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Lay Summary

A common picture of liquids and gases is that they are comprised of molecules. Then, the
molecules are made up of atoms. Further, the atoms are made up of electrons, protons, and
neutrons. Most of the time, we do not need to consider this granular nature of matter, and, to
all intents and purposes, everyday liquids and gases are ‘continuous’. However there are many
natural phenomena which cannot be accurately described by continuous thinking alone, such
as: the exact profile of wine at the liquid-glass-air interface, the shape of freezing raindrops and
the structure of liquid crystals.

Equally, there are interesting multiscale phenomena in nature, in which discrete elements
interact with one another, and, when squinting one’s eyes, appear to behave continuously,
such as: the flocking of birds, the effervescent paths of ant armies over forest floors, and the
dynamics of colloidal fluids. In modelling any of these situations we can see that there is an
advantage to considering the systems as ‘continuous’. Naturally, if the individual particles
in the systems are so numerous, keeping track of all of them means one would need a lot of
computer power. Furthermore, to observe very fast changes in the dynamics of such systems
requires very fine snapshots in time, leading to slow computer simulations, given the speed
limits of current processors. On the other hand, if one were to average over the behaviour of
the individuals, both temporally by considering longer snapshots, and spatially by coarsening
over the individuals’ position and velocity data, it is conceivable that we might throw away the
particular information which gave rise to the interesting phenomenon in the first place.

In this thesis we consider a continuous way of thinking of fluids describing multiscale phe-
nomena, without losing the interesting effects.
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Abstract

Classical fluid mechanics and, in particular, the general compressible Navier-Stokes-Fourier
equations, have long been of great use in the prediction and understanding of the flow of flu-
ids in various scenarios. While the classical theory is well established in increasingly rigorous
mathematical frameworks, the atomistic properties and microscopic processes of fluids must
be considered by other means. A central problem in fluid mechanics concerns capturing mi-
croscopic effects in meso/macroscopic continuum models. With more attention given to the
non-Newtonian properties of many naturally occurring fluid flows, resolving the gaps between
the atomistic viewpoint and the continuum approach of Navier-Stokes-Fourier is a rich and
open field.

This thesis centres on the modelling, analysis and computation of one continuum method
designed to resolve the highly multiscale nature of non-equilibrium fluid flow on the particle
scale: Dynamic Density Functional Theory (DDFT). A generalised version of DDFT is derived
from first principles to include: driven flow, inertia and hydrodynamic interactions (HI) and it
is observed that the equations reproduce known dynamics in heuristic overdamped and inviscid
limits.

Also included are rigorous, analytical derivations of the short-range lubrication forces on
particles at low Reynolds number, with accompanying asymptotic theory, uniformly valid in
the entire regime of particle distances and size ranges, which were previously unknown. As well
as demonstrating an improvement on known classical results, these calculations were determined
necessary to comply with the continuous nature of the integro-differential equations for DDFT.
The numerical implementation of the driven, inertial equations with short range HI for a range
of colloidal systems in confining geometries is also included by developing the pseudo-spectral
collocation scheme 2DChebClass [67].

A further area of interest for non-equilibrium fluids is mathematical well–posedness. This
thesis provides, for the first time, the existence and uniqueness of weak solutions to an over-
damped DDFT with HI, as well as a rigorous investigation of its equilibrium behaviour.
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Z Normalisation constant
Z1(r1, r2) Diagonal two body HI tensor
Z2(r1, r2) Off-diagonal two body HI tensor
Z %

2 Nonlocal operator acting on a defined in (7.4.2b)
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Notation From Jeffrey & Onishi [92]

r d
a1, a2 r1, r2

λ r2/r1

ξ d−r1−r2
1
2 (r1+r2)

s d−r1−r2
1
2 (r1+r2)

+ 2

Abbreviations, Sets & Mathematical Operations

DFT Density Functional Theory
DDFT Dynamic(al) Density Functional Theory
FMT Fundamental Measure Theory
GMS Goddard, Mills, Sun (label for present work of Chapters 3, 4)
HI(s) Hydrodynamic Interaction(s)
MD Molecular Dynamics
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SD Stokesian Dynamics
SDE Stochastic Differential Equation

L2(U, %−1) Weighted L2(U) space
Pac(U) Space of absolutely continuous probability densities supported on U
P+
ac(U) Pac(U) restricted to strictly positive functions

Tr Trace operator
> Transpose
∂n Directional derivative in n
> Transpose
∇ Gradient
∇× Curl
∇· Divergence
∇2 Laplacian
u ? v Convolution of two functions

∫
U

dru(r− r′)v(r′)
u⊗ v Outer product / dyadic of two vectors uv>
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Chapter 1

Introduction

Motivation

In this thesis we consider three topics:

1. Dynamic Density Functional Theory (DDFT): A 3D coupled system of nonlinear,
nonlocal, integro-partial differential equations (PDEs) describing the statistical mechan-
ical evolution of a large assembly of interacting particles subject to thermal noise, hy-
drodynamic interactions, and external currents, which form a wider class of equations
governing the flow of nonequilibrium inhomogeneous fluids.

2. Hydrodynamic Interactions in Colloidal Fluids: A derivation and analysis of ana-
lytical solutions to Stokes equations for the singular interaction of a two–sphere system
immersed in viscous fluid, including a presentation of the currently attainable asymptotic
theory.

3. Well-Posedness and Equilibrium Behaviour of Overdamped DDFT: The first
establishment of the existence and uniqueness of weak solutions to overdamped DDFT
with hydrodynamic interactions, which constitute nonlinear, nonlocal, integro PDEs for
the spatially varying number density, as well as an analysis of equilibrium states including
bifurcation theory for confined systems.

These three topics combine in such a way to model complex multiscale fluid flows. Such
fluids often display different flow patterns and equilibrium states, compared to classical ones
(air, water, honey etc.), because they have multiscale properties. In particular, the complex
fluid may have a dispersed solid or liquid phase within a liquid or gas solvent, meaning it
has multiple spatial scales. An example is shown in Figure 1.1a showing drawing ink, which
is composed of solid pigment particles dispersed in a liquid carrier medium. Alternatively,
Figure 1.1b shows mechanical grease, which is an emulsification of soap in oil. In each case the
combined solid–liquid or liquid–liquid medium is known as a colloidal fluid, and the equilibrium
and thermodynamic quantities such as the number density distributions, surface tensions and
bulk viscosities may differ substantially from classical fluids.

Multiscale properties of fluids may also manifest in dynamical behaviour. For example, Fig-
ure 1.1c shows a silicone polymeric fluid, which, due to the complex intermolecular interactions
of the long polymer chains, behaves as a viscous liquid on long time scales but as an elastic solid
over a short time scales, giving rise to a nonlinear stress–strain relationship of the bulk fluid.
Furthermore, Figure 1.1d shows a murmuration, which is an example of an active atomistic
fluid. A minimal description of the murmuration is that the starlings move more or less in
the same direction as their nearest neighbours, remain close together, and do not collide. Such
individual dynamical properties may be compared with the equilibrium microscopic properties
of nematic liquid crystals, whose repulsive molecules arrange themselves in parallel orientations
[130].

Additionally, a fluid may possess fast processes on microscopic scales, such as the smaller
molecules of the dispersion medium being subject to thermal agitation, which is not felt by the

25



(a) Drawing ink is a colloid of solid pigment par-
ticles dispersed in liquid.

(b) Grease is a liquid-liquid colloid with soap
emulsified in oil.

(c) A shear thickening visco-elastic fluid, ‘therapy
putty’, used in medical applications.

(d) A mumuration of starlings. [Source: Ras-
mussen, Wikimedia]

Figure 1.1: Examples of complex multiscale fluids.

larger and heavier colloidal molecules making up the bulk. This means it has multiple temporal
scales. For example, a typical collision timescale for water molecules is 10−15s, whereas a typical
relaxation time of the colloidal particle momenta due to friction with the dispersion medium
is 10−7s [61]. Such a large difference in the magnitude of these collision times leads to a time
scale separation in the dynamics of the particles making up the colloidal fluid.

1.1 Colloids

In the atomistic description, a fluid can be composed of particles of typical size covering the
range of mist, fine dust and particulate matter in smoke all the way down to the diameter of the
atoms which make up the molecules, at which point, one must introduce quantum effects. This
definition of a particle, depending on the perspective of the reader, may not be remarkable until
one observes that it directly corresponds to the size range of a cricket ball up to the diameter
of the earth (see [75, Figure 1-1.1]). This reveals the highly multiscale nature of fluids, and,
given this covering of orders of magnitude, one is confronted with the inherent dimensionality
and therefore computational challenges involved in the theory of fluids. Despite the apparent
difficulty this poses, significant theoretical advances were made in the 19th century, when the
first continuum models of fluids were introduced. Additionally the theory of viscous fluids is
very established, and is applicable to larger molecules and polymers immersed in a bulk of much
smaller particles.

The fluids under investigation in this thesis, colloidal fluids, are composed of particles (typi-
cal size 10nm–10µm) suspended in a solvent of much smaller and lighter particles (around 1nm
in size) [42]. The average number density of the colloids therefore has spatial variation.
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Equilibrium Properties

When the solvent liquid is at rest, and in the presence of an external field, the colloids will
move to minimise the free energy of the system, to find the most favourable configuration at
equilibrium. In general, the most favourable configuration will change depending on the shape
of the individual colloids. In bounded systems with a bath (dispersion medium) at constant
temperature, the free energy is the Helmholtz free energy FH , to be discussed in Sections 1.6
and 2.1, and is the central thermodynamic quantity in density functional theories. It is the
energy which the density minimises at equilibrium.

As an example of the kind of equilibrium states, consider container of solution of colloids
with larger (diameters greater than 10µm) particles. The larger particles settle to the bottom
under gravity. The colloidal particles are subjected to Brownian motion and at equilibrium the
upwards flux of the colloids (due to the Brownian motion), from an area of high concentration
to low concentration, will balance with gravity. The larger colloidal particles are still subject
to Brownian motion, but gravity is the dominating force for them, owing to their greater mass,
and hence they sink to the bottom of the container.

Dynamical Properties

The hydrodynamic interactions described in this thesis are dynamical properties, that is, only
existing for the colloidal particles with finite relative velocities with respect to the velocity of
the dispersion fluid. Obtaining knowledge on the motions of the colloids interacting with each
other will inform us of the evolution of the suspension as a whole. Equally, the evolution of
the suspension will determine the forces on the particles, and thus the relationship between the
microscopic and macroscopic dynamics is interconnected. One can see this in the case of the
Rotne–Prager [154], the so called long range HI, in which the motion of a individual colloid
induces motion on the other colloid giving rise to collective motion.

Another manifestation of scale separation occurs between the bath particles (the solvent)
and the colloidal particles (the active system). The bath and the colloids are at the same
temperature but since the bath particles are much lighter, and so small that they are more
readily agitated by heat, they move faster, and bombard the larger colloidal particles with
microscopic momentum exchanges to cause Brownian motion of the colloid. This leads to a
temporal scale separation for the entire system.

A property of the system will be the diffusion constant D = kBT/γ, where kB is Boltzmann’s
constant, T is temperature, and γ is the friction coefficient or Stokes drag. This relationship
between D and γ provides a measure of the propensity of colloids to diffuse and goes back to
Einstein [48]. The greater the friction of the bath on the colloids the smaller the diffusion,
conversely the higher the temperature, the greater the diffusion. Thermodynamically, this phe-
nomenon is described by the fluctuation dissipation relation: the root mean square fluctuation
in energy of the colloidal particles is proportional to the heat capacity of the bulk [77, 142].
This describes, roughly speaking, the mechanism to dissipate kinetic energy to heat energy is
bath friction, and vice versa: the Brownian motion of the bath particles transforms microscopic
heat energy to kinetic energy [100].

Modelling Challenges

For simple colloid shapes (spheres and ellipsoids) dispersed in an unbounded flow there are many
analytical solution techniques to determine the mobility and resistance of a given colloid as a
function of geometric constants (radius, centre distances etc) and special functions. Complex
geometries, the presence of walls, corners etc, many be dealt with by convergent numerical
methods.

However, complex particle shapes abound: flakes, grains, ribbons as well as asymmetric
shapes. For example in studying lyotropic materials (the generation of a liquid crystal upon the
addition of a solvent), the isotropic-nematic transitions and stability of the macroscopic crystals
require accurate knowledge of hydrodynamics of the individual grains. Such problems require
large computational resources. Accounting for the shape of the individual elements, deforming
under local fluid stress, is a very computationally challenging problem. Additionally, taking
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into account the three-dimensional flow of such systems adds to complexity of the numerical
solution.

Due to the fundamental limitations imposed on the integration time of a single processor,
relying on unparallelised numerical methods to integrate a set of fluid equations is unsustainable
from a computational point of view. Parallelised computer architectures are an answer, where
they can be used, and have provided many orders of magnitude in speedups for molecular dy-
namics simulation. Numerical schemes for computational fluid dynamics, i.e. (1.2.2b)-(1.2.2a)
only for nearest neighbour interactions could be implemented in parallel computer architectures.
In Section 1.5 we discuss, by climbing scales, different ways in which one can model molecular
systems.

In practical applications, the evolution of the fluid structures may help or hinder many real
world flows. In hydraulics, passive components such as venturi, orifices and nozzles may subject
the fluid to large pressure gradients over relatively small spatial distances [11]. In these regions
the interruption in continuity of liquid oil due to multiscale effects modifies the flow, and the
dynamic interaction between liquid and solid boundaries is changed. In terms of the hydraulic
application, the flow paths may altered such as to lessen the force applicable to solid boundaries
causing a decrease in power output, head and efficiency.

1.2 Classical Fluid Mechanics

Navier-Stokes Equations

In 1821 the first of two memoirs by Claude-Louis Navier was published on the theoretical flow
of an incompressible fluid taking into account molecular and body forces [123]. The equations
governing the evolution of the fluid velocity u and pressure p are given by

∂tu + (u · ∇) u = −1

ρ
∇p+ ν∆u + f , (1.2.1a)

∇ · u = 0. (1.2.1b)

where ν = µ/ρ is the kinematic viscosity of the fluid, ρ is the constant density of the fluid
and f is a body force. Before (1.2.1a)–(1.2.1b), the theory of fluid flows was limited to perfect
fluids which exert no frictional force on the solid surfaces past which they move [50] (ommiting
pressure forces acting purely in the normal direction). The effects of molecular forces, or
viscosity, were identified as the main reason for the discrepancies found between theory and
experiment. Navier did not understand the notion of shear stress in a fluid, but he correctly
modified Euler’s inviscid equations to take into account the forces between the molecules [3].
This advancement was substantial because after all, a fluid is composed of molecules, and the
notion of fluid viscosity was finally starting to be developed. Since then, the compressible
Navier-Stokes (1.2.1a)–(1.2.1b) have rigorously been shown to be the first order correction to
the Euler equations (with zero viscosity), by taking a hydrodynamic limit of the Boltzmann
equation for small Knudsen number, a nondimensional measure of the mean-free path length
of a typical molecule in the fluid, see for example [71, Sec 5.2].

Validity and Considerations

For many purposes, continuum models of fluid flow such as (1.2.1a)–(1.2.1b) are insufficient for
an accurate mathematical model and prediction of flow at length scales comparable to the size
of the particles constituting the fluid [42]. A consideration of the atomistic nature of fluids is
important at this scale, in particular there are various microscopic and chemical properties of
liquids and gases, as well as hydrodynamical particle mechanics which are relevant.

An application of the Navier-Stokes equations at this scale is known to lead to unphysical
results. This may be seen in a wide variety of settings, but particularly: the classical moving
contact line problem in droplet (de)wetting leading to a non-integrable stress at the trijunction
[86] and an incorrect prediction of the motion of Crookes radiometer for flow in a partial vac-
uum [160]. Similarly, the restriction to continuum based formalisms in condensed matter type
systems leads to inconsistent results, such as the incorrect prediction of the cusp singularities
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in the freezing of liquid drops[161], [2]. The first and last of these examples cite sensitivity to
conditions at solid, liquid and vapour interfaces, where there are large densities differences and
the dynamics of interfacial phenomena are complex. The second example conveys the incorrect
predictions Navier-Stokes-Fourier for low density gases.

Additionally, either by design or not, fluids are often multiphase in many industrial applica-
tions. For example, in hydraulic applications the forces that tend to hold the liquid oil particles
together and stop the formation of any phase differences are external pressure and intermolecu-
lar forces. However the oil may also be entrained with non-condensable substances, nucleation
agents, emulsifiers and various colloids and, we can imagine that in a fluid system possessing
complicated geometries, temperature, pressure and velocity variations, it must be the case that
non-trivial interior fluid structures may evolve such as cavitation and vortex structure [99].

Stokes Equations

The slow flow incompressible equations, Stokes equations, were proposed by George Gabriel
Stokes in 1845 for flows with dominating internal friction over inertial effects. Stokes equations
may be applicable to slowly moving liquids and viscous non-rarefied gases and are given by
[163]

∇2u− 1

µ
∇p = 0, (1.2.2a)

∇ · u = 0, (1.2.2b)

where µ is the dynamic viscosity of the fluid measured in [kg m−1 s−1]. From equations (1.2.2a)–
(1.2.2b), one may calculate the drag force Fz on a single spherical particle moving through a
viscous fluid, such as steel ball falling through honey, to be

Fz = 6πµUa, (1.2.3)

where U is the velocity of the steel ball and a is its radius. It is the viscous resistance of
the fluid which decreases the acceleration of the ball until a terminal velocity is reached. So
long as the ball is small enough, or the motion is slow enough, the force is proportional to the
instantaneous velocity of the ball, as seen in (1.2.3).

This law, Stokes law, is very good when one is concerned with suspensions of particles suffi-
ciently disperse that they do not mutually disturb the velocity fields local the their neighbours.
However, the particles in most instances will not be disperse. Obtaining a description for the
motion of an assemblage of many particles that disturb the velocity fields of their neighbours
in a bounded domain would be very desirable for many applications and is a starting point for
the work in this thesis.

1.3 Direct Numerical Solution Of Colloids In Stokes Flow

Stokes equations (1.2.2b)–(1.2.2a) are second order linear PDEs for the fluid velocity and pres-
sure for which analytical solutions for given geometries and boundary conditions are generally
unknown. The numerical solution of (1.2.2b)–(1.2.2a) may in general be computationally ex-
pensive. Discretising a general fluid domain with N finite elements (nodes) results in large
linear systems which are usually solved with Gaussian elimination, requiring O(N3) floating
point operations. If one would like to mesh a fluid domain consisting of many hard spheres
with narrow interstitial regions, where pressures are expexted to become very large, then N will
also become very large. What is more, as the system of spheres becomes more dense, many
remeshings will have to be made, in order to accurately capture the known normal and tan-
gential singularities for the inter-sphere HI, ∼ ε−1 and log ε−1 respectively. Hence a full finite
element method quickly becomes impractical. One way to overcome the computational cost
is to use a Boundary Integral Method (BIM) to resolve the fluid flow in the interstitial region
between the particles [83].
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Boundary Integral Methods

Often, the boundaries of the fluid domain do not fit into a curvilinear coordinate system and
hence there is no way in which closed form analytical expressions for the velocity and pressure
may be derived. By using a BIM, the fluid disturbance far away from the particle surface can
be described by using a multipole expansion, and the moments of the expansion are solved
numerically for successive coefficients. For simple particle shapes, the basis functions forming
the solution are distributions of singularities in the particle interior which dictate the boundary
shape of the particle. For more complicated particle shapes the singularities are brought near
to the boundary of the particle shape giving the name Boundary Integral Method.

These methods reduce the complexity of corresponding numerical methods (finite difference
or finite element on the full 3D equations) by one spatial dimension. In particular, a 3D PDE is
transformed to a set of 2D integral equations for a set of Stokes singularities distributed along
the surface of the particle boundary (or indeed the boundary of the fluid domain if it include
some bounding surfaces). In particular, the integral equations take the form [98, Section 14.4]

u(y) = − 1

8πµ

∮
S

dS(ξ) G (y − ξ) · (σ(ξ; u) · n(ξ))

−
∮
S

dS(ξ) (n(ξ) ·Σ(y, ξ))) · u(ξ) for y ∈ Q (1.3.1)

p(y) = − 1

8πµ

∮
S

dS(ξ) P(y − ξ) · (σ(ξ; u) · n(ξ))

− 1

4π

∮
S

dS(ξ) (n(ξ) · ∇yP(y, ξ))) · u(ξ) for y ∈ Q

where Q is the fluid domain, n(ξ) is the unit vector pointing into Q and ξ parametrises the
surface of the particle. Furthermore, G is the Oseen tensor, P is the pressure field of the
Oseen tensor, σ is the stress tensor, Σ is the stress field or Oseen-Burgers tensor such that
8πµΣijk = −Pjδjk + µ (Gij,k + Gkj,i), each given by the relations

G =
1

r

(
1 +

r⊗ r

r2

)
, (1.3.2)

P = −2µ∇(r−1),

σ = −p1 + 2µe,

e =
1

2

(
∇u +∇u>

)
and r is a position vector with r = |r|. The rate of strain tensor, e, is independent of∇·u because
the fluid is assumed to be incompressible. The first integral in (1.3.1) is known as the single
layer potential, since it corresponds to a single layer of charges distributed over the surface of
an electrical conductor, by analogy with electric potential theory [165]. Conversely, the second
integral is known as the double layer potential, corresponding to a surface distribution of electric
dipoles, here a double layer of Stokeslets.

Computational Cost

There are computational advantages in using BIMs: first, the method reduces the computational
effort required for discretisation of the fluid domain by the dimensionality reduction and second,
in time independent problems, no grid remeshing is required at each time step. However the
asymptotic behaviour of the Stokes singularities emanating from the boundary of the particles
decay algebraically, propagating in all directions. Therefore a BIM tends to give rise to dense
systems (c.f. finite element methods for full the 3D Stokes equations) with N–body interactions
which does not lend itself well to parallelisation.

30



1.4 Microhydrodynamics Of Hard Spheres

Hydrodynamic interactions (HI) between bodies immersed in viscous fluid have been shown to
be important in modelling many complex fluid phenomena in physics, biology and engineering.
For example, in suspensions of cornstarch and other solid particles of micron sizes at high solid
volume fractions, the interplay between HI and particle contacts gives rise to a sudden increase in
viscosity with increasing shear stress [54, 107]. HI also affects complex fluid behaviour at many
length scales. At the small scale, the flow properties of suspended particles in emulsions and
gels have historically determined their physical and chemical classification. In hemodynamics,
blood is a suspension of platelets, white cells and high fractions of red cells in plasma, where
fluidity and stability may be significantly altered during disease processes [49].

On larger scales, the formation of topographical features under sea water is due to turbidity
currents, where both inertial effects and slow motion of the suspensions are important [12]. In
terms of numerical modelling, such as dynamical density functional theory formalisms for two
dimensional colloidal flow, the inclusion of HI is enough to alter the dynamics of the density
even when solving for dilute particle collections [61]. The relevance and applicability of HI
are therefore well established in many fluid flow problems in science and engineering. Many
physical models for the flow of particles accounting for such phenomena have largely varying
spatial scales which makes their computation challenging. Generally speaking, a numerical
model that accurately predicts complex fluid phenomena requires the full knowledge of the HI
between the suspended particles.

In Stokesian dynamics (SD), the quasi-static motion of a suspension of N rigid spherical
particles at low Reynolds number is given by [13]

F diss(rN ,vN ) + F = M
dvN

dt
, (1.4.1)

where M is a mass matrix, F diss is the dissipative force due to the HI of the particles mediated
by the solvent fluid, rN = [r1, · · · rN ]> is a vector of 6N particle position coordinates and
vN = [v1, · · ·vN ]> = drN/dt. The vector F accounts for conservative and non-conservative
applied forces for example: the force due to gravity and the frictional force applied to the
particle surfaces at contact, respectively. By nondimensionalising (1.4.1) with an appropriately
defined Reynolds number Re, the dissipative forces are taken as linear in the velocity of the
particles, and after setting Re = 0, equation (1.4.1) reads

−R(rN )vN + F = 0, (1.4.2)

where R is the resistance matrix for the conformation of particles with position vector rN .
As is standard in the theory, R is independent of the properties of the solvent fluid, as well
as the magnitudes and directions of the particle velocities. Rather, R depends only on the
particle separations and sizes. Note also that by adding a noise term to (1.4.2), correlated to
the thermal fluctuations of the solvent fluid according to the generalised fluctuation-dissipation
theorem [142], one may obtain the dynamics of Brownian motion.

In theory R has a large bandwidth, owing to N - body interactions. As in SD, in order
to solve for the particle velocities, one must invert a dense matrix in O(N3) operations which
will be computationally expensive. Approximations to R may be made in order to reduce the
computational cost for SD simulations. For example, Ball and Melrose [13] showed that R is
made sparse by approximating the full N -body interactions to a two-body formalism of long
range forces, with elements decaying as 1/rij , where rij = |ri − rj | is the distance between
the centres of sphere i and j (c.f. Rotne-Prager [154]). Such an approximation of R is valid
for non-dense systems, and, in this dilute regime, the hydrodynamic force due to lubrication is
dominated by the long range mobility force.

Conversely, in the highly concentrated regime the lubrication forces will dominate the ele-
ments of R. This may be justified by expanding R in moments including the one, two, three,
· · · , n- body interactions. One finds that the pairwise lubrication forces dominate the expansion
and higher order effects found using far-field expansions such as the method of reflections will
fade in comparison due to the divergent scalar functions of the lubrication forces [19].
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Long Range Forces

The hydrodynamics of well-separated particles has been implemented in DDFT formalisms,
[146], [62], [66], and tested against Brownian dynamics therein. The HIs in this regime of
particle separation were first developed by Oseen [98], and later Rotne and Prager [154]. The
formalism is based on the Green’s function solution to the Stokes flow problem for a sufficiently
well separated particle, that is

∇2u− 1

µ
∇p = f(r),

∇ · u = 0,

where f(r) is some force applied to the particle at position r. To solve with a Green’s function
approach, we let f be a point force at the origin and by Fourier analysis or similar [98], the
Green’s function or Oseen tensor is given by

Gij(r) =
1

r
δij +

1

r3
rirj (1.4.4)

where r is the distance from the origin and ri is the ith component of the position vector r. The
Green’s function is given in tensor form in (1.3.2) and presented in component form in (1.4.4).
From the Oseen tensor the fundamental solution pair may be constructed

u(r) = f · G

8πµ
, p = f · P

8πµ
(1.4.5)

where P is the pressure field of the Oseen tensor given by

Pj = 2µ
ri
r3

+ P∞
j

for P∞
j an ambient (constant) pressure. The solution u(r) in (1.4.5) is known as the Stokeslet,

or point force solution. The limiting assumption for the Stokeslet is that the sphere has been
treated as point-like. For finite-sized spheres or disks, this assumption will lead to non-physical
velocity and pressure fields. Not least, constructing a diffusion tensor from the Oseen tensor in
(1.4.4) does not result in a strictly positive tensor at all particle separations. In particular, at
small particle separations the smallest positive eigenvalue passes through zero leading to a non-
invertible friction tensor, violating the positivity of the rate of mechanical energy dissipation.
This also leads to issues when performing stochastic dynamics where one must take the square
root of the diffusion tensor, which is only possible if the tensor is positive-definite.

For finite sized spheres, one may use a multipole expansion to approximate the integral of
the Oseen tensor, along with a force distribution, over a sphere’s surface. For a sphere of radius
a at rj , to leading order the fluid velocity under the Stokes flow for a force fj applied to the
sphere is

u(r) =

(
1 +

a2

6
∇2

rj

)
f · G (r− rj)

8πµ
.

For a second sphere at ri moving at velocity vi, Faxen’s law states the force fi felt by sphere
i is proportional the the difference between vi and the ambient velocity v∞ (at ri), generated
by the motions of the other spheres. Therefore one has

vi =
1

6πµa
fi +

(
1 +

a2

6
∇2

ri

)
v∞(ri). (1.4.6)

Now we note that in this two–body formalism one has that v∞ is simply the sum over all
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leading order fluid velocities local to each sphere (not including self interaction)

v∞(ri) =
∑
j 6=i

(
1 +

a2

6
∇2

rj

)
f · G (ri − rj)

8πµ
. (1.4.7)

Therefore, by combining (1.4.6) and (1.4.7) we obtain

vi =
1

6πµa
fi +

∑
j 6=i

(
1 +

a2

6
∇2

ri

)(
1 +

a2

6
∇2

rj

)
f · G (ri − rj)

8πµ
:=
∑
j

D(ri, rj)fj +O
( a
r4

)
where in the last line we have defined the diffusion tensorD. It may shown, by Taylor expansion
that, for two spheres centred at ri and rj

D(ri, rj) =
1

8πµ

(
1

r
1 +

r⊗ r

r3
+

2a2

r2

[
1

3r
1− r⊗ r

r3

])
where r = ri − rj and r = |r|. For i = j one has D = 1/(6πµa) which is classical result of the
mobility of a single particle. Also, D is positive definite for all particle separations such that
r > 2a, which exactly corresponds to the case of non-overlapping hard spheres of radius a.

Short Range Forces

The Model for the Resistance Matrix R

For the analysis in this thesis, we are interested in highly concentrated systems. We specify the
three approximations we make in our construction of R.

A1 The HI are lubrication dominated, that is, the divergent interactions between close
surfaces dominate the elements of R in the highly concentrated regime.

A2 The HI are strongly coupled and we neglect n-body HI for n > 2.

A3 The HI are frame-invariant; the justification being that the solvent fluid (over large
enough distances) comoves with the particles.

Assumption A3 says that for a steady solvent velocity u of a Stokes fluid in a domain Ω one
has

1

|Ω|

∫
Ω

dr u(r) =
1

N

N∑
i=1

vi,

where |Ω| is the size of the fluid domain. Such an assumption is not valid for sedimentation
problems, where the solvent velocity u = 0 in Ω and the sphere velocities are collinear and
non-zero. Non-frame-invariant simulations of Brownian motion in shear flow show shear in-
duced ordering at low volume fractions, deviating from experimental observations [51]. We
may however relax A3 by rewriting the resistance matrix, as we will in Chapter 6.

With Assumptions A1, A2, A3 we now present our model for the resistance matrix R. For
a finite Reynolds number, and in components, the force balance in (1.4.1), in the absence of
external and contact forces, is given by an equation for the velocity vi of the ith particle

Re v̇i = −
N∑
j=1

a(nij)(vi − vj) · n̂ij ⊗ n̂ij + b(nij)(vi − vj) · (I− n̂ij ⊗ n̂ij) (1.4.8)

for 1 ≤ i ≤ N , where nij (n̂ij) is the (normalised) vector pointing between the centre of sphere
j to i, and I is the identity tensor.

Here a(nij) and b(nij) are the normal and tangential components of the hydrodynamic
interaction respectively as functions of nij . A crucial observation is that in the diffuse system
limit, both a(·) and b(·) should decay to unity so that Stokes law is recovered: the total force
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on particle i is proportional to its velocity with proportionality constant Stokes unit −γ. In
terms of the spectral properties of R, this means the eigenvalues must be degenerate in the
dilute sphere limit, and the general solution to (1.4.8) (after setting Re = 1) becomes

vi(t) = e−γt
N∑
j=1

cjej

for {ej}Nj=1 a basis of R3N and cj constants dependent on the initial velocity data.
Additionally, if vi = vj = c for all i, j then the total HI force on each particle is zero in

the reference frame co-moving at velocity c . This is equivalent to saying that R has a zero
eigenvalue associated with the translation of the entire system of particles at some uniform
velocity, or that the interaction model is Galilean invariant.

We may expand the summation in (1.4.8) and collect together terms multiplying vi to
define the resistance matrix R in block form, here determined by diagonal and off-diagonal
submatrices and Z1, Z2 respectively. We have

R =


∑
l 6=1Z1(r1, rl) Z2(r1, r2) · · · Z2(r1, rN )

Z2(r2, r1)
∑
l 6=2Z1(r2, rl) · · ·

...
...

...
. . .

...
Z2(rN , r1) · · · · · ·

∑
l 6=N Z1(rN , rl)

 , (1.4.9)

where the block matrices Z1 and Z2 are defined as

Z1(ri, rl) = −a(ril)
ri ⊗ rl
r2
il

− b(ril)
(

1− ri ⊗ rl
r2
il

)
Z2(ri, rj) = a(rij)

ri ⊗ rj
r2
ij

+ b(rij)

(
1− ri ⊗ rj

r2
ij

)

and where rij = |ri − rj | and a(·), b(·) are the scalar resistance functions corresponding to the
divergent squeezing and shearing lubrication interactions of the close surfaces at high concen-
trations respectively. We note that the block-wise notation of (1.4.9) with summations on the
diagonal is standard notation in statistical mechanical models of suspensions such as dynamic
density functional theories (DDFTs), see [61], [62]. Note that the rows of R sum to zero, which
implies that whenever vN = c0ei for some constant vector c0 ∈ R, and ei a basis vector of R3N ,
then vN ∈ kerR and the interaction is Galilean invariant.

With the model for the resistance matrix R defined we now discuss the model for the scalar
resistance functions which make up the elements of R.

The Model for the Scalar Resistance Functions a(·) and b(·)
For short range HI current models use asymptotic formulae for a(·) and b(·), for example the
expressions found in Kim & Karrila [98], valid in a ‘close’ region of particle separation, combined
with an arbitrary outer cut-off. It would be preferable to have a formula for both a(·) and b(·)
valid at all particle distances so that arbitrary cut-offs are avoided. This property is particularly
desirable in continuum formalisms, where the HI appear as convolution integrals with a separate
additive Stokes term. The convergence of such integrals requires knowledge of the behaviour
and decay of the scalar resistance functions over the entire support of the hard sphere number
density for accurate numerical solutions. As such, this thesis provides a derivation and analysis
of both resistance functions a(·) and b(·) valid at all particle separations. The analytical b(·) for
two spheres of unequal radii is not considered in the main text, because we found that in this
case, the boundary equations which need to be solved for the final set of series coefficients are
an intractable system of coupled recurrence equations requiring dedicated computer algebra.

We determine a(·) and the corresponding stream function at all particle separations, which,
to our knowledge, has not been previously obtained. We restrict the calculations to two non-
rotating spheres with opposite velocities. By the linearity of Stokes equations however, the
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angular component of the stream function for two approaching spheres rotating asymmetrically
may be linearly superimposed.

To compare to existing results, we provide in the following section a history of slow viscous
flow problems for two spheres.

History of Slow Viscous Flow Problems for Two Spheres

The singular HIs for each of the scalar resistance functions a(·) and b(·) which are computed in
this paper take the general form of infinite series. These are not the same solutions to problems
for two spheres in bipolar coordinates previously considered, e.g., Stimson and Jeffery [162],
Goldman et al. [70]. It is the boundary condition choice, entire regime of validity, and singular
nature of the HI that distinguishes this from previous works, described as follows.

The classical work concerning exact solutions for two spheres with equal velocities in viscous
flow was presented by Stimson and Jeffery [162] for two drafting spheres. Similarly, Goldman
et al. [70] consider two spheres settling side by side for a single mode of tangential interaction.
Our derivations use the same formalisms but with opposite velocities, leading to the ε−1 and
log ε−1 singularities respectively. In that paper [162], there are two errata: firstly, for the first
equation of their section 4, the factor inside the square bracket −(1 − µ2) should be (1 − µ2)
(where µ = cos ξ in their notation, we use x = cos ξ, see Nomenclature), secondly their equation
(37) for λ, a nondimensional force, is defined as half the correct value as noted in Happel and
Brenner [75]. While on the subject of errata, we refer the reader to Townsend [169] for a
discussion and derivation of corrections to the scalar resistance functions computed in Jeffrey
and Onishi [92].

Not long after the result of Stimson and Jeffery [162], Faxén [55] gave a value of the hydro-
dynamic force on the two drafting spheres at contact. Both results have since been validated by
Bart [14], who experimentally measured the force on two equal spheres settling under gravity
in viscous fluid and showed good agreement with the theoretical value. Later work by Maude
[117], adapting Stimson and Jeffery [162], calculated the finite-size effects of a falling-sphere
viscometer. Hence the chosen bipolar formalism for exact solutions has good experimental
validation as a method to compute flow around two spheres.

The subsequent history of the mathematical treatment of viscous flow around two spheres
can be divided into two classes: exact and approximate. In the exact class, notable results are
obtained by employing bipolar coordinates to solve for the fluid velocity and hydrodynamic
force. Boundary condition cases include those due to O’Neill [128], considering the parallel mo-
tion of a sphere to a plane wall; O’Neill and Majumdar [129] treating the rolling and translating
motion parallel to a stationary sphere in viscous fluid; Goldman et al. [70] studying the motion
of two spheres settling under gravity; and finally Cox and Brenner [37] treating the motion of a
sphere normal to a plane wall and considering the asymptotic limits at small separations. The
asymptotic methods presented in this paper are analogous to those in Cox and Brenner [37],
also similar to a treatment by Hansford [74], but therein the work is based on the constants
determined by Brenner [23]. The asymptotics in the present work go beyond the statement that
the O(1) term cannot be obtained by asymptotic analysis (see Kim and Karrila [98], chapter
7).

There have also been more recent studies and applications of the solutions arising from the
bipolar coordinate system, e.g., by Papavassiliou and Alexander [132] which concerns the motion
of a sphere in viscous flow near a convex shell. For completeness, the study of droplets should
be mentioned: Wacholder and Weihs [173] considered the exact solution to Stokes equations
both inside and outside spherical droplets with equal settling velocities, and Haber et al. [73]
generalised the former to two spherical droplets of different viscosities. Both of these studies
concern a non-singular hydrodynamic interaction between droplets, which is different to the
present boundary condition choice.

In the approximate class lie techniques such as the method of reflections (a series solution
best suited for widely separated spheres [98]) and lubrication theory (solving Stokes equations
directly by a perturbation expansion). Notable publications are, e.g., by Jeffrey [90] on which a
popular reference for the singular hydrodynamic force between two collinear spheres in viscous
fluid Kim and Karrila [98] is based. The derivation by perturbation methods in the latter, apart
from algebraic errors not affecting the final result, is not valid as the sphere separation increases.
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This means arbitrary truncations must be used for numerical implementation [170]. The choice
of location of the cut-off and convergence of the truncated expressions remains mysterious. A
fundamental assumption shared by these formalisms is the choice of scaling ratio between the
cylindrical coordinates z/r ∼ ε1/2 defining a singular perturbation problem, which has not been
justified until the analysis in the present work. In particular we show this scaling is correct by
expanding the bipolar coordinate system and infinite series around the singular contact point.

An alternative approach is the multipole method. To do this for our chosen sphere con-
figuration, one would compute the velocity and pressure fields using the method of reflections
around the two sphere centres, separated by a distance R. Using the addition theorems for
spherical harmonics, the pressure and velocity are written as linear combinations of Lamb’s
solutions to Stokes equations. However, this results in an infinite set of series coefficients for
the velocity and pressure, which are obtained only in the form of another series in R−1, the
coefficients of which satisfy known but non-analytical recurrence relations [98]. The method is
by no means explicit, only obtaining Taylor series representations of the velocity and pressure
fields and requires unavoidable computer algebra. What is more, to compute the hydrodynamic
force on two spheres to a given accuracy will require ever more expansion terms as R decreases,
making the method computationally unfavourable in the near-contact limit.

In this paper we give the first quantitative comparison, for this particular two-sphere in-
teraction, between the present solution obtained by spherical bipolar methods and the one
obtained by the multipole methods[92]. As a result, we are able to highlight the analytical and
practical strengths of the present work by implementing both the novel and existing results in
a numerical example for colloidal flow.

1.5 Beyond Direct Numerical Solution Of Colloids In
Stokes Flow

Molecular Dynamics

One way to understand the evolution of a many body systems such as colloids, is to sample the
statistical ensembles which generate realisations of all possible states of the macroscopic system,
given a set of fixed thermodynamic conditions. For a general fluid comprising larger molecules
which are composed of atoms held together by chemical bonds, in order to understand the
overall properties of the entire system of molecules, one may simulate the motion, deformation
and interaction of the molecules and use this data to compute bulk thermodynamic variables.

Due to the large number of molecules present, and the forces of interaction between them,
the evolution of a typical molecular system displays chaotic behaviour and sensitivity to ini-
tial conditions. Nevertheless, molecular dynamics methods have demonstrated their ability to
estimate bulk variables and averaged dynamics consistent with continuum methods where ap-
propriate as well as retrieving high resolution microscopic dynamics which is typically eluded
by continuum methods.

The limitation of molecular dynamics simulations is scale. The fact that there are 2× 1025

hydrogen and oxygen atoms in a glass of water means the initial positions and momenta of
each of the atoms must be stored in 1.2× 1026 blocks of memory [105]. Hence the simulation of
familiarly sized quantities soon becomes computationally intractable. The speed and capacity
of modern high performance computing architectures therefore limits many simulations to the
cubic nanometer scale, however if the interactions between the molecules are sufficiently weak,
for example, considering only the rapid decay of short range forces, many millions of atoms
may be simulated. The prevalence of such weakly interacting systems in nature however is
uncommon, as many organic molecules possess electrostatic interactions in their atoms which
decay over long range. This restricts the time step size in many numerical schemes, because
the time taken for a given snapshot of the system to change due to one interaction is so short.

Molecular Scale: Hamiltonian Systems

Systems in which the total energy is conserved may be best described by Hamiltonian dynamics.
The equations of motion for a collection of N molecules with mass mi are written for some
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smoothly varying interaction potential

ṙi = ∇piH, (1.5.1a)

ṗi = −∇riH (1.5.1b)

where H = 1
2p ·M−1p + V (r) and M = diag(mi) is the mass matrix. The set of all positions

and momenta such that the energy, or Hamiltonian, is finite is the known as the phase space.

The existence and uniqueness of solutions (phase points) relies on the fact that with the
energy constraint H(x) = E, if the potential energy is bounded below, then a phase point p
remains bounded for all time. As for the positions, one has V0 ≤ V (r) ≤ E hence if the level
sets V (r) = s are uniformly bounded s ∈ [V0, E], r must remain confined to a compact set in
the phase space. In other words r cannot discontinuously jump between level surfaces. A more
complete derivation of the existence and uniqueness is given in [105]. The uniform boundedness
in the potential energy also implies that V must confine the phase trajectories. For systems
without confining potentials, existence and uniqueness of the phase points will rely on either
periodic or no flux boundary conditions to ensure that trajectories are confined to compact sets
of the phase space.

Typical trajectories of the ordinary differential equations (1.5.1a)-(1.5.1b) will show sensi-
tivity in initial conditions. The individual paths of the hard spheres will have a complicated
dependence on the motion of all the other spheres in the system since the path is dictated by
the momentum exchange at collision. Since typical collision times are very fast (the speed of
sound in water is 1.5 × 103 m/s at room temperature), in a short time the dynamics of the
system will be quickly memoryless of its initial data.

Hard Sphere Systems

One of the first molecular models considered was the hard sphere model, where molecules
are taken as spheres which collide with each other elastically when they meet. Such models
are known as ‘event driven’ where time is marched up until the next collision event where
two molecules’ velocities are updated. The interactions are non smooth, or infinite at short
range since the velocity of each sphere is only modified at contact. Smoothly varying hard
core exclusion and attraction is more difficult to model with event driven dynamics, since the
definition for next contact time is ambiguous. For purely hard sphere collisions one may use a
constrained Hamiltonian framework, namely

H =
1

2
p ·M−1p + V (r), (1.5.2a)

‖ri − rj‖ ≥
σi + σj

2
,

for 1 ≤ i 6= j ≤ N and σi is the diameter of sphere i. The first term in (1.5.2a) defines the total
energy of the hard sphere system, where as the inequality imposes hard sphere exclusion. At
collision the exchange of momentum and kinetic energy is elastic hence the model requires an
infinite potential energy for overlapping spheres and zero otherwise. Hence, the Hamiltonian
for the hard sphere system may be consolidated into

Hhs =
1

2
p ·M−1p + V (r) + V∞

where

V∞ =

{
∞ for ‖ri − rj‖ ≤ σi+σj

2 ,

0 otherwise.

Hard sphere attraction may also be accounted for, as a proxy for electrostatic interactions,
e.g., a Hydrogen electric dipole, in a perturbative manner with inclusion of a Lennard Jones
type potential added in linear combination to V∞. The DFT counterpart to such systems is
discussed in Section 1.6.
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An implementation of the Hamiltonian Hhs would not in general involve computing V∞
because of the numerical instability in using an infinitely valued characteristic function. Instead
the system of hard spheres is evolved byH until the first overlap between two spheres is detected,
upon which the dynamics is reverted to the latest time step before the collision and velocities of
the two spheres is updated according to the conservation of momentum. The system is evolved
by composing a flow map consisting of a collision operator with a choice of numerical schemes.
The schemes are based on collision detection during the time step, at the end of the time step
or approximation the time to the next collision [118], [84] [56]. The speedups in using multiple
cores to handle subgroups of the system are computationally appetising, and the Hamiltonian
system must be split in order to do this. This method may be particularly useful if there are
parts of the computational domain in which it is known that few collisions will happen, so that
resources may be devoted to stiffer regions with high collision frequency.

Primitive splitting involves defining a ballistic Hamiltonian Hb = 1
2p ·M−1p+V∞ to evolve

the spheres with intermittent exposure to the potential energy. Such schemes, depending on
the implementation, can be shown to force the energy to become unbounded in finite time.
However, for a finite number of collisions, the numerical error of such splitting algorithms are
typically O(h) where h is the step size [84].

Molecular Scale: Stochastic Systems

We now make the connection between the Newtonian dynamics discussed in the previous sec-
tions to Stochastic systems. For two macroscopic systems in contact, one larger than the other,
the sum of the energy of the heat bath (the larger system) and the energy of the active sys-
tem (the smaller system) will be conserved, hence in principle one may use a Hamiltonian
framework to compute trajectories of all the molecules of the ensemble. However it would
be very computationally demanding to compute the trajectories of the bath since they are so
numerous. Additionally, if overlooking the bath, constant energy dynamics (such as the hard
sphere dynamics) can not sample the Canonical distribution, since the Microcanonical Ensem-
ble (characterised by constant energy) cannot access volumes of the phase space different to
that as prescribed by the initial data H(x0) = E0. Hence, in general, one needs a different
method to sample the dynamics of the underlying macroscopic system.

A dynamical representation of the underlying Canonical Ensemble characterised by constant
temperature is thermostated MD. One way of generating dynamical trajectories is by sampling
the paths of the Langevin dynamics

dri
dt

=
1

m
pi, (1.5.3a)

dpi
dt

= −∇riV (r)− γpi +
√
γmkBTfi (1.5.3b)

where fi(t) = (ζxi (t), ζyi (t), ζzi (t))> is a Gaussian white noise term with mean 〈ξai (t)〉 = 0
and autocorrelation 〈ξai (t), ξbj (t)〉 = 2δijδ

abδ(t − t′). Here the energy exchange with the heat
bath is provided by the friction coefficient and random bombardments from the bath particles.
The Hamiltonian of the active system (colloidal particles) may fluctate but the temperature is
controlled through the noise term. The Langevin equations (1.5.3a)-(1.5.3b) may be rigorously
determined to be the correct dynamics for the system, by considering a single heavy particle
coupled to a finite number smaller particles acting as oscillators with which momentum and
kinetic energy may be transferred. At sufficiently high frequencies, the oscillations manifest
as a Wiener process, with the mean effect of retarding the heavy particle by a magnitude
proportional to its momentum with small random perturbations owing to heat energy of the
bath [57].

Many generalisations of this molecular model may be made, in particular, for a solid phase
dispersed in a liquid medium such as hard sphere colloids, one may consider the additional
effects due to the hydrodynamic interactions (HI) between the molecules of the active system
mediated by the bulk. This generalisation augments the friction term −γpi to the action of a
friction tensor on the momentum vector, and the noise term becomes proportional the square
root of this tensor, as dictated by the generalised fluctuation dissipation theorem. In particular,
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for HI between the colloids, the Langevin equation becomes

dri
dt

=
1

m
pi

dpi
dt

=−∇riV (rN , t)−
N∑
j=1

Γij(r
N )pj +

N∑
j=1

Bij(r
N )fj(t)

where m is the particle mass, rN = (r1, · · · , rN )>, pN = (p1, · · · ,pN )>,B = (mkBTΓ)
1/2

, V is
a potential, kB, T, γ are Boltzmann’s constant, temperature and friction coefficient respectively.
These Langevin dynamics, including HI, constitute the central dynamical system considered in
Chapter 2. In order to compute trajectories of the Langevin dynamics however, one needs
construct the friction tensor Γ with formulae for the HI between the colloidal particles, which
we will derive in Chapters 3 and 4.

1.6 Density Functional Theory

Density Functional Theory (DFT) was first developed in the 1960s for quantum mechanical
systems as a method to calculate electron densities in the presence an external potential [81].
It is motivated by the computational scaling solving the Schrödinger equation in Slater deter-
minants [60]. DFT replaces the wave function with an electron density which is a function
of three spatial variables, independently of the number of electrons. In their seminal paper
[81], Hohenberg and Kohn developed DFT and proved that the ground state wavefunction is a
unique functional of the density, and equally all other statistics, including the energy, flux etc
are functionals of the density.

At the centre of DFT is the surprising result that the N body probability density for the full
phase space %(N) is a functional of the one body probability density %(r), dependent only on a
single particle position and momentum variable. This may be established by the fact that, for a
fixed interparticle interaction kernel, a system at a given temperature T and chemical potential
µic (for each of the constituent particles’ species), there is an invertible mapping between the
external potential and the one-body density profiles {%i}. Then, since %(N) is determined by
the external field Vex, there is a one to one map may be may between % and %(N). DFT has
become a very popular method in quantum mechanics to compute the ground states of various
electronic equilibrium systems [16].

DFT For Classical Fluids

Since Hohenberg and Kohn [81], DFT has been extended to classical fluid systems with non-
constant number density [53], [46], and has been shown to be an accurate approach in modelling
microscopic structure in many condensed matter systems: in soft matter [93], atomic systems
[152], polyatomic systems [31], multiphase systems in the presence of hard geometries [133] not
to mention the classical moving contact line problem for droplet spreading [158].

The Hohenberg-Kohn-Mermin theorem establishes an intrinsic Helmholtz energy functional
that is independent of the external potential. Then, functional derivatives of the Helmholtz
energy lead to multibody correlation functions that allow the determination of both the struc-
ture and thermodynamic properties of the equilibrium fluid [179]. Such properties include
accurate surface tension calculations at the liquid–vapour interface[53], and surface tension and
density profiles of the interface between the demixed fluid phases of a binary mixture [8]. Ad-
ditionally there have been many fruitful applications of DFT in the theory of phase transitions
[159], crystal growth [131], not to mention invertible mapping for density profiles with non zero
momentum distributions in off-equilibrium problems [115], [30].

For classical DFTs one requires reliable approximations for the excess Helmholtz energy
functional to account for intermolecular interactions. One strategy which is commonly used to
do this is to seek a direct approximation of the free-energy functional by a local- density ansatz
depending on the phenomenology one wishes to to include (for example, hard spheres [148],
disks [149] or rods [140]). Such examples account for the hard core exclusion of the particles.
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To account for attractive forces, contributions to the intrinsic free energy density are treated
in a perturbative manner [182], [167].

DFT has made many complicated systems in fluid mechanics, biology and soft matter in-
cluding large spatial and temporal scale separations computationally tractable, where a direct
application of the Schrödinger equation would be impractical. Thermodynamic properties,
such as fixed temperature, chemical potential and volume, are incorporated into the formula-
tion of DFT instead of being indirectly computed from the mechanical evolution of the particles
in molecular dynamics. What is more, DFT provides an effective way to predict mesoscopic/-
macroscopic variables intrinsic to continuum models of fluid flow (for example the Navier-Stokes
equations), where the overlap is rigorously known to be valid. To do this one must construct
the Helmholtz free energy which we now discuss.

The basic DFT formalism for classical fluids states that there is a unique intrinsic free energy
Fin, which is a functional of the density profile %(r) and not the external potential. In other
words the grand potential energy Ω is written as

Ω[%] = Fin[%] +

∫
dr%(r)(V (r)− µc) (1.6.1)

and is minimised by the Grand Canonical equilibrium density distribution for the system in
presence of external potential V (r) and in contact with a reservoir of particles at chemical
potential µc. The equilibrium density is obtained by a solution to the Euler Lagrange equation

δΩ

δ%
[%] = 0

which is a drastic simplification, compared to the direct evaluation of the grand partition
function to compute the equilibrium density %

%(r) =
〈 N∑
i=1

δ(r− ri)
〉
≡ 1

Ξ

∑
N≥0

e
µcN
kBT

(N−1)!h3N

∫ N∏
i=1

drie
− VN
kBT δ(r− ri)

where ri are the particle centres, Ξ is the normalisation constant and VN = VN (r1, · · · rN ) is the
total potential energy of the particles including molecular interactions and external potential
energy and h is the thermal wavelength (Planck constant).

Free Energy

The free energy may be split in the ideal gas contribution plus an excess free energy, Fex[%] to
be discussed. In hard core systems for example, Fex takes into account the entropy reduction
arising from the exclusion of the hard sphere cores. One may write

F [%] = Fid[%] + Fex[%]

where Fid[%] = β−1
∫

dr %(log Λ3%−1), β = (kBT)−1, and Λ3 is the de Broglie wavelength. The
free energy Fid is the intrinsic free energy of a non-interacting ideal gas. We have, therefore,

Fin[%] =

∫
dr [Φid(%(r)) + Φex([%]; r)]

for Φid(%(r)) = β−1%(log Λ3%−1) where as the excess free energy density Φex([%]; r) is a function
of r and a functional of %. Since there is more than one way to separate the total free energy
excess of the system in terms of local contributions, there may be more than one choice of Φ
giving rise to the same Fex[%]. More complicated systems may be considered too, for example
(1.6.1) may be summed over all particle species or segments of a polymeric chain with segment
specific external potentials. At any rate Fex[%] is not always known and must either be posed
or computed from microscopic dynamics.
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Density Expansion Methods

An expression of the excess free energy at low densities %(r)→ 0 may be obtained for a general
system interacting via pairwise potentials Vin(|ri−rj |). We let Vin(|r−r′|) =∞ for |r−r′| < σ
and zero otherwise. Furthermore, by introducing the pair distribution function g(r1, r2) such
that

g(r1, r2) =
%(N)(r1, r2)

%(r1)%(r2))
=

N(N − 1)

%(r1)%(r2))

1

Ξ

∫
drN−2 e−βV (rN ),

where V = Vin + Vex is the total potential energy, one expands the excess free energy term,
Fex[%] = Trf0Vin, in (2.1.2) in a Taylor series to obtain the so called virial expansion

βFex[%] = −1

2

∫
dr1 %(r1)

∫
dr2 %(r2)f(r12)

− 1

6

∫
dr1 %(r1)

∫
dr2 %(r2)

∫
dr3 %(r3)f(r12)f(r23)f(r31) + · · ·

where rij = |ri − rj | and f is the Mayer function f(rij) = exp(−βVin(rij)) − 1. For hard
sphere systems, the Mayer function masks the volume of the computational domain which is
not accessible for a given hard sphere [151]. For multiple hard core species, by functional
differentiation, the leading order term of the excess free energy, relative to the ideal gas, is
given by the pair exclusion at low densities thus

β
δFex

δ%i
[%i] −→

ν∑
j=1

∫
dr′%j(r

′)Θ
(
|r− r′| − 1

2 (σi + σj)
)

as %j → 0, where σi is the diameter of species i, and Θ is a step function such that Θ(x > 0) = 0
and Θ(x ≤ 0) = 1. It then remains to obtain a closed form expression for Θ in terms of a
functional of the density of hard core species i, which has been obtained explicitly in the case
of a few cases, e.g., hard rods, discs and spheres.

Other Fluid Models

Polymeric Fluids

Other density expansion methods have been used in van der Waals theory of capillarity [155]
and phase transitions in binary fluids [25]. The central idea in these methods is to expand
the Helmholtz energy functional Taylor expansion around a differential density profile ∆φi
corresponding to an equilibrium density for the binary fluid. One poses a Helmholtz energy
Fex[%] of the form

βFex[%] =

∫
dr f [φ0

i (r)] +
1

2

∑
i,j

∫
dr′
∫

dr Υij(r− r′)∆φi(r)∆φj(r
′) + · · · ,

where φ0
i is the volume fraction of phase i, f [φi] is the Helmholtz energy density of a single phase

system with volume fraction φi, ∆φi = φi− φ̄i is the differential volume fraction. φ̄i is the local
average volume fraction and Υ is known as the vertex function which, for polymeric systems,
encodes correlations between different segments from the same chain and from different chains.
Such density expansions are used for polymeric fluids [31] and the Ramakrishnan-Yussouff
theory of freezing [143]. There are numerous ways to define the Helmholtz energy density f [φi],
φ̄i and Υij which may or may not give rise to phase transitions [40].

Anisotropic Fluids

For systems with a non-constant number density of rigid asymmetric molecules one may specify
the density profile %, as a function of centre of mass r and orientation ω in order to study
isotropic-nematic phase transitions. The Helmholtz energy functional as proposed by Onsager
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[130] is given by

βFex[%] =
∑
i

∫
dr

∫
dω %i(r, ω)[log 4π%i(r, ω)− 1]

− 1

2

∑
i,j

∫
dr

∫
dω

∫
dr′
∫

dω′ fij(r− r′, ω, ω′) + · · ·

where fij is the Mayer function, dependent on the pair potential between the molecules as a
two body approximation, this time with angular dependence. The expression for Fex[%] here
was first proposed as Helmholtz energy giving rise to density profiles in lyotropic liquid crystals
(a liquid crystal formed by adding a solvent e.g. soapy water). Other applications include
platelets in blood and more general rod fluids [76].

Mean Field Approximations

In the mean field approximation (MFA), one considers only very soft molecular potentials and
the particles may be assumed to be fully uncorrelated so that the excess free energy is given
by, for a single species,

Fex[%] =
1

2

∫
dr%V2 ? %

where V2 is a two body molecular interaction and ? denotes the convolution operation. From
the rules of functional calculus one obtains

δFex

δ%
[%] = V2 ? %

which may be taken as the potential created on a particle at r by virtue of the distribution of
the particles in the system as a whole, on average. The MFA is a good approximation for soft
interactions, as for those found between dissolved polymer chains. For hard particles, to avoid
overlap, V2 must be infinite inside the core. Often such systems are treated with a mixture of
MFA and hard core exclusion, the former accounting for attractive forces between molecules
and is known as the generalized van der Waals approximation.

Hard Core Systems

One of the most successful density functional formalisms for inhomogeneous systems with hard
cores is Fundamental Measure Theory (FMT). Developed first through weighted density ap-
proximations, FMT has many applications for polydisperse systems, liquid crystals and many
interfacial phenomena. In classical fluid mechanics it is common to observe fine structure, such
as layering at wall interfaces, attributed to molecular packing. Hence accurate free energy
computations of hard spheres are required to determine a reliable Helmholtz free energy for
confined systems. The exact free energy computation for hard rods, presented by Percus in
1976 [140], established a reliable test case for DFT as well as insight into how to extend to 2D
hard disks and 3D hard spheres. The first step to establishing FMT was through Weighted
Density Approximations (WDAs) in the 1980s before the appearance of FMT in 1990s.

1D Hard Rods

One of the few density functional formalisms for the exact intrinsic free energy calculation of
for a system of particles is 1 dimensional hard rods, as presented by Percus in 1976 [140]. The
excess free energy density is given by

Φex([%];x) = −%(x+ σ/2) + %(x− σ/2)

2
log
[
1−

∫ σ/2

−σ/2
dx′ %(x+ x′)

]
(1.6.2)
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where the integral inside the logarithm represents the probability that the point x is covered by
one of the hard rods and σ is the rod length. The Euler-Lagrange equation, (1.6), for a system
using the excess free energy of 1D hard rods in a confining potential V in thermal contact with
a bath at chemical potential µc is given by

log %(x) + β
δFex

δ%
[%] + βV (x)− βµc = 0. (1.6.3)

Note that by definition of the excess free energy density (1.6.2) the functional derivative in
(1.6.3) produces an integral equation for %(x) and the density profile therefore cannot be solved
independently for each x. The Euler-Lagrange equation therefore becomes a non-local problem
for the equilibrium density.

Fundamental Measure Theory

Fundamental Measure Theory (FMT) was first introduced in 1989 by Rosenfeld [148] and was
considered to be big step in free energy computations of hard core systems, which up until that
time had seen mostly unsuccessful attempts to generalise Percus excess free energy density to
higher dimensions. The monodisperse case is neater to present. The central idea is to include
the packing fraction as an essential non-local measure of the free energy contributed by the
hard sphere. For mass m = 1 spheres the dimensionless packing fraction η = π%σ3/6 is the
ratio of the volume occupied by the hard sphere to the total system volume.

The natural extension to hard sphere systems is the local packing fraction, as a function of
the spatial variable r

η(r) =

∫
dr′ %(r + r′)Θ

(σ
2
− |r′|

)
where Θ is the Heaviside function, which represents the probability that r is inside a hard
sphere core for random configurations over the conical ensemble. The main idea of FMT is
that it is the shape of a single molecule (sphere), rather that the excluded volume between the
molecules, which describes the non-local dependence of the excess free energy density Φex([%]; r).
In particular Φex([%]; r) is represented as a function of the local packing fraction and weighted
densities, each convolutions in the density profile within the range of the hard sphere radius.

The excess free energy density in (1.6.2) may be written in terms of a (surface) weighted
density n(r) as Φex([%];x) = −n(x) log[1− η(x)] where n is given by n(r) =

∫
dr′ %(r + r′)w(r′)

and w is the normalized molecular surface weight function, w(r) = δ(|r|−σ/2)
sd

for sD the molec-
ular surface in d dimensions. In this way one sees how the free energy density of 1D hard rods
is a special case of the present formalism. The leap that Rosenfeld made was noticing that the
Mayer function f(rij) for a mixture (multiple species with diameters σi) of hard spheres may
be decomposed into

−f(rij) = ωi3 ⊗ ω
j
0 + ωi0 ⊗ ω

j
3 + ωi2 ⊗ ω

j
1 + ωi1 ⊗ ω

j
2 − ωi2 ⊗ ω

j
1 − ωi1 ⊗ ω

j
2

where

ωi3(r) = Θ
(σi

2
− r
)
, (1.6.4a)

ωi2(r) = δ
(σi

2
− r
)
, (1.6.4b)

ωi2(r) =
r

r
δ
(σi

2
− r
)
, (1.6.4c)

and ωi1 = ωi2/(2πσi), ω
i
0(r) = ωi2(r)/(πσ2

i ) and ωi1(r) = ωi2(r)/(2πσi). The operation ⊗ is
known as the 3 dimensional convolution, defined by

ωαi ⊗ ω
β
j (r = ri − rj) =

∫
dr′ ωαi (r′ − ri)ω

β
j (r′ − rj). (1.6.5)

For the convolution between the vector fields ωαi the scalar product is implied in the integral
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of (1.6.5). By definition, integration over the weight functions ωiα gives: the volume (α = 3),
surface area (α = 2), mean radius of curvature (α = 1) and Euler characteristic (α = 0) for
species i, giving rise to the name FMT. Rosenfeld’s decomposition decomposition of the Mayer
function is not unique, in particular Kierlik & Rosinberg [97] proposed another decomposition
without vector weight functions although substitute this difficulty with a decomposition in
terms of derivatives of the Dirac delta function.

In Rosenfeld’s original presentation, the vector fields ωαi are needed to obtain a jump dis-
continuity expressed as a convolution for the hard spherical shell. Natural dimensional weighted
densities that represent either surface or volume-averaged densities come about from the ωαi

nα(r) =

ν∑
i=1

∫
dr′%i(r

′)ωαi (r− r′) (1.6.6)

where ν is the number of distinct hard core species. With this definition, Rosenfeld suggests
the excess free energy density

Fex[%i] =

∫
dr′ Φex([nα(r′)])

where

Φex = f1(n3)n0 + f2(n3)n1n2 + f3(n3)n1 · n2 + f4(n3)n3
2 + f5(n3)n2n2 · n2

which is argued by dimensional analysis as the correct form, for some functions fi to be de-
termined. In simulations the single component hard sphere model has been shown from sim-
ulations that the model undergoes a first order freezing transition, which is a purely entropy
driven transition.

Lennard–Jones Fluid

For DFT for a fluid in which the particles interact via a pair potential which has both a sharply
repulsive component and a longer ranged attractive component, e.g. the noble gases, and their
mixtures, one may begin by approximating the free energy functional by a hard sphere system
combined with a meanfield theory

Fex[{%i}] = Fhs
ex [{%i}] +

1

2

∑
i,j

∫
dr

∫
dr′ %i(r)%j(r

′)φattij (r− r′)

where Fhs
ex [{%}] is the excess free energy functional obtained from a hard sphere mixture of

multiple species, e.g., FMT and φattij (r − r′) is an attractive pair potential between species i
and j.
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1.7 Organisation Of The Thesis

This thesis is organised as follows. In Chapter 2 we outline the statistical mechanical framework
of atomistic fluids and derive, from first principles, a novel DDFT to include inertia, HI and
external currents. In Chapter 3 we consider analytical solutions to Stokes equations in order to
compute the normal mode of the singular HI, a(·). In Chapter 4 we consider analytical solutions
to Stokes equations in order to compute the tangential mode of the singular HI, b(·), as far as
equal spheres. In Chapter 5 we use the results of Chapters 3 and 4 to establish positivity of the
resistance matrix R using the present theory, GMS, for some simple particle configurations, and
compare to the spectral behaviour when assembling R with existing formalisms, particularly
Kim & Karrila and Jeffrey & Onishi. In Chapter 6 we consider numerical solutions to DDFT
by using pseudospectral methods to discretise the density, including short range HI according
to the three formalisms: GMS, Kim & Karrila, and Jeffrey & Onishi. In particular we consider
a few dynamical scenarios, including colloidal flow in a potential, colloids in an oscillating
trap, and flow in an infinite slit (to include confinement effects with rigid boundaries). In
Chapter 7 we present the well-posedness of overdamped DDFT with two body HI including,
convergence to equilibrium and bifurcation theory for confined densities. In Chapter 8 we make
our concluding remarks regarding the results of the previous chapters, as well as discussing open
problems. Finally in the Appendix A we provide additional details for calculations undertaking
in previous chapters including: Appendix A.1, the asymptotic theory applicable to Chapter 3;
Appendix B.1, recurrence relations for unequal spheres for the tangential interaction in Chapter
4; and Appendix C, which provides more detail on the pseudospectral collocation schemes used
to compute the solutions to the PDEs in Chapter 6.
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Chapter 2

Dynamic Density Functional
Theory

In this chapter we derive the DDFT for classical fluids driven by a steady external current.
The derivations extend the PDEs found in previous formalisms [112], [7], [146], [61], [62], to
a wider class of systems, namely driven colloids with inertia and hydrodynamic interactions.
We present the essential elements required to determine an inertial case DDFT with an ap-
plied external flow and hydrodynamic interactions. In Section 2.1 we present the statistical
mechanical framework for the classical atomistic fluids. In Section 2.2 we discuss the history
and recent advances in DDFT. In Section 2.3 we present the Langevin dynamics for the system,
define the main modelling assumptions and show that the stochastic equations reduce to those
found in overdamped formalisms. In Section 2.4 we derive the Fokker-Planck equation associ-
ated to the Langevin dynamics. In Section 2.5 we derive, from first principles, the DDFT for
the driven system. In Section 2.6 we present the equations of motion in compact form, along
with the assumed boundary conditions. In Section 2.7 we take heuristic limits of the derived
equations, showing agreement with previously studied DDFTs (for example, in the overdamped
limit γ → ∞, [21], [145], [144]). Finally in Section 2.8 we determine a Bernoulli principle for
the new equations.

2.1 Statistical Mechanics Of Classical Fluids

In this thesis the convergence to steady state of hydrodynamic quantities of a liquid, such as the
density and flux, as well as the dynamical dependence on short range hydrodynamic interactions
and external currents, is investigated. In order to formalise the steady states of systems, we
present the grand canonical density defining the equilibrium probability density for the grand
canonical ensemble of a full macroscopic system with 6N degrees of freedom to describe position
and momentum of the N particles in 3D dimensional space. For an open system at temperature
T, chemical potential µc and volume V, the equilibrium probability density f0 characterising
the Grand Canonical ensemble defining is given by

f0 := Ξ−1e−β(H−µcN)

where H is the Hamiltonian for N particles, here assumed to include inter-particle potential
energy and β = 1/kBT. The operator Ξ is the grand partition function and is given by

Ξ = Tr e−β(HN−µcN)

where the classical trace operator, Tr, is defined as

Tr :=
∞∑
N=0

1
h3NN !

∫
drN dpN
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where h is Planck’s constant, included for historical and quantum mechanical reasons, to nondi-
mensionalise the resulting integral in terms of the kinetic energy of an electron ganied or lost
after accelerating across a voltage in a vacuum. One sees that Ξ, the Partition function, is a
normalisation factor. The Mermin functional [121] given by

Ω[f ] := Tr f(HN − µcN + β−1 log f).

is minimised by f0 and, in particular at f0 we have

Ω[f0] = −β−1 log Ξ =: Ω

where Ω is now defined as the Grand Potential. It is elementary to see that

Ω[f ] = Ω[f0] + β−1(Tr f log f − Tr f log f0). (2.1.1)

Hence as long as f 6= f0 then Gibbs’ inequality holds Tr f log f −Tr f log f0 > 0, and therefore
by (2.1.1), Ω[f ] > Ω[f0] meaning f0 is the global minimiser of Ω.

Now restricting to Hamiltonians of the form

H = Q+ Vin + Vex

where Q =
∑N
i=1 p2

i /2m denotes total kinetic energy of the particles, Vin = Vin(r1, r2, · · · , rN )

denotes all two-body interparticle potentials and higher, and Vex =
∑N
i=1 V1(ri). denotes all

one body potentials.

Definition 2.1.1. The equilibrium density ρ0(r) for a system is given by ρ0(r) = 〈ρ̂(r)〉 where

ρ̂(r) =
N∑
i=1

δ(r− ri)

is the empirical density operator, and the configuration average of any operator L is defined

〈L 〉 := Tr f0L .

Note that since f0 is a function of Vex then ρ0 is a functional of Vex. The Hohenberg,
Kohn and Mermin theorem also holds, that for a given Vin, the external potential energy Vex
is uniquely determined by ρ0 (that is knowing the density means one can in principle identify
which external field constructed it). Then, we know that Vex determines f0 and therefore f0 is
a functional of ρ0.

Definition 2.1.2. The intrinsic Helmholtz free energy is given by

Fin[ρ] = Tr f(Q+ Vin + β−1 log f), (2.1.2)

for any probability density with Trf = 1.

It then follows that for each Vin, Fin[%] is a unique functional of ρ, and similarly for external
potentials. It is this powerful result that will let us develop the DDFT in Section 2.5. The next
key energy functional is total free energy functional.

Definition 2.1.3. The free energy of the system at temperature T, chemical potential µc inside
a fixed volume V is defined as

ΩVex [ρ] =

∫
dr ρ(r)Vex(r) + Fin[ρ]− µc

∫
dr ρ(r).

When ρ = ρ0, ΩVex [ρ0] = Ω[ρ0] the grand potential and this is the minimum functional
value and the density %0 minimises ΩVex over all densities that can be associated with Vex. We
note that the value of the chemical potential µc determines the number of particles in the fixed
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volume V. Since %0 is a minimiser, we must also have, from calculus of variations

δΩVex
δ%

[%0] = 0. (2.1.3)

We now define the total Helmholtz free energy.

Definition 2.1.4. The total Helmholtz free energy at temperature T, inside a fixed volume V ,
is defined as

FH [%] =

∫
drVex(r)%(r) + Fin[%]. (2.1.4)

We see that, for an isothermal process, −δFH [%] is the maximum amount of useful work that
may be extracted from the system during an infinitesimal process. When there is no work being
done, a spontaneous process (such as the free expansion of gas into a vacuum) can only ever
decrease the Helmholtz free energy, and the steady states (T, %,N) coincide with a minimum of
FH [%]. For a more detailed explanation and review of the thermodynamics, see Plischke and
Bergersen [142].

By the minimisation equation (2.1.3) we obtain, at equilibrium

Vex(r) + µin[%0; r] = µc (2.1.5)

where the intrinsic chemical potential is defined to be

µin[%0; r] :=
δFin

δ%
[%0].

Equation (2.1.5) is an equation for the equilibrium density %0, given one has reliable knowledge
of µin[%0; r]. Now that we have defined the relevant free energy functionals we continue to the
next chapter in which we derive, from first principles, a DDFT to include driven background
flows including inertia and HI.

2.2 Dynamic Density Functional Theory

The time dependent DFT was introduced by Marconi and Tarazona [112], Chan and Finken
[30] to classical fluids by extending the equilibrium DFT to nonequilibrium systems. Therein
nonequilibrium, refers to out of equilibrium systems in the presence of time-dependent fields.
To obtain the time dependent DFT for classical fluids, Chan and Finken used the ideas of Runge
and Gross [156], who developed a time dependent DFT for quantum mechanical systems by
constructing an invertible mapping between the wave function and the one-body density %(r1, t)
by using the time dependent potential as an intermediary Ψ(r1, ·, rN , t) ↔ V (r1, t) ↔ %(r1, t).
Alternative derivations include Archer [6], showing that when isothermal compressibility is
small, the DDFT generates the correct value for the speed of sound in a dense liquid and can
be used to describe glass transition.

Recent advances for DDFTs have allowed modelling out of equilibrium classical fluids
with the inclusion of inertia [7, 114], multiple species [5, 64, 106, 153], hydrodynamic inter-
actions (HI) [61, 62, 144, 146], background flows [145], temperature gradients [4, 177], hard
spheres [147, 150, 152, 164], confined geometries [66, 181], arbitrary shaped particles [175], and
active microswimmers [80, 120].

For equilibrium fluids, there is a rigorous mathematical framework proving the existence of
non-trivial fluid densities, different from those found by classical fluid dynamical formalisms,
by taking into account both many body effects and external force fields. This is commonly
known as (classical) density functional theory (DFT) [121]. It is able to predict effects driven
by the microscale, e.g., the non-smooth droplet profiles which are formed at the gas-liquid-solid
trijunction in contact line problems [15] and the coexistence of multiple fluid films at critical
values of chemical potential energy in droplet spreading [141]. It has been used to resolve the
paradox of stress and pressure singularities normally found in classical moving contact line
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problems [157]. What is more, DFT agrees well with molecular dynamics simulations; see,
e.g., [108] and references therein. These advancements motivate more mathematical analysis,
in particular, on the well-posedness of the underlying equations being used.

As a non-equilibrium extension to DFT for classical fluids, dynamic DFT (DDFT) has been
applied to a wide range of problems: polymeric solutions [139], spinodal decomposition [9],
phase separation [5], granular dynamics [111, 113], nucleation [172], liquid crystals [176], and
evaporating films [10]. Recently, a stochastic version of DDFT has been derived [109], which
allows the study of energy barrier crossings, such as in nucleation. A crucial point is that the
computational complexity of DDFT is (essentially) constant in the number of particles, which
allows the treatment of macroscopically large systems, whilst retaining microscopic information.
Furthermore, due to the universality of the underlying nonlinear, nonlocal partial differential
equations, DDFT may be considered as a generalisation of a wider class of such models used
in the continuum modelling of many natural phenomena consisting of complex, many body,
multi-agent interparticle effects including: pattern formation [26], the murmurations of birds,
cell proliferation, the self organising of morphogenetic and bacterial species [27, 28], nonlocal
reaction-diffusion equations [1] and even consensus modelling in opinion dynamics[33]. Many
of these applications are often described as systems of interacting (Brownian) particles and, in
the case of hard particle viscous suspensions, bath-mediated HI effects may be included.

The HI are forces on the colloids mediated by the bath flow, generated by the motion of the
colloidal particles, or more generally polymeric molecules. This in turn produces a non-trivial
particle–fluid–particle hydrodynamic phenomenon, the inclusion of which has been shown to
have substantial effects on the physics of many systems; for example, they have been found
to be the underlying mechanism for the increased viscosity of suspensions compared to a pure
bath [47], the blurring of laning that arises in driven flow [180], the migration of molecules
away from a wall [79], and are particularly complex in confined systems [75, 102], and for active
particles and microswimmers, which result in additional HI [85].

Mathematically, these effects can be described through the hydrodynamic fields % and v,
the one-body density and one-body velocity fields, respectively. These fields, inherent to a
continuum description of a collection of particles, are derived by considering successive moments
(density, velocity, heat flux, . . . ) of the underlying kinetic system [72]. In particular, for systems
of interacting Newtonian particles, when the momenta are non-negligible, the evolution of the
phase space density f(rN ,pN , t) for a system of N colloids determining the probability of
finding the system in the state (rN ,pN ) is described by the N -body Fokker-Planck equation
and the dynamics of the hydrodynamic fields are defined by obtaining closed equations for
{%, %v} :=

∫
drN−1 dpN {1,p/m}f(rN ,pN , t), where m is the particle mass. Here, rN and pN

denote the 3N -dimensional position and momentum vectors of all N particles.

The inclusion of HI leads to a much richer hierachy of fluid equations compared to systems
without HI; compare e.g. [62] and [7]. In particular, in [62], by integration over all but one
particle position, the one-body Fokker-Planck equation may be obtained. If, in addition, two-
body HI and interparticle interactions are assumed and the inertia of the colloids is considered
small, a high friction limit γ →∞ may be taken [63]. The result is that the velocity distribution
converges to a Maxwellian, and one can eliminate the momentum variable through an adiabatic
elimination process that is based on multiscale analysis [135]. The final one-body Smoluchowski
equation for % is a novel, nonlinear, nonlocal PDE shown to be independent of the unknown
kinetic pressure term

∫
dr dpm−2p⊗ pf(r,p, t), which normally persists at γ = O(1) (see[63],

Theorem 4.1).

2.3 Langevin Dynamics

For this work we present numerical solutions to the underdamped partial differential equation
(PDE) associated to the system of interacting stochastic differential equations (SDEs) on R6N ,
which govern the positions and momenta ri, pi of i = 1, · · ·N hard spherically symmetric
colloidal particles with HI in the presence of a flowing, background field u of many more and
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much smaller particles, of the following form

dri
dt

=
1

m
pi, (2.3.1a)

dpi
dt

=−∇riV (rN , t)−
N∑
j=1

Γij(r
N )(pj −mu(rj)) +

N∑
j=1

Bij(r
N )fj(t) (2.3.1b)

where m is the particle mass, rN = (r1, · · · , rN ), pN = (p1, · · · ,pN ), B = (mkBTΓ)
1/2

, V
is a potential, kB, T, γ are Boltzmann’s constant, temperature and friction coefficient respec-
tively and fi(t) = (ζxi (t), ζyi (t), ζzi (t))> is a Gaussian white noise term with 〈ζai (t)〉 = 0 and
〈ζai (t), ζbj (t)〉 = 2δijδ

abδ(t − t′). A background flow is imposed by the term u(rj), which is

assumed incompressible and curl-free at each r ∈ R3. In general we assume that u is not the
gradient of some potential. In general the friction tensor Γ comprises N2 positive definite 3× 3
resistance matrices Γij , and describes interchange of momenta caused by fluid flows in the bath
owing to the motion of the individual colloids. We make the following assumptions on the
friction tensor and the potential.

Assumptions A

• The friction tensor positive definite and is written with Stokes drag separated out

Γij = γ1 + γΓ̃ij (A1)

where γ is the friction coefficient with units [s−1] and for d = 3 dimensions, the friction
tensor Γ̃ij comprises N2 positive definite 3 × 3 resistance matrices Γij for the colloidal
particles.

• The potential is decomposed into confining and interparticle contributions

V (rN , t) =
N∑
i=1

V1(ri, t) +
N∑
n=2

1
n!

∑
i1 6=···6=in=1

Vn(ri1 , · · · rin) (A2)

where we have assume the interparticle potentials have no explicit time dependence.

The Langevin dynamics requires computing the square root of Γ with complexity O(N3)
floating point operations or, with more sophisticated algorithms, no better than O(N2.38) [35].
This means the Langevin system (2.3.1a)-(2.3.1b) for systems with more than a few thousand
particles are computationally intractable for most modern machines. This motivates the need
for another description of the motion of particles, for example the Fokker-Planck equation. As
we will see however, the corresponding Fokker-Planck equation for (2.3.1a)-(2.3.1b) is a high-
dimensional PDE and, as such, one would normally be solved by Monte Carlo methods in the
SDE formalism. One way to overcome the computational limitation is to ignore the HI by
setting Γ = γ1. Whilst this reduces the computational complexity of the Langevin dynamics it
neglects the HI, which will alter considerably the dynamical path to equilibrium. This motivates
reduced order models such as DDFT. The novelty of the work here is the steady state of the
system of colloids is characterised by the steadily flowing solvent. Such systems have only been
considered before in the overdamped regime [21, 144, 145] but here we include the effects of
inertia and HI.

Overdamped Limit

It will be observed that by heuristic arguments, Brownian dynamics may be reproduced by
assuming that the average acceleration of the colloids is zero:

0 = −∇rNV (rN , t)− Γ(rN )(pN −muN ) +B(rN )f(t), (2.3.2)
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implying

drN

dt
= uN − D(rN )

mkBT
∇rNV (rN , t) +

√
D(rN )f

where uN = [u(r1), · · · ,u(rN )]> and f is the vector of Brownian motions fi . The term D is
the diffusion tensor given by the Einstein relation D = kBTΓ−1. It will be seen that D must
be positive definite for the Brownian dynamics (2.3.2) to be well posed. The dynamics (2.3.2)
should be compared with DDFTs for overdamped colloids in an external flow [145], [144],
in particular we show consistency with their Langevin equations upon setting D = 1. The
overdamped limit may be performed more rigorously with perturbation methods and Fredholm
theory applied to the Fokker-Planck equation associated to (2.3.1a)-(2.3.1b) (see [63]).

2.4 The Fokker–Planck Equation

We begin by deriving the Fokker-Planck equation for the driven Langevin dynamics (2.3.1a)-
(2.3.1b)

Theorem 2.4.1. The Fokker-Planck equation for the N−body probability function associated
with the Langevin dynamics of (2.3.1a)-(2.3.1b) is

∂tf
(N) = − 1

m

N∑
k=1

pk · ∇rk f
(N) +

N∑
k=1

∇pk ·

∇rkV (rN , t) +

N∑
j=1

Γkj(r
N )(pj −mu(rj))

 f (N)

+mkBT
N∑

k,j=1

Γkj : ∇pk∇pl f
(N) (2.4.1)

where f (N) = f (N)(rN ,pN , t). We equip (2.4.1) with homogeneous boundary conditions

f (N) → 0, ∇rnf
(N), ∇pnf

(N) → 0

for each n = 1, · · · , N as both |rN |, |pN | → ∞. Alternatively, for confined systems the boundary
condition is imposed on, for example, the walls of the box containing the colloids.

Proof. Let f (N)(zN ,qN , t+ δt|yN ,uN , s) be the probability that particles find themselves with
positions zN and momenta qN at time t + δt given they previously had positions yN and
momenta uN at time s for t > s, δt > 0. Then by the partition theorem

f (N)(zN ,qN , t+ δt|yN ,uN , s)

=

∫∫
drNdpNf (N)(zN ,qN , t+ δt|rN ,pN , t)f (N)(rN ,pN , t|yN ,uN , s). (2.4.2)

Now let ϕ ∈ C∞0 (R6N ) be a smooth compactly supported test function. By multiplying (2.4.2)
by ϕ(zN ,qN ) and integrating dzN dqN , substituting the dummy variables zN for rN and qN

for pN on the left hand side and interchanging the order of integration on the right hand side,
one has∫∫

drN dpN ϕ(rN ,pN )f (N)(rN ,pN , t+ δt|yN ,uN , s)

=

∫∫
drN dpN

∫∫
dzN dqNϕ(zN ,qN )f (N)(zN ,qN , t+ δt|rN ,pN , t)fN (rN ,pN , t|yN ,uN , s).

(2.4.3)

Now by Taylor expanding (2.4.3) in both N position and N momentum directions zi = ri and
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qi = pi, 1 ≤ i ≤ N one has∫∫
drN dpN ϕ(rN ,pN )fN (rN ,pN , t+ δt|yN ,uN , s)

=

∫∫
drN dpN

∫∫
dzN dqNfN (zN ,qN , t+ δt|rN ,pN , t)

[
ϕ(rN ,pN )

+
N∑
k=1

(qk − pk) · ∇pk ϕ(rN ,pN ) +
1

2

N∑
k,l=1

(qk − pk)⊗ (qk − pk) : ∇pk∇pl ϕ(rN ,pN )

+
N∑
k=1

(zk − rk) · ∇rk ϕ(rN ,pN ) +
1

2

N∑
k,l=1

(zk − rk)⊗ (zk − rk) : ∇rk∇rl ϕ(rN ,pN )

+

N∑
k=1

o(||zk − rk||2) +

N∑
k=1

o((qk − pk) · (zk − rk)) +

N∑
k=1

o(||qk − pk||2)
]

× f (N)(rN ,pN , t|yN ,uN , s). (2.4.4)

where ⊗ is the dyadic product and : is the matrix inner product. We now refer to (2.3.1a)-
(2.3.1b) as an an integration formula. For the remaining terms in (2.4.4) we identify moments
E(rnk ), E(pnk ) for n ∈ N of the underlying Langevin dynamics. In other words, we recast
(2.3.1a)-(2.3.1b) into the computational definition, for 1 ≤ i ≤ N

dri = δtpim ,

dpi =

−∇riV (rN , t)−
N∑
j=1

Γij(r
N )(pj −mu(rj)) +

N∑
j=1

Aij(r
N ) dWj(t)

 δt
where dWj(t) ∼iid [N (0, δt−1), N (0, δt−1), N (0, δt−1)]> and dx := x(t+ δt)− x(t) to com-
pute sucessive spatial and momentum moments. Note this Wiener process has variance δt−1 so
that the diffusion term in the Langevin equation scales correctly with time. By inspection we
see that the first term in (2.4.4) is the probability density f (N)(zN ,qN , t + δt|rN ,pN , t) inte-
grated over its entire support and is therefore equal to unity. Letting E(·) denote the expected
value, one has the following identity for the first momentum moment∫∫

dzN dqN
N∑
k=1

(qk − pk)f (N)(zN ,qN , t+ δt|rN ,pN , t)

=

N∑
k=1

E(qk(t+ δt)− pk|qk(t) = pk)

=

N∑
k=1

E

−∇rkV (rN , t)−
N∑
j=1

Γkj(r
N )(pj −mu(rj)) +

N∑
j=1

Akj(r
N ) dWj(t)

 δt
= −δt∇rkV (rN , t)− δt

N∑
j=1

Γkj(r
N )(pj −mu(rj)) (2.4.5)
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where we have used E(dWj) = 0. Similarly for the first moment of space we obtain∫∫
dzN dqN

N∑
k=1

(zk − rk)f (N)(zN ,qN , t+ δt|rN ,pN , t)

=
N∑
k=1

E(zk(t+ δt)− rk|zk(t) = rk)

= δt
m

N∑
k=1

pk. (2.4.6)

For the second momentum moment we use the fact that E(dW2
j ) = δt−1 to obtain

∫∫
dzN dqN

N∑
k=1

(qk − pk)⊗ (qk − pk)f (N)(zN ,qN , t+ δt|rN ,pN , t)

=
N∑
k=1

E((qk(t+ δt)− pk)⊗ (qk(t+ δt)− pk)|qk(t) = pk)

= mkBT
N∑
j=1

Γkj δt+ o(δt), (2.4.7)

where we have used the generalised fluctuation-dissipation relation Bij(r) =
√
mkBTΓij(r).

For the second position moment one has∫∫
dzN dqN

N∑
k=1

(zk − rk)⊗ (zk − rk)f (N)(zN ,qN , t+ δt|rN ,pN , t)

=

N∑
k=1

E((zk(t+ δt)− rk)⊗ (zk(t+ δt)− rk)|zk(t) = rk) = o(δt). (2.4.8)

Using the identities (2.4.5), (2.4.6), (2.4.7), (2.4.8) and substituting into (2.4.4) one obtains∫∫
drN dpN ϕ(rN ,pN )f (N)(rN ,pN , t+ δt|yN ,uN , s)

=

∫∫
drN dpN

[
ϕ(rN ,pN )

+ δt

N∑
k=1

−∇rkV (rN , t)−
N∑
j=1

Γkj(r
N )(pj −mu(rj))

 · ∇pk ϕ(rN ,pN )

+δtmkBT
N∑

k,j=1

Γkj : ∇pk∇pl ϕ(rN ,pN ) + δt
m

N∑
k=1

pk · ∇rk ϕ(rN ,pN )
]

× f (N)(rN ,pN , t|yN ,uN , s) + o(δt).

Now rearranging to one integral and integrating by parts and using the assumed boundary
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conditions one obtains

0 =

∫∫
drN dpN ϕ(rN ,pN )f (N)(rN ,pN , t+ δt|yN ,uN , s)

−
∫∫

drN dpN ϕ(rN ,pN )
[
f (N)(rN ,pN , t|yN ,uN , s)

+δt
N∑
k=1

∇pk ·

−∇rkV (rN , t)−
N∑
j=1

Γkj(r
N )(pj −mu(rj))

 f (N)(rN ,pN , t|yN ,uN , s)

−mkBT δt

N∑
k,j=1

Γkj : ∇pk∇pl f
(N)(rN ,pN , t|yN ,uN , s)

+ δt
m

N∑
k=1

pk · ∇rk f
(N)(rN ,pN , t|yN ,uN , s)

]
+ o(δt).

Now since the function ϕ is an arbitrary smooth test function we must have

0 = δt−1(f (N)(rN ,pN , t+ δt|yN ,uN , s)− f (N)(rN ,pN , t|yN ,uN , s))

+

N∑
k=1

∇pk ·

−∇rkV (rN , t)−
N∑
j=1

Γkj(r
N )(pj −mu(rj))

 f (N)(rN ,pN , t|yN ,uN , s)

−mkBT
N∑

k,j=1

Γkj : ∇pk∇pl f
(N)(rN ,pN , t|yN ,uN , s)

+ 1
m

N∑
k=1

pk · ∇rk f
(N)(rN ,pN , t|yN ,uN , s) + o(1).

Now formally taking the limit δt→ 0 we obtain the required result. Typically one substitutes
the conditioned states for an initial configuration distribution at time s = 0, yN = rN0 , uN =
pN0 .

We conclude this section with the following remarks on the Fokker-Planck equation (2.4.1).

Remark 2.4.2. The Fokker-Planck equation (2.4.1) is a high dimensional PDE. A naive dis-
cretisation of M points in the 6N position and momenta components results in a total of M6N

discretisation points, that is an exponential increase in the number of computational points as
a function of the total number of particles where M is fixed. This is known as the curse of
dimensionality. In practise, to solve (2.4.1) one would sample the Langevin dynamics (2.3.1a)-
(2.3.1b) via Monte Carlo methods.

To determine a reduced model, and overcome this intrinsic computational complexity, addi-
tional integrations are performed to obtain evolution equations for local and bulk quantities such
as density, velocity, stress, temperature and flux, each of which are characterised by particu-
lar moments of the stochastic process associated to flow of the probability function f (n). This
technique is known as coarse graining, is more rigorously defined as an iterative projection of
the invariant manifold on which the one-body distribution evolves, to the plane of macroscopic
hydrodynamic fields (ρ, v, σ...) which parametrise f (1) [72].
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2.5 DDFT In A Steady External Flow

The associated Fokker-Planck equation to the SDE (2.3.1a)-(2.3.1b) is given by Theorem 2.4.1
which we provide for convenience

∂tf
(N)(rN ,pN , t) +

N∑
i=1

pi
m · ∇rif

(N)(rN ,pN , t)

−
N∑
i=1

∇riV (rN , t) · ∇pif
(N)(rN ,pN , t)

=
N∑

i,j=1

∇pi ·
[
Γij(r

N )(pj −mu(rj) +mkBT∇pj )f
(N)(rN ,pN , t)

]
(2.5.1)

where f (N)(rN ,pN , t) is the probability of finding each particle j at position rj with momentum
pj at time t referred to as the N−body density. Equation (2.4.1) remains a high dimensional
PDE, indeed the number of discretisation points increases exponentially in N . To continue
we integrate (2.5.1) and derive equations for its moments, giving an infinite hierarchy to be
truncated with moment closure. We begin by providing the definitions of the reduced phase
space functions.

Definition 2.5.1 (Reduced Phase Space Functions). Let f (N) be a solution to the Fokker-
Planck equation (2.5.1). Then we make the following definitions

1. The reduced phase space densities f (n) are defined by

f (n)(rn,pn, t) :=
N !

(N − n)!

∫
drN−n dpN−n f (N)(rN ,pN , t). (2.5.2)

2. The reduced configuration densities %(n) are defined by

%(n)(rn, t) :=

∫
dpn f (n)(rn,pn, t) (2.5.3)

where %(1) ≡ %.

3. The probability current is defined by

j(r1, t) :=

∫
dp1

p1

m f
(1)(r1,p1, t). (2.5.4)

The first result of this section is to obtain a continuity equation for the one body density
in the presence of an external flow. Unsurprisingly the continuity equation is the same as the
ones found in the absence of external flows, which is a consequence of writing the Langevin
dynamics in an inertial frame of reference by the transformation pNold → pN −muN where pNold

is the momentum vector of the system (2.3.1a)-(2.3.1b) when uN ≡ 0.

Lemma 2.5.2. The one body density %(r1, t) defined by (2.5.3), satisfies the continuity equation

∂t%(r1, t) +∇r1
· j(r1, t) = 0 (2.5.5)

where j(r1, t) is defined by (2.5.4).

Proof. Integrating (2.5.1) over all but on particle position r1, using the definitions (2.5.2),
(2.5.3) and (2.5.4) along with the boundary conditions fN = 0 and ∇pif

N = ∇rif
N = 0 as

both |ri| and |pi| → ∞ for each 1 ≤ i ≤ N yields the result.

We now begin the moment closure of (2.5.1) by obtaining an evolution equation for the
probability current j.
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Lemma 2.5.3. The probability current j given by (2.5.4) evolves according to

∂tj(r1, t) +∇r1 ·
∫

dp1
p1

m ⊗
p1

m f
(1)(r1,p1, t)

+
1

m
%(r1, t)∇r1

V1(r1, t) +
1

m

N∑
n=2

∫
drn−1∇r1

Vn(rn)%(n)(rn, t)

+ γ(j(r1, t)− %(r1, t)u(r1))

+
γN

m

N∑
j=1

∫
drN−1 dpN Γ̃1j(r

N )(pj −mu1)f (N)(rN ,pN , t)

= 0 (2.5.6)

where %(r1, t) is defined by (2.5.3).

Proof. Multiplying (2.5.1) by Np1/m and integrating over all but one particle position r1 we
obtain the following identities. First, for the time derivative of f (N)∫

drN−1 dpN
N

m
p1∂tf

(N)(rN ,pN , t) = ∂tj(r1, t). (2.5.7)

Second, for the advective derivative of f (N)

∫
drN−1 dpN

N

m
p1 ×

N∑
i=1

pi
m · ∇rif

(N)(rN ,pN , t) = ∇r1
·
∫

dp1
p1

m
⊗ p1

m
f (1)(r1,p1, t)

where we have used the boundary conditions fN = ∇pif
N = 0 as |ri| and |pi| → ∞ for each

1 ≤ i ≤ N . Third, by assumption (A2), the potential energy term may be divided into two
parts ∫

drN−1 dpN
N

m
p1 ×

N∑
i=1

∇riV (rN , t) · ∇pif
(N)(rN ,pN , t)

=

∫
drN−1 dpN

N

m
p1 ×

N∑
i=1

∇ri

 N∑
j=1

V1(rj , t) +
N∑
n=2

1

n!

∑
j1 6=jn=1

Vn(rj1 , · · · , rjn)


= − 1

m
%(r1, t)∇r1

V1(r1, t)−
1

m

N∑
n=2

∫
drn−1∇r1

Vn(rn)%(n)(rn, t)

where we have integrated by parts in the p1 variable and used the definitions(2.5.3). Fourthly,
for the friction term, we use the assumption (A1) to obtain∫

drN−1 dpN
N

m
p1 ×

N∑
i,j=1

∇pi ·
(
Γij(r

N )(pj −mu(rj))f
(N)(rN ,pN , t)

)

= −
∫

drN−1 dpN
N

m

N∑
j=1

∇pi ·
(
Γij(r

N )(pj −mu(rj))f
(N)(rN ,pN , t)

)

= −γ(j(r1, t)− %(r1, t)u(r1))− γN

m

N∑
j=1

∫
drN−1 dpN Γ̃1j(r

N )(pj −mu1)f (N)(rN ,pN , t)

where we expand Γij using (A1), integrated by parts in the p1 variable and used the definitions
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(2.5.3), (2.5.4). Lastly, we observe that∫
drN−1 dpN

N

m
p1 ×

N∑
i,j=1

mkBT∇pi · ∇pjf
(N)(rN ,pN , t)

= −NkBT

∫
drN−1 dpN

N∑
j=1

∇pjf
(N)(rN ,pN , t) = 0 (2.5.8)

where we have used the boundary condition fN = 0 as |pi| → ∞ for each 1 ≤ i ≤ N . By
combining (2.5.7)-(2.5.8) we obtain the required result.

To close the system of equations (2.5.5), (2.5.6), equations are needed for the kinetic pressure
term p1

m ⊗
p1

m f
(1)(r1,p1, t), the reduced configuration densities %(n) and HI term. This will be

done in the usual way, for the %(n)(r, t) we assume that higher order densities (n ≥ 2) are
enslaved to % and equilibrate on a faster timescale. For the kinetic pressure term we will use an
approximation which states that the momentum of each colloids is follows a Maxwell-Boltzmann
distribution centred at the background flow. For the HI term we will assume the existence of a
correlation function relating the one body phase densities to the pair density.

Assumption B

• The Adiabatic Assumption

For n ≥ 2, the %(n)(r(n), t) are enslaved to %(r, t) and equilibrate on a timescale

smaller than ∼ o
(
γ−1

)
. (B1)

The assumption (B1) amounts to that the n–body densities in the true non-equilibrium system
are well approximated by the n–body densities in the corresponding equilibrium system with
the same density. We now use the define the augmented Helmholtz free energy functional to
take into account the kinetic energy of the colloids in the solvent.

Definition 2.5.4 (Free Energy Functional For the Driven System). We define Fu : C(R)→ R
such that

Fu[%] = kBT

∫
dr1 %(log(Λ3%)− 1) +

∫
dr1 %V1(r1, t) + Fex[%] + 1

2m

∫
dr %|u|2 (2.5.9)

where Λ is the de Broglie wavelength (which in general is superfluous) and Fex[%] is the excess
over ideal gas term. By definition we have the following identity

Fu[%] = FH [%] + 1
2m

∫
dr %|u|2

where FH is the Helmholtz free energy functional defined in (2.1.4).

Note that we do not assume u is a potential flow, however such a condition is sufficient
to satisfy the irrotationality assumption, which we will later relax. We make an additional
assumption on the interparticle forces

Assumptions C

• The background flow is incompressible and irrotational

∇r · u = 0, (C1)

∇r × u = 0. (C2)

The following result establishes the Maxwell Boltzmann distribution for the steady system.
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Proposition 2.5.5 (Maxwell Boltzmann Distribution). Let assumptions (A1) hold. At steady
state the the one particle distribution function takes the Maxwell—Boltzmann form

f (1)(r,p) =
%(r)

(2πmkBT)3/2
e
− |p−mu|2

2mkBT .

Proof. To establish the result we study the kinetic equation for the N–body density in nondi-
mensional units

∂tf
(N)(rN ,pN , t) +

1

ε

N∑
i=1

pi
m · ∇rif

(N)(rN ,pN , t)− 1

ε

N∑
i=1

∇riV (rN , t) · ∇pif
(N)(rN ,pN , t)

=
1

ε2

N∑
i,j=1

∇pi ·
[
Γij(r

N )(pj −mu(rj) +∇pj )f
(N)(rN ,pN , t)

]
(2.5.10)

which may be obtained by rescaling the Fokker-Planck equation (2.5.1) and ε =
√
kBT/mγ−1.

We note that
√
kBT/m is the average thermal equilibrium speed of a particle at temperature

T, whilst γ−1 is approximately the time required for the velocity distribution of the colloids to
equilibrate. Therefore, the steady momentum distribution is determined in the limit γ−1 → 0.
Note that ε has units of length, and therefore a characteristic length scale must be introduced
to make it nondimensional. This length scale is problem dependent and could be, for example:
the mean free path length of a typical colloidal particle, the length over which the external
potential varies, or in confined systems, the dimension of the bounding domain.

We now expand fN in powers of ε as a Hilbert expansion

fN (rN ,pN ) =
∞∑
n=0

εnfNn (rN ,pN ). (2.5.11)

Due to the singular nature of (2.5.10), we do not expect such a regular perturbation expan-
sion to converge uniformly. The expansion should be valid only for times t � ε and not for
shorter times and we expect there to be a boundary layer in time of size O(ε). Since we are
interested in times much larger than ε, interest lies in only the leading order term. We also
assume that such an expansion then converges, in particular, that the fNn are sufficiently well
behaved in rN and pN .

We substitute (2.5.11) in (2.5.10), and write for ease of notation p̂j := pj − mu(rj). By
collecting powers of ε we obtain a hierarchy of equations to be solved sequentially. At the
leading of ε we obtain

N∑
i,j=1

∇pi ·
[
Γij(r

N )(p̂j +∇pj )f
N
0 (rN ,pN , t)

]
= 0. (2.5.12)

We now determine the form of solutions to this equations, consisting of functions of the form

fN0 = φN (rN , t)
∏N
i=1 exp

(
− |p̂i|

2

2

)
for some φN dependent only on the spatial coordinates rN .

To do this, we instead suppose that φN = φN (rN ,pN , t) and observe that

(p̂j +∇pj )

[
φN (rN ,pN , t)

N∏
i=1

exp
(
− |p̂i|

2

2

)]
= ∇pjφ

N (rN ,pN )
N∏
i=1

exp
(
− |p̂i|

2

2

)
. (2.5.13)

Hence, by inserting (2.5.13) into (2.5.12) we obtain

N∑
i,j=1

∇pi ·

[
Γij(r

N )∇pjφ
N (rN ,pN , t)

N∏
i=1

exp
(
− |p̂i|

2

2

)]
= 0.
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By multiplying this equation by − log φN and integrating we obtain

0 = −
∫

drN dpN log φN (rN ,pN , t)
N∑

i,j=1

∇pi ·

[
Γij(r

N )∇pjφ
N (rN ,pN , t)

N∏
i=1

exp
(
− |p̂i|

2

2

)]
.

Now, by interchanging the order of integration and summation and integrating by parts we
obtain

0 =
N∑

i,j=1

∫
drN dpN

∇pjφ
N (rN ,pN , t)

φN (rN ,pN , t)
·

[
Γij(r

N )∇pjφ
N (rN ,pN , t)

N∏
i=1

exp
(
− |p̂i|

2

2

)]
.

Now by the positive definiteness of Γ we have that there exists δ > 0 such that

0 ≥ δ
N∑

i,j=1

∫
drN dpN

|∇pjφ
N (rN ,pN , t)|2

φN (rN ,pN , t)

N∏
i=1

exp
(
− |p̂i|

2

2

)
. (2.5.14)

Since δ and the integrand in (2.5.14) are positive we must have∫
drN dpN

|∇pjφ
N (rN ,pN , t)|2

φN (rN ,pN , t)

N∏
i=1

exp
(
− |p̂i|

2

2

)
= 0,

and in particular

∇pjφ
N (rN ,pN , t)|2

φN (rN ,pN , t)
= 0

for almost every rN ,pN in the phase space. Hence we have that φN = CφN (rN , t) where C is
a normalisation constant. Hence the proposition is proved.

We now obtain the following steady sum rule for steady states of the system governed by
(2.5.5), (2.5.6).

Lemma 2.5.6 (Steady Sum Rule). Given the adiabatic assumption (B1), the system (2.5.5),
(2.5.6) obeys the steady sum rule

%(r1)∇r1

δFex

δ% [%] =

N∑
n=2

∫
drN−1∇r1Vn(rn)%(n)(rn).

Proof. At steady flow, the one body phase space function is a Maxwell-–Boltzmann distribution
centred at the solvent velocity

f (1)(r1,p) := %(r1)
(2πmkBT)3/2 exp

(
− |p−mu(r1)|2

2mkBT

)
. (2.5.15)

With this we see that as the momentum distribution equilibrates, the kinetic pressure term
may be calculated by

∇r1
·
∫

dp1
p1

m ⊗
p1

m f
(1)(r1,p1) = kBT

m ∇r1
%(r1, t) +∇r1

· [%(r1, t)u(r1)⊗ u(r1)] . (2.5.16)

Note that in steady state the density is being advected by u, hence the equilibrium density
in the inertial frame of reference is characterised by its material derivative being zero, that is
D/(Dt)% = 0. All in all, and in steady state, using equations (2.5.15), (2.5.16), equation (2.5.6)
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becomes

∂t%(r1, t)u(r1) + kBT
m ∇r1%(r1, t) +∇r1 · [%(r1, t)u(r1)⊗ u(r1)]

+
1

m
%(r1, t)∇r1

V1(r1, t) +
1

m

N∑
n=2

∫
drn−1∇r1

Vn(rn)%(n)(rn, t) = 0. (2.5.17)

We observe the equality

∂t%(r1, t)u(r1) +∇r1
· [%(r1, t)u(r1)⊗ u(r1)] = ∂t%u(r1) + u(r1)∇r1

· (%u) + %(u · ∇r1
)u

= u
[

D%
Dt + %∇r1 · u

]
+ %(u · ∇r1)u = %(u · ∇r1)u

where we have used D%/(Dt) = 0 in steady state along with the incompressibility condition
(C1). Therefore, we find equation (2.5.17) becomes

%(u · ∇r1
)u + kBT

m ∇r1
%(r1, t) +

1

m
%(r1, t)∇r1

V1(r1, t)

+
1

m

N∑
n=2

∫
drn−1∇r1

Vn(rn)%(n)(rn, t) = 0. (2.5.18)

Now by computing the gradient of the functional derivative of Fu with respect to %, the Euler-
Lagrange equation for the equilibrium density is

0 =
1

m
%∇r1

δFu[%]

δ%
=
kBT

m
∇r1%+

1

m
%∇r1V1 +

1

m
%∇r1

δFex[%]

δ%
+ %(u · ∇r1)u (2.5.19)

where we have used the vector identity

∇
(

1

2
|u|2

)
= (u · ∇)u + u× (∇× u) = (u · ∇)u

since u is assumed to be irrotational by (C2). By subtracting (2.5.18) from (2.5.19) one obtains
the steady sum rule

%(r1)∇r1

δFex

δ% [%] =
N∑
n=2

∫
drN−1∇r1

Vn(rn)%(n)(rn) (2.5.20)

and the lemma is proved.

Adiabatic Approximation

We now determine closed equations for the dynamics of the density %(r, t). It is assumed that
the dynamic %(n)(rn, t) as defined by (2.5.3) are well approximated by their counterpart n- body
densities for an equilibrium fluid, i.e. that (2.5.20) holds out of steady state. This permits the
particle interaction term involving the reduced phase space densities %(n)(rn, t) appearing in
(2.5.6) to be substituted with an expression of the free energy Fu. Using the definition of Fu

along with equations (2.5.6) and (2.5.20) gives

∂tj(r1, t) +A(r1, t) + u(r1)(u(r1) · ∇r1%(r1, t))

+
1

m
%(r1, t)∇r1

δFu[%]

δ%
+ γ(j(r1, t)− %(r1, t)u(r1))

+
γN

m

N∑
j=1

∫
drN−1 dpN Γ̃1j(r

N )(pj −mu(r1))f (N)(rN ,pN , t) = 0 (2.5.21)
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where

A(r1, t) = ∇r1
·
∫

dp1

(
p1

m ⊗
p1

m −
kBT
m 1− u⊗ u

)
f (1)(r1,p1, t).

Note that at equilibrium A is zero at steady state and the left hand side of (2.5.21) reduces to
the Euler-Lagrange equation

1

m
%(r1, t)∇r1

δFu[%]

δ%
=

1

m
%(r1, t)∇r1

δF [%]

δ%
+ (u · ∇)u = 0

where FH is the usual Helmholtz free energy functional and we have used D%/(Dt) = 0 in
steady state. We now assume that the momenta of each colloid is distributed according to the
Maxwell- Boltzmann distribution centred at the local velocity flow v(r1, t). It will be seen, in
the following sections, that v(r1, t)→ u(r1) as t→∞ which agrees with the natural principle
that the colloids suspended in the background fluid are passively advected, and in the absence
of external forces their velocity equals the local velocity of the surrounding fluid. We write

f (1)(r1,p, t) = f (1)
neq(r1,p, t) + f

(1)
le (r1,p, t)

where

f
(1)
le (r1,p, t) = %(r1,t)

(2πmkBT)3/2 exp
(
− |p−mv(r1,t)|2

2mkBT

)
.

and the first few moments of this distribution are∫
dp1 f

(1)
le (r1,p, t) = %(r1, t), (2.5.22)∫

dp1 p1f
(1)
le (r1,p, t) = m%(r1, t)v(r1, t),∫

dp1 |p1 −mv(r1, t)|2f (1)
le (r1,p, t)

= mkBT%(r1, t). (2.5.23)

Next we impose the natural integral restrictions on f
(1)
neq, since f1

le determines the correct
first three moments (2.5.22)-(2.5.23)∫

dp1 f
(1)
neq(r1,p, t) = 0,∫

dp1 p1f
(1)
neq(r1,p, t) = 0,∫

dp1 |p1 −mv(r1, t)|2f (1)
neq(r1,p, t) = 0. (2.5.24)

By equations (2.5.22)-(2.5.24) we may compute A(r1, t) explicitly

A(r1, t) = ∇r1
·
∫

dp1

(
p1⊗p1

m2 − kBT
m 1− u⊗ u

) [
f

(1)
le (r1,p1, t) + f (1)

neq(r1,p1, t)
]

= ∇r1
·
∫

dp1

(
p1⊗p1

m2 − kBT
m 1− u⊗ u

) %(r1,t)
(2πmkBT)3/2 exp

(
− |p−mv(r1,t)|2

2mkBT

)
+∇r1

·
∫

dp1
p1⊗p1

m2 f (1)
neq(r1,p1, t)

= ∇r1
· [%(r1, t)v(r1, t)⊗ v(r1, t))]−∇r1

· [%(r1, t)u(r1, t)⊗ u(r1, t))]

+∇r1
·
∫

dp1
p1⊗p1

m2 f (1)
neq(r1,p1, t). (2.5.25)
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We insert the expression for A(r1, t) in (2.5.25) into (2.5.21) to obtain

∂t [%(r1, t)v(r1, t)] +∇r1 · [%(r1, t)v(r1, t)⊗ v(r1, t)]

+∇r1 ·
∫

dp1
p1⊗p1

m2 f (1)
neq(r1,p1, t)

+
1

m
%(r1, t)∇r1

δF [%]
δ% + γ%(r1, t)(v(r1, t)− u(r1))

+
γN

m

N∑
j=1

∫
drN−1 dpN Γ̃1j(r

N )(pj −mu(rj))f
(N)(rN ,pN , t) = 0 (2.5.26)

where we have now reintroduced the usual Helmholtz free energy functional Fu to consolidate
the number of terms. We neglect the fneq term, since it may be shown to be small, at least in the
overdamped limit γ → ∞, by use of adiabatic elimination process that is based on multiscale
analysis [63]. It now remains to simplify the HI term in equation (2.5.26), for this we require
additional assumptions on the form of the HI, particularly that the interactions are two body
and the two particle distribution function f (2) is expressed in terms of a pairwise correlation
function.

Assumptions D

• The HI are assumed to be two body

Γ̃ij(r
N ) = δij

∑
l 6=i

Z1(ri, rl) + (1− δij)Z2(ri, rj). (D1)

where Z1, Z2 are the diagonal and off diagonal blocks respectively of the translational
component of the grand resistance matrix R originating in the classical theory of low
Reynolds’ number hydrodynamics between suspended particles [92], [75].

• The Kirkwood approximation is used

f (2)(r1, r2,p1,p2, t) = f (1)(r1,p1, t)f
(1)(r2,p2, t)g(r1, r2, [%]) (D2)

where g(r1, r2, [%]) is the two body correlation function.

The two body assumption (D1) is reasonable for many scenarios, particularly, one finds that the
pairwise lubrication forces dominate in concentrated systems [19]. The Kirkwood assumption
is a standard one for the closure of BBGKY type hierarchies and requires a form correlation
function g, which ultimately must be estimated from the microscopic dynamics. There are
however good candidates, such as for a hard sphere fluid: g(|r− r′|) = 0 for |r− r′| < σ where
σ is a sphere diameter, and g = 1 otherwise, which has been shown to be accurate where
comparison with the results of Brownian dynamics simulations has been made.

With the assumptions (D1), (2.5) we may simplify the HI summation in equation (2.5.26).
We obtain

γN

m

N∑
j=1

∫
drN−1 dpN Γ̃1j(r

N )(pj −mu(rj))f
(N)(rN ,pN , t)

=
γN

m

N∑
j=1

∫
drN−1 dpN

δ1j∑
l 6=1

Z1(r1, rl) + (1− δ1j)Z2(ri, rj)


× (pj −mu(rj))f

(N)(rN ,pN , t)

= γ%(r1, t)

∫
dr2 [Z1(r1, r2)(v(r1, t)− u(r1)) +Z2(r1, r2)(v(r2, t)− u(r2))]

× %(r2, t)g(r1, r2, [%])

where we have used the Enskog approximation (2.5) and the definition of the reduced phase
space density (2.5.3).
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2.6 Equations Of Motion

We summarise the equations of motion for inertial, driven DDFT including HI given by the
coupled pair of nonlinear nonlocal PDEs for the one body density %(r1, t) and velocity v(r1, t)

∂t%(r1, t) +∇r1 · (%(r1, t)v(r1, t)) = 0,

∂tv(r1, t) + (v(r1, t) · ∇r1
)v(r1, t) + 1

m∇r1

δFu[%]
δ% (r1, t) + γw(r1, t)

+γ
∫

dr2 [Z1(r1, r2)w(r1, t) +Z2(r1, r2)w(r2, t)]× %(r2, t)g(r1, r2, [%]) = 0,

(2.6.1)

subject to the steady flow condition

1
m∇r1

δFu[%]

δ%
(r1) = 0 as t→∞. (2.6.2)

where w(r1, t) = v(r1, t) − u(r1). The system (2.6.1) governs the conservation of mass and
momentum respectively of the colloidal system coupled to the background flow.

Boundary Conditions

When the physical domain is the whole real space we impose both %(r1, t), v(r1, t) → 0 as
|r1| → ∞. This will be ensured, for example, by letting the confining potential V1 grow at least
linearly at infinity. For bounded domains, for example a confining channel, we impose

v(r1, t) · n
∣∣
wall

= 0

where n is the unit normal vector pointing out of the fluid domain from the channel wall. For
the channel ends at ±∞, both %(r1, t), v(r1, t) vanish. Observe that v → u as t → ∞. Note
that upon substituting u = 0 one recovers previously studied DDFT [62] including inertia and
HI.

2.7 Heuristic Limits

In this section we consider formal limits of the equations of motion. We begin with the over-
damped limit γ →∞.

Overdamped Limit

After the solvent has been flowing for a sufficiently long time, the average acceleration of the
colloids should equal the local acceleration of the bath and no average acceleration in the
reference frame moving with u should take place. By enforcing the average acceleration of the
colloidal system equal to the bath’s material acceleration, that is Dv/(Dt) = Du/(Dt), the
momentum equation in (2.6.1) becomes

1
m∇r1

δFu[%]

δ%
(r1, t) + γ(v(r1, t)− u(r1)) + γ

∫
dr2 [Z1(r1, r2)(v(r1, t)− u(r1))

+Z2(r1, r2)(v(r2, t)− u(r2))]× %(r2, t)g(r1, r2, [%]) = 0.

Now assuming that inter particle HI are weak that is Z2 ≈ 0 we obtain

1
m∇r1

δFu[%]

δ%
(r1, t) + γD−1(r1, [%], t)(v(r1, t)− u(r1)) = 0. (2.7.1)
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where D is the diffusion tensor, known rigorously to be positive definite and therefore invertible
and is given by

D(r1, [%], t) :=

[
1 +

∫
dr2Z1(r1, r2)%(r2, t)g(r1, r2, [%])

]−1

.

Now by adding zero to the conservation of mass equation:

∂t%+∇r1
· (%(v − u) + %u) = 0, (2.7.2)

by combining (2.7.1) and (2.7.2) we obtain

∂t%(r1, t) +∇r1
· (%(r1, t)u(r1, t)) =

1

mγ
∇r1
·
(
%(r1, t)D(r1, [%])∇r1

δFu[%]

δ%

)
(2.7.3)

which may be compared with the DDFT in equation [27] of [145]. Equation (2.7.3) is the
Smoluchowski equation, differing to the one found in [145] and other formalisms starting from
Brownian dynamics, by the definition of the free energy functional since Fu includes the kinetic
energy of the density in the solvent. We may however show that this contribution is small as
γ →∞, in particular by expanding out the right hand side, (2.7.3) becomes

∂t%(r1, t) +∇r1
· (%(r1, t)u(r1, t))

=
1

mγ
∇r1
·
(
%(r1, t)D(r1, [%])∇r1

δFH [%]

δ%

)
+

1

mγ
∇r1
· [m (u · ∇r1

) u]

Now by nondimensionalising

r1 ∼ Lr̃1, t ∼ τ t̃, % ∼ 1
L3 %̃, u ∼ U ũ, FH ∼ kBTF̃H , U = L

τ

we obtain (after dropping circumflexes)

∂t%(r1, t) +∇r1
· (%(r1, t)u(r1, t))

=
kBTτ

mγL2
∇r1
·
(
%(r1, t)D(r1, [%])∇r1

δFH [%]

δ%

)
+

τU2

mγL2
∇r1
· [m (u · ∇r1

) u] (2.7.4)

Now using the friction coefficient defined by γ = 6πµrm−1 where µ is the dynamic viscosity of
the solvent and r is a typical colloid radius we observe that

τU2

mγL2
∇r1
· (m(u · ∇r1

u)) =
τU2

6πµrL2
∇r1
· (m(u · ∇r1

u))

=
UΦL

6πµ
∇r1
· ((u · ∇r1

u)) =
Re

6π
∇r1
· [(u · ∇r1

) u]

where Re is Reynolds number and we have defined the characteristic density scale Φ = m/(L2r).
All in all the dimensionless Smoluchowski equation (2.7.4) becomes

∂t%(r1, t) +∇r1
· (%(r1, t)u(r1, t)) = Fr−1∇r1

·
(
%(r1, t)D(r1, [%])∇r1

δFH [%]

δ%

)
+O(Re)

as γ →∞ where we have defined the Froude number

Fr =
mγ2L2

kBT
,

kept Fr = O(1), and used the viscous time scale τ = γ−1. Hence we have recovered the known
driven overdamped DDFT up to errors of order O(Re) which are small and ever vanishing as
γ →∞ (equivalently µ→∞).
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Inviscid Limit

Taking the inviscid limit γ → 0 of equations (2.6.1), we obtain Euler idealised equations
∂t%(r1, t) +∇r1

· (%(r1, t)v(r1, t)) = 0,

∂tv(r1, t) + (v(r1, t) · ∇r1)v(r1, t) + 1
m∇r1

δFu[%]
δ% (r1, t) = 0,

(2.7.5)

subject to the steady flow condition

1
m∇r1

δFu[%]

δ%
(r1) = 0 as t→∞.

While the inviscid limit taken here formally correct, the assumptions used to determine the
DDFT (2.6.1), particularly the local to steady flow approximation on the Maxwell-Boltzmann
distribution rely on the friction of the bath to provide viscous resistance to the colloids. It is
therefore unclear whether equations (2.7.5) would give good agreement to molecular dynamics
simulations for inviscid colloidal flow. This should be compared with, for example, the classical
singular perturbation problem for high Reynolds flows on the classical Navier-Stokes equations.
We note that equations (2.7.5) agree with those found in [7] after setting u = 0.

2.8 Bernoulli’s Principle For The Density

We now relax the assumption that the solvent velocity u is irrotational to determine a Bernoulli
principle for the colloid flow. Recall that for an incompressible fluid with constant density ρ,
the total head is constant along the streamlines of steady flow

p

ρ
+

1

2
|u|2 + χ = c0

where p is the pressure and χ is an external field and c0 ∈ R. We will derive an analogous result
for the advected density % solving (2.6.1).

The derivation of the following DDFT is much the same as in Section 2.5 however the
Euler-Lagrange equation now contains the rotational contribution from the flowing solvent, in
particular by using the definition of Fu in (2.5.9), equation (2.5.19) now becomes

0 =
1

m
%∇r1

δFu[%]

δ%

=
kBT

m
∇r1

%+
1

m
%∇r1

V1 +
1

m
%∇r1

δFex[%]

δ%
+ (u · ∇)u + u×∇r1

× u.

It will be seen that despite the relaxation to permit rotational solvents the steady sum rule
still holds along curves that are tangent to u, in particular the Euler-Lagrange equation for the
steady density along streamlines of the flowing solvent is

0 =
1

m
u · %∇r1

δFu[%]

δ%

=
kBT

m
u · ∇r1%+

1

m
%u · ∇r1V1 +

1

m
%u · ∇r1

δFex[%]

δ%
+ u · ((u · ∇)u) (2.8.1)

where we have used the fact that u · (u×∇r1 × u) ≡ 0 since it is a triple scalar product with
two repeated entries. By taking the inner product of equation (2.5.18) with u and subtracting
equation (2.8.1) we obtain the streamwise steady sum rule

%(r1)u · ∇r1

δFex

δ% [%] = u ·
N∑
n=2

∫
drN−1∇r1Vn(rn)%(n)(rn).
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The derivation of the DDFT follows the same procedure from equation (2.5.21) onwards, but
now performing all calculations along the streamlines of u. All in all the dynamical momentum
equation is preserved when projected onto u and reads:

u ·
{
∂tv(r1, t) + (v(r1, t) · ∇r1

)v(r1, t) + 1
m∇r1

δFH [%]

δ%
(r1, t)

+ γ(v(r1, t)− u(r1)) + γ

∫
dr2 [Z1(r1, r2)(v(r1, t)− u(r1))

+Z2(r1, r2)(v(r2, t)− u(r2))]× %(r2, t)g(r1, r2, [%])
}

= 0, (2.8.2)

which converges to, at steady state

u ·
{

1
m∇r1

δFH [%]

δ%
(r1) + (u · ∇)u

}
= 0 as t→∞.

We now examine the steady equation in (2.8.2). First by writing (u · ∇)u = ∇r1

(
1
2 |u|

2
)

+
(∇× u)× u and expanding out the free energy term we obtain

u ·
{kBT

m

∇r1%

%
+

1

m
∇r1V1 +

1

m
∇r1

δFex[%]

δ%
+∇r1

(
1
2 |u|

2
)

+ (∇× u)× u
}

= 0.

Now by carrying through the inner product and once again using the fact that (∇× u)× u is
perpendicular to u we obtain

u ·
{
∇r1

(
1
2 |u|

2
)

+
1

m
∇r1V1 +

1

m
∇r1

δFex[%]

δ%

}
= −kBT

m
u · ∇r1%

%
. (2.8.3)

Now along a streamline of u, and since u is incompressible, the conservation of mass gives
u · ∇r1

% = 0 therefore (2.8.3) becomes

u · ∇r1

{
1
2 |u|

2 +
1

m
V1 +

1

m

δFex[%]

δ%

}
= 0

and we determine the Bernoulli principle that the total head

1
2 |u|

2 +
1

m
V1 +

1

m

δFex[%]

δ%
= c0

remains constant along a streamline of u, for some fixed c0 ∈ (−∞,∞). The first term is the
dynamic pressure of the density, the second is analogous to the hydraulic head of the density
confined to an external field and the third is the static pressure of the inhomogeneous mixture.
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Chapter 3

Microhydrodynamics 1: Spheres
Converging Along Their Line Of
Centres

3.1 Introduction

For the normal component of the HI, we study exact solutions for the slow viscous flow of an
infinite liquid caused by two rigid spheres approaching each either along their line of centres,
valid at all separations. This goes beyond the applicable range of existing solutions for singular
hydrodynamic interactions (HIs) which, for practical applications, are limited to the near-
contact or far field region of the flow. By use of a bipolar coordinate system, we derive the stream
function for the flow as Re → 0, and a formula for the singular (squeeze) force between the
spheres as an infinite series. We also obtain, in Appendix A.1, the asymptotic behaviour of the
forces as the nondimensional separation between the spheres goes to zero and infinity, rigorously
confirming and improving upon known results relevant to a widely accepted lubrication theory.
Additionally, in Appendix A.2, we recover the force on a sphere moving perpendicularly to a
plane as a special case. All results hold for retreating spheres, consistent with the reversibility
of Stokes flow.

In this chapter we also give the first quantitative comparison, for this particular two-sphere
interaction, between the present solution obtained by spherical bipolar methods and the ones
obtained by the perturbative and multipole methods [98], [92]. As a result, we are able to
highlight the analytical and practical strengths of the present work.

3.2 Organisation Of The Chapter

This chapter presents the rigorous derivation of the singular scalar resistance function a(·),
valid for all non-contacting particle separations. We relegate the asymptotic analysis of a(·)
to Appendix A.1 in which we derive rigorous small and large argument, as well as showing
agreement with the perpendicular motion of a sphere and plane. In Section 3.3 we provide
the definition of the bipolar coordinate system. Following this, in Section 3.4 we present the
steady flow equations and in Section 3.4.1 we transform them into spherical bipolar coordinates.
Section 3.5 defines the Stokes equations for the normal interaction, Section 3.6 details the
derivation of the stream functions and in Section 3.7 we calculate the scalar resistance function,
a(·), as an infinite series. Finally, in Section 3.8, we compare our results for a(·) to the widely
used expressions determined by the method of multipole expansions.

69



d

~x

O

θ

~y
~z

~θ

~r

η = η2

hU

U

r2 = βr1

1

η = η1

r1

~η

2

ξ = πξ = 0 ξ = 0

~ξ

~ξ

~η

ξ = π

Figure 3.1: Schematic of two unequal spheres of radii r1, r2 converging along their line of
centres in viscous fluid. Included in the diagram are the cylindrical and bipolar unit vectors,
the dimensional gap distance h, and centre to centre distance d. Note that η1 and η2 are implicit
functions of r1, r2 and d.

3.3 Spherical Bipolar Coordinates

The spherical bipolar coordinate system is a convenient setting in which to apply the boundary
conditions on both spheres. The coordinate transformation from cylindrical coordinates r =
(r, z, θ) to spherical bipolar coordinates q = (η, ξ, θ) is

z + ir = ic cot 1
2 (ξ + iη) (3.3.1)

where θ remains unchanged and i =
√
−1. The parameter c > 0 is a geometrical constant

determining the foci of the two spheres, which, for equal spheres, in the x–z plane are at (−c, 0)
and (c, 0). Note that c is not chosen but is a function of the sphere centre distance d. Every
point in (r, z) space is represented uniquely in (η, ξ) space, so long as ξ ∈ [0, π], −∞ < η <∞,
θ ∈ [0, 2π). Expanding the cotangent and equating real and imaginary parts one obtains

z = z(η, ξ) = c
sinh η

cosh η − cos ξ
, r = r(η, ξ) = c

sin ξ

cosh η − cos ξ
. (3.3.2)

The foci of the spheres drawn by the set of Cartesian coordinates (z, r) are at (−c, 0) and
(c, 0). Finally, the constant c is superfluous and the derived quantities of drag and stress do
not depend on it.

There is a one to one correspondence between r and q except at the limiting points η = ±∞
where ξ is multivalued. Geometrically this occurs when the spheres are vanishingly small.
As such, these points indicate the limit direction in which to obtain classical Stokes drag.
The surfaces η = constant are non-intersecting coaxial spheres with centres at the cartesian
coordinates (r, z) = (0, c coth η) and radii c| csch η|. Denoting the centre distance from sphere
i to the origin O by di and its radius by ri, we identify the bipolar ordinates defining sphere 1
and 2 as

cosh η1 := d1

r1
, cosh η2 := d2

r2
.

Note that η1 > 0 and η2 < 0. The geometry is summarised in Figure 3.1, and we refer the
reader to [75, Appendix A-19] for more details on curvilinear coordinate system. In Figure

3.1, ξ varies between 0 and π by moving the axis pair (−→η ,
−→
ξ ) along a circle (not shown)

curvilinear to η = η1 in the lower half plane. The foci are found at either end of the bold line
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segment, along which ξ = π and off this line segment, along the −→z axis, one has ξ = 0. Other
interesting works in the area of coordinate geometry that discuss spherical bipolar coordinates
in depth include Jeffery [87], Moon and Spencer [122]. For readers unfamiliar with spherical
bipolar coordinates, the coordinate geometry is a highly practical coordinate system for many
problems in fluid mechanics, and, in particular, has received increasing attention in recent
years; such as in Gilbert and Giacomin [59] for canonical solutions to classical heat, mass and
momentum transport problems where Cartesian and polar coordinate systems are deficient;
additionally Papavassiliou and Alexander [132] have used the bipolar coordinates for modelling
the HI between swimming microscopic organisms.

3.4 Steady Flow Equations

Consider the steady incompressible Navier-Stokes equations governing the evolution of the fluid
velocity u and pressure p in an unbounded domain Ω outside of the spheres:

Re (u · ∇) u = −∇p+∇2u, (3.4.1a)

∇ · u = 0 (3.4.1b)

where Re = ρUL/µ for U a characteristic velocity, L a characteristic length, ρ the fluid density
and µ the dynamic viscosity. Here ρ and µ are assumed to be constant.

3.4.1 Transformation Of The Steady Flow Equations

We begin this section by determining the relationship between the Laplacian in Cartesian
coordinates to the Laplacian in spherical bipolar coordinates.

Lemma 3.4.1. Let f : C→ C be differentiable at the point ω = ξ + iη in some open subset of
C. Then for a conjugate coordinate system of revolution defined by

z + ir = f(ξ + iη), (3.4.2)

the second order partial derivatives are related by

∂2
z + ∂2

r = h−2
[
∂2
ξ + ∂2

η

]
where h = hη = hξ is the metrical coefficient defined by the transformation (3.4.2).

Proof. By the chain rule applied to f one sees

∂ξf = ∂ξz∂zf + ∂ξr∂rf,

∂ηf = ∂ηz∂zf + ∂ηr∂rf

which we may invert for expressions for ∂zf, ∂rf[
∂zf
∂rf

]
=

1

(∂ξz∂ηr − ∂ξr∂ηz)

[
∂ηr −∂ξr
−∂ηz ∂ξz

] [
∂ξf
∂ηf

]
.

By definition and differentiability of f , z and r satisfy the Cauchy-Riemann equations, ∂ξz =
∂ηr, ∂ηz = −∂ξr and therefore we may write the metrical coefficient of the transformations h
such that hη = hξ = h where

h−2 = (∂ηr)
2 + (∂ηz)

2 = (∂ξr)
2 + (∂ξz)

2.

With h the second order partial derivatives may be written

∂2
zf = h−2

[
(∂ηr∂ξ − ∂ξr∂η)

(
h−2 [∂ηr∂ξf − ∂ξr∂ηf ]

)]
, (3.4.3)

∂2
rf = h−2

[
(∂ξz∂η − ∂ηz∂ξ)

(
h−2 [∂ξz∂ηf − ∂ηz∂ξf ]

)]
(3.4.4)
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and upon expanding and adding together (3.4.3), (3.4.4) one obtains

∂2
zf + ∂2

rf = h−2
[
∂2
ξ + ∂2

η

]
f

+ ∂ξf
[
−2h−4∂ξh + 2h−4(∂ξz∂

2
ξηr + ∂ηz∂

2
ηηr)

]
+ ∂ηf

[
−2h−4∂ηh + 2h−4(∂ηr∂

2
ξηz + ∂ηz∂

2
ηηz)

]
= h−2

[
∂2
ξ + ∂2

η

]
f.

where in the last line we have observed that the terms in the parentheses in the above equality
are identically zero by direct computation of the partial derivatives ∂ξh, ∂ηh.

Now that we have the form of the Laplacian we may construct the full operator Lk.

Definition 3.4.2. The family of axisymmetric potential operators Lk is defined as

Lk := ∂2
z + ∂2

r +
k

r
∂r.

Lemma 3.4.3. The family of axisymmetric potential operators Lk transformed into spherical
bipolar coordinates read

Lk = r−kh−2
[
∂ξ
(
rk∂ξ

)
+ ∂η

(
rk∂η

)]
.

Proof. By the proof of Lemma 3.4.1 we have

∂r = h−2 [∂ξr + ∂ηr]

and thus by combining the result of Lemma 3.4.1, along with Definition 3.4.1, we have

∂2
z + ∂2

r + kr−1∂r = h−2
[
∂2
ξ + ∂2

η

]
+ kr−1h−2 [∂ξr + ∂ηr]

= r−kh−2
[
r−k(∂2

ξ + ∂2
η) + krk−1(∂ξr + ∂ηr)

]
= r−kh−2

[
∂ξ
(
rk∂ξ

)
+ ∂η

(
rk∂η

)]
where in the last line we have used the product rule.

We now give expressions for the metrical coefficients in spherical bipolar coordinates which
will be useful for future calculations.

Lemma 3.4.4. The metrical coefficients hξ, hη are given by

h2
k = h2 =

c2

(cosh η − cos ξ)2
for k = ξ, η.

Proof. Since r, z satisfy the Cauchy-Riemann equations we have

∂ξz = ∂ηr, ∂ηz = −∂ξr,

thus by squaring and adding these equations

h2
ξ = (∂ξz)

2 + (∂ξr)
2 = (∂ηz)

2 + (∂ξr)
2 = h2

η.

For a general transformation f : (q1, q2) 7→ (r1, r2) in Lemma 3.4.1 the metrical coefficient is
defined as in Happel and Brenner [75]

h−2
k = (∂qkr)

2 + (∂qkz)
2 for k = 1, 2.

Thus by (3.3.2) and direct calculation we find

h−2
ξ = h−2

η =
c2

(cosh η − cos ξ)2
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and the Lemma is proved.

With Lemmas 3.4.1-3.4.4 we convert the Stokes problem (3.4.1a)-(3.4.1b) to spherical bipolar
coordinates with the following result.

Lemma 3.4.5. The full stream function formulation of the Navier-Stokes equations in Spherical
Bipolar coordinates is given by

L2
−1ψ = Re h2r

[
∂ηψ∂ξ

(
r−2L−1ψ

)
− ∂ξψ∂η

(
r−2L−1ψ

)]
. (3.4.5)

Proof. We identify ez as an axis of symmetry, and pose flow of the form u = [ur, uz, 0]>. Now
suppose we existence of a stream function ψ such that

ur = −r−1∂zψ, uz = r−1∂rψ.

Note that in cylindrical coordinates this definition of ψ means can be written as a curl

u = −1

r

∣∣∣∣∣∣
er ez r eθ
∂r ∂z ∂θ
0 0 ψ

∣∣∣∣∣∣ = −curl

(
ψ

r
eθ

)
(3.4.6)

where in (3.4.6) we have identified the definition of the curl with respect to cylindrical coordi-
nates. The incompressibility condition (3.4.1b) is satisfied since the curl is divergence free, or
by direct calculation, in cylindrical coordinates

∇ · u =
1

r

[
−∂r

(
r r−1∂zψ

)
+ ∂z

(
r r−1∂rψ

)]
= 0.

The vorticity ω is defined as ω := ∇× u = ω êθ, or equivalently ω = curl2
(
ψ
r

)
. Thus one

obtains an explicit expression for ω in terms of ψ

ω = curl u = r−1L−1ψ êθ

where L−1 is the differential operator given by L−1 = ∂2
z + ∂2

r − r−1∂r. Now taking successive
curls of ω we obtain

∇× ω = r−1∂zL−1ψer − r−1∂rL−1ψez

∇×∇× ω = −r−1L2
−1ψeθ.

We also have the vector calculus identity (u · ∇) u = 1
2 |u|

2−u×∇×u, which, after taking the
curl and using the definition of ω, we determine that ∇× [(u · ∇) u] = −∇× [u× ω] where we
have used that the curl of a gradient is zero. Equation (3.4.1a) therefore becomes

Re∇× [u× ω] = curl3u, (3.4.7)

where we have used that ∇2u = ∇(∇ · u) − ∇ × ∇ × u. In cylindrical coordinates the right
hand side of (3.4.7) becomes −r−1L2

−1ψeθ, and after computing the internal cross product of
the left hand side we obtain Re∇ ×

[
r−2L−1ψ∇ψ

]
= −r−1L2

−1ψeθ. Now expanding the left
hand side, once again using the fact that the curl of a gradient is zero we obtain

Re
[
∂rψ∂z

(
r−2L−1ψ

)
− ∂zψ∂r

(
r−2L−1ψ

)]
= −r−1L2

−1ψ.

After rearranging this equation, and using the conversion ∇ψ = h∂ηψ eη + h∂ξψ eξ, the lemma
is proved.
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3.5 Stokes Equations

For axisymmetric flow the assumed existence of a stream function ψ permits (3.4.1a), (3.4.1b)
to be recast into a single PDE

1
Re rL

2
−1ψ = ∂zψ ∂r(

1
r2L−1ψ)− ∂rψ ∂z( 1

r2L−1ψ).

The differential operator L−1 is a member of the class of axisymmetric potential operators
Lk := ∂2

z + ∂2
r + kr−1∂r for k ∈ (−∞,∞), with k = −1. By Lemma 3.4.5 we have that Lk =

r−kh−2[∂ξ(r
k∂ξ) + ∂η(rk∂η)] where h is the metrical coefficient arising from the transformation

between coordinate systems, defined by h2 = (∂ξz)
2 + (∂ξr)

2 = (∂ηr)
2 + (∂ηz)

2 = c2/(cosh η −
cos ξ)2. After setting Re = 0 the first approximation to the flow around the two spheres yields
the biharmonic equation subject to two no slip and two no flux conditions[

r
h2

(
∂ξ
(
r−1∂ξ

)
+ ∂η

(
r−1∂η

))]2
ψ = 0, in Ω (3.5.1)

ψ ± Ur2

2 = 0, ∂n

(
ψ ± Ur2

2

)
= 0, (3.5.2)

where the signs are taken according to the choice of sphere and the direction of their velocities.
By rescaling the spatial coordinates and the stream function one may use (3.4.5) to compute
higher order corrections to the velocity field for small Re, by taking into account contributions
proportional the square of the velocity of the spheres, (see for example [24] for the classical
single sphere at infinity). For this work we restrict to motions of spheres linear in their velocity.

3.6 Solution In Spherical Bipolar Coordinates

Here we write the stream function in spherical bipolar coordinates. To solve the PDE (3.5.1)
it will be seen that is sufficient to write

ψ = ψ1 + z ψ2 (3.6.1)

where L−1ψi = 0 for both i = 1, 2. The extent to which the ansatz (3.6.1) is complete,
that is includes the appropriate set of basis functions which will satisfy the problem in hand
((3.5.1), (3.5.2)), is not formally treated here. At any rate it may be heuristically justified by
reference to [137] wherein the appropriate combination of axisymmetric potential functions is
chosen accordingly such that the optimal combination as a solution for a specific problem will
dependent on the geometry of the boundary on which the boundary and far field conditions
must be satisfied. A combination suitable for one problem may be completely intractable for
another.

We calculate an explicit form for ψ with the following lemma.

Lemma 3.6.1. Let x = cos ξ and Pn(x) be the nth Legendre polynomial of the first kind.

i There is a solution to L−1ψ1 = 0 of the form

ψ1(ξ, η) =
∞∑
n=1

[
an cosh(n+ 1

2 )η + bn sinh(n+ 1
2 )η
] Qn(x)√

cosh η − x
(3.6.2)

where Qn(x) := Pn+1(x)− Pn−1(x).

ii The Qn satisfy the ODE

(1− x2)
d2Qn
dx2

+ n(n+ 1)Qn(x) = 0. (3.6.3)

iii The Qn satisfy the recurrence relation

xQn(x) =
n+ 2

2n+ 3
Qn+1(x) +

n− 1

2n− 1
Qn−1(x). (3.6.4)
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Proof. By referring to [75] and using techniques therein we make an ansatz in the form of a
separation solution

ψ1 = r1/2f(ξ)g(η)

and after inserting into L−1ψ1 = 0 we find the functions f and g must satisfy

− 3fg

4 sin2 ξ
+ f ′′g + g′′f = 0.

Equivalently we have the system of ODEs

f ′′ +

(
λ2 − 3

4 sin2 ξ

)
f = 0,

g′′ − λ2g = 0,

where λ2 is a separation constant. The η equation is trivially solved with a linear combination
of hyperbolic trigonometric functions. For the ξ equation we make the ansatz f = (ξ̄2 − 1)1/4f̄
to yield

(
1− ξ̄2

)
f̄ ′′ − 2ξ̄f̄ ′ +

(
λ2 − 1

4
− 1

1− ξ̄2

)
f̄ = 0

which we recognise as the associated Legendre equation with m = 1 and λ = n + 1
2 for n a

non-negative integer. Thus

f̄ = P 1
n(ξ̄)

where P 1
n(x) is the associated Legendre function at order n with m = 1. By using the definition

of P 1
n(x)

P 1
n(x) = −(1− x2)1/2 dPn

dx
,

along with Bonnet’s first recursion formula

x2 − 1

n

dPn
dx

= xPn(x)− Pn−1(x),

and the principle of linear superposition we have

ψ1(ξ, η) =
∞∑
n=1

[
an cosh(n+ 1

2 )η + bn sinh(n+ 1
2 )η
] xPn(x)− Pn−1(x)√

cosh η − x
(3.6.5)

where an, bn are arbitrary constants and a similar expression exists for ψ2. We remark that the
sums are to be taken starting n = 1, 2, .. because of the appearance of Pn−1. We continue ma-
nipulating the Legendre Polynomials to seek a simplified expression for ψ1. By using Bonnet’s
second recurrence formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x),

substituted into (3.6.5) we have a simplified expression for ψ1 namely (3.6.2). Since Pn+1, Pn−1

are Legendre polynomials it is elementary to see that their difference, the Qn, satisfy the ODE
(3.6.3) by subtracting Legendre’s equation at order n − 1 from Legendre’s equation at n + 1
and using the product rule. Upon applying Bonnet’s second recurrence formula to both Pn+1

and Pn−1 we see the Qn satisfy the recursion relation (3.6.4).
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3.6.1 Constructing The Stream Function

We compute a compact form of the stream function with the following lemma.

Lemma 3.6.2. The stream function ψ maybe written in the compact form

ψ(ξ, η) = (cosh η − x)
−3/2

χ(ξ, η) (3.6.6)

with

χ(ξ, η) :=
∞∑
n=1

Qn(x)Rn(η)

where

Rn(η) = an cosh(n+ 3
2 )η + bn sinh(n+ 3

2 )η + cn cosh(n− 1
2 )η + dn sinh(n− 1

2 )η

and the an, bn, cn and dn are arbitrary constants.

Proof. As stated in [162] for the queuing spheres case, to find a solution of the PDE (3.5.1) it
is sufficient to write

ψ = ψ1 + z ψ2

where L−1ψi = 0 for i = 1, 2. Using the results of section 3.6 we construct ψ as

ψ = ψ1 + z ψ2 = (cosh η − x)
−3/2

×
∞∑
n=1

[{
an cosh(n+ 1

2 )η +bn sinh(n+ 1
2 )η
}

(cosh η − x)

+
{
cn cosh(n+ 1

2 )η + dn sinh(n+ 1
2 )η
}

sinh η
]
Qn(x). (3.6.7)

We use of the fact that the constants an, bn, cn and dn remain arbitrary before boundary
conditions are applied, therefore they may be trivially redefined upon absorption of any mul-
tiplying constants. First notice that with compound angle formulae the terms without the
factor x in (3.6.7) may be written in arbitrary weights of the hyperbolic functions cosh(n+ 3

2 )η,
cosh(n− 1

2 )η, sinh(n+ 3
2 )η and sinh(n− 1

2 )η. This yields

ψ = (cosh η − x)
−3/2

(3.6.8)

×
∞∑
n=1

[{
an cosh(n+ 3

2 )η +bn sinh(n+ 3
2 )η + cn cosh(n− 1

2 )η + dn sinh(n− 1
2 )η
}

+
{
en cosh(n+ 1

2 )η + fn sinh(n+ 1
2 )η
}

cos ξ
]
Qn(x)

where en and fn are arbitrary. For the term with the factor of x we use the recurrence relation
(3.6.4) to remove all x dependence within the summand. In particular the recurrence relation
reads{

en cosh(n+ 1
2 )η + fn sinh(n+ 1

2 )η
}

cos ξ Qn(x)

= en

(
n− 1

2n− 1

)
cosh(n+ 1

2 )η Qn−1(x) + fn

(
n− 1

2n− 1

)
sinh(n+ 1

2 )η Qn−1(x)

+ en

(
n+ 2

2n+ 3

)
cosh(n+ 1

2 )η Qn+1(x) + fn

(
n+ 2

2n+ 3

)
sinh(n+ 1

2 )η Qn+1(x).

With this expanded form the summation is freely shifted so that cosh(n + 1
2 ) is written as an

arbitrary sum of cosh(n + 3
2 ) and cosh(n − 1

2 ) translating en to en−1 etc. This produces a
common factor of Qn(x) inside summation (3.6.8) and we obtain the separated expansion form
(3.6.6).
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3.6.2 Boundary Conditions

The stream function (3.6.6) is the most convenient form in the present coordinate system to
apply boundary conditions. We impose no-flux and no-slip boundary conditions, typical for
fluid problems of viscous type, although we remark that other constitutive conditions may be
applied such as varying slip conditions depending on the physical system being studied, making
the present solution method generalisable and thus demonstrating the utility of the change in
coordinate system. The boundary conditions in (3.5.2) are combined with the expressions for
r and z in (3.3.2) and (3.6.6) to become

χ(ξ, η1)

(cosh η1 − x)3/2
+

c2U sin2 ξ

2(cosh η1 − x)
= 0,

∂η

[
χ(ξ, η)

(cosh η − x)3/2
+

c2U sin2 ξ

2(cosh η − x)

]
η1

= 0,

χ(ξ, η2)

(cosh η2 − x)3/2
− c2U sin2 ξ

2(cosh η2 − x)
= 0,

∂η

[
χ(ξ, η)

(cosh η − x)3/2
− c2U sin2 ξ

2(cosh η − x)

]
η2

= 0

where U is the characteristic velocity scale and η1 > 0, η2 < 0 correspond to the spheres 1 and
2 respectively. Simplifying these expressions we obtain on sphere 1

χ(ξ, η1) = − c2U sin2 ξ

2(cosh η1 − x)1/2
,

∂ηχ(ξ, η1) = − c2U sin2 ξ sinh η1

4(cosh η1 cos ξ)3/2
,

(3.6.9)

and

χ(ξ, η2) =
c2U sin2 ξ

2(cosh η2 − x)1/2
,

∂ηχ(ξ, η2) =
c2U sin2 ξ sinh η2

4(cosh η2 cos ξ)3/2
.

(3.6.10)

on sphere 2. We proceed to find an, bn, cn and dn by using orthogonality of the basis functions
Pn. By definition of the Qn in lemma 3.6.1 we have

χ(ξ, η) =
∞∑
n=1

Rn(η) [Pn+1(x)− Pn−1(x)]

so that as long as ξ 6= 0, π, we have the following equation implicitly determining the unknown
constants

χ(ξ, η)Pm(x) sin ξ =
∞∑
n=1

Rn(η)Pn+1(x)Pm(x) sin ξ −
∞∑
n=1

Rn(η)Pn−1(x)Pm(x) sin ξ. (3.6.11)

By differentiating equation (3.6.11) with respect to η (where appropriate) and integrating over
the domain ξ ∈ [0, π], interchanging the order of summation and integration one may obtain
explicit expressions for the constants an, bn, cn, dn. More explicitly the four equations deter-
mining the four unknowns are given by sequentially substituting equations (3.6.9), (3.6.10) into
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equation (3.6.11). In other words

− c2U sin2 ξ

2(cosh η1 − x)1/2
Pm(x) sin ξ =

∞∑
n=1

Rn(η1)Qn(x)Pm(x) sin ξ, (3.6.12a)

− c2U sin2 ξ sinh η1

4(cosh η1 cos ξ)3/2
Pm(x) sin ξ =

∞∑
n=1

R′n(η1)Qn(x)Pm(x) sin ξ, (3.6.12b)

c2U sin2 ξ

2(cosh η2 − x)1/2
Pm(x) sin ξ =

∞∑
n=1

Rn(η2)Qn(x)Pm(x) sin ξ, (3.6.12c)

c2U sin2 ξ sinh η2

4(cosh η1 cos ξ)3/2
Pm(x) sin ξ =

∞∑
n=1

R′n(η2)Qn(x)Pm(x) sin ξ, (3.6.12d)

where ′ denotes differentiation with respect to η. We provide the following lemma which permits
us to commute a summation and integral sign.

Lemma 3.6.3. For each η when integrating equations (3.6.12a)-(3.6.12d) over ξ ∈ [0, π], the
order of summation and integration may be interchanged.

Proof. Define fn : [0, π]→ R by

fn(ξ) := αn(η)Qn(cos ξ)Pm(cos ξ) sin ξ.

where αn is an arbitrary function of η. Let 〈. , .〉 define the usual inner product for real functions
on the closed interval [−1, 1]. Then we see that

N∑
n=1

∫ π

0

fn(ξ) dξ =

N∑
n=1

αn(η) 〈Pn−1 − Pn, Pm〉

=
N∑
n=1

2δmn−1αn−1(η)

2n− 1
− 2δmnαn(η)

2n+ 1
≤

N∑
n=1

2δmn−1αn−1(η)

2n− 1
<
αm(η)

m

where we have used the orthogonality condition 〈Pl, Pk〉 = 2δl k
2k+1 . Thus the

∑N
n=1 fn is bounded

by and integrable function and we may write∫ π

0

∞∑
n=1

fn dξ =

∫ π

0

lim
N→∞

N∑
n=1

fn dξ = lim
N→∞

N∑
n=1

∫ π

0

fn dξ =
∞∑
n=1

∫ π

0

fn dξ.

Therefore by taking αn(η) = Rn(η), R′n(η) the lemma is proved.

We use Lemma 3.6.3 to swap the sum and integral signs once the boundary conditions
(3.6.12a)-(3.6.12d) have been integrated over ξ ∈ [0, π]. We will use the standard technique of
orthogonal transformation. The Legendre functions are orthogonal with unit weighting in the
sense ∫ 1

−1

Pm(x)Pn(x) dx =
2

2m+ 1
δnm (3.6.13)

where δnm is the Kronecker delta tensor. We will use iteratively the identity (3.6.13) and
provide the useful identity∫ 1

−1

Pm(x)Qk(x) dx =
2

2k + 3
δmk+1 −

2

2k − 1
δmk−1. (3.6.14)

We will also use the following lemma.
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Lemma 3.6.4. For every x ∈ [−1, 1] and n ∈ N the Pn and Qn satisfy

(2n+ 1)(1− x2)Pn(x) =
n(n− 1)

2n− 1
Qn−1(x)− (n+ 1)(n+ 2)

2n+ 3
Qn+1(x), (3.6.15)

2n+ 1

n+ 1
(1− x)2 d

dx
Pn(x) = −nQn(x). (3.6.16)

Proof. First consider equation (3.6.15). By definition we have

Qn(x) = Pn+1(x)− Pn−1(x).

Bonnet’s second recursion formula is

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), (3.6.17)

and by multiplying through by x and subtracting (2n+ 1)Pn(x) from both sides we find

(2n+ 1)(1− x2)Pn(x) = (2n+ 1)Pn(x)− nxPn−1(x)− (n+ 1)xPn+1(x)

and by using (3.6.17) again we find

(2n+ 1)(1− x2)Pn(x)

= (2n+ 1)Pn(x)− n+ 1

2n+ 3
[(n+ 2)Pn+2(x) + (n+ 1)Pn(x)]− n

2n− 1
[nPn(x) + (n− 1)Pn−2(x)]

=
(n+ 1)(n+ 2)

(2n+ 3)
Pn−2(x)− 2

(2n+ 1)(n2 + n− 1)

(2n− 1)(2n+ 3)
Pn(x) +

n(n+ 1)

(2n− 1)
Pn−2(x).

Then by writing n2 +n−1 = (n+1)(n+2)− (2n+3) and collecting like Pn’s the result follows.
Now consider (3.6.16). Bonnet’s first recursion formula is

x2 − 1

n

d

dx
Pn(x) = xPn(x)− Pn−1(x)

which may be combined with (3.6.17) to yield the result.

Finally to ease notation we will rescale the stream function with natural dimensions by
writing ψ ∼ Uc2/2ψ′, now dropping primes.

No Slip

Lemma 3.6.3 permits us to commute the order of the integrals and summations of the equations
of the boundary conditions. Considering first the no slip conditions (3.6.12a), (3.6.12c), we
integrate both sides with respect to ξ and apply lemma 3.6.3 to obtain

−
∫ 0

−π

sin3 ξPm(cos ξ)

(cosh η1 − cos ξ)1/2
dξ = −

∫ 1

−1

(1− x2)Pm(x)

(cosh η1 − x)1/2
dx

=
2

2m− 1
Rm−1(η1)− 2

2m+ 3
Rm+1(η1). (3.6.18)∫ 0

−π

sin3 ξPm(cos ξ)

(cosh η2 − cos ξ)1/2
dξ =

∫ 1

−1

(1− x2)Pm(x)

(cosh η2 − x)1/2
dx

=
2

2m− 1
Rm−1(η2)− 2

2m+ 3
Rm+1(η2).

Where we have used the substitution x = cos ξ on the left hand integrals and used (3.6.13) to
evaluate the right hand integrals. The left hand integral may be evaluated explicitly. Consider
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the factor (cosh η − x)−1/2 as a Newtonian potential1, it may be written

1

(cosh η − x)1/2
=

1√
ζ2 + ζ ′2 − 2ζζ ′x

=
1

ζ

∞∑
k=0

(
ζ ′

ζ

)k
Pk(x) (3.6.19)

where ζ ′ = ζ−1/2 and ζ = e±η/2/
√

2 and the sign is taken according to the sign of η so that the
exponential takes negative argument. Since Pm is a polynomial so is (1 − x2)Pm(x), therefore
we may expand it into a linear combination of Legendre polynomials, in particular we have
(3.6.15). The motivation is to remove powers of x to obtain an equation containing only inner
products of Legendre polynomials so that (3.6.13) may be used. Using the expression (3.6.15)
with (3.6.18), (3.6.18) and (3.6.19) we commute integration and summation to find that the
first relation the unknown constants satisfy for sphere 1 is given by

√
2

∫ 1

−1

(1− x)2Pm(x)
1

ζ

∞∑
k=0

(
ζ ′

ζ

)k
Pk(x)dx

=
√

2

∫ 1

−1

Pm(x)
∞∑
k=0

k(k + 1)e−(k+1/2)η1

2k + 1

[
(k + 2)Qk+1(x)

k(2k + 3)
− (k − 1)Qk−1(x)

(k + 1)(2k − 1)

]
dx.

Commuting the sum and integral we obtain

=
√

2
∞∑
k=0

k(k + 1)e−(k+1/2)η1

2k + 1

×
{

(k+2)
k(2k+3)

[
2

2k+5δmk+2 − 2
2k+1δmk

]
− (k−1)

(k+1)(2k−1)

[
2

2k+1δmk − 2
2k−3δmk−2

]}
= 2

2m−1Rm−1(η1)− 2
2m+3Rm+1(η1)

where we have used (3.6.14). Distributing the sum we find

=
√

2

∞∑
k′=2

k′e−(k′−1/2)η1

2k′ − 1

(k′ + 1)

(2k′ + 1)

[
2

2k′ + 3
δmk′+1 −

2

2k′ − 1
δmk′−1

]

−
√

2
∞∑

k′=−1

(k′ + 1)e−(k′+3/2)η1

2k′ + 3

k′

(2k′ + 1)

[
2

2k′ + 3
δmk′+1 −

2

2k′ − 1
δmk′−1

]
=

2

2m− 1
Rm−1(η1)− 2

2m+ 3
Rm+1(η1)

where we have made the substitutions k = k′− 1 and k = k′+ 1 for the former and latter sums
respectively. We therefore find

= 2
√

2
m(m+ 1)

2m+ 1

[
e−(m−1/2)η1

2m− 1
− e−(m+3/2)η1

2m+ 3

]
=

2

2m− 1
Rm−1(η1)− 2

2m+ 3
Rm+1(η1).

Via a similar argument for sphere 2 we obtain

−2
√

2
m(m+ 1)

2m+ 1

[
e−(m−1/2)η2

2m− 1
− e−(m+3/2)η2

2m+ 3

]
=

2

2m− 1
Rm−1(η2)− 2

2m+ 3
Rm+1(η2).

(3.6.20)

recalling that η2 < 0 so the exponential functions in (3.6.20) decay with m.

1Historically speaking one might regard this by definition, as in 1782 Adrien-Marie Legendre introduced his
polynomials as coefficients in a series expansion of the function |x− x′|−1/2.
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No Flux

Continuing to the no flux conditions (3.6.12b), (3.6.12d) similar methods are applied with the
use of an additional integration formula. Consider sphere 1 whose no flux condition is

−1

2

∫ 0

−π

sin3 ξ sinh η1Pm(cos ξ)

(cosh η1 − cos ξ)3/2
dξ =

sinh η1

2

∫ 1

−1

(1− x2)Pm(x)

(cosh η1 − x)3/2
dx

=
2

2m− 1
r′m−1(η1)− 2

2m+ 3
r′m+1(η1) (3.6.21)

The left hand side of equation (3.6.21) is problematic because the factor (cosh η1 − x)−3/2 is
not a Newtonian potential like the no-slip case. We may however write the integrand as a total
derivative

sinh η1

2

∫ 1

−1

Pm(x)(1− x2)
d

dx
(cosh η1 − x)−1/2 dx

=
√

2
sinh η1

2

∫ 1

−1

Pm(x)(1− x2)
d

dx

∞∑
k=0

e−(k+1/2)η1Pk(x) dx

=
2

2m− 1
r′m−1(η1)− 2

2m+ 3
r′m+1(η1).

Note that the summand converges uniformly to zero as long as η1 > 0 where e−(k+1/2)η1Pk(x)
decays exponentially as k → ∞. We may therefore pass the derivative through the infinite
summation and use lemma 3.6.3 to commute the order of integration and summation to obtain

−
√

2
sinh η1

2

∞∑
k=0

k(k + 1)e−(k+1/2)η1

2k + 1

∫ 1

−1

Pm(x)Qk(x) dx

= − 1√
2

∞∑
k=0

k(k + 1)

2k + 1

[
e−(k−1/2)η1 − e−(k+3/2)η1

] ∫ 1

−1

Pm(x)Qk(x) dx

=
2

2m− 1
r′m−1(η1)− 2

2m+ 3
r′m+1(η1).

where we have used the integration formula (3.6.16).

3.6.3 Linear System

The constants an, bn, cn and dn are determined by inverting the linear system of equations

Mnan :=


m11
n m12

n m13
n m14

n

m21
n m22

n m23
n m24

n

m31
n m32

n m33
n m34

n

m41
n m42

n m43
n m44

n

an = Gn

with a = (an, bn, cn, dn), the no slip components

m11
n = cosh(n+ 3

2 )η1, m21
n = cosh(n+ 3

2 )η2,

m12
n = sinh(n+ 3

2 )η1, m22
n = sinh(n+ 3

2 )η2,

m13
n = cosh(n− 1

2 )η1, m23
n = cosh(n− 1

2 )η2,

m14
n = sinh(n− 1

2 )η1, m24
n = sinh(n− 1

2 )η2,
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the no flux components

m31
n = (n+ 3

2 ) sinh(n+ 3
2 )η1, m41

n = (n+ 3
2 ) sinh(n+ 3

2 )η2,

m32
n = (n+ 3

2 ) cosh(n+ 3
2 )η1, m42

n = (n+ 3
2 ) cosh(n+ 3

2 )η2,

m33
n = (n− 1

2 ) sinh(n− 1
2 )η1, m43

n = (n− 1
2 ) sinh(n− 1

2 )η2,

m34
n = (n− 1

2 ) cosh(n− 1
2 )η1, m44

n = (n− 1
2 ) cosh(n− 1

2 )η2

and

Gn =


−
√

2n(n+1)
2n+1

[
e−(n−1/2)η1

2n−1 − e−(n+3/2)η1

2n+3

]
√

2n(n+1)
2n+1

[
e(n−1/2)η2

2n−1 − e(n+3/2)η2

2n+3

]
n(n+1)√
2(2n+1)

[
e−(n−1/2)η1 − e−(n+3/2)η1

]
n(n+1)√
2(2n+1)

[
e(n−1/2)η2 − e(n+3/2)η2

]

 .

Making the definitions

c(n) :=

√
2n(n+ 1)

(2n+ 1)(2n− 1)(2n+ 3)
,

and

∆ := 4 sinh2(n+ 1
2 )(η1 − η2)− (2n+ 1)2 sinh2(η1 − η2),

we determine the unknowns an, bn, cn, dn where, our parentheses sparing convention will not
be confused in the following sense

sinh
cosh(w + x)(y + z) ≡ sinh

cosh[(w + x)(y + z)] ∀w, x, y, z.

One finds

∆ an = c(n)(2n+ 3)
[
(2n+ 1)(n− 1

2 )(cosh 2η1 − cosh 2η2)

− 2
(
(2n− 1) sinh(n+ 1

2 )(η1 − η2) sinh(n+ 1
2 )(η1 + η2)

− (2n+ 1) sinh(n+ 3
2 )(η1 − η2) sinh(n− 1

2 )(η1 + η2)
)]
,

∆ bn = −c(n)(2n+ 3)
[
(2n+ 1)(n− 1

2 )(sinh 2η2 − sinh 2η1)

− 2
(
(2n− 1) sinh(n+ 1

2 )(η1 − η2) cosh(n+ 1
2 )(η1 + η2)

−(2n+ 1) sinh(n+ 3
2 )(η1 − η2) cosh(n− 1

2 )(η1 + η2)
)

+4 · exp
{
−(η1 − η2)(n+ 1

2 )
}

sinh(n+ 1
2 )(η1 − η2)

+(2n+ 1)2 exp {η1 − η2} sinh(η1 − η2)
]
,

∆ cn = −c(n)(2n− 1)
[
(2n+ 1)(n+ 3

2 )(cosh 2η1 − cosh 2η2)

+2
(
(2n+ 3) sinh(n+ 1

2 )(η1 − η2) sinh(n+ 1
2 )(η1 + η2)

+(2n+ 1) sinh(n+ 3
2 )(η1 + η2) sinh(n− 1

2 )(η2 − η1)
)]
,

∆ dn = c(n)(2n− 1)
[
(2n+ 1)(n+ 3

2 )(sinh 2η1 − sinh 2η2)

+ 2
(
(2n+ 3) sinh(n+ 1

2 )(η1 − η2) cosh(n+ 1
2 )(η1 + η2)

+(2n+ 1) cosh(n+ 3
2 )(η1 + η2) sinh(n− 1

2 )(η2 − η1)
)

+ 4 · exp
{
−(η1 − η2)(n+ 1

2 )
}

sinh(n+ 1
2 )(η1 − η2)

−(2n+ 1)2 exp {−(η1 − η2)} sinh(η1 − η2)
]
.

These coefficients are distinct from those found by Stimson and Jeffery [162] because of
the present choice in boundary conditions. Note that the method here is generalisable in the
boundary conditions, demonstrating the utility of the coordinate system. A corollary of the
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result is that the calculations are valid for retreating spheres, since the change in boundary
conditions is equivalent to the permutation of two rows of M , which amounts to a change in
the sign of detM and thus a global sign change on an, bn, cn, dn. This can also be seen as a
consequence of the reversibility of Stokes flow.

3.7 The Force Experienced By The Spheres

Happel and Brenner [75] give an exact expression for the force on a sphere given in terms of
the stream function in cylindrical coordinates

Fz = µπ

∫
S

r3 ∂n

(
L−1ψ

r2

)
ds (3.7.1)

where µ is dynamic viscosity, S is a meridian line of the sphere and ds is an infinitesimal arc
length measured in radians. Thus we require an explicit expression for L−1, applied to ψ, in
bipolar coordinates.

Lemma 3.7.1. In bipolar coordinates the integrand of (3.7.1) before applying the normal
derivative takes the form[

L−1ψ

r2

]
n

=
(cosh η − x)5/2

c4(1− x2)

[
Qn(x)

(
R′′n(η)− 2 sinh η

cosh η−xR
′
n(η) (3.7.2)

+ 3
4

3x+cosh η
cosh η−x Rn(η)

)
+ (1− x2)Rn(η)

(
Q′′n(x) + 2

cosh η−xQ
′
n(x)

)]
.

Proof. We work with the representation of the result L−1 as found in Lemma 3.4.3. We choose
the latter setting k = −1 therein. With this form we take (3.6.6) and apply r−2L−1, assuming
the summand decays sufficiently fast for uniform convergence to permit the commutation of
the summation sign and two derivatives in ξ and η. With this it is not too hard to obtain the
term wise expression of the integrand[

L−1ψ

r2

]
n

= −
[
(cot ξ − cosh η csc ξ)2(4Qn(cos ξ)(2 sinh η Rn(η) (3.7.3)

+ (cos ξ − cosh η)R′′n(η)) +Rn(η)(−3(3 cos ξ + cosh η)Qn(cos ξ)

+ 4(cosh η cot ξ − csc ξ + 3 sin ξ) d
dξQn(cos ξ)

+ 4(cos ξ − cosh η) d2

dξ2Qn(cos ξ))
]
/
(

4 c4
√

cosh η − cos ξ
)

By writing x = cos ξ and performing the ξ derivatives explicitly

d
dξQn(cos ξ) = − sin ξ Q′n(x),

d2

dξ2Qn(cos ξ) = −xQ′n(x) + (1− x2)Q′′n(x).

and rearranging one recovers (3.7.3) thus lemma is proved.

We now use the expression for the integrand in Lemma 3.7.1 to compute the force. First we
identify an integral which will be useful for the following calculations.

Lemma 3.7.2. Fix η ∈ (−∞,∞). For each n ∈ N, Qn as in Lemma 3.6.1 one has

∫ 1

−1

dxQn(x)

(cosh η − x)1/2
= 2
√

2

e∓(n+
3
2

)
η

2n+ 3
− e
∓
(
n− 1

2

)
η

2n− 1


where the signs are chosen according to satisfaction of boundary conditions and to obtain uni-
form convergence upon infinite summation where required.
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Proof. By using the expansion form of the quotient integrand, (3.6.19) we have by direct cal-
culation∫ 1

−1

dxQn(x)

(cosh η − x)1/2
=
√

2

∫ 1

−1

dxQn(x)
∞∑
k=0

e∓(k+
1
2 )Pk(x) =

√
2
∞∑
k=0

e∓(k+
1
2 )

∫ 1

−1

dxQn(x)Pk(x)

= 2
√

2

e∓(n+
3
2

)
η

2n+ 3
− e
∓
(
n− 1

2

)
η

2n− 1


where we have used uniform convergence from the exponentially decaying summand to in-
terchange the integrand and summation signs and in the last line we have used the identity
(3.6.14).

Definition 3.7.3. Let n ∈ N and define

wn(η) := 2
√

2

e∓(n+
3
2

)
η

2n+ 3
− e
∓
(
n− 1

2

)
η

2n− 1

 .
Lemma 3.7.4. The infinitesimal line element of the integral (3.7.1) has the explicit form

r3ds = −c4 (1− x2) dx

(cosh η − x)4
.

Proof. By referring to appendicies of [75] the line element along an arbitrary curve for a general
curvilinear orthogonal coordinate system q transformed from orthogonal coordinates r is given
by

ds2 = h2
ηdq2

1 + h2
ξdq

2
2 + h2

3dq2
3

where hη, hξ, h3 are the metrical coefficients corresponding to the transformation from r to q
space, and the hi are defined as the reciprocal of the definition in [75]. Note that by Lemma
3.4.4 hη = hξ and hθ = 1 is the metrical coefficient corresponding to the unchanged polar angle
θ. Note too that in (3.7.1) the radius of the bipolar circle is held constant, thus dq1 = dη = 0.
Note also that along a meridian line of a sphere dθ = 0, thus the only contribution to the
line integral is dξ. Therefore after combining these facts, using the expression (3.3.2) and
substituting x = cos ξ on obtains

r3ds = − c3 sin3 ξ

(cosh η − cos ξ)3
· c

cosh η − cos ξ
· dx

sin ξ
.

Upon writing sin2 ξ = 1− x2 the lemma is proved.

Remark 3.7.5. The length of a half equator may be calculated by choosing a stream function
ϕ such that ∂nr

−2L−1ϕ = r−3. Take the formula (3.7.1) with ϕ defined such, then

∫
S

r3∂n

[
L−1ϕ
r2

]
ds = −c

∫ π

0

dξ
cosh η−cos ξ =

2c arctanh

[
(cosh η+1) tan

ξ
2√

1−cosh2 η

]
√

1− cosh2 η

∣∣∣∣π
0

= cπ
sinh η = πr1.

Lemma 3.7.6. In spherical bipolar coordinates the normal derivative is given by

∂n = h−1∂η.

Proof. By definition the normal derivative is n · ∇q. Now by referring to [75] the gradient
operator is given by

∇q = h−1iη∂η + h−1iξ∂ξ + h−1
θ iθ∂θ
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thus by orthogonality of the basis {iη, iξ, iθ} to n parallel iη by direct computation we have

∂n = n · [h−1iη∂η + h−1iξ∂ξ + h−1
θ iθ∂θ] = h−1∂η

where we have used iη = n.

Remark 3.7.7. The first few derivatives of wn(η) are

dwn
dη

=− sinh η
2

∫ 1

−1

dxQn(x)
(cosh η−x)3/2 ,

d2wn
dη2

= 3 sinh2 η
4

∫ 1

−1

dxQn(x)
(cosh η−x)5/2 − cosh η

2

∫ 1

−1

dxQn(x)
(cosh η−x)3/2 ,

d3wn
dη3

=− sinh η
2

∫ 1

−1

dxQn(x)
(cosh η−x)3/2 + 9 sinh η cosh η

4

∫ 1

−1

dxQn(x)
(cosh η−x)5/2 − 15 sinh3 η

8

∫ 1

−1

dxQn(x)
(cosh η−x)7/2 .

Lemma 3.7.8. The force experienced by either sphere can be written in the form

Fz =
∞∑
n=1

s(1)(n) + s(2)(n) + s(3)(n) + s(4)(n)

where the s(i)(n) are a linear combination of the derivatives of wn(η).

Proof. First consider the integral representation of wn(η)

wn(η) =

∫ 1

−1

dxQn(x)

(cosh η − x)1/2
.

Starting with the result of lemma 3.7.1 we differentiate (3.7.2) with respect to η (again assuming
uniform convergence of the implicit infinite summation), which is the directional derivative
parallel to the outward normal unit n. Performing the differentiation term-wise we write the
right hand side in terms of wn(η) and its derivatives. We will define intermediate integrals Gj ,
j = 1, 2, 3, 4, 5 before collecting like powers of cosh η − x. Firstly observe that

h−1∂η

[
(cosh η − x)5/2

c4(1− x2)
Qn(x)R′′n(η)

]
= Qn(x)

c5(1−x2)

[
5
2R
′′
n(η) sinh η (cosh η − x)5/2 +R(3)

n (η)(cosh η − x)7/2
]
.

Multiplying by r3ds, the form as in Lemma 3.7.4, and integrating over [−1, 1] one has

G1 := −c−1

∫ 1

−1

dxQn(x)
[

5
2
R′′n(η) sinh η

(cosh η−x)3/2 +
R(3)
n (η)

(cosh η−x)1/2

]
.

Secondly one has

h−1∂η

[
− 2(cosh η−x)3/2

c4(1−x2) sinh η Qn(x)R′n(η)
]

= − 2Qn(x)
c5(1−x2)

[
R′′n(η) sinh η (cosh η − x)5/2

+R′n(η)
(

cosh η (cosh η − x)5/2 + 3
2 sinh2 η (cosh η − x)3/2

)]
.

Multiplying this expression by r3ds and integrating over [−1, 1] one has

G2 := c−1

∫ 1

−1

dx 2Qn(x)
[
R′′n(η) sinh η

(cosh η−x)3/2 +
R′n(η) cosh η

(cosh η−x)3/2 +
3 sinh2 η R′n(η)

2(cosh η−x)5/2

]
.
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Thirdly we compute

h−1∂η

[
3
4

(cosh η−x)5/2

c4(1−x2)
cosh η+3x
cosh η−x Qn(x)Rn(η)

]
by writing cosh η = −3 cosh η+4 cosh η to control the form of the individual terms. In particular
one obtains

h−1∂η

[
3
4

(cosh η−x)5/2

c4(1−x2)
cosh η+3x
cosh η−x Qn(x)Rn(η)

]
= 3Qn(x)

4c5(1−x2)

[
5
2 (cosh η − x)

5/2
( 4 cosh η

cosh η−x − 3)Rn(η) sinh η

+(cosh η − x)7/2( 4 sinh η
cosh η−x −

4 sinh η cosh η
(cosh η−x)2 )Rn(η)

+(cosh η − x)7/2( 4 cosh η
cosh η−x − 3)R′n(η)

]
Multiplying this expression by r3ds and integrating over [−1, 1] one has

G3 := −c−1

∫ 1

−1

dx 3Qn(x)
4(cosh η−x)4

[
5
2 (cosh η − x)

5/2
( 4 cosh η

cosh η−x − 3)Rn(η) sinh η

+(cosh η − x)7/2( 4 sinh η
cosh η−x −

4 sinh η cosh η
(cosh η−x)2 )Rn(η)

+(cosh η − x)7/2( 4 cosh η
cosh η−x − 3)R′n(η)

]
.

equivalently

G3 = −c−1

∫ 1

−1

dx 3
4Qn(x)

[
6 sinh η cosh η Rn(η)

(cosh η−x)5/2 − 7 sinh η Rn(η)
2(cosh η−x)3/2 +

4 cosh η R′n(η)

(cosh η−x)3/2 −
3R′n(η)

(cosh η−x)1/2

]
.

Fourthly we compute

h−1∂η

[
(cosh η−x)5/2

(1−x2)
(1−x2)
c4 Q′′n(x)Rn(η)

]
.

Using the ODE (3.6.3) as an integration formula for Q′′n(x) one obtains

h−1∂η

[
(cosh η−x)5/2

(1−x2)
(1−x2)
c4 Q′′n(x)Rn(η)

]
= −n(n+1)Qn(x)

c5(1−x2)

[
5
2 (cosh η − x)5/2 sinh η Rn(η) + (cosh η − x)7/2R′n(η)

]
.

Multiplying this expression by r3ds and integrating over [−1, 1] one has

G4 := c−1

∫ 1

−1

dxn(n+ 1)Qn(x)
[

5 sinh η Rn(η)
2(cosh η−x)3/2 +

R′n(η)

(cosh η−x)1/2

]
.

Fifthly we compute

h−1∂η

[
2(cosh η−x)3/2

c4 Q′n(x)Rn(η)
]
.

The derivative of Q′n(x) will be removed by integration by parts, computing the normal deriva-
tive first one has

h−1∂η

[
2(cosh η−x)3/2

c4 Q′n(x)Rn(η)
]

=
2Q′n(x)
c5

[
3
2 (cosh η − x)3/2 sinh η Rn(η) + (cosh η − x)5/2R′n(η)

]
.

Now multiplying by r3ds in the form of Lemma 3.7.4 and integrating over [−1, 1] one has the
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expression

−c−1

∫ 1

−1

dx
2(1−x2)Q′n(x)
(cosh η−x)4

[
3
2 (cosh η − x)3/2 sinh η Rn(η) + (cosh η − x)5/2R′n(η)

]
.

Now integrating by parts one obtains

− c−1

∫ 1

−1

dx
2(1−x2)Q′n(x)
(cosh η−x)4

[
3
2 (cosh η − x)3/2 sinh η Rn(η) + (cosh η − x)5/2R′n(η)

]
= c−1

∫ 1

−1

dx (1− x2)Qn(x)
[

15 sinh η Rn(η)
2(cosh η−x)7/2 +

3R′n(η)

(cosh η−x)5/2

]
− c−1

∫ 1

−1

dx xQn(x)
[

6 sinh η Rn(η)
(cosh η−x)5/2 +

4R′n(η)

(cosh η−x)3/2

]
(3.7.4)

The integrals on the right hand side of (3.7.4) are not all yet proportional to wn(η) or its
derivatives due to the powers of x present in the integrand. To proceed we use the recurrence
relation (3.6.4) and an elementary corollary, namely

(1− x2)Qn(x) = − (n+2)(n+3)
(2n+3)(2n+5)Qn+2(x) + 2n (n+1)

(2n−1)(2n+3)Qn(x)− (n−1)(n−2)
(2n−1)(2n−3)Qn−2(x)

so that the final integral is given by

G5 := c−1

∫ 1

−1

dx
[
− (n+2)(n+3)

(2n+3)(2n+5)Qn+2(x) + 2n (n+1)
(2n−1)(2n+3)Qn(x)− (n−1)(n−2)

(2n−1)(2n−3)Qn−2(x)
]

×
[

15 sinh η Rn(η)
2(cosh η−x)7/2 +

3R′n(η)

(cosh η−x)5/2

]
− c−1

∫ 1

−1

dx
[
n+2
2n+3Qn+1(x) + n−1

2n−1Qn−1(x)
] [

6 sinh η Rn(η)
(cosh η−x)5/2 +

4R′n(η)

(cosh η−x)3/2

]
.

Collecting like powers of cosh η − x in the integrands of the Gj we may define the four
following s(i), i = 1, 2, 3, 4

s(1) :=

∫ 1

−1

dx Qn(x)
(cosh η−x)1/2

[
−R(3)

n (η) + 9
4R
′
n(η) + n(n+ 1)R′n(η)

]
,

s(2) :=

∫ 1

−1

dx Qn(x)
(cosh η−x)3/2

[
− 1

2R
′′
n(η) sinh η − cosh η R′n(η)

+ 21
8 sinh η Rn(η) + 5

2n(n+ 1) sinh η Rn(η)
]

−
∫ 1

−1

dx
[
n+2
2n+3Qn+1(x) + n−1

2n−1Qn−1(x)
]

4R′n(η)

(cosh η−x)3/2 ,

s(3) :=

∫ 1

−1

dx Qn(x)
(cosh η−x)5/2

[
3 sinh2 η R′n(η)− 9

2 sinh η cosh η Rn(η)
]

−
∫ 1

−1

dx
[
n+2
2n+3Qn+1(x) + n−1

2n−1Qn−1(x)
]

6 sinh η Rn(η)
(cosh η−x)5/2

+

∫ 1

−1

dx
[
− (n+2)(n+3)

(2n+3)(2n+5)Qn+2(x) + 2n (n+1)
(2n−1)(2n+3)Qn(x)

− (n−1)(n−2)
(2n−1)(2n−3)Qn−2(x)

]
3R′n(η)

(cosh η−x)5/2 ,
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s(4) :=

∫ 1

−1

dx
[
− (n+2)(n+3)

(2n+3)(2n+5)Qn+2(x) + 2n (n+1)
(2n−1)(2n+3)Qn(x)

− (n−1)(n−2)
(2n−1)(2n−3)Qn−2(x)

]
15 sinh η Rn(η)
2(cosh η−x)7/2 .

By inspection one sees each of the Fi may be written as linear combinations of high order
derivatives of wn(η).

Lemma 3.7.9. Let p ∈ N then there exists explicit expressions for the integral

I n
p 2 :=

∫ 1

−1

dxQn(x)

(cosh η − x)p+1/2

in terms of linear combinations of the derivatives of wn(η). In particular for the first few p one
has

I n
3 2 = −2 csch η w′n(η),

I n
5 2 = 4 csch2 η

3

[
w′′n(η) + cosh η

2 I n
3 2

]
,

I n
7 2 = − 8 csch3 η

15

[
w(3)
n (η)− 9 cosh η sinh η

4 I n
5 2 + sinh η

2 I n
3 2

]
Proof. By Remark 3.7.7 one may obtain the explicit expressions.

Theorem 3.7.10. The force experienced by either sphere in dimensional form is given by

F 1
z =
√

2cπµU

∞∑
n=1

(2n+ 1)(an + bn + cn + dn), (3.7.5)

F 2
z = −

√
2cπµU

∞∑
n=1

(2n+ 1)(−an + bn − cn + dn). (3.7.6)

Proof. By substituting the formulae in Lemma 3.7.9 into Lemma 3.7.8 and rearranging we are
done.

Note that nowhere in the calculation is any information on the an, bn, cn, dn required. In
particular, alternative boundary condition choices amount to a different linear system to be
solved and a redefinition of these series coefficients. For practical applications the series (3.7.5),
(3.7.6) must be truncated at some order n = N∗ <∞, but since we know the behaviour of the
functions an, bn, cn, dn by (3.6.3), particularly they decay exponentially in n for each fixed η1

and η2, the truncation will produce only exponentially small errors.

3.8 Comparison With Existing Methods

In this section we compare our expression for a(·) to the results obtained using multipole and
perturbative methods. We make use of computer code which computes expansion coefficients
for the multipole method available online [88]. We show that our results are significantly more
accurate and efficient to compute, and cannot be reproduced by the multipole expansion pro-
gramme. It is widely accepted that for two sphere problems, when tractable, spherical bipolar
coordinates will yield the most accurate method to calculate the force. We refer the reader
to previous publications making reference to this, which instead use multipole and lubrication
methods to carry out the calculations [91, 92, 98]. Whilst such spherical bipolar methods have
been used in previous studies of hydrodynamic interactions, we can find no reference to their
use in the singular problem studied here.
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Figure 3.2: Plots of the present theory and the lubrication results for the squeezing force.

We do this because we have identified the absence of any analytical calculations reducing
corresponding expressions available in spherical bipolar coordinates to asymptotic expansions
for the force in the separation distance. Previous such ‘asymptotic’ results, such as those in Kim
and Karilla [98], are, in fact, not asymptotic and contain divergent terms both as the spheres
approach (which is physically reasonable), and as the spheres become widely-separated (which
is completely unphysical). This introduces a need for artificial cutoffs, or matching procedures.

Up until now there has been no ratification of the expressions for the widely used resistance
functions XA

11, XA
22, for the force on sphere 1 and 2 respectively, as defined in [92] against

spherical bipolar coordinates. There is simply (unquantified) wisdom concerning the inefficiency
of the computation of the XA

11, XA
22 as the separation distance tends to zero [91]. Pertaining

to this, we provide the numerical comparison and identify the short comings in using the series
representations of XA

11, XA
22 for practical applications.

3.8.1 Inner Region Lubrication Theory

In this section we present a comparison between the exact (3.7.5),(3.7.6) (valid for all separation
and sphere sizes), and asymptotic formulae (A.1.9)–(A.1.10) (valid for all sphere sizes) deter-
mined by the present work and the existing lubrication theory [98]. In Table 3.1 and Figure
3.3 we compare F iz ((3.7.5),(3.7.6)), F ez (A.1.10), and Fz,l by defining the ‘lubrication theory’
formula

Fz,l := 2β2ε−1

(1+β)2 + 2β(1+7β+β2)
5(1+β)3 log ε−1. (3.8.1)

We have truncated this expression to log(·), omitting terms equal to and higher than ε log ε
because those higher order terms are based on the expansion of a stream function at r = ∞
without proper control on the convergence of the force integral used to compute Fz,l. The exact
force, as given by (3.7.5), as well as an interpolant produces a hydrodynamic force varying
smoothly between the small and large argument limits, as seen in Figure 3.2a for two equal
spheres. In Figure 3.2b we plot the functions (3.7.5), (3.7.6) for different radii ratios.

The force calculated from the asymptotic formula (A.1.10) deviates from the exact solution
and becomes unphysical at large separation, as expected. However, from Figure 3.2a (with
inset), we observe that our asymptotic formula F ez agrees more closely with the exact formula
F 1
z than Fz,l. In particular F ez is barely visible on top of the black curve. This is true even for

distances up to one radius, r1, whilst Fz,l agrees with F 1
z only for distances less than one tenth

of r1.
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(A.1.1) was solved numerically to obtain corresponding η1, η2 ordinates before summing the
functionals (3.7.5), (3.7.6) and truncating the infinite series to within machine precision.

Table 3.1: Comparison of exact and approximate nondimensional forces with r2/r1 = 5.

h Centre Distance
Diameter F 1

z · 104 −F 2
z · 103 F ∗z · 104 Fz,l · 104

sphere 1 sphere 2 sphere 1 sphere 1
0.0001 3.0000 0.6000 1.3896 2.7801 1.3896 1.3894
0.0212 3.0106 0.6021 0.0069 0.0148 0.0069 0.0068
0.1008 3.0504 0.6101 0.0017 0.0043 0.0017 0.0015
0.3217 3.1609 0.6322 0.0007 0.0023 0.0007 0.0005
1.1291 3.5646 0.7129 0.0003 0.0016 0.0003 0.0001
9.9660 7.9830 1.5966 0.0002 0.0011 0.00004 -0.0001
∞ ∞ ∞ 0.0001 0.0010 - -

We also demonstrate the applicability of the exact and asymptotic formulae to unequal
spheres of various size ratios in Figure 3.2b, 3.3a and 3.3b. In each of these figures h = d−r1−r2

is dimensional. We remark that in Figure 3.2b we plot the magnitude of the force on either
sphere for different radii ratios and note that, by the definitions (3.3), as d1 + d2 → r1 + r2

and hence as h → 0, the forces are equal and opposite as we would expect by Newton’s third
law. That is, once the forces F jz are scaled by the same Stokes constant, they collapse onto
each other for all r2/r1 > 0. This may be seen more rigorously by repeating the analysis of
Section A.1 on sphere 2; one finds F 2

z /(6πµUr2) ∼ −4β2/(1 + β)3α−2. The force magnitude,
however, increases as the radii ratio increases; see Figures 3.2b, 3.3a. The relative error for
the present asymptotic formula in Figure 3.3b using (A.1.9) improves monotonically as r2/r1

becomes larger. This was observed to hold for even larger ratios (not shown for clarity).

3.8.2 The Multipole Expansion Functions

In this section we examine the behaviour of the multipole scalar resistance functions XA
ij as

defined in Jeffrey and Onishi [92]. Local to this section only we define some notation to be
consistent with Jeffrey and Onishi [92]: a1, a2 are the radii of spheres 1 and 2 respectively, λ is
the sphere radii ratio, s is a nondimensional separation parameter, ξ is s shifted by two, and h
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Figure 3.4: A comparison of the normal component of the HI as obtained by the present theory
and multipole methods.

is the dimensional sphere surface separation. The following hold

λ =
a2

a1
, s− 2 = 2

h/a1

1 + λ
, ξ = s− 2.

The existing programs consist of Fortran code for the resistance functions XA
11 (and XA

22)
as defined in Jeffrey and Onishi [92], provided by D. J. Jeffrey [88]. The functions XA

11 and
XA

22 are expressions for the force normal to the sphere surfaces due to sphere 1 and sphere
2, respectively. We now demonstrate that our corresponding functions F 1

z and F 2
z are more

accurate than XA
11 and XA

22 in computing the force both for arbitrary sphere size ratios and for
arbitrary sphere separations. See Figures 3.4a and 3.4b.

For Figure 3.4a we computed both the XA
11 by using equation (3.13) of Jeffrey and Onishi

[92] and via the asymptotic form (3.17) of Jeffrey and Onishi [92] using the first 300 terms fm as
provided by the code [89] and compared to the results obtained by spherical bipolar coordinates.
Indeed Figure 3.4a shows a substantial difference in the singular behaviour between the spher-
ical bipolar and multipole formalisms, particularly in the small argument region where many
summand terms are required for an accurate representation of XA

11. The largest shortcoming
of the multipole method is that the coefficients of summand of XA

11, denoted fk(λ), are not all
known for all λ and require large computing resources [88, 91]. When computing more fm(λ)
the authors found the solution of recurrence relation (3.9) Jeffrey and Onishi [92] increasingly
difficult for both m, λ→∞. For the expanded version of XA

11 given by eq (3.17) of Jeffrey and
Onishi [92] the behaviour can be understood by closely looking at the formula for the order 1
term AX11 (3.17)

AX11 = 1− 1
4g1 +

∞∑
m=2
m even

[2−m(1 + λ)−mfm(λ)− g1 − 2m−1g2 + 4m−1m−1
1 g3]

91



where g1(λ), g2(λ), g3(λ), m1(m) are all known. We see that this series has a divergent term,
namely −2m−1g2. Using this formula for AX11 and the expansion as ξ → 0 one has

XA
11 = g1(λ)ξ−1 + g2(λ) log ξ−1 +AX11(λ) + g3(λ)ξ log ξ−1 as ξ → 0,

which we compare to the expansion F ez (A.1.10) as well as the formula F 1
z valid for arbitrary

separations.
It is apparent from Figure 3.4b (using the first 15 terms as provided by Jeffrey [88]) that

when using the infinite series formula for XA
11 to compute the force for a larger aspect ratio

r2/r1 = 2π we see a considerable disagreement with the calculations obtained in spherical
bipolar coordinates. The XA

11 may perform better in the near field when more fm are known,
but computing these coefficients is inefficient for practical applications, and more so for larger
aspect ratios λ → ∞, as we found when calculating more than 15 fm for the purposes of this
work. We are confident in the calculation of XA

11 used to produce Figures 3.4a-3.4b because we
were able to reproduce the tabulated values of AX11(1) as listed in section 3.3 in Jeffrey and Onishi
[92]. Meanwhile the spherical bipolar formalism gives an explicit formula for all summand terms
and provides the correct decay structure both as the centre distance decreases and increases.
We therefore contend that the results obtained using spherical bipolar coordinates are more
efficient, accurate and cannot already be produced with existing methods.
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Chapter 4

Microhydrodynamics 2: Spheres
Converging Perpendicular To
Their Line Of Centres

In this chapter we solve Stokes equations in spherical bipolar coordinates with the view to
calculate the tangential component of the short range hydrodynamic interaction. We study
exact solutions for the slow viscous flow of an infinite liquid caused by two rigid spheres moving
parallel to their line of centres, valid at all separations. As in the case of the normal component
of the interaction, this goes beyond the applicable range of existing solutions for singular HI
which, for practical applications, are limited to the near-contact or far field region of the flow.

For this tangential component of the HI, by use of a bipolar coordinate system, we obtain
the corresponding infinite series expression of the (shear) singular force between the spheres.
However, due to the reduction in the symmetry of the system, principally because the flow is
no longer isotropic, there is a limit to the amount of analytical progress which can be made. In
particular, it is not possible to obtain asymptotic formulae on the local profile of the tangential
force, due to the deficiency in the number of analytical expressions for expansion coefficients
for the velocity field. The complete set of coefficients constructing the velocity field are found
to satisfy depend on a single three term recurrence relation which must be solved numerically.

4.1 Organisation Of The Chapter

This chapter presents the rigorous derivation and asymptotic analysis of the singular HI b(·)
valid for all non-contacting particle separations. In Section 4.2 we state boundary value problem
to be solved and decompose Stokes equations into a coupled set of simpler PDEs. In Section
4.3 we transform the PDEs to spherical bipolar variables and solve each of them sequentially.
In Section 4.4 we transform the boundary conditions into spherical bipolar coordinates. In
Appendix B.1 we provide the recurrence relations determining series coefficients for general
unequal spheres. In Section 4.5 we determine simpler three term recurrence relation for the
equal sphere sub case. Finally in Section 4.6 we calculate the force as an infinite series in the
solutions of the recurrence relations found in the previous sections.

4.2 Stokes Equations

When the fluid velocity between the spheres can not be expressed as the curl of a scalar field
we instead consider the uncurled incompressible Navier-Stokes equations for laminar flow, (by
setting Re = 0

µ−1∇p = ∇2u,

∇ · u = 0.
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The appropriate boundary conditions will be seen to be

u = U êx on sphere 1,

u = −U êx on sphere 2

along with the far field condition u → 0 as |x| → ∞. In circular cylindrical coordinates the
equations governing fluid pressure and the three velocity fields read

µ−1∂rp =

(
∇2 − 1

r2

)
ur −

2

r2
∂θuθ, (4.2.1a)

µ−1r−1∂θp =

(
∇2 − 1

r2

)
uθ +

2

r2
∂θur, (4.2.1b)

µ−1∂zp = ∇2uz (4.2.1c)

where it is emphasised that ∇2 is now expressed in cylindrical coordinates

∇2 = ∂2
r + r−1∂r + r−2∂2

θ + ∂2
z .

The incompressibility condition becomes

∂rur + r−1ur + r−1∂θuθ + ∂zuz = 0 (4.2.2)

and the boundary conditions are

ur = U cos θ, uθ = −U sin θ, uz = 0, on sphere 1 (4.2.3a)

ur = −U cos θ, uθ = U sin θ, uz = 0. on sphere 2. (4.2.3b)

Our interest is in solving momentum equations (4.2.1a)–(4.2.1c), along with the incom-
pressibility assumption (4.2.2), subject to the no flux and no slip boundary conditions (4.2.3a),
(4.2.3b) in spherical bipolar coordinates. The coordinate system is the same as the one consid-
ered in Chapter 3 for the normal HI mode, and we provide for convenience a schematic of the
spherical bipolar geometry with appropriate velocities for the tangential HI mode in Figure 4.1.
We now seek to convert our equations to spherical bipolar coordinates. Firstly we recast the

94



cylindrical equations (4.2.1a)–(4.2.1c) and incompressibility condition (4.2.2) into a simpler set
of coupled boundary value PDEs in terms of the axisymmetric potential operators L1.

4.2.1 Projection Onto Legendre Functions

By the careful choice of three auxiliary functions (X(r, z), Y (r, z), Z(r, z)), the governing equa-
tions (4.2.1a), (4.2.1b), (4.2.1c) can be written in terms of a known differential operator. Firstly
consider the decomposition

c p = 2µUW (r, z) cos θ, (4.2.4a)

c ur = U [rW (r, z) + c (X(r, z) + Y (r, z))] cos θ, (4.2.4b)

c uθ = U [X(r, z)− Y (r, z)] sin θ, (4.2.4c)

c uz = U [zW (r, z) + 2cZ(r, z)] cos θ (4.2.4d)

where c > 0 is the same geometrical constant as in Chapter 3, U is an arbitrary velocity scale
and µ is the fluid viscosity. By substituting these relations into the velocity equations and
incompressibility condition we obtain the following equations

∂rW =
(
∂2
r + r−1∂r − 2r−2 + ∂2

z

) c
2

(X + Y ) +
(
∂2
r + r−1∂r − 2r−2 + ∂2

z

) rW
2

− c (X − Y )

r2
, (4.2.5a)

0 =
(
∂2
r + r−1∂r − 2r−2 + ∂2

z

) c
2

(X − Y )− c (X + Y )

r2
, (4.2.5b)

∂zW =
(
∂2
r + r−1∂r − r−2 + ∂2

z

)
zW + 2c

(
∂2
r + r−1∂r − r−2 + ∂2

z

)
Z, (4.2.5c)

0 = 3W + r∂rW + z∂zW + c∂rY + c∂rX + 2cr−1X + 2c∂zZ. (4.2.5d)

By adding (4.2.5a) to equation (4.2.5b), subtracting (4.2.5b) from equation (4.2.5a) and along
with (4.2.5c) and (4.2.5d) we have the solvability conditions in terms of the differential operator
L1

L1W =
W

r2
, (4.2.6a)

L1X =
4X

r2
, (4.2.6b)

L1Y = 0, (4.2.6c)

L1Z =
Z

r2
, (4.2.6d)

0 = 3W + r∂rW + z∂zW + c∂rY + c∂rX + 2cr−1X + 2c∂zZ (4.2.6e)

where

L1 = ∂2
z + ∂2

r + r−1∂r.

Recall that L1 is a particular case of the differential operator Lk given by

Lk = ∂2
z + ∂2

r + k r−1∂r

which is a closely studied operator in axially symmetric potential theory by those such as
Weinstein[174] and Payne [136] and in particular [137] wherein explicit solutions for Stokes flow
around classes of axially symmetric bodies are considered. Solutions to equations such as

Lkω(r, z) = 0

are referred to as axially symmetric potential functions, and by formulating the translating
sphere problem in terms of the operator Lk we may exploit the properties of solutions to such
equations. Notably the homogeneous problem L1ω = 0 in spherical bipolar coordinates has a
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solution expressable in a complete basis of Legendre polynomials.

4.3 Conversion To Spherical Bipolar Coordinates

By making the transformation (3.3.1) the generalised operator Lk is given in bipolar spherical
coordinates as

Lk = r−kh2
{
∂ξ
(
rk∂ξ

)
+ ∂η

(
rk∂η

)}
.

4.3.1 Equation For Y

We would like to solve the simplest PDE of the system (4.2.6a)-(4.2.6e) namely equation (4.2.6c).
We write Ŷ (ξ, η) = Y (r(ξ, η), z(ξ, η)) and as in [75] we make the ansatz (taking k = 1)

Ŷ (ξ, η) = r−1/2f(ξ)g(η)

then it will be seen that Ŷ is a solution to L1Ŷ provided

fg

4h2r2
+ f ′′g + g′′f = 0. (4.3.1)

Moreover the PDE (4.3.1) is solvable via a separation solution in f and g provided h−2r−2 is
partitionable in functions of ξ and η, more explicitly we require

1

h2r2
= P (ξ) +Q(η)

for some P and Q functions solely of ξ and η respectively. Indeed this is the case, in particular
in spherical bipolar coordinates one observes the metrical coefficient h is such that

1

h2r2
= csc−2 ξ.

Thus we take P (ξ) = csc−2 ξ and Q(η) ≡ 0. By writing equation (4.3.1) with functions of ξ
on one side and functions of η on the other, we conclude that both sides vary independently
in ξ and η and must therefore equal a separation constant −λ2. It is necessary to take the
separation constant negative in order to satisfy the boundary conditions. In summary we must
solve the system of ODEs

f ′′ +

(
λ2 − 1

4 sin2 ξ

)
f = 0, (4.3.2)

g′′ − λ2g = 0. (4.3.3)

The ODE (4.3.3) is elementary, being solved by an arbitrary linear combination of hyperbolic
trigonometric functions

g(η) = A coshλη +B sinhλη.

For the ODE (4.3.2) we make the transformation ξ̄ = cos ξ rendering it

(
1− ξ̄2

)
f ′′ − ξ̄f ′ +

(
λ2 − 1

4
(
1− ξ̄2

)) f = 0.

We make a further ansatz f =
(
ξ̄2 − 1

)1/4
f̄ to obtain an equation for f̄

(
1− ξ̄2

)
f̄ ′′ − 2ξ̄f̄ ′ +

(
λ2 − 1

4

)
f̄ = 0.
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Now upon writing n(n+ 1) = λ2 − 1
4 we find that

λ = n+ 1
2 for n = 0, 1, 2, ...

and f̄ = Pn is the Legendre polynomial of order n. Using the principle of linear superposition
we have the general solution to (4.2.6c)

Ŷ (ξ, η) =
√

cosh η − cos ξ
∞∑
n=0

[
Dn cosh(n+ 1

2 )η + En sinh(n+ 1
2 )η
]
Pn(cos ξ).

4.3.2 Equation For W And Z

To solve equation (4.2.6a) (equivalently (4.2.6d)) we use an analogous separation method that
was used for (4.2.6c) in section 4.3.1. We write Ŵ (ξ, η) = W (r(ξ, η), z(ξ, η)) and upon choosing
the ansatz

Ŵ (ξ, η) = r−1/2f(ξ)g(η)

where f and g are not necessarily the same functions found in Sections 3.6, 4.3.1 we find we
must solve

− 3fg

4 sin ξ2
+ f ′′v + v′′f = 0.

Equivalently we have the system of ODEs

f ′′ +

(
λ2 − 3

4 sin2 ξ

)
f = 0,

g′′ − λ2g = 0.

where λ2 is the separation constant (not necessarily the same as in section 4.3.1). We make the
ansatz f = (ξ̄2 − 1)1/4f̄ to yield

(
1− ξ̄2

)
f̄ ′′ − 2ξ̄f̄ ′ +

(
λ2 − 1

4
− 1

1− ξ̄2

)
f̄ = 0

which we recognise as the associated Legendre equation with m = 1 and λ = n+ 1
2 . Thus

f̄ = P (1)
n (ξ̄)

where P
(1)
n (x) is the associated Legendre function with m = 1. Upon using the standard relation

P (1)
n (x) = (−1)m(1− x2)m/2

dm

dxm
Pn(x) (4.3.4)

along with the principle of linear superposition we have

Ŵ (ξ, η) = sin ξ
√

cosh η − cos ξ
∞∑
n=1

[
Bn cosh(n+ 1

2 )η +Cn sinh(n+ 1
2 )η
]
P ′n(cos ξ),

Ẑ(ξ, η) = sin ξ
√

cosh η − cos ξ
∞∑
n=1

[
An cosh(n+ 1

2 )η +Hn sinh(n+ 1
2 )η
]
P ′n(cos ξ).

We remark that the sums are to be taken starting n = 1, 2, .. because solutions to the associated
Legendre equation are nonzero and nonsingular when 0 ≤ m = 1 ≤ n.
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4.3.3 Equation For X

To solve equation (4.2.6b) we write X̂(ξ, η) = X(r(ξ, η), z(ξ, η)) and make the usual separation
ansatz. The separated ξ dependent ODE becomes

(
1− ξ̄2

)
f̄ ′′ − 2ξ̄f̄ ′ +

(
λ2 − 1

4
− 4

1− ξ̄2

)
f̄ = 0

which we recognise as the associated Legendre equation with m = 2 and λ = n+ 1
2 . Thus after

using (4.3.4) with m = 2 we have the general solution for X̂

X̂(ξ, η) = sin2 ξ
√

cosh η − cos ξ
∞∑
n=2

[
Fn cosh(n+ 1

2 )η +Gn sinh(n+ 1
2 )η
]
P ′′n (cos ξ)

noting the sums are to be taken starting n = 2, 3, .. because solutions to the associated Legendre
equation are nonzero and nonsingular when 0 ≤ m = 2 ≤ n.

All that remains is to apply the boundary conditions (4.2.3a)-(4.2.3b) transformed into
spherical-bipolar coordinates to the appropriately combined general solutions Ŵ , X̂, Ŷ , Ẑ.

4.4 Boundary Conditions

The boundary conditions (4.2.3a), (4.2.3b) are transformed into the corresponding conditions on
the auxiliary fields W (r, z), X(r, z), Y (r, z), Z(r, z). By the expressions for ur, uθ, uz (4.2.4b),
(4.2.4c), (4.2.4d) respectively we obtain on sphere 1

1

c
r(1)W1 +X1 + Y1 = 1, (4.4.1)

X1 − Y1 = −1, (4.4.2)

z(1)W1 + 2cZ1 = 0, (4.4.3)

and on sphere 2

1

c
r(2)W2 +X2 + Y2 = −1, (4.4.4)

X2 − Y2 = 1, (4.4.5)

z(2)W2 + 2cZ2 = 0, (4.4.6)

where

z(1) = c
sinh η1

cosh η1 − cos ξ
, r(1) = c

sin ξ

cosh η1 − cos ξ
,

z(2) = c
sinh η2

cosh η2 − cos ξ
, r(2) = c

sin ξ

cosh η2 − cos ξ
.

In the singular case, when two spheres are converging perpendicular to there line of centres we
do not expect the fluid pressure to remain bounded. Since we expect a divergent pressure field
for small separations along the z axis, equivalently cos ξ = ±1, the general solution to (4.2.6a)–
(4.2.6e) is found by setting Hn = 0 for every n. The six boundary conditions along with the
incompressibility condition (4.2.6e) form seven equations for the seven unknowns An–Gn.

4.5 Recurrence Relations For Equal Spheres

We now obtain the unknown constants for the case of equal spheres. A set of recurrence relations
for the unequal sphere case are presented in Appendix B.1 but are not solved due to algebraic
complexity in the relations, which may be overcome with computer algebra. As such we set
η1 = −η2 = α > 0. In the equal sphere cases, the cylindrical polar (r, z) and spherical bipolar
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(η, ξ, θ) coordinates in the right and left hand planes are related by

z(1) = c
sinhα

coshα− cos ξ
, r(1) = c

sin ξ

coshα− cos ξ
,

z(2) = −c sinhα

coshα− cos ξ
, r(2) = c

sin ξ

coshα− cos ξ
,

where α ∈ (0,∞) is the spherical bipolar coordinate which draws a sphere of radius r1 =
c| cschα| in the right and left hand planes. Additionally, α and is a proxy for the sphere centre
distance where coshα = d/r1 where d is the centre distance of the spheres.

We now determine An–Gn. We once again let x = cos ξ, and, by subtracting (4.4.6) from
(4.4.3) we find

Bn = 0

for every n. Similarly by adding together (4.4.1), (4.4.4), similarly (4.4.2) to (4.4.5) we find

Dn = Fn = 0

for every n. Note that these zero conditions are the complement of the of the zero conditions
found in [70]. Using the Bonnet recursion formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

along with the integration formula

(2n+ 1)Pn(x) = P ′n+1(x)− P ′n−1(x)

one can derive

xP ′n(x) =
n+ 1

2n+ 1
P ′n−1(x) +

n

2n+ 1
P ′n+1(x). (4.5.1)

By adding (4.4.3) to (4.4.6) we find

sinhα

∞∑
n=1

Cn sinh(n+ 1
2 )αP ′n(x) + 2 coshα

∞∑
n=1

cosh(n+ 1
2 )αP ′n(x)

− 2
∞∑
n=1

An cosh(n+ 1
2 )α

[
n+ 1

2n+ 1
P ′n−1(x) +

n

2n+ 1
P ′n−1(x)

]
= 0

and we obtain a relation for Cn in terms of An

Cn = 2An+1
n+ 1

2n+ 3
[γn + 1]− 2γnAn + 2An−1

n− 1

2n− 1
[γn − 1]

where γn = cothα coth(n+ 1
2 )α and we have used (4.5.1). Note the definition of γn is different

to that in [70]. By subtracting (4.4.4) from (4.4.1) and subtracting (4.4.5) from (4.4.2) and
finally adding (4.4.6) to (4.4.3) we obtain

sin ξ

coshα− x
[W1 −W2] +X1 −X2 + Y1 − Y2 = 1, (4.5.2)

X1 −X2 − [Y1 − Y2] = −1, (4.5.3)

sinhα

coshα− x
[W1 −W2] + 2[Z1 + Z2] = 0.
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Adding together (4.5.2) and (4.5.3) we find

∞∑
n=2

Gn sinh(n+ 1
2 )αP ′′n (x) = cschα

∞∑
n=1

An cosh(n+ 1
2 )αP ′n(x)

and using the integration formula

(2n+ 1)P ′n(x) = P ′′n+1(x)− P ′′n−1(x)

we obtain a relation for Gn in terms of An

Gn =
An−1

2n− 1
[γn − 1]− An+1

2n+ 3
[γn + 1] .

Finally by subtracting (4.5.3) from (4.5.2) we obtain

2 = − sin2 ξ

sinhα
(coshα− x)1/2

∞∑
n=1

An cosh(n+ 1
2 )αP ′n(x)

+ (coshα− x)1/2
∞∑
n=1

En sinh(n+ 1
2 )αPn(x)

and upon using the generating function (coshα− x)−1/2 =
∑∞
n=0 snPn(x) where

sn =
√

2e−(n+
1
2 )α

along with the identity

(1− x2)P ′n(x) =
n(n+ 1)

(2n+ 1)
[Pn−1(x)− Pn+1(x)]

we obtain a relation for En in terms of An

En = 2
√

2e−(n+
1
2 )α csch(n+ 1

2 )α+An+1
(n+ 1)(n+ 2)

2n+ 3
[γn + 1]−An−1

n(n− 1)

2n− 1
[γn − 1] .

We have now obtained six equations involving the seven unknowns An–Gn. The only con-
dition thus far unused is the incompressibility condition (4.2.6e), which we will use to identify
An. Since the incompressibility condition (4.2.6e) is invariant in the choice of boundary condi-
tions we may use the relation (3.56) [37] with our redefined constants. The incompressibility
condition (4.2.6e) transformed to spherical bipolar coordinates evaluated on the surface of the
sphere η = α may be written in the form

qn(α) · [An−1, An, An+1]
>

= pn(α),

where

qn(α) :=
[
(n− 1)(γn−1 − 1)− (n−1)(2n−3)

2n−1 (γn − 1),

− n(2n−1)
2n+1 (γn−1 + 1) + (2n+ 1)− 5γn + (n+1)(2n+3)

2n+1 (γn+1 − 1),

(n+2)(2n+5)
2n+3 (γn + 1)− (n+ 2)(γn+1 + 1)

]
.

and the right hand side vector may be obtained in a similar way, with the exception that sech’s
are substituted for csch’s.

pn(α) := −
√

2e−(n+1/2)α
[
eα csch(n− 1

2 )α− 2 csch(n+ 1
2 )α+ eα csch(n+ 3

2 )α
]

(4.5.4)

Both equations (4.5) and (4.5.4) were checked with computer algebra.
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(a) A plot of the normal and tangential compo-
nents of the force using the formulae valid for
arbitrary separation of Jeffrey & Onishi [92] and
the present theory GMS. The inset shows the rel-
ative error between the two formalisms as a func-
tion of the sphere distance. The correct far-field
behaviour is obtained by Jeffrey & Onishi but the
formulae fail in the boundary layer h/σ ∼ ε1/2.
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(b) A plot of the normal and tangential compo-
nents of the force using the formulae valid for the
inner region of Kim & Karrila [98] and the present
theory GMS. The inset shows the relative error
between the two formalisms as a function of the
sphere distance. Using the inner region formu-
lae of Kim & Karrila, the correct singular be-
haviour is obtained but the far-field is not valid.

Figure 4.2: A comparison of the normal (solid) and tangential (dashed) forces and the (inset,
relative error) between the present work GMS and (a) multipole methods of Jeffrey & Onishi
and (b) perturbative methods of Kim & Karrila.

4.6 The Force Experienced By The Spheres

There is an exact expression for the force on either sphere for the spherical bipolar coordinate
system, first obtained by O’Neil [128] in general form and applied to the case of a single sphere
moving parallel to a plane wall. We may use the expression for a two sphere problem, albeit
with different summation coefficients owing to the present choice of boundary conditions. We
have for equally sized spheres, in dimensional form,

F 1
x = −

√
2πµUc

∞∑
n=1

En + n(n+ 1)Cn on sphere 1 (4.6.1)

F 2
x =
√

2πµUc

∞∑
n=1

En + n(n+ 1)Cn on sphere 2. (4.6.2)

These expressions may be nondimensionalised with the characteristic drag scale 6πµUr1, re-
calling that r1 = c| cschα|. We compute the force as given by the summations (4.6.1), (4.6.2)
by solving the three term recurrence relation (4.5) with the boundary condition AN = 0 for a
large N for each η. Recall that d1/r1 = cosh η where d1 and r1 are the centre distance to the
origin and radius of the equal spheres respectively. Therefore η acts as a proxy for the sphere
distance in spherical bipolar coordinates. The numerical procedure for An amounts to solving
a tridiagonal linear system with right hand side of (4.5). After An has been computed for some
set n ∈ {1, · · · , N} we compute Cn by using (4.5) and En by using (4.5).

Once the Cn, En are computed for a fixed η, the infinite summations (4.6.1), (4.6.2) may be
made (which is now truncated to a partial sum of N terms). This numerical procedure relies
on the fact that CN and EN (and therefore AN ) decay sufficiently quickly in N for each η. We
expect the errors made in this truncation to be exponentially small, c.f. the discussion after
Theorem 3.7.
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In Figure 4.2 we plot the scalar resistance functions (3.7.5), (4.6.1) to observe their relative
magnitude, for varying sphere centre distances, along with Fx,l and Fz,l, formulae (9.24) and
(9.33) as found in Kim and Karrila [98, Chapter 9]. For GMS the centre distance parameter
η is not given in terms of analytical functions for a given centre distance d and radii r1. As in
the normal interaction in Chapter 3, we compute η for each d and r1 by solving the coupled set
of nonlinear equations (A.1.1). As seen in Figure 4.2a, the force as computed with multipole
methods Jeffrey & Onishi [92] fails to capture the correct singular behaviour. The inset shows
the relative error between the two formalisms (GMS and Jeffrey & Onishi) as a function of the
sphere distance. Also, as seen in Figure 4.2b, the force as computed with the lubrication theory
methods of Kim & Karrila fail to capture the correct far field behaviour. The inset shows the
relative error between the two formalisms of GMS and Kim & Karrila as a function of the
sphere distance.
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Chapter 5

Positivity of R

In this chapter we show that the present theory preserves positive definiteness of the grand resis-
tance matrix, which is highly desirable for stochastic simulations of colloidal flow. Conversely
we show that the grand resistance matrix as constructed from solutions to Stokes equations
obtained by inner region expansions of multipole solutions may become non-positive definite at
large enough particle separations.

The Resistance Matrix R

The positivity of the resistance matrix is an important property for many computational ap-
plications of the HI including Monte Carlo simulations of stochastic particle dynamics. In
particular, for Langevin dynamics of colloids, one must compute R1/2, which is defined by the
diagonalisation

R1/2 = SΛ1/2S−1,

where Λ is a diagonal matrix consisting of the eigenvalues of R and S is a unitary matrix
consisting of columns of orthonormal eigenvectors of R. Such a diagonalisation is ensured to
exists when R is symmetric and real. Mathematically speaking, the positivity of R ensures the
existence and uniqueness of R1/2. Meanwhile, in the sampling of such Langevin trajectories,
the positivity is related to the fact that for a particle undergoing friction in a thermostated
bath, the rate of mechanical energy dissipation should be positive. A non-positive definite
resistance matrix would allow the non-physical situation that a given particle may gain kinetic
energy under drag.

In this section we demonstrate that our construction of R, using scalar resistance functions
determined in spherical bipolar coordinates, conserves positivity as a function of sphere separa-
tion for the selected sphere set-ups considered, whereas, the alternative constructions given by
assembling R with entries originating from perturbation (Kim & Karrila) or multipole methods
(Jeffrey & Onishi), in general do not. For each formalism we obtain numerically the eigenvalues
of R such that

Rei = λiei

for i = 1, · · · , 3N where λi are smooth functions of the intersphere distance for sequence of
particle numbers, N = 2, 3, · · · . We use matlab’s built in function eig, which is a robust eigen-
value solver based on QZ iteration for symmetric matrices. The function eig uses a Cholesky
decomposition when R is positive definite, however for the present work, the definiteness of the
resistance matrices for each of the different scalar function assemblies is not known a priori,
and in particular, one may suspect R may not be positive for some of particle separations (c.f.
Oseen tensor[154] as an approximation to the mobility tensor R−1) depending on the model
used to construct it.

We compute the eigenvalues of R for a) a two sphere system and b) a three sphere system,
the schematic for both systems are depicted in Figure 5.1 and Figure 5.2. For both cases we
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Figure 5.1: Schematic of the two sphere system where d is varied between σ < d <∞.
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Figure 5.3: Eigenvalues of R as a function of the centre distance d for a) a two sphere system
and b) a three sphere system. Key: GMS (Fz), Kim & Karrila (equiv. X11

A (3.17) and Y 11
A

(4.15)) and Jeffrey & Onishi (equiv. X11
A (3.20) and Y 11

A (4.19)). Symbols indicate multiplicity
of the eigenvalues: solid = 1, circles = 2, triangles = 3. The insets show the failure of Jeffrey
& Onishi to capture the correct eigenvalues in the singular limit.

fix σ = 1.

Two Sphere System

We refer the reader to Figure 5.1 for the following discussion. For the two sphere system, the
eigenvalues {λi}6i=1 are computed for d varied between σ < d < ∞ by using GMS (present
work, formulae (3.7.5),(3.7.6) and (4.6.1),(4.6.2)), Kim & Karrila [98] and Jeffrey & Onishi [92]
and are presented in Figure 5.3a. In this case the eigenvalues correspond to 6 modes: 1 squeez-
ing interaction, 2 shearing interactions, and 3 co-translating interactions, each of multiplicity 1,
2, and 3, respectively, owing to the repeated ways in which shearing and squeezing may occur
in 3D. This may be seen by considering the centre to centre axis of two spheres in 3D space:
first, along which is the squeezing interaction; second, normal and binormal to the axis are
two shearing interactions; and third, colinear, normal and binormal to the axis are 3 translat-
ing interactions for a fixed intersphere distance. Hence, in Figure 5.3a, repeated eigenvalues
are plotted on top of each other, and, in particular the repeated eigenvalues corresponding
translation of GMS and Jeffrey & Onishi (black and red triangles) are indistinguishable.

We observe that the asymptotic behaviour of the Kim & Karrila eigenvalues agree with the
GMS eigenvalues as d/σ → 1 (as we expect since the inner region theories agree) but diverge
in the far field (as we expect as the lubrication approximation breaks down). Both the GMS
and Jeffrey & Onishi eigenvalues remain positive for all d/σ > 1, in particular both sets of
eigenvalue converge to unity as d/σ → ∞, which corresponds to the intrinsic Stokes drag at
infinity included in both formalisms. However we know by Figure 3.2a that Jeffrey & Onishi
does not provide the correct singular behaviour in the limit d/σ → 1, and in particular we
observe the eigenvalues are mismatched to both GMS and Kim & Karrila in the inner regime.

Three Sphere System

We refer the reader to Figure 5.2 which is a schematic for the three sphere configuration. We
consider three spheres confined to the plane y = 0, where two of the spheres are held fixed.
The pairwise sphere axes form an equilateral triangle when the third free sphere is moved to
the minimum mutual separation d = dmin. For the eigenvalues {λi}9i=1 we move the location

of a third sphere away from the former fixed pair by varying d such that
√

3
2 dmin < d <∞ and

compute the eigenvalues of R as a function of d.
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(a) Configuration of N = 8 spheres in
a regular arrangement with dmin = 2
corresponding to a packing fraction of
φ = 0.370, or about 50% of maximum
packing.
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(b) A plot of the smallest eigenvalue of R for
the N = 8 sphere configuration in Figure 5.4a.
The GMS and Jeffrey & Onishi curves are indis-
tinguishable where as the Kim & Karrila curve
starts to diverges at a volume fraction around
φ = 57%.

Figure 5.4: a) A regular configuration of N = 8 spheres of diameter σ = 1 with nearest
neighbour centre to centre distance dmin and b) The smallest eigenvalue of R with configuration
as in a) with varying volume fraction.

In Figure 5.3b we plot the eigenvalues and preserve the labelling GMS, Kim & Karrila
and Jeffrey & Onishi. As in the two sphere case, we obtain repeated curves owing to the
multiplicity of the eigenvalues. In Figure 5.3b we report a similar property in the eigenvalue
distribution, that the GMS are uniformly positive, and, the eigenvalues corresponding to the
pairwise interactions between the third free and the two fixed spheres converge to unity for
large as d → ∞. Kim & Karrila do not preserve positivity for the three sphere system, in
particular, we see that the eigenvalues diverge, and in particular, in a smaller regime of d than
in the two sphere system. Jeffrey & Onishi preserves positivity however, as in the two sphere
system, Jeffrey & Onishi does not provide the correct singular behaviour in the limit d/σ → 1.

The emergence of multiple constant eigenvalues as d → ∞ corresponds to convergence to
the isolated pair system as the third free sphere is sufficiently separated. There is a particular
disagreement in the eigenvalues of GMS and Jeffrey & Onishi (solid black and red) for the
singular interactions. Additionally, the resistance matrix for the three-body system in Figure
5.3b is obtained by superposition of the two-body system, and the difference we observe in
spectral behaviour of R, particularly between GMS and Jeffrey & Onishi, is most likely a
consequence of the inefficient computation of the singular terms by Jeffrey & Onishi. This
leads us to believe that the present theory, GMS, will lead to significant differences in SD
simulations of large colloidal systems, compared to the existing theory, where two–body HIs
are a common assumption.

Larger Systems

In assembling the resistance matrix for an arbitrary monodisperse system, the main parameters
are the inter-sphere distances and the number of spheres. As the number of spheres increases
so does the dimension of the resistance matrix. The inter-sphere distances dictate how the
eigenvalues are distributed. Positivity may not necessarily be obtained for an arbitrary system.
However, we may obtain some formal results about the spectral properties of R by examining a
few regular systems. We let SN denote the set of all possible states of the system of N spheres
in a confining box. Additionally we let Xφ ∈ SN denote the regular sphere packing at some
volume fraction φ ∈ (0, φg) for φg = π

3
√

2
Gauss’ constant such that for each sphere in SN ,
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the centre to centre distance of each nearest neighbour is dmin. Xφ is a natural configuration
to consider because it represents the lowest entropy state of the system at the hydrodynamic
diameter dmin. Therefore if the spectrum of R(Xφ) may be controlled, i.e., bounded from
below, one expects to be able to control R(Xφ + ε), where ε ∈ SN represents a perturbation
from Xφ.

We may investigate the spectral properties of R for larger systems by computing the eigen-
values of R(Xφ) as a function of φ ∈ (0, φg) using the different scalar resistance functions. Note
that φ = φg corresponds to contact and is the singular limit of R, which cannot be evaluated.
Since for each N , R has 3N eigenvalues, in order to examine positive definiteness we need
only compute the smallest eigenvalue λmin for each formalism. Figure 5.4a shows a unit cell
of S8 which may be repeated to produce hexagonal close packing at a hydrodynamic diameter
of dmin = 2 for spheres of diameter σ = 1. The hydrodynamic diameter dmin and the volume
fraction are related by φ = π/(3

√
2)(σ/dmin) hence as dmin increases φ decreases and vice versa.

In Figure 5.4b we plot the smallest eigenvalue of each formalism GMS, Kim & Karrila and
Jeffrey & Onishi verses φ−1 for S8 (so that large φ−1 correspond to dilute S8). We report that
both GMS and Jeffrey & Onishi preserve positivity and that the smallest eigenvalue of Kim &
Karrila starts to diverge at volume fractions around φ = 57%.

Plotting the smallest eigenvalue as a function of φ gives a rough estimate for the volume
fraction at which the Lubrication theory of Kim & Karrila becomes invalid. The theory becomes
invalid for volume fractions smaller than 57% because the singular eigenvalues of Kim & Karrila
begin to deviate from the exact eigenvalues of GMS at much smaller φ (not shown). We present
only the smallest eigenvalues to forgo plotting 24 eigenvalues on a single axes. Additionally,
the authors stopped computing the spectra of R for each GMS, Kim & Karrila and Jeffrey &
Onishi at N = 8, since, beyond this sphere number, the computation time for computing the
eigenvalues for regular configurations of SN outstrips gains in insight of the positivity of R.

We expect the positivity to be preserved by GMS for each SN since the boundary layer in the
inner region of the resistance functions occurs only for nearest neighbours in the configuration,
and the squeezing and shearing forces quickly decay to unity for centre distances of order of
a sphere diameter. Additionally, the property that the rate of mechanical energy dissipation
should be positive is essentially a consequence of the fact that the total solvent fluid velocity
may be partitioned into the velocity fields created by the motions of the individual spheres (see
Section 8–5 Generalized treatment of multiparticle systems Happel and Brenner [75]), which
is intrinsic to the spherical bipolar formalism. This cannot be said to hold rigorously for the
asymptotic formalisms (Kim & Karrila, multipole methods) since the velocity fields as found
by those methods are valid only in local flow regimes (for example near to or far from sphere
surfaces). The advantage of GMS, therefore, over the formulae provided by multipole methods
of Jeffrey & Onishi, is to more efficiently obtain the correct singular behaviour in the close
sphere surface flow regime.
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Chapter 6

Numerical Applications

In this chapter we demonstrate substantial differences in numerical simulations of colloidal dy-
namics when using the present theory of microhydrodynamics compared with existing multipole
and perturbation methods, within DDFT.

6.1 Computation Of Convolutions

Computations of the density % and the FMT weight functions χ are performed in real space,
without using the convolution theorem (C.0.1). Typically, in FMT, the weight functions χ are
narrow, with small supports (around the size of a particle diameter) whereas the density varies
slowly in large parts of the physical domain. The density profiles % themselves may usually
be represented very accurately with few collocation points over the entire domain. However
computing the convolutions for the weighted densities on a coarse grid can be inaccurate due
to the typical nondifferentiability of the weight functions χ. This may be observed for test
convolution of a Gaussian function for a 1D infinite spectral line [127, Section 3.3 - Figure 2]
when translating the convolution operator over collocation points.

To get around this, the convolutions are rewritten as

n ? χ(y) =

∫
I (y)

dŷ χ(−ŷ)ny(ŷ)

where ny(ŷ) = n(y + ŷ) and ŷ ∈ I (y) is the intersection between the support of the weight
functionχ and the shifted density ny, centred at y. Since we expect the density profile to vary
slowly at far field, the convolutions will be dominated by the behaviour of the weight functions
χ and hence one can now discretise the intersection I (y) centred at a collocation point y = yn
and concentrate collocation points in I (y) where they are most needed. The procedure for
computation of convolutions is summarised as follows

For each yn

1. Discretise I (yn) with M collocation points ŷm and compute integration weights ŵm for
this sub domain.

2. Evaluate χm = χ(−ŷm) for the discretisation points of I (yn).

3. Compute the interpolation operator IPn (parametrised by yn) for the subdomain I (yn),
using the ŷn.

4. Set (Cχ)n = ŵn diag(χm)IPn, where ŵn are the integration weights for the subdomain.

This algorithm is also used in computing the convolutions arising from the HI tensors Z1,
Z2 for the dynamics. The complexity of the algorithm is O(MN2) floating point operations
for N collocation points in the original domain and M collocation points for each subdomain
centred on yn, much higher than the typical complexity when performing the convolution via the
convolution theorem in Fourier space, taking (O(N logN)) floating point operations. However
the construction of (Cχ)n may be parallelised and need only be computed once and saved for
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a given geometry choice. Also, a direct comparison of numerical procedures by means of their
complexity is meaningful only if computation times become a hindrance, in particular this is
normally when the number of discretisation points for both procedures is large, or when the
results are of the same accuracy. It has been shown that the real-space convolution procedure,
leads to a higher accuracy while employing a considerably lower number of discretisation points
[127].

Partial Confinement of Hard Spheres

The numerical solutions we present are for 2D fluids, that is the spheres are 3D in 3D space
but are restricted to 2D planes. By the curse of dimensionality a full 3D fluid systems are
computationally expensive. The restriction to a 2D (hard sphere) fluid is however not so
limiting, since the situation is physically interesting, and, numerically speaking, the excellent
computational performance of spectral representations of the density can be demonstrated.

Physically there two ways in which confined 2D systems may arise. First, both the bulk and
colloidal particles are confined to 2D. In this instance it is known that the transport coefficients
in 2D are not well defined, and, the restriction of Stokes equations to two dimensions can
lead to well known inconsistencies, for unbounded fluids, such as Stokes’ paradox. Second, the
colloidal particles could be confined to a 2D plane but the bulk particles are unrestricted to
move out of plane. This situation is known as partial confinement and may be applicable for
confinement of the colloids in an electric potential, or, the confinement due to external forces
such as optical tweezers. We assume the colloids are confined to a plane, where the HI modes
are well defined in this instance, and the analytical solutions to Stokes equations in Chapters
3, 4 will be applicable.

6.2 Assembling The HI Operators

The HI matrices must now be assembled. We will present the general construction of the friction
tensor, also known as the grand resistance matrix denoted R in classical microhydrodynamics
[13] and denoted Γ in DDFT literature [61], before identifying the tensor for the two body
interactions. For the Langevin dynamics, (2.3.1a)–(2.3.1b), recall that the friction tensor is
written as

Γij = γδij1 + γΓ̃ij (6.2.1)

where

Γ̃ij = δij
∑
i6=l

Z1(ri, rl) + (1− δij)Z2(ri, rj).

The block structure of Γij for N colloids is given by

Γ =


∑
l 6=1Z1(r1, rl) Z2(r1, r2) · · · Z2(r1, rN )

Z2(r2, r1)
∑
l 6=2Z1(r2, rl) · · ·

...
...

...
. . .

...
Z2(rN , r1) · · · · · ·

∑
l 6=N Z1(rN , rl)

 .

The block matrices Z1 and Z2 are defined as

Z1(ri, rl) = −a(ril)
ri ⊗ rl
r2
il

− b(ril)
(

1− ri ⊗ rl
r2
il

)
Z2(ri, rj) = a(rij)

ri ⊗ rj
r2
ij

+ b(rij)

(
1− ri ⊗ rj

r2
ij

)

where rij = |ri − rj | and a(·), b(·) are place holder scalar resistance functions, which will be
populated according to the formalism being considered. In equation (6.2.1), the first tensor
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takes into account Stokes drag on the ith particle and the second determines the HI between
particle i and particle j.

6.2.1 Consolidation Of The Scalar Resistance Functions

The scalar resistance functions we use for a(·) and b(·) to build the diagonal and off-diagonal
block matrices Z1, Z2 are given by the following:

For the a(·)

• F 1
z , F 2

z (3.7.5), (3.7.6) as found in Chapter 3

• Fz,l (9.33) as found in Kim and Karrila [98, Chapter 9].

• XA
11 (3.20) as found in Jeffrey and Onishi [92, Section 3 and 4].

For the b(·)

• F 1
x , F 2

x (4.6.1), (4.6.2) as found in Chapter 4.

• Fx,l (9.24) as found in Kim and Karrila [98, Chapter 9].

• Y A11 (4.19) as found in Jeffrey and Onishi [92, Section 3 and 4].

Key To Numerical Solutions :

The key to our numerical solutions are as follows

• GMS denotes solutions using the functions (3.7.5), (3.7.6) and (4.6.1), (4.6.2).

• Kim & Karrila denotes solutions using the functions, Fz,l and Fx,l.

• Jeffrey & Onishi denotes solutions using the functions, XA
11 and Y A11.

• Zero HI denotes solutions using the functions a(·) = b(·) = 0 for all rij .

For GMS, when computing the HI tensors for spheres of equal sizes, we use the scalar
resistance function (3.7.5) with appropriate sign, since the force on two spheres will be equal
and opposite for two converging spheres. We will consider numerical solutions to non-driven
systems to demonstrate the substantial differences in dynamics which arise when implementing
the HI as derived in this work. Solutions for driven systems, as in numerical experiments for
the DDFT derived in Chapter 2 have been implemented but are not shown here.

6.3 Numerical Experiments

In this section we present numerical applications of the HI formalism of Chapters 3, 4 for three
systems. A fully formed, in depth numerical study of solutions to DDFTs with these extensions
will be considered in a separate publication. The aim of this section is to elucidate to the
reader the differences which may be observed between the present and existing HI formalisms
in computational settings.

6.3.1 Colloids In An External Potential

We consider the probability distribution %(r, t) for the positions of a large collection of hard
spherical particles immersed in a background bath of many more, much smaller and much
lighter bath particles treated essentially as a continuum. The larger particles cause fluid flows
in the bath, in turn causing forces on all other particles. These forces are considered to be the
short range HI mediated by the bath and are prescribed by the resistance tensor R. For the
following discussion we assume A1–A3.
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(a) t = 0.00 (b) t = 12.00

Figure 6.1: Numerical solution of the DDFT (6.3.1)–(6.3.2) including the present theory (GMS)
compared to a reference solution with (Zero HI). The left hand panels show the density of
colloids, %(r, t), trapped inside a confining poential on the 2D plane. The right hand panels
show the level curves of the density and the bulk velocity of the colloidal system (given by the
arrows). Figure 6.1a shows the initial density and velocity meanwhile Figure 6.1b shows the
evolved density under a translation the confining potential over a period of t = 12 time units.

(a) t = 0.00 (b) t = 12.00

Figure 6.2: Numerical solution of the DDFT (6.3.1)–(6.3.2) including the existing theory (Kim
& Karrila) compared to a reference solution with (Zero HI). The left and right hand pannels
are as described in Figure 6.1 with same initial density and velocity, that is, Figures 6.1a and
6.2a would be indistinguishable if plotted on top of each other. After the same time period
the density and velocity are substantially different to 6.1b owing to the underestimate in the
lubrication effect by the truncation inherent in the series Fz.

In the DDFT setting it is commonplace to separate out the column space ofR corresponding
to isolated spheres diffusing at infinity. In particular we write Rij = Γij = γ1+γΓ̃ij where γ is

the friction coefficient (Stokes constant) and Γ̃ij are the nondimensional two body HI tensors.
The first tensor takes into account Stokes drag on the ith particle and the second determines
the HI between particle i and particle j. The inertial DDFTs are nonlinear, nonlocal, integro-
partial differential equations in 3D for the one-body density %(r, t) and one-body velocity v(r, t)
describing conservation of mass and momentum of a fluid with non-constant number density,
as discussed in Chapter 2. In particular, we consider the numerical solution of

∂t%(r1, t) +∇r1
· (%(r1, t)v(r1, t)) = 0, (6.3.1)

∂tv(r1, t) + (v(r1, t) · ∇r1
)v(r1, t) + 1

m∇r1

δFH [%]

δ%
(r1, t)

+ γv(r1, t) + γ

∫
dr2 [Z1(r1, r2)v(r1, t)) +Z2(r1, r2)v(r2, t))] %(r2, t)g(r1, r2, [%]) = 0.

(6.3.2)
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(a) t = 0.00 (b) t = 12.00

Figure 6.3: Numerical solution of the DDFT (6.3.1)–(6.3.2) including the existing theory (Jef-
frey & Onishi) compared to a reference solution without HI (magenta). The left and right
hand pannels are as described in Figure 6.1 with same initial density and velocity, that is,
Figures 6.1a, 6.2a, and 6.3a would be indistinguishable if plotted on top of each other. After
the same time period the density and velocity are substantially different to 6.1b owing to the
underestimate in the lubrication effect in the inner region by the multipole functions XA

11, Y A11.

For the system of PDEs (6.3.1)–(6.3.2) there are 5 required inputs: 1) Initial density and
velocity data, 2) Free energy functional FH , 3) Friction coefficient γ, 4) Pairwise HI tensors
Zj , 5) Correlation function g(r1, r2, [%]). The initial data are found by solving an equilibrium
DFT problem, which amounts to solving the nonlinear functional equation (δFH)/(δ%)[%] = µc
where µc is the chemical potential of the hard sphere species. The free energy functional FH [%]
is modelled with fundamental measure theory (FMT), which provides the functional form of the
free energy density taking account of the entropy reduction produced by hard sphere exclusion
(see Rosenfeld [148] or Roth [151]). Additionally, in FH , one may include external potentials
such as gravity as well as interparticle potentials, for electrostatic interactions. The friction
coefficient γ may be varied as a proxy for the solvent viscosity. The pairwise resistance tensors
take into account the HI, which we will construct using the resistance functions of the present
work, as well as the existing perturbative and multipole counterparts. The correlation function
is not known exactly and must ultimately be obtained from the microscopic dynamics, but
for a hard sphere fluid may be approximated by g(|r − r′|) = 0 for |r − r′| < σ (denoting
exclusion) and unity otherwise. Such an approximation has been shown to give good agreement
with comparative stochastic simulations of the underlying Langevin dynamics Goddard et al.
[61],Goddard et al. [62], Goddard et al. [65].

We solve (6.3.1)–(6.3.2) with the pseudospectral collocation scheme 2DChebClass [67]. A
detailed analysis of the numerical method, including the basic quadrature technique of the
convolutions of the HI matrices, is found in Nold et al. [127]. We present three solutions: one
labelled GMS to denote Z1, Z2 constructed with the scalar resistance function (3.7.5) obtained
by present work (Figure 6.1), one labelled Kim & Karrila (Figure 6.2) which uses the well known,
widely used expression (3.8.1) to construct Z1, Z2, and one labelled Jeffrey & Onishi (Figure
6.3) which uses the scalar functions XA

ij , Y
A
ij . A reference solution in both cases with Zero HI

Z1 = Z2 = 0 is also shown. For the solution using Kim & Karrila, a necessary outer cuttoff
was chosen at 2 sphere diameters which is accepted in the community as standard [170]. For
GMS and Jeffrey & Onishi no outer cut off is required.

We consider flow in a time dependent potential. We take γ = 2, with 50 colloids, but
many more may be included since the dimensionality of DDFT is independent of the number
of colloids. The HI terms as constructed by GMS, Kim & Karrila, and Jeffrey & Onishi all
retard the flow of the colloid particles in comparison with DDFTs with Zero HI, which is what
we expect from the standard descriptions of the effects of lubrication forces. This is in contrast
to overdamped DDFT equations including long-range forces, for HI terms corresponding to
two-body R−1, which essentially enhance collective motion Goddard et al. [66].
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(a) GMS t = 0. (b) GMS t = 12.

Figure 6.4: N = 50 particles evolving: with GMS and without HI trapped in a oscillating
potential.

To drive the flow, we use an external potential of the form

Vex = V0 + Vmov

where V0 is a weak quadratic background potential and Vmov, is a Gaussian potential well with

Vmov = exp

(
− (y1 − y1a)2

2σ2
1

− (y2 − y2a)2

2σ2
2

)
(6.3.3)

such that y1a varies, to move the potential in the physical y1 direction.

Figures 6.1, 6.2, and 6.3 show a substantial difference in the evolution of the density % (and
flux) of the suspension, in particular between GMS and both Kim & Karrila and Jeffrey &
Onishi, which appear to underestimate the effect of the lubrication force on the overall dynamics
of the density. We observe that GMS shows the onset of extrusion in the density contours not
visible using existing theory.

6.3.2 Colloids In An Oscillating Trap

The second example we present is a colloidal flow in a 2D planar geometry subject to an
oscillating external potential.

The assumption in the continuum description of colloidal dispersions that the HI are limited
to two body is particularly compatible with the HI formalism GMS, because the solution to
Stokes equations have been determined analytically and are uniformly valid in sphere separation.
Therefore the property that the total ambient fluid velocity may be partitioned into the velocity
fields created by the motions of the individual spheres (see Section 8–5 [75]), each of which
require exact solutions to Stokes equations for two-body sphere motion in order to construct a
well-posed positive definite grand resistance matrix R, is provided by the solutions presented in
this thesis theory. This cannot be said to hold rigorously for the asymptotic formalisms (Kim
& Karrila, Jeffrey & Onishi) since the velocity fields as found by those methods are valid only
in local flow regimes (for example near to or far from sphere surfaces).

Once again, we numerically solve the inertial DDFT (2.6.1) with two body short range HI
and present the three solutions: one labelled GMS, Kim & Karrila, and Jeffrey & Onishi. A
reference solution in both cases with Zero HI Z1 = Z2 = 0 is also shown. For the solution using
Kim & Karrila, the necessary outer cuttoff was chosen at 2 sphere diameters. Additionally, we
once again take γ = 2, with 50 colloids. To drive the flow, we use an external potential of the
form

Vex = V0 + Vosc
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(a) Kim & Karrila t = 0. (b) Kim & Karrila t = 12.

Figure 6.5: N = 50 particles evolving with: Kim & Karrila and without HI trapped in a
oscillating potential.

(a) Jeffrey & Onishi t = 0. (b) Jeffrey & Onishi t = 12.

Figure 6.6: N = 50 particles evolving with: Jeffrey & Onishi and without HI trapped in a
oscillating potential.

where V0 is a weak quadratic background potential and Vosc, is a Gaussian potential well with

Vosc = exp

(
− (y1 − y1a)2

2σ2
1

− (y2 − y2a)2

2σ2
2

)
such that σ1 and σ2 vary periodically to stretch the potential in the physical y1, y2 directions.

In Figures 6.4, 6.5, and 6.6 in which we present the oscillating system on the whole real
space demonstrates substantial difference between the HI derived in this thesis, resulting in a
large difference in the path to equilibrium between the three formalisms. In particular, both
Kim & Karrila, and Jeffrey & Onishi appear to drastically underestimate the lubrication effect
on the dynamics of the density.

Pseudospectral Scheme for FMT-DDFTs in a Slit

We now present the real-space discretisation method for DFT with FMT in a confining slit using
a pseudospectral method. Now the vector space of 2D polynomials approximating a function
f(x) defined on the unit cell x ∈ [−1, 1] × [−1, 1], which here is the computational domain
in 2D, is defined as the tensor product of the 1D polynomial vector spaces PN1

⊗ PN2
where

N1 = i is the number of collocation points in each of the two Cartesian directions.
By including FMT formalism in a DFT or DDFT one has to not only discretise the density

n but also the weight functions ωαi .We see that for a confining domain with a wall at ±L, for
some L ∈ (0,∞) then one has, due to the conservation of mass, n(y2 = ±L) = 0. However,
by definition of the ωαi (1.6.4a)–(1.6.4c), the support of ωαi is {(y1, y2) : |y2| < L + σ

2 } where
σ is the particle diameter. Additionally, if the density of a hard-sphere fluid is positive at the
wall, then the derivatives of the weighted densities in the direction normal to the wall, ∂y2

nα
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possesses a jump at y2 = ±σ/2. This may be seen by the behaviour of w2
i in (1.6.4b) for the

hard-sphere fluid in contact with the hard wall at y2 = ±y2. By (1.6.4b) and (1.6.6)n2, is
non-differentiable at y2 = ±σ/2 since ω2

i is a delta function.

Domain Discretisation for FMT-DDFT Equations in a Slit

We define the physical domain by the mapping

Yslit(x1, x2) = (A (x1),T0,L(x2))

where we define the mappings in the individual Cartesian directions for slit of width 2L

A : [−1, 1]→ [−∞,∞] x→ L1
x√

1− x2
(6.3.4a)

T0,L : [−1, 1]→ [−L,L] x→ Lx (6.3.4b)

and L1 is a geometrical parameter linked to the length scale of the physical domain. It may
be seen that the algebraic maps (6.3.4a)–(6.3.4b) retain their optimal properties as N → ∞
for fixed mapping parameters [20]. In order to correctly describe the jump discontinuities in
derivatives of the weight functions (1.6.6), we augment the physical slit Yslit into

Ycomp(x1, x2) =
(
A (x1),T−L,σ/2 ∪T0,L−σ/2 ∪TL,σ/2(x2)

)
.

In the computations which we present, the number of collocation points in the shoulder slit,
Nslit, is chosen empirically to be the next even integer to N2/3. This value was found to provide
an accurate representation of the density and the weighted densities in the vicinity of the wall.

6.3.3 Colloids In An Infinite Slit

Domain Splitting

For the HI terms in (2.6.1), as in the FMT formalism, we must divide the slit since the support
of the HI tensors restricts a hard sphere from being within one radius of the the hard wall. The
methodology for doing this is described by the following algorithm

For a slit of width 2L centred on the y2 axis

1. ‘Trim off’ the slits of width σ/2 from y2 = ±L.

2. Construct convolution matrices for the HI terms by computing the intersection of the
support of the HI tensors and the trimmed domain, centred at each collocation point in
the trimmed domain.

3. The support of the FMT weight functions is the original domain plus ’wings’ of width
σ/2. This may be seen by studying at the geometrical weight functions in Rosenfeld’s
FMT.

4. The new computational domain is then a slit of width 2L+σ centred around the y2 axis.

5. No flux is prescribed on y2 = ±L so that the density is zero outside the originally defined
slit of width 2L.

We provide plots of the discretised slit in Figure 6.7 and the support of the convolution
operators for both the HI terms and FMT for hard spheres in Figure 6.8. Finally, in Figure 6.9
we present a numerical example demonstrating the difference in the evolution of the density for
GMS compared to the reference solution with Zero HI in a slit of width 2L. Additionally, in
Figure 6.10 we show the corresponding solution to with Zi constructed with Jeffrey & Onishi
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(a) Grid lines used to discretise the density % in the slit. Here L = 5.
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(b) Grid lines used to discretise the slit composed by the physical space [−∞,∞] × [−L,L] and the
bounding slits [−∞,∞]×[−σ/2−L,−L+σ/2], [−∞,∞]×[−σ/2+L,L+σ/2] for the weighted densities
nα. Here L = 5 and σ = 1 so the boundary of the support of the weighted densities nα are found at
y2 = ±5.5.

Figure 6.7: Grid lines of the discretisation of density % and weighted densities nα. In the
subplots above, 20 collocation points are employed in each direction with mapping parameter
L1 = 12. In both Figures 6.7a, 6.7b 40% of collocation points in the y1 direction are located
between the vertical red dashed lines. In Figure 6.7a, 60% of the collocation points in the y2

direction are located between the horizontal red dashed lines and the nearest wall y2 = ±L. In
Figure 6.7b, 80% of the collocation points in the y2 direction are located between the horizontal
red dashed lines and the boundary of the nα support y2 = ±(L+ σ/2).
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(a) Discretisation of intersection I between the
support of the scalar resistance functions of the
HI tensors and the slit-space.

-2 -1 0 1 2

y1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

y
2

(b) Discretisation of intersection I between the
support of the weighted densities nα and the slit-
space.

Figure 6.8: Example intersection grid lines for the convolution operators of (a) the HI terms
and (b) FMT for hard spherical particles at candidate collocation points.

(a) GMS t = 0 (b) GMS t = 12

Figure 6.9: N = 50 particles evolving with: GMS and with Zero HI in a slit of width 10.

(a) Jeffrey & Onishi t = 0 (b) Jeffrey & Onishi t = 12

Figure 6.10: N = 50 particles evolving with: Jeffrey & Onishi and with Zero HI in a slit of
width 10.

compared to the reference solution with Zero HI. Both hard sphere fluids were driven in the
slit by the time dependent potential Vex with Vmov defined in (6.3.3). The corresponding Kim
& Karrila solutions were found to be too stiff in the slit for cut-offs more than one diameter,
and the resulting solutions do not differ substantially from the reference solutions Zero HI and
are therefore not shown here. The stiffness in the numerical solution of the Kim & Karrila
formalism justifies the need for more robust expressions for the short range HI, as presented in
this thesis.
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Chapter 7

Well-Posedness and Equilibrium
Behaviour

In this chapter we establish the global well-posedness of overdamped dynamical density func-
tional theory (DDFT): a nonlinear, nonlocal integro-partial differential equation used in statis-
tical mechanical models of colloidal flow and other applications including nonlinear reaction-
diffusion systems and opinion dynamics.

With no-flux boundary conditions, we determine the well-posedness of the full nonlocal
equations including two-body hydrodynamic interactions (HI) through the theory of Fredolm
operators. Principally, this is done by rewriting the dynamics for the density % as a nonlocal
Smoluchowski equation with a non-constant diffusion tensor D dependent on the diagonal part
(Z1) of the HI tensor, and an effective drift A[a] dependent on the off-diagonal part (Z2). We
derive a scheme to uniquely construct the mean colloid flux a(r, t) in terms of eigenvectors of
D, show that the stationary density %(r) is independent of the HI tensors, as well as proving
exponentially fast convergence to equilibrium.

The stability of the equilibria %(r) is studied by considering the bounded (nonlocal) per-
turbation of the differential (local) part of the linearised operator. We show that the spectral
properties of the full nonlocal operator with no-flux boundary conditions can differ considerably
from those with periodic boundary conditions. We showcase our results by using the numerical
methods available in the pseudo-spectral collocation scheme 2DChebClass [67].

7.1 Introduction

Existence, uniqueness and global asymptotic stability of the novel Smoluchowski equation in
this overdamped limit has, until this work, remained unproven. It is the inclusion of HI that
provides richness through additional nonlinearities in both the dissipation and convection terms.
The inclusion of HI is interesting from both physical and mathematical standpoints. Physically,
as above, the HI give rise to a much more complex evolution in the density. Mathematically,
the convergence to equilibrium will depend inherently on the spectral properties of the effective
diffusion tensor and effective drift vector arising from the HI. What is more, since the full
N -body Fokker-Planck equation is a PDE in a very high dimensional phase space, well-posed
nonlinear, nonlocal PDEs governing the evolution of the one-particle distribution function,
valid in the mean field limit, describing the flow of nonhomogeneous fluids are desirable for
computational reasons.

The equations studied in this paper are related to the McKean-Vlasov equation [32], a
nonlinear nonlocal PDE of Fokker–Planck type that arises in the meanfield limit of weakly
interacting diffusions. The novelty of the present problem lies in the space dependent diffusion
tensor and nonlinear, nonlocal boundary conditions. Additionally, the problem that we study in
this paper may in general not be written as a gradient flow, with the exception of the modelling
assumption that the off-diagonal elements of the friction tensor Γ are zero. This choice is
equivalent to setting Z2 to zero, and would be physically relevant for a diffuse system of particles
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with a strong hydrodynamic interaction with a wall but weak inter-particle hydrodynamic
interactions [66].

7.1.1 Description Of The Model.

In this work we analyse the overdamped partial differential equation (PDE) associated to a
system of interacting stochastic differential equations (SDEs) on U an open, bounded subset of
Rd of the following form, governing the positions ri and momenta pi of i = 1, . . . , N colloidal
particles immersed in a bath of many more, much smaller and much lighter particles:

dri
dt

=
1

m
pi, (7.1.1a)

dpi
dt

= −∇riV (rN , t)−
N∑
j=1

Γij(r
N )pj +

N∑
j=1

Bij(r
N )fj(t) (7.1.1b)

where rN = (r1, · · · , rN ), B = (mkBTΓ)
1/2

, Γ = γ(1 + Γ̃) (where the tilde denotes the
nondimensional tensor and 1 is the 3N × 3N identity matrix), V is a potential, kB , T, γ are
Boltzmann’s constant, temperature and friction, respectively, and fi(t) = (ζxi (t), ζyi (t), ζzi (t))> is
a Gaussian white noise term with mean and correlation given by 〈ζai (t)〉 = 0 and 〈ζai (t), ζbj (t)〉 =

2δijδ
abδ(t− t′).

In d = 3 dimensions, the friction tensor Γ comprises N2 positive definite 3 × 3 mobility
matrices Γij for the colloidal particles. These couple the momenta of the colloidal particles to HI
forces on the same particles, mediated by fluid flows in the bath. Typically, in the underdamped
limit with dense suspensions, the HI may be short range lubrication forces, whereas in disperse
systems in the overdamped limit, the HI are taken to be the long range forces given by the
Rotne-Prager-Yamakawa tensor [154]. However, we do not make any such assumptions on the
form of the tensors here.

We have described a general set of coupled Langevin equations with spatially-dependent
friction tensor Γ(rN ). As we will see, the dynamics (7.1.1a)–(7.1.1b) tend towards an equi-
librium given by the Gibbs probability measure, which we will show to be independent of the
friction tensor. Instead of computing the trajectories of individual particles we consider the
evolution of the density of particles %(r, t) given by the Smoluchowski equation in the high
friction limit γ →∞,

∂t%(r, t) = −kBT
mγ ∇r · a(r, [%], t) for r ∈ U, t ∈ [0, T ] (7.1.2)

where a(r, [%], t) is the flux, [%] denotes functional dependence, U ⊆ Rd and T <∞. Equation
(7.1.2) was derived rigorously as a solvability condition of the corresponding Vlasov-Fokker-
Planck equation for the one-body density in position and momentum space f(r,p, t) by writing
f as a Hilbert expansion in a small nondimensional parameter ε ∝ γ−1 [63]. Therein, ε has
units length, and therefore a problem specific length scale must be introduced to make it truly
nondimensional.

We are interested in global existence, uniqueness, positivity and regularity of the weak
solution to (7.1.2) when a(r, t) is given by the integral equation

a(r, t) +H[a, %](r, t) +
%(r, t)

kBT
D(r, [%], t)∇r

δF

δ%
[%](r, t) = 0, (7.1.3a)

H[a, %](r, t) := %(r, t)D(r, [%], t)

∫
U

dr′ g(r, r′)Z2(r, r′)a(r′, t),

%(r, t)

kBT
∇r

δF

δ%
[%](r, t) := [∇r + 1

kBT

(
∇rV1(r, t)

+

∫
U

dr′%(r′, t)g(r, r′)∇rV2(r, r′)
)

]%(r, t), (7.1.3b)

120



where to ease notation we have suppressed [%] in the argument of a and F is the free energy
functional which will be defined in Section 7.1.2. The functions V1 and V2 are the external and
(two body) interparticle potentials respectively. Additionally, the non-constant diffusion tensor

D(r, [%], t) :=
kBT

mγ

[
1 +

∫
dr′g(r, r′)%(r′, t)Z1(r, r′)

]−1

(7.1.4)

will be considered; this is interesting from a physical point of view. It has been previously shown
(see [63]) that forZ1 being positive definite,D is also positive definite and therefore has positive,
finite eigenvalues. The term g(r, r′) (regarded as known) is the correlation function defined by
the two-body density %(2)(r, r′, t) = g(r, r′)%(r, t)%(r′, t) and the operator H[·] describes terms
corresponding to HI.

If D is permitted to be positive semidefinite then D may have a zero eigenvalue, which,
physically-speaking, would amount to the colloidal system possessing a zero diffusion rate in
some subset of U . Such systems are interesting (for example, in many biological systems the
physical domain U could be a substrate including cuts, voids or interior walls) but are not
considered in this paper. Throughout this work the largest and smallest eigenvalues of D will
be denoted µmax and µmin, respectively.

Furthermore, for two-body HI, Z1, Z2 are the diagonal and off-diagonal blocks respectively
of the translational component of the grand resistance matrix originating in the classical theory
of low Reynolds number hydrodynamics between suspended particles [75], [92], related to the
friction tensor by

Γ̃ij(r
N ) = δij

∑
l 6=i

Z1(ri, rl) + (1− δij)Z2(ri, rj).

In d = 3 dimensions, and for the particular case N = 2 (where N is the number of particles
in the system), Γ ∈ R6×6 and Γij may be seen as equivalent to the second-rank tensor of the
translational part of the resistance matrix as found in [92] used to model lubrication forces.
It should be noted however that the definition of those resistance matrices are formalism de-
pendent, that is, the individual entries are scalar functions arising from the solution of Stokes
equations for two-body lubrication interactions using multipole methods. Conversely, Γij are
general tensors, independent of the type of HI under consideration, and are therefore a more
general representation of hydrodynamic phenomena of colloidal suspensions. Additionally, Γij
may be used to model not just lubrication forces between particles but also long range forces,
wall effects and more. In the case of inter-particle HI, the diagonal blocks Γii each represent
the force exerted on the fluid due to the motion of particle i, which is simply the sum of all the
pairwise HI from the perspective of particle i. The off-diagonal blocks Γij represent the force
on particle i due to the motion of particle j.

The stationary equations for the equilibrium density %(r) and equilibrium flux a(r) are given
by

∇r · a(r) = 0, (7.1.5a)

a(r) +H[a, %](r) +
%(r, t)

kBT
D(r, [%], t)∇r

δF

δ%
[%](r) = 0. (7.1.5b)

Note that given a finite flux vector a solving (7.1.5a)-(7.1.5b), it is not obvious that % is
necessarily a minimiser of the free energy F −

∫
U

drµc% (where µc is the chemical potential
of the species). However, for the particular choice a ≡ 0 (which is a natural and physically
realistic solution), % is necessarily a minimiser of F −

∫
U

drµc%, and we will show that under
reasonable assumptions these are indeed the only fixed points of the system.

Previous well-posedness studies of similar nonlinear, nonlocal PDEs focused on periodic
boundary conditions; see, e.g., [29, 33]. In contrast, we are interested in the well-posedness
of (7.1.2), (7.1.3a)-(7.1.3b) subject to no-flux boundary conditions. This choice admits the
nontrivial effect of the two body forces generated by the potential V2 interacting with density
on the boundary of the physical domain. We also seek to understand the asymptotic stability
of stationary states. The motivation for this choice of boundary condition is physical; it cor-
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responds to a closed system of particles in which the particle number is conserved over time.
It is clear that most applications of such equations will be in confined systems, rather than
a periodic domain and, as such, no-flux boundary conditions are natural. We note that the
choice of boundary condition is expected to have significant effects on the dynamics, including
the form of the bifurcation diagram.

7.1.2 Free Energy Framework.

Related to the system (7.1.3a)-(7.1.3b), we define the free energy functional F : P+
ac(U) → R

where P+
ac is the set of strictly positive definite absolutely continuous probability measures on

U . We define

F [%] :=

∫
U

dr %(r, t) log %(r, t) +

∫
U

dr %(r, t)
[
V1(r, t) + 1

2 (gV2) ? %
]
, (7.1.6)

where ? denotes convolution in space. Here we assume the probability measure % has density
with respect to the Lebesgue measure. Additionally we define the probability measure on U

µ(dr) = drZ−1e
−

(V1+(gV2)?%)
kBT (7.1.7)

where Z =
∫
U

dr e
−

(V1+(gV2)?%)
kBT and % (when it exists) satisfies the nonlinear equation

% = Z−1e
−

(V1+(gV2)?%)
kBT .

The existence of a probability density %, and therefore a probability measure µ in (7.1.7), is
obtained by Lemma 7.5.1. The functional F gives rise to the density minimising the free energy
associated to the system (7.1.1a)-(7.1.1b) as γ →∞, which will be shown in Theorem 7.4.5.

To make the connection between the free energy functional F in (7.1.6) and the theory of
non-uniform classical fluids, one may consider the Helmholtz free energy functional, which is
the central energy functional of DFT [53]

FH [%] =

∫
U

dr %(r, t)V1(r, t) + kBT

∫
U

dr %(r, t)[log(Λ3%(r, t))− 1] + Fex[%]

where Fex is the excess over ideal gas term and Λ the de Broglie wavelength, which turns
out to be superfluous. The term Fex is not in general known, the exception being for one
dimensional hard rods [140]. Using the free energy functional FH , the corresponding Euler-
Lagrange equation is

µc = V1(r) + kBT[log(Λ3%(r))− 1] + δFex

δρ [%] (7.1.8)

where µc is the chemical potential which is constant at equilibrium. Note that µc should not
be confused with the measure µ defined in (7.1.7). After taking the gradient of (7.1.8) and
multiplying by % we obtain

0 = %(r)∇r
δF
δρ [%] = kBT∇r%+ %(r)∇r

(
V1(r) + δFex

δρ [%]
)
.

At equilibrium, the sum rule holds (see, e.g. [9])

%(r)∇r
δFex

δ% [%] =
N∑
n=2

∫
drn∇rVn(rn)%n(rn). (7.1.9)

where %n(rn) is the standard n−particle configuration distribution function in equilibrium and
Vn(rn) is the n–body potential contributing to the total potential energy (see (A2)). Limiting
the particle interactions to two-body (limiting n ≤ 2 ), with the approximation %2(r, r′) =
%(r)%(r′)g(r, r′, [%]), we take the first term in the above series to obtain the equality ∇rFH [%] =
∇rF [%]. In this way wee see that the density minimising FH will minimise F .
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Figure 7.1: (a). The bifurcation diagram for (a). V2(x, y) = x · y and (b). V2(x, y) =

− cos
(

2π(x−y)
L

)
in Section 7.8.1: the solid blue line denotes the stable branch of solutions

while the dotted red line denotes the unstable branch of solutions. In (a) the stationary density

e−x
2

/Z changes stability at the critical interaction energy κ2 = κ2] = −2.4 and the new stable
density is asymmetric adhering to one wall (Figure 7.4a). In (b), in the absence of a confining
potential, the uniform density becomes unstable at the critical interaction energy κ2 = κ2] = 0.4
and the density may become multi-modal (Figure 7.4b).

When Z2 ≡ 0, and after using the adiabatic approximation that (7.1.9) holds out of equi-
librium, the PDE (7.1.2) simplifies to (cf. [146])

∂t% = ∇r ·
[
D(r, t)%(r, t)∇r

δF
δ% [%]

]
. (7.1.10)

From (7.1.10) we conclude that the dynamics under the choice Z2 ≡ 0 has a gradient flow
structure. When Z2 is not zero, despite the fact that % is always a conserved quantity, one
cannot in general write the full dynamics (7.1.2) as a closed form gradient flow because % is
coupled to an integral equation for the flux a. Hence, the inclusion of HI introduces a novel
perturbation away from classical theory with gradient flow structure. Additionally, one sees
how the free energy functional gives rise to the concept of a local pressure variation by the
term inside the divergence of (7.1.10). In particular, the term kBT

m %(r, t)∇r
δF
δ% [%] represents

the spatial variation of the energy available to change particle configurations per unit volume
at fixed particle number, in other words, it is an analogue of a local pressure gradient for the
particle density. We will show that F [%] is associated to the PDE (7.1.2) even when Z2 6= 0,
that is ∂t% = 0 implies % is a critical point of F .

7.1.3 Description Of Main Results And Organisation Of The Chapter.

The main results of this work are threefold.

1. We establish existence and uniqueness of weak solutions to DDFTs including two-body
HI governed by equations (7.1.2), (7.1.3a)-(7.1.3b) with no-flux boundary conditions.

2. We derive a priori convergence estimates of the density %(r, t) to equilibrium in L2 and
relative entropy.

3. We study the stability of equilibrium states and construct bifurcation diagrams for two
numerical applications.

These results are of particular interest for physical applications of colloidal systems where
conservation of mass is either a desirable or necessary property of the system. Additionally, the
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stability theorem contrasts with simpler linear stability analyses of similar systems of gradient
flow structure with periodic boundary conditions [116], [29] which may be tackled by means of
Fourier analysis.

The chapter is organised as follows: in Section 7.2 we present the boundary and initial condi-
tions, introduce the main notation, nondimensionalise the main equations, state the stationary
equation for the density, define the weak formulation of the Smoluchowski equation including
full HI and provide a list of assumptions. In Section 7.3 we state the main results of the present
work in a precise manner. In Section 7.4 we provide an existence and uniqueness theorem for
the flux a when full HI are included. In Section 7.5 we characterise solutions of the stationary
problem and convergence to equilibrium in L2 as t → ∞. In Section 7.6 we obtain results on
the global asymptotic stability of the stationary densities by showing that the free energy is
a continuous functional for all two-body interaction strengths. Additionally we prove an H-
theorem for the equilibria, provide a priori convergence estimates in relative entropy, derive
an asymptotic expansion of the equilibria for small interaction energy and perform a spectral
analysis of the linearised nonlocal Smoluchowski operator. In Section 7.7 we provide necessary
and sufficient conditions for phase transitions in generalised DDFT-like systems with no-flux
boundary conditions. In Section 7.8 we construct the bifurcation diagram for some example
problems. In Section 7.9 we obtain an existence and uniqueness theorem for the Smoluchowski
equation (7.2.3) with non-constant diffusion tensor and effective drift vector dependent on the
two-body HI tensors Z1 and Z2. Finally, in Section 7.10 we provide some technical results that
are used in the proof of Theorem 7.3.2.

7.2 Preliminaries

In this section we specify the nonlinear boundary conditions and initial data for the DDFT
(7.1.2). We also nondimensionalise the governing equations and provide the assumptions on
the regularity of the potentials, correlation function, diffusion tensor and initial data.

7.2.1 Boundary Conditions.

When U = Rd we take {
%(r, t)→ 0

a(r, t)→ 0
as |r| → ∞,

where we require V1 to be growing at least quadratically as r → ∞. Physically-speaking this
prevents the density from running out to infinity. When U ⊂ Rd is open and bounded we
impose that the total mass of the system M remains constant, in particular we have

a(r, t) · n
∣∣∣∣
∂U×[0,T ]

= 0. (7.2.1)

The boundary condition (7.2.1) may be viewed as a nonlinear Robin condition imposing the
flux through the boundary ∂U is zero for all time t ∈ [0, T ]. If % is a number density then∫

dr % = N for all time, however for the analysis in Section 7.4 and onwards we will assume
% is a probability density so that

∫
dr % = 1. The rescaling between number and probability

densities is discussed in the following section.

7.2.2 Initial Conditions.

We will assume that the initial data has finite free energy and is consistent with the imposed
boundary conditions. For example, one could prescribe initial data (%0,a0)> such that

δF

δ%
[%0](r) = µc, a0 = 0.
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where µc is the chemical potential, constant at equilibrium. It is straightforward to check that
(%0,a0)> is an equilibrium point of the system (7.2.2). Commonly, one then drives the system
out of equilibrium via a time-dependent external potential. In principle µc may be given and the
equations (7.1.2), (7.2.3) are well defined. In practice, for complicated particle configurations,
µc is not known but can be computed by minimising the free energy along with the additional
constraint

∫
U

dr %0(r) = N , where N is the (expected) number of particles for a finite system
and %0 is a number density. Note that µc is a potential, so by raising it one may force more
particles into the system. We will assume that µc is constant to fix the number of particles. To
ensure % (and %0) is a probability density one may rescale %/N = %̃, Ng = g̃ and a/N2 = ã,
where the tilde denotes the new variable, so that

∫
U

dr %0(r) = 1 and equations (7.1.3a)-(7.1.3b)
become independent of N .

This provides a method of converting back to the number density which is typically used in
numerical modelling of finite colloidal systems [66], [62], [61]. Throughout however, since we will
frequently use the integral of the density, we will assume % and %0 are probability densities to
ease notation. With this, one has three equations for three unknowns µc, %0, a0 and the initial
density %0 can be computed. For the rest of paper it is convenient to work in dimensionless
units. We now nondimensionalise the governing equations.

7.2.3 Evolution Equations.

We now nondimensionalise our equations. Let L, τ , U be characteristic length, time and velocity
scales respectively, then by nondimensionalising

r ∼ Lr̃, t ∼ τ t̃, U = L
τ , % ∼ 1

Ld
%̃, F ∼ kBTF̃ , a ∼ Aã.

where d is the physical dimension and A is a characteristic flux scale. The system (7.1.2)
becomes (after dropping tildes)

∂t%(r, t) = − 1
Fr ×

τ−1

γ ×A× Ld+1∇r · a(r, t),

where we have defined the Froude number Fr = mU2/(kBT). By choosing Fr = 1, τ = γ−1

and A = 1/Ld we simplify the system of equations to the following boundary value problem.

Corollary 7.2.1. The non-dimensional one-body density %(r, t) and flux a(r, t) evolve according
the the boundary value problem

∂t% = −∇r · a(r, t),

a(r, t) +H[a, %] + %(r, t)D(r, [%], t)∇r
δF
δ% [%] = 0,

[H[a, %] + %(r, t)D(r, [%], t)∇r
δF
δ% [%]] · n

∣∣
∂U

= 0.

(7.2.2)

We note that when the off-diagonal HI tensor Z2 = 0, by using the definitions of F (7.1.6)
and D (7.1.4), the evolution equations in (7.2.2) may be written as a nonlinear Smoluchowski
equation (such as (7.1.10)) with non-constant diffusion coefficient. However we observe that
even when Z2 6= 0 the dynamics (7.2.2) may be recast into a Smoluchowski equation for % under
an effective drift vector dependent on Z2.

Corollary 7.2.2. The non-dimensional one-body density %(r, t) evolves according the the bound-
ary value problem

∂t% = ∇r ·
[
Pe−1D∇r%+ %D (∇r(κ1V1 + κ2 (gV2) ? %) +A[a])

]
,

Π[%] · n
∣∣
∂U

= 0,

Π[%] := D (∇r%+ %∇r(κ1V1(r, t) + κ2(gV2) ? %) +A[a]) ,

(7.2.3)
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where A[a] is an effective background flow induced by the hydrodynamic interactions defined by

A[a] :=

∫
U

dr′ g(r, r′)Z2(r, r′)a(r′, t), (7.2.4)

κ1, κ2 are non-dimensional constants measuring the strength of confining and interaction po-
tentials respectively, Pe = LU/α is the Péclet number measuring the ratio of advection rates to
diffusive rates and α = kBT/(mγ).

Corollary 7.2.2 is the general formulation of the nondimensional equations (7.1.3a)-(7.1.3b)
when Z2 6= 0, including a non-constant diffusion coefficient and an effective drift. Throughout
this paper, to study the intermediate regime of equally strong advection and diffusion, we
set Pe = 1. Additionally, to ease notation, we redefine the two-body potential to absorb
the correlation function g, V2(r, r′) := g(r, r′)V2(r, r′). We note that g(r, r′) is a necessary
inclusion in DFT problems, since, in the case of hard spheres, it smooths the singular kernels
of the hydrodynamic interaction tensors at long range which diverge at the sphere centres
(see, for example [154]). In the context of hard core DFT systems g(r, r′)V2(r, r′) is the Mayer
function, see e.g. [148]. The choice of redefinition is therefore purely in the interest of notational
simplicity. In practice, there are many choices for g, for example the hard sphere approximation
takes g(|r − r′|) = 0 for |r − r′| < 1 and unity otherwise. Alternatively g may be obtained
numerically from microscopic dynamics. We consolidate the choices for equations (7.2.2), (7.2.3)
in Section 7.2.5.

The effective drift A[a], dependent on Z2 and a may be determined once a(r, t) is solved
from the second equation in (7.2.2). Note that the evolution equation in (7.2.3) may be viewed
as a generalised McKean-Vlasov equation with a non-constant diffusion tensor and confining
potential. In particular the McKean-Vlasov equation may be recovered in the special case
Z1 = Z2 = V1 = 0, see for example [29], [32]. We will use Corollary 7.2.2, to write the full
dynamics including full HI, to obtain our results on weak solutions for %(r, t) (see Theorem
7.4.3, Section 7.4 and Theorem 7.9.10, Section 7.9). We continue to the next section by stating
the stationary boundary value problem for equilibrium states %(r).

7.2.4 Stationary Equations.

For general Z2 we will show in Theorem 7.4.5 that the stationary density %(r) satisfies
0 = ∇r · [D∇r%+ %D∇r(κ1V1 + κ2 V2 ? %)],

Π[%] · n
∣∣
∂U

= 0,

Π[%] := D (∇r%+ %∇r(κ1V1(r, t) + κ2 V2 ? %)).

(7.2.5)

We now discuss regularity on the potentials and diffusion tensor.

7.2.5 Assumptions & Definitions.

Typically for long range HI the Zi exhibit singularities at the origin (particle centres) so the
correlation function g is a necessary inclusion and provides a way of smoothing D and we
assume g ∈ L∞(U). For % ≥ 0 the diffusion tensor D as a convolution with the density will
then be a weakly differentiable function. For the existence and uniqueness theory in Appendix
7.10 and Section 7.9 we require that first derivatives of Dij to be bounded in L∞(U) so that
all coeeffiecients of the PDE (7.2.3) are uniformly bounded.

Out of equilibirum, we will suppress the time dependence on D, V1 simply to ease notation.
However at equilibrium D, V1 are assumed to be independent of time, indeed in order for
equilibrium states of the density and flux to be well defined. We note that is D positive
definite and symmetric, as it has been rigorously shown to be [63]. In summary we have the
following notational choices and assumptions for the evolution problem (7.2.3).

Notation Throughout we ease notation on the two-body interaction potential.
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• The two-body interaction potential is redefined to absorb the correlation function g

V2
redef
:= gV2. (N1)

For the dynamics we assume:

Assumptions D

• The diffusion tensor D is symmetric, positive definite, and the first derivatives of Dij are
bounded in L∞(U)

Dij ∈W 1,∞(U). (D1)

• The diagonal and off-diagonal blocks of the HI tensors are uniformly bounded in the sense

‖gZ2‖L∞(U) <∞, ‖gZ1‖L∞(U) <∞ (D2)

• The initial data %0 is a non-negative, square-integrable, absolutely continuous probability
density

%0 ∈ Pac(U) ∩ L2(U). (D3)

• The potentials each have two bounded derivatives

V1, V2 ∈W 2,∞(U). (D4)

The functions V1 and V2 are the confining and two-body interaction potentials respectively,
the former having explicit time dependence (V1 = V1(r, t)) only when we intend to drive
(7.1.1a)-(7.1.1b) and (7.1.2) out of equilibrium, and V1 = V1(r) when we are concerned
with the equilibrium properties of (7.1.1a)-(7.1.1b) and (7.1.2). This distinction will be
important for the H Theorem and equilibrium theory in Section 7.6.

For the equilibrium problem (7.2.5) we will assume:

Assumptions E

• The potentials have first order weak derivatives in L2(U)

V1, V2 ∈ H1(U). (E1)

In particular, Assumption (E1) will permit us to establish smooth stationary densities. Note
that typical inter-particle potentials, such as Morse or Coulomb, are unbounded as the particle
separation goes to zero. This is once again mitigated by the choice of g, which we recall has
been absorbed into V2 by assumption (N1). In general we admit non-convex V1 and V2, for
example multi-well potentials, except for in the convergence result of Theorem 7.6.7 where V1

must be convex in order to invoke a log-Sobolev inequality on the measure µ given by (7.1.7).
The assumption (D3) that %0 ∈ Pac(U) is included in order to cover a wider set of physically

relevant scenarios. In particular we permit initial data such that %0|A = 0 for some A ⊂ U
where A is non-empty. Physically speaking this system could correspond to, at time t = 0,
a box partitioned into closed regions with at least one region containing no particles. Then,
instantaneously as soon as t > 0, the partition is removed allowing the particles to move freely.
At the end of Section 7.9 we will show by simple application of Harnack’s inequality, that we
obtain strictly positive densities %(r, t1) > 0 after an arbitrarily small time t1 > 0. Principally
this is provided by the property (D1), since D is positive definite, the diffusion of density in
the system (7.2.3) is everywhere propagating in U .

Additionally, by the positive definite property in (D1) we may uniquely define the square
root of D denoted D1/2 such that

D1/2D1/2 = D
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for every r ∈ U , t ∈ [0, T ] and each %. We also define the eigenvalues µi ∈ R+ of D and
eigenvectors ei(r, [%], t) ∈ L2(U) such that

Dei = µiei. (7.2.6)

Note that {ei}di=1 forms an orthonormal basis of Rd (sinceD is a bounded, symmetric operator)
for i = 1, · · · , d such that

〈ei(r, [%], t), ej(r, [%], t)〉 =

∫
U

dr ei(r, [%], t) · ej(r, [%], t) = δij . (7.2.7)

We continue to the next section by defining a weak formulation of the dynamics (7.2.2).

7.2.6 Weak Formulation.

We provide the weak formulation of the full dynamics including HI for Z1,Z2 not necessarily
zero.

Definition 7.2.3 (Weak Solution). Let a(r, t) be a given flux. We say % ∈ L2([0, T ];H1(U))∩
L∞([0, T ];L2(U)) and ∂t% ∈ L2([0, T ];H−1(U)) is a weak solution to (7.2.2) if for every η ∈
L2([0, T ];H1(U))∫ T

0

dt 〈∂t%(t), η(t)〉+

∫ T

0

dt

∫
U

dr∇rη ·D [∇r%+ %∇r(κ1V1 + κ2 V2 ? %+A[a])] = 0 (7.2.8)

where %0 = %(0). Here, A[a] is the effective drift induced by Z2 and is defined by equation
(7.2.4).

It will be shown in the following sections (in particular Corollary 7.4.8) that A[a] → 0 as
t→∞. We now state our main results in a precise manner.

7.3 Statement Of Main Results

Our main results concern existence, uniqueness and convergence to equilibrium of the density
of colloids % and flux a on U a compact subset of Rd. The first result concerns existence of
the flux a(r, t) with non-zero hydrodynamic interactions, the convergence of a(r, t) to zero at
equilibrium and existence and uniqueness of fixed points of (7.2.2).

Theorem 7.3.1 (Existence & Uniqueness of Flux a(r, t) with Full HI). Let Z1,Z2 be real,
symmetric and µmax‖gZ2‖L∞(U) < 1. Then

1. There exists a unique a(r, t) ∈ L2(U) solving the evolution equation (7.2.2) for each %(r, t).
In particular

a(r, t) =

d∑
n=1

δn

d∑
i=1

ψi

φn − µ−1
i

ei(r, [%], t)

where ei(r, [%], t) are eigenvectors of the diffusion tensor D(r, [%], t) and δn, φn, ψi, µ
−1
i ∈

R.

2. In addition, every stationary density %(r) and stationary flux a(r) are independent of the
HI tensors and satisfy

%(r)∇r
δF

δ%
[%(r)] = 0, a(r) = 0
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and consequently %(r) minimises the free energy F [%](r) − µc
∫
U

dr %, where µc is the
chemical potential.

3. If, in addition, |κ2| < ‖V2‖−1
L∞(U) then (a?(r), %?) = (0, %∞) are the unique fixed points of

(7.2.2) and %∞(r) is given by the self-consistency equation

%∞(r) =
e−(κ1V1(r)+κ2V2?%∞)

Z(%∞)

for Z(%∞) =
∫
U

dr e−(κ1V1(r)+κ2V2?%∞).

For the evolution system (7.2.2) we present the following second main result of the paper.

Theorem 7.3.2 (Existence, Uniqueness of Weak %(r, t)). Let Z1,Z2 be real, symmetric and
µmax‖gZ2‖L∞(U) < 1, where µmax is the largest eigenvalue of D, with %0 ∈ C∞(U), % ≥
0 and

∫
U

dr%0(r) = 1. Then there exists a unique weak solution % ∈ L∞([0, T ];L2(U)) ∩
L2([0, T ];H1(U)), with ∂t% ∈ L2([0, T ];H−1(U)) for (7.2.2), in the sense (7.2.8), and the fol-
lowing energy estimate holds

‖%‖L∞([0,T ];L2(U)) + ‖%‖L2([0,T ];H1(U)) + ‖∂t%‖L2([0,T ];H−1(U)) ≤ C(T )‖%0‖L2(U),

where C(T ) is a constant dependent on T , U and µmax.

The existence and uniqueness is proved in Theorem 7.9.10, whilst the bound is shown in
Lemma 7.9.7.

Furthermore, we prove existence and uniqueness of the stationary density, and exponentially
fast convergence in relative entropy.

Lemma 7.3.3 (Existence and Uniqueness of the Stationary Density). Let Z1,Z2 be real, sym-
metric and % be a solution to the DDFT (7.1.10) with smooth initial data and smooth V1, V2.
Then there exists stationary density %(r, t) = %0(r). If |κ2| ≤ 1/4×‖V2‖−1

L∞ then the stationary
solution is unique and is denoted by %∞.

The proof of this result is standard, see [44].
The third main result of this paper concerns a priori estimates for exponential convergence

of the density to stationarity.

Theorem 7.3.4 (A Priori Convergence Estimates). Let Z1,Z2 be real, symmetric and % be a
solution to the DDFT (7.2.2) with smooth initial data and smooth V1, V2. If κ2 ≤ 1/4×‖V2‖−1

L∞

then

1. Convergence in L2(U) : For κ1 = 0 (in the absence of a confining potential) if

κ2
2 <

µminc
−2
pw‖∇rV2‖−2

L∞(U)

2(1 + e)µmax
,

where µmin and µmax are the smallest and largest eigenvalues of the diffusion tensor D,
then %→ %∞ in L2(U) exponentially fast as t→∞. For κ1 6= 0 the convergence criteria
is modified to

µmax(κ2
1‖∇rV1‖2L∞(U) + 2κ2

2(1 + e)‖∇rV2‖2L∞(U)) <
µmin

c2pw
.

2. Convergence in Relative Entropy: For any fixed confining potential V1 such that the
measure µ′(dr) = dr e−κ1V1/Z satisfies a log-Sobolev inequality and provided

κ2
2 <

c−1
ls

2‖∇V2‖2L∞(U)
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then the measure µ in (7.1.7) satisfies a log-Sobolev inequality and H (%|%∞) → 0 expo-
nentially fast as t→∞ where

H (%|%∞) =

∫
U

dr % log
(

%
%∞

)
denotes the relative entropy.

For part 1, see Theorem 7.5.3 and Proposition 7.5.5. Theorem 7.6.7 gives the result for part
2.

The log-Sobolev inequality for µ is established by the Holley-Stroock perturbation lemma
[82]. The constants cpw, cls are the Poincaré-Wirtinger and log-Sobolev constants respectively.
Nowhere do we assume parity on the two-body potential nor V2 have zero mean. Additionally
the optimal cpw is the inverse square root of the smallest eigenvalue of the Laplacian on the
domain U with no-flux boundary conditions.

We have the following conditions for the existence of bifurcating branches of steady states
%(r).

Theorem 7.3.5 (Stability of Steady States). Fix κ1 and let κ2 ∈ (−∞,∞). Let L1 =
Aκ2

+ κ2B denote the linearised operator to the stationary problem with eigenvalues λ(κ2)
and eigenfunctions w(κ2)(r). Denote by Aκ2

, B the local and nonlocal parts of L1 respectively.

Denote by γ
(κ2)
k the eigenvalues of Aκ2 with eigenvectors v(κ2). If the solution κ?2(λ) of the

equation λ = λk?(κ?2) exists, then it is unique and is given by the nonlinear equation

κ?2(λ) =

( ∞∑
i=1

θ
(κ2)
i γ

(κ2)
i β

(κ2)
i

λ−γ(κ2)
i

)−1

.

As a corollary we can determine the necessary condition on the interaction strength for a
bifurcation of stable equilibrium densities solving (7.2.5).

Corollary 7.3.6 (Necessary Conditions for Bifurcation). Provided that the spectral gap of Aκ2

is sufficiently large, that is,

|κ2| <
mini,j∈N |γ(κ2)

i − γ(κ2)
j |

2‖B‖

then λ(κ2) ∈ R and the point of critical stability κ2] occurs at the solution of the nonlinear
equation

κ2] = −

( ∞∑
i=1

θ
(κ2)
i β

(κ2)
i

)−1

,

where θiβi are coefficients of the two-body potential expanded in the orthonormal basis of eigen-

vectors {v
(κ2]

)

k }∞k=1.

The proofs of these results are given by Theorem 7.6.10 and the discussion immediately fol-
lowing it. We also obtain the following theorem for existence of bifurcations for the stationary
equation (7.2.5).

Theorem 7.3.7. Let κ2 ∈ (−∞,∞)and let {β−1
n }∞n=1 be the eigenvalues of R with eigenfunc-

tions {un}∞n=1 where

R[un] = −%κ2
(r)

∫
U

dr′ V2(r, r′)un(r′)

and %κ2
is a stationary solution to (7.2.5). If |κ2| ≥ |β1| then %κ2

is unstable with respect
to {un}∞n=1 with (β1, u1) a bifurcation point of (7.4.21) where β1 is the smallest eigenvalue
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of R−1 and w1 is the eigenfunction of R associated to β−1
1 . There exists %∗ > 0 such that

F [%∗] < F [%κ2
].

We now give our arguments for Theorem 7.3.1.

7.4 Existence & Uniqueness of Flux With Full HI

We return to the full formulation of the overdamped DDFT with HI. The contraction condition
µmax‖gZ2‖L∞(U) < 1 can be seen as a necessary condition on the invertibility of an operator
closely related to the positive definite grand friction tensor Γ. Note that the flux equation in
(7.2.2) may be written as

(1 + Z %
1 + Z %

2 )[a(r, t)] = −%(r, t)∇r
δF

δ%
[%] (7.4.1)

where the actions of the integral operators 1 + Z %
1 and Z %

2 are defined by

(1 + Z %
1 )[a1] = a1(r, t) +

∫
U

dr′g(r, r′)%(r′, t)Z1(r, r′)× a1(r, t), (7.4.2a)

Z %
2 [a2] = %(r, t)

∫
U

dr′ g(r, r′)Z2(r, r′)a2(r′, t). (7.4.2b)

Notice how the integral-matrix operators in (7.4.2a)-(7.4.2b) resemble the operators in the first
row of the grand resistance matrix for a two particle system from classical hydrodynamics [75].
The following lemma establishes a solvability condition for the flux equation in equation (7.4.1).

Lemma 7.4.1 (Conditional Convergence of the Fredholm Determinant). Let 1 + Z %
1 and Z %

2

be bounded linear operators. Suppose A% := (1 + Z %
1 )−1Z %

2 is compact in L2(U, %−1(r, t)). If
µmax‖gZ2‖L∞(U) < 1 then the matrix integral operator 1+Z %

1 +Z %
2 is invertible and the system

(7.4.1) is well-posed.

Proof. Since 1 + Z %
1 is positive definite it is invertible, therefore (7.4.1) may be rewritten

(1 + (1 + Z %
1 )−1Z %

2 )[a(r, t)] = −(1 + Z %
1 )−1%(r, t)∇r

δF

δ%
[%]. (7.4.3)

We note that A % is a trace-class operator and that the left hand side of (7.4.3) is an operator
of the form 1− λA%. By classical theory [58], [103] we have the identity

det(1− λA%) = exp
{
−
∞∑
n=1

Tr(A n
% )

n λn
}
. (7.4.4)

When λ = −1 we recover the determinant for the Fredholm operator on the left hand side
of (7.4.3). Particularly, since for our consideration |λ| = 1, the convergence of the infinite
summation inside the argument of the exponential in (7.4.4) will depend on the size of TrA%,
and when λ = −1, the summand is an alternating sequence so we demand absolute convergence
for the sum in (7.4.4) to converge. We obtain results in L2(U, %−1).

By definition of the trace we have

TrA n
% =

d∑
k=1

〈A n
% ek(r), ek(r)〉L2(U,%−1),

where {ek}k are vectors such that their components form an orthonormal basis of L2(U, %−1),
in particular we choose the eigenvectors of the diffusion tensor D. Since A is an integro-matrix
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operator the inner product is given by, for n = 1

TrA% =
d∑
k=1

〈A%ek(r), ek(r)〉L2(U,%−1)

=
d∑
k=1

∫
U

dr ek(r) ·D(r)

∫
U

dr′ g(r, r′)Z2(r, r′)ek(r′)

≤
d∑
k=1

µmax‖gZ2‖L∞(U)

∫
U

dr ek(r) ·
∫
U

dr′ ek(r′) ≤ dµmax‖gZ2‖L∞(U)|U |

where we have used
∫
U

dr′ ek(r′) ≤ ‖ek‖L1(U) ≤ |U |1/2‖ek‖L2(U) = |U |1/2 by orthonormality of
the basis. Now for n = 2 we have

TrA 2
% =

d∑
k=1

〈A 2
% ek(r), ek(r)〉L2(U,%−1)

=
d∑
k=1

∫
U

dr ek(r) · %(r)−1

∫
U

dr1 %(r)D(r)g(r, r1)Z2(r, r1)

×
∫
U

dr2 %(r1)D(r1)g(r1, r2)Z2(r1, r2)ek(r2)

≤
d∑
k=1

µ2
max‖gZ2‖2L∞(U)

∫
U

dr ek(r) ·
∫
U

dr2 ek(r2)

≤ dµ2
max‖gZ2‖2L∞(U)|U |,

where we have used the fact that
∫
U

dr1 %(r1, t) = 1 for t ≥ 0 by the no-flux boundary condition
(see Section 7.2.1). Iterating this argument one may obtain

TrA n
% =

d∑
k=1

〈A n
% ek(r), ek(r)〉L2(U,%−1)

≤ µnmax‖gZ2‖nL∞(U)

d∑
k=1

∫
U

dr ek(r) ·
∫
U

drn ek(rn)

= |U |d× µnmax‖gZ2‖nL∞(U).

We observe that absolute convergence of (7.4.4) requires µmax‖gZ2‖ < 1. In particular, the
sum of the absolute values of the terms is given by

∞∑
n=1

∣∣∣Tr(A n
% )

n

∣∣∣ ≤ d|U | ∞∑
n=1

µnmax‖gZ2‖nL∞(U)

n = d|U | log

(
1

1− µmax‖gZ2‖L∞(U)

)
.

Thus for µmax||gZ2||L∞(U) < 1 the logarithm is finite and the determinant (7.4.4) is positive,
otherwise for the boundary case µmax||gZ2||L∞(U) = 1 it may vanish, thus making (I+Z %

1 +Z %
2 )

singular.

We now provide a scheme for computing solutions of equation (7.4.1) for each time depen-
dent %(r, t). The existence and uniqueness of %(r, t) is given in Section 7.9. First we establish
that 1 + Z %

1 − λZ %
2 is a compact self-adjoint operator in L2(U, %−1).

Lemma 7.4.2 (1 +Z %
1 −λZ %

2 is compact and self-adjoint). Let λ ∈ (−∞,∞) and assumption
(D2) hold. Then 1 + Z %

1 − λZ %
2 is a compact and self-adjoint operator.
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Proof. We let a ∈ L1(U) and calculate ‖(1 + Z %
1 − λZ %

2 )[a]‖L1(U). In particular we have

‖(1 + Z %
1 − λZ %

2 )[a]‖L1(U) =

∫
dr
∣∣∣(1 + Z %

1 − λZ %
2 )[a]

∣∣∣
≤
∫

dr
∣∣∣(1 + Z %

1 )a
∣∣∣+ |λ|

∣∣∣Z %
2 [a]

∣∣∣
≤ (1 + ‖gZ1‖L∞(U) + |λ|‖gZ2‖L∞(U))‖a‖L1(U) <∞.

Hence Im(1 + Z %
1 − λZ %

2 ) is bounded in R3. Now by Heine–Borel, the closure of Im(1 + Z %
1 −

λZ %
2 ) is compact and hence 1 + Z %

1 − λZ %
2 is a compact operator.

We now show that 1+Z %
1 −λZ %

2 is self-adjoint. The local part 1+Z %
1 is a real, symmetric

matrix and it is therefore self-adjoint, and in particular self-adjoint in L2(U, %−1) . All that
remains is to study the nonlocal part Z %

2 . By direct calculation we see that for b ∈ L2(U)

〈b,Z %
2 [a]〉L2(U,%−1) =

∫
U

dr b(r) ·
∫
U

dr′ g(r, r′)Z2(r, r′)a(r′)

=

∫
U

dr′ b(r)>
∫
U

dr g(r, r′)Z2(r, r′)>a(r′)

=

∫
U

dr′
∫
U

dr (g(r, r′)Z2(r, r′)b(r))
>

a(r′)

=

∫
U

dr′a(r′) ·
∫
U

dr g(r, r′)Z2(r, r′)b(r)

= 〈Z %
2 [b],a〉L2(U,%−1)

where we have used the symmetry of Z2, and on the last line used Fubini’s theorem to in-
terchange the order of the integration between the r′ and r variables. Hence the lemma is
proved.

Since we have now established that 1 + Z %
1 − λZ %

2 is a compact and self-adjoint operator
we may use its eigenvectors as a complete basis of R3 to expand the flux a(r, t).

Theorem 7.4.3 (Eigenfunction Expansion of the Flux a(r, t)). Let Z2 be symmetric and real
and µmax‖gZ2‖L∞(U) < 1 and let ei(r, [%], t) and µ−1

i be the eigenvectors and eigenvalues of
D−1(r, [%], t) where [·] denotes functional dependence and i = 1, · · · , d. Then there is a unique
a(r, t) ∈ L2(U) solving (7.4.1) given by the eigenfunction expansion

a(r, t) =
d∑

n=1

δnwn(r, t). (7.4.5)

Here, wn are eigenfunctions of (1 + Z %
1 − λZ %

2 ) obtained by a second expansion in ei(r, [%], t)
of the form

wn(r, t) =
d∑
i=1

ψi

µ−1
i − φn

ei(r, [%], t). (7.4.6)

Additionally, the expansion coefficients δn are given by the formula

δn =
1

φn

d∑
i=1

ψi

φn − µ−1
i

∫
U

dr %(r, t)ei(r, [%], t) · ∇r
δF

δ%
[%] (7.4.7)

where {φn}dn=1 are the discrete set of eigenvalues of (1 + Z %
1 − λZ %

2 ) given by roots of the
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equation λ(φn) = −1, where the function λ(·) is defined by

λ(φn) :=

[
d∑
l=1

ηl ψl

µ−1
l − φn

]−1

.

Finally, ψk and ηl are the expansion coefficients defined by

%(r, t)g(r, r′)Z2(r, r′) =

d∑
k=1

d∑
l=1

ψkηlek(r, [%], t)⊗ el(r
′, [%], t) (7.4.8)

and each % is obtained from the continuity equation and no-flux condition

∂t% = −∇r · a,
0 = Π[%] · n|∂U .

Remark 7.4.4. The scalars µ−1
i , ψk, ηl (and by proxy δn) each have functional dependence

on % since they are obtained by integrals involving ej(r, [%], t), for i, j, k, l = 1, · · · , d. The
eigenvalues φn are so called ‘moving eigenvalues’ of (1 + Z %

1 −λZ %
2 ) (cf. [39]). If Z2 = 0 then

φi = µ−1
i for each i = 1, · · · , d. In general, for Z2 6= 0, an eigenvalue of D−1 may also be an

eigenvalue of (1 + Z %
1 − λZ %

2 ) and this occurs on the line λ = 0. Since Z2 is symmetric it can
be diagonalised, and therefore the kernel of the operator Z2 can be decomposed into a finite (of
length d) sum of products of continuous functions and has at most d eigenvalues. The equation
λ(φn) = −1 may be rearranged into a characteristic polynomial equation in φn with coefficients
dependent on ηl, ψl and µl and since (1 + Z %

1 − λZ %
2 ) is assumed to be real and symmetric,

each φn ∈ R. Finally, the condition µmax‖gZ2‖L∞(U) < 1 ensures φn 6= 0 for any n ∈ N.

Proof. We consider the more general operator (1 + Z %
1 − λZ %

2 ) where λ ∈ R. One may think
of this operator as a nonlocal matrix operator where (1 + Z %

1 ) is the local part and Z %
2 is the

nonlocal part. Here λ is a perturbation parameter measuring the distance of the full operator
(1+Z %

1 −λZ %
2 ) from locality. Since Z1 and Z2 are real and symmetric and λ ∈ R , 1+Z %

1 −λZ %
2

coincides with its adjoint in L2(U, %−1). For the homogeneous adjoint equation

(1 + Z %
1 − λZ %

2 )†z = 0 (7.4.9)

we know from Lemma 7.4.1 that when µmax‖gZ2‖L∞(U) < 1 there is no λ ∈ R satisfying

det((1+Z %
1 −λZ %

2 )†) = 0 and therefore the only solution to the homogeneous adjoint equation
(7.4.9) is z = 0. Therefore by the Fredholm alternative there is a unique solution to (7.4.1).

Now consider the eigenvalue problem

(1 + Z %
1 − λZ %

2 )[wn(r, t)] = φnwn(r, t) (7.4.10)

for eigenvalues φn ∈ R and eigenvectors wn ∈ Rd. We write

wn =
d∑
j=1

αj,nej(r, [%], t). (7.4.11)

By inserting (7.4.11) into (7.4.10) we obtain

(1 + Z %
1 )

d∑
j=1

αj,nej(r, [%], t)− λZ %
2

 d∑
j=1

αj,nej(r, [%], t)

 = φn

d∑
j=1

αj,nej(r, [%], t). (7.4.12)

Now by inserting the expansion (7.4.8) into (7.4.12) we obtain

d∑
j=1

αj,n(µ−1
j − φn)ej(r, [%], t)− λ

d∑
k,l=1

ψk ηl

∫
U

dr′ek(r, [%], t)⊗ el(r
′, [%], t)wn(r′, t) = 0.
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Taking the inner product of this equation with ei(r, [%], t) and integrating we obtain

αi,n(µ−1
i − φn)− λψi

d∑
l=1

ηl

∫
U

dr′el(r, [%], t) ·wn(r′, t) = 0,

which may be rearranged to obtain

λ =
αi,n(µ−1

i − φn)

ψi
∑d
l=1 ηl

∫
U

dr′el(r, [%], t) ·wn(r′, t)
. (7.4.13)

Since both the left hand side of (7.4.13) and
∑d
l=1 ηl

∫
U

dr′el(r, [%], t) ·wn(r′, t) are independent
of the index i it must be that

αi,n(µ−1
i − φn)

ψi
= K

for some constant K for which, without loss of generality, we choose K = 1. With this we
obtain an expression for the coefficients αi,n

αi,n =
ψi

µ−1
i − φn

. (7.4.14)

We may also obtain a scheme to determine the φn. In particular by (7.4.13) and (7.4.14)
we have

λ =

(
d∑
l=1

ηl

∫
U

dr′el(r, [%], t) ·wn(r′, t)

)−1

=

 d∑
l=1

ηl

∫
U

dr′el(r, [%], t) ·
d∑
j=1

ψj

µ−1
j − φn

ej(r
′, [%], t)

−1

=

(
d∑
l=1

ηl ψl

µ−1
l − φn

)−1

hence we have that the eigenvalues of (1 + Z %
1 + Z %

2 ) are given by the roots of the equation
λ(φn) = −1.

We now return to the inhomogeneous problem (7.4.1) and expand a(r, t) in eigenfunctions
wn(r, t). We propose an expansion of the form (7.4.5) and insert into (7.4.1) to obtain

d∑
n=1

δnφnwn(r, t) = −%(r, t)∇r
δF

δ%
[%].

Now by taking the inner product with some wk(r, t) and integrating we obtain

δkφk = −
∫
U

dr %(r, t)wk(r, t) · ∇r
δF

δ%
[%].

By inserting the definition of wk from (7.4.6) we deduce

δkφk =
d∑
i=1

ψi

φk − µ−1
i

∫
U

dr ei(r, [%], t) · %(r, t)∇r
δF

δ%
[%]. (7.4.15)

Now we would like to divide through by φk but must check that no φk is zero for each
k = 1, · · · , d. This is a consequence of the condition µmax‖gZ2‖ < 1. In particular, using
properties of the determinant, we have that

det(1 + Z %
1 − λZ %

2 ) = det(1 + Z %
1 )× det(1− λ(1 + Z %

1 )−1Z %
2 ).

Now since D is positive definite, so is 1 + Z %
1 and therefore det(1 + Z %

1 ) > 0 because the
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determinant is simply the product of its (strictly positive) eigenvalues. Additionally, since
µmax‖gZ2‖ < 1, we have by Lemma 7.4.1 det(1−λ(1+Z %

1 )−1Z %
2 ) > 0 therefore det(1+Z %

1 −
λZ %

2 ) > 0 and φk 6= 0 for all k ∈ N. We may now divide (7.4.15) by φk to obtain (7.4.7). Finally
a(r, t) ∈ L2(U) may be seen by squaring (7.4.5), integrating over dr and using (7.2.7).

Theorem 7.4.3 provides a scheme for computing the unique flux a(r, t), given % satisfying
∂t% = −∇r · a over time. We now use this result to show that the free energy functional F [%]
may be associated to the full system (7.2.2) even when Z2 6= 0. In particular, that %(r, t)
solving (7.2.5) implies % is a critical point of the free energy F [%].

Theorem 7.4.5 (%(r) is a Critical Point of the Free Energy). Let µmax‖gZ2‖L∞(U) < 1 V1 =
V1(r) be a time independent confining potential so that %(r) is a stationary density to the system
(7.2.2) then %(r) is a critical point of F [%].

Proof. Let %(r, t) = %(r) be a stationary density. Then by equation (7.2.2) one has

(1 + (1 + Z %
1 )−1Z %

2 )[a(r)] = −%(r)D(r, [%], t)∇r
δF

δ%
[%], (7.4.16)

∇r · a(r) = 0. (7.4.17)

We have that for each λ, the operator 1 + Z %
1 −λZ %

2 is compact self-adjoint in L2(U, %−1(r, t))
(by Lemma 7.4.2). We also have that 1+Z %

1 −λZ %
2 is positive definite for µmax‖gZ2‖L∞(U) < 1.

In particular, φn 6= 0 for every n = 1, · · · d and φn(λ) is continuous function of λ such that
φn(0) = µ−1

n > 0 for each n. Hence we may invert 1 + Z %
1 + Z %

2 given µmax‖gZ2‖L∞(U) < 1.
With this, by using equations (7.4.16), (7.4.17) we have

0 = ∇r · a = ∇r ·
(
%(r)(1 + Z %

1 + Z %
2 )−1∇r

δF

δ%
[%]

)
. (7.4.18)

Now, assuming % is stationary we see that

0 =
〈δF
δ%

[%], ∂t%
〉

= −
∫
U

dr
δF

δ%
[%]∇r · a =

∫
U

dr∇r
δF

δ%
[%] · a

where we have used the no-flux boundary condition. Now since (1 + Z %
1 + Z %

2 )−1 is strictly
positive definite and self-adjoint in L2(U, %−1(r, t)) it possesses a unique strictly positive definite
self-adjoint square root in L2(U, %−1(r, t)) (see [178]). We define X% = (1 + Z %

1 + Z %
2 )−1 and

X
1/2
% X

1/2
% = X%. Then we find

0 =

∫
U

dr∇r
δF

δ%
[%] · a =

∫
U

dr∇r
δF

δ%
[%] ·X%

[
%∇r

δF

δ%
[%]

]
=
〈
%∇r

δF

δ%
[%],X%

[
%∇r

δF

δ%
[%]

]〉
L2(U,%−1)

=
〈
X 1/2
%

[
%∇r

δF

δ%
[%]

]
,X 1/2

%

[
%∇r

δF

δ%
[%]

]〉
L2(U,%−1)

=
∥∥∥X 1/2

%

[
%∇r

δF

δ%
[%]

] ∥∥∥2

L2(U,%−1)
(7.4.19)

where we have used the self-adjoint property of X
1/2
% . From the above we deduce that, since

the integrand in the last line of (7.4.19) is positive, that the stationary density %(r) satisfies

%(r)∇r
δF

δ%
[%(r)] = 0. (7.4.20)

Therefore we obtain that % is a critical point the free energy F [%].

Corollary 7.4.6. Let µmax‖gZ2‖L∞(U) < 1 V1 = V1(r) be a time independent confining poten-
tial. If % is a stationary density then it is a critical point of the free energy F [%]−

∫
drµc%.
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From Theorem 7.4.5 we obtain the following two corollaries. In particular, the proof shows
rigorously how the diffusion tenor decouples from the stationary density.

Corollary 7.4.7. Let Z1, Z2 be real and symmetric. Then the stationary density % is inde-
pendent of Z1, Z2 and, as a consequence, of D.

Additionally since (7.4.20) holds in equilibrium even when Z2 6= 0 and the condition
µmax‖gZ2‖L∞(U) < 1 implies that the operator (1 + (1 + Z %

1 )−1Z %
2 ) has no zero eigenvalue,

the homogeneous problem (1+(1+Z %
1 )−1Z %

2 ) = 0 (i.e. (7.4.1) at equilibrium) must have only
the trivial solution a(r) = 0. In addition by equation (7.4.18), at equilibrium one has

∇r ·
(
%(r)D(r, [%])∇r

δF

δ%
[%]

)
= 0 (7.4.21)

where D(r, [%]) is the time limiting diffusion tensor.

Corollary 7.4.8. Let Z1, Z2 be real and symmetric. Then a(r) = 0 is the unique stationary
flux. In particular, there do not exist stationary densities which are advected by the existence
of some non-zero flux, hence the only stationary states are equilibrium states.

We remark that Corollary 7.4.7 is related to the well-known result that for finite dimensional
reversible diffusions, i.e. Langevin dynamics of the form dXt = −(D((Xt))∇V ((Xt))) dt +
∇ · D(Xt) dt +

√
2D(Xt) dWt for an arbitrary strictly positive definite mobility matrix D, V

a confining potential and Wiener process Wt, the invariant measure µ(dx) = 1
Z e
−V (x) dx is

independent of D. We refer to [134, Sec 4.6]. To our knowledge, this is the first instance where
such a result is proved in the context of DDFT.

In the following Sections 7.5, 7.6, 7.7, we consider the global asymptotic stability of the
stationary equation (7.4.21) (equivalently (7.2.5)) for which, we have shown by Corollary 7.4.7,
that (7.4.21) is the equation determining the equilibrium density the dynamics (7.1.2) driven
to equilibrium by the HI tensors Z1,Z2.

Remark 7.4.9. Out of equilibrium, the effective drift is augmented by A[a] (as defined in
(7.2.4)), the flow induced by the HI. In order to simplify the presentation of the calculations
needed for the proofs of several results presented later on, (Theorem 7.5.3, Proposition 7.5.5, all
results in Sections 7.9 and 7.10) we suppress A[a] because it may trivially included as a linear
contribution which is bounded in L1(U):

‖A[a]‖L1(U) =

∫
U

dr
∣∣∣ ∫
U

dr′Z2(r, r′)a(r′, t)
∣∣∣ ≤ ‖Z2‖L∞(U)‖a‖L1(U) <∞

where we have used (D2) and the fact that, by Theorem 7.4.3, ‖a‖2L1(U) ≤ |U |‖a‖
2
L2(U) < ∞.

Hence all the coefficients of (7.2.3) remain uniformly bounded and the existence and uniqueness
results of Section 7.9 may be easily obtained with A[a] included.

Additionally, since we have shown that at equilibrium A[a] = 0 uniquely, the results of
Sections 7.6, 7.7 hold for the dynamics (7.1.2) tending to equilibrium including the effects of
the HI.

Given this remark, we now discuss the existence of stationary solutions to (7.6.8a).

7.5 Characterisation Of Stationary Solutions

We now define the stationary problem. We seek classical solutions % ∈ C2(Ū) of

∇r · [D (∇r%+ %∇r[κ1V1 + κ2V2 ? %])] = 0 r ∈ U, (7.5.1a)

Π[%] · n = 0 r on ∂U . (7.5.1b)
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where

Π[%] := D (∇r%+ %∇r[κ1V1 + κ2V2 ? %]) .

The existence and uniqueness for the stationary problem is based on a fixed point argument for
the nonlinear map, defined by integrating equation (7.5.1a). In particular we find the stationary
distribution satisfies the nonlinear map (the self-consistency equation)

%(r) =
e−(κ1V1(r)+κ2V2?%(r))

Z
, (7.5.2)

where Z =
∫
U

dr exp{−(κ1V1(r) + κ2V2 ? %(r))}. Note that the stationary distribution is inde-
pendent of the diffusion tensor (see Corollary 7.4.7). We now present our first result concerning
the existence and uniqueness of the solutions to the self-consistency equation.

Lemma 7.5.1 (Existence and Uniqueness of Stationary Solutions). The stationary equation
(7.5.1a) with boundary condition (7.5.1b) has a smooth, non-negative solution with ‖%‖L1(U) =

1. When the interaction energy is sufficiently small, |κ2| ≤ 1/4×‖V2‖−1
L∞ , the solution is unique.

Proof. The proof follows Dressler et al. [44]. The main idea is to show that the right hand
side of equation (7.5.2) is a contraction map on C2(U), and for sufficiently small interaction
energy κ2, %∞ ∈ L1(U) is the unique invariant measure which is a non-negative function with
unit mean. Let Υ(r, [%]) = κ1V1(r) + κ2V2 ? %(r). We show that the map S : L1(U) → L1(U)
defined by

S%(r) :=
1

Z(%)
exp {−Υ(r, [%])}

has a fixed point. Let B be the unit ball in L1(U) (the subset of normalised functions) we
clearly have S(B) ⊂ B since ‖S%‖L1(U) = 1. We must show that S is continuous and S(B)
is a compact subset of B. Observe that if V2 is uniformly continuous then {V2 ? % | % ∈ B} is
uniformly equicontinuous. Then by Arzela-Ascoli there exists a sequence V2 ? %nk converging
uniformly to some F ,

V2 ? %nk → F in L∞(U) as k →∞.

Now observe that there exists N such that for every nk ≥ N∫
dr |e−(κ1V1+κ2V2?%nk ) − e−(κ1V1+F )| ≤ 1

2

∫
U

dre−κ1V1(r). (7.5.3)

So, by the Lebesgue dominated convergence theorem, since the integral may be dominated by
constants times e−κ1V1(r) and the limit k →∞ may be taken inside the left hand side integral
of (7.5.3) giving

lim
k→∞

∫
dr |e−(κ1V1+κ2V2?%nk ) − e−(κ1V1+F )| = 0.

Similarly the composition of exp(·) and V2 ? % is continuous and by the Lebesgue dominated
convergence theorem

lim
n→∞

Z(%n) = Z( lim
n→∞

%n) = Z(F ).

Hence S is continuous.
Now we may write

S%n → f :=
e−(F+κ1V1)

Z(F )
in L1 as n→∞.

Hence for any sequence in S(B) there is a convergent subsequence whose limit is in S(B) and
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Im(S) is compact. So by Schauder fixed point theorem there exists a fixed point.

Now let %1, %2 ∈ B then

‖S%1 − S%2‖L1 =

∫
dr
∣∣∣ e−Υ[%1]

Z(%1) −
e−Υ[%2]

Z(%2)

∣∣∣ =

∫
dr
∣∣∣ e−Υ[%1]

Z(%1) −
e−Υ[%2]

Z(%1) + e−Υ[%2]

Z(%1) −
e−Υ[%2]

Z(%2)

∣∣∣
≤ 1

Z(%1)

∫
dr
∣∣∣e−Υ[%1] − e−Υ[%2]

∣∣∣+

∫
dr
∣∣∣ e−Υ[%2]

Z(%1) −
e−Υ[%2]

Z(%2)

∣∣∣. (7.5.4)

Considering now the second term of (7.5.4), we have∫
dr
∣∣∣ e−Υ[%2]

Z(%1) −
e−Υ[%2]

Z(%2)

∣∣∣ =
∣∣∣ 1
Z(%1) −

1
Z(%2)

∣∣∣ ∫ dr e−Υ[%2] = Z(%2)
∣∣∣ 1
Z(%1) −

1
Z(%2)

∣∣∣
=
∣∣∣Z(%2)−Z(%1)

Z(%1)

∣∣∣ = 1
Z(%1)

∣∣∣ ∫ dr e−Υ[%1] −
∫

dr e−Υ[%2]
∣∣∣

≤ 1
Z(%1)

∫
dr
∣∣∣e−Υ[%1] − e−Υ[%2]

∣∣∣.
Using this estimate in (7.5.4) then gives

‖S%1 − S%2‖L1 ≤ 2
Z(%1)

∫
dr
∣∣∣e−Υ[%1] − e−Υ[%2]

∣∣∣.
We will now show that S is a contraction.

We have, by the mean value theorem, ∀a, b ∈ R, |ea − eb| ≤ eae|a−b||a − b|. Using this
inequality with a = −Υ[%1], b = −Υ[%2] gives

2
Z(%1)

∫
dr |e−Υ[%1] − e−Υ[%2]| ≤ 2

Z(%1)

∫
dr e−Υ[%1]e|Υ[%1]−Υ[%1]||Υ[%1]−Υ[%1]|

= 2
Z(%1)

∫
dr e−Υ[%1]e|κ2V2?(%1−%2)||κ2V2 ? (%1 − %2)|.

Note that

|V2 ? f | =
∣∣∣ ∫ dr′V2(r− r′)f(r′)

∣∣∣ ≤ ‖V2‖L∞
∣∣∣ ∫ dr′f(r′)

∣∣∣ ≤ ‖V2‖L∞‖f‖L1 ,

and assuming |κ2| ≤ 1/4× ‖V2‖−1
L∞ , we obtain

2
Z(%1)

∫
dr |e−Υ[%1] − e−Υ[%2]| ≤ 2

Z(%1)e
1
4‖%1−%2‖L1 1

4‖%1 − %2‖L1

∫
dr e−Υ[%1]

≤ e1/2

2
‖%1 − %2‖L1 < ‖%1 − %2‖L1 ,

where we have used that ‖%1 − %2‖L1 ≤ 2 and e1/2/2 < 1. Hence S is a contraction and by the
contraction mapping theorem the fixed point is unique.

Proposition 7.5.2 (Existence, Regularity, and Strict Positivity of Solutions for the Stationary
Problem). Consider the stationary problem (7.2.5) such that Assumption (E1) holds. Then we
have that

1. There exists a weak solution % ∈ H1(U)∩Pac(U) to (7.2.5) as a fixed point of the equation
(7.5.2).

2. Any weak solution % ∈ H1(U)∩Pac(U) is smooth and strictly positive, that is % ∈ C∞(Ū)∩
P+
ac(U).

Proof. The proof is similar to [29, Theorem 2.3] but one must check the conclusions of the
theorem hold with no flux boundary conditions and a confining potential V1. This result is
similar to arguments in [166] but here we consider a compact domain U . The weak formulation
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of (7.2.5) is

−
∫
U

dr∇rη ·D∇r%− κ1

∫
U

dr∇rη · %D∇rV1 − κ2

∫
U

dr∇rη · %D∇rV2 ? % = 0, (7.5.5)

for η ∈ H1(U) where we have used the no-flux boundary condition in (7.2.5) on % and we seek
solutions % ∈ H1(U) ∩ Pac(U). Now define F : Pac(U)→ Pac(U) by

F% =
1

Z(%, κ2)
e−(κ1V1+κ2V2?%), Z(%, κ2) =

∫
U

dr e−(κ1V1+κ2V2?%). (7.5.6)

By (7.5.2) we see that

‖F%‖2L2(U) ≤
1

|U |
e4(|κ1|‖V1‖L∞(U)+|κ2|‖V2‖L∞(U)) =: E0, (7.5.7)

and therefore we seek solutions to (7.5.2) in the set E := {% ∈ L2(U) : ‖%‖2L2(U) ≤ E0}.
Note that E is a closed, convex subset of L2(U) and therefore we may redefine F to act on E.
Additionally we see that for % ∈ E

‖F%‖2H1(U) = ‖F%‖2L2(U) + ‖∇rF%‖2L2(U)

≤ E0

(
1 + 2|κ1|2‖∇V1‖2L2(U) + |κ2|2‖∇V2‖2L2(U)E0

)
, (7.5.8)

where we have used that % ∈ L1(U) by Lemma 7.5.1 and V1, V2 ∈ H1(U). Similarly to [29,
Theorem 2.3] we have by (7.5.7) that F (E) ⊂ E and by (7.5.8) F (E) is uniformly bounded in
H1(U). Therefore by Rellich’s compactness theorem, F (E) is relatively compact in L2(U), and
therefore in E, since E is closed.

We may show using similar calculations to [44, Theorem 1] that the non-linear map in (7.5.2)
is Lipschitz continuous in E, and by Schauder fixed point theorem there exists % ∈ E solving
(7.5.2) which by (7.5.8) is in H1(U). By inserting the expression for F% (7.5.6) into (7.5.5) we
obtain (1). Also note that solutions % ∈ E to (7.5.2) are bounded below by E−1

0 /|U |2 giving
positivity of solutions.

We now show that every weak solution in % ∈ H1(U)∩Pac(U) is a fixed point of the nonlinear
map in (7.5.2). Consider the frozen weak formulation

−
∫
U

dr∇rη ·D∇rθ − κ1

∫
U

dr∇rη ·D∇rV1θ − κ2

∫
U

dr∇rη ·D∇rV2 ? % θ = 0. (7.5.9)

This is the weak formulation of the PDE (for the unknown function θ)

∇r · (D∇rθ + θD(∇rV1 +∇rV2 ? %)) = 0, s.t. ∇r

(
(F%)−1θ

)
· n|∂U = 0.

We note that we may rewrite the weak formulation (7.5.9) as

−
∫
U

dr∇rη ·D∇rhF% = 0

for every η ∈ H1(U) and where h = θ/(F%). This holds true for any η, in particular η = h
hence we find

−
∫
U

dr
∣∣∣(F%)1/2D1/2∇rh

∣∣∣2 = 0

where we have used that D is positive definite by (D1) and F% is strictly positive. All in all we
obtain ∇rh = 0 a.e. and hence θ = F% up to normalisation. But if F% is a probability density
we must have θ ≡ F% and we conclude that since % = F%, any weak solution % ∈ H1(U)∩P+

ac(U)
of (7.5.5) must be such that % = F%. The regularity of % follows from the same bootstrapping
argument of [29, Theorem 2.3].
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We can also obtain an estimate on the rate of convergence to the equilibrium density in
L2(U) as t → ∞ with the following theorem. In order to forgo additional assumptions on the
initial data %0 we restrict ourselves to the case where the equilibrium density is unique and
given by %∞.

Theorem 7.5.3 (Trend to Equilibrium in L2(U)). Let % ∈ C1([0,∞];C2(U)) be a solution of
(7.2.3) with initial data %0 ∈ L2(U) a probability density. For κ1 = 0, if

κ2
2 < min

{µminc
−2
pw‖∇rV2‖−2

L∞

2(1 + e)µmax
,

1

4‖V2‖L∞

}
,

where cpw is a Poincaré–Wirtinger constant on the domain U and µmax and µmin are the largest
and smallest eigenvalues of D, then % → %∞ in L2(U) exponentially as t → ∞. In particular
the convergence in L2(U) is given by

‖%(·, t)− %∞(·)‖2L2(U) ≤ ‖%0(·)− %∞(·)‖2L2(U)e
−rκ2 t

as t→∞ where rκ2
= µminc

−2
pw − 2µmax|κ2|2(e+ 1)‖∇rV2‖2L∞(U) is the rate of convergence.

Proof. Let ψ = %− %∞, then the evolution equation for ψ may be written

∂tψ −∇r · [D∇rψ] = κ2∇r · [D (%∞∇rV2 ? ψ + ψ∇rV2 ? %)]. (7.5.10)

Multiplying by ψ, integrating and using the boundary condition Π[ψ] ·n = 0 on ∂U × [0, T ] we
obtain

1
2

d

dt
‖ψ(t)‖2L2(U) + ‖D1/2∇rψ‖2L2(U)

≤
∫
U

dr |D1/2∇rψ| × |κ2D
1/2(%∞∇rV2 ? ψ + ψ∇rV2 ? %)|.

Using Hölder’s inequality on the right hand side this becomes

1
2

d

dt
‖ψ(t)‖2L2(U) + ‖D1/2∇rψ‖2L2(U)

≤ ‖D1/2∇rψ‖L2(U) × ‖κ2D
1/2(%∞∇rV2 ? ψ + ψ∇rV2 ? %)‖L2(U).

Now using Young’s inequality twice on the right hand side we obtain

1
2

d

dt
‖ψ(t)‖2L2(U) + ‖D1/2∇rψ‖2L2(U)

≤ 1
2‖D

1/2∇rψ‖2L2(U) + 1
2‖D

1/2(%∞∇rV2 ? ψ + ψ∇rV2 ? %)‖2L2(U)

≤ 1
2‖D

1/2∇rψ‖2L2(U) + |κ2|2‖%∞D1/2∇rV2 ? ψ‖2L2(U) + |κ2|2‖ψD1/2∇rV2 ? %‖2L2(U).

(7.5.11)

From the positive definiteness and boundedness of the diffusion tensor, we have

µmin ≤ ‖D‖L∞(U) ≤ µmax

, and, we also have the following bounds in terms of ‖ψ‖2L2(U)

‖ψD1/2∇rV2 ? %‖2L2(U) ≤ µmax‖∇rV2‖2L∞(U)‖ψ‖
2
L2(U) (7.5.12)

‖%∞D1/2∇rV2 ? ψ‖2L2(U) ≤ |U |µmax‖%∞‖2L2(U)‖∇rV2‖2L∞(U)‖ψ‖
2
L2(U) (7.5.13)

where |U | denotes the size of U and in (7.5.12) we have used that∇V2?% ≤ ‖∇V2‖L∞(U)‖%‖L1(U)

and the fact that % is a probability density with ‖%‖L1 = 1 (see Corollary 7.9.3). To obtain
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(7.5.13) we use that

‖%∞D1/2∇rV2 ? ψ‖2L2(U) ≤ µmax‖%∞‖2L2(U)‖∇rV2‖2L∞(U)

∫
U

dr
∣∣∣ρ∞(r)

∫
dr′ ψ(r′)

∣∣∣2.
We then note that, by Hölder’s inequality,

∫
dr′ ψ(r′) ≤ ‖ψ‖L2‖1‖L2(U) = |U |1/2‖ψ‖L2 , which

gives the result. For (7.5.13) it remains to bound the non explicit stationary distribution %∞
in L2(U), to do this we observe that by the self-consistency equation (7.5.2)

‖%∞‖2L2(U) ≤
|U | × e2|κ2‖|V2‖L∞

|U |2 × e−2|κ2‖|V2‖L∞
. (7.5.14)

Using (7.5.12), (7.5.14) and the bounds on D, inequality (7.5.11) becomes

1
2

d

dt
‖ψ(t)‖2L2(U) ≤ −

µmin

2 ‖∇rψ‖2L2(U)

+ µmax|κ2|2(e4|κ2‖|V2‖L∞ + 1)‖∇rV2‖2L∞(U)‖ψ‖
2
L2(U).

Now since ψ has mean zero we may use the Poincaré–Wirtinger inequality to write

d

dt
‖ψ(t)‖2L2(U) ≤ −µminc

−2
pw‖ψ‖2L2(U)

+ 2µmax|κ2|2(e4|κ2‖|V2‖L∞ + 1)‖∇rV2‖2L∞(U)‖ψ‖
2
L2(U).

Finally, by Grönwall’s lemma [52], we obtain

‖ψ(t)‖2L2(U)

≤ ‖ψ(0)‖2L2(U) exp
{
−(µminc

−2
pw − 2µmax|κ2|2(e4|κ2‖|V2‖L∞ + 1)‖∇rV2‖2L∞(U))t

}
. (7.5.15)

Therefore for any %∗ a stationary density the necessary condition for exponential convergence
%→ %∗ in L2(U) as t→∞ is

µminc
−2
pw − 2µmax|κ2|2(e4|κ2‖|V2‖L∞ + 1)‖∇rV2‖2L∞(U) > 0.

It will now be seen that, under the assumption that %∞ is the unique stationary density with
κ2 ≤ ‖V2‖−1

L∞/4, we may obtain an explicit condition for |κ2|. In particular (7.5.15) becomes

‖ψ(t)‖2L2(U) ≤ ‖ψ(0)‖2L2(U) exp
{
−(µminc

−2
pw − 2µmax|κ2|2(e+ 1)‖∇rV2‖2L∞(U))t

}
.

Then to ensure the argument in the exponential remains negative, we require

|κ2|2 <
µminc

−2
pw‖∇rV2‖−2

L∞

2(1 + e)µmax
.

This completes the proof of the theorem.

Remark 7.5.4. We remark that ψ ∈
{
u ∈ H1(U) |

∫
U

dru = 0
}

, therefore, we may determine
that the sharpest value of cpw conincides with the Poincaré constant as found by Steklov [101],

equal to ν
−1/2
1 where ν1 is the smallest eigenvalue of the problem

∆u = −νu in U,

∂nu = 0 on ∂U.

Here ∂n is the directional derivative along the unit vector n pointing out of the domain U .
Additionally Payne and Weinberger [138] proved that for convex domains in Rn one has cpw ≤
diam(U)

π .

One may obtain a similar convergence result including a confining potential as given by the
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following corollary.

Proposition 7.5.5 (Convergence with κ1 6= 0). Let κ1 6= 0 and let % ∈ C1([0,∞];C2(U)) be
a solution of (7.2.3) with initial data %0 ∈ L2(U) a probability density. Then the exponential
convergence %→ %∞ in L2 criteria is modified to

µmaxκ
2
1‖∇rV1‖2L∞(U) < rκ2

along with |κ2| ≤ 1/4× ‖V2‖−1
L∞(U). In particular the convergence in L2 is given by

‖%(·, t)− %∞(·)‖2L2(U) ≤ ‖%0(·)− %∞(·)‖2L2(U)e
−(rκ2

−µmaxκ
2
1‖∇rV1‖2L∞(U))t.

Proof. Since the inclusion of an external field is linear in the PDEs (7.2.3), (7.5.1a) the proof is
similar to Lemma 7.5.3, the only term to resolve for the evolution equation for ψ first occurring
at (7.5.10) being

κ2
1‖ψD1/2∇rV1‖2L2(U) ≤ κ

2
1µmax‖∇V1‖2L∞(U)‖ψ‖

2
L2(U).

The remainder of the calculations to derive a Grönwall type inequality including this term are
similar.

7.6 Global Asymptotic Stability

In this section we study the stability properties of stationary states. We start by showing
the free energy is a strictly convex functional, provided κ2 is sufficiently small, and that F is
bounded below. Recall the free energy functional F : P+

ac(U)→ R is given by

F [%] :=

∫
U

dr %(r) log %(r) + κ1

∫
U

drV1(r)%(r) +
κ2

2

∫
U

dr %(r)V2 ? %(r).

Proposition 7.6.1. For |κ2| ∈ [0, ‖V2‖−1
L∞(U)) the free energy functional F is strictly convex.

Additionally there exists a positive constant B0 <∞ for every % ∈ P+
ac such that |F [%]| ≥ B0.

Proof. Suppose %1 and %2 satisfy (7.1.10) with Π[%1] ·n = Π[%2] ·n = 0 on ∂U for all t ∈ [0,∞).

Letting ζ = %2 − %1 and %s = (1− s)%1 + s%2 we compute d2

ds2 FH [%s] by direct calculation

d2

ds2
FH [%s] =

d

ds

d

ds

[∫
U

dr %s log %s + κ1

∫
U

dr %sV1 +
κ2

2

∫
U

dr %sV2 ? %s

]
=

d

ds

[∫
U

dr ζ log %s + ζ

+κ1

∫
U

dr ζV1 +
κ2

2

∫
U

dr ζV2 ? %s +
κ2

2

∫
U

dr %sV2 ? ζ

]
=

∫
U

dr
ζ2

%s
+ κ2

∫
U

dr ζV2 ? ζ.

Now using the measure dµ = %sdr we have, by Jensen’s inequality,∫
U

dr
ζ2

%s
=

∫
U

dµ
ζ2

%2
s

≥
(∫

U

dr |ζ|
)2

.

We also have that V2 is bounded below by the negative of its its essential supremum from
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(7.2.5). Combining these facts we find

d2

ds2
FH [%s] ≥ (1− |κ2‖V2‖L∞(U)})

(∫
U

dr |ζ|
)2

(7.6.1)

and we therefore find that, for κ2 such that |k2| ≤ 1
4‖V2‖−1

L∞(U), the free energy functional F is

strictly convex.
Now let % ∈ P+

ac and observe that

F [%] ≥ −
∣∣∣ ∫
U

dr % log %
∣∣∣− |κ1|‖V1‖L∞(U) − |κ2|

2 ‖V2‖L∞(U).

The entropy % log % is continuous and bounded below on U and therefore we have that

F [%] ≥
∫

dr |% log %| − |κ1|‖V1‖L∞(U) − |κ2|
2 ‖V2‖L∞(U) > −∞.

where we have used the assumptions on the potentials in (7.2.5). Hence F [·] is bounded
below.

Note that the convexity condition (7.6.1) in Proposition 7.6.1 holds independently of the
confining potential V1. We therefore have the following Corollary for the total free energy
F −

∫
U

drµc%.

Corollary 7.6.2. The total free energy F−
∫

drµc% is strictly convex for |κ2| ∈ [0, ‖V2‖−1
L∞(U))

and bounded below.

We now provide a useful Lemma which will be used eventually to show that F always has
a minimiser, for any κ2 (see Lemma 7.6.5).

Lemma 7.6.3. Let V1, V2 satisfy the assumptions (D4) then there exists a positive constant
B0 such that for every % ∈ Pac(U) with ‖%‖L∞(U) > B0 there exists some %† ∈ Pac(U) with

‖%†‖L∞(U) ≤ B0 such that

F (%†) < F (%).

Proof. For a proof see [29, Lemma 2.5] or [32, Lemma 2.1], the only modification required is to
include V1 which by assumption is bounded below and the proof follows a similar argument.

We now show that minimisers of F exist for all κ2. First we define the integral operator R
which will be useful for the following calculations.

Definition 7.6.4. Let R : L1(U)→ L1(U) be given by

Ru = −%V2 ? u. (7.6.2)

We note that R is a compact (since V2 is uniformly bounded in L∞(U)) self-adjoint operator
in L2(U, %−1). We label its eigenvalues {β−1

n }∞n=1 and eigenfunctions {un}∞n=1 satisfying

Run = β−1
n un. (7.6.3)

Lemma 7.6.5. Let κ2 ∈ (−∞,∞) and let V1, V2 satisfy the assumptions (D4). Then there
exists a % ∈ Pac(U) that minimizes F .

Proof. Since F is bounded below there exists a minimising sequence {%j}∞j=1 ∈ Pac(U) so that
F (%j) < F (%j+1). Therefore, by Lemma 7.6.3 {%j}∞j=1 may be chosen such that ‖%j‖L2(U) ≤
‖%j‖2L∞(U)|U |. Now by the Eberlein-Smuljan theorem, since {%j}∞j=1 is bounded, there exists a

subsequence (which we will denote again by {%j}∞j=1) such that %j ⇀ %∗ weakly in L2 to some
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%∗. Therefore limj→∞
∫
U

dr η(%j − %∗) = 0 for every η ∈ L2(U), so in particular for η = 1 we
obtain limj→∞

∫
U

dr %j = 1 =
∫
U

dr %∗. Additionally we note that |%j | ⇀ |%∗| in L2(U), and
therefore ‖%∗‖L1(U) = 1, which is enough to show that %∗ ≥ 0 a.e. by standard arguments (see,
for example, the proof of Corollary 7.9.3).

We define Λ : Pac → R such that

Λ(z) :=

∫
U

dr zV2 ? z.

Now let %βn ∈ L1(U) be a solution to (7.5.2), which is known to exist by Lemma 7.5.1. Note that
%βn need not be a minimiser of F and may be an inflection point or local maximum. Addition-
ally since %βn ∈ L1(U) solves (7.5.2), we have that %βn > e−(|κ1|‖V1‖L∞(U)+|βn|‖V2‖L∞(U))/Z > 0
(where Z is a normalisation constant) and therefore there exists δ ∈ R+ such that %βn > δ for
every r ∈ U .

Now we estimate the interaction energy difference by

|Λ(%j)− Λ(%∗)| ≤
N∑
n=1

|β−1
n |
∣∣∣〈%j , wn〉L2(U,%−1

βn
) − 〈%∗, wn〉L2(U,%−1

βn
)

∣∣∣+ 2|β−1
N |δ

−1B0

≤ 2δ−1B0

N∑
n=1

〈%j − %∗, wn〉L2(U) + 2|β−1
N |δ

−1B0

where we have used the fact that the integrand of Λ(z) is equal to R acting on z ∈ Pac.
Additionally we have used that R is self-adjoint in L2(U, %−1

βn
), to write R as a projection onto

its eigenvectors {wn}∞n=1 and bounded the tail of the infinite sum using Bessel’s inequality.
Now since R is self-adjoint in L2(U, %−1

βn
) we have that (after reordering) |β−1

n | → 0 as n→∞
so the second term may be made arbitrarily small. The first term may be made arbitrarily small
by taking the limit j →∞ inside the finite sum and using that %j ⇀ %∗ weakly in L2(U). This
shows that Λ(·) is continuous in %.

Additionally, for the external energy, we have∣∣∣ ∫
U

drV1(r)%j(r)−
∫
U

drV1(r)%∗(r)
∣∣∣ =

∣∣∣ ∫
U

drV1(r)(%j(r)− %∗(r))
∣∣∣

≤
∣∣∣ ∫
U

drV1(r)(%j(r)− %∗(r))
∣∣∣→ 0

as j →∞. The lower semicontinuity of the entropy term in (7.1.6) follows from standard results
[94, Lemma 4.3.1]. Therefore the free energy F [%] has a minimiser % over Pac(U).

We may refine this result to show that minimisers are attained in P+
ac(U) with the following

lemma.

Lemma 7.6.6. Let % ∈ Pac(U)\P+
ac(U). Then there exists %† ∈ P+

ac(U) such that F [%†] < F [%].

Proof. The proof is similar to [29, Lemma 2.6]. One must show that the potential energy for a
P+
ac(U) density may be bounded by the potential energy of a Pac(U) density. We let ε > 0 and

define the competition state %ε such that

%ε(r) =
(%(r) + εIB0

(r))

1 + ε|B0|

where B0 = {r ∈ U : %(r) = 0} and since by assumption % /∈ P+
ac(U) one has |B0| > 0 and

%ε ∈ P+
ac(U). Then we obtain that∫

U

drV1%ε ≤
∫
U

drV1%+ ε|B0|.

Using this bound, together with the result [29, Lemma 2.6] we obtain the required result.
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7.6.1 Exponential Convergence To Equilibrium In Relative Entropy.

In this section we derive an H-theorem which guarantees that the time evolution of the dynamics
converges to the equilibrium distribution given by the self-consistency equation. First consider
the time derivative of the integral of the free energy

d

dt
F [%] =

∫
U

dr ∂t%
δF [%]
δ% =

∫
U

dr∇ ·
[
D(r, t)%(r, t)∇r

δF [%]
δ%

]
δF [%]
δ%

= −
∫
U

dr
∣∣∣D(r, t)1/2%(r, t)1/2∇r

δF [%]
δ%

∣∣∣2,
where we have integrated by parts and used the boundary condition Π% · n

∣∣
∂U

= 0 or %→ 0 as

|r| → ∞ for bounded and unbounded domains respectively. Here we see that as long as both
D(r, t) and %(r, t) remain positive definite then the free energy is monotonically decreasing in
time. Indeed the diffusion tensor D is positive definite as proven in [63] and we will show strict
positivity of %(r, t) in Section 7.9.4.

We now introduce the relative entropy functional

H [%|%∞] :=

∫
U

dr % log

(
%

%∞

)
, (7.6.4)

and obtain the following theorem for convergence to equilibrium in relative entropy. The follow-
ing result is analogous to the relative entropy convergence result Carrillo et al. [29, Proposition
3.1] and extends to densities in the presence of an external potential V1. The main differences
here are that we must take care with application of the log-Sobolev inequality for non-convex
potentials by use of Holley-Stroock perturbation Lemma.

Theorem 7.6.7. Let V1 be convex, |κ2| < 1
4‖V2‖−1

L∞(U) and % ∈ C1([0,∞];C2(U)) be a classical

solution to equation (7.2.3). If κ2
2 <

c−1
ls

2‖∇V2‖2L∞(U)

then % is exponentially stable in relative

entropy and it holds that

H [%|%∞] ≤H [%0|%∞]e−
1
2 (c−1

ls −2|κ2|2‖∇V2‖2L∞(U))t,

where cls > 0 is the log-Sobolev constant for the measure µ.

Proof. By direct calculation we find

dH [%|%∞]

dt
=

∫
U

dr ∂t

(
% log

(
%

%∞

))
=

∫
U

dr ∂t% log

(
%

%∞

)
+

∫
U

dr ∂t%

=

∫
U

dr ∂t% log

(
%

%∞

)
+

dM

dt
= −

∫
U

dr %∇δF [%]

δ%
· ∇ log

(
%

%∞

)
+ 0

= −
∫
U

dr % (∇ log %+ κ1∇V1 + κ2∇V2 ? %) · ∇ log

(
%

%∞

)
= −

∫
U

dr % (∇ log %+ κ2∇V2 ? %− (∇ log %∞ + κ2∇V2 ? %∞)) · ∇ log

(
%

%∞

)
= −

∫
U

dr %

(
∇ log

(
%

%∞

)
+ κ2∇V2 ? (%− %∞)

)
· ∇ log

(
%

%∞

)
where we have used the no-flux boundary condition and the self-consistency equation∇ log %∞+
κ1∇V1 +κ2∇V2 ?%∞ = 0. Note that the contribution from the V1 term is constant, independent
of ρ, and so cancels after using the self-consistency equation.
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Continuing by expanding out the integrand and using Hölder’s inequality we obtain

dH [%|%∞]

dt
= −

∫
U

dr %
∣∣∣∇ log

(
%

%∞

) ∣∣∣2 + κ2

∫
U

dr %∇ log

(
%

%∞

)
· ∇V2 ? (%− %∞)

≤ −
∫
U

dr %
∣∣∣∇ log

(
%

%∞

) ∣∣∣2
+

[∫
U

dr %
∣∣∣∇ log

(
%

%∞

) ∣∣∣2]1/2

×
(
κ2

2

∫
U

dr %|∇V2 ? (%− %∞)|2
)1/2

.

Now, by Young’s inequality,

dH [%|%∞]

dt
≤ − 1

2

∫
U

dr %
∣∣∣∇ log

(
%

%∞

) ∣∣∣2 +
κ2

2

2

∫
U

dr %|∇V2 ? (%− %∞)|2

and we may estimate the second term on the right hand side (in particular using that
∫
U
ρ = 1

from Corollary 7.9.3), giving

dH [%|%∞]

dt
≤ − 1

2

∫
U

dr %
∣∣∣∇ log

(
%

%∞

) ∣∣∣2 +
κ2

2

2 ‖∇V2‖2L∞(U)‖%− %∞‖
2
L1(U) (7.6.5)

We bound the first term as follows. Since V1 is convex, we have

∇2
rV1 ≥ θ1 > 0

for some θ1 ∈ R+. Now by the Bakry–Émery criterion (see [119, Sec 3, Theorem 3.1], and [110])
the measure µ′(dr) = dr e−κ1V1/Z where Z is a normalisation constant satisfies a log-Sobolev
inequality (LSI) with constant c′ls such that

1

c′ls
≥ θ1κ1.

However since V2 is not general a convex function, we cannot use the Bakry–Émery criterion for
µ as defined in (7.1.7). However we may deduce a LSI using the Holley–Stroock perturbation
lemma [119, Sec 3, Theorem 3.2] since V1+V2?%∞ is a bounded perturbation of V1, in particular∣∣∣V1 + V2 ? %∞

∣∣∣ ≤ ∣∣∣V1

∣∣∣+ ‖V2‖L∞‖%∞‖L1(U) <∞.

Therefore µ as defined in (7.1.7) with % = %∞ (after appropriate nondimensionalisation) is
unique and satisfies a LSI with constant

c−1
ls ≥ exp (−κ1κ2 Osc [V2 ? %∞])

1

c′ls

where

Osc [V2 ? %∞] = supV2 ? %∞ − inf V2 ? %∞.

The constant cls is such that such that for each f : U → R+ one has∫
U

f2 log f2dµ−
∫
U

f2 log

(∫
U

f2dµ

)
dµ ≤ cls

∫
U

|∇f |2dµ = cls

∫
U

f2|∇ log f2|2dµ. (7.6.6)

We let f =
√
%/%∞ and dµ = %∞dr and the second term on the left hand side of (7.6.5) is zero

(since, again
∫
U
ρ = 1). Hence this shows that

H [%|%∞] =

∫
U

f2 log f2dµ ≤ cls
∫
U

dr %
∣∣∣∇ log

(
%

%∞

) ∣∣∣2.
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We combine the LSI (7.6.6) with Pinsker’s inequality [18] to deduce

dH [%|%∞]

dt
≤ − 1

2 (c−1
ls − 2κ2

2‖∇V2‖2L∞(U))H [%|%∞].

Thus we obtain, by Grönwall’s inequality,

H [%|%∞] ≤H [%0|%∞] exp[− 1
2 (c−1

ls − 2κ2
2‖∇V2‖2L∞(U))t]

and the theorem is proved.

The constant cls is not known explicitly but may be estimated in terms of the convexity
of V1, V2 and the curvature of U [34]. We now consider asymptotic expansions of the steady
states for small interaction energy κ2.

7.6.2 Asymptotic Expansion Of The Steady States For Weak Inter-
actions.

We begin this section by recalling that steady states satisfy the self-consistency equation

% =
e−(κ1V1+κ2V2?%)

Z
, (7.6.7)

where Z =
∫
U

dr e−(κ1V1+κ2V2?%). We know from Lemma 7.5.1 that for sufficiently weak in-

teractions, i.e. |κ2| < 1/4‖V2‖−1
L∞(U), the stationary distribution is unique; equivalently, the

nonlinear equation (7.6.7) has a unique fixed point. Let κ2 � 1, then the stationary solution
%(r) = %∞(r) has the form

%(r) =
e−κ1V1(r)

Z(%)
(1 +O(κ2)),

where the first order correction may be obtained explicitly as follows.
Recall the stationary equation for %:

∇r · [D(∇r%+ κ1%∇rV1(r) + κ2%∇rV2 ? %)] = 0 on U, (7.6.8a)

D(∇r%+ κ1%∇rV1 + κ2%∇rV2 ? %) · n = 0 on ∂U .

Fix κ1 = 1 and insert the perturbation expansion

%(r) =
∞∑
k=0

κk2%k(r).

We find at the first order of κ2

L0%0 := ∇r · (D∇r%0 +D (%0∇rV1)) = 0 on U,

D(∇r%0 + %0∇rV1) · n = 0 on ∂U ,

from which we deduce

%0(r) =
e−V1(r)

Z0

for Z0 =
∫
U

dr e−V1(r).

Note that L0 is self-adjoint in the space L2(U, %−1
0 ). We may also show that the resolvent

of L0 is compact in L2(U, %−1
0 ).

Lemma 7.6.8. The operator L0 has a compact resolvent in L2(U, %−1
0 ).
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Proof. We let φ ∈ C2(U), by direct calculation we have that

L0φ = [∇r ·D] · ∇rφ+ Tr
[
D∇2

rφ
]

+ [D∇rV1] · ∇rφ+ φ
[
[∇r ·D] · ∇rV1 + Tr[D∇2

rV1]
]

then we have that

‖L0φ‖2L2(U,%−1
0 )

=

∫
U

dr
∣∣∣∇r · (D∇rφ+D (φ∇rV1))

∣∣∣2%−1
0

≤ C(U ;D;V1)
2∑

n=0

sup
r∈U

∣∣∣φ(n)(r)
∣∣∣ <∞

where the constant C(U ;D;V1) is dependent on U , the diffusion tensor D and the first weak
derivatives of its entries (bounded in L∞(U) by (D1)), and the confining potential V1 and its
first two weak derivatives (bounded in L∞(U) by (D4)).

Therefore there exists C ∈ R+ such that ‖L0‖L2(U,%−1
0 ) < C and the spectrum of L0 is

bounded. Now let z ∈ ρ(L0) with |z| > C, where ρ(·) denotes the resolvent set, then we may
write the resolvent R(z; L0) of the operator L0 as

R(z; L0) = −z−1
∞∑
k=0

z−kL k
0 .

We now show that R is compact. First consider the sequence (RN )N≥1 defined by

RN (z; L0) := −z−1
N∑
k=0

z−kL k
0 ,

then let (φj)j≥1 be a sequence in C2(U). We have that (φj)j≥1 is a bounded sequence in C2(U)
and

‖RN (z; L0)[φj ]‖L2(U,%−1
0 ) ≤ |z|

−1
N∑
k=0

|z|−k‖L k
0 [φj ]‖L2(U,%−1

0 )

≤ |z|−1
N∑
k=0

|z|−kCK .

Hence, as long as |z| > C then, ‖RN (z; L0)[φj ]‖L2(U,%−1
0 ) converges for all N and Im

(
RN
)

is

relatively compact in L2(U, %−1
0 ). It is then a standard result that the limit of a sequence of

compact operators is compact, hence R is compact.

Thus we have a complete set of orthonormal basis functions {v(0)
k }∞k=0 and corresponding

eigenvalues {γ(0)
n }n≥1. Note that v

(0)
0 = %0 and γ

(0)
0 = 0. At the next order of κ2 we obtain

L0%1 + f(%0) = 0, (7.6.10)

where

f(%0) := −∇r · (D%0∇rV2 ? %0),

subject to

D(∇r%1 + %1∇rV1 + %0∇rV2 ? %) · n = 0 on ∂U .

The solvability condition for (7.6.10) then becomes

0 = 〈f(%0), v
(0)
0 〉L2(U,%−1

0 ) =

∫
U

dr∇r · (%0D∇rV2 ? %0) =

∫
∂U

dS n · %0D∇rV2 ? %0. (7.6.11)
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If the solvability condition (7.6.11) is satisfied then, by the Fredholm alternative, there exists a
solution to (7.6.10).

We may then write %1 in an eigenfunction expansion

%1(r) =
∞∑
j=0

αjv
(0)
j where αj = − 1

γj‖v(0)
j ‖2L2

%
−1
0

〈f(%0), v
(0)
j 〉L2

%
−1
0

.

This yields that

%(r) =
e−V1(r)

Z0
+ κ2

∞∑
j=0

〈∇r · (D%0∇rV2 ? %0), v
(0)
j 〉L2

%
−1
0

v
(0)
j (r)

γj‖v(0)
j ‖2L2

%
−1
0

+O(κ2
2).

We now consider a linear stability analysis of the equilibrium density (7.5.2) solving (7.2.5).

7.6.3 Linear Stability Analysis.

We first investigate the spectrum of the linearised operator L1 in terms of the eigenspace of
its local part. We determine a scheme for computing the eigenvalues of L1 explicitly. Writing
% = %+ ε ω +O(ε2) where ε� 1 is an arbitrary parameter and not equal to κ2, we obtain

O(ε0):

L % = 0

where we have set % = %∞ (the unique stationary state) to ease notation and

L % = ∇ · (D∇%) + κ1∇ · (D %∇V1) + κ2∇ · (%D∇V2 ? %).

O(ε1):

ω̇ = L1w (7.6.12)

where

L1ω := ∇ · (D∇ω) + κ1∇ · (D ω∇V1) + κ2∇ · (%D∇V2 ? ω) + κ2∇ · (ωD∇V2 ? %). (7.6.13)

We remark that the operator L1 is different to the one found in the linear stability analysis of
[29, Sec 3.3] due to the difference in boundary conditions.

Perturbations must be mean zero, that is
∫
U

drω = 0, which may be determined by observ-
ing that

1 =

∫
dr %+ ε

∫
drw +O(ε2).

Equally, all higher order perturbations must have mean zero. Physically speaking this is a com-
patibility condition with the no-flux boundary condition in (7.2.5) to ensure that perturbations
do not change the mass of the system.

Additionally by linearising the self-consistency equation (7.5.2) we find that mean zero
perturbations w satisfy the integral equation

w = −%∞κ2V2 ? w. (7.6.14)
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We linearise the nonlinear boundary condition to find that

Π1[ω] · n|∂U := 0

where

Π1[ω] = D (∇rω + ω∇r(κ1V1(r, t) + κ2 V2 ? %) + κ2%∇rV2 ? ω). (7.6.15)

We note that if any such ω exist for (7.6.14), then (7.6.15) trivially holds, and equation (7.6.12)
is underdetermined. In order to properly determine ω we let ω ∈ L2

c(U, %
−1) where

L2
c(U, %

−1) :=
{
u ∈ L2(U, %−1) : ∇r(%

−1u) · n|∂U = 0
}
.

The choice ω ∈ L2
c(U, %

−1) preserves the boundary condition Π1[%] · n|∂U = 0 and we will show
in Lemma 7.6.9 that it is the most general restriction to ensure that the local part of L1 is
self-adjoint in L2(U, %−1). With this we write

L1 = Aκ2
+ κ2B,

Aκ2
w := ∇r · [D(∇rw + w∇rϕκ2

)], (7.6.16a)

Bw := ∇r · (%D∇rV2 ? w) , (7.6.16b)

ϕκ2
:= κ1V1 + κ2V2 ? ρ. (7.6.16c)

Here, Aκ2
and B are the local and nonlocal parts of L1, respectively. Note however that

Aκ2
6= L0 by definition since κ2 is no longer small. All operators Aκ2

, B, L1 are maps
H2(U, %−1

∞ )→ L2(U). We now show that Aκ2
is a self-adjoint operator in the space L2

c(U, %
−1).

Lemma 7.6.9. Aκ2
is self-adjoint in L2

c(U, %
−1).

Proof. First note that from (7.6.16c) and (7.5.2) we have that ∇rϕκ2 = ρ∇rρ
−1 and so Aκ2w =

∇r · [ρD∇r(ρ
−1w)]. Let u ∈ L2

c(U, %
−1) then

〈u, Aκ2
w〉L2(U,%−1) =

∫
U

dr %−1uAκ2
w

=

∫
U

dr %−1u∇r · [ρD∇r(ρ
−1w)]

=

∫
∂U

dSn · uD∇r(%
−1ω)−

∫
U

dr∇r

[
%−1u

]
·
[
%D∇r

(
%−1w

)]
= −

∫
∂U

dSn · wD∇r(%
−1u) +

∫
U

dr∇r · [ρD∇r(ρ
−1u)]%−1w

= 〈Aκ2u, w〉L2(R,%−1)

where we have integrated by parts twice and used that D is symmetric and the fact that
u,w ∈ L2

c(U, %
−1) to eliminate the boundary terms.

We have established that Aκ2
is self-adjoint in L2

c(U, %
−1). Additionally we observe that Aκ2

has a compact resolvent in L2
c(U, %

−1) by a similar result to Lemma 7.6.8. The spectral theorem

therefore provides a complete basis of orthonormal eigenfunctions v
(κ2)
k spanning L2

c(U, %
−1)

with corresponding eigenvalues γ
(κ2)
k such that

Aκ2
v

(κ2)
k = γ

(κ2)
k v

(κ2)
k . (7.6.17)

We note that the operator B as defined in (7.6.16b) is, in general, not self-adjoint. From now

on we assume that the set of eigenfunctions {v(κ2)
k }∞k=1 are normalised to form an orthonormal

basis. The stability of the equilibrium density will depend on the spectrum of the operator L1

so that perturbations evolving according to (7.6.12) either grow or decay. We now study the
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Figure 7.2: Plots of a) The eigenfunctions of Aκ2
in L2([−1, 1], %−1

∞ ) as computed with pseu-
dospectral methods for κ2 = 1 and N = 100 spectral points, b) the inner product between

pairs of eigenfunctions showing orthogonality of the {v(κ2)
k }, c) the eigenfunction expansion of

V2(r) = 1/2(− tanh((r−1/2)/.05)+tanh((r+1/2)/.05)) and d) the absolute error between the
expansion V2e and Ve. The L2 error between V2 and its expansion in eigenfunctions V2e was
found to be 5.761e-9.

spectrum of L1. We fix κ1 and consider κ2, not necessarily small, as a perturbation parameter
from the differential part of L1. The following theorem establishes the parametrisation of the
eigenvalues λ by κ2.

Theorem 7.6.10. Suppose that λ 6= γ
(κ2)
k for all k ∈ N. If the solution κ?2(λ) of the equation

λ = λk?(κ?2) exists, then it is given by

κ?2(λ) =

( ∞∑
i=0

θ
(κ2)
i γ

(κ2)
i β

(κ2)
i

λ−γ(κ2)
i

)−1

, (7.6.18)

where θ
(κ2)
j and β

(κ2)
j are given by

θ
(κ2)
k β

(κ2)
l =

∫
U

dr v
(κ2)
l (r)V2 ? v

(κ2)
k (r). (7.6.19)
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Figure 7.3: Moving eigenvalues for various differential nonlocal operators.

Proof. Let

V2(r− r′) = %−1(r)%−1(r′)
∞∑

j,k=0

β
(κ2)
j v

(κ2)
j (r)θ

(κ2)
k v

(κ2)
k (r′),

w(r) =
∞∑
i=0

αiv
(κ2)
i (r).

Inserting these expressions into the eigenvalue problem L1w = λw we find

∞∑
i=1

αi(γ
(κ2)
i − λ)v

(κ2)
i (r) + κ2∇r · (%D∇rV2 ? w) = 0.
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Multiplying this equation by v
(κ2)
n and integrating against the weight function %−1 we obtain

0 = αn(γ(κ2)
n − λ) + κ2

∫
U

dr %−1(r)v(κ2)
n (r)∇r · (%(r)D∇rV2 ? w)

= αn(γ(κ2)
n − λ)− κ2

∫
U

dr
[
∇rv

(κ2)
n (r) + v(κ2)

n (r)∇rϕκ2

]
·D∇rV2 ? w,

where there is no boundary term since ∇rV2 ? w = −κ−1
2 ∇r(%

−1w) is zero on the boundary of
U because w ∈ L2

c(U, %
−1).

Continuing by integrating by parts we find

0 = αn(γ(κ2)
n − λ) + κ2

∫
U

dr∇r · [D(∇rv
(κ2)
n (r) + v(κ2)

n (r)∇rϕκ2
)]V2 ? w

= αn(γ(κ2)
n − λ)− κ2

∫
U

dr∇r · (%D∇r(%
−1v(κ2)

n (r)))V2 ? w

= αn(γ(κ2)
n − λ) + κ2γ

(κ2)
n

∫
U

dr v(κ2)
n (r)V2 ? w

where we have used ∇r(%
−1vκ2

n ) = 0 on ∂U to eliminate the boundary term, and in the last line
used the fact that vκ2

n is an eigenfunction of Aκ2
. Inserting the expansion for V2 and using the

orthonormality of the v
(κ2)
i gives

κ2 =
(λ− γ(κ2)

n )αn

γ
(κ2)
n θ

(κ2)
n

∑∞
j=0

∫
U

dr′ %−1
∞ (r′)βκ2

j v
(κ2)
j (r′)w(r′)

.

This holds for all V2 and, in particular, for all θ
(κ2)
n 6= 0 so it be must be the case that

(λ− γ(κ2)
n )αn

γ
(κ2)
n θ

(κ2)
n

= K,

for some constant K, independent of n. Without loss of generality we can take K = 1. Hence
we have

w(x) =
∞∑
i=0

γ(κ2)
n θ(κ2)

n

λ−γ(κ2)
n

v(κ2)
n (x)

and it follows that

κ2 =

 ∞∑
j=0

∫
U

dr′ %−1(r′)β
(κ2)
j v

(κ2)
j (r′)w(r′)

−1

=

( ∞∑
i=0

θ
(κ2)
i γ

(κ2)
i β

(κ2)
i

λ−γ(κ2)
i

)−1

. (7.6.20)

Hence the theorem is proved.

The expression (7.6.18) for κ2 allows the paths of the eigenvalues λk(κ2) to be computed.
For practical purposes, it may be sufficient to use a truncation of the series or, if w(r) can
be computed explicitly, the first expression in (7.6.20) can be used. As shown in [96, Section
II-5.1], the eigenvalues of L1 will remain real as long as

|κ2| <
mini,j∈N |γ(κ2)

i − γ(κ2)
j |

2‖B‖
. (7.6.21)

We see from (7.6.20) that the point of critical stability (if it exists) κ2] occurs at

κ2] = −

( ∞∑
i=0

θ
(κ2)
i β

(κ2)
i

)−1

(7.6.22)
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Table 7.1: The first 10 eigenvalues −γ(κ2)
k · 103 and boundary condition values of the corre-

sponding eigenvectors vk(κ2) for κ2 = .05.

k −γ(ε)
k · 103 ∇r(%

−1v
(κ2)
k ) · n

∣∣
x=−1

∇r(%
−1v

(κ2)
k ) · n

∣∣
x=1

1 0.042470931917315 -0.326629834290770e-10 -0.049430114879555e-10
2 0.161343622578368 0.177791115163473e-11 -0.638172005587933e-11
3 0.359053918066979 -0.532729416136135e-11 -0.705155659306588e-11
4 0.635777464488092 0.040225600628219e-10 -0.10593000196636e-10
5 0.991543834922971 -0.143929312912405e-11 -0.982251087217608e-11
6 1.426361079097481 -0.421040979858844e-11 0.332564751050043e-11
7 1.940232081076136 0.130651045537888e-11 0.966037681231493e-11
8 2.533158075256826 -0.417399448338074e-11 -0.401360089043934e-11
9 3.205139660109592 -0.019828583219805e-11 -0.919929559744713e-11
10 3.956177153938488 -0.687472301308389e-11 0.423840601914807e-11

and is independent of γ
(κ2)
n (the eigenvalues of the local operator Aκ2

). The critical point of
stability will have implicit dependence on D, V1 and V2 through (7.6.19). As long as κ2 remains
sufficiently small, Lemma 7.6.10 provides a nonlinear map to compute κ2 parametrised by λ
therefore permitting the paths of the moving eigenvalues to be calculated. In particular by
fixing λ ∈ R we have the iterative problem

1

κl+1
2

=
∑∞
i=1

θ
(κl2)

i γ
(κl2)

i β
(κl2)

i

λ−γ
(κl2)

i

,

γ
(κ0

2)
n = γ

(0)
n .

(7.6.23)

We note that the eigenvalues λ
(κ2)
k are implicitly dependent on the diffusion tensor D and

confining potential V1.

Figure 7.2a shows typical eigenfunctions v
(κ2)
k of the local part of the linearised operator L .

Figure 7.2b shows the pairwise L2
c(U, %

−1) inner product of the v
(κ2)
k demonstrating orthogonal-

ity of the basis functions. Figure 7.2c shows the expansion of the two-body function V2 (here a
Morse like potential) in terms of the eigenfunctions vk meanwhile Figure 7.2d shows the error
between the expansion and V2. We also demonstrate the accuracy of the collocation scheme in
computing eigenvalues and eigenfunctions of Aκ2

in Table 7.1. In particular, Aκ2
is composed

of dense first and second order differentiation matrices and the value ∇r(%
−1v

(κ2)
k ) · n is very

small on the boundary using only 100 collocation points.

In Figures 7.3c, 7.3d, we plot various paths κ?2(λ) as solutions to the equation λ = λk?(κ∗2)
for k the wave number by numerically solving (7.6.23) for different two-body potentials. We also
reproduce figures from Davidson & Dodds [39] in Figures 7.3a, 7.3b, verifying our numerical
procedure for computing the spectra of similar nonlocal differential operators. Note however
that operators in [39] do not contain convolution type integral operators, and, with Dirichlet
boundary conditions, their spectra differ substantially from those considered here (for example
Figures 7.3c, 7.3d). The intersection through the λ axis in each Figure 7.3a–7.3d gives the

local eigenvalues γ
(0)
k for the corresponding nonlocal differential operator. Note that it is not

necessary for γ
(0)
k to lie on the moving path for every k.

The numerical solution of (7.6.23) involves both a truncation of the infinite series and a
numerical tolerance for the zeros of the nonlinear function f(κ2) = κ2−κ2(λk). Note that L is
self-adjoint in L2

c(U, %
−1) (with real eigenvalues) only for κ2 = 0. The λ’s are otherwise complex

and the curves plotted show when the paths drop to the real plane. When |κ2| is sufficiently
large, that is when (7.6.21) is violated, the λ’s have non-zero imaginary part.

We now investigate the spectrum of the linearised operator L in terms of the eigenspace
of its nonlocal part. We determine necessary conditions for bifurcations.
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7.7 Bifurcation Theory

We now provide our first result of the section which relates the stability of equilibrium density
to the two-body interaction potential.

Theorem 7.7.1. Let κ2 ∈ (−∞,∞) and suppose % is a solution to the self-consistency equation
(7.5.2). Let R be given by

Rw = −%V2 ? w,

where w ∈ L2(U, %−1) is mean zero. If R is positive definite and κ2 < β1 where β1 is the
smallest eigenvalue of R−1, then equilibrium densities formed from repulsive two–body kernels
V2 are stable. Conversely if R is negative definite and κ2 > β1 where β1 is the largest eigenvalue
of R−1, then equilibrium densities formed from attractive two–body kernels V2 are stable.

Proof. We observe that L1 is self-adjoint in L2(U, %−1) only when there is no interaction (κ2 =
0). We may however expand the eigenfunctions of L1 in the eigenfunctions of R, {un}∞n=1 which
form an orthonormal basis of L2(U, %−1) (see Definition 7.6.4). We write wn =

∑
i=1 αniui. By

the definition of the eigenvalue problem for L1

L1wn = λnwn.

Now inserting the expansion in ui’s we obtain

λn
∑
i=1

αniui = L1

∑
i=1

αniui

= [Aκ2 + κ2B]
∑
i=1

αniui

=
∑
i=1

αni {Aκ2
ui + κ2Bui}

=
∑
i=1

αni
{
∇r ·

(
D%

(
∇r(%

−1ui)
))
− κ2∇r ·

(
D%

(
∇r(%

−1(%Rui))
))}

=
∑
i=1

αni
{
∇r ·

(
D%

(
∇r(%

−1ui)
))
− κ2∇r ·

(
D%

(
∇r(%

−1(%Rui))
))}

=
∑
i=1

αni

{
1− κ2

βi

}
∇r ·

(
D%

(
∇r(%

−1ui)
))
,

where we have used the definitions (7.6.16a), (7.6.16b) and (7.6.2) and that each ui is an
eigenfunction of R. Now by multiplying my %−1uj and integrating we obtain

λnαnj‖uj‖2L2(U,%−1) =
∑
i=1

αni

{
1− κ2

βi

}∫
U

druj∇r ·
(
D%

(
∇r(%

−1ui)
))

Now by integrating by parts, using Gauss’s theorem and the condition that ∇r(%
−1ui) is

zero on the boundary of U , we obtain

λn = α−1
nj

∑
i=1

αni

(
κ2

βi
− 1

)∫
U

dr
∣∣∣%1/2D1/2∇r

(
%−1ui

) ∣∣∣2
for every j = 1, · · · . Hence, a bifurcation from the equilibrium density % may occur when κ2

coincides with βj , for some j = 1, · · · and perturbations wn are linear combinations of uj . To
ensure % is stable one must have, for every j ∈ N{

κ2 < βj if R is positive definite,

βj < κ2 if R is negative definite.
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Now by the spectral theorem, the {β−1
n }n≥1 are discrete, countable and may be ordered such

that |β−1
n | → 0. Therefore to ensure the stability of % we require κ2 < β1 if R is positive definite

and β1 < κ2 if R is negative definite. This completes the proof of the theorem.

We now relate theorem 7.7.1 to the H-stability result in [29].

Remark 7.7.2. We remark on the consistency with the H-stability condition of [29] with peri-
odic boundary conditions, the equilibrium density may bifurcate if the interaction kernel has a
negative Fourier mode. In the present work, the distribution of the eigenvalues of the operator
R determines whether the equilibrium density is stable with respect to {uj}∞j=1. In particular,
if R has a negative eigenvalue then equilibrium densities formed from repulsive V2 may become
unstable.

We may obtain an estimate for the eigenvalues β−1
n in terms of V2 and % in the following

way, by the eigenvalue problem (7.6.3) we have

|β−1
n | = |β−1

n |〈un, un〉L2(U,%−1) = | − 〈un, V2 ? un〉L2(U)|
≤ ‖V2‖L∞(U)‖un‖2L1(U) = ‖V2‖L∞(U)‖%1/2(%−1/2)un‖2L1

≤ ‖V2‖L∞(U)‖%‖2L1(U)‖(%
−1/2)un‖2L2(U) = ‖V2‖L∞(U),

where we have used the Cauchy-Schwarz inequality and the fact that the {un}∞n=1 are orthonor-
mal in L2(U, %−1). From this we obtain the lower bound ‖V2‖−1

L∞(U) ≤ |βn|, this lower bound

shows that the bifurcation point coincides with the boundary of the interval in which free energy
F is convex (c.f. Proposition 7.6.1).

Theorem 7.7.3. Let {β−1
n }∞n=1 be the ordered eigenvalues of R. If |κ2| ≥ |β1| then (β1, w1) is

a bifurcation point of (7.4.21) where w1 is the eigenfunction of R associated to β−1
1 and there

exists 0 < %∗ 6= %∞ solving (7.5.2).

Proof. Let %κ2
denote the solution to (7.5.2) for a given κ2 which is known to exist by Theorem

7.5.1. Since %κ2
is continuous in κ2 and F [%] is continuous in %, then F is continuous in κ2.

By Lemma 7.6.5 we know that a minimiser of F exists for each κ2 and by Lemma 7.6.6 the
minimiser is strictly positive. Given |κ2| ≥ ‖V2‖−1

L∞(U) then by Proposition 7.6.1, F is no longer

convex and %κ2
is either an inflection point or a local maximum of F . Hence %κ2

is unstable and
by Lemma 7.6.5 there exists %∗ such that F [%∗] < F [%κ2

]. Additionally by the self-adjointness
and compactness of R, one has that β−1

n → 0 as n→∞ and hence βn →∞ as n→∞ and β1

is the smallest of the {βn}∞n=1.
If R is positive definite, there are no negative βn and the only solution to (7.6.3) is un ≡ 0

and %κ2
will be stable for all κ2 < β1. Similarly, if R is negative definite, there are no positive

βn and the only solution to (7.6.3) is un ≡ 0 and %κ2
will be stable for all κ2 > β1. If R is

indefinite, by Remark 7.7.2, for |βn| < ‖V2‖−1
L∞(U) there are no solutions (other than wn ≡ 0)

to R[wn] = β−1
n wn, and once again for |κ2| < |β1|, %κ2 = %∞ is stable. For κ2 ≥ ‖V2‖−1

L∞(U)

there are infinitely many non-trivial solutions to R[wn] = β−1
n wn and κ2 = β1 is the first.

Hence if |κ2| ≥ |β1| then the unique stationary density %∞ is unstable and by Lemma 7.6.5
there must exist %∗ such that F [%∗] < F [%κ2

].

We define the W : L2(U)→ R transform such that

W [f ](n) =

∫
U

dr%−1
βn
wn(r)f(r)

where %βn solves (7.5.2) with κ2 = βn. With this we may plot the bifurcation diagram for the
stability of the unique equilibrium state % = %∞, see for example Figure 7.1.

7.8 Application To Nonlinear Diffusion Equations

In this section we consider sufficient conditions for bifurcations under particular forms of non-
local operators. We will show that, by use of numerical examples, there may be more than one
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stationary solution under additional assumptions on the two-body potential by making use of
the bifurcation theory developed in Section 7.7. We fix κ1 and consider boundary value prob-
lems where the nonlocal term is not of convolution type. Let V2(r, r′) be a two-body function
and considerP[%] := ∇ ·

[
D
(
∇%+ %κ1∇V1 + κ2%∇

∫
U

dr′V2(r, r′)%(r′)
)]

= 0 in U,

Ω[%] · n := D
(
∇%+ %κ1∇V1 + κ2%∇

∫
U

dr′V2(r, r′)%(r′)
)
· n = 0 on ∂U.

(7.8.1)

Solutions of P% = 0 with Ω[%] · n = 0 on the boundary are denoted by % = %κ2
and satisfy the

self-consistency equation

%κ2
=
e−(κ1V1+κ2

∫
U

dr′ V2(r,r′)%κ2
(r′))

Z
. (7.8.2)

The linear stability of the steady state may be studied implicitly by examining the properties
of the linearised self-consistency map. By linearising equation (7.8.2), by writing %κ2 = φ0+εφ1,
for some small ε, we obtain the original nonlinear problem

φ0 =
e−(κ1V1+κ2

∫
U

dr′ V2(r,r′)φ0(r′))

Z0
s.t Ω[φ0] · n = 0

where Z0 =
∫
U

dr e−(κ1V1+κ2

∫
U

dr′ V2(r,r′)φ0(r′)), along with the linearised equation

φ1 = −κ2 φ0

∫
U

dr′ V2(r, r′)φ1(r′) s.t

∫
U

drφ1(r) = 0. (7.8.3)

The integral condition in (7.8.3) comes from the fact that higher order perturbations to φ0

must possess zero mean to preserve the mass in the system. We define the linear operator T
in L1(U) by

T φ(r) := φ0(r)

∫
U

dr′ V2(r, r′)φ(r′). (7.8.4)

We also define the mapping from G : (L1(U),R)→ L1(U) by

G (φ, κ) := φ− f(φ, κ)

where f(φ, κ) := e−(κ1V1+κdr′ V2(r,r′)φ(r′))∫
U

dre−(κ1V1+κdr′ V2(r,r′)φ(r′)) . To construct the bifurcation diagram, we will use

the following result from [166, Tamura (1984)], or [29, Carrillo et al. 2019], which is a direct
consequence of the Crandall-Rabinowitz theorem, see, e.g. [38].

Theorem 7.8.1 (Tamura (1984), Carrillo et al. (2019)). Let V2(x, y) = V2(y, x). Also let
(ψ0, ν0) be a fixed point in L1(U)× R such that:

1. G (ψ0, ν0) = 0,

2. ν−1
0 is an eigenvalue of T ,

3.
∫
U

drV2(r, r′)ψ0(r) = 0,

4. dim{ψ ∈ L1(U) : ψ = ν0T ψ} = 1.

Then (ψ0, ν0) is a bifurcation point of G = 0. That is, for any neighbourhood B of (ψ0, ν0) in
L1(U)× R there exists (ψ1, ν1) ∈ B such that ψ1 6= ψ0 and G (ψ1, ν1) = 0.

Proof. The proof relies on checking the conditions of the Crandall-Rabinowitz Theorem and
is equivalent to Tamura’s proof [166]. We will need the first few Frechét derivatives of f in
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variations w with zero mean. We have that

Dφf(φ, κ)[w](r) = κf(φ, κ)(r)

∫
U

dr′ V2(r, r′)w(r′)

− κf(φ, κ)(r)

∫
U

ds f(φ, κ)(s)

∫
U

dr′ V2(s, r′)w(r′),

Dκf(φ, κ)(r) = f(φ, κ)(r)

∫
U

dr′ V2(r, r′)φ(r′)

− f(φ, κ)(r)

∫
U

ds f(φ, κ)(s)

∫
U

dr′ V2(s, r′)φ(r′),

DκDφf(φ, κ)[w](r) = f(φ, κ)(r)

∫
U

dr′ V2(r, r′)w(r′)

− f(φ, κ)(r)

∫
U

ds f(φ, κ)(s)

∫
U

dr′ V2(s, r′)w(r′)

+Dφf(φ, κ)[w](r)

∫
U

dr′ V2(r, r′)φ(r′)

−Dφf(φ, κ)[w](r)

∫
U

ds f(φ, κ)(s)

∫
U

dr′ V2(s, r′)φ(r′)

− f(φ, κ)(r)

∫
U

dsDφf(φ, κ)[w](s)

∫
U

dr′ V2(s, r′)φ(r′). (7.8.5)

Firstly we have from Theorem 7.5.1 that there exists ψ0 such that G (ψ0, κ) = 0 for any κ ∈ R
so certainly ψ0 exists such that G (ψ0, ν0) = 0 with ν0 is a eigenvalue of T and so Condition 1
holds. Secondly we have that

DκG (φ, κ)(r)|(ψ0,ν0) = Dκ[φ− f(φ, κ)]|(ψ0,ν0)

= [−κf(φ, κ)(r)

∫
U

dr′ V2(r, r′)φ(r′)

+ κf(φ, κ)(r)

∫
U

ds f(φ, κ)(s)

∫
U

dr′ V2(s, r′)φ(r′)]|(ψ0,ν0)

= 0

where we have used assumption 3 (similarly G (ψ0, κ) = 0 so DκG (φ, κ)(r)|(ψ0,ν0) = 0). Thirdly,
by direct calculation

DφG (φ, κ)(r)|(ψ0,ν0) = I − ν0T .

Also, by Fredholm theory, Im(DφG (ψ0, ν0))⊥ = ker(I − ν0T ∗) and T is normal as seen by
the definition of its adjoint

T ∗w =

∫
U

dr′V2(r, r′)ψ0(r′)w(r′).

Now since T is normal I − T is normal and hence dim ker(I − νT ) = dim ker(I − νT ∗)
and Im(DφG (ψ0, ν0)) is closed and codim(DφG (ψ0, ν0)) = 1 by assumption 4. Fourthly, since
DκDκG (ψ0, ν0) = 0 we have DκDκG (ψ0, ν0) ∈ ImDφG (ψ0, ν0) as there is one eigenvector of
I − ν0T for each ν0.

Finally we must show that DφDκG (ψ0, ν0)[ψ2] 6∈ ImDφG (ψ0, ν0) for some eigenvector ψ2

of I − ν0T . For this it will be sufficient to show that a projection of DφDκG (ψ0, ν0)[ψ2] into
the orthogonal complement of ImDφG (ψ0, ν0) is nonzero. Note that if ψ2 is an eigenvector of
I−ν0T then ψ2/ψ0 ∈ ker(I−ν0T ∗) ⊥ ImDφG (ψ0, ν0). Now, by (7.8.5) DφDκG (ψ0, ν0)[ψ2] =
−ν−1

0 ψ2 and with dµ = drψ0(r) we have∫
U

dµDφDκG (ψ0, ν0)[ψ2](r)ψ2

ψ0
(r) = ν−1

0

∫
U

dr |ψ2(r)|2 > 0.
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Figure 7.4: Stable densities bifurcating from (a). ψ0 = exp{−κ1V1(x)}/Z and (b). ψ0 = N
2L

where 2L is the length of the interval, which solve (7.8.2) for different two-body functions (a).

V2(x, y) = xy and (b). V2(x, y) = − cos
(

2π(x−y)
L

)
. Insets show the shape of perturbation

function.

Therefore DφDκG (ψ0, ν0)[ψ2] 6∈ ImDφG (ψ0, ν0). Thus the theorem is proved.

Remark 7.8.2. Note that ψ0 is, by construction, the background density given by ψ0 =
e−V1(r)∫

U
dre−V1(r) . Theorem 7.8.1 presents sufficient conditions to permit bifurcations from ψ0 with

stationary equations of the form (7.8.1). In particular it will be sufficient that the two-body
potential satisfies the normality condition (condition 3. of Theorem 7.8.1). Then bifurcations
occur at discrete eigenvalues of the nonlocal operator T as defined in (7.8.4). We remark that
these conditions are consistent with Theorem 7.7.3.

7.8.1 Numerical Experiments.

In this section we compute the branches of solutions that may evolve in the DDFT-like ex-
ample considered in Section 7.8 with nonlinear, nonlocal boundary conditions. Given simple
interaction kernels we show that symmetry-breaking systems may be constructed quite easily
given sufficiently high interaction strength. For the numerical examples presented here, % is a
number density and hence

∫
U

dr % = N . We consider numerical solutions to
∂t% = ∇ ·

[
D
(
∇%+ %κ1∇V1 + κ2%∇

∫
U

dr′V2(r, r′)%(r′)
)]

in U,

Ω[%] · n := D
(
∇%+ %κ1∇V1 + κ2%∇

∫
U

dr′V2(r, r′)%(r′)
)
· n = 0 on ∂U,

%(r, 0) = e−κ1V1(r)+κ2
∫
U dr′ V2(r,r′)%(r′,0)

Z at t = 0.

(7.8.6)

The nonlocal terms in (7.8.6), both in the evolution equation and the boundary condition, mean
that numerical implementations require efficient and accurate quadrature. We demonstrate
the power with which the pseudo-spectral collocation scheme 2DChebClass [67] may compute
solutions with such efficiency and accuracy. For a more detailed explanation of pseudospectral
methods for DDFT problems, particularly the efficient computation of convolution integrals,
see [127].

Some numerical experiments were performed by solving (7.8.1) in 1D with the choice V2 = xy
and V1 = x2 on U = [−1/2, 1/2]. Under this choice of confining and two-body potentials the
normality condition (3) of Theorem 7.8.1 holds. Additionally, for |κ2| sufficiently small, the
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unique stationary density is ψ0 = e−κ1V1/Z. Upon increasing κ2 and perturbing with a mean
zero function η(x, θ) the stability of ψ0 breaks and transitions may be observed to non symmetric
equilibria. The asymmetry of the equilibria depends on the sign of η as seen in Figure 7.4.

Figure 7.4 shows long time numerical solutions to the IBVP (7.8.6) subject to a mean zero
perturbation for different interaction strengths κ2, with V2 fixed. In Figure 7.4a, the symmetric
solution ψ0 = exp(−κ1V1)/Z was shown to be unstable as interaction strength κ2 was made
ever negative. In particular by perturbing with a sinusoidal function with positive or negative
sign, the stationary density can be shown to adhere to one boundary, thereby bifurcating from
the previously symmetric solution ψ0. The skewness of the density is controlled by the sign of
the perturbation function η and η ∈ SpanT , hence densities which adhere to the left boundary
may be obtained by changing the sign of η. We predict the stable and symmetric branch to
bifurcate at the critical interaction energy κ2 = −2.4 (to 1 decimal place) which is the negative
inverse of smallest eigenvalue of ψ−1

0 T in U = [−1/2, 1/2]. This is verified in Figure 7.1 and
the transition between a stable symmetric density and a stable nonsymmetric one is observed
in Figure 7.4a for the curves labelled κ2 = −2 and κ2 = −3.

In Figure 7.4b, we see how the uniform density may become unstable. Here ψ0 = N/(2L)
where 2L is the length of the interval. We perturb with eigenvectors of T at increasing interac-
tion strengths. The critical strength was κ2] = 0.4 (to 1 decimal place), the negative inverse of
smallest eigenvalue of ψ−1

0 T . This is verified in Figure 7.1 and the transition between a stable
uniform density and a stable multi-modal one is observed in Figure 7.4b for the curves labelled
κ2 = 0 and κ2 = 0.5.

7.9 Existence & Uniqueness Of Weak Solutions Of The
Density With Full HI

In this section we determine the existence and uniqueness of the weak density %(r, t) solving
(7.2.3) in the sense (7.2.8). To ease notation we suppress A[a] as it may be trivially added (see
Remark 7.4.9). We begin by determining some useful results: first, that %(r, t) is bounded above
in L1(U) for all time by initial data %0 and second, the L1(U) norm of % is unity for all time and
%(r, t) is non-negative. We will strengthen the non-negativity to strict positivity of %(r, t) in
Section 7.9.4. The results in this section are analogous to those in [33], [29] with the difference
that the boundary conditions we consider are no-flux the diffusion tensor is non-constant.

7.9.1 Useful Results.

We identify the expansion of the absolute value function.

Definition 7.9.1. Let ε > 0 and define the convex C2 approximation of | · | by

χε(ψ) =

{
|ψ| for ψ > ε,

− ψ4

8ε3 + 3ψ2

4ε + 3ε
8 for ψ ≤ ε.

We now present our first result concerning the boundedness of the the L1 norm of % in terms
of the initial data %0.

Lemma 7.9.2. If % ∈ C1([0,∞);C2(U)) is a solution of (7.2.3) with %0 ∈ L1(U) then
‖%(t)‖L1(U) ≤ ‖%0‖L1(U) for all time t ≥ 0.

Proof. Multiplying (7.2.3) by χ′ε(%), integrating and using the divergence theorem and chain
rule, we have

d

dt

∫
U

drχε(%) + ‖D1/2∇r% [χ′′ε (%)]1/2‖2L2(U)

= −
∫

dr∇r%χ
′′
ε (%) · [%D(r)∇r(κ1V1(r) + κ2[V2 ? %](r))].
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Now by Hölder’s inequality and then Young’s inequality

d

dt

∫
U

drχε(%) + ‖D1/2∇r% [χ′′ε (%)]1/2‖2L2(U)

≤ ‖D1/2∇r%[χ′′ε (%)]1/2‖L2(U) × ‖[χ′′ε (%)]1/2%D1/2∇r(κ1V1 + κ2[V2 ? %])‖L2(U)

≤ 1
2‖D

1/2∇r%[χ′′ε (%)]1/2‖2L2(U) + 1
2‖[χ

′′
ε (%)]1/2%D1/2∇r(κ1V1 + κ2[V2 ? %])‖2L2(U).

Note there are no boundary terms due to the condition Π[%] · n = 0 on ∂U . All together this
implies the inequality

d

dt

∫
U

drχε(%) + 1
2‖D

1/2∇r%χ
′′
ε (%)1/2‖2L2(U)

≤ 1
2‖[χ

′′
ε (%)]1/2%D1/2∇r(κ1V1 + κ2[V2 ? %])‖2L2(U)

≤ 1
2‖D

1/2∇r(κ1V1 + κ2[V2 ? %])‖2L∞‖[χ′′ε (%)]1/2%‖2L2

≤ c0‖[χ′′ε (%)]1/2%‖2L2(1 + ‖%‖2L1(U))

for the constant c0 = 2µmax max{|κ1|2‖∇rV1‖2L∞ , |κ2|2‖V2‖2L∞}. It is an elementary calculation
to show that

%2χ′′ε (%) = 3%2

2ε −
3%4

2ε3

for % ≤ ε. With this, and the fact that χ′′(%) = 0 for % > ε, we have

‖[χ′′ε (%)]1/2%‖2L2 =

∫
U

dr %2χ′′ε (%)I%≤ε +

∫
U

dr %2χ′′ε (%)I%>ε

=

∫
U

dr
3%2(ε2 − %2)

2ε2
I%≤ε ≤

∫
U

dr
3ε

2
I%≤ε ≤ c1ε (7.9.1)

for some constant c1 dependent on U . Applying Grönwall’s lemma to η(·) a nonnegative,
absolutely continuous function on [0, T ] which satisfies for a.e. t

η′(t) ≤ φ(t)η(t) + ψ(t)

where φ, ψ nonnegative and integrable functions on [0, T ] gives

η(t) ≤ e
∫

dst0 φ(s)η(t)
[
η(0) +

∫ t

0

dsψ(s)
]
. (7.9.2)

Observe that ‖%‖L1(U) ≤
∫
U

drχε(%). Using this with (7.9.1), (7.9.1) and (7.9.2) with
η(t) = φ(t) = c1ε

∫
U

drχε(%) and ψ(t) = c1ε we obtain∫
U

drχε(%) ≤
(∫

U

drχε(%0) + c1ε t

)
ec1ε

∫ t
0

ds
∫
U

drχε(%(r,s)).

Now since % is assumed to be continuous in time on [0,∞) the integral in the exponential is
finite. Therefore taking ε→ 0 one obtains

‖%‖L1 ≤ ‖%0‖L1

for every t > 0.

Corollary 7.9.3. If % ∈ C1([0,∞);C2(U)) is a solution of (7.2.3) with %0 a probability density,
that is %0 ≥ 0 and

∫
U

dr %0(r) = 1, then ‖%(t)‖L1(U) = 1 and %(t) ≥ 0 in U for all time t ≥ 0.

Proof. The argument is a standard one. Since, due to no-flux boundary conditions, one has
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that d
dt

∫
dr ρ(r, t) = 0, we have

1 =

∫
U

dr %0(r) =

∫
U

dr %(r, t) ≤ ‖%(t)‖L1(U) ≤ ‖%(0)‖L1(U) =

∫
U

dr %0(r) = 1,

so ‖%(t)‖L1(U) = 1. Also observe the two equalities

1 =

∫
U

dr %(r, t) =

∫
U

dr %(r, t)I%≥0 +

∫
U

dr %(r, t)I%<0,

1 =

∫
U

dr |%(r, t)| =
∫
U

dr %(r, t)I%≥0 −
∫
U

dr %(r, t)I%<0,

where in the second line we have used the definition of the absolute value function. Subtracting
these equalities we obtain

2

∫
U

dr %(r, t)I%<0 = 0

which implies %(r, t) ≥ 0 almost everywhere in U . Non-negativity of % on all of U follows from
continuity.

With these results we may continue to determine the existence and uniqueness of weak
densities solving (7.2.3) in the sense (7.2.8). The method we use follows [33] but here we must
include calculations for the confining potential V eff

1 (which for ease of notation is written V1 for
each a(r, t)) and a much wider class of two-body potentials V2 which are not necessarily step
functions. To start we introduce (7.9.3), the frozen version of (7.2.3), indexed by n ∈ N, by
substituting % = un everywhere except in the convolution term where we substitute % = un−1.
Each equation is parametrised by n, a linear parabolic PDE for the unknown un in terms of
the solution un−1 at the previous index, for which we have existence and uniqueness of weak
solutions for each n. The remainder of the argument is to show limn→∞ un exists and is a limit
point solving the weak problem (7.2.8). In this section we will make references to Appendix
7.10 for results and definitions required for un ∈ H1(U), which differ slightly from the standard
arguments found in textbooks for classical linear PDE theory (e.g. [52]).

7.9.2 Energy Estimates.

The results of Section 7.10 are that the initial boundary value problem
∂tun −∇r · [D∇run] = ∇r · [unD∇r(κ1V1 + κ2V2 ? un−1)],

Ξ[un] · n = 0 on ∂U × [0, T ],

Ξ[un] := D (∇run + un∇r(κ1V1(r, t) + κ2V2 ? un−1)),

un = %0 on U × {t = 0}

(7.9.3)

is well posed, and there exists weak solutions un for each n ∈ N in the sense (7.10.2). All that
remains is to take the limit n→∞ to recover the original Smoluchowski equation (7.2.3). We
start by deriving our first estimate on energy of un. To ease notation we derive all results with
the time dependence on D suppressed since time may be trivially added to the exposition.
Additionally, for a stationary density one has

lim
t→∞

D(r, t) =

(
1 +

∫
dr′g(r, r′)Z1(r, r′)%(r′)

)−1

which is a positive definite tensor and hence diagonalisable, and may be bounded by its smallest
and largest eigenvalues which are positive and finite for t→∞. Hence energy estimates remain
valid for 0 < t ≤ T when provided in terms of µmin and µmax, both eigenvalues which depend
on time but always remain positive and finite. It will be seen that a natural dual space to
H1(U) is provided by the no-flux condition. In particular we denote by H−1(U) the dual space
of H1(U), this is due to the divergence theorem and the boundary condition Ξ[un] · n = 0 on
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∂U× [0, T ], there is no boundary term, and the normal characterisation of H−1 = (H1
0 )∗ carries

over to H1(U).

We now obtain uniform estimates on un in terms of the initial data %0 in all the required
energy norms. The detailed calculations follow [33] but take into account the confining potential
and non-constant diffusion tensor D. The explicit calculations can be found in Section 7.10.
The first estimate is in L∞([0, T ];L2(U)) and L2([0, T ];H1(U)) norms.

Proposition 7.9.4. Let T > 0 and suppose {un}n≥1 satisfies (7.9.3) with %0 ∈ C∞(U) a
probability density. Then there exists a constant C(T ), dependent on time and µmax, such that

‖un‖L∞([0,T ];L2(U)) + ‖un‖L2([0,T ];H1(U)) ≤ C(T, µmax)‖%0‖L2(U). (7.9.4)

Proof. Multiplying (7.9.3) by un and using the divergence theorem with Ξ[un] · n = 0 on
∂U × [0, T ] one obtains

1
2

d

dt
‖un(t)‖2L2(U) +

∫
dr∇run ·D∇run

≤
∫

dr |∇run · [unD∇r(κ1V1 + κ2 V2 ? un−1)]|.

Now since D is positive definite, we may write∫
dr |∇run · [unD∇r(κ1V1 + κ2 V2 ? un−1])|

=

∫
dr |D1/2∇run · [unD1/2∇r(κ1V1 + κ2 V2 ? un−1)]|

≤ ‖D1/2∇run‖L2(U)‖un[D1/2∇r(κ1V1 + κ2 V2 ? un−1])‖L2(U)

where we have used Hölder’s inequality. Now by Young’s inequality

‖D1/2∇run‖L2(U)‖unD1/2∇r(κ1V1 + κ2V2 ? %n−1)‖L2(U)

≤ 1
2‖D

1/2∇run‖2L2(U) + 1
2‖unD

1/2∇r(κ1V1 + κ2 V2 ? un−1)‖2L2(U)

≤ 1
2‖D

1/2∇run‖2L2(U) + 1
2‖un‖

2
L2(U)‖D

1/2∇r(κ1V1 + κ2 V2 ? un−1)‖2L∞(U).

Using that un−1 ∈ H1(U), ∇V2 ∈ L∞ and Hölder’s inequality, we have∫
dr
∣∣ ∫ dr′∇rV2(r, r′)un−1(r′)

∣∣2 ≤ ∫ dr

∫
dr′ |∇rV2(r, r′)|2

∫
dr′|un−1(r′)|2

= |U‖|un−1‖2L2(U)‖∇rV2‖2L∞(U) <∞.

A similar bound exists for the term multiplying ∇rV1. Therefore (along with boundedness of
D1/2) we have

1
2

d

dt
‖un(t)‖22 + 1

2‖D
1/2∇run(t)‖2L2(U) ≤ C‖un(t)‖2L2(U),

1
2

d

dt
‖un(t)‖22 ≤ C‖un(t)‖2L2(U).

(7.9.5)

Applying Grönwall to the second inequality gives

‖un(t)‖2L2(U) ≤ C(T )‖%0‖2L2(U) (7.9.6)

and integrating the first estimate in (7.9.5) gives∫ T

0

dt ‖D1/2∇run‖2L2(U) ≤ C(T )‖%0‖2L2(U). (7.9.7)
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Finally by positive definiteness of D and by adding together (7.9.6) and (7.9.7) one obtains the
result.

The second estimate is for L∞([0, T ];H1(U)) and L2([0, T ];L2(U)) norms.

Proposition 7.9.5. Let T > 0 and suppose {un}n≥1 satisfies (7.9.3) with %0 ∈ C∞(U) a
probability density. Then there exists some constant dependent on time C(T ) such that

‖un‖L∞([0,T ];H1(U)) + ‖∇r · [D∇run]‖2L2([0,T ];L2(U))

≤ C(T )(‖%0‖2H1(U) + (1 + ‖%0‖L2(U))‖%0‖L2(U))
1/2.

Proof. Multiplying (7.9.3) by −∇r · [D∇run], integrating over U and using the divergence
theorem and the boundary condition Ξ[%] · n = 0 on ∂U × [0, T ] one obtains

1
2

d

dt
‖D1/2∇run(t)‖2L2(U) + ‖∇r · [D∇run(t)]‖2L2(U) (7.9.8)

≤
∫

dr |∇r · [D∇run]∇r · [unD∇r(κ1V1 + κ2V2 ? un−1)]|.

Now by using the product rule and Young’s inequality twice, we have∫
dr |∇r · [D∇run]∇r · [unD∇r(κ1V1 + κ2V2 ? un−1)]|

≤ 1
2‖∇r · [D∇run]‖2L2(U) + ‖∇run ·D (κ1∇rV1 + κ2∇rV2 ? un−1)‖2L2(U)

+ ‖un∇r · (D (κ1∇rV1(r) + κ2∇rV2 ? un−1))‖2L2(U)

From the Sobolev inequality, for any u ∈ H1(U) with 2 < d

‖u‖L∞(U) ≤ C‖u‖H1(U)

for some constant C depending only on d and U . Assuming d ≥ 3 we may bound the terms on
the right hand side by

‖∇run ·D (κ1∇rV1(r) + κ2∇rV2 ? un−1)‖2L2(U)

+ ‖un∇r · (D (κ1∇rV1 + κ2∇rV2 ? un−1))‖2L2(U)

≤ C1‖∇run(t)‖2L2(U) + C2‖un‖2L∞(U)(1 + ‖un−1‖2L2(U)‖∇rV2‖2L∞(U))

≤ C1‖∇run(t)‖2L2(U) + C2‖un‖2H1(U)(1 + ‖un−1‖2L2(U))

≤ C1‖∇run(t)‖2L2(U) + C2‖un‖2H1(U)(1 + ‖%0‖2L2(U))

for some appropriately redefined constants C1, C2. Note that and we have bounded ‖un−1‖2L2(U)

by the initial data %0, for example using (7.9.6) at the n− 1 level.
Now by combining with (7.9.8) we have

1
2

d

dt
‖D1/2∇run(t)‖2L2(U) + 1

2‖∇r · [D∇run]‖2L2(U)

≤ C1‖∇run(t)‖2L2(U) + C2‖un‖2H1(U)(1 + ‖%0‖2L2(U)).

Integrating over t ∈ [0, T ] we obtain

1
2 sup

0≤t≤T
‖D1/2∇run(t)‖2L2(U) + 1

2‖∇r · [D∇run]‖2L2([0,T ];L2(U))

≤ ‖D1/2‖2L∞‖∇run(0)‖2L2(U)

+ C(T )
(
‖un(t)‖2L2([0,T ];H1(U)) + (1 + ‖%0‖2L2(U))‖un‖

2
L2([0,T ];H1(U))

)
where the first term on the right hand side is the constant of integration and the constant C(T )

165



depends on U and T . By applying the estimates of Proposition 7.9.4 we obtain

1
2 sup

0≤t≤T
‖D1/2∇run(t)‖2L2(U) + 1

2‖∇r · [D∇run]‖2L2([0,T ];L2(U))

≤ C(T )(‖%0‖2H1(U) + (1 + ‖%0‖L2(U))‖%0‖L2(U))

and the lemma is proved.

We now have strong convergence of (un)
∞
n=1, by showing it is a Cauchy sequence in a com-

plete metric space.

Lemma 7.9.6 ({un}∞n=1 is a Cauchy sequence). Let T > 0 and suppose {un}n≥1 satisfies (7.9.3)
with %0 ∈ C∞(U). Then there exists % ∈ L1([0, T ];L1(U)) such that un → % in L1([0, T ];L1(U)).

Proof. Let φn := un − un−1 for n ≥ 2 then φn satisfies

∂tφn −∇r · [D∇rφn] = κ1∇r · [φnD∇rV1]

+ κ2∇r · [φnD∇r(V2 ? un−1)] + κ2∇r · [un−1D∇r(V2 ? φn−1)] (7.9.9)

subject to Ξ[φn] ·n = 0 on ∂U × [0, T ]. By multiplying (7.9.9) by χ′ε(φn) and integrating, using
the divergence theorem and the boundary condition for φn one obtains

d

dt

∫
drχε(φn) + ‖ [χ′′ε (φn)]

1/2
D1/2∇rφn‖2L2(U)

≤ κ1

∫
dr |χ′′ε (φn)φn∇rφn ·D∇rV1|

+ κ2

∫
dr |χ′′ε (φn)∇rφn · [φnD∇r(V2 ? un−1)]|

+ κ2

∫
dr |χ′ε(φn)∇r · [un−1D∇r(V2 ? φn−1)]|. (7.9.10)

Now we may bound each of the terms on the right hand side, firstly, using Young’s inequality,

κ1

∫
dr |χ′′ε (φn)φn∇rφn ·D∇rV1|

= κ1

∫
dr |[χ′′ε (φn)]1/2D1/2∇rφn · φn [χ′′ε (φn)]1/2D1/2∇rV1|

≤ 1
2‖ [χ′′ε (φn)]

1/2
D1/2∇rφn‖2L2(U) +

κ2
1

2

∫
dr |φn [χ′′ε (φn)]1/2D1/2∇rV1|2. (7.9.11)

Now note that, by definition of χ, one has the estimate

κ2
1

2

∫
dr |φn [χ′′ε (φn)]1/2D1/2∇rV1|2 ≤ ‖

≤ µmax
κ2

1

2 ‖∇rV1‖2L∞(U)

(∫
drφ2

nχ
′′
ε (φn)I{|φn|>ε} +

∫
drφ2

nχ
′′
ε (φn)I{|φn|≤ε}

)
≤ C3ε

(7.9.12)

where C3 depends U , κ1 and ‖∇rV1‖2L∞(U) .
Secondly, again using Young’s inequality,

κ2

∫
dr |χ′′ε (φn)φn∇rφn ·D∇rV2 ? un−1|

= κ2

∫
dr |[χ′′ε (φn)]1/2D1/2∇rφn · φn [χ′′ε (φn)]1/2D1/2∇rV2 ? un−1|

≤ 1
2‖[χ

′′
ε (φn)]1/2D1/2∇rφn‖2L2(U) +

κ2
2

2

∫
dr |φn [χ′′ε (φn)]1/2D1/2∇rV2 ? un−1|2 (7.9.13)
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where the second term on the final line is O(ε) by similar argument to (7.9.12).

Thirdly

κ2

∫
dr |χ′ε(φn)∇r · [un−1D∇r(V2 ? φn−1)]|

≤ κ2‖χ′ε(φn)‖L∞(U)

∫
dr |∇r · [un−1D∇r(V2 ? φn−1)]|.

By elementary differentiation and the definition of χεwe have that |χ′ε(·)| ≤ C4 for some constant
dependent on U . All that remains is to bound

∫
dr |∇r · [un−1D∇r(V2 ? φn−1)]| in terms of

‖φn−1‖L1(U) and the initial data %0. To do this we expand the gradient inside the integral and
split up the absolute value as follows∫

dr |∇r · [un−1D∇r(V2 ? φn−1)]|

≤
∫

dr |∇run−1 ·D∇rV2 ? φn|+
∫

dr |un−1∇r · (D∇rV2 ? φn)|.

Continuing using Hölder’s inequality and that ‖f‖L2(U) ≤ ‖f‖L∞(U)|U |1/2, we obtain∫
dr |∇run−1 ·D∇rV2 ? φn|+

∫
dr |un−1∇r · (D∇rV2 ? φn)|

≤ ‖D∇rV2 ? φn−1‖L∞(U) × |U |1/2 × ‖∇run−1‖L2(U)

+ ‖∇r · (D∇rV2 ? φn−1)‖L∞(U) × |U |1/2 × ‖un−1‖L2(U).

The primary coefficients may be bounded as follows

‖D∇rV2 ? φn−1‖L∞(U) ≤ µmax‖∇rV2‖L∞(U)‖φn−1‖L1(U),

‖∇r · (D∇rV2 ? φn−1)‖L∞(U)

≤ (‖∇r ·D‖L∞(U)‖∇rV2‖L∞(U) + ‖D : ∇r∇rV2‖L∞(U))‖φn−1‖L1(U)

Since D ∈W 1,∞ and V2 ∈W 2,∞ the right hand side is finite. All in all we may write

κ2

∫
dr |χ′ε(φn)∇r · [un−1D∇r(V2 ? φn−1)]|

≤ 2C5(‖un−1‖L2(U) + ‖∇run−1‖L2(U))‖φn−1‖L1(U)

for a constant

C5 := |U |1/2 max
{
µmax‖∇rV2‖L∞(U), ‖∇r ·D‖L∞(U)‖∇rV2‖L∞(U) + ‖D : ∇r∇rV2‖L∞(U)

}
.

Additionally one has, from the definition of the H1 norm and Young’s inequality,

‖un−1‖L2(U) + ‖∇run−1‖L2(U) ≤
√

2‖un−1‖H1(U)

giving

κ2

∫
dr |χ′ε(φn)∇r · [un−1D∇r(V2 ? φn−1)]| ≤ 2

√
2C5|U‖|un−1‖H1(U)‖φn−1‖L1(U). (7.9.14)

All together from (7.9.10), (7.9.11), (7.9.12), (7.9.13), (7.9.14), Proposition 7.9.5, and by letting
ε→ 0, we obtain

d

dt
‖φn‖L1(U) ≤ α(%0; 2, T )‖φn−1‖L1(U)
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where α(%0; 2, T ) := C6(T )(‖%0‖2H1(U) +(1+‖%0‖L2(U))‖%0‖L2(U))
1/2 for a constant C6 depend-

ing on C5 and U .

By the usual argument we now show the sequence {‖φn(t)‖L1(U)}n≥1 tends to zero in ap-
propriate norm. Define the partial sum

ΦN (t) :=
N∑
n=2

‖φn(t)‖L1(U)

Then applying Corollary 7.9.3 we obtain

d

dt
Φ(t) ≤ α(%0; 2, T )(‖ΦN (t)‖L1(U) + ‖φ1(t)‖L1(U) − ‖φN (t)‖L1(U))

≤ α(%0; 2, T )(‖ΦN (t)‖L1(U) + 4)

Applying Grönwall’s lemma we obtain (noting that ΦN (0) ≡ 0)

ΦN (t) ≤ 4Tα(%0; 2, T )eα(%0;1,T )T .

Thus we have determined a uniform over N bound on the monotone increasing sequence
{ΦN (t)}N≥2 and therefore the limit ΦN (t) ↗ Φ∞(t) must exist pointwise for t ∈ [0, T ]. By
elementary application of the monotone convergence theorem∫ T

0

dtΦN (t)→
∫ T

0

dtΦ∞(t)

so that ΦN (t) → Φ∞(t) in L1([0, T ];L1(U)), thus φn(t) → 0 in L1([0, T ];L1(U)) and there-
fore un is a Cauchy sequence in L1([0, T ];L1(U)) (which is complete) hence there exists u ∈
L1([0, T ];L1(U)) such that un → u strongly.

Lastly we have the uniform estimate on the limit point %(r, t) in terms of the initial data
%0.

Lemma 7.9.7. One has % ∈ L2([0, T ];H1(U)) ∩ L∞([0, T ];L2(U)) and that
∂t% ∈ L2([0, T ];H−1(U)) with the uniform bound

‖%‖L∞([0,T ];L2(U)) + ‖%‖L2([0,T ];H1(U)) + ‖∂t%‖L2([0,T ];H−1(U)) ≤ C(T )‖%0‖L2(U). (7.9.15)

Additionally there exists a subsequence {unk}k≥1 such that

unk ⇀ % in L2([0, T ];H1(U)), (7.9.16)

∂tunk ⇀ ∂t% in L2([0, T ];H−1(U)). (7.9.17)

where ⇀ denotes weak convergence.

Proof. From Proposition 7.9.4 we have the uniform bound

‖un‖L∞([0,T ];L2(U)) + ‖un‖L2([0,T ];H1(U)) ≤ C‖%0‖L2(U).

Now observe that we may rewrite the parabolic equation for un as

∂tun = ∇r · [D∇run + unD∇r(κ1V1 + κ2V2 ? un−1)] .

Now by taking the inner product with v ∈ H1(U), using the divergence theorem and the
boundary condition Ξ[un] · n on ∂U × [0, T ], and Hölder’s inequality∫

dr ∂tun v ≤
{∫

dr |D∇run + unD∇r(κ1V1 + κ2 V2 ? un−1)|2
}1/2

×
{∫

dr|∇rv|2
}1/2

.
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Now taking the supremum over v ∈ H1(U) with ‖v‖H1(U) ≤ 1 we obtain on the left hand side
the definition of the H−1(U) norm (see [52]) and by integrating over [0, T ] we find

sup
v∈H1(U),
‖v‖H1(U)≤1

∣∣∣ ∫ dr ∂tun v(r)
∣∣∣ ≡ ‖∂tun‖2L2([0,T ];H−1(U))

≤
∫ T

0

dt ‖D∇run + unD∇r(κ1V1 + κ2 V2 ? un−1)‖2L2(U).

By Young’s inequality, it follows that

‖∂tun‖2L2([0,T ];H−1(U)) ≤ 2

∫ T

0

dt ‖D∇r(κ1V1 + κ2 V2 ? un−1)‖2L∞(U)‖un(t)‖2L2(U)

+ 2

∫ T

0

dt ‖D∇run‖2L2(U) ≤ C(T )‖%0‖2L2(U) (7.9.18)

for some constant C(T ) and where we have used the bounds (7.9.6), (7.9.7). Together (7.9.4)
and (7.9.18) give

‖un‖L∞([0,T ];L2(U)) + ‖un‖L2([0,T ];H1(U)) + ‖∂tun‖L2([0,T ];H−1(U)) ≤ C(T )‖%0‖L2(U).

and since each term on the left hand side of this inequality is positive for all n each must be
independently finite in the limit n → ∞. Combining this with Eberlein-Smuljan theorem we
may extract a weakly convergent subsequence %nk ⇀ % in the senses (7.9.16), (7.9.17). Thus
the lemma is proved.

The nature of convergence of the sequence {%n}n≥1 as n → ∞ are consolidated into the
following result.

Corollary 7.9.8. There exists a subsequence {unk}k≥1 ⊂ {un}n≥1 and a function
% ∈ L2([0, T ];H1(U)) with ∂t% ∈ L2([0, T ];H−1(U)) such that

un → % in L1([0, T ];L1(U)),

unk ⇀ % (weakly) in L2([0, T ];H1(U)),

∂tunk ⇀ ∂t% (weakly) in L2([0, T ];H−1(U)).

We are now in the position to obtain the existence and uniqueness of weak solutions %(r, t).
First we state a calculus result which will be useful when working with the weak formulation
(7.2.8).

Lemma 7.9.9. Suppose % ∈ L2([0, T ];H1(U)) and ∂t% ∈ L2([0, T ];H−1(U)) then the mapping

t→ ‖%(t)‖2L2(U)

is absolutely continuous with

d

dt
‖%(t)‖2L2(U) = 2〈∂t%(t), %(t)〉

for a.e. t ∈ [0, T ].

Proof. Since the condition Π[%] · n = 0 on ∂U × [0, T ] guarantees integration by parts without
extra terms the proof is identical to the textbook one [52].

We are now in the position to prove existence of the weak solution to (7.2.3).
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7.9.3 Existence And Uniqueness.

By using Propositions 7.9.4, 7.9.5 and Lemmas 7.9.6, 7.9.7, 7.9.9 we may obtain the following
theorem.

Theorem 7.9.10. (Existence and Uniqueness of Weak Density)
Let %0 ∈ C∞(U), % ≥ 0 and

∫
U

dr%0(r) = 1. Then there exists a unique weak solution
% ∈ L∞([0, T ];L2(U))∩L2([0, T ];H1(U)), with ∂t% ∈ L2([0, T ];H−1(U)), to equation (7.2.3) in
the sense (7.2.8) with the estimate (7.9.15).

Proof. Multiply (7.9.3) by η ∈ L2([0, T ];H1(U)) after setting n = nk ∈ N and integrate over
UT to obtain∫ T

0

dt 〈∂tunk , η(t)〉+

∫ T

0

dt

∫
U

dr∇rη ·D [∇runk + unk∇r(κ1V1 + κ2 V2 ? unk−1)] = 0.

For the transport term we write∫ T

0

dt∇rη · unkD∇r[κ1V1 + κ2 V2 ? unk−1]

=

∫ T

0

dt∇rη · (unk − %)D∇r[κ1V1 + κ2 V2 ? unk−1]

+

∫ T

0

dt∇rη · %D∇r[κ1V1 + κ2 V2 ? (unk−1 − %)] +

∫ T

0

dt∇rη · %D∇rκ2 V2 ? %.

Note that unk ⇀ % in L2([0, T ];H1(U)) ⊂ L2([0, T ];L2(U)) and (∇r ·D) · ∇r[κ1V1(r) + κ2 V2 ?
(%nk−1)] is uniformly bounded and so∫ T

0

dt

∫
U

dr∇Tr η (%nk − %)D∇r[κ1V1 + κ2 V2 ? %nk−1]→ 0

as k →∞.
Now by Hölder’s inequality one has∫ T

0

dt∇rη · %D∇rκ2(V2 ? (unk−1 − %)) ≤ µmax‖∇rη‖L2([0,T ];L2(U))‖∇rV2‖L∞(U)

×

(∫ T

0

dt ‖unk−1(t)− %(t)‖2L1(U)

)1/2

→ 0.

Now note that by Lemma 7.9.6, ‖φn‖L1(U) is bounded and therefore∫ T

0

dt‖unk−1(t)− %(t)‖2L1(U) ≤ C
∫ T

0

dt‖unk−1(t)− %(t)‖L1([0,T ];L1(U)) → 0.

Therefore we have∫ T

0

dt∇rη · unkD∇r[κ1V1 + κ2 V2 ? unk−1]→
∫ T

0

dt∇rη · %D∇r[κ1V1 + κ2 V2 ? %]

as k →∞. By the weak convergence results of Lemma 7.9.7 we have∫ T

0

dt 〈∂tunk , unk〉 →
∫ T

0

dt 〈∂t%, %〉,∫ T

0

dt

∫
U

dr∇rη ·D∇runk →
∫ T

0

dt

∫
U

dr∇rη ·D∇r%

as k → ∞. This establishes existence of weak solution to (7.2.2) in the sense (7.2.8). Estab-
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lishing %(0) = %0 is a routine argument (see [52]).

To prove uniqueness we set ξ = %1 − %2 where %1, %2 are weak solutions then we have∫ T

0

dt 〈∂tξ(t), η(t)〉

+

∫ T

0

dt

∫
U

dr∇rη ·D [∇rξ + ξ∇rκ1V1 + κ2%1∇r V2 ? %1 − κ2%1∇r V2 ? %2] = 0

Adding and subtracting
∫ T

0
dt
∫
U

dr′∇rη · κ1%2∇rV2 ? %1 we find∫ T

0

dt 〈∂tξ(t), η(t)〉+

∫ T

0

dt

∫
U

dr∇rη ·D∇rξ

= −
∫ T

0

dt

∫
U

dr∇rη ·D [ξ∇rκ1V1 + κ2ξ∇r V2 ? %1 − κ2%2∇r V2 ? ξ]

≤
∫ T

0

dt

∫
U

dr |∇rη ·D1/2D1/2 [ξ∇rκ1V1 + κ2ξ∇r V2 ? %1 − κ2%2∇r V2 ? ξ]|.

By Young’s inequality we have∫ T

0

dt

∫
U

dr |∇rη ·D1/2D1/2 [ξ∇rκ1V1 + κ2ξ∇r V2 ? %1 − κ2%2∇r V2 ? ξ]|

≤
∫ T

0

dt

∫
U

dr |D1/2∇rη|2

+ 1
4

∫ T

0

dt

∫
U

dr |D1/2[ξ∇rκ1V1 + κ2ξ∇r V2 ? %1 − κ2%2∇r V2 ? ξ]|2.

Using the triangle inequality and Young’s inequality we expand the absolute value inside the
integral

1
4

∫ T

0

dt

∫
U

dr |D1/2[ξ∇rκ1V1 + κ2ξ∇r V2 ? %1 − κ2%2∇r V2 ? ξ]|2

≤ 1
4

∫ T

0

dt

∫
U

dr |D1/2ξ∇rκ1V1|2 + κ2
2|D1/2[ξ∇r V2 ? %1 − %2∇r V2 ? ξ]|2

≤ 1
4

∫ T

0

dt

∫
U

dr
(
|D1/2ξ∇rκ1V1|2 + 2κ2

2|D1/2ξ∇r V2 ? %1|2 + 2κ2
2|D1/2%2∇r V2 ? ξ|2

)
≤ µmax

4

∫ T

0

dt

∫
U

dr |ξ∇rκ1V1|2 + 2κ2
2|ξ∇r V2 ? %1|2 + 2κ2

2|%2∇r V2 ? ξ|2. (7.9.19)

Estimating each of these terms, first∫ T

0

dt

∫
U

dr |ξ∇rκ1V1|2 ≤ κ2
1‖∇rV1‖2L∞(U)‖ξ‖L2([0,T ];L2(U)). (7.9.20)

Second,

2κ2
2

∫ T

0

dt

∫
U

dr |ξ∇r V2 ? %1|2 ≤ 2κ2
2|U‖|∇rV2‖2L∞(U)‖ξ‖L2([0,T ];L2(U)), (7.9.21)

and third

2κ2
2

∫ T

0

dt

∫
U

dr |%2∇r V2 ? ξ|2 ≤ 2κ2
2|U |‖%2‖L∞([0,T ];L2(U))‖∇rV2‖2L∞(U)‖ξ‖L2([0,T ];L2(U)).

Combining (7.9.3), (7.9.19), (7.9.20), (7.9.21), (7.9.3) we obtain, after setting η = ξ, and
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using boundedness of %2 in terms of its initial data∫ T

0

dt 〈∂tξ(t), ξ(t)〉 ≤ (C1(T ) + C2(T )‖%0‖2L2(U))‖ξ‖
2
L2([0,T ];L2(U))

for some constants C1(T ), C2(T ) dependent on U . This holds for all T so it must be the case
that

d

dt
‖ξ(t)‖2L2(U) ≤ (C1(T ) + C2(T )‖%0‖2L2(U))‖ξ(t)‖

2
L2(U)

implying by Grönwall’s lemma that

‖ξ(t)‖L2(U) ≤ (C1(T ) + C2(T )‖%0‖2L2(U))‖ξ(0)‖L2(U)

a.e. t ∈ [0, T ]. However, ξ(0) ≡ 0 hence ‖%1(t)− %2(t)‖2L(U) = 0 for all t ∈ [0, T ].

7.9.4 Strict Positivity Of %.

With the existence of weak solutions we may establish positivity of % solving (7.2.3) with
reference to [17]. In particular since D is positive definite and b is uniformly bounded and

sup
r∈U

%(r, t1) < C inf
r∈U

%(r, t2)

for 0 < t1 < t2 <∞ and C is a constant depending on d (the dimension) and µmax. Since % is
nonnegative for all time we must have infr∈U %(r, t) is positive and hence % is positive.

7.10 Classical Linear Parabolic PDE

The first goal is to derive a similar set of estimates as [33, Lemma 3.5, Lemma 3.7]. The
standard argument is to set up a sequence of linear parabolic PDEs. Let U be a bounded and
open subset of Rd and set UT = U × (0, T ] for some time T > 0. Now consider the linear
parabolic equation

∂tun −∇r · [D∇run] = ∇r · [unD∇r(κ1V1 + κ2V2 ? un−1)]. (7.10.1)

In general d dimensions we are in the divergence form of the parabolic PDE
∂tun + Lun = 0 in UT ,

Ξ[un] · n = 0 on ∂U × [0, T ],

un = %0 on U × {t = 0}

where ∂U is a C1 boundary with unit normal n. We define L to be the linear differential
operator given by

Lun := −
d∑

ij=1

∂rj (Dij(r, t)∂riun) +
d∑
i=1

bi(r)∂riun + c(r)un,

b(r) := −D(r, t)∇r(κ1V1(r) + κ2[V2 ? un−1]),

c(r) := −∇r · (D(r, t)∇r(κ1V1(r) + κ2[V2 ? un−1]),

Ξ[un] := D(r, t) (∇run + un∇r(κ1V1(r, t) + κ2 V2 ? un−1)).

Since D(r, t) is assumed to positive definite, there exists θ for every r, ξ such that ξTD(r, t)ξ ≥
θ|ξ|2, therefore the operator ∂t +L is uniformly parabolic. The Sobolev space of functions that
permit the no-flux condition Ξ[un] · n on ∂U × [0, T ] is H1(U) which is reflexive, so that ∂tu
interpreted as a bounded linear functional can be paired to an element in H1(U), and further
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by the Riez-Representation theorem there exists a unique element from H1(U) for the pairing.
Additionally H1(U) is separable so that the (unique) weak solution may be approximated by a
sequence of smooth functions coming from a countably dense subset.

7.10.1 Weak Formulation.

Equation (7.10.1) may be recast into weak form. We first introduce the bilinear operator,
defined by

B[u, v; t] :=

∫
U

dr∇rv ·D∇ru+

∫
U

dr b(r) · ∇ru v +

∫
U

dr c(r)u v

for u, v ∈ H1(U) and a.e. 0 ≤ t ≤ T . We regard u as a mapping [u(t)](r) := u(r, t) from the
time interval [0, T ] to the function space H1(U). Now fixing v ∈ H1(U) we multiply by v and
integrate by parts to obtain the weak formulation

(∂tu, v) +B[u, v; t] = 0 (7.10.2)

for each 0 ≤ t ≤ T with ( , ) denoting inner product in L2(U).
We introduce the notation

∂tu = g0 +
d∑
j=1

∂rjg
j , g0 := −b(·) · ∇ru− c(·)u, gj :=

d∑
i=1

Dij(r)∂riu. (7.10.3)

Observe that the right hand side of (7.10.3) lies in the dual space H−1(U). The usual character-
isation of H−1 as a dual to H1

0 (see for example [52]) carries over to the present analysis, since
multiplying (7.10.1) by a test function v and using the divergence theorem with the condition
Ξ[u] · n = 0 on ∂U × [0, T ] produces no boundary terms. By definition of the H−1 norm we
have

‖∂tu‖H−1 =
∥∥∥g0 +

d∑
j=1

∂rjg
j
∥∥∥
H−1
≤
[ ∫

U

d∑
j=0

|gj |2
]1/2

=
[ d∑
j=0

‖gj‖2L2(U)

]1/2
≤ ‖g0‖L2(U) +

d∑
j=1

‖gj‖L2(U)

where we have used, on the last line,
∑d
j=0 a

2
j ≤ (

∑d
j=0 aj)

2 for all aj > 0, j = 1, · · · , d. Now

by Cauchy-Schwartz inequality on gj , assumptions on D, and the regularity of the coefficients
b(·) and c(·) we have

‖∂tu‖H−1 ≤ c2‖u‖H1(U)

for some appropriately defined constant c2. Since the left hand side is bounded in terms of u
in the chosen Sobolev space (H1(U)) it is reasonable to seek solutions ∂tu ∈ H−1(U) for a.e.
0 ≤ t ≤ T and we identify the pairing (∂tu, φ) = 〈∂tu, φ〉. We now define what it will mean for
a solution to (7.10.1) to be a weak solution.

Definition 7.10.1 (Weak Solution). We say a function u ∈ L2
(
[0, T ];H1(U)

)
with ∂tu ∈

L2
(
[0, T ];H−1(U)

)
is a weak solution of the initial-boundary value problem (7.10.1) provided

〈u′, v〉+B[u, v; t] = 0 (7.10.4)

for each v ∈ H1(U), a.e. 0 ≤ t ≤ T and u(r, 0) = u0.

7.10.2 Galerkin Approximation

Now in the usual way we build weak solutions by constructing a solution as a finite dimensional
approximation to u before passing to the limit. Assuming Dij(·) is a compact and symmetric
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operator then the eigenfunctions satisfying

−∇r · (D(r)∇rwk) = αkwk

for some αk ∈ R form an orthonormal basis of L2(U) with wk ∈ H1(U). Fixing m we look for
a function um : [0, T ]→ H1(U) of the form

um(t) :=
m∑
k=1

dkm(t)wk

where dkm(0) = (u0, wk) for k = 1, ...,m and

(∂tu
m, wk) +B[um, wk; t] = 0. (7.10.5)

Thus (7.10.5) represents the projection of (7.10.4) onto the finite dimensional subspace spanned
by {wk}mk=1. The standard existence theory of ODEs gives existence of weak solutions in the
sense (7.10.5). In particular by differentiating with respect to t we have (∂tu

m
n , wk) = d

dtd
k
m(t),

and by orthogonality of the wk one obtains

d

dt
dkm(t) +

m∑
l=1

B[wl, wk; t]dlm(t) = 0. (7.10.6)

Assuming the Carathéodory conditions with the Cauchy–Picard theorem there exists a unique
absolutely continuous function dm(t) = [d1

m(t), ..., dmm(t)]> satisfying the ODE (7.10.6) for a.e.
0 ≤ t ≤ T . Thus um(t) solves (7.10.5) uniquely in the same sense.

7.10.3 Energy Estimates

The finite dimensional approximation, or Galerkin method, implies by construction (by writing
um expanded in the basis wk with coefficients dkm)

(∂tu
m, um) +B[um, um; t] = 0 (7.10.7)

for a.e. 0 ≤ t ≤ T . We now require uniform energy estimates on um given by the following
lemma.

Lemma 7.10.2. With the assumptions on Dij(·), b(·) and c(·) there is the uniform energy
estimate

max
0≤t≤T

‖um(t)‖L2(U) + ‖um‖L2([0,T ];H1(U))

+ ‖ ∂
∂t

um‖L2([0,T ];H−1(U)) ≤ c6‖u0‖L2(U) + c.

where c6, c are constants dependent on T and U .

Proof. Using u, v as arbitrary functions for a moment, it is readily seen that

|B[u, v]| ≤ c3
∫
U

dr
[
|∇ru‖∇rv|+ |∇ru‖v|+ |u‖v|

]
≤ c3(‖∇ru‖L2(U) + ‖u‖L2(U))(‖∇rv‖L2(U) + ‖v‖L2(U))

≤ 2c3‖u‖H1(U)‖v‖H1(U).

To see this, first use the Cauchy-Schwarz inequality to bound the inner product terms within
B. Then note that choosing

c3 = max{µmax, ‖b‖L∞(U), ‖c
|L∞(U)}
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allows us to remove the explicit dependence on D, b and c. The second inequality follows by
using Hölder’s inequality on each of the terms and adding a non-negative term. For the last
line we us the generalised Young’s inequality (a + b)(c + d) ≤ 2(a2 + b2)1/2(c2 + d2)1/2 with
a = ‖∇ru‖L2(U), b = ‖u‖L2(U), c = ‖∇rv‖L2(U) and d = ‖v‖L2(U). Secondly, using positive

definiteness of D(·) with µmin‖v‖2L2 ≤ ‖D1/2v‖2L2(U) for every v ∈ L2(U), we have

µmin

∫
U

dr |∇ru|2 ≤
∫
U

dr
d∑

ij=1

Dij(r)∂riu ∂rju

= B[u, u]−
∫
U

dr [b(r) · ∇uu− c(r)|u|2]

≤ B[u, u] + ‖b‖L∞(U)

∫
U

dr |∇ru‖u|+ ‖c‖L∞(U)

∫
U

dr |u|2.

Then by Hölder’s and Young’s inequality with ε = µmin
2 ‖b‖

−1
L∞(U) > 0 we have∫

U

dr |∇ru‖u| ≤ ε
∫
U

dr |∇ru|2 + 1
4ε

∫
U

dr |u|2

so that (7.10.3) becomes

µmin
2

∫
U

dr |∇ru|2 ≤ B[u, u] + c4‖u‖2L2(U) (7.10.8)

for some constant c4.

Now since u ∈ H1(U) and Ξ[u] · n = 0 on ∂U × [0, T ], the mass of the system is conserved
so that

(u)UT = 1
|UT |

∫
dru(r, t) = c

where UT = U × [0, T ] for some c ∈ R independent of time. Therefore by Poincaré’s inequality
and (7.10.8) we have the estimate c5‖u− c‖2L2(U) ≤ B[u, u] + c6‖u‖2L2(U) for some appropriate
constants c5 and c6. Applied to the finite dimensional approximation we have Calculus gives
(∂tu

m, um) = 1
2

d
dt (‖u

m‖2L2(U)) and so with (7.10.7) and (7.10.13) one obtains the differential

inequality (after redefining constants)

d

dt
(‖um‖2L2(U)) + 2c5‖um − c‖2H1(U) ≤ c6‖u

m‖2L2(U) (7.10.9)

implying

d

dt
(‖um‖2L2(U)) ≤ c6‖u

m‖2L2(U).

Now one is in the form to apply Grönwall’s lemma on the nonnegative absolutely continuous
function ‖um(t)‖2L2(U) giving the bound

‖um(t)‖2L2(U) ≤ e
c6t‖um(0)‖2L2(U).

Note that ‖um(0)‖2L2(U) ≤ ‖u0‖2L2(U) by definition of dkm(0). Taking the maximum over 0 ≤ t ≤
T of this inequality we obtain

max
0≤t≤T

‖um(t)‖2L2(U) ≤ e
c6T ‖u(0)‖2L2(U). (7.10.10)

Integrating (7.10.9) from 0 to T and using (7.10.10) one finds (with the triangle inequality)

‖um‖2L2([0,T ];H1(U)) − ‖c‖
2
L2([0,T ];H1(U)) ≤ c7‖u0‖2L2(U)
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where c7 depends on T . Rearranging this inequality we find

‖um‖2L2([0,T ];H1(U)) ≤ c7‖u0‖2L2(U) + c (7.10.11)

for a positive constant c now depending on U and T . This inequality establishes how um, not
necessarily zero on the boundary of U , nor periodic, may be bounded in L2([0, T ];H1(U)).

All that remains is to estimate the time derivative u̇m. Since u̇m is written as a finite linear
combination of basis functions in the subspace spanned by wk, the characterisation as supremum
over 〈 , 〉 may be used. In particular take an arbitrary v ∈ H1(U) such that ‖v‖H1(U) ≤ 1 and
v = v1 + v2 for v1 ∈ span{wk}mk=1 and (v2, wk) = 0 for every k = 1, ...,m. Then trivially
‖v1‖H1(U) ≤ 1 by the way that v was chosen and one has the equation

(∂tu
m, v1) +B[um, v1; t] = 0

by (7.10.7) for a.e. 0 ≤ t ≤ T . Therefore the H−1 inner product gives the relation 〈∂tum, v〉 =
(∂tu

m, v) = (∂tu
m, v1) = −B[um, v1; t] and by the triangle inequality, taking the supremum

over all v (to use the definition of ‖ · ‖H−1 [52]) and using (7.10.3) one obtains

‖∂tum(t)‖H−1 ≤ c7‖um‖H1(U) (7.10.12)

for a redefined constant c7. Using this, and (7.10.11), (7.10.12) becomes

‖∂tum‖L2([0,T ];H−1(U)) ≤ ‖u0‖2L2(U) + c.

for a new constant c depending on U and T . Therefore upon redefining appropriate constants
we obtain the uniform estimate.

∫ T

0

dt

∫
dr ∂t% η +

∫ T

0

dt

∫
dr∇rη ·D(r)∇r%

+κ

∫ T

0

dt

∫
dr∇r(D(r)∇rη) · [%∇r(V1(r) + [V2 ? (%× g)](r))] = 0

7.10.4 Existence.

The method to establish weak solution for the indexed problem is a textbook one. The method
is described as follows. Fix n then the evolution equation (7.10.1) is a uniformly parabolic PDE
for the unknown un = u. One now expands u = um in a linear combination of m eigenvectors
of the operator −∇r · (D(r)∇rwk) for finite dimensional approximation to u. Since Dij(·) is
a compact and symmetric operator then the eigenfunctions wk form an orthonormal basis of
L2(U) with wk ∈ H1(U). Thus um is projected onto the finite dimensional subspace spanned
by {wk}mk=1. The standard existence theory of ODEs (the Carathéodory conditions with the
Cauchy–Picard theorem) gives existence of weak solutions um as expanded in the functions
{wk}mk=1 on a finite dimensional subspace of H1(U). All that remains is to pass to the limit
m → ∞ to realise the result in H1(U). To do this energy estimates are required on um, these
are routine calculations except in the textbooks they are done for simpler boundary condition
choices (homogeneous Dirichlet or periodic) and make use of Poincare’s inequality (holding
only for H1

0 functions). The calculations are similar and for the present boundary condition
choice, however a weaker result is used throughout, namely the Poincaré–Wirtinger inequality,
to obtain

max
0≤t≤T

‖um(t)‖L2(U) + ‖um‖L2([0,T ];H1(U))

+ ‖ ∂
∂t

um‖L2([0,T ];H−1(U)) ≤ c1‖u0‖L2(U) + c2.

where c1, c2 are constants dependent on T and U and µmin, µmax. Note that the left hand side
of (7.10.2) forms a bounded sequence in R and by the Bolzano–Weierstrass theorem there exists
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a convergent subsequence {uml}l≥1 ⊂ {um}m≥1. In particular there exists u such that

uml ⇀ u weakly in L2([0, T ];H1(U)),

∂tu
ml ⇀ u′ weakly in L2([0, T ];H−1(U)).

Note of course that u = un, but we have not yet established existence of weak solution to the
full nonlinear Smoluchowski equation (7.2.3). This result establishes existence of weak solution
for the parabolic equation (7.9.3) for every index n. Now since L2([0, T ];H1(U)) is separable,
and weak solutions currently only exist in a finite dimensional subspace of H1(U), it makes
sense to choose a test function φ ∈ C1([0, T ];H1(U)) ⊂ L2([0, T ];H1(U)). We may therefore
write ∫ T

0

dt 〈∂tum, φN 〉+B[um, φN ; t] = 0

for φN =
∑N
k=1 d

k(t)wk. Making the choice N ≤ m and letting N →∞ one obtains∫ T

0

dt 〈∂tu, φ∞〉+B[u, φ∞; t] = 0

for any function φ∞ ∈ L2([0, T ];H1(U)) since φN are dense in L2([0, T ];H1(U)). Now since
φ∞ is arbitrary we obtain

〈∂tu, φ〉+B[u, φ; t] = 0

for an arbitrary φ ∈ H1(U). Hence the criteria of weak solution is satisfied.

7.10.5 Uniqueness.

To show uniqueness we argue by contradiction that there exists two weak solutions solutions.
By linearity, their difference χ is a weak solution of (7.10.1) with χ0 ≡ 0, for χ0 initial data.
Then as it is a weak solution, we may test χ against itself

〈∂tχ, χ〉+B[χ, χ; t] ≡ 0

giving

1
2

d

dt
(‖χ(t)‖2L2(U)) +B[χ, χ; t] = 0

but B[χ, χ; t] ≥ −c7‖χ(t)‖2L2(U) which may be obtained by the following estimate

c5‖um − c‖2H1(U) ≤ B[um, um] + c6‖um‖2L2(U). (7.10.13)

and hence by Grönwall
‖χ(t)‖2L2(U) ≤ c7(t)‖χ0‖2L2(U) = 0

and χ = 0 for a.e. r ∈ U for every 0 ≤ t ≤ T . We have established the existence and uniqueness
of the weak solution to the linear parabolic equation (7.10.1) and may apply this to an iteration
problem on (7.2.3).
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Chapter 8

Conclusion

8.1 Dynamic Density Functional Theory

We have derived, from first principles, a general DDFT (2.6.1),(2.6.2) for systems of colloidal
particles including inertial effects, inter-particle HI and externally driven solvents. This deriva-
tion required the usual assumptions, firstly that the adiabatic approximation that the higher
order densities are equal to those of an steady system with the same one-body distribution,
and we thus employ a newly derived sum rule for the steady flow, holding exactly at steady
state. The second assumption that was made, was that the contributions from the part of
the one-body distribution which are not captured by the local-steady approximation are ne-
glected. Thirdly that the n–body distributions governing the HI terms are well approximated
by functionals of % and v, by assuming the existence of the correlation function g(r1, r2, [%]).

We have also shown our equations agree to previously considered DDFTs in various heuristic
limits (see Section 2.7). For example, in the overdamped limit we recover the DDFTs [21], [145],
[144]. We have also derived a novel Bernoulli principle for steadily driven systems.

There are many promising numerical applications for the theory formulated here, including
the HI derived in Chapters 3, 4 in confining geometries, for which we have presented some
preliminary experiments in Chapter 6. Such extensions would allow the study of many systems
of physical interest including microfluidics such as in drug delivery models of nanoparticles
in the circulatory system as well as comparison to direct numerical simulation techniques of
rheological phenomena.

8.2 Microhydrodynamics

The formula obtained in spherical bipolar coordinates is uniformly accurate for all separations,
up to the particle contact point where the governing equations break down. In Figure 3.4a, the
GMS, Kim & Karrila and Jeffrey & Onishi curves differ substantially at surface separations
equal to roughly 1 sphere radius; we therefore claim the spherical bipolar formalism would
be particularly useful for simulations of colloidal flow with HI in the moderately-dense volume
fraction regime. Additionally we expect our method to perform better for different particle radii
as evidenced by Figure 3.4b, so the contributions of the present work go well into polydisperse
particle systems.

We therefore expect that the derived formulae can be implemented in all numerical methods
that incorporate the existing lubrication models and improve the simulation accuracy. We dis-
cuss, as examples, the potential application to and impact on a few different types of numerical
methods.

For methods solving particle dynamics using Newtonian equations, e.g., the discrete element
method (DEM), the new formulae can be used to directly compute the hydrodynamic forces.
Instead of using the existing formulae (Fz,l) with an arbitrary outer cut off [124], implementing
either the exact F 1

z or the asymptotic F ez formulae could better capture the hydrodynamic
interaction between 10−1r1 and 100r1, as seen in Figure 3.2a. This is expected to improve
suspension viscosity predictions, compared to using Fz, which underestimates the viscosity
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especially at moderate concentrations [124]. Note however that by using F ∗z for DEM, one
requires accurate knowledge of the position of a hard cutoff of the asymptotic expressions for
the force, if such a cutoff exists at all.

Computational formalisms which use the closed asymptotic formula Fz in-line can be triv-
ially updated with the new asymptotic formulae F ez , meaning the applications of the presented
results may also extend more generally to, e.g., lattice Boltzmann method Nguyen and Ladd
[125] and Stokesian dynamics (SD) Brady and Bossis [22]. SD takes into account singular
lubrication interactions by making use of the explicit formulae Fz between pairs of close parti-
cles without considering the lubrication many-body effects, thus forgoing the large number of
degrees of freedom required to resolve the lubrication flow of the interstitial fluid between parti-
cles. The missing many-body effects are considered in a more recent work [104] by decomposing
the velocity field into a singular flow containing the short-range lubrication interactions and a
remainder field which is regular and dealt with using a chosen fluid solver. Such methods may
seek to use the present stream function ψ for the decomposition. Meanwhile new approaches
[170] have been proposed to overcome unphysical results in pairwise lubrication models due the
lost screening effects provided by neglected long-range HI. The present work can determine the
deficit in lubrication beyond the critical interaction radius used in these methods.

Lastly, for continuum approaches such as dynamical density functional theory [61], the
inclusion of long range HI has been shown to produce qualitatively different colloidal fluid flows
compared to systems without HI. So far the physical phenomena included in the governing
fluid equations has extended to: inertial colloids with long range HI (including models of R−1)
[62] and without HI [7], systems of multiple-species [65] and particles with angular dependence
[45]. Thus we expect natural numerical implementations of the present formulae to include
lubrication interactions in the DDFT modelling formalism. In particular, for DDFT, since
the terms corresponding to HI take the form of convolution integrals it is desirable to have
explicit continuous integrands (and decay estimates) for the hydrodynamic interaction valid at
all separations in order to ensure the convergence of these terms, which is what the current
formalism provides.

Finally we remark that the rate of convergence of the force asymptoting to unity at infinity
will depend on r2/r1, as seen in Figure 3.2b, and therefore we anticipate the novel study of bulk
flow properties using the F 1

z , F 2
z in the modelling of suspensions involving multiple species.

In this paper we have presented a new formula for the hydrodynamic force exerted on two
converging spheres in viscous fluid in a functional form, as well as asymptotic formulae as
the spheres are close, showing good agreement with the exact value even at centre to centre
distances of d = O(σ0). By construction, the derivation of this functional form provides the
way for consideration of alternative boundary conditions. For the asymptotic results, the small
argument limit newly derived shows better agreement with the exact solution compared to
that from existing lubrication theory. The sphere plane limit may also be recovered more
accurately. Additionally, in Chapter 5, we have provided an analysis of the spectral properties
of R, demonstrating numerically that the scalar resistance functions as determined by spherical
bipolar coordinates GMS preserves positivity in simple regular sphere systems, with N = 2, 3
and larger sphere numbers. Positivity is destroyed when using the perturbative functions of
Kim & Karrila without an arbitrary cut-off, meanwhile cut-offs may drastically underestimate
the lubrication effect, as demonstrated by a numerical application in DDFT. It would be an
interesting topic of future work to investigate the generality of this positive definiteness.

Furthermore we have shown that the scalar resistance functions obtained by Jeffrey & Onishi,
while preserving positivity in the examined systems, are inaccurate compared to GMS in
inner regimes of flow (close particle surfaces) principally because they are based on multipole
expansions which, intrinsic to the method, requires arbitrarily many terms as h→ 0, which for
each h > 0, become more computationally expensive to obtain. This property is an important
consideration for dense particle systems. It would be an interesting topic of future work to
investigate the generality of the positive definiteness obtained in this paper.

There are many promising extensions which may naturally be made to the theory presented
here such as: alternative boundary conditions to model slippery particles and the shearing mo-
tion of two spheres converging perpendicular to their line of centres akin to Goldman et al. [70].
The former is generally important in liquid spreading problems [36], in particular, molecular
dynamics simulations of Newtonian liquids have shown that there exists a nonlinear relationship
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between the amount of slip and the local shear rate of fluid at a solid surface[168].

8.3 Global Well Posedness & Equilibrium Behaviour

In this thesis, the global asymptotic stability and well-posedness of overdamped DDFT with
two-body HI was studied. It was shown that bifurcations occur in DDFT systems with no-flux
boundary conditions at an infinite and discrete set of critical energies equal to eigenvalues of the
two-body interaction integral operator R. Additionally we have shown that a weak solution to
the density with no-flux boundary conditions and strong solution to the flux equation exist and
are unique under sensible assumptions on the confining and interaction potentials and initial
data V1, V2 and %(r, 0) respectively. Assuming a classical solution to the DDFT we also derived
a priori convergence estimates in L2 and relative entropy.

Well-posedness and global asymptotic stability of the phase space equation for the time
evolution of f(r,p, t) remains open (see [63, Proposition 2.1] for the evolution equation for
f(r,p, t)). It is of similar form to the Vlasov equation considered by [41] but with Hermite
dissipative term and modified nonlocal term in the momentum variable p dependent on the HI
tensors. To progress further some maximum principles on f solving the linearised version of
the phase space equation must be found. Additionally, the existence results on the overdamped
equations considered here may be made more regular by routine arguments.

We also note that the present analysis is based on the Smoluchowski equation rigorously de-
rived from the phase space Fokker-Planck equation using homogenisation methods [63]. As an
alternative to this, assuming inertia is small altogether, or if one is interested only in very short
times to begin with, the system of interacting particles maybe considered solely in configuration
space. Only the positions (and not the momenta) of a system of interacting Brownian parti-
cles are then taken into account with Smoluchowski equation as in [146], and, the underlying
Langevin dynamics contain only velocity equations for each particle which are usually written
down a posteriori. The justification for this is that the momentum distribution is assumed
to have a minor role in the dynamical description of the fluid density, and indeed is taken to
be irrelevant at the microscopic level. This Brownian approximation may also hold for highly
dense suspensions, since in dense Newtonian systems there is a fast transfer of momentum and
kinetic energy from the particle collisions, and this effect may be accounted for most efficiently
by the bath in the Brownian dynamics with a non constant diffusion tensor.

It is known however that the one-body Smoluchowski equation in [146] does not equate to
equations (7.1.2)-(7.1.3b) which are obtained in the rigorous overdamped limit starting from the
Newtonian dynamics. Intuitively this is because the two-body assumption for the HI (Γ) and
mobility (D) tensors and the matrix inversion D = Γ−1 are not commutable operations; even
if D is two body then det(D) is not. A flow chart demonstrating the permitted commutations
between various formalisms is included in [63]. The nonequivalence of the two Smoluchowski
equations is not considered here, and therefore a natural extension for future work would be to
determine the existence, uniqueness and regularity of of the density starting from [146] as well
as the corresponding conditions for linear stability.

Finally we remark that a bifurcation analysis of DDFT equations of the form (7.1.10) to
include a hard-sphere contribution to the free energy by fundamental measure theory (FMT)
e.g. Rosenfeld [148] or Roth [151] would be very interesting.
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Appendix A

Asymptotic Theory For Normal
Interaction

A.1 Small & Large Argument Approximations

We divide this section into two cases: nondimensional separation going to zero and to infinity.
First we identify a small parameter.

A.1.1 Small Parameter

Taking care that η2 < 0, we have by the geometric properties of the bipolar coordinate system

r1 sinh η1 + r2 sinh η2 = 0, d = r1 cosh η1 + r2 cosh η2, (A.1.1)

where d is the centre to centre distance of the spheres. The equations (A.1.1) constitute a
coupled pair of transcendental equations in η1, η2. The determinant of the Jacobian associated
to the system (A.1.1) is always positive because sinh(η1 − η2) > 0 and, given d, r1, and r2, it
may be solved using a Newton iteration scheme. In the case r1 = r2 we may find η1 (and η2)
explicitly. As d approaches r1 + r2 one obtains

r1η1 + r2η2 ∼ 0, d ∼ r1(1 +
η2

1

2 ) + r2(1 +
η2

2

2 ).

Noting that r1 + h + r2 = d, the system may be solved with ε =
η2

1

2
β+1
β where ε = h/r1 and

β = r2/r1. Thus we see, with an abuse of notation, by setting a = r1 and b = r2 that the
gap distance may be written in terms of the average of the radii: aε = η2

1(a + b)/2. This
illuminates the relationship between the present small parameter η1 and the lubrication theory
small parameter ε [90].

A.1.2 Small Argument Behaviour

We would like to examine the singular behaviour as spheres of unequal radii become arbitrarily
close and we approach this limit from first principles. Firstly it will be seen that the limit
−η2 ↘ 0 ↙ η1 may not be commuted with the infinite series in (3.7.5),(3.7.6) because a
divergent series is obtained. The infinite series does not possess sufficient dominated convergence
in the small η1 limit despite for physical reasons the limit being well posed (at least from the
right η1 ↘ 0). The singular limit of the infinite series is treated as a perturbation problem of
Van Dyke type, whereby two series overlap in a shared regime of validity. We consider sphere
1 (a similar method may be applied to sphere 2) and nondimensionalise F 1

z in (3.7.5) by the
Stokes unit [6πµUr1]. Let N be a large positive integer, then we write

Fz = Fs + Fr
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with

Fs := sinh η1

3
√

2

N∑
n=1

(2n+ 1)(an + bn + cn + dn),

Fr := sinh η1

3
√

2

∞∑
n=N+1

(2n+ 1)(an + bn + cn + dn).

(A.1.2)

With this decomposition the difficulties arising in the limit η1 → 0 of Fz may be circumvented
with proper control of the asymptotic parameter η1, a summation index n and the introduction
of an intermediate variable in a shared regime of validity for Fs and Fr. For the remaining
calculations we set α = η1 which is small, and η2 = −β−1α. We proceed to the rigorous limit
α→ 0 by proving the following two lemmas.

Lemma A.1.1. The singular part Fs may be written in the form

Fs = 4β3

(1+β2)α
−2 + a(β) logN +O(α−2N−2) +O(α0)

for a known function a(β).

Proof. Starting with Fs we expand for small α using expressions

coshx = 1 + x2

2 + x4

24 +O(x6),

sinhx = x+ x3

6 + x5

120 +O(x7)

obtaining

Fs = α−2f1 + f2 + αf3 +O(α2) (A.1.3)

where

f1 =
128β3

(1 + β)3

N∑
n=1

n(n+ 1)

(2n− 1)2(2n+ 1)(2n+ 3)2
,

f2 =
32β

15(1 + β)3

N∑
n=1

n(n+ 1)(15 + 12n+ 12n2)

(2n− 1)2(2n+ 1)(2n+ 3)2
+

32β2

15(1 + β)3

N∑
n=1

n(n+ 1)(−15 + 84n+ 84n2)

(2n− 1)2(2n+ 1)(2n+ 3)2

+
32β3

15(1 + β)3

N∑
n=1

n(n+ 1)(25 + 12n+ 12n2)

(2n− 1)2(2n+ 1)(2n+ 3)2
,

and

f3 = −8(1 + 3β)

3(1 + β)3

N∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)
.

Consider f1. We may explicitly sum f1 by expressing its summand in partial fractions and
telescoping resulting expression. In particular we have

N∑
n=1

n(n+ 1)

(2n− 1)2(2n+ 1)(2n+ 3)2

=

N∑
n=1

1
64

[
1

(2n−1)(2n+1) −
1

(2n+1)(2n+3)

]
+ 3

128

[
1

(2n−1)2 − 1
(2n+3)3

]
= 1

64

[
1
3 −

1
(2N+1)(2N+3)

]
+ 3

128

[
10
9 −

1
(2N+1)2 − 1

(2N+3)2

]
.
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Therefore we have

f1 =
[
4− 2

(2N+1)(2N+3) − 3
[

1
(2N+1)2 + 1

(2N+3)2

]]
β3

(1+β)3

and f1 = 4β3

(1+β)3 − 2 β3

(1+β)3N
−2 as N → ∞. Now consider f2. Notice that f2 may be rewritten

into the form

f2 =
32β

15(1 + β)3

N∑
n=1

n(n+ 1)(3(2n− 1)(2n+ 3) + 24)

(2n− 1)2(2n+ 1)(2n+ 3)2

+
32β2

15(1 + β)3

N∑
n=1

n(n+ 1)(21(2n− 1)(2n+ 3) + 48)

(2n− 1)2(2n+ 1)(2n+ 3)2

+
32β3

15(1 + β)3

N∑
n=1

n(n+ 1)(3(2n− 1)(2n+ 3) + 34)

(2n− 1)2(2n+ 1)(2n+ 3)2
.

or further than this

f2 =
3 · 32β

15(1 + β)3

N∑
n=1

n(n+ 1)((2n− 1)(2n+ 3) + 8)

(2n− 1)2(2n+ 1)(2n+ 3)2

+
21 · 32β2

15(1 + β)3

N∑
n=1

n(n+ 1)((2n− 1)(2n+ 3) + 8− 120
21 )

(2n− 1)2(2n+ 1)(2n+ 3)2

+
3 · 32β3

15(1 + β)3

N∑
n=1

n(n+ 1)((2n− 1)(2n+ 3) + 8 + 10
3 )

(2n− 1)2(2n+ 1)(2n+ 3)2
. (A.1.4)

By use of the identity

n(n+ 1) [(2n− 1)(2n+ 3) + 8]

(2n− 1)2(2n+ 1)(2n+ 3)2

=
3

32(2n− 1)
+

1

16(2n+ 1)
+

3

32(2n+ 3)
+

8n(n+ 1)

(2n− 1)2(2n+ 1)(2n+ 3)2
(A.1.5)

we may sum (A.1.4) explicitly. Notice that the last term on the right hand side of (A.1.5) is
repeated from contributions to f1. Notice too that

N∑
n=1

1

2n+ 1
=

N∑
n=1

1

2n− 1
− 1 +

1

2N + 1
,

N∑
n=1

1

2n+ 3
=

N∑
n=1

1

2n− 1
− 4

3
+

1

2N + 1
+

1

2N + 3
.

Thus all contributions to f2 may be written in terms of
∑N
n=1(2n − 1)−1 and f1, the former

of which may be dealt with by asymptotics of partial summation expressions of the natural
logarithm.

Summing the identity (A.1.5) from n = 1 to n = N one obtains, by f1

N∑
n=1

n(n+ 1) [(2n− 1)(2n+ 3) + 8]

(2n− 1)2(2n+ 1)(2n+ 3)2

=
1

4

N∑
n=1

1

2n− 1
− 3

16
+

5

32(2N + 1)
+

3

32(2N + 3)
+ 8

N∑
n=1

n(n+ 1)

(2n− 1)2(2n+ 1)(2n+ 3)2
.
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So that f2 may be summed by use of f1

f2 = 32
15(1+β)3

[
3β + 21β2 + 3β3

] [1

4

N∑
n=1

1
2n−1 + 1

16 +O(N−1)

]
+ 1

15(1+β)3

[
−120β2 + 10β3 +O(N−2)

]
Now from asymptotic expansions for large argument of the polygamma function, for example
[43]

N∑
n=1

1

2n− 1
∼ 1

2 (γ + logN) + log 2 +
1

48N2
+O(N−4)

as N →∞ where γ is the Euler-Masheroni constant. Thus we have

f2 = 4
5(1+β)3

[
β + 7β2 + β3

] [
γ + logN + 2 log 2 +

1

2

]
+ 1

15(1+β)3

[
−120β2 + 10β3

]
+O(N−1)

as N →∞.

Now consider f3. By the identity

n(n+ 1)

(2n− 1)(2n+ 3)
=

1

4
+

3

16

[
1

2n− 1
− 1

2n+ 3

]
summing between n = 1 and N and telescoping we obtain

f3 = − 8β2(β+3)
3(1+β)3

[
N
4 + 1

16 +O(N−1)
]

as N →∞. Now returning to (A.1.3) we have

Fs ∼ 4β3

(1+β)3α
−2 + a(β) logN + b(β) [γ + log 2 + c(β)]

+O(αN) +O(N−1) +O(α−2N−2) +O(α)

for some rational functions of β a(·), b(·), c(·). For the singular part then all that remains is to
order the error estimates. Returning to the decomposition (A.1.2) we observe that N is large
and chosen such that in the shared regime of validity N = O(α−1) for the singular part and
N = O(α0) for the regular part, reminiscent of typical matching problems found in [78]. Since
the former estimate holds for all n ≤ N we must have N → ∞ as α → 0. We stress here that
the integer N is arbitrary and must not appear in the final expression of F , but it is permissible
that Fs and Fr may depend on N individually. Typical of matched asymptotic problems the
index N is implicitly a function of α the natural choice being N = δα−(1−θ) for some 0 < θ < 1
and both δ, θ are independent of α, so certainly N may lie in the overlap regime and N →∞
as α→ 0.

With N in terms of α in this way we have

N−1 = O(α1−θ) = o(1)

since 0 < θ < 1. One also has

αN = O(αθ) = o(1).

Finally note that O(α) is higher than o(1) with respect to α and may be neglected. Thus

Fs ∼ 4β3

(1+β)3α
−2 + 4β(1+7β+β2)

5(1+β)3

[
logN + γ + 2 log 2 + 1

2

]
+ −120β2+10β3

15(1+β)3 − 2β3

(1+β)3 (αN)−2 + o(1)

and the lemma is proved.

Lemma A.1.2. The regular part Fr can be transformed into the Riemann sum and explicitly
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integrated to obtain the form

Fr ∼ C + d(β) logX +O(X−2) +O(αX−3) +O(αX−1) +O(α)

where C is a constant depending on β, d is a rational function of β and X = Nα is a fixed
intermediate variable as α→ 0.

Proof. Now consider Fr. Here the summation index is getting larger while α is going to zero so
it is natural to introduce the intermediate variable x = nα where α → 0 with x fixed making
n→∞. With this Fr takes the form

Fr = 2
√

2 sinhα
6π µU r1

∞∑
x=nα
n=N+1

(2n+ 1)(an + bn + cn + dn).

and expanding the summand for x fixed and α small one obtains

Fr = 2
3 (1 +O(α))

∞∑
x=nα
n=N+1

α f(x)
g(x)

where

f(x) := −β2 + β2
(
2x2 + 2x+ 1

)
e

2(β+2)x
β − e

2x
β
(
β2 + 2x2 − 2βx

)
+e

2(β+1)x
β

(
β2 + 4(β + 1)x3 + 2(β + 1)2x2 + 2β(β + 1)x

)
and

g(x) := β2 − 2e
2(β+1)x

β
(
β2 + 2(β + 1)2x2

)
+ β2e

4(β+1)x
β .

Note that the summand is implicitly indexed by n through the variable x. Note also that
α = (n+ 1)α− nα = xn+1 − xn =: ∆x. Thus

Fr = 2
3 (1 +O(α))

∞∑
x=X

f(x)
g(x) ∆x (A.1.6)

where X is the intermediate variable defined such that N is the positive integer first less than
X/α, thus α→ 0 implies X → 0. Referring to Euler-Maclaurin [95] one has

∞∑
x=X

f(x)
g(x) ∆x =

∫ ∞
X

f(x)
g(x) dx+ α

2

[
f(∞)
g(∞) + f(X)

g(X)

]
+ α

∞∑
k=1

B2k

2k!

[(
f
g

)(2k−1)

(∞)−
(
f
g

)(2k−1)

(X)

]
where Bm is the mth Bernoulli number. It is now of importance to know the behaviour of the
the function l(x) := f

g (x) at x = 0 and x = ∞. It is not hard to see that l(x) → 0 as x → ∞
due to the presence of the fourth exponential power exp(4x) in g(x). Now as x→ 0 one has

l(X) = 6β3

(1+β)3X3 + 6β(1+7β+β2)
5(1+β)3X − 3β2+β3

(1+β)3 +O(X).

Therefore limiting the summation (A.1.6) to the integral via Euler-Maclaurin one has

∞∑
x=X

f(x)
g(x) ∆x ∼

∫ ∞
X

l(x) dx+ α 6β3

(1+β)3X3 + α 6β(1+7β+β2)
5(1+β)3X − α 3β2+β3

(1+β)3 +O(αX) (A.1.7)

where we have deemed the boundary term at infinity and terms of high order derivatives of l(x)
at infinity negligible, the latter which may be justified by the persistence of the term exp(4kx)
in the denominator at the kth derivative of l(x). Additional terms in the regular expansion Fr
may be obtained by considering the terms l(k)(X). Since X → 0 as α → 0 it is natural to
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decompose the integrand in (A.1.7) its small arguments. In particular the equation∫ ∞
X

l(x) dx =

∫ ∞
1

k(x) dx+

∫ 1

X

j(x) dx+

∫ 1

X

6β(1+7β+β2)
5(1+β)3x dx+

∫ ∞
X

6β3

(1+β)3x3 dx (A.1.8)

is exact where j(x) := l(x) − 6β3

(1+β)3x3 − 6β(1+7β+β2)
5(1+β)3x and k(x) := l(x) − 6β3

(1+β)3x3 . The latter

integrals in (A.1.8) are evaluated as∫ 1

X

6β(1+7β+β2)
5(1+β)3x dx =− 6β(1+7β+β2)

5(1+β)3 logX,∫ ∞
X

6β3

(1+β)3x3 dx = 3β3

(1+β)3X
−2.

The former integrals are dealt with thus. Note that∫ 1

X

j(x) dx =

∫ 1

0

j(x) dx−
∫ X

0

j(x) dx

and that j(x) = O(x) as x→ 0 so that
∫X

0
j(x) dx = O(X) as α→ 0. Thus upon defining the

constants (depending on β)

C1 =

∫ ∞
1

k(x) dx,

C2 =

∫ 1

0

j(x) dx

all the expanded leading terms of Fr have been integrated. It is elementary to show that both
C1 and C2 are finite. For C1, the contribution proportional to x−3 converges on [1,∞] and l(x)
decays exponentially as x→∞. Consider C2, we have the power series expansion as x→ 0

j(x) = − 3β2(3+β)
(1+β)3 + 4(8−19β+8β2)x

175β(1+β) +O(x).

Therefore j(x) is a continuous function at zero, moreover continuous a closed interval and there
must exist a finite bound M > |j(x)| so that C1 < M . Therefore taking all the contributions
together and with X = Nα fixed

Fr ∼ 2
3 (C1 + C2)− 4β(1+7β+β2)

5(1+β)3 logX + 2β3

(1+β)3X
−2 +O(αX−3) +O(αX−1) +O(α)

as α→ 0.

With these two Lemmas in hand we may formulate the following theorem.

Theorem A.1.3. As α→ 0 from above the force on sphere 1 is given by

F ∗z = 4β3

(1+β)3α
−2 + 4β(1+7β+β2)

5(1+β)3 logα−1 +K1 + o(1) (A.1.9)

where K1 = 4β(1+7β+β2)
5(1+β)3

(
γ + 2 log 2 + 1

2

)
+ 2

3 (C1 + C2) + −120β2+10β3

15(1+β)3 .

Proof. By combining the results of Lemmas A.1.1 and A.1.2 one sees that by writing logN =
logX − logα the logX terms cancel. Similarly with X = Nα the O(N−2α−2) terms cancel
leaving the final expression for F ∗z as α→ 0 independent of X as it should be.

Corollary A.1.4. In Eulcidean units the force on sphere 1 reads

F ez = 2β2

(1+β)2 ε
−1 + 2β(1+7β+β2)

5(1+β)3 log ε−1 +K2 + o(1) (A.1.10)

where where K2 = 4β(1+7β+β2)
5(1+β)3 (γ + 1

2 + 2 log 2 + 1
2 log 2β

1+β ) + 2
3 (C1 + C2) + (10β2−120β)

15(1+β)3 .
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A.1.3 Large Argument Behaviour

We note that for large separations it is sufficient to consider the symmetric case η1 = −η2, since
by the inner analysis the force quickly decays for surface separations ε not small. To this end
we consider the asymptotic behaviour of the series

F 1
z (η1,−η1)

6πµUr1
=

√
2 sinh η1

6

∞∑
n=1

(2n+ 1)(bn + cn)

as η1 → ∞ since η1 is a proxy for sphere distance. The following lemma shows that when the
spheres are sufficiently separated they experience isolated drag.

Theorem A.1.5. In the large separation regime Stokes’ law is recovered, that is

lim
η1→∞

F 1
z

6πµUr1
= 1.

Proof. Expanding F in an infinite series of exponential functions we have

F 1
z (η1,−η1)

6πµUr1
=

sinh η1

3

∞∑
n=1

n(n+ 1)

(2n+ 3)(2n− 1)

Cn(η1)

Dn(η1)

where

Cn(η1) = 8eη1 − 2(2n− 1)(2n+ 3)e2η1(n+1) + (2n+ 1)(2n− 1)e2η1n

+ (2n+ 3)(2n+ 1)e2η1(2+n),

Dn(η1) = 2
(
eη1 − eη1(4n+3)

)
+ (2n+ 1)

(
e2η1(n+1) − e2η1n

)
.

We observe that the limit of the summand as η1 →∞ exists for each n and the resulting series
can be dominated by a second convergent series, thus the limit and the sum may be commuted

sinh η1

3

∞∑
n=1

n(n+ 1)

(2n+ 3)(2n− 1)

Cn(η1)

Dn(η1)
∼ 1

6

∞∑
n=1

n(n+ 1)(2n+ 1)

2n− 1
e−2η1(n−1). (A.1.11)

Expanding the summation in (A.1.11) we have

e−2η1F 1
z (η1,−η1)

6πµUr1
∼
∞∑
n=1

n3e−2η1n

3(2n− 1)
+

∞∑
n=1

n2e−2η1n

2(2n− 1)
+

∞∑
n=1

ne−2η1n

6(2n− 1)
.

We may bound this series in terms of known geometric and logarithmic summations as follows

∞∑
n=1

ne−2η1n

3
+
∞∑
n=1

e−2η1n

2
+
∞∑
n=1

e−2η1n

6n

≤ e−2η1F 1
z (η1,−η1)

6πµUr1
<

∞∑
n=1

n2e−2η1n

3
+

∞∑
n=1

ne−2η1n

2
+

∞∑
n=1

e−2η1n

6
.

Summing these lower and upper bounds we find

e4η1

3(e2η1 − 1)2
+

e2η1

2(e2η1 − 1)
− e2η1 log

(
e−2η1(e2η1 − 1)

)1/6
≤ F 1

z (η1,−η1)

6πµUr1
<
e4η1

(
1 + e2η1

)
3(e2η1 − 1)3

+
e4η1

2(e2η1 − 1)2
+

e2η1

6(e2η1 − 1)

and upon taking the limit η1 →∞ with the sandwich theorem we yield the required result.
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A.2 Reduction To A Sphere And Plane

The limit of the second sphere radius tending to infinity β = r2/r1 →∞ corresponds to a plane
wall. It is of interest how the present theory compares to existing formulae for the slow motion
of a sphere perpendicular to a plane wall. Consider the formula (A.1.9). Assuming the limit
exists one obtains

lim
β→+∞

F ∗z (α, β) = 4α−2 + 4
5 logα−1 +K3 + o(1) (A.2.1)

where K3 := 4
5 (γ + log 2) + 16

5 + 2
3 limβ→+∞(C1 + C2) + 4

5 log 2. The five two terms in the
expansion (A.2.1) differ from [2.45] of [37] by a total factor of two, originating from the motion
of the plane in our analysis. All that remains is to study C1 + C2 under the limit β → +∞.
Observe that

lim
β→+∞

l(x, β) = 4e2xx2+4e2xx+2e2x−2
−2e2x(2x2+1)+e4x+1 = sinh 2x+2x

cosh 2x−1−2x2 − 1

which is precisely the integrand for the numerical constants [2.43] of [37]. Therefore, up to
errors of order 4

5 log 2 = O(10−1) uniformly in the separation, the sphere-plane limit is recovered
β → +∞.
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Appendix B

Tangential Interaction

B.1 Recurrence Relations For Unequal Spheres

We now obtain the unknown constants for the case of equal spheres. In spherical bipolar
coordinates this is equivalent to imposing

z(1) =
c sinh η1

cosh η1 − cos ξ
, z(2) =

c sinh η2

cosh η2 − cos ξ

r(1) =
c sin ξ

cosh η1 − cos ξ
, r(2) =

c sin ξ

cosh η2 − cos ξ
.

We introduce the notation

ckα = cosh kα, skα = sinh kα.

and the generating function for the Legendre polynomials

(cosh η − x)−1/2 =
∞∑
n=0

sn(η)Pn(x) (B.1.1)

where sn(η) =
√

2e±(n+
1
2 )η where the sign is chosen so that the exponential decays on each

sphere.

To obtain a recurrence relation for An, Bn and Cn we integrate equation (B.1.8) over
x ∈ [−1, 1]. We consolidate the recurrence relations into the following proposition.

Proposition B.1.1. For unequal spheres, the equations establishing all the expansion coeffi-
cients are

0 =s1
η1

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]tn(η1) +
∞∑
n=1

Anc
n+1/2
η1

(c1η1
tn(η1)− un(η1)− vn(η1))

− s1
η2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]tn(η2)−
∞∑
n=1

Anc
n+1/2
η2

(c1η2
tn(η2)− un(η2)− vn(η2)),

0 =
∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]wn(η1) +
∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]wn(η2)

+
∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]xn(η1) +
∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]xn(η2)

+

∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]yn(η1) +

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]yn(η2),
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0 =
∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]xn(η1) +
∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]xn(η1)

−
∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]yn(η1)−
∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]yn(η2),

0 =s1
η1

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]tn(η1) + 2
∞∑
n=1

Anc
n+1/2
η1

[c1η1
tn(η1)− un(η1)− vn(η1)]

+ s1
η2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]tn(η2) + 2
∞∑
n=1

Anc
n+1/2
η2

[c1η1
tn(η1)− un(η1)− vn(η1)],

0 =
∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]tn(η1)−
∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]tn(η1)

+ 4
∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]zn(η1)− 4
∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]zn(η2),

2 =
∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]wn(η1)−
∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]wn(η2)

+ 2
∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]yn(η1)− 2(c1η2
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]yn(η2),

where

tn(η1) := sn−1(η1) + sn−3(η1) · · · ,
un(η1) := n−1

2n−3sn−2(η1) + n−3
2n−7sn−4(η1) + · · · ,

vn(η1) := n
2n+1sn(η1) + n−2

2n−3sn−3(η1) + · · · ,

wn(η1) := n(n+1)
2n+1

[
sn−1(η1)

2n−1 − sn+1(η1)
2n+3

]
,

xn(η1) := −n(n+ 1)

[
c1η1

sn(η1)

2n+1 − n+1
2n+1

sn+1(η1)
2n+3 − n

2n+1
sn−1(η1)

2n−1

]
+ 2

2n+1

[
(n+ 1)(c1η1

tn−1(η1)− un−1(η1)− vn−1(η1))

+ n(c1η1
tn+1(η1)− un+1(η1)− vn+1(η1))

]
,

yn(η1) :=
c1η1
sn(η1)

2n+ 1
− n+ 1

2n+ 1

sn+1(η1)

2n+ 3
− n

2n+ 1
sn−1(η1)

2n−1 ,

zn(η1) := (c1η1
tn(η1)− un(η1)− vn(η1)) + (c1η1

tn−2(η1)− un−2(η1)− vn−2(η1)) + · · · .

and sn(η) =
√

2e±(n+
1
2 )η and the sign is chosen so that the exponential decays on each

sphere.

Proof. By subtracting (4.4.6) from (4.4.3) we find

s1η1

(c1η1
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]P ′n(x) + 2(c1η1
− x)1/2

∞∑
n=1

Anc
n+1/2
η1

P ′n(x)

− s1η2

(c1η2
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]P ′n(x)− 2(c1η2
− x)1/2

∞∑
n=1

Anc
n+1/2
η2

P ′n(x) = 0. (B.1.2)

We now integrate this equation. By interchanging the order of summation and integration and
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using (B.1.1), we obtain the following identity∫ 1

−1

dx
P ′n(x)

(c1η1
−x)1/2 =

∫ 1

−1

dx

∞∑
j=0

sj(η1)Pj(x)P
′
n(x)

We now use the descending summation expression for P ′n

P ′n+1(x) = 2

[
Pn(x)

‖Pn‖2
+
Pn−2(x)

‖Pn−2‖2
+ · · ·

]
(B.1.3)

to obtain ∫ 1

−1

dx
P ′n(x)

(c1η1
−x)1/2

= 2
∞∑
j=0

sj(η1)

∫ 1

−1

dxPj(x)
[
Pn−1(x)
‖Pn−1‖2 + Pn−3(x)

‖Pn−3‖2 + · · ·
]

= 2
n−1∑
j=0

sj(η1)

∫ 1

−1

dxPj(x)
[
Pn−1(x)
‖Pn−1‖2 + Pn−3(x)

‖Pn−3‖2 + · · ·
]

+ 2
∞∑
j=n

sj(η1)

∫ 1

−1

dxPj(x)
[
Pn−1(x)
‖Pn−1‖2 + Pn−3(x)

‖Pn−3‖2 + · · ·
]

= 2 [sn−1(η1) + sn−3(η1) · · · ] =: 2tn(η1) (B.1.4)

where the finite sum for tn is dn2 e long. Additionally we obtain the following integral expression∫ 1

−1

dx (c1η1
− x)1/2P ′n(x) =

∫ 1

−1

dx
(c1η1
− x)P ′n(x)

(c1η1
− x)1/2

= 2c1η1
tn(η1)−

∫ 1

−1

dx
xP ′n(x)

(c1η1
− x)1/2

. (B.1.5)

By using the descending summation expression (B.1.3) we may continue evaluating the integral
on the last line with∫ 1

−1

dx (c1η1
− x)1/2P ′n(x)

= 2c1η1
tn(η1)− 2

∞∑
j=0

sj(η1)

∫ 1

−1

dx xPj(x)
[
Pn−1(x)
‖Pn−1‖2 + · · ·

]
= 2c1η1

tn(η1)− 2

∞∑
j=0

sj(η1)

∫ 1

−1

dx
(j+1)Pj+1(x)+jPj−1(x)

2j+1

[
Pn−1(x)
‖Pn−1‖2 + · · ·

]
= 2c1η1

tn(η1)− 2

∞∑
j=0

sj(η1)

∫ 1

−1

dx
(j+1)Pj+1(x)

2j+1

[
Pn−1(x)
‖Pn−1‖2 + · · ·

]
− 2

∞∑
j=0

sj(η1)

∫ 1

−1

dx
jPj−1(x)

2j+1

[
Pn−1(x)
‖Pn−1‖2 + · · ·

]

= 2c1η1
tn(η1)− 2

n−2∑
j=0

+
∞∑

j=n−1

 sj(η1)

∫ 1

−1

dx
(j+1)Pj+1(x)

2j+1

[
Pn−1(x)
‖Pn−1‖2 + · · ·

]

− 2

 n∑
j=0

+
∞∑

j=n+1

 sj(η1)

∫ 1

−1

dx
jPj−1(x)

2j+1

[
Pn−1(x)
‖Pn−1‖2 + · · ·

]
= 2c1η1

tn(η1)− 2un(η1)− 2vn(η1) (B.1.6)

where we have use the definitions of un(η1) and vn(η1). By using the formulas in (B.1.4) and
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(B.1.5), equation becomes (B.1.2) becomes

0 =2s1
η1

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]tn(η1) + 2

∞∑
n=1

Anc
n+1/2
η1

(c1η1
tn(η1)− un(η1)− vn(η1))

− 2s1
η2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]tn(η2)− 2

∞∑
n=1

Anc
n+1/2
η2

(c1η2
tn(η2)− un(η2)− vn(η2))

(B.1.7)

Note that in the equal sphere case, η2 = −η1 (B.1.7) implies Bn = 0 for every n ∈ N.

We now combine the boundary conditions to produce another independent set of equations
for the unknown coefficients. By adding (4.4.1) to (4.4.4) one obtains

(1−x2)
(c1η1
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]P ′n(x) + (1−x2)
(c1η2
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]P ′n(x)

+ (c1η1
− x)1/2(1− x2)

∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]P ′′n (x)

+ (c1η2
− x)1/2(1− x2)

∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]P ′′n (x)

+ (c1η1
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]Pn(x)

+ (c1η2
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]Pn(x)

= 0. (B.1.8)

To obtain an recurrence relation for the equation (B.1.8) we consider various integrals of the
Pn. Firstly we have that∫ 1

−1

dx (c1η1
− x)1/2Pn(x) =

∫ 1

−1

dx (c1η1
− x)Pn(x)

(c1η1
− x)1/2

= c1η1

∫ 1

−1

dxPn(x)

(c1η1
− x)1/2

−
∫ 1

−1

dx xPn(x)

(c1η1
− x)1/2

= 2
c1η1
sn(η1)

2n+ 1
− 2

n+ 1

2n+ 1

sn+1(η1)

2n+ 3
− 2

n

2n+ 1
sn−1(η1)

2n−1 =: 2yn(η1) (B.1.9)

Additional recurrence relations for Pn are needed to integrate the remaining terms in equation
(B.1.8). In particular we note that

(1− x2)P ′n(x) = n(n+1)
2n+1 (Pn−1 − Pn+1), (B.1.10)

(1− x2)P ′′n (x) = −n(n+ 1)Pn(x) + 2
2n+1

[
(n+ 1)P ′n−1(x) + nP ′n+1(x)

]
, (B.1.11)

the former being the standard integration identity of the Legendre polynomials and the latter
may be established from Legendre’s equation and Bonnet’s recursion formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

By equation (B.1.10) and (B.1.1) we obtain∫ 1

−1

dx
(1−x2)P ′n(x)

(c1η1
−x)1/2 = 2n(n+1)

2n+1

[
sn−1(η1)

2n−1 − sn+1(η1)
2n+3

]
=: 2wn(η1)
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and by equation (B.1.11), (B.1.6) and (B.1.9) we have∫ 1

−1

dx (c1η1
− x)1/2(1− x2)P ′′n (x) = −2n(n+ 1)

[
c1η1

sn(η1)

2n+1 − n+1
2n+1

sn+1(η1)
2n+3 − n

2n+1
sn−1(η1)

2n−1

]
+ 4

2n+1

[
(n+ 1)(c1η1

tn−1(η1)− un−1(η1)− vn−1(η1))

+ n(c1η1
tn+1(η1)− un+1(η1)− vn+1(η1))

]
=: 2xn(η1).

We may therefore rewrite (B.1.8) as

2
∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]wn(η1) + 2
∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]wn(η2)

+ 2

∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]xn(η1) + 2

∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]xn(η2)

+ 2

∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]2yn(η1) + 2

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]yn(η2) = 0.

Note that in the equal sphere case, when η2 = −η1, we have that Bn = 0 for every n =∈ N and

all terms with a factor of s
n+1/2
η1 will cancel, eliminating En and Gn. This then implies that

Dn = Fn ≡ 0 for every n ∈ N ∪ {0} in the equal sphere case.

By adding (4.4.2) to (4.4.5) we have the recurrence relation

(1− x2)(c1η1
− x)1/2

∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]P ′′n (x)

+ (1− x2)(c1η2
− x)1/2

∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]P ′′n (x)

− (c1η1
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]Pn(x)

− (c1η2
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]Pn(x) = 0

which may be integrated to obtain

2
∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]xn(η1) + 2
∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]xn(η1)

− 2

∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]yn(η1)− 2

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]yn(η2) = 0

By adding (4.4.6) to (4.4.3) we find the summation

s1η1

(c1η1
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]P ′n(x) + 2(c1η1
− x)1/2

∞∑
n=1

Anc
n+1/2
η1

P ′n(x)

+
s1η2

(c1η2
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]P ′n(x) + 2(c1η2
− x)1/2

∞∑
n=1

Anc
n+1/2
η2

P ′n(x) = 0
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which may be integrated to find

2s1
η1

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]tn(η1) + 4
∞∑
n=1

Anc
n+1/2
η1

[c1η1
tn(η1)− un(η1)− vn(η1)]

+ 2s1
η2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]tn(η2) + 4

∞∑
n=1

Anc
n+1/2
η2

[c1η1
tn(η1)− un(η1)− vn(η1)] = 0.

Subtracting (4.4.4) from (4.4.1), subtracting (4.4.5) from (4.4.2) and adding (4.4.3) to (4.4.6)
yields

r(1)

c W1 − r(2)

c W2 +X1 −X2 + Y1 − Y2 = 2, (B.1.12)

X1 −X2 − Y1 + Y2 = −2, (B.1.13)

z1W1 + z2W2 + 2c(Z1 + Z2) = 0.

Now adding together (B.1.12) and (B.1.13) one obtains

1
(c1η1
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]P ′n(x)

− 1
(c1η2
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]P ′n(x)

+ 2(c1η1
− x)1/2

∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]P ′′n (x)

− 2(c1η2
− x)1/2

∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]P ′′n (x) = 0.

We need an additional integration identity, namely∫ 1

−1

dx (c1η1
− x)1/2P ′′n (x) = 2

∫ 1

−1

dx (c1η1
− x)1/2

[
P ′n−1(x)

‖Pn−1‖2 +
P ′n−3(x)

‖Pn−3‖2 + · · ·
]

= 2
[
(c1η1

tn(η1)− un(η1)− vn(η1)) + (c1η1
tn−2(η1)− un−2(η1)− vn−2(η1)) + · · ·

]
=: 2zn(η1).

Integrating this equation we obtain

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]tn(η1)−
∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]tn(η1)

+ 4
∞∑
n=2

[Fnc
n+1/2
η1

+Gns
n+1/2
η1

]zn(η1)− 4
∞∑
n=2

[Fnc
n+1/2
η2

+Gns
n+1/2
η2

]zn(η2) = 0.

Now subtracting (B.1.13) from (B.1.12) one obtains

(1−x2)
(c1η1
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]P ′n(x)

− (1−x2)
(c1η2
−x)1/2

∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]P ′n(x)

+ 2(c1η1
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]Pn(x)

− 2(c1η2
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]Pn(x) = 2.
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Integrating this equation we obtain

2
∞∑
n=1

[Bnc
n+1/2
η1

+ Cns
n+1/2
η1

]wn(η1)− 2
∞∑
n=1

[Bnc
n+1/2
η2

+ Cns
n+1/2
η2

]wn(η2)

+ 4

∞∑
n=0

[Dnc
n+1/2
η1

+ Ens
n+1/2
η1

]yn(η1)− 4(c1η2
− x)1/2

∞∑
n=0

[Dnc
n+1/2
η2

+ Ens
n+1/2
η2

]yn(η2) = 2.

This completes the proof of the proposition.
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Appendix C

Pseudospectral Methods

Monte Carlo methods are popular ways to solve the underlying Fokker–Planck equation, essen-
tially by sampling the Langevin dynamics, to obtain particle trajectories and phase diagrams.
However they quickly become too computationally expensive for reasonably sized systems and
longer observation times. Conversely, on the macro/mesoscopic level, DFT and DDFT prob-
lems, which may include complicated convolution terms, can be efficiently tackled with pseu-
dospectral methods. This is because of the highly accurate Gauss quadrature offered by such
methods. In particular, for the convolution terms, Gauss quadrature offers exponential accu-
racy, with collocation points located near interfaces, meaning a reduction in the number of grid
points needed to reach a desired accuracy compared to finite element and difference methods.
What is more the pseudospectral methods can be shown to satisfy the statistical mechanical
sum rules intrinsic to DFT and DDFT [127].

Fundamental Measure Theory as introduced by Rosenfeld [148] is a highly accurate free
energy functional for hard sphere fluids which uses a functional of weighted densities, as convo-
lutions of the fluid density with weight functions (See Section 1.6). This provides the particle-
particle exclusion contribution to the free energy of the hard sphere fluid. The attractive
intermolecular interactions are usually provided in a perturbative manner via a meanfield ap-
proximation, as a convolution of the fluid density with the attractive part of the total inter-
molecular potential energy. The upshot is the DFT and DDFT equations involving highly stiff
and non-linear integral terms therefore posing significant numerical challenges.

Common techniques are to compute the convolutions in Fourier space by application of the
convolution theorem [150]

n ? χ = F−1 {F {n} × F {χ}} (C.0.1)

where F is the Fourier transform, n is the number density and χ is a arbitrary weight function
from the FMT formalism (Section 1.6). As stated in [126] a Fast Fourier Transform (FFT)
has O(N logN) complexity for N Fourier modes. FFTs require a uniform Cartesian grid,
and accurate computations typically use dense 20 to 50 discretisation points per hard sphere
diameter to produce good resolutions of the number density n near interfaces. Improvements
can be obtained if the Fourier transform of χ performed analytically. However, since χ generally
possesses discontinuities, and given the fact that n possesses a discontinuity at a wall interface
(since there is no flux at the wall), special treatment of the Gibbs phenomenon in interpolating n
at the wall is required. Additionally any Fourier method will require a truncation of the physical
domain and a non-physical assumption of periodicity. The use of a highly dense uniform grids
is also wasteful far from the wall where n is near-constant.

In this chapter we outline a real-space quadrature based on the non-uniform pseudospectral
discretisation, applicable to both bounded and unbounded physical domains. In particular we
outline how to implement the FMT and HI computations in a confining slit. This develops
the suite of numerical methods contained in 2DChebClass, using an accurate discretisation of
the fluid density profile with a small number of collocation points. By positioning collocation
points close to fluid interfaces, avoiding regions of near-constant fluid density, the convolutions
are performed in real space by using a quadrature scheme with spectral accuracy.
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Chebyshev Pseudospectral Method

We let f(x) take values from x ∈ [−1, 1] with known data at some finite collocation points
xn ∈ [−1, 1]. Then f(x) for all values in [−1, 1] may be represented by a linear combination of
Lagrange polynomials, agreeing with f at xn where

xn = cos
(πn
N

)
for n = 0, · · ·N.

The {xn}Nn=1 are the Gauss–Lobatto–Chebyshev collocation points and are clustered at either
end of the interval [−1, 1]. It may be shown that the average spacing between the points is
O(N−2) for x near the endpoints of [−1, 1] and O(N−1) for x in the interior of [−1, 1], as
N →∞ (see [171]). The Lagrange interpolant of f(x) is defined as

pN (x) =

N∑
n=0

f(xn)Pn(x)

where Pn(x) is a Lagrange polynomial of degree N given by

Pn(x) =

N∏
m=0,
m 6=n

x− xm
xn − xm

. (C.0.2)

Note the identity for the Lagrange polynomial

Pn(xk) =

{
1 for k = n,

0 for k 6= n,

where xk is a Gauss–Lobatto–Chebyshev collocation point. The Runge phenomenon, that is
oscillation at the edges of the interval when using N is large for a set of equispaced collocation
points, is avoided with the clustered Gauss–Lobatto–Chebyshev collocation points. It is unwise
in practice to use the interpolant (C.0.2), primarily because: each evaluation of pN (x) requires
O(N2) additions and multiplications, and the addition of a new data point (xn+1, f(xn+1))
requires computing Pn+1(x), not obtainable from Pn(x). This difficulty may be overcome by
using the Barycentric Lagrange Interpolant

pN (x) =

∑N
k=0

w̄k
x−xk f(xk)∑N

k=0
w̄k
x−xk

(C.0.3)

where w̄k are the Barycentric weights given by

w̄j = (−1)jdj for dj =

{
1
2 for j ∈ {0, · · · , N}
1 otherwise

.

Note that the quantities in (C.0.3) that have to be computed in O(N2) floating point opera-
tions do not depend on the data f(xj). Integration may be performed by Clenshaw—Curtis
quadrature ∫ 1

−1

dx f(x) =
N∑
k=0

wkf(xk)

where wk are the Clenshaw–Curtis weights

wj =
2dj
N

1−
∑N−2

2
k=1

2 cos(2k
πn
N )

4k2−1 − cos(πj)
N2−1 for N even

1−
∑N−1

2
k=1

2 cos(2k
πn
N )

4k2−1 for N odd

.
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The formulas have been obtained from Boyd [20].
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[4] J. G. Anero, P. Español, and P. Tarazona. Functional thermo-dynamics: A generalization
of dynamic density functional theory to non-isothermal situations. J. Chem. Phys., 139
(3):034106, 2013.

[5] A. J. Archer. Dynamical density functional theory: binary phase-separating colloidal fluid
in a cavity. J. Phys.: Condens. Matter, 17(10):1405, 2005.

[6] A. J. Archer. Dynamical density functional theory for dense atomic liquids. J. Phys.:
Condens Matter, 18(24):5617, 2006.

[7] A. J. Archer. Dynamical density functional theory for molecular and colloidal fluids: A
microscopic approach to fluid mechanics. J. Chem. Phys., 130(1):014509, 2009.

[8] A. J. Archer and R. Evans. Binary Gaussian core model: Fluid-fluid phase separation
and interfacial properties. Phys. Rev. E, 64(4):041501, 2001.

[9] A. J. Archer and R. Evans. Dynamical density functional theory and its application to
spinodal decomposition. J. Chem. Phys., 121(9):4246–4254, 2004.

[10] A. J. Archer, M. J. Robbins, and U. Thiele. Dynamical density functional theory for
the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern
formation. Phys. Rev. E, 81:021602, Feb 2010. doi: 10.1103/PhysRevE.81.021602. URL
http://link.aps.org/doi/10.1103/PhysRevE.81.021602.

[11] R. E. A. Arndt. Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid
Mech., 13(1):273–326, 1981.

[12] R. A. Bagnold. Auto-suspension of transported sediment; turbidity currents. Proc. R.
Soc. Lond. A., 265(1322):315–319, 1962.

[13] R. C. Ball and J. R. Melrose. A simulation technique for many spheres in quasi-static
motion under frame-invariant pair drag and Brownian forces. Physica A., 247(1-4):444–
472, 1997.

[14] E. N. Bart. Interaction of two spheres falling slowly in a viscous medium. PhD thesis,
1959.

[15] G. O. Berim and E. Ruckenstein. Simple expression for the dependence of the nanodrop
contact angle on liquid-solid interactions and temperature. J. Chem. Phys., 130(4):044709,
2009.

205

http://link.aps.org/doi/10.1103/PhysRevE.81.021602


[16] F. Bickelhaupt and E. J. Baerends. Kohn-Sham density functional theory: predicting and
understanding chemistry. Rev. Comp. Ch., 15:1–86, 2000.

[17] V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov. Fokker–Planck–
Kolmogorov Equations, volume 207. American Mathematical Society, 2015.

[18] F. Bolley and C. Villani. Weighted Csiszár-Kullback-Pinsker inequalities and applications
to transportation inequalities. In Ann. Fac. Sci. Toulouse Math., volume 14, pages 331–
352, 2005.

[19] G. Bossis and J. F. Brady. Dynamic simulation of sheared suspensions. I. General method.
J. Chem. Phys., 80(10):5141–5154, 1984.

[20] J. P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.
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