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Abstract 

This thesis represents work that investigates the implementation of a practical control 

strategy for a simple wave energy converter in regular and irregular waves. Inspired by the 

neurophysiology of the lamprey, this work examines the limitations of using this neural 

structure as a method for control of an articulated wave energy converter. 

Starting with a very simple mechanical model of a single heaving buoy, evolutionary techniques 

are employed to evolve a single lamprey segment that will be capable of acting as a controller. 

Without prediction of the incident wave, wide-bandwidth latching controllers are evolved that 

show significant improvements over optimal real damping in increasingly complex waveforms. 

More complex mechanical configurations are also investigated, expanding the simple heaving 

buoy into two and three interconnected buoys with power being developed through their 

relative motion. Neural latching controllers are evolved for these different configurations and 

it is shown that an effective neural latching controller cannot be evolved for more than two 

interconnected buoys. 

This thesis investigates the processes of producing a viable implementation of a latching 

strategy using neural oscillators as a non-linear feedback loop. It covers their performance in 

regular and irregular waves and demonstrates the limitations of latching control when applied 

to an articulated system. 
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Chapter 1 
Introduction 

1.1 Overview 

This document presents research that is a combination of work drawn from two very separate 

areas, marine energy extraction and artificial neurophysiology. These fields are combined 

within this project to develop a biologically inspired control method that will effect a practical 

control method for a simple wave energy converter. 

Inspired by Ijspeert's work on artificially modelling the lamprey biological swimming 

controller, this thesis seeks to use the main characteristics of this artificial network in a 

different arena. The lamprey's locomotion is generated by propagating a travelling wave along 

the length of its body and it can be seen (see figure 1.1) that certain wave energy converters use 

a similar anguiliform motion to generate power. 

-- 

(a) The lamprey. 	 (b) The Pelamis WEC. 

Figure 1.1: The similarities in motion between the lamprey and PEL4 MIS. 

The lamprey's locomotive behaviour is a combination of muscle actuation and sensory feedback 

and is generated within a separate neural construct known as the central pattern generator. This 

mechanism allows the lamprey to swim without requiring direct control by the brain of the body 

movements and it is thought that, as the Pelamis shares a similar body motion, it may benefit 

from a similar method of control. Similarities between the two can be seen at a deeper level as 
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both devices share a segmental structure; where the Pelamis consists of a series of articulated 

units that generate power, the lamprey consists of a series of interconnected neural oscillators 

that control movement. Of course the scales are very different with only four segments in the 

Pelamis but over one hundred in the lamprey, although we can show that the systems are similar 

but the direction of control is slightly different; whereas the lamprey moves by propagating a 

wave along the length of its body, the Pelamis responds to a wave propagating along the length 

of its body. 

The awesome power available in the marine environment is clear to anyone who has ever set 

foot on a boat or witnessed waves crashing into the shore on a windy day. The only issue faced 

is how to efficiently capture this power and turn it into useful electricity. This is a notoriously 

difficult problem, and although research has been concentrated on finding a viable method of 

conversion for over thirty years, there are still no commercial wave-power installations'. One 

of the primary reasons for this fact is the very high energy density present in ocean waves, 

meaning any device operating in this environment must be designed to withstand the extremes, 

yet generate power at a good rate of economic return. 

The Pelamis wave energy converter (WEC) is an example of an articulated device designed to 

capture energy from ocean waves. It comprises of four sections that are linked via hydraulics, 

with the wave induced relative motion of these segments pumping hydraulic fluid through an 

accumulator to a generator. This or any other type of WEC requires that this wave induced 

motion is resisted by a damper (which could be the resistance applied by the electrical generator 

or possibly through some other means) but, if this damping can be adjusted at specific times in 

the wave cycle, we can maximise the power developed. This is the principle behind control of 

wave energy devices and, in ideal situations, can lead to very significant power increases. By 

using the analogy between the lamprey and the Pelamis as a starting point, it is thought that we 

can use the neural swimming controller of the lamprey to control the application of damping to 

a wave energy converter. 

The Pelamis is a particularly complex mechanical system and as this level of complexity may 

not be entirely suitable for this thesis, a simplified model is developed that will allow us to 

start with a very basic system and then expand into an approximation of an articulated device. 

Starting with a single heaving buoy we add additional heaving buoys to the system and by using 

1 1n summer 2005, Ocean Power Delivery has agreed to sell three of its Pelamis devices to Portugal to begin the 
fi rst commercial wave-farm, but currently there are no commercial schemes operating. 
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their relative motions, the angular movements observed at the joints of an articulated device can 

be modelled. 

This simplified mechanical system is modelled numerically and it can be seen  that this 

provides an acceptable alternative to a physical model. Whilst physical models can provide 

a much clearer impression of a device's performance than numerical models, numerical models 

offer an invaluable tool for initial development of WEC's and other marine structures. 

Construction of an accurate physical model can be complex and wave tank facilities can be 

expensive. As a result, a significant amount of conceptual and evaluation work on WEC's is 

done with numerical models. The development of the Pelamis has involved a great deal of 

numerical modelling, following the typical use as an initial pre-cursor to device testing, the 

physical model then provides a calibration and verification of the numerical model[5]. 

The lamprey is an eel-like fish and features a simple and very well documented neural structure. 

Its locomotion, like all vertebrates, is centrally controlled by a neural structure within the spinal 

cord known as the central pattern generator (CPG). This neural structure extends along the 

entire length of the body and consists of a series of interconnected segments that directly control 

the muscles on each side of the body. It can be seen that although each segment can operate in 

isolation as an oscillator, when connected together, they feature precise time-delays that ensure 

the lamprey can move at an optimum velocity. 

Due to this simple neural structure the lamprey has been seen as a perfect candidate for further 

study. Most particularly relevant is the work done by Ekeberg on modelling the lamprey's 

central pattern generator [6] and then Ijspeert who took Ekeberg's models and developed 

artificial central pattern generators using evolutionary techniques. This thesis takes Ijspeert's 

basic method and attempts to develop artificial neural controllers based upon the topology of 

the lamprey that are suitable for controlling a wave energy converter. 

1.1.1 Development 

The primary aim of this project was to discover whether the unique characteristics of the 

lamprey CPG can be used to apply control to a simple wave energy converter and further to 

see if this neural mechanism may be applied to a more complex articulated WEC. 

211 can be seen that a number of important papers on wave energy use numerical modelling exclusively.[1-41 

3 
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A numerical model has been developed that allows the simulation of a single degree of freedom 

heaving buoy, restrained by a tether connected to the sea floor which incorporates a power 

take-off element. Basic hydrodynamic and hydrostatic parameters are included in the model, 

providing an adequate approximation to a real device. In addition to this numerical WEC 

model, a system was also developed (with the help of Leena Patel) that models the operation of 

the lamprey neuronal network. This model uses the equations developed by Ijspeert to simulate 

the operation of individual neural segments. 

These neural and mechanical systems are developed such that they may be combined, allowing 

the neural network to influence the mechanical system and also the mechanical system to effect 

the operation of the neural network. This simulator forms the basis for all the experiments 

presented in this thesis and allows for different WEC and neural configurations to be tested in 

a very wide range of sea conditions. 

1.1.2 Findings 

Initially we investigate the operation of the lamprey neural segment as a neural oscillator 

and we show that the performance of this oscillator is determined by the synaptic weights 

of the network. We also show that we can effectively connect the neural and mechanical 

models together, resulting in the neural output becoming phase locked to the WEC oscillation. 

Furthermore, we show that we can also optimise the neural weights and develop a neural 

network that is able to apply a latching 3  strategy to the single buoy WEC, producing 

near-optimal response in a range of wave periods. We also show that this evolved single buoy 

controller is able to produce good output in realistic waves, without requiring any prediction 

of the wave - a feat that is currently particularly difficult. 

The mechanical model is now expanded in order to begin to approximate an articulated 

device. It is shown that in the configuration of two sections and one joint (the Cockerell raft) 

performance similar to the single buoy results is seen with good performance also shown in 

realistic waves. Further expanding the system to three sections and two joints interestingly 

showed that effective latching control is not possible in this configuration. It was seen that the 

interconnected lamprey CPG segments were unable to apply latching control to an articulated 

WEC primarily due to the discrete nature of the control method used, however this opens up the 

future possibility of using this neural technique to apply a more continuous method of control. 

3 Latching is a method of discrete control that involves locking the WEC displacement when the device reaches 
zero velocity and releasing a short time later. A full explanation is given in section 2.4.2 

4 



Introduction 

1.2 Original Contribution 

This project aimed to investigate the hypothesis that: 

Effective control implementation for Wave Energy Devices can be developed from 

(neuro)biological exemplars. 

The choice of the lamprey as the (neuro)biological exemplar and of the Pelamis WEC as the 

artificial system are made for the reasons described above. The "fit" between the two systems 

appears to be good and encourages optimism that the hypothesis will be supported in this 

specific and important case study. 

As with any body of research, this thesis builds upon a base of knowledge already in place. 

This work concentrates in two dissimilar areas, artificial neurophysiology and marine energy 

conversion and provides a contribution to knowledge through their combination. 

This work is based upon a well proven and very simple approximation to a wave energy 

converter, a heaving buoy that incorporates a power take-off element in the tether. A technique 

known as latching is applied to this system which was first developed in 1978 by Budal and 

Falnes [1] in order to improve the efficiency of the power take-off mechanism. Any ideal control 

mechanism requires that the future wave elevation is known and this is clearly impossible with 

any control technique as it would require conditions to be fully constrained and predictable. 

Current near-optimal practical methods can, however, derive future wave elevation in real seas 

through prediction or measurement ahead of the device. This thesis investigates the possibility 

that by using a biologically inspired neural network, we may be able to remove some of the 

requirement for measurement or prediction when using a latching strategy in an irregular sea. 

A repeat of the basic latching principles is presented in Ringwood and Butler's 2004 paper[7]. 

This also shows a very simple application of genetic algorithms to determine optimal latching 

parameters. Whilst introducing the principle of GA's to wave energy, this work only achieves 

values to determine latching parameters in a known regular sea. In contrast, this thesis shows 

the use of GA's to optimise a (neural) control system so that the device may apply latching in 

an unknown sea, thus operating without the need for wave prediction. 

The principle of applying latching control in irregular waves without prediction is known as 

a "causal" strategy and a method of implementing this was presented by Korde in a 1999 

61 
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paper [8] which presents a mathematical method of extracting the future device velocity from 

a combination of past and current movements with direct reference to latching. This thesis in 

essence provides a similar result to Korde but uses a significantly different method. It was found 

that there is a minimal amount of published work in this area, possibly due to the sub-optimal 

nature of such a resulting strategy. 

The neurophysiological aspect of this work is solidly based upon models of the lamprey 

developed by Ekeberg and further expanded by Ijspeert. In addition, this work also makes 

use of similar evolutionary techniques that Ijspeert used to develop the synaptic weights of the 

lamprey CPG, although in this research the power absorbed by the device is used as the fitness, 

rather than the forward swimming speed. 

The novel contribution of this thesis lies in the unique and very promising application of 

neuronal networks to apply control to a simple WEC device. It can be seen that there is very 

little precedent for this work, so it is difficult to identify exactly where this research sits. It 

can certainly be seen as a further expansion and abstraction of the work done by Ijspeert and 

Or by developing further the artificial lamprey model and illustrating an alternative application. 

It also sits firmly within wave energy as another expansion to the study of latching control by 

illustrating an alternative non-mathematical method to Hoskins' and more recently Babarit's 

work on determining optimal latching response. 

Furthermore, this work presents the principle of a non-optimal control strategy that will work 

without requiring future knowledge of the wave height which offers an alternative and simpler 

method to that presented by Korde. Also introduced here is an attempt to produce latching in 

an articulated device, a principle which is mentioned by Babarit but not expanded. The results 

here suggest that this neuronal model would be far better suited to control of devices with a 

single control element. 

In effect this thesis creates new ground by suggesting a novel application of biologically-based 

neural networks, creating a small branch in the area of wave prediction and control application. 

This will hopefully pave the way for further work in this area, including looking at the 

use of different control techniques, testing in more realistic conditions with more realistic 

devices and the further development of the neural parameters themselves to improve the overall 

performance. 



Introduction 

1.3 Summary of Thesis 

Chapter 2 

Wave Energy Background 

This chapter introduces the concept of marine energy and illustrates the great potential power 

that may be available in ocean waves. It explains some of the preliminary issues and principles 

that need to be addressed in the conversion of ocean waves and describes techniques that can 

be used to optimise the power transfer. The proposed method of control is outlined along with 

a full description of the mechanical model that will be used throughout this thesis. 

Chapter 3 

Neural Background 

This chapter describes the biology of the lamprey and introduces the concept of centrally 

controlled locomotion. The neurophysiology of the central pattern generator is studied and 

its unique features are detailed. Following this, the text looks at how the lamprey CPG has been 

computationally modelled and simulated in the past and it describes how these models can be 

developed to potentially produce a controller for a WEC. 

Chapter 4 

Tools and Methods 

In this chapter the basic experimental method and techniques are introduced. The numerical 

model for the neural network is introduced and a description is given of how we may combine 

this with the mechanical WEC model described earlier. Genetic Algorithms are introduced in 

some detail, illustrating some of the more advanced techniques that will need to be employed 

to evolve solutions, including outlining a multi-processing method to speed up execution. 

Chapter 5 

Preliminary Results 

This chapter introduces the first experiments and shows how the neural and mechanical systems 

interact. It describes latching control for a single buoy initially and then illustrates how this can 

be developed into a wide-bandwidth controller that is capable of dealing with changing period 
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waves. Different wave periods and controller bandwidths are shown and the effect of varying 

the neuron time-constant and optimal damping value is investigated. 

Chapter 6 

Further Testing and Expansion to Multiple Degrees of Freedom 

This chapter continues to test the wide bandwidth controller developed in the previous chapter, 

showing its performance in more complex and realistic waves and comparing it to uncontrolled 

optimal damping. The mechanical model is expanded into two units and its performance shown 

in a series of regular & irregular waves. The mechanical model is then further expanded into 

three buoys and the performance with these simple articulated arrangements is discussed with 

emphasis upon suggesting a number of ways in which to evolve successful controllers. 

Chapter 7 

Discussion and Conclusions 

This chapter discusses the significant results and issues raised within this body of work and 

presents the the conclusions that may be formed from them. 

Appendices 

Appendix A 

A full description of the operation of the simulator is provided in this appendix, including 

operating instructions and examples of configuration files required for operation. 

Appendix B 

This appendix includes the evolutionary algorithms featured in this thesis and describes the 

genetic operators used. The method, operation and use of the multi-processing environment is 

described along with a listing of the perl scripts and sample control files. 
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Chapter 2 
Wave Energy Background 

This chapter provides an introduction to the basic concepts behind ocean waves and introduces 

the principle of energy capture from these waves. Starting with a historical overview of the 

motivation behind the study of wave energy, this chapter looks at some of the important 

concepts required to understand capture of energy from ocean waves. Following this 

explanation, we look at the possible ways in which a device may capture energy and detail 

previous work done in this area. The concept of control is introduced next with the principle of 

latching, or phase control, being addressed in depth. Finally the modelling of a simple system 

in relation to this thesis is presented, along with a possible control implementation. 

This chapter covers a great deal of work in the field of wave energy but does not provide an 

in-depth coverage of all the associated areas; what it does provide, however, is a coverage 

of the techniques and principles directly relevant to the ideas presented later in this thesis. 

An excellent overview of the field of wave energy can be found in chapter 8 of "Renewable 

Energy", by Les Duckers [9] or alternatively, a thorough treatment of the principles of wave 

energy extraction can be found in Johannes Falnes book, "Ocean Waves and Oscillating 

Systems"[ 10-12]. These publications provided a significant amount of background for this 

chapter. 

Whilst a complete coverage of the whole subject of wave energy is not feasible, references will 

be provided to guide the reader to the most significant works in the appropriate areas. 

2.1 Background 

Conversion of ocean waves into usable energy has been of practical interest for over one 

hundred years. Sea waves provide a very tangible force that has been observed since pre-history, 

however the practicalities of capturing this energy have been far from straightforward. Modem 

interest in ocean wave energy conversion started around 1973 with initial work being carried 

out at Edinburgh and Trondheim Universities, amongst others. This interest in wave energy as 



Wave Energy Background 

a renewable resource was triggered largely through the energy crisis of the 1970's, with many 

people being particularly concerned with possible replacements for fossil fuels. Much research 

took place during this initial period, and the basis of modern theory was laid down with many 

lessons learnt and many failures observed. Research funding in the UK was cut in March 1982 

even though the research at that time was exceptionally promising[13], the decision being made 

to rely on nuclear power to provide clean cheap energy. It has been seen since that this decision 

was critically flawed when the real cost of nuclear power became evident. Since the late 90's, 

however, interest has resumed in wave energy mainly due to two factors: 

An unhealthy dependence upon a dwindling supply of fossil fuels 

The Kyoto protocol and resulting CO2 emissions targets 

These factors resulted in demand for low carbon, renewable sources of electricity and in the 

marine energy sector alone, have triggered some very promising technologies and devices. 

Many of these are now at the full scale prototype level and although none have yet been 

deployed on a commercial scale, this is certainly imminent. 

2.1.1 The Wave Resource 

The surface of the earth consists of water and the energy contained in the movement of this 

medium is huge. This is divided into movement through gravitational interactions, (tides) and 

through waves resulting from winds blowing across the surface. Both wave and tidal energy 

can be captured and can in theory generate enough power to have a significant contribution to 

global energy production. This thesis considers only the extraction of energy from waves and 

does not consider tidal extraction which would require a very different method for capture. 

The energy contained in this resource around the globe can be seen in fig 2.1. Concentrations 

of waves with annual average power densities exceeding 80kW per meter of wave crest can be 

observed in northern latitudes. It is important, however, to realise that the nature of the wave 

climate means that the figures in figure 2.1 are year-round average figures; certainly in these 

locations extreme conditions will be encountered that may be many orders of magnitude greater 

than the figures given here. Indeed the seasonal variation will tend to much larger waves in the 

winter months, a particularly convenient effect in northern latitudes as the energy demand will 
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Figure 2.1: World wave energy resource. Figures show annual average available power in kW 
per ineter of wave crest. 

also be higher at this time of year 1 . The year round variation for a site off the Hebrides in 

northern Scotland is shown in figure 2.2. 

2.1.2 Waves as Condensed Energy 

Ocean waves consist of a combination of many different types, of which all are directly or 

indirectly formed through winds blowing across the sea surface. These winds are created, 

directly and indirectly, through the solar heating of the atmosphere. It can be seen that as the 

flow of energy propagates from solar to wind to wave the density of this energy is compressed 

(see table 2.1). 

As energy is transported between media it results in an increase in density of around 30 times. 

This results in particularly high energy concentration which can be extremely beneficial in order 

to enable economical capture. However, this increase in density also results in a power spectrum 

'This refers to the location mentioned in Ii gure 2.2 and applies to areas in which the requirement for heating 
and lighting during the winter months results in a significant increase in electricity demand relative to the summer 
months. 
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Figure 2.2: Annual seasonal wave variation for an area just off the Hebrides [12]. Powers 
shown are average kW per ineter of wave crest. The upper line illustrates the 
annual energy demand in kWfor the Scottish town Lochgilheadj141 

Resource Average Intensity 

Solar 1 OO-200Wrn 2  
Wind 400-600Wm 2  
Wave 2 - 3 kWm 2  

Table 2.1: Resource Energy Density[12] 

where peaks are many magnitudes higher than the average (see figure 2.4). The nature of the 

resource means that any cost-effective energy capture device must be engineered to survive the 

very high energy peaks whilst still maintaining a high efficiency. 

2.2 Waves on Water 

In order to describe the nature of waves, it is best to think of them as a movement of energy 

across the surface of the water, as the water particles themselves to not propagate along with 

the wave, rather they travel in orbits as the wave passes. Considering these orbits we can derive 

the equations of motion that govern the major characteristics of waves. 

It is important to know the energy content of these waves and just how the energy is distributed 

6000 
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Wave Directior 

Figure 2.3: Circular particle movement in a regular wave. Particles are represented by red 
dots and their orbits are represented by the circles. 

over the wave spectrum. From this we can see the different behaviours of waves on water and 

how they may interact with objects designed to harness this energy. 

If we consider that the device will be used only in deep water, which is classified as a depth 

greater than —+ [101, then we can state the velocity of propagation of a wave Acos (wt — kx). 

Assuming that w = 27rf and knowing that the angular repetancy (wavenumber-k) = , then 

using c = f  this gives: 

c==it 	 (2.1) 
k w 

However, water waves are dispersive. That is, waves of different frequencies and wavelengths 

will travel at different speeds. This dispersion relationship is given by w 2  = gk. Therefore the 

speed, or as it is more correctly known, the phase velocity v is given as: 

= 
cg  
	

(2.2) 

A=vpT=T 	 (2.3) 
2ir 

However, due to this dispersion relationship, if waves of different periods are superimposed, 

then it can be seen that the resulting group of waves will propagate with a different velocity. 

This can be shown by using two waves of different frequencies w, and W2, and letting Wi 

w - Lw and w2 = w + Aw. Therefore the sum of these waves can be written as: 

= 2a eos(iwt - kx)cos(wt — kx) (2.4) 

If we consider the term derived from the summation of these frequencies: 2a cos(wt — A kx) 

This is the energy carrying component of the resulting wave and will propagate with the group 

= is derived from the dispersion relationship for waves on deep water; W 2 = gk [10] 
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velocity (vg): 
Lw dw 	g 	1 

v = - = - = - = —v 	 (2.5) 
ik dk 2w 2 

Therefore it can be seen that the group velocity is half of the phase velocity. This is a 

significant result, as it shows that the propagation of the group and hence the energy content of 

the wave is less than the speed of an observed individual wave. 

2.2.1 Real Ocean Waves 

As is obvious though observation, real ocean waves comprise a complex interplay of regular 

waves with different period, length and direction. These waves superpose to produce a spectrum 

that, in general, features a dominant period and wavelength. Although real ocean waves are 

stochastic and very difficult to predict accurately, they can be modelled with suitable spectra 

generated from a random seed. In 1964 Pierson and Moskowitz[15] developed a spectrum 

that would model a fully developed, wind-driven sea. This enables us to produce an estimate 

of a real sea and facilitate the design of structures, ships or more appropriately, wave energy 

converters. 

S() = 	 (2.6) 

Shown in equation 2.6 the Pierson-Moskowitz spectrum is still useful today although it has 

somewhat been superseded by the JONSWAP spectrum. In 1973, through the Joint North 

Sea Wave Observation Project, Hasselmann et al. [16] found that the wave spectrum is never 

fully developed. It continues to develop through non-linear, wave-wave interactions even for 

very long times and distances. Therefore a spectrum of the form shown in equation 2.7 was 

proposed. 

ag2 w _5 e_ 124 0/ 4 yr 	 (2.7) 

(Wwp) 2  

r = e 2a2 	 (2.8) 

The JONSWAP spectrum is similar to the Pierson-Moskowitz spectrum except that waves 
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Figure 2.4: Wave height against time for a wave derived from the Pierson-Moskowitch 
spectrum in equation 2.6. The lower plot shows the relative instantaneous power 
for this wave. The horizontal dotted line indicates average power 

continue to grow with distance (or time) as specified by the a term, and the peak in the spectrum 

is more pronounced, as specified by the 'y term. 

A time representation of a Pierson-Moskowitz spectrum is shown in figure 2.4, this figure also 

shows the instantaneous power content. 

2.2.2 Energy Content 

It can be seen [10] that, within one wavelength, the kinetic energy contained within the wave 

must equal the potential energy. Therefore Et  = E + Ek = 2E and can be written as: 

pg 	 1112 
Et=2Ep=2f r1dxPgj?1max 	 (2.9) 
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Power contained within the wave is defined as the flow of energy per unit length of wave front, 

and as the energy moves with the group velocity this gives J = v gEt. If we also substitute 

eqn 2.3 into eqn 2.5 and use the RMS value of wave elevation HHMS, after manipulation 

eqn 2.9 becomes: 
2  Pw9 2 

J(Wm) 	4-7r
—HRMST 	 (2.10) 

This provides the maximum power per unit of wave crest for a given period and height. It is 

important to note that the power increases with the square of the wave height and this relation 

is illustrated in figure 2.4 with the power content of the PM spectrum shown in the lower plot. 

It is significant to note the difference between the average and the peak power as this is a 

key characteristic of wave energy and any WEC must be designed to take this into account. 

Salter [17, 18] discusses the importance of power limiting and storage in WEC's in order to 

improve performance in such an environment. 

2.3 Capturing the Power 

We now will consider what happens when the waves interact with a floating body. If we make 

the dimensions of the body small with respect to the wavelength they can be neglected, save 

for the obvious effects of the volume, buoyancy and hydrodynamic forces. This in effect means 

we can neglect more complex effects based on the physical dimensions of the body. This 

assumption is commonly known as the "Small Body Approximation". 

The floating body now has a buoyancy dictated by its volume, and defined by Archimedes 

Principle (eqn 2.11). The force in the vertical direction, is opposed by the mass of the body. This 

balance of forces creates a spring effect, which can be observed by the resulting oscillation if the 

body is displaced by a small amount and then released. This oscillation will then be damped due 

to hydrostatic/hydrodynamic forces. The resulting system obeys the simple harmonic motion 

of a mass-spring-damper (eqn 2.12). 

	

Buoyancy(Fb) = submerged volume x Pw X  9 	 (2.11) 

	

mass x i = —damping x I - k x z 	 (2.12) 
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Figure 2.5: Phasor diagram showing the 11 shift between components. The over hat represents 
complex notation. 

Here we assume z is displacement in the vertical direction, k is the spring constant or buoyancy, 

g is the acceleration due to gravity and Pw  is the density of water. The over-dot is used to 

denote differentiation with respect to time. The relationship between these components can be 

illustrated in complex form in figure 2.7. 

The hydrodynamic forces acting upon the body are commonly defined as added mass and added 

damping. These forces are the result of a body moving in water. The added mass is a result of 

wave diffraction and can be visualised as the mass of water a moving body 'drags' along with 

it. The added damping, more accurately known as radiation resistance can be described as the 

force resulting from the oscillations emanating from the body. 

Both the added mass and damping are related to the physical shape of the body and are 

frequency dependent, however these are first order effects and cannot be neglected by the 

small body approximation. For the purposes of modelling the hydrodynamic co-efficients of 

this simple geometry have been calculated using the WAMIT [19] program and are shown in 

figure 2.11. 

2.3.1 Principle of Energy Extraction 

Initially shown by Evans in 1976 [201,  in order to extract the energy from an ocean wave 

we must understand the paradox that states: "In order to destroy a wave, we must create a 

wave" [10]. By destroying a wave we are capturing its energy and in order to do this we should 

create a wave that will destructively interfere with the incident wave. Therefore a good absorber 

17 
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Figure 2.6: The process of absorbing a wave.[10] 

of waves is also a good creator or waves. Figure 2.6 illustrates this concept. 

A & B shows the waves generated when a body is restricted to move only in heave (A) or surge 

(B). It can be seen that if we combine these motions, the resulting superposition will give us 

C. This shows that the combination of the symmetrical and asymmetrical motion has cancelled 

out the radiation propagating to the left, leaving only a wave propagating to the right. 

If we now consider the incident wave shown in D, we can see that if we combine this with the 

wave generated by the heave motion, only 50% of the incident wave will be absorbed by the 

body E. This would also be the same for any body only operating in one dimension. However 

if we now combine the wave generated through the combination of heave and surge motion (C) 

with the incident wave, we can see that 100% of the incident wave can be absorbed(F). 

By carefully controlling the motions of a floating body it can be seen that it is possible to absorb 

all of the incident wave energy. Although the illustration in fig 2.6 considers a case in only in 

two dimensions, in reality there are many more factors to consider. 

2.3.2 Previous Work 

Much work has been done on device development since the mid seventies when wave energy 

first emerged as a quasi-viable energy source. Since Salter's landmark 1974 paper [21],  the 

theoretical fundamentals of wave absorption soon appeared independently in publications by 

Evans [20], Mei [22] and Newman [23].  These theories showed that a body could absorb 
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more energy than was incident upon its width. Newman [23] showed that in an optimal simple 

case, a device is capable of converting a maximum of A/27r of the incident wavefront. This 

is a significant result as it eliminates the device dimensions from the equation. Evans [24], 

and more recently Pizer [25](with specific reference to point absorbers) illustrated that as the 

excursion of the body must adjust to accommodate this power, practical excursion constraints 

should be considered. 

Different types of WEC can traditionally be placed into one of three classifications: point 

absorber, terminator and attenuator. The point absorber can be the simplest of all the designs 

and commonly features small dimensions relative to the incident wavelength, taking advantage 

of the small body approximation. In general, due to their simplicity, the point absorber is the 

simplest device on which to implement control (see section 2.4.2). 

The terminator design, as the name suggests, has the principal axis parallel to the wave front 

and attempts to absorb all of the incident energy. Devices in this category include Salter's 

duck [21] and more recently the wave-dragon overtopping device [26]. 

The attenuator design commonly has the axis perpendicular to the wave front and can be 

seen to be inherently power-limiting. The most prominent design in the category is Ocean 

Power Delivery's PELAMIS [5, 27, 28] which consists of a series of four articulated cylinders, 

interconnected by hydraulics, positioned perpendicular to the wave front. Although a new 

device, the original concept was proposed by Cockerel (as reported in [29])  which consisted 

of trains of interconnected rafts whose relative angular movements generate power. This 

concept was modelled by Newman [30] and Haren & Mei [31] who studied the efficiency 

and optimisation of such a design. 

Many devices do not fit neatly into these classifications, such as the Bristol Cylinder (as 

described by Salter [171) which consists of a large floating cylinder held under the water and 

parallel to the wavefront so that it moves with the circular orbits generated by waves, as shown 

in figure 2.3. 

2.4 Control 

The principles of energy extraction illustrate a number of complexities that must be addressed 

in order to attain optimal efficiency. Mainly these inefficiencies arise as the extraction system 
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is frequency dependent, thus having a different response to different waves. Thus, in order to 

tune such a system in a given wave environment, various parameters of the device need to be 

adjusted. The simplest method is to tune the device to the most common wave environment at 

the proposed site and accept that for some of the time the device will not be operating within 

the optimal region. Alternatively it may be possible to design a device that will allow certain 

parameters, such as power take-off damping, inertia etc to be adjusted - enabling the device to 

adapt to changing sea conditions. This is a common technique as it enables the device to operate 

at the maximum of its efficiency for more of the time, increasing its plant capacity factor 2 . In 

both of these methods, the device parameters are static for at least a number of wavelengths, 

usually much more, and can be classed as tuning  of the device rather than control. Control 

on the other hand describes the tuning of the device on a cycle by cycle basis and can result 

in a significant increase in the rated efficiency of the device. Generally, applying control is a 

very effective way of increasing the efficiency of a device without significantly contributing 

to its cost. Therefore much work (see section 2.4.2) has been done in this field. In order to 

understand the most prominent methods of control we must first introduce the basic principle 

of resonance. 

2.4.1 Principle of Resonance 

A very well known principle, resonance describes the exchange of energy between two systems 

at a specific frequency. To expand, we can first define the natural period of oscillation of simple 

harmonic motion, such as seen in the system here, (wO) which can be found using wO = 

This shows the dependence of the natural frequency upon mass and buoyancy. Now consider 

the body being exposed to an external wave force; when the natural period of the excitation 

force coincides with the natural period of the body, w, maximum energy will be transferred 

between these two devices. At this point the energy will be dissipated by creating very high 

excursions on the body. If we add additional damping into the system, for example with a 

tethered damper to the sea bed, we can absorb the energy imposed upon this body and restrict 

its excursion. This damper can be considered the power take-off device and will be referred to 

2The plant capacity factor (PCF) is given by the ratio of the integral of energy produced to the device rated 
power. For a particular resource it describes the amount of time the device is operating at its rated (maximum) 
capacity and is given in percent. Therefore a 1MW rated device device with a 50% annual capacity factor will 
produce a continuous 500kW average power over a year. 

3 A 'tuned' device, as mentioned here is strictly classed as an uncontrolled device and will be referred to as such 
in this thesis 
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as CPTO in this thesis. 

Whilst it is clear that at resonance optimal energy transfer between a device and the wave will 

take place, above or below this frequency significantly sub-optimal transfer will occur. Due to 

the non-regular and unpredictable nature of real ocean waves (see fig. 2.4) this means that for 

the majority of time a simple device will be operating at a significantly reduced capacity. 

Budal & Fames stated in 1978 [1] that this point of (resonant) maximum power transfer was 

characterised by a phase difference of K between the wave and the device displacement. 

Figure 2.7 illustrates this relationship between phase and power. They suggested that if this 

phase shift could be achieved at frequencies away from resonance it would result in maximum 

possible power transfer. 

2.4.2 Control 

As reported previously control can be described as modifying the device parameters on a cycle 

by cycle basis in order to increase the conversion efficiency. The method in which this is 

done depends upon the control technique. Various research has been done on different control 

methods and their suitability to various seas, Korde [32] in his review article provides a general 

overview of the different control techniques, however a more in-depth review can be found in 

Fames [33]. 
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In theory, many of the proposed control methods [1,21, 341 can produce near optimal power 

in any sea, however they require advance knowledge of the incoming wave. This results in 

what can be termed a 'non-causal' system that requires future knowledge of the system in order 

to achieve maximum performance [35, 36]. Although this is a significant problem in control 

system design, wave-prediction, measurement and forecasting can be used in order to combat 

this. 

The two most significant control methods developed are Reactive and Latching control and are 

discussed below: 

Reactive Control 

Reactive, or continuous control was developed at Edinburgh University through early work on 

the duck [21] and involves modification of device parameters such as inertia, spring, damper 

etc. It is a continuous phase control method and involves the continuous application of forces 

to the device, an excellent overview is provided by Salter [18].  The applied forces to the 

device are in phase with both inertia and spring as inertia resists acceleration and spring resists 

displacement. This control method adds to or cancels the spring and inertia terms, ensuring that 

the device performs as a pure damper, absorbing the available energy, rather than re-radiating 

it. This action sometimes requires that energy is put into the system, however it is normally 

repaid highly with the increased efficiency. 

An extension of reactive control is complex conjugate control, this is a more general 

implementation of control derived mathematically. This method seeks to cancel all undesirable 

spring and inertia at all frequencies and in theory, by using prediction of the incoming wave, 

an almost 100% flat efficiency curve can be produced [34]. 

Latching Control 

Latching, or more correctly, discrete phase control, was developed in 1978 by Budal and Falnes. 

Budal [1] proposed that optimal phase may be achieved through the fixing and releasing of the 

device at discrete points through the wave cycle. This method is termed "latching" and was 

also proposed independently by Jones [37] and French [2]. The method involves the device 

being held at its extremities of displacement for a short time so as to induce the correct phase 

difference between the device oscillation and the incident wave. Figure 2.8 shows how the 
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Figure 2.8: Lurching strategy. Upper diagram shown the common configuration where the 
natural period of the device is lower than the incident wave. The lower diagram 
shows how latching may be implemented when the wave period is shorter than the 
incident wave. 

displacement of the device is "held" at the maximum positive displacement until the force upon 

it is maximum. At this point it is released and moves until it it reaches maximum negative 

displacement, whereby it it is again fixed. This results in the optimal phase shift of 21  being 

achieved between the device and the wave. However as the control strategy implements phase 

control by increasing the phase shift, it can only be used effectively in this configuration for 

frequencies less than resonance (see fig 2.7). More recently, Babarit et al [4] showed that 

latching could also be used below resonance, this results in a latching period of greater than 

one half period and therefore only one movement, or less, is allowed per cycle (see fig 2.8). 

The discrete nature of latching control means it is difficult to mathematically determine an 

optimal strategy. However Hoskin and Nichols [3] developed an iterative computational method 

to calculate the optimal performance of this method, then later [38] showed a mathematical 

method for solving this problem using Pontrygrains Maximum Principle. 

As with any control method, latching requires knowledge of the incoming wave in order 

to calculate the correct release points [35], hence any optimal solution must require future 
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Figure 2.9: Energy absorbed against time for a latching strategy, compared against an 
uncontrolled response. 

knowledge and is known as 'non-causal'. This is a particular problem when dealing with 

irregular spectrum waves as these must be predicted or detected in advance in order to ascertain 

the correct latching points. Conversely, a system that can calculate the correct latch and release 

points without requiring future wave data can be termed 'causal'. Korde [8] shows that causal 

control may be possible by extrapolating from past and present data and more recently it has 

been shown that it is possible to implement a causal strategy [391 that although non-optimal, 

can still provide a significant increase over an uncontrolled system. 

The differences between continuous and latching control can be highlighted if we look at the 

power take-off (CpTO) from these two systems. Figure 2.9 shows the cumulative developed 

power over time and clearly highlights the discrete nature of latching. 

2.5 Numerical Modelling 

In order to be able to study the effects of interactions between a device and water waves, we 

must create a model that will react appropriately. The purpose of this thesis is not to create a 

full numerical model of a wave energy converter, but to study a novel method of control. Thus 

work will concentrate on a very simple point absorbing device that will capture the richness of 

a real device while enabling fast simulation for demonstration of control methods. 

2.5.1 Single Buoy 

The structure of the simple point-absorber model is shown in fig. 2.10. It consists of a long 

cylindrical buoy tethered to the sea floor, with the power out-take being incorporated into 
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Figure 2.10: Single buoy model. 

this tether. The height of the buoy is chosen so as not to become completely immersed or 

revealed and so maintaining a linear force profile. Each of the significant terms are shown on 

the diagram. The following parameters are selected to give the model a natural frequency w 0  

higher than the majority of waves we will be working with, this is due to the application of a 

latching strategy at a later stage. 

Diameter of Buoy = 1.65 metres 

Height = 10 metres 

Mass = 10.6 tonnes 

50% submerged at equilibrium. 

The force on the buoy when submerged, given by Archimedes principle, is equal to the weight 

of the fluid displaced. This can be shown as: 

Buoyancy Force = 7rr2  x pg x h = h(7rr2pg) 	 (2.13) 

Here Pw  is the density of water, g is the acceleration due to gravity, r is the radius of the buoy 

and h is the height of the buoy. 

If it is assumed that the waves will be of a small enough magnitude so that the buoy will never 

be fully submerged or removed from the water, we can assume that the restoring force on the 

cylinder is linear. With this assumption we can therefore neglect the height of the buoy and 

thus we assume that at equilibrium the buoy is 50% submerged. In an oscillating system such 
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as this the restoring action is primarily from the spring term, —kz. Therefore: 

—kz( t) = —z( t)(Tr2pw 9) 	 (2.14) 

We must also consider the excitation due to incident waves, if we determine the water height 

from equilibrium to be ij then the excitation force on the cylinder will be: 

Fe(L) = 77t(7rr2pw g) 	 (2.15) 

It can be seen that when the buoy is at equilibrium the excitation force equals the restoring 

force; therefore as (lrr2pw 9) is a constant, j = —z, hence this shows the buoy is resting at the 

surface. 

2.5.2 Hydrodynamic Effects 

In order to correctly model the motion of the device, we must take into account the major 

hydrodynamic forces that will act upon the buoy. 

To determine the correct values for the added mass, Ma  and the radiation damping, Ca, a 

simulation of the buoy geometry was carried out using WAMIT software (fig. 2.11). The 

resonant frequency (wo) of the system is shown and it can be seen that the radiation damping 

decreases to a minimum at this point, illustrating minimum losses. It can be observed that this 

occurs at around 3 seconds, which is in agreement with the calculated value of = 2.99s. 

2.5.2.1 Added Mass 

Added mass is an effect resulting from the waves interacting with the device, this physical effect 

is manifested by the tendency of any moving body in water to drag some volume of the fluid 

along with it. This effect contributes to the mass and inertia of the system and is frequency 

dependent. A plot of this for our system is shown as the upper trace in fig. 2.11. 

2.5.2.2 Radiation Damping 

Also termed added damping, this term models the effect of the waves radiated away from the 

buoy. It can be described as; 'the waves generated by operating the buoy in the absence of an 
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Figure 2.11: Hydrodynamic parameters for a cylinder of radius 1.65m and height 5m, 
constrained to heave only. 

incident wave'. Although at first this may appear to be a loss term, this effect is in fact required 

for wave absorption. In fig 2.6 when the radiated wave (from a heaving body) shown in 'A' is 

combined with an incident wave shown in 'D' the resultant superposition is show in 'E' and 

clearly shows that this results in an reduction (absorption) of 50% of the transmitted incident 

wave. This term is frequency dependent and is shown as the upper plot in 2.11. 

2.5.2.3 Hydrodynamic Approximation 

It was necessary to develop a system that has no future knowledge of the wave and it is 

convenient that we approximate the frequency dependent quantities of added mass and added 

damping to non-frequency dependent static values. This is a significant assumption, however it 

was seen that this proved to be adequate for the requirements of this thesis, as the purpose of 

the model is to investigate the feasibility of a control method, rather than its refinements. As 

the majority of the investigation with this system takes place with wave periods much longer 

than resonance, (5-10s range) the error in approximating to static values is somewhat reduced 

(See fig 2.11). The resulting constants used in the model are shown in table 2.2. 

TAdded Mass 	I 	8800kg 
Added Damping I 2200N/ms' 

Table 2.2: Hydrodynamic Parameters. 
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2.5.3 Developed Power 

In order to extract power from the system it is necessary to apply a power take-off device. 

This is modelled simply as a damper and is denoted by CPTO. Strictly speaking there should 

also be a loss term, which would also be modelled as a damper Cl,, however for simplicity, 

this has been set to zero. The instantaneous power developed in CPTO  can be calculated as 

Pi = CpfQ . 	This shows the power varying with the square of the device velocity. 

2.5.4 Equation of Motion 

As we have stated in eqn 2.12, the format for the overall equation of motion is straightforward. 

We can therefore incorporate the values and quantities discussed above. The mass of the system 

(M) is now augmented by the hydrodynamic effect of added mass (Ma) to give M + MA 

The damping within the system, previously referred to as C is now split into added or radiation 

damping (Ca) and the usable power take-off damping (CpTQ). 

From eqns 2.14 & 2.15, the wave forces are decomposed into the hydrostatic spring effect, k 

and the force due to an incident wave, Fe . 

This gives the resulting equation of motion as: 

Fe ( t ) - Ca3 - CPTO. - kz 
z= 	 (2.16) 

(M+MI ) 

2.5.5 Control Implementation 

This thesis will consider only latching control (section 2.4.2), as this is the simplest method to 

interface with the neural network which will be considered later in section 3. 

In order to apply effective latching control within this model, some method of fixing 

("latching") the displacement at the extremities of its cycle was required. For simplicity this 

was implemented by switching the the value of CpTQ between its normal power-generating 

level and a much higher level that would resist any device movement. However, this method 

has the drawback that when Cp'p0 approaches oo the equations become stiff. This is due to 

the fact that the scale of the Cp-p0 term becomes a considerably larger magnitude than 

the other terms in the equation. Although this is still a stable equation with a valid solution, 

this can lead to problems when solving computationally, such as requiring excessively small 
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time-steps or possible failure to find a solution. Although in this situation it is possible to use a 

different method to solve a 'stiff' equation, it was found, through trial and error, that using a 

value of CPTO = 107  was an adequate compromise to hold the device in a 'latched' position 

without making the equations of motion stiff. 

2.6 Chapter Conclusion 

The awesome power present in ocean waves has been known for centuries, however the 

engineering challenges required to capture this energy have been significant. Recently, driven 

by the necessity to reduce global CO2 emissions, advances in off-shore engineering have 

fostered the development of new devices that look set to make commercial wave energy a 

reality. 

Development of control techniques is an effective way to increase the efficiency of wave energy 

devices, helping to reduce the cost per kWh and increase the capacity factor of the device. Of 

these methods continuous and discrete control are the most developed techniques, however the 

stochastic nature of the wave environment requires that any optimal control method have a 

future knowledge of the wave elevation. The impossibility of this requirement has lead work in 

developing prediction methods or 'causal' variants in the hope that this will aid the adoption of 

control in real devices and will help to improve the economic feasibility of the WEC. 

This chapter has introduced latching and has highlighted the benefits of this type of discrete 

control. By locking and releasing at the extremities of movement a device's phase can be 

adjusted so that it is E shifted from the exciting wave. It is shown that this condition is the 

requirement for optimal power transfer. It is worth considering that the implementation of 

latching control in a real device would not be without significant engineering hurdles. If we 

consider the forces required to lock, hold and release a full-scale buoy, which may have a mass 

of several hundred tonnes, we can see that they would be substantial. Although the engineering 

to implement such a system would admittedly be difficult, the performance gains as a result 

could offset this. 

The simple model described here, although it is understood that it will not be strictly accurate, 

does provide an adequate approximation to enable study of latching control methods. This 

model in its single and articulated configuration has been discussed with engineers at Ocean 

Power Delivery (Developers of the Pelamis WEC.) and it has been agreed that it is possible to 
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capture enough of the salient features of a real or articulated WEC to be a useful and credible 

vehicle for a proof of concept study such as this. The simplifications made are necessary to 

create a system that is able to model the response of single or articulated WEC while requiring 

no prior knowledge of the sea state. This simplicity will enable fast simulation and will facilitate 

investigation into novel neural control strategies. 
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Chapter 3 
Neural Background 

This chapter introduces the inspiration behind the neural control method proposed later in 

this work. Starting with the biological method of animal locomotion, we look at how this is 

controlled, introducing the concept of the Central Pattern Generator (CPG). The main subject 

of study, the lamprey, is then discussed, its locomotion is introduced and its particular unique 

characteristics are brought to light. Following this we introduce how biological networks may 

be modelled with particular attention to the lamprey CPG. Ekeberg & Ijspeert's' neuron model 

is then introduced and we discuss how this model can be modified and applied to the extraction 

of ocean wave energy. 

3.1 Introduction 

Biological neural networks describe a collection of electrochemical neurons that can commonly 

be found in the brain and central nervous system. These networks are also commonly referred 

to as 'neuronal networks' in order to distinguish them from the computational artificial 

neural networks (ANN). The biological neurons are linked together with synapses that carry 

electrochemical signals from the axon of the pre-synaptic neuron to the dendrite of the 

post-synaptic neuron. The properties of neuronal networks have been extensively studied over 

many years in order to gain a better understanding of the structure of the brain and central 

nervous system. 

In contrast, the artificial neural network bears little resemblance to its biological counterpart. 

Based in principle on the biological neuronal network, it is a example of a connectionist 

computational approach. It comprises an assembly of very simple (in contrast to the biological 

model) interconnected processing elements whose functionality is a result of the weights of 

these interconnections. Nevertheless this approach has a fantastic versatility and the ANN has 

become a feature in a large number of processing methods such as the multi-layer perceptron, 

Boltzmann machine, recurrent neural networks and feed-forward neural networks. 
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It will be seen that this thesis deals exclusively with biological neural networks although it does 

use the terms neural network and neuronal network interchangeably. Many of the methods 

presented here have been greatly influenced by the field of ANN, such as the connectionist 

models described later, however these ANN techniques are used as inspiration to simplify the 

investigation and modelling of neurophysiological behaviour, so can firmly be considered as 

biological neural networks. 

3.1.1 Auke J Ijspeert's Thesis 

This thesis uses Auke J Ijspeert's doctoral work [40] as the inspiration for the neural control 

method presented. In his thesis Ijspeert investigates and develops an artificial neural model of 

the lamprey, building upon on work done by Orjan Ekeberg [6].  His work implements Ekeberg's 

hand-crafted connectionist model of the lamprey spinal cord, using Sten Griliner's well known 

and well documented biological structure of the lamprey [41].  Ijspeert's work concentrates on 

improving the parameters of this artificial model, so that it demonstrates performance closer to 

that of the biological lamprey. Further work on this subject was undertaken by Jimmy Or in his 

thesis [42] who took Ijspeert's work a step further, developing robust and resilient controllers 

that can withstand faults or changes in body parameters. 

Much of the background presented here is covered in greater depth in the background chapters 

of Ijspeert's thesis, specifically pages 13-64 [40] and can be considered an excellent reference 

for this chapter. 

3.2 Animal Locomotion and the Argument for Central Control 

The motor organisation in even the most basic of animals can be extremely complex and 

certainly incredibly varied with multitudes of different creatures, all exhibiting different 

locomotive actions, or gaits. It is therefore difficult to imagine that there could be a general 

principle that would underlie all of them, however it can be seen that almost all locomotion 

consists of carefully sequenced, rhythmic activity controlled by an underlying neuronal 

circuitry. 

Around the end of the 19th century, British neurophysiologists Sherring and Brown observed 

that alternating leg movements could still be produced in animals with severed spinal cords 
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(reported in [41]). From this they correctly deduced that the brain does not directly control the 

rhythmic behaviour visible in locomotion and that some other mechanism, possibly located in 

the spinal cord, is responsible. 

Since then the nature of this mechanism has been debated. Historically there have been 

two competing theories for the underlying control of activity that generates this behaviour. 

Delcoymn, in his 1980 article [43],  reviews the arguments for these hypotheses: 

The first of these, peripheral control, proposes that the rhythmic movement is a direct function 

of sensory feedback. That the rhythmic motion is generated through a two stage process 

whereby the first stage generates the correct timing activity from sensory input and passes 

this onto a second stage in order to activate the muscles appropriately. However this theory 

implies that the loss of sensory input would therefore prohibit the rhythmic activity, which 

more recently was proven not to be the case. (see [43]) 

The second and now widely accepted hypothesis is that the rhythmic activity is generated by 

a central mechanism that will operate even in the absence of sensory feedback. Comprising a 

network of neurons, this network operates as an oscillator producing the correct rhythmic timing 

activity to the muscles. However these two theory's are not mutually exclusive. Although 

sensory input is not the primary mechanism, it does contribute to the network as a feedback 

mechanism. This neural controller is known as a Central Pattern Generator (CPG) 

It can be seen that the brain plays a very limited role in the coordination and timing of even very 

complex locomotion. Experiments in the 1960s on a decebriated cat (reported in [41]) showed 

that a walking gait could be achieved by applying a stimulus to the brainstem. More importantly 

though, by increasing the amplitude of this stimulus the velocity of locomotion increases, 

moving from walking gait to a trot and then on to a gallop. Each of these different gaits 

requires a significantly different motor timing and coordination yet the mechanism for control, 

now know as the CPG, is able to coordinate the transition between these gaits automatically. 

Obviously the CPG for a mammal such as this will be significantly more complex than that of 

the lamprey, but the principle of central control is maintained. 
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Figure 3.1: Sea lamprey. ©Penobscot River Restoration Project, Maine, USA 

3.3 The Lamprey 

The lamprey (figure 3.1) is ajawless, eel-like fish belonging to the family Petromyzontforines. 

It is a primitive vertebrate that diverged from the main evolutionary line around 450 million 

years ago before fish appeared and has evolved relatively little since then. It has the basic 

vertebrate biological structure but features comparatively fewer nerve cells of each type. 

Although restricted to colder waters, the lamprey can be found in many locations around the 

world. In Europe the lamprey is considered somewhat a delicacy, and mainly through water 

pollution and over-fishing its population on that side of the Atlantic has plummeted. This is 

not the case in north America however where its populations have soared. There its predatory 

nature has decimated populations of local fish in the great lakes area and is now considered a 

senous pest. 

The lamprey propels itself by propagating a standing wave along the length of its body: it is this 

movement that we find so interesting. The locomotion of the lamprey has been the subject of 

extensive study by neurobiologists looking to understand the underlying methods of locomotive 

control. 

3.3.1 Structure 

Another reason the lamprey is used as subject for such extensive study is that its central pattern 

generator features a large and simple neural structure. The physiological structure is covered in 

depth in Rovainen's work [44] and a more recent overview can be found by Gnllner [45]. As 

discussed earlier it has been shown that locomotion is not directly controlled by the brain, but 

rather by a separate local neural circuitry known as a central pattern generator. The lamprey 
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CPG is remarkably well studied and is located within the spinal cord. It comprises relatively 

large neurons that have facilitated investigations into its neurophysiological structure. It can be 

seen [46] that the CPG consists of around 100 individual simple "segments" (see fig 3.2) that 

control the muscle activation on opposite sides of the body. These segments are then linked 

longitudinally together so as to coordinate movement along the length of the body. 

Figure 3.2: Single segment of lamprey CPG, from 16,471. One of approximately a hundred 
segments that control locomotion in the lamprey CPG. The symmetrical cross 
coupled nature of the segment is emphasised by the red and blue connections. it 
can be seen that the connections that extend to the opposite side of the segment are 
all inhibitory, ensuring that only one side can be active at any rime. 

The neurons within this segment have distinct roles. Buchanan and Grillner [48] proposed the 

circuitry shown in fig 3.2 and showed that it comprises four separate neuron types: 

Motorneuron (MN) 

• Excitatory Interneuron (EIN) 

• Lateral Intemeuron (LIN) 

• Contra-laterally and Caudally projecting Intemeuron (CCIN) 

In addition there is also the Edge Cell (EC). This is a stretch sensitive cell which is located on 

either side of the spinal cord that contributes to sensory feedback. 
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Each segment performs as an oscillator, with the frequency being determined by the level of 

excitation received from the brainstem (or from a excitatory bath if in vitro). This oscillatory 

behaviour is in part determined by the CCIN neuron and also in part by an undetermined burst 

terminating mechanism. Once one side of the segment receives slightly more activity than the 

other, the more active CCIN neuron will inhibit the opposite side, therefore allowing activity 

to build on that side only. After some time this activity then decays due to a burst terminating 

mechanism and reverses the inhibition on the central pair of CCIN neurons, thus allowing the 

opposite side of the network to increase in activity. This contra-lateral activity will continue 

as long as a base excitation is maintained to the segment, with this level of base excitation 

(oscillatory frequency) being related to the amount of excitation provided. 

3.3.2 Anguiliform Locomotion 

The swimming motion of the lamprey is termed Anguiliform and can still be observed when 

an isolated spinal cord is immersed in an excitatory bath. This is known as Fictive Swimming 

and illustrates that the swimming motion is derived from the neural structure present within the 

spinal cord. The activity of the spinal cord, and hence the velocity of swimming can be adjusted 

by altering the overall excitation [49] by adding neurotransmitter agonists such as amino acids 

or L-DOPA [44] to the bath. 

This forward motion is produced by a caudally (rearwards) propagating wave along the body 

(see fig 3.3). In order to produce this each segment must communicate with the next to generate 

a delay between activations so that the contraction propagates along the body. Interestingly it 

can be seen that for a 100 segment spinal cord this delay is maintained at approximately 1% of 

the period of oscillation. Thus a single wavelength is maintained along the body, independent 

of the swimming velocity. This activity is also demonstrated in isolated segments of spinal cord 

with as few as 3 segments. 

The significance of this inter-segmental phase delay can be illustrated: as the observed 

frequency of oscillation of the lamprey is in the region of 0.25 to 10Hz (Reported in [50])  and 

a phase delay is maintained at 1% per segment, the actual time delay between segments will 

thus vary 40-fold. This variation is far too large to be explained through simple propagation 

delay and it has thus been shown that this activity can only be explained by a caudal and rostral 

inter-segmental coupling along the spina! cord [51,52]. 
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Figure 3.3: Anguiliform locomotion of the lamprey. Areas of muscle contraction are 
highlighted. The propagation of a travelling wave along the length of the body 
can be seen clearly. 

3.3.3 Sensory Feedback 

As with any creature, lampreys coordinate movement through the use of sensory feedback. In 

the lamprey this sensory input is generated by stretch sensitive cells along the length of the body. 

These stretch sensitive cells, often termed "edge cells" are located either side of the lamprey's 

spinal cord and have been shown to provide a local feedback connection into the individual 

segmental oscillators [46]. The sensory input provides a burst terminating mechanism, similar 

to that described earlier, that controls the intra-segmental oscillation. The action of the sensory 

feedback can be demonstrated [53] by physically bending the spinal cord and observing that 

the segments will phase-lock into the same wavelength and frequency as the movement (see 

fig 3.4). This phase locking ability can be seen if the mechanical actuation is above or below 

the "resting" network oscillation. 

'The 'testing" frequency is that imparted to the network by the in-vitro excitatory bath and can vary depending 
upon this excitation. It does not not imply stationary, but rather a a steady state oscillation. 
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Figure 3.4: Sensory entrainment in a lamprey spinal cord. Right segmental motorneuron 
output is shown measured at P. It can be seen that the MN output phase locks 
to the applied displacement at faster and slower periods than resting. Reproduced 
with kind permission © S Grillner [46] 

3.4 Computational Models 

In order to further examine the underlying circuitry that makes up the CPG it is convenient 

to produce computational models of the neuronal circuitry. These have been developed by a 

number of people and use different techniques. The CPG has been modelled in three ways: 

Biological models comprise relatively accurate neuron models, using Hodgkin-Huxley type 

neurons equipped with ion channels [47, 541. It can be seen that these models have been able 

to reproduce the majority of observations during fictive swimming experiments. These models 

have reduced the inherent complexity of these networks by representing populations of neurons 

as single neuron units. However the complex nature of this network requires many estimated 

and biologically measured neural properties. 

The second method is to use a connectionist, ANN based model that features much simpler 

models of the individual neurons. By using simpler, generalised models of the neurons it 

frees us to focus on the synaptic interconnections between neurons and how they generate 

the physiological responses. Ekeberg and Ijspeert used this method and their models show that 

the rhythmic activity observed can be reproduced simply through synaptic connectivity [6,55]. 

The third alternative is to consider the neural oscillator on a more abstract level. If we accept the 

rhythmic oscillatory nature of the CPG then it is possible to model the segments as a series of 

coupled oscillators [56]. This mathematical abstraction is used essentially in order to study the 

inter-segmental coupling without considering the structure of individual segmental oscillators. 

However, for the purposes of this thesis, we shall be considering only the connectionist model 

of the lamprey CPG. 
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3.4.1 Connectionist Model of the Lamprey 

As previously described, connectionist models are concerned primarily with the 

interconnections between neurons, rather than the detailed membrane activity and ion flow that 

occurs in biophysical models. This simplified model is similar in some respects to dynamical 

recurrent neural networks used within the ANN community (DRNN). Work on connectionist 

models of the lamprey has been carried out most notably by Ekeberg in 1993 [6] with further 

study by Ijspeert [40] although other examples can be seen [50, 55, 57]. 

Ekeberg's model, published in 1993 [6] examines a mechanical and neuronal model of the 

lamprey that exhibits many of the traits observed in nature. This model uses simpler neurons 

that were developed to feature much of the richness found in more complex biological neuron 

models [54] such as frequency adaptation. Each of these neurons is regarded as a population of 

functionally similar neurons and the mean firing rate, rather than a spiking action potential, is 

used. 

The synaptic connections in this model were hand crafted to produce behaviour that was a good 

match to the lamprey. In his doctoral thesis, however, Ijspeert [40] took Ekeberg's basic neural 

model and applied an evolutionary technique in order to develop better interconnections. This 

method produced a much better physiological match to the lamprey characteristics. 

3.4.2 Neuron Model 

As we have seen above, the lamprey CPG comprises four different types of neurons. These 

different neurons, LIN, EIN, CCIN and MN are modelled using a standard leaky integrator 

model with saturating transfer function. They are described by the equations 3.3 and 3.4. These 

equations do not model individual neurons, as this would require a more complex model, rather 

they model a population of neurons of the same type, such that the output, u represents the 

average firing frequency. The neurons are also modelled to include a frequency adaptation 

term, shown as TA which results in a slight decrease of the firing rate over time. Its effects are 

shown to affect the inter-segmental coordination rather than the segmental oscillation frequency 

(although TA may indirectly have some impact on this). 

The neuron parameters used by Ekeberg and Ijspeert are given in table 3.4.2. 
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Neuron Type e F TD IL 	TA 

EIN -0.2 1.8 30ms 0.3 	400ms 
CCIN 0.5 1.0 20ms 0.3 	200ms 
L1N 8.0 0.5 50ms 0.0 	- 

MN 0.1 0.3 20ms 0.0 	- 

Table 3.1: Ekeberg & Ijspeert's' neural parameters. [6] e is the threshold, I' is the gain and 

TD is the time constant. i and TA are the coefficient and time constant offrequency 
adaptation respectively. 

= 	 (3.1) 
TD 

= 	uiwi - 	 (3.2) 
TD iEqf- 

1 
= ---(u—i9) 	 (3.3) 

TA 

= {

1 - exp {( - +)F} - - ut9 	(u > 0) } 

	

(34) 
0 	 (u<0) 

The mean firing frequency given by u includes stimulation by the pre-synaptic inhibitory 

and excitatory 	neurons. These are in turn given as the sum of the output of the post-synaptic 

neuron2  u2  and the associated weight to the pre-synaptic input, w 2 . 

3.4.3 Genetic Optimisation 

Ekeberg's artificial model [6] featured hand-tuned synaptic weights, developed through 

measurement and trial and error to produce similar activity to the biological model. 

Alternatively Ijspeert's model used a genetic optimisation routine to develop the synaptic 

weights and his model can be seen to show better and more realistic results than Ekeberg's. 

Genetic Algorithms (GA's) are very powerful tools and ideally suited to optimisation of 

problems featuring a large search space such as neural networks. A genetic algorithm encodes 

each possible solution as a string and by using genetic operators such as reproduction, survival 

and mutation, evolves these solutions to produce a best fit to the problem. The key to good use 

2This neuron representation is defi ned as a population of appropriate excitatory 'I' or inhibitory 'P_ neurons. 
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of a GA is to define the evaluation function that will decide how "fit" a solution is and thus 

which 'solution strings' are allowed to mate and propagate to subsequent generations. Possibly 

due the fact that the solution can be easily represented as a series of synaptic weights or due to 

their efficacy with large search areas, genetic algorithms are a common choice for optimisation 

of neural networks. 

In the case of the lamprey CPG, we will use a GA to develop the synaptic weights in a similar 

way to Ijspeert. We will further discuss the use of GA's in section 4.4 and show how this 

technique is ideally suited for use in this thesis. 

3.5 An Engineering Approach 

We have discussed the neural structure of the lamprey and have looked at the features of CPG, 

however now we need to see how we can apply this model to the application of WEC control. 

If we consider a simple point absorber WEC as discussed in section 2.5, we know that for 

optimal control using a latching strategy (see section 2.4.2) there are optimal lock and release 

points during the wave cycle. The timing for these points varies as the wave period changes. 

The calculation of the optimal release point is difficult and requires some knowledge of the 

future wave. However, if we dismiss optimal control and instead consider practical3  control we 

can still gain significant power increases. Therefore if we can approximate the correct unlatch 

points from the current device displacement, we can produce a simple and effective control 

system. The lamprey CPG described here provides the inspiration for this idea. 

If we consider the sensory entrainment effect illustrated in figure 3.4 we can see that the physical 

bending of one part of the body will cause the whole network to conform to the the phase and 

frequency of the bending. This is due to the sensory feedback and inter-segmental connections 

along the length of the spinal cord. If we now consider a single segment, the inter-segmental 

coordination can therefore be neglected. The system now becomes a simple oscillator that will 

entrain to the excitation frequency present at the sensory input. This suggests that if the synaptic 

weights of this network are adjusted sufficiently while still maintaining the key architecture, the 

phase and the response of the output, relative to the sensory input, can be modified. 

3  B practical control we are referring to a non-optimal method that may be implemented simply and easily while 
still offering a signifi cant improvement over an uncontrolled system. 
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If we therefore take this single segment and apply the current device displacement as the 

sensory input, the neural oscillator would then be able to adapt to the same frequency as the 

device. Although the frequency will match the entrained frequency, the phase and response of 

the segment are thus dependent upon the synaptic connectivity. Therefore the segment would 

perform as a tunable, adaptable control loop, which once optimised could then be used to trigger 

the correct unlatching points in the described system. 

The use of the lamprey CPG as a control mechanism can also be seen if we look at an 

analogue such as the articulated wave energy converter PEL4MIS, developed by Ocean Power 

Delivery [5,28]. This device consists of four floating cylinders, articulated at their ends via 

hydraulic rams. As the wave passes under the device, the cylinders move relative to each other, 

pumping hydraulic fluid and generating power. It can be seen that this wave induced motion is 

quite similar to the anguiliform swimming of the lamprey. Also, as the wave passes down the 

length of the device the joints also exhibit similar phase delays as those seen in the lamprey. 

At this stage it may help to re-state the original hypothesis that: 

Effective control implementation for Wave Energy Devices can be developed from 

(neuro)biological exemplars 

Thus by identifying the lamprey as a suitable neurobiological system we can develop the single 

neural segment to act as a controller for a single buoy. Furthermore, by developing this model it 

may be possible to add additional segments and develop inter-segmental connections to produce 

an effective control system for a complex articulated device similar to the PELAMIS. 
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3.6 Chapter Summary 

This chapter has presented the concept of central control and has explained how the locomotion 

seen in vertebrates can be explained through the principle of a central pattern generator. This 

principle has been expounded through the use of the lamprey neurophysiological structure, a 

vertebrate with a basic neural structure that has been the subject of extensive research. 

Although it is known that locomotion is a complex task, it can be seen that the brain does 

not deal with this coordination. Instead it is controlled by local subsystem, the central pattern 

generator and it can be seen that the same principle is featured in all animals. Although in 

general larger creatures have more complex gaits and an appropriately more complex CPG, the 

underlying principle still remains and a good understanding can be accomplished by examining 

smaller, simpler vertebrates, such as the lamprey. 

The biological structure of the lamprey CPG is now well known, it has been the subject 

of extensive study for decades, however much of this knowledge has been gained though 

numerical modelling. Complex, biologically accurate neurons which have been simulated have 

exhibited most of the activity observed in in-vitro experiments. 

As a means to understand the full body actions and investigate the inter-segmental phase 

delay mechanisms, the field of Artificial Intelligence has provided invaluable techniques. By 

influencing the creation of much simpler neurons, the interconnections between neurons could 

be studied in more depth and it has been shown that the rhythmic behaviour can be attributed 

to these synaptic interconnections. 

Knowing the significance of the synaptic interconnectivity, the lamprey CPG can be seen to 

be quite complex, even assuming the inherent symetricity a single controller can consist of up 

to 64 connections. Considering the number of different possible structures, Ijspeert artificially 

evolved controllers that would exhibit similar activity to their biological counterpart. These 

artificial CPG's exhibited much structural similarity to the lamprey, but were found to represent 

the natural locomotive activity more accurately than previous models. 

By using simplified representations of this biological network, we seek to develop a controller 

that is designed to fit the control needs of a very different application. By using the same 

evolutionary optimisation techniques Ijspeert used to produce very successful biological 

controllers, we can seek to produce different, but equally successful controllers; ones that will 
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use the unique characteristics of the lamprey CPG to implement effective latching control to a 

point absorbing wave energy device. 
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Chapter 4 
Tools and Methods 

This chapter introduces the methods and techniques used in this thesis and goes some way to 

justifying their inclusion. Starting with an expansion of the neural control method touched 

upon at the end of chapter 3 we look at how this may be implemented practically and 

the simplifications required to do so. A computer based model of the dynamical systems 

so far introduced is presented along with a description of the methodology and processes 

involved. Following this, implementation and optimisation techniques for the control system 

are discussed and their applicability to the problem is illustrated along with some more 

advanced methods that may be used at later stages. Finally, problems of scale associated with 

the optimisation process are discussed and the inclusion of a multi processing environment is 

presented. 

4.1 Introduction 

Chapter 3 introduced the concept of using a biological neural system as a controller for a wave 

energy converter. By using the basic neuronal structure from the lamprey CPG and applying 

it as a control loop to a simple single degree of freedom WEC it is intended to implement a 

latching control strategy. 

The lamprey central pattern generator is a biological neuronal network that provides 

locomotion. At the segmental level its structure comprises 8 neurons divided into two 

symmetrical units and can be seen to operate as an oscillator. The characteristics of this 

oscillator are dependent upon the interconnections between neurons and, although the 

biological synaptic structure is well known, it is unlikely that this structure will be appropriate 

for this proposed application. This chapter will outline techniques and methods that can be 

used to tune the synaptic weights to fit the suggested control application. 
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4.2 Implementation of Neural Control 

In order to implement control to a system we must define the inputs and outputs of the system 

and define the information that is required. In the WEC, a simple latching strategy will be used 

as the method of control. Section 2.4.2 describes how this operates, but in essence it locks 

the body at the extremes of displacement and then releases at some point later (determined 

by the control) in order to achieve a quasi-resonance with the exciting wave force. As this 

can be implemented very straightforwardly, and requires only a single control parameter, latch 

time, it was seen to be ideal in this instance. It is known that latching strategies have many 

disadvantages', however latching is a cycle by cycle control method and in this application its 

simplicity more than makes up for these drawbacks. 

Although mathematically simple, in reality, latching can present considerable challenges in 

implementation. One theoretically plausible method would be to incorporate it within a 

hydraulic power take-out system. Assuming a rigid tether, a valve in the system would stop 

flow and thus lock the device in its current position. This method of hydraulic locking could 

potentially be implemented into an articulated system such as the PELAMIS. However, as 

mentioned in section 2.6, locking a real device at its extremities would induce additional large 

forces and would involve some engineering challenges. Although latching control has been 

demonstrated physically at model scale, employing latching control on a full scale device 

is somewhat unrealistic. Nevertheless, this is a proof of concept study and concentrates on 

the neural application of WEC control and although it investigates latching in a number of 

configurations its focus is upon the application of a control method rather than the actual 

method of control used. 

Figure 4.1 shows the method of integration of the two systems. The physical displacement 

of the body in the water is directly mapped to the EC input of the network. In order to 

maintain the contra-lateral operation of the network positive displacement is considered as left 

side excitation and negative displacement as right side excitation. Although we consider the 

physical motion in a vertical plane, we maintain the terminology used for the CPG network, 

meaning that where we refer to left and right output from the network, this translates (through 

900  rotation) to up and down motions of the buoy. The scale of this mapping is not critical as 

the actual values passed to the neurons are scaled by the magnitude of the EC synaptic weights. 

'These can include potentially excessive accelerations at lock/release, the physical implementation of a latching 
mechanism and a non-continuous power output. 
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Figure 4.1: The contml loop between the WEC and the lamprey CPG single segment. The 
translation between the physical displacement and the EC input can be seen in the 
upper graph, while the lower graph shows the MN output and how it can be used 
to trigger the locking/releasing of the device. 

The reverse translation, from the motor neuron output to the WEC is important as this will 

determine the control strategy applied. For a latching strategy, as we have discussed, we need 

only to define the release point or the total latch time. The relationship between MN output and 

device control is shown in figure 4.1 in the lower graph. In order to translate this MN output 

into a latching strategy, we can use either the time the MN output pulse is above a threshold 

to define the total latch time or the rising/falling of the MN pulse past a threshold to define an 

absolute release point. Either of these methods are valid, but for simplicity the latch release 

point is defined as the falling edge of the MN pulse past a pre-defined threshold. 

4.2.1 Simplifications 

If we examine the requirements for our control system it is possible to make certain 

simplifications: 

The lamprey-based neuronal network we are using is very straightforward, to control a single 

buoy it requires only eight neurons for operation, and the individual neurons are represented 

by a very simplified model of their biological counterparts [6]. However, the system becomes 

complex in the representation of the synaptic weights. If these eight neurons are allowed to 

form connections to all the neurons in the system, both inhibitory and excitatory, this produces 

a matrix of 128 values. Combine this with the synaptic connections from the edge cells 

(inhibitory only - 8) and brainstem (excitatory only - 8) and it gives 144 separate weights. 
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As we have no clear idea of what synaptic connectivity is required for the segment to operate 

in the manner that we require it is difficult at this stage to eliminate any connections. 

In order to reduce this complexity and facilitate simulation of the neural network, Ijspeert [40] 

used the inherent symetricity in the lamprey CPG to enable simplification of the model. As 

we are aware, the oscillatory nature of the neural network is due in part to the symmetrical 

arrangement of neurons. Therefore, by simply mirroring connections from one side to the other 

the number of connections is reduced significantly. Another simplification Ijspeert used was to 

limit sensory input to the same side as it originated, rather than the contra-lateral connections 

that can be seen in Grillner & Ekebergs [6,47] description of the neuronal circuitry. The 

resulting simplified network can now be reduced to 72 interconnections. 

4.3 Simulation 

As has been discussed, the overall model comprises of two systems, a connectionist neuronal 

network and a mechanical WEC model. Independently these systems can be modelled quite 

straightforwardly using the equations already presented. Both systems are time dependent and 

rely upon solutions to differential equations. 

4.3.1 WEC Simulation 

Initially developed and verified using MATLAB, the final model was implemented in the C 

programming language [58] and uses a variable step Runge-Kutta differential equation solver 

derived from one published within "Numerical Recipes in C" [59]23  One consideration with 

the mechanical model was that it should be able to respond to a random or user-supplied 

stimulus and it should not depend upon, or require, future knowledge of the wave. In fact 

future knowledge is required to calculate the frequency dependent hydrodynamic properties of 

the device. However as we would be applying control forces to the device this would very 

much complicate the dynamics of the system. For simplicity, we have therefore assumed the 

hydrodynamic properties to be static values (see section 2.11). Although it is understood that 

this is strictly not accurate, it can be considered a rough approximation and adequate for the 

2This routine has since been highly modified to fit this particular application but retains the structure of the 
original. 

3 1t was found that during simulation the C code ran at least 10 times faster than the MATLAB equivalent. 
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purposes of this thesis. 

4.3.2 Neural Simulation 

Initially developed in MATLAB and then implemented in C, a neural model of the lamprey 

CPG was developed using Ekeberg & Ijspeert's neural parameters. Modelled using a simple 

fixed step Runge-Kutta differential equation solver, 4  this model performed as indicated in the 

literature [40] and was verified with a 100 segment lamprey model. 

4.3.3 Combining Systems 

Both the mechanical WEC model and the neural network model are dependent upon each 

other and in order to implement the presented control method, the information interchange 

between these elements is critical. Ideally data would be interchanged between systems 

at every time-step, but because these systems have been implemented and verified as 

separate components, the time overhead to re-write them into a single ODE loop was 

too great. This, however, can be compensated for somewhat by implementing an overall 

time-step ("chunksize"), that is a magnitude greater than the individual system time-step and 

interchanging data after each chunk. 

4.3.4 Implementation 

The operation of the overall system is shown in figure 4.2. The initial data is divided into 

a predetermined number of chunks and processed one at a time. The buoyancy calculations 

are solved for one chunk, then the final value of displacement and velocity is converted to the 

EC value for the neural simulation. This is then also solved over the same time chunk and 

the resulting final MN value converted into a damping value to be used for the mechanical 

simulation in the next chunk. A more detailed description of the operation can be found in 

appendix A. 

4 A variable step solution was attempted, but not implemented due to time restrictions. Ultimately it was decided 
that the fi xed-step solution was an adequate trade-off between accuracy and speed. 
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Figure 4.2: Block diagram of overall simulator operation. 

4.4 Evolutionary Algorithms 

At this stage, it is clear that we know the form of the synaptic connectivity, but not the weight 

values that are required for optimal, or even usable, control. Therefore it is necessary to 

employ a technique that will enable the different possibilities to be analysed. Ijspeert [40] 

employed a evolutionary technique that is well suited in this instance; he used this to develop 

CPG's that were proved to be a very close physiological match to the biological lamprey. This 

evolutionary technique, sometimes known as the genetic algorithm, is particularly applicable 

to the optimisation of neural networks. 

4.4.1 Genetic Algorithm 

The genetic algorithm (GA) is a stochastic search routine that locates optima using processes 

similar to those in natural selection and genetics. Individual solutions are encoded as 'solution 

strings' and these are manipulated in a biological analogue, using processes such as selection, 

mating, mutation and migration. Hence by applying the principle of 'survival of the fittest' the 

GA produces better and better solutions [60]. This results in a heuristic search method that 

can effectively navigate extremely large search spaces. If correctly designed it can be relatively 

immune to local minima (due to variation [mutation]) and will always produce good, although 

not necessarily optimal, solutions. 

As mentioned above, individual solutions need to be encoded into a structure. This structure is 

a long string comprising the individual elements of the solution. The mapping of the solution 

into the string can be done using an appropriate alphabet, such as binary, real-value, integer, 

ternary, etc, although binary and real values are by far the most common. For the problem at 

hand, a real valued representation is used, mapping each synaptic weight as a value that makes 
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Figure 4.3: Basic operation of the evolutionary algorithm. 

up the solution string. In addition there are many advantages of real-valued populations over 

more common binary encodings, as shown by Wright[6 1 ]. 

Once the representation has been determined, the evolutionary process is quite basic and 

comprehensible. Figure 4.3 shows the major blocks in a basic genetic algorithm. Initially a 

population of strings are generated with random collection of values, these are then evaluated 

for fitness before entering the main generational loop. The fitness function is the most critical 

element of the GA as this dictates how good a solution is. Once evaluated the strings are ranked 

according to their fitness, with the most fit individuals being selected for breeding. Breeding, 

also known as crossover or more accurately, recombination, involves the exchange of values 

between two individual solution strings to create two new solution strings (offspring). The 

simplest operator for this function is knows as single point crossover which simply exchanges 

data about a randomly chosen point within both strings, although variations such as double 

point, multi-point, line, shuffle, intermediate and reduced surrogate can be used to provide a 

better distribution of the individual values within each string [62-651. Real-valued populations 

can provide complexities when dealing with recombination, however variations on the basic 

binary operations may be applied to ensure that only valid values are produced as a result [66]. 
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In the GA presented here, the crossover method used is intermediate recombination as this is 

more suited to a real valued population. 

Following selection, strings are mutated in order to ensure that the probability of covering any 

area of the search space is never zero. In a binary representation mutation normally takes the 

form of selecting bits randomly with a very low probability and flipping the value of a single 

bit at this point. With real-valued populations mutation is achieved by perturbing a random 

selection of values within the solution string with a probability higher than that used with a 

binary representation [61,66,67]. 

The new individuals are then evaluated, ranked and re-inserted into the original population. In 

order to keep the overall population at a constant size the new individuals will replace the 

old. A common effective technique is the elitist strategy, where the best individuals from 

the previous generation are allowed to propagate through to the next generation with new 

individuals replacing all other individuals in the previous population. In addition, another 

successful strategy ensures that the oldest members of a population will be replaced, thus being 

in keeping with a biological scheme whereby eventually every member of the population will 

be replaced [68]. 

The above steps are repeated until the termination of the algorithm. However it is not always 

clear when a maximum has been found. Due to the nature of the method, the maximum fitness 

may remain static for a number of generations before a better individual is found. This can be a 

particular problem in applications such as ours as we do not know what the optimal value will 

be. In this situation the algorithm is terminated after a fixed number of generations, the number 

of which is determined through a compromise between time taken and improvement seen. 

The field of genetic algorithms is vast and much work has been done to develop new 

techniques and better operators for more complex problems. However the basic operators 

remain suitable for many applications such as this. A large number of advances deal with 

improving convergence time, which is considered one important benchmark when dealing 

with GA performance. 

4.4.2 Advanced Methods 

For more difficult problems there are variations on the basic GA that can be employed. 

One important method is the introduction of multiple populations, which has been shown 
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in most cases to improve the performance of a single population method [69,70]. Also 

known as the Island or Migration model, each of the individual sub-populations are evolved 

independently for a number of generations after which individuals are allowed to migrate 

between sub-populations in order to increase genetic diversity. Figure 4.4 shows how a ring 

based model would work, with individuals being passed between sub-populations as shown. In 

the multi-population GA used later in this thesis a fitness based ring model is used, whereby 

the most fit individuals are migrated to the adjacent sub-population after a fixed number of 

generations. 

A technique that can be beneficial in complex problems is the idea of "non-redundant selection" 

whereby, after recombination, identical solutions are removed and replaced with either a 

different solution string (that would not otherwise have been 'fit' enough to be included) or 

a random string. Illustrated by Zhang [71] in his algorithm, it can be shown to increase the 

navigability of the search space in particularly difficult problems. 

SubpopuaUon 	Subpopulation 

1 	 2 

Subpopulation L 	Subpopulation 

4 	I 	3 

Figure 4.4: A ring based multi-population GA. individuals are migrated between 
sub-populations in the manner shown. 

4.4.3 Implementation 

The purpose of the GA in this application is to determine the best synaptic weights for a neural 

network so it may effectively apply a latching strategy to a buoy excited with an incident 

waveform. This synaptic optimisation is done off-line with various incident waveforms, 

developing a set of synaptic weights that can be used as on-line control (in pseudo real-time). 

The genetic algorithm used here is implemented in MATLAB, using the GA Toolbox [72] 

developed by the University of Sheffield. This toolbox provides a comprehensive set of genetic 

operators that can be used to quickly and efficiently develop advanced genetic optimisation 

routines. A full explanation of the GA's used in this thesis is provided in Appendix B. 
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It was found quite quickly that while MATLAB proved perfectly adequate in terms of speed of 

operation to run the GA, the evaluation of the individuals was a very computationally intensive 

task. The simulation of the neural network along with the mechanical interaction of the buoy for 

a period of 60 seconds, running on a single 2.8GHz Pentium 4 processor takes approximately 

30 seconds 5 . Assuming a GA population of 40 individuals, it takes 20 minutes to evaluate a 

single generation6  and in practice a 500 generation evolution takes around 4-5 days. Therefore 

it is clear that times for evaluating a reasonable number of generations on a single processor is 

excessive. 

It can be seen that genetic algorithms are an ideal candidate to take advantage of parallel 

processing. If the algorithm is run on one processor, if correctly written, each string can 

be evaluated as a separate instance, which can provide a linear speed-up of the evaluation 

proportional to the number of processors in the system 7 . In order to take advantage of multiple 

processors an efficient method of message passing between processors is required and in 

general this is dependent upon the system hardware employed. 

The school of Engineering and Electronics at the University of Edinburgh provided access to a 

farm of 20 2.8GHz Pentium 4 linux machines. These machines are stand alone and do not exist 

in any kind of Beowulf [73] cluster environment, each requiring an SSH connection in order to 

communicate. In order to use these machines in a parallel environment involved the adaptation 

of a Per] script, tfSSHServer.pl 8  that was able to implement the appropriate message passing. 

This script opens an SSH tunnel to a number of machines and then passes the appropriate 

startup instruction. As these machines use NFS 9  each program instance writes the result to 

a common file area, which is monitored and collected by the algorithm. This multiprocessor 

operation resulted in a very significant performance performance increase, nevertheless, with 

the more complex models presented towards the end of chapter 6 a 1000 generation simulation, 

using a ring-based multi-population genetic algorithm, takes around 3-4 days to complete. 

A full description of the operation and the code used can be found in Appendix B. 

5 This is after the improvements of coding the simulator in C. Previous MATLAB code was taking around 2-3 
minutes for the same simulation 

6These simulation times assume the simplest mechanical model (single buoy, refer to fi gure 2.5) and can only 
increase with mechanical complexity. 

7 Each instance can be treated as a separate program that can be run independently. 
8 Developed by Pete Ottery within Informatics at Edinburgh University. 
Network File System. Unix (& Linux) system whereby the user can access the same fi le system no-matter 

which machine he logs into. 
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4.5 Chapter Summary 

This chapter can be seen as an introduction to the methods employed, and not as an in-depth 

comprehensive coverage. These methods will be clarified as they are presented in the following 

chapters. 

The whole body of work presented in this document is reliant upon the computer models 

presented in this chapter. These models have been developed to be as simple as possible in 

order to reduce the possibility of error. By using a double time step approach the model 

attempts to solve the neural and mechanical equations simultaneously while treating them 

as separate programs. This allows quicker integration and compartmentalisation of the two 

systems, enabling both systems to be run separately for verification or together for evaluation. 

The method of using evolutionary algorithms as a search technique to find synaptic weights for 

the neuronal network is a tried and tested one. Through the use of various genetic operators 

the algorithm is able to effectively navigate the search space in order to progressively find 

better and better solutions. The heuristic nature of this means a good solution will always be 

found, although without the certainty that it is the optimum. Nevertheless, as the algorithm is 

also based on stochastic methods, by running several separate evolutions and comparing the 

resulting fittest individuals, the probability of finding a true optimum can be increased 10 . 

The downside of using a genetic algorithm on a problem such as this is the increased computer 

resources required to evaluate the individuals each generation. By using multi-processor 

methods such as the Perl SSH method presented here we can reduce the run-time for the 

algorithm at the expense of increased computing power. This multi-processor technique, 

consisting of 20 2.8GHz Pentium 4 processors provides a total processing power of 

approximately 25GFLOPS 1 . This high-power resource reduces the time taken to run GA by 

greater than an order of magnitude. This allows us to evaluate individuals using more than 

one wave condition and offers the possibility of using more advanced GA techniques, such as 

multi-population or non-redundant search, which can require a larger number of individuals 

per generation. 

' ° lf the best individual from a series of separate evolutions is very similar, it is likely that these resulting solutions 
will be very near the optimum. 

"The thating point performance of a P4 3.06GHz is approximately 1414MFLOPS [74] (thus 2.8GHz 
1293MFLOPS), thus with 20 machines we can achieve a maximum of 25.877GFLOPS. 
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Chapter 5 
Preliminary Results - Combining 
Mechanical & Biological Systems 

5.1 Introduction - Developing A Neural Controller 

This chapter will cover the coupling of the mechanical model to the neural model and covers 

most of the initial and possibly most important results. Starting with a more in-depth look at 

how we can use the neural oscillator from the lamprey CPG to control a simple point absorbing 

WEC, we implement a tentative one-way connection between the two systems. This will show 

that by applying sensory input to the neural network it is able to adapt and phase-lock to the 

applied waveform. A fully combined mechanical and neural system is then introduced and we 

detail how we can use a Genetic Algorithm to optimise the neural network for this configuration. 

The resulting system is tested in a variety of unrealistic monochromatic waves, with more 

realistic and complex sea-states being investigated in the following chapter. The effect of the 

variations in the neuron time constant is then investigated and finally the effect of varying the 

system damping level is described. 

5.1.1 Control Structure 

Whilst it is clear that the synaptic weights and neural parameters of the biological lamprey 

segment clearly illustrate its operation as a neural oscillator, it is very likely that adjustments 

will be necessary to fit this particular application. The biological lamprey features segment 

oscillation frequencies in the region of 0.5 - 2Hz. However, assuming that we require the 

lamprey to oscillate at the same frequency as the wave, we need to look at frequencies in the 

range of 0.08-0.2Hz (5-12 seconds period) which is roughly an order of magnitude lower than 

the artificial swimming models developed by Ekeberg or Ijspeert. Fortunately it was found 

that, by increasing the neuron time-constant by a similar magnitude, the network would operate 

exactly as before but at a lower frequency. Using these modified neurons, the global excitation 

applied to the network could be increased from 0.3 to 0.8 and resulted in a linear decrease in 
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period from approximately lOs to 5s. The original and updated neuron parameters are shown 

in table 5.1. 

Neuron Type TD TA 

orig I new orig 	new 
EIN 30 450 400 6000 
CCIN 50 300 200 3000 
UN 20 750 - - 

MN 50 300 - - 

Table 5.1: Modified neuron time-constants in milliseconds. These have been adjusted in order 
to produce the required oscillation period 

Initial tests involved applying a sinusoidal excitation to the sensory input (EC input) of an 

oscillating segment and monitoring the effect that this has on the period and phase of the of the 

MN output. Due to the operation of the network, in normal swimming motion the stimulation 

applied to the left and right EC input is positive only and the L/R sides are 180 °  out of phase. 

Accordingly, the excitation applied to the EC is formatted in a similar manner. 

It can be seen that this applied excitation results in the period of the segment motor neuron 

(MN) output becoming matched to the period of the applied excitation (to the EC input). This 

effect was only apparent within a small bandwidth of approximately ±1 second either side of 

the natural period of the network', but demonstrates that appropriate sensory input can be used 

to affect the phase and frequency of the output. 

This simple phase locking ability exhibited here can be taken a step further if the motor neuron 

output is used to effect a controlled parameter. If this controlled parameter is then monitored 

and fed back into the sensory input, we can implement a simple control system. With reference 

to the system of an ocean wave energy converter, the controlled parameter could be a device 

parameter that can be adjusted to optimise the power. This would therefore directly affect the 

motion, meaning the buoy displacement, z, for example, can be used as a sensory (feedback) 

input. The resulting MN output will then be phase-locked to the buoy displacement and if 

correctly optimised, may be used to control modulation of certain mechanical parameters of 

the WEC on a cycle by cycle basis. 

'The natural period of the network, using our modifi ed neuron parameters was 5 seconds and was produced by 
applying a global excitation of 0.7 
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It was shown in chapter 2 that the simplest and most appropriate control mechanism for 

the point absorber WEC shown here is latching control (see section 2.4.2). This can be 

implemented simply by switching the power take-off damper between two pre-set levels, one 

very high level that will effectively lock the displacement of the buoy and a lower damping 

level that allows the buoy to move and generate power. Therefore in order to implement such 

a system there must be a parameter that triggers the switching between damping levels. For 

such an appropriate latching strategy (for periods longer than body resonance), two latching 

(on-off) cycles are needed per cycle and it can be seen that, quite conveniently, the neural 

segment also produces two output pulses per cycle, generated alternately from the left and right 

motor-neurons 2 . If we allow the transition between these two damping states to be determined 

by the MN output, then the MN pulses will control the damping level. Then assuming that 

as suggested above, once connected in a feedback loop, the MN period will match the wave 

period. As a result the phase (and shape) of the MN output can be optimised so that the MN 

pulses occur in-line with the optimum latching transitions and hence produce a valid control 

strategy. 

5.1.2 Optimisation Method 

The relationship between the sensory (EC) input and the MN output is determined mostly by 

the synaptic interconnectivity. Therefore in order to fit the given control scheme this network 

will need to be optimised. Even with a network of only eight neurons, this creates a complex 

problem that lends itself well to a genetic search application. If we describe all possible 

solutions to this problem in terms of binary or real-valued strings, we can consider them 

to be analogous to biological chromosomes. We can therefore take a population of random 

chromosomes (solution strings) and by using a survival of the fittest scheme, we can apply 

genetic operators such as selection, mutation and crossover (mating) and evolve the fittest 

possible individual. 3  

In order to apply evolutionary optimisation to this problem we must first set out two important 

criteria: how we define a solution as a string and how we evaluate how "fit" each 'solution 

string' is. Fortunately neural networks are particularly well suited to being transcribed as strings 

2 Looking at the output of the neural network(MN), it can be seen to consist of a series of pulses of a period and 
phase determined by the excitation, synaptic connectivity and the sensory input. 

3 Although evolutionary techniques can and often do produce an optimal solution, there is no certainty that this 

will happen. What can be said however is that they will always produce a good solution. 
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as the solution can be described solely in terms of the synaptic weights and these can be easily 

written as either a binary or real valued vector. In this problem with eight neurons and allowing 

for a fully connected network (every neuron joined directly to every other neuron) this results in 

64 excitatory and 64 inhibitory synapses, plus 8 sensory inputs and 8 global excitation inputs. 

However, as the network must be symmetrical in order to retain its oscillatory nature, we can 

fully describe the connectivity with only half of these synaptic weights, this now results in 72 

weights (as opposed to 144) which will be represented as a real valued string. 

It is necessary to also define the fitness of each solution and this is done with an evaluation 

function (aka fitness or objective function). This function can be quite complex as it describes 

which solutions are better that others and guides the evolution in the appropriate direction, 

avoiding local maxima. For this application, our primary objective is to maximise the power 

developed in the power take-off damper (CpTO). However, we must also provide incentive to 

solutions that are progressing in the correct manner. Accordingly, the fitness for each individual 

is taken as the average power developed over a 60 second simulation. Although, in order to 

reward correct oscillatory behaviour, we penalise solutions that produce less than 10 latching 

transitions in a linear manner so that a solution with no latching receives zero fitness. This 

avoids chromosomes tending towards a fixed damping solution. 

The genetic algorithm script was written in MATLAB, using the "GA TOOL-BOX" [72].  A 

simple elitist algorithm was employed that kept the best 10% of the population each generation. 

A real-valued representation was used, along with intermediate recombination as the crossover 

operator and a fiat mutation rate was applied with an additional lOx increase in the probability 

of mutation every 20 generations in order to promote diversity. Full details of the genetic 

algorithms used can be found in Appendix B.2. 

5.1.3 Preliminary Latching 

As a simple test of concept to implement a latching strategy straightforwardly, we define a level 

of the motor-neuron output arbitrarily that will trigger the mechanical model to "latch-on" when 

above and release when below. In this work this is referred to as a "full latching" strategy. 

The controller whose results are shown in figure 5.1 was evolved using a wave period of 6s 

and was the result of 250 generations of evolution. It can be seen here that the output follows 

closely the ideal profile as described in 2.4.2. It is also seen that the MN output triggers the 
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Figure 5.1: Output of the evolved controller from zero to 30 seconds. The lower trace shows 
the motor neuron output left (red) and right (green), the latch fix-and-release points 
are illustrated by the vertical lines. The induced displacement (red) and velocity 
(green) of the buoy is clearly displayed compared to the incident wave (blue). It can 
be seen that the displacement of the buoy is much greater than the incident wave 
height, this is a commonly demonstrated feature of a correctly executed latching 
strategy. 

"latch-on" points so that they co-incide with points of zero velocity and the resulting output 

phase is shifted exactly 900  away from the input. As stated before these are known prerequisites 

for a latching strategy so it is reassuring to find that the solution developed tends towards the 

theoretical optimum. 

5.2 Practical Latching 

As we have just stated, it is a prerequisite of latching that the device is fixed only when the 

velocity becomes zero. It is therefore possible to monitor the velocity of the device and detect 

when zero velocity occurs. If we take this point to be the ideal "latch-on" point then only the 
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release point needs to be determined. In regular waves this can be determined theoretically [3], 

however in this situation we can use the MN threshold specified previously to trigger the release 

point. This is done by monitoring only the falling edges of the MN output (left or right) with 

the threshold level arbitrarily set to be 50% of the nominal maximum MN output. Latching 

(fixing) of the device is accomplished by manipulation of the power take-off damper such that 

the latched state becomes: Cp'ro(jatch_) >>>> CpT0(Latch_of when . = 0 [2] conversely 

the unlatched state becomes: CPTO (latch—off) = CpToevolved 4 . 

5.2.1 Wide-Bandwidth Evolution 

We have shown (see figure 5.1) that for a single frequency monochromatic wave, an evolved 

neural network is able to correctly determine an accurate latching strategy. This result, although 

interesting, is of no real use for a system that will work with changing period incident waves, 

such as a realistic ocean wave. In order to attempt to develop a controller that can implement 

a latching strategy across a wide bandwidth we must define the wave periods of interest and 

from chapter 2 we can see that, in general, wave periods range from as low as 4s up to 12s. It 

can be seen that the mechanical model provides a resonant peak around 2.8 seconds, which is 

much lower than the wave range of interest. However this is convenient as a latching strategy 

is ideally used for improving performance at periods longer than resonance (see figure 2.8). 

5.2.1.1 A Solution 

It is desirable that the solution is able to operate at maximum performance over a wide range 

of periods and, in order to evolve a controller to do this, we must adapt the fitness function of 

the GA appropriately. It is thought that by developing a single controller that will work well in 

a series of different period monochromatic waves, we may produce a controller that will work 

well when excited by a more complex, polychromatic wave. To test this hypothesis we select 

four5  monochromatic waves of periods, 3.5, 4, 5 & 7 seconds. 

Each individual is evaluated in a 60 second simulation at each of these periods using a chunk 

size (see section 4.3.3) of lOOms. The total power developed in CpTO for each period is then 

averaged to provide the fitness for each individual. The simulator is described in appendix A). 

4 CpToevolved is determined by the genetic algorithm 
5 We used four separate waveforms as this provided a balance of a reasonable frequency range and reasonable 

computational intensity. 
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A real valued genetic algorithm was used (as described in section 4.4.1) to evolve the synaptic 

weights of the neural network with a population of 40 individuals and using basic genetic 

operators. It was found that when running this evolution on a single machine, each generation 

was taking up to 30 minutes to evaluate and, as we require between 500 and 1000 generations 

before we can observe a solution converging, this resulted in very long processing times. In 

order to speed up processing times, a multi-processing environment was adopted, as described 

in section 4.4.3 and allowed a 1000 generation simulation to be completed in approximately 24 

hours. 

As has been described earlier, the genetic algorithm is a heuristic search technique based upon 

a random initial seed that does not guarantee an optimum solution, only a good one. Therefore 

in order to be confident in the results generated by such technique, and to be sure of avoiding 

false minima, three separate evolutions were invoked. Each of these converged within 500 

generations and the average variation in the individual weights between these solutions can be 

seen in fig 5.2(a). The convergence of these solutions is shown in figure 5.2(b) and it can be 

seen that each of these controllers develop approximately the same maximum power (within 

5%). It is interesting to see that, even though the controllers generate almost the same ultimate 

performance, they each have a different synaptic structure, suggesting that the neural technique 

may be very versatile and illustrates the effectiveness of the GA to produce good solutions. 

5.3 Further Latching Results 

Figure 5.3 shows the best controller for each of the three evolutions and figure 5.2(a) compares 

the values produced for each synaptic weight. It can be seen that there is very little correlation 

between them, even though they each produce near-optimum results. Nevertheless, there are 

certain similarities between individuals, in that certain weights feature very little variation 

across the controllers. It is reasonable, therefore, to assume that these weights are in some 

way required for operation. These "significant" weights are illustrated in fig 5.3(a). 

The evolved networks featured an almost fully connected structure and it seems logical to look 

at the strongest connections in order to compare their structures. These three controllers can 

be seen in figure 5.3(b) and show only the strongest synaptic interconnections 6 . As can be 

6 1t is appreciated that the lower weight connections do have a significant effect, however we consider this 
simplifi cation reasonable for the purposes of comparison. 
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(a) A comparison of the best individuals resulting from each of the three evolutions. Each bar represents the 
spread of values produced for each synapse. 
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(b) The progression of the GA showing the three separate evolutions of a 3.5s to 7s bandwidth controller. 

Figure 5.2: Summary of GA results for three 500 generation evolutions. 
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seen, this network bears little in common with the biological structure given by Griliner et 

al [46],  except perhaps for the enforced symmetry. It is interesting, however, to note that in 

the biological controllers, the only contra-lateral connections were between the CON neurons, 

whereas here there is a proliferation of strong and long contra-lateral connections in all the 

networks. 

These solutions were all evolved to produce viable latching control over a wide bandwidth. 

However, of these three controllers, #3 was chosen arbitrarily for further study. The latching 

performance in a 7s monochromatic wave is shown in fig 5.4, it can be seen to provide latch 

and release points in agreement with theoretical optimum latching and the same as observed 

with the "full-latching" controller shown previously. 

Figure 5.5 shows the performance of the evolved network compared to the natural undamped 

response of the mechanical system and also to the same mechanical system operating under 

optimum real damping. For the purposes of this thesis, optimum real damping is implemented 

as the maximum power obtained with a specific fixed damping level (see section 2.4). This plot 

illustrates the advantage gained by using a control method such as latching, illustrating very 

large performance gains shown throughout the bandwidth of the controller. It also demonstrates 

that the evolved neural controller is able to implement a latching system over a range of different 

period monochromatic waves. 

It is important to note that this neural controller produces an appropriate latching strategy, 

without requiring any future knowledge of the wave. Whereas optimum real damping requires 

the wave period to be known before an optimum value can be determined. The phase of the 

system is shown in the upper plot and this clearly shows a near-ideal phase shift of 45° being 

maintained over the evolved bandwidth. 

Although it is evident that the evolved controller can provide reliable performance in a fixed 

monochromatic wave, the next step is to evaluate the performance as the period of the input 

wave changes. In fig 5.6 we apply a waveform that sweeps across the frequency range of the 

controller. This swept wave is generated by stitching together a series of half-period waves 

of gradually increasing period that are joined together at each zero crossing. This is then 

decomposed into a discrete time series for the simulator. The swept wave starts at 3.5 seconds 

and gradually increases to 10 second period after 35s of simulation. The response to this wave is 

shown in figure 5.6 and clearly shows that the evolved controller is able to adapt to the changing 
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(a) The connections shown here exhibit minimal variation between evolved controllers. It is thought that these 
signify the connections that are required to ensure optimum performance. 

(b) Structure of the three evolved controllers. Strong synaptic connections (> 1.7 x average weight) 
are detailed. It is clear that they share no obvious common structure, however all produce very similar, 

near-optimum results. 

Figure 5.3: Network structures for evolved controllers with 3.5-+7s bandwidth. 

65 



Preliminary Results - Combining Mechanical & Biological Systems 

El 

Ca 
E 
a) 
C, 
a) 
0 

35 	36 	37 	38 	39 	40 	41 	42 	43 	44 	45 	46 	47 

Time (s) 

Figure 5.4: Section of waveform with a 7s excitation showing buoy displacement (solid) with 
water elevation (dashed). In the lower plot the MN output can be seen with the 
latching transitions indicated by dotted vertical lines. 
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Figure 5.5: Phase and power response for wave periods between I to 10 seconds. The neural 
controlled latching strategy (+), can be seen to outperform optimum real damping 
(*) over much of this frequency range. The undamped system response is indicated 
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Figure 5.6: Response of the system to a swept excitation over a 35s period. The wave period 
changes from 3.5 to 10 seconds over this duration. The top pane shows the wave 
displacement (dashed) relative to the device displacement (solid) while the lower 
pane shows the neural network output. The dotted vertical lines indicate the latch 
points for the system. 

input wave and maintain a latching strategy. Upon closer inspection it can be seen that the 

latching release occurs somewhat too early, appearing to use the previous cycle to determine 

the release point for the current one. This is to be expected and illustrates the feedback function 

within the controller. It shows that the neural controller uses the previous cycle to determine the 

correct activity for the current cycle, therefore it will be unable to produce an optimum latching 

response in a changing wave. Nevertheless this is a reasonable basis for a prediction and will 

allow the system to produce a noticeable performance increase in more realistic waves. 

5.3.1 Performance Limits 

The results in figure 5.5 show that the evolved strategy is successful over a useful range of 

frequencies, but it is interesting to note that it was not possible to produce a network that would 

provide latching control close to the resonant period of 2.8s. This can be explained relatively 

straightforwardly: if L t  defines the duration of latching and A the wave period, then the phase 

lag introduced by latching can be described as: çb = -LL . ir. For maximum power transfer, the 

optimal phase difference between the wave force and the buoy displacement is q5 = çb + çb = 

E 

G) 
E 
0 

CO 
0 

0 
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T . At resonance, however, the natural phase shift of the buoy is çb = , so the induced 

additional phase çb (though latching) should be 0 at resonance. Close to resonance, however, 

a lower limit is imposed upon Lt by the neuron model, forcing 4> A, resulting in sub-optimal 

power transfer. Under these conditions, since the latch-on time is too long, the difference 

between the buoy displacement and the water level is also too great. This effect introduces a 

feed-forward effect which reinforces this error - causing the latch-on time to get progressively 

longer which eventually results in the neural control becoming stuck in the latch-on position. 

It is possible to adjust the neuron coefficients to reduce L t  but, due to the discrete nature of 

the simulation, data is only interchanged between mechanical and neuron models at the end of 

each major time-step (chunk), therefore L t  cannot equal zero as it is limited by the minimum 

major time-step (chunk-size) of the simulation. 

As this effect is a function of the simulator, rather than the method it can clearly can be reduced 

by the introduction of smaller time-steps within the simulator. However, this will have the 

adverse effect of increasing the computational intensity of the model. Fortunately the periods 

of interest for the device are all longer than the resonant period. Therefore, this anomaly will 

have little effect upon the results 7 . The adjustment of neuron coefficients, in particular the 

time-constant, is investigated later and it can be seen that this does support the explanation 

given. We see that L t  is reduced and latching can take place closer to resonance without 

alteration of the time-step. 

Also evident in the evolved controller was the reduction in magnitude of the motor neuron 

output towards the shorter periods. This occurs as the neural network is operated further away 

from its natural frequency of oscillation. The parameters for modelling each neuron, given in 

table 3.4.2, specifically the time constant, define this natural period of oscillation. This is due 

to the neuron not regaining the same charge as the delay between firing shortens. Conversely, 

the inverse occurs as the frequency decreases causing the MN output to reach a saturation. At 

the longest periods this effect causes the L&R MN pulses to overlap. 

7 A 'traditional' latching technique (see top diagram in Ii gure 2.8) increases the phase delay between the device 
displacement and the wave. Therefore we select a device whose resonant period is shorter than the waves of interest 
so that such a 'traditional' strategy can be applied. 

10.9 
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5.4 Improvements & Implementation 

As we have seen, in order to alter the natural period and bandwidth of the neural network we 

can adjust the neuron time-constants and it can be seen that for this mechanical system, this has 

the effect of adjusting the bandwidth over which a latching solution can be found. The network 

used is based upon the biological model developed by Grillner [46],  and the effects of scaling 

these neuron time-constants can be shown by linearly scaling each time-constant by a value, 

Nt 3 . The neuron time-constant in effect only adjusts the natural frequency of the network and 

through modification of this scaling value it may be possible to develop controllers that will 

cover different periods. 

Evolved Bandwidth Damping Neuron Scaling Factor 
Start (s) Finish (s) Cp'o Nt 3  

3.1 6 8490 0.5 
3.5 7 9431 0 
6 10 14967 1.4 

Table 5.2: Variation in CPTO against evolved bandwidths. 

Table 5.2 shows the scaling factors and associated parameters that are used to evolve new 

controllers in the same way as before. For each scaling value and bandwidth a controller was 

produced and the resulting frequency plots are presented in fig 5.7. 

In figure 5.7, the different controllers can be seen to produce significant improvements within 

their particular frequency ranges. The smaller value of Nt 3  has clearly enabled latching to 

take place closer to resonance, with the time-step issue (described in section 5.3. 1) now being 

the only limiting factor. At the longer periods the performance is also clearly increased, 

although this improvement can be explained partly by the increased value for the power-takeoff 

damping CPTO, rather than just the altered Nt 3 . It is commonly known that as the period 

increases, the damping required to develop maximum power also increases. The changed 

neuron time-constant only makes effective latching possible at the longer periods and the 

increased value of CpTQ 8 allows the higher power to be developed. 

Table 5.2 shows how the damping increases with the periods and this is further illustrated in 

figure 5.8 where the 3.1s-6s controller is shown with three differing values of CpTO. This 

illustrates that for the longer periods, the value of damping must be increased, and can be done 

8 When compared to the other control shown and mainly due to the particular bandwidth used. 
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Figure 5.7: Frequency response for evolved controllers using different neural scaling values. 
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independently of the neural controller. It therefore becomes evident that the performance at 

longer periods is not limited solely by the neuron parameters and thus a higher CPTO  should 

be used. 

This effect is is to be expected and is seen when optimal real damping is used. In this method 

a higher value of damping is required to maintain maximum power as the wave period moves 

away from the period of mechanical resonance. The resulting effect on this system means that, 

unsurprisingly, a single value of CpTQ will not be adequate for all wave periods. 
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5.5 Chapter Conclusion 

This chapter describes initial work in using a neuronal network to implement a latching 

strategy for a simple point absorbing WEC. The results presented are particularly promising in 

simple monochromatic waves and show that a latching strategy can be effectively implemented 

to generate significant improvements over a tuned system (as opposed to controlled, see 

section 2.4) such as optimal real damping. 

Starting by introducing the combination of the mechanical buoy model and the artificial 

neuronal network the text quickly moves on to discuss how evolutionary techniques were used 

to develop the synaptic weights to fit this application. The use of a GA in this respect was a 

good choice as solutions are ideally suited to be transcribed in string form. The initial tests 

used basic genetic operators, and although it was clear that this was an optimisation problem 

with a particularly large search space, the GA proved capable of finding good and applicable 

solutions. 

Following the initial tests a more robust latching method was introduced along with the need 

to develop a controller that could work across a variety of wave periods. Again the GA 

was successfully used to evolve a solution that allowed for convincing latching performance 

across a range of periods. In order to confirm these results, a number of separate evolutions 

were completed which confirmed the maximum power to within 5%. Each of these separate 

evolutions produced a slightly different synaptic layout but with certain synapses that were 

consistent across all controllers and it was seen that all controllers operated visibly in the same 

manner. 

The evolved controller demonstrated a wide frequency response with a certain idiosyncrasy 

close to the mechanical resonant frequency. However, it was shown that this was a function of 

the simulator and, although this could straightforwardly be avoided with more work, it was 

deemed that this effect is far from the periods of interest and can thus be neglected. The 

effects of scaling the neuron time-constant were also covered and it was seen that the value 

of CpTQ optjmum  contributed more to the performance at periods far from resonance than the 

neuron time-constant. Nevertheless, it was seen that appropriate neuron time-constants were 

required for each chosen bandwidth so that oscillation within the neural network would take 

place. 
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This same controller was also shown to produce good, although non-optimal results in a 

changing period wave. Evolved using a selection of different period monochromatic waves, 

it produced valid latching performance in a non-regular swept waveform, this is particularly 

promising and tests in more complicated irregular waves are covered next in chapter 6. 
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Chapter 6 
Further Testing & Expansion to 

Multiple Degrees of Freedom 

6.1 Introduction 

Chapter 5 dealt with the preliminary development and monochromatic testing of a neural 

strategy to implement a latching strategy on a simple wave energy converter. This chapter 

expands this work though testing in irregular waveforms and expands the mechanical system to 

examine how neural control may be implemented in an articulated device. 

Firstly, the irregular test waveforms are introduced and their production is explained. Then we 

examine the simple single degree of freedom system and how it performs in these conditions 

when compared to a simpler uncontrolled system. The mechanical model is then expanded to 

produce a simple analogy to a Cockerell raft, using two interconnected buoys. A controller is 

developed for this configuration and the interaction of this more complex model with regular 

and irregular waves is examined. 

Finally we extend the mechanical model to produce an analogy to a simple articulated device 

with two joints. This is a more complicated arrangement using three interconnected buoys and 

we look at how a control strategy may be implemented for this model. We examine a number 

of methods to evolve a controller, including turning to more advanced genetic optimisation 

techniques before summarising these findings at the end of the chapter. 

6.2 Polychromatic Response 

6.2.1 Test Waveforms 

It has been shown (in fig 5.6) that the neural controller developed in chapter 5 can be used 

to correctly implement a latching technique in varying regular waves. In order to to further 

analyse the performance of this controller we develop a series of three increasingly complex 

and realistic waveforms with which to test the system. 
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The first waveform is intended to be the most basic and thus it is a simple bichromatic 

waveform. Generated through the sum of two sines, such that W0  = A asjn(iiat + Oa)  + 

Absin(wbt + Ob) where the subscripts a & b represent the two waves to combine. Strictly 

a regular waveform, we specify that both periods are within the evolved bandwidth of the 

controller, producing the waveform as shown in figure 6.1(b). 

The second test waveform, shown in figure 6.1(d) is a more complex version of the first, being 

a sum of three sines. Given by Wt = A asjn(wat + Oa) + Absin(wbt + Ob)  + Asin(w ct + 9) 

with again the subscripts denoting the different waves to be combined. Again this is a regular 

waveform and its component frequencies are also taken to be within the bandwidth of the 

controller, it can be seen that the addition of an additional component produces a distinctly 

more complex waveform. 

It is understood that neither of the previous waveforms are realistic. Therefore, for the final 

waveform we generate a time-series', from a Pierson-Moskowitch (PM) spectrum. This is 

an irregular spectrum created from a random seed and models a reasonably realistic, fully 

developed sea. The PM spectrum generated is shown in figure 6.1(e) showing a dominant period 

of 7 seconds. The time-series waveform derived from this spectrum is shown in figure 6.1(f). 

These three test waveforms are all shown in figure 6.1 and are accompanied by their 

corresponding spectra which clearly show the component frequencies. We have seen 

previously (fig 5.6) that the neural controller can be used to correctly control a latching 

technique in varying regular waves. In order to study this method of control further, we 

observe performance in these three separate wave conditions and monitor the output. 

6.2.2 Bichromatic & Polychromatic Response 

For each of the waveforms shown in figure 6.1, we evaluate the performance of the neural 

controller. For clarity we are using the same controller, evolved for a 3.5—+7 second bandwidth, 

that was used for previous tests in the preceding chapter. We show the performance in each 

wave condition compared to the optimal real damping for each trace, which remains static for 

the whole simulation. 

'This waveform was generated using the CS2 wave simulator [751 developed at Southampton university. 
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Figure 6.1: Waveforms used for further testing. 
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(b) Polychromatic wave: The power developed using this waveform increased from 60kW average with optimal 
real damping to 85kW with the neural control. 
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(C) Irregular wave. This is shown over a 180 second period and here the average for the controlled system was 
43kW compared to the system under optimal real control, which produced an average of 17kW. 

Figure 6.2: Buoy displacement shown for the three different wave excitations. Each shown 

under optinal real damping (green) and under neural latching control (red), the 

surface displacement is given by the dashed blue line 
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As can be seen in fig 6.2 the controller is able to adapt to non-regular waves with the 

neural control in general being able to find appropriate release points for the majority of 

wave conditions. It can be seen that large power gains are shown over optimal real control 

in all of the different waves, although the unrealistic polychromatic wave did not show as 

large improvement as the others. Automatic latch-on at zero velocity prevents excessive 

accelerations. However, this also means that the system is prone to latch-on at velocity 

inflections, rather than significant peaks. This effect can be seen at various points, most clearly 

in the unrealistic waveforms shown in figures 6.1(b) and 6.1(d). At these points this effect 

causes the control to miss the following significant peak as it is already latched however even 

with these mistakes the control is still able to adjust to the incident wave, although this is a 

point that can certainly be improved. 

Most significant is the response the neural control shows in the realistic waves, illustrating 

an increase of greater than 100%2  over the uncontrolled system (operating with optimal real 

damping). Although the performance in the bi- and polychromatic waves is interesting and 

illustrates certain flaws in the method, the fact that such a significant gain can be achieved in a 

realistic wave condition shows the potential of this kind of control. 

6.3 Expanding into two buoys 

So far we have considered a buoy operating in only a single degree of freedom and we have 

clearly demonstrated the potential of this method of control implementation, however our 

original inspiration came from the similarity between the wave induced motion of the Pelamis 

and the swimming motion of the Lamprey. In order to examine these similarities further we 

need to expand the mechanical simulation to more closely resemble a WEC consisting of 

articulated sections, our first step being as described in fig 6.3. 

Here the relative angular movement between the two sections generates power in the damper 

CpTO. This is a reasonably complex mechanical system. So, in order to provide a simple 

approximation, we can expand the current single buoy model by adding an additional buoy and 

using their relative motion to approximate the angular motion of the more complex system. 

Now the relative vertical velocity is used to develop power, resulting in a system comprising 

two single degree of freedom components which can be easily modelled, giving a system as 

shown in fig 6.3. 

2 Note: An increase of 100% relates to a doubling in magnitude 
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(a) WEC consisting of two connected rafts. 	(b) Two interconnected buoys providing an 
The relative angular movement of the two, z, 	approximation to the connected body WEC 
generates power in CPTO. 	 shown in fig 6.3 

Figure 6.3: Approximation to an articulated WEC design using two interconnected buoys. 

The equation of motion of the single buoy can be expanded and rewritten to take into account 

the new arrangement with subscripts denoting the individual buoys. As described above the 

two buoys are considered as completely separate bodies with the only common component the 

power take-off damper, CpTO which is connected between them. 

i(M+Ma) = FblCpTOX (ii 	 2)(Ca X ii) kXZl 	(6.1) 

	

12(M+Ma) = Fb2CpTox(2 ii) (Ca X2)kXZ2 	(6.2) 

= CPTO x (i1 - 	x t 	 (6.3) 

Although these two buoys are described as independent, their physical separation will 

determine just how large the relative movement will be. In an articulated device such as this, 

the buoys will be oriented one behind the other in a line perpendicular to the wavefront, the 

difference in displacement (and hence relative velocity) between the buoys will vary with the 

wavelength and will have a significant effect upon the power produced. 

It can be seen that the wavelength (A of a regular wave in deep water is related to its period (T) 

by the equation; A = 	[76] where g is the acceleration due to gravity. This allows us to 

calculate the appropriate relative displacement between the two buoys. It can be clearly seen 
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that the output of the system will be significantly increased when the wavelength is a multiple 

of the separation distance. For example, a physical separation of will provide the maximum 

relative displacement between two bodies and hence the maximum power. This effect is more 

pronounced in a real articulated WEC such as OPD's Pelamis® [5]. This device consists of 

four connected sections, each 30 metres in length and it can be seen that it will experience 

performance "peaks" in wavelengths that are multiples of its section lengths i.e. 2A and 4A. 

This device is therefore able to provide a natural tuning to a variety of incident wavelengths 

allowing a good response at shorter ( 60m) as well as longer ( 120m) wavelengths providing 

a naturally wide bandwidth. 

Physical Separation 

As we have described, the separation between the buoys will have a distinct effect upon the 

power generated. Therefore, in order to decide upon this value we need to consider the 

estimated bandwidth of the system. We know that the resonant period of the buoys is just 

under 3 seconds and for the case of a single buoy we can produce effective latching control 

from 3 to 10 seconds. Therefore, if we take 3 seconds to be our minimum period, we can set 

the separation so that at this point buoy separation is equal to wavelength, knowing that at this 

period zero power will be produced. A 3 second wave period equates to approximately a 15m 

wavelength. Therefore this will be used as the separation between buoys. A few more periods 

and associated wavelengths are shown in table 6.1. 

Table 6.1: Periods and wavelengths used for evolution of a solution using two buoys with a 
15m separation 

6.3.1 Evolving a New Controller 

As with the single buoy system, these two buoys still feature only one power take-off damper 

CpTO for the purposes of latching and this can be considered the 'control element'. Latching 

control can be implemented in the same way as before and although the dynamics of the system 

Period (s) Wavelength (m) 
3.5 	 19 
4 	 25 
5 	 39 
6 	 57 
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are very different we can in theory use the same method as before to evolve a controller for this 

system. 

Of course, our first experiment involved applying the previous single buoy controller to this 

system and it was quite interesting to note that, although not optimised for this system, was able 

to produce latching control, although the power produced was barely better than uncontrolled 

optimal real damping. (see figure 6.5) It is perhaps understandable that this previous controller 

did not fare better as this two buoy system features certain differences, most obviously that the 

levels passed between the neural and mechanical systems will be significantly different to those 

observed with the single buoy system. 

The neural and mechanical systems in the single buoy system are coupled by the buoy velocity 

() being passed directly to the sensory input of the neural network, provided by the edge cell 

(EC). As the system is expanded to two buoys, power is now developed through the relative 

velocity of the two buoys, giving the velocity in CpTo as il - i2. Therefore when the buoys 

are moving in opposite directions, the maximum velocity will now be twice that of the single 

buoy. 

As a result we can redefine the edge cell input to be the square root of the relative velocity. 

- 	 - Z2) 	 (6.4) 

Adjusting the Fitness Function 

When evolving a new controller, we must also take into account the effect of the buoy separation 

discussed earlier as there will be a significant peak in the power developed around 30m 

wavelength (A = separation x 2). This may preclude solutions being found for the controller 

at the extremes of the bandwidth and we must adjust the fitness function of the GA to take 

this into account. Currently the fitness of the GA is defined as the average power developed 

in a series of regular waves spread across the required bandwidth of the controller. This will 

promote individuals with exceptionally high power at specific frequencies and precludes others 

who offer a sub-optimal, but wide bandwidth. 

As it is unlikely that a solution will be found that will be able to provide optimal power and 

a very wide bandwidth, then due to wide spectrum of ocean waves it is beneficial to promote 
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a wide bandwidth, even at the expense of a slightly sub-optimal performance. This will result 

in a controller that is more able to deal with variations in wave period 3 . To develop this, we 

introduce a transfer function that links the power developed to a fitness value for the GA with 

high bandwidth as the primary incentive, and maximum power as the secondary. In order to 

apply this, the power output from at each period undergoes the following transfer function 

shown in equation 6.5 and figure 6.4. 

	

Overall Individual Fitness= 	
a 

	

4 	
(6.5) 

150000 

100000 

50000 

0 	
50000 	100000 	150000 

DEVELOPED POWER 

Figure 6.4: This graph shows output power against fitness for a single individual, with scaling 
factor a = look 

It can be seen that the transfer function will scale up power values below a and reduce those 

above. This provides extra incentive to develop controllers that will provide some response at all 

frequencies, and will not reward disproportionally those individuals that feature exceptionally 

high power at specific periods. It is worth noting at this point that in the same way as with the 

single buoy controller, if CPTO  is not modulated by latching, power is automatically reduced to 

zero. This excludes incorrect solutions that do not use latching control. The performance of this 

fitness function does depend upon the value of a and this can be defined as the point at which 

acceptable power has been achieved. This will of course vary depending upon the system and 

can be determined experimentally. For the system of two buoys here a value of 100,000 was 

chosen. 

3 1n practice the expected range of wave periods will depend upon the intended location for any device. 
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6.3.2 Wide Bandwidth Controller 

In a very similar manner to the single buoy controller we develop a wide bandwidth controller 

by choosing a series of frequencies spanning the desired frequency range which are shown 

with their accompanying wavelengths in figure 6.1. Using the same parameters as described 

in section 5.2.1.1, the GA converged to a maximum in a little over 600 generations, taking 

approximately 47 hours. The performance of the resulting controller is shown in figure 6.5. 

Here the average developed power, is plotted against period & wavelength. This is compared to 

optimal latching, to the response of the evolved single buoy controller developed previously and 

the output of the system using optimal real damping. The performance of the evolved controller 

is shown in more detail with a wave period of 5 seconds in figure 6.6. 

The optimal latching response shown in figure 6.5 is the maximum power that can be achieved 

using a single tuned latching controller at each frequency. This is an estimate based upon the 

assumption that in a constant monochromatic wave  it is possible to develop a neural controller 

that will produce an optimal response. Accordingly for each discrete monochromatic period we 

can evolve a network that will produce the optimal latching response and available power. This 

power developed at each period can thus be approximated to theoretical maximum power, it is 

understood that this is an approximation and actual optimal response may be slightly higher but 

this is intended as a reference with which to compare and so can be considered adequate. 

As expected, a significant peak in power is visible at wavelength of 30m due to the wavelength 

being double the separation. The controller does demonstrate a good response across the 

frequency range and although it is understandably less than the optimal response it is still 

significantly better than the system using optimal real damping. It is also interesting to see that 

the single buoy controller is able to produce a response across the range of periods however its 

response is only slightly better than that of optimal real damping. 

The performance of the system in response to 5 second waves is shown in fig 6.6. In the upper 

plot the physical displacement of buoys (z) is shown, which clearly shows the effect of latching. 

The relative displacement is shown in the centre plot along with the water level at both buoys, 

this reacts as expected to the influence of latching, with the displacement being locked and 

released at the extremes of relative motion, providing approximately 90 °  phase shift from the 

4 Due to the fact that a constant monochromatic wave is 100% predictable and thus the wave itself provides all 
the future information required 
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Figure 6.5: Developed power against period and wavelength for the two buoy system using 
different controllers. The optimal output at each period for latching control in this 
configuration is shown in green. 

water level at the midpoint between the buoys. The bottom trace shows the input and output of 

the neural controller, showing the Edge Cell input relative to the MN output. 

Real Wave Response 

To complete the examination of this controller, we shall investigate its performance in a 

realistic, non-regular wave. As we have shown previously, a realistic waveform can be 

generated through a Pierson-Moskowitch spectrum that closely resembles a real wave. This 

spectrum can be expanded to illustrate the wave height at a single point on the surface of the 

ocean. As we need to develop a realistic wave for a system of two buoys with a down-wave 

separation, the wavelength as well as the period is now required. Ideally this requires two 

separate waves to be produced, one for each buoy, however as this spectrum has a clearly 

dominant period and wavelength we have simplified this waveform to use only the dominant 

wavelength for this test. 
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Figure 6.6: Lower plot shows the EC input to the neural network (Green) alongside the 
MN output for a 5 second period wave . The middle plot shows the relative 

displacement of the buoys in red with the water level present at the midpoint 
between the buovs(blue), The upper plot illustrates the displacement experienced 
by each buoy, zi'purple) and z2(green) 

The performance of the controller in irregular waves is illustrated in figure 6.7, this illustrates 

a clear and quick adaption to the excitation waveform. The figure demonstrates a substantial 

power increase of 83% over optimal real damping. This is consistent with the high power 

increases seen when the single buoy controller is evaluated in non-regular waveforms as shown 

in figure 6.2. 

0-20 seconds are ignored as this is a conli guration period for the simulator and hence the output cannot be relied 
upon. 
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Figure 6.7: The performance of the evolved controller in a 5.5s PM spectrum over 120s is 
illustrated here. The relative buoy displacement for optimal real damping is shown 
by the green trace (53kW average) and Neural latching control in red (98kW). 
The sea level at each buoy is given by the blue traces. The upper plot shows the 
controller EC input and MN output. 
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6.4 Expanding to Three Buoys 

So far the system of a single buoy and two interconnected buoys have been controlled by a 

single element and have illustrated how a biologically inspired neural controller can be used 

to implement a practical latching control strategy. This method, although tested in restricted 

conditions and with a simplified mechanical model, has shown significant improvements over 

real damping in irregular waves. The logical extension of the two buoy system is to encompass 

more interconnected units, as shown in figure 6.8(b). By extending the mechanical model in 

such a way we can start to roughly approximate the motion of real articulated WEC such as the 

PELAMIS by Ocean Power Delivery (see figure 6.8(c).). 

93 

(a) Mechanical arrangement of a three body 	(b) Simplification of a three body articulated 
articulated WEC. 	 system into three independent buoys. 

1 mm 
(c) The PELANIIS \VEC. 

Figure 6.8: Approximation to a three body articulated system. 

As the mechanical system is expanded to incorporate three buoys, it must also include an 

additional power take-off damper. This provides additional complication as we now have two 

control elements, Cp'roi and Cpy02. The equations that describe the motion of the system are 

shown below. 
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iI(M + Ma) = Fb1 - CpTO1 X  (i - i2) - (Ca  X i 1 ) - k X Zi (6.6) 

I(M+Ma) = Fb2—CpT01 x( 2 —i 1 )—CpTo2x(i2—i3)- 

	

-(Ca X  Z2) - k x Zi 	 (6.7) 

	

13(M+Ma) = Fb3_CpT02X(3i2)(CaX3)kXZ2 	(6.8) 

	

P(t) = Cp'roi x (i1 —i2) 2  x t+CpTQ2 x (i2 —i3) 2 	X t 	(6.9) 

The mutual dependence of motion is clear from these equations. It becomes obvious that if we 

modulate the value of CpT01, which controls the relative displacement of buoys I & 2, it will 

also effect the motion of buoy 3. The same obviously applies in that by modulating CpT02 

we affect the motion of buoy 1. This in effect produces a system of coupled oscillators that 

will provide a stable oscillation only given certain conditions. This is a complex system for 

which to find a stable control method and at first glance it seems to exclude the possibility that 

each power take-off damper may be independently controlled. Nevertheless, we can use the 

powerful optimisation techniques we have already employed to see if this is the case. 

In this instance we must use a different method to control this model as there are now two 

controlled quantities, CpT01 and CpT02, each of which will require a neural segment as a 

controller. Initially using a very simple configuration and assuming identical neural values in 

both controllers, we used a simple monochromatic excitation of 4s 6  which gives a wavelength 

of 25m. 

For this initial test we use the GA as before to evolve the synaptic weights, however as we 

are now using two neural segments as the controller, in order to simplify the evolution we use 

the same synaptic weights in both 7 . As each controller will receive appropriate sensory input 

from the relative velocity of adjacent buoys, it is thought that this simplification is a reasonable 

starting point. 

Figure 6.9 shows the output of the controller after a 1000 generation evolution, using the same 

GA technique as in earlier experiments. It can be seen that the controllers clearly attempt to 

latch the buoys in the same manner as in the single buoy controllers, however there is a clear 

64 was chosen as this provided a good response for the single and two buoy models and is longer than wo. 
7 These two neural segments are also referred to as controller 1 and controller 2, which control dampers CpTO1 

& CPT02 respectively. 
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Figure 6.9: Latching response of three connected buoys using two unconnected 
controllers(segments). The top trace shows the relative displacement of buoy 1&2 
(red) and 2&3 (green). The lower plot shows the individual buoy displacements, 
buoys 1, 2 &3 are yellow, blue & dashed purple respectively. 

instability resulting from the coupled nature of the system which serves to disrupt the control. 

This results in an unpredictable and unstable output with the GA unable to find a stable solution 

for this configuration. Nevertheless the output power 8  did result in a average power of 419kW 

which was an increase of 110% over the optimal real damping configuration, however it 

was an improvement of only 10% over the two buoy system under neural control in the same 

monochromatic wave 9 . 

For further confirmation of this result, different synaptic weights were sought for both 

controllers, thus examining the possibility that this instability can be counteracted by using 

different controllers. This resulted in evolving double the number of synaptic weights and 

thus increased the search space significantly. Accordingly the GA took significantly longer 

KI n  this confi guration almost all power was developed from the relative motions of buoys I & 2 

9Due to the increase in buoys and the additional power take-off damper, a power increase of approximately 50% 

over the two buoy system should be expected 
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to converge to a solution. It was seen that the resulting controllers did illustrate differing 

structures but this did not result in a power increase over the previous result, developing a 

maximum of only 388kW. This supports the original suggestion that a three buoy system 

requires some form of coordinated control. 

6.4.1 Biological Inspiration 

As we have just shown, independent controllers are unable to produce an accurate latching 

strategy for a three buoy system. It may then be possible that some communication between 

controllers is required in order for them to adapt to such a complex system. If we look back 

at the biological inspiration behind this type of neural control we can see how it provides an 

analogue to this configuration (see section 3.5). The biological (and artificial) lamprey models 

feature individual segment oscillators that are connected together along the length of the body. 

These inter-segmental connections provide a phase delay between segments and ensure that a 

constant wavelength along the length of the lamprey body is maintained independent of the 

swimming speed. By allowing interconnections between the controllers in the same way as 

in the lamprey it is hypothesised that it will allow for stable control of three buoy system by 

allowing some form of information to pass between the individual CpT01 & CPT02 controllers. 

In order to develop interconnections between these two controllers we must add an additional 

four matrices of weights, describing both inhibitory and excitatory inter-segmental connections 

and their direction. These matrices will be the same dimensions as currently used to describe 

the synapses within the controller. Figure 6.10 shows how these inter-segmental connections 

will work with a network of only 4 neurons. 

With an individual controller size of eight neurons we can take advantage of the network 

symmetry as we have done so far and this will allow us to reduce each of these interconnection 

matrices to a 4x8 format rather than 8x8. Even so this provides a significant increase in 

variables (to be optimised)' °  from 74 to 202, vastly increasing the search space of the GA. 

While developing his artificial lamprey model, Ijspeert [40] realised the problem of excessive 

search space and used a method to reduce the number of optimisation variables. He extended 

the weight of the intra-segmental connections caudally and rostrally (forward and backward) 

by an integer number of segments. Therefore, assuming that the connections are extended 1 

' 0This still assumes that the two controllers will be identical as in previous artificial lamprey CPG models [6,401 
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Figure 6.10: Additional matrices required to represent synaptic connections between two 
controllers. 

segment; the weight of a synapse from LIN to CCIN in controller A is also applied to a synapse 

between neuron LIN in controller A and CON in controller B. Therefore an integer value 

can describe how many controllers a particular neural connection will extend to in a particular 

direction (caudal or rostral). In the simple system of two controllers a connection can only 

extend by a maximum of one segment, therefore each of the values in these inter-segmental 

matrices will be either connected (1) or not (0). As each matrix thus comprises one-bit binary 

rather than real-valued data, this reduces the complexity of the network significantly and keeps 

the increase in GA search space to a minimum. 

In order to evolve a solution using this method of representation two methods are used: In the 

first method the segment weights are initially evolved as independent controllers (as developed 

above, see fig 6.9) then the inter-segmental connections are evolved separately. Following this 

the segment weights were then separately re-evolved using the best inter-segmental weights 

just developed. This procedure is repeated until no further improvements are seen. The second 

method simply involves the evolution of the intra-segmental and inter-segmental synaptic 

weights at the same time, thus being more straightforward but using a greater number of 

optimisation variables. Both of these methods use the same wave period of 4 seconds/25 metres 

and the same basic GA configuration as used in the previous 3 buoy experiments. 

Result/Discussion 

After convergence, the best individual from the iterative method generated 421kW average 

power and a response that was no more stable than with independent controllers. Initially 
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starting with the segmental weights evolved for the independent controllers, the first evolution 

of the inter-segmental weights produced the largest gain in power observed through any of 

these iterations. It was seen that the subsequent evolutions of the intra or inter-segmental 

weights produced very little improvement. After two iterations the GA was unable to make 

any improvement. 

The 'all-in-one' evolution method failed to produce the same level of power, with the best 

individual developing only 388kW - It is thought that this is likely to be due to the increased 

search space allowing the GA to become stuck in a local maximum. 

Relative to the 419kW produced through the independent controllers, this is an insubstantial 

increase and suggests that either Ijspeert's reduction technique does not have the finesse 

required to deal with control such as this, or the use of inter-segmental interconnections between 

controllers provides no benefit in this application. In order to eliminate the former theory, two 

additional methods are used to attempt to evolve a stable controller. 

6.4.2 Further Investigation 

As we have discussed in chapter 4, probably the most critical element of a Genetic Algorithm 

is the criteria by which it ranks individuals. This is the fitness function and up to this point this 

has been based purely upon average power developed in Cp'po". It is thought that this may 

be promoting solutions that develop some latching strategy quickly and hence produce some 

power in one joint, rather than an even amount of power in both. This can be seen in figure 6.9 

where latching between buoy 1 & 2 is successful, although between 2 & 3 it is unstable. This 

may be understandable given a coupled system such as this. 

Optimising for Stability 

An additional technique that is investigated involves changing the the fitness function to 

optimise stability rather than developed power. Although the main criteria for this application 

is power, we are particularly interested in a solution that will latch both joints in an accurate 

and stable manner, therefore an additional test is applied whereby the fitness criteria is adjusted 

accordingly. By rewarding individuals for developing an equal amount of power developed 

"In the three buoy system fi tness is currently based upon the power developed in CpT01 plus power developed 

in CPTO2 
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Figure 6.11: Result of evolving for equal power in both joints. The synaptic weights were 
evolved over 60 seconds and beyond this period the graph shows a clear loss of 

stability. Joint I & 2 displacement is shown in red and green respectively 

in both joints (Cpyoi & CpT02) this may develop an overall stable latching control. This is 

applied simply by using only the power developed in the lowest output joint as the metric by 

which to compare individual solutions. 

Using the additional technique described above to attempt to develop a more stable controller 

we produce the output shown in figure 6.11. Evolving over 1000 generations, this method 

used the same GA and configuration that produced the best result described above, however it 

used a different fitness function in order to try to promote stable 12  individuals. This function 

sacrifices developed power for stability and it can be seen that even given this compromise a 

stable solution was not produced. Latching does take place between the buoys and as we have 

observed in previous results, joint 1 (CpTOI) is noticeably better than joint 2 (CpT02). The 

output however can be seen to be unstable, with the magnitudes of the buoys displacement 

varying even with a constant monochromatic excitation and then the output failing completely 

after 80 seconds. 

This prompts further investigation as to whether there may be stable arrangement, therefore two 

further experiments are detailed, A & B: 

12 We defi ne a stable solution as one where the power developed in both joints is approximately even and the 
latching response is constant and unchanging in a constant monochromatic wave (obviously excluding an initial 

startup period) 
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A 

Assuming that Ijspeert's' method for implementing inter-segmental connections is not be 

suitable in this situation, a more direct method for developing the interconnections may be able 

to provide the required control. By developing the synaptic weights for the inter-segmental 

connections in the same way as the weights for the intra-segmental connections this will 

increase the number of variables to be optimised greatly, however it will be able to provide 

a much greater level of precision in the inter-segmental weights. This method involves the use 

of a real valued weight for each interconnection synapse and will result in an increase of 64 

variables, significantly increasing the required search space for the GA and requiring a more 

advanced algorithm, such as a multi-population GA. 

B 

It may be that in order to develop a stable controller, the assumption that both segments should 

be identical is flawed. It may be that the controller may need to have two segments with slightly 

different characteristics in order to develop a stable system as well as having interconnections 

between segments. To do this, the two segments are no longer assumed to be the same and 

are thus evolved so they may develop different individual parameters. Firstly this will involve 

testing with Ijspeert's reduced interconnections method and then expanded to use real values 

independent interconnections as described in (A). These methods will result in an increasingly 

large number of synaptic interconnections to be developed, with the most complex resulting in 

a total of 270 real valued parameters being optimised by the GA. 

In order to deal with these extremely large search spaces presented in these experiments, a 

number of techniques are employed, most importantly the use of a multi-population GA as 

described in (chapter 4). This uses a population of 80 individuals which are subdivided into 

four sub-populations, each of 20 individuals. The top 10% of fittest individuals are migrated 

between populations in a ring topology every 20 generations, therefore allowing an increase in 

genetic diversity and a more effective coverage of the increased search space. A non-redundant 

search modifier is also included that eliminates identical solution strings 13  to further increase 

diversity and reduce the possibility of becoming stuck in local maxima. 

' 3
1n practice the non-redundant search was very effective early on in the search, within the first 200-300 

generations, eliminating 1-2 duplicate solutions per generation, after this stage there were surprisingly few 

duplicates 
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Result/Discussion 

Ultimately after several hundred hours of computer time no stable solution was produced using 

the majority of the methods outlined above. The best results from these methods produced 

consistently between 390kW and 420kW average power, however none of them could produce 

consistent latching at both joints, not even using a fitness function designed to produce even 

power in both dampers. The exception was found in method (B) when evolving both controllers 

and inter-segmental connections with separate real-valued weights. This was by far the most 

complex search conducted and converged to an average power of 455kW after 1500 generations 

and almost a week of processing on a farm of 20 linux workstations. Although this is an increase 

of only 10% over the unconnected, identical segments shown earlier it does produce a stable 

result which is shown in figure 6.12. Very interestingly, this result is a controller that in order to 

develop maximum power, removes the third buoy from the system by keeping the second joint 

unlatched and with zero damping. As the buoys are linked together only by the power-take-off 

dampers, this this effectively results in a two buoy system. It can be seen that the maximum 

power generated is in line with that produced with the two buoy simulation earlier 14. 

Overall no stable solution was developed that can provide latching control in this articulated 

configuration, either with or without synaptic inter-segmental connections and even when 

sacrificing power to try to develop a more stable output. The best result we achieved featured 

an anomaly that causes the 2nd joint and 3rd buoy to be neglected completely - producing 

effectively a two buoy system, this output is shown in figure 6.12. We can confirm that the 3rd 

buoy has no effect of this system in this configuration as the power developed is the same as 

that produced in the two buoy results seen earlier (compare with optimal power in figure 6.5.). 

This is a surprising result and possibly indicates that this method of neural latching control is 

best suited to a single control element. The discrete nature of latching means that the neural 

EC input is zero for a significant part of the wave cycle and although a single segment may be 

able to effectively interpolate this missing information, two interconnected segments may not. 

This leads to the conclusion that it is not possible to produce a stable latching strategy for an 

articulated device with more than one control element using this method, and thus demonstrates 

a limitation of the latching technique. 

' 4 1n the same wave, 4s 25m monochromatic wave, the two buoy simulation produced 440kW - see the optimal 
trace in fi gure 6.5 
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6.5 Chapter Conclusions 

This chapter has bought together the final results of this thesis and shows the performance of a 

single buoy in irregular waves right through to the expansion of the system to two and then three 

buoys in order to approximately model a multiple D.O.F. WEC, culminating by illustrating the 

limits of latching control in this application. 

After highlighting a variety of increasingly complex waveforms, we started by examining the 

response of the previously evolved single buoy controller in these conditions. This illustrated 

the significant power increases that may be possible with this simple method. This also showed 

that the principle of neural control may be applied in a causal manner, where it does not require 

future knowledge of the input wave in order to calculate the release points for the strategy. 

It was seen that the system effectively bases its next estimate of release time based upon the 

previous cycle. This was adequate in all the waveforms tested to produce better power than an 

optimal real damped system and in the case of a Pierson-Moskowitch real sea produced greater 

than 100% increase over optimal real damping. 

Following on from these results the single buoy model was expanded to use two buoys coupled 

by a power-take-off damper such that their operation was similar to the Cockerell raft (described 

in [29]).  This system still only used a single power take out damper so it was a straightforward 

expansion of the previous implementation. It was demonstrated again that by evolving a 

controller that can produce power in a range of monochromatic wave periods a wide-bandwidth 

controller can be developed. It was also seen that the individual neuron parameters can be 

modified to adjust this bandwidth. The wide-bandwidth controller demonstrated good response 

in regular waves, although it was less than optimum (see fig 6.5), however as with the single 

buoy it provided good response in irregular waves. 

The expansion of the mechanical model to encompass three buoys was the next logical step, 

although with mixed results. This model used two neural segments to control the two active 

dampers (CpTQ1 & Cp'r02). After testing many different methods of evolution no significant 

and accurate latching response was seen, although power developed was still higher than 

produced with optimal real damping 15 . Ultimately the best response resulted in the evolved 

controller reverting to a two-buoy configuration and neglecting the third buoy. The hypothesis 

15 The maximum power developed with the three buoy model using the same waveform with optimal real damping 
was 178kW compared to the power of 400kW developed with the latching control. 
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that the interconnections between the two segments that made up the controller would help to 

pass information between the elements and thus produce a latching strategy in this complex 

configuration proved inconclusive. An increase of only 10% between unconnected and 

connected controllers was not large enough to conclusively prove this link. 

Ultimately this chapter has increased the complexity of the mechanical model to the point where 

we can no longer find a latching control method that will produce a viable controller. However 

the performance of the single segment controller in a variety of waveforms has proved the 

validity of this form of neural control. 



Chapter 7 
Discussion & Conclusions 

7.1 Discussion 

This thesis set out to examine the plausibility of using a biological construct as the basis for a 

control mechanism for an articulated wave energy converter. In the process of doing so it has 

investigated further the application of latching as a control strategy and for a single buoy, has 

illustrated a methodology for evolving neural latching controllers that will perform well across 

a wide range of wave periods. 

Through the work presented in this thesis, we succeeded in answering the following questions: 

• Identify how the similarity between the lamprey neurophysiological structure and an 

articulated Wave Energy Converter may be exploited to provide a method of real-time 

control. 

• Show whether the lamprey neural circuitry can be adapted to fit this control application 

through the use of evolutionary optimisation techniques. 

• Investigate if the resulting controller can apply a realistic control mechanism to a simple 

mechanical WEC system. 

• See if the resulting control system can be expanded and applied to an articulated WEC, 

similar to the Pelamis. 

The following sections summarise the main findings of this thesis: 

7.1.1 Control Analogy 

The initial inspiration behind this work came from the observation that certain wave energy 

devices behave in a manner similar to the anguiliform locomotion exhibited in a number 

of creatures. In this instance the lamprey was taken as our subject as its biology has been 
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studied extensively and its neural structure has been modelled artificially. This previous work 

reveals a very simple neuronal structure which is divided into discrete segments that directly 

control the muscle output. The overall coordinated motion of the lamprey is the result of the 

interconnection between these segments which together form a neural construct known as a 

central pattern generator (CPG). 

This primary analogy was formed by close inspection of the segmental nature of the lamprey 

CPG and relating it to the structure of an articulated wave energy converter. It was seen that the 

locomotion of the lamprey involved propagating a travelling wave along the length of its body, 

whereas the WEC responds to a sea wave travelling along the length of the device. Thus the 

initial similarities between the systems were formed. 

In looking for a starting point to investigate this relationship further a much simpler system was 

studied. A single segment was taken and it was seen that by applying external sensory input, the 

segment was able to adjust and phase-lock its output frequency to match the frequency applied 

to the sensory input. 

A simple but scalable model of a mechanical wave energy converter model was needed that 

would capture the essence of an articulated device, but would also provide a basic test-bed 

for initial concepts. For this, a single heaving buoy, tethered by a simple spring and damper 

approximation was used. It was found that the single segment neural network could be used in 

conjunction with this model by applying the model displacement to the sensory input and the 

period of the segment oscillation would become locked to the wave frequency. 

It can be seen that the swimming speeds of the lamprey result in a much higher frequency 

than would be experienced with real waves. A lamprey CPG segment oscillates at 1—*5Hz 

whereas we would expect wave frequencies to be in the region of 0.3—*0.08Hz. In order to 

adjust the neural model to match the wave periods, it was found that the neuron time-constant 

could be altered to reduce the overall frequency. This was an arbitrary adjustment in order to 

provide a basic working model as soon as possible. Later work showed that further adjustment 

of the time-constant improved the performance of the system near resonance but also affected 

the system bandwidth. Further investigation into the neuron parameters could yield improved 

performance, however this was outside the reasonable scope of this thesis. 
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7.1.2 Synaptic Optimisation for WEC Application 

The mechanical model used here is a simple heaving buoy approximation, which has 

been implemented to respond to any given waveform without requiring knowledge of the 

waveform in advance. In order to maintain a simple model this required a somewhat serious 

oversimplification of the hydrodynamic coefficients. This involved neglecting the frequency 

dependence of the added mass and radiation resistance and reducing them to static values. By 

modelling the buoy geometry in WAMIT the variation in added mass and radiation damping 

were calculated (see fig 2.11) and it was seen that for periods much longer than resonance, the 

variation in these hydrodynamic parameters was small. As the device had a resonant period 

much lower than the wave period of interest, and knowing that latching works best for wave 

periods longer than resonance, assuming that we do not consider the area around resonance 

(which in fact we cannot do due to a time-step issue with the simulator), then the variation 

in hydrodynamic parameters with frequency over the range of periods of interest will not 

have a significant effect upon the final results. It is known that by modulating the device 

with a strategy such as latching will have some additional effect upon these these parameters, 

however as this thesis is intended as a proof of concept, this is something that would be 

incorporated into a future, more complex model. 

Once the mechanical and neural models were in place and the interconnection between the 

two systems was established, the method of control needed to be determined. As has been 

discussed, there are a number of control strategies other than latching control, such as reactive 

control that could have been implemented, however latching control was seen as the simplest to 

implement. In real devices latching can be used very effectively in single buoy application, or in 

configurations where there is only a single control element, however in articulated devices there 

is very little information about latching being effectively used. The final results emphasised the 

reasoning behind this and showed that in retrospect, a method of continuous control may have 

been a better choice in terms of scaling the strategy up to work with an articulated device. 

The neural network's motor-neuron output was used to provide simple latch control to the 

damper, switching it between two values; when latched Cp'p0 = large and when generating 

CpQ = optimum. Using this rule the synaptic weights of the network were optimised 

by a genetic algorithm in order to determine the optimal configuration. The single segment 

comprises 144 synaptic weights but uses the inherent network symmetry to reduce this to to 

72. A real-valued GA was used to evolve these weights, initially just using the average power 
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developed in CpTO to rank the individuals. This gives a substantial search space of 10 72 . 

We are unaware of an optimal structure for the CPG network, therefore a number of separate 

evolutions were completed each starting from a random seed, with the fittest individuals from 

each evolution compared to ensure convergence. It was found that ideal behaviour was possible 

with controllers that had significantly different structures, however it was seen that they all 

featured the same structure of contra-lateral inhibitory connections that is known to be a major 

mechanism in the oscillatory nature of the segment. For this case, as only one segment is used 

this variety of controller structures could be explained by the fact that there is no inter-segmental 

connectivity required so there will be a certain amount of synaptic redundancy in the network. 

The resulting structures and lack of inter-segmental connections also suggests that the sensory 

input, the Edge Cell, is the predominant burst terminating mechanism in this configuration. 

7.1.3 Practical Control Application 

It is clear that while developing performance in a monochromatic wave is interesting, is not 

adequate to enable the controller to perform in realistic multi-frequency waves. In order to 

investigate this a network was evolved using a series of monochromatic waves, each of differing 

period in the hope that the resulting controller will have the ability to adjust to polychromatic 

waves. For this evolution the fitness of the network was taken as the total power developed in 

all of these waves. It was found that as the shorter period waves generated a larger power in 

this system (purely as a result of the natural response of mechanical model) the result at each 

period had to be multiplied by a compensation factor to ensure the same weighting across the 

frequency range. This resulted in a network (controller) that demonstrated good performance 

in changing and irregular waves. 

A latching strategy, although in practice quite straightforward, can provide significant 

difficulties in calculating the optimal power available due to its non-continuous nature so it 

was difficult to determine exactly how effective the neural controller was. Device excursions 

and induced phase were both in line with previous work, indicating that in a regular wave an 

optimal latching response could be produced. For convenience this assumes that the controller 

does produce an optimal response when evolved for a particular monochromatic wave, and 

this is used as the benchmark for which to compare the wide-bandwidth controllers against. It 

can be seen that it is quite reasonable to assume the neural controller can produce an optimal 

response in monochromatic waves, due to their nature. Due to the regularity each cycle will be 
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the same and thus the future wave elevation is known, resulting in a 'non-causal' system which 

is the requirement for any optimal control implementation. 

This solution can be seen to be reliable as a series of controllers were evolved, each starting from 

a random population and all demonstrated the same ability' (within 5%) across the specified 

frequency range. When inspecting the performance of this evolved controller in a swept 

wave it clearly demonstrated a good latching response, with the power output substantially 

better than optimal real damping, however it could be seen that the technique produced a 

small non-optimal phase delay. This was also evident when the controller was presented with 

bi-chromatic & polychromatic waveforms, however the latching was evident and stable. In a 

reasonably realistic irregular waveform it was seen that even though the phase was sub-optimal, 

the resulting power was over 100%2  better than the system under optimal real damping. 

7.1.4 Expansion of Mechanical and Neural Models 

Further work included modification of the mechanical model so as to more closely approximate 

an articulated device. This was implemented as a series of buoys, each modelled as previously 

but with the power take-off damper being connected between adjacent buoys, thus using the 

relative heave movement to generate power. Initially this work concentrates upon just two 

buoys as this arrangement only uses one control element (power take-off device). This two 

buoy system can therefore still use the controller developed previously with for a single buoy. 

This new mechanical system adds two new components to the system. Firstly there is now a 

physical distance between the buoys so the wavelength as well as the period of the incident 

wave will affect the frequency response. Secondly, as a result of using relative movements, the 

power take-out device will be subject to a range of displacement that will be up to twice that of 

the single buoy. 

Although it was reasonable to assume that the system in this configuration will still be very 

similar to that developed previously, it was logical to again evolve a wide-bandwidth controller 

and compare the results to the single buoy controller developed previously. Understandably 

the single buoy controller did not perform nearly as well as the controller evolved for this 

application, however it was still better than the optimal real damping for this system. These 

'they each developed within 5% of the same power for a particular combination of input wave conditions 
2 Note: this thesis uses a 100% increase to indicate a doubling of magnitude 
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results were also compared to what we have considered to be the optimal performance at each 

frequency 3  and it was seen that the wide bandwidth evolved controller produced on average 

50% of the ideal response in each monochromatic wave across its bandwidth. This response 

was clearly modulated by the effect of the changing wavelengths, with a significant peak as the 

physical separation between the buoys equalled 1  wavelength which was to be expected as it is 

at this point that the relative displacement between the two buoys is a maximum. 

The performance when tested in bichromatic and polychromatic irregular waves echoed the 

findings with a single buoy, showing large performance increases over optimal real damping. 

An irregular Pierson-Moskowitch generated wave illustrated an improvement of 85% over 

optimal real damping. 

The next logical extension to add an additional buoy again added another complexity. 

Obviously the additional buoy increases the complexity of the equations of motion, but more 

significantly it adds an additional power take-off element that will need to be controlled. This 

extension now requires us to add an additional neural segment to control this second element. 

At this stage the original analogy is starting to emerge between an articulated WEC and the 

segmental nature of the lamprey and therefore it is now convenient to call the connections 

between buoys "Joints". With two joints the system dynamics are significantly different to 

those of the two buoy system so a new controller is required that includes an additional neural 

segment. A number of experiments were completed to test the limits and performance of this 

system. 

This system is now quite complex as the act of altering one joint will now affect all three buoys, 

resulting in a critical system that that is difficult to control. As previously our first tests are 

carried out in regular waves in order to determine if the GA can converge to a stable, optimal 

solution. Initially it is attempted to develop a controller using two identical unconnected neural 

segments as the controller, which maybe unsurprisingly  produced an unstable output at joint 

2, whereas joint I was a stable although poor latching technique. The next step involved 

3 These were developed by evolving a separate controller for each monochromatic period. As with a single 
buoy, these results can be considered to be optimum as they demonstrate the phase response that is expected from 
an ideal 'phase control' method such as latching. This is due primarily to the non-causal (regular) excitation and 
therefore the developed power and device excursions were also in-line with those reported as near ideal in other 
work. Considering the simplifications and approximations made in this model, this generalisation is assumed to be 
adequate. 

4 1t is expected that the unconnected segments will fail to produce a valid strategy as the mutual dependence of 
the two control elements seems to require some information to be exchanged between the segments. 
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implementing interconnections between segments and this was done in three ways: Firstly by a 

simple technique developed by Ijspeert where the intra-segmental connection was extended (or 

not) to the adjacent segment. Secondly the inter-segmental weights are defined as a separate 

array of values and evolved alongside the intra-segmental neuron weights (which are identical 

in both segments).The third method is an extension of the second with the difference that 

it allows different weights in the two segments. The size of the solution string in the GA 

increases significantly as we go through these methods and as a result the GA needs to exploit 

more complex methods to enable a the search space to be effectively traversed. Ultimately, 

however, in all of these strategies no stable output in both joints was developed. Although a 

small increase 5-10% was observed in power developed when compared to the unconnected 

controllers, no symmetrical stable result was produced. This leads to an inconclusive verdict 

on whether or not the interconnections produced any benefit. 

The third and most complex simulation involved the GA evolving every weight in the network 

(greater than 250 weights) and produced quite a surprising result. This showed that the fittest 

individual completely neglected the second joint. By not applying any latching to the second 

joint and setting the damping at zero resulted in power only being developed through the relative 

motions of buoys I and 2 and it was seen that the power developed was the optimum for a two 

buoy system. This interesting result seems to conclude that the only stable configuration for a 

latching strategy is involving one control element. This could be due to the discrete nature of 

the control in that by locking and releasing twice per cycle it is unable to develop a delicate 

enough arrangement within this reasonably unstable mechanical system. 

Conversely it is also possible that the reason no stable result could be found is due to the 

how the latching strategy affects the feedback into the neural controller. As device movement 

provides the sensory feedback into the controller there will be no input while the joint is latched, 

ultimately producing a situation whereby once the joint/buoy is in this latched state the network 

must act upon past information in order to maintain the strategy. For a single neural segment 

with a single output, this appears to cause no problems, however it is possible that the added 

complication of the three interconnected mechanical elements might be causing the network to 

become unstable during the 'latched on' state. 
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7.1.5 Future Avenues 

Although it has been shown that latching control is unsuitable for systems involving more than 

two buoys as described here, it is feasible that neural control may well be able to implement 

a method of continuous control. This type of control would provide a constant input into the 

network rather than the discrete values it receives via a latching method. It also seems likely 

that this may be able to provide the delicacy required to implement control in articulated devices 

as initially envisioned. The use of continuous control will involve a number of hurdles to be 

overcome, particularly how to relate the MN output into a device input that could be used to 

modify spring or inertia in a reactive control scheme. 

Another area that could provide fruitful results is currently being investigated by Leena 

Patel[77]. This involves the modification of the neuron parameters in order to improve the 

response and performance of the segment. Although this work is currently concentrated upon 

the lamprey it is envisioned that it will be extended to further develop the controllers covered 

here. 
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7.2 Conclusion 

To conclude, it is useful to reiterate the hypothesis that underpins the project: Effective control 

implementation for Wave Energy Devices can be developed from (neuro)biological exemplars 

The conclusion of this work is that the hypothesis is true, with the following caveats:- 

• Assuming a single segment of the lamprey CPG is used as the biological model. 

• That we consider a single buoy system operating with a single degree of freedom that 

uses a single power take-off element. 

. That the excitation wave is within reasonable limits set by the neuron time-constant and 

the mechanical system. 

. That we define 'efficient' as developing a greater power than could be produced using an 

uncontrolled system. 

The work presented in this thesis has delivered the goals outlined for it. It has determined that a 

neural network, derived from biology, can effectively implement a discrete control method for a 

single degree of freedom wave energy converter in irregular waves. This has been implemented 

in a highly simplified computer model, using an approximated mechanical model of a simple 

point absorber with simplified hydrodynamic parameters. 

Furthermore it has demonstrated that evolutionary techniques may be effectively employed 

to optimise a neural controller for a WEC, demonstrating effective traversal of an extensive 

search space to produce very near optimal results in regular waves with convergence confirmed 

through repeated evolutions from a random population. 

In addition, by illustrating the inability to produce reliable latching control in a system with 

more than one control element it has explored the limitations of discrete phase control. These 

effects are shown with direct reference to articulated devices consisting of two joints but with 

inference to the same effects when applied to devices consisting of more joints. This work 

demonstrates the inflexibility and impracticality of employing latching control to these type of 

devices. 

The concept of neural control presented here highlights the plausibility of a realistic latching 

strategy that can be implemented in irregular waves in a causal manner. It is understood that the 
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resulting strategy is non-optimal, but when faced with trying to improve the cost effectiveness 

of WEC's in order to increase the viability of marine energy, this thesis introduces a simple and 

feasible method of significantly increasing the efficiency of devices  in a realistic environment. 

This work also raises many questions related to the application of this neural control method, 

most importantly: Can the same principle of neural control be applied to a different control 

strategy? An investigation into the application of neural control on strategies other than latching 

could highlight more efficient and effective methods to control single and articulated wave 

energy converters. The effectiveness of the genetic optimisation techniques presented also 

raises the question: can a pre-evolved neural controller be re-evolved in an on-line (real-time) 

capacity? This could enable the a controller to adapt to changing sea conditions that were not 

present during an initial off-line evolution. 

Ultimately this work has highlighted a route through which further study in this area can 

proceed. While it has shown that it is possible to take a simple biological construct and use it to 

apply latching control to a simple WEC, it has also highlighted that latching control cannot be 

used in more complex articulated devices. This method of 'neural control' has illustrated the 

ability to apply latching control in irregular waves, generating substantial power increases over 

current 'best practice' 6  methods. 

5 Assuming the device is using optimal real damping or another similar 'tuned' method of optimisation. 
60ptimal real damping 
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Appendix A 
System Simulator 

Here we describe how we implement the numerical model for the mechanical and neural 
systems. The code has been written in C and this appendix describes how the simulator is 
constructed, highlighting the most significant sections and describes how this code was used to 
model the systems described in this thesis. 

A.1 Organisation 

The whole system is based around two independent sections, the mechanical WEC model and 
the model of the neural network. The separation of the two main sections was due to the fact 
that the separate systems were developed and verified independently; although the re-writing 
of these units to form a more homogeneous unit would have been preferable, the time required 
to do this was disproportionate to the improvement it may have offered. 

The system can be divided into four distinct areas; Initialisation & program flow, the mechanical 
model, the neural model and communication. 

Initialisation & Program Flow 

Primarily this part of the program exists to co-ordinate the two numerical model routines and 
facilitate communication between them. As both of these models use different ODE solvers, the 
only way to allow data to be interchanged between them during the simulation is to divide up 
the overall simulation time into a number of 'chunks' then evaluate sequentially the mechanical 
and then the neural model over this small time chunk then exchange data between the two. This 
chunk-size is defined as command line option "-c [n]" and for a 60 second simulation a common 
value was 600. The arrangement of this control routine also allows for either the mechanical or 
neural models to be operated independently with the use of the "-o" or "-I" switch respectively 

The Mechanical Model 

Designed to be as expandable as possible the mechanical model evaluates the supplied 
equations of motion using a variable step Runge-Kutta ODE solver derived from one provided 
in numerical recipes [59]. This model evaluates the equations supplied in 'eqns.c' over 
a waveform that has been produced by one of the subroutines in excite.c. A variety of 
waveforms can be used, from swept waveforms to bichromatic and polychromatic waves to 
waves generated in a different program and imported, all of which can be specified on the 
command line. The initialisation and execution of the mechanical model is done in pelamis.c 
with the results appended to a global vector to be output to file later (output.txt). 
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The Neural Model 

Developed with help from Leena Patel, these routines solve the equations that govern the 
neural output. These equations are solved using a simple fixed-step Runge-Kutta ODE solver 
developed from one presented in numerical recipes [59]. The potential of each neuron is 
calculated sequentially in a loop with the new value being based upon the sum of the potential 

of all the neurons 1  connected to this neuron, each multiplied by their synaptic weight. These 
synaptic weights are read in from an external file whose format is described below. 

Communication 

In order to pass information between the mechanical model and the neural model and vice-versa 
a small routine is called at the end of each major time-step (or 'chunk'). This routine take the 
current device motion and translates this into a sensory input value for the neuron model. It also 
take the current MN output from the neuron model and decides what damping value should be 
applied to the mechanical model. 

MN Valu)___3j Interlace 

Artificial Mechanical 
Neuronal 

Wave Data 
Wave Data lt  

At 	 Network Model 	n 	n+1 

Inte a.. 
EC Values 

- - - - 

isptacement 
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Figure A.1: Block diagram of overall simulator operation. 

A.2 Operation 

A.2.1 Command Line Options 

The simulator can be invoked with the command's imul ate [options] 'these options are 
listed below. For example we can use the following command: 

simulate -s 60 -c 600 -b -k -n[weights file] -d[damping file] 
-f [wavefile] 

'From the previous time-step 
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-s [duration] 	Simulation duration (seconds): Required. 

-
y [wavelength] 

Used in conjunction with either regular or irregular wave generator, 
Specifies the wavelength of the generated wave: Must be used in 
conjunction with -p [period] and -h [height] and a waveform type 
specifier. 

-f [filename] 
Reads a file in from location specified in [filename] and uses this as the 
wave data applied to the model. The use of this switch requires that -r 
or -g are not specified. The format for this file is given in section A.2.2. 

-r 	 Random wave generator: Not fully implemented - see later releases. 

-g 
Regular wave generator: Generates a monochromatic wave with 
parameters specified by -y [wavelength] -p [period] and -h [height] for a 
period 10% longer than specified by -s [duration] and writes the output 
to wavedata. txt. 

-
p [period] 

Used in conjunction with either regular or irregular wave generator, 
Specifies the period, in seconds, of the generated wave: Must be used in 
conjunction with -y [wavelength] and -h [height] and either -r or -g. 

-h [height] 
Used in conjunction with either regular or irregular wave generator, 
Specifies the amplitude of the generated wave in meters (peak to trough 
height will be twice this value): Must be used in conjunction with -y 
[wavelength] and -p [period] and must be specified with any waveform 
type generator. 

-c [chunks] 
This switch specifies the overall number of time-steps to split the 
simulation into. It does not affect the time-step size for the mechanical 
or neural model, however it does affect how often they can interchange 
information at this only happens at the end of each global time-step. A 
good starting value is lOx the duration(in seconds). the default value is 
20. 
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Simulate lamprey neural model only. With this option the mechanical 
model is ignored although the effect of the global time-step, '-c' does 
still affect the output. 

-I 

-o 
Simulate mechanical model only. With this option the neural model is 
ignored although the effect of the global time-step, '-c' does still affect 
the output. 

-e [GE] 
Specifies the global excitation to be applied to the neural model. The 
default value is 0.3. 

-x [&E] 
This specifies the amount of extra excitation applied to the neural model 
on top of the global excitation. Default is zero. 

-w [start] [stop] 
Generate a swept waveform with the starting and finishing periods 
specifies over the duration of the simulation. Note: there is a small 
regular section at the start and the finish of the generated waveform 
before the period sweep takes place. This can also be combined with 
-a to sweep the wavelength as well as the period. 

-a [start] [stop] 
Normally used in conjunction with -w but possible to use independently, 
this option produces a waveform whose period sweeps from the 
specified start to the finish over the duration of the simulation. 

-m [p1] [p2] [p3] 
Very basic polychromatic waveform generator that produces a. 
waveform comprising a spectrum of the three periods specified in p1, 
p2 and p3. Assumes the phase of these periods is all zero. Must be 
specified with -h for wave-height. 

Specifies verbose output. Without this switch the programs' only output 
is the total power developed written to the command line. Specify this 
option in order to get any detailed data from the program. Very useful 
option for batch processing as the program can generate quite large files. 

CLIA 

-d [filename] 
Loads the damping values for the mechanical simulation in from 
filename. The format of this file is specified below in section A.2.2. 
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-n [filename] 
Loads the neural weights in from an external file whose location is 
specified by filename. The format of this file is specified below in 
section A.2.2. 

-b 
Evaluate using a selection of four pre-selected monochromatic 
waveforms. These are specified as wavedatal, wavedata2, 
wavedata3.txt and wavedata4.txt Which can comprise any waveform in 
the correct format (see below). The system under test is evaluated in 
each of these waveforms sequentially, I through to 4, and the average 
power across all returned. 

-1 

Normalise the output power with -b, not implemented fully. Works only 
for one specific case - do not use. 

-k 
Implements practical latching. Without this switch full latching is 
implemented whereby latch-on and latch-off points are determined by 
the MN output. With this option the output is automatically latched 
when velocity equals zero and the MN output determines only the latch 
off point. Can be considered a REQUIRED option unless very specific 
testing is required. 

A.2.2 File Formats 

A.2.2.1 wave data file 

This file specifies the water height against time and is tab separated. 

Any lines preceded by a hash (#) are considered comments. 

Each file should have one line preceded by an asterix (*) that defines the waveheight. It should 
be in the format: 

[time(s)] 	[water level] 	[velocity ( 	i)] 

below is a section of file generated by the program: 

#Pelamis - Lamprey simulation WAVE DATA FILE 
#All program code copyright Dr Leena Patel & Tim Mundon 2003 

1.000000 
0.000000 0.000000 0.645161 

0.010000 0.020267 0.645161 

0.020000 0.040526 0.645161 

0.030000 0.060768 0.645161 

0.040000 0.080985 0.645161 
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0.050000 	0.101168 	0.645161 

	

0.060000 	0.121311 	0.645161 

	

0.070000 	0.141403 	0.645161 

EOF 

A.2.2.2 damping file 

This file specifies the damping to be applied to the mechanical system. It is a very simple file 
and consists of only three values on a single line that must be preceded by a space. Comments 
are allowed if preceded by a hash (#). If a single buoy system is simulated then just the first 
value needs to be specified. 

format: 
<spc>[value 1]<spc>[va1ue 2]<spc>[va1ue 3] 

A.2.2.3 neural weights file 

This file specifies the synaptic weights to be applied to the neural model. This file is organised 
into distinctive sections that represent the different types of connections. The format shown 
here illustrates the how the file relates to the particular synapses. The following representation 

is used: 

MN, LIN, EIN, CCIN:Neuron type. 
BI: Braininput. 
EC: Edge cell. 
(Neuron type)L: Left side neuron e.g. LINL= left side UN neuron 
(Neuron type)R: Right side neuron e.g. EINR=right side EIN neuron 
(Neuron type)JJRa: Neuron in adjacent segment e.g. E!NRa= right side EIN neuron in adjacent segment 

braininput: Identifies the connections that extend from the brain into the neurons. 
ec-weights: Identifies the sensory input. 
pconnxns: Excitatory connections between neurons. 
nconnxns: Inhibitory connections between neurons. 
prostral: Excitatory forward connections between segments. 
pcaudal: Excitatory rearward connections between segments. 
nrostral: Inhibitory forward connections between segments. 
ncaudal: Inhibitory rearward connections between segments. 
(neuron)-(neuron): Denotes direction of connections [from] - [to]. 

Note: The network is assumed to be symmetrical so these values will be mirrored to produce 
the other half of the network 
Note: To remove all interconnections between segments the values of n/pcaudal and niprostral 
must still be included and be set to zero. 
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braininput 
BI-MN, BI-LIN, BI-EIN, BI-CCIN 

ecweights 
EC-MN, EC-LIN, EC-EIN, EC-CCIN 

# 
pconnxns 
MNL-NNL, LINL-}4NL, EINL-L, CCINL-NNL 
MNL-LINL, LINL-LINL, EINL-LINL, CCINL-LINL 
NNL-EINL, LINL-EINL, EINL-EINL, CCINL-EINL 
MNL-CCINL, LINL-CCINL,EINL-CCINL, CCINL-CCINL 
MNL-MNR, LINL-MNR, EINL-MNR, CCINL-HNR 
MNL-LINR, LINL-LINR, EINL-LINR, CCINL-LINR 

L-EINR, LINL-EINR, EINL-EINR, CCINL-EINR 
MNL-CCINR, LINL-CCINR, EINL-CCINR, CCINL-CCINR 

# 
nc onnxns 

same format as pconnxns 

prostral 
MNL-MNLa, LINL-MNLa, EINL-MNLa, CCINL-La 
NNL-LINLa, LINL-LINLa, EINL-LINLa, CCINL-LINLa 

L-EINLa, LINL-EINLa, EINL-EINLa, CCINL-EINLa 
NNL-CCINLa, LINL-CCINLa, EINL-CCINLa, CCINL-CCINLa 
MNL-MNRa, LINL-MNRa, EINL-MNRa, CCINL-MNRa 
NNL-LINRa, LINL-LINRa, EINL-LINRa, CCINL-LINRa 

L-EINRa, LINL-EINRa, EINL-EINRa, CCINL-EINRa 
MNL-CCINRa, LINL-CCINRa, EINL-CCINRa, CCINL-CCINRa 

# 
pcaudal 

same format as pros tral 

nrostral 

same format as prostral 

ncaudal 

same format as pros tral 

EOF 
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A.2.2.4 output txt 

This file is the primary output from the program. It consists of 23 tab separated columns of 
data, these are as follows: 

• Column 1: Time (seconds). 

• Column 2: Displacement of buoy 1. 

• Column 3: Velocity of buoy 1. 

• Column 4: Displacement of buoy 2 (if used). 

• Column 5: Velocity of buoy 2 (f used). 

• Column 6: Displacement of buoy 3 (if used). 

• Column 7: Velocity of buoy 3 (if used). 

• Column 8: Displacement of buoy 4 (if used). 

• Column 9: Velocity of buoy 4 (if used). 

• Column 10: Relative velocity of buoy 1 & 2. 

• Column 11: Relative velocity of buoy 2 & 3. 

• Column 12: Relative velocity of buoy 3 & 4. 

• Column 13: Relative Displacement of buoy 1 & 2. 

• Column 14: Relative Displacement of buoy 2 & 3. 

• Column 15: Relative Displacement of buoy 3 & 4. 

• Column 16: Instantaneous Power from buoy 1 & 2 (or just from buoy 1 if a single buoy 
system). 

• Column 17: Instantaneous Power from buoy 2 & 3. 

• Column 18: Instantaneous Power from buoy 3 & 4. 

• Column 19: Damping for buoy I & 2 (or just for buoy 1 if a single buoy system). 

• Column 20: Damping for buoy 2 & 3. 

• Column 21: Damping for buoy 3 & 4. 

• Column 22: Total instantaneous power. 

• Column 23: Input wave. 

• Column 24: Acceleration of buoy 1. not implemented fully 
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A.3 Code 

The source code for this simulator is included in the attached CD-ROM. For simplicity and 
repeatability the code is divided into three seperate units; the single buoy, two buoys, and three 
buoys/two neural segments. This can be found in the following locations: 

cdrootisingle_buoy/ 
cdrootltwobuoys/ 
cdrootlthreebuoys/ 

These locations also include examples of all the apropriate data files. 
NOTE: All code on the atached disk is for review purposes only. If any sections of this code 
are used in any other application then written permisson of the author & Edinburgh University 
MUST be saught beforehand. 
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Appendix B 
Genetic Optimisation and 

Multiprocessor Use 

The evolutionary computation within this thesis is implemented in MATLAB using the GA 
Toolbox [72]. It was found that this was a particuarly effective and efficient method of 
applying a genetic algorithm to the optimisation problem presented here and i would heartily 
recomend this as an excellent development tool. The GA Toolbox is a 3rd party add-on toolbox 
for MATLAB and its routines encompass all common genetic methods, as such for further 
information on any of the high-level GA commands presented here the reader is directed at 
chapter 4 and at the appropriate references. 

This appendix includes the GA routines used at various stages in this thesis, the code that 
employs the multi-processing and the instructions so that the reader can run any of the examples 
presented. 

B.1 Multi-Processing 

All the GA routines presented here in section B.2 implement a multi-processing method to 
speed up the execution. They use the taskfarmer piece of code described in section B.3 to 
pass jobs out to a selection of machines for processing. In order to understand how the 
genetic algorithms presented here work it is prudent to first explain how the taskfarmer program 
operates. 

Written in Per], Taskfarmer contains two elements, a server and a client. The server program 
maintains a list of remote hosts and once it recieves an instruction to evaluate an individual it 
opens an SSH connection to the remote machine, this starts the remote client program which 
executes the requested script. This program is designed to work in a common filesystem 
enviroment such as NFS where all machines have access to the same user filespace. 

Taskfarmer simply initiates a command (to run a script) on a remote computer, the result of 
this script is then written as a file to a common area. In the context of this application, in 
order to evaluate a sinlge generation of individuals the GA turns each individual into two 
seperate numbered files (weights. n. txt & damping. n. txt where n is an integer) in 
the common file area. The GA then writes a 'job file', where each line of this file details the 
command that is to be run on the remote machine. This file is then passed to the server routine, 
tfSSHserver .pl which must be running on the current machine, using the tf Add. pl 
script. The server then opens an SSH tunnel to as many machines as are entries in the job 
file upto the maximum number of machines avaliable (these are listed in hosts. txt). This 
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SSH tunnel triggers a client program to execute the required command on the host, in this case 
this script is startsimulator which executes the simulator (located in the common area) 
using an appropriate weights & damping file (written to the common area earlier) and writes 
the result to another file in the common area called resultn where n is an integer and relates 
to the number of the weight & damping file. The GA waits for the remote clients to finish by 
watching for the creation of the result files and then reads in the data they contain. 

In practice NFS can be quite slow if a number of machines are trying to access the 
same space conncurrently so the first call to taskfarmer uses a slightly different script, 
startsimulator. 1st, that copies the simulator code to the remote machines' local 
hard disk. Each following call to taskfarmer uses startsimulator which executes the 
simualator on the machines local disk but writes to and reads from the common file ares, 
ensuring that the GA can access the results. This adjustment increased speed over 100% 
compared to running the simulator code from the shared file area. 

B.2 GA routines 

As an example, the MATLAB code for the GA is shown below. This was used with the single 
buoy experiments to evolve solutions. This and the other GA routines used are included in the 
attached CD-ROM. 

function output=evolve (Ttm) 

%assmume taskfarmer server is running 
%This routine MUST be run on pclxa03 or another vlx/tic workstation 

%define data size 
NIND = 40; 	 % Number of individuals 

MAXGEN = 1000; 	 % initial Maximum no. of generations 

%start stopwatch timer 
tstart = clock; 
pause on 

f Id = fopen('/PhD_Work/Processing/output/ga_results.txt', 'w'); 

if fid >0 
fprintf(fid,'\nsimulation started on:'); 
fprintf(fid, ' %g %g/%g %g:%g %gs\n',fix(clock)); 
fclose(fid) 

end 

NVAR = 73; 
PRECI = 7; 
GGAP = 0.9; 
count = 1; 
cint = 1; 
mutprob = 0.5; 
mutcount = 10; 

% No. of variables (including damping) 
% Precision of variables 

% Generation gap 
% Initial generation monitor 
% Initial generation monitor 
% Extra mutation rate increased from 0.4 -> 0.5 

%define evaluation vector 
ObjV=zeros(NIND, 1); 

% Build field descriptor 
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FieldDR = rep([0;151, [1 NVAR]); 
%FieldD = [rep([PRECI],[l,NVAR]);... 
%rep([0;15],[l,NVAR]); rep(11;0;1;l],[l,NVAR])1; 

% Initialise population 
Chrom = crtrp(NIND, FieldDR); 
%Chrom = crtbp(NIND, NVAR*PRECI); 
gen = 1; % Counter 

% Evaluate initial population 
%INDS = bs2rv(Chrom,FieldD); 
INDS = Chrom; 

%evaluate initial population 
%farm out jobs 
for i=l:NIND 

%take rows of input data 
dest_data = INDS(i, :); 
%clear up any resident results 
unix(['rm /PhD_Work/Processing/result' num2str(i)]); 

% compile commands & filenames 
filename=strcat('weights. ',num2str(i), '.txt'); 
dampname=strcat('dampiflg. ',num2str(i),'.txt'); 

% write scriptfile 
if i==l 

unix(['echo ./startsimulator.lst -a' filename ' -b' dampnarne ' -cresult' num2str(i 

else 
unix(['echo ./startsimulator.lst -a' filename ' -b' dampnaine ' -cresult' num2str(i 

end 

%Prune weights such that <1 = 0 
%for b=2:73 
% 	if dest_data(b) < 1 

dest_data=0; 
% end 
%end 
% write chrom to file: 
feval(writefile,danipname, filename,dest_data); 

end 

%Do computation on pclxa03.see.ed.ac.uk  
%Process GA_script and simulate individuals 
unix('tfAdd.pl pclxa03 .see.ed.ac.uk 3335 h - /PhD—Work/Processing/GA—script'); 

%collect results 
for i1:NIND 

%detect result 
1 

eval_t=''; 
fid=fopen(['/PhD_Work/Processiflg/reSUlt' nuxn2str(i)], 'r'); 

while strcmp(eval_t, '') 
if fid<0 

fid=fopen(['/PhD_Work/Processing/result' nurn2str(i)], 'r'); 

pause (0 . 5) 
else 
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eval_t = fscanf(fid, '%c'); 

end 
end 

fclose(fid) 

[m,n]=size(eval_t); 
if m<l; 

eval_t=' 0'; 
end 
eval_v = str2num(eval_t); 
%clear up 
unix(['rm - /PhD-Work/Processing/result' num2str(i)]); 

ObjV(i)= eval_v * 

% monitor 
fid = fopen('/PhD_Work/Processing/OutPUt/ga_reSUltS.tXt', 'a'); 

fprintf(fid,'#'); 
fclose(fid) 

end 

% Generational loop 
while gen < MAXGEN, 

%mark generation in results file 
fid = fopen('/PhD_Work/Processing/ouLPut/ga_resUltS.tXt', 'a'); 

if fid >0 
fprintf(fid, '\n\nGeneration %g',[genl); 
fclose(fid) 

end 

%read (update) maximum generations 
Lid = fopen( '/PhD_Work/Processing/maxgen', 'r'); 

if Lid >0 
MAXGEN = fscanf(fid, '%g'); 
fclose(fid); 

end 

% Assign fitness values to entire population 
FitnV = ranking(ObjV); 

% Result monitor% 
if isequal (gen, count) 

count = count + cint; 
intav = mean(ObjV); 
intObjV = ObjV * -1- 
intFitnV = ranking(intObjV); 
[r,index] = sort(intFitnV); 

%write best individual to file 
fid = fopen('/PhD_Work/Processing/output/ga_reSults.tXt', 'a'); 

if Lid >0 
fprintf(fid, '\n#1 individual fitness %g\n', ObjV(index(l))); 
fprintf(fid, '\noutput file no: %g.\n' ,index(l)); 
fclose(fid) 
cpcmd=['cp - /PhD-Work/Processing/weights.' num2str(index(l)) '.txt /PhDJ 

unix(cpcmd); 
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end 
end 

% Select individuals for breeding 
SelCh = select('sus', Chrom, FitnV, GQAP); 

% Recombine individuals (crossover) 
SeiCh = recombin('recint',SelCh,0.7); %intermediate recomb. (real value) 
%SelCh = recombin('xovsp',SelCh,0.7); %single-point crossover (xovmp=multipoint) 

% Apply mutation 
if isequal (gen,mutcount) 

mutcount=mutcount+lO; 
SelCh = mutbga(SelCh,FieldDR,mutProb); 
%SelCh = mut(SelCh,mutprob); 

end 
SelCh = mutbga(SelCh,FieldDR); 

%SelCh = mut(SelCh); 

% Calculate size of population 
[nind, length] =size(SelCh); 
ObjVSel=zeros(nind, 1); 

%Re-insert offspring into population (modification) 
%Chrom = reins(Chrom,SelCh,l,l,ObjV); 

%convert new offspring 
%INDS = bs2rv(SelCh,FieldD); 
INDS = SelCh; 
%INDS = Chrom; 

% Evaluate Population: 
%farm out jobs 
for i=l:nind 

%take rows of input data 
dest_data = INDS(i,:); 

% compile commands & filenames 
filename=strcat('weights. ',num2str(i), '.txt'); 
dampname=strcat('damping. ',nuin2str(i), '.txt'); 

% write scriptfile 
if i==l 

unix(['echo ./startsimulator -a' filename ' -b' dampname ' -cresult' 

num2str(i) ' > /PhD—Work/Processing/GA—script']); 

else 
unix(['echo ./startsimulator -a' filename ' -b' dampname ' -cresult' 

num2str(i) ' >> /PhD—Work/Processing/GA—script']); 

end 

%Prune weights such that if<l = 0 
%for b=2:73 
% 	if dest_data(b) < 1 

dest_data=O; 
% end 

%end 

%write chrom Co file 
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feval(@writefile,damPflaflle, filename,dest_data); 

end 

%Do computation on server running on pclxa03.see.ed.ac.uk  

%Process GA_script and simulate individuals 

unix('tfAdd.pl pclxa03 3335 h - /PhD—Work/Processing/GA—script'); 

%collect results 
for i=l:nind 

%detect result 
eval_t=''; 
fid=fopen(('/PhD_Work/PrOcesSing/result' num2str(i)1, 'r'); 

while strcmp(eval_t, '') 
if fid<O 

fid=fopen(['/PhD_Work/ Processing/ result' num2str(i)], 'r'); 

pause (0 . 5) 
else 

eval_t = fscanf(fid, '%c'); 

end 
end 

fclose(fid) 

[m,n]=size(eval_t); 
if m<l; 

eval_t' 0'; 
end 
eval_v = str2num(eval_t); 

%clear up 
unix(['rm - /PhD—Work/Processing/result' num2str(i)]); 

%ObjV(i)= eval_v * -1; %whole population is evaluated (rather than just 

the new individuals) 
ObjVSel(i) eval_v * 

% monitor 
fid = fopen(' /phD_Work/Processing/output/ga_resultS.tXt', 'a'); 

fprintf(fid, '#'); 
fclose(fid) 

end 

% Reinsert offspring into population 

[Chrom ObjV]=reins(Chrom , SelCh , l , l , ObiV , ObiVSel )  

% Increment counter 
gen = gen+l; 

end 

%calculate length of simulation 
elapsed = etime(clock, tstart); 

% Select Best individuals 

ObjV = ObjV * 
FitnV = ranking(ObjV); 
[r,index] = sort(FitnV); 
%Phen = bs2rv(Chrom, FieldD); 
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Phen = Chroin; 
average = mean(ObjV); 

fprintf('\nElapsed time for simulation: %gs. ',elapsed); 

fprintf('\noutput file no: %g.',index(l)); 

output. rank=l; 
output . values=Phen ( index ( 1) , :) 
output.resultObjV(index(l)); 
output. mean=average; 

%copy best individual 
cpcmd=['cp - /PhD—Work/Processing/weights.' num2str(index(l)) '.txt /PhD_Work/Proces 

sing/output/best—individual—weights.' num2str(gen) '.txt']; 

unix(cpcmd); 
unix('rm maxgen'); 

%output stats to file 
fid = fopen(' /phD_work/processing/output/ga_results.txt','a'); 

if fid >0 
fprintf(f Id, '\nSimulation finished. Elapsed Time = %gs', elapsed); 
fprintf(fid, '\n#1 individual fitness value: %g',ObjV(index(l))); 

fprintf(f Id, '\npopulation average: %g',average); 
fprintf(fid, '\noutput file no: %g.',index(l)); 

fclose(fid) 
end 
return 

function output = writefile(dampname, filename, i_input) 
%function that will take a 201 variable string and write it to a textfile 

%for use when evolving the weights & damping 
%damping file 
f id = fopen(dainpname, 'w'); 
val=i_input(l)*1000; %scale damping value to be between 0 and 15,000 
fprintf(fid, ' %6.Of 10000000 10000000\n', val); 

fclose(fid) 
%weights file 
fid = fopen(filename, 'w'); 

fprintf(fid, 'braininput\n%g,%g,%g,%g\fl#\n', i_input(2:5)); 
fprintf(fid, 'ec_weights\n%g,%g,%g,%g\fl#\fl', i_input(6:9)); 

fprintf(fid, 'pconnxns\n'); 
for n=0:7 

fprintf(fid,'%g,%g,%g,%g\fl', i_input((n*4)+10:(n*4)+13)); 

end 
fprintf(fid, '#\nnconnxns\n'); 
for n=0:7 

fprintf(fid,'%g,%g,%g,%g\fl', i_input((n*4)+42:(n*4)+45)); 

end 
fprintf (fid, '#\nprostral\n'); 
for n=0:7 

fprintf(fid, 'O,O,O,O\n'); 
%fprintf(fid,%g ,%g ,%g ,%g \n ,i_iflPUt((n*4)+74(fl*4)+77)) 

end 
fprintf(fid, '#\npcaudal\n'); 
for n=0:7 

fprintf(fid,'O,O,O,O\fl'); 
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%fprintf(fid, '%g,%g,%g,%g\n', i_input((n*4)+106:(n*4)+109)); 

end 
fprintf (fid, '#\nnrostral\n'); 

for n=O:7 
fprintf(fid, 'O,OO,O\n'); 
%fprintf(fid,'%g,%g,%g,%g\fl', i_input((n*4)+138:(n*4)+141)); 

end 
fprintf(fid, '#\nncaudal\n') 
for n=O:7 

fprintf(fid,'O,O,O,O\n'); 
%fprintf(fid, '%g,%g,%g,%g\n', i_input((n*4)+170:(n*4)+173)); 

end 
fprintf(fid, 'EOF'); 

fclose(fid) 
return 

B.2.1 Startsimulator Routine 

Note: This routine assumes that the simulator is present on the local machine. This is achieved 
by running startsimulator. 1st routine beforehand, this is identical to the routine below 
except that it copies the simulator to the local machine before executing it. 

fl/bin/bash 
#this file must be located in / 
#executable must be located in /home/trm/PhD_Work/Processing/lamP-Pel/ 

#neural weights files must be located in - /PhD—Work/Processing/ 

#output will be located in directory - /PhD—Work/Processing/ 

#Change to 'simulate' directory 
cd /tmp/lamp-pel_tmp/; 

#Update executable 
cp /PhD_Work/Processing/lamp-pel/SimUlate /tmp/lamp-pel_tmp/ 

#Setup getopts to process command line arguments 
set -- 'getopt "a:b:c:" $@"' 

#Process arguments and execute 'simulate' 

while [ 	-z "$1" I 
do 
case "$1' in 

-a) ./simulate -s 60 -c 600 -k -n - /PhD—Work/Processing/$2 -d /PhD..Work/P 

rocessing/S4 -f wavedata2.txt > - /PhD—Work/Processing/$6;; 

*) break;; 
esac 

#display the executed command line 
echo "./simulate -s 100 -c 1000 -k -b -n - /PhD—Work/Processing/$2 -d /PhD_Wor 

k/Processing/$4 > - /PhD—Work/Processing/$6;" 

shift 
done 

$ 
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B.3 Taskfarmer Routines 

The following sections show the perl scripts used to pass the GA to multiple processors. 

B.3.1 Server Routine 

#! /usr/bin/perl 

use IO::Socket; 

sub addJobs { 
my ($Script) = 

@NewJobs = split /\n/,'cat $Script'; 

print "scripts ="; 
print "@NewJobs\n"; 

splice (@JobList, $#JobListi-1, 0, @NewJobs); 

$numJobs += $#NewJobs + 1; 

sub addJobsHead { 

my ($Script) = 

@NewJobs = split /\n/, 'cat $Script'; 

$numJobs += $#NewJobs + 1; 

splice (@NewJobs, $#NewJobs+l, 0, @JobList); 

@JobList = @Newjobs; 

sub startClients( 
my (@Clients) = 
foreach $node (@Clients) ( 

print "ssh -x -o BatchMode=yes -n Snode /bin/tfClient.pl  $HOST $PORT &\n"; 
system("ssh -x -o BatchMode=yes -n $node /bin/tfClient.pl  SHOST $PORT &"); 

print "Starting client on $node.\n\n"; 

#Check for arguments 
if($#ARGV+l == 

$hangup = 0; 
print "No Hang tJp!\n"; 

else 
$hangup = 1; 
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#Get the port number from the command line. 

$PORT = @ARGV[O]; 

#Set the host to be the computer the script is running on. 
$HOST = $ENV('HOSTNANE'); 

#Set HOSTFILES to the directory containing the 'clusterList' file. 
$HOSTFILES = "/home/trm/taskfarmer/"; 

4The path to the log file. 
sLOG = "./tfLog.txt"; 

#Clear log file. 
open(LOGHANDLE, "> $LOG"); 
close(LOGHANDLE); 

#Get the node list 
#The same node may appear in the list more than once, with the number of 
#appearances equal to the number of processes that may run on that node. 

@NODELIST = split /\n/, 'cat $HOSTFILES/clusterList'; 

#Get the job list 
for($i=l; $i<$#ARGV+l; ++$i) 

print" @ARGV[$i] \n"; 
addJobs(@ARGV[$i]); 

$numjobs = $#JobList + 1; 

#Create a socket 
#The que can hold a single connection from each node. 

my  $sock = new IO::Sockel::INET 
L,ocalHost => $HOST, 
Localport => sPORT, 
Proto => 'tcp', 
Listen => $#NODELIST+5, 
Reuse => 1, 

print "host sock = $sock\n\n"; 
die "Server - Could not create socket: $!\n" unless $sock; 

# set buffering off 
$sock->autoflush(l); 

#Start a tf client running on each node 
startClients (@NODELISP); 
print "here\n\n°; 
#Now process connections from client nodes. 
my  ($new_client, $buf); 

$started = 0; 
$returned = 0; 

$failed = 0; 
print "Herel\n"; 

while(($started == 0 11 $started 	$returned) 	!$hangup) ( # wait for and accept a coni 

print "Here\n"; 
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$new_client = $sock->acceptO; 
print 'Server - connection received.\n'; 

#get ip of remote machine and translate to a name 

$new_client_name = gethostbyaddr ,  ($new_client->peeraddr, AF_INET); 

#clientName is assigned name but if that fails use ip address instead 
$clientName = $new_client_name 11 $new_Client->peerhost ; 

$buf = <$new_client>; # read from the socket 

chomp $buf; 

print "buf = $buf\n"; 

$RealRequest = 0; 

if($buf eq "FIRST")( 
#Just issue a new job 
print "Client request 'first job' of /$numJobs: $clientNarne\n"; 

$RealRequest = 1; 
else 
if($buf = s/SUCCESS//){ 

++$returned; 
open(LOGHANDLE, ">> $LOG"); 
print LOGHANDLE "$returned - Success: $clientName $buf\n\n"; 

close(LOGHANDLE); 
print "Client returning 'successful job' $returned/$numJobs : $clientName\n"; 

$RealRequest = 1; 
else 
if($buf = s/FAILED//)( 

++ $returned; 
open(LOGHANDLE, ">> $LOG"); 
print LOGHANDLE "$returned - Failure: $clientName $buf\n\n"; 

close(LOGHANDLE); 
++$fajled; 
print "Client returning 'failed job' $returned/$numJobs : $clientName\n"; 

$RealRequest = 1; 
else 

if($buf = s/'NEWSCRIPTS//)( 

if($buf = s/"HEAD//){ 

$head = 1; 
else 
if($buf = s/"TAIL//){ 

$head = 0; 
else 
$head = -1; 

if($head 	-l)( 

@NewScripts = split ":", $buf; 

foreach $NewScript (@NewScripts) ( 

if(-e $NewScript) { 
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#Add new jobs 

if($head == 
addJobsHead ( $NewScript); 
else 
addJobs ($NewScript); 

open(LOG}{ANDLE, ">> $LOG"); 
print LOGHANDLE 'New jobs added from script \"$NewScript\" . \n\n; 

close(LOGHPNDLE); 

print New jobs added from script \"$NewScript\".\n\n"; 

#Restart clients that have closed 
startClients (@RestartList); 

#Empty the restart list; 
@RestartList = 

else 
open(LOGRPNDLE, ">> $LOG"); 
print LOGHANDLE "New jobs not added. Poorly formed queue position.\n\n"; 

close(LOGRPNDLE); 

if( $RealRequest == 
#Assign new job 
if($#JobList+l > O){ 

$job = shift(@JobList); 
print $new_client "$job\n'; 
++$started; 
print "\tNew job issued. $started\n\n"; 

} else 
#No more jobs. Close the client. 
print $new_client "DONE\n"; 
print '\tNo jobs left. Client closed. \n\n"; 

#Push client onto a list for possible restart if more jobs arrive. 

push(@RestartList, $clientName); 

else 
print "No request made. Socket closed\n"; 

close($sock); 

open(LOGHANDLE, ">> $LOG"); 
print LOGI{ANDLE '\tTotal Failures = $failed.\n"; 
close(LOGHANDLE); 

$ 
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B.3.2 Client Routine 

U /usr/bin/perl 

use 10: :Socket; 

$MaxFails = 3; 

sub get—socket 
#Report to the server for a job 
my $sock = new IO::Socket::INET 
PeerAddr => $Server, 
PeerPort => $Port, 
Proto => 'tcp', 

print "client socket = $sock\n; 
die 'Client - Could not create socket: $!\n" unless $sock; 

# set buffering off 
$sock->autoflush(l); 
return ($sock) 

********************************************************* 

#Main Prog. 
********************************************************* 

#Check for arguments 
if($#ARGV+l 	2){ 
die "You must give the server address and port number.\n tfClient serverAddr portNumber. 

$Server = $ARGV[O]; 
$Port = $ARGV[l}; 

$sock = get—socket; 

#Request first job. 
print $sock "FIRST\n"; 

$job = <$sock>; 
chomp $job; 

close($sock); 

$Failed = 0; #Count number of failed attempts at running a job 

while($job ne "DONE")( 

#2>&l redirect stderr to stdout 
$timinglnfo = 'bash -c '/usr/bin/time 2>&l -f "%Uuser %Ssystem %Eelapsed %PCPU" $job >> 

$exitStatus = $?; 

if($exitStatus 	0){ 
if($Failed < $MaxFails){ 

#Job Failed so try again. 
++$Failed; 
next; 
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else { 
#Job has completely failed. Tell the server. 
$sock = get_socket; 
print $sock 'FAILED $job - $exitStatus\n"; 

else 
#Job has succeeded. Tell the server 
$Failed = O;#Reset the failure counter. 

$sock = get_socket; 

print $sock "SUCCESS $job - $ timinglnfo\n"; 

#Get next job 
$job= <$sock>; 

close($sock); 

chomp $job; 
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Abstract. A causal neural control strategy is described for a simple 
"heaving" wave energy converter. It is shown that effective control can 
be produced over a range of off-resonant frequencies. A latching strategy 
is investigated, utilising a biologically inspired neural oscillator as the 
basis for the control. 

1 Introduction 

It is vital that the energy retrieved from the ocean by a Wave Energy Converter 
(WEC) be maximised and much work has been done in this area [4]. However, 
due to the inherent unpredictability of the future wave, many advanced tech-
niques that can implement near-optimum transfer require knowledge of the sea 
state immediately prior to reaching the WEC device. Our system uses a phase 
locked neural oscillator that tracks and optimises the motions of a simple point 
absorber WEC. A system with only one degree of freedom, with motion con-
strained to the vertical direction, is studied as a simplified exemplar of a wider 
class of WE C's. A biological system, the lamprey [2], provided the inspiration 
for the artificially evolved neural controller presented here. This system is imple-
mented using a neural network in order to optimise the power generated over a 
range of frequencies and for a variety of input waveforms. A time domain based 
system was developed that does not require explicit prior knowledge of the input 
sea state. This approach effectively solves the equations of motion and the neural 
equations in parallel as separate, mutually dependent systems. 

One of the fundamental requirements for efficiency in WEC's is that the 
correct phase must be maintained at frequencies away from resonance [1]. The 
primary method of phase control studied here is "latching" control [5,6,8], which 
has been shown to yield significant increases in power. Latching control provides 
a pseudo-resonant system by clamping the device rigid at the extremities of its 
motion until the wave force has increased to an optimum. The device is then 
released and thus generates power until reaching the next extremity of excursion. 
Although latching has so far been difficult to implement in irregular waves we 
outline a system that points towards a practical latching strategy for irregular 
waves that does not require explicit knowledge of the future state of the ocean. 
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2 The Wave Energy Converter (WEC) Model 

Advanced models of ocean wave energy converters can take account of complex 
wave-body interactions, including non-linear effects in order to model exactly 
how to absorb maximum energy from their environment. Whilst these models are 
essential to develop increased overall power capture, their inherent complexity 
makes them unsuitable for concept-proving experiments such as this. In order 
to better illustrate the method of control proposed, a point absorber, restricted 
to a single degree of movement in the vertical plane is considered. Experience 
with, full WEC models suggests that this simplification captures most of the 
important characteristics of a more complex WEC model. 

- - - - TIM-  _.- -M--.-)- [
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Fig. 1. Mechanical model of heaving buoy 

Consider the simple mechanical system described in fig. 1, consisting of a 
single buoy constrained to oscillate in heave mode (i.e. vertically) only. The 
float is a cylinder of radius 1.65m and length Sm that is 50% submerged at 
equilibrium. The power take-off is represented as a damper, CPTO.  This simple 
harmonic oscillator system is described by equation 1. 

Fe(t) = (M + M a) + Ca ± + CPTO + kz 	(1) 

displacement = 77 - z 	 (2) 

Fe ( t ) = r(7rr2 pw g) 	& kz = z(lrr2 pw g) 	 (3) 

The hydrodynamic co-efficients of added mass (Ma ) and added damping 

(Ca ) are defined by the buoy's geometry and are frequency dependent. As we 
aim to construct a control strategy requiring no foreknowledge of future waves, 
these have simply been approximated to static values. Although we appreciate 
that this is not strictly accurate it was found that such an approximation was 
adequate for this mpdel. . 

In order to maintain a linear approximation, the force on the buoy is decom-
posed into the wave force Fe  and the spring force kz which are proportional to 
water level() and buoy displacement(z) respectively. This is shown in eqn. 3, 
where (7rr 2  pg)  is the restoring force on the cylinder. [3] 
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As power is the rate of energy absorbed in damper CPTO,  and given that 
from eqn. 1, F(t) = CPTO , it follows that: P(t) = F(t) 	= CPTO 

2.1 Existing Control Methods 

Maximum power transfer between the wave and the device will occur when the 
natural period of these coincides, i.e resonance. Budal [1] found that it is the 
phase difference of 11  between the forcing component and the device displacement 
that characterises this point of maximum power transfer. Away from resonance 
this phase difference reduces or increases. However, by varying the value of CPTO 

in eqn. 1, it is possible to adjust the WEC's response at off-resonant periods, 
increasing the phase difference so as to optimise the power captured. However 
this is still an uncontrolled system as CPTO remains constant over many periods, 
hence is is classed as "optimal real" damping in this paper (see fig. 3). Due to 
the unpredictable nature of sea waves, increases in off-resonance performance 
are desirable so that the effective bandwidth can be as wide as possible. 

Many approaches to optimising the power developed with WEC's have been 
proposed and are reviewed in [4]. Latching, the simplest and hence perhaps the 
most significant of these methods, was initially proposed independently in [6] 
and [5] and then later in [8]. Latching enforces the correct phase shift between 
the water level and device displacement by locking the device at the extremities 
of its oscillatory cycle. This is implemented by locking the device displacement 
when velocity, = 0 and releasing it a certain time T1, later. The optimum power 
achievable from this method is intrinsically non-continuous, although it can be 
calculated iteratively [8]. Alternatively, reactive control [4] involves application 
of forces to the device that are in phase with both displacement and accel-
eration. Both latching and reactive control can develop significantly improved 
off-resonance power by using knowledge of the incoming wave. 

3 A Neurally-Inspired Solution 

In order to appreciate the inspiration for the control method proposed here, we 
first look at the articulated (snake-like) configuration of some real WEC devices. 
Generally consisting of two or more floats, it can be seen that these devices 
generate power through the relative motions of their individual sections. [10] 

It can be further seen that this motion is similar to the propulsive anguiliform 
movement shown in many aquatic organisms. In general, it can be seen that this 
motion is controlled through a -local neural system known as a "Central Pattern 
Generator" (CPG). One particular vertebrate to demonstrate this locomotion, 
the lamprey, has a very well documented CPG structure and has been shown [7] 
to have a surprisingly simple and elegant neural architecture: 

The structure of the lamprey -CPG consists of a series of neural oscillators 
(segments), each responsible for controlling a single section of the body. Intercon-
nections between adjacent segments produce a small phase difference such that 
a travelling wave propagates along the length of the body. This overall motion 
is subject to modulation via sensory interaction [9]. 
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Fig. 2. Evolved controller for the system in fig 1. A fully connected topology was devel- 
oped. However, for clarity, only weights> 1.7x average synaptic weight are illustrated. 

It is proposed that we may be able to apply the lamprey CPG to such an 
articulated WEC. However in order to test this hypothesis, we must start with 
a simple system. If we consider that we can approximately model an articulated 
WEC as a series of point absorbers limited to heave only, whereby the power 
out-take (CpTO) is between adjacent floats, we can further simplify this and 
consider the control of a single float as in fig. 1. 

This is convenient as it has been shown [2] that a single neural CPG seg-
ment, see fig. 2, will oscillate at a natural frequency defined by the weights of 
the network, modulated by the sensory input. In future work we will show the 
extension of this to include interconnected buoys as described above and how 
we can apply a series of interconnected CPG segments as the control. 

3.1 Developing a Neural Controller 

The mechanical simulation described in section 2 was coupled to the neural 
network using the buoy velocity () as a sensory feedback input. This allowed 
the period of oscillation of the CPG network to adapt to that of the WEC 
device. Furthermore, optimisation of the network weights allows the adjustment 
of the phase difference range and the bandwidth over which the CPG output (the 
neural network output) and the device displacement could become matched. It 
was found that an effective latching strategy could be implemented by fixing the 
buoy displacement at extremity by using CPTO >>>> optimum when i = 0 [6] 
and using the CPG output to trigger the release, where CPTO = optimum. 

The synaptic weights of the network were optimised by a genetic search pro-
cess. The fitness of each individual was rated using the average power developed 
over four separate 60 second simulations, each at a different, constant wave pe-
riod. The Genetic Algorithm (GA) was also given the freedom to evolve the value 

Of CPTO (optimum) as it was not clear exactly what value would be appropriate 
to the evolved solution. 

Using a real valued population and taking advantage of the network sym-
metry, individual chromosomes consisted of 73 variables each of 6dp precision, 
giving a search space of 1073,6  • For the results here, three separate evolutions 
were invoked, each of which converged within 500 generations. The average vari-
ation in individual weights between these solutions was less than 2% and the 
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"fitnesses" of the final solutions matched to within 0.2%. The evolved result is 
shown in fig. 2. 

4 Results 

The results in fig. 3 show that the evolved strategy was successful over a useful 
range of frequencies, but it is interesting to note that it was not possible to 
produce a network that would provide latching control close to the resonant pe-
riod of 2.9s. This can be explained relatively straightforwardly. If TL defines the 
duration of latching, then the phase lag introduced by latching can be described 
as: Oi = Period 7r.

For maximum power transfer, the optimal phase difference 
between the wave and buoy displacement is 0= çb + 0i At resonance how- 2 
ever, the natural phase shift of the buoy is q = , so the induced additional 
phase çb (though latching) should be 0 at resonance. Close to resonance however, 
a lower limit is imposed upon TL by the neuron model, forcing 0 > 11 , resulting 
in sub-optimal power transfer. Under these conditions, since the network phase 
locks to the buoy displacement rather than to the water level, a feed-forward 
effect reinforces this error and neural control fails. In theory it would be possible 
to adjust the neuron coefficients to reduce the minimum value of TL,  ultimately 
side-stepping the control failure at resonance. However, as the release point must 
occur after the fix point, then due to the discrete nature of the simulation TL 
can never equal zero as it is limited by the minimum time-step of the simulation. 

5 	6 	7 	8 	9 	10 

Wave Period (s) 

Fig. 3. Phase and power response for regular waves with periods between 1 and 10 
seconds. Within region "C" the neural controlled latching strategy (+), can be seen 
to outperform optimal real damping (*) and the uncontrolled system (x) over much 
of this frequency range. Region "B" illustrates areas where a solution could not be 
evaluated. Results in region "A" are not of interest in this paper. 
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Fig. 4. Response of the system to a changing period from 3 to lOs over a duration of 35s. 
The top pane shows the wave displacement (dashed) relative to the device displacement 
(solid), while the lower pane shows the Motor Neuron (MN) output from the network. 
The vertical lines indicate the latch points for the system. Although these are not 
conditions experienced in reality, temporal scales for areas of interest are correct. 

In order to concentrate on producing a general solution for periods above 
3.5s, the network was evolved using four regular wave periods of 3.5, 4, 5.5 & 7 
seconds with overall developed power used as the fitness. Over this bandwidth 
it can be seen to show a significant improvement over optimal real damping. 

The GA evolved a single value of CPTO  for all periods. However in optimal 
real damping an ideal value was computed for CPTO  at each period and this 
value increased significantly with the period. From fig. 3 it can be seen that 
there is a distinct reduction in power from the neural control above its evolved 
bandwidth (>8s). It was seen that this reduction was due to the value of CPTO 
being too low at these longer periods. By simply increasing this value for periods 
8s< period <lOs, increases of up to 246% were observed. 

The ability of the neural controller to adjust to changing input conditions is 
clearly illustrated in fig. 4. The sensory input to the network allows the oscillatory 
period of the network to adapt to the displacement of the buoy and hence to 
define the latching release points accurately. Even though a practical strategy is 
implemented, it is possible to see that the ideal phase shift is not obtained. This 
is because future knowledge of the wave is required for this optimum condition. 
However, by using the neural system as we have, we can effectively 'extrapolate 
the correct release point from the past knowledge contained within the network. 
This can be seen in fig. 4 whereby the release point is somewhat too early. 
Nevertheless, good performance is maintained over an input wave sweeping from 
3.5 to lOs. 
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5 Concluding Remarks 

We have shown that "causal" latching control for wave energy converters (WEC), 
based on a model of a biological (CPG) controller, can be developed using ge-
netic search techniques. This method produces controllers that can outperform 
optimised real damping over a wide range of sea conditions, with an idiosyncrasy 
at resonance that can be avoided straightforwardly. Although the wave condi-
tions demonstrated here are far from real conditions, the controller demonstrates 
a basic ability to adapt accurately to changing input conditions. Extension to 
testing in realistic-wave conditions will be covered in a future paper. 

This work is based upon a simple abstraction of a real WEC device that cap-
tures much of the richness of a more complex model and we are optimistic that 
the promising results reported here will translate into a simple, implementable 
strategy for control of power out-take in real WEC devices. Furthermore, we 
speculate that, using naturally-evolved examples of "neural" computing and con-
trol structures as a starting point, it may be possible to evolve novel solutions 
to further hard problems by altering the constraints under which the neural 
solution is optimised.. 
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