion 11SH , we have 

- 	 = 	 (2.2.4) 

For non-linear functionals, the Frchet kernel C. may also 

be a function of the model as well as the radius. 	It can 

be deduced that equation (2.2.3) is the functional 

equivalent of a Taylor expansion. 	Accepting the 

approximation of equation (2.2.4) is essentially a 

linearization of such an expansion, it must be remem-

bered that Backus and Gilbert inversion is applicable to. 

the class of Frchet-differentiable functionals, and 

before one accepts the results of linear analysis, one 

must decide whether the functional being studied belongs 

to this class. 	For example, Wiggins (1972) has suggested 

that the Fre'chet kernels associated with free-oscillation 

data and surface wave data are 'slowly-varying' functions 

of the model. 	In contrast, the Frchet kernels 

associated with seismic body-waves are 'rapidly-varying' 

with respect to change in model parameters. 
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The Backus-Gilbert approach involves two useful 

procedures. 	Firstly, one makes a judicious guess for a 

model; that is, one makes a guess which is sufficiently 

close to a model exactly satisfying the data. 	Then, with 

knowledge of the Frchet kernel, one can approach 

systematically 'closer' to this exact solution. 	One 

means 'closer' in a least-squares sense of minimizing the 

sum of the squares of the residuals formed by subtracting 

a theoretical response for a guessed model from the actual 

measured response. 

The second procedure allows us to understand the 

quality of resolution associated with a given set of data 

and a given acceptable model. 	Although the set of 

acceptable models constitutes an infinite set, it may be 

that the elements of this set differ from each other by 

fine structure which a given finite data set cannot well 

resolve. 	In fact, this local non-uniqueness may be 

exploited to give some idea of the degree to which a given 

set of data can resolve a given model. 	Limitations of 

the procedure arise when one faces the problem of 

separating the ambiguities due to the inherent inadequacy 

of the data, and the ambiguities which may arise from the 

discounting of non-linear effects in equation (2.2.4). 

b. The least-squares procedure 

The least-squares procedure is described by Backus 

and Gilbert (1967). 	If a model m  is guessed to be a 



model which fits the data to some observed degree of 

approximation, one can seek to improve this guess by 

minimizing the quantity JIM - m0112, where m is an element 

of v', the space of models which exactly satisfy equation 

(2.2.2). 	Thus the minimization is subject to side- 

constraints that the models explored satisfy the data. 

The problem is formulated as a standard variational 

problem. 	We form the function U 

= 	- 	- 2Iy1(gfl] - 	 (2.2.5) 

where 	constitutes a set of N Lagrange multipliers. 

We take the variation of U, 

SU = 2(rn 	rn0).Srn - 21v. G..Sm 	 (2.2.6) 

-- where the dot indicates the scalar product between the 

vectors G. and SM. 	Equation (2.2.6) can be expressed in 

our previously established notation as 

SU = 2<'m 	S in  > - 27'. <C., £rn) 	(2.2.7) 

For a stationary solution, we set SU = 0 and redefine the 

Lagrange multipliers to obtain 

- 	- 	c) Sm,> = 0 	 (2.2.8) 

Since we consider the components of Sm to be linearly 

independent of each other (otherwise we could eliminate 

some from the parameterization) we can conclude 

D = m + 	v. G. 
- —0 	i -i 

(2.2.9) 

This equation implies that if our stationary solution is a 
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minimum, an acceptable model is more exactly given by 

equation (2.2.9). 	However, we must yet identify the 

N-tuple of Lagrange multipliers {'.f. 	To do this, one 
appeals to the definition of Frchet differentiability, 

letting the perturbation be represented by rn - rn 0 , thus 

g.rn] - g.[rn 0 ] 	<2.,m-rn0) 	- 	(2.2.10) 

Eliminating rn from this equation (with the aid of equation 

(2.2.9) ) we obtain for the residual 	e . - g.(m0 ): 

- 	jO 1  = <' 1 ii> 	" 	> 	( 2.2.11) 

We can express this equation in operator notation by 

defining the i-j th element of the matrix 1' by 

fl.. = < G. , G.) ; 	the jth element of the residual 

vector is defined 

- 

and finally the N-tuple 1v.f is expressed as a vector V 

so we have 

(2.2.12) 

The elements of Ag are the differences between the data 

computed from a guessed model, rn 0 , and the actual measured 

data. 	If 	is identified for a particular set of data 

functionals (and, in the case of non-linear data, for the 

particular model m  since the GHs in the matrix are 

model-dependent) then the set of multipliers ) can in 

principle be found. 	The matrix called the inner-product 

matrix, is symmetric and positive definite. 	It may, 
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however, be ill-conditioned, i.e. nearly singular; but 

in well-conditioned situations, the inverse r 1 can be 

found directly (for example, using Gauss elimination on  

computer) , thus ) can be discovered from 

F, 
	

(2.2.13) 

Hence the improved model rn can be found from equation 

(2.2.9). 

If the problem were linear, the least squares problem 

would be solved by the discovery of rn from (2.2.9). 	In 

the non-linear problem we use the 'closer' model computed 

from (2.2.9) as a new starting model in what is to become 

the next iteration of an iterative least-squares 

procedure. 	Since the Frchet-kernel may be dependent on 

the model, F' must be recomputed during each iteration of 

the procedure. 	If the original initial guess was 

sufficiently close to an exactly acceptable model, 

successive iterations should converge. 

C. Resolution 

If we have found by the foregoing procedure an 

exactly fitting model, this in itself is not completely 

satisfying since the solution to the variation problem is 

fundamentally non-unique. 	That is, the space of 

acceptable models is infinite. At this stage, it should 

be emphasized, we are not even considering the scatter and 

uncertainty associated with erroneous real data. For an 

exactly determined set of data there is an infinity of 
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models which can satisfy equation (2.2.2). 	Having found 

one such model does not complete the inverse problem --

one would like to learn something about the space of 

acceptable models. 

We shall formally separate 'non-uniqueness' into two 

categories: 	the first which is quasi-linear in a pre- 

cisely defined sense; 	the second is associated with 

acceptable models not falling into the first category. 

For non-linear problems, the space of acceptable models 

falling into the first category may itself be a subspace 

of the total space of acceptable models. 	Models in the 

second category can be described as 'globally distinct 

models' and they arise out of the non-linearity of the 

functional space 	. 	Backus-Gilbert formalism is 

powerless to address the contribution this latter set 

might make to the overall non-uniqueness of 

One could have observed in equation (2.2.8) there can 

exist a non-zero model m  satisfying ( rn 1 ,Srn 	= 0; in 

this case one could write for (2.2.9) 

12 = o + F V 
i 
 G + 	 (2.2.14) 

where 0 i an arbitrary small parameter which, because of 

(2.2,8) does not explicitly enter the variational least-

squares problem which has been discussed. 	We might note 

as well that (2.2.9) implies ('rn,a,G.> = 0. 	By selecting 

various values of r in (2.2.14), a family of N-tuples 

can be constructed which, to a first-order degree 
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in P encompass a degree of non-uniqueness in a solution 

set rn. 	The coefficients [\I,T are determined by the 

single parameter P ,  and can be written with functional 

dependence Uv.()f  as can the model itself, m(fl). 	If 

is changed to 	+ S( 	a model m(P) is changed to 

m( (3+ SA ) and if m(f3) is an exactly acceptable model, 

	

+ S(3 ) is also an exact solution to (2.2.2). 	Thus (9 

generates a one-parameter family of exact solutions, and 

the curve in the model space satisfies 

	

(/3) = m 0 
	

+ 

where m 
0 
 is the solution to (2.2.2) if 	0. 	This is 

the solution represented by equation (2.2.9) which 

results from the least-squares procedure. 	The Backus- 

Gilbert procedure isolates a-one-parameter family of 

exact solutions; and the non-uniqueness associated with 

this family (as long as [3 is small and O(f2) 	0) can be 

explored. 	If we define 	as the linear space formed 

by the set of N independent Frchet kernels 

1 1' 	2.......IN 
1, then we define the model curve 

to be a space of -acceptable models. 

This brings us to the second very valuable procedure 

developed by Backus and Gilbert (1968, 1970). 	They 

derived a procedure to assess quantatively the degree to 

which a given acceptable model can be resolved by the 

data. 	In the case of linear functionals the set of 

acceptable models is infinite, however if one confines 
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oneself to models which are-c1ose (in the sense of the 

previous discussion) then one can actually exploit the 

local non-uniqueness to obtain some quantative idea of the 

ability of a given data set to resolve a model. 	In fact, 

for linear functionals, one can construct a model average 

entirely out of the surface data, together with a 

resolving length to be associated each local average. 

One must be cautious when one applies the theory to 

non-linear problems, since non-uniqueness may arise from 

outside the range of -acceptable models around which one 

is constructing a local average. 

We imagine our space of data functionals to consist 

of linearly-independent measurements; that is to say one 

measurement does not imply another. 	In what follows, one 

should make it clear that one is momentarily dealing with 

linear functionals. 	Thus, if we express equation (2.2.2) 

as an integral operator (such as 2.1.2) ), we can write 

for scalar model m, 

f  C. dr 	 (2.2,15) 
1 

and can think of our datum . as some surface average of 

M(r), where C. is a weighting function. 	If the N G . ts 

are indeed linearly independent, they form a complete 

space and a collection of averages of the form of equation 

(2.2.15) can be constructed by using linear combinations 

of the G.'s as new weighting functions. 	The value of 

such a 'surface average' will necessarily be equal to the 
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same linear combination formed out of the surface data. 

One such possible average of the model can be expressed as 

= f m(r) L a. G.(r) dr 	 (2.2.16) 

We define the linear combination of the Frchet kernels as 

an 'averaging kernel', A(r) E 	a. G.(r). 	In view of the 

scope for constructing advantageous and meaningful 

averages of the model, one possible approach would be to 

seek an average which would itself signify a 'local 

average' of the model at some depth, say r 0 . 	Such an 

average would be formed out of the encompassment of the 

data. 	We should like to form a local average <m> r by 
0 

seeking a function A(r,r 0 ) such that 

= fm(r) A(r,r 0 ) dr 	 (2.2.17) 

where <m> r0 indicates a model average centred at some 

depth r 0 . 	Such an averaging kernel would have to 

resemble the Dirac-delta function centred at r 0 , i.e. 

A(r,r 0 ) 	9(r-r 0 ). 	If A(r,r 0 ) were such a delta- 

function then 

2:a.  
1 	1 

Thus for linear functions one has in this procedure a 

method whereby one can construct a local average of the 

model (an average centred at r 
0  ) out of the surface data 

set. 	The success of this procedure depends upon one's 

ability to find an optimum set of coefficients fa.j which 

will give to the linear combination A(r,r 0 ) the appearance 
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of a delta-function, S(r - r 0 ). 	That is, one hopes for 

a weighting function with a sharp peak at r = r 0 , and 

enclosing a very small area beneath the curve where 

r i r 0 , i.e. nearly zero side-bands to the distribution. 

We also ask that the function A(r,r 0 ) resemble the delta-

function in that it be unimodular, that is 

J A(r,r 0 ) dr = 1 
	

(2. 2.19) 

The matter of finding the optimum A(r,r 0 ) can be posed as 

a variational problem in a number of different ways. 	For 

example, one can seek to minimize directly the quantity 

D 1 (r 0 ) = fIS(r-r 0 ) -A(r,r 0 )j 2 dr 	(2.2.20) 

and the min1Di(ro)  will thus be a measure of the 

closeness of A(r,r 0 ) to the delta-function. 	An 

unfortunate aspect of this formulation of the problem, is 

that min fD 1 (r 0 ) cannot be evaluated explicitly 

(Oldenburg, 1976a)since the integral of the square of the 

delta function is not defined. 	However Gilbert (1973) 

offers a non-rigorous argument around the problem. 

Backus and Gilbert offer an alternative approach to 

the essential minimization required for equation (2.2.17). 

The area enclosed by the side-bands associated with a 

delta-like weighting function is generally called the 

'spread' of the distribution; clearly some freedom in 

defining such a quantity for a delta-like function is 

possible, but it can be expressed in approximate fashion 

by a functional of the form 
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s[A;r 0) = fJ(r,r 0 )(A(r,r 0 )) 2  dr 	 (2.2.21) 

where J(r,r 0 ) can be chosen to be any function satisfying 

the two conditions that J(r 0 ,r 0 ) = 0, and that J(r,r 0 ) 

increases monotonically as Ir - r 0 ( increases. 	Such a 

function will weight heavily the 'side wings' of a 

distribution and exclude the area adjacent to the point 

r = r 0 . 	Thus to find a delta-like function we try to 

minimize the spread, at the same time insisting that the 

distribution be unimodular. 	The variational approach is 

to form V, 

V = f J(r,r 0  ) (A(r, r 0 	dr _[JA(r,r 0 )dr 	i] 

(2.2.22) 

Forming the variational derivative with respect to the 

parameter a. we have 

X_ 	2JJ(rr)aG(r)G(r)dr - 	fG.(r)dr 

(2.2. 23) 

and the variation with respect to the parameter 2L 

r'. IG.(r) dr - 1 iJ 	1 

For a stationary solution we set 

	

parameter a., and 	V/S\ = 0. 

compact definitions 

(2.2.24) 

V/ ca. = 0 for each 
3 

We make the following 

T a= (a 1 , a 2 , ... , a) 
N (2, 2.25) 

and 
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b = (b 1 , b 2 , . - . , b 
N )T 

where 

b. = fG.(r) dr 

The matrix S is defined with elements 

S.
1J 	

JJ(r,r 0 ) G.(r) G.(r) dr 

Finally we set 	= /2. 	Thus equations (2.2.23) and 

(2.2.24) for a stationary solution imply 

	

= 
	

(2.2.26) 

together with the implication of the unimodular condition 

	

= 	1 

Solving these N + 1 equations for the N a.'s and the 

parameter A we find 

a 	= S 1 .b I b.S 1 .b 	 (2.2.27) 

The optimal vector a may depend very much on the choice of 

i.e. on the way one defines the spread of the 

distribution. 	Backus and Gilbert (1968) outline a 

variety of 'delta-ness criteria'; 	this involves choosing 

a variety of J(r,r 0 ) including inverted box-cars centred 

at r 0 . 	An equivalent expression for equation (2.2.22) 

which is analogous to the expression (2.2.20) is (from 

Oldenberg (1976a) ). 

D 2 (r 0 ) = 12JJH(r-r 0 ) - jA(r',r 0 )dr'l 2dr 	(2.2.28) 

where H(r-r 0 ) is a Heaviside step-function. 	Condition 

(2.2.20) can be called the first Dirichelet condition, and 



condition (2.2.28) the second Dirichelet condition. 	The 

factor 12 in this condition is chosen so that a box-car 

shaped averaging kernel of width t  and height ilL implies 

D 2 (r 0 ) =, . 	The Backus-Gilbert 1970 paper concentrates 

on the simple delta-ness criteria which arise when one 

chooses J(r,r 0 ) = (r-r 0 ) 2 . 	In this case spread is 

defined (again, including the conventional factor 12) 

sA;r 0 J = 12f(r-r 0 ) 2 A(r,r 0 ) dr 	 (2.2.29) 

The centre of the distribution A(r,r 0 ) is defined 

c(A) 	Jr A(r,r 0 ) 2  dr / JA(r,r 0 ) 2  dr 	(2.2.30) 

This is the point from which the spread from r 0  is least. 

In fact this spread from the centre c(A) is called the 

width, w(A) = s[A;c]. 	Hence it can be deduced that the 

spread at r 0  is 

s[A;r] 	= w(A) + 12(r 0 -c(A)) 2 JA(r,r 0 ) 2 dr 	(2.2.31) 

where it can be seen that the spread consists of a 

contribution from the width of the distribution, and a 

contribution from the displacement of the centre c(A) from 

r 0 . 	If, upon inspection of the optimum averaging kernel 

A(r,r 0 ), it is indeed found to be delta-like, i.e. 

s[A;r 0]<(1, then 

f M(r) A(r,r 0 ) dr 

would constitute a local average of the m(r) over an 

interval of length w(A) and centred at c(A). 	If however 
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s{A;r 0] is not much less than one and the averaging kernel 

is broad, and if r 0  is severely displaced from c(A), then 

one must conclude that the given set of data cannot well 

determine the model at that depth. 	If s[A;ro]<<l  we say 

that the set of data functionals 5 is mean decisive. 	If 

s [A;r 0  is not much less than 1, we say ' is mean 

indecisive.  

Choosing as Backus and Gilbert do, J(r,r 0 ) = (r-r 0 ) 2 , 

and including the factor 12 in front of definition 

(2.2.29), we make the following additional definitions 

= 12fG.(r)G.(r) dr 

S.. ' =12frG.(r)G.(r)dr 	 (2.2.32) 

12Jr 2 G.(r)G.(r) dr 

With these we see that 

S. . 	
i 

(r ) = r 2s 
•(0) 

 - 2r 	 + s. (2) 
13 	0 	0 	j 	 O ij 	13 

S(r 0 ,A) 

(2.2.33) 

cA)=a.S 	.a/a.3 	•a 

( 2)(1) 	2 	(0) w(A) = a•S 	.a - (a.S 	.a) 	I a.S 	•a 

Of course equation (2.2.14) is untrue if the 

functional g, is non-linear. 	Thus it cannot be possible 

to construct a local average <m> r0  directly out of the 

surface data 	such as was accomplished in equation 

(2.2.18) for the linear case. 	However if one has a model 



which one believes to be close to an exactly fitting 

model, then one can construct the model-dependent N-tuple 

where 

q.1 
 = f mr) G 

1 
 (r) dr 	 (2.2.34) 

and proceed with the analysis as previously. 	The local 

average will be given by 

<m) 	= Ia. q. 	 (2.2.35) 
0 

instead of (2.2.18). 	Thus for non-linear problems the 

possibility of globally distinct solutions which do not 

contribute to <m) r0  may render the local average rather 

less informative. 	The local average is itself 

constructed out of the space of -acceptable models as 

previously defined. 	The extent to which the set of 

acceptable models approximates the total space of 

acceptable models is the extent of the efficacy of the 

theory. 	If two models rn and m' are both -acceptable, 

they both satisfy 

g. (m) = g. (ni l ) + f(m_mt ) G. (r) dr + 011m-mlll  

from the assumption of Frchet differentiability. 	Since 

they both give rise to the same measured surface response, 

i.e. g.(m) = g.(m'), then 

J
( 

(m-m' ) G 
1 	

2
. (r) dr = OjIm-m'lf 

Thus two model averages such as (2.2.34) constructed for 

m and m' will be the same to first order in Im-m'l since 
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L ai q 	= 	 II 2 a. q. + 0 11m -m t  

Thus the space of -acceptable models share the same 

resolution characterisics (2.2.33) etc. 	The signifi- 

cance which can be attached to an average formed in this 

way must be conditioned by the possibility of acceptable 

models falling outside of -acceptability. 

d. Experimental error 

We here discuss briefly the fundamental aspects of 

including experimental error in the inversion formalism, 

preferring to leave a rather more geometrical discussion 

until Chapter 7. 	If one can attribute to a set of 

surface data Vja  corresponding set of error estimates, 

then this uncertainty in the data can contribute to the 

non-uniqueness of acceptable models. 	In fact Backus and 

Gilbert have shown that this error can be reflected in the 

resolution characteristics of a space of -acceptable 

models by introducing a further resolution characteristic: 

that of the error attached to a local average of the 

model, Zm> r0 	From equation (2.2.18) it can be seen 

that error in . 
1 , 

i.e. 	
1 

= 	
i . - exact 	

can be 

reflected in the local average by 

	

m) 	= 
	

(2.2.36) 

This suggests that the error in the surface data could be 

projected onto the model space. 	If m satisfies the 

erroneous data and model m satisfies the exact data (both 
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ME 
and <mE') r0 are unknown of course), can one use 

knowledge of 	 to construct knowledge of the error in 

ME or more meaningfully of 	mE) ? 	Since 

< n1E )  = 	a.J(m-mE) G. (r) dr 

and since we can write 	
- 	

E, then if m and ME 

are g-near 

1 
= J(m_m

E  ) G i  
.(r) dr 

We can infer from this relationship that error in the data 

is related to error in the model in a linear way, as long 

as one is confined to f-close models. 	The experimental 

error is expressed in a N x N covariance matrix E whose 

elements are 

E ii = 	
(2. 2.37) 

where the bar denotes the expectation value. 	Expressing 

the error in (2.2.36) in terms of this matrix, we can 

write 

2 	' 

=/a 
1  
.a 

J  
.E. 

I. 
. 	 ( 2. 2.38) C-  

where E 2  i the square of the variance of the model 

average, i.e. E = L<rnE )r O . 	The variance & is the error 

committed by evaluating our model average using equation 

(2.2.18). 	We shall consider the covariance matrix E to 

be symmetric, positive definite and in the case of 

statistically independent error estimates for our data, 

the matrix is diagonal. 
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Introducing the idea of error in the model local 

average also introduces a new degree of freedom in seeking 

optimum averaging kernels. 	We could, for example, seek 

to minimize the spread as before, however our variance 

would be given by substituting our optimum {a,3 into 

equation (2.2.38). 	On the other hand, one could seek to 

minimize the error as expressed by equation (2.2.38) and 

in this case our spread would be determined by substitu- 

ting the resulting {a.l into equation (2.2.33). 	Thus a 

useful approach might be to select a threshold spread, 

S t . such that spreads s, s < 	are thought to be useful; 

for each s in this set we could inspect the associated 

error £ and perhaps find some optimum combination of 

spread and error. 

For models varying over orders of magnitude, error in 

the model is most meaningfully represented by relative 

error, which for purposes of the Backus-Gilbert formalism 

is defined, as one might expect from the definition 

(2.2.38) and equation (2.2.35), 

2 = taaE/[a]2 	 (2.2.39) 

Backus and Gilbert show, largely by arguments made 

understandable by geometrical illustration, that the error 

E 2 (A) is a monotonically increasing function of spread 

s(A). 	The problem of minimizing the error €2 for a range 

of spreads s ' 
	is expressed (analogously to equation 

(2.2.26) ) as 



64 

(S + oE).a = 2b 

= S 	 (2.2.40) 

b.a = 1 

where . and & are scalar unknowns, and a is a vector 

unknown which can be uniquely determined for a chosen 

s <'s t* 	In fact, Backus and Gilbert demonstrate (relying 

strongly on their geometrical approach to the analysis) 

that the variable o.C.  is uniquely determined by s, and the 

problem is reduced to familiar form by choosing oz as an 

independent variable (rather than s). 	Choosing 

w tan& , and defining W = S cos 9 + w E sin 9, and 

3(9) secO , then 

=  Pb 

b.a = 1 
	

(2.2.41) 

S = a.S.a 

Solving for a(e), one determines s = a(8).E a(9) and 

= a().E.a() by varying & between 0 	O 

In this range of 9 one ranges between the pair 

2 
( max , mm s • ) for & = 0 (the value achieved by equation 

(2.2.18) previously) and the pair (E 2  	s 	) when min '  max 
19 = . 	The scalar w is a factor which can be chosen at 

2 

will: 	it affects the convenience of parameterization in 

terms of 0; it however does not affect the shape of the 

curve of spread as a function of error. 

This curve of spread as a function of error (or vice 
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versa) is called the trade-off curve, and Backus and 

Gilbert demonstrate this curve is continuous. 

e. Ranking and winnowing 

Gilbert (1971) introduced a very helpful sequel to 

the General Theory by observing that, if the Frecchet 

kernels were orthogonal, the formalism assumed a more 

simple form since the inner product matrix would become 

diagonal. 	The matter of orthogonalizing a set of 

linearly independent functions such as the N-tuple of 

Frechet kernels, can be accomplished by standard 

techniques such as the Gramm-Schmidt technique. 	In the 

foregoing we use the prime to denote quantities which have 

been transformed into such an orthogonal frame. 

One requires to find a matrix which diagonalizes the 

inner-product matrix, and this 	is achieved by a similarity 

transformation T which is applied to F 

T.r.TT = 	 (2. 2.42) 

Here rt is diagonal. 	The original matrix problem of 

equation (2.2.12) is similarly transformed from 

= 	into 

TT r! T V 	
16 9 

or 

(2.2.43) 

where V' = T. 	and 6g 	T. Lg. 	A possible orthogonal 
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00 

transformation T can be constructed out of the eigen-

vectors of the matrix P: the columns of T will consist 

of these eigenvectors, and the diagonal elements off" 

will then be the corresponding eigenvalues of C , i.e. the 

setfll,. 	The solution to (2.2.43) in this case will be 

= 

or written in scalar form 

'ij = 6 	/ 1j 

Diagonalizing the inner product matrix is equivalent 

to orthogonalizing the N Frchet kernels, and the ortho-

gonal N.-tuple of Frëchet kernels can be expressed as 

G'.(r), where G'.(r) = T. 	G.(r). 	The model 
1 	 1 	 13 	3 

perturbation arising for a given iteration in the least-

squares formalism (equation (2.2.9) ) can now be expressed 

= 211v'. G'.(r) 
1 

1 

= 	7 	g'. G'.(r)I -f. 	 (2.2.44) 
1 

Also ItmIl 2  can be expressed as 

2 = 	
v' - 	(r)G' (r) dr 

ij 

	

1 	J 

= 	'2/ 	 (2.2.45) 
1 

1 

If 	is poorly conditioned or nearly singular, some 

of its eigenvalues will be close to zero, thus making the 

perturbation (2.2.44) very large -- this in turn rendering 
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the iteration scheme unstable. 	Having orthogonalized 

the problem, however, one can choose to exclude near zero 

eigenvalues from equation (2.2.43) and thereby truncate 

the sums (2.2.44) or (2.2.45) to satisfy some preset 

stability criteria. 	One could for example insist that 

the sum of the squares of the residual decrease in 

subsequent iterations. 	With this application in mind it 

is advantageous to construct the transformation T in such 

a way that the moduli of {1 	2' I N 
j are ranked in 

descending order of magnitude. 	Truncation of (2.2.45) to 

achieve stability would then imply the exclusion of small 

eigenvalues in (2.2.43). 	Gilbert calls this procedure 

'winnowing' and it has the effect of discarding various 

pieces of transformed data, Ag'., from a given iteration. 

Since the transformed data are linear combinations of the 

original data, winnowing will imply some loss of infor-

mation but it could be argued that it is information which 

is anyway inaccessible. 

Another advantage of this procedure is the simplifi-

cation offered to the matrix equation (2.2.41) by 

diagonalizing the matrix S. 	The vector equation 

transforms to the scalar equations 

a 1  . = 
	b/(s. cos & 	

1 
+ w 	sin 19 ) 	 ( 2.2.46) 

	

1 	1  

and 

b 2  
i 

(2. 2.47) 

	

= 1/ 	s cose +w • sin 
i 	i 	 1 



We have assumed E to be diagonal already in our dis-

cussion. 	However, should the covariance matrix not be 

diagonal (and the elements of the data set 	not be 

statistically independent) Gilbert (1971) presents a 

scheme to diagonalize both E and 17 simultaneously 

2.3 The Lanczos Formulation 

An alternative approach to the inversion of 

geophysical data is that developed by Lanczos (1961). 

We briefly include here a description of this method which 

is based upon Jackson's (1972) analysis of the Lanczos 

problem, and we use Jackson's notation in what follows. 

Our intention is that of making a complete discussion of 

the inversion problem, and to give some perspective to the 

concepts of Backus and Gilbert. 	Jackson poses the 

inverse problem as one of inferring a set of M unknown 

discrete model parameters fxjf from  a set of N surface 

measurements tyj. 	If the data and model are related to 

each other by a linear operator, A, one can write the 

relationship directly as 

1. =2:E 
	

(2. 3,, 1) 

If the functional is non-linear, one can make a Taylor 

expansion of each datum with respect to each model 

parameter about some model 

A. 
y. 	A.(x. ) 	 x 	+ ... 	 (2.3,2) 

1 	1 	

0 

3 	 0 	j j 
3 



M. 

Assuming Lxx
i 
 is sufficiently small, and assuming the 

higher-order contributions to (2.3.2) can be neglected, 

we can write this expansion to first order as 

Y_ = A. • x • 	 (2.3.3) 
1 	13 3 

where we redefine y.
1

, m 
3 
 , and A 

13  
. . to conform to the 

previous notation of equation (2.3.1) by 

0 
yi =i 

- A.(x. 

X.  = X. 

3 	3 

A.. 
13 

= ?A. 	
X. J 

/~ x.] 	0 
1  

3 

The N x M matrix A is called the Jacobian matrix of the 

data functional. 	If we operate on equation (2.3.3) by a 

M x N inverse matrix H, we can construct a theoretical 

model vector x given by 

= 	= 	 (2.3.4) 

To construct a satisfactory inverse operator H, requires 

that A be well-conditioned and non-singular, and this in 

turn may suggest conditions required of the data set or of 

the model parameterization. 	In general the operators A 

appearing in geophysical problems are not necessarily 

well-conditioned, and the problem of constructing an 

inverse H assumes fundamental significance. 	We consider 

an operator H to constitute a 'good inverse' if it 

satisfies the following criteria: 

a.) If we operate on the left of each term in 
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equation (2.3.3) by A we obtain 

= 

and if the operator A H = 	N' i.e. the N x N 

identity matrix, then the inferred model x 

satisfies the data L 	Therefore the closeness 

of A H to i N is an indication of the degree to 

which the model 	fits the data. 

b.) From equation (2.3.4) if H A =I M' the M x M 

identity matrix, then 	x, i.e. the inferred 

model 	approximates the exact model x. 	Of 

course if H.A is not exactly an identity i m y 

each x
. 

is effectively a linear combination of 

the x 
J  
.'s, the coefficients of this combination 

hopefully centred around the diagonal of H.A. 

Thus closeness to the identity matrix of H.A can 

be considered a measure of the resolution with 

which surface data functionals can infer the 

model . 

c. ) The uncertainties in x must be sufficiently 

small, i.e. 

N 
var 	= ~ Hk. 2 (var y) 

i=l 

(where var (y) is the statistical uncertainty 

attached to the surface data) must be small. 
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We now recall the transformation suggested in Section 

2.2.d whereby the Frchet kernels are made orthogonal and 

the inner product matrix as a consequence becomes diagonal 

with its N non-zero entries being the eigenvalues 

associated withfl. 	To pursue the same idea in connection 

with equation (2.3.3), a more general inverse technique is 

required since A is not square. 	Lanczos (1961) defines 

two eigenvectors associated with A such that 

Av. 	= 	. •u. 
= - 3 	(3) 	3 

and 	 (2.3.5) 

AT 	
= 

and these imply 

A 
T 
 A 	= 

and 	 (2. 3.6) 

T u 
	

2 
AA 	. = 	u• 
= —J 	1 ) -' 

It will be assumed (as in Section 2.2.d) that the eigen-

values are ranked in descending order of magnitude. 

Lanczos proves that there exists an integer p 	min M,N 

such that ,\ . 	= 	(j)  , i = j, and i,j 	 (1 
p, and \ .) = 0, (i)  

= 0 if i,j > P. 	Thus equations (2.3.6) possess p 

non-zero eigenvalues in common. 	The matrix A is factored 

= uAvT 	 (2.3.7) 

where A is a p x p diagonal matrix of eigenvalues; the 

columns of U consist of the eigenvectors u. (corresponding. 
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=V 	
± o 	o 	 (2.3,10) 

If we consider A, y, and x as are represented in 

(2.3.1) for the moment, the classical 'least-squares' 

problem is that of minimizing a data residual defined by 

E= A x - Y . 	Our decomposition of A in this case would 

imply for the square of the residual 

T 
rrl = IE - 	

2 
+ 1f0! 

2 	
(2.3.11) 

We note that this is not the residual involved in the 

procedure of Section 2.2.b. 	The least square of the data 

residual Ir is thus achieved when 	a, with an error 

of jp0J2. 	Three cases can be isolated, depending upon 

the dimension of 

If p 	N, the solution will only be an exact solu- 

tion if 	0, i.e. if u0T 	= 0, and the operator 

annihilates the data. 	This implies that the system will 

only adniit an exact solution if the vectors u. and y are 

mutually perpendicular for I = p±l ..,, N. 	Jackson 

describes this system as overconstrained: the situation 

can, for example, arise if the model parameterization is 

too restrictive, or if the data admits inconsistencies. 

Since a0  does not appear in the classical least-

squares solution equation (2.3.11), it may be chosen at 

will. 	The arbitrariness of the vector g implies some 

degree of non-uniqueness in the solution to the least-

squares problem, since from equation (2.3.10) an arbitrary 

lends a range of arbitrariness to x. 	Jackson calls 
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this the underdetermined case; it may arise if the 

parameterization of the model contains too many degrees 

of freedom for the size of the corresponding data set. 

Finally, if p <' M and p < N, then there may not be 

admitted an exact solution to the classical least-squares 

problem. 	However, 	there still 	may exist 	an infinity 	of 

models 	satisfying equation CD 
(2.3.11). This implies a 

system both overconstrained and underdetermined. 

We return now to the A, y, and x as they are defined 

	

for equation (2.3.3). 	The geralized inverse as derived 

by Lanczos, which is associated with equation (2.3.3) is 

	

(L) = 
	A- 1 
	T 
	

(2. 3.12) 

which is analogous to equation (2.3.4); we infer a model 

(L) 

	

(L) 

= 	 ur 
	

(2.3.13) 

Jackson shows that this inverse supplies a least-squares 

solution which minimizes 

	

12S 1 2 = 	+ 1E 0 I 
	

(2.3.14) 

- 	 T" T 	 -1 
since 	= 	

(L) = 0, and a = 	
(L) = 	

. 	U 

x is the model perturbation in an iterative scheme, the 

generalized Lanczos inverse minimizes this perturbation by 

finding a solution for which cL O  = 0. 	The vector a is 

closely related to the normal model vector rn 1 which 

appears in equation (2.2.14). 
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For an overconstrained problem, Jackson proves that 

the solution to the classical least-squares problem 

(2.3.11) is identical to that achieved for (2.3.14); 	for 

the more general case of an overconstrained and under-

determined problem, the Lanczos inverse always exists, 

whereas the inverse to the classical problem may not 

always exist. 	For the purely overconstrained problem, 

the solution x is expressible as 

T 	-1 T 
X. = 	1_ 	:1 

however if the system is also underdetermined, the matrix 

A 
T 
 A will be singular, so a solution satisfying the least-

squares criterion that (2.3.11) be a minimum may not 

exist; however one can still discover a solutionx 

which minimizes the Lanczos least-squares criterion 

(2.2.14). 

At the outset of this Section, we outlined criteria 

for a 'good 	inverse', H. The La.nczos inverse 	satisfies 

these criteria 	since we define the resolution matrix, 	R, 

as 

= 	(L) 	
= vAuTuAvT =VV 

(2.3.15) 

and it is optimized by x(L) since each row, rk,  is 

optimally close to the row of a corresponding M x M 

identity matrix I The information density matrix S 

is defined 
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= AJ4(L) 
= uuT  

it is also optimum in the same sense that each row 3 is 

optimally close to the corresponding row of an N x N 

identity matrix 

Analogous to the discussion of Section 2.2.d one can 

also construct a Lanczos inverse which minimizes 

where F is a covariance matrix identified with the 

experimental data. 	One can also seek to minimize £ r Fr 

together with x -  x T 

The third criterion .for a 'good inverse' states that 

the model variance should be small. 	This variance is 

defined by 

var 	 L 
= 	ki 2 (var 

and using the Lanczos inverse from (2.3.12) and forming 

T 
(L) 	

(L) we have 

p 	iV . \ 2 
var (^X 

(L)
) = E() 	 (2.3.17) 

j=1 

for var y. = 1. 	The smallest non-zero eigenvalues may 

make the variance unacceptably large, so one can truncate 

the sum so that 

2 

() 	tk 	 q<p 
j=1 

where t  is some threshold value for the variance. 	The 

effect of using some q  smaller than p is to reduce the 
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number of eigenvectors in U and V and augment U 0  and 

This increases the constraints on the system, and 

increases the non-uniqueness, and thus effectively 

degrades resolution and information density in exchange 

for stability in an iterative scheme. 	The choice of q is 

thus a trade-off completely analogous to that associated 

with the ranking and winnowing procedures outlined in 

Section 2.2.e. 
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THE ELECTROL&GNETIC INVERSE PROBLEM 

3.1 Useful Aspects of the 'Forward Problem' 

In order to apply the Backus-Gilbert generalized 

inversion procedure which has been outlined in the 

previous Chapter to a specific non-linear geophysical data 

functional, one must cast the variation of each datum into 

a form resembling equation (2.2.3). 	Since it is this 

equation which embodies the linearization associated with 

linear inverse theory, caution must be exercised and some 

effort made towards inspecting the possible implications 

of linearization to the inverse problem. 

Thus, towards posing the inverse problem associated 

with the non-linear problem of inferring conductivity from 

the inductive response of a body, we examine here some 

aspects of the direct (or forward) problem which are of 

significance to the inverse problem. 	We mean by the 

'forward' problem the solving for the response, given a 

conductivity model. 	The 'inverse problem' is of course 

the reverse of this procedure. 

a. 	The model space for induction problems 

We are concerned with the prospect of inferring the 

distribution of electrical conductivity within the earth 

from knowledge of its inductive response to external 
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current sources. 	One is tempted to ask what other 

electrical parameters, if any, might enter into the 

inductive response. 

Electromagnetic phenomena can be represented in terms 

of the vector electric field (or electric intensity), E, 

and the magnetic field vector, H, which satisfy the 

Maxwell equations 

VxE = 	-à.f3/t 

V- B = 0 

(3.101) 
VxH = ~ JJ/t +J 

= f c  

where f  is charge density. 	These equations must be 

satisfied together with the constitutive relations (for an 

electrically isotropic medium): 

D=E 	, 	 (3.1.2) 

where 	is the electrical permittivity (SI units: 

farad-rn ' ); p is the magnetic susceptibility (SI units: 

henry-amp 1 ); and 	is the electrical conductivity (SI 

units: ohm 1 -m 1 ). 	We shall be restricting our 

attention to regions which exclude source currents and 

charges. 	Thus we may set c  = 0 in Maxwell's equations 

and observe that the divergence of both B and P (and thus 

from (3.1.2) of both H and E) vanishes, 	At this stage we 

see that the set ( 
E , 	 cr) comprises the only model 

parameters which enter into the governing equations. 
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Equations (3.1.1) and (3.1.2) are consistent with E and H 

satisfying the following wave-type equations: 

- 	 c 3 2E/ ~ t2 - ME/t = 0 	 (3.1.3) 

and for magnetic variations, the inhornogeneous equation 

2 	- 	
~ 2H/t 2  - 	D H/ ) t = f() 	 (3.1.4)  pE 

where f() = 	 H. 

In view of the long periods associated with induction 

phenomena, two approximations may be made in Maxwell's 

equations. 	If the period of oscillation, T, of an 

electromagnetic source is such that T >> ERr 
, then 

D/t < J, and displacement current, ~ D/t, can be 

neglected from Maxwell's equations. 	Even for very small 

-10 	-1-1 conductivities, with 	'- 10 	ohm m , the inequality is 

satisfied for periods greater than a few seconds. 	In the 

free-space region, a- = 0, however2D/ 3 t can still be 

ignored if the period of oscillation of the source is 

large compared with the time taken by electromagnetic 

waves to traverse the free-space region one is considering. 

This follows from the coupled inequalities 

D/tL<<Icur1 HI 	 if 	 L 

where L is the scale of the inducing field. 	This 

condition is satisfied for problems associated with global 

fields if T 0.03 sec. These two approximations reduce 

equations (3.1.3) and (3.1.4) to the diffusion equations: 

V 2E - 	 E/t = 0 	 (3.1.5) 
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and 

- 	H/ 3  t = 1(e) 	 (3.1.6) 

and we see that electrical permittivitity no longer 

appears in the equations describing inductive response. 

At this stage we shall also invoke the conclusion of 

Tozer (1959) who deduces from physical and geological 

considerations that magnetic susceptibility does not vary 

appreciably within the earth, and that it has a value 

close to its free-space value, p o . 	If we set 	i 

in equations (3.1.5) and (3.1.6), we find these equations 

depend upon only one of the constitutive model parameters, 

namely 0 	 The solution to (3.1.5) and (3.1.6) will of 

course still be a function of source parameters and the 

frequency of the inducing source. 

The forward problem is one of solving (3.1.5) and 

(3.1.6) subject to the boundary conditions which must be 

satisfied by the six components of the vector fields 

across the surface boundary and across boundaries internal 

to the surface. 	These conditions may be summarized as 

the continuity of components of B normal to an interface, 

and the continuity of components of H and E tangential to 

an interface. 	If we confine ourselves to models which 

are spherically symmetric (or to conductivity distribu-

tions which are functions only of depth, and not of 

lateral position) the governing equations are further 

simplified since f(o) =Oin(3.1.6). 



In the analysis which follows we shall be considering 

exclusively time-harmonic variations of the form 

exp i wtj. 	This allows one to suppress the time 

dependence of the vector fields from the notation. 	We 

can write 

iwt 
H(r,t) = H(r,O)e 	= H(r) 

in an equation like (3.1.6) if we replace the ?'/t 

operator with multiplication by iui. 

b. Representations of the field 

The representation of the electromagnetic field in 

terms of three components of the vector F and the three 

components of H in equations (3.1.5) and (3.1.6) is not a 

unique representation. 	From Maxwell's equations (3.1.1) 

one observes that H can be represented by the curl of any 

vector A, and the corresponding E-field can be expressed 

as E = - 	- iA (for time-harmonic sources) where 

is any scalar function. 	In fact a family of such vectors 

A. can be discovered by applying any number of transfor-

mations (called the Gauge transformations) of the form 

A 	 lb .=A-V. 
- 1 	- 	 1 

where the set {3y consists of arbitrary scalar functions. 

Since a representation in terms of A (called the 'magnetic 

vector potential') and (the 'scalar potential') has this 

degree of arbitrariness, one can choose a vector potential 

to satisfy the modified Lorenz condition, 
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+ 	= 0 

whereupon A and 	both satisfy the diffusion equations 

- i 	= 0 

(3.1.7) 

 iwpro - 	 = 0 

The advantage of such a representation is that the field 

is now specified by four independent variables (A,) 

rather than the six (E,H). 	The transformation has moved 

the problem away from the physical equations (3.1.1), but 

it may render the boundary-value problem associated with 

those equations more tractable. 

There is another level of potential representation 

available since A and P in (3.1.7) still enjoy some degree 
of arbitrariness. 	One can see this by observing that any 

it and P such that 

= 	7.7T 

(3.1.8) 

= VxF+ 	- rt 

(where the directions of it and F are chosen at will) will 

satisfy (3.1.7). 	Electric and magnetic field vectors are 

transformed to this representation (called the Hertz 

vector representation) by 

E = V x V x IT - 1 WV x I 
- 	 (3.1.9) 
H = c7xVxP +K 7 xTC 

1 

where K = ( iL.Jjcr) 2 . 	It will be found, upon substitution 

of (3.1.8) into (3.1.7) that 	and fi both satisfy the 
diffusion equation. 	Since their directions can be chosen 
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at will, for a given geometrical situation, a clever 

choice of this direction can further reduce the number 

of independent variables required to specify the field. 

So far we have suggested that F, H, 0 , A, 	, and 

all satisfy the same equation; subject of course to 

different boundary conditions. 	A broad discussion of the 

general possibilities for higher potential representations 

may be found in Stratton (1941; Chapter 7). 	If 1 is a 

solution to the scalar diffusion equation, and a is any 

constant vector of unit length, then three independent 

solutions to the vector diffusion equation 

v2c - 	 = 0 

can be constructed from 

L=V, M=xa, N=KxM 	 (3.1.10) 

These fundamental vector solutions have the properties 

that L is irrotational; V x L = 0; whereas N and M are 

solenoidal, V.M = 0 and VoN = 0. 	Since a is a constant 

vector, from vector identities we can deduce that 

M = L x a. 	Since V .E = 0 and V.H = 0, our induction 

problem is solenoidal, and L need not enter our funda- 

mental solution set. 	The task of finding an appropriate 

M and N hinges on our finding an advantageous vector a. 

For example, if we are treating induction in a 

conducting half-space occupying z 0 in an (x,y,z) 

Cartesian frame in which z is taken to be positive in the 

downwards direction and in which 0-is taken to be 
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homogeneous in the x-y plane, a fortunate choice for the 

unit vector a might be a 	i.e. to lie along the z- 

direction. 	Then (3.1.9) can be expressed 

E=KN - iuJM 

(3.1,11) 

= KN' + pa- M 

where N = K_ IV x M and M = V x Pk, and N = K_ 1  V x  Mt, 

t M 	v x r k. 	The problem has been reduced to solving 

two differential equations (diffusion equations) for 3' 

and Il t . 	We note a useful result of Weaver (1970) that 

within the conductor the boundary conditions associated 

with the induction in a half-space due to localized 

sources imply that TE can be set to zero in equation 

(3.1,9). 	This implies N and M can be set to zero in 

(3.1.11) and the fields can be derived from the solution 

of a single scalar diffusion equation for ipt• 

Stratton shows that for the analogous problem of 

induction in a spherically symmetric conductor, choice of 

a fixed vector a to be 	leads to the difficulty that, 

since c is not a constant vector (it can rotate), M and N 
need not always be perpendicular to L, and L x r need not 

be always tangential to the surface of the sphere. 	One 

can construct a non-constant a = r, where r is the radial 

position vector, which does supply solenoidal M and N. 

Thus for a strictly spherical problem, E (i.e. M in 

equation (3.1.10) ) can be supplied by 
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= Vx'br 	 (3.1.12) 

and the problem reduces to the solution of a single scalar 

diffusion equation (in spherical coordinates) for 4' 

C. Solutions to the 'forward problem' 

The direct problem of solving for the response for a 

given conductivity distribution has been the subject of 

much research. 	We very br -iefly indicate the nature of 

the various solutions, and where a more detailed analysis 

of the problem might be found in the literature. 

The problem associated with induction in a spherical 

conductor involves solving for the potential 'V in equation 

(3.1.12). 	The diffusion equation in spherical 

coordinates is 

1 " 	2 	 1 	 I 	. 

T--- - Ir - j+ 	 — 
  

— isin - 

	

2  ar 	rI 	r2  sin 

1 

	

+ r
2  sin2 	

+ iP0 1P = 0 	(3.1.13) 

To solve this differential equation, one can seek to 

separate variables by a series expansion solution of the 

f o rm 

	

'1i 	= L 	RT(r)Y 1 (e,) 	 (3.1,14) 
m 

Substituting (3.1.14) into (3.1.13), the diffusion 

equation decomposes into three equations: a radial 

equation (3.1.15) 

2 m 
( T --~! 

 R(r)) - (+l) + 1-ir ) R2 (r) = 0 
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(this can be identified as a Sturm-Liouville type 

equation) and angular equations 

d2 	
= 0  -+m 

dØ 2  

and 

2 j G (sinO 	) + [s 	-(+1) - 
	

= 0 

(3.1.17) 

where Y = 	. 	This latter can be identified as 

Legendres equation. 	It is interesting to observe that 

the model parameter (r) only enters explicitly into the 

radial equation (3.1.15). 	This arises from the presumed 

spherical symmetry of the problem. 	Thus we may expect 

the inverse problem to be related strongly with equation 

(3.1.15). 	This problem has been analysed extensively in 

the literature (Lahiri and Price, 1939; Bailey, 1970; 

Parker, 1970). 

For the half-space case, the solution to (3.1.11) is 

achieved by making a Fourier-space transform of "fr , namely 

substituting 

t1J1 	
(3.1.18) 

into equation (3.1.11). 	The resulting equation (in 

transform space) is 

d 	2 

dz 

where K2 	
2 	2 

= 	+rt 	+iIp-. 

(3. 1.19) 

The Fourier components are 



to be identified with the structure of the source; one 

solves the simple diffusion equation (3.1.19) for P(,) 

and then Fourier transforms back into Cartesian x-y space 

--this latter step effectively summing over the 'wave-

numbers', K, associated with a given source structure. 

This has been the approach of Price (1952, 1962), Weaver 

(1970, 1973). 

Particular mention should be made of the case where 

the source inducing currents in a half-space is uniform in 

the x-y plane. 	This 'non-local' source was presumed in 

the magnetotelluric theory developed by Cagnaird (1953), 

because at a single observation position on the earth, the 

spatial structure of the source is large compared with the 

depth of penetration of the fields. 	However Price (1962) 

showed that taking the limit from the spherical case (with 

uniform field) to the half-space case (i.e. the limit as 

radius R— 	) results in an indeterminate problem for the 

induced fields. 	The limit for tangential components of 

the induced field (or inducing field) tends to m/m+1, and 

this dependence of the field in a half-space on a 

spherical harmonic variable m, implies the separated 

fields cannot be determined uniquely (the choice of m is 

arbitrary in the context of a half-space). 

The total fields however can easily be found. 	If 

one considers the E field of a uniform source to lie along 

the x-direction, i.e. 	E = (E 3 0,0), substitution into 

.Iaxwell's equations shows that one need only solve 



X 	i&t-E 	= 0 	 (3.1.20) 
-- 	 x C1  

for E . 
x 	 y 

The orthogonal component H can be found from 

(3.1,1). 

d. Choice of response function 

In Chapter 4 a specific inverse-oriented criterion 

for a suitable response function will be suggested. 	At 

this stage we outline the form of the response used in the 

various problems we have been discussing. 

A spherical harmonic analysis of the global induction 

problem can yield for 'Y appearing in (3.1.14) an 

expression of the form 

£ 	 2+1 

	

= a [(i) u + (-) 	v1 P(cos e )e '  

where U and V '  represent the coefficients associated with 

the decomposition of R(r) into components of internal 

(v) and external (TJ) origin. 	It was such a separation 

of surface fields that Schuster (1889), Chapman (1919), 

and Lahiri and Price (1939) performed to analyse surface 

magnetic variation data. 	Thus a possible measure of the 

inductive response of. the earth (for the (,m)-spherica1 

harmonic of an inducing field) is to take the surface 

ratio of internal to external parts, S, for tangential 

magnetic field components (following the notation of 

Schmucker, 1970) 

S 	= 	 (3.1.22) 



This is related to the same ratio for the radial magnetic 

field components by - (2+1)v/v. 	One can also use 

as a response the surface ratio of magnetic radial to 

tangential variations: 

H/Fl 	= 

dP /d 9  

and 	 (3.1.23) 

Hr/H 	= I S1fl0 	
T 

im 

where 

M 
TL = 

1 - S 	(.+l)/,2, 

m 
1 +  SY- 

There is another, less direct, method of assessing 

the inductive response of a spherical conductor. 	Rather 

than separating R into parts of internal and external 

origin, from equation (3.1.14) one can express the six 

field components in terms of R and Y to yield (from 

Srivastava, 1968): 

Hr  = - -1 RT(r) 	+1) Y(0,0) 

H = - 	(r R(r)) 

1 	d 	 Y(G,) 
H 	- - 	(r R(r)) 	

d 	

(3.1.24) 

E =0 
r 

m 	d  
= - iRt ( r) 	sin& 
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E = i t.)R
m 
 (r) 	d Ym (e,5) 

If one forms the surface ratio of the orthogonal 

components of E and H one finds 

- 	ir R(0) 

H - 	d 	m 
—(r R (r)) 
dr 	z 	r=O 

and 

r R(0) 

H 	 dm 
—(r R (r)) 0  
dr 	1.  

(3.1. 25) 

Both these ratios depend solely on the radial function 

R(r) which in turn depends on the parameter cr(r). 	In 

fact the complex ratios (3.1.25) have (SI) units of ohms 

and are called (by analogy with wave propagation theory) 

the surface impedances. 

For the problem of induction in a half-space due to 

a localized source (localized in the sense that its 

spatial extent is not negligible compared with its depth 

of penetration), separation of the field into its 

internal and external parts is still possible and the 

solution for P(-,r1) in (3.1.19) can be expressed in the 

form 

(3.1.26) 

where K2 = 2 + 
2 
 and the surface ratio of internal to 

external parts of the field, S(,) - pl(ç)/pS(.) 
can 

be identified for a given conductivity distribution. 
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The separation of fields in this manner is not 

possible for the case involving uniform inducing fields. 

This is due to the indeterminacy of the problem of 

separating fields associated with infinitely extending 

fields. 	However one can still employ the impedance 

ratios of equation (3.1.25) which have no angular 

dependence. 	Thus, for uniform fields, one can use 

E 
x y 

	

	y x 
/H and F /H as a suitable response. 	For strictly 

polarized fields these ratios can be written in the form 

F 	 F 	-j 
= 	L&)t 	

dE j 	
(3.1.27) 

dzx z=O 

Cagnaird (1953) employed a related response which he 

called the apparent resistivity, 
fap  and which he defined 

as 

F 1 2 
e = 	

H (i 

	

	 (3.1.28) j  
y 

together with its phase, 

E 
= arg 

Y 

For the case of localized source fields, the surface 

impedance analogous to (3.1.27) is given by 

P(,,O) 	
(3.1.29) 

where d denotes the spatial Fourier transform of equation 

(3.1.18). 	Price (1962) shows this impedance ratio can 

be related to the separation components P ' (,) and 
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pS() 
by 

	

1 	x 	I 	- 	 + p 1 () 

	

r 	H1 - - i 	
- K(P 5 (,) - 

(3.1.30) 

and this expression is analogous to the spherical harmonic 

separation coeffi ci ants U and \f satisfying (from 

equation (3.1.23) 
	

the relationship 

1  
iwjiH 

-Q + UM 
	 (3.1.31) 

Thus there are really two types of response function 

commonly used: the ratio of separated field components 

arising from Fourier decomposition of the source field, 

and the surface impedance ratios. 	These two responses 

are closely related by equations (3.1.30) and (3.1.31) 

where field separation is mathematically possible. 

Bailey (1970) chooses V/TJ as the response function in 

his inversion approach, whereas Weideldt (1972) chooses a 

response of the form [E(z)/ E(z)/ 	 i.e. a response 

analogous to (3.1.27). 	Of course, one determining factor 

in the choice of response must be the experimental 

accuracy with which a response can be estimated. 	Banks 

(1969) puts forward such experimental arguments when 

explaining his preference for an impedance response of the 

form (3.131). 
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3.2 Linearizing the Induction Problem 

a. Method of Parker 

Linearizing a non-linear problem such as the inverse 

induction problem, obviously involves inherent risk. 

Sabatier (1974) has presented a mathematical (and somewhat 

synthetic) approach to assessing some of the possible 

ill-effects which can arise from a linearization. 	He 

has thus suggested that caution must accompany the 

conclusions formed from linearized procedures. 	In 

connection with the induction inverse problem, Anderssen 

(1975) has pointed out that little attention seems to 

have been paid to the possible contribution of higher 

order terms in an equation such as (2.2.3). 	He also 

(1974) presents specific reservations concerning the 

linearization of the electromagnetic problem as accomp-

lished by Parker (1970). 

In a Backus-Gilbert inversion of Banks' global 

induction data (from Banks (1969) ), Parker chose as his 

model distribution a radially dependent conductivity in 

an earth with radius a. 	As a surface response he chose, 

for a given ith frequency w , the quantity 

V. 	
______ 	r dR 

= _) fi + - 	 ( 3.2.1) 
+1  

)r=a 

where R(r) is the radial function which satisfies 

equation (3.1.15), 	One can see by comparison with 
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equation (3.1.25) that Parker's response is closely 

related to the surface impedance, since 

	

V. - 	1 
H 

	

- 	(+l) 	E 

and 
	

(3. 2.2) 

H 

	

- 	1)JI 	 0 

i 	- 	(+l) 

Parker relates this response to the separation 

coefficients U and VT appearing in equation (3.1.21) 

by the relationship 

V. 	= 
1 

uT +v  
- (k+l)vm.  

(3.2. 3) 

which can be inferred from (3.1.31) directly. 	The 

reciprocal V' corresponds to the response function 

employed by Banks. 	By differentiating V. with respect 

to r and by substitution into equation (3.1.15), Parker 

shows that V. satisfies the first-order differential 
1 

e qua t i on 

dv. 2  (+1)v. - 	v. 	- 	1 

	

1 	 1 	0r + 	 = 0 (3.2.4) 
dr + r TCL+1) 

Forming the variation of V. 	(with respect 	to a variation 
1 

in model distribution 0(r) 	) 	one 	finds 	that 

2(+1)V - 	1(+1(v. )2 
1 )Sv. + - 	 + iWr 

+ ( 	r 1 	 r 
0 

 
= 

(3.2.5) 

and Parker effects the linearization of Lv by neglecting 
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the third term in this equation. 	Anderssen has made the 

following two reservations of this procedure: a) it is 

not clear whether discarding the (V)2 - term in equation 

(3.2.5) is equivalent to discarding the terms of order 

m2  in an equation such as (2.2.3), and b) in any event 

it is not shown by Parker whether this discarded term is 

insignificant. 

Parker obtains as his Frchet kernel the function 

2 R m 2 L(r) 	
(3.2.6) 

iwir 	
•-; 	2 G.(a,r) =TTflTT 
RLi(a) 

1 

by solving the linearized equation (3.2.5). 	However he 

discovered that, for the Banks' data at least, the Backus-

Gilbert least-squares scheme was unable to converge. 	As 

Parker explains, in the case of real, scattered data, 

strict convergence would be very unlikely. 	The inverse 

problem is in general underdetermined, and the matrix 

equation (2.2.12) may be ill-conditioned even when one is 

treating perfect and consistent data. 	Parker was, how- 

ever, able to find models which satisfied the data to 

within one standard deviation of the data (he did not 

elaborate concerning the method he employed to find these 

model's). 

There must be some ambiguity associated with 

discarding the äV 2  - term in equation (3.2.5). 	Assuming, 

for example, that V. were related to the model distribu-

tion a(r) by a purely linear functional: can one take 
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the order-of--magnitude relationship 

LV— Oil 

to imply imply 

(Sv) 2 	0 	 ? 

After all, if the functional is linear there do not exist 

terms of second order in 	associated with Jv, yet one 

is identifying (Sv) 2  as a term of precisely such order. 

In fact, if the variations are elements of a linear space, 

they can be treated in this way, that is, as variables in 

a linear algebra. 	In a non-linear problem, however, if 

one presumes linear characteristics of variations LV etc. 

before the linearization of the problem has been effected 

-- as is the case fol1oving equation (3.2.5) 	then the 

structure of the discarded terms is obscured. 	To avoid 

this difficulty in Section 3.2.b a more conventional 

approach to the linearization is considered. 

Parsons (1972) suggests an alternative procedure for 

obtaining the F'rchet kernel of Parker. 	His procedure 

serves to illuminate some of the problems involved with 

taking the variation of the electromagnetic surface 

response. 	Briefly described, Parsons considers the 

Sturm-Liouville equation (3.1.15) for a particular 

conductivity distribution 

- r2 - R1 - 	iwir 2 Q 1 (r) + 	(Q+i)] R 1 	0 	(3.2.7) 

and then for a conductivity r2 (r), the similar equation 

for R 2  is written 



d 	2d r 	R 	- [ir2 2 (r) + 	(2+l)] R 2  = 0 	(3.2.8) 
dr 

Multiplying (3.2.7) by R 2  and (3.2.8) by R 1  and integra-

ting the difference between the resulting equations by 

parts, one obtains 

1 	
dR2 	

1 	
dR1] 

1.T 2 Fa 7 r;:- - 	(a) 	
i-i:- r = a 

a r
2  ST 	

R1(r)R2(r) 

f 	 dr 	 (3.2.9) 
 71)R2 (a) a 

where the induced electric and magnetic fields have been 

assumed, reasonably, to vanish towards the earth's centre. 

Thus R 1 (0) = 0, R 2 (0) = 0, and dR 1 /drj 	= 0, and 

dR 2 /dr] 0  = 0. 	If we recognize the left hand side of 

(3.2.9) as 2(+1)V./a, then we have for the variation of 

Parker's response function 

= 

	

V —
iwp 	a 	

2 
/ R (r) S( r ) 	R(r)R(r) 

(+1)a J - 2 	+ 	2 	dr 

0 	R (a) 	 R (a) 

(3.2.10) 

The first term in this integrand corresponds to Parker's 

Frchet kernel (3.2.6). 	Parsons claims (without 

explanation) that the second term in this integrand is of 

order &T 2  and then discards it. 	Before accepting this 

linearization one might ask whether this procedure is 

acceptable. 

It might seem, for example, that the cross-

multiplication of (3.2.7) and (3.2.8) and the eliminating 

of R 1 R 2 (+1) is misleading, since it rather assumes that 
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one is eliminating common factors from two simultaneous 

equations. 	In fact, the two equations are not 

simultaneous. 	In taking a variation (as a derivative) 

one is not moving along the solution curve, but from one 

solution curve to another. 

For example, an examination of the procedure shows 

that one would obtain exactly the same Frchet kernel for 

the equation 

d 	2d 
jr  r 	R - ii 	(r)r 2R = 0 

yet clearly the solution to (3.2.7) might be quite 

different to the solution to this equation, since (3.2.7) 

depends upon the harmonic 1. 	A family of curves 

y = ax + b can be constructed by 

YI = a 1 x + b 

y2 = ax + b 

etc. 

If we take differences between these equations to form 

the variation Sy, we will see that we are constraining 

the variation always such that y passes through y(0) = b. 

In the following Section we follow a procedure similar to 

Parsons', but without the implicit constraint we have 

just mentioned. 	Finally it must be remarked that (again) 

the discarded term in equation (3.2.10) is not clearly of 

second order in Sr 

What is required is an unambiguous demonstration 

that the kernel (3.2.6) comprises the linear part of the 
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variation and that the discarded terms are of order 

greater than or equal to 	S112 	We proceed towards 

this goal in the next Section. 

b. Alternative expression of the Frchet kernel 

We offer an alternative method for determining the 

Fr€cchet kernel, equation (3.2.6). 	The method is 

reminiscent of some recent work of Jady (1974a). At this 

stage we wish to include the parallel problem of induction 

in a half-space occupying the z >0 region of an (x,y,z) 

coordinate system, positive z downwards, by a uniform 

harmonic source. 	In this case the tangential electric 

field must satisfy the diffusion equation (3.1.20). 	As 

in the case of a spherical conductor, this equation is of 

the Sturm-Liouville type. 

p(x) 	(x) + q(x) V (x) + 	s(x) 	(x) 	(x) = 0 

(3.2.11) 

If we multiply equation (3.2.11) by(x) and integrate 

over the region of interest (0 r a for sphere of radius 

a and centre r = 0, or 0 ±z± 	for the half-space with 

z = 0 at the surface) we obtain 

[(x) 1

b 

	

	b 	n\2 dx 

- 	
p(x) 

0 

+f q(x) 12 (x) dx = - 	s(x)(x)2(X) dx 

(3.2.12) 
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In the case of spherical conductors we have b 	a, 

X = r and 1i' R(r), and we make the fo1lovi.ng 

appropriate substitutions in equation (3.2.12): 

q(r) = 	(+l), 	p(r) = r 2, 	s(r) = r 
2

and  

We ask, reasonably, that the induced electric and magnetic 

fields vanish towards the earth's centre, so we may set 

RT(0) = 0, and [Rm(r)/r] 	= 0. 	We obtain the 
r=0 

following equation for V., the response function used by 

Parker: 

a  
V. 	

22 
1.

= 	1 +1)  + (.+1)a f 	(r)r 	dr 
0 

+ 	+1)a f r2(')2 	
2 

dr + 1 
	
dr 	(3.2.13) 

where 	 (r) = R(r)/RT(.a), 
and R'(z) = 

We seek to find an expression for the variation 5v. 

in the form 

a 	 jr221 dr + 
	 (3. 2.14) vi = f S(r) [ e(e+1)a 

0 

with 	a function which might admit any additional first- 

order contribution to SV.. 	If X 	0, the kernel (3.2.6) 

comprises entirely the first-order term. 

For the half-space problem, we make the following 

substitutions in equation (3.2.12): 	x 	z, 	bEo1 

E, with qk) = 0, 	p(z) = -1, 	s(z) = 1, and 

= -iw P. 	Again asking that both electric and magnetic 

fields vanish as z- 	, and choosing our surface response. 
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to be the ratio of tangential ma.gnctic field, H(0), to 

the orthogonal tangential component of the electric field, 

E (0), we have 
x 

= H (0)/F (0) 
X 

00 0.1 

T 	 1 	 2 
= 	

) 	
(z) dz + 	( ('(z)) 	d 	(3.2.15) 

L.J1 

0 	 '0 

where 	(z) is the tangential electric field normalized 

with respect to the surface field, i.e. 	(z) = E(z)/ 

E(0), and 	'(z) = 	(z)/ 	z. 

We wish to find an expression for the variation J'. 

in the form 

o) 

= I 	(z) 	2(Z) dz + Y  J 
0 

where again the functionY admits the possibility of 

additional first-order terms. 

- 	From Section 

E (0) has been sh 
x 

response, Vi.  for 

those frequencies 

3.2.a, the half-space response, i-I (0)! 
y 

own to be completely parallel to Parker's 

the conducting sphere in the case of 

where the Earth's curvature can be 

neglected. 	Also we have seen that Weideldt has supplied 

a set of transformation formulae which transforms the 

spherical problem to that of the half-space responding to 

uniform fields in cases where the Fourier variables 

associated with the source (i.e. the wave numbers) are 

independent of frequency. 	The geophysical applications 

which interest us are for frequencies such that the 
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Earth's curvature can be neglected (T < 10 s) and for 

time-harmonic inducing fields. 

In view of this close relationship between spherical 

and half-space problems, in what follows we shall be 

content to restrict our attention to the somewhat less 

complicated half-space problem, believing our results to 

be directly applicable to corresponding spherical 

problems. 

C. Homogeneous conductors 

At this stage it might be advisable to test the 

validity of equations (3.2.13) and (3.2.14) for the most 

simple situation of a homogeneous conductor. 	Also we 

consider the conductor to vary in such a way that it 

remains homogeneous. 	This most simple case is the least 

interesting from the point of view of inversion, however 

it will give us the opportunity to inspect how the 

various terms in the integrands in equations (3.2.13), 

(3.2.14), (3.2.15), and (3.2.16) contribute to the 

variations V. and SY 
1 

For the case of a homogeneous half-space with 

conductivity C, one can observe the following relationship 

to be true: 

(z)= e- Kz 
	
(3.2.17) 

and 

-Kz 
- '(z) = -K e 	 (3.2.18) 
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1 

where K = (i .&ia- ) 2 . 	The surface response is 

(3.2. 19) 

To examine how each iritcgral in (3.2.15) contributes to 

we substitute (3.2.17) and (3.2.18) into (3.2.15) in 

order to obtain 

Y. K2 
	Do 

= 	52() 
dz + 	f 2 (z) dz 

0 	 0 

- 	 0- 	K 
+ 	 - 	 (3.2.20) 

2K 	2K 	
. 

 

(This latter identity follows from the definition of K). 

It can thus be seen that each term in (3.2.15) contributes 

equally to 	for a uniform conductor. 	For the variation 

we can write 

f
2() dz 

+ 	
dz 

Oo 

1 +. 	f K 	
[2] dz 

+ fS 2 () dz 
1JL  

0 	 0 

There is no ambiguity about taking the variation 'inside 

the integral sign', since Y is a function of the variable 

0 which is independent of z. 	If one performs the partia.l 

derivatives (with respect to 0 ) one can express this 

equation as 

00 

fS (22(z) + 2,,- 	{(z)2] dz 	(3.2.22) -. 

0 

Evaluating this second term on the right hand side of 
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(3.2.22), we have 

2f[ 2 (z)] 	- 2K  

Thus our variation 	'. becomes 
1 

00 

= S 1 2 - 2Kz1 2 (z) dz 	 (3.2.23) 

with the Fr€chet kernel given by 

G.(,z) 	= 2 - 	2Kz] 2 (z) 

(3. 2. 24) 

12 = 
, 

- 	2Kzj 
-2Kz 

e 

From the first 	integral on the right 	hand side of equation 

(3.2.23) the Frchet kernel associated with the 	lineari- 

zation as performed by Parker (1970) 	-- see equation 

(3.2.6) 	-- is 

G.(,z) 	= 2(z) 
-2Kz 

 (3.2.25) 

In Fig. 3-1 we plot the real and imaginary parts of 

G(,z) as defined by (3.2.24) and (3.2.25). 	In fact, 

the linearization associated with equation (2.2.3), i.e. 

the definition of Frchet differentiability, is made to 

an equation involving the integral of G.( 0-- ,z). 	Equation 

(3.2.22) can be written in the form 

00 

= 	f 2 () dz + 	 (3.2. 26) 

0 

w i t h 

(u,) = 	J {i - 2Kz] 2 (z) dz 	 (3. 2.27) 
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-0.4 

-0.8 
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FIG. 3-1 	The kernel 	f(z) = 2 (z) for a homogeneous 

half-space is indicated by the solid lines. 

The real part can be identified by 

Re 2t 	 m (0) = 1 , and I 2  (0) = 0 . 	Also 

illustrated (by dashed lines) are the real and 

imaginary parts of the kernel 

h(z) = ( 1 - 2 k z ) 	
2() . 
	We note 

Re h(0) = 2 , and Tm h(0) = 0 . 	The 

integration of both f(z) and h(z) over 

0 , 	) gives the same result. 



106 

Upon performing this latter integration, it will be 

observed that Y(,) = 0. 	Thus the Frchet kernel 

developed by Parker (applied to the homogeneous half-

space) is identical to that achieved by the method of 

Section 3.2.b. 	This is equivalent to the observation 

that integrating either function in Fig. 3-1 over the 

interval (0,oa) yields the same value for the integral. 

In particular 

00 

ReJ e - 
2 	dz = Ref e- 2 	(2 - 2Kz) dzj 

= 0.25 

with the imaginary part having the same value. 

Weideldt (1976) has supplied a useful way of evalu-

ating the kernel for a uniform sphere. 	If one forms 

the variation of (3.2.13), one obtains 

a 
-it'J ir 

= 
0 

a 	. 	2 	 a 	 a 
r iiir 	2 	1 

+ fL(+l) 	+ f(e+ 	f r22  dr 
+ 1 	

dr  a f 
0 	 0 	 0 

where, because of the uniformity of a , there is no 

ambiguity about bringing the variation inside the 

integrand. 	The 'functional' g[0] is in this case a 

function g(c) of the variable and differential calculus 

may now be used. 	Evaluating the variations in the last 

three integrals, one obtains 
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a 	. 	2 iL&)ir 
CsV -  

	

- S 	(t+1 )a 	
dr 

 
0 

(3. 2. 28) 

iWr '2Rdr+ 	
1 	

j r
2 2 (')dr+ 5 2dra

I  
 + f{(e+1)a1 

0 	 0 	 0 

The third integral can be integrated by parts to yield 

	

+l)a[ ']0 5 (r 2 	)rdr] = 
	(P+l)a J (r2')'Jdr 

0 

(3.2.29) 

substituting this result into (3.2.28) one can show (from 

(3.1.15) that the final three integrals in (3.2.28) 

collectively vanish. 	Thus for the homogeneous sphere, 

Parker's kernel is again achieved. 

d. Discretiz i na the formalism 

To ascertain the appropriateness of (3.2.6) as 

Frchet kernel, one must examine the terms 	and T for 

the case of a continuous model distribution c(z). 

However, forming the variation of a functional requires 

care. 	Consider, for example, a functional such as 

(2.1.2): 

Ørn3 = f F(m(r),r) dr 

If one wishes to determine the variation S, i.e. 

= 	F(m(r),r) dr 

one is not at liberty to write 
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= fSF(rn(r)r) dr 

since the variation of a function F with respect to a 

distribution m(r) is not unambiguously defined. 	An 

acceptable approach toward evaluating this variational 

differential, S 	, is described in Gel'fand and Fomin 

(1961). 	The strategy is to divide up the range of 

integration (O,a) into increments Ah. over which the 

model has a constant value, in 	This effectively trans.- 

forms the functional into a function of M variables 

One can hence compute the total differential SØ using 

differential calculus and then take the result to the 

limit as A h— 0, M— 	. 	If this limit exists, the 
1 

result SP is defined as the variational differential of 4 

Our aim in the following section is to describe how 

the functional (3.2.15) can be discretized, and how the 

least.-squares procedure described in Section 2.2.b can be 

expressed in discrete form. 	In Section 3.3 we return to 

the question of examining the linearization for a simple 

two-layer conductivity distribution. 

We take the simple approach of discretizing the model 

distribution by restricting our attention to models of 

horizontally stratified layers. 	Furthermore, we con- 

strain our variation such that the perturbed model remains 

horizontally stratified (or in the spherical case, 

concentrically stratified). 	This procedure, in the 
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context of generalized linear inverse theory, restricts 

the class of conceivable models and hence the class of 

acceptable models. 	In a particular situation of 

analyzing real data, one may overconstrain the problem by 

discretizing the conductivity distribution too coarsely 

for the data. 	The least-squares procedure described in 

Section 2.2.b will then provide a model rn (closest to the 

starting model rn 0 ) which satisfies the data and falls 

within the class of IM-layered models. 	If the discreti- 

zation effectively overconstrains a problem, and if the 

problem treats a sufficient quantity of data, (and is 

otherwise well-posed) so that the problem is over-

determined -- then (as described in Section 2.3) the 

generalized inverse is identical to the classical least-

squares inverse where the sum of the squares of the data 

residuals is minimized. 	Overconstraining the problem 

can possibly be useful for determining coarse features of 

models satisfying the data (to some preset degree of 

approximation). 	Since a set of constrained models will 

be a subset of cPt, the effect of non-linearity on any such 

simple class of models and variations may prove indicative. 

We wish to discretize the distribution (z) so that 

we may specify the model by a model vector 

= 	2'3 .; 	
d1 ,d 2  .....d 1 ) 

where a- 
 
. is the conductivity of the jth layer, 

z 	z z, with z = 0 and d. = z. - z 	. 	We j-1 	 0 	 j j 	-lo 
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illustrate the situation in Fig. 3-2. 

70= 0  

1 

1-1 

7]. 

VA 

FIG. 3-2 

An obvious way to achieve this discretization is to 

use a string of Heaviside step-functions (denoted by 

H(z) 
) such that 

M- 1 
"'- ( z) = 	-z) + 	-. fH(z_z. 

l 	
- H(z-z. )J + 	H(z-) 

j=1 

(3.2.30) 

for the case of M layers (M 	2). 	Substituting this 

expression into equation (3.2.15) effectively discretizes 

the response. 	The variation of the resulting function 

can then be taken. 	We can, of course, directly take the 

variation of r(z), and obtain 
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M -1 
Su- ( z) = H(z I- z ga + {H(z-z. 	) - H(z-zJJ 

	

3 	- 	 3 
j2 

i'vE 
) 	(z-z. ) Sd + H(zzM)  so_ + Z11 	- u j+1 

j= 1  

(3.2.31) 

where 	(z - z.) is the Dirac delta-function centred at 
3 

z.. 	Of course this variation of generalized functions 

(such as Heaviside step-functions) cannot be performed in 

isolation from the integrands in which they appear. 

Consider for example, a function F defined by 

F(p,a) 	g(p,x)f(x)dx 

where f(x) is any function, and g(x) is a generalized 

function. 	If we form the variation with respect to P, 

= f Sg(p,x)f(x)dx 
the variation g(,x) is well-defined only if f(x) is 

continuous over the range of integration. 	Of course if 

f(x) is discontinuous, at some finite collection of 

points, a limiting procedure must be employed. 	We defer 

this question until Section 3.3 where we address it within 

the context of a two-layer illustration of the present 

di s c ret i zat ion. 

The appropriate analytic expressions for 	(z) have 

been developed by Srivastava (1966) and have been 

re-stated by Schmucker (1970) (whose notation we shall 

largely follo -.v). 	The problem of solving for the 
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(normalized) field in a stratified half-space, is one of 

generating a function Q V  for the Vth layer z 1 	z ± 

where Q v  is developed recursively starting with Q = 1 

in the bottom semi-infinite layer and using the relation 

Q, = (K 1 Q 1  + K,,, tanhKd )/(K + K L/+1 Q V+1 tanhKd) 

(3.2.32) 

where K = (i 	 and d = z - z 1 . 	We note that, 

if the following function can be defined for the Vth 

layer, 

Q(z) = 	- tarihK V (z-zv-i 	
- Q,tanhK z-z ,( 	

-i--1 '  

(3. 2.33) 

-- incidentally Q(z) is a function which is discontinuous 

across interfaces in the conductor -- the expression for 

'(z) in the Vth layer is given by 

- KQ(z)i(z) 	 (3.2.34) 

Thus equation (3.2.16) can be written in the form 

CO 

= I 	(z)2(Z)  [i + Q(z) 2] dz 	 (3.2.35) 
1 	J 

0 

Substituting (3.2. 30) into this equation shows we can 

express our surface response over an M-layered half-space 

by 

=

(3.2.36) 

1  

with the complex coefficients L. given by 
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+ Q(z) 2 ] dz 	 (3.2.37) 

that is to say, as a'non-linear' combination of the 

discrete model parameters. 	We investigate this summation 

in greater detail in Section 4.3 of the following Chapter. 

	

It is interesting to note that whereas 	(z) is 

continuous across interfaces in the conductor, Q(z) is 

not. 	However, the product 0(z) 	(z) is discontinuous 

across such interfaces and o(z) Q(z) is continuous. 

The least-squares problem described in Section 2.2.b 

can now be re-stated in terms of the parameters of 

(3.2.30). 	We wish to minimize 	_ 0j2 subject to the 

constraint that the surface data be satisfied by the 

model and to our discretization constraint, that our model 

remain stratified. 	Equation (2.2.5) can be rewritten as 

	

U = 	
0 j 2 - 	

. [9 	. ] 	
(3.2.38) 

and a stationary solution for this implies 

-.°)g 	
M 

 + 	(z. - z. ° ) 	d. 

	

3 	3 	3 

	

3 	 j 

N 	
co 

f fc.(3) 	+ 	
= 0 

1 	 0 	j 

(3.2.39) 

In this equation the vector Frchet kernel corresponding 

to the ith frequency is defined 
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(1)(2) 	 (d 1 ) 	(d2 ) 	 (d 
N - 1G. = (C. 	,G. 	) ... C. 	,G. 	, ... C. 

— 1 	 1 	 1 	 1 	 1 	 1 

where the bracketed superscript corresponds to the 

discretized model parameter. 	We have not used the vector 

G. in exactly the same sense suggested by Backus and 
1 

Gilbert (1967) -- there they use C to denote a vector 

space of kernels associated with M linearly independent, 

stepwise continuous model distributions. 	Here we are 

using their notation to facilitate the discretization of 

their formalism, although we too are strictly considering 

a set of step-wise continuous distributions 0(z). 	The 

distribution is the sum of these as defitteci in (3.2.30). 

Since we consider the perturbations 	etc. in 

equation (3.2.39) to be linearly independent, we can write 

equations analogous to (2.2.9) as 

N 	CO 

	

JG. 3 (z) dz 	 (3.2.40) 

and 

N 	 (d.) . - 	° z 	z 	=. JG. 	(z) dz 	 (3.2.41) 

We recall at this point that our model parameters are to 

be measured in dimensionless units. 

	

If we establish a (2M-1)-tuple {b. 3 	denoted 

vectoral1y as b. such that 

b
1  
. = 	G 

1  
.(z) dz 	 (3.2.42) J  

0 
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we write (2.2.12) as 

N 

= <i, 	kk 
k - i 

(3. 2q43) 

N 

= 27 Vk <i' 
k = 1 

From the definition of the inner product (equation 

(2.2.1) ) and observing that bk  is independent of z, 

6gi=k B i k 
	 (3. 2. 44) 

Wi t h 

B i k 	— 
= b

'  
. • b 	 (3.245) 

where the dot indicates the scalar product of the two 

(2M-1)-dimensional vectors. 	Thus, under our discreti 

zation, the matter of evaluating the inner product matrix 

reduces to evaluating the matrix B, which, as can be seen 

from (3.2.45), is the sum of matrices 

(1) 	(2) 	 ( dN l) 
B = B 	+ B 	+ ... B 	 (3.2.46) 

The elements of these matrices are the products of i 

values for a single element of the (2M-1)-tuple [b. 3  

For example, for the 01-matrix, 
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b 1 	b 1  
(1) 	(1)  

b 1 	b2  
(1) 	(1)  

b 1 	b2  
(1) 	(1) 

b 2 	b3  
(1) 	(1) b2(1)b1(1) 	b2 

(1) 
 b2 

(1) 
 

B' = 

1) 
bN(1)bNl(1) 	

b 	bN(l)  

Since the discretizat ion implies that B be found rather 

than 	in equation (2.2.1), a considerable simplification 

to the problem has been achieved. 	We now require to 

evaluate the product of two integrated Frechet kernels, 

rather than the integral of the product of two Frchet 

kernels. 	To illustrate the discretizatjon we next 

consider the most simple layered conducting half-space: 

that consisting of two layers. 

3.3 The Two-Layer Half-Space 

We now consider, in some detail, the constrained 

situation of a two-layer half-space parameterized by the 

vector T = 
	

02' d) where 	and 02  are the 

conductivities of the first and second layers respectively, 

and d is the depth of the discontinuity. 	Figure 3-3 

illustrates the model. 
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z=o 

Z=d 

z 

FIG. 3-3 

Substituting the conductivity distribution 

Q (z) = 	H(d-z) + 	H(z-d) 	 (3.3.1) 

into equation (3.2.35), we have 

d 
( {i + Q2(z)J p2(Z) dz + 	

2() dz 
iJ 

0 	 d 

(3. 3.2) 

Having constructed Y. 
1 
, the variation Sr (to first order) 

is expressible by components as follows: 

CO 

: j 
0 

2 2 
+ o l H(dz) L( 1 +Q(z) ). (z)j +c 2H( 

CO 

&2 	[H(z-d)(1+Q(z)2)2(z) 

(3. 3. 3a) 

(3. 3. 3b) 

2  +1H(dz)_{(l+Q2(z))2(z)J 	
2 	 2 L 

2 
+H(z-d)------J(1+Q ())(z)Jdz 
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00 

: 1 [9-, 2-[ (I+Q(z) ' ) -,q 2 (z)H(d-z) Dd 
0 

+ 2 [(1+Q(z) 2 ) 2 (z)H(zd)]]dz 

We refer to our observation in the previous Chapter that 

-5 (z) is continuous across the interface at z = d, and 

Q(z) is not continuous. The presence of the Heaviside 

step-functions in the $_ and 2 -components ensures 

that the integrations on (0, ) do not involve 

'integration across' the discontinuity z = d. 	However, 

care must be taken with the d-component, since one 

requires to perform the partial differentiation with 

respect to the parameter d appearing in a generalized 

function. 	Lighthill (1958, Chapter 2) indicates how we 

might proceed: we can write the sd-component as 

1+Q(z) 2 ] 2 (z) dz + f2 
	

( 1 +O(zfl 2 (z)] dz 

+ 	- 2 + 
1 Q2 (d-O) - 	 dz 

2 
Since 	(z) Q (z) is continuous across z = d, we observe 

2 	 2 
(d-O) = 	(d+0) 

and the Id-component is given by 

	

f
(1+Q(z) 2 ) -2 	dz + 2 f 2(z)j  

0 	

2() dz 

+ f 	Ol - 	
2(z) 	(z-d) 	dz 	 (3.3.3c) 
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where we have set Q(z) = 1 in z :~ d. 	Expressing 

equations (3.3.3) in the formal equation (3.2.16), we 

may write 

d 	 00 

= 	
dzj S + [f2(z) d7j 	

2 
0 	 d 	

(3.3.4) 

+ 	( 9-1 	 2 (d) 	d + 	() 

where the required expression for Y (,ti) can be inferred 

from equations (3.3.3). 	We may write T(0-,t) also in 

'component form' by the expression 	
(1) 	(2) 	(d) )  

the mth component of which is defined 

(m) 
= f[ 1 H(dz) 	+ 2H(z-d) 	

] 

dz ; mE[, G, d 

where p 	(1 + Q(z) 2 )(z) 2 . 	Equation (3.3.4) will 

constitute a satisfactory Frchet kernel if 1(m) 	0, 

for each m. Before considerin g  whether error is afforded 

to equation (3.34) by neglecting Y , we try to illustrate 

the integrands associated with equations (3.3.3). 

We first ascertain that our present expressions 

(i.e. equations (3.3.3) ) are consistent with our results 

for the homogeneous half-space discussed in Section 3.2.d. 

To do this we convert our two-layer half-space to a homo-

geneous conductor by setting G- , 

 = 
2 in equations 

(3.3.3), and observe how the kernel defined by equation 

(3.2.24) and illustrated by the dashed line in Fig. 3-1, 

	

decomposes into a g0_ and 	2- component. 	The 
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resulting expressions for the integrands, appearing in 

equations (3.3.3a) and (3.3.3b), are illustrated in 

Fig. 3-4 by the solid line and dotted line respectively. 

They arc seen to be discontinuous across z = d, as one 

might 	expect. We treat 	the case where 
= 	2' 	

since 

in 	this case 	if we add the 	two 	integrands of (3.3.3a) 	and 

(3.3.3b) we should arrive at the kernel (3.2.24). 	In 

fact this sum is performed numerically, and we plot it in 

Fig. 3-4; we see the sum of the two discontinuous 

integrands of (3.3.3a) and (3.3.3b) results in the 

continuous dashed curve -- and this curve is identical to 

the dashed curve in Fig. 3-1. 

Having assured ourselves that our expressions 

(3.3.3) are consistent with our previous discussion in 

Section 3.2.d, we now attempt to illustrate the integrands 

of r for a particular conductivity constraint, 
This is done in the six illustrations Fig. 3-5. 	Before 

discussing this diagram, we make the following 

explanation: 	the depth variable, z, is measured 

dimensionlessly in the skin-depths of the surface 

conductor. 	If z' is the depth in metres, the depth z 

in Figure 3-5 is transformed by z = z'/s, where 

S=( 	
2 	)2 

- all quantities are in SI units. 	Making such a trans- 

formation does not affect the 	and c 2  components if 

one also considers the conductivities to be normalized 
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with respect to the conductivity of the top layer. 	Since 

(z) and the integrands of (3.3.3a) and (3.3.3b) are 

dimensionless, such transformations do not alter these 

ex)ressions; at the sanc time, such transformations 

render the model parameters dimensionless in a natural 

way. 	Of course, the integrals (as opposed to the 

integrands) still have units of 'depth' Lm], and since 

the response Yis the reciprocal of impedance, we expect 

it to have dimensions of [ohm']. 	The distribution u-(z) 

-- and the perturbation 	u(z) -- have units of 

[ohm 1 - m 	. 	The jute-rand of the d- component 

3.3.3c) is not dimensionless, but hs dimension of 

[ohm 	- m 
2j 

 . 
	

Thus when regarding Figures 3-5, one 

should recall that the 	u-1 - and J0 2 -integrands are 

naturally dimensionless and the curves represent kernels 

for any u-1  and  u-2 satisfying the indicated conductivity 

ratio, e.g. u- 2 /1 = 10 in Fig. 3-5. 	On the other hand, 

the Ed-curve has been rendered dimensionless by multi- 

plying it by a quantity s/u- 1 . 	This 'scale factor' will 

alter the magnitude of the d-integrand curve for various 

values of t..)  or -j, however the shape of the curve will 

remain unaltered. 

Another observation we should make is that the 

crucial linearization which is to be performed, i.e. the 

neglecting ofT in (3.2.16), is a linearization effected 

to an equation containing the integral of the kernel 

G.( u-, z). 	Although examining the integrands of (3.3.3) 
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and comparing them to the integrands appearing in the 

&, 	cd-components of equation (3.3,4) is of 

interest, the real test of whether the integrands of 

(3.3.4) are to prove a satisfactory set of Frdchet 

kernels, must involve the evaluation of the integrals 

of 

We plot in Fig. 3-5 the integrands of the components 

of equation (3.3.4), i.e. the Fr€chct kernels, by the 

dashed lines. 	In addition to this we plot by solid lines 

the integrands appearing in the components of 	. 	In 

this graphic way we pose the question of whether the 

kernels appearing explicitly in the integrals (3.3.4) 

form a set of suitable Fre'chet kernels: 	if the net area 

enclosed by the integrands of Y (the shaded region in 

Fig. 3-5) is zero, then Y 	0, and Y is Fre'chet 

differentiable with kernel given by equation (3.3.4). 

3.4 Linearization Error 

	

a. Is there error of order 	? 

In the preceding Section we have taken some pains to 

state the question of the Frecchet differentiability of 

unambiguously. 	We have posed the question as one of 

ascertaining the significance (if any) of a quantity 

which is expressible analytically; and in Fig. 3-5 we 

have posed the same question as one of evaluating the area 

enclosed by the integrands of 	. 	The intent has been 
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illustrated (by solid lines) are the corres- 

ponding. components of the integrands of • 

	

07 vi). in equation (3.3.4). 	If the integral 

over these integrnds (In fact the shadedarea) 

• - is' zero, the kernel 1(z) constitutes a Frdchet 

kernel exact first order-in' J0 
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to demonstrate unambiguously whether or not (3. 3.4) 

constitutes an appropriate first-order kernel. 	If one 

can show that Y = 0, for arbitrary distributions a-  ( z) 

then the linearization achieved by Parker (1970) is 

entirely satisfactory. 

Equivalently, we can make the required demonstration 

in a rather simple manner. 	If ' is Frechet-differenti- 

able, and (3.3.4) constitutes appropriate first-order 

kernel, then for conductors of two layers, we have 

= f 2 	dz 	+ f 2 (z) dz 
0 	 d 	

(3.4.1) 

+ ( 12 ) 2 (d) Sd 

as the first-order variation of 	. 	One has also a 

recursively defined expression for the surface impedance 

Q 1 	 (3.4.2) 

where Q 1  has been defined in Section 3.2.e. 	In this 

expression is defined as a function of the discrete set 

of model parameters {o 
3  
.. d 

3
j hence one can evaluate from 

(3.4.2) the partial derivatives °2 

2(/ d , and these can be compared to the 	a- 
, 

and Sd-coefficients of (3.4.1). 	It is a straightforward 

matter to show 
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d 
2() dz f 
  

0 

(3.4.3) 

= d(K - K) sech 2K 1 d + 	tanh K 1 d 

(K 1  ± K2  tanh K 1 d) 	(K1  + K2  tanh K 1 d) 

- 	2 	
sech2K1d 

fl 
- 	

( z) dz = 	 (3.4.4) 

d 	
2K2 (K1  + K2  tanh 

-2(d) = i
1 (-)sech2 K1 d 

 (3.4,5) 2 )  
(K 1  + K2  tanh 

We take these relationships to be the required 

demonstration that there is no first-order error, and 

that Y = 0. 	This latter equality can be demonstrated 

(more arduously) directly. 	The extension of this 

analysis to M-layered conductors is straightforward. 

b. Error arising from 011I; 2  

It has been our strategy to investigate the questions 

associated with the linearization of the inverse problem, 

by discrctizing the functional, and then to use 

differential calculus to form the variation S. 	A 

similar strategy may be used to acquire some elementary 

view of the higher-order terms associated with the 

linearization of 	equation (2.2.3). If we regard the 

variation as expressed in (3.3.4) 	as the functional 

equivalent of a Taylor expansion, in the case of 

discretely expressed model parameters we can learn 
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something of the higher order contribution to the 

expansion by looking at second-order partial derivatives. 

At this stage we follow Parker (1970) in seeking to 

consider the phase and amplitude of r as data, rather than 
its real and imaginary parts. 	The necessary adjustment 

to equation (3.2.16) is straightforward since 

In 	= 1nlI + i argY and cY/ó 	= 	(1nr). 

Unlike Parker, we have not chosen to use Inc -  as 

model parameter (instead of o- ), nor have we chosen to 

minimize 1Im/mU 2  (instead of f/Sm/I 2 ) in equation (2.2.5). 

The question of whether m(z) = Inc -(z) results in a more 

suitable model parameter, in the sense that this trans- 
- 

formation might afford some numerical advantage, can be 

discussed in the following illustration. 

If 	lnc is chosen as model parameter, equation (3.2.16) 

can be written, to first order in r 

= fS(lri) G dz = 
	

G. dz 	 (3.4.6) 

where G 1
is the Frchet kernel associated with the 

parameter In- : C. 	is the kernel associated with the 

model parameter a 	Clearly G 	= 

Equation (3.2.38) is now written so that 	 is 

- minimized (subject to constraints) rather than 	d
. 	

If 

We have 

Ia- 	a- 
U = 	G__ 	

o2 - 
	 - g()) 	 (3.4.7) cr 
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A stationary solution for this is achieved by 

- I 

-= 	V.TG(r,z) 	 (3.4,8) 

Substituting (3.4.8) into (3.4.6) we obtain 

= 	 f (z) 2G.G d 	 (3.4.9) 

For purposes of this illustration, we take the matrix 

G., 	 to be diagonal (the diagonalization of the 

matrix can anyway be accomplished following the procedure 

described in Section 2.2.e) and deduce 

3 	
[J2c2 dz] '  

0 

Substituting this result into equation (3.4.8), we obtain 

for the model perturbation 

	

-, 	o(z)G.(0,z) 	

- 	 (3.4.10) 

	

2- 	.1 

	

= j 	T
2
(z )G 

2() 
 dz O  

0 

or, alternatively expressed, 

o(z) 2G.(z) sr. 

	

(z) = 	 3 	 3 - 	 3.'4. 11 
j 	f a-'(z)G 

2() 
 dz 

0 

If the model distribution a is independent of z, we 

obtain for S 	the same perturbation as was achieved by 

minimizing 	)2 	One can interpret the denominator of 

(3.4.10) and (3.4.11) as the weighted average of 

with weighting function G.( 	, z). 	If, for z = Zk 
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oo 
 

f 
 2  

(z) C. 2 
	 2 
(,z) dz << 	(z) 	one might expect the 

o 
perturbation So(zk)  from (3.4.10) to be somewhat greater 

than that achieved by minimizing !Ii( 2 	
On the other 

hand if 

	

	if 2 (z) G.2V,z) dz l )  2(zk) then the 0 
perturbation 	G(z1 ) will be less than that achieved by 

minimizing 	 The question of whether it is 

advantageous to choose as model distribution 	instead 

of 	requires specific investigation for individual 

problems. 	For our magnetotelluric problem, we have 

chosen to use simply m = 

The response function at the surface of a layered 

half-space is given by (3.4.2) as 

= 
	(

Vi 

r) 1 

where 	and V 	 are defined previously. 	We can now 

identify the EF _coefficient of the expanded variation 

	

2 	
k k 1 1-, 	

1 f D k  ' 	
k  

M 	2Q 
++ ... 	 (3.4.12) k j 

j=1 

where 	kl is a Kroeneker-delta. 	In order to observe 

the structure of the second-order terms, we try to 

identify the function f. k (o,i) which satisfies 

±2 i - - 	f. ( 	, 	) 	 (3.4.13) cr. 
J 
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If 	we 	set ga- . , where is 	the 	relative 
3 3 	3 3 

variation in 	a-. , 	we 	may write the 	variation 	in 	(3.4.12) 
3 

as 

= (k1 	'l 

+ 	
+ 

2 Jk 	)j 	+ 
k j 

(3.4,14) 

and consider the criterion for Fr€chet differentiability 

for the kth parameter to be the condition 

f. 1 ( 	, 	) p. j << 1 	 (3.4.15) 

If this condition is satisfied, equation (3.4.14) 

represents the Sk-component in a first-order equation 

such as (3.2.16) or (3.3,4). 	It will be noted that the 

criterion (3.4.15) will depend on the magnitude of p. 

and thus on 	. 	For a given datum 	. and a given 

distribution of conductivities, cr , ( 3.4.15) could be 

satisfied if the collection of perturbations 	 were 

sufficiently small. 	Of course in a least-squares 

procedure the magnitude of the elements of 	 are 

determined from the solution to equation such as 

(3.2.43); 	whether (3.4.15) is satisfied will ultimately 

depend upon the stability of the process and on the size 

of the sum of the data residuals. 	If we start too far 

removed from an acceptable model, our data residual Aj 

will be large and our set of perturbations may be 

correspondingly large as the procedure attempts to move 
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(in the model space) to a more exactly fitting model. 

Thus the significance of higher-order terms is related to 

the perturbation size -- after all, these terms are of 

order 	2 , and one must expect such terms to be related 

to the size of S0 • 	To understand the structure of these 

discarded terms we can try to contour 

x P 3  • f J
. 1 	 a 

where a is suitably small so that (for each j and k) 

(3.4.15) is satisfied. 	It would be appropriate to 

contour this function over the model space for various 

values of perturbation size, i.e. various values of p. 

Thus if (3.4.15) is satisfied for a large P . , we can 

infer that the linearization is quite acceptable. 	On 

the other hand if (3.4.15) is not satisfied 

> a ) even for small P . , we can conclude 

that the linearization is rather less acceptable. 

Turning specifically to the two-layer case, we 

identify the following functions: 	for the 	1 _comp onen t 

of the variation we have 

K 1 1 	K i d 
= - 
	

+ d tanh K 
2[(K2K2)dK] 	

1d 

(1 + K 2   sech 2K 1 d) 

where S = K + K 
2 
 tanh K d 

1  1 

have 

For the cg-  -component we 

f 22 ( cr, t.J ) = K 2  tanh K 1 d / 2S 
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Two cross-terms are given by 

K1 ( 
	

2 i) tanh K 1 d + Q 1 d sech K 1 d 

12 	' 	= 	
- 	(1 - Q 1  tanh K 1 d) 

+ 	(1 + K d scch 2  K1d) J 2 

and 

K 2 	(2K2d +) 

- - tanh K d 

Also we include the d-term, 

2K K sech 2  K  d 	 Q S tanh K d 

2 S 	 L 	K 1  - Q 1 K 1 K 2  sech K 1  c1 

We try to illustrate the situation represented by the 

formulae for f11(,j), f 12 (g- ,i), f21(,J),  and 

in Figures 3-6a - 3.6d respectively. 

In order to examine the structure of the higher-order 

contribution we consider, for each j and v , the region 

of the model space defined by the condition 

I 	0.1 	 (3.4.16) 

to be that in which linearization is acceptable. 	Of 

course, it is a linear combination of terms (represented 

by the summation in equation (3.4.15) ), which must 

appear in any linearization criterion; and in this 

respect each condition (3.4.16) may be thought of as a 



FIG. 3-6 	Contours associated with higher order terms in a two-layer half-space. 

The ordinate in each diagram is the depth of the discontinuity (measured in 

surface skin-depths), the absissa is the conductivity ratio, 	
2' ° 

f 11 ( a, 

	

	): 	the region of the model space enclosed by the contour indicated 

= 0,05 is a part of the space where a very small model perturbation, 

causes 1P, 11 	) 	to exceed 0.1. 	Thus non-linear effects may 

he significant in this region. 	In the region outside the contour P = 0.2, 

a relatively large perturbation in <7 	 still preserves the inequality 

P i 	) j 	0.1 

f 
12 

 (cr, W): 	the effect of a perturbation 	2 to a 1 -component of the 

variation 	'/' . 	The contours to be interpreted in the same manner as a. 

C. 	 f 21 ( a , ti): 	the effect of a perturbation 	to the cr2 -component of the 

variation 	/ 

d. 	 , w ): the effect of a perturbation Sd to the d-component of the 

variation 	/ 	. 
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t comp onen t! of the total possible second-order contri-

bution. 	Condition (3.4.16) ensures that the maximum 

value of the linear combination is still much less than 1. 

Apart from these considerations our choice of 0.1 in 

condition (3.4.16) is arbitrary. 

Figure 3-6a displays the contours 

I p 1 
I 
 11 

(q-,Jj)) 	= 0.1 

for the values of 	f0.025, 0.05, 0.1, 0.2 	. 	The 

model space is characterized (in accordance with the 

discussion in Section 3.3) by the ratio o 2 1cr1  , and the 

depth of the discontinuity measured in c 1 -skin-depths. 

Figure 3-6a implies that, in a region enclosed by a 

0.05 contour, a small perturbation of 5% in the model 

parameter 	will be sensitive to higher order terms 

associated with the & 1 -component; whereas in the region 

outside the 0.2 contour, perturbations of 20% in the 

1 -component of the expansion are insensitive to the 

higher-order terms. 

Fig. 3-Eb displays the contours 

I P 
1 12 
f 	(.))) 	= 0.1 

for the same values of P 	 as in the previous example. 

Figure 3-6c displays the contours 

I 2 f 21 ,t3 	= 0.1 

for 	the values of p 2  L 1 0 -0 2-5, 0.05, 	0.1, 0.2 	. 	This 

Figure implies that 	in a region enclosed by a 0.025 
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contour, a small perturbation in 	will contribute 

significant higher-order terms to the &T 2 -component of 

the expansion (3.4.14). 

The case of f 22 (e,) has not been illustrated in 

Fig. 3-6 since 	P 2 f 22 (,3) 	0.1 throughout the model 

space considered in Fig. 3-6, and for the maximum p 2  

we are considering (i.e. 	p 2  = 0,2). 

Figure 3-6d illustrates the contours 

I 	= 0.1 

for the values of 	(0.025, 0.05, 0.1, 0.21 . 	For 

conpactness we do not display the cross-terms involving d. 

C. Some specific illustrations of higher-order error 

It has been our intention to achieve some qualitative 

view of the way higher-order terms can contribute to the 

inversion formalism described in Chapter 2. 	In this 

Section we consider the possible entry of this error into 

the least-squares procedure which has been developed. 

The arbitrary nature of the contours enclosed by condition 

(3,4.16) has already been pointed out. 	Also it has been 

suggested that the linear combination of terms (3.4.15) 

is related in a somewhat complicated way to its component 

second-order derivatives. 	It would therefore be 

reassuring to view the iterative scheme at work, and 

particularly to observe the paths of convergence (or 

otherwise) projected on the model space as it has been 

illustrated in Fig. 3-6. 	It would be interesting to try 
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to observe the possible effects of linearization to the 

procedure. 	To do all this a data set 	 is 

generated from a known particular model 	; various 

(sometimes quite remote) starting models 0_S 
are 

selected, and we plot the path in the model space 

followcd by each iteration, in a least-squares Backus- 

Gilbert procedure. 

Figure 3-7 A involves the (error-free) synthetic 

data generated by the model 	: 	( 	= 0.5 ohm- 1 m 

= 0.05 ohm 1 m  1; depth = 2.0 km ) for ten periods 

over the range 1.0 sec 	T 	100 sec. 	(We remark that 

the problem is easily scaled to embrace greater depths by 

considering a data set extending to greater periods. 

Some thought must be given to the depth of penetration of 

a given source frequency within any proposed model). 

A number of starting models are then selected -- labelled 

on Fig. 3-7 A as models 'a' through to 's', in order of 

ascending data residual -- and the various parameters are 

listed in Table 3.1, where we have also listed as a 

measure of the remoteness of the starting model from the 

'true model' values for P, 	P 2 
	

and P d' defined by 

= ( 	
.S - 

	

00 
, etc. 	Also we define, for the 

purposes of this table, the initial data residual to be 

10 	
2 	- Data residual = 7 	() /10 

2 

i=1 

The paths traced in Fig. 3-7 A are the projections 
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associated with the highest frequency (recalling that the 

depth of the discontinuity, 'd' in equation (3.3.4) etc., 

is measured in skin-depths). 	The lower frequency paths 

would appear, if we chose to illustrate them, as quite 

similar paths arranged beneath those presented in 

Fig. 3-7. 	The inner product matrix appearing in 

equation (3.2.45) is inverted numerically, and directly, 

using partial pivotting along the diagonal. 	The 

asterisks in Fig. 3-7 A indicate those starting models 

which give rise to divergent paths -- this means to say 

the model perturbations suggested by the least-squares 

process resulted in negative unphysical parameters, or a 

hugely increased data residual. 

In Fig. 3-7 B, we seek to illustrate convergence 

towards the model 	
0 	

= 0.5 ohm 1 1 ;  

= 14. ohm ' m 	; depth = 2 km ) for a data set over 

the period range 5.0 :!~ T 	100 sec. 	This particular 

model is rather esoteric from the point of view of the 

Practical magneto-telluric problem. 	However, it allows 

us to inspect convergence on the right hand side of the 

model space illustrated in Fig. 3-7, without the 

necessity of seriously reforming the range of frequencies 

represented in the data set. 	Of course, there is no 

difficulty in extending the procedure to more realistic 

models. 	The starting models and parameters are listed 

in Table 3.2. 	By making comparison between Fig. 3-6 and 

Fig. 3-7, one may be able to infer some idea of the parts 
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of the model space where higher-order difficulties arise. 

There is, of course, the possibility that the 

unsuccessful starting models in Fig. 3-7 may be affected 

by various numerical problems related to matrix inversion 

on a computer. 	There can be round-off error generally, 

or instability arising from an ill-conditioned inner- 

product matrix (denoted in (3.2.45) as B). 	Gilbert has 

u -iderlined the advantages to the least-squares problem 

afforded by orthonormalizing the set of Frchet kernels 

by diagonalizing the inner product matrix. 	This tech- 

nique was described in Section 2.2.e, and will be 

discussed in greater detail in Chapter 5. 

However, to complete our discussion of the lineari-

zation error, we try here to 'rank and winnov.? the data 

in the least-squares procedure, to see if we can increase 

our space of successful starting models. 	With this in 

mind, we repeat the same least-squares procedure applied 

to the same data and starting models as were illustrated 

in Fig. 3-7. 	However, we do riot invert the inner product 

matrix directly but transform the matrix to an orthonormal 

frame. 	We then proceed to exclude those eigenvalues for 

which the model variance (defined in (2.2.17) ) is large. 

Specifically, we exclude those eigenvalues which suggest 

unphysical models in a given iteration, or suggest model 

perturbations which cause the data residual to increase 

in consecutive iterations. 	We terminate the process 

when no perturbation can satisfy these criteria. 
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Although these criteria are crude, they possess the virtue 

of simplicity, and Fig. 3-8 shows that they prove 

effective for our chosen starting models and data (which 

are, after all, 'perfectly accurate' data). 	Our aim is 

to illustrate the validity, or at least the quality, of a 

linearization, and we do not suggest that the above-

mentioned simple criteria are to be preferred in practical 

problems. 	Jupp and Vozoff (1975) describe in some detail 

a number of more elaborate truncation strategies to 

achieve stable convergence in linearized least-squares 

problems, the most practised of which is probably the 

Marquardt (1963) maximum neighbourhood method. 

Incidentally, Wu (1968) applied this technique success-

fully to the same magnetotelluric prob1e we are 

discussing here. 

From Figs. 3-7 and 3-8, one might hope to determine 

the regions of the model space where the initial 

'direction' or magnitude of the model perturbation is 

unhelpful to the least-squares procedure, and it would 

appear that these regions correspond quite well to the 

contours in Fig. 3-6. 	In Figs. 3-7 A and 3-8 A, it seems 

the error is associated with the 	a 1 _higher order terms, 

and in Figs. 3-7 B and 3-8 B it seems the error is 

associated with £d-higher order terms. 	In this case 

it seems that as 
Pd 
 decreases and the data residual 

becomes correspondingly smaller, the stability improves. 

This can be observed by following the path of model 'r' 



FIG. 3-7 	A) 	model 	O: 	 = 0. 5, 	= 0. 05, 

d = 2 km ), indicated by arrow, is used to 

generate data. 	Starting models (listed 

in Table 3.1 in ascending order of data 

residual) and the paths of the least-

squares procedure projected onto the model 

sace are also indicated. 

B) 	model 0 	: ( 	cr 	= = 14, 

d = 2 km 	). Starting models listed 	in 

Table 3.2. 

FIG. 3-8 	A) 	The same models as Fig. 3-7 A; the 

procedure has been stabilized by ranking 

;i nd v inn O\v i n g 

B) 	The same models as Fig. 3-7 B; the 

procedure stabilized  by ranking and 

w innowing.  
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TABLE 3.1 

Model 

a 0.6 0.2 0.1 1.0 

b 1.0 1.0 0.2 3.0 

c 0.6 0.2 0.01 0.8 

d 0.45 0.1 0.45 7.0 

e 0.512 0.02 0.35 6.0 

f 0.8 0.6 0.001 0.98 

g 0.4 0.2 0.4 7.0 

h 0.502 0.0 0.4 7.0 

i 0.512 0.02 0.510 9.20 

j 1.0 1.0 0.0001 1.0 

k 0.3 0.4 0.5 9.0 

1 0.6 0.2 0.6 1.0 

m 0.8 0.6 0.3 5.0 

n 0.73 0.46 0.7 13.0 

0 0.3 0.4 0.1 1.0 

p 0.15 0.7 0.1 1.0 

q 0.65 0.3 0.0008 0.98 

r 0.3 0.4 0.005 0.9 

s 0.2 0.6 0.0001 1.0 

d 	P d  Residual 

1.75 0.13 0.11 

0.50 0.75 0.16 

1.50 0.25 0.16 

1.2 0.40 0.20 

1.50 0.25 0.20 

1.50 0.25 0.20 

1.50 0.25 0.21 

2.10 0.05 0.22 

1.70 0.15 0.26 

1.10 0.45 0.27 

2.0 0.00 0.28 

1.50 0.25 0.31 

1.50 0.25 0.32 

1.00 0.50 0.38 

0.90 0.55 0.40 

1.20 0.40 0.59 

0.60 0.70 0.84 

0.85 0.57 0.99 

1.50 0.25 1.13 



TABLE 3.2 

Model a- 2 p d P d  Residual 
2 

a 0.4 0.2 17.0 0.21 2.10 0.05 0.08 

b 0.45 0.1 50.0 2.57 2.50 0.25 0.09 

c 0.60 0.2 25.0 0.79 2.50 0.25 0.10 

d 0.40 0.2 100.0 6.14 2.00 0.00 0.11 

e 0.55 0.1 55.0 2.93 1.90 0.05 0.11 

f 0.45 0.1 7.0 0.50 2.80 0.40 0.21 

g 0.70 0.4 5.0 0.64 1.20 0.40 0.22 

h 0.30 0.4 40.0 1.86 1.50 0.25 0.23 

1 0.55 0.10 1.50 0.89 3.0 0.50 0.29 

j 0.6 0.2 0.6 0.96 3.2 0.60 0.33 

k 0.55 0.10 0.55 0.96 3.60 0.80 0.35 

1 0.55 0.10 0.55 0.96 2.50 0.25 0.35 

m 0.3 0.4 1.50 0.89 2.30 0.15 0.35 

n 0.4 0.2 14.2 0.01 4.10 1.05 0.37 

o 0.5 0.0 0.50 0.96 0.90 0.55 0.38 

p 0.5 0.0 0.50 0.96 1.80 0.10 0.38 

q 0.55 0.10 0.45 0.97 1.90 0.05 0.38 

r 1.0 1.00 0.20 0.99 1.20 '0.40 0.48 

S 0.6 0.20 0.02 1.00 2.30 0.15 0.60 
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in Fig. 3-8 B in relation to Fig. 3-6 d -- until the data 

residual becomes sufficiently small, the path oscillates 

in the 'depth' direction 

When one considers more general classes of multi-

layered models, more and more parameters are required to 

describe the model. 	Thus the number of contour curves 

as those illustrated in Fig. 3-6 begin to proliferate: 

for a three-layer model with the model parameterized as 

	

l' 	2' 	
d 1 , d 2 	, some twenty-five parameter 

curves can be constructed. 	It is questionable whether 

such a large array of diagrams can be useful for 

visualizing the effects of higher-order terms, and 

certainly the diagrams associated with a ten layered model 

should prove even less helpful. 

However we do illustrate in Fig. 3-9 the contours 

B 
1 11 
f 	(crcJ)) = 0.1 

and 

1P 2  f  22 	= 0.1 

associated with a three layer model; these curves are 

plotted parametrically with d 1  fixed at 0.5 skin-depths, 

and d 2  fixed at 1.0 skin-depths. 	From Fig. 3-9 it 

appears the second-order terms may be significant for 

1pturbatjons only in monotonically decreasing models, 

especially where 	- a- 
3 

	

For 	2 -perturbations, there seems the possibility 

of error in the region 	 with 	and 	less 
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thanj. 	It should be pointed out that the least- 

squares procedure of Section 2.2.b has been applied to 

synthetic data for three layers (with depths allowed to 

vary freely) and for M layers with depths fixed. This 

will be described in Chapter 5. 

d. Some conclusions concerning linearization error 

One must not try to infer too much from an inspection 

of linearization error in a simple two-layer conductor. 

In error terms even the venture to a three layer model 

can be an involved step. 	On the other hand ;  although a 

two-layer model can be algebraically the most simple, 

from an inverse point of view it could prove awkward with 

its significant single discontinuity. 	For the particular 

data sets and starting models we have considered in 

Section 3.4.e, the linearization seems to have proved 

adequate. 	Indeed it has been the published experience 

of a number of authors that the inverse induction problem 

is accessible by a linear least-squares procedure. 

Viewing the contours of Fig. 3-6, it would seem that 

some starting models are less fortunate than others from 

the point of view of arriving at an optimum model. 	When 

inspecting these contours one should bear in mind the 

greater problems associated with scattered data. 	Here 

one might hope to use some truncation strategy to 

minimize a data residual associated with what is really 

inconsistent data. 	One must ask whether the structure 
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of the higher-order contributions -- as illustrated in 

Fig. 3-6 -- could affect the pattern of convergence, or 

ultimately, the position in the model space of the local 

minimum that is achieved. 	There seems the real danger 

that smoothing the iterative procedure (by ranking and 

winnowing for example) to overcome higher-order effects, 

results in a degradation of resolution and information. 

This in turn introduces a bias into the set of 

acceptable models achieved by such a process. 	This bias 

is dependent upon the model one starts from -- as such it 

can be misleading. 

It appears from Figs. 3-6 d that the quasi-linear 

situation is improved if one can exclude the depth of 

discontinuity from the parameterization -- of course this 

is not a very useful suggestion for the two-layer problem 

which is already highly constrained. 	However, Fig. 3-6 

does suggest that the problem of locating an optimum depth 

of a good conductor overlain by a poor conductor is less 

amenable to linearization than the problem of determining 

the optimum conductivities themselves. 

In Section 3.2.a we outlinedAnderssen's criticisms: 

is Parker's Frchet kernel an adequate expression of the 

first-order problem; and to what extent does linearizing 

the problem render a least-squares procedure misleading? 

For our simple problem we conclude that Parker's Frchet 

kernel is correct; and that a linear least-squares 

procedure can in principle be reliable. 
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We have not addressed ourselves to two very important 

questions surrounding linearized inversion theory: how 

can globally distinct model solutions be explored by a 

theory dependent on local linearization? 	And how does 

resolution -- and the other parameters with which one 

tries to characterize the space of acceptable solutions --

reflect the error inherent in discarding higher-order 

terms from equation (2.2.3)? 	These rather large 

questions fall outwith the chosen scope of this thesis. 
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CHAPTER 4 

DISCRETE ANALOGUES AND UNIQUENESS 

4.1 Introduction 

As we stated in the previous Chapter, solving for 

induced electromagnetic fields in conductors with one-

dimensional conductivity distributions falls into the 

general category of classical Sturm-Liouville boundary 

value problems. 	The inverse Sturm-Liouville problem has 

received much attention, particularly in relation to 

quantum mechanics (Gel'fand and Levitan., 1954). 	In 

Chapter 1, we outlined the application of this latter 

inverse procedure to the induction problem as it was 

accomplished by Weideldt (1972). 	Barcilon (1974a, 1975) 

has also addressed the general matter of inverse eigen-

value problems which arise in geophysics, and has drawn 

attention to the work of Krein (1952). 	Barcilon has 

discussed particularly the question of uniqueness in 

inverse eigenvalue problems and has introduced, for 

purposes of illustration, some analogues to the general 

inverse problem afforded by systems of discretely 

specified model parameters. 

Barcilon has emphasized the result proved by Borg 

(1946): for a unique solution q(x) to the inverse 

Sturm-Liouville equation 
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u''(x) - ( I 	+ q(x) ) u(x) =' 0 	x E(O,l) 

(4.1.1) 

with initial conditions 

m 1  u(0) + m 2  u'(0) = 0 

u(1) + n 2  u'(l) = 0 

it is not sufficient to have knowledge of the spectrum 

In) 1 
 ° with X 

n  the eigenvalues associatedwith (4.1.1). 

In addition to this spectrum, one requires knowledge of a 

spectrum associated with the same equation (4.1.1), but 

with the eigenfunction satisfying a different boundary 

condition at one of the end-points, namely an equation 

VII(x) - ( p.. + q(x) ) v(x) = 0 	 (4.1.2) 

with conditions 

Pi v(0) + p2 v'(0) = 0 

n 1  v(1) + n 2  v'(l) = 0 

with p l, , i rn12  

Borg's theorem implies that knowledge of the spectrum 

frnl is required to find a unique solution for q(x). 

In this Chapter we try to place the inverse induction 

problem within the context of Barcilon's discussion. 	As 

a preface to this, we outline Krein's results for Sturmian 

vibratings with distributed discrete masses. 	In similar 

fashion, we pose the problem for induction in a multi- 

layered conducting half-space. 	Then we introduce a 

graphical way of representing the inductive response for 
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a half-space as a sum of 'vectors' in the complex plane, 

and attempt to relate the magnitude of these vectors to 

energy dissipation associated with an electric and 

magnetic field diffusing in a conductor. 	Finally, we 

indicate the possibility of a discrete analogue to the 

induction problem' to be found in electronic circuit 

theory. 

4.2 The Vibrating String 

Barcilon (1975) describes a discrete analogy to the 

general Sturm-Liouvi lie problem, due originally to Krein 

(1952). 	The problem to be considered is that of a string 

consisting of N discrete masses fm.j separated by N 

lengths of string 	. 	For simplicity the string is 

considered to be of unit length, so 	1 ; also it 

is considered to be under unit tension and experiencing 

time-harmonic vibration with frequency w . 	If u. is the 

vertical displacement of the string from its equilibrium 

position at the ith mass, m. , (see Fig. 4-1) the Sturm-

Liouville equation which must be satisfied is 

u. 
1 

' '( x) - q(x) u. (x) = 0 	 (4.2.1) 
1 

the eigenvalues of which are given by 

u.''(x) - ( )... + q(x) ) u.(x) = 0 
1 	 1 	 1 

Again consulting Fig. 4-1, we find the angle 9. between 

the string and the equilibrium direction (this angle is 

small -- consistent with the assumption of simple harmonic 
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FIG. 4-1. The vibrating string with discrete masses 

The vertical displacement of the ith 

mass from equilibrium position E is U. . 	The 

length of string between the ith and I + 1 th 

mass is P. , which makes an angle 8. with 

the horizontal direction. 
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motion) can be expressed as 

1 

Applying Newton's Law at the ith mass by resolving forces 

in the vertical direction, we obtain 

2 
- m. 

1 U. 
 

1 	 1 	i-i 

and applying this at successive points along the string, 

one develops a recursive relationship 

- u0/ 	
= 	0 + 

- 	' 
u 1  = 	-m1 2  + 1/(-u 1 / 1 ) 	 (4.2.2) 

- u1/91 	= _1 + 1/(-61 /u 2 ) 

This ultimately allows the first displacement u la to 

be expressed as a continued fraction: 

U 	 1 
- 	= 	+ 	 (4.2.3) 00 	0 	 2 	 1 

11 + 

which we express in a standard notation as 

U 
0_p  

	

j 	 2 0 	-m1 2 4 	1 	m2 i 4 	2 	mc 4 	N 

When the terms of this fraction are reduced to a common 

denominator, it can be written as the following rational 

fraction: 

- UO/90 = 	
TT  (1 

- 	) / TT (1 - - ) 	(4.2.4) 
i 	 •Li 
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where the zeros p,j and poles fi.,} constitute the 

two spectra required by the Borg theorem to ensure 

uniqueness in the problem. 	Physically the frequencies 

= k. correspond to eigenfrequencies of a string with 

both ends fixed (since u 0  = 0 ), and the frequencies 

=i to eigenfrequencies for motion with one end free 

	

= 0 ). 	To uniquely infer the mass distribution of 

the string (i.e. both Imj  and ff. 	) from observations 

of the motion (specifically the ratio u 0 /90  ) over a 

complete range of frequencies, one would require knowledge 

of the eigenfrequencies associated with two modes of 

vibration: fixed-fixed and free-fixed. 

In addition to uniqueness, it would remain to 

establish -- from fy  and fl'd -- the existence of 

physical solutions for {m. 	and 	. 	To this end 

Barcilon quotes a theorem of Stieltjes: if the spectra 

	

fJ and 	interlace, i.e. if 	.i1<' 	< 

then a solution of positive (and thus physi-

cally realizable) L and m. is guaranteed. 	By 

establishing (from Rayleights principle) this interlacing 

property for the string problem, existence of a solution 

to the inverse' problem is assured. 

4.3 Uniqueness for Induction in a Stratified Half-Space 

In Chapter 2 we observed that our magnetotelluric 

response associated with a stratified conducting half-

space is given by 
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H 	
x 

y (0)/E' (0) 	= 	
a- 1 1 	1 
Q 1K 	 (4.3.1) 

where Q1  is generated from the recursion relation 

(Schmucker, 1970) 

= (KY+1QY+1 + K  tanh Kd)/(K + K v+1 Y-4-1 Q 	tanh Kd) 

If we define o, = tanh Kd,, , this can be rearranged to 

1 

2 
o('y  -1 

(4.3.2) 

iç 	- +i 

which gives each Q v  associated with the layer 

Z (Zv I ri terms of the Q 	 associated with the 

deeper layer .  z,, - z < z 	 and subsequent deeper layers. 

We also have for the reciprocal to (4.3.1) the surface 

impedance 

E (0)/H (0) = K Q 	
a-i x 	y 	 1.1 (4.3.3) 

where the recursion relation for Q-,- can be written as 

Q.9_ 1  = 
	 1 

2 
(4. 3.4) 

+ K 
Y 	 -1 

+1 

The functions Q1  in the response functions contain the 

boundary condition information associated with the N-i 

interfaces in the conductor. 	Generating Q. 
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recursively, starting with QN  = 1 (or Q =  1 ) and 

terminating with Q1  (or Q1 
1), 

 we have the following 

continued fraction representation for the response: 

H (0)/E (0) = 	
K1  K2 /K1 	2 1 	KN/KN 1 

X 0112 	 1 

(4. 3.5) 

and 

K 	2 
E (0)/H (0) - 

1 / 1 	K1/K2 	2_ K 2/K3 	KN1/KN 
X 	

- 	1 - 	1 + 	- 	+'Y-3 	 1 - 

(4. 3.6) 

We are now in a position to identify the two spectra 

required by Borg's theorem. 	For this magnetotelluric 

problem both £ 
x 	y 

and H satisfy the Sturm-Liouville 

equation, the eigenvalues of which are determined by 

E'' - (p, + K 2 
	

E = 0 	 (4.3.7) 

with boundary conditions 

E (°1 = 0 
X 	

(4.3.8) 
E(0) =E 
x 	0 

and for the orthogonal tangential magnetic field: 

H 
y 

11  + ( 	. + K 2) H y = 0 	 (4.3.9) 
1  

with the same boundary conditions as z 

H (.°) = 0 
y 

but the distinct condition at the surface 

H (0) = H 
Y 	0 
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The two quantities E 0  and H.0  correspond to the two 

measurements which must be performed to determine the 

magnetotelluric response. 	Thus the zeros of 

correspond to the eigenfrequencies of H, i.e. the 

spectrum 	; and the poles of 	correspond to the 

eigenfrequencies of E, i.e. the spectrum 	 If 

the (more usual) response 	is used, these roles are 

interchanged. 	Thus the two spectra required are implicit 

in the magnetotelluric response, and if a solution exists, 

it must be theoretically unique. 	To prove existence 

(given the response spectra 	 and f!.i.'7 ), one 

need only consult Weideldt's (1972) important description 

of. the analytic properties of E(z) and H(z). He shows 

that E(z) has simple zeros along the positive imaginary 

-axis and that these zeros interlace with the zeros of 

H(z), which also lie along the positive imaginary w-axis. 

Thus the zeros of H y (z) interlace with the poles of 

1/E(z), and so complete knowledge of the spectra 

and 	 will ensure existence of a unique inverse 

solution, 	cr(z) =( T
1' 02' 	... ; 	

d 1 , d 2 , . . . ). 

For continuously defined distributions, 0(z) 

uniqueness depends upon the asymptotic behaviour of the 

response as 	 Both Weideldt (1972) and Bailey 

(1970) have proved that this problem is theoretically 

unique and well-posed. 

It is interesting to note that, for arbitrary 

inducing sources, the six components of E(0) and H(0) 
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are all expressible as continued fractions. 	Barcilon's 

analysis emphasizes that uniqueness in the inverse problem 

depends upon two spectra being implicit in the response; 

each spectrum associated (in our case) with two linearly 

independent surface boundary conditions. 	Thus a response 

consisting of any single ratio of components of E(0) and 

H(0) can supply spectra of which complete knowledge can 

ensure theoretical uniqueness. 

One should also be aware that the inductive problem 

associated with a half-space in which the conductivity 

distribution is not one-dimensional does not fall into 

the class of inverse Sturm-Liouville problems. 	In this 

case the differential equation satisfied by H is 

=  — 

 

xcurlH 	 (4.3.10) 

As yet, no uniqueness theorem for arbitrary conductivity 

distributions has been proposed. 

4.4 Graphical Representation of the Response 

In Chapter 3 we showed that the magnetotelluric 

response of a stratified half-space could be expressed in 

terms of a weighted average of the model parameter, i.e. 

N 

Y i =
T.

o_j 	
(4.4.1) 

.i =1 

2 	2 	Vo 

with the weighting coefficients given by 
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z  
CLj = J 1(z) 	(1 + Q(z) 2 ) dz 	 (4.4.2) 

z v _ 1  

These coefficients themselves depend upon the model 

parameters, attesting to the non-linearity of the problem. 

Since T is the reciprocal of the surface impedance, we 

can visualize the sum (4.4.1) as the result of summing 

the reciprocals of a set of N 'effective impedances', and 

the surface impedance to be the result of N such 

'effective impedances' in parallel. 	We can illustrate 

the sum of complex numbers in (4.4.1) graphically in the 

complex plane. 	In Fig. 4-2 we illustrate the impedance 

associated with a stratified (but homogeneous) half-space. 

We see that the segments associated with successively 

deeper layers, have successively greater phases. 	The 

line which represents the vector sum of the segments has 

magnitude I'I and makes an angle 0 (the phase of ) with 
the positive real axis. 	In Figures 4-3a and 4-3b, we 

illustrate the impedance diagrams obtained for various 

five-layer models at various indicated periods. 

4.5 Energy Dissipation and Inductive Response 

In addition to equation (4.4.1) one can alternatively 

express the response 	as 

P[f E(z)2  dz + i w
0 

 H(z) 2  dz] 	(4.5.1) 
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FIG. 4-2 	The response Yi  plotted as a sum of 'vectors' 

in the complex plane for the indicated homo-

geneous model and for the indicated periods. 

The line drawn from the origin to the extremity 

of this sum has magnitude 	'('.J and makes-an 

angle arg Y i  with the positive real axis. 
• 	 For homogeneous conductors this angle is - 	• 
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phase angle. 	 . 	. 
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where P = E(0) 2 . 	Since we are considering the inducing 

fields to be uniform in the x - y plane, the integration 

in (4.5.1) may be thought of as a degenerate volume 

integration of an infinitely extending field as it 

diffuses downwards into a conductor. 	We seek to consider 

the integrand of (4.5.1) in terms of energy flux density 

which, when integrated over the x - y surface, provides 

the energy flux of the downward diffusing field. 	When 

this, in turn, is integrated over depth, z, we determine 

the total energy of dissipation. 	In these circumstances 

the total joule dissipation (associated with a unit 

surface dA = dx dy ) in a conducting layer of thickness 

z.v1 	z 	is 

= 	 E E*  dz 	 (4.5.2) 

and the energy stored in the magnetic field is 

W H 
	2 PW f H H* dz 	 (4.5.3) 

The integrands of equation (4.5.1) can be written in terms 

of real and imaginary parts 

= 	 X(z) + i Y(z) ) dz 

with 	 (4.5.4) 

X(z) = cr(Re E)2 	( Im E) 2  - 2t Re H Tm H 

Y(z) = 	i(Re H) 2  - icø(Im H) 2  + 2 cr Re E I  E 
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Returning to our vector representation of the complex 

summation for 1, we can seek to relate the magnitude of 

in terms of energy; we define W!E 21V 	and 17 H  E 2WH 

and denote by angular b rackets the integration operation 

over (O,°), i.e. 

CO 

<f)= J f(z) dz 

Further we define a ,Re E , b 	J I  E 

c 	JTRe H , and d E 	 Im H. 	Hence the square of 

the magnitude of64  is given by 

-2 Yt  2 = (a2> + <b2>) 2  + (<c 2  + 

- 2 (,/ a2 + b) x (<c 2> + <d) cos & 

which we write as 

-2.2 	2 	2 
= WE + IV  - 2 WE W  cos 0 

where 

2 
<ab> cos 0 = (WEWH)1 	2 (a2><b2) 

 [i - <a 2><b 2) 	+ 

2<c2><d2> 	<cd>2 	 2 Ii - 	2 	2 1 - < cd) [<a  ) - Kb2)] - 
L 	c >(d)j 

<ab> [<c2> - < d - ->] 

Thus we can visualize, from (4.5.5) the vector Y to be 

the 'vector sum' of two complex numbers, each with 

magnitude WE  and  W   respectively, and making an angle of 

with each other. 	For the case of a uniform conductor 

a E b, and c 	d, and thus 6 = Tr/2. 	The vector 
y4 
 can 
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be thought of as having an x-component (i.e. a real part) 

proportional to the magnetic energy dissipated in the 

conductor, and a y-component proportional to the joule 

dissipation in the conductor. 

In Fig. 4-4 we show, for various non-uniform 

distributions of conductivity, the decomposition implicit 

in equation (4.5.5): in each example it would seem that 

the total vector can be decomposed into two orthogonal 

components, WE  along the y-axis, and W   along the x-axis. 

Thus it seems that cos a 	0 for wider classes of 

conductors than the homogeneous case. 

It may be of interest to try to infer, from the 

summation diagrams, how each layer contributes to the 

overall energy dissipation (at least for cases where 

cos 9 . 0 ). 	The projection of each vector segment on 

the y-axis may be interpreted as an indication of the 

contribution of that layer to the total joule dissipation. 

The projection on the real axis may be considered as the 

contribution of each segment to the total magnetic energy 

dissipated. 	Note that these projections are not 

proportional to the energy dissipated in the corresponding 

layer, but only serve to indicate the manner in which 

each layer contributes to the total energy dissipation. 

Inmost examples, the deeper layers contribute negatively 

to the total real component, i.e. the magnetic energy 

dissipation. 	This could indicate that the joule 

dissipation in the bottom layer is coupled to the magnetic 
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energy in previous layers, and indeed these generated 

currents tend to reduce the overall magnetic field 

Also, in some cases, the deeper layers contribute 

negatively to the imaginary component as well, perhaps 

implying that electric energy 	generated in these layers 

exceeds the energy associated with the decaying incident 

field at that depth. 	Apart from these speculations, it 

is not clear whether more detailed information can be 

inferred from the diagrams of Section 4.4. 	We should 

note that it is not profitable to compare energies 

associated with different frequencies since the complex 

proportionality factor j3 is frequency dependent. 

However, by comparing the real and imaginary parts of 

one can infer the relative energy dissipation in electric 

and magnetic fields for any given frequency. 

4.6 A Discrete Circuit Analogue 

In Section 4.4 we observed the similarity of the 

summation (4.4.1) to that one associates with the sum of 

reciprocal impedances for parallel circuits. 	We ask now 

whether circuit theory affords any analogue to the 

induction problem. 	Of course the sum (4.4.1) must be 

the sum of 'effective impedances' in parallel, since the 

driving potential at depth will be smaller than at the 

surface. 	A promising circuit configuration might be 

that illustrated in Fig. 4-5. 	The effective impedance 

for this system is given by the continued fraction: 



FIG. 4-5 	A possible circuit analogue suggested by the 

vector diagrams of Fig. 4-3. 



z 	= z + 
e f f 	5 
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1 

+ 	
1 

z3  + z1 z2  

z  + z2  

where Z. = R. + iwL. . 	If we convert this to a rational 
1 	1 	 1 

fraction, we may write its reciprocal as 

e f f 	L. 
1 

and proceed to plot, in Fig. 4-6, this sum of complex 

numbers in the same manner as Fig. 4-3. 	We chose the 

particular values R. = L. 
1 

= 1, for all i. 	One can at 
1  

least see a resemblance of Fig. 4-6 to our previous 

diagrams, and can identify the curvature of the vector 

sum with the non-linear feed-back that we might expect as 

the self-inductive coupling between equivalent branches 

of the circuit comes into effect. 	Note that, in this 

example, we have not taken into account any possible 

mutual couplings which could occur. 



Iii 

Hz. 

FIG. 4-6 	The overall conductance (reciprocal of 

impedance) associated with collection of 

impedances as organized in Fig. 4-5. 	These 

are plotted for various frequencies as 

summation diagrams. 	Note Z. 	1.0 + i& 

for this diagram. 
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CHAPTER 5 

THE LEAST-SQUARES PROCEDURE 

5.1 The Algorithm for Multilayer Conductors 

In Section 3.4 it was shown that the variation sr 
1 

for two layers is expressed by equation (3.4.1). 	For 

the case of a stratified conducting halfspace with M 

layers, the first order variation is given by 

= f2 (z)dz + OUfl2  1 

with Su(z) given by equation (3.2.31). 	This variation 

can then be expressed 

= 	

Z. 	

dz 	 (5.1.2) 

	

aj  f 	
2 z) 

j 	zj_1 

	

(Z. 	Z. 
3 	j+1 	 3 	3 

j 

From Schmucker's (1970) relationships (3.2.32) and 

(3.2.33), expressions for - 2 (z) can be determined. 	In 

the layer z 	 z 	, t(z) is given by 

(z) 	
= 	E(z j. 	 ) 

-( z.) 	 (5.1.3) 
-1 

with 

cosh [K.(zz. 	)] -Q. sinh 

(5. 1.4) 
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and 

j-1 	
E(z 

n = 	
E(z n='l 	n-i 

With equations (5.1.3), (5.1.4), and (5.1.5), the 

(5. 1.5) 

integrations required in equation (5.1.2) can be performed 

analytically: 

f '_~ 2(z) 
dz 

= 	 2 ) d. + (1-fQ. 2 ) ---- sinh f 	. 
j  

2K d] 
J 	j 	4K 

3  
. 	L 

- Q. 	- cosh[2K.d.J 	 1. 6) 

Thus the problem of computing the coefficients of equation 

(5.1.2) reduces to that of generating Q.  from the 

recursive relationship (3.2.33). 	The term 	(z.) is 

easily computed from (5.1.4). 	The computational problems 

associated with evaluating Q., 	(z.), and the 

coefficients of (5.1.2) -- and thus the inner product 

matrix B defined by (3.2.46) -- are completely straight- 

forward. 	There are obvious advantages offered by the 

present simple algorithm compared with the more arduous 

(and time-consuming) task of computing the actual 

derivatives of the response with respect to all the model 

parameters. 	The outcome of both approaches is 

numerically the same (cf equations (3.4.3), (3.4.4), and 

(3.4.5) for the two-layer case). 
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Our object in this present Chapter is that of 

illustrating theBackus Gilbert least-squares procedure 

for improving an initially guessed model, both with some 

synthetic numerical experiments, and with application to 

experimental data. 	In all the examples and experiments, 

the model parameters have been rendered dimensionless in 

a manner completely analogous to that described in 

Section 3.3 for the two-layer problem. 	Each conductivity 

c. is normalized with respect to the surface conductivity 

thus the dimensionless conductivity is 	. = cr./cr 
1 	 •3 	j 	1 

The depth parameters are measured in skin-depths 

(evaluated using the surface conductivity). 	Also, the 

amplitude and phase of the magnetotelluric response are 

used as data: this is achieved by taking the natural 

logarithm of the complex response 1r; hence 

lne = lnlIJ + I argY 	 (5.1.7) 

consists of a real part which is the logarithm of the 

amplitude of I , and an imaginary part which is the phase 

of ' . 	Parker (1970) explains that the logarithm is 

required since the modulus of 
)A 
 is not an analytic 

function of r 	Alternatively, one could choose as 

data the real and imaginary parts of X 	; but it would 

seem that amplitude and phase are the favoured manner of 

expressing response data. 	In fact it is amplitude 

information alone (expressed in the form of an apparent 

resistivity) which is often used as the response function. 
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Typically, phase response curves are widely scattered 

and may lead to unreliable interpretation. 	Unless 

otherwise, stated, the response data will be amplitude 

data alone. 	In Sections 5.3 and 5,4 the inverse least- 

squares formalism is used to try to determine how phase 

information can contribute to the interpretation of data. 

We emphasize also that the least-squares inversion 

procedure does not require smooth data -- the procedure 

itself has the effect of smoothing irregular data. 	The 

error estimates which are to be associated with elements 

of the data set do not enter into the procedure for 

finding an acceptable model. 	The question of error is 

addressed when one seeks to characterize the space of 

acceptable models by determining the resolution of the 

data. 

5.2 Synthetic Examples 

In order to illustrate the regions of the model space 

where linearization error could occur, a serie-s of 

numerical experiments with synthetic data were described 

in Section 3.4. 	The model space consisted of the 

parameters associated with a two-layer half-space. 	By 

choosing a set of ten data frequencies which penetrate 

some ten kilometers into the Earth, and seeking from a 

least-squares inverse formalism to isolate model 

parameters near the surface -- some two kilometers from 

the surface -- an underdetermined problem was posed. 
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The resolution of induction data deteriorates somewhat 

near the surface (as we shall see from Chapter 6), so we 

are essentially trying to optimize model parameters which 

are not well resolved. 	In the context of Chapter 3, 

this suits our purpose of exploring the regions where 

higher-order terms in equation (3.4.12) may influence the 

iterative scheme. 	An underdetermined problem will give 

rise to large model perturbations, and the conditions for 

the local linearization of equation (3.4.12) are likely 

to be exceeded. 

We now wish to apply the algorithm described in 

Section 5.1 to synthetic data generated from various 

conductivity distributions. The following strategy will 

be followed. 	A model will be selected (for sake of 

nomenclature this model will be called 'the true model') 

and a set of synthetic data, corresponding to N distinct 

frequencies, will be generated from this model. 	We then 

select a different model to obtain an initial guess and 

compute the response to this guessed model for the same 

N frequencies. 	The term Ag i  , required in equation 

(3.2.44), is then computed 

Agi=i - g 1 (a-° ) 	 (5.2.1) 

by taking the difference between the response computed 

from the true model ( T. is our observed response value) 

and that computed from our guessed model (i.e. g.(o°) ) 

Using the algorithm described in the previous Section, 
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we compute the terms b. 
V. 
 defined by (3.2.42) with 

G.(z) = p 2 (z) H(z 1 -z) 	for the. So-  1 -component, etc. 

Hence the inner product matrix B -- the elements of which 

are defined by (3.2.45) -- can be formed. 	The vector 

is determined by forming the inverse of B, and operating 

-1 
on the vector A  with B . 	Hence the model perturba- 

tions Ye-. and Sd. can be determined from the 
3 	.3 

combinations (3,2.40) and (3.2.41). 

Both stable and unstable situations will be illus-

trated; however at this stage no stabilizing procedures 

such as that described in Section 2.2.,e -- will be 

introduced. 

In Figs. 5-1a and 5-lb we again illustrate the 

application of the least-squares inverse procedure to a 

two-layer problem. 	In Fig. 5-la a true model is chosen 

to be : ( 	 = 0.5 ohmm, 	= 0.05 ohm- I m 
d = 2 km.). Ten data points are generated in a period 

range 1 sec. 	T 157100 sec. 	A 	starting model is chosen 

to be 
0 : 	( = 0.667 ohmm, 	cr 	= 0.025 ohm- im-1, 

d = 	1 km ). 	In 	a given iteration the current data 

residual is defined as the square root of 

N 

	

- g.(o-°) )2 
	

. 	(5.2.2) 

i 

and the current model residuals are defined by 

	

°i 	etc. 	 (5.2.3) 

An alternative situation is illustrated in Fig. 5-lb. 
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The period range is now chosen to be 10 sec 	T . 100 sec. 

The true model and the initial guess are the same as that 

illustrated in Fig. 5-1a. 

In Figs. 5-la and 5-lb the instability associated 

with this underdetermined problem is illustrated by the 

data residual. 	In Fig. 5-1a one can see that, with the 

inclusion of higher frequencies, a- 2 -perturbations seem 

to depart more strongly away from the true value whereas, 

if these higher frequencies are excluded (Fig. 5-1b), it 

is 	which departs more strongly from the true value 

and 4r seems better determined. 	This is as one would 

expect from this adjustment of the period range. 

During any iteration a conductivity parameter may 

become negative, i.e. may assume an unphysical value. 

In the least-squares algorithm which has been described, 

the model parameters have not been constrained to be non-

negative. 	Should a model parameter become negative 

during an iteration, it is immediately set to the 

physically possible default parameter of zero. 	However, 

among the illustrations shown in this Section, only that 

of Fig. 5-3a involves application of this default. 

Fig. 5-2 illustrates the least-squares procedure 

applied to a three-layer model. 	This constitutes a five 

parameter problem with the three conductivities and the 

two depth parameters allowed to vary during the iteration. 

The period range for the data is 1 sec 	T 	100 sec 

and the synthetic data is generated from the true model 
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( 	0.6, 	Or2 = o• 	q 3 	1.0; 	d1  = 1 km, 

d 2  = 2 km ). 	The initial guess is chosen to be 

= 0.81, 	cr °  = 0.085, 	= 0.7; 	d1  = 0.7 km, 

d 2 	2.6 km ). 	(All conductivities are measured in 

ohm 'rn 1 ). 	The set of model residuals, as they are 

defined in equation (5.2.3), span a number of orders of 

magnitude. 	To illustrate more distinctly the model 

residuals in this and in subsequent examples, these 

residuals will be redefined by 

uIn 	i / 	i° ) 1 2 	etc. 	 (5.2.4) 

Since the model residual is only defined for illustrative 

purposes, the form of thedefinition is of no material 

importance. 

Figs. 5-3a and 5-3b illustrate the least-squares 

inverse procedure applied to another five-parameter 

problem: this time the model is parameterized with five 

layers located at fixed depths below the surface. 	For 

Fig. 5-3a data is generated from a true model chosen as 

: 	= 

 

0. 5, 	2 - 0.001, O 3  = 0.005, Q 4  = 0.009, 

1.0 ) over the period range 6 sec

'

T • 100 sec. 

a  
The initial guess is 0 

0 : 
	( 	= 0.3, .7 2' 	0.003, 

	

cr = 0.02, 	0.15, 	= 2.0 ). 	The depths to the 

interfaces are: d 1  = 1.0 km, d 2  = 2.0 km, d 3  = 2.4 km, 

d4  = 2.8 km. 	From Fig. 5-3a one can see that the 

procedure is unstable at the first iteration (resembling 

the situation in Fig. 3-7A). 	It would seem from the 



FIG. 5-1 a 	Residuals associated with least-squares 

procedure for the two-layer models (true 

model and starting model) indicated. 	The 

period range of the data is 10 	T 4 100 sec. 

FIG. 5-1 b 	Residuals associated with least-squares 

procedure for the two-layer models indicated. 

FIG.. 5-2 	Residuals associated with the least-squares 

procedure for the three-layer models 

indicated. 

FIG. 5-3 a 	Residuals associated with least-squares 

procedure for the five-layer models (with 

fixed depths) indicated. 

FIG. 5-3 b 	Residuals associated with least-squares 

procedure for the five-layer models 

indicated. 
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model residuals that the poorly conducting layers are the 

least well determined. 	Nevertheless the process con- 

verges to the true model. 

Fig. 5-3b illustrates the procedure for a situation 

which is completely esoteric in the sense that the 

conductivities of the true model are an order of magnitude 

greater than any which might be expected in the Earth. 

The present example is included for purposes of comparison. 

The higher conductivities (and hence the relatively large 

induced currents) make the model well resolved, and the 

leastsquares procedure stable and convergent. 	The true 

model is chosen as G: 	 = 0.5, 	= 1. 0, 	= 5. 0 '  

= 7.0 	= 15.0 ). 	The period range is the same 

as for Fig. 5-3a. 	The depths to the interfaces are 

0.8 km, d 2  = 1.6 km, d 3  = 2.4 km, d4  = 3.2 km. 

The initial guess is 0 
02 = 	= 4 	

= 1.0 ) 

Two comments can be made concerning all the models 

considered so far in this Section. 	They are all rather 

esoteric from the point of view of geophysical application. 

Furthermore, in order to make the problem display the 

interesting instabilities inherent to underdetermined 

systems, unfortunate parameterizations are chosen. 	The 

depth of penetration of an inducing field with period 

100 sec in a conductor of conductivity 0.5 ohm 1 m 1  is 

about 100 km. 	Yet we seek to resolve the structure only 

at the top 5 km of the Earth. 

Figs. 5-4a, 5-4b, and 5-4c illustrate more 



165 

geophysically appropriate parameterizations. 	We can see 

that in each case the procedure is more stable: the model 

perturbations are smaller and the procedure takes 

correspondingly longer to converge. 

Fig. 5-4a illustrates the procedure associated with 

the three layer parameterization. 	A true model is 

chosen g: 	( 	 .1, 	cr = .008, 	= .1; 	d1  = 8., 

d 2 = 18.) to generate ten data points in the period range 

20 sec E T .:~ 300 sec. 	An initial model is chosen 

( 	 = .085, 	= .0104, 	CT; = .075;. d 1 = 7.2, 

= 21.6 ). 	 From Fig. 5-4a it can be seen -- qualitá- 

tively at least -- that, of all the model parameters, the 

depth parameters are among the least well resolved. 

Fig, 5-4b illustrates a five layer parameterization 

with depths fixed. 	A true model is chosen 

0. 0 7 , 	
2 

=  0. 05 , 	= 0. 09, 	= 0.15, 

= 0.005 ) to generate ten data points for the same 

ten periods as the previous example. 	The starting model 

is 0
0

-

10 . = 	= 	= 	= 	= 0.06 ). 	 The depths 

to the interfaces are d 1  = 8 km, d2  = 15 km, d3  = 20 km, 

d4  = 25 km. 

Fig. 5-4b illustrates the synthetic data generated 

from a true model T : 	= .05, a- 

 2 
= .065, o-- 

3 
- .09, 

- 0.1, 	= 0.15 ). 	 The depth parameters, period 

range and initial guess are the same as those of the 

previous example. 



FIG. 5-4 a 	Residuals associated with least-squares 

procedure applied to more geophysically 

interesting three-layer model (with floating 

depths) indicated. 	The period range is 

10 . T 6 300 sec. 	The model residual 

associated with each parameter is so 

label led. 

FIG. 	-'± o 	Residuals for the live-layer model indicated. 

FIG. 5-4 c 	Residuals for the five-layer model indicated. 
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5.3 Stabilizing the Iterative Procedure 

Without any a priori knowledge of the space of 

acceptable models (and without any prior understanding of 

the resolving power of the data), one might well para-

meterize the model in a way which could lead to an 

underdetermined inverse problem. 	This situation will 

arise if the model is so finely structured that the data 

set has insufficient resolution to optimize the model 

parameters. 	This failure to resolve parameters may 

itself arise from scatter in the data (i.e. from 

inconsistency in the data) or from some inadequacy in the 

range or density of the data. 	As was explained in 

Section 1.6a, there is difficulty in evaluating the 

inverse of a matrix if that matrix is associated wi-th an 

underdetermined system of equations. 	in numerical terms, 

this difficulty will consist of a failure of the matrix 

inversion algorithm to supply an inverse; at best such 

an algorithm may supply a greatly inaccurate version of 

an inverse matrix. 	If an inverse of a nearly singular 

matrix is isolated numerically, the resulting model 

perturbations can be extreme and the conditions under 

which the expansion (1.6.1) was constructed may be 

violated. 	The direct implication, of an underdetermined 

system of equations to the least-squares inversion 

procedure is to make the procedure unstable. 

Thus a method to stabilize the procedure is required. 

This can be done formally by attaching additional 
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constraints to the minimization of U in equations (2.2.5) 

or (3.2.38). 	The additional stabilizing constraints 

which will be imposed are 

that the model perturbations give rise to 

physically meaningful model parameters, e.g. 

that the conductivity remain non-negative, and 

that the data residual decrease from iteration 

to iteration. 

The method to be used to impose these constraints is that 

of ranking and winnowing, described in Section 2.2.e. 

It is this approach which is also implicit to the Lanczos 

formulation of the inverse problem (Jackson, 1972). 

A similarity transformation is needed which will 

diagonalize the inner product matrix B (using notation of 

Section 3.2.d). 	Specifically an orthonormal matrix 

operator C is required such that 

C 	B C = B' 

where B' is diagonal. 	Since C is to be orthonormal, 

and we can restructure this equation as 

B = C B' 
C 	

(5.3.2) 

and substitute this value of B into equation (3.2.44) to 

obtain 

( £ 	
' 	

CT ) . 	 (5.3.3) 
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The transformations 

(5.3.3) to 

L 	C T Ag and 
/ 	T 

-v C -V, reduce 

(5. 3.4) 

where B' is diagonal. 	(The Frchet kernel is similarly 

transformed by G 1 (z) = C 
T 
 .G(z) ). 	Forming the inverse 

of a diagonal matrix is a trivial operation and so 

equation (5.3.4) is an extremely convenient representation 

for equation (3.2.44). 

There are N eigenvectors and eigenvalues to be 

associated with a non-singular, real, symmetric matrix B 

of rank N. 	The kth such eigenvector, u  , is defined by 

-k 
 =0 	 (5.3.5) 

where I is the N x N identity matrix and A is the kth 

eigenvalue. 	If the columns of the transformation matrix 

C are composed of the N normalized eigenvectors of B, the 

matrix C will be orthonormal. 	With C chosen in this way, 

the matrix B' resulting from the similarity transformation 

(5.3.1) will have along its diagonal the eigenvalues of B 

in the same order-as the corresponding columns of C, i.e. 

B' 	= 	 (5.3.6) 

Unless the matrix B is singular the elements of the set 
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pj will all be non-zero. 	If these eigenvalues (and 

the corresponding eigenvectors in C) are ranked in 

descending order, the smallest eigenvalue will appear at 

the lower right hand corner of the matrix (5.3.6), and 

> 	) 3 > " > N • 	If B is nearly singular, 

one should be able to identify a set of eigenvalues 

k+1 ""k+2 	• 	
N which are nearly zero: these 

can be formally separated off in (5.3.6) so that 

1 

1 

(5. 3.7) 

If only the largest k eigenvalues pill are  retained, 

the transformation C, the vectors V', ag'., and G' 

will be correspondingly reduced in dimension. 	However 

the reduced k x k (k 	N) matrix will be non-singular, 

and a well-conditioned inverse, (B)_ 1, can be constructed. 

Each transformed datum ag'. is a (non-linear) 

combination of the original data 	g , i.e. 
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N 
Ag' 1  = 	C.. 	g. 	 (5.3.8) 

3 

(C 1  is the 
..th 

 element of 
	

Excluding the data 

A 	I g k+1 	k+2 ' 	 " 	

b  N 

from equation (5.3.4) effectively reduces the number of 

combinations of the original data represented in the 

inversion. 	This will result in some degradation of the 

information. 	However, some combinations of data may be 

less informative than others and the information loss 

from the truncation described may or may not be 

significant. 	Solving the truncated (5.3.4), one achieves 

the k-dimensional vector V ' ( k < N) with elements 

V1 
I 	= A g' 1  /&'. 	 (5. 3.9) 

from which the model perturbation can be constructed 

(5.3.10) 

It is to this latter equation that stability criteria can 

be imposed for the least-squares procedure. 	One simply 

reduces the terms in the sum (5.3.10) -- by reducing k --

until the criteria stated at the outset of this Section 

are satisfied. 

Numerically one requires to evaluate C. 	This is to 

say one needs to evaluate the eigenvectors and eigenvalues 

of the inner product matrix B. 	Since B is real and 

symmetric this is computationally a well-understood 
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procedure and there are a variety of well-documented 

methods which are suitable. 	One which is commonly used 

is that of reducing B to tn-diagonal form using 

Householder's method. 	One then uses the L-R algorithm, 

or Sturm bisection to isolate the N eigenvalues; the 

eigenvectors are hence evaluated by back substitution. 

A descriptive discussion of var-ious numerical approaches 

can be found in Williams (1972). 	The standard work on 

the numerical solution to algebraic eigenvalue problems 

is that of Wilkinson (1965). 	If B is nearly singular, 

the isolation of the smaller eigenvalues may be very 

time-consuming, and inaccurate. 	However, one can seek 

to find only those eigenvalues exceeding some minimum 

useful value. 	Having found the eigenvectors, one then 

forms C, and operates on 	Ag , and G with its 

transpose C 
T

to obtain the transformed values v 

and G' 	for equations (5.3.9) and (5.3.10). 

As has been stated, the exclusion of eigenvalues 

from (5.3.7) results in an unknown loss of information. 

One can examine equation (5.3.4) in the light of the 

discussion in Section 1.6. 	The transformation (5.3.8) 

can be described as a rotation of the data set 	JA g i f 
each element of which is defined Ag, F  2r - g.(r°). 

Since '. has itself been described as an average of the 

model distribution, a(z) (see the discussion following 

equation (1.6.9) ), one can see how the transformation 

T 
C affects the weight ing kernel associated with this 
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average. 	Equation (3.2.35) is restated as 

CO 

1 	
j 

= fc(z) 1.(u,z) dz 	 (5.3.11) 
 1 

0 

(with weighting function, f.(r,z), given by 

= (1 +Q(z) 2 ) 2 (z) 	 (5.3.12) 

For a homogeneous conductor, f.(cr,z) is plotted in 

Fig. 5-5a for a range of frequencies. 	The period 

range corresponding to these frequencies is 

6 sec e= T 	90 sec, and the conductivity of the half- 

pace is taken as 0.5 ohmm 1 . 	Treating f.(o,z) as a 

weighting function, one can formally define the centre of 

this distribution by 

Zc 	f z f.(c-,z) dz / f f (a- , z) dz 

and this centre is indicated in Fig. 5-5a. 	If 	. is 

transformed by 

= 	 (5.3.13) 

each 	can be defined by 

f cr(z) [ 
	

C. fk(z)]  dz 

= ( cr() ft( z ) dz 
1 	 1 

0 

(5.3.14) 

and in Fig. 5-5b the transformed weighting distributions 

I t(o,)  together with their respective centres are 
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plotted. 	In fact, the ten pieces of transformed data, 

, are no longer to be associated with ten frequen-

cies, since they are each comprised of a (non-linear) 

combination of frequencies. 	Instead, each one is 

associated with a distinct eigenvalue. 	The model 

variance (defined by equation (2.3.17) associated with 

each 6kg.1 ' is indicated. 	It can be seen that the centre 

of the transformed weighting functions distribute 

themselves into the conductor, until the fourth eigen- 

value. 	Then the centre remains at depth and the 

amplitude of the weighting function becomes extremely 

small. 	Also, after four eigenvalues, the model variance 

becomes extremely large -- so those last six eigenvalues 

should be excluded from (5.3.7) in order to impose 

stability on the iterative process. 	The position of the 

centre of the six distributions with small eigenvalue is 

subject to great inaccuracy, as are all the characteris-

tics of these distributions, since they are associated 

with the singular part of the transformation C. 	Of 

course the model variance is also dependent on the vector 

Ag' , so that whether an eigenvalue is to be excluded or 

not cannot rest upon inspection of a diagram such as 

Fig. 5-5b alone. 

In the discussion surrounding Fig. 3-8, ranking and 

winnowing had been applied to the same two-layer example 

which was illustrated in Fig. 3-7. 	We here illustrate 

a further example of how the stabilizing procedure which 
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has been described can assist one to find an adequate 

model when the algorithm of the previous Section is found 

to be non-convergent. 	In Fig. 5-6a and Fig. 5-6b, we 

illustrate the case where a synthetic data set has been 

generated from a true five layer model a- : 	= 0.5, 

	

0.01, a-3 = 0.005, 	O4  - 0. 09, 	= 1.6 ) over a 

period range 10 sec 	T 	100 sec. 	The depths to the 

interfaces are d 1 = 8 km, d 2  = 1.6, d 3  = 2.4, 

d4  = 3.2. 	The initial guess is chosen 9 
0 

( 	= 	= 	= 	= 	= 0.6 ). 	For Fig. 5-6a the 

algorithm of Section 5.1 is applied directly. 	This 

results in an unstable and ultimately unsuccessful 

procedure. 	The stabilizing procedure described here has 

been applied, and Fig. 5-6b illustrates the result. 	One 

can see that the final data residual is much reduced, and 

that the iterations are very smooth and convergent. 	The 

model parameters however do not find their way to their 

true values, but to a final model cr : 	( 	= 0.4, 

= 0.085, 	0.04, 	= 0.33, T = 1.2 ). 	By4. 

imposing stability on the procedure one has sacrificed 

information and resolution: although an acceptable model 

has been found in the sense that the data residual has 

been made acceptably small, the model parameters are not 

exactly but only approximately found. 	This of course 

demonstrates yet again the range of acceptable models 

which can be associated with a single set of data, 

especially data which is scattered and erroneous. 



FIG. 5-5 a 	The function f.( a- , .) defined by equation 

(5.3.12) together with the centre of this 

distribution, Z 
C
, for the stated values of 

radial frequency, "' 

FIG. 5-5 b 	The function f.( o-  , a) appearing in the 

integrand of (5.3.14). 	These are the 

'rotated' responses, 	. , with their 

distribution centres. 	Also indicated is 

the model variance (defined by equation 

(2.3,17) ) associated with each 	for a 

uniform starting model 	o= 0.5 ohm 
-1 

 m 
 -1 
 

and a 'true' model 	: 	( 	= 0.5, 	2 = 0.4, 

O 3 = 0.1, 	or- 4 = 0.01, 	= 0.5 ), at depths 

d 1  = 1.3, d2  = 1.5, d = 2.0 2  d4  = 3.2 km. 

FIG. 5-6 a 	Example of an unstable iterative least- 

squares procedure associated with the five-

layer model shown. 

FIG. 5-6 b 	The same data and starting model as the 

previous Fig. 5-6 a, however the method of 

ranking and winnowing has been used to 

stabilize the procedure. 	Thefinal model 

which is achieved is 2 : 	= 0. 4, 

= 0.085, 	Cr3  = 0.04, u-4  = 0. 33, O 5  = 1.2 ) 

The depths are fixed. 
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5.4 Introducing Phase Into the Formalism 

In the synthetic examples of Section 5.2, amplitude 

data alone have been used. 	Researchers typically use 

amplitude information alone because statistical estimates 

of the phase are often unreliable, and the plot of phase 

as a function of period often exhibits a large amount of 

scatter. 	From the point of view of our inverse 

procedure, we have been using only the real part of 

equation (5.1.7) as a datum and its corresponding Frchet 

kernel. 	However, if reliable phase estimates are 

available to a data set, they may be able to play a 

decisive part in determining acceptable models. 

Including other independent sets of data (which are 

functionals of the same model distribution) into the 

inversion procedure is a straightforward matter. 	For 

the problem of inferring conductivity, Vozoff and Jupp 

(1975b) have included direct current sounding data 

together with magnetotelluric sounding data in a joint 

inversion scheme. 	Muller (1976) has recently described 

how he has introduced phase data into a least-squares 

inversion, using a Marquardt non-linear algorithm. 	An 

example with relevance to the induction problem is perhaps 

to be found in the work of Gilbert and Dziewonski (1975) 

where normal mode data is inverted. 	Using the ortho- 

gonality properties of the elgenfunctions associated with 

the vibrational free modes of decay in the Earth, they 

form an extended inner product matrix which is block- 
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diagonal: 

0 

-. -------- 
p 

	

(5.4.1) 
=',I 

Each submatrix corresponds to a set of orthogonal data. 

Banks (1969), in his analysis of daily variation data, 

has assumed a P1 0 harmonic (i.e. 2 = 1, m = 0, in 

equation (3.2.21) ). 	However the orthogonality of higher 

spherical harmonics may be exploited in a Backus-Gilbert 

inversion of a more general set of response data. 

Can phase be treated as an independent set of 

information? 	The statistical covariance estimates of 

phase and amplitude are apparently independent (Parker, 

1970). 	Treated in an independent manner, one can form 

the extended inner product matrix: 

•0 

(5.4.2) 

0 

where B 1  is the inner product matrix developed previously 

for amplitude data and B 2  is the inner product matrix for 
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phase data. 	However, if one were to rigorously defend 

this method of expressing the inner product matrix, one 

would need to show that the elements of B outside the 

diagonal submatrices vanish. 	To do this one would need 

to show 

f Re Gk(z)  Im G.(z) dz = 0 	 (5.4.3) 

for all k and j. 	It can easily be shown that the above 

integral does not vanish. 	Since the integrals of Z 1 Z2  

and Z 1 Z' are easily evaluated, one can use relationships 

such as 

Z1 Z2  - ZZ = 2 i (Re Z 1  Im 	+ Re Z2  Im Z 1 ) 

to determine the integral over (0,0o ) of the functions 

Re Z 1  Im Z2  etc. 	For example, if k = j in (5.4.3), 

and Gk(z) = 	(z), for a homogeneous half-space we have 

00 

4 i f Re Gk(z)  Im Gk  (z)dz = 	- 

It can be shown also that 

Re Gk(z)  rm Gk(z)  dz / f Re Gk ( z)Re Gk(z) dz = 1/3 

Thus one must bear in mind that if a block diagonal form 

of the inner product matrix such as (5.4.2) is used, an 

element of approximation is introduced to the procedure. 
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5.5 Inversion of a Seventeen-Point Data Set 

In both this and the following Section, we shall 

describe the application of the Backus-Gilbert least-

squares procedure to some sets of experimental data. 

The application to real data of the one-dimensional 

procedure described in this thesis presents some problems 

if the data is strongly anisotropic. 	At a magneto- 

telluric station one typically measures two orthogonal 

components of the tangential electric field, and two 

orthogonal components of the tangential magnetic field. 

Thus, out of these components one can form two apparent 

resist ivities, 

2 

Ixy   

and 

E 2 
= 	 (5 5 2) Jyx 	c&)li H 

If the conductivity in the Earth is a function only of 

depth, z, then 	
xy p 	= p X • 	If there is a lateral 

i 	)  

discontinuity, then the apparent resistivities will 

differ. 	Having measured the pairs (E x ,E y ) and (H 
x  ,H ), y 

one can express these as tangential vectors 

E = E i + E j 
- 	x 	y 

H = Hi + Hj 
- 	x 	y 

and try to find a rotation transformation, B. , such that 
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= 	= E, 'i' 	+ E, 3' 

and 

H'. = R 	= H, 1' 	+ H , - 	 x 	 y 

and p 	is a maximized apparent resistivity and p Jx'y' 	 Jytx 

is the minimum resistivity. 

In terms of a 'striking' lateral discontinuity (as 

was discussed in Section 1.3) the minimal 5> can be 

associated with an electric field component parallel to 

the strike (called E-polarization) and this is less 

sensitive to the anomalous effects of the discontinuity. 

The maximum 5> can be associated with H-polarization, 

and is very strongly affected by the discontinuity. 

Unfortunately, it is often the major component for which 

the most accurate measurements are possible. 	The small 

tangential electric field appearing in the apparent 

resistivity ratio for the minimum, r , is subject to 

large signal-to-noise ratio. 	Rooney (1976) has presented 

curves to indicate how apparent resistivity can be 

affected by a lateral discontinuity. 

If the two apparent resistivity curves for 
fxy 

and 

o yx are nearly the same, the ratio of the two resistivi- 
) 

ties will be unaffected by a rotation R. 	This isotropy 

of the apparent resistivity implies a conductor which is 

one-dimensional. 

As a first illustration of the application of the 

least-squares procedure to an experimental dataset, we 
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FIG. 5-7 	Apparent resistivity data collected at 

Newcastleton site (Scotland) by Jones (1976). 

The open circles are the component JNS  (i.e. 

a North telluric field and an East magnetic 

field); the solid.circles are rEW 
	

The two 

curves are sufficiently coincident to suggest 

a one-dimensional interpretation may suffice. 



shall choose a set of data which shows encouraging 

isotropy. 	The data was collected and analysed by Jones 

(reported in Jones and Hutton, 1976), and the two 

orthogonal apparent resistivity curves, determined from 

a site at Newcastleton in the U.K. , are plotted in 

Fig. 5-7. 	The solid circles correspond to a telluric 

field in the N-S direction; the open circles correspond 

to an E-W telluric field. 	Compared with usual magneto- 

telluric data, Fig. 5-7 displays considerable isotropy 

and this can be expressed in statistical terms: one can 

point to a low skew factor, and to the fact that there is 

little indication of a preferred direction when the 

* 
response is rotated. 	Jones does rotate the data to 

maximize the partial coherence between the North telluric 

and East magnetic field estimates following a practice 

suggested by Reddy and Rankin (1974). 	Also statistical 

acceptance criteria are applied to the data set to produce 

a pair of response data sets, each set consisting of about 

twenty amplitude and twenty phase estimates. 	The two 

apparent resistivity curves are very similar; however it 

is interesting to note that the curves corresponding to 

maximized partial coherence have an unusually smooth 

phase response curve. 	We shall consider the problem of 

* 
For a thorough discussion of such statistical matters, 
the reader is referred to the literature, e.g. 
Hermance (1974). 
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interpreting this rotated resistivity. 

Initially we invert only the amplitude (apparent 

resistivity) information, and at a later stage we consider 

phase information. 	A five layer parameterization -- 

described in Section 5.2 -- of the model was chosen, since 

it seems that a finer structure might be too much to ask 

of a 17-point data set, and less than five layers may 

overconstrain the problem. 	However these are intuitive 

speculations. 	The task is to select, by educated guess, 

a possible model, and then to see if the least-squares 

procedure (smoothed by ranking and winnowing) converges 

to some near-by optimum model. 	Table 5-1 lists the 

details of starting models, 	, labelled A to F. 

Fig. 5-8a illustrates by the dotted lines the response of 

this guessed model; the solid line indicates the response 

due to the hundredth iterate in a least-squares procedure. 

The model associated with this hundredth iterate is also 

enumerated in Table 5-1, and this 'optimum' model is 

illustrated graphically in Fig. 5-8b. 

One can remark upon the similar characteristics of 

the models which are achieved by the procedure. 

Basically, there seems to be a relatively good conductor 

at the surface, and then another region of high conduc-

tivity at some thirty kilometers depth. 	Comparing 

Figs. 5-8a and 5-8b (bearing in mind the experimental 

error to be attached to the response curve) one can 

observe that, despite the general common features, a 



FIG. 5-8 a 	The open circles indicate the rotated major 

resistivities determined from the data 

illustrated in Fig. 5-7. 	The dotted lines 

represent the response of starting models 

A to F in Table 5.1. 	The solid lines 

represent the response of the hundredth 

iterate in a least-squares procedure which 

uses only 17 amplitudes. 

FIG. 5-8 b 	The final models achieved after one hundred 

iterations of the least-squares procedure 

applied to the data displayed by the open 

circles in Fig. 5-8 a. 
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TABLE 5.1 

A d B a- a d 

1 	0.008 0.011 1 0.005 0.0064 
10 8 

2 	0.005 0.0001 2 0.001 0.0001 
30 20 

3 	0.008 0.0058 3 0.005 0.0042 
40 25 

4 	0.035 0.0355 4 0.03 0.029 
50 35 

5 	0.001 0.001 5 0.002 0.0016 

C 	0 
4r d D d 

1 	0.008 0.02 1 0.001 0.01 
'3 8 

2 	0.003 0.0034 2 0.001 0.0001 
20 20 

3 	0.007 0.0001 3 0.005 0.0001 
40 30 

4 	0.06 0.08 4 0.03 0.0367 
45 40 

5 	0.002 0.0011 5 0.002 0.0014 

E d F ir d 

1 	0.008 0.0093 1 0.01 0.013 
8 4 

2 	0.007 0.0001 2 0.001 0.0012 
20 15 

3 	0.012 0.0102 3 0.005 0.0001 
25 . 25 

4 	0.02 0.0269 '4 0.02 0.022 
35 40 

5 	0.001 0.0014 5 0.002 0.0015 
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variety of models can satisfy the data. 	It will be 

noticed that a good surface conductor is demanded by the 

data to satisfy the high-frequency data points. 	Also it 

will be seen that the phase data is not satisfied at all 

well (especially at high frequencies) when amplitude data 

alone is represented in the inversion. 	Fig. 5-8b is by 

no means an exhaustive description of the space of 

solutions (which may after all be infinite), nor does it 

pretend to be in any way representative. 	They are simply 

a few examples chosen to indicate how a variety of 

acceptable models can be generated by taking a variety of 

starting models and choosing a variety of parameteriza- 

tions. 	This emphasizes the character of Backus-Gilbert 

least-squares inversion: the acceptable model closest to 

the starting model is located. 	In a least-squares 

procedure one might not expect to isolate bizarre 

acceptable models. 	One cannot rule out the Earth being 

a bizarre conductor, however whether such structure can 

be isolated, or resolved, is another matter. 

How does the inclusion of phase information affect 

the procedure? 	If one extends the data set to include 

phase -- and extends the inner product matrix as described 

in Section 5.4 -- the inverse least-squares involves a 

2N x 2N system. 	In this case, this is a 34 x 34 system. 

For such a procedure, a starting model is chosen which is 

known to satisfy amplitude data alone. 	Some idea of the 

influence of phase information may be obtained by 
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observing how the model is modified in the subsequent 

procedure. 	The result of such an experiment is shown in 

Fig. 5-9a. 	A starting model was chosen 

( cr I = .02, 	or 2 = •000 	= .0001, U 4  = .02, 

a- 5  = .001 ) which is seen from the dashed line to be a 

good fit to amplitude data alone. 	After twenty 

iterations of a least-squares inverse procedure which 

includes 17 amplitude and 17 phase data points, the 

optimum model is found to be a: ( cr = .0001, 

= .017, 	= .0001 1  O 4  = .012, 	= .0025 ). 

In Fig. 5-9a the solid line represents the fit this model 

makes to the data. 	It can be seen that phase data is 

more closely fitted at higher frequency (thus reducing 

the overall data residual), however this has resulted in 

some increase in the residual associated with the 

amplitude data alone. 	Specifically, one can see that 

the first amplitude data point -- which has entered so 

significantly into the least-squares procedure for 

amplitude data alone -- is 'overruled' by the set of ten 

high-frequency phase data. 	Thus the twentieth iterate 

ignores the first amplitude point, and is tending to 

install at the surface a relatively poor conductor in 

order to fit the phase. 	So it would seem including the 

set of phase data particularly supplies additional 

information relating to the structure at the surface --

this importance of phase to resolving surface structure 

has been suggested by Parker (1970). 



FIG. 5-9 a 	Including phase into the data set. 	The 

dotted line is the response which fits 

amplitude data alone, for the model 2 

= 0. 02, a- 2 = 0.0001, 	
V 3

= 0.0001, 

= 0.02, a-5  = 0.001 ) for depths d 1  = 8, 

d2  = 20, d 3  = 30, d4  = 40. 	The solid 

line represents the response achieved after 

twenty iterations of a least-squares 

procedure which includes 17 phase estimates. 

The model which is achieved is 	0: 

1 = 0000 	2 = 0.017, 	0.0001, 

cr4  = 0.012, 	= 0.0025 ). 

FIG. 5-9 b 	A starting model known to satisfy optimally 

phase and amplitude data (the 20th iterate of 

model 'A' in Table 5.2) is used as a starting 

model in a least-squares procedure which 

only involves amplitude data. 	The response 

of the starting model is the dotted lines, 

and the 100th iterate is the solid line. 

This model is 	a-  : 	( r-j = 0.0085, 

= 0.001, Cr3=  0.0044, 	a-4  = 0.033, 

a-5 = 0.0014 ). 	The phase is seen to become 

less well fitted. 
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After twenty iterations the optimum model of Fig. 

5-9a may not have been reached. 	Models which are more 

acceptable will be viewed presently, but our interest at 

the moment is to observe the trend estab lished by 

including phase. 

We attempt the reverse procedure to that illustrated 

in Fig. 5-9a; namely we start with a model which fits 

optimally the phase and amplitude together (in fact the 

model 0 , in Table 5.2 A). 	We then seek to optimize the 

fit of the model to the amplitude data alone, and hope to 

see the effect on the least-squares procedure of suddenly 

ignoring phase information. 	The starting model in this 

case has poor surface conductivity -- the dashed line in 

Fig.. 5-9b indicates its lit to the data points. 	The 

solid line represents the hundredth iterate in an inverse 

procedure involving only the amplitude. 	The model 

associated with this iterate is 	: 	( 	= .0085, 

- .0001, 0- 3 = .0044, 	.033, 
cr 5

= .0014 ), and 

is seen to have higher conductivity at the surface. 

However, from Fig. 5-9b, the phase resulting from this 

iterate does not fit the phase data very well. 

Table 5.2 contains the model parameters for a series 

of starting models (along with the models for the 

twentieth iterates) to be used in a 34-point data 

inversion, involving 17 phase points and 17 amplitude 

points. 	Fig. 5-10a illustrates the response generated 

by the starting models A to D by the dashed lines. 	The 



FIG. 5-10 a 	The responses associated with the least- 

squares procedure for a 34-point data set 

of phase and amplitude. 	The models 

involved are listed in Table 5.2. 	The 

dotted line is the response of the starting 

model; the solid line is the response of 

the 20th iterate. 

FIG. 5-10 b 	The twentieth iterate models (A to D) 

associated with the least-squares procedures 

displayed in Fig. 5-10 a. 	The parameters 

associated with these models are contained 

in Table 5,2. 
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TABLE 5.2 

A cr 
Ir d B 

1 0.0006 0.0001 1 0.002 0.0005 
10 5 

2 0.002 0.0042 2 0.0007 0.0006 
20 15 

3 0.01 0.0056 3 0.0007 0.0035 
30 30 

4 0.028 0.03 4 0.03 0.027 
40 50 

5 0.002 0.0019 5 0.001 0.0011 

C d D 0  d 

1 	0.003 0.0002 1 0.0006 0.0009 
10 10 

2 	0.006 0.0082 2 0.002 0.0033 
20 20 

3 	0.001 0.0001 3 0.01 0.01 
30 30 

4 	0.025 0.0467 4 0.027 0.0268 
40 40 

5 	0.005 0.0018 5 0.0008 0.0009 
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response of the twentieth iterate is indicated by the 

solid line. 	For the starting models A, B, and 0, the 

local minimum was found to be not very far away from the 

starting model. 	The optimization associated with model 

C is somewhat more striking, although the twentieth 

iterate may not be optimum (the process is still 

converging after twenty iterations). 	It is interesting 

that the response for this iterate lies within the error 

bounds for the data. 	The form of the models which are 

isolated in this procedure is illustrated in Fig. 5-10b. 

These examples of inversion of a one-dimensional 

data set are chosen to illustrate the procedure as it is 

applied to real data; the emphasis is not upon inter-

preting the particular data, but upon indicating how the 

Backus-Gilbert least-squares procedure can isolate a 

number of acceptable models and how phase information can 

serve to constrain further the space of acceptable models. 

The evident non-uniqueness displayed in Figs. 5-8b and 

5-10b arises from the scatter in the data, the truncated 

nature of the data, from the variety of starting models 

which were arbitrarily chosen, and from the variety of 

model parameterizations which were also arbitrarily 

chosen. 	It is this element of choice which can make 

selections of models like Fig. 5-8b and Fig. 5-10b biased 

and incomplete. 
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5.6 Inversion of a Larger Data Set 

In the previous Section, the generalized least-

squares procedure was used as an aid for isolating 

individual members of the space of acceptable models. 

If the data set is small and if it exhibits considerable 

scatter, one might expect a large variety of acceptable 

models to exist. 	On the other hand, fitting a five- 

layer model (with fixed depths) to twenty data points 

might well consist of a problem both overconstrained and 

underdetermined. 	The problem may be overconstrained 

because the layer boundaries might not be in their optimum 

position; the problem may be underdetermined because the 

data may contain little information concerning some 

parameters. 	By choosing a wide variety of starting 

models, one could conceivably arrive at a wide range of 

acceptable models -- but a range which is by no means 

exhaustive or even representative. 	The contribution 

phase information can make to the demarcation of the space 

of acceptable models has also been investigated, and it 

was suggested that phase data over a fairly large range 

of frequency can supply information which is related to 

the surface conductivity. 

In this Section we outline how one might apply the 

generalized least-squares procedure towards resolving a 

specific question arising out of an interpretation of a 

set of magnetotelluric data which includes phase estimates. 

The following discussion must not be considered in any 
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sense a conclusive answer; on the contrary, we include 

this as further illustration of how a systemized approach 

to inversion can assist our understanding of a set of 

data. 	We point out that we enter the following problem 

at an extremely late stage, accepting the response data 

per se, and without regard to the experimental details of 

its collection or analysis. 	Thus the following remarks 

cannot be offered as conclusive interpretation! 

Weideldt (1972) illustrates his exact inversion 

formalism by interpreting a set of magnetotelluric data 

published by Wiese (1965); this data was collected at a 

station at Uckermunde in East Germany. 	The response 

data exhibits anisotropy, and so indicates the possible 

two- or three-dimensionality of the conductivity structure 

which must give rise to this data. 	A 'strike' in an 

East-West direction is assumed. 	In these circumstances, 

the apparent resistivity 

1 IEEWI 2 

is considered to be the most reliable response for one- 

dimensional interpretation. 	The Wiese (1965) data is 

illustrated in Fig. 5-11 by the discrete points. 	For 

exact inversion, one requires a smooth response function 

over all frequencies and such a function is illustrated 

by the solid line in Fig. 5-11. 	It is interesting to 

note that Weideldt does not use a 'fit' to the phase data 
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FIG. 5-11 	The data set Collected by Wiese (1964) and 

used by Weideldt (1972) to illustrate his 

direct inversion of induction data. 	The 

dashed line represents Weideldt's smooth, 

extended response for amplitude. 	The phase 

is reconstructed from the approximation 

(5.6.1). 
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for his exact inversion but uses instead a 'reconstructed 

phase', deduced directly from the slope of the apparent 

resistivity curve. 	This reconstructed phase is deduced 

from an approximate formula supplied by Weideldt (1972) 

E
d in la1 

- d(in T)) 
(5.6.1) 

In this way, the phase response used by Weideidt is 

extracted entirely from amplitude information; the 

measured phase estimates of Wiese are disregarded. 	It 

will be noted from Fig. 5-11 that whereas phase 

reconstructed from f is in qualitative agreement with 

the Wiese phase data, Weideldt admits a 'phase shift' 

between these two responses. 	The model achieved by exact 

inversion of the smooth curves in Fig. 5-11 is illustrated 

in Fig. 5-12. 	A five-layer model previously determined 

by Fournier (1968) is also illustrated by the dotted line 

in Fig. 5-12. 

Within the context of Weideldt's intended illustra-

tion of the exact inverse Sturm-Liouville procedure, his 

use of reconstructed phase is entirely justified. 

However, the disparity between the reconstructed phase 

and measured phase estimates leads to the interesting 

question: can the measured phase estimates of Wiese imply 

in themselves some restriction to the space of acceptable 

models? 	One way to approach this question is to perform 

a least-squares optimization to the entire data set 

displayed in Fig. 5-11 -- including amplitude and phase 
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estimates. 	In this way, models may be isolated which 

offer a closer fit (in a least-squares sense) to the 

combined phase and amplitude data. 

Of course, a satisfactory analysis would require 

some understanding of the spectral properties of the data 

in Fig. 5-11. 	For purposes of illustration, we extract 

from the multi-valued response in Fig. 5-11 a single- 

valued response which is illustrated in Fig. 5-13. 	(It 

is important that the response be single-valued. 	If two 

response estimates corresponding to the same frequency 

are both represented in the inverse procedure, then two 

rows of the inner product matrix would be identical. 

In these circumstances the matrix would be singular.) 

At each frequency where the response is multi-valued, it 

is made single-valued by visually averaging over the 

various response estimates. 	The resultingdata set 

consists of forty-six amplitude estimates, and thirty 

phase estimates: a total of seventy-six data points 

altogether. 

The task is to select starting models which will 

lead to models which are optimum in the sense that the 

sum of the squares of the data residuals (for phase and 

amplitude data) is minimized. 	Firstly, we illustrate 

the usefulness of the least-squares procedure in moving 

from a somewhat distant model, to a considerably more 

acceptable model. 	Fig. 5-14a illustrates with the dashed 

line the response due to the starting model indicated by 
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the letter 'A' in Table 5.3. 	Also illustrated in 

Fig. 5-14a is the response due to the first iterate (whose 

conductivities are also listed in Table 5.3), again this 

is indicated by a dashed line. 	The solid line in 

Fig. 5-14a is the response due to the twentieth iterate 

in the least-squares procedure. 	The depths have been 

kept fixed for this example. 	It may be noted that the 

starting model resembles somewhat the Fournier model in 

Fig. 5-13. 	It can be seen that its response is rather 

poorly fitted to the phase data. 	Also, at high frequency, 

the response of this starting model is a rather poor fit 

to the apparent resistivity data. 	Finding a five-layer 

model to fit this data is probably an overconstrained 

problem, and the local minimum achieved may not be a 

particularly good minimum in a global sense. 	One can 

visualize a local minimum existing (for this particular 

data) at some point where an improvement in the amplitude 

residuals corresponds to an equal deterioration in the 

residuals associated with phase data. 	This situation 

can be seen in Fig. 5-14a for the responses of low period 

-- the procedure tries to supply low conductivity at the 

surface to fit the rather large phase estimates for low 

period (102 	T 	1O3  sec). 	On the other hand, the 

procedure requires a large surface conductivity to 

satisfy the apparent resistivity data at low period. 

Inconsistency at low period is commonplace, since the 

spectral power is low, and the estimates are typically 



Starting Model 1st 	Iterate 20th Iterate depth 

0.247 0.239 0.293 
10 

0.0001 0.0025o 0.006 
100 

0.001 0.0001 0.026 
175 

0.35 0.341 0.41 
300 

0.5 0.469 1.11 

Starting Model 1st 	Iterate 20th Iterate depth 

0.07 0.013 0.0125 
0.5 

0.3 0.31 0.31 
10 

0.0001 0.0019 0.0046 
175 

0.005 0.0001 0.0001 
300 

0.5 0.49 0.436 
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scattered and unreliable. 	The interesting question is 

whether the least-squares procedure would help us to 

isolate a compromise model which corresponds to a minimum 

of the squares of the residuals for the extended set of 

phase and amplitude data. 

In the previous Section, we discovered that large 

phase estimates associated with lower period might suggest 

the possibility of a more poorly conducting region near 

the surface. 	To illustrate this possibility, a very thin 

poorly conducting layer of 0.5 km depth is included in 

the parameterization of the model. 	A starting model, 

listed in Table 5.3 as model 'B', is employed. 	Its 

response is illustrated in Fig. 5-14b by a dashed line. 

Also illustrated in Fig. 5-14b is the first iterate of 

Model 'B' and the twentieth iterate, indicated by a dashed 

line and solid line respectively. 	Thus it can be seen, 

in Fig. 5-14b, how the phase information tends to make 

the surface layer less conducting, whereas the amplitude 

residual at the surface deteriorates. 	At the same time 

the overall phase response is much improved over that 

illustrated in Fig. 5-14a. 	Continued investigation can 

isolate further promising models. 	Despite the inclusion 

of phase, there is still rather poor resolution at the 

surface, and this can be reflected in the variety of 

surface conductivity profiles which lead to a more 

acceptable phase response. 	Such an example is the model 

= 0.004, 	= 0.55, C' 3  = 0.0015, 	= 0.0001, 



	

FIG. 5-14 a 	The least-squares procedure applied to the 

76-point data set in Fig. 5-13, with the 

(fairly remote) starting model indicated as 

in Table 5.3. 	The response of the 

starting model (phase and amplitude) and of 

the first iterate are indicated by the 

dashed curves; the twentieth iterate is 

indicated by the solid curve. 	The least- 

squares procedure adjusts the model 
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FIG. 5-14 b 	The least-squares procedure applied to the 

data set indicated as 'B' in Table 5.3. 

A very thin ( 0.5 km ) poorly conducting 

layer has been hypothesized for the surface. 

The first iterate and the starting model 

response are indicated by dashed lines; the 

20th iterate by solid lines. 	The response 

iterates are seen to improve progressively. 

	

FIG. 5-14 c 	The response due to model G : 	= 0.004, 

= 0.55, 	= 0.0015, 	a- 4 = 0.0001, 

	

- 	= 0.6 ) with depths d 1  = 4 km, 

d 2  = 10 km, d 3  = 35 km, d4  = 300 km. 



	

• 	 0 

	

- A 	
0 

Je 

dr 

G o  

	

00 	
0 

00 0  0 

I 	Iltilil 	1111111 	IIJi±I 

	

100 	 1000 	 10000 
I 	IIIlIi 	I 	1111111 	I 	I 	1111111 	I 	IIi1 

• 	
0 

twentieth iterate 	° 	

0 	

0 	
• 

first iterate— L 	
0 0 

starting model - 	 - 	 0 
00  

• 	
00 

• 	• 	PERIOD (SEC.) 

FIG. 5-14 a 

100 

50 

•10 

1 

900  

450 

0°  



100 	 1000 	 10000 

PERIOD (SEC. ) 

FIG. 5-14 b 

0 
00 	0 

ee0 o 

I 	I 	liii It 	I 

,UU 

50 

10 

I LL 

twentieth iterat 

first iterate 

starting modE. 
 0 	 :00 

911 

h5°  

00 

011

I Ill 



• 100 

50 

	

cap 	

a 10  

00 

0 

- 	 QoD 0 	 • 

I 	I 	I 	liii 	I 	Ii lilt 	 I !JJt 	I 	II 	I 	fil l,  

100 	 1000 	 10000 - 	
I 	1111111 	I 	11111111 	I 	iILIiIJ 	I 	1111i'! 

0.00  

PERIOD (SEC.) 

FIG. 5-14 c 

10 

1 

900  

h5°  

00  



192 

= 0.6 ) and depths d 1  = 4 km, d2  = 10 km, 

d 3  = 35 km, and d4  = 300 km. 	This model has clearly 

an intricate surface structure which one cannot expect 

the inclusion of phase information to resolve. 	The 

response due to this model is illustrated in Fig. 5-14c. 

In the single-valued response of Fig. 5-13, the phase 

data set is smaller than the amplitude data set. 	This 

will tend to weight the least-squares in favour of fitting 

the amplitude data -- especially as far as the higher 

frequencies are concerned. 	It would be interesting to 

know for this problem more phase estimates at higher 

frequency. 

5.7 Concerning the Edgehog Procedure 

Jackson (1973-) has provided an additional systematic 

procedure for exploring a space of extremal acceptable 

solutions which may exist surrounding a particular 

acceptable solution. 	The procedure is really a method 

for displaying graphically some aspect of the non- 

uniqueness of an acceptable solution. 	Again, because 

the method depends upon a quasi-linear formulation of a 

non-linear situation, the range of models suggested by 

the method can not be exhaustive. 

The 'Edgehog Method', as Jackson calls it, springs 

from the 'softness' implied by the truncation of (5.3.10) 

by excluding eigenvalues from the system of equations 

(5.3.4). 	The truncation associated with the exclusion 
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of eigenvalues is such as to reduce the model perturba-

tions until the data residual becomes smaller than the 

previous data residual. 	To this end, all the 

perturbations 	Sm. 	are truncated simultaneously by 

each reduction in eigenvalue. 	For each perturbation 

k 
cT 	5' 	-a'. .1 	L 	3 	3 

J=1 

k 

= 	
-.i. 

	

3 	J 
j=1 

k 
= 	y. 

j= 1  

(5.7.1) 

etc. 

the integer k is adjusted to satisfy the truncation 

criterion. 	This truncation may be described as 'soft' 

since it does not affect each perturbation in (5.7.1) 

individually, but in some collective sense. 	(The sense 

associated with our truncation differs from that of 

Jackson (1973) ). 	After having found an acceptable 

solution by least-squares, one may ask whether one can 

hold fixed all the model parameters except one, say 

Then one can proceed to add on perturbations 

Sc 	= 	.).1 . 
	 (5.7.2) 

where k' is made successively larger until the acceptable 

residual is exceeded. 	This supplies an extremal model 
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ext r 
parameter a- 	. 	Then one can proceed to subtract off 

from - the perturbations (5.7.2) again until the 

acceptable data residual is exceeded. 	One can repeat 

the same procedure for each model parameter. 	An envelope 

can thus be constructed around the optimum model 

indicating some possible bounds within which each 

parameter (in isolation) can vary before the overall data 

residual exceeds its optimum value. 

Although such a method can indicate something of the 

non-uniqueness of the inversion procedure, it cannot of 

course indicate models which are globally distinct from 

the optimum model which one is surrounding. 	Nevertheless 

it can give some idea of the parameters to which the data 

is most sensitive. 
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CHAPTER 6 

RESOLUTION 

6.1 Averaging Kernels 

In Sections 1.6.b and 2.2.,c we outlined the method 

of Backus and Gilbert for characterizing the space of 

1 -determinable models. 	In this present Chapter, we 
exclude the consideration of experimental error from the 

discussion and discuss the application of the F3ackus-

Gilbert formalism to characterizing the spare of 

acceptable conductivity models. 	Essentially, one tries 

to construct a local average of the model at some depth, 

z 0 , by finding an optimum N-tuple fa.l such that the 

averaging kernel 

N 
A(z,z 0 ) 	= 	a. 

1 
 G. 

1 
 (z) 

i=1 

resembles a Dirac delta-function centred at z 0 . 	The 

quest for the optimum a.'s is posed as a problemof 

minimizing the spread as it is defined by equation 

(2.2.21). 	The minimization is subject to constraints, 

such as the unimodularity of A(z,z 0 ). 	The optimal a 

(with N components fa i l ) is given'by (2.2.27). 

To calculate numerically the optimum a at each depth 

in a multilayered conductor, one must construct the 

system (2.2.26). 	One requires to evaluate the matrix S 
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with elements S..(z 0 ) defined by (2.2.33). 	It can be 

seen that S is expressible in terms of the three matrices 

(o) 	(1), 
and 

 (2) 
 defined by (2.2.32). 	For the 

magnetotelluric amplitude data, G.(z) =Y. 2  (z), and 

the elements of S 	 are given by 

cc 

f Re [ G
i 
 (z)] Re[G.(z)] dz 

and of S 
(1) 

 by 

= fz Re[ G.(z)] Re [G (z)3 dz 	(6.1.1) 

and of S 
(2) 

 by 

= 72 	
ReG.(z)] Re G.(z)] dz 

For multilayered conductors, it is quite easy to divide 

up the interval of integration by layers. 	Since the 

integrals of 

Co 

( z 2  G. G. dz 
) 	13 
0 

are simply performed analytically, the elements of 

(6.1.2) can be easily determined analytically by using 

the simple expedient of such relationships as 

Re G.(z) Re G. (z) = 	G.G. + GG + G.G. + 
1 	 1 13 	13 	13 

where G. and G. represent the two complex Frchet kernels, 
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and the asterisk denotes complex conjugates. 

If an averaging kernel is indeed shaped like a delta 

function centred at z 0  , the local average will strongly 

sample the model around z 0  . 	If the kernel is broad and 

flat, the local average will represent a smeared average 

over a large expanse of the distribution. 	Formally the 

smallness of spread defined by (2.2.21) is used as a 

measure of the resolving power of the data. 	In fact, it 

is rather more convenient to regard spread along with the 

centre of the averaging kernel and its width as the 

parameters which characterize a -6j-space of models. 

However, for purposes of illustration we generate a set 

of averaging kernels centred at depths z 0  = 0 km down 

to z = 15 km. 	The half-space is uniformly conducting 

with conductivity a= 0.2 ohm m. Ten periods are 

represented in the set of data; they lie in the range 

5 T 6120 sec. This situation corresponds to some 

models described in Section 5.2. 	Fig. 6-1a illustrates 

a set of thirty averaging kernels corresponding to local 

averages to be associated with equi-spaced depths in the 

range 0 	z0 	15 km. 	The data is amplitude data only. 

The flattening of the kernel is observed as depth 

increases -- this implies that the resolution declines 

with depth. 	Fig. 6-1b illustrates the same model 

situation, but considering only phase data. 	Of course 

one does not normally consider phase data on its own, and 

we include Fig. 6-lb for purposes of comparison. 	It will 
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be seen that the averaging kernels associated with phase 

data alone are really only delta-like near the surface. 

Fig. 6-1c shows the averaging kernels for a twenty-element 

set of phase and amplitude data. 	Incidentally, when 

making comparisons between Figs. 6-la, 6-lb. and 6-1c, 

one should not compare the magnitudes of the amplitudes 

of the averaging kernels. 	These diagrams have been each 

normalized with respect to the maximum amplitude; thus 

one should only compare the shape of the kernels. 	In 

order to make a quantative comparison, we display in 

Fig. 6-2 the width of the kernels, the centre of the 

averaging kernels, and the spread of the averaging kernels 

associated with the Figures 6-1. 	The solid line 

indicates those characteristics for the twenty-point data 

set comprising amplitude and phase; the dashed line 

indicates the characteristics associated with phase alone; 

the dotted line the characteristics associated with 

amplitude alone. 	It is interesting to see that the 

inclusion of phase data significantly improves the spread 

at a depth less than '3 km. 	Even so, the spread does 

deteriorate at the surface, i.e. for z < 3 km. 	Since 

it was in this surface region where the models of Section 

5.2 were parameterized, poor surface resolution resulted 

directly in the instability illustrated in Figs. 5-3 etc. 

Towards the surface the spread tends to increase to 

—20 km -- this implies a resolving length of 20 km exists 

in the upper 5 km of the Earth model! 



FIG. 6-1 a 	Averaging kernel A(z,z 0 ) for 10-dimensional 

set of error-free magnetotelluric amplitude 

data in the period range 5 sec 	T 	120 sec. 

The kernels are computed at 30 depths in the 

range 0 ± z 0 	15 km for a homogeneous model 

-1 -1 
0= 0.2 ohm m . 	The curves are normalized 

with respect to maximum peak of the 

distribution. 

FIG. 6-1 b 	Averaging kernel A(z,z 0 ) for the same periods 

and model as in Fig. 6-1 a, except phase 

information alone is used. 	Again the curves 

are normalized with respect to maximum peak. 

FIG. 6-1 c 	Averaging kernel A(z,z 0 ) for a twenty-point 

set of data consisting of the ten amplitudes 

associated with Fig. 6-1 a and the ten phases 

of Fig. 6-1 b. 	The curves are normalized 

with respect to maximum peak. 

FIG. 6-2 	The three resolution characteristics 

associated with the kernels in Figs. 6-1 a, 

6-1 b, and 6-1 c. 	These are the width of 

the kernel (defined by equations (2.2.29) 

and (2.2.31) ), the centre of the distri- 

bution (defined •  by equation (2.2.30), and the 

spread (defined by equation (2.2.31) ). 	The 

dotted line represents amplitude data only, 

the dashed line, phase data only; the solid 

line is the combination of phase and amplitude. 
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It should be noted that the value of the model local 

average is exactly the conductivity of the uniform 

conductor. 	This is a result of the unimodularity 

condition. 	The term q, defined by equation (2.2.34), 

becomes for a uniform conductor 

00 

q 1  . = 	
dz 

0 

and so the linear combination of q.'s are 

00 

a.q. 	= af S 	a.G.(z) dz  J 

but unirnodularity implies the term in curly brackets is 

unity. 

Fig. 6-3 illustrates thirty averaging kernels for a 

model that is slightly more interesting from a geophysical 

viewpoint. 	The model is of uniform conductivity 

0.02 ohm1m 
1, 
 and the period range is 10 sec ± T 	10000 

sec. 	The depths of the local averages range between 

0 ± 	:5- 90 km. 	The resolution characteristics for this 

model are illustrated in Fig. 6-4. 	In Section 5.1 it 

was suggested that response data could be represented as 

real and imaginary parts of the complex impedance (or its 

reciprocal 	
. ). 	

It is interesting to view the 

resolution characteristics for the same model as that 

discussed for Fig. 6-4, but employing real and imaginary 

parts of the impedance rather than apparent resistivity 

and phase. 	Fig. 6-5 illustrates these characteristics: 



FIG. 6-3 	Averaging kernels for ten-dimensional set of 

error-free amplitude magnetotelluric data in 

the period range 10 sec 	T 	1O4  sec, at 

depths 0 ±z 	90 km into a conductor with 

= 0.02 ohm 1m ' . 

FIG. 6-4 	Resolution characteristics for model and 

period range associated with Fig. 6-3. 	The 

solid line represents the characteristics 

associated with a twenty-point data set of 

phase and amplitude data; the dotted line 

is a ten-point set of amplitude data only; 

and the dashed line is the ten-point data set 

of phase only. 

FIG. 6-5 	Resolution characteristics for same model and 

period range associated with Figs. 6-3 and 

6-4; however the data is now represented in 

terms of the real part of the complex 

impedance, Re Yi.  (the dotted line) and the 

imaginary part of Y .(the dashed line), and 

the twenty-point data set consisting of both 

real and imaginary parts of 	
. 
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the dotted line represents the real part of the impedance, 

Re b. ; the imaginary part, Im 	. , is represented by 

a dashed line; the solid line represents the combination 

of real and imaginary data sets. 	It can be seen that 

both real and imaginary parts of the impedance have 

associated with them a more equally-distributed resolution 

than was evident for amplitude and phase. 	One could 

deduce that there is less resolving power in the real 

part of 6. than in the amplitude, pA•(, alone. 	It 

would seem that removing the imaginary part of the 

impedance from the data set 	Re. 	Tm Y. 3 	is a 1 	1 	
, 

 

more significant omission than the exclusion of phase 

from the data set fli4.,j , arg r. 
One should bear in mind that (at this stage) one is 

dealing with error-free data. 	One must consider too the 

possibility that differences in spread of a few kilometers 

need not reflect any significant difference when it comes 

to the real resolving power of data. 	It is only by 

considering error together with spread that a complete 

comparison is possible. 

6.2 Resolution Characteristics 

In Figs. 6-4 and 6-5, we presented the resolution 

characteristics for homogeneous conductors. 	From these 

diagrams, one observes relatively poor resolution at the 

surface and worsening resolution as depth increases. 

Between these two regions there lies a region of the model 
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which is relatively well resolved. 	This region probably 

corresponds to the 'centre of the current density 

distribution' which was defined in Section 1.5 (see 

equation (1.4.6) ). 	The resolution characteristics 

associated with data represented in terms of the real and 

imaginary parts of the complex impedance were displayed 

by way of comparison. 	These characteristics tend to 

reinforce the usual preference for using amplitude data: 

in terms of resolution, amplitude data seems to have 

rather more resolving power than either real or imaginary 

parts of the impedance individually. 	Also, the 

contribution of phase data to the improved resolution of 

near-surface layers was observed. 	It should be 

remembered, from equation (2.2.3), that both the width of 

the kernel and the centredness of the delta-like function 

in relation to z 0  contribute to the spread. 	If the 

centre is severely displaced from z 0  then a meaningful 

model average cannot be constructed. 

In this Section we look at the resolution 

characteristics of a few additional conductivity 

distributions. 	Of course, one must remember that these 

characteristics are dependent also on the range and 

quantity of the data. 	We shall confine ourselves still 

to data corresponding to ten periods. 

Before embarking upon numerical illustration, it 

might be interesting to make a few order-of-magnitude 

arguments concerning the optimization associated with 
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achieving a good set of delta-like averaging kernels. 

The unimodularity condition (2.2.19) has rather clear 

implications for the N-tuple a since it implies 

= 	 (6.2.1) 

where the components of b are defined by equation 

(2.2.25). 	For the induction problem specifically we 

have 

06 

b. 	J G.(z) dz 	 (6.2.2) 

with Frchet kernel given by 

G.(z) 	
= 

which takes on the values 

G.(0) 	= 1 
1 

at the surface, and at depth 

lim 	G.(z) 	= 0 
1 

z •- 

The kernel is a continuous function of depth with the 

appearance of an exponential attenuation from unity at 

the surface to zero as z—' 	. 	If the conductivity of 

the half-space is relatively high, then the area under 

the function G.(z) will be correspondingly less since the 

normalized electric field 	(z) will be attenuated more 

sharply with depth. 	This implies that the set [b. 

will contain smaller elements and, from the unimodularity 

condition, we can infer that the vector a must have a 
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larger value. 	If the conductivity of the half-space is 

relatively small, then the elements f .b,j are large, and 

a is correspondingly small. 	Anticipating somewhat the 

discussion of Chapter 7, we can say immediately from the 

foregoing remarks that the model error is large if a is 

large (i.e. if the conductivity is large) since 

2 
£ 	= 

and the model error becomes smaller if a is smaller. 

One must recall that E is determined by experimental error 

exclusively. 	As for the spread 

5 = 

one must expect S to be rather smaller (although a is 

larger) for a good conductor. 	Numerically (as we have 

seen) the spread becomes smaller as the conductivity 

increases. 

It may be interesting to contemplate the effect a 

very highly conducting embedded layer might have on an 

attempt to find a delta-like averaging function. 	From 

equation (2.2.21), we recall that we are trying to 

minimize the area under A(z,z 0 ) away from z = z 0  

If a very good conductor is embedded in a half-space, at 

depth z say, the structure of .. is that of a function 

swiftly attenuated in this layer. 	(In the region below 

the conducting slab fields maybe induced by the secondary 

currents in the slab.) 	Anyway, at a very good thin 

conducting slab we may expect 	(z) 	0 . 	This poses 
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some problem for the optimization that we are trying to 

undertake, since the procedure of Section 2.2.c will tend 

to minimize the area under A(z,z 0 ) away from z = 

and effectively away from z = z 	Thus the presence 

of a good conducting slab can introduce an additional 

'spike' to the avera ging kernel (i.e. at z = z ) which 

makes the resolution very good at z 	z 	but rather 

poor for z 0 1 z 5  . 	This results from the increasing 

displacement of the centre of the delta-like averaging 

function (which is not in fact very delta-like under the 

circumstances) as jz0 - z 	becomes larger. 

In Fig. 6-6a and Fig. 6-6b, we investigate a model 

with monotonically increasing conductivity: namely 

( 	= 0.002, 	2 	
0.004, 	O 3  = 0.01, 	Q 4  = 0. 05, 

r 5  = 0.08 ohm 	) with depths d 1  = 10, d 2 = 20, 

d 3  = 30, and d4  = 60 km. 	Then periods are chosen in the 

range 50 sec ±7 T 	10,000 sec. 	One can see that for 

both data representations the spread is significantly 

less than the previous examples. 	One must remember that 

the model error of this very small spread might be 

unacceptably high. 	Again it is seen that the spread is 

relatively poor at the surface. Adding phase to the 

amplitude data does not seem to make much improvement. 

The departure of the centre of the distribution away from 

near the surface (i.e. z 0  < 20 km) implies that 

reliable model averages cannot be constructed at these 

shallow depths. 	In this example, complex impedance 



FIG. 6-6 a 	Resolution characteristics associated with a 

model 	: 	= 0.002, 	2 = 0.004, 

O 3  = 0.01, O 4  = 0.05, 	r. = 0.08 ) with 

depths d 1  = 10, d 2  = 20, d 3  = 30, d4  = 60 km, 

and (phase/amplitude) data for 10 periods in 

the range 50 sec 	T 	1O4  sec. 	The solid 

line represents combined phase and amplitude 

data, the dotted line amplitude data alone; 

the dashed line is phase data alone. 

FIG. 6-6 b 	Resolution characteristics associated with 

model and periods of Fig. 6-6 a. 	The data 

is represented as real and imaginary parts of 

The solid line represents the 

characteristics for twenty-point data set of 

real and imaginary parts of 
'. 

; the dotted 

line is for Re .
1
, and the dashed line for 

Im.. 
1 

FIG. 6-7 a 	Resolution characteristics for model 'A' in 

Table 5.1 for ten periods in the range 

50 sec 	T 	1O4  sec. 	The solid line 

represents phase + amplitude data; the 

dotted line represents amplitude data alone; 

the dashed line represents phase alone. 

FIG. 6-7 b 	The same model and periods as Fig. 6-7 a. 

The solid line represents the resolution 

characteristics associated with real + 

imaginary parts of ".; the dotted line with 

Re le 
1 
.; the dashed line with Im T. . 

1 
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(i.e. the twenty data points composed of the real and 

imaginary parts of the impedance) and apparent resistivity 

(i.e. the ten amplitude data points) seem to yield the 

same resolution characteristics. 

In Fig. 6-7a and 6-7b, we investigate the model A 

illustrated in Fig. 5-8b. 	The data again reflects ten 

periods in the range 50 sec 	T 	10,000 sec. 	We may 

recall that this model has a relatively good conductor 

embedded at a depth more than 30 km. 	It is seen from 

Fig. 6-7b that a deterioration in the centre of the 

distribution occurs at -25 km, with a corresponding 

deterioration in resolution (i.e. an increase in spread). 

This sudden falling off of resolution is also observed in 

the amplitude/phase resolution characteristics, although 

it seems in this case to result from an increase in width 

for 	60 km, as well as the centre being displaced. 

One could infer from this that conductivity structure 

below 30 km is not well resolved from the data. 	The 

width and spread for phase data on its own are off the 

scale of Fig. 6-7a. 

Fig. 6-8a and Fig. 6-8b illustrate the resolution 

characteristics for the model Or- : 	= 0.2, 	= 0.02, 

= 0.01, 	= 0.005, 	= 0.3 ohmm 1  ), with depths 

d 1  = 1 km, d 2  = 20, d 3  = 30, and d4  = 300 km. This 

model rather resembles the models considered in Section 

5.6. Fig. 6-8a illustrates the characteristics for data 

represented as amplitude and phase. 	We can make the 
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following observations: 

Phase improves resolution near the surface 

(z 0  c 20 km). 

In the region of poor conductivity 

(20 km 4 z < 300 km) the centre of the 

distribution is displaced from z 0 . 	Thus a 

local average cannot be constructed at these 

depths. 	In this region the spread reaches a 

maximum; 

At depth (z 0  > 300 km) the distribution centre 

is restored to proximity with z 0 . 	The 

resolution is correspondingly improved. 

Although the resolution is very small (especially 

considering one is discussing conductivity at 300 km 

depth), the corresponding model error is probably very 

large. 	We can summarize this situation as follows: a 

good conductor at depth has very good resolution length 

associated with it, although the value of the conductivity 

at that depth is very uncertain. 	On the other hand, the 

conductivity in the less well conducting region exhibits 

poor resolution, and the depth structure of the conductor 

is poorly determined. 	However, the actual conductivity 

magnitude at these depths has less uncertainty associated 

with it. 

Fig. 6-7b shows the resolution characteristics for 



FIG. 6-8 a 	Resolution characteristics associated with 

the model 	r : 	( 	= 0.02, Cr = 0.02, 

a- 3 - 0.01, d• 4  = 0.005, O 	= 0.3 ) at depths 

d 1  = 1 km, d 2  = 20, d3 = 30, d4  = 300 km. 

The period range of the ten data points 	rii  
is again 50 sec t T 	

4 
10 sec. 	The solid 

line represents phase + amplitude data; the 

dotted line, amplitude data alone; the 

dashed line phase data alone. 

FIG. 6-8 b 	The same model and periods as discussed in 

Fig. 6-8 a. The solid line represents the 

resolution characteristics associated with 

real + imaginary parts of r ; the dotted 

lines with Re Y 
1 
. ; and the dashed lines 

with Tm A 

1 
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the data represented as a complex impedance. 

6.3 Rotating S into Principal Axes 

In Section 2.2.e it was suggested that the search 

for an optimal averaging kernel can be made more simple 

by diagonalizing the spread matrix S. 	This diagonali- 

zation is accomplished with the same similarity 

transformation which has been described in Section 5.3. 

In particular, one transforms S by 

ASIAT = s 	 (6.3.1) 

where St  is diagonal. 	If the columns of A contain the 

eigenvectors of 5, then the diagonal elements of 5' will 

consist of its corresponding elgenvalues. 	By organizing 

these in descending order of magnitude, one can isolate 

the near-zero eigenvalues towards the bottom right hand 

corner of S'. 	If S is nearly singular the prospect for 

finding the N x N inverse S_ 
I 
 may not be encouraging; 

however, by the ri Dtat ion of S into S 1 , one may be able to 

find a delta-like averaging kernel from a subset of the 

N-tuple {G.'(z)J corresponding to the suitably large 

eigenvalues of S. 	Thus we seek an averaging kernel 

k 
A(z,z 0 ) 	= 	a1 ' 	G.'(z) , 	k 	N 	(6.3.2) 

i=1 

where (a. f is determined from the equations 
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St 
	.•: 	= 	b' 

- 	 (6.3.3) 

at  . 	= 	1 

where 

DO 

= 	(G.'(z) 	dz 
- 	J 

0 

and 

GI (z) = AT G(z) 

Note A l  in equation (6.3.3) is the Lagrange multiplier, 

not to be confused with the (subscripted) X  which has 

been used previously to denote the ith cigenvalue of a 

matrix. 

We illustrate the rotation by constructing an 

averaging kernel for a set of data generated by a 

homogeneous model with a- = 0.6 ohm 1m 1  for a range of 

periods: 10 sec < T <100 sec. 	Upon the transformation 

(6.3.1) we isolate the ten eigenvalues 	and rank 

them in descending order of magnitude. 	In Fig. 6-9, 

the uppermost curve represents the averaging kernel 

constructed out of the transformed Frchet kernel 

corresponding to the first (and hence the largest) such 

eigenvalue. 	Since k = 1 , there is only one element in 

the sum (6.3.2) and thus a delta-like kernel cannot be 

constructed. 	In the next lower diagram, the first two 

eigenvalues are included in the matrix S' , and an optimum 

kernel is constructed out of G
1  1

(z) and G
2  '(z). 
	In each 
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subsequent diagram the number of eigenvalues is increased 

by one over the previous. 	It can be seen that the 

delta-ness seems to improve. 	However when the eighth 

eigenvalue. is included the delta-ness deteriorates. 	We 

may surmise that a meaningful inverse S- 
I 
 cannot be 

constructed when the very small 5k (when k ) 8 ), are 

included in the matrix S. 	In these situations the 

optimization is not successful. 
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CHAPTER 7 

EXPERIMENTAL ERROR 

7.1 Absolute Error 

The matter of incorporating the experimental error 

of a data set into the characterization of the space of 

i-acceptable solutions was discussed in Section 2.2.d. 

Backus and Gilbert (1970) show in some detail how the 

error of surface data can directly contribute to the 

range of non-uniqueness of this space. 	In the case where 

one is considering absolute error, a fourth resolution 

characteristic is introduced in addition to the 

characteristics of spread, width, and centre which have 

already been introduced. 	This fourth characteristic is 

called the error of the model estimate and is denoted by 

t. 	It is defined by equation (2.2.38). 	To include 

error, one needs to extend the optimization of spread 

(subject to the constraint of unimodularity) to the dual 

optimization of spread together with error (both subject 

to the unimodularity condition). 	Using the notation of 

Section 2.2, one wishes to find a N-tuple, a , such that 

the following constraint is satisfied 

± St 
 

where s is some spread which is deemed acceptable. 

Accepting this constraint, we can proceed to minimize 



211 

the error 

=a . E 0 a 	 (7.1.2) 

subject also to the constraint of unimodularity. 

Alternatively, and equivalently, the problem can be posed 

as one of minimizing 

S = 

subject to the constraint of unimodularity and 

2 
<tt 

where F is some acceptable level of error in the model 

parameter. 

If one considers (somewhat artificially) the case 

where N = 3, then (7.1.1) and (7.1.2) assume a 

significance in terms of three-dimensional geometry. 

In this way we may visualize the geometry of the N- 

dimensional problem. 	The space of a values satisfying 

the inequality 

k 
	

(7. 1.3) 

where K is any N dimensional operator and k is a scalar, 

constitutes a solid N-dimensional ellipsoid centred at 

the origin ( a = 0 ). 	The boundary of this ellipsoid is 

the surface 

a • K • a = k 

The normal (with respect to a) out of this boundary is 

K.a. 	Backus and Gilbert show that, if K is symmetric 
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and positive definite, then the ellipsoid is strictly 

convex and a straight line joining any two a's in the 

ellipsoid is itself confined to the ellipsoid. 

In addition to this ellipsoid, one can construct an 

N - 1 dimensional plane defined by the condition 

	

f • a 	= 	1 	 (7.1.4) 

for any N dimensional vector 1. 	The problem discussed 

in the previous Chapter can now be restated as one of 

finding the set-intersection associated with an ellipsoid 

like (7.1.3) and a plane such as (7.1.4). 	In fact the 

ellipsoid is defined by 

a • S• a 	s . 	 (7.1.5) - = - 	mm 

and the plane is the unimodularity condition 

	

a • b 	= 	1 	 (7.1.6) 

One can imagine a very small ellipsoid associated with 

s < s 
mm 
. , such that the ellipsoid and plane do not 

intersect at all. 	Gradually expanding the ellipsoid by 

increasing s, one eventually hopes to find a vector a 

such that the ellipsoid and the plane (7.1.6) are in 

contact at a single point of tangency. 	This is the 

minimum spread, s . 	; min 	
the associate N-tuple is denoted 

as 2S , and is given by 

= 	-1 	
/ 	

-1 	
(7.1.7) 

i.e. equation (2.2.27). 	The minimum spread is 

S. 	ES . S • a . 	One can continue to increase the 
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ellipsoid so that its set-intersection with plane (7.1.6) 

consists of an increasingly larger number of elements a. 

The situation is illustrated in Fig. 7-1. 

One can consider the optimization of error (without 

regard to spread) in an entirely equivalent manner. In 

this case one seeks to find the intersection between the 

ellipsoid 

and the plane (7.1.6). 	The minimal error is given by 

2 
= a .E . a 

mm 	—E 

= 	1 / b • E 	• b 	 (7.1.8) 

where 

= 	-1 • 	
/ b . 	-1  •  

From the convexity of the ellipsoids, Backus and Gilbert 

show that the maximum error is given by 

2 	
= a 	• E • a 	 (7.1.10) max 	—S = —S 

and the maximum spread by 

S 
max 	LE E 	E  

and as s ranges from s . 
min 	 max 

to s 	, the corresponding error 

ranges from £2 
max to L2 mm . 	Thus one is faced with 

the problem of finding an optimum combination of spread 

and error. 

The geometrical construction of Fig. 7-1 can help us 

to visualize the situation since we are now seeking a 



FIG. 7-1 'The spread ellipsoid' (diagram after Baçkus and 

Gilbert, 1970). 	Three ellipsoids are drawn (for 

the situation N = 3 which can be envisaged in 

terms of three-dimensional geometry) in relation 

to the unimodularity plane a • b = 1 

a.S.a 	s 	,with s <s. - = - 	t 	 t 	mi.n 

is an ellipsoid which does not intersect the plane. 

a • S• a .< S - = - 	mm 

is an ellipsoid which intersects the plane at a 

single point, AS 

a • S 	 , with s > 
min-  = 

is an ellipsoid which intersects the plane at a 

collection of points indicated as the shaded region 

of the plane. 
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three-fold set-intersection of ellipsoid a.E.a 	C 2  

ellipsoid a.S.a 	s 	, and the plane (7.1.6). 	The 

solution a for (7.1.2) subject to constraints (7.1.1) and 

(7.1.6) is unique, since one is seeking to find N unknowns 

(a.l plus two Lagrange multipliers from N + 2 equations. 

Thus the set intersection of the spread ellipsoid and the 

error ellipsoid in the plane (7.1.6) contains a single 

element, the unique solution a. 	The situation is 

illustrated in Fig. 7-2. 	If s = s 
mm 

. 	, then a  will 

coincide with point A (LS  is also indicated in the shaded 

region of Fig. 7-1). 	Although not indicated in Fig. 7-2 

the error ellipsoid in this case is very large, since the 

boundary of its projection in the plane (7.1.6) must 

intersect point A. 	As the condition limiting the spread 

(7.1.1) is relaxed, the spread ellipsoid grows; 

conversely the error ellipsoid becomes smaller. 	The 

point of tangency of the two ellipsoids in the plane 

(7.1.6) moves along the path A-P-B. 	At point B 

mm 	 max 
and s = s 	; the error ellipsoid 

intersects the plane (7.1.6) at a single point, aE. while 

the spread ellipsoid has assumed its maximum possible 

volume. 	The N-tuple a situated at point A or point B 

constitutes two extreme, and probably unacceptable, 

situations: the first corresponds to large error in the 

model estimate, the second to large spread and thus poor 

resolution. 	The dual optimization must seek to find an 

a such that the total area represented by the shaded 



ri a r fli A AIC 	 r 	h - 

INTERSECTION 	 INTERSECTION 

FIG. 7-2 	The plane a • b = 1 showing the two inter- 

sections of the spread and absolute error 

ellipsoids. 	When s = s • 	, then 	
2 = £2 

	

mm 	 max 
• 	and the spread ellipsoid intersects a 	b = 1 

• 	 at the single point 'A'; 	the error ellipsoid 

• 	is maximum in this case. 	As the spread 

ellipsoid grows, the error ellipsoid diminishes, 

so that the mutual point of tangency of the two 

ellipsoids moves from 'A' to 'B' One seeks a 

• 	dual optimum of this trade-off between 

resolution and model error. 	A point such as P 

might constitute such an optimum. 	 • 
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region in Fig. 7-2 is minimal. 	(In fact it is the total 

volume of the two convex ellipsoids which should be 

minimized and the shaded region of the plane (7.1.6) is 

a projection of this volume). 	Let us say such an optimum 

N-tuple is achieved at a point P in Fig. 7-2. 	At the 

point P both the error and spread ellipsoids are mutually 

tangent, so the outward normals at P must be anti-parallel. 

The orthogonal projection of the outward normal is shown 

by Backus and Gilbert to be supplied by the operator 

(r - b b), where b = 	 indicates the 'outer 

product' of these vectors, and I is the N-dimensional 

identity tensor. 	The projection itself is given by 

I' 

(I 	- bb).E.a 

for the error ellipsoid, and 

 b̂ lb- 	). 

for the spread ellipsoid. 	Since these two are anti- 

parallel at P, a scalar vc can be found such that 

	

, , 	 t c ( 	- b b 	
,_ 

+ ( I - b b ).Sa = 0 

(7.1.12) 

Defining ? = b.( ø E + S ).a / ( b . b ) , equation 

(7.1.12) becomes 

(S + oE).a = 

with 

=•s 
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and 

- 	 1 

Thus we arrive at the optimization equations (2.2.40). 

The transformation d. = w tan 0 and the operator 

definition W(&) = S cos8 + w 	sin 	, together with 

the definition 2. = 3(J) secO , yield the simpler form 

of equations (2.2.41). 	By solving these equations over 

the range 0 	U IT/2, one can generate the trade-off 

curves of spread, as a function of error, for each depth 

z 
0 
 at which <m). 	has been evaluated. 

0 
To illustrate these trade-off curves for magneto- 

telluric data, we examine the same model and data as were 

associated with Fig. 6-4, but now assuming the data to 

have a 10% experimental error. 	The curves are illust- 

rated in Fig. 7-3 for various values of z 0 . 	Backus and 

Gilbert (1970) proved the shape of such curves must be 

generally hyperbolic. 	For each z 0 , the ideal position 

is that in proximity to the 'elbow' in the lower left-hand 

corner of Fig. 7-3 -- in this region the spread and the 

error is least extreme. 

An alternative way of displaying this trade-off 

situation is to plot spread as a function of depth, z 0 , 

plotted parametrically for various values of 	
2 	

Again, 

for the same model, it can be seen in Fig. 7-4 that the 

spread can be chosen to be smaller by allowing the error 

to become large. 	Solutions do not exist for 	
> 1max 
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FIG. 7-3 	The trade-off curves between absolute model 

2 
error E. 	and the spread from z o , for the 

various indicated values of z o . 	The model 

is a homogeneous conducting half-space with 

-1 -1 	
i 0= 0.02 ohm m 	; the period range s 

10 sec 	T I= 10 sec, and the ten amplitude 

data are assumed to have an experimental error 

equivalent to 10% in the logarithm of 
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.11G. 7-4 	The trade-off curves of Fig. 7-3 expressed a 

• 	. 	parametrically different way. 	Spread is 

plotted as a function of depth, z 0 , for the 

indicated values of log £2 . 	Although an 

absolute error, of 1ii 2  = -5 is extremely 

good, it corresponds to an extremely 

disappointing distribution of spread. 	Thus 

one must sacrifice error to achieve more 

• 	 • 	useful spread. 
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and
min .9

and similarly for the corresponding pairs 

of the spread, i.e. s < s . min 	 max 
and s ) s 	. 	At each 

depth z 0  the optimization, is to be done anew, so a 

possible curve for spread as a function of z 0  can be a 

complicated single-valued curve between the bounds 

2 	 2 and 
max 	 mm 

One can also attempt to plot error as a function of 

z 0 , treating spread as a set, of fixed parameters. 

However for magnetotelluric data the useful error values 

(and those corresponding to useful spreads) are typically 

- 	-- 	 -- 	- 	 2 	-. -. 	- 
in a small range of the total range of E • 	Difficulties 

arise when one attempts to plot the trade-off curves in 

this way. 	In equation (2.2.41), w is chosen in such a 

way that the curves of Fig. 7-3 are graphically well 

defined. 	One wishes particularly to know the structure 

of the elbow, rather than know a large number of points 

concentrated at either branch of the hyperbola. 	The 

factor w is thus chosen so that the sine and cosine terms 

of (2.2.41) have roughly the same order of magnitude. 

It seems that the interpolation associated with the 

numerical contouring has to contend with rather densely 

spaced points around the useful area of the error and a 

few extremal points at & 
max and E, mm 

. . 	This results 

in a certain amount of contour structure which results 

from numerical interpolation rather than the actual 

structure of the spread. 	This is especially true for 

non-homogeneous models. 	The difficulty really arises 
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out of the unsuitability of choosing absolute error in 

an inversion which seeks to characterize a model (i.e. 

conductivity) which can range over orders of magnitude. 

At any rate, for purposes of illustration, Figs. 7-5a and 

7.-5b are supplied, but they are probably not of great 

value in any quantative sense. 	Fig. 7-5a is for the 

same model as was illustrated in Fig. 7-3 and Fig. 7-4. 

Fig. 7-5b is associated with the same model but with an 

additional slab of 5 km and conductivity 0.2 ohm- I m 

located at the surface. 	This is a situation in which we 

have expressed interest previously. 	The solid lines in 

Fig. 7-5a and 7-5b represent the logarithm of the square 

of the conductivity at each depth of the generating model. 

Since the ordinate of these diagrams represents the 

square of the absolute error, the part of the diagram 

above the solid line corresponds to absolute error in the 

model estimate which exceeds the actual value of the model 

itself. 	This part of the space is of no practical value. 

In fact one would like an error somewhat below the solid 

line. 	As can be seen from the diagrams, one thus enters 

regions of rather larger spread. 	It would seem in a 

depth range of 15 km ± z 0  ±30 km for the homogeneous 

case one may find the model quite well-resolved. 	The 

insertion of a thin good conductor at the surface has the 

expected effect of worsening the spread for the 

corresponding useable error. 



FIG. 7-5 a 	Spread contoured as a function of log £ 2 

and depth from the surface, z 0  , for the 

same model as was discussed with Figs. 7-3 

and 7-4. 

FIG. 7-5 b A good conductor of depth 5 km and 

conductivity 0.2 ohm-1 -1 m 	is placed at the 

surface of the model associated with 

Fig. 7-5 a. 	One can see the resolution 

below the good conductor has deteriorated. 

Fine-structure in such contours may be the 

result of numerical interpolation. 
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7.2 Relative Error 

We have indicated in the previous Section that it is 

appropriate to attach relative error to the conductivity 

local average rather than absolute error. 	This stems 

from the fact that electrical conductivity in the Earth 

may range over some five orders of magnitude. 	The 

alteration to the equations which supply a dual optimum, 

a, i.e. equations (7.1.1) and (7.1.2), simply involves 

replacing absolute error Z 
2 
 by relative error p 2  

defined in equation (2.2.39). 	We rewrite this relative 

error in a notation consistent with the previous Section 

as 

r 2 = 	E 	/ 	 (7.2.1) 

where the elements 	. of the N-tuple 	are defined by 

equation (2.2.34). 	It would seem that the problem of 

optimizing the error subject to a fixed spread -- or the 

equivalent problem of minimizing the spread subject to a 

fixed error -- is altered only slightly by the addition 

of (a.a)2  in the denominator of (7.2.1). 	However, this 

addition considerably changes the geometry associated 

with the optimization. 	If 	is some fixed acceptable-f t 

level of relative error, the condition 
f 	 can be 

expressed as 

a . ( E - 
Ft 	. a 	. 0 	 (7.2.2) 

where 	denotes the outer product, i.e. 
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Backus and Gilbert (1970) demonstrate that (7.2.2) no 

longer has the geometry of a N-dimensional ellipsoid, but 

has rather the geometry of a double cone with junction at 

a = 0 • 	This is illustrated in Fig. 7-6. 	The two cones 

are associated with conditions q • a ) 0 , and q • a < 0 

respectively and are designated as positive and negative 

cones respectively. 	Although the double error cone in 

its entirety is not convex, the positive and negative 

cones are individually convex. 	Of course the geometry 

of the spread ellipsoid remains unaltered. 

In Section 7.1, the task of optimizing the spread 

and absolute error was described as one of finding the 

single point a contained in the set-intersection of the 

ellipsoids a S • a s t , a . E • a , and 

the plane a • b 	1 • 	The trade-off curves are 

determined by finding the E's corresponding to a set of 

fixed spreads, or alternatively finding the spreads for 

a set of fixed absolute errors. 	The geometry for 



Q•= 1.  

17" 
Zline containing 	

.vé cone 

I .  

-ye Cofl2 

.1 

• 	FIG. 7-6 	The double error-cone (for N = 3). 	The shaded 

region represents the intersection of the 

positive cone tothe plane a • b.= 1 . 	One 

can visualize the situation as the axis of the 

double cone changes its orientation with 

respect to the plane. 	One can achieve para- 

bolic and ellipsoidal conic-section set- 
• 

	

	 intersections depending upon this orientation. 

If the set intersection of the error cone 
• 	 touches the line containing •a, then one may 

• 	
need to consider whether the negative branch of 

the trade-off curve can enter the problem. 
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relative errors requires the isolation of the set-

intersection of the ellipsoid a • S • a 

the double cone a. ( E - 2 
	

) 	a 	0 , and the 

plane a • b = 1 

For the moment we concentrate on the double cone. 

The nature of the (N-1)-dimensional sheet containing the 

set intersection of the double cone and a • b = 1 will 

depend very much upon the angle made by the axis of the 

double cone (which is explicitly given by 	. 	) and 

the plane. 	For example, if this axis is parallel to the 

plane, then its set-intersection will consist of two 

sheets bounded by two branches of a hyperbola, one in the 

negative cone, and one in the positive cone. 	By 

adjusting the angle of this axis, one can achieve an 

elliptically bounded set-intersection and a parabolically- 

bounded set-intersection. 	The angle corresponding to 

the parabolically-bounded sheet is important since it 

marks the distinction between single-valued and double- 

valued set-intersections. 	The relative error 

corresponding to this point is denoted as and the 

minimum relative error is denoted p 
mm • 
	We consider 

,)  

the following cases: 

1. ) If 	p < f m .m 	
then the intersection of the 

J  

double cone with the plane is empty. 

2') If 	e = p mm . n the intersection of the positive 
J 	)  

cone with the plane contains a single point, a. 
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 In the region 
1min 4  f < fpar 	the inter- 

section is bounded by an ellipse. 

 For 	-? = J'par 
the intersection is bounded by 

a parabola. 

 In the region 
fpar < f <fmax 	the inter- 

section consists of two sheets each bounded by 

a branch of a hyperbola. 

We can now describe the trade-off between spread and 

relative error. If s = s min , the spread ellipsoid 

intersects the plane a • b = 1 at a single point a g  

and the relative error achieves its maximum value P 
-' max 

2 	 2 
max 	

a 	. E 	/ ( 	. 	) 	(7.2.3) 

The boundary of the error conic section may be ellipsoidal 

or hyperbolic depending upon the size of Imax which in 

turn depends upon the separation between 
as 
 and 

As s increases, a value s max  is reached such that the 

boundary of the spread ellipsoid contains a 
c 
 and 

a.S.a 	 (724) max 	—c' = —c 

with 

. / (b 
• 	-1 • 	

(7.2.5) 

This corresponds to p = e min . 	The interesting domain 
-'  

for the spread is s 	< S 	 , but the spread may 
mm 	 max 

exceed 	
max  in some circumstances, but in this case 

E P. 	In addition to this consideration, one must ' max 
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also take into account the relationship between f par 

and max J 
p 	•; 	 Notationally, we write s = s 	if 

p=p 	, 
J 	Jpar 	

and 
 

= a.. 0 S . a 	 (7.2.6) 

where s min < s 	HOwever, one can have the two 
- 

significant situations where either s 	s 	or 
max 

alternatively 	? s, • 	If 	) s, J,  then one has max 	 max 

to contend with ascertaining the error curves correspon-

ding to two branches of the hyperbola. 	Backus and 

Gilbert (1970) show that it is appropriate in this 

situation to choose the minimum of the set 

, y(s)J , where 	is the relative error as 

a function of spread corresponding to the positive branch 

of the hyperbola and f corresponds to the negative 

branch. 	One must bear in mind that s < s 	 may 
max 

either correspond to 	• a > 0 or to 	• a K  0 

However if a • a 	0 then of necessity s < 
- 	 max 

It is interesting to note that Parker (1970) does 

not consider the negative branch of the error hyperbolic 

set-intersections, arguing that a negative local average 

= 	• a has no meaning. 	However the hyperbolic 
0 

set-intersection may arise when 	a 
) 

0 , as we have 

pointed out in the preceding paragraph. 	Thus the 

conclusive test of whether r(s)  may enter the 

optimization is to be found in the relative values of 

s 	and 	• 	If s 	 then, for those values max 	 max 
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of spread in the range s < s < s max 
P 

there are two 

branches to be considered and one has to select the 

minimum of [f(s) , 

Using arguments similar to those preceding equation 

(7.1.12), Backus and Gilbert (1970) express the 

optimization problem associated with relative error as 

one of solving for a in 

(S+E) •a = t'+ 	s  

where 

= 	1 
	

(7. 2.7) 

S = 

and 

t i  

The solution to this system of equations is somewhat more 

daunting than for the case of absolute error. 	Once again 

W is defined as in Section 7.1 and, defining 

t = t w sin0 , we write the first equation of (7.2.7) as 

W • a = t s + s cost) b 	 (7.2.8) 

If we use the tilde above an arbitrary vector, say f 

to indicate operation by W 1 , i.e. f = 
	

I , then we 

can define 

= 	(a 	- 	
(7. 2.9) 

= (a 	- 

where again the products a b etc. indicate the outer 
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product of these vectors. 	Hence a , the solution to 

(7.2.8), can be expressed as 

- b + t h 
a 

a•b 

and 
	

(7.2.10) 

tb. 
s Cos e 	 - 

b. b 

1  - 

 

Substituting these into (7.2.8) one obtains the quadratic 

A t 2  + B t - C = 0 	 (7.2.11) 

W.1. &. .Li 

A = 

B =. (b.b)(.b)-2b.D. 

C = 

with R =S cosO , and D = w E sin & . 	It is shown by 

Backus and Gilbert that the positive root to (7.2.11) 

corresponds to the solution c+(s) , and f(s) 

corresponds to its negative root. 

Regarding the possibility of needing to consider 

e (s) when s < 	, one can see illustration of two - 	 max 

cases in Fig. 7-7a and 7-7b. 	In Fig. 7-7a we have 

Y_(s) > f t (s) , for all s . 	However, in Fig. 7-7b 

there is a range of spread such that i(s) < f+(s) and 

in this range it is the negative branch of the trade-off 

curve which must be used. 	If 	< s , it is never 
max 



p ax 

• 	
Ppir 

•p;in 

C- 	 C 	 S 

'-'max 

Pcr 
p7fl/fl  

s.s 	• . 

(n!n 	 max 

FIG. 7-7 	a. Hypothetical relative error trade-off 

curves for the case. f_(s) )( s). 	Note 
2 	2 	 + 

that p 	,, 	and s 	s 

	

J par 	J max 	• max. 

b. Hypothetical relative error trade-off 

curves for the case where 1(s) < 
over a part of the total range of spread. 

Note th 	
par 'f max at again 

9 2 	2 • 	
, however 

• 	 s•_ 	. 
max • 
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appropriate to use y(s) . 	If 	 , one must 
max 

consider whether f(s) on the range s . s < max is 

larger or. smaller than f+(s) 

We now give a few illustrations of the trade-off 

relationship between spread and relative error as it 

relates to magnetotelluric data. 	As we have pointed 

out, at each depth z 0  we can select an acceptable level 

of spread and determine the corresponding error, and 

alternatively we can select acceptable error and compute 

the corresponding spread. 	For our illustrations we 

choose the latter alternative. 	Our technique will be to 

generate the trade-off curve between relative error and 

spread. 	This curve will be structured like those in 

Fig. 7-3. 	The curve is generated by choosing increasing 

values of & in the range ( 0, 	) in the definition of 

the operator W() . 	For 	= 0 , the spread is 

minimized irrespective of E, so the pair ( s .  = 	 mm 	.' max 

is determined. 	The next point on the trade-off curve 

will supply a slightly larger spread and slightly smaller 

error. 	Thus pairs ( s, f ) are generated until' 2 

falls below some preset acceptable level. 	One is really 

'drawing a horizontal line' on Fig. 7-3 at some acceptable 

2  
error level I 	, and reading off the spread associated 

with the intersection of this line with the various 

i trade-off curves. 	The pairs ( s, 	2 ) achieved n this 

way will depend upon the value of w . 	Fig. 7-8a 

illustrates the result of this procedure to the five 
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layer model 

d 

1 	0.01 1.5 

2 	0.001 30. 

3 	10. 40 

4 	0.0007 100. 

5 	0.02 

which clearly has an extremely high thin conductor 

embedded at a depth of 30 km. 	We ask how the ten- 

dimensional data set (of amplitude data only) comprising 

the periods 

T 1  = 	10 sec T6 	= 60 

T2  = 	15 T7 	= 80 

T3  = 	20 T8 	= 100 

T4  = 	30 T9 	= 200 

T5  = 	40 T10 = 320 

is able to resolve this layer. 	We illustrate the 

relative error (truncated in the manner described 

previously at a level of f2 	0.15 ) and we consider 

an experimental error in the surface data of - 15%. 	It 

would appear from the local averages illustrated in 

Fig. 7-8a, that our data set does not achieve very 

convincing definition of the high conductor, and the 

spread becomes so large that at best a very broad 
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averaging of the conductivity can be indicated by the 

data. 

In Fig. 7-8b we illustrate the same situation, except 

for the case where the third layer conductivity has been 

made only 1 ohm 	instead of the previous 10 ohm 1m'. 

By applying the same truncation criterion, one can see 

that a greatly improved model error is achieved; however, 

the conductivity resolution is very much reduced. 	The 

local averages after a depth of 25 km are in fact broad 

averages over some 50 km. 	In terms of the local 

averages, one may surmise that apart from the top twenty 

kilometers, the model structure is not well resolved. 

To resolve such structure would require better (i.e. more 

accurate) data, and perhaps a larger set of data extending 

over a larger range of periods. 	One can visualize the 

situation by consulting Fig. 6-3. 	The delta-like 

functions at depths greater than 50 km are broad and flat, 

and produce model averages which are in effect conducti- 

vities integrated over depths of 40 	50 km! 

Fig. 7-8c illustrates exactly the same model as 

Fig. 7-8b. 	However, in this example, we extend the data 

set to twenty points, at periods 
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T1 	= 10 T11 	= 125 

T2 	= 15 T12  = 150 

T3 	= 20 T13  = 175 

T4 	= 25 T14  = 195 

T5 	= 40 T15  = 200 

= 50 T16  = 320 

T7 	= 60 T17  420 

T8 	= 80 T 8  = 900 

T9 	= 90 T 	 = 
19  1300 

T10  = 100 T20  = 2000 

It can be seen from the Figure that the spread improves 

considerably. In this example we record the following 

resolution parameters associated with depth z 0  = 100 km: 

4 	2 	 10 
smax 	 max 1.69 x 10 	 = 2 x 10

= 0.48 	 2 . 
	5 x 10 -  

mm 	 mm 

S 	 = 87.0 	
2 	

= 51. 
par 

We observe that 
i 
p2  par = 51 corresponds to a relative 

error of 700%. 	Since 7 
2 
 par >>! 2mm 	

(even though 

S.6 < s 	 ), a simple sketch diagram similar to Fig. 7-7c
max 

will show that we may confidently consider only the 

trade-off curve, since f(s) < -f - ( s) for useful 

values of the relative error. 



FIG. 7-8 a 	Resolution/error characteristics are 

displayed 'f or ten periods in the range 

10 sec 	T :~- 320 sec, and a model 

= 	'°' 	
2 

= o•oo 	
4
-3  = 10.00, 

= 0.0007, q 5  = 0.02 ) and depths 

d 1  = 1.5 km, d2  = 30 km, d3  = 40 km, 

d4  = 100 km. 	The trade-off curves of 

relative error versus spread are truncated 

(at each depth z 
 0 
 ) at the indicated level of 

relative error. 	The corresponding spread is 

illustrated. 	The local averages at ten 

depths into the conductor are plotted along 

with their corresponding relative error and 

spread. 	It will be noted that the thin 

10 ohm'm 1  conductivity layer is not really 

resolved. 

FIG. 7-8 b 	The same model and periods as Fig. 7-8 a, 

except the 10 ohm -1 -1 m 	layer is replaced by a 

1 ohm m 	layer of the same thickness. 	It 

would seem little structure is resolved at all 

in this case. 

FIG. 7-8 c 	The same model as considered in Fig. 7-8 b; 

in this instance the data set is doubled to 

encompass periods in the range 10 sec 	T 

2000 sec. 	It can be seen that the conducti- 

vity at depth z > 100 km is much better 

-1 -1 
determined ( 

0 = 0.02 ohm m ). 	 Also some 

surface structure is better resolved. 
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CHAPTER 8 

CONCLUSIONS AND SOME REMAINING QUESTIONS 

In trying to show how the formalism of Backus and 

Gilbert can be applied to magnetotelluric data, our 

motivation has been two-fold. 	Firstly, inverse 

formalisms may be of value for studying and interpreting 

surface data; they provide a means of assessing 

quantatively the resolution and non-uniqueness implied by 

a set of data for a particular model. 	Some more specific 

questions concerning the acceptability of models can also 

be posed. 

Secondly, the simplicity of the inverse magneto-

telluric problem allows us to study quite directly the 

inverse procedure itself. 	For example, we examine some 

implications of the linearization of equation (2.2.3). 

We have compared various representations of impedance 

data in terms of their inverse characteristics. 

In all of this we are supposing that it is useful to 

study surface induction data from an inverse viewpoint. 

Such a study might supply a more definite understanding 

of what can be learned about the Earth's conductivity. 

Of course, the inverse formalism under investigation is 

based upon the quasi-linear expression of a non-linear 

functional, and an analysis of the formalism must involve 

also some attempt to assess the significance of this 
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linearization. 	Apart from Monte Carlo methods, there 

has as yet emerged little alternative to linearized 

inversion. -  which incidentally enjoys the attraction 

over Monte Carlo procedures of a theory which seeks the 

solutions to the inverse problem in the physics and 

mathematics of induction. 	The question -- raised by 

Sabatier (1974), Anderssen (1975), and others -- is 

whether the linearization of (2.2.3) produces a misleading 

view of the character of the space of acceptable models. 

We have provided here onlya few illustrative 

examples; our aim has not been the exhaustive exploration 

of these problems but primarily to develop the required 

language. 	In this Chapter we summarize our work and try 

to indicate some possible directions for further work. 

8.1 Summary 

In Chapter 3 we consider as the magnetotelluric 

response (corresponding to the ith frequency) HIExi and 

this we denote by r . . 	( We point out in Chapter 4 that 
the expression of this surface response given by equation 

(3.2.35) has an interesting graphical interpretation). 

The variation of this response is expressed in functional 

form as 

04 

= f 
g o. 	dz + Oiiéo11 2  

0 

where 	(z) is the ratio of the tangential electric field 
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normalized with respect to its value at the 

surface. 	This is a complex continuous function with 

boundary values 1 2(o) = 1 , and urn f, 2 (z) = 0 
-D O 

The discretization of this equation (to accommodate 

layered half-space models) is straightforward. 	One has 

= f l 	 + 	2 J 2 (z) dz 

00 

+ ••• + STM 5 - 2 (z) dz + o1!11I2 	(8.1.2) 

ZM_ 1 

Also we show 

Z 

- f l2(Z) dz 	, 	 etc. 

We restate these equations here to emphasize the simple 

form of the inverse magnetotelluric problem. 	The 

integrals in (8.1.2) are trivial to evaluate: Schrnucker 

(1970) provides the recursion relationship (in fact 

equation (3.2.32) ) from which to generate the Frchet 

kernel f (z) . 	This kernel can be integrated 

analytically; these integrals are explicitly given in 

equation (5.1.6). 	So the Backus-Gilbert expression of 

the inverse problem has proved to be a very fortunate way 

of approaching magnetotelluric inversion. 	The inversion 

can proceed without recourse to numerical integration, 

not to mention the numerical differentiation often 

required of least-squares methods. 
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We have explored two inverse practices: the least-

squares procedure, and the characterization of the space 

of acceptable models in terms of resolution. 	Both are 

posed as optimization problems which involve the solution 

of an N x N system of equations (for an N-dimensional 

data set). 	In either case the matrix is simply 

evaluated. 	The inner product matrix, B, (in equation 

(3.2.44) ) is simply determined from integrated Fr'chet 

kernels such as appear in the components of (8.1.2). 

Likewise the components of the spread matrix (equations 

(6.1.1) ) are easily determined. 	The most time-consuming 

part of the inversion procedure proves to be the numerical 

inversion of matrices. 	If the inverse problem is 

expressed in principal axes coordinates -- such as 

described in Sections 5.3 and 6.3 -- then the most time-

consuming numerical problem is that of isolating the 

eigenvalues of matrices. 	This is especially true for 

ill-conditioned matrices with very small (indeed near- 

zero) eigenvalues. 	One can improve this situation by 

seeking to isolate eigenvalues which lie above some 

reasonable minimum. 

In Chapter 5, we look at the problem of finding 

models which are optimum in a least-squares sense. 	We 

show that the generalized least-squares procedure can be 

unstable, especially so if the parameterization is 

unfortunate. 	The ability of a set of data to determine 

a model diminishes near the surface and again at greater 
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depth -- this reflects the high frequency and low 

frequency truncation of the data set. 	If one seeks to 

determine near-surface features from such a data set, the 

least-squares problem can become ill-posed and instability 

can be the result. 	Stability can be enforced by reducing 

the number of eigenvalues represented in equations such 

as (3.2.44), after the problem has been transformed into 

a principal axes frame. 	However, the price to be paid 

for this stability is a loss in the 'exactness' of the 

fit that is achieved. 

It is interesting to observe our synthetic examples 

involving a densely spaced set of data at low period 

( 10 sec 	T ± 100 sec ) associated with a model of high 

conductivity ('i—i ohm- I M 	), parameterized at relatively 

shallow depth (5 km ). 	Such data can determine the 

model with some definition -- especially when compared to 

more sparsely distributed data at longer periods and 

associated with less conducting models. 	In these latter 

situations, one achieves instead a conductivity averaged 

over some considerable depth. 	In view of this contrast, 

it would be of great value to know whether high-frequency 

(e.g. T c  100 sec ) experimental studies can supply 

sufficiently reliable data to achieve good near-surface 

resolution. 

We show how the least-squares procedure can be used 

as an instrument to generate acceptable models (from 

initial guesses). 	Also,' we show how it can give us some 
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understanding of the implications associated with 

modi.ficatjons to the data set: for example, the inclusion 

of phase information, or of higher frequencies, or of 

more closely-spaced frequencies. 	In this deliberate 

fashion we can explore the space of acceptable models. 

Of course this brings us to the other useful 

procedure: that of characterizing the space of acceptable 

solutions by determining a set of local model averages 

each with an associated spread and error. 	We show that 

high conductivity in the Earth can be well resolved 

(although this deteriorates as one moves more deeply into 

the Earth); however, the 'model error' becomes rather 

larger in these cases. 	On the other hand, one can 

achieve a good model average with lower error if one is 

prepared to accept an average over some greater depth of 

conductor, i.e. an increased spread. 	This latter 

situation often corresponds to poor conductivities, 

although for any conductivity one can trade-off error 

for resolution. 

In Chapter 6, we indicate how the examination of 

resolution characteristics can provide a quantative 

comparison -- in an inverse sense -- between two 

representations of our complex response, 	, namely the 

set fRe Y. , Im r. 	and the set 	, arg Y if 
By way of illustration in Chapter 7, we examine various 

specific models and their relationship to error and 

spread. 
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All these investigations must be considered in the 

light of the linearization made to equation (2.2.3). 

Whereas we have, in Chapter 3, taken a brief look at the 

structure of higher order terms, a more complicated (and 

interesting) question is how the linearization can effect 

the resolution characteristics and the local average that 

is achieved by an equation such as (2.2.35). 	It is our 

experience in Chapter 7 that the resolution of magneto-

telluric data is somewhat disappointing, especially if 

one is trying to examine a conductivity contrast of only 

one or two orders of magnitude. 	Sabatier (1974) has 

found that the linearization of (2.2.3) can result in a 

resolution which may be too optimistic or too pessimistic. 

It would be interesting to investigate these questions 

for synthetic magnetotelluric data. 

8.2 Some Remaining Questions 

We outline here some possibilities for further 

research which have evolved during the course of this 

present work. 	We have already referred to some general 

questions; the following, however, constitute suggestions 

which are rather more specific. 

a. Iterative direct inverse scheme 

We direct attention to the iterative method developed 

by Barcilon (1974) for finding an optimum solution to an 

inverse Sturm-Liouville problem. 	A coupling of this 
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approach to the analysis of Weideldt (1972) could provide 

a non-linear method for optimally finding acceptable 

models from a guessed starting model. 	Barcilon suggests 

that his iterative method can be generalized, although in 

his analysis he imposes various conditions on the eigen-

functions (and on the boundary conditions) which preclude 

its direct application to the induction problem. 	One's 

initial guess must also satisfy various conditions if a 

process is to converge. 	Perhaps this approach to the 

least-squares problem would not be particularly rewarding 

since the prospect for finding acceptable models is anyway 

quite -good, and another method for locating models may 

seem redundant. 	But there is the interesting prospect 

that an analysis of the inverse problem along these lines 

may lead to formulation of a non-linear method of 

characterizing the space of acceptable solutions. 	It is 

not clear if such an approach would admit scattered data 

into a direct inversion scheme. 

b. Studying the significance of additional data 

In Chapter 7, we pointed out how instructive it could 

be to ascertain how hypothetical modifications to a set 

of data can affect that data's resolution. 	In this 

respect, we refer to an idea of Jackson's (1972) to 

'monitor' the improvement to the model variance (defined 

by equation (2.3.17) ), when one augments the data set. 

One can consider the consequences of adding an additional 
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row and column to the inner product matrix by a first-

order perturbation scheme. 	If we add a row a to the 

inner product matrix, B , corresponding to the N + 1 th 

datum, i.e. a = ( B 11 	B12 	
... 	

), we 

can write the augmented matrix, B 
(aug), 

 as 

	

(aug) = B + 	T 	
(8.2.1) 

(where the outer product is implied in the latter term). 

Similarity transformation (see equation (5.3.1) ) supplies 

the relationship 

T (au 	 T 	 T T 
C .' 	'.c = C.B.0 + 	a.0 	 (8.2.2) 

= 	 +  SA 

where A is the diagonal matrix whose elements are the 

eigenvalues of B and LA contains the first-order 

perturbation to this eigenvalue (assuming a first-order-

change in eigenvector gives rise to a second-order change 

in eigenvalue). 	One can identify the change in eigen- 

value 

= 	{( . 	) 2 j 

and hence observe how the model variance improves (as 

long as the data set is large enough to ensure the 

validity of a first-order approach). 	A similar approach 

may aid an understanding of the significance of additional 

data to the spread and error trade-off curves. 
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C. Non-uniform source fields 

We have only considered uniform inducing fields. 

It would be interesting to consider the inversion 

procedure applied to sources which possess spatial 

structure. 	In equation (3.1.19) we observe that the 

relevant equation for the Fourier transformed Hertz 

potential (analogous to equation (3.1.20) for E ) is, 

for a one-dimensional conductivity distribution r(z) 

12 P 
+ 	( Ic2  + ittr) P 	0 	 (8.2.3) 

where k is a two-dimensional Fourier variable, 

2 
k = 	+ ' 	. 	One hence pursues an analysis analogous 

to that surrounding equation (3.2.16) to obtain 

	

= J P( Ic, cr, z  )cIr( z ) 	dz + 

(8. 2.4) 

where 

P( k, o- ,z ) = P( k, 	,z )/ P( k, r,0 ) 	( 8.2.5) 

The response, '(.(k) 	is now defined by (3.1.30), i.e. 

[H I 
•1 	 1EI 

(8. 2.6) 

This is the ratio of the spatial Fourier transform of the 

tangential magnetic field to the spatial Fourier transform 

of the electric tangential field, and it is a function 

both of period and Fourier variable. 	It is possible to 
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construct these Fourier ratios numerically from an array 

of simultaneously recording instruments -- however, the 

array would have to encompass the spatial extent of the 

source to avoid aliasing error in the procedure. Price 

(1962) has pointed out that 	 can be determined 

from a knowledge of the field variation of H z over the 

surface of the array. 

The Frchet kernel, P ( k, ,z ) has an interesting 

form, since P( k, u,z ) can be expressed as 

P( k, 	) 	
= pS( 

k,0 ) • f( k, a- ,z ) 	(8.2.7) 

where PS(k,o)  (used in equation (3.1.26) ) is a term 

characteristic of the source structure. 	It is interes- 

ting that this term drops out when the ratio  

is formed. 	If one assumes the conductivity to be one- 

dimensional beneath the array, one may be able to 

construct 'a least-squares algorithm to determine an 

optimal model to fit the array data. 	Because of the 

three -dimensional nature of the data ( 16 .  

the inner product matrix becomes a higher-order tensor. 

For example, if the array is a one-dimensional traverse, 

the data is two-dimensional (i.e. 	.(k)E  

and the inner product tensor will have rank four. 	If 

this problem proves tractable, one can infer the 

conductivity distribution 	(z) without explicit 

knowledge of PS(ko) . 	Indeed, once one has determined 

an acceptable 'r(z), one can hence calculate PS(ko) 
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from (3.1.26), and thus determine the source structure. 

Oldenburg (1976b) has recently developed a method to infer 

source current structure from magnetic array data, however 

he ignores induction effects as flj5t 	Perhaps it may 

be an informative project to incorporate induction into 

such a method, at least for some simple synthetic case, 

to see if indeed induction can be confidently ignored in 

such.a method. 

In conclusion, we remind ourselves that Price (1962) 

has pointed to the theoretical possibility that both 

source and conductivity structure may be achieved from 

array data. 
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APPENDIX I 

Determination of Higher-Order Terms 

In Chapter 3, 	the functions 	ç.( a, , with 

V, 	j 1, 	2 	, were stated for a two layer case; 	these 

were contoured on the model space defined by the depth 

(in skin-depths of 	the surface layer) and the conductivity 

ratio . These contours are illustrated in 

Fig. 3-6. 

For the two-layer half-space, we have 

K 	+K tanhK d 

1 
2 1 	1  (1.1) 

K 1  + K2  tanh K 1 d 

One can ascertain by direct differentiation of 	this 

expression that 

X 2 
sech 	K  

1 
(1.2) 

S 

where S = K 1  + K2  tanh K 1 d and X = (K 1 2  - K 2 2 ) d - K2  

The second derivative can hence be written 

= 	K1d sech 2  K 1 d - X d sech 3  K 1 d sinh K 1 d 

X - 	Y sech 2  K 1 d 	 (1.3) 

with Y = 1 + K 2 d sech 2  K 1 d . 	Thus the ratio 
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2 
1 

/ - can be written as 2 K d X- + a tanh K d - 

K1  / 	K1 	 1 

S_ i  Y 

Since the operator 	2c1i is related to the 

derivative with respect to K 1  by 

K1  
= 

20j 

we can write 

f 

K 1  2K 1 d 
= 	- + d tanh K1d 

- 

(1.4) 

The derivative of Q1 	with respect 	to 	K2 	is written 

- 1 	- Q1  tanh K 1 d 

K2 	 - K1  + K2  tanh K 1 d 
('.5) 

and the second derivative is 

- Q1  

K22 ~ 	- - c f 2 S_ i  tanh Ki d] (1.6) 

The ratio 	f 22 	is obtained 

I 
f 22 	 2- 

= 	- S 1  tanh K 1 d (1.7) 

2 2 2 

The cross-derivatives are given 
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tanh K 1 d + Q 	sech2  K1 d ) - 
K1 K2 	 K1 	 èK2  

(1.8) 

Hence the ratio is obtained 

2Q1  /Q1 	K1 	
(---+Q1d) 

12 / 
	2 	27-1 ( coth K 1 d -Q1 

+ Y SJ (1.9) 

The other cross-ratio is 

= - f(2K2d + 1) X_ 	2S 	tanh K1d] K2 

°2"i / 	1 

(1.10) 

For the depth component we have 

IQ 
= S 1  ( K12 - Q1  KK2  sech 2  K 1 d 

The second derivative is expressible as 

= - 2 21Q,  S 	( K1K 2  sech 2  
'd2  

+ S_ I Q 1  K 1 K2  sech3  K 1 d sinh K 
1  d 
	(1.12) 

Hence the ratio of these two terms is 

/ Q - - 2 K 1K2  sech 2  K 1 d 

S 

S tanh K 1 d 

+ K 1 2  - Q1K 1K2  sech 2  K 1 d 
 

The functions f 11  and f 22  plotted in Fig. 3-9 for the 
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three layer case are determined as follows: we have for 

the three-layer half-space 

K2 Q 2 
 + K 1  • tanh K  1  d 

 1 
= 	 (1.14) 

K 1  + K2  Q2 • tanh K 1 d 1  

Since Q 	 is independent of 	, the derivatives with 

respect to 	may be written directly from equation 

(1.4) by replacing K2  with K2Q2 •. 	Immediately we 

have 

2Kd 	
? = - 1 f 	1 1 + d 1  tanh K 1 d 1  - Y1 
	

(1.15) 
11 	a-I X 

where S 1  = K 1  + K 2 Q  2 tanh K 1 d 1  , X1  = ( K 1 2 - Q2 2  K 2 2 ) 

d - K2  , and Y 1  = 1 + K 2 Q  2 d sech 2  K 1 d 

For the derivative with respect to 0- 2, , we can 

write 

- 	 1Q2+K2\ 	

(1.16) (1-Q1tanhK1d) 	

) 

where 

- ( S 2 2  X2 1  - K 3  ) sech 2  K2  	(1.17) 

with X2  = ( K22 - J(32 ) d 2  - K 3  , and S 2  = K2  + K3  

tanh K 2 d  2 . 	Forming the second derivative and expressing 

its ratio with the first derivative, we obtain 
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.Q2  

'2Ql/ 
4;1 	

ç 1 + K 2  

K 2 2 ?K 2 	Q+K 2 	2 --- 

- 2( Q2  + K2 	) 	tanh K 1 d 	(1.18) 

2Q 	2 where 	= K2/K2 , a ratio which has the same form 

as that associated with (1.7), namely 

= S 2 	tanh K 2 d 
 2 
	

(1.19) 
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APPENDIX II 

Note on Notation 

In the presentation of the mathematics of generalized 

inverse procedures as applied to induction problems, we 

have tried to retain the notation of the quoted 

literature. 	However inevitable conflicts in notation 

have occurred. 	We offer the following remarks by way of 

clarifying the notation. 

Throughout the thesis G.(z) denotes the Frchet 

kernel associated with the ith frequency; g,[m3 denotes 

the functional associated with the ith frequency; ali  is 

used to denote the surface response generally in Chapter 2, 

and specifically the magnetotelluric response from 

Section 3.2.b onwards; V. denotes the response for the 

spherical induction problem in Section 3.2.b. 

In Chapter 2 .\ is the Lagrange multiplier associated 

with the optimization of averaging kernels. 	In 

Chapters 5 and 6 the set 	denotes the N-tuple of 

eigenvalues associated with various operators. 	In 

Chapter 2 r' denotes the inner product matrix generally. 

For discretized magnetotelluric problems this matrix is 

defined in (3.2.45) and is denoted subsequently as B 

Throughout the text a subscripted f has denoted 

apparent resistivity. 	In Chapter 7 	2 denotes the 

square of the relative error. 	Also in Chapter 7 
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denotes the square of the absolute error, whereas in 

Chapter 3 E is used to denote electrical permittivity. 

There are a number of such inconsistencies in the 

text; it is hoped that the context will suffice to 

clarify each situation. 

p 
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