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Abstract. In this paper we address the problem of solving recursive domain
equations using uncountable limits of domains. These arise for instance, when
dealing with the ω1-continuous function-space constructor and are used in the de-
notational semantics of programming languages which feature unbounded choice
constructs. Surprisingly, the category of cpo’s and ω1-continuous embeddings is
not ω0-cocomplete. Hence the standard technique for solving reflexive domain
equations fails. We give two alternative methods. We discuss also the issue of com-
pleteness of the λβη-calculus w.r.t reflexive domain models. We show that among
the reflexive domain models in the category of cpo’s and ω0-continuous functions
there is one which has a minimal theory. We give a reflexive domain model in the
category of cpo’s and ω1-continuous functions whose theory is precisely the λβη
theory. So ω1-continuous λ-models are complete for the λβη-calculus.

CR Classification: F.3.2, F.4.1, D.3.3
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1. Introduction

The study of semantic models for fairness leads naturally to the study of
countable non-determinism, Apt and Plotkin [1986], Plotkin [1982]. There
non-continuity phenomena appear. So, rather than the usual notion of ω0-
continuity (the preservation of lubs of countable chains), one considers the
weaker notion of ω1-continuity (the preservation of lubs of ω1-chains). It is
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Typé” and by EEC Science Research Project MASK
† Supported in part by MURST 40% & 60% grants and by EEC Science Research Project
MASK

Received October 1994. Accepted February 1995.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429734062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 DI GIANANTONIO, HONSELL, PLOTKIN

then natural to consider a category CPO1 in which the objects have lubs
of both ω0- and ω1-chains (and a least element) but where the morphisms
are the ω1-continuous functions. In Section 3 we show that that the cor-
responding category of embeddings CPOE

1 is not ω0-cocomplete (contrary
to an assertion in Plotkin [1982]). Therefore the standard categorical tech-
niques for solving recursive domain equations, based on embeddings, Smyth
and Plotkin [1982], do not apply in this case. In Section 4 we show how to
overcome this difficulty. In particular we give two methods which generalise
appropriately the technique of Adámek and Koubek [1979] and allow us to
solve recursive domain equations involving several domain constructors, in-
cluding →ω1 (exponentiation in CPO1) and Pω the countable powerdomain
constructor (introduced in Plotkin [1982] where it is written as P1). Finally
in Section 5 we discuss the issue of completeness of the λβη-calculus w.r.t.
the reflexive domain models contained in a standard category of continu-
ous functions CPO and w.r.t. the reflexive domain models contained in the
category for fairness CPO1. We utilise an argument based on logical rela-
tions to show that among the reflexive domain models in CPO there is one
which has a minimal theory. We utilise the second method for solution of
domain equations to define a reflexive domain model in CPO1 whose the-
ory is exactly the theory λβη. We show therefore that the λβη-calculus is
complete w.r.t. the class of reflexive domain models based on ω1-continuous
functions. Before passing to these, quite technical matters, in Section 2 we
discuss fairness and countable non-determinism in the setting of a simple
guarded command language. This suffices to demonstrate the failure of ω0-
continuity and also the need to iterate through all the countable ordinals,
when the use of ω1-continuity is appropriate.

2. Unbounded non-determinism and fairness

Dijkstra’s guarded command language, GC, is an imperative language featur-
ing a particular kind of command, the guarded command, that can be used
to implement finitary non-determinism. See Appendix A for the definition
and semantics of GC.

The random assignment command x := ? is added to GC in order to achieve
countable non-determinism; it sets x to an arbitrary natural number. As is
well-known, this command allows countable sets of possible outputs even un-
der the assumption of program termination. König’s lemma does not apply
to this context; representing the computation history of a non-deterministic
program using a generating tree, the random assignment command allows
programs whose generating tree may not be finitely branching, and hence
can have an infinite number of nodes without having an infinite path (all
computations terminate).

The GC-language has weakly fair iteration if, for every iteration cycle, each
guard Bi that is continuously enabled will not be indefinitely postponed.
Clearly the assumption of fairness implies unbounded non-determinism.
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More precisely: under the assumption of fairness, we can construct an ap-
propriate non-deterministic program which exhibits the same behaviour as
the random assignment command:

x := 0; b := true;
do b → x := x + 1 b → b := false od

The simulation can also go the other way. By using the unbounded choice
operator, we can simulate fair computations. More precisely, the weakly fair
iteration command:

do B1 → C1 . . . Bn → Cn od

is simulated by the following statement:

do (B1 ∨ . . . ∨Bn) → x1 := ?; . . . ; xn := ?;
do x1 ≥ 0 → x1 := x1 − 1; if B1 → C1 fi

. . .
xn ≥ 0 → x1 := xn − 1; if Bn → Cn fi

od
od

where x1, . . . , xn do not occur in the Bi or Ci.
This connection between fairness and unbounded (but countable) non-

determinism motivates the study of non-deterministic languages with un-
bounded choice operators. Thus, generative semantics for fair processes
(i.e. involving only and all fair computations) can be given by simulation
via semantics for countable non-determinism, rather than through a difficult
direct analysis of fairness properties.

In order to define the denotational semantics of the language GC we need
to introduce a domain of denotations for non-deterministic computations.
For this purpose we consider the Plotkin powerdomain of the flat cpo S⊥,
where S is a countable set of stores (states of computations); see Apt and
Plotkin [1986] for more details.

Definition 1. i) The powerdomain P(S⊥) is the set
{A ⊆ S⊥ | A 6= ∅, A finite or ⊥∈ A} with the Egli-Milner order:

A v B iff A = B ∨ (⊥∈ A ∧ A \ {⊥} ⊆ B)

ii) Given a function f : S → P(S⊥), its extension is f+ : P(S⊥) → P(S⊥),
where f+(A) =

⋃

a∈A\{⊥} f(a) ∪ {⊥ | ⊥∈ A}.

The denotational semantics of GC is given by a function

C : Com → (S → P(S⊥))

(See the Appendix for details) When we extend the language GC with the
atomic command x := ? we need to give a different powerdomain capable of
accommodating unbounded (but countable) non-determinism. We need, in
fact, a richer set of points including countable sets of total values.
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Definition 2. Apt and Plotkin [1986] The powerdomain Pω(S⊥) is the set
{A ⊆ S⊥ | A 6= ∅} partially ordered by:
A v B iff A = B ∨ (⊥∈ A ∧ A \ {⊥} ⊆ B).

It is easy to prove that Pω(S⊥) is a cpo with {⊥} as least element. The
meaning function: C : Com → (S → Pω(S⊥)) is the obvious extension of
the previous one, using a least fixed-point for iteration and with the further
clause:

C[[x := ?]]s = {[x 7→ n]s | n ∈ IN}

As pointed out in Apt and Plotkin [1986] there are essential failures of
Scott continuity in a (compositional) denotational semantics for this form of
unbounded non-determinism. We now give an example of this phenomenon.
Consider the command:

do x = 0 → x :=?; x := x + 1 x > 1 → x := x− 1 od

Its semantics is given by the least fixed-point of an operator F which is
monotone but not Scott-continuous; F is defined by:

F (f)(s) =







{s} if s(x) = 1
f+({[x 7→ n + 1]s | n ∈ IN}) if s(x) = 0
f+({[x 7→ x− 1]s}) if s(x) > 1

To check the non continuity of F observe that the n-th approximation of its
fixed-point, with n ≥ 2, is given by:

F (n)(s) =







{[x 7→ 1]s} ∪ {⊥} if s(x) = 0
{[x 7→ 1]s} if 0 < s(x) ≤ n
{⊥} otherwise

The ω-th approximation of the fixed-point is therefore:

F (ω)(s) =
⊔

n<ω
F (n)(s) =

{

{[x 7→ 1]s} ∪ {⊥} if s(x) = 0
{[x 7→ 1]s} if 0 < s(x)

However F (ω) is not the fixed-point of F ; to obtain the fixed-point we need
to add an ω+1 step since: F (ω+1) = F (F (ω)) = λs.{[x 7→ 1]s} = F (F (ω+1)).

The command considered always terminates, but there is no finite bound
on the number of iterations necessary to finish the command when the input
is 0. Since F (ω) is the pointwise sup of the finite approximations also F (ω)

can diverge for input 0.
It is possible to construct examples of iterative commands whose semantics

are obtained iterating the application of the associated functionals through
any recursive ordinal. For example the semantics of the command:

do x < y → y := y − 1 1 < x → x := x− 1; y :=? od

is obtained after ω × ω steps.
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These are instances of the many non-Scott-continuity phenomena which
arise when dealing with unbounded choice. Other examples are: the non-
continuity of λf.f+ or the fact that there is no continuous compositional
semantics for this language, see Apt and Plotkin [1986]. Therefore, in or-
der to discuss denotational semantics for unbounded choice we follow the
solution Apt and Plotkin and consider spaces of functions which satisfy a
weaker continuity condition, ω1-continuity. All functionals arising in the
problematic cases are in fact continuous w.r.t. to this weaker notion of
continuity.

3. ω1-continuous functions and recursive domain equations

In this section we define the notion of ω1 continuity and the category, CPO1,
whose morphisms are ω1-continuous functions. We discuss reflexive domain
equations in CPO1 and the difficulties in applying the traditional categorical
techniques for solving them. Finally, we outline how to overcome these
difficulties in the special case of D ∼= [D → D].

Definition 3. i) Let A be a partial order, and let κ be a cardinal number.
A κ-chain in A is a monotone map from κ to A.
ii) A partial order A is κ-complete if it has lubs of all κ-chains.
iii) Let A, B be partial orders and let f : A → B be a function. Then f is
κ-continuous if it preserves lubs of κ-chains.

We are led to study the following categories:

Definition 4. The fairness category CPO1 has as objects the ω0- and ω1-
complete partial orders with a least element, and as morphisms the ω1-
continuous functions. We will use also the subcategory CPO having the
same objects as CPO1 and as morphisms the functions which are both ω0-
and ω1-continuous.

Both CPO1 and CPO are Cartesian closed categories with the usual Car-
tesian product and pointwise-ordered function spaces. In CPO1 least fixed-
points of morphisms, such as the F considered above, are obtained by iter-
ation through all the countable ordinals:

Proposition 1. Let f : D → D be a morphism in CPO1 For every ordinal
β ≤ ω1 define f (β) in D by f (0) =⊥D, f (β+1) = f(f (β)), f (λ) =

⊔

β<λ f (β)

(λ a limit ordinal). Then f (ω1) is the least fixed-point of f .

If we want to give a denotational semantics for a language featuring higher-
order procedures together with unbounded choice, we need to solve reflexive
equations on CPO1 involving →ω1 as domain constructor. Also if we con-
sider languages with a parallel constructor, to be interpreted via interleaving
and resumptions, we need to solve reflexive domain equations, involving the
powerdomain constructor Pω for countable non-determinism extending that
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considered above on flat cpos. This powerdomain has been introduced in
Plotkin [1982] where is called P1. We are therefore led to investigate the the-
ory of reflexive domain equations in CPO1. Traditionally, reflexive domain
equations are handled in one of two ways.

The first method works in any category C with colimits of ω0-chains. It
proceeds by analogy with the solution of fixed-point equations x = f(x) in
cpos, given by Fixf =

⊔

n fn(⊥) and justified by the existence of chain-lubs
and by the continuity of f . What one does in the categorical setting is
to construct the solution of the equation X ∼= F (X) as FixF = colim ∆
where ∆ = 〈Fn(X0), Fn(e)〉n∈ω is the ω-chain constructed starting from
an object X0 and a morphism e : X0 → F (X0). This is justified by the
existence of colimits and by the continuity of the endofunctor F (meaning
that it preserves the colimits of ω0-chains), see Smyth and Plotkin [1982].
(Strictly speaking, the analogy between categories and partial orders would
lead us to take X0 as the initial object. This is often done, but here the
extra generality will prove useful.)

The second method for solving recursive domain equations in category the-
ory has been developed in Adámek and Koubek [1979] and used in Plotkin
[1982]. It allows one to solve a larger class of equations than the first method
and it is based on the fact that, under a stronger assumption of cocomplete-
ness of the category, a weaker requirement for the functor suffices. In partic-
ular, this method allows one to find a fixed-point solution also for functors
which are only ω1-continuous, i.e. which preserve the colimits of ω1-chains.
The least fixed-point is obtained in this case as the colimit of a suitable
ω1-chain.

Both approaches are based on the subcategory of embeddings:

Definition 5. Let CPOE (CPOE
1 ) be the subcategory of CPO (CPO1) hav-

ing the same objects and whose morphisms from D to E are the embedding
functions from D to E. Embeddings are the morphisms e : D →(ω1) E for
which there exists a morphism p : E →(ω1) D, called a projection such that:
p ◦ e = idD and e ◦ p v idE; 〈e, p〉 is an (ω1-)embedding-projection pair (or
(ω1-)ep pair).

Given an embedding e there exists a unique function p satisfying the above
conditions and conversely. Restricting to embeddings allows one to consider
locally monotone functors of mixed variance, such as →ω1 , as covariant
functors on the subcategory of embeddings, see Smyth and Plotkin [1982]
and Plotkin [1982] for more details.

Not surprisingly if we consider the category CPOE
1 the first method, above,

fails to produce a solution of the simple reflexive equation
D ∼= [D →ω1 D], as the →ω1 constructor is not continuous. But, much more
surprisingly, the second method also fails since the category CPOE

1 is not
ω0-cocomplete (i.e. it does not have colimit for every ω0-chain), contrary to
what has been claimed in Plotkin [1982]. For a counterexample, first define
0α to be partial order of all the ordinals strictly smaller than α. Now take
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Fig. 1: Counterexample

the ω0-chain ∆ = 〈0n, en〉1<n<ω0 in the category CPOE
1 , see Fig.1, where we

define the embeddings en : 0n →ω1 0n+1 by:

en(m) =







m if m < n− 1

n if m = n− 1

Notice that the chain ∆ would be the one constructed according to both
methods outlined above in order to solve in CPOE

1 the recursive domain
equation D ∼= D⊥, starting from the domains 02 and 03 ∼= (02)⊥ and the
morphism e2 : 02 →ω1 03 defined as above.

The chain ∆ does not have a colimit. For, consider the two cones having as
vertices 0ω+1 and 0ω+2, respectively, and whose embeddings e1 : ∆ → 0ω+1
and e2 : ∆ → 0ω+2, are defined by:

e1
n(m) =







m if m < n− 1

ω if m = n− 1
e2
n(m) =







m if m < n− 1

ω + 1 if m = n− 1

Observe that the projection p1
n corresponding to the embedding e1

n is such
that p1

n(m) < n−1 for each finite natural m and p1
n(ω) = n−1, therefore p1

n is
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not ω0 continuous and the cone e1
n : 〈0n, en〉1<n<ω0 → 0ω+1 is not contained

in CPOE. Now suppose, for the sake of contradiction, that µ : ∆ → D
is the colimit of the above chain. Then there is a mediating embedding
e : D → 0ω+1, we show that e has to be an isomorphism: let p be the
corresponding projection, we show that e ◦ p = id0ω+1

. For every natural
number n we have: e◦p(n) = e◦p◦e1

n+2 ◦p1
n+2(n) = e◦p◦e◦µn+2 ◦p1

n+2(n)
= e◦µn+2◦p1

n+2(n) = e1
n+2◦p1

n+2(n) = n, and at ω, e◦p(ω) w
⊔

n e1
n◦p1

n(ω) =
ω w e ◦ p(ω). So, if the colimit exists it is e1 : ∆ → 0ω+1. Therefore there
must be a mediating embedding from 0ω+1 to 0ω+2. Unfortunately, such
a mediating embedding does not exist. In fact there is only one mediating
function e′ from 0ω+1 to 0ω+2, e′ is defined by e′(n) = n and e′(ω) = ω + 1.
But e′ is not an embedding, as it does not preserve the sup ω =

⊔

n<ω n (all
the left adjoints between partial orders preserve any existing suprema).

Nevertheless the classical domain equation: D ∼= [D →ω1 D], can still be
solved non-trivially. The mathematical construction might seem ad hoc, but
it amounts to the construction of an inverse limit. It will be fully generalised
and put on firm categorical ground in the next section.

In order to provide a non-trivial solution we start from a given cpo D0
and an ω1-ep pair 〈e0,1, p1,0〉, where e0,1 : D0 →ω1 [D0 →ω1 D0] and p1,0 :
[D0 →ω1 D0] →ω1 D0.

A chain 〈Dβ, 〈eα,β, pβ,α〉〉α<β≤ω1+1 of cpos and ω1-ep pairs is defined by
induction on β in the following way:

◦ For β = 1, D1 = [D0 →ω1 D0] and e0,1 , p0,1 are as given above.

◦ For β = β′ + 2 define:

– Dβ = [Dβ′+1 →ω1 Dβ′+1]
– eβ′+1,β = λ dβ′+1. eβ′,β′+1 ◦ dβ′+1 ◦ pβ′+1,β′

– pβ,β′+1 = λ dβ. pβ′+1,β′ ◦ dβ ◦ eβ′,β′+1
and for α ≤ β′ define:

– eα,β = eβ′+1,β ◦ eα,β′+1
– pβ,α = pβ′+1,α ◦ pβ,β′+1

◦ For β be a limit ordinal define:

– Dβ = {〈d0, . . . , dα, . . .〉α<β | dα ∈ Dα & ∀ α′ < α dα′ = pα,α′(dα)}
– eα,β = λdα.〈pα,0(dα), . . . , dα, eα,α+1(dα), . . .〉
– pβ,α = λ

→
d . dα

◦ For β = λ + 1 with λ a limit ordinal define:

– Dβ = [Dλ →ω1 Dλ]

– eλ,β = λ
→
d . λ

→
d′ .

⊔

α<λ eα,λ(dα+1(d′α))
– pβ,λ = λf.〈f (0), . . . , f (α), . . .〉

where we define:
– f (α+1) = pλ,α ◦ f ◦ eα,λ

– f (γ) = pγ+1,γ(f (γ+1)) for γ = 0 or γ a limit ordinal smaller than
λ
and for α < λ define:
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– eα,λ+1 = eλ,λ+1 ◦ eα,λ
– pλ+1,α = pλ,α ◦ pλ+1,λ

Note. Observe that for λ a limit ordinal 〈eβ,λ〉β : 〈Dβ, eα,β〉α<β<λ → Dλ

is a cone in the category CPOE
1 but it is not necessarily the colimit.

Theorem 1. The embedding eω1,ω1+1 : Dω1
∼= [Dω1 →ω1 Dω1 ] is an iso-

morphism with inverse pω1+1,ω1 and therefore Dω1 is a non-trivial solution
of the recursive domain equation D ∼= [D →ω1 D].

The previous theorem is a straightforward consequence of Theorem 3 below.

4. Two methods for solving domain equations

In this section we discuss two general methods which can be used to solve
a large class of domain equations obtained using non-ω0-continuous domain
constructors which satisfy some ω1-continuity conditions.

The first method is an appropriate application of the method in Adámek
and Koubek [1979], and consists in changing the category under considera-
tion and then applying the following theorem:

Theorem 2. Let C be a category having colimits of both ω0- and ω1-chains
and let F : C → C be an ω1−continuous functor. Suppose e : D → F (D)
is a morphism. Then a chain 〈Dβ , eα,β〉α<β≤ω1+1 can be constructed by
induction on β as follows:

◦ D0 = D, D1 = F (D0) and e0,1 = e

◦ for β = β′ + 2

– Dβ = F (Dβ′+1)
– eβ′+1,β = F (eβ′,β′+1)
– eα,β = eβ′+1,β ◦ eα,β′+1 (for α ≤ β′)

◦ for β a limit ordinal, 〈eα,β〉α : 〈Dα, eα,γ〉α<γ<β → Dβ is a colimiting
cone

◦ for β = λ + 1 with λ a limit ordinal,

– Dβ = F (Dλ) and
– eλ,λ+1 is the mediating morphism between the colimiting cone
〈eα+1,λ〉α : 〈Dα+1, eα+1,γ+1〉α<γ<λ → Dλ and the cone
〈F (eα,λ)〉α : 〈Dα+1, eα+1,γ+1〉α<γ<λ → F (Dλ)

– eα,λ+1 = eλ,λ+1 ◦ eα,λ (for α < λ)

We have that eω1,ω1+1 : Dω1 → F (Dω1) is an isomorphism and
e0,ω1 = e−1

ω1,ω1+1 ◦ F (e0,ω1) ◦ e

The idea in this case is to solve recursive domain equations using the
category CPOE instead of the category CPOE

1 . This is possible because,
although we use non-continuous functions, it is not always necessary to con-
sider non-continuous ep-pairs in order to solve a recursive domain equation.
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Fig. 2: Diagram for condition A

The category CPO has ω0- and ω1-colimits and so, as shown in Plotkin
[1982], CPOE has ω0- and ω1-colimits and locally ω1-continuous functors
in CPO yield ω1-continuous functors on CPOE. All the functors we use in
the construction of recursive domains, i.e. +,×,→ω1 , Pω, are locally ω1-
continuous and restrict to functors on CPO and so we may solve recursive
domain equations using them in CPOE.

Using this first method, therefore, we have to restrict ourselves to em-
beddings contained in CPOE. This condition, however, is too restrictive if
we want to define a non-initial solution of D ∼= [D →ω1 D] obtained start-
ing from a domain D0 and an embedding e0 : D0 →ω1 [D0 →ω1 D0] not
contained in CPOE. Such a recursively defined domain will be used in Sec-
tion 5 in order to give a minimal model for the λ-calculus. Hence, in order
to produce a general construction which includes that solution, we present
a second method for defining fixed-points of functors, which yields limits
obtained also starting from non-continuous embeddings.

This second method can be seen as a generalisation of the solution pro-
posed by Adámek and Koubek. With respect to their solution we ask for
a weaker requirement on the category and functors. In particular we can
apply this construction also to categories such as CPOE

1 which do not have
colimits of ω0-chains.

Definition 6. Given a category C we say that a functor F : C → C satis-
fies condition A if for every chain ∆ in C, such that ∆ = 〈Dα, fα,β〉α<β<λ,
where λ is a countable limit ordinal, Dα+1 = F (Dα) and fα+1,β+1 = F (fα,β)
there exists a cone µ : ∆ → Dλ and a morphism fλ : Dλ → F (Dλ) such that
for all α < λ fλ ◦ µα+1 = F (µα), i.e. the diagram in Fig.2 commutes.

Proposition 2. In a category C having colimits for every ω1-chain, if a
functor F : C → C is ω1-continuous, satisfies condition A and there is
an object D0 and a morphism e0 : D0 → F (D0), then F has a fixed-point
i : D ∼= F (D) and there exists a morphism e : D0 → D such that:
e = i−1 ◦ F (e) ◦ e0.

Proof. Under the specified conditions it is possible to construct an ω1-
chain 〈Dβ, eα,β〉α<β<ω1 in the following way:
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◦ D1 = F (D0) and e0,1 = e0

◦ for β = β′ + 2

– Dβ = F (Dβ′+1)
– eβ′+1,β = F (eβ′,β′+1)
– eα,β = eβ′+1,β ◦ eα,β′+1 (for α ≤ β)

◦ for β a limit ordinal, 〈eα,β〉α : 〈Dα, eα,γ〉α<γ<β → Dβ is the cone whose
existence is assured by condition A.

◦ for β = λ + 1 with λ a limit ordinal,

– Dβ = F (Dλ) and
– eλ,λ+1 is the morphism whose existence is assured by condition

A.
– eα,λ+1 = eλ,λ+1 ◦ eα,λ (for α < λ)

If we consider now a colimiting cone 〈eα,ω1〉α : 〈Dα, eα,β〉α<β<ω1 → Dω1 and
the unique morphism i between the cones 〈eα+1,ω1〉α<ω1 and 〈F (eα,ω1)〉α<ω1

it is easy to prove that i : Dω1 → F (Dω1) is an isomorphism and obviously
the equation e0,ω1 = i−1 ◦ F (e0,ω1) ◦ e0 holds. 2

We now want to apply Proposition 2 in order to prove that the functors
which are unary compositions of basic functors +,×,→ω1 ,Pω admit a fixed-
point. In order to do so we now consider the category CPOE

1 . As shown
in Plotkin [1982] CPOE

1 has colimits for every ω1-chain and the domain
constructors +,×,→ω1 ,Pω and their compositions, are functors preserving
ω1-colimits (since they are locally ω1-continuous). So it remains to prove
that the unary compositions of the basic functors satisfy condition A.

To do that we need to establish some properties concerning ω0-chains.
Notation i) We denote by CPOP (CPOP

1 ) the category having cpo’s as ob-
jects and ω0- and ω1-continuous (ω1-continuous) projections as morphisms.

ii) Given an embedding f : A → B (a projection g : A → B) we denote
by fP : B → A (gE : B → A) the corresponding projection (embedding).

iii) Given a functor F : CPOE → CPOE (F : CPOE
1 → CPOE

1 ) we denote
by FP : CPOP → CPOP (FP : CPOP

1 → CPOP
1 ) the corresponding functor

on projections, that is FP behaves like F on objects, and on projections it
is defined by: FP (g) = (F (gE))P .

Proposition 3. The category CPO1 has all limits of ω0- and ω1 inverse
chains.

Proof. Let ∆ = 〈Dα, fβ,α〉α<β<κ with κ = ω0 or κ = ω1 be an inverse
chain in CPO1. The limit of ∆ is defined as:

lim∆ = {〈d0, . . . , dα, . . .〉α<κ | dα ∈ Dα ∧ ∀dα, dβ . dα = fβ,α(dβ)}
and the order on lim ∆ is the pointwise order.

The cone functions φα : lim ∆ → Dα are the projections:
φα(〈d0, . . . , dα, . . .〉) = dα. We need to prove that lim ∆ is an ω0- and ω1-cpo.
Let 〈d0, . . . , dγ . . .〉γ<κ′ be a κ′-chain of elements in lim ∆. If κ′ = ω1 the
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limit of the chain d is the sequence l = 〈
⊔

γ<κ′ dγ,0, . . . ,
⊔

γ<κ′ dγ,α, . . .〉α<κ.
If κ′ = ω0 the sequence l does not necessarily belong to lim ∆ since the
functions fβ,α need not be ω0-continuous.

To find the lub of d we need to define the following sequence d′λ (λ ≤ ω1)
of sequences:

◦ d′0 = l

◦ d′γ+1 = 〈
⊔

β<κ fβ,0(dγ,β), . . . ,
⊔

β<κ fβ,α(dγ,β), . . .〉α<κ

◦ d′λ = 〈
⊔

γ<λ d′γ,0, . . . ,
⊔

γ<λ d′γ,α, . . .〉α<κ
for λ a limit ordinal.

By the ω1-continuity of the functions fβ,α, the sequence d′ω1
is an element of

lim∆ and it is easy to prove that it is in fact the lub of d. Observe that in
the case κ = ω1 we do not need to define the whole sequence since already
d′1 is an element of lim∆.

Given any other cone 〈D′, ξα〉α<κ for ∆, the only function θ : D′ → lim∆
making the cones commute is defined by: θ(d′) = 〈ξ0(d′) . . . ξα(d′) . . .〉α<κ.
2

Proposition 4. In CPO1 the countable limit construction preserves pro-
jections. That is, suppose ∆ = 〈Dn, pm,n〉n<n<ω0 is a chain of morphisms
and ξ : Dω → ∆ is its limit in CPO1. Then if each pm,n is a projection each
ξn is also a projection.

Proof. The result follows from the construction of the limit in CPO1
stated in the proof of proposition 3. The embedding functions ξE

i : Di → Dω
are defined by: ξE

i (di) = 〈pi,0(di) . . . di . . . pE
j,i(di) . . .〉i . 2

Lemma 1. For every pair of natural numbers j, k, for every functor
F : (CPOE

1 )j → (CPOE
1 )k composition of the basic functors and for every

ω0-chain of projections ∆ = 〈Dn, pn〉n<ω0, in (CPO1)
j let FP ∆ indicate the

ω0-chain 〈FP (Dn), FP (pn)〉n<ω0 and let ϕ : Dω → ∆ and ξ : DFω → FP ∆
be the limits in (CPO1)

j and (CPO1)
k of ∆ and FP ∆ respectively. Clearly

FP (ϕ) : FP (Dω) → FP ∆ is a cone. Let pω be the unique function pω :
FP (Dω) → DFω mediating between the two cones:

FP4 : FP (D0) �F
P (p1,0)

FP (D1) �F
P (p2,1)

FP (D2) � . . .
KA
A
A
A
A
A
A

ξ0

�
�
�
�
�
�
�

ξ1

�

�
�

�
�

�
�

�
�

�
�

�

FP (ϕ1)

3KA
A
A
A
A
A
A

ξ2

�
�
�
�
�
�
�

FP (ϕ2)

�
. . .

DFω � pω FP (Dω).

Then the following properties hold:
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i) pω =
⊔

n<ω0
ξE
n ◦ FP (ϕn)

ii) FP (ϕm) ◦
⊔

n<ω0
((FP (ϕn))E ◦ ξn) = ξm

iii) pω is a projection and pE
ω =

⊔

n<ω0
(FP (ϕn))E ◦ ξi

Proof. Point i) follows from the construction of the limit.

We prove that point ii) is satisfied for all the basic functors. We start
considering→ω1 : (CPOE

1 )2 → CPOE
1 . Let ∆ = 〈Dn×D′

n, pm,n, p′m,n〉n<m<ω0

be an ω0-chain in (CPOP
1 )2, let 〈Dω×D′

ω, ϕn, ϕn〉n<ω0 and 〈D(→ω1)P , ξn〉n<ω0

be the limits of ∆ and (→ω1)
P ∆ in (CPO1)

2 and CPO1 respectively and let
f be an element in D(→ω1)P and dm an element of Dm. Note that f is a
sequence of functions 〈f0, f1, . . . , fi, . . .〉 with fn : Dn →ω1 D′

n and such that
fn = p′m,n ◦ fm ◦ pE

m,n.
The following equalities hold:

((→ω1)
P (ϕm, ϕ′m) ◦

⊔

n<ω0
(((→ω1)

P (ϕn, ϕ′n))E ◦ ξn))(f)(dm)

= (→ω1)
P (ϕm, ϕ′m)(

⊔

n<ω0
((→ω1)

P (ϕn, ϕ′n))E(ξn(f)))(dm)

= (→ω1)
P (ϕm, ϕ′m)(

⊔

n<ω0
ϕ′En ◦ ξn(f) ◦ ϕn)(dm)

= (ϕ′m ◦ (
⊔

n<ω0
ϕ′En ◦ fn ◦ ϕn) ◦ ϕE

m)(dm)

= ϕ′m(
⊔

n>m(ϕ′En ◦ fn ◦ ϕn ◦ ϕE
m)(dm))

= ϕ′m(
⊔

n>m(ϕ′En ◦ fn ◦ pE
n,m)(dm)) by commutativity of the diagrams

= ϕ′m(
⊔

n>m〈(p′n,0 ◦ fn ◦ pE
n,m)(dm), . . . , (p′n,m ◦ fn ◦ pE

n,m)(dm), . . . ,
(p′n,l ◦ fn ◦ pE

n,m)(dm), . . . , (fn ◦ pE
n,m)(dm), . . .〉)

= ϕ′m(
⊔

n>m〈(p′m,0 ◦ fm)(dm), . . . , fm(dm), . . . , (fl ◦ pE
l,m)(dm), . . .〉)

= ϕ′m(〈(p′m,0 ◦ fm)(dm), . . . , fm(dm), . . . , (fl ◦ pE
l,m)(dm), . . .〉) = fm(dm)

But also ξm(f) = fm and therefore we have:
(→ω1)

P (〈ϕm,1, ϕm,2〉) ◦
⊔

n<ω0
(((→ω1)

P (〈ϕn,1, ϕn,2〉))E ◦ ξn) = ξm

For what concerns the functor Pω the proof follows easily from the fact
that for any function f in CPO1, the function Pω(f) is ω0-continuous (see
Plotkin [1982]). The functors + and × preserve the limit of the ω0 chain
and so the proof is immediate. It is also easy to prove that the property
in point ii) is preserved by composition of functors and therefore the thesis
holds.

To prove point iii) we prove that the pair 〈pE
ω , pω〉 is an ep-pair. Let d be

an element in FP (Dω), we have:
(pE

ω ◦ pω)(d)

= pE
ω (

⊔

n<ω0
ξE
n (FP (ϕn))(d))

= pE
ω (

⊔

n<ω0
〈FP (ϕ0)(d), . . . FP (ϕn)(d), . . . ((FP (pm,n))E ◦FP (ϕn))(d), . . .〉)
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D � p
F P (D) � F P (p)

(F P )2(D) �(F
P )2(p)

(F P )3(D) . . .
}Z

Z
Z

Z
Z

Z
Z

Z

ξ0

�
�

�
�

�
�

�
�

F P (ξ0)

>}Z
Z

Z
Z

Z
Z

Z
Z

ξ2

�
�

�
�

�
�

�
�

F P (ξ2)

>
. . .

Dλ

ξ1

6

� pλ F P (Dλ)

F P (ξ1)
6

Fig. 3: Diagram of projections

=
⊔

n<ω0
(FP (ϕn))E ◦ ξn)(〈FP (ϕ0))(d), . . . , FP (ϕm))(d), . . .〉m<ω0)

=
⊔

n<ω0
(FP (ϕn))E(FP (ϕn)(d)) v d

and:

pω ◦ pE
ω =

⊔

m<ω0
(ξE

m ◦ FP (ϕm)) ◦
⊔

n<ω0
((FP (ϕn))E ◦ ξn)

=
⊔

m<ω0
(ξE

m ◦ FP (ϕm) ◦ (
⊔

n<ω0
(FP (ϕn))E ◦ ξn)) (by ii)

=
⊔

m<ω0
ξE
m ◦ ξm = idDFω 2

Proposition 4 and Lemma 1 immediately yield the corresponding results
for all countable ordinals.

Using the lemma it is now easy to prove the following proposition.

Proposition 5. Every unary composition F : CPOE
1 → CPOE

1 of the ba-
sic functors satisfies the following property: given a chain of projections
∆ = 〈Dα, pβ,α〉α<β<λ such that λ is a countable limit ordinal, Dα+1 =
F (Dα) and pβ+1,α+1 = F (pβ,α) let ξ : Dλ → ∆ be a limiting cone in CPO1
and let pλ : FP (Dλ) → Dλ be the unique morphism making the diagram in
Fig.3 commute. Then we have:

i) pλ =
⊔

α<λ ξE
α+1 ◦ FP (ξα)

ii) pλ is a projection and pE
λ =

⊔

α∈λ (FP (ξα))E ◦ ξα+1

By using the previous propositions one has immediately that:

Corollary 1. In the category CPOE
1 the basic functors and their compo-

sitions satisfy condition A.

We can finally conclude:

Theorem 3. For every unary composition F : CPOE
1 → CPOE

1 of the basic
functors, for every cpo D0 and ω1-continuous embedding e0 :
D0 → F (D0) there exists a fixed-point i : D ∼= F (D) for F and an ω1-
continuous embedding e : D0 → D such that: e = i−1 ◦ F (e) ◦ e0.
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5. Completeness results for the λ-calculus

In this section we discus the completeness of the λβη-calculus relative to
reflexive domain models in CPO and CPO1. A reflexive domain model
D for the λβη-calculus is a domain isomorphic to the domain of its own
endomorphisms. By completeness we mean that the class of λ-equalities
which hold in all such models is exactly the theory λβη; see Ronchi and
Honsell [1992] for a more detailed account of this issue. The “completeness”
problem for reflexive domain models based on Scott-continuous functions is
a longstanding open problem. In Theorem 4 below, we show that among the
reflexive domain models in CPO there is one which has a minimal theory,
and it is an open problem whether this minimal theory is exactly the theory
λβη.

For reflexive domain models in CPO1 we are able to prove completeness.
We utilise the construction of Section 3 in order to define a cpo Dω1 satisfying
the equation Dω1

∼= [Dω1 →ω1 Dω1 ], which provides a model for the theory
λβη. That is, an equation M = N is true in the model if and only if M
and N are βη-convertable.

We start defining a minimal reflexive domain model in CPO. The con-
struction relies on logical relations.

Let ∆ be the set of λβη-theories (since λβη-theories are expressed using
a countable set of variables and no constant there are at most 2ω0 such a
theories) for which there exists a reflexive domain model in CPO. Using the
axiom of choice we can select a reflexive domain model Cδ in CPO for each
theory δ ∈ ∆. Let iδ indicate the isomorphism iδ : Cδ ' [Cδ → Cδ]. We shall
define a reflexive domain model whose theory is

⋂

∆. A cpo D0 is defined
as D0 = Πδ∈∆Cδ; for each Cδ there is an obvious ω0- ω1-continuous ep-pair
〈eδ, pδ〉 : Cδ → D0. An ω0- ω1-continuous ep-pair 〈e0, p0〉 : D0 → [D0 → D0]
is defined by:

e0(〈cδ〉δ∈∆) = λ〈c′δ〉δ∈∆ . 〈iδ(cδ)(c′δ)〉δ∈∆

p0(f) = 〈i−1
δ (pδ ◦ f ◦ eδ)〉δ∈∆.

Using the standard method to solve domain equations in the category
CPO one can build a chain 〈Dn, 〈en,mpm,n〉〉n<m≤ω0+1 such that:
eω0,ω0+1 : Dω0 ' [Dω0 → Dω0 ]. We will use also the symbol i to indicate the
isomorphism eω0,ω0+1. In the following we will prove that Dω0 is a minimal
reflexive domain model, in CPO, for the λβη-calculus.

Definition 7. Define the relations Rn ⊂ D0×Dn, n ≤ ω0 by the induction:
R0(d0, d′0) ≡ d0 = d′0
Rn+1(d0, dn+1) ≡ ∀d′0, d′n . Rn(d′0, d

′
n) ⇒ Rn(e0(d0)(d′0), dn+1(d′n))

Rω0(d0, dω0) ≡ ∀ n < ω0 .Rn(d0, pω0,n(dω0))

Proposition 6. The relations Rn satisfy the following closure properties
i) For each n ≤ ω0 Rn is closed under lub’s of ω0-chains.
ii) For each n < m ≤ ω0 if Rn(d0, dn) then Rm(d0, en,m(dn))
iii) For each n < m ≤ ω0 if Rm(〈d0, dm) then Rn(d0, pm,n(dm))
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Proof. All the properties are proved by induction. The proof of property
i) is straightforward.

For properties ii) and iii) it is enough to prove by induction on n < ω0
that:
a) if Rn(d0, dn) then Rn+1(d0, en,n+1(dn)) and
b) if Rn+1(d0, dn+1) then Rn(d0, pn+1,n(dn+1)).

Basic steps: point a) follows immediately from the definition.
b) if R1(d0, d1) then, by Definition 7, for all d′0 ∈ D0, e0(d0)(d′0) = d1(d′0),
by extensionality d1 = e0(d0) and so p0(d1) = d0 and R0(d0, p0(d1)).

Inductive steps:
a) if Rn(d0, dn) then by inductive hypothesis and by Definition 7,
Rn+1(d0, en−1,n◦dn◦pn,n−1) and by definition of en,n+1, Rn+1(d0, en,n+1(dn)),
b) if Rn+1(d0, dn+1) then by inductive hypothesis and by Definition 7,
Rn(d0, pn,n−1 ◦ dn+1 ◦ en−1,n), by definition of pn+1,n, Rn(d0, pn+1,n(dn+1))
2

Proposition 7. For each d0 ∈ D0 and dω0 ∈ Dω0 , Rω0(d0, dω0) if and only
if for every d′0 ∈ D0 and d′ω0

∈ Dω0 we have that:
Rω0(d

′
0, d

′
ω0

) ⇒ Rω0(e0(d0)(d′0), i(dω0)(d
′
ω0

)).

Proof. (⇒) Suppose Rω0(d0, dω0) and Rω0(d
′
0, d

′
ω0

) then by Proposition 6
and by Definition 7 we have:
Rω0(e0(d0)(d′0),

⊔

n<ω0
en,ω0(pω0,n+i(dω0)(pω0,n(d′ω0

)))) therefore,
Rω0(e0(d0)(d′0), i(dω0)(d

′
ω0

)) .
(⇐) To prove Rω0(d0, dω0) it suffices to prove that for all n < ω0,

Rn+1(d0, pω0,n+1(dω0)) that is for all n, d′0, d
′
n,

Rn(d′0, d
′
n) ⇒ Rn(e0(d0)(d′0), pω0,n+1(dω0)(d

′
n)).

Now, if Rn(d′0, d
′
n) then Rω0(d

′
0, en,ω0(d

′
n)), by hypothesis

Rω0(e0(d0)(d′0), i(dω0)(en,ω0(d
′
n)))

and since pω0,n(i(dω0)(en,ω0(d
′
n))) = pω0,n+1(dω0)(d

′
n) we have

Rn(e0(d0)(d′0), pω0,n+1(dω0)(d
′
n)). 2

Definition 8. Given a λ-term M let [[M ]]δ (respectively [[M ]]ω0) indicate
the interpretation of M in the model Cδ (respectively Dω0). The interpreta-
tion of M in the cpo D0 relative to an environment ρ : V ar → D0 is defined
by [[M ]]0ρ = 〈[[M ]]δpδ◦ρ〉δ.

Proposition 8. For any λ-term M , given two environments ρ : V ar → D0
and ρ′ : V ar → Dω0 if for all variables x ∈ V ar Rω0(ρ(x), ρ′(x)) then
Rω0([[M ]]0ρ, [[M ]]ω0

ρ′ ).

Proof. By induction on the structure of the term M . The proof follows
immediately from the previous proposition and from the observation that
for every environment ρ : V ar → D0 we have [[MN ]]0ρ = e0([[M ]]0ρ)([[N ]]0ρ)
and e0([[λx.M ]]0ρ) = λd0 ∈ D0.[[M ]]0ρ[d0/x]. 2

We can finally establish the theorem.
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Theorem 4. The cpo Dω is a minimal reflexive domain model in CPO, in
the sense that if two λ-terms are equated in Dω then they are equated in all
reflexive domain models in CPO.

Proof. Since two λ-terms are equated in a model if the respective closure
are equated, we limit ourselves to consider closed λ terms. Let M and N be
two closed λ-terms which are equated in Dω0 , we shall prove that M and N
are equated in any other reflexive domain model C in CPO. Let δ be the
theory of the model C. To prove the theorem it is sufficient to prove that
M and N are equated in Cδ. By the previous proposition Rω0([[N ]]0, [[N ]]ω0),
and so by Definition 7 R0([[N ]]0, pω0,0([[N ]]ω0)), and so [[N ]]0 = pω0,0([[N ]]ω0).
The same equality holds for the term M . Therefore:
[[N ]]δ = pδ([[N ]]0) = pδ(pω0,0([[N ]]ω0)) = pδ(pω0,0([[M ]]ω0)) = pδ([[M ]]0) =
[[M ]]δ 2

We now turn to the construction of a reflexive domain model in CPO1 for
the theory λβη.

Definition 9. i) Let T be the term model for the pure λβη-calculus, i.e.
the elements of T are the equivalence classes [M ] of pure λ-terms under βη-
conversion.
ii) Let D0 be the flat cpo obtained by adding ⊥ to the set T with the obvious
order relation.
iii) Let D1 = D0 →ω1 D0 (= D0 →ω D0),
iv) Let 〈e0, p0〉 be the ω1-ep pair from D0 to D1 given by:

e0([M ])([N ]) = [MN ], e0([M ])(⊥) = ⊥ and e0(⊥)(d0) = ⊥

The function p0 : D1 →ω1 D0 is uniquely determined by e0:

p0(f) =
⊔

{d0 | ∀d′0. e0(d0)(d′0) v f(d′0)}

in other words: p0(f) = [M ] if ∀[N ].f([N ]) = [MN ] and p0(f) = ⊥ if there
is no such term [M ].

The function p0 is not continuous but only ω1-continuous. This is the only
place where ω1-continuity plays an essential role.

Using the machinery presented in Section 3 it is now possible to build a
chain 〈Dβ , 〈eα,β, pβ,α〉〉α<β≤ω1+1 such that eω1,ω1+1 : Dω1

∼= [Dω1 →ω Dω1 ].
Given an environment ρ : Var → Dω1 we write [[M ]]ρ for the denotation of

M in Dω1 (relative to ρ).
Notation. For every function σ : Var → Λ and λ-term M with free vari-
ables {x1, . . . , xn}, we write Mσ for the term M [σ(x1)/x1, . . . , σ(xn)/xn],
moreover we write [σ] for the environment such that [σ](x) = e0,ω1([σ(x)]).

Proposition 9. For every λ-term M and for every function σ : Var → Λ
the following equality holds: pω1,0([[M ]][σ]) = [Mσ]
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Proof. By induction on the structure of M . In the proof we use equalities
that can be easily derived from the explicit construction of Dω1 given in
Section 3.
i) the case where M is a variable is immediate,
ii) for an application, M ≡ NP we calculate:
pω1,0([[NP ]][σ]) = pω1,0(eω1,ω1+1([[N ]][σ])([[P ]][σ]))

= pω1,0(
⊔

α<ω1
eα,ω1(pω1,α+1([[N ]][σ])(pω1,α([[P ]][σ]))))

v pω1,0(e0,ω1(pω1,1([[N ]][σ])(pω1,0([[P ]][σ]))))
= pω1,1([[N ]][σ])(pω1,0([[P ]][σ]))
v e0(pω1,0([Nσ]))(pω1,0([Pσ]))
= e0([Nσ])([Pσ]) (by induction hypothesis)
= [(NP )σ]

and since D0 is flat, equality holds.
iii) For an abstraction, M ≡ λx.N we have:
pω1,0([[λx.N ]][σ]) = pω1,0(pω1+1,ω1(λd : Dω1 .[[N ]][σ][d/x]))

= pω1,0(〈p0(pω1,0 ◦ (λd : Dω1 .[[N ]][σ][d/x]) ◦ eω1,0) . . .〉)
= p0(f)

where f = λd0 : D0.pω1,0([[N ]][σ][e0,ω1(d0)/x]). But now, for any term P we
have:
f([P ]) = pω1,0([[N ]][σ][e0,ω1 ([P ])/x])

= pω1,0([[N ]][σ[P/x]])
= [Nσ[P/x]] (by induction hypothesis)
= [(λx.N)σP ]

And from this [(λx.N)σ] = p0(f). 2

We now have:

Theorem 5. The λβη-theory induced by Dω1 is the minimal λ-calculus the-
ory, i.e. the theory λβη.

Proof. We need to prove that for every pair of terms M , N :

`βη M = N iff ∀ ρ.[[M ]]ρ = [[N ]]ρ

Since Dω1 is a model, the implication from left to right is straightforward.
Suppose, instead, that ∀ ρ.[[M ]]ρ = [[N ]]ρ. Then taking ρ(x) = x for all x in
V ar, and using Proposition 9 we calculate:

[M ] = [Mρ] = pω1,0 ([[M ]][ρ]) = pω1,0 ([[N ]][ρ]) = [Nρ] = [N ]

and so `βη M = N . 2

The previous theorem cannot be generalised to arbitrary theories. There
is no reflexive domain model in CPO1 for the theory considered in Ronchi
and Honsell [1992]; this can be shown by a similar argument to that given
there for the Scott-continuous case.
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Appendix: The language GC

The language GC is a language featuring assignment, command composition,
and two non-deterministic commands: non-deterministic selection and non-
deterministic multitest loop, which iterates as long as at least one of its
guards is true. The set Com of commands of the language GC, ranged over
by C, is generated by the following abstract syntax grammar:

C ::= x :=E | C1;C2 | if G fi | do G od

G ::= G1 G2 |B → C

Here G ranges over the set GCom of guarded commands and x ranges over
identifiers. The set Exp of expressions, ranged over by E, and the set BExp
of boolean expressions, ranged over by B are assumed given The grammar
is extended with extra clause C ::= x :=?, when dealing with unbounded
non-determinism.

The denotational semantics of GC is defined as follows, assuming functions
E : Exp → (S → V al) and B : BExp → (S → {tt,ff})1:

C[[x := E]]s = {[E [[E]]s 7→ x]s}

C[[C1;C2]] = (C[[C2]])+ ◦ C[[C1]]

1 For simplicity, the semantics of non-deterministic selection command does not cause
failure when each guard fails.
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C[[if B1 → C1 . . . Bn → Cn fi]]s

=







{s} if B[[Bi]]s = ff, for i = 1, . . . , n

⋃

{C[[Ci]]s | B[[Bi]]s = tt} otherwise

C[[do B1 → C1 . . . Bn → Cn od]] = f

where f : S → P(S⊥) is the least function satisfying the recursive specifica-
tion:

f(s) =







{s} if B[[Bi]]s = ff, for i = 1, . . . , n

f+(
⋃

{C[[Ci]]s | B[[Bi]]s = tt}) otherwise


