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Abstract 

This thesis presents evidence of the impact of anthropogenic management on the 

blanket bog ecosystem. The effects of management on carbon fluxes and vegetation 

through control of grazing and burning for blanket peats in the UK are explored and 

calculations of tentative climate warming potential of sample sites in the Sutherland 

and Caithness peatlands are presented. An examination through semi-quantitative 

literature review and the analysis of published field work data, of the relationship 

between the management of blanket bog and gaseous carbon fluxes in the UK, is 

presented. 

The geographical distribution of peatiands and blanket bog in the UK and the 

management actions that influence them are summarized. Previous work in relation to 

management on blanket bog is reviewed and some hypothetical ways in which 

management may affect carbon fluxes are, discussed. The main published works in the 

UK on carbon flux from peatland systems is reviewed, including fluxes to river 

systems in the form of dissolved organic carbon. 

A semi-quantitative synthesis of the published gaseous carbon fluxes in the UK 

reveals gaps in research. Mean methane emission is approximately 0.029 i.tmol C144 

m 2  s, but there is no reliable estimate for net gaseous flux rates of carbon dioxide 

from UK blanket peats and both-winter fluxes and the impact of peatland management 

practices have been understudied 

The links between vegetation and management are analyzed through vegetation 

survey of blanket bog areas in the Caithness and Sutherland peatlands at the RSPB 

Forsinard Reserve and a long-term burning and grazing split plot experiment in the 

Moor House-Upper Teesdale National Nature Reserve. Vegetation structure as well as 

species composition was shown to be affected by management. The National 

Vegetation Classification method was insensitive to management treatments and may 

be of limited use for indicating management practices in the wider landscape for 

peatland ecosystems in the UK. 

Key climatic controls of gaseous carbon fluxes at the site scale were 

photosynthetically active radiation for CO2 in the light, soil temperature for CO 2  in 

the dark and soil temperature for CH 4  flux. There were some departures from 

theoretical predictors of gaseous fluxes that may have links to site management. 

The influence of management on the gaseous fluxes from the blanket bogs of the 

RSPB reserve at Forsinard is explored through the use of general linear models and 
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regression analyses. A tentative carbon balance for certain sites within the reserve 

over the period of a year indicates that differences between sites that may be 

attributed to management. Heavily damaged sites appear to fix less and respire more 

CO2. Fire may lead to initial increase in CH 4  emissions. However, the effect of 

management in terms of drainage may not always be immediately apparent. Further 

temporal and spatial resolution of the effects of peatland management on carbon 

fluxes is required. Proposal for further research include the calibration of indicators of 

carbon fluxes in UK peatlands. 
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Thesis Aim and Layout 

Thesis Aim 

The general aim of this thesis is to examine the influence of management practices on 

the gaseous carbon fluxes of blanket bog. 

Thesis Layout 

The layout of this thesis is generally in the style of scientific papers, although this 

differs in Chapters 1, 6, and 7. However in an attempt to avoid unnecessary repetition, 

some introductions are shorter than normal and where methods have already been 

detailed subsequent chapters will only refer to the previous chapter where the methods 

are already stated. Versions of Chapters 1, 2 and 5 appeared as unpublished reports 

for the Scottish Executive and the RSPB in 2005. 

Chapter 1: Introduction. 

This summarizes the geographical distribution of peatlands and blanket bog in the UK 

and the management actions that are carried out on them. Previous work in relation to 

management on blanket bog is reviewed and some hypothetical ways in which 

management may affect carbon fluxes is discussed. A review of some of the main 

work in the UK on carbon flux from peatland systems and from peatland river 

systems in the form of dissolved organic carbon is also included. 

Chapter 2: Peatland gaseous carbon fluxes and land management: searching for a 

paradigm. 

The main work on gaseous carbon fluxes in the UK is semi-quantitatively reviewed 

and an attempt to synthesize previous work to identify areas of future research is 

made. 

Chapter 3: Blanket Bog Site Characteristics and the Role of Management 

The vegetation of blanket bog areas belonging to the Caithness and Sutherland 

Peatlands within the RSPB Reserve at Forsinard are described and analysed in 

relation to management and site specific factors. A vegetation survey of a split plot 

burning and grazing experiment is also analysed to determine how this type of 

management affects blanket bog vegetation. 
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Chapter 4: Environmental relationships to the gaseous carbon fluxes of blanket bog. 

Gaseous flux data from the blanket bogs of the RSPB reserve at Forsinard are used to 

identify the main environmental climatic controls through the use of regression 

models. 

Chapter 5: Does management influence the gaseous carbon fluxes of blanket bog? 

The influence of management on the gaseous fluxes from the blanket bogs of the 

RSPB reserve at Forsinard is explored through the use of General Linear Models. 

Regression models are also used to explore a tentative carbon balance for certain sites 

within the reserve over the period of a year. 

Chapter 6: Discussion. 

This discussion brings the previous chapters together and discusses what the thesis 

means as a whole. 

Chapter 7: Conclusions and Further Work. 

Summary concluding points are made from all chapters and suggestions for further 

research are made. 
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Chapter 1 

Chapter 1: Blanket Bog Ecosystem Carbon Fluxes and Management 

This chapter introduces the blanket bog as an ecosystem and places it within a UK 

and Scottish perspective as well as examining factors that may be important to 

climate change and carbon balances. Examination is made of not only ecologically 

important but also political factors that may have an impact upon the management 

and carbon dynamics of blanket bog in the UK. This chapter has written 

contributions by Neil Wilkie concerning the Peatland Management Scheme, LIFE 

Nature and Heritage Lottery sections, Mike Wood for the Scottish Forestry Grants 

Scheme, and Mandy Gloyer for Agri-environment Schemes and Land Management 

Contracts. 

1.1 Introduction 

There is a prevailing awareness that changes in climate at the global scale are a direct 

consequence of human activity and are predicted to persist for decades even under 

the most optimistic scenarios (Hulme et al., 2002; Hulme, 2005; King, 2005). That 

these changes will have associated effects on biodiversity is also likely (Hulme, 

2005; King, 2005). The ability to address losses in biodiversity and global climate 

change requires the scientific understanding of biogeochemical cycles and how the 

processes such as disturbance affect biotic survival. Untangling the interactions of 

human activity and their effects on biological processes are some of the most earnest 

and challenging research questions faced by ecologists, spanning local, national and 

global scales. 

Global climatic change is expected through the enhancement of the earth's natural 

greenhouse effect by the rising concentrations of certain atmospheric greenhouse 

gases. The natural greenhouse effect arises from absorption of outgoing infrared 

radiation by greenhouse gases which is then emitted in all directions including to the 

earth's surface keeping the surface at a higher temperature (-44 °C) than would be 

the case in the absence of this effect (IPCC, 2001). Carbon dioxide (CO 2) is a 

powerful greenhouse gas and may contribute 60 % of observed global warming 

effect (Grace, 2004). The evidence that concentrations of CO 2  have been rising in the 

atmosphere is unequivocal (IPCC, 2001), Figure 1.2 illustrates the rising 

concentrations recorded at Mauna Loa from 1958 until 2004. 
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Figure 1.2: Rising concentrations of CO 2  recorded at Mauna Loa (Keeling & Whorf, 
2005). 

The observed rising concentration is not the only perceptible phenomenon shown by 

Figure 1.2, there is also an important seasonal drawdown due to northern hemisphere 

vegetation photosynthesis emphasising the importance of the biotic factors in carbon 

cycle. The rise of CO2 in the atmosphere correlates with increases in fossil fuel 

consumption due to industrial activity (IPCC, 2001). There are several other gases 

that contribute to the overall greenhouse effect these include direct greenhouse gases, 

such as, methane (CH4, nitrous oxide (N 20), hydrofluorocarbons (HFCs), 

perfluorocarbons (PFCs), and sulphur hexafluoride (SF 6) and indirect greenhouse 

gases, nitrogen oxides (NO, as NO 2) carbon monoxide (CO) non-methane volatile 

organic compounds (NMVOC) and sulphur dioxide (SO2) (IPCC, 2001; Baggott et 

al.. 2004). 

Peatland ecosystems exchange both CO 2  and CH 4  but also represent a large store of 

carbon within the peat and host a distinctive assemblage of species, which, if lost, 

would decrease global biodiversity and potentially increase atmospheric carbon. 
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Activities carried out on peatland ecosystems that may bring about these effects 

include drainage, agricultural improvement, burning, the effects of large herbivores, 

peat extraction and climate change. More than 85% of all peatlands are located in the 

northern temperate, boreal and arctic zones. These ecosystems (including tundra and 

boreal forests) are estimated to store 1.2 x 1018  g C (O'Neill, 2000). Bogs and fens 

alone account for approximately 3.0 - 4.6 x 1017 g C within an area of approximately 

350 million hectares (O'Neill, 2000 and references therein). This may be equivalent 

to the total amount of carbon present in the atmosphere today (Clymo et al., 1998). 

With the uncertainties of ecosystem response to global climate change, the 

importance of conserving this carbon store cannot be overstated. 

The term peatland covers a wide range of peat-forming vegetation including tundra, 

boreal forests, fens and bogs (O'Neill, 2000), although the most important peatland 

habitat in the UK is blanket bog. Blanket bog can be defined as areas of semi-natural 

vegetation over-lying peat of at least 0.5 m depth and forming a blanket over 

moderately sloping ground (NCC, 1990). It is regarded as the most extensive semi-

natural land habitat in the UK covering at least 1.4 million hectares (Lindsay, 1995). 

The Flow Country in Sutherland and Caithness, in the north of Scotland, may be the 

largest area of continuous blanket bog in the World (Lindsay et al., 1988). The UK 

holds 10-15% of the total world area of this habitat (Lindsay, 1995) and, of this, 

Scotland holds over 1 million hectares; considering the UK is only approximately 

0.16% of the global land mass this emphasises the importance of this habitat. The 

importance of the peat carbon store in the UK is demonstrated in Figure 1.1 whereby 

the majority of soil carbon can be seen to be located within Scotland and the majority 

of this constitutes blanket-peat. It is estimated that peatlands with a depth of over 45 

cm contain 50% of all soil carbon and up to 40 times that which is contained within 

terrestrial vegetation in the UK (Cannel! & Mime, 1995; Mime & Brown, 1997). 
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Figure 1.2: The soil carbon content (kt kill 2) of the United Kingdom (Mime & 
Brown, 1997) with the extent of blanket bog in Scotland (inset) defined as land with 
a depth of peat over 0.5 m (Lindsay, 1995). 

The development of blanket bog is a function of past and present environmental 

factors (e.g. climate, geology, geomorphology) and of the nature, intensity and 

history of human impact (Steiner. 1997). Bog ecosystems can be divided into two 

layers. the active growing layer (the acrotelm) and the layer of accumulated peat (the 

catoteim) (Ingram, 1978). Active blanket bog is an unbalanced system where plant 

production in the acroteim exceeds the combined losses from decomposition of 

organic material and leaching of organic and inorganic carbon compounds (Vitt. 

2000). Gaseous carbon exchanges with the atmosphere are dominated by the 

exchange of carbon dioxide (CO 2 ) and methane (CH 4 ). The net balance between the 
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processes of photosynthesis and respiration determine the net gaseous CO 2  exchange 

and establish whether the peatland is a sink or source of CO 2. Gaseous exchange of 

CH4  is dominated by the process of methanogenesis in the catoteim emitting CH 4  to 

the atmosphere. Oxidation of CH 4  termed methanotrophy also occurs under aerobic 

conditions in the acroteim but the balance between these two processes is generally 

in favour of methanogenesis, i.e. peatlands are a source of C144.  Both 

methanogenesis and methanotrophy are carried out by micro-organisms, generally 

bacteria. Other exchanges of carbon include the export of particulate and dissolved 

carbon into river systems and losses to the atmosphere through fire. 

The relative importance of these processes to the total carbon balance varies spatially 

and temporally. The carbon balance of UK blanket peat is a major factor in 

assessing UK's greenhouse gas emissions (Mime & Brown, 1997). The majority of 

the blanket bog resource in the UK is subjected to management by agricultural 

drainage (moor grips), grazing, burning and forestry, but with the exception of 

forestry (Hargreaves et al., 2003), the variability of carbon dynamics under different 

types of management has yet to be quantified in the UK. 

The Scottish Biodiversity Strategy recognises the importance of peatlands in relation 

to climate change, but active blanket bog is not only important in terms of carbon, it 

is also classed as a priority habitat under the European Union Habitats Directive 

(source JNCC). The most important species in conservation terms are within the 

genus Sphagnum and those species associated with them. Active blanket bog is by 

definition a habitat that is actively accumulating peat, thus sequestering carbon. The 

conservation of active blanket bogs in the UK is focused on achieving the best 

representation of hydromorphological types, plant communities, and plant and 

animal species (JNCC, 1994). However, the active status of bogs in the UK is 

unknown, therefore, conserving diversity without information on carbon dynamics 

may not ensure that designated sites are actively sequestering carbon. However, in 

addition to conserving key species and habitats, it may be possible to manage bogs 

for carbon sequestration, or more likely the minimisation of carbon losses and the 

conservation of biodiversity as well as responding to climate change. Currently 
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research is still required for the realisation of the key objectives and targets of UK 

biodiversity commitments, which include the encouragement of appropriate grazing, 

burning and other management practices on blanket bog habitats, as well as the 

restoration of degraded blanket bog to favourable condition by 2015 (Haines-Young 

et al., 2000). 

A better understanding of the impact of policy initiatives (e.g. agri-environment 

schemes, Scottish Natural Heritage Peatland Management Scheme) on carbon flux of 

blanket bogs is also required. Such findings are essential to provide information for 

Government reporting on greenhouse gas emissions, research on ecosystem response 

to climate change and reviews of Government-funded land-management schemes. 

1.2 Geographical Extent of Blanket Bog and Management Relevant to Scotland 

The blanket bog resource in the UK is subjected to a variety of different management 

practices, these include drainage, grazing, burning, ecological restoration and 

forestry. As the effects of forestry have been investigated elsewhere (Hargreaves et 

al., 2003) this section will focus mainly on the management practices of drainage, 

grazing, burning and ecological restoration techniques. This section concentrates 

mainly on a Scottish perspective as much of the information on geographical extent 

has had more recent attention for Scotland and the majority of the UK blanket bog 

resource is in Scotland. 

1.2.1 Total blanket bog resource 

In a recent review of climate change and organic soils in Scotland Chapman et al., 

(2001) noted with disappointment that after 50 years of peat survey there is still no 

definitive estimate for the geographical extent of peatlands in Scotland or the UK 

(Table 1.1). Part of the difficulties in reaching a reliable estimate for the geographical 

extent lie in defining the blanket bog habitat. This ultimately depends on the depth of 

peat chosen which has varied from a depth of over 1 m, to those peats over 0.3 in 

deep, and on the mapping technique. In Scotland there are extensive areas of 

vegetation that are essentially bog vegetation but overlie peat that is much shallower 

than 1 m, for example, the Lammermuir Hills, ignoring this is likely to underestimate 

me 
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the carbon store. Also, if pool systems are not taken into account then estimates 

would tend to be overestimates; it is unknown whether pool systems are considered 

in estimates of carbon storage. There are also areas that may once have been mapped 

as blanket bog but through persistent management practice are now classified as a 

different habitat e.g. Calluna moorland. These may still have a sizeable carbon store, 

though estimates based on vegetation cover may also underestimate the carbon store. 

It is also noticeable that the only estimate in Table 1.1 bounded by error estimates is 

that of the CS 2000 survey, this tends to imply a precision to estimates that is not 

actually evident. In a recent analysis using NVC survey data and comparing it with 

the SBBI and LCS 88 estimates, it was found that only 55.5% of the SBBI 

classifications were in' agreement with the NVC whereas 69.7% of the LCS 88 

classifications matched the NVC (Andrew Coupar pers comm. 2005). Assuming the 

NVC surveys themselves were accurate, this may suggest that the LCS 88 data gives 

a more accurate reflection of the extent of blanket bog (Andrew Coupar pers comm. 

2005). 

There is also no agreement on the amount of carbon within these soils that is used to 

calculate the overall storage value. The reasons for this uncertainty are partly due to 

the uncertainty of extent but also to do with uncertainties surrounding the parameters 

chosen for calculation (Chapman et al., 2001), for example bulk density; see 

Chapman et al. (2001) for a fuller discussion. Chapman et al., (2001) conclude that 

between 2000 and 4500 Mt C is likely to be stored in Scottish peaty soils. 

There is therefore a requirement for method refinement to lead to better estimation of 

carbon content and geographical extent: 

• A practical and absolute definition of what should be included in any 

mapping project including an agreed minimum depth of peat for inclusion. 

• A mapping method that not only allows a definitive estimate of 

geographical extent but also gives an assessment of the errors associated 

with the estimate. 

• A better understanding of the range of depth and bulk density of blanket 

peats in Scotland. 

These aspects are currently under review by the Organic Soils Modelling Project 

who have used a classification of two broad groups of organic soils (MISR, 1984): 

7 



Chapter 1 

Organic - mineral 

Includes all soils with an organic surface horizon < 50 cm thick and an organic 

carbon content> 14% (25% OM) 

Organic 

Includes all soils with an organic surface horizon > 50 cm thick (Jeats) and an 

organic carbon content> 14% (25% OM). Most peats have organic carbon contents 

well in excess of this value 

Given the uncertainties associated with estimating the total peatland resource and its 

carbon store, estimates for the extent of management practices on blanket bog will be 

of similar low precision. Table 1.2 summarises current knowledge of the 

geographical extent of each of the management practices examined in this thesis. It 

should be remembered that these are estimates and are likely to be spatially variable 

and are not mutually exclusive. These estimates in some cases represent a best guess, 

others such as those from the LCS 88 or SBBI, may appear to have more precision 

but they are also not bounded by any error or estimation of variation. They should 

therefore be treated with caution. 
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Table 1.1: Estimates of the peatland resource of Scotland (Chapman et al., 2001) 
with additions from The Scottish Blanket Bog Inventory, (SBBI) (Quarmby et al., 
1999; Johnson & Morris, 2000c, a, b, d, 2001), Land Cover Scotland 1988 (LCS 88) 
Andrew Coupar pers comm. 2005, and Countryside Survey 2000 (Haines-Young et 
al., 2000). a  Assuming 50% C, b  probably an underestimate, C  using the estimated C 
content of 114 kg C m2, d  peat soils> 1 m deep but may include some 0.3 - 0.5 m 
deep. 

Area of peatland kha % of Carbon 	Reference 

Total store 

Area Mt C 

821 11 600a 	(Robertson, 1971) 

820 11 (Bather & Miller, 199 1) 

821 11 (Robertson & Jowsey, 1968) 

821 11 (Jowsey, 1973) 

765 9.9 (MISR, 1984) 

699 	(blanket peat) 

66 	(basin peat) 

789 10.2 1  000 	(Birnie etal., 199 1) 

720 	(blanket peat) (approx.) 

69 	(basin peat)b 

1742 22.6 1986C 	(Cannell et al., 1993) 

2625 30.9 16412 	(Howard et al., 1995) 

2625 30.9 4523 	(Milne & Brown, 1997) 

2564 (blanket peat) 

61 	(basin peat) 

1332 17.2 (Anon, 1998) 

1742 22.6 (Cannell et al., 1999) 
1096d 14.2 (Patterson & Russell, 2000) 

1056 (blanket) 

40 	(other) 
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Table 1.1 continued 

Area of peatland kha 	 % of Carbon 	Reference 

Total store 

Area Mt C 

1927 (blanket bog) 	 SBBI 

660 (peatland as a single feature) 	 LCS 88 

366 (mosaics, peatland as primary 

component) 

1131 (mosaics, peatland as 

secondary component) 

2038 (standard error 168) 	 CS 2000 

2339 upper limit 

1754 lower limit 

Table 1.2: Estimates for the geographical extent of management on blanket bog in 
Scotland. 1  SBBI (Quarmby et al., 1999; Johnson & Morris, 2000c, a, b, d, 2001), 2  

Land Cover Scotland 1988, * this may be as high as 450,000 ha (W Towers pers. 
corn. 2005, from re-calculation of LCS88 data), JNCC a  Assumed figure, b  Includes 
all peat, not just blanket bog. 

Types of Management Geographical Extent (ha) % of total area 

Total Blanket Bog Resource' 1,927,000 100 

Grazed 1,927,000a 100 

Burnt ??? 

Drained ??? 

Eroded  200,000* 10 

Used for Peat Extraction 2  50,000 2.5 

Statutory Conservation 

SAC' 220,847 11 

SPA  261,108'  13 

SSSI' 384,702 20 

Ramsar3  192,480'  10 

Under Restoration 11,800 0.6 

10 
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1.2.2 Geographical Extent of Grazing 

It would seem reasonable to assume that the entire area of blanket bog in Scotland 

has historically (Shaw et al., 1996) and is presently subjected to grazing of one type 

or another. However what is unclear is the intensity of grazing to which different 

areas are subjected. Further variability is likely to be introduced from the type of 

animals grazing on these bogs different animals produce very different effects due to 

size and pressure of footprint, oral morphology and diet preference. Large herbivores 

affect peatland systems in several different ways, including defoliation, uprooting, 

trampling, defecation and urination. Each of these activities will have a different 

impact on the peatland system. 

1.2.3 Geographical Extent of Burning 

The extent of burning on blanket peats is not known, but the practice is regionally 

variable (Hamilton et al., 1997). Although natural fire in Scotland is rare, most 

blanket peat dominated by either Calluna vulgaris or Molinia caerulea will be prone 

to fire, either as a management tool for sheep or grouse, or as accidental or malicious 

wildfire. Severe ground fires that ignite the peat are rare, but can occur in blanket 

peat and then cause very considerable damage with loss of carbon to the atmosphere 

and a complete change in ecosystem function (Maltby et al., 1990). 

1.2.4 Geographical Extent of Drainage 

The extent of drainage of blanket peats is not known. Stewart and Lance (1983) 

(Coupar et al., 1997) state that government grants for drainage reached a peak of 

80,000 ha per annum in the 1950's and the mean in the 1960-70s was 20,000 ha per 

annum. 

1.2.5 Geographical Extent of Erosion 

Based on LCS 88 there are approximately 200,000 ha of eroded blanket bog 

(Andrew Coupar pers. comm. 2005), but estimates vary and it may be as large as 

450,000 ha (W. Towers pers. comm. 2005). The type of erosion will vary from large 

areas of eroding bog devoid of vegetation to micro-eroded areas from, for example, 

animal trampling and hagging; the extent of this variability is unknown. 

11 
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1.2.6 Geographical Extent of Peat Extraction 

Based on LCS 88 there are approximately 50,000 ha of bog under cutting or 

extraction, this is predominantly domestic cutting (Andrew Coupar pers comm. 

2005). 

1.2.7 Geographical Extent of Conservation 

Details on statutory designated sites are held by SNH or JNCC. Extent of sites not 

under statutory designation but still actively conserved, such as Local Nature 

Reserves (LNR) or Wildlife Sites has not been collated but will be held by Local 

Authorities or Wildlife Trusts. Approximately 221,000 ha (11%) has been estimated 

to be designated Special Area of Conservation (SAC). The extent designated as 

Special Sites of Scientific Interest (SSSI) is a little larger as some SAC's are a core 

area within a SSSI or some SSSI's haven't been designated as SAC's. Also, the 

Lewis Peatlands are an SAC not underpinned by an SSSI designation so this adds to 

the SAC total but not the SSSI total. 

1.2.8 Geographical Extent of Restoration 

Approximately 1,800 ha of trees have been removed from blanket peat under the 

LIFE Peatlands Project in Caithness and Sutherland and this should rise to 2,400 ha 

by December 2006. Moor grips are currently being blocked over approximately 

10,000 ha rising to 15,000 ha by December 2006 again under the LIFE Peatlands 

Project (Neil Wilkie pers corn. 2005). The extent of blanket bog that could be 

practically restored is considered to be the majority of the total afforested area 

excluding only those areas under forestry near to the conclusion of the first rotation 

and those that are severely eroded which are considered beyond recovery (Andrew 

Coupar pers comm. 2005). 

12 
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1.3 Carbon Cycle of Blanket Bog 

Figure 1.3 illustrates a simplified representation of the carbon cycle of a blanket bog. 

The main input identified in Figure 1.3 is the uptake of carbon dioxide by the process 

of photosynthesis. Carbon outputs include carbon dioxide from respiration and 

aerobic decomposition and methane oxidation, methane from microbial 

decomposition, and particulate and dissolved organic carbon as well as dissolved 

inorganic carbon in water that runs off into river systems. 

The relative importance of the various components illustrated in Figure 1.3 has been 

examined in many studies. Emissions of CR 4  accounted for 16% of the net ecosystem 

exchange of carbon in an oligotrophic boreal pine fen (Alm et al., 1997). However, 

net ecosystem exchange of CO2 was estimated to account for 99% of the carbon 

balance in some circumstances in a patterned boreal peatland (Waddington & Roulet, 

2000). The variability of carbon flux is due not only to factors such as the climate 

and seasonal timing, but also the microhabitat topography, i.e. hummock, lawn or 

hollow, and importantly the position of the water table. Classical theory suggested 

that Sphagnum growth and peat accumulation in hollows was rapid while hummocks 

declined (von Post & Sernander, 1910). This has since been discredited and recent 

flux studies, have supported stratigraphic evidence that hollows can represent a net 

loss to the system whereas hummocks and lawns can accumulate carbon (Bubier et 

al., 1995; Waddington & Roulet, 2000). The long-term water table position is also 

related to the carbon balance of bogs in a complex manner. However, vegetation 

cover can be a useful indicator of carbon flux and bryophyte communities are good 

predictors of CR4  flux because the distribution of bryophytes is related to the long-

term water table position (Bubier et al., 1995). The most important peat forming 

vegetation includes Sphagnum spp. and members of the Cyperaceae and Ericaceae. 

Variability exists in the contribution to peat formation between and within these 

groups. 

13 
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1.3.1 Carbon Dioxide 

The exchange of carbon dioxide in peatland ecosystems mirrors that of most other 

terrestrial ecosystems; inputs are gained by photosynthetic activity of plants and 

micro-organisms. There may also be deposition of carbon in precipitation but this is 

unlikely to be a significant amount. Losses are accounted for by respiration, aerobic 

decomposition, and the oxidation of methane by anaerobic decomposition in the 

catotelm. The balance between these inputs and outputs determines whether the 

system is a sink for carbon dioxide or a source (whether the system is an overall sink 

is determined by taking into account all other forms of carbon). By convention a 

flow of carbon into the system has a negative value and sources are given a positive 

value and this convention is adopted throughout this thesis. Thus the balance for 

carbon dioxide can be represented by the following simple related equations: 

NEP=PRp Rh 

NPP=P—R 

GPP = P 

Where NEP is Net Ecosystem Productivity (also called net ecosystem exchange, 

NEE), P is CO2 uptake by photosynthetic activity, R represents respiration by plants 

Rh respiration by heterotrophic organisms, NPP is Net Primary Productivity and GPP 

is Gross Primary Productivity (Grace, 2004). 

Upland productivity (NPP) in the UK has been measured historically by clipping 

experiments where vegetation was marked and after a defined period of time, 

removed, dried and weighed (Welch & Rawes, 1965; Clymo, 1970; Clymo & 

Reddaway, 1971; Forrest, 1971; Clyino & Reddaway, 1972; Forrest & Smith, 1975; 

Rawes & Hobbs, 1979; Rawes, 1981, 1983). 

There is now a growing amount of literature examining various aspects of these 

ecosystem productivity relationships in peatlands on a variety of scales from leaf to 

entire ecosystems, using a wider variety of techniques than just harvesting such as 

static and dynamic chambers or micro-meteorological methods like eddy-covariance, 

especially in North America and Scandinavia. Static (non-steady state) and dynamic 

(steady state) chambers differ in that static chambers do not have a gas flow system 

and enclose a headspace above vegetation or soil, fluxes are then calculated from 

15 



Chapter 1 

changes in the original headspace gas concentration, dynamic chamber fluxes are 

calculated from the change in gas concentration of the gas flowing through the 

chamber from input to output. In the UK gaseous exchange research gained 

momentum during the TIGER programme (Oliver et al., 1998) but the majority of 

work in the UK on blanket bog has centred on quantifying fluxes of methane (See 

Chapter 2). One puzzling aspect of carbon flux research is the large range of units 

reported in the literature and these do not always explicitly state which chemical 

compound or element they relate to, for discussion of this see Appendix. 

1.3.2 Methane 

Peatlands emit methane, as do all wetlands, as a by-product of microbial anaerobic 

decomposition. Recent suggestions of aerobic methane production by terrestrial 

plants remain controversial (Keppler et al., 2006) but if confirmed these emissions 

are likely to be dwarfed by several orders of magnitude by peatland emissions. There 

has been much research to date on the emissions of methane from northern wetlands 

including blanket bog. These indicate there are large temporal and spatial variations 

in CH4  emission rates that need to be taken into consideration. The following 

examination of the controls on methane emissions is largely from two reviews 

(Bubier & Moore, 1994; Joabsson et al., 1999). Depth of water table, soil 

temperature and vegetation type have been identified as controls of CH 4  production 

and net CFL1  emissions. Species differences in physiology and morphology make the 

effects of vascular plant functioning on net CH 4  emissions difficult to predict. 

Correlations between environmental variables and Cl-I 4  emission have been 

established and variables are very strongly inter-related and often counteract each 

other. Estimates for emissions vary (Whalen & Reeburgh, 1992) suggest tussock 

tundra globally emits 42 +1- 26 Tg yf' but other studies (see Bubier and Moore, 

1994, Joabsson et al., 1999, and references therein) estimate emissions in the region 

of 18-35 Tg yf'. Sites largely similar in vegetation and topography display large 

differences in emissions when between-sample differences in vegetation 

classification and climate are taken into consideration. Water table is a strong 

predictor of CH 4  flux therefore vegetation patterns may be useful in predicting CH 4  

flux but to date there has been no agreement of spatial scales or the system of 
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vegetation classification in the different studies conducted. The solubility of CI-I4  is 

low (23-40 mg r' at 0-20 °C) therefore, CU4  can escape through diffusion bubble 

ebullition or transport through vascular plants through aerenchymatous tissue. 

Studies in rice paddy fields indicate that 90% of C114 flux arises from the tillers of 

rice. Root transport of oxygen to the soil can impact on mechanisms of methane 

production and oxidation. This transport can reduce methanogenic bacterial activity 

but CH4  oxidation may be stimulated, as methanotrophic bacteria are 02 limited. 

However the net effect of roots may increase Cl 4  emissions as models suggest C114  

transport in soil is reduced without roots. The atmosphere constitutes a sink for C14 4  

thus a diffusion gradient exists. Increased CH 4  oxidation would decrease this 

gradient but increases in organic substrate released by plants would increase 

methanogenesis and hence the gradient. Stomatal closure is partly effective in 

reducing emissions but emissions are still evident even when stomata are closed. 

However, this indicates that species composition is important to the control of CH4 

emissions. Methanogenic bacteria use simple substrates and initially rely on other 

bacteria to break down complex organic molecules into simpler molecules. Positive 

correlations between net primary production (NPP) and Cl-I 4  emission have been 

used to suggest an association between new plant production and methanogenesis 

(Whiting & Chanton, 1993). However, a causal link seems unlikely since the two 

processes are separated spatially and temporally (in terms of the substrate from plant 

production reaching methanogens which would at least lead to a time lag) and it 

would seem more likely that both effects are related to temperature. Some work also 

suggests links between light intensity and emissions of methane (Lloyd et al., 1998) 

again this is correlative, light effects may be indirect and emissions may be more 

directly related to changes in temperature and stomatal conductance. 

1.3.3 Peatland Carbon Fluxes to River Systems 

This section is intended as an introduction to peatland carbon exports to river 

systems and does not represent an exhaustive review. Carbon exports from peatland 

ecosystems to rivers are mainly composed of dissolved organic carbon (DOC), 

particulate organic carbon (POC), dissolved inorganic carbon (DIC), and dissolved 

CO2 and CH4  (Dawson et al., 2002). The amount of carbon that is transported 
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annually is thought to be one or two orders of magnitude lower than the exchanges 

commonly found between vegetation and the atmosphere or between the atmosphere 

and oceans. 

DIC is composed of HCO 3  ions and free dissolved CO2 associated with gaseous 

carbon dioxide via the carbonate equilibrium (Stum & Morgan, 1981, cited in 

Dawson et al., 2002). Free CO2 outgases further downstream until reaching 

equilibrium with the atmosphere and concentrations show diurnal and seasonal 

variation (Dawson et al., 2001). Losses of free CO2 can also be attributed to 

photosynthetic activity of aquatic plants and phytoplankton but quantifying this 

seems elusive at present (Dawson et al., 2001). 

The distinction between POC and DOC is based on size. POC ranges between 0.45 

and 1.0 pm and DOC includes suspended particles below 0.45 .tm (Dawson et al., 

2002). Isotopic evidence points to the terrestrial origins of stream DOC and suggests 

that most may be of recent origin (post-AD 1955) (Palmer et al., 2001); in other 

words the majority of the DOC in streams is not produced there but transported from 

other systems. Dissolved organic matter (DOM) includes other compounds as well as 

those containing carbon; DOC is about 50% of DOM (Tipping et al., 1999). 

Our understanding of how organic matter is mineralized and partitioned into carbon 

dioxide, methane, and dissolved organic carbon is still lacking (Blodau, 2002). In 

Canada it has been estimated that between 2.4-5.6% of the peat carbon is 

mineralized annually (59 - 140 j..tg C g 1peat d') from floating peat islands in 

reservoirs (St Louis et al., 2003) the authors suggest that fluxes of CO2 and CH 4  from 

peat could last 18-42 years from point of entry into the reservoir. However, the 

partitioning to different carbon products was not addressed. Intuitively the larger the 

organic pool in the catchment area the higher the DOC output, but this is also 

affected by stream physics such as discharge rate (Dawson et al., 2002). DOC can 

affect downstream aquatic net primary production (Carpenter and Pace 1997, in 

Pastor, et al., 2003), microbial production (Hobbie 1992, Wetzel 1992 cited in 

Pastor, et aL, 2003) and other biogeochemical cycles (Driscoll et al. 1980, Hemond 
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1980, Jackson and Ilecky 1980, McKnight et al. 1985, Thurman 1985, Guildford et 

al. 1987, in Pastor, et al., 2003) and can also attenuate visible solar and UV-B 

radiation (Schindler et al. 1990, 1996, Scully and Lean 1994, Morris et al. 1995, 

Williamson et al. 1999, in Pastor, et al., 2003). Losses of DOC within the stream 

system can be attributed to biotic as well as abiotic sources such as biofilm 

respiration, adsorption to algae and mineral surfaces, particularly Fe and Al oxides, 

and hydroxides (Pastor et al., 2003). The composition of DOC is also important 

when considering fluxes to the atmosphere. Approximately 20% is low molecular 

weight compounds such as carbohydrates, amino acids, peptides, nucleic acids and 

carboxylic acids that represent a ready resource to the biota (Thomas 1997, in 

Dawson 2001). The remaining 80% tends to be phenolics and fulvic, humic and 

hydrophilic acids that represent more refractory compounds (Thurman 1985, in 

Dawson 2001). This suggests that the majority of the DOC resource is difficult to 

break down and may take a long time to reach the atmosphere in the form of gaseous 

emissions. 

Although there can be significant outputs from peatland systems as implied above, 

the overall effects of these outputs in terms of the impact upon greenhouse gas 

emissions are still unclear. A significant proportion of POC may be stored in the 

sediments and DOC is transported through the river system (Worrall et al., 2003b), 

presumably either being consumed in the stream or eventually reaching the ocean. 

There has been an observed trend of increasing DOC concentrations in river 

catchments in the UK over the last two decades (Monteith & Evans, 2000; Worrall et 

al., 2003a; Worrall et al., 2004a; Worrall & Burt, 2005). The reason for this remains 

elusive but is likely to be a combination of complex factors, for example climate 

change and its influence on microbial processes (Freeman et al., 2001a; Worrall et 

al., 2004a; Worrall et al., 2004b). There are at least three mechanisms whereby 

climatic change could affect the DOC budget of peatlands (Pastor et al., 2003): 

increased temperatures could increase the production (through increased 

decay rates) and/or microbial consumption of DOC, thereby changing DOC 

concentrations in drainage water, 
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• changes in the position of the water-table level could change DOC 

concentrations as different portions of the peat profile become susceptible to 

aerobic and/or anaerobic decomposition regimes, and 

• changes in the water budget and discharge could control DOC export 

independently of any changes in DOC concentrations. 

Attempts to model the increase in DOC in the UK in relation to temperature and 

water table have not been successful (Worrall et al., 2004a). It appears that it is 

difficult to achieve a model that is an adequate representation of the processes that it 

attempts to explore. Daulat and Clymo (1998) consider that reporting the relationship 

between methane and temperature by activation energies in an Arrhenius plot is 

misleading, since there are probably complex causes. It is worth noting that an 

Arrhenius approach was used in the model for production of DOC by Worrall et al., 

(2004a). Perhaps DOC production needs to be considered as a more complex 

process. Indeed, in a subsequent model the lack of complexity is acknowledged 

(Worrall & Burt, 2005). As no one process accounts for such a complex biological 

phenomenon as the production of DOC it should be expected that simplified models 

ultimately fail, but in their failure they can reveal issues that require clarification. 

Worrall, et al., (2004a) consider the 'enzymatic latch' (Freeman et al., 2001b) the 

most likely explanation of their results. This proposes that the absence of oxygen in 

peatland environments is responsible for the inhibition of the enzyme phenol oxidase 

(Freeman et al., 2001b). Phenol oxidase increases decomposition as the recalcitrant 

phenols are broken down which would happen when water tables are lowered 

(Worrall et al., 2004a). Freeman et al., (2001) reported a doubling of CO2 flux with a 

doubling of phenol oxidase. As noted above DOC comprises low molecular weight 

compounds such as carbohydrates, amino acids, peptides, nucleic acids and 

carboxylic acids, refractory phenolics, and fulvic, humic and hydrophilic acids 

(Thomas 1997 in Dawson 2001). Therefore an increase in phenol oxidase activity 

should lead to further breakdown of complex organic compounds that make up DOC 

and an increase in CO2 flux; not to a simple increase in the production of DOC as 

proposed by Worrall, et al., (2004a). However, perhaps the increase in phenol 

oxidase activity leads to a preferentially increased rate of breakdown of larger 
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fragments of POC thus producing more DOC. This poses an interesting question; do 

substrates of similar composition but differing particle sizes decompose at different 

rates? St. Louis et al., (2003) found that rates of mineralization of peat pieces were 

not different from rates of mineralization of larger peat blocks in reservoirs but these 

were much larger fragments than the particle sizes of POC or DOC. If this 

relationship follows for POC and DOC decomposition, then both should decompose 

at the same rate thereby still leading to a reduction in total DOC due to faster 

decomposition rates under higher phenol oxidase activity. In a study on Great Dun 

Fell, England it was found, contrary to the theory of Worrall, et al., (2004a) that 

DOM production was in fact lower during the lower water tables of drought 

conditions (Scott et al., 1998) . Also, molecular changes in the composition of DOC 

were noted indicating that changes to the decomposition process were evident (Scott 

et al., 1998; Scott et al., 2001). Conversely clear responses to temperature were 

found in a lysimeter transplant experiment in relation to a peaty gley and DOC 

production in northern England (Tipping et al., 1999). This may be in part due • to 

enchytraeid worms, as a positive response between temperature, DOC concentration 

and enchytraeid abundance has been found in the northern Pennines (Cole et al., 

2002). DOC production is undoubtedly a very dynamic process with factors such as 

temperature, oxygen availability and moisture influencing chemical degradation, 

solute dissolution and microbial. activity (Scott et al., 2001). 

In considering all the points above and in relation to the recent increase in DOC 

production in the UK, we need to ask whether future DOC production will continue 

to increase. If this does indeed happen will stream processes increase the conversion 

of DOC to gaseous emissions to the atmosphere, and if so will this increase continue 

indefinitely? It may be that riverine ecosystems have a kind of carrying capacity for 

DOC and inputs above this capacity would increase transfer of DOC from terrestrial 

systems to rivers and thereby to the ocean, but not necessarily increase losses to the 

atmosphere. The question is does this carrying capacity exist and if so what controls 

influence it, for example, biotic population sizes, availability of mineral substrates, or 

temperature? This could have important implications for modelling the contribution 

of this type of carbon export from peatland systems to atmospheric carbon budgets. 
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This limited review of carbon export from peatlands to river systems has found no 

work investigating this hypothesis. 

Estimated outputs in temperate and boreal river systems have been reported to vary 

between 10 and 100 kg C ha-1  yf' (Hope et al., 1997) on the higher end of this range 

the river Halladale in a blanket bog catchment in Sutherland has been recorded with 

an output of 103.4 kg C ha' yf' (Hope et al., 1997) (see Appendix for tables of 

reported fluxes) . It is encouraging that most authors record information on the 

management of the catchment areas they are researching, (DOC outputs are tabluated 

in the Appendix). There remain though, some fundamental questions requiring 

research particularly involving the mechanisms of DOC production, the influence of 

climate and the transfer of DOC to the atmosphere. 

1.4 UK Peatlands and the Greenhouse Gas Inventory (GGI) 

The UK ratified The United Nations Framework Convention on Climate Change 

(UNFCCC) in December 1993 which came into force in March 1994 (Baggott et al., 

2004). Implicit in the convention is the development, publishing and regular updating 

of estimates of national emission inventories for greenhouse gases (GHGs). The UK 

publishes figures annually; the greenhouse gases reported are: 

Direct Greenhouse Gases 

• Carbon dioxide (CO2) 

• Methane (CH4) 

• Nitrous oxide (N20) 

• Hydrofluorocarbons (HFCs) 

• Perfluorocarbons (PFCs) 

• Sulphur hexafluoride (SF 6) 

Indirect Greenhouse Gases 

• Nitrogen oxides (NO, as NO2) 

• Carbon monoxide (CO) 

• Non-Methane Volatile Organic Compounds (NMVOC) 

• Sulphur dioxide (SO2) 
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In the context of blanket bog the most significant of these gases are CO2, and CH4, 

since these gases are emitted and sequestered as part of biological processes. At 

present peatlands in the UK contribute to the inventory as part of the land use change 

and forestry category, appearing as the upland drainage and peat extraction for fuel 

and horticulture sections in the sub-category 'other'. The total emissions reported for 

land use change and forestry were approximately 2.5% of the UK total in 2002 and 

are declining gradually but this was attenuated by the estimated removal of nearly 

11682 Gg of CO2 (-2% of total emissions) by uptake in photosynthesis of forests 

(changes in woody biomass stock) and agricultural crops (removals in sub-category 

'other') (Baggott et al., 2004); see Table 1.3. 

Table 1.3: Summary of sources and sinks of greenhouse gases important to UK 
peatlands for the year 2002. Units are Gg CO2 equivalents, (Baggott et al., 2004). 

Greenhouse gas source sink 	 CO2 	CO2 	CH4  N20 

emission 	removal 

Total UK National 550965 -11682 	2098.4 	132 

Land use change and forestry total 13585 -11682 	1.1 	0.1 

Changes in woody biomass stock S 	 - -10582 	- 	 - 

Forest and Grassland Conversion 259 1.1 	0.1 	- 

CO2 emissions and removals from soils 9937 Included 	- 	 - 

elsewhere 

Other Total 3389 -1100 	- 	 - 

Scotland is important to this in the greenhouse inventory for two reasons. Firstly, by 

far the highest density (t ha') of carbon in the UK's soils is found in Scotland, 

attributable to the extent of natural soils the majority of which are peatland (Table 

1.4). Secondly, because the inventory takes account of drainage of upland peat soils 

due to afforestation, the majority of which occurs in Scotland (Table 1.5), this is 

counted as a source of CO2, therefore the majority of this emission originates in 

Scotland. Upland drainage and peat extraction account for over 60% of the 

subcategory 'other' (Table 1.6). 
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Table 1.4: Average soil carbon density (t C ha') for different land cover in the UK 
(Baggott et at., 2004). The high carbon content of the natural category is due to the 
inclusion of blanket bog and other peaty soils. 

Region cover 	England Scotland Wales N. Ireland 

Natural 487 1048 305 551 

Woodland 217 580 228 563 

Farm (Arable) 153 156 93 151 

Farm Pasture 170 192 200 178 

Other 33 141 43 102 

Table 1.5: Activity and Emission Factor Data for Upland Drainage 

England 

Wales 

Scotland 

Northern Ireland 

UK 

Afforested Peat 

(kha) 

20 

10 

160 

10 

200 

Emission rate 

(t C ha- 'a- ') 

2 

2 

2 

2 

2 

Annual 

Loss (kt C)'' 

40 

20 

320 

20 

400 

Table 1.6: Breakdown of the contribution of upland drainage and peat extraction to 
subcategory 'other' (Table 4) adapted from Baggott, et al., (2004) units are Gg CO2  
equivalents for the year 2002. 

Greenhouse 	gas CO2 % of emissions 

source sink emission from other sub- 

(Gg CO2) category 

Total Other 3389 100 

Upland Drainage 1466.67. 43.3 

Peat extraction 682.92 20.2 
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1.4.1 GGI and Unaccounted Emissions from Peatland 

At present most emissions from land-use change and forestry arise from the 

emissions of CO2 from soil, which includes the cultivation of mineral soils, liming of 

agricultural soils and drainage, although there is an acknowledge 60% uncertainty in 

the values for emissions from soils (Baggott et al., 2004). As already stated the 

majority of upland drainage occurs in Scotland. However, the inventory only 

includes drainage on upland soils due to afforestation, there is no account for 

drainage due to moor-gripping, which, although there is no quantitative estimate of 

the geographical extent, is widespread. This is probably due to the cessation of 

moor-gripping in recent times and land use change is only accounted for after 1990 

(Baggott et al., 2004). However, if restoration of peatlands is taken up on a large sale 

then the consequences on carbon budget should be taken account of. 

Methane emissions from land-use change and forestry are accounted for entirely by 

the Forest and Grassland conversion category and arise from emissions from forests 

(Baggott et al., 2004). However, it has been suggested that under the terms of the 

Kyoto Protocol, peatlands could be used to meet reduction targets of carbon 

emissions under grazing land (Worrall et al., 2003b). If this is a realistic scenario it 

will be vital to take account of methane as well as carbon dioxide from peatlands. 

Further, restoration projects on blanket bog in Scotland affect both afforested and 

drained bogs and undoubtedly affect the carbon balance in the process. However, 

given the limited geographical extent of restoration projects at present this is unlikely 

to affect the greenhouse inventory greatly but if extended to larger areas information 

on the effects of these projects will be required to feed directly into the greenhouse 

inventory. 
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1.5 Review of the effects of management on blanket bog and hypothetical effects 

on carbon fluxes 

This section summarises the effects of management on the biological components of 

blanket bog and then speculates what the effect of these may be on the carbon 

balance of the peatland. There are few direct measurements of the effect of 

management on carbon dynamics but see Garnett, (1998) and Garnett et al. (2000). 

1.5.1 Grazing 

Shaw et al., (1996) reviewed the effects of grazing on blanket bog and wet heath and 

offer a more detailed examination of grazing than can be found here but much of 

what follows is adapted from that review. It seems likely that all areas of blanket bog 

in the UK are, or have been, subjected to grazing by both domestic and wild animals, 

and for the past 150-200 years rotational burning and grazing have been regularly 

practiced (Shaw et al., 1996). Grazing, like burning, may also be a contributory 

factor in the initiation of blanket peats in the UK (Shaw et al., 1996). Although it was 

not the primary objective of Shaw et al., (1996) to examine how management 

practices affect the carbon balance of blanket bog, their following points are worthy 

of note. 

The effects of grazing vary according to stocking rates, wetness and condition 

of the site, type of grazing animal, time of year and length of time spent on 

the site. 

12 Changes in vegetation composition and damage can be the result of 

trampling, which if severe, may result in bare ground. Effects can be 

localized, for example, around feeding points, fences, walls, etc. These areas 

are also affected by enrichment from dung and urine. 

The effects of grazing on vegetation vary depending on the availability to 

herbivores of other habitats and food resources. There are interactions 

between management history and grazing that are difficult to separate, for 

example, grazing is often associated with burning. 
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The immediate effect of grazing is a removal of vegetation and continual grazing can 

lead to a change in composition and structure such as the loss of heath to more 

Molinia and Eriophorum dominated vegetation (Shaw et al., 1996). Stocking rates 

are regionally variable and are partly dependent on the availability of other habitats 

for feeding. They can also be difficult to assess for example, Shaw et al., (1996) cite 

a ewe unit, which may include horses, and ewe counts which do not include lambs. 

Seasonality of use is also not reflected in stocking rates as a heavy winter and light 

summer use are evened out over the year (Shaw et al., 1996). Optimal stocking rates 

in terms of animal condition and with respect to vegetation would appear to be low 

but there is no definitive figure, this is dependent on location, site condition, climate, 

vegetation, etc. but is likely to be below 0.37 ewe ha' (Rawes & Hobbs, 1979; Shaw 

et al., 1996). 

The type of grazing animal can have an effect because of the different oral 

morphology and behaviour exhibited during the period on site. Cattle wrap their 

tongues round the vegetation and rip plants up; together with poaching this tends to 

produce a tussocky sward. Cattle are also less selective in diet preference than sheep 

(Shaw et al., 1996). Sheep bite and shear vegetation producing a much more even 

sward and are not as heavy. Breed and stock type can also show different effects as 

ewe and lambs are more selective in diet choice than wethers (Shaw et al., 1996). 

Goats have more of a preference for browsing woody vegetation. Horses and ponies 

tend to be less important in numbers on bogs but may be locally important for 

example on Exmoor and Shetland. Ponies tend to use the same site repeatedly for 

defecation leading to local areas of enrichment. Red deer are similar to sheep in their 

diet preference but proportionally eat less grass. Competition for the same areas may 

exacerbate damage but it is often difficult to separate the effects due to the different 

species (Shaw et at., 1996). Deer tend to prefer older rather than pioneer Calluna, 

grouse on the other hand require younger Calluna stems. Hares also favour pioneer 

Calluna and numbers can correlate with burning; like deer they can prevent 

regeneration of trees and in some cases Calluna (Shaw et al., 1996). Voles tend to 
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prefer sites with Juncus and Molinia (Shaw et al., 1996) though not strictly 'classic' 

blanket bog vegetation these species can be prevalent on modified bog on deep peat. 

Seasonality of grazing also affects the disturbance to the site and vegetation, for 

example, Calluna tends to be eaten more in winter when grasses are less available 

this can lead to susceptibility to winter browning (wind and frost damage) if grazing 

is very heavy (Shaw et al., 1996). 

Before moving on to other management practices it is useful to examine the 

interactions of management practices. Thompson et al., (1995) present a simplified 

vegetation succession diagram, reproduced in Figure 1.4, useful in general terms for 

assessing interactions between burning, grazing and water table alteration. Although 

simplified this model is useful for examining relationships, however not all of it is 

based on evidence and some of the transitions are assumed (Shaw et al., 1996). 

G,lhrna- 
Vocxinium 

myti11us, heath 

E vQgrnatwn, 	 nophorwn  
blanket/raised 	 vaginatwn, bog 

bog 

D 	
---- \

qD 
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- 	

Thkhophorum 	D 	Trichophorwn  
) / 
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Figure 1.4: Simplified successional changes between bog and heath communities as 
affected by burning grazing and water table alteration (re-drawn from Thompson et 
al., 1995, cited in Shaw eta!, 1996). 
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1.5.2 Hypothesized Effect of Grazing on the Carbon Balance of Blanket Bog 

Grazing affects the carbon balance through effects on the vegetation (Figure 1.4), 

physical and chemical environment. These effects will vary according to the time 

spent in the habitat, season, animal species, breed, sex, age, and associated behaviour 

related to feeding, defecation, urination, travel and shelter. 

Vegetation 

The physical acts of feeding and trampling can lead to the altering of vegetation 

composition structure and may lead to complete destruction of vegetation thereby 

leading to areas of bare peat. Altered vegetation composition will affect both 

photosynthesis and photorespiration altering the inputs and outputs of carbon dioxide 

to and from the atmosphere. A different vegetation composition would lead to an 

alteration of microbial decomposition in an unknown manner because of the different 

physical structure and chemical composition of different species. To date, the 

quantification of the effects of grazing on carbon fluxes has not been explored fully. 

Physical 

Physical changes to the peat may come about through compaction by trampling and 

in extreme cases lead to erosion, see below. Through the actions of trampling and 

feeding the structure of the vegetation is also altered, thus altering carbon dynamics. 

Chemical 

The nutrient balance of the bog can be altered by defecation, urination and the 

removal of plant matter. Further the removal of animals for slaughter or to other 

areas outside the blanket bog essentially translates to a removal of nutrients from the 

system. As carbon based life-forms this inevitably involves the transport of carbon 

out of the blanket bog system. Rawes and Heal (1978) (in Shaw et al., 1996) 

consider that there is little or no net income or loss from the bog in terms of N, P, K 

and Ca, but this work was conducted in the Pennines, which may be atypical in 

comparison to other areas of blanket bog in the UK in terms of utilisation for 



Chapter 1 

livestock. This carbon loss from the system will be transferred to the atmosphere in 

the short term as it is processed into food. 

1.5.3 Burning 

Shaw et al., (1996) and Tucker (2003) reviewed the effects of burning on blanket bog 

and wet heath and more detailed examination can be found in these references. 

Although it was not the primary objective of these reviews to examine how 

management practices affect the carbon balance of blanket bog, the majority of what 

follows is summarized from these reviews. The following summary points from 

Shaw etal., (1996) are of note. 

• Most of the work to date investigating burning as a management tool has 

been conducted on grouse moors or lowland heaths, and so relates to a drier 

type of habitat than blanket bog. 

• Burning has physical, chemical and biological effects. The effects of fire are 

dependant on the vegetation, intensity and frequency of the fire, timing of the 

burn and the wetness of the habitat. Summer fires are likely to be most 

damaging for wildlife interest. 

• There will be indirect effects through changes in the physical habitat 

characteristics, plant species composition and vegetation structure and 

consequently microclimate. 

Tucker (2003) summarised the impact of fire on selected upland species and the 

impacts on those species more prevalent in blanket bog are reproduced in Table 1.7 

and Table 1.8. For a simplified model of how fire affects vegetation see Figure 1.3 

above. 

Burning has been used for centuries and some authors believe that anthropogenic fire 

may have been responsible for he initiation of blanket bog in some areas (Moore et 

al., 1984), certainly evidence stretches as far back as Mesolithic period (Shaw et al., 

1996). The intensity of fires varies according to the temperature reached and the 
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speed. In extreme cases intense fires can ignite the peat removing the vegetation, 

produce a hard bitumen surface that can lead to increased runoff increased exposure 

increased heat and evaporation and an increased amplitude of temperature fluctuation 

decreased soil organic matter and nutrients, and seed bank destruction therefore 

making it difficult for plants to establish and may lead to erosion. This type of fire is 

more likely when ignition is accidental or malicious (Maltby et al., 1990; Legg et al., 

1992; Tucker, 2003). The goal of managed fire is to remove and regenerate 

vegetation to improve food quality and vegetation structure, for example, Calluna for 

red grouse or grass and sedges for the 'early bite' (Shaw et al., 1996; Hamilton et al., 

1997; Hamilton, 2000; Tucker, 2003). This latter strategy is used particularly on 

blanket bog in the north west of Scotland (Hamilton et al., 1997; Hamilton, 2000). 

Guidance on the use of fire is contained in the Muirburn Code (Anon, 2001), 

generally the burning of blanket bog is not recommended because of the detrimental 

effect it can have on the characteristic species and the risk of peat ignition, except 

where Calluna constitutes more than 75% of the vegetation (Anon, 2001) but these 

should be on long rotations.(Shaw et al., 1996, Tucker, 2003, and references therein). 

However, Sphagnum species are not as sensitive as perhaps is assumed and do not 

always do badly under fire management (Hamilton, 2000; Tucker, 2003). There can 

also be interactions between fire and drainage because the water level can influence 

the effects of the fire as moist peat is insulated and severe burning can lead to 

increased peak flows in drainage ditches (Shaw et al., 1996). 

In concluding, Shaw et al., (1996) state that when burning (and grazing) are carried 

out indiscriminately these management practices are likely to be damaging to the 

wildlife interests of blanket bog and may even lead to loss of habitat. However, if 

conducted sensitively, both burning and grazing can have beneficial effects to some 

species of these habitats (though not all). 
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Table 1.7: Summary of impacts of burning management on selected blanket bog species, species groups and blanket bog habitat based on 
Tucker (2003) and Hobbs etal., (1984). 

Species 	Perennating organ & fire 	Impacts 

survival mechanism 

Calluna 	Stem bases, protected by 

vulgaris 	litter and persistent seed 

bank 

Empetrum 	Buried branches 

nigrum 

Regenerates relatively rapidly after typical management fires, if burnt before the late 

mature phase. Re-establishes by seed from abundant long-lived seedbank if old stands are 

burnt or if hot fires damage basal stems. But seedling establishment is slow and may allow 

invasion by rhizomatous species. May not re-establish if burning is too frequent. Generally 

increases in abundance with long burning rotations (e.g.> 15 years) on bogs. 

May be susceptible to fires but if prostrate stems are not destroyed then may gain temporary 

dominance in heathiands until overtopped by Ca!!una. 

tQ 

Erica tetralix Stem bases, protected by 
	

Similar to Ca!!una, but favoured by shorter burning rotations of 6-10 years. May also be 

litter and persistent seed 	able to regenerate better in wetter habitats because its semi-prostrate lower branches are 

bank 	 protected by Sphagnum and litter layers. 
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Table 1.7 continued 

Species 	Perennating organ & fire 	Impacts 

survival mechanism 

Eriophorum 	Rhizomes 	 Often benefits from periodic fires, as can rapidly recolonise burnt areas from rhizomes, but 

angustfolium 

	

	 is later out competed. May not survive post-fire conditions if significant changes in 

moisture and pH. 

Eriophorum 	Tiller apices within leaf 	Rapidly regenerates after fire and probably resistant to hot fires due to tussocky growth 

vaginatum 	sheaves 	 form. Temporarily dominates after fires in blanket bogs and can remain dominant if burning 

rotations are less than 10 years. 

Molinia 	Tiller apices within leaf 	Can regenerate rapidly after fire and often dominates (sometimes with E. vaginatum) under 

caerulea 	sheaves 	 frequent burning regimes. 

Sphagnum 	- 	 Often thought to be fire sensitive, but little evidence for this. Wet conditions may protect 

mosses species from fires and some can regenerate from deep buried fragments. Most impacts 

probably from peat damage and trampling, or due to exposure to drying or algal growth 

after removal of vegetation cover. 
(J 
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Table 1.8 Extent of the practice of burning and advantages and disadvantages of this type of management on the blanket bog habitat (Tucker, 
2003) 

Habitat 	Extent of burning 	Advantages 	 Disadvantages 

Blanket Bog Majority under some sort of Eriophorum favoured may benefit Potential loss of fire sensitive species; can 

burning regime black grouse and large heath butterfly become dominated by Eriophorum on short 

if abundance low. Some carefully rotations, or Calluna on long rotations. Nutrient 

selected controlled burning may be loss may be significant Reduced peat formation 

necessary to reduce fuel loads and and significant risk of erosion and combustion of 

risk of wild fire peat. Peat combustion and drying causes 

significant losses of carbon. 	Increased 

Eriophorum may cause increased methane flux. 
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1.5.4 Hypothesized Effect of Burning on the Carbon Balance of Blanket Bog 

Again as with grazing there are effects on the vegetation, physical and chemical 

environments, which will depend on the frequency intensity of the fire. An additional 

loss of carbon and other chemicals through fire will be to the atmosphere in smoke 

and ash. The consequences of fire on carbon balance will also be scale dependent. 

While the immediate consequences of fire are the loss of carbon to the atmosphere 

and death of important peat-forming species such as Sphagnum, in the intermediate 

term, the removal of shrub cover and litter may permit rapid recovery and expansion 

of Sphagnum and peat formation. In the long term, fire may promote increased 

Calluna dominance and changes to the hydrology of the bog that result in desiccation 

and oxidation of peat (Hamilton, 2000). There is also evidence that the perturbation 

of fire stimulates microbial activity within peat and probably increases the rate of 

decomposition (Maltby et al., 1990). Rates of peat accumulation have also been 

noted to be lower in areas that are burnt (Kuhry, 1994; Garnett, 1998; Garnett et al., 

2000) suggesting that in terms of carbon sequestration burning may not be beneficial. 

Severe fire can lead to the direct combustion of peat and may lead to erosion thus 

exacerbating the carbon loss (Tucker, 2003). However the long-term impacts of 

burning are more complex than it would first appear as Calluna accumulates more 

carbon in the building and mature phases (Tucker, 2003). The removal of a dense 

shrub canopy has also been observed to benefit the recovery of Sphagnum species in 

some bogs (personal observation) this may be brought about by fire or other 

mechanical means with unknown implications for the carbon balance. 

1. Vegetation 

The removal of vegetation through burning alters vegetation structure and 

competitive interactions between species thus leading to altered species composition. 

An increase in Eriophorum may cause increased methane flux to the atmosphere. 

Although burning is a different process, both burning and grazing affect the 

vegetation composition and structure and will therefore alter the carbon related 

processes of photosynthesis and respiration. To date, the quantification of the effects 

of burning on carbon fluxes on blanket bog has not yet been explored fully. 
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Physical 

Physical changes to the peat depend on the frequency and intensity of the fire these 

are most likely to be extreme when associated with accidental fires with a high fuel 

load and that may lead to erosion and thus a loss of carbon, see below. 

Hydrological 

Burning reduces the water storage capacity of the peat and, again, in extreme 

conditions may lead to areas of bare peat; these may increase evaporation and runoff 

which are likely to increase fluxes of DOC, etc. from the peatland system. The 

alteration of storage capacity may also lead to an altered water table thereby altering 

the balance between aerobic and anaerobic decomposition with consequences for the 

carbon balance. 

Chemical 

Burning causes a short-term availability, of nutrients and alteration to pH but' there 

are undoubted losses from the system including carbon. Even though there is 

replacement from atmospheric inputs, there may be long-term shortfalls in the 

replacement of N, P and K (Tucker, 2003). The implications for this on the carbon 

dynamics are unknown at present most studies are limited in that they are concerned 

with short-term rather than long-term impacts (Tucker, 2003), but there will be 

impacts upon biological processes from the changing of nutrient availability. This 

will be further complicated by increased deposition of chemicals in upland areas 

from industrial pollution. ' 

1.5.5 Drainage 

The practice of moor gripping on blanket peats has been continued for a number of 

centuries. Original drains were cut by hand but in more modern times by machine. 

Drains vary in size and depth. Drains can range from single drains for boundary 

demarcation to extensive herring bone patterns of moor grips 40-50 cm deep (see 

Figure 1.5). The desired effects of drainage are a lowering of the water table thus 
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leading to an altered vegetation and more desirable area for sporting and agricultural 

activities (Coupar et al., 1997). 

- 

2 
L -_-_ --- - 

-'!: •-/-/-? 	2'' 

.. 
II(\-\\-- 	-.- 	 .-.-.- 1z 	- 	_)cc~ ,L.. 	I -- 

- 	 - -- 	 -- 	-- 

Figure 1.5: Artificial moor-gripping network on blanket peat near Forsinard, 
Sutherland in Scotland. Grid squares are 1 km. 

Wheeler & Shaw (1995) examined drainage effects on both raised mires and blanket 

peat. These systems are ecologically, if not morphologically, similar so their findings 

are still appropriate. Therefore, much of the following is taken from Wheeler & 

Shaw (1995). As drainage lowers the water table there can be an accelerated 

decomposition of the peat, a change in the physical properties of the peat and thus 

the hydrology, morphology and the ecology of the peatland ecosystem are altered 

(Wheeler & Shaw, 1995). Typical effects are increased subsidence, bulk density and 

amplitude of water table fluctuation with decreases in active porosity, water content, 
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water storage coefficient and permeability (Wheeler & Shaw, 1995). The results are 

primary consolidation followed by shrinkage, secondary compression and finally 

wastage of the upper layers of the bog (Hobbs, 1986, cited in Wheeler & Shaw, 

1995). The chemistry of the peat can be altered by the induction of biochemical 

oxidation mineralization and the release of H+ and nutrients altering the pH. In a 

damaged site frequent and long periods of drought may accentuate these processes 

leading to a sub-optimal pH for Sphagnum growth. The permanence of these effects 

is not known. 

On the vegetation, sustained lowering of the water table leads to a rise in Calluna 

vulgaris and Molinia caerulea and may result in invasion of birch, Betula spp. Long-

sustained lowering of the water table can lead to loss of typical bog species and loss 

of the acrotelm itself leading to the aeration of the catotelm, a faster decomposition 

of catotelmic peat and the cessation of peat accumulation and bog growth. 

Vegetation effects can take a long time to become evident and in one study were 

confined to the downslope side of the drains (Stewart & Lance, 1991). Stewart and 

Lance (1991) also found that cover of species dependent on high water tables had 

lower cover nearer to drains, cover of Calluna peaked after approximately 8 years 

and declines in Sphagnum were localized and took nearly 20 years to achieve 

statistical significance. 

The low hydraulic conductivity of the catotelm means that the effects of any one 

ditch are usually restricted to with a few metres either side of the ditch (Stewart & 

Lance, 1991). This is evident from the need to space ditches 10-20 m apart to provide 

sufficient drainage for the peat extraction (Wheeler & Shaw, 1995). Drainage will 

undoubtedly lead to a faster runoff in the immediate vicinity of the drain and long-

established drains can frequently be seen to have caused lowering of the peat surface 

for 5-10 m creating a parabolic peat surface and thus changing the hydrology of the 

bog. 
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1.5.6 Hypothesized Effect of Drainage on the Carbon Balance of Blanket Bog 

As illustrated above, the effects of drainage act on the hydrology, vegetation and 

physical characteristics of the peatland. None of these effects act in isolation and are 

likely to interact with one another. The carbon balance is likely to be affected thus: 

1. Hydrology 

Increased run off leading to increased exports of carbon to river 

environments. There is some work to support this hypothesis (Yeo, 

1998). 

Lowered water tables leading to altered exchanges of gaseous carbon 

through the altered decomposition processes. This may lead to 

lowered methane emission but increased carbon dioxide emission. 

The long term dynamics of this have not been explored. 

2. Vegetation 

As above in section on fire and grazing. 

3. Physical 

Physical effects compound both hydrological and vegetation effects 

and thus are likely to compound effects on the carbon balance. 

1.5.7 Erosion 

The most comprehensive studies of erosion have taken place in the Pennines of 

England by John Tallis. Although every situation could be regarded as unique and it 

could be argued that the Pennines may be atypical of blanket peat in the UK, the true 

value of these studies is that they have identified local erosion processes that have a 

wider applicability. Identifiable changes associated with erosion include: reduced 

species diversity, reduced Sphagnum cover, discontinuous plant cover and reduced 

productivity and peat accumulation (Tallis, 1997b). This led to the production of a 

simplified and generalized sequence of progression (see Figure 1.6 and Tallis, 

1997b). Not all of these effects are displayed in any one eroded bog but this stresses 

the diversity of factors that are involved in the erosion process. Note the compound 
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nature of many factors and the fact that many management practices are evident. 

Identified agents implicated in the erosion process are of both natural and 

anthropogenic origin including accidental fires of which there were 300 in the period 

1970-1998 in the Peak District. At Holme Moss a particularly severe fire in 1700 is 

thought to be responsible for much bare peat today (Talus, 1997b). Further agents 

include industrial pollution, sheep grazing, trampling, peat cutting and climatic 

impacts. These then may finally lead to erosion, which may take many forms from 

small areas of bare peat to fully formed integrated systems of gullies. Gully erosion 

is a feature of nearly all blanket peats in the UK and a mean erosion rate of 5.5 nmi 

yr has been postulated for the Peninne area indicating that a 1 in deep gully is 

approximately 200-250 years old with some of the deeper gullies being considerable 

older (Talus, 1997b). Annual erosion rates in Shetland were 1- 4 cm yr-i which may 

indicate that bare peat surfaces persist for 30-150 years for 1.5 in deep blanket peat, 

if erosion rates, geomorphological and management factors remain constant (Birnie, 

1993). The evidence from the Pennines indicates that erosion is a long-term process. 

However, it may not be a permanent one: around 10% of the Moor House National 

Nature reserve was classified as re-vegetated former erosion (Garnett & Adamson, 

1997). 
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Figure 1.6: A simplified scheme of bog degradation and erosion redrawn from 

(Phillips, Yalden & Talus, 1981, cited in Talus 1998). 

There is quite a body of evidence on erosion and further work can be found in the 

following references (Talus, 1959, 1964, 1965; Crisp, 1966; Stewart et al., 1966; 
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Talus, 1973, 1985, 1987; Bradshaw & McGee, 1988; Birnie & Hulme, 1990; 

Francis, 1990; Johnson et al., 1990; Stevenson et al., 1990; Birnie, 1993; Glenn et al., 

1993; Heathwaite, 1993; Talus, 1994; Talus & Livett, 1994; Grieve et al., 1995; 

Talus, 1995; Younger & McHugh, 1995; Fisher et al., 1996; Mackay & Talus, 1996; 

Talus, 1997a; Ellis & Talus, 2000; Bragg & Tallis, 2001; Ellis & Tallis, 2001; Evans 

& Warburton, 2001; Wishart & Warburton, 2001; Campbell et al., 2002; McHugh et 

al., 2002; Waddington & McNeill, 2002; Ellis & Tallis, 2003; Warburton, 2003; 

Warburton et al., 2003; Warburton et al., 2004). 

1.5.8 Hypothesized Effect of Erosion on the Carbon Balance of Blanket Bog 

The effects of erosion on the carbon balance are likely to be very similar to the 

effects of drainage see above, only sometimes on a much larger scale. The carbon 

balance is likely to be affected as above: 

Hydrology, as in drainage. 

Vegetation as in grazing and burning sections. 

Physical as in drainage section. 

1.5.9 Peat Extraction 

The effect of peat extraction depends entirely on the method and scale of extraction, 

which dictates the degree of severity to the peatland system. As noted above the 

majority of peat extraction in Scotland is done by domestic cutting for fuel. 

1.5.10 Effect of Peat Extraction on the Carbon Balance of Blanket Bog 

The use of peat as a fuel in terms of carbon is similar to other fossil fuels in that it is 

an unsustainable resource and emits carbon to the atmosphere. The loss of carbon 

due to be peat extraction was calculated as 682.92 Gg CO2 for the year 2002 in the 

UK (Baggott et al., 2004). However this figure includes raised bogs and therefore the 

real total for blanket bog in would be less. 

1.5.11 Conservation 

Conservation is not strictly a management practice and the effect of designation of a 

site may be to introduce or cease different management practices for the achievement 
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of the conservation goals. Conservation therefore can be assessed by reference to the 

different management practices presented here. In the current context the 

management practices of interest are those that influence the carbon balance by 

conserving an active bog ecosystem, i.e. a bog accumulating carbon. 

1.5.12 Hypothesized Effect of Conservation on the Carbon Balance of Blanket 

Bog 

The key here is to identify whether management by conservation is effective in 

conserving active status of bogs. This has yet to be assessed although SNH hold data 

on habitat condition for some if not all blanket bog SSSIs. 

1.5.13 Restoration 

Restoration could be examined under conservation but is detailed separately here 

because it is a fairly new practice and also due to the extensive restoration projects 

currently undertaken in the Caithness and Sutherland Peatlands area, where much of 

the field work for this thesis was conducted. Before examining the effect of 

restoration we need to define what blanket bog ecological restoration is, accordingly 

I define this as: 

ecological restoration of blanket bog is defined as any management practice that is 

deliberately undertaken to restore ecological processes, communities and/or species 

to semi-natural condition, thereby enhancing the ecosystem of blanket bog. 

Though broad, within this definition there are some key elements that need 

elaboration. A management practice that is deliberately undertaken must have the 

enhancement of the blanket bog ecosystem as an objective target. Further it is 

explicitly acknowledging that anthropogenic influence is required to achieve semi-

natural status and it is also required to maintain that status (unlike definitions of 

naturalness for woodlands which imply naturalness without the influence of people 

(Peterken, 1996)). By stating that the objective is 'semi-natural condition' there is no 

implication that these practices can 'turn back the clock' and deliver any particular 

ecosystem that was present in the past. It is unfortunate then that the word restoration 
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has entered into common use for conservation projects, remediation or rehabilitation 

may be better but since restoration is commonly used it is retained here. Finally, by 

including ecological processes, communities and species, this definition recognises 

that none of these entities exists in isolation and that they are all are required to 

enhance a blanket bog ecosystem. 

Recent restoration in Caithness and Sutherland has concentrated on two distinct types 

of degraded mire: those planted with trees and those affected by moor-grips in 

Caithness and Sutherland. There are therefore different methods for tree removal and 

drain blocking, although in reality drains also need to be blocked after tree removal. 

Although the objectives of restoration include promotion of birds and invertebrates, 

the main effects examined here will be those on vegetation and hydrological impacts 

that primarily affect the carbon balance. 

Tree Removal: In Caithness and Sutherland where the majority of the restoration 

projects have been carried out three methods of tree removal have been used 

chainsaw felling, mulcher, and mechanical tree snipper. Either, the trees are felled to 

waste leaving mulch behind or with cut trees and brash placed into furrows, helping 

to impede drainage, or the trees may be removed for use in bio-fuel or other 

commercial/community uses. 

Drain blocking: The objective of damming drains is to raise water tables and in so 

doing help regulate base and peak flow rates to the respective bums, with a 

concomitant reduction in the frequency of spates. Outcomes are the restoration of 

peatland vegetation as well as hydrology. Drains are dammed, for example at 20 to 

25 cm drops, either using a mixture of materials such as plastic pile and peat dams 

constructed by hand or using a low ground pressure digger, depending on the 

situation. 

1.5.14 Hypothesized Effect of Restoration on the Carbon Balance of Blanket 

Bog 

The removal of trees may result in a reduction in evapo-transpiration and hence raise 

the water table and promote the recovery of vegetation. The quality of the woody 
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matter left to decay may also be important in determining the rates of decay and 

carbon release or retention in the newly restored acrotelm. The effects of blocking 

drains will be to alter the dynamics of the carbon flux in favour of methane 

production. As stated above it is the balance between the methane emitted and 

carbon dioxide fixed that is important in determining if the bog is a source or sink to 

the atmosphere. It remains to be seen whether the methane pulse shown by many 

studies (Anderson, 2001) is a transient phase and lessens over time as the vegetation 

becomes more established. 

1.6 Examination of Policy Mechanisms for Blanket Bog Restoration 

Although restoration is relatively new there is likely to be increase in restoration 

projects especially if policy mechanisms are used as encouragement. There is 

included here then a short appraisal of current policy mechanisms available to 

landowners that have a direct or indirect link to peatland restoration. 

There are several mechanisms in place that have been used for blanket bog 

restoration. It also is likely that future policy mechanisms could be used for the 

financing of blanket bog restoration not only for specific conservation projects but 

also for integrated projects within the rural fanning environment. 

The restoration of blanket bog in the UK is a relatively recent phenomenon. It has yet 

to be considered on a large geographical scale. Part of the problem may be a lack of 

awareness of what options are available to landowners with regard to peatland 

restoration and the complexity of the granting system 

Peatland Management Scheme (PMS - administered by Scottish Natural Heritage 

[SNH]): This is a scheme for SSSI landholders that include options for 'peatland 

restoration'. Although a very successful scheme in terms of uptake, only a few 

landholders have done any restoration work through this scheme. The current LIFE 

Peatlands Project (LPP) is trying to promote a larger uptake of this aspect of the PMS 

by specifying that SNH will do five restoration schemes as part of the project. The 

added resources of the LPP are helping SNH progress on this. All restoration work 

carried out to date under this scheme has been blocking hill drains. 
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Scottish Forestry Grants Scheme (SFGS - administered by Forestry Commission 

Scotland [FCS]): In June 2003 this replaced the Woodland Grant Scheme (WGS) 

'Woodland Improvement Grant' that included aspects of tree removal from deep 

peatland. SFGS, like its predecessor, is still a restructuring grant for 'improving 

woodland biodiversity' with funded open-ground restoration limited to 20% of the 

forest area (FCS, 2003, 2005). In practice, WGS & SFGS grants are for small scale 

(mostly 10's of hectares) tree removal from, for example, the edge of a Natura site. In 

February 2005 FCS increased the rate of SFGS grant paid for open ground 

restoration by tree removal to 90% of 'standard costs', but the limitation of only 20% 

open-ground restoration of the forest remains. Going beyond 20% of forest area 

removed under SFGS may require a cultural shift and change in FCS's remit, with 

closer linkage with SEERAD/SNH and their support to manage the restored 

peatland. FCS may feel constrained by being the Forestry rather than 'Peatland' 

Commission. 

LIFE Nature (EU): This has been the only funding source that has allowed landscape 

scale restoration work in peatlands. Favourable LIFE applications focus directly on 

the 'threats' to a Natura site. In the case of the Caithness and Sutherland peatlands 

these were identified as mainly hill drains and forestry. 2005 is the last year for 

applications for LIFE Nature projects - future funding of Natura work will come 

through the Rural Development Regulation 2007-2013. 

Heritage Lottery Funding: The RSPB has had some success in acquiring conifer 

plantations on peatland areas for restoration purposes including the felling of conifer 

trees. 

Agri-environment Schemes: These schemes have been in operation in Scotland since 

1987. They are designed to encourage farmers and crofters to manage their land for 

the benefit of Scotland's wildlife and habitats. Participation in the schemes is for a 

minimum of five years. In benefiting wildlife and habitats there may also be a pay 

off in terms of carbon budgets particularly in the case of blanket bog where a well- 
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managed functioning peatland is more likely to be a carbon sink than a carbon 

source. There are certain schemes that are no longer open for applications such as 

the Environmentally Sensitive Area (ESA) and Habitats Scheme, as such these 

schemes would not cover future peatland projects but existing agreements may still 

be benefiting peatland areas. 

The Rural Stewardship Scheme (RSS): RSS is part of the Scottish Rural 

Development Plan. It replaced the Countryside Premium Scheme (CPS) and provides 

assistance to landowners and managers for the adoption of environmentally friendly 

practices and to maintain and enhance particular habitats and landscape features. 

The Moorland Management Option for RSS would cover elements of peatland 

restoration. 

Organic Farming: This Scheme, which is part of the Scottish Agri-Environment 

Programme, came into operation in July 1994. It provides assistance to farmers and 

crofters who wish to convert to organic production. Although no direct payments 

would be made through this scheme for peatland restoration the practice of organic 

farming in upland areas may have an indirect benefit to peatland environments. 

Land Management Contracts: The Land Management Contract (LMC) Menu Scheme 

was launched on 25 th  February 2005. The scheme for 2005 contains an option for 

management of moorland grazing, which aims to benefit a diverse range of habitats 

of conservation interest within moorland. The Menu Scheme is lower level than RSS, 

and does not contain prescriptions for enhancement through management. The future 

development of LMCs may provide further opportunities to include other aspects of 

peatland restoration, and the full LMC model, due to be launched in 2007, could 

contain further prescriptions targeted at these. 
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1.7 Conclusions 

Peatlands are large carbon stores. 

• The largest peatland habitat in the UK is blanket bog. 

• Blanket bog in the UK is subjected to varying types of management including 

grazing, burning. 

The geographical status of blanket bog in the UK is at present equivocal 

including the extent of management practices. 

• Peatlands have like many other ecosystems a complex carbon cycle involving 

exchanges of CO2. CH4  and exports of organic carbon into river systems. 

• Conservation of the carbon stored and carbon exchange processes of blanket 

bog peatlands habitat is vital for thc consideration of the greenhouse gas 

balance of the UK. 

At present, certain peatlands may either be sinks or sources of carbon but 

more research is required particularly in the UK. 

Restoration of blanket bog is a relatively recent practice 

Quantification of the carbon dynamics of the UK blanket peat taking into 

account different vegetation composition and management regimes may 

reveal opportunities for the restoration of ecological processes, but whether or 

not peatlands can be turned into carbon sinks by ecological restoration 

remains to be answered. 

• The only way to allow blanket bog ecosystems to adapt to climate change 

may be through the restoration of ecological processes. 
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Chapter 2: Peatland gaseous carbon fluxes and land management: searching for 

a paradigm. 

2.1 Introduction 

Carbon flux research is important for the parameterisation of climate change models, 

understanding ecosystem response to climate change and informing government 

policy (Grace, 2004). This type of research frequently applies a bottom up approach 

where smaller scale research is scaled up to the landscape or higher scales (Grace et 

al., 2001). Meta-analysis has long been used in clinical and social science studies 

especially when informing wider society e.g. (Roberts et al., 2002; Altun & Arici, 

2006) and is gaining in popularity in ecology (Osenberg et al., 1999; Gates, 2002) 

wliere it has recently been incorporated into a number of reviews of carbon dynamics 

(Peterson et al., 1999; Johnson & Curtis, 2001; Guo & Gifford, 2002; Wang & 

Curtis, 2002; Long et al., 2004; van Kooten et al., 2004; Manley et al., 2005; Ogle et 

al., 2005). 

Peatland ecosystems in the boreal region store large amounts of carbon (Clymo et al., 

1998) and the interactions between these ecosystems and the atmosphere are 

important to climate change research. The most significant greenhouse gases in terms 

of ombrotrophic peatlands are CO2 and C144. On the other hand, N 20 appears less 

significant but may be more prevalent in more minerotrophic peatlands (Byrne et al., 

2004). In the past few decades technological and analytical advances such as eddy 

co-variance have allowed the estimation of gaseous fluxes of CO2 and CH 4  from 

ecosystems at fine temporal and large spatial scales (Beverland et al., 1996; Beswick 

et al., 1998). These have allowed informed estimates of the greenhouse dynamics of 

northern peatlands to be made. 

Blanket bog is the most important peatland habitat and the most extensive semi-

natural land habitat in the UK (Lindsay, 1995). The UK holds 10-15% of the total 

world area of this habitat (Lindsay, 1995) but is only approximately 0.16% of the 

global land mass, emphasising the importance of peatlands in the UK. The 

development of blanket bog is a function of past and present environmental factors 

(e.g. climate, geology, geomorphology) and of the nature, intensity and history of 

human impact (Steiner, 1997). Threats to these peatland ecosystems include 
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drainage, agricultural improvement, burning, the effects of large herbivores, peat 

extraction and climate change. Peatland research in the UK has at least a century 

long history. However, UK peatlands have been subjected to several centuries of 

land management practices such as burning and grazing (Shaw et al., 1996). Further, 

the UK's climate is oceanic and therefore climate change and ecosystem responses to 

climate change are likely to be different from those of the north American and 

European continents. Therefore, parameterisation of UK climate change models, 

understanding peatland response to climate change and informing government policy 

is likely to require a UK perspective. In this scenario a meta-analytical methodology 

to the analysis of peatland carbon fluxes and management would seem an ideal 

approach. 

Here I attempt to apply a semi-quantitative approach to review gaseous CO 2  and CM4  

fluxes from UK peatlands in order to: 

summarise previous work, 

provide evidence of how management influences carbon fluxes in UK 

peatlands, and 

indicate areas of study where research may be lacking. 

2.2 Methods 

Published literature on the effects of management on the gaseous carbon fluxes of 

blanket bog was searched using the following online bibliographic databases 

available through the University of Edinburgh Library: 

ISI Web of Knowledge 

JSTOR 

1NGENTA 

ZETOC 

Index to theses in Great Britain and Ireland 

As well as the above databases keywords were also used as parameters for searches 

using the internet search engines Google, Google Scholar and Scirus. A list of 

keywords used (in various combinations) as search parameters for these databases 

are shown below in Table 2.1. 
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Table 2.1: Examples of keywords used in literature review searches. 

blanket bog 

bog 

burn 

burning 

Calluna 

carbon 

carbon dioxide 

cattle 

CH4 

CO2 

deer 

dissolved organic carbon 

DOC moor and moss 

Erica muir 

Eriophorum muirburn 

erosion peat 

fire peatland 

grazing restoration 

heath Scotland 

heather sheep 

hummocks hollows etc. Sphagnum 

mire UK 

Molinia upland 

moor wetland 

In addition to the keywords in Table 2.1 certain authors were used in more specific 

searches, e.g., Clymo. The reference lists within journal papers were also 

investigated to identify any relevant papers. Also, of particular value for the older 

literature was 'Peatland Ecology in the British Isles: a Bibliography' (Field, 1981). 

However, it may be possible that certain references have been overlooked the main 

gaps are likely to be unpublished studies or reports. 

There is a large array of molar and mass units reported in literature but authors do 

not always explicitly state which substance units pertain to, CO2 or CO 2-C and CT-I4  

or CH4-C. Unless authors have stated units, the approach adopted here is to make the 

assumption that when examining fluxes of CO2 units are defined in terms of fluxes of 

CO2 and when examining CT-I4  they are defined in terms of CI-I4.  As many data points 

as possible were included from each study and all are given in the tables in the 

appendix. 
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2.3 Results 

Table 2.2: Number and characteristics of gaseous CO2 and CH4  flux studies 
conducted in the UK from a review of papers (Clymo & Reddaway, 1971, 1972; 
Choularton et al., 1995; Clymo & Pearce, 1995; Fowler et al., 1995a; Fowler et al., 
1995b; Nedwell & Watson, 1995; Beverland et al., 1996; Chapman & Thurlow, 
1996; Fowler et al., 1996; Gallagher et al., 1996; Beswick et al., 1998; Chapman & 
Thurlow, 1998; Daulaut & Clymo, 1998; Hargreaves & Fowler, 1998; Lloyd et al., 
1998; MacDonald et al., 1998; Moncrieff et al., 1998; Hughes et al., 1999; Freeman 
et al., 2002; Gauci et al., 2002; Hargreaves et al., 2003; Beckmann et al., 2004) 
using a keyword searches of bibliographic databases. * Note: does not necessarily 
sum to total number of studies because some papers used multiple methods. N/S - not 
stated. 

Gas No. Studies Country M ethod* 	No. Bog Type Management Winter 

Sites 	 included 

CO2  8 	 7 Scot. 	3 peat cores/lab 	6 	4 blanket 	8 N/S 	3 included 

3 respiration 	I Eng. 	1 conditional 	 2 raised 	 4 not 

only 	 sampling 	 included 

3 static chamber 	 2 not stated 

2 eddy covariance 

CH, 	19 	 17 Scot. 	6 peat core/lab 11 	1 raised 	19 N/S 5 included 

I Eng. 	2 conditional 1 soligenous 8 not 

I Wales 	sampling gully mire included 

6 static chamber 9 blanket 6 not stated 

6 eddy covariance 

4 aircraft 

3 vertical profile 

2 tethered balloon 

2 nocturnal box 

2 flux gradient 

Table 2.2 summarises the work found by this review. A total of eight CO2 studies 

were found but of these three were respiration only studies. There is a bias in terms 

of the countries studied towards Scotland with only that of Clymo and Reddaway 

(1971 & 1972) from England. The methodology employed is fairly evenly split 

between static chambers, peat cores and eddy covariance/conditional sampling. 

These methods have employed a variety of scales from < 1m 2  (chambers, cores) to> 

1 km2  (eddy covariance). Although there are 8 studies, only 6 sites have been 
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sampled, therefore, some sites have been re-sampled and not always by the same 

authors. There are double the number of blanket bog sites (4) compared to raised bog 

(2) sampled. None of the studies stated the type of management of the bog and 

winter only appears to have been sampled in half of the studies. 

A total of nineteen studies were found by this review to have examined fluxes of 

CH4. Seventeen were in Scotland, one in England and one in Wales again reflecting 

country bias. There seem to be a larger array of methods employed and a wide 

variety of scales from < 1 m 2  to almost the entire north of Scotland (aircraft) (Fowler 

et al., 1996; Gallagher et al., 1996; Beswick et al., 1998). The numbers of sites used 

are again less than the number of studies indicating re-use of sites for subsequent 

studies. A much higher of proportion of blanket bog is represented with nine sites, 

with one raised bog and a soligenous gully mire also sampled. As with the CO2 

studies there is no information on site management and winter is also under 

represented with only five of the nineteen studies covering this season. 

Table 2.3 and Figure 2.1 show mean CO 2  fluxes, standard error, mean net flux (light 

and dark) and sites sampled for each of the studies examined by this review. Dark 

fluxes range from 0.06 to 1.389 imol CO2  m 2  s and light fluxes from -5.556 to 

0.704 tmol CO2 m s4 . The reported values give an overall mean net flux of -0.640 

(Se 0.925) tmol CO2  m 2  s 1  appearing to indicate an overall sink for CO2. Figure 2.1 

also shows outlying points in grey all of which come from the study of Beverland et 

al, (1996). Figure 2.1 and Table 2.3 also indicate the paucity of studies reporting CO 2  

fluxes in the light, numbering only three. 

67 



Chapter 2 

Table 2.3 Mean carbon dioxide flux results from published papers examined by this 
report; units are tmol CO2 m 2  s 1 . Note; n in column 7 relates to the number of 
reported values from which a study mean was derived. * Value not reported. 

Study Reference Site Light Mean CO2 SE n Mean Net 

No. Dark flux flux 

1 Beckman et al Ellergower Dark 0.097 0.037 3 0.082 

(2004) Moss 

Light -0.014 0.068 3 

2 Beverland et al Loch More Dark 1.389 1.389 2 -4.167 

(1996) 

Light -5.556 2.778 2 

3 Chapman and Glensaugh Dark 0.195 0.037 2 N/A 

Thurlow (1996) 

4 Clymo and Ellergower Dark 0.060 0.026 2 N/A 

Pearce (1995) Moss 

5 Clymo and Moor 	House Dark 0.119 0.018 3 N/A 

Reddaway Burnt Hill 

(1971 and 1972) 

6 Fowler et a! Loch More Dark 0.611 * 1 -0.389 

(1995a) 

Light -1.00 * 1 

7 Hargreaves et a! Auchencorth Net * * 1 -0.002 

(2003) Moss rate 

8 Lloyd et al Ellergower Dark 0.572 0.453 2 1.276 

(1998) Moss 

Light 0.704 0.557 2 

Mean Scottish sites Net 0.925 5 -0.640 

rate 

i 
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Figure 2.1: Carbon dioxide flux (.tmol CO2 m 2  s) against study number from Table 
11, outlying data points are shown in grey. 

As there are more CH4  studies Table 2.4 and Figure 2.2 summarise the mean CH4 

fluxes (se) by site rather than by each paper examined. What is immediately apparent 

from Table 2.4 is that some sites are more frequently reported than others. Loch 

More has eight published results, four from Ellergower Moss, three from Caithness 

and Strathy Bog and the rest of the sites are reported once. Values range from 0.01 

.tmol CH4  m 2  s 1  at Moor House in north England to 0.131 tmol CH 4  m 2  s- I  at 

Cerrig-yr-Wyn in Wales. Overall mean CH 4  flux 0.029 (Se 0.01) .tmol CH4  m 2  s. 

CH4  fluxes appear to be less prone to outliers except the values reported from Cerrig-

yr-Wyn in Wales, which are high in comparison to the rest. 

rs,j 
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Table 2.4: Site mean methane flux results from published papers examined by this 
report; units are tmo1 CI-L m 2  Note; n in column 4 relates to the number of 
reported values from a site from which the mean is derived. (Clymo & Reddaway, 
1971, 1972; Choularton et al., 1995; Clymo & Pearce, 1995; Fowler et al., 1995a; 
Fowler et al., 1995b; Nedwell & Watson, 1995; Beverland et al., 1996; Chapman & 
Thurlow, 1996; Fowler et al., 1996; Gallagher et al., 1996; Beswick et al., 1998; 
Chapman & Thurlow, 1998; Daulaut & Clymo, 1998; Hargreaves & Fowler, 1998; 
Lloyd et al., 1998; MacDonald et al., 1998; Moncrieff et al., 1998; Hughes et al., 
1999; Freeman et al., 2002; Gauci et al., 2002; Hargreaves et al., 2003; Beckmann et 
al., 2004) 

CH4 site Mean flux SE n 

Bad a Cheo 0.024 * 1 

r' 	- aiinness ( 	(s-, A u.u3'+ 1 u.uui -' . 

Cerrig-yr-Wyn 0.131 * 1 

Ellergower Moss 0.016 0.009 4 

Loch Calium 0.014 * 1 

Loch More 0.013 0.002 8 

Moidach More 0.020 * 1 

Moor House 0.010 * 1 

North Scotland 0.013 * 1 

Potree to Wick 0.014 * 1 

Strathy Bog 0.032 0.023 3 

Mean of all sites 0.029 0.010 11 
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Figure 2.2: Site mean methane flux results from published papers examined by this 
report, units of flux are tmol CI14 m 2  s 1 , error bars represent standard error. Site 
mean methane flux results from published papers examined by this report; units are 
.tmol CIT4  m 2  s 1 . Overall mean is 0.029 iimol CH4 m 2  s 1  (0.01). 

Figure 2.3 examines some of the data from the UK peatlands where both CO 2  and 

CH4  data are available, implemented in the model of Whiting and Chanton (2001). 

This model presents the molar ratio of CH4/CO2  against the molar global warming 

potential of methane (GWPM) over time. The greenhouse compensation point 

represents a line whereby, the emission of CH4 is balanced by the molar uptake of 

CO2, and therefore, any data lying along this line is greenhouse neutral. 
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All Data and 
Loch More Loch More 2 

mean 
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25 	 jBeverlan\4, 
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D 	Cl Li 	500 years 

-0.01 	 0.01 	 0.03 	 0.05 	 0.07 	 0.09 	 0.11 	 0.13 	 0.15 

(CH4 I CO2) emission exchange ratio (mol/mol) 

Figure 2.3: Model relating CH4ICO2  emission ratio to Global Warming Potential 
(GWPM) and time for UK peatlands. Loch More 1 is calculated from the high and 
low values reported by Beverland et al., (1996); Loch More 2 is calculated from 
Fowler et al., (1 995a), the Beverland ratio is calculated from reported annual sink 
source data (Beverland et al., 1996), Loch More mean is the mean of all Loch More 
data, and All data represents the ratio calculated from mean all available values 
found in this review. 

Figure 2.3 suggests that from the available data, when both CH 4  and CO2 are taken 

account of, UK peats appear to be sinks for carbon in terms of global warming 

potential. Only the All data and Loch More 2 are marginal sinks over the 20-year 

scenario. However, due to the limitations of the carbon dioxide data found by this 

review, the results presented in Figure 2.3 can only be regarded as illustrative. 

2.4 Discussion 

2.4.1 Fluxes of CO2 

The evidence given above would appear to indicate that peatlands in the UK may be 

a sink for atmospheric CO2 and the overall mean figure of -0.640 jtmol CO 2  m 2  s- I 

would seem to offer support for this. However, there are very few studies, only 8 in 
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total, only 5 of these recorded light and dark fluxes and only 1 of these includes 

winter. Further, this mean is influenced by some extreme values highlighted by 

Figure 2.1. The extreme values reported by Beverland et al., (1996) arise because the 

authors reported high and low values, and the study was conducted in the height of 

summer when rates of exchange are at their greatest. Removing these and then 

recalculating the mean is unsatisfactory because the mean would then be dominated 

by the Ellergower Moss results of Lloyd et al., (1998) and Beckman et al., (2004). 

This is unsatisfactory because Ellergower is a raised bog not a blanket bog and 

therefore not representative of the UK peatland habitat as a whole, and these studies 

both reported CO2 emissions in illuminated laboratory controlled conditions, 

intuitively this would appear to be unrepresentative. This would leave the reported 

flux of Hargreaves et al., (2003) as the only representative measure for blanket peat 

CO2 flux rates. This, though, is a partly modelled value using climate data from 

Newton Stewart to derive a net flux rate for Auchencorth Moss approximately 130 

km to the south-west not actual climate data from the site. There appears then to be 

no satisfactory mean value for the gaseous flux of CO2 from UK peatlands. 

2.4.2 Fluxes of CH4 

It is apparent that there is more published information on C144  fluxes  from  UK 

peatlands than fluxes of CO2. From the total of nineteen studies from eleven different 

sites all reporting emissions of methane, an overall mean emission is 0.029 .tmol (se 

0.01) CH4  m 2  s 1 . Only the values reported from Cerrig-yr-Wyn in Wales appear to 

be unusually large (Figure 3) but this may be due to the influence of groundwater in 

this slightly different habitat (soligenous mire). However, only six of the nineteen 

explicitly state that winter was included and this would appear to be an under 

represented season. 

2.4.3 UK Peatlands, overall C source or sink? 

Beverland et al., (1996) conclude from their results that the site would represent an 

annual sink of —0.5 Mt C for UK peatlands. Given the limitations of their study and 

the very high error variance, this is unlikely to be a reliable estimate. Hargreaves et 

al., (2003) give a net rate of -0.25 t C ha' yr but this is also unlikely to be reliable 
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because of the use of remote climate data in modelling. We must also state that the 

situation illustrated by Figure 2.3, and the mean values of -0.640 CO2 m 2  s- I  and 

0.029 p,mol CH4  m 2  s 1  obtained from this review, are unlikely to be reliable 

estimates due to the paucity of results, susceptibility to extreme values and the 

seasonal limitations of current research. 

2.4.4 Representation of sampled sites 

The country bias found in that more sites are situated in Scotland than England and 

Wales is expected since this is where the majority of peatlands are found in the UK 

(Lindsay, 1995). However, it is necessary to ask whether the sites where fluxes have 

been reported are representative of the entire blanket bog situation in the UK. Table 

2.3 indicates that nine studies have sampled a total of 6 sites for CO2 and Table 2.4 

nineteen studies from eleven sites or areas for CH 4. Given that the blanket bog covers 

1.9 million ha it is unlikely that these sites are adequate. Also two sites are raised 

rather than a blanket bog (Clymo & Pearce, 1995; Nedwell & Watson, 1995; Lloyd 

et al., 1998; Gauci et al., 2002; Beckmann et al., 2004). Although the vegetation of 

raised and blanket bog has similarities, the hydrologies are different and the 

accumulation of peat (hence carbon fixation) has been much greater historically in 

most raised than in blanket bogs. Even when entire geographical areas are reported 

using aircraft, the duration of these studies is extremely short, 1 day, with a total of 3 

different days sampled in different seasons and years; 24/7/92, 3/6/93, and 29/11/94 

(Fowler et al., 1996; Gallagher et al., 1996; Beswick et al., 1998). Also, the 

assumption that the sampling technique has adequately represented the natural 

variation present within the site is unlikely to have been met. Eddy co-variance is 

claimed to report average emissions representative of areas of km 2, however, it 

should be remembered that the sample size in eddy-covariance studies is usually 1 

tower, in other words there is no replication; there is therefore a reliance on 

technology to deliver accurate results with no estimation of spatial variation or 

precision. Chamber or peat core studies on the other hand usually have much higher 

replication but cover areas of usually less than I m 2. Monolith and peat core studies 

are further complicated by disturbance and the fact that they are usually conducted in 

the laboratory, i.e. not in the climatic condition in which they were found. Therefore, 
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present gaseous carbon flux research on peatlands in the UK cannot be regarded as 

representative at local, regional or national levels. 

2.4.5 Management 

As one of the primary objectives of this review was to examine carbon fluxes in 

relation to management it is disappointing to report that none of the research 

examined during this review stated site management. It is therefore not possible to 

apply a full meta-analysis investigation into the effects of management on gaseous 

carbon flux at present. However, there has been some recent carbon accumulation 

peat core work on a long-term burning and grazing experiment at Hard Hill, on the 

Moor House NNR in the Pennines in England (Garnett, 1998; Garnett et al., 2000). 

The Hard Hill experiment is a split plot design with three burning treatments not 

burnt since 1954, a 10-year burn rotation and a 20-year burn rotation. These are then 

split between grazed and ungrazed plots. This experiment has been running since the 

1954 and although Garnett et al., (2000) did not examine all treatments, they 

conclude from the core data that burning on the 10 year rotation has an adverse effect 

on carbon accumulation, but there was no detectable effect of grazing probably due 

to the low stock rates at Moor House. However, as peat cores integrate peat 

accumulation over longer periods it is difficult to compare this type of data in terms 

of gaseous flux data. 

The reasons for the lack of management details may firstly be because the primary 

goals of the studies were not to examine management. However, given that all the 

peatlands in the UK are managed to varying extent (see Chapter 1) it would seem 

amiss not to include even a cursory description of site management. This would be 

more difficult for the larger scale aircraft studies but should not be a problem for the 

smaller scale methods of chambers, peat cores and eddy covariance. It is only 

possible to speculate on further reasons for this omission but there may also be a 

misguided view that there are peatlands in the UK that are not managed and can be 

described as 'pristine'. Hargreaves et al., (2003) clearly describe Auchencorth Moss 

in the Scottish Borders as an undisturbed peatland; highly unlikely for a site a few 

miles from the capital of Scotland and nestled in an area long populated and 

exploited for agriculture Gauci et al., (2002) describe the raised bog sampled as 
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'pristine' again this is highly unlikely given that raised bogs are some of the most 

exploited peatland habitats in the UK. Although gradations in habitat condition 

undoubtedly exist, the existence of unmanaged peatlands in the UK is questionable. 

Nevertheless, future carbon flux research in the UK should include descriptions of 

management even if this is not the primary goal of the research not only to allow 

adequate evaluation of results but also to allow future reviews to compile results in 

terms of management. 

2.4.6 Climate change: models, ecosystem response and government policy 

As the information available on gaseous carbon flux data in the UK is sparse, it 

would seem prudent to ask what options are available if data are to be incorporated 

into climate change models, or for informing ecosystem response, or even informing 

government policy. Given the evidence presented in this review it would seem the 

options are limited to either extrapolation beyond the bounds of the studies or 

collation of fluxes from other areas such as Canada or Scandinavia. Both 

extrapolation and collation of fluxes from other areas are undesirable for the 

following reasons. 

Extrapolation to arrive at estimates for fluxes of CO2 and or CH 4  from present data 

for UK peatlands requires the acceptance of unrealistic assumptions. As detailed 

above currently spatial and temporal variation are all inadequately represented. This 

extrapolative approach then would require further research. This may be 

compounded by the insistence of some funding bodies and some editorial policy that 

requires research to be novel, this is at odds with attaining the goal of adequate 

representation, since it leads to the proliferation of quasi-replicated studies and 

experiments (Palmer, 2000) instead of the required 'true' replication through space 

and time. 

The use of data from others areas would seem the only sensible option at present but 

is also undesirable because firstly as stated above the UK has an oceanic climate 

unlike the more continental climate of other areas. Further, permafrost studies are not 

applicable in the UK as the UK does not have any permafrost peatlands and the 

responses of these systems are likely to differ because predicted temperature rises are 

believed to be more extreme in more northerly latitudes (IPCC, 1996). Therefore the 
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amplitude of permafrost boundary variation is likely to have more profound 

consequences on CO 2  and CH4  emissions than those from UK peatlands from 

predicted climate scenarios. Most importantly, unlike continental peatlands and other 

northern boreal peatlands UK peatlands have been subjected to deliberate 

management practices for many centuries and consequently UK peatland ecosystems 

are in no way pristine or undisturbed. The peat in the UK may therefore differ not 

only biologically but also physically from those on the continent because of the 

history of these management practices. This may have important consequences. It is 

therefore important that future carbon flux research in the UK addresses management 

issues. 

2.4.7 Peatland carbon flux research: a global context 

The UK may only be approximately 0.16% of the terrestrial biosphere but 10-15% of 

the total world area of blanket bog is located in the UK (Lindsay, 1995). Historically 

the UK has made important contributions to gaseous flux research. Indeed Clymo 

and Reddaway (1971 & 1972) made what may have been the first ever attempt at 

quantifying CH4  fluxes at Moor House. The TIGER programme provided continuity 

through to the late 1990's on peatland research and gaseous carbon fluxes in the UK 

(Oliver et al., 1998). This initial impetus appears to have lapsed in the UK at least for 

peatland ecosystems, although the Scottish Executive are funding an organic soils 

modelling project. In other areas such as the north American and European 

continents peatland gaseous flux research has continued and have helped to elucidate 

the relationships between environmental controls, the impacts of forestry, drainage 

and restoration on gas fluxes in peatlands (Billings et al., 1982; Crill et al., 1992; 

Dise, 1992; Martikainen et al., 1992; Oechel et al., 1993; Whiting & Chanton, 1993; 

Bubier, 1995; Christensen et al., 1996; Waddington et al., 1996; Bridgham et al., 

1999; Christensen et al., 1999; Joabsson et al., 1999; Komulainen et at., 1999; 

Tuittila, 2000; Aurela et al., 2001; Aurela et al., 2002; Blodau, 2002). 

The importance of CH4  fluxes from peatlands to the global carbon budget is well 

evidenced (Gorham, 1991). There are strong links between water table and 

vegetation on C1-L fluxes, C1-L is oxidised in the acrotelm and research examining the 

links between water table and vegetation have shown some peatland types to be sinks 
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and others sources (Bubier et al., 1995; Clymo & Pearce, 1995). Although techniques 

for measuring continuous CO2 have been used for a while, techniques for the 

continuous measurement of CM4  are only just becoming cost effective and more 

widely available. Previously campaign measurements were possible (Beverland et 

al., 1996). Now tunable diode lasers (TDL) are available that make fast automatic 

measurements, so that CI-I4  can be measured by eddy covariance. This kind of 

research will be vital to complement the CO 2  eddy covariance work and elucidate 

management relationships in peatlands. Further Cl-I 4  research is also required to help 

clarify recent controversy showing that plants even when aerobic, emit methane 

(Keppler et at., 2006). However the findings remain controversial and are lacking in 

a biological explanation. What is clear is that there is a continuing and fast 

developing research base in which the UK appears to be at present lagging behind. 

2.5 Conclusions 

Current research does not allow adequate estimation of gaseous carbon fluxes from 

peatland ecosystems in the UK. Also the influence of management of gaseous carbon 

fluxes is lacking. There is an urgent need for further research not only to address this 

but also to address the lack of spatial and temporal evidence. This has implications 

for UK climate change models, UK peatland ecosystem response to climate change 

and UK government policy. Finally research opportunities exist for the elucidation of 

disturbance effects on peatland gaseous fluxes on large scales that have implications 

on global carbon dynamics due to emerging technology. 
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Chapter 3: Blanket Bog Site Characteristics and the Role of Management 

3.1 Introduction 

Determinants of blanket bog vegetation are climatic (Moore & Bellamy, 1974; 

Lindsay et al., 1988; Lindsay, 1995) and anthropogenic. There is some evidence that 

human destruction of forest since the last glaciation led to the formation of blanket 

bog in some areas (Moore & Bellamy, 1974; Jacobi et al., 1976; Moore et al., 1984; 

Talus, 1991; Moore, 1993) and there are demonstrable links between modem 

anthropogenic management and blanket bog vegetation (Chapter 1). There are likely 

to be interactions between management actions and climate. Therefore, if we are to 

understand ecosystem response to climate change or the effect of ecosystems on the 

climate system, then the implications of management actions on that ecosystem need 

to be understood. Further, if we are to mitigate for any negative consequences on the 

climate through management practice resulting in a positive global warming 

potential, then it is only through changes to management that this can be redressed. 

The UKCIP02 report predicts warmer winters and drier summers (Hulme et al., 

2002) if these predictions are realised then these will impact on the vegetation of 

blanket bog. Management practices such as burning and grazing have been practiced 

on UK peatlands for centuries (Chapter 1). Therefore an understanding of the 

impacts of management is vital for predictions of climatic change vegetation 

response. 

3.2 Study aims 

Here data from northern England and the north of Scotland are used to explore how 

management affects the vegetation of blanket bog. Management is investigated 

through vegetation survey of a replicated split plot management experiment and sites 

with gradations in regular management practices. Attempts are made to separate out 

innate site characteristics from those identifiable to management. The implications of 

management on carbon fluxes are explored in Chapter 5. 
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3.3 Methods 

3.3.1 Site Descriptions 

3.3.1a Moor House 
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Figure  3.1: Locations of Hard Hill experimental plots and location of Moor House in 
the UK with peat over 50 cm marked as black (inset adapted from Lindsay 1995). 
Map reproduced by kind permission of Ordnance Survey © Crown Copyright. 

Moor House is situated in the Northern Pennines (Grid Ref NY 757 328), has an area 

of 74 kM2  and ranges in altitude from 290 to 850 in asl. It is a large part of the 

catchment of the River Tees and a National Nature Reserve (NNR), a UNESCO 

Biosphere Reserve and a European Special Protection Area. The site includes 

exposed summits, extensive blanket peatlands, upland grasslands, pastures, hay 

meadows and deciduous woodland. Moor House has history of scientific research 

stretching back to the early 1950's and has a number of long-term experiments 

including investigation of management on blanket bog at Hard Hill. This is a split 

block, burning and grazing experiment established 1954. The Hard Hill site is 

located on blanket peat of approximately 1-2 in depth, mean annual rainfall is 

approximately 1900 mm with mean temperature of 5.1 °C (Heal & Smith, 1978). 
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Figure 3.1 and Table 3.1 detail location, vegetation and management of the Moor 

House and the Hard Hill site. The entire study area was burned prior to the 

construction of the experimental blocks in 1954 and the method used, was and still 

is, similar to traditional moorland burning (Hobbs & Gimingham, 1987). The site is 

arranged as in Figure 3.2 with four blocks two grazing treatments, grazed and 

ungrazed and three burning regimes; 0 burn (burnt in 1954 only) 10 year and 20 year 

rotational burning. Grazing is light with approximately 0.02-0.2 ewes per hectare 

(Smith & Forrest, 1978). 
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Figure 3.2: Details of Hard Hill experimental set up (Adamson & Kahl, 2003). 

3.3.1b Forsinard 

The Forsinard and Dorrery RSPB Nature Reserve (Grid Ref NC 905 465) is located 

in Sutherland, Scotland and covers an area of 112 km 2  and ranges from 44 to 580 m 

above sea level (asl), with most of the deep peatlands between 120 and 438 m as!. 

Field-work was conducted at a total of nine ombrotrophic blanket bog sites between 

Grid Ref NC 83 45 in the west and NC 97 45 in the east (Figure 3.3). Location and 

88 



Chapter 3 

management details of each of these sites are given in Table 3.1. The climate of the 

area is characterised by high and frequent rainfall with annual amounts in the region 

of 1000-1500 mm yr with approximately 160 - 180 wet days yr' (a 24 hour period 

where over 1 mm rainfall is recorded) (Lindsay et al., 1988). Mean daily 

temperatures are in the region of 8 °C. The reserve lies in a bioclimatic region 

considered to be Euoceanic, very humid, southern boreal and lower oroboreal and the 

major area of peat formation in the flow country conforms to this classification 

(Birse. 1971, cited in Lindsay et al., 1988). The reserve forms part of the Peatlands of 

Caithness and Sutherland, an internationally important peatland habitat recognised 

by status as a Ramsar site, Special Protection Area (SPA), candidate Special Area of 

Conservation (SAC) and proposed World Heritage Site. 
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Figure 3.3: Locations of sampling sites in relation to Forsinard Sutherland and 
location of Forsinard in the UK with peat over 50 cm marked as black (inset adapted 
from Lindsay 1995). Map reproduced by kind permission of Ordnance Survey © 
Crown Copyright. 
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Table 3.1: Details of Hard Hill Site at Moor House NNR and the 11 sampling sites 
located within the Forsinard Reserve. Determination of National Vegetation 
Communities (NVC) (Rodwell, 1991) was aided by the use of ComKey computer 
software (Legg, unpublished). All NVC communities constitute Biodiversity Action 
Plan (BAP) priority habitats under present JNCC guidelines. Low Med High Deer 
inferred from an RSPB survey of animal footprints see Appendix. *NVC  of 
vegetation derived from Calluneto - Eriophoretum (Eddy et al., 1969) 

Site 	Grid Ref Alt 	NVC Community/sub-community General management and 
(m a.s.l.) 	 site characteristics 

Hard Hill: 	 *M 19b Calluna vulgaris Eriophorum Nature conservation, 
Block A 	NY 743330 600-630 vaginatum blanket raised 	experimental plots with 
Block B 	NY 740330 	mire/Empetrum nigrum sub 	grazing and burning 
Block C 	NY 736330 	community 	 treatments. 
Block 	NY 738331 
Nam Breac NC 831 451 190 	M I 7b Scirpus cespitosus Eriophorum Nature conservation, high 

vaginaturn mire/Cladonia sub 	deer. Bare peat evident 
community 	 throughout site 

Sletill 	NC 933 456 185 	M 17a Scirpus cespitosus Eriophorum Nature conservation, low 
vaginatum mire/Drosera-Sphagnum deer. Relatively intact site 
sub community 

Leir 	NC 958 461 195 	M17a Scirpus cespitosus Eriophorum Nature conservation, low 
vaginatum mire/Drosera-Sphagnum deer. Relatively intact site 
sub community 	 though some bare peat 

present 
Maol Donn NC 975 454 165 	M 18a Erica tetralix Sphagnum 	Nature conservation, low 

papillosum raised and blanket 	deer. Relatively intact site 
mire/Sphagnum magellanicum - 
Andromeda polifolia sub community 

Fire Site 	NC 881 501 105 	MI 5 Scirpus cespitosus Erica tetralix Not within reserve 
wet heath 	 boundary, open for sheep 

and deer stalking. Fire burnt 
early 2004, burnt and 
unburnt areas within the 
same site 

Site L 	NC 861 467 180 	M 17a Scirpus cespitosus Eriophorum Nature conservation, low 
vaginatum mire/Drosera rotundifolia deer. Bare peat evident 
Sphagnum spp. sub community 	throughout site 

Site M 	NC 856 444 220 	Ml 7a Scirpus cespitosus Eriophorum Nature conservation, high 
vaginatum mire/Drosera rotundifolia deer. Bare peat evident 
Sphagnum spp. sub community 	throughout site 

Site N 	NC 843 447 180 	Ml 7a Scirpus cespitosus Eriophorum Nature conservation, high 
vaginatum mire/Drosera rotundifolia deer. Bare peat evident 
Sphagnum spp. sub community 	throughout site 

Cross Lochs NC 864 465 180 	Ml 7a Scirpus cespitosus Eriophorum Nature conservation. med 
Drains 	 vaginatum mire/Drosera-Sphagnum deer. Drained site, blocked 

sub community 	 and unblocked drains 
sampled. Drains cut in the 
1970's and 80's and blocked 
1/08/96 

ME 
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Table 3.2: Number of relevés per site and dates of vegetation sampling from 
Forsinard sites 2004-2005. 

Main Site 	 Site No. vegetation relevés Vegetation sampling dates 

Moor House 	Hard Hill 3 per plot May 2002 

18 per block 

Forsmard Reserve 	Nam Breac 20 July - Aug 2004 

Sletill 20 July - Aug 2004 

Leir 20 July — Aug 2004 

Maol Donn 20 July - Aug 2004 

Fire 15 burnt Aug 2004 

15 unburnt 

Site L 20 July - Aug 2004 

Site M 20 July - Aug 2004 

Site N 20 July - Aug 2004 

Cross Lochs Drains 15 July 2005 

3.3.2 Vegetation Characterisation 

Field-work began at Moor House in May 2002 and at Forsinard in July 2004, details 

of sampling dates are given in Table 3.2. 

3.3.2a Moor House 

In each of the split plots three random, 0.32 m 2  relevés (same area as gas flux 

chambers, see Chapter 4) were sampled. The visual percentage cover of all species 

including vascular plants, bryophytes, macro-lichens and bare peat was recorded. 

3.3.2b Forsinard 

Vegetation sampling began in July 2004 and was initially completed in August 2004 

except for the Cross Lochs Drain site, which was sampled in June of 2005. At each 

site the vegetation composition and structure was recorded in the following way: 

• The visual percentage cover of all species including vascular plants, 

bryophytes, macro-lichens and bare peat was recorded from relevés as above. 

• Deer, sheep and hare, faecal count by species within relevés. 

• Deer and sheep footprint count by species within relevés. 
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• Vegetation canopy height and structure, using the percent obscured stick 

method, which is as follows: A stick marked with bands of 2 cm was placed 

at nine points in the relevé in a 3 x 3 grid. The height of the moss layer and 

any other species touching the stick and within 5 cm of the stick, are recorded 

with the stick held vertically at arms length. The visual percentage of the 

stick that is obscured by the vegetation in each 2 cm band is then recorded. 

• Site surface (< 10 cm) pH was measured with 15 replicates per site. 

• The Bush recording soil penetrometer (Campbell & O'Sullivan, 1991) was 

used for pressure readings at every 1 cm to a depth of 50 cm, with 50 

insertions per site except at the Cross Lochs Drains. Penetrometer readings at 

the Cross Lochs Drains were taken from five 10 in transects from unblocked 

and blocked drains insertions were at 0.5m and every metre from 1 —10 m. 

3.3.3 Statistical Analysis 

Vegetation data were analysed using Detrended Correspondence Analysis (DCA) 

and vegetation and environmental variables with Canonical Correspondence 

Analysis (CCA) and Redundancy Analysis (RDA). DCA, CCA and RDA were 

implemented in Canoco 4.5 software. The percent obscured stick method data were 

analysed to give indices of shrub biomass, canopy height, density and heterogeneity 

(G. M. Davies unpublished) using PObscured computer software (Legg, 

unpublished). PObscured calculates the logit regression of the percentage obscured in 

each band against height, means and standard deviations are then computed for each 

quadrat from the nine stick observations. The calculated indices are as follows (Legg, 

unpublished): 

10% height and 50% height. The height on the stick at which 10% and 50% 

of the particular band is obscured. These data are obtained by fitting the 

logistic curve to the data and interpolating (or extrapolating) from the 

smoothed curve. These data should be more robust measures of canopy 

height (though 50% can be negative for very thin crowns) than simple height 

measurements as these are more variable and prone to extreme values. 

• Volume. Volume is the area between the fitted curve and zero height. It is 

called 'volume' because it is derived from a height times an area (% 
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obscured). It is used as an index of biomass and may be expected to give 

good correlation although this has yet to be confirmed in vegetation other 

than Callunetum (G. M. Davies unpublished). 

Intercept and Slope: These are the intercept and slope of the logistic 

regression of percent obscured on height. The intercept is the logit of percent 

obscured extrapolated to the base of the stick reflecting light penetration to 

ground level, and the slope is the increase in logit (percent obscured) per cm 

increase in height reflecting canopy density. 

3.3.4 Community comparison 

Comparison of vegetation data with the NyC and the communities of the Moor 

House reserve (Eddy et al., 1969) was done using ComKey (Legg, Unpublished). 

The communities of Eddy et al., (1969) included in this analysis are the Calluneto-

Eriophoretum Typical facies, Calluneto-Eriophoretum Sphagnum recurvum facies, 

Calluneto-Eriophoretum Empetrum nigrum facies, Calluneto-Eriophoretum Burnt 

facies, Trichophoretum-Eriophoretum typical facies and Eriophoretum high level 

facies. The Calluneto-Eriophoretum community is considered synonymous with M19 

Calluna vulgaris-Eriophorum vaginatum blanket mire, the Trichophoretum-

Eriophoretum typical facies with M18 Erica tetralix Sphagnum papillosum raised 

and blanket mire and Eriophoretum high level facies synonymous with the M20 

Eriophorum vaginatum blanket and raised mire, NVC communities (Rodwell, 1991). 

Eddy et al., (1969) originally mapped the Hard Hill site as the Calluneto-

Eriophoretum burnt facies. 

Two approaches are used, firstly simple classification of treatments to a community 

by reference to Rodwell (1991) and using the Czekanowski similarity coefficient, 

commonly used by vegetation consultants using e.g. MAVIS (Smart, 2000). 

Secondly by deriving a Presence-Weighted Similarity (PWS) and Sorensen 

Similarity coefficients for relevés to data from Eddy et al., (1969) and tabulated NVC 

samples and then analysed using Principal Components Analysis (PCA). 

Communities selected for use in PCA were those that matched with a similarity of 

greater than 50 using PWS. The Czekanowski, PWS and Sorensen coefficients are 

defined as (Legg, unpublished): 
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Czekanowski = 2 bm / (S+C) 

where: 

bm = minimum of the abundance in the sample and community 

S = number of species in sample 

C = number of species in community 

PWS = (sum (b p) / 5 * S) * 100 

where: 

b = community presence values of species occurring in both relevé and 

community, and S = number of species in relevé. 

Sorensen = 2 B / (S+C) 

where: 

S = number of species in sample 

C = number of species in community 

B = number of species that occur in both sample and community 

Czekanowski is a symmetrical coefficient that assumes that the sample and 

the type community are equivalent in every way. Thus the match will tend to 

be biased towards species-poor type communities that have a similar total 

number of species to the sample. Similarly, it is not appropriate to compare 

cover-abundance scores of the sample with presence classes of the type and is 

not therefore suitable for single relevé data. 

PWS is the sum of NYC community table frequency values (1-5) for only 

species that occur in both the relevé and the community, divided by 5 

multiplied by the number of species in the relevé, multiplied by 100. This 

will give 100 for community containing all S species with presence class 5, or 

20 for all species present with presence class 1. The score is thus heavily 

weighted towards the most frequent species. 
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Sorensen is a symmetrical coefficient that assumes that the sample and the 

type community are equivalent in every way. Thus the match will tend to be 

biased towards species-poor type communities that have a similar total 

number of species to the sample. 

All other summary statistics and graphical plots were generated using Minitab 13 and 

Microsoft Excel 2000 software. 
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3.4 Results 

3.4.1 Moor House 

Table 3.3 shows the species recorded from a total of seventy two relevds in the 

vegetation survey of Hard Hill, number of relevés for each species in each treatment 

and species codes for ordination diagrams. There are a total of twenty-five species 

that include nine vascular plants, nine mosses, three liverworts and four lichens. All 

species are common to mire and heathland habitats, none restricted or rare in the UK. 

Table 3.3: Species, Species code, and total number of relevés in each treatment for 
each species recorded from a total of 72 relevés sampled from Hard Hill 
experimental site, Moor House NNR. Species are arranged in order of abundance in 
terms of the total number of relevs they are present in. 

Species 
Species code Grazed Ungrazed 0 burn 10 yr 20 yr 
Ca/luna vulgaris (L.) Hull Call vul 36 35 24 23 24 
Eriophorum vaginatum L. Erio vag 34 35 24 24 21 
Eriophorum angustjfolium Honck. Erio ang 30 23 11 18 24 
Dicranum scoparium Hedw. Dic scop 24 19 9 16 18 
Rubus chamaemorus L. Rub cha 21 18 15 14 10 
Hypnumjutlandicum Holmen & E.Warncke Hyp jut 14 12 21 2 3 
Sphagnum capil1folium  (Ehrh.) Hedw. Sph cap 10 13 5 13 5 
Calypogeia muelleriana (Schifth.) Mull.Frib. Caly mue 15 7 - 12 10 
Empetrum nigrum subsp. nigrum L. Emp fig 7 13 9 7 4 
Polytrichum commune Hedw. Poly corn 8 11 - 12 7 
Plagiothecium undulatum (Hedw.) Bruch, 
Schimp. & W.GUmbel Flag und 8 11 11 2 6 
Lophocolea bidentata (L.) Dumort. Loph bid 7 11 3 6 9 
Cladoniaportentosa (Dufour) Coem. Clad imp 5 6 8 2 1 
Pleurozium schreberii (Brid.) Mitt. Pleu sch 5 4 8 - 
Aulacomnium palustre (Hedw.) Schwägr. Aula pal - 6 3 2 1 
My/ia taylorii (Hook.) Gray Myl tay 3 3 0 3 3 
Vaccinium vitis-idaea L. Vacc vit 2 3 2 3 - 
Cladonia chiorophea (Flörke ex Sommerf.) 
Sprengel. Clad chl 1 4 2 2 1 
Vaccinium myrtillus L. Vacc myr 2 3 1 4 - 
Cladonia sp. Clad sp 1 2 1 1 1 
Dryopteris dilatata (HofiEh.) A. Gray Dry dil 1 1 - - 2 
Rhytidideiphus loreus (Hedw.) Wamst. Rhy br - 2 2 - - 
Hypogymniaphysoides (L.) Nyl. Hyp phy 1 1 1 1 - 
Sphagnum fallax (H.Klinggr.) H.Klinggr. Sph rec 1 0 - I - 
Trichophorum cespitosum (L.) Hartm. Trich ces 1 0 - - 
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Figure 3.4 and 3.5 show sample and species plots of a DCA using the Hard Hill 

vegetation data. The longest gradient length is 2.8 and axes 1 and 2 account for 17.2 

% and 10.9 % of the variation in the vegetation data, where as the 3rd and 4th axes 

account for 8 and 6.7 % respectively. Sample 36 is an outlier due to the abundance of 

T cespitosum removing this sample gives gradient length of the first axis is for 3.1 

and axes 1 and 2 account for 16 % and 10.6% of the variation in the vegetation data 

and the 3rd and 4th axes account for 6.9 and 5.1 % respectively. The gradient 

lengths are relatively short and therefore linear techniques such as RDA are 

appropriate (Lep§ & 8milauer, 2003). 
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Figure 3.4: Axes 1 and 2 of a DCA of species percentage cover data showing 
samples from Hard Hill. Plot codes are as in Table 3.3. Axes 1 and 2 accounted for 
17.2 % and 10.9 % respectively of total variation in vegetation data. 
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Figure 3.5: Axes 1 and 2 of a DCA of species percentage cover data showing species 
from Hard Hill. Plot codes are as in Table 3.3. Axes 1 and 2 accounted for 17.2 % 
and 10.9 % respectively of total variation in vegetation data. 

Figure 3.6 shows a species ordination diagram of an RDA of the seventy two relevds 

from the Hard Hill data, only the fifteen most abundant species are depicted. Axes 1 

and 2 accounted for 21.4 % and 5.6 % respectively of total variation in vegetation 

data and 77.2 % and 20% respectively of species-environment relationship. 

Restricted Monte Carlo permutation test according to the split plot structure of the 

experiment revealed the first axis to be highly significant (p<0.002). Forwards 

selection of the treatments revealed all treatments to be significant (p<0.05) 

predictors of species composition. C. vulgaris, H. jutlandicum, C. portentosa, P. 

schreberii, P. undulatum and R. loreus all appear to increase towards the 0 burn 

treatment. P. commune, S. capillfolium, V. vitis-idaea and V. myrtillus all increase 

towards 10 year rotational burn. E. angus4folium and D. scoparium towards 20 year 

burn whereas C. muelleriana seems to have some preference for burning treatments 
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but intermediate in terms of 10 and 20 year burning treatments. E. nigrum subsp. 

nigrum and A. pa/us/re appear to have predilection for ungrazed plots. 

Here there is clear evidence that the abundance of species show preference for 

certain management treatments. This therefore substantiates the hypothesis that 

anthropogenic management affects the vegetation of blanket bog. 
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Figure 3.6: Axes 1 and 2 of an RDA of species percentage cover data against site 
treatment from 1-lard Hill Experimental grazing and burning site. Plot codes are as in 
Table 3.3. Treatments are coded as nominal variables: grazed and ungrazed; 0, 10 yr 
and 20 yr burn. Axes 1 and 2 accounted for 21.4% and 5.6 % respectively of total 
variation in vegetation data and 77.2 % and 20% respectively of species-
environment relationship. Restricted Monte Carlo permutations show axis 1 to be 
significant p <0.002. 

Community comparison 

Table 3.4 classifies relevé data from experimental treatments to the NVC and the 

communities of Eddy et al.. (1969) by reference to Rodwell (1991) and 

Czekanowski. Both 0 burn and 10 year rotational burn are classified as the sub 
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community, M 1 9a Calluna vulgaris-Eriophorum vaginatum blanket mire: Erica 

ieiralzx sub community. The 20 year rotational burn is classified as M20 Eriophorum 

vaginatum blanket and raised mire. However no distinction is made between grazing 

treatments. The Czekanowski similarity measure indicates that all treatments relevés 

are closer to the burnt community of Eddy et al., (1969) than of any of the other 

types (Typical, Sphagnum recurvum, or Empetrum nigrum communities) of their 

Calluneto - Eriophoretum or of the Trichophoretum or Eriophoretum. 

Table 3.4: Community comparison of relevés data in particular experimental 
treatments with NVC and the Calluneto-Eriophoretum communities identified by 
Eddy et al., (1969) using the Czekanowski coefficient and Rodwell (1991). 
Community comparisons were aided by the use of ComKey computer software 
(Legg. Unpublished). 

Treat. Grazed Ungrazed Eddy et al., (1969) 

0 	M 19 	M19a 	burnt 

10 	M19a 	M19a 	burnt 

20 	M20 	M20 	burnt 

The NVC communities with a PWS similarity greater than 50 to the Hard Hill 

samples and Eddy et al., (1969) tabulated samples are; M17 Scirpus cespilosus 

Eriophorum vaginatum blanket mire, M18 Erica letralix Sphagnum papillosum 

raised and blanket mire, M19 Calluna vulgaris-Eriophorum vaginatum blanket mire, 

M20 Eriophorum vaginatum blanket and raised mire and H12 Calluna vulgaris 

Vaccinium myrtillus heath (Rodwell. 1991). 

Table 3.5 show the percentage similarity and the number of species recorded in each 

community. There is not only much overlap between Hard Hill and Eddy et al., 

(1969) samples but also between NVC communities up to 86 percent of M20 species 

can be found in the M19 community. 

Figure 3.7 shows the relationships between these NVC communities and samples 

from the Hard Hill experiment and communities from Eddy et al (1969) using the 

PWS (Figure 3.7, a and b) and Sorensen coefficient (Figure 3.7, c and d). Species 

richness and dataset type were entered as co-variables to compare the data on a 

species composition basis only. The correlation of NVC with axes I and 2 would 

seem to imply that some relevés give high similarity to the selected NVC and others 
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give low similarity using both coefficients. However the results appear somewhat 

conflicting. Firstly the positions of samples and treatment centroids appear to be 

opposing since the PWS gives the Hard Hill samples closer similarity to NVC than 

the Eddy et al., (1969) samples whereas the Sorensen gives closer similarity to the 

Eddy et al., (1969) samples with NyC. Sample similarity measures to H12 and M20 

communities appears to be closer with Sorensen than PWS and these are shown to be 

closely related in Figure 3.7 (d). 

The proximity of Hard Hill centroids in both analyses suggests that there is some 

separation of treatments, although the PWS analysis seems to separate centroids 

more clearly and separation along axis 2 suggests some affinity to 1-112. This may 

highlight the greater abundance of C'alluna in some relevés particularly associated 

with the 0 burn treatment. The Sorensen coefficient separates treatments along axis I 

which indicates closer affinity to M19 than the other NyC. Therefore, Hard Hill 

management treatments appeared to be separated more on their similarity to the M19 

community but they are still close together. 

Thus it would appear that blanket bog vegetation subjected to different management 

cannot be distinguished definitively by reference to the NyC. 

101 



Chapter 3 

Table 3.5: Percentage species match expressed as a percentage of the species found 
in community row with community column and number of specie in each 
community. Community and treatment codes areas NVC and as follows: 0 burn = 
Hard Hill not burnt since 1954, 10 burn = Hard Hill 10-yr rotational burn 20 burn = 
Hard Hill 20yr rotational burn. Type = Cal luneto-Eriophoretum Typical facies, S 
recurv = Cal luneto-Eriophoretum Sphagnum recurvum facies, E nig = Calluneto-
Eriophoretum Empeirum nigrum facies, E burn = Cal luneto-Eriophoretum Burnt 
facies, E Trich = Trichophoretum-Eriophoretum typical facies and E Erio = 
Eriophoretum high level facies. 

Comm. 
0 

H12 M17 M 1 M19 M20 burn 
10 

burn 
20 

burn Type Eburn EnigSrecur 
E 

Trich 
E 	No. 

Erlo 	spp. 
H12 100 69 

M17 43 100 79 

M 1 46 78 100 54 

M19 46 62 54 100 84 

M20 58 65 60 86 100 43 

0 burn 74 74 84 84 68 100 19 

10 burn 67 67 81 86 71 81 100 21 

20 burn 65 70 75 80 80 75 85 100 20 

Type 42 56 59 78 48 25 27 23 100 64 

Eburn 50 62 62 79 65 41 41 41 94 100 34 

Enig 52 60 58 81 60 33 31 29 100 58 100 48 

S recur 56 67 67 92 67 36 39 36 100 69 81 100 36 

ETrich 47 70 79 83 51 30 30 26 79 45 58 57 	100 53 
EErio 61 73 61 82 79 36 36 33 82 45 82 55 	64 100 	33 
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Figure 3.7: Axes 1 and 2 of PCA plots of Hard Hill samples and Eddy et al (1969) 
Cal luneto-Eriophoretum communities and contribution of NVC communities to the 
PCA ordination subspace, using Presence Weighted Similarity (a) and (b) and 
Sorensen coefficient (c) and (d), to NVC communities M17. M18. M19, M20 and 
H12. Number of species in a sample and dataset type were used as co-variables to 
remove effect of species richness and differences in data collection. Codes for Eddy 
et al., (1969) data are: Cal luneto-Eriophoretum Empetrum nigrum facies = E fig. 
Calluneto-Eriophoretum Sphagnum recurvum facies = S recurv. = Calluneto-
Eriophoretum Burnt facies = E burn. Cal luneto-Eriophoretum Typical facies = Type. 
Trichophoretum typical facies = E Trich and Eriophoretum high level facies = E 
Erio. Treatments and communities are plotted as centroids of samples in particular 
treatments or community. Axes I and 2 accounted for 76.3 % and 14.9 % 
respectively of total variation in data of PWS plots and 90.9 % and 6.3 % 
respectively of Sorensen plots. Community and treatment codes are as Table 3.4. 
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3.4.2 Forsinard 
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Figure 3.9: Boxplots of pH by site from the Forsinard reserve (n = 15). Red dots 
indicate mean and * represents outliers. 

Figure 3.9 show boxplots of pH by site from the Forsinard reserve. All sites have a 

low mean pt-I, below 4.5; with Maol Donn and the two fire sites having the highest 

mean values. However, both the mean values for the fire sites appear to be affected 

by outlying points with a few samples having a relatively higher pH, it is possible 

these samples may have been affected by ash. The lowest mean pH appears to be 

associated with the Drain site, Sletill and Nam Breac. 
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Figure 3.10: Mean (+7- SE) penetrometer readings (k Pa) every cm for 7 sites in the Forsinard reserve (n = 50). 



Blocked Drain 
0.5 iii 	I in 	2 in 

	
3 rn 	4 in 	5 in 	6 m 	7 ill 	 8 m 	9 m 	10 rn 

3m 

V 

140 	 loo 	 21~ 

Unblocked Drain 
0.5m 	I 	2m 

Penetrometer reading (k Pa) 

4m 	5m 	6rn  

sm 

7m 	8m 	9m 	10  

V 

I 
Penetrometer reading (k Pa) 

Figure 3.11: Mean (+I SE) penetrometer readings (k Pa) per cm depth for 10, distance from drain. transects from the Cross Lochs Drain 	- 

site (n = 5). 



Chapter 3 

0- 

5- 

10- 

15- 
(.) 

I 	
20- 

 25- 

 30- 

 35- 

40- 

45- 

50- 

0 400 800 1200 16000 400 800 1200 1600 

Penetrometer reading (k Pa) 

Figure 3.12: Mean (+1- SE) penetrometer readings (k Pa) every cm depth for the 
unburnt and burnt sites in the Forsinard reserve (n = 50). 

Figure 3.10 to 3.12 show means of penetrometer readings per cm depth (+1- SE) for 

each of the nine sites in the Forsinard reserve. Figure 3.10 clearly shows that Maol 

Donn has the lowest readings of any of the sites indicating that this site has much 

softer peat. Leir appears to have the highest readings of these seven sites and Nam 

Breac and site L (and perhaps also M and N) have higher readings nearer the surface. 

Although there is some apparent variation in penetrometer readings, overall there 

appears to be little difference between the blocked and unblocked drains when 

comparing distance from drain (Figure 3 .11) also, readings appear within the ranges 

of the other sites in Figure 3.10. However there may be some differences near the 

surface, as on balance the blocked drain readings appear to be slightly lower until 
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about 5 cm. This may indicate some subsidence of the peat in the unblocked drain 

but this is subjective. There appears to be no differences between the two fire 

treatments but the readings do reach almost double the readings from the other sites 

(Figure 3.12). This may be because this site has shallower peat and may be the 

influence of the denser mineral soil beneath the peat; however, even readings at 

shallower depth are much greater than any of the other sites. Therefore, this site 

appears to have much denser peat. 

Table 3.6 shows the number of footprints and faeces found in relevés for each of the 

sites sampled at Forsinard. Footprints appear to be more prevalent at Nam Breac Site 

M Site N and Site L and Sletill. Sheep and deer faeces were detected in the Fire 

Unburnt site though as this is very close to the burnt site this can be regarded as 

representative of both. Hare appear in Nam Breac and Leir, with evidence of grouse 

also at Nam Breac. 

Table 3.7 shows the species recorded from the vegetation survey of the nine sites in 

the Forsinard reserve from a total of 185 relevés. Presence of species at particular 

sites and species codes for ordination diagrams are also included; species are 

arranges in order of abundance in terms of the number of relevés they are present in. 

There are a total of forty-two species (plus two others: undifferentiated algae and 

bare peat) that include nineteen vascular plants, fourteen mosses, four liverworts and 

five lichens. Of these only Betula nana L. is regarded as a nationally scarce species 

(a scarce species occurs in 16-100, 10 km 2  in the UK) and is a Local Biodiversity 

Action Plan (LBAP) priority species (Russell et al., 2004). 
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Table 3.6: The species faecal count and number of footprints found in 72 relevés for 
each of the sites sampled at Forsinard reserve. 

Footprints 	 Faecal counts 

Red Deer 	Red Deer 	Sheep 	Hare 	 Red Grouse 

Cervus 	C. elaphus L. 	Ovis aries L. Lepus timidus L. Lagopus 

Site 	 elaphusL. 	 lagopusL. 

Nam Breac 17 	 - 	 - 	 16 	 1 

Sletill 2 	 - 	 - 	 - 	 - 

Leir - 	 - 	 - 	 17 	 - 

Mao! Donn - 	 - 	 - 	 - 	 - 

Fire Burnt - 	 - 	 - 	 - 	 - 

Fire Unburnt - 	 5 	 6 	 - 	 - 

Site  4 	 - 	 - 	 - 	 - 

Site  18 	 - 	 - 	 - 	 - 

Site  9 	 - 	 - 	 - 	 - 

Bottom Drain - 	 - 	 - 	 - 	 - 

Middle Drain - 	 - 	 - 	 - 	 - 

Top Drain - 	 - 	 - 	 - 	 - 

WU 



Species Species Nam Sletill Leir Maol Fire Fire Site Site Site Drain Drain Drain Drain No. 
code Breac Donn Burnt Unburnt L M N Centre Unblocked Blocked pooled relevés 

Trichophorum cespitosum Tri cesp P P P P P P P P P P P P P 309 
(L.) Hartm. 
Erica tetralix L. Eric tet P P P P P P P P P P P p p 307 
Eriophorum angustfo1ium Erio ang P p P P P P P P P - p p P 259 
Honck. 
Calluna vulgaris (L.) Hull Cal vulg P P P p - P P P p P P p p 257 
Narthecium ossfragum Nar ossi p p P P P P p p p P P p p 220 
(L.) Huds. 
Caldoniaportentosa Clad P P P P P P P P P P P P P 200 
(Dufour) Coem. port 
Bare peat Bare P P p p p - P P P - P - P 187 

peat 
Sphagnum cuspidatum Spha P p P P - - P P P - - - - 176 
Ehrh. ex Hoffm. cusp 
Racomitrium lanuginosum Rac P P P p - P P P p - P P P 160 
(Hedw.) Brid. lanug 
Sphagnum capi11folium Spha - P P P P P P p p p p P P 141 
(Ehrh.) Hedw. capi 
Myrica gale L. Myr P - - - P P P - P P P P P 116 

gale 
Odontoschisma sphagnii Odon P P P P - - p p P - P P P 116 
(Dicks.) Dumort. spha 
Cladonia arbuscula Clad arb P p P P - - P P P - - - - 114 
(Walir.) Rabench 
Drosera anglica Huds. Dros P P P P - - P P - - P P P 108 

ang 
Sphagnum papillosum Spha P p p P - P P P - P - - P 59 
Lindb. papi 
Molinea caerulea (L.) Moli - - - - P P - - - - - P P 53 
Moench. caer 

14 1 

I 

Table 3.7: Species, Species code, site presence and total number of relevés for each species recorded from total of 185 relevés from Forsinard and 

Dorrery Nature Reserve. Species are arranged in order of abundance of the total number of relevés they are present in. P = presence. 



Table 3.7 continued 

Species Species Nam Sletill Left Mao! Fire Fire Site Site Site 	Drain Drain Drain Drain No. 
code Breac Dorm Burnt Unburnt L M N 	Centre Unblocked Blocked pooled relevës 

Drosera rotundfo/ia L. Dros P P - P - P P P - 	P P - P 49 
rotun 

Carex panicea L. Car pani p p P - - - P P P 	- - - - 48 
Hypnumjutlandicum Hypn P P P P P P P p P 	- p p P 47 
Holmen & E.Warncke juti 
Pleurozium schreberii Pleu - - - - P P - - - 	- - - - 44 
(Brid.) Mitt. sche 
Huperzia se/ago (L.) Hup P P - P - - P P - 	- - - - 30 
Bernh. ex Schrank & C. sela 
Mart. 
Po/yga/a serpy1lfo/ia Hose Poly - - - - P P - - - 	- - - - 28 

serp 
- 	Sphagnum magel/anicum Spha - P - P - - - - - 	- - - - 20 

Brid. mage 
Potenti/la erecta (L.) Pote - - - - P - - - - 	- - - - 12 
Raeusch. erec 
C/adonia uncialis (L.) Clad - - - - - - - - - 	- p p p 7 
Weber unci 
Campy/opus atrovirens De Camp - - P - - - - P - 	- - - - 6 
Not. atro 
Cladonia ch/orophea Clad P - - - - - - P P 	- - - - 6 
(Flörke ex Sommerf.) chlor 
Sprengel. 
Betu/a nana L. Betu - P - - - - - - - 	- - - - 6 

nan 
Campy/opus flexuosus Campy - - - - - - P - - 	- - - - 4 
(Hedw.) Brid. para 
Juncus squarrosus L. Junc - - P - - - - - - 	- - - - 4 

squa 
Scieropodium purum Pseu - - - - P - - - - 	- - - - 4 
(Hedw.) Limpr. puru 
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Table 3.7 continued 

Species Species 
code 

Nam 	Sletill 	Leir 	Maol 	Fire 	Fire 	Site 	Site 	Site 	Drain 
Breac 	 Donn 	Burnt 	Unburnt 	L 	M 	N 	Centre 

Drain 	Drain 
Unblocked 	Blocked 

Drain 
pooled 

No. 
relevës 

Algae Algae - 	- 	- 	- 	- 	- 	- 	- 	- 	- P 	- p 3 
Lepidozia reptans (L.) Lepi - 	- 	- 	P 	- 	- 	- 	- 	- 	- - 	- - 2 
Dumort. rept 
Hypogymniaphysoides (L.) Hypo - 	P 	- 	- 	- 	- 	- 	- 	- 	- - 	- - 2 
Nyl. phys 
Arctostaphyllus uva-ursi Arct - 	P 	- 	- 	- 	- 	- 	- 	- 	- - 	- - 2 
(L.) Spreng. uva 
Sphagnum palustre L. Spha - 	- 	- 	P 	- 	- 	- 	- 	- 	- - 	- - 2 

palu 
Daclylorhiza maculata (L) Dact - 	- 	- 	- 	P 	- 	- 	- 	- 	- - 	- - 2 
Soó macu 
Melampyrum pratense L. Mela - 	- 	- 	- 	P 	- 	- 	- 	- 	- - 	- - 2 

prate 
Hylocomium splendens Hylo - 	- 	- 	- 	P 	- 	- 	- 	- 	- - 	- - 2 
(Hedw.) Bruch, Schimp. & splen 
W.Gtlmbel 
Rhytididelphus loreus Rhyt - 	- 	- 	- 	P 	- 	- 	- 	- 	- - 	- - 2 
(Hedw.) Warnst. lore 
Eriophorum vaginatum L. Erio - 	- 	- 	- 	- 	- 	- 	P 	- 	- - 	- - 2 

vagi 
Sphagnum tenellum (Brid.) Spha - 	- 	- 	- 	- 	- 	- 	- 	- 	- P 	P P 2 
Bory tene 
Cladonia bellid?flora Clad - 	- 	- 	- 	- 	- 	- 	- 	P 	- - 	- - 2 
(Ach.) Schaerer bell 
Diplophylum albicans (L.) Diplo - 	- 	- 	- 	- 	- 	- 	- 	- 	- P 	- P 1 
Dumort. albi 
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Figures 3.13 - 3.19 show species and sample ordination diagrams from the Forsinard 

vegetation data, no Monte Carlo permutation tests were performed on these due to 

uneven sample sizes and pseudoreplication. 
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Figure 3.13: Axes 1 and 2 of DCA of samples from Forsinard vegetation relevés. 
Axes 1 and 2 of a DCA of species percentage cover data showing samples. Plot 
codes are as in Table 3.5. Axes 1 and 2 accounted for 13.1 % and 9.1 % respectively 
of total variation in vegetation data. 

Figures 3.13 and 3.14 show axes 1 and 2 of a DCA of Forsinard species percentage 

cover data showing samples and species. The longest gradient length is 3.7 and axes 

1 and 2 accounted for 13.1 % and 9.1 % respectively of total variation in vegetation 

data. Gradients of this length are generally suitable for linear or unimodal ordination 

methods (Lep§ & milauer, 2003). Samples to the right of Figure 3.13 correspond to 
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more wet heath type vegetation with most of the Fire samples and Drain samples are 

found in this area of the plot. To the top left are samples containing vegetation with 

Racomitrium, Cladonia and bare peat such as found at Nam Breac and sites L, M and 

N. To the bottom left of the diagram are all the wetter Sphagnum vegetation such the 

Maol Donn samples, with the remaining samples in the centre. Plots used for gaseous 

flux measurements (Chapter 4 and 5) all encompass the variation shown in Figure 

3.13 (see Appendix). Therefore, further analysis is directed towards these plots so 

that the relation between management vegetation and gaseous fluxes can be 

examined in Chapter 5. 
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Figure 3.14: Axes 1 and 2 of DCA of species from Forsinard vegetation relevés. 
Axes 1 and 2 of a DCA of species percentage cover data showing samples. Species 
codes are as in Table 3.5. Axes 1 and 2 accounted for 13.1 % and 9.1 % respectively 
of total variation in vegetation data. 
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Figure 3.15 and 3.16 show ordination sample and species plots of a CCA of the 

vegetation data from only those plots where gaseous fluxes were measured with 

water table pH and penetrometer readings as numerical explanatory variables and site 

as nominal explanatory variables. Axis 1 and 2 accounted for 12.6 % and 11 % 

respectively of total variation in the vegetation data. Samples are strongly grouped 

according to the site they are sampled from suggesting that between-site variability 

greatly exceeds within-site variability, this is despite the sites being almost identical 

in term of NVC communities (Rodwell, 199 1) (Table 5.1). Maol Donn appears to be 

separated because of its association with higher water tables and higher pH. Samples 

from Leir appear to be associated with higher water table but are central in terms of 

PH and appear to be associated with lower penetrometer readings. Leir samples also 

show some separation as plots Cl and C2 are correlated with higher penetrometer 

readings at 5 and 10 cm than C3, 4 and 5. Samples from Sletill, Nam Breac and sites 

L, M, and N all appear to be similar in terms of water table and penetrometer 

readings but separation between Sletill samples and the other samples appears to be 

mostly due to pH. However it should be remembered that water tables for sites L, M, 

and N are estimated from steel rods and may be overestimates, although they do 

appear to be in close agreement with Nam Breac which is a similar site in terms of 

general characteristics and management (Table 3.1). Samples from the drain and fire 

sites are strongly correlated with high penetrometer readings at 25 and 50 cm as well 

as low water tables. Examination of Figure 3.18 and Table 3.4 shows that some 

species are ubiquitous occurring in all sites e.g. T cespitosum and other species 

being associated with particular sites and conditions E. angustfolium.  As in the 

sample diagram, species abundance appears to be strongly associated with site. 

Figures 3.17 and 3.18 show the within site variation where samples are analysed with 

between-site variation removed using site as a co-variable. Figure 3.17 indicates that 

within-site variation is primarily due to differences in water table and deeper 

penetrometer readings. Higher penetrometer readings at 5 cm and 10 cm are then 

associated with the remaining variation. However, there is a corresponding decrease 

in the length of the gradients of the axes compared to that of the between site 

variation shown in Figure 3.15 and the explained variation of both axes 1 and 2 is 

lower at 7.1 % and 2.9 % respectively. 
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Figure 3.15: Axes I and 2 of CCA sample plot, of species percentage cover data 
from plots used for gaseous flux measurements in nine peatland sites on the RSPB 
Forsinard Reserve. Plot codes are as in Table 3.4. Explanatory variables used are: 
mean peat penetrometer data at 5, 10, 25 and 50 cm (n. 50), mean site pH (n, 50), 
mean July water table, and site coded as dummy variables. Axes I and 2 accounted 
for 12.6 % and 11 % respectively of total variation in vegetation data. 
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Figure 116: Axes I and 2 CCA species plot, of species percentage cover data from 
plots used for gaseous flux measurements in nine peatland sites on the RSPB 
Forsinard Reserve. Species codes are as in Table 5.4. Explanatory variables used are: 
mean peat penetrometer data at 5, 10, 25 and 50 cm (n, 50), mean site pH (n, 50), 
mean July water table, and site coded as dummy variables. Axes I and 2 accounted 
for 12.6 % and 11 % respectively of total variation in vegetation data. 
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Figure 3.17: Axes I and 2 of CCA sample plot, of species percentage cover data 
from plots used for gaseous flux measurements in nine peatland sites on the RSPB 
Forsinard Reserve. Plot codes are as in Table 5.2. Explanatory variables used are: 
mean peat penetrometer data at 5, 10, 25 and 50 cm mean July water table, and site 
coded as co-variable. Axes I and 2 account for 7.1 % and 2.9% respectively, of total 
variation in vegetation data. 
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Figure 3.19: Axes I and 2 of RDA of PObscured data for vegetation plots with sites 
as nominal explanatory variables. 

Figure 3.19 shows an RDA of the PObscured data with sites as explanatory variables. 

This shows clear differences in site vegetation structure with Sletill having the 

largest values of all variables except slope. Nam Breac and site L and N seem to be 

similar in structure with low vegetation but high slope (open sparse canopy). 

Differences between the two fire sites seem to be in terms of slope and maximum 

height. The burnt site seems to show higher vegetation this is because one of the first 

species to come through after the fire was Molinea caerulea, which forms a high 
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canopy. Also, the burnt site has a more negative slope indicating a relatively denser 

canopy than the unburnt site this may be indicating a faster growth response than the 

unburnt site due to available nutrients, but in the absence of information on nutrient 

availability this is speculative. Site M appears to have the lowest values associated 

with the PObscured data because this site is characterised by large areas of bare peat. 

3.5 Discussion 

3.5.1 Management effects on vegetation, experimental evidence 

From the evidence presented above it is clear that burning and grazing have had 

direct effects on the vegetation of the Hard Hill plots. The evidence by other authors 

was reviewed by Adamson and Kahl (2003) and is in agreement with the findings 

here (Rawes & Williams, 1973; Rawes & Hobbs, 1979; Hobbs & Gimingham, 1980; 

Hobbs, 1981; Hobbs, 1984). Briefly from Adamson and Kahl (2003), the evidence 

has lead to suggestions that a 20 year burning rotation on blanket bog is better since 

it allows Calluna enough time to regenerate. However, at Moor House Oilluna is 

thought to reach a "steady state" in the absence of fire, in which shoot layering 

allows the Calluna to keep pace with the growth of Sphagnum (Forrest, 1971). This 

may indicate that fire makes a questionable management tool at this site even for 

grouse (Adamson & Kahl, 2003). However, the evidence presented above shows that 

here it is not only Calluna that has been shown to have preference for certain burning 

rotations. Removal of burning and grazing was shown to increase the growth of 

Ruhus chamaemorus on the Hard Hill site (Taylor & Marks, 1971; Marks & Taylor, 

1972). Although R. chamaemorus is neither the most prominent species nor a great 

contributor to peat growth nonetheless, the implication of this and the evidence 

presented in this study are that certain species are encouraged or discouraged 

according to the particular management. Since different species have different 

photosynthetic rates there is potential here for an impact upon ecosystem carbon 

dynamics. The value of the Hard Hill site as a long-term experiment is indisputable, 

however, the results may not be indicative of blanket bog in the UK, as Moor House 

is one site and may be anomalous. Moor House is an NNR. designated because it 

represents one of the best examples of habitat type in England and is managed for 

conservation, the majority of blanket bog in the UK is unlikely to be of similar 
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'quality' to Moor House and is managed for specific economic goals such as animal 

production or sporting activities. 

Community comparison 

There are two interesting points to be made from the NVC community comparison. 

Firstly, the inability to assign different management treatments to distinct NVC 

communities, suggests that the mire NVC may be insensitive to difference in 

management (at least at the Hard Hill site) even when clear statistical evidence of 

treatment effects on species composition is present. This may be partly because of 

the large overlap in species i.e. the mire communities analysed here have many 

species in common. 

In Figure 3.7, the Eddy et al., (1969) centroids and samples in the Sorensen analysis 

have higher similarity to NVC but in the PWS analysis the Hard Hill samples appear 

to have a higher similarity to NyC. This may be partly because of the different way 

the similarity coefficients are calculated. Sorensen similarity (and Czekanowski) 

includes the number of species in the community as well as in the sample thus 

species that do not appear in NVC but do appear in samples and vice versa are 

included in the calculation. NVC communities are an abstract and include species 

from samples from all around UK and a perfect match would be incongruous. It 

would seem then that Sorensen (and Czekanowski) calculations include much 

redundancy and including these species is probably unnecessary. This may also have 

affected the ordination by translating to the position in the ordination being based 

more preferentially on species that are not really part of the typical NVC types. 

Attempting to remove some of this by including species richness and dataset type has 

removed some variability but not all. PWS on the other hand calculates similarity 

from matching species in the sample and community thereby reducing this 

redundancy and making the similarity more interpretable in terms of the sampled 

community relationship to NyC. 

It would seem that NVC has little to offer in terms of differentiating site management 

in these mire communities and that one must be careful in the choice of similarity 

index. Ecological contractors commonly use the Czekanowski coefficient to 

determine NYC but this like Sorensen may be misleading by including redundancy 
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in the similarity calculation. There is therefore, a large degree of subjectivity in 

assigning communities. 

3.5.2 Management effects on vegetation evidence from Forsinard 

Although all sites have a low pH and can be classified as ombrotrophic (Wheeler & 

Proctor, 2000) there may be differences in nutrient availability not detected by pH. 

At Maol Donn site characteristics may be slightly different than at any of the other 

sites. Maol Donn is located in what may once have been a basin certainly the 

surrounding ground to the north, the east and west, slopes towards this site. It is 

possible that there is some groundwater influence and a small bum drains to the west 

of the sampled plots. If this is the case this may be exacerbated by proximity to the 

forest track influencing nutrients from run off. The higher pH found at the unburnt 

site and the prevalence of outlying points at both fire sites indicate that these sites are 

more variable than the other sites and it is probable that samples are influenced by 

the presence of ash. 

Peat compression as indicated by the penetrometer readings also shows differences 

among sites. Again Maol Donn stands out as a site much softer peat at the other sites. 

At the other extreme the fire sites are located on peat that is much more compressed. 

This may be the influence of shallower peat but it may also be indicative of 

management practice. Fire appears to be common to the vicinity (just outside the 

Forsinard reserve) probably used to encourage the 'early bite' for deer and sheep 

rather than management for red grouse. It may be possible then that through the use 

of fire animal utilisation of these sites may be increased and hence fire may lead 

indirectly to more compressed peat. The slightly higher readings nearer the surface at 

Nam Breac, sites L, M and N may also be due to animal trampling, it is certain that 

deer footprints were more prevalent at these sites (Table 3.4). 

The ordination of vegetation samples from Forsinard, appear not only to provide 

evidence differences in vegetation but also in structure. This site association of these 

differences are considered to be synonymous with management. This would appear 
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to offer further support to the experimental evidence of Hard Hill. Management 

effects on the vegetation, structure and peat characteristics may affect the carbon 

fluxes in several ways. Changes in vegetation will undoubtedly affect photosynthesis 

through differences in species composition. Similarly effects on vegetation structure 

will affect the photosynthetic rate through alterations in biomass. Differences in peat 

compression may affect the ability of gasses to transport though peat and affect 

thermal properties of the peat, which will have implications on the processes of 

respiration, methanogenesis and methanotrophy. 

The question remains though how representative these sites are, in terms of 

vegetation and management. 

The Scottish blanket bog inventory lists the most common NVC community types to 

Scotland as M17 and M19 and mosaics containing these communities (Quarmby et 

al., 1999; Johnson & Morris, 2000c, a, b, d, 2001). The community identified for 

Hard Hill was M19 so it may be that the vegetation composition may be somewhat 

indicative of blanket bog in the UK. In terms of vegetation the most common NVC 

community to the Caithness, Sutherland and Orkney region are mosaics of M17 

Scirpus cespitosus-Eriophorum vaginatum mire, M1 5 Scirpus cespitosus-Erica 

tetralix wet heath and M1 9 Calluna vulgaris-Eriophorum vaginatum blanket mire 

(Johnson & Morris, 2001). The sites sampled in Forsinard cover both the M17 and 

M1 5 communities. Of the approximately 10 NVC communities that could be said to 

cover ombrotrophic bog the most common to Scotland are M17 and M19 and 

mosaics containing these communities (Quarmby et al., 1999; Johnson & Morris, 

2000c, a, b, d, 2001). Therefore the sites may be somewhat representative in terms of 

general vegetation composition, in the widest sense. 

As indicated in Chapter 1, there is little information on the geographical spread of 

blanket bog management making it difficult to gauge how representative the 

Forsinard or the Hard Hill sites are to the general management of UK peatlands. As 

the NVC does not differentiate the Hard Hill treatments or the Forsinard sites, the 

NYC classifications also offer little in gauging how representative these sites are in 

terms of management. Given the uncertainties of the geographical spread of blanket 

bog management, the insensitivity of the NYC to differences in management is 
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unfortunate since it may have allowed indications of management on a wider scale. 

Evidence of management effects through NVC have been detected elsewhere. In 

Northern England NVC communities were related to particular experimental 

treatments in a grassland fertiliser grazing and mowing study (Smith et al., 1996; 

Smith et al., 2000). Similarly in the park grass experiment at Rothamstead NVC 

communities could be related to treatment effects (Dodd et al., 1994). Examination 

of mire NVC communities in Suffolk were found to change over the period 1959 to 

1991, and this could be related to changes in traditional management practices (Fojt 

& Harding, 1995). The insensitivity found here may be because the management 

does not affect species composition sufficiently to allow differences to be detected. 

However, that statistical differences in vegetation composition were detected would 

appear to offer no support for this. Further there is undoubtedly a degree of 

subjectivity with which NVC communities are classified this then would also make 

NVC a less attractive indicator of management practice. 

3.6 Conclusions 

• Experimental evidence from the Moor House Hard Hill experiment showed 

that vegetation composition is determined by the management practices of 

burning and grazing. 

Survey evidence from Forsinard determined difference between sites in terms 

of pH, peat compaction, animal utilisation, vegetation composition and 

vegetation structure 

There are therefore differences in vegetation and structure, which in this 

study are considered to be associated with site and therefore management at 

Forsinard. 

• However, that both Moor House and Forsinard are site-specific studies means 

that more research is required for the applicability of these studies to the UK 

situation. 

• The NVC method is not indicative of site management at either Hard Hill of 

Forsinard. 
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The development of further methodology to assess the geographical spread 

and intensity of management of blanket bog in the UK is desireable. 
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Chapter 4: Environmental relationships to the gaseous carbon fluxes of blanket 

bog 

4.1 Introduction 

That biological processes such as photosynthesis, respiration and methanogenesis are 

influenced by climate variables is well established. Light, often measured as 

photosynthetically active radiation (PAR) and air temperature, are important drivers 

for net exchange of carbon dioxide (CO2) during daylight (Mooney & Ehieringer, 

1997; Grace, 1999). To a lesser extent relative humidity (RH) may have an effect on 

net exchange of CO 2  through influences on the stomata (PospIilva & ailurcek, 

1997; Grace, 1999; Long, 1999). Net exchange of CO2 in the dark and net Cl-L 1  

fluxes are strongly related to temperature (Davidson & Schimel, 1995; Farrar, 1999; 

Joabsson et al., 1999; Long, 1999; Basiliko et al., 2003) indicating enzymatic 

processes and also water table can be related to fluxes of methane (CH 4) (Davidson 

& Schimel, 1995; Joabsson et al., 1999; Basiliko et al., 2003). That these 

relationships hold for peatland sites and species in the laboratory and in the field has 

also been demonstrated (Grace & Woolhouse, 1970; Dise, 1993; Roulet et al., 1993; 

Bubier et al., 1995; Christensen et al., 1996; Silvola et al., 1996; Waddington et al., 

1996; Alm et al., 1997; Bergman et al., 1998; Hargreaves & Fowler, 1998; 

MacDonald et al., 1998; Bergman et al., 1999b; Kettunen et al., 1999; Christensen et 

al., 2000; Vourlitis et al., 2000; Aurela et al., 2001; Updegraff et al., 2001; Ameth et 

al., 2002; Bubier et al., 2003; Beckmann et al., 2004). Examination of these 

relationships has led to the use of different models to examine relationships and 

derive supposedly meaningful biological parameters. For example, linear and 

exponential models have been used to describe the relationships for temperature and 

soil respiration (Fang & Moncrieff, 2001) and exponential, rectangular and non-

rectangular hyperbola have been used to describe the relationship between light and 

CO2 flux (Thornley, 1976; !qbal et al., 1997) 

When resulting data appear to depart from these sound theoretical relationships, then 

a re-examination of experimental methods, techniques and analysis is necessary. 
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4.2 Study Aims 

Here net carbon dioxide and methane exchange from peatlands in the North of 

Scotland are related to climate variables to investigate whether such theoretical 

relationships exist and examine any instances where observations depart from theory. 

Relationships will be used to derive models for use in carbon balance modelling 

(Chapter 5). 

The following climate variables were hypothesised as important to net CO 2  exchange 

in the light (CO2 light), net CO2 exchange in the dark (CO2 dark) and net CH 4  

exchange (CH4: 

CO2 light: photosynthetic active radiation, air temperature and 

relative humidity. 

CO2  dark: soil temperature. 

CRt: soil temperature and water table. 

4.3 Methods 

4.3.1 Site Description 

Details of site descriptions can be found in Chapter 3. Only sites with sufficient data 

were analysed here, therefore the sites used are: Nam Breac, Sletill, Leir, Mao! Donn 

and the Cross Lochs Drain site. 

4.3.2 Gas Flux Measurements 

Table 4.1 details the number of plots, plot codes and sampling dates for the gas flux 

measurements. This approach enabled 'targeting' of measurements to small specific 

areas and some degree of replication. CO 2  and CH4  flux measurements were made in 

the field using a static chamber (Figure 4.1). Chambers were constructed of a 

stainless and mild steel base frame, which was inserted roughly 10 cm into the peat. 

During measurements, one base frame was placed in a central plot and remained in 

place throughout measuring whilst another was moved from one plot to the next, 

leaving approximately 35 minutes between frame insertion and measurement. A 

polypropylene top was clamped to the base with rubber seal (draught excluder) 

between the chamber top and base to provide an air tight seal. Two chamber top 

designs, a light and dark chamber, were used for estimation of (i) net carbon dioxide 
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exchange in the light (CO2 light) (ii) net carbon dioxide exchange in the dark (CO 2  

dark) and (iii) net methane exchange (Cl 4). The light chamber sides and top were 

made of Propafilm-C ©; this material has a high transmittance to both light and 

thermal radiation (Hunt, 2003). The thermal transmittance avoids warming inside the 

chamber allowing for measurements to be made in similar conditions to ambient. A 

5-volt fan was located inside the chamber ensuring sufficient mixing of chamber air. 

The basal area of the chamber was 0.32 m 2  and internal volume 0.09 m 3 . Chambers 

were placed in five random locations within a reasonably homogeneous area of 

vegetation at each site to be measured. One chamber location was chosen randomly 

as the main location and repeated measurements were made at this plot alternating 

with satellite locations in turn giving the chamber measurement sequence 1, 2, 1, 3, 

1, 4, 5, 1. On the drainage sites at the Cross Lochs two plots are placed adjacent to 

an unblocked and two plots adjacent to a blocked drain with one plot located half 

way between the two drains. This central plot is used as the repeated plot. This 

configuration was repeated at three locations on the two drains: top, middle and 

bottom. On the fire site three plots were randomly located in each of the burned and 

unburned locations and measurements taken during the same day alternating between 

morning and afternoon at subsequent visits. 

For estimating CO2 fluxes, light and dark measurements were recorded over a five-

minute period or until concentrations changed by 50 ppm from ambient. Chamber air 

was pumped through a drying agent (self indicating Drierite, 97% CaSO, 3% C0C12) 

and then into an infrared gas analyser (IRGA) (Gascard II Edinburgh Instruments) at 

the rate of 0.009 m 3  min- . The concentration of CO 2  was recorded every 30 seconds 

and flux rates were then calculated as rate of change per unit time. Chamber air 

temperature ( °C), and relative humidity (%) were logged using a Hobo Pro Series H8 

logger, Onset Computer Corporation, and photosynthetically active radiation (PAR 

p.mol m 2  s') was logged using a Datahog PAR logger, Skye Instruments Ltd. Soil 

temperature at 10 cm using a CheckTemp Probe thermometer. Water table was 

routinely measured using dip wells inserted 50 cm into the peat, constructed from 2 

cm diameter plastic tubes with 5 mm holes drilled at regular intervals into the sides 

to allow passage of water (Brooks & Stoneman, 1997). Water table for sites L, M 

and N was estimated from steel rod corrosion (Bridgham et al., 1991); this appeared 
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to overestimate the mean depth of the water table when compared with 

measurements at two dip wells. 

Methane measurements were made using the dark chamber but over a 30 minute 

period with a gas collection made every 10 minutes including one at time zero. 

Chamber air was collected into evacuated 20 cm  glass vials and stored for analysis 

by either a Hewlett Packard 5890 Series II or an Agilent 6890N flame ionisation gas 

chromatograph at The University of Edinburgh, School of GeoSciences. Vials were 

over-pressurised with 20 cm  of chamber air to allow detection of leaks. 

Table 4.1: Number of plots, plot codes and dates of gas flux and vegetation sampling 
from Forsinard sites 2003-2005. 
Site 	No. gas flux plots, plot codes 	Gas flux sampling dates 
Nam 	5, Al-AS 	 14 Nov 03, 17 Dec 03, 
Breac 	 12 Mar 04, 10 Apr 04, II July 04, 19 Aug 04, 26 

Sept 04, 11 Oct 04, 
17 June 05, 26 July 05, 26 Aug 05, 
26 Sept 05, 15 Oct 05 

Sletill 	5, 131-135 	 11 Nov 03, 15 Dec 03 
24 Feb 04, 9 Mar 04, 7 Apr 04, 8 July 04, 17 Aug 04, 
23 Sept 04, 8 Oct 04, 
19 June 05, 24 July 05, 26 Sept 05, 
16 Oct 05 

Leir 5, Cl-CS 12 Nov 03, 18 Dec 03 
11 Mar O4,9 Apr O4, 10 July 04, l9 Aug O4,25 Sept 
04, 10 Oct 04, 
18 June 05, 23 July 05, 25 Aug 05, 
28 Sept 05, 21 Oct 05 

Mao] 5, D1-D5 13 Nov 03, 16 Dec 03, 
Donn 10 Mar 04, 8 Apr 04, 12 May 04, 9 July 04 

18 Aug 04, 24 Sept 04, 9 Oct 04, 
20 June 05, 25 July 05, 23 Aug 05, 
27 Sept 05, 20 Oct 05 

Fire 3 burnt FBI -FB3 29 July 04, 20 Aug 04, 27 Sept 04, 
3 unbumt 12 Oct 04 
FU1-FU3 

Site L 5, L1-L5 12 July 04 
Site 5,M1-M5 15 Aug 04 
M 
Site  5,N1-N5 16 Aug 05 
Cross 6 blocked, R4, R5, S4, S5, T4, T5 21, 22, 23 June 05 
Lochs 6 unblocked, R2, R3, S2, S3, 12, 27, 28, 29 July 05 
Drains T3 27, 28, 29 Aug 05 

3 Centre, RI, SI, Ti 23, 24,25 Sept 05 
17, 18, 19 Oct 05 
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Figure 4.1: Light (left) and dark (right) chambers used lbr the measurement of CO 2  
and CH4  fluxes from blanket bog at Forsinard 2003-2005. 

4.3.3 Statistical Analysis 

Missing Data 

Climate variables (PAR, air temperature and relative humidity) between June 2004 

and October 2004 were lost due to computer failure. Modelled climate data to 

replace missing values (see Chapter 5) were not included in this analysis. 

The relationships between site gaseous fluxes and climate variables were explored 

using regression techniques. A stepwise linear regression approach was adopted to 

identify the strongest predictors of CO 2  flux in the light and CH 4  flux and then a 

combination of models was used to explore these predictors. 

For CO2  flux in light conditions a log o  linear response and a non-rectangular 

hyperbola (Thornley. 1976) were used for modelling the response to PAR. The data 

for CO 2  flux in light data includes the portion due to respiration i.e. it represent net 

ecosystem exchange rather than just photosynthetic flux. The non-rectangular 

hyperbola equation is more usually used as a mechanistic model of photosynthesis at 
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the leaf level. There are theoretical grounds for wanting to separate the 

photosynthesis and respiration processes. However, when doing so the R 2  decreased. 

Had the R2  increased then this would have provided good practical reasons for 

separating the two processes. However, the absence of any improvement in R2 

provides a justification for electing to adopt an empirical approach from here on. 

The non-rectangular hyperbola relating the flux of CO2 and PAR can be expressed 

as 

* Qp + A ,, - \I [(S * Qp 	 4* 0 * * Q, *A max)] 

F= _______________ - __________ 
7* () 

Where: 

F= rate of CO 2  flux, 

quantum yield. 

Qp  = PAR, 

A,,,, = maximum assimilation rate, 

9 = smoothness of the curve 

and 	Rd = dark respiration. 

The non-rectangular hyperbola was fitted using the solver function in Microsoft 

Excel 2000 by minimising the root mean square error and maximising R 2 . 

For CO2  in the dark and CU4  flux both linear and exponential functions were used to 

explore flux response. The regression equations of site responses to climate variables 

identified by these analyses are then used to model site carbon balances in Chapter 5. 

Linear analyses were performed using Minitab 13, exponential functions were fitted 

using SigmaPlot. 9.0 and all other summary statistics and graphical plots were 

generated using Microsoft Excel 2000 software. 
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4.4 Results 

Table 4.2: Results of stepwise regression of net CO2 light flux (tmol CO2 m 2  s) 
and CH4  flux (.tmol CH4  m 2  s') and climate variables from selected sites located in 
the Forsinard Reserve. Alpha to enter and remove in model = 0.15. R2  adjusted 
values are for term and and 2' term together where applicable. Abbreviations 
are: photosynthetically active radiation (PAR, tmo1 m 2  s), air temperature (AT, 
°C), relative humidity (RH, %), soil temperature (ST, °C) and water table (WT, cm 
below surface). 

Site Flux type Significant model variables W adj % p value 
Nam Breac CO2 light PAR 28.2 <0.001 

CH4  ST 17.9 <0.001 
Sletill CO2 light PAR 37.1 <0.001 

AT 40.4 0.031 
CH4 ST 	55.1 <0.001 

Leir CO2 light PAR 21.2 <0.001 
RH 22.9 0.127 

C1-L1  ST 16.1 <0.001 
WT 18.8 0.038 

Mao! Donn 	CO2 light PAR 41.7 <0.001 
AT 43.8 0.050 

C114 ST 55.1 <0.001 
Drain 	CO2 light PAR 63.2 <0.001 

- CH4  None detected - - 

Table 4.2 details the results of the stepwise analysis for the Forsinard sites. In all 

sites PAR was detected as the first term for CO2 light. In both Sletill and Maol Donn 

air temperature, and in Leir relative humidity, added to the models but the additional 

improvement in R2  adjusted values is quite low at 3.3 %, 2.1 % and 1.7% 

respectively. This suggests that these variables do not improve the models greatly. 

Subsequently only single term models are considered further and used in Chapter 5 

for carbon balance modelling. 

137 



Chapter 4 

Table 4.3: Coefficients for non-rectangular hyperbola light response curve and 
regression equations for carbon dioxide fluxes (tmo1 CO2 m2 1)  in the light and 
dark and methane flux (j.tmol CH4  m 2  s 1 ) with associated R2  adjusted, P values and 
degrees of freedom (dj). Qio  values are given for 7 and 17 T. 

Flux type Site 	 E 	 A m  Rd R' adj % P value df 
CO2  light Nam 	0.0126 	1.34 0.71 30.9 <0.001 67 
non-rectangular Sletill 	0.0063 	2.24 0.52 38.6 <0.001 70 
hyperbola Leir 	0.0030 	3.68 0.15 28.7 <0.001 70 

Maol Donn 	0.0056 	3.68 0.57 51.7 <0.001 78 
Drain 	0.0218 	4.17 1.42 66.4 <0.001 117 
Regression equation Qio R2  adj % P value df 

CO2  light Nam flux = 1.261 	0.608*log  PAR 28.2 <0.001 67 
log Sletill flux = 1.911 - 0.979*Iog  PAR 37.1 <0.001 70 

Leir flux = 1.4260.837*log PAR 21.2 <0.001 70 
Maol flux 	 2.148- 1.140*log  PAR 41.7 <0.001 78 
Drain flux = 3.947 - 2 .029*log  PAR 63.2 <0.001 117 

CO2 dark Nam flux =0.087+0.106*soiltemp 2.6 57.3 <0.001 98 
linear Sletill flux = -0.162 + 0.088*soil temp 2.9 65.7 <0.001 97 

Le ir  flux =0.102+0.088*soi1temp 2.7 38.3 <0.001 102 
Maol flux = 0.036 + 0.063*soil temp 2.3 38.3 <0.001 110 
Drain flux 	1.017+0.161 *soil temp 15.6 39.5 <0.001 118 

CO2  dark Nam flux 	0.3762*exp(0.0891*soil  temp) 2.4 49.9 <0.001 98 
exponential Sletill flux 	0.1285*exp(0.1515*soil  temp) 4.6 68.6 <0.001 97 

Leir Flux 	0.2294*exp(0.1163  *soil  temp) 3.2 35.4 <0.001 102 
Mao! flux = 0.2432*exp(0.0943* soil temp) 2.6 33.4 <0.001 110 
Drain flux = 0.0896*exp(0.1904*soil temp) 6.7 37.6 <0.001 118 

CH4  linear Nam = -0.00042 + 0.00048* soil temp 2.6 17.9 <0.001 98 
Sletill = -0.00204 + 0.00215* soil temp 2.6 55.1 <0.001 97 
Leir = -0.00 195 + 0.00078*soil temp 3.2 16.1 <0.001 102 
Mao! = -0.00106 + 0.00434*soil temp 2.5 55.1 <0.001 109 
Drain = 0.01828 - 0.00026*soil temp - 0.0 0.63 118 
Drain = 0.01766 + 0.00003 *water table - 1.7 0.082 118 

CFL1  exponential 	Nam flux = 0.0015*exp(0.0988*soil temp) 2.7 14.9 <0.001 98 
Slet flux = 0.0065*exp(0.0986*soil temp) 2.7 42.5 <0.001 97 
Leir flux = 0.0016*exp(0.1241*soil temp) 3.4 13.4 <0.001 102 
Maol flux = 0 . 0131*exp(0.1092*soil temp) 3.0 50.4 <0.001 110 
Drain flux = 0.0 1 53*exp((3.147*10')*soil - 0.0 1.0 118 
temp) - 
Drain flux = 0.0018*exp(0.0018* water 0.19 0.08 118 
table 

Table 4.3 shows results of the various regression techniques applied shown are; non-

rectangular hyperbola coefficients, regression equations, R 2  adjusted values and p 

values and degrees of freedom for site CO2 flux and PAR, site CO2 flux in the 

absence of light and soil temperature and CI-L flux and soil temperature (also water 

table at the drain site). The resulting responses of Table 4.3 are illustrated in Figures 

4.2, to 4.7 for the five sites. All regressions were significant (p <0.001) except the 

relationship between drain site C!-! 4  flux and soil temperature and water table where 
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no relationship could be determined using both regression models but a near 

significant result was obtained for water table and CH4 flux (p = 0.08) but the 

resulting R2  adjusted value is very low implying large amount of variation remains 

unexplained. For CO2 in the light the non-rectangular hyperbola model overall 

explains more of the variation as indicated by higher R 2  values but is only slightly 

better in explaining the variation in flux values at Nam Breac and Sletill than the log 

linear response. Relatively higher values of A max  for the Drain site and Leir and Maol 

Donn indicate higher light saturation values, hence more carbon fixation at high 

PAR. The lowest Amax  figure associated with Nam Breac would appear to indicate 

that this site attains a more rapid maximum rate for photosynthesis and is likely to fix 

less carbon. However, Amax  may be somewhat underestimated because there are 

fewer data points for higher values of PAR especially at Nam Breac and Leir. The 

dark respiration figures for the non-rectangular hyperbola indicate that Drain site has 

the value for dark respiration which suggests than in the absence of light this site 

may be a larger source of CO2 than the other sites. Nam Breac also has a relatively 

higher rate of dark respiration an effect which may compound the lower maximum 

rate of assimilation for this site leading to an overall relatively lower carbon fixation. 

However, as the data are not corrected for temperature and significant relationships 

were identified with air temperature and CO2 flux in some sites in Table 4.2, 

interpretation should be cautious. 

For CO2 in the dark only Sletill has an improved R2  using the exponential approach 

in all other cases the linear model explains a larger proportion of the variation. For 

CH4  fluxes the linear model appears a better explanatory model of the variation than 

the exponential as indicted again by higher R2. Qio  values for the sites indicate a 

hierarchy do not appear to correspond between the two different models for CO2 in 

the dark and CH4  but the Drain site is consistently higher than the other sites for CO2 

dark and Leir has the highest Qo  for both models for CH4 . 
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Figure 4.6: CH 4  soil temperature linear regression by site. For details of regression 
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Figure 4.7 continued. 

4.5 Discussion 

It is noticeable from Figures 4.2 to 4.7 and Table 4.3 (R 2  adjusted values) that there 

is much within site variation that remains to be explained. Even though temperature 

and water table effects were not always significant they will contribute something to 

residual variation so expression as a single term will necessarily show some scatter. 

Some of this may also be due to differences between individual plots within a site. 
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Plots undoubtedly contain different species in different proportions in terms of plants 

(see Chapter 3) and possibly micro-organisms, leading to different potential rates for 

photosynthesis, respiration, and methane production and oxidation within sites. Other 

unaccounted variation will be methodological and random in nature. 

Although Figures 4.2, to 4.7 and Table 4.3 indicate much scatter and points lie 

outside the prediction intervals, there is still some indication that there may be some 

differences in gas flux responses to climate variables between sites (statistical 

analyses of site differences are investigated in Chapter 5). 

For CO2 in the light the non-rectangular hyperbola model explains more of the 

variation as indicated by higher R 2  values and the coefficients of this analysis 

indicate that Nam Breac may be less able to fix carbon through photosynthesis and 

has a higher dark respiration rates than the other sites as indicated by high c and 

lower A.a,, figures. Dark respiration terms may also have some consequence in 

terms of management. Managed sites (Drain) or damaged sites (Nam Breac has 

higher proportion of bare peat) appear to exhibit higher dark respiration rates. The 

rates in the linear model analysis of CO2 in the dark also show the same systematic 

site pattern as identified by the non-rectangular hyperbola, although this pattern is 

not repeated in the exponential models. In linear model terms, CO2 flux in light 

conditions the drain site appears to have the highest response per unit of light, Nam 

Breac appears to have the lowest rate and the remaining three sites all appear to have 

a similar response. In terms of the linear response of CO2 respired in the absence of 

light; Nam Breac has the steepest response per unit temperature then the drain site, 

Sletill and Leir have the same response and Maol Donn has the lowest rate. The CM4 

temperature responses for the remaining 4 sites seem to show marked differences 

although much of this may be explained through differences in water table and 

penetrometer readings rather than by management, see Figure 5.3 above. The fact 

that the drain site appears to have a greater rate of carbon assimilation in the light 

may also be a consequence of this disturbance resulting in vegetation of species that 

fix carbon relatively faster such as Molinia caerulea (Jefferies, 1915, 1916). 

Increased CO2 respiration and fixation rates have also been detected in drained 

peatlands in other studies (e.g. Minkkinen et al., 2002). 
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The higher R2  values for the linear model for both CO2 and CI-14  regressions suggest 

that the linear model is slightly better in explaining variation than the exponential 

model. However, interpretation of Qrn  values is complicated by the dependence of 

Q 1  on the temperature values upon which it is based for the linear model. The 

changing value of Qio  with different values of temperature is also present in other 

models commonly used for Qio  determination, such as the Arrhenius model, 

however, for the exponential models Qo  is constant (Fang & Moncrieff, 2001). The 

values reported in this study appear to be within the range reported by other studies. 

An exponential model used for Finish peatlands estimated Qio  to range between 1.3 

to 4.9 for CO2 (Silvola et al., 1996) In Scotland a range between 2.7 to 39 were 

reported for CO2 respiration in using an Arrhenius model (Chapman & Thuriow, 

1998). Also in Scotland for CR4  a range between 2.2 to 4.8 for different micro 

habitats has been reported again using an Arrhenius model (MacDonald et al., 1998). 

In terms of management effects, higher Qio  values are apparent for cut over peat 

(Waddington et al., 2001) and lower CO2 Qio  in flooded compared with drained 

treatments have been reported (Hogg et al., 1992) this would appear to be in 

agreement with the results obtained here. 

That water table was not identified as being a significant predictor of CU 4  flux 

except at Leir and the inability to detect a relationship between soil temperature 

and/or water table and CR4  flux at the drain sites is puzzling since these are well 

known relationships (Martikainen et al., 1992; Bubier & Moore, 1994; Bubier, 1995; 

Bubier et al., 1995; Bergman et al., 1998; Hargreaves & Fowler, 1998; MacDonald et 

al., 1998; Bergman et al., 1999a; Hughes et al., 1999; Kettunen et al., 1999). At Leir 

one of the plots is a Racomitrium lanuginosum hummock with associated lower 

water tables this may help explain some of the apparent water table effect at Leir. 

The lack of a water table effect at the other sites may indicate that within site water 

table variability is low and that water table only becomes a significant predictor 

when between site variability is considered. Or it may be that the type of dip wells 

utilised here are not sensitive to smaller changes in water table. Water table and soil 

temperature effects at the drain site were not detectable in either model analyses or 

when analysing the drain site as a whole or when analysing the data separately i.e. 
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blocked, unblocked and in the centre between drains. This may indicate that physical 

disturbance caused by constructing drains, may have profoundly altered the 

mechanisms of CR4  production. Although, studies have shown that drainage, 

especially for forestry, has reduced CR4 emissions (Cannell et al., 1993; Roulet et al., 

1993; Roulet & Moore, 1995; Langeveld et al., 1997; Minkkinen et al., 2002), there 

appear to be fewer studies addressing the mechanisms for this change beyond the 

statements of lower water tables. However, evidence from Canada and Finland 

indicates that drainage not only alters the production of methane within the peat 

profile (Minkkinen et al., 2002; Glatzel et al., 2004) but also affects the rate of 

potential methane production through the lack of adequate substrate for 

methanogenic bacteria (Galand et al., 2005). These authors hypothesise that the 

change in vegetation from sedge dominated bog to forest causes a change in the 

amount of carbon exuded from roots reaching the deeper layers of the peat, as trees 

tend to concentrate exudates in the top 30 cm. The Cross Lochs drains were created 

in the late 1970's - 1980's and blocked in 1996. If the action of creating the drains 

has profoundly affected the microbial community then it may indicate that the effects 

of disturbance may persist for decades and are not changed by merely raising the 

water table. However, this is only one site and it may be an anomalous finding. 

Other approaches than those used here to model responses of gas flux to 

environmental variables exist, such as the Arrhenius equation which is frequently 

used for the relationship between soil decomposition and temperature (Chapman & 

Thurlow, 1998; MacDonald et al., 1998; Fang & Moncrieff, 2001; Davidson & 

Janssens, 2006). However, reducing complex biological processes like 

photosynthesis, respiration and methanogenesis using these models is undoubtedly 

an abstract method. Many of these models seem to give useful parameters such as the 

dark respiration values of the hyperbola models and the Qio  values given above or 

the activation energies of the Arrhenius approach. However, the interpretation of 

these types of parameters here is difficult since these models have more meaning 

when conditions such as temperature and light are controlled. The field 

measurements made in this study had no such controls and a degree of confounding 

introduced from differences in temperature, light, plant species, plant biomass, 
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microbial communities, water status, nutrient status, enzymes, reactant substrate 

availability exists. The main question though is not over the choice of model to 

explain the relationship but whether the relationship as indicated by the same model 

is consistently different between sites. This would then tend towards the general 

conclusion that management (as indicated by site) does affect carbon flux 

environment relationships. Since sites do appear to be different. As the central tenet 

of this thesis is that carbon fluxes are affect by management, this would appear to be 

corroborative evidence. However, as stated above field data are confounded, firm 

conclusions should not be drawn and examination of the management question 

awaits statistical testing in Chapter 5. 

4.6 Conclusions 

Significant relationships between gaseous fluxes and climate variables were 

found. 

• Both log linear and non-rectangular hyperbola models for CO 2  in the light 

explained a good deal of the variation in site datasets but the hyperbola model 

consistently explained more variation. 

Linear and exponential model comparison for CO2 flux in the dark indicates 

that the linear model explains more variation than the exponential model. 

However, these did not always follow theoretically predicted relationships: 

water table did not consistently predict of methane flux and at the drain site 

neither soil temperature nor water table could be related to carbon dioxide 

flux in the dark. 

• Suggested reasons for these departures from theory include a lack of within 

site variability in water table and possible damage to microbial communities 

following drainage disturbance. 

• Management may explain some of the differences in responses but as the data 

are confounded by other factors e.g. temperature in light responses these 

effects are not explicit. 
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Chapter 5: Does management influence the gaseous carbon fluxes of blanket 

bog? 

5.1 Introduction 

That peatlands have been carbon sinks in the past is demonstrated by the size of the 

store of carbon within peat. The maintenance and enhancement of global carbon 

sinks and stores has been called for by The Intergovernmental Panel on Climate 

Change (IPCC) (Watson et al., 2000). Estimates of carbon accumulation rates in 

peatlands since the end of the last glaciation are available from peat core evidence 

and range from 6 to 31 g C m 2  yf' (Clymo et al., 1998; Robinson & Moore, 1999, 

2000; Vitt etal., 2000; Turunen et al., 2001; Turunen et al., 2002; Byrne etal., 2004). 

Increasingly, questions are being asked about the responses of peatlands and other 

ecosystems to climate change, other anthropogenic disturbance and the interactions 

between these (Garnett et al., 2000; Turetsky et al., 2002; Byrne et al., 2004; Hulme, 

2005; King, 2005). Whether peatlands are carbon sinks at present, or will continue 

to be in the face of climate change and other anthropogenic disturbance, is uncertain; 

nonetheless maintaining this carbon store is important. Although peat accumulation 

rates are informative for detailing the past, the usefulness of the peat core technique 

for present and future carbon balances is limited (Byrne et al., 2004). Other 

techniques such as measuring primary productivity and vegetation structure by 

clipping or harvest techniques have long been used (Forrest, 1971; Summerfield, 

1973; Tyler et al., 1973; Forrest & Smith, 1975; Moore, 2002) but these techniques 

often underestimate the below ground productivity and also takes no account of 

methane production, a significant contributor to peatland greenhouse gas budgets. 

Thus the measuring of gaseous carbon fluxes by chamber techniques and more 

recently by eddy-covariance have become popular and have now been in use in 

peatlands for decades (Clymo & Reddaway, 1972; Bubier et al., 1992; Verma et al., 

1992; Oechel et al., 1993; Bubier et al., 1995; Choularton et al., 1995; Beverland et 

al., 1996; Beverland et al., 1997; Hargreaves & Fowler, 1998; MacDonald et al., 

1998; Aim et al., 1999; Hargreaves et al., 2003). The resulting data provide 

information on present fluxes and can used for deriving models for predicting future 
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dynamics. The majority of these peatland studies have been conducted in continental 

Europe the northern United States and Canada. 

In the UK there have been fewer studies on gaseous fluxes from peatlands and the 

majority of these have concentrated on methane (see Chapter 2). This is despite the 

fact that UK peatland ecosystems are not only the primary carbon store but also the 

UK's largest semi-natural ecosystem (Lindsay, 1995). Notwithstanding the doubtful 

existence of any 'pristine' peatlands in the UK due to the prevalence of centuries of 

management, the responses of UK peatlands to climate change are likely to be 

somewhat different to those of the peatlands of Continental Europe, Canada and the 

USA (Chapter 2). All of the UK's blanket bog is subjected to varying degrees of 

management practices such as burning, grazing as well as drainage. Although the 

practice of moor-gripping (drainage) has reduced since the withdrawal of grants, 

there are still many active open drains (grips) present on blanket bog areas today. 

However, the areas of UK blanket bog under different management types are 

difficult to gauge (Chapter 1). 

5.2 Study aims 

Here the question of whether management affects the gaseous carbon fluxes of 

blanket bog is addressed using carbon dioxide and methane gaseous flux data from 

the north of Scotland. 

These results are used not only to examine differences between sites of differing 

management but also to speculate on ecosystem responses to certain climate change 

scenarios for the UK. 

5.3 Methods 

5.3.1 Site Description 

Details of site descriptions and management are given in Chapter 3. 

5.3.2 Vegetation Characterisation 

Details of sampling methods for vegetation are given in Chapter 3. 
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5.3.3 Gas Flux Measurements 

Details of sampling methods for gas flux measurements are given in Chapter 4 

5.3.4 Statistical Analyses 

Missing Data 

Climate variables (photosynthetically active radiation (PAR), air temperature and 

relative humidity) between June 2004 and October 2004 were lost due to computer 

failure. These were replaced in the general linear modelling (GLM) analysis by data 

obtained from linear regression models derived from data obtained at Kinbrace 

Meteorological Station approximately 10 km south of Forsinard. The data were 

modelled using Kinbrace data as predictors of Forsinard data for air temperature and 

relative humidity over the period when the two datasets were congruent. Missing 

data were then calculated from the regression equation for each relationship over the 

period for when the data is missing. No significant relationship between Kinbrace 

light and Forsinard PAR could be determined. However, Forsinard air temp and 

relative humidity were significant predictors of Forsinard PAR, therefore modelled 

values of air temp and relative humidity from the Kinbrace regression were used to 

model Forsinard PAR over the missing period. This does however create non-

independence in the climate data, therefore, datasets for 2003-4 and 2005 were 

analysed separately. All regression equations are given in the Appendix. For 

graphical exploration of sites L, M and N (see below), the Kinbrace values for light 

and temperature are used not modelled values. 

Determination of the effects of management on gaseous carbon fluxes was conducted 

using a general linear model in Minitab 13. Four datasets were tested; main sites 

2003-4 and 2005 (Leir, Mao! Donn, Nam Breac and Sletill); fire site (burnt and 

unburnt); and the Cross Lochs drain site (blocked, unblocked and centre; between the 

two drains). The fire site was burnt in early 2004 (possibly March) with the unburnt 

area just outside the burnt area; however, the general area in which the fire site is 

located is subjected to burning. The drains were cut in the 1970's and 80' and 

blocked in 1996 (Rout, 1996). The tests were performed separately for CO2 fluxes in 

the light, CO2 fluxes in the dark and CI-L fluxes, as indicated in Table 5. 1, giving a 

total of 12 different analyses. In each model the focus of interest was directed 
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towards determining whether site effects and site climate variable interactions were 

present. A further stratification of the main sites dataset into damage and undamaged 

sites was also carried out. This essentially splits off the 'damaged' Nam Breac site 

from the 'undamaged' Leir, Mao! Donn and Sletill sites. This damage test should 

ideally have been made between sites but the test had no power (F 1 ,2) therefore was 

tested against plot variation only when site effects were not significant. 2003-4 main 

site CO2 dark and CH4, 2005 main sites C114  and fire site CO2  dark flux data, were 

square root transformed to improve homogeneity of variance. PAR data were Log j o 

transformed to improve linearity. Flux and climate data for the main Forsinard sites 

and sites L, M, and N are explored graphically. 

Table 5.1: General linear model terms. Plot (Site) indicates plots nested within site. 
Main sites are Nam Breac, Sletil!, Maol Donn and Leir. 

Datasets tested Main sites 2003-4 

Main sites 2005 

Fire: Unbumt vs Burnt 

Drains: Unblocked vs Blocked vs Centre 

Response CO2  light flux CO2  dark flux CH4  flux 

Fixed Factors Site Site Site 

Plot (Site) Plot (Site) Plot (Site) 

Month Month Month 

Co-variables PAR + air temp + RH soil temp + water table soil temp + water table (except 

Drain site only soil temp) 

The Relationships between vegetation and water table penetrometer data and gas flux 

linear regression responses slopes were analysed with Redundancy Analysis (RDA) 

and implemented in Canoco 4.5 software. 

Tentative carbon balance modelling was derived from single term, response models 

developed between field gas flux data and PAR, air temperature and soil temperature 

in Chapter 4 using Minitab 13; regression equations are given in Table 4.3 (Chapter 

4). The carbon fluxes were then predicted over one year using values for air 

temperature, soil temperature and a derived PAR from 2004 climate data from the 

Kinbrace station at hourly periods. Daytime fluxes were calculated using 
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relationships between PAR and carbon dioxide flux with a low temperature threshold 

of 5 °C whereby no CO2 fixation is possible. Night time fluxes were derived from the 

relationship between soil temperature and carbon dioxide flux. Soil temperature was 

derived from the relationship between Kinbrace air temperature and Forsinard soil 

temperature, see Appendix. PAR was calculated as 47% of the Kinbrace global 

irradiance values (Blackburn & Proctor, 1983) daily mean modelled PAR and actual 

daily mean PAR at Forsinard showed a reasonable agreement (R 2  adj = 76.3%, n 

47 days, see Appendix). Methane fluxes were calculated from the relationship 

between methane flux and soil temperature with soil temperature derived as above. 

All other summary statistics and graphical plots were generated using Minitab 13 and 

Microsoft Excel 2000 software. 

5.4 Results 

5.4.1 Management effects on gaseous carbon fluxes 

5.4.1a Statistical analyses using GLM 

Table 5.2: Summary of effects and interactions analysed using general linear 
modelling for CO2 light, CO2 dark and CH4 fluxes with associated p values and 
degrees of freedom (dO for sites in the Forsinard and Dorrery Nature Reserve. 
Statistically significant effects are highlighted in bold. AT = air temperature, PAR = 
photosynthetically active radiation, RH = relative humidity and ST = soil 
temperature. 

Dataset 	 CO2  Light CO2  Dark CI-L 
Effect P value (dO Effect P value (dO Effect P value (dl) 

Main Sites 2003-4 	Site.AT 0.098 (3) Site.ST 0.749 (3) Site.ST <0.001 (3) 
Site.RH 0.059 (3) Site.WT 0.614 (3) 
Site.PAR 0.350 (3) 
Site 0.776 (3) Site 0.005 (3) Site 0.0184(3) 
Damage 0.748 (1) 

Main Sites 2005 	Site.PAR 0.034 (3) Site.ST 0.003 (3) Site.ST 0.027 (3) 
Site.AT 0.086 (3) Site.WT 0.986 (3) 
Site.RH 0.659 (3) 
Site 0.705 (3) Site 0.493 (3) Site 0.662 (3) 
Damage 0.476 (1) Damage 0.186 (1) 

Fire 	 Site.AT 0.222 (1) Site.ST 0.212 (1) Site.ST 0.391 (1) 
Site RH 0.225 (1) Site.WT 0.488 (1) 
Site. PAR 0.169 (1) 
Site 0.402 (1) 	Site 	 Site 0.004 (1) 

Drain 	 Site.AT 0.688 (2) 	Drain.ST 0.220 (2) 	Drain.ST 0.011 (2) 
Site.RH 0.628 (2) 
Site.PAR 0.905 (2) 
Site 0.664 (2) 	Drain 	 Drain 0.988 (2) 
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Sign convention negative fluxes denote uptake of the gaseous compound.Table 5.2 

summarizes the results of the general linear modeling analysis, full details of the 

results including tables of sums of squares and F-ratio tests are given in the 

Appendix. 

One significant interaction was detected between site and PAR in the CO2 light 2005 

main site data (Table 5.2) the lack of an interaction in the 2003-4 dataset may be in 

part due to modeled PAR data. Mean CO2 flux rates in the light for 2005 are: Leir - 

0.64 imol CO2 m 2  s 1 , Maol Donn -0.85 tmol CO2 m 2  s', Nam Breac-0.28 l.imol 

CO2 m 2  s and Sletill -0.70 tmol CO2  m 2  s 1 . This indicates a lower CO 2  flux at the 

damaged site of Nam Breac and suggests that this site response to PAR results in less 

CO2 fixation. Site effects were detected in the 2003-4 CO2 dark data but no soil 

temperature interaction, conversely site effects are not apparent in 2005 CO2 dark 

flux but significant site soil temperature interaction is present. Back transformed 

means of the 2005 data for Leir 0.49 p.mol CO 2  m 2  Maol Donn 0.41 jimol CO2  M-

2 I Nam Breac 0.74 tmol CO2 m 2  s-1  and Sletill 0.25 p.mol CO2 m 2  s suggest that 

the interaction between soil temperature and dark CO 2  flux is likely to be more 

pronounced at the damaged site Nam Breac. A significant site soil temperature 

interaction was also detected for the main site 2003-4 CI-L 1  flux and this relationship 

is also evident in the 2005 main site data. Back transformed 2003-4 means for Leir 

0.0021 j.imol CFL1  m2 s,  Maol Donn 0.027 tmol Cl-I4  m 2  s 1 , Nam Breac 0.0015 

imol CI-I4  m 2  s and Sletill 0.0064 pmol CH4  m 2  s 1 , and the evidence of positive 

relationships from Chapter 4 would suggest that effect is positive and may be more 

pronounced in Maol Dorm and have the least impact at Nam Breac. 

At the fire site there is a significant site effect on CH 4  fluxes but no other 

relationships were detected. Although the mean flux values are confounded by soil 

temperature and water table the mean flux values for the burnt site of 0.0264 tmol 

CH4  m 2  s- I  compared with the unburnt site of 0.0072 p.mol CH 4  m 2  s suggesting 

that the burnt site emits more methane. 
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At the drain site there is also only one significant interaction between drain and soil 

temperature for Cl-I4  fluxes. However examination of residual plots for this analysis 

(see Appendix) reveal a slight wedge shape to the residuals versus fit plot indicating 

heterogeneity of variance. This significance of this interaction must therefore be 

treated with caution. Mean water table below the peat surface at the drain site for the 

study duration were; - 65 cm (9.4 SE) for the blocked drain, - 118 cm (7.0 SE) for the 

centre and - 64 cm (8.1 SE) for the unblocked drain. 

5.4.1b Graphical exploration of Main Sites and Sites L, M and N 
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carbon dioxide flux in the dark Q.tmol CO 2  m2 1)  and (c) methane flux (j.tmol CI -I4 
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Figure 5.2: Mean (+1- SE); (a) water table (mm), (b) soil temperature ( °C) at main 
sites and site L in July 2004, and (c) mean global solar irradiation (kJ m 2) and (d) air 
temperature ( °C) from Kinbrace Weather Station. 

Figure 5.1 and 5.2 detail the gaseous fluxes and selected climate variables for the 

main sites and site L during July. These figures show that for carbon dioxide flux in 

the light Sletill seems to have a higher mean rate of fixation than any of the other 

sites; this is in conjunction with higher mean global solar irradiation and air 

temperature. The error bars of Site L appear to be the largest of any site and span the 

Maol Donn, Leir and Nam Breac values. Site L air temperature is similar to Nam 

Breac and Maol Donn and global solar radiation levels similar to Maol Donn. 

Therefore from the available data, Site L may have a similar response to light as the 

other sites in terms of carbon dioxide flux. 

In terms of carbon dioxide flux in the dark Site L has the highest mean flux all other 

sites are similar and error bars span each site. Soil temperature of Site L appears to 

be the second lowest implying that Site L has a higher rate of carbon dioxide flux in 

the dark than the other sites. 
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Methane fluxes apparently follow patterns in both water table and soil temperature 

with Maol Donn showing a larger mean flux than any other site. Site L has lower 

flux rates than Sletill but higher than Nam Breac and Leir but has lower soil 

temperature than Sletill but a higher water table. Methane fluxes give the impression 

of being concurrent with environmental controls of water table and soil temperature. 
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Figure 5.4: Mean (+1- SE); (a) water table (mm), (b) soil temperature ( °C) at main 
sites and site L in August 2004, and (c) mean global solar irradiation (kJ m 2) and (d) 
air temperature (°C) from Kinbrace Weather Station. 

Figures 5.3 and 5.4 illustrate the gaseous fluxes and selected climate variables for 

August. Site N, Nam Breac and Sletill appear to show a loss of CO 2  in light 

conditions and Leir, Maol Donn and Site M appear to be sinks for CO 2  in the light. 

This is in contrast to climate conditions as Nam Breac has the highest light levels and 

air temperature, Site N, Sletill and Site M also appear to have higher light levels and 

air temperature. Therefore, climate variables do not appear to explain all the between 

site pattern in CO2 flux in light conditions. 

Nam Breac sites N and M appear to have higher mean rates of loss of CO2 in the 

dark apparently following the pattern in soil temperature. However, Sletill has the 

lowest rate of CO2 flux in the dark but a relatively high mean soil temperature. 

Therefore the climate does not appear to explain all the between site mean CO 2  

fluxes in the dark illustrated in Figure 5.3. 
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C144  flux is highest again at Mao! Donn as in July; Sletill has the next highest mean 

CH4  flux, with the other three sites showing similar rates to each other. This would 

appear to follow water table and soil temperature patterns. 

5.4.2 Relationship of vegetation to water table, penetrometer data and gas flux 

responses slopes 

Figure 5.5 illustrates the results of a CCA ordination of vegetation in gas flux plots 

with penetrometer readings and the slopes for individual flux plot CO2 and CH 4  flux 

linear regressions with PAR and soil temperature. Axes 1 and 2 account for 14.2% 

and 12.2% of species data respectively, and 31.6% and 27.2% of variation of species 

environment relations respectively. Restricted Mote Carlo permutations to account 

for pseudoreplication, and with drains samples removed because of unequal sample 

sizes, indicate the first axis is not quite significant (p = 0.054). This hints at 

differences between plots, statistical non-significance notwithstanding, there does 

appear to be some clustering of plots from the same site. Plots are separated mainly 

on the grounds of penetrometer readings at 5 and 10 cm with slope of methane flux 

and dark CO2 flux on soil temperature being almost opposite in their reactions; water 

table is also highly correlated with CF! 4  flux. Figure 5.6 shows the same ordination 

but with the species projected into ordination space. This shows some species that 

are correlated with particular conditions for example; bare peat is correlated with 

lower CO2 light-PAR regression slopes. Also, species expected to be in association 

with high water table, e.g. Sphagnum magellanicum, correlate well with this and 

steeper CF 4  flux soil temperature responses. Highest rates of photosynthesis and 

respiration seem to be in tandem for example Sphagnum capillfolium has the 

steepest CO2 - PAR response as well as a steep CO 2  soil temperature response in the 

dark, although Myrica gale appears to be associated with the steepest respiration soil 

temperature response. 
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Figure 5.5: Axes 1 and 2 of CCA of species percentage cover data from plots used 
for gaseous flux measurements in nine peatland sites on the RSPB Forsinard Reserve 
showing samples. Plot codes are as in Table 5.2. Explanatory variables used are: 
mean peat penetrometer data at 5, 10, 25 and 50 cm mean water table. CO 2  light and 
dark and CH4  regression slopes for individual plots. By convention CO2 light is 
expressed as negative i.e. sink for carbon, therefore direction of arrow indicates 
decreasing rate of CO 2  assimilation in response to light. Axes I and 2 account for 
14.2% and 12.2% of species data respectively, and 31.6% and 27.2% of variation of 
species environment relations respectively. See text for significance of Monte Carlo 
permutations. 
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Figure 5.6: Axes I and 2 of CCA of species percentage cover data from plots used 
for gaseous flux measurements in nine peatland sites on the RSPB Forsinard Reserve 
showing species. Plot codes are as in Table 5.2. Explanatory variables used are: 
mean peat penetrometer data at 5. 10, 25 and 50 cm mean water table, CO2 light and 
dark and C1 4  regression slopes for individual plots. By convention CO2 light is 
expressed as negative i.e. sink for carbon, therefore direction of arrow indicates 
decreasing CO2 light response. Axes I and 2 account for 14.2% and 12.2% of species 
data respectively, and 31.6% and 27.2% of variation of species environment relations 
respectively. See text for significance of Monte Carlo permutations. 

5.4.3 Tentative carbon balances 

The regression models of Table 4.3 in Chapter 4 are reproduced in Figures 5.7, to 

5.10 without the raw data points. Here these regression equations are used to model 

carbon balances over the period of 1 year. Main consideration is given to log linear 

and non-rectangular hyperbola models for CO2 fluxes in the light and because of 

better fit for linear models for CO 2  in the dark and CH 4  flux these are retained though 

some discussion of the use of exponential model is given. 

Penet 25 
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Figure 5.11: Modelled sum of carbon dioxide fluxes (imol CO 2  m 2  s- I  ) for Forsinard 
sites using linear regression equations in Table 4.3 and climate data from Kinbrace 
Meteorological Station 2004. Lines are lowess smoothers with 0.5 degree of 
smoothing and 2 steps. Modelled fluxes for; (a) Nam Breac. (b) Sletill, (c) Leir, (d) 
MaoI Donn. and (e) Drains. 
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Figure 5.12: Modelled sum of carbon dioxide fluxes (Mmol  CO2  m 2  s') for Forsinard 
sites using non rectangular hyperbola and linear regression equations in Table 4.3 
and climate data from Kinbrace Meteorological Station 2004. Lines are lowess 
smoothers with 0.5 degree of smoothing and 2 steps. Modelled fluxes for; (a) Nam 
Breac. (b) Sletill. (c) Leir. (d) Maol Donn, and (e) Drains. 
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Figure 5.11 shows linear modelled carbon dioxide fluxes by site using the climate 

data for 2004. Fluxes were modelled hourly from the 1St  January 2004 to 13 1h  

December 2004. The lines in Figure 5.11 are lowess smoothed lines for the CO 2  

fluxes for 2004 and account is now taken of daytime and night time fluxes over an 

entire year. Nam Breac (Figure 5.11 a) stands out as a site that is fixing less CO2 and 

indications are that it may be a net source. In contrast the Drain site apparently fixes 

the greatest amount of CO2. The other three sites appear to be similar in terms of CO2 

flux alone. Figure 5.12 shows the same information as Figure 5.11 but this time 

instead of the log linear model for CO2 in the light the non-rectangular hyperbola is 

used to model fluxes. There appears to be shift upwards in Figure 5.12 compared 

with Figure 5.11 indicating that the non-rectangular hyperbola estimates less carbon 

fixation in the light than the log linear model. However, the same patterns are 

reflected in terms of sites such that Nam Breac appears to be a source of CO 2  

(although it is now a distinct source without sequestration) and the Drain site is still 

the largest sink for CO2. 

Figure 5.13 models the fluxes for the same period and uses the same climate data but 

here the influence of CH 4  is an added contribution. The data are modelled as the sum 

Of CO2 and CH4  represented as CO2 equivalents for three different scenarios 20, 100 

and 500 years. This takes account of the greater Global Warming Potential (GWP) of 

CIiI  but also of its decreasing warming potential over time. On a mol/mol basis CH 4  

has a 21.8, 7.6 and 2.6 times greater GWP than CO 2  over the 20, 100 and 500 time 

horizons respectively (Whiting & Chariton, 2001). Unfortunately no CH 4  relationship 

for the Drain site could be determined; therefore, this site is omitted from Figure 

5.13. 

For Nam Breac and Leir adding the C11 4  seems to make little impact to the carbon 

balance with Nam Breac remaining a source in all three scenarios and Leir remaining 

a sink (Figure 5.13a and 5.13c). However, for both Sletill and Mao! Donn the 

influence is more marked with both sites sources over the 20-yr scenario. Maol Donn 

also is a clear source at 100-yr but for Sletill it is less clear perhaps being neutral 

over this scenario. However, both sites become sinks when considered over the 500-

yr scenario. In Figure 5.14 the same information is presented as in Figure 5.13 except 
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the non rectangular hyperbola is used to model the light fluxes. Here again there is an 

upward shift towards more positive fluxes although comparisons between sites 

remain the same as Figure 5.13. Now most sites though, except perhaps Leir, would 

be considered sources of carbon over the three CH 4  scenarios. 
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Figure 5.13: Modelled sum of carbon dioxide and methane fluxes (pmol CO2 m 2  s) 
for Forsinard sites, except Drain site, using linear regression equations in Table 4.3 
and climate data from Kinbrace Meteorological Station 2004. The modelled sum of 
the fluxes takes account of the changing Global Warming Potential of CH 4  for 20-yr 
(black line), 100-yr (red line) and 500-yr (green line) time horizons. Lines are lowess 
smoothers with 0.5 degree of smoothing and 2 steps. Modelled flux for; (a) Nam 
Breac, (b) Sletill. (c) Leir, and (d) Maol Donn. 
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Figure 5.14: Modelled sum of carbon dioxide and methane fluxes (tmol CO 2  m 2  s) 
for Forsinard sites, except Drain site, using non rectangular hyperbola and linear 
regression equations in Table 4.3 and climate data from Kinbrace Meteorological 
Station 2004. The modelled sum of the fluxes takes account of the changing Global 
Warming Potential of CH4  for 20-yr (black line), 100-yr (red line) and 500-yr (green 
line) time horizons. Lines are lowess smoothers with 0.5 degree of smoothing and 2 
steps. Modelled flux for; (a) Nam Breac, (b) Sletill, (c) Leir, and (d) Maol Donn. 

5.5 Discussion 

5.5.Ia Statistical analyses using GLM 

The unbalanced nature of the data analysed and multiple tests from the GLMs mean 

that the p values in Table 5.2 can only be considered approximate. Nonetheless the 

results indicate that there are significant effects on gaseous fluxes either through site 

or site climate interaction effects. That these differences were detected in fluxes of 

CO2 in the light and dark and CH4 imply that management affects the carbon cycle 

processes of photosynthesis, soil respiration and methanogenesis. That different 

kinds of effects were detected in the main sites during 2003-4 compared to 2005. is 
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partly due to the fact that the 2003-4 data has modeled climate variables in the CO 2  

light analysis. However that site effect was detected in 2003-4 and site soil 

temperature interaction were detected in CO 2  dark fluxes may be due to the differing 

seasons the datasets span. It may be that when winter is taken into consideration site 

effects are more apparent but when only summer and autumn data are analyzed the 

site soil temperature interaction is evident. This not only highlights the dynamic 

nature of CO2 fluxes but also that seasonal variation is an important factor in dataset 

evaluation. 

Due to the small sample size in the fire sites the evidence for effects presented here is 

weak. The lack of CO2  light site or site and climate interactions at the fire site may 

be due to the use of modeled climate data. Although, the evidence points to a site 

effect on CH4  flux and the burnt site appears to emit more CH 4, the question remains 

whether this effect can be attributed to fire. It is possible that the fire leads to 

increased CH4  flux through an increased availability of nutrients for microbial 

methanogenesis from ash deposition (Hogg et al., 1992). There is evidence of 

increased microbial numbers after burning (Maltby & Edwards 1984, cited in Tucker 

2003) but it is also possible that shifts in microbial community composition may lead 

to less methanotrophy perhaps leading to an apparent increase in methanogenesis. As 

there is a still a lack of research into the effects of fire on peatland microbial 

communities (Tucker, 2003) this speculative, also the comparison here is between 

one burnt area and one unburnt area and the result may be anomalous. 

The evidence for the effects of a soil temperature drainage interaction also need to be 

treated with caution as no linear or exponential relationship between soil temperature 

and CI-L1  fluxes could be determined in Chapter 4 and also there was marked 

heterogeneity of variance. Mean water table levels at the drain site suggest that 

differences in water table may be more to do with subsidence of the peat than 

alteration due to increased run off. Since these drains may be more than 30 years old 

disruption to carbon cycle processes may have had time to equilibrate. Effects are 

likely to be more apparent in the immediate period after drains are cut and much 

other work indicates this is the case (Carmell et al., 1993; Anderson et al., 2000; 

Minkkinen et al., 2002). 
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Although the effect of management of vegetation and primary productivity has been 

addressed in the UK (Grant et al., 1985; Shaw et al., 1996), there are few studies 

addressing the effect of management on carbon dynamics. Peat core work at Moor 

House in northern England detected differences in carbon accumulation between 

burning treatments but not grazing treatments (Garnett et al., 2000) reduced peat 

accumulation due to fire has also been observed in Canada (Kuhry, 1994). With such 

limited evidence and because this study is from one area of Scotland, it is 

questionable as to how representative these results are for UK blanket bog. In a 

recent review of carbon stocks and trace gas fluxes of EU peatlands all managed and 

natural ombrotrophic bogs were considered to be net sources of carbon except for 

those given over to Forestry —105 kg ha- 1  yr or 0.007 tmol CO2 m 2  yr (Byrne et 

al., 2004). These Forestry figures need to be considered with caution though because 

of the time difference to reach carbon equilibrium between Forestry (100 yrs) and 

bog (1000s yrs). However, figures of net sources from the managed bogs considered 

(such as drained bogs) were almost an order of magnitude above those of the natural 

bog (192 kg C ha" yr") (drained bog 1253 kg C ha" yr") and restored bog was the 

second lowest source at 736 kg C ha" yr" (Byrne et al., 2004). This evidence would 

appear to indicate that management practices affect carbon balances and thus the 

results presented here are indicative. However there is still a great deal of variability 

and the range of values within bog types reviewed by Byrne et al., (2004) often span 

1 or even 2 orders of magnitude. Further investigation into the effects of 

management on carbon fluxes would seem warranted. 

5.5.1b Graphical exploration of Main Sites and Sites L, M and N 

In comparing the data for the mains sites and sites L, M, and N, although the climate 

variables and gaseous fluxes on these days appear to be related, there are still some 

discrepancies observed in Figures 5.1 to 5.4. This may be partly due to use of a 

remote weather station rather than data from sites. However, even when fluxes are 

complementary to climate variables there is also a correspondence with management. 

For example, CO2 flux in the dark at Sites L, M, N and Nam Breac appear to be 

consistently higher rate of loss of carbon dioxide but is not always matched by 

corresponding soil temperature. These sites have more bare peat than the other sites 
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therefore it is possible that this may be related to site management as these sites also 

have higher numbers of deer footprints than other sites (see Chapter 3) thus having a 

consequence on respiration rates. However, these do only represent one day of 

sampling at each of the sites and one must not draw too many conclusions from this 

data. 

5.5.2 Relationship of vegetation to water table penetrometer data and gas flux 

responses slopes 

The results of the ordination shown in Figures 5.5 and 5.6 offer some evidence for 

differences between gas flux plots. There appears to be some clustering of plots from 

the same site therefore perhaps some differences between sites in terms of the 

gaseous flux responses to climate variables. However small sample size is an issue 

here and the results are non-significant. However there is also evidence in the 

literature for these differences, for example, the relationship with water table and 

methane flux response slope is well documented (Martikainen et al., 1992; Bubier & 

Moore, 1994; Bubier, 1995; Bubier et al., 1995; Bergman et al., 1998; Hargreaves & 

Fowler, 1998; MacDonald et al., 1998; Bergman et al., 1999; Hughes et al., 1999; 

Kettunen et al., 1999) (see Chapter 4 also). That lower penetrometer readings are 

also associated with higher CH4  slope is because both lower penetrometer readings 

and high methane flux are associated with Maol Donn. This may perhaps suggest 

that the combination of water table and peat compression may be indicators of higher 

CI-1 1  flux. That some species are correlated with particular regression slopes such as 

bare peat (low CO2 - PAR response) Sphagnum magellanicum (high C114  - soil 

temperature response) and Sphagnum capillfolium (CO2 - PAR response) and 

Myrica gale (CO2 dark - soil temperature response) may be evidence of indicators of 

carbon dynamics. Although the results of the ordination are not significant, the small 

sample size here may suggest their value as indicators is worthy of investigation. 

5.5.3 Tentative carbon balances 

The strong relationships between climatic variables and site fluxes and the significant 

relationships found in the GLM analysis indicate that the calculation of site fluxes 

over one year (2004) would appear reasonable. The models indicate that large 
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differences are evident between sites if the predicted relationships hold. What the 

response curves and regression model findings do indicate though are workable 

models upon which further work and more intensive and wide-ranging sampling are 

likely to yield further insight. Although the purpose of these models is exploratory 

and one must not lend a great deal of weight to these findings, it is interesting to 

examine how realistic these models are. 

Firstly how representative of the 'general' climate is 2004? Table 5.3 shows UK 

Meteorological data for each month in 2004 for the North of Scotland area, which 

covers the Forsinard area. In terms of this study temperature and light were used as 

predictors, therefore, temperature and duration of sunshine are the important features 

of Table 5.3. From Table 5.3 it can be seen that all months were warmer than the 

1961-1990 long-term average other than October, which was slightly colder. 

Comparison of the duration of sunshine with the long-term average was more 

variable, three months exhibit a distinctly greater duration; March, August 

September; with February, May and December showing a marginally greater 

duration. Three months clearly show less sunshine: April, June and October; and 

January, July and November have a slightly less duration. In terms of biological 

activity the months April to October are the most important since it is between these 

months that temperatures and light levels are sufficient to allow processes such as 

respiration and photosynthesis to take place. The consequence of warmer 

temperatures in 2004 may mean that modelled CO 2  flux respiration in the dark is 

overestimated by the model than if the model were that based on temperatures of 

1961-1990 long-term average. Warmer temperatures for 2004 may also mean an 

extended growing season since temperatures are above the threshold 5 °C used here 

for CO2 flux due to photosynthesis. The modelled CO2 flux in the light here though 

is primarily driven by PAR. The fact then that the 2004 summer months have slightly 

less sunshine than the 1961-1991 average, may mean the extended season is 

mitigated by slightly lower light levels. This may have lead to a modelled 

photosynthetic activity that is not dissimilar to the 1961-1991 long-term average. 

At present there is no information on the extent of management practices on the 

Forsinard Reserve. It is therefore difficult to gauge how representative the sites 
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modelled here are in terms of management of the Forsinard reserve as a whole. In 

terms of vegetation the NVC communities Ml 7 (especially in the east of the reserve) 

and Ml 8 (in the west) appear to be the two most common communities (Russell et 

al., 2004) and these are apparent as sampled site communities, particularly M17 (see 

Table 5.1). However as shown by the evidence above in terms of vegetation and 

structure the NVC does not appear to be particularly sensitive, differences exist when 

sites are shown to be the same community (Chapter 3). The removal of the drain site 

in for the modelled fluxes of Figure 5.12, as no CH 4  climate relationship was 

ascertained, is unfortunate since it reduces the sites from five to four and thus the 

management treatments portrayed. This makes evaluation of the models on a 

Forsinard basis less representative as there are significant areas of the Forsinard 

reserve that have been subjected to drainage. Thus the evidence should be treated 

with caution. 

Table 5.3: Maximum, minimum and mean monthly temperature, hours of sunshine 
and rainfall for the North of Scotland for 2004 (source: UK Meteorological Office). 
The column headed 'Actual' represent recorded values for that month, the column 
headed 'Anom' (anomaly) shows the difference from or percent of the 1961-90 long 
term average. 

Max temp Min temp Mean temp Sunshine Rainfall 

Actual Anom Actual Anom Actual Anom Actual Anom Actual Anom 
Month (°C) (°C) (°C) (°C) (°C) (°C) (hrs) (%) (mm) (%) 
Jan 6.9 1.5 1.7 1.5 4.3 1.5 41.6 91.0 130.5 145.0 
Feb 6.0 1.4 -0.5 0.3 2.8 0.9 63.3 101.0 152.3 130.0 
Mar 8.0 1.7 1.4 1.1 4.7 1.3 112.4 126.0 106.5 73.0 
Apr 10.3 1.6 4.1 2.5 7.2 2.0 97.2 74.0 130.5 147.0 
May 13.4 1.5 5.5 1.2 9.3 1.3 168.5 106.0 66.7 76.0 
June 14.6 0.2 8.3 1.3 11.4 0.7 99.3 66.0 134.8 147.0 
July 15.8 0.4 9.0 0.3 12.4 0.4 121.1 96.0 78.0 78.0 
Aug 17.4 2.0 10.6 2.0 14.0 2.0 153.2 124.0 157.7 131.0 
Sept 14.6 1.4 7.9 0.8 11.2 1.1 117.9 130.0 212.1 136.0 
Oct 10.0 -0.6 4.7 -0.3 7.4 -0.4 49.6 73.0 199.1 113.0 
Nov 8.3 1.6 3.2 1.7 5.8 1.7 34.4 90.0 163.9 90.0 
Dec 7.4 2.1 1.7 1.5 4.5 1.8 23.1 102.0 248.5 140.0 

Although modelled site 'behaviour' appears consistent, using different mathematical 

models can lead to very different conclusions. A mean value for carbon fluxes for 

Forsinard in CO2 equivalents for the 100-year scenario gives a carbon sink of -0.128 

imol CO2  m 2  s using linear models. Including the non-rectangular hyperbola gives 
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a mean value of 0.047 p.mol CO2  m 2  s turning from a sink to a source. This may in 

part be due to the fact that there are fewer data points in high illumination therefore 

A,,,a,, may be underestimated (see chapter 4) leading to an underestimation of flux in 

the light. Also the log linear models appear to have a steeper initial slope than the 

non-rectangular hyperbola (Figure 5.7 and 5.8) which would suggest a quicker 

attainment of net negative fixation rates. 

Including an exponential model for CO2 fluxes in the dark halves the linear model 

value to -0.061 tmol CO2 m 2  s 1  for the 100-year scenario and would increase the 

overall source effect if both exponential and non-rectangular hyperbola were used. 

Including an exponential model for Cl-I 4  though makes little difference giving a mean 

value of -0.118 tmol CO2 m 2  s carbon sink using a linear model for CO2 flux in the 

light for the 100-year scenario. 

Given the above caveats, the mean modelled carbon flux using linear models and the 

100-year scenario for Forsinard translates to a carbon sink of -0.128 VtMOI  CO2  m 2  s 

which equates to -48 g C m 2  yf' the mean for the non-rectangular hyperbola 

translates to a source of 0.047 imo1 CO 2  m 2  s or 18 g C m 2  yf'. Assuming this is 

a reliable estimate of the mean gaseous carbon flux for the Forsinard area this would 

be between an estimated sink of —0.48 t C ha' yf' and a source of 0.18 t C ha' yf' 

for the Forsinard Reserve. If we assume a loss due to water transport of 

approximately 103 kg C ha' yf' as reported for the river Halladale (Hope et al., 

1997) this translates to either a sink of —0.38 t C ha' yf' or a source of 0.28 t C ha' 

yf' depending on the model used. However this takes no account of losses due to fire 

and without data on fire frequency this is difficult to incorporate. Peat accumulation 

rates for blanket bog in the UK vary between 0.1 and 1.2 mm yr-i (Tallis, 1995). 

Approximating the peat carbon content as 0.47 kg C m 2  cm-1  depth (Cannell et al., 

1993), these accumulation rates would then approximate to carbon fixation rates 

between —0.047 t C ha' yf'or -0.564 t C ha' yf'. The linear models generated a 

figure of —0.38 t C ha' yf', which lies at the top end of these accumulation rates. 

Given that the modal peat accumulation rate stated by Talus (1995) is approximately 

0.2 mm yf , the linear modelled values would thus seem to overestimate realistic UK 

fluxes. Published greenhouse gas balances for undisturbed European ombrotrophic 
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peatlands range from —0.078 t C ha yr to 1.459 t C h& 1  yr (Byrne et al., 2004). 

The linear modelled value far exceeds the lower estimate it therefore still seems 

reasonable to assume that the linear model represents an overestimate. When 

modelling fluxes using the non-rectangular hyperbola the resulting model estimate 

lies within the European ranges and may appear to be more realistic. Nevertheless 

there are many assumptions associated with the above calculations and the model for 

carbon balance does over simplify complex biological processes. The value of using 

these simple regression responses to model the data is that it allows site flux 

calculations to be extrapolated over a greater time period than the field work allowed 

using the standard values for PAR and temperature for each site thus aiding the 

interpretation of the statistical differences found in the GLM, though final carbon 

balances values cannot be regarded as reliable. 

5.5.4 UK Climate Change Scenarios 

From the evidence above and Chapter 4 it is apparent that climatic variables are 

important drivers of gaseous carbon fluxes in peatlands. It is therefore pertinent to 

ask what the above evidence means in terms of predicted UK climate change 

scenarios for Forsinard peatlands. The UKCIP02 report predicts annual and seasonal 

changes in temperature and precipitation up till 2080 (Hulme et al., 2002). In the case 

of ecosystem responses to climate change the mean annual changes are of less 

interest than, for example, how seasonal changes affect the growing season. 

UKCIP02 predicted seasonal changes in temperature and rainfall for the north of 

Scotland using low and high emission scenarios for the year 2080 are given in Table 

5.4. Given that temperature is set to rise between 1 and 3.5 °C by 2080 depending on 

the scenario, and that gaseous fluxes have been shown here to be partly temperature 

dependant, this would increase respiration using a linear model by 0.109 imol CO2 

M-2  s 1 °C and methane flux by 0.0018 pmo! Cl-I 4  m 2  s 1  °C . From examination of 

Figure 5.11 it seems that CI-I4  emissions may be particularly important in autumn and 

an increase in temperature in this period may exacerbate CH 4  fluxes. However simple 

temperature flux dependant relationships are not indicative of the complex processes 

that are involved. Temperature has different effects on enzymes and isozymes and 

other important factors include substrate (reaction) availability, and water and 
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nutrient availability (Davidson & Janssens, 2006). In terms of CO2 fixation the 

primary driver is light, although this is also partly temperature dependant and longer 

warmer summers are likely to increase the length of the growing season. The may 

also be some increase photosynthesis due to increasing CO2 in the atmosphere but 

the overall effects may be, transient (Oechel et al., 1994) complicated by nutrient 

availability and temperature (Saarnio et al., 1998) and at the ecosystem level are 

unclear (Hulme, 2005). Global dimming (Wild et al., 2005) may also have some 

effect on photosynthesis through attenuation of the light available for photosynthesis 

(Stanhill & Cohen, 2001). This may lessen over time as particulates in the 

atmosphere are cleared but may also not have as much effect in areas of low 

population (Stanhill & Cohen, 2001; Alpert et al., 2005; Wild et al., 2005) and 

photosynthesis is limited by more than light levels, e.g. nutrient availabilities. 

Nonetheless, increased respiration rates may be somewhat offset by increased 

photosynthesis. The predicted rainfall figures are perhaps of most concern and 

although the trend seems to be for increased rainfall in winter and spring between 10 

and 20% less rainfall in summer in conjunction with higher temperatures may 

prolong the desiccation periods for bryophytes and lead to shifts in vegetation 

composition from bryophyte dominated peatlands to those more dominated by 

vascular plants. Changes in vegetation due to climatic effects may be compounded 

by the actions of management but the unknown geographical status and intensity of 

present management practices on peatlands in the UK (see Chapter 1) would make 

these interactions difficult to predict. The decrease in rainfall over the summer period 

combined with higher temperatures is likely to lower water tables over this period 

thereby decreasing CH 4  emissions. However, increased rainfall in the autumn may 

raise water tables this together with a rise in temperature may see an autumnal pulse 

in CH4  emission. An increase in fluctuation of water tables may however have 

consequences akin to drainage which also increases water table fluctuation (Stewart 

& Lance, 1991). This may result in a completely altered CR4 production process the 

long-term consequences of which are unknown. The lowering of the water table may 

also increase fluxes of CO 2  through peat decomposition (Davidson & Janssens, 

2006) if this is then coupled to a temperature rise there may be a positive interaction 

but due to the complex processes involved and the lack of consensus of how 
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temperature affects decomposition relationships (Davidson & Janssens, 2006) the 

outcomes of this are difficult to predict. 

Table 5.4: Predicted seasonal changes in temperature and rainfall by 2080 using 
UKCIP02 high and low emission scenarios with respect to model-simulated 1961-
1990 climate (Hulme et al., 2002). 

Season temperature ( °C) 

low 	 high 

rainfall (%) 

low high 

winter Ito 1.5 	 2to2.5 10 to 15 20 to 25 

spring Ito 1.5 	 2to2.5 0 t 10 0 t 10 

summer I to 1.5 	 2 to 2.5 - 10 to -20 -20 to -30 

autumn 1.5 to 2- 	 3 to 3.5 within natural 0 to 10 

variability 

5.6 Conclusions 

• Statistically significant effects of management as indicated by site and site 

climate interactions were detected in relation to gaseous fluxes of CO2 and 

CU4. These indicate that damaged sites fix less and respire more CO2 and the 

use of fire may lead to at least an initial increase of CH 4. However, the effects 

of drainage at Forsinard are difficult to assess. 

• This appears to support the evidence of other studies demonstrating that 

management affects carbon fluxes through effects on vegetation, hydrology 

and peat characteristics, however there is still a great deal of variability. 

• There are some characteristics associated with site and carbon flux response 

slopes that may be indicators of carbon fluxes such as water table peat 

compression and species composition. However, further elucidation of some 

of these requires additional research. 

• The responses for fluxes of CO2 and light and temperature and CH 4  and 

temperature provide a workable model for predicting net gaseous carbon 

budgets over the period of a year. Further work and more intensive and wide-

ranging sampling would be likely to yield further insight using this approach. 

• Given the temperature dependence of flux processes the UK scenarios for 

climate change are likely to result in greater fluxes. However changes in 

vegetation and water table are likely to result from changes in rainfall and be 
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further influenced by changes in management. The present uncertainty over 

geographical distribution and intensity of management practices mean that 

effects at Scotland or UK scale will be difficult to predict. 
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Chapter 6: Discussion 

This chapter brings together the evidence from preceding chapters and discusses the 

evidence for a management effect of on the gaseous carbon fluxes in peatlands. 

However it is necessary first to offer a critique of the chamber flux methodology in 

order evaluate any effects. 

6.1 Critique of Flux Chamber Methodology 

The choice of equipment for any ecological investigation is crucial and is usually 

made on theoretical, practical and economic grounds. For the measurement of 

gaseous fluxes two main techniques are available eddy covariance (also known as 

eddy correlation and eddy fluctuation) or chambers, either dynamic (steady state) or 

static (non-steady state). The decision to use static chambers in this study was made 

firstly on the grounds of the spatial definition that chambers offer that is not available 

with eddy covariance. This was fundamental if links between gaseous flux 

measurement, vegetation and management were to be made. Static chambers are also 

considered to be more effective than dynamic chambers at detecting low fluxes such 

as occur in winter (Livingston & Hutchinson, 1995). On more practical and 

economic grounds, static chambers are easier to transport and more economically 

viable as no gas flow equipment is required to keep the concentration of the gas of 

interest at steady state. 

6.1.1 Chamber Critique: Theoretical Considerations 

Firstly there are certain theoretical aspects of chamber flux measurements that 

require some elucidation, this not only allows an understanding of the processes 

involved, but may indicate which processes the chamber method can affect. 

Transport of gases in the atmosphere is dominated by pressure and density-driven 

advection (horizontally) and eddy turbulence (vertically) but closer to the surface the 

influence of molecular processes increase (Oke, 1992; Livingston & Hutchinson, 

1995). The surface exchange may be modelled as: 

f = fm + fd 

Where: f = net flux, 

= mass flow according to Darcy's law, 
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and fd = molecular flow according to Fick's law. 

Darcy's law is defined as: 

fm =kCf dP/dz 
11 

Where: k is the intrinsic air permeability of the soil, 

C is the volumetric concentration, 

p is the density of the gas of interest, 

TI is the viscosity of the gas of interest, 

and dP/dz is the pressure gradient. 

Diffusion, described by Fick's law is: 

fd = - D0dC/dz 

Where: D 0  is the binary molecular diffusion coefficient, 

C is the concentration of the gas of interest, 

and z is distance. 

Diffusivity is dependent on the gas itself and the substance through which it diffuses 

and varies approximately as the square of absolute temperature and inversely with 

total air pressure (Livingston & Hutchinson, 1995). 

In soils of low permeability such as water logged peat, molecular diffusion 

dominates gas transport, diffusivity in water is about iO times less than in air 

(Livingston & Hutchinson, 1995). Vegetation influences the gas exchange through 

production, consumption and transport. Transport of gases in the canopy is the result 

of turbulent mixing, migration across leaf is by molecular diffusion or mass flow 

governed by conduction via stomata and cuticle (Jarvis & McNaughton, 1986; Oke, 

1992; Livingston & Hutchinson, 1995). In Sphagnum dominated peatlands it is likely 

to be molecular diffusion rather than mass flow that predominates, but there will also 

be the influence of species of Cyperaceae Poaceae and Ericaceae which are likely to 

be spatially variable. Static chambers operate by restricting the volume of air for 
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exchange across the covered surface and net emission or uptake, measured as a 

change in concentration, is a good reflection of the trace gas exchange rate only if the 

chamber does not significantly perturb the gaseous production, consumption and 

transport processes involved (Livingston & Hutchinson, 1995). There are several 

factors associated with the methodology adopted in this study, which have the 

potential to disrupt these processes, these include: 

Chamber design. 

Alteration of ambient conditions when chamber closes. 

Disturbance associated with base insertion. 

6.1.2 Chamber Critique: Chamber Design and Alteration of Ambient 

Conditions 

The chamber design used in this study was a static or non-steady state without vent 

to the atmosphere and an internal fan. Some authors recommend the use of a vented 

chamber (Livingston & Hutchinson, 1995; Davidson et al., 2002) this is because 

vented systems are thought to reduce changes in pressure between inside and outside 

the chamber. Internal and external pressure was not recorded during the field work 

therefore this may be a source of error. However a vent may not be essential and 

through a venturi effect may also contribute to error (Conen & Smith, 1998) this 

effect is likely to be more prevalent in windier areas such as the north of Scotland. 

However the presence of venturi effect in not considered unequivocal (Davidson et 

al., 2002) and the omission of a vent may lead to problems. Examination of Darcy's 

and Fick's Laws above would indicate that this is more of a problem where mass 

flow dominates the net flux. Molecular diffusion is likely to the more important 

process in terms of soil fluxes in water logged peatlands therefore differences in 

pressure may have less of an effect. Pressure effects may be more serious when 

vegetation is included, however, vascular plants are less dominant in peatlands and it 

may be that differences in pressure are less important. It is also likely that differences 

in pressure are relatively small compared to the effect on fluxes of, for example, 

differences in habitat due to management. However in the absence of data regarding 

the pressure inside and out of the chamber during measurements this is speculative 
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and therefore, differences in pressure remains an unknown but potential source of 

error. 

A mixing fan was included within the chamber, these fans have been connected with 

altering flux rates in comparison to systems without fans (Le Dantec et al., 1999) 

however, the consistent use of a fan for all flux measurements would seen to 

preclude this effect. 

The time a chamber is enclosed is especially important since the longer the period 

the more chance there is of altering chamber conditions relative to ambient, changes 

in temperature especially need to be kept to a minimum since biological process 

respond to changes in temperature. In the light, the use of Propafilm C ©  helps to 

reduce this as has this substance has a high thermal transmittance (Hunt, 2003) also, 

keeping chamber closure to a maximum of 5 minutes for CO2 ensured that 

differences between ambient and chamber were kept to a minimum. Further this was 

only likely to be a problem in the summer, in high light conditions, and as this is 

when flux rates are at their greatest this allowed shorter closure periods. However, 

temperatures within the chamber were usually slightly higher than ambient 

conditions but changes within the chamber were mirrored by changes in ambient 

temperature suggesting concurrent responses. Relative humidity was also usually 

greater within the chamber but as relative humidity was only weakly associated with 

fluxes (Chapter 4 and 5) this may be less important. Also recorded light, temperature 

and relative humidity inside the chamber were all within a 'natural range' and the use 

of climate variables as co-variables in statistical analysis offsets their effect on any 

testing differences between sites. Flux responses in the dark chamber (used for CO2 

and CI-L) are less related to air temperature and humidity and more to soil 

temperature. No effect on soil temperature was noted even over the longer period 

when CH4  measurements were made. 

The increasing concentration of gas in the headspace according to Fick's law the 

ground must affect molecular flow as the flow is dependent on the concentration of 

the gas in question, therefore it is possible that this static method underestimates 

fluxes (Davidson et al., 2002). A serious lessening of the flux would have presented 

itself as a curve rather than a linear representation in the data. Graphical examination 

of the data and rejection criteria based on an R 2  adjusted value of 0.9 would help to 
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detect and preclude this. Keeping the chamber closure time to 5 minutes or less for 

CO2 would also help to minimise this effect. It is more difficult to asses this affect 

for CI-L1  as only four samples were taken and closure times were up to 30 minutes but 

concentration of this gas are much smaller and the same rejection criteria was 

employed. Also the soil diffusivity in wet peat is lower than other more porous soils 

and the volume to area ratio of the chambers used here is large so the effect may be 

lessened (Davidson et al., 2002). Chamber volume to area ratio must be large enough 

to exhibit a constant rate of concentration change but not so large as to have 

excessive enclosure periods (Livingston & Hutchinson, 1995). As both CO2 and CF!4 

measured there is trade of between optimal volume to area ratio. The volume to area 

ratio of 0.28 m allowed constant concentration changes and quick enough closure 

times not to affect conditions too much. 

Another problem for this study related to volume is what may be termed the effective 

volume (Rayment, 2000). Rayment (2000) used this term to describe how static 

chambers for soil respiration consistently underestimate fluxes because the chamber 

includes soil pore spaces. This is not so much the problem in peatland sampling as 

pores are usually filled with water but the reverse effect may be present when 

vegetation is included in the chamber reducing effective volume (relative to being 

placed on a flat surface) and may be also exist due to the hummock-hollow nature of 

the habitat. This was partly addressed by measuring heights (n = 4) relative to the top 

of the base and the vegetation in estimating the volume of the base this was then 

added to the volume of the chamber top to give a unique volume every time a flux 

measurement was made. This would help to reduce discrepancies in effective volume 

due to the hummock-hollow nature. However, the only way to address the vegetation 

is to actively measure the biomass within the chamber. This is undesirable because of 

the destructive nature of biomass measurements. However assuming a building phase 

Calluna assuming a biomass of 2 kg m 2, which is greater than biomass reported for 

bog Calluna (Forrest, 1971; Forrest & Smith, 1975), would give approximately 250 

cm  of biomass within the chamber or 0.2 % of chamber volume. As noted in the 

section below the chamber was not deployed in building Calluna, therefore, we can 

assume vegetation portion of the chamber volume to be negligible. 
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6.1.3 Chamber Critique: Disturbance associated with base insertion 

This is potentially the most serious source of error in the present study. In fact the 

physical insertion of the chamber base into the peatland habitat causes so much 

disturbance in certain vegetation, as to rule out the method from use. Figure 6.1 

shows the before and after insertion of the base in a Calluna dominated bog. It is 

clear that to use this technique in this vegetation would be unreasonable, as the plot 

is in no way representative of the habitat after disturbance. In terms of representation 

of blanket bog vegetation covered by the present study this is a fairly serious 

omission since a large proportion of the bog in the UK particularly in the Southern 

Uplands and England and Wales have a high proportion of Calluna dominated bog. 

The disturbance effect arises due to the layering habit of Calluna. Tests with other 

base designs such as frames with weighted skirts did not work as an adequate seal 

between the skirt and the peat could not be achieved, the solution awaits further 

design and testing. 
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Figure 6.1: The effect of inserting chamber base into (iIluna dominated bog. (a) 
before chamber insertion. (h) after chamber insertion. 

The continual moving of chamber bases and walking around chambers to remove 

and replace chamber tops undoubtedly had an effect on the surrounding habitat. 

However vegetation within the plot tended to remain intact suggesting CO 2  fluxes In 

the light may not have been affected. 

Out-gassing from the peat by chamber insertion was identified as a potential problem 

in a preliminary study in the Lammermuir Hills by increases in flux rate. This effect 
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lessened over time, hence the 35 minute gap before measurements were taken, 

however it may still have been a potential problem with plots numbers 1 and 5 since 

time between insertion and measurement was less in these 2 plots because of the way 

plot sampling was structured. However, mean CH 4  flux for 2005 from disturbed' 

plots was 0.233 tmol CH 4  m 2  s (SD 0.021, n = 114) compared to 0.229 j.tmol CH 4  

m 2  s (SD 0.025, n = 37) for those plots with a longer period before measurements 

suggests that this disturbance does not appear to affect fluxes greatly. 

In addition to the out-gassing effect from peat, bubble release was also a potential 

source of error but only appears to have occurred at Maol Donn. Here it was possible 

to initiate a pulse of CH 4  (though apparently not CO 2) due to chamber closure 

disturbance. The reasons for this happening at Maol Donn are likely to be firstly 

because this site had higher emissions of CH 4  therefore, the concentration of CH 4  

within the peat was likely to be higher and secondly the softer peat (see penetrometer 

readings in Chapter 3) associated with this site. These two factors allowed gas 

bubbles to be released when chambers were closed. Bubble release was also 

observed naturally at this site but was not observed at any other site. This type of 

problem was easily detected from graphical examination of CH 4  concentration 

against time. Once detected, the associated flux rate was either not included in any 

further analysis or flux rates were calculated from the 3 data points after the initial 

pulse. Particular attention was paid to whether these were linear and within the 

normal range for this site, data not linear or outwith this range were discarded. 

6.1.4 Chamber Critique: Other Methodological Noise 

Further sources of error may come from the gas chromatography (GC) methodology. 

Automatic sampling is the preferred method for GC measurement (Crill et al.. 1995) 

this was not used here this and may have introduced some noise into the data. This is 

likely to be more of a problem when flux rates are small, such as in winter, therefore 

it may be that some of these fluxes may have been undetectable due to noise: 

coefficients of variation averaged 1.4 % for gas standards comparable to the 

precision of other hand injected GC studies (Crill et al.. 1995). 

Sampling CH4  in vials has the potential for leaks to affect concentrations in the vial. 

Over-pressurisation of vials with chamber air made easy detection of leakage also a 
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test on vials left for 6 months after being sampled with 10 ppm Cl-1 1  showed only a 

slight loss of CR4  (mean CR4  concentration was 9.6 ppm. +1- 0.17 SE, n = 51), gas 

sample vials were left for a maximum of 2 weeks before analysis. 

It is generally considered that chamber methods may under estimate flux rates 

(Davidson et al., 2002). As the emphasis in this study is placed more on the 

differences between sites rather than estimation of the 'true' flux rates, the chamber 

method was consistent between sites and therefore any under (or over) estimation is 

also likely to be consistent, although more replication would have been desirable. 

In summary, although chamber methods have problems, most of these can be 

overcome with appropriate data assessment procedures and replication. Therefore, 

the chamber method as used here appears to represent not only a cost effective but 

one of the best ways of estimating gaseous fluxes in spatially defined areas. 

6.2 Does Management Affect Carbon Fluxes? 

Chapter 1 introduced the carbon cycle of peatlands and some hypotheses of how 

anthropogenic management may affect this cycle. Figure 6.2 re-introduces this cycle 

but with effects of management super imposed. Figure 6.2 proposes that directly or 

indirectly management can affect the carbon cycle of peatlands through the 

vegetation and acrotelm directly and then through consequent indirect effects. The 

question remains though, does this thesis offer evidence to support the existence of 

these illustrated effects or do they remain theoretical? 
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Chapters 1 and 2 reviewed the literature evidence for management effects on the 

blanket bog ecosystem. It is apparent that the hypothesis for management effects on 

the vegetation is supported by evidence in the literature. Chapter 3 presented new 

data to further support this vegetation effect hypothesis, not only in terms of species 

composition but also vegetation structure. Plants may affect gas exchange through 

alteration of the chemical and physical environment hosting micro-organisms, uptake 

and release of resources for microbial biomass, foliar exchange or as a direct 

pathway for flow such as aerenchymatous species (Clymo, 1984; Jarvis & 

McNaughton, 1986; Oke, 1992; Livingston & Hutchinson, 1995; Joabsson et al., 

1999). Therefore disturbance of vegetation through management must disturb the 

gaseous exchange processes in some manner. Thus, it would seem that the link 

between this and carbon fluxes should be theoretically self evident. However, the 

present gaseous carbon flux literature from the UK reviewed in Chapter 2 is lacking 

in evidence for the direct effects of management on carbon fluxes except for forestry 

and forestry related drainage (Cannell et al., 1993; Cannell & Milne, 1995; Fowler et 

al., 1995; Anderson et al., 2000; Hargreaves et al., 2003) the effects of grazing and 

burning though appear to remain elusive. There is however evidence of this type of 

management affecting carbon balance of one site, Hard Hill where burning reduced 

carbon sequestration but grazing effects were not identified (Garnett et al., 2000). 

Evidence from outside the UK is more extensive and includes mainland Europe and 

Canada but the management practices examined are mainly either related to forestry 

(drainage) or peat extraction (Sakavets & Germanova, 1992; Martikainen et al., 

1995; Komulainen et al., 1998; Nykanen et al., 1998; Komulainen et al., 1999; Sundh 

et al., 2000; Tuittila, 2000; Tuittila et al., 2000; Minkkinen et al., 2002; Tomassen et 

al., 2003; Glatzel et al., 2004; Marinier et al., 2004; Tuittila et al., 2004; Von Arnold 

et al., 2005). However even when management has been examined in terms of 

carbon fluxes the picture is not unequivocal and much variation is present (Byrne et 

al., 2004). Although forestry has been practiced on UK peatlands (though less 

practiced at present at least on deep peat) peat extraction is not common to blanket 

bog in the UK. Evidence for the effects of fire on carbon balance appear to also be 

lacking but may have serious implications and challenge the assumption that 

northern peatlands are a carbon sink (Turetsky et al., 2002). 
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Thus it would appear that one can make links to management affecting the vegetation 

and hypothesize about the effect on the carbon flux but the effect may not always be 

apparent as further research appears to be required. 

Chapter 4 reinforced theoretical consideration for environmental controls on carbon 

fluxes. However, there appeared to be at least qualitatively different responses to 

environmental control at the site level. As Chapter 3 found differences in vegetation 

between sites at Forsinard that are considered to be indicative of management then 

this indicates an interactive effect of site and environmental controls on carbon 

fluxes. 

These site differences and interactions were tested for in Chapter 5 and fluxes were 

simply modelled over the period of a year in an attempt to illustrate any differences. 

Significant interaction and site effects were detected using GLM's providing direct 

evidence of management affecting the gaseous carbon fluxes. The simple modelling 

approach appeared to make these differences more apparent suggesting that if year 

round measurements were made differences would be clear. However the models 

used are extremely simple and are unlikely to be indicative of complex biological 

processes. Nonetheless they offer support for the hypothesis that management affects 

gaseous carbon fluxes. 

That climate changes is unequivocal, that climate will change in response to 

anthropogenic influences is becoming generally accepted. That important ecosystem 

carbon related processes, such as soil decomposition and photosynthesis, are affected 

by temperature, light, CO2 concentration and water and nutrient availability is also 

unequivocal. Nevertheless we have no direct control over many of these factors and 

though the study of these relationships is undoubtedly important, it is apparent that 

only when coupled with the investigation of management practices is our ability to 

affect ecosystem carbon dynamics revealed. We have direct control over whether we 

light a fire or put one out, increase or decrease grazing numbers, drain or plough. 

Changing these actions spatially and temporally will affect carbon fluxes. Although 

these effects are likely to be dwarfed by changes in anthropogenic emissions, it is 

still important to conserve the large peatland carbon store. Peatland management 

affects the processes of decomposition and photosynthesis by the changing of 
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vegetation and peat characteristics and the only way to assure the conservation of this 

carbon store is to combine the manipulation of habitats by management with the 

quantification of carbon fluxes. 

In summary the evidence offered by this thesis supports the hypothesis that land 

management practices affect gaseous carbon fluxes. The implication of this in a UK 

and global context is that we can indirectly influence fluxes of carbon to the 

atmosphere by changing management practices that will have a feedback to 

atmospheric carbon concentrations. 
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Chapter 7: Conclusions and Further Research 

7.1 Conclusions 

The relationships between management practices and carbon flux of blanket 

bog ecosystems in the UK have been assessed revealing links between 

management, vegetation, and carbon fluxes, and highlighting gaps in 

knowledge and areas for further study. 

• Blanket bog can be is defined as areas of semi-natural vegetation over-lying 

peat of at least 0.5 in depth and is the most extensive semi-natural land 

habitat in the UK. Peatland ecosystems represent a large carbon store and a 

distinctive assemblage of species, which, if lost, would decrease global 

biodiversity and potentially increase atmospheric carbon. Threats to peatland 

ecosystems include drainage, agricultural improvement, burning, the effects 

of large herbivores, peat extraction and climate change. 

The management practices of burning, grazing and drainage are known to 

affect peatland vegetation and therefore have either direct or indirect effects 

on peatland gaseous carbon fluxes. 

• The restoration of blanket bog in the UK is a relatively recent phenomenon. 

Several procedures and policy options are available to landowners for blanket 

bog restoration. These include: 

• The Peatland Management Scheme 

• Scottish Forestry Grants Scheme 

• LIFE Nature (EU) 

• Heritage Lottery Funding 

• The Rural Stewardship Scheme (RSS) 

• Organic Farming (indirectly) 

• Land Management Contracts 

217 



Chapter 7 

There is as yet no reliable estimate for the net gaseous flux rates of CO2 from 

Scottish or UK blanket bog. Also the influence of management of gaseous 

carbon fluxes is lacking. There is a need for further research not only to 

address this but also to address the lack of spatial and temporal evidence. 

This has implications for UK climate change models, UK peatland ecosystem 

response to climate change and UK government policy. Derived estimates 

from continental peatlands are unlikely to be representative of UK conditions 

and further research is necessary to obtain useable estimates for the UK. 

Fluxes of methane from UK peatlands were reviewed from nineteen studies 

from 11 different sites all report emissions of methane, with an overall mean 

emission of 0.029 tmol CI-L 1  m 2  s 1 . However, only six of the nineteen 

explicitly state that winter measurements were included, and none of the 

studies record the management status of sites. 

Given the differences in methods, study durations and the size of the area of 

blanket bog to be covered, it is suggested that a meta-analytical approach to 

climate change research is adopted. 

ff Evidence from the Moor House Hard Hill experiment and Forsinard showed 

that between site vegetation composition pH, peat compaction, animal 

utilisation, and vegetation structure were different and the majority of these 

can be related to management. 

The NYC method is not indicative of site management at either Hard Hill of 

Forsinard. Therefore, the development of further methodology to assess the 

geographical spread and intensity of management of blanket bog in the UK is 

likely. 

However, that both Moor House and Forsinard are site-specific studies means 

that more research is required for the applicability of these studies to the UK 

situation. 
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Relationships between gaseous fluxes and climate variables were identified. 

However, these did not always follow theory and departures may be related to 

site management. 

Statistically significant effects of management and interaction between 

management and climate were detected using general linear models on the 

gaseous fluxes of carbon dioxide and methane. 

There are some characteristics associated with site and flux responses to the 

environment that may be indicators of overall carbon balance such as water 

table peat compression and species composition. However, further 

elucidation of some of these requires research. 

The responses for fluxes of net CO 2  exchange and PAR and temperature and 

net CH4  exchange and temperature, provide a workable model for predicting 

net gaseous carbon budgets over the period of a year. However these models 

are unlikely to encompass biological complexity. 

Given the temperature dependence of flux processes the UK scenarios for 

climate change are likely to result in greater fluxes. However changes in 

vegetation and water table are likely to result from changes in rainfall and be 

further influenced by changes in management. The present uncertainty over 

geographical distribution and intensity of management practices mean that 

effects at the Scotland or UK scale will be difficult to predict. 

Current and future models are likely to be ill informed in respect of the 

effects of management on the carbon balance of blanket bog habitat because 

management has not been considered in current gaseous carbon flux research. 

The evidence presented by this thesis indicates that management does affect 

carbon fluxes. Statistical analysis and modelling appear to show that damaged 
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peatlands are sources of carbon, fire may increase fluxes of CH 4  (at least 

temporarily) and more intact sites appear to be sinks though this is dependent 

on the C144  scenario considered. This may indicate that the conservation of 

intact peatlands for biodiversity may lead to carbon gains or at the very least 

minimise carbon losses. 

7.2 Further Research 

As indicated above, there are several questions still requiring additional research 

including: 

What are the geographical extents of management practice on blanket bog 

habitat? 

Can the variability of management practices throughout the blanket bog 

habitat be quantified? 

Can the variability of fluxes of CO 2  and CH4  in relation to management 

be quantified? 

• Does management significantly affect fluxes to river systems? 

Do carbon fluxes from blanket peat catchments to river systems end up in 

the atmosphere and if so over what time scale? 

Do restored peatlands have a more positive or negative carbon balance 

than damaged peatlands? 

Can the carbon flux of blanket bog be characterised by using indicators of 

vegetation and management? 

Can the spatial variation in microbial communities be characterised in 

peatlands? 

If an informed approach to policy regarding the dynamics of carbon from these 

peatland ecosystems is required, and estimates of how blanket bog ecosystems can 

adapt to climate change is needed, then further research is a prerequisite. 

It is extremely unlikely that a definitive value for the carbon balance of the blanket 

peat resource can be measured; therefore, proxy approaches are required. The most 

commonly used method is to model fluxes mathematically, however this requires 

confidence in either the empirical data on which the models are based or upon the 
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theories on which they are based. As stated above, current and future models are 

likely to be ill informed in respect of the effects of management on the carbon 

balance of blanket bog habitat because of the absence of the consideration of 

management in current gaseous carbon flux research. 

One approach not yet considered may be to define and quantify easily identifiable 

and mappable indicators of carbon flux dynamics and management. Ellenberg 

indicator values (Hill et al., 1999) can be used in the characterisation of habitats 

from vegetation composition data. In Canada it has been noted that bryophytes are 

good indicators of methane flux as they reflect the long-term water table (Bubier & 

Moore, 1994). Aerenchymatous species can indicate increased methane flux 

(MacDonald et al., 1998; Joabsson et at., 1999), bare peat implies only respiration 

but no photosynthetic activity and erosion may be occurring therefore a loss of 

carbon. 

There will be functional relationships between blanket bog species composition, 

carbon flux and management. Estimating productivity and decay rates for a range of 

the dominant blanket bog species may allow a carbon accumulation potential (CAP) 

to be determined that could then be scaled up to the landscape level from vegetation 

composition and structure data. The effects of grazing and burning on the spatial 

distribution and abundance of bog species could identify management options for the 

optimisation of carbon sequestration and biodiversity conservation. This kind of 

approach may allow a crude but effective way of estimating the implications of 

anthropogenic actions on the carbon dynamics of blanket bog in the UK. However, 

one possible source of existing information is the many papers concerning the 

production ecology of bogs and bog species, though this has not been addressed by 

the current review. Further, it may be possible to link in existing data from remote 

sensing as in the Scottish Blanket Bog Inventory (Quarmby et al., 1999; Johnson & 

Morris, 2000b, a, c, 2001) 

The objective of the study would be to establish a carbon accumulation potential 

(CAP) value for the major peat forming species that could then be scaled up to the 

landscape level. 
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The suggested approach would be: 

Develop indicator values for the dominant blanket bog species from studies 

for carbon dioxide fixation and loss in the laboratory, field and from the 

literature, to encompass the variety of climate conditions where blanket bog 

is found in the UK. 

Develop indicators of water table, peat compression and nutrient status to that 

can indicate methane flux. 

Combine indicators of carbon dioxide and methane into one indicator of 

CAP. 

Develop a field methodology for assessing vegetation composition and 

structure to enable classification of polygons to CAP. 

Botanical surveys using developed methodology 

Prediction of CAP from surveys. 

Flux research in the field relating to predicted CAP to gaseous flux 

measurements for calibration and comparison to predicted CAP. 

This approach will not only allow for indications of carbon dynamics but as it is 

intimately linked to vegetation and management dynamics future changes can not 

only be predicted but re-sampling will allow explicit testing of prediction and further 

development of CAP. 
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8. Appendices 
These appendices are listed by the reference to each chapter but only Chapters 1, 2, 3 

and 5 have a related appendix. 

8.1 Chapter 1 Appendix 

SI Units 
In the course of the reviewing papers for chapters 1 and 2 it was noted that differing 

units that are sometimes not delimited by the chemical compound they relate to are used 

in published literature this leads to a few simple but important questions. Why are 

different units are reported and not bounded by chemical constituents? What typical 

assumptions are made when reporting fluxes? And are these problems serious? 

For the standard reporting of results scientists are expected to use the appropriate SI unit 

for the species under study (BIPM, 1998). When reporting flux measurements it is usual 

to express the results in terms of the units of the substance measured, per unit area, per 

unit time. The SI unit for the standard of amount of substance is the mole (mol), the SI 

unit for length is the metre, therefore area is expressed as square metres (m) and the SI 

unit of time is the second (s). When expressing results in terms of a substance it is 

normal to explicitly state which substance has been measured e.g. CO2 or C (this also 

follows for expression in units of mass). It therefore follows that the flux of carbon 

dioxide per unit area, per unit time, should be expressed as mol CO 2  m 2  s 1 . However, 

greenhouse gases are normally expressed in units of mass for the purposes of the U.K. 

Greenhouse Gas Inventory; the SI unit being kilogram (kg). Conversion of this means 

knowing the weight of 1 mole of carbon dioxide in 1 kg or more conveniently 1 gram 

(g). CHI Appendix Table 1 below shows the conversion factors for this purpose. 

In reality the amounts can be very small or very large and the measurements are 

reported as derivations of the SI base units, for example j.imol CO2 m 2  s* The most 

commonly quoted multiplication factors are given in CHI Appendix Table 2. 
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CHI Appendix Table 1: Relationship between mole and mass in grams of chemical 
substances relevant to this thesis. 

Chemical species 	grams 	 moles 

carbon C 1 mol 12.01 g 1 g = 0.0833 mol 

oxygen 0 1 mol = 16.00 g 1 g = 0.0626 mol 

hydrogen H 1 mol = I g 1 g =  1 mol 

carbon dioxide CO2 1 mol = 44.01 g 1 g = 0.0277 mol 

methane Cl-I4  1 mol = 16.01 g 1 g = 0.0625 mol 

CHI Appendix Table 2: Prefixes and multiplication factors in common use. 

Multiplication factor Abbreviation Prefix Symbol 

1,000,000,000,000,000 iO' 5  peta P 

1,000,000,000,000 1012 tera T 

1,000,000,000 109  giga G 

1,000,000 lOo mega M 

1,000 103  kilo k 

100 102  hecto h 

10 10' deca da 

0.1 10' deci d 

0.01 102 centi c 

0.001 10 milli m 

0.000,00 1 106 micro 11 

1 kilotonne (kt) = 10 tonnes = 1,000 tonnes 

1 Mega tonne (Mt) = 106  tonnes = 1,000,000 tonnes 

1 gigagram (Gg) = 1 kt 1 teragram (Tg) = 1 Mt 

Attempting to answer why different units are used and specific chemistry is not 

explicitly reported would necessarily involve questioning the editors of the scientific 

journals where the results are reported and ask why there appears to be a problem. 

However, this is outwith the bounds of this thesis and more important are the 

assumptions made when deriving calculations and whether they influence interpretation. 

Here there need to be closer examination of how estimates are arrived at. The 

conversion between moles and mass will necessarily involve some rounding errors and 
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small underestimation due to isotopic composition (e.g. naturally occurring oxygen is 

approx 99.759% 0-16, 0.037% 0-17 and 0.204% 0-18) but these are unlikely to be 

serious. In trying to consider what further assumptions have been made in the 

calculation and whether or not these are important we must first consider how the 

measurements were collected. This involves examination of not only the method but 

also the number of samples and the period over which the study was conducted. There 

are usually no problems in using units of m 2  s 1  or m 2  hr' as most studied measure 

fluxes over comparable areas and longer periods than these; problems arise when units 

are expressed in terms of ha or km -2  or month or yr as this usually involves 

extrapolation beyond the area or time period of the study. 

For example, if CO2 measurements were made by eddy-covariance at one blanket bog 

site for 2 days in June and 1 day in July we might reasonably expect the results to be 

reported in .tmo1 CO2 m 2  and with mean values for day and night. However, if a 

value for carbon sequestration is required for the whole of the UK blanket bog for 

submission to the UK Greenhouse Gas Inventory, and this is the only study available, it 

would be necessary to convert this figure to a mass value, extrapolate from the area 

reported in the study (ha) to the entire area of blanket bog in Scotland (1,927,000 ha), 

and extrapolate beyond the period of study (3 days in this case and not including winter) 

to arrive at a value in Gg CO2 yf'. Without the information surrounding the study it 

would be easy to accept this value as being representative. Once given this information, 

however, one does not have much confidence in that value, although evaluation of the 

reported statistic and reflection on what improvements are necessary in order to acquire 

a more representative value is possible. One may think that this example is far removed 

from reality, however, these type of figures are exactly what are used for informing 

government policy. Chapman et al. (2001) report just such an extrapolative value for 

peat accumulation for the UK, although the authors acknowledge that their value is an 

extrapolation. This example is not used to offer undue criticism of these authors, indeed 

similar extrapolations are given in this thesis, merely to highlight the paucity of 

information that is available to arrive at reliable estimates for fluxes of carbon dioxide 

(or methane or fluxes to rivers) for blanket bog in the UK and emphasize the caveats 

associated with these type of figures. 

Accordingly all results reported here including those from review papers and data 

collected for this thesis should be interpreted and/or used with caution. 
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CH I Appendix Table 3: Carbon fluxes and concentrations in rivers in the UK from peatland catchments. Figures in brackets are 95% CI unless otherwise stated. * indicates 

information from a review article. 

Keterence 	 Country 	Site 	 DOC 	 POC 	 DIC 	 H CO3 -C 	 Free CO2 	 Cl4  - C 
Dawson etal.. (2002) 	Scotland 	Brocky Burn 	169 kg  ha yr(1l9) 	18.5 kg  ha' yr 1  (17.9) 	Not estimated 	 1.12 kgChayr (2.07) 	2.62 (1.75)CkgC ha y(' 	<0.01 kg  ha yr 

Wales 	Upper Hafren 	83.5 kg C ha'yr (37.7) 	27.4 kg  ha yr4 	Not estimated 	 1.28 kgCha yr1  (1.17) 	8.75 (3.80) CkgC ha" yr1 	<0.01 kg  ha-1  yr4  
(19.0) 

Woffall eta!,, (2003) 	England 	Trout Beck 9.4 g C m 2 yr4  19.9 g C m 2 yr1  5.9 g C m 2  yr1  Not estimated 	 3.8 g C m 2  y(' 	 Not estimated 
Dawson etal., (2001 b) 	Scotland 	Brocky Burn 8.13 mg Y' 0.2-0.8 mg 1. 1  Not estimated Not estimated 	 1.71 mg l 	 Not estimated 

6.87 mg 1' 0.2-0.8 mg I' 1.34 mg l 
9.76 mg 1' 0.2-0.8 mg l 1.2:1 mg l 
21.3 mg l 0.2-0.8 mg l 1.61 mg 1 
6.5 mg 0.2-0.8 mg I 1.46 mg 
7.05 mg 1' 0.2-0.8 mg 1.46 mg 
17.0 mg l 0.2-0.8 mg I' 1.32 mg 1-1  
12,7 mg I' 0.2-0.8 mg l 1.03 mg I' 

Scotland 	Water of Dye 3.34 mg l' 0.2-0.8 mg 1 1.82 mg 1' 
3.28 mg 0.2-0.8 mg r' 1.35 mg i 
4.08 mg l 0.2-0.8 mg l 1.11 mg I 
16.0 mg 1' 0.2-0.8 mg 1' 1.77 mg 1 
3.73 mg 1 -1  0.2-0.8 mg 1 - ' 1.89 mg 1 
3.54 mg I 0.2-0.8 mg 1.35 mg I - ' 
8.05 mg i 0.2-0.8 mg I 1.29 mg 1 -1  
9.90 mg l 0.2-0.8 mg 1 1.26 mg 1 -1  

Dawson ci 0/.. (2001 a) 	Scotland 	Brocky Bum 2.62 mg 1 Not estimated 2.95 mg 11 Not estimated 	 Not estimated 	 Not estimated 
17.6 mg I 1.79 mg I 
4.09 mg 1.1 1.19 mg l' 
28.9 mg l 0.55 mg 1 
10.3 mg l' 1.67 mg i 
20.7 mg l 0.95 mg 
4.97 mg 1 1.19mg 1. 1  
5.77 mg 1' 2.25 mg 1 -1  
24.3 mg I 1.45 mg 1' 
6.82 mg 1' 1.08 mg 1' 
5.53 mg 1 -1  4,13 mg 1' 5.34 mg l' 
20.6 mg I 2.39 mg 1 3.29 mg Y' 
6.37 mg 2.34 mg l' 4.64 mg 1 -1  
6.04 mg 1- ' 3.01 mg 1' 2.87mg 1 -1  
23.4 mg 1.00 mg 1' 2.15 mg 
6.81 mg l 2.06 mg r' 3.28 mg i 
6.25 mg 1' 2.93 mg 1' Not estimated 
23.0 mg r' 1.68 mg 1' 
7.14 mg 1' 2.12 mg 1' 
23.10 mg 1' 2.93 mg i 4.85 mg I" 
27.8 mg l 1.46 mg 1 -1  1.53 mg 1-1  
18.4 mg 2.96 mg 1' 3.51 mg l' 
8.34 mg l 2.65 mg 1' 2.54 mg 1 -1  
24.9 mg P' 1.09 mg 1' 1.85 mg I - ' 
8.9 mg P' 2.52 mg 1' 2.58 mg I 
9.72 mg 1 - ' 2.23 mg I - ' Not estimated 
24.7 mg l 1.23 mg 1' 
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Reference Country Site DOC POC DIC 	 H CO3 -C Free CO2 	 CH - C 

Dawson etal., (200 Ia) Scotland Brocky Burn 8.81 mg V' 2.43 mg 1.1 

7.64 mg 1 - ' 4.25 mg 1' 
20.4 mg 1 2.24 mg 1' 
6.59 mg I 3.70 mg 1 
9.25 mg 0 Not estimated 2.30 mg l' 	 Not estimated 1.97 mg I' 	 Not estimated 
24.6 mg l 1.17mg 1.1 1.03 mg 1-1  
8.87 mg l' 2.27 mg I' 1.52 mg 
9.58 mg 1' 2.66 mg 0 1.80 mg I" 
24.7 mg I 0.94 mg 1 - ' 0.94 mg 1. 1  

9.92 mg l 2.38 mg 1 -1  1.96 mg l' 
6.69 mg l' 1.85 mg l' 3.43 mg l' 
24.2 mg 1 - ' 0.46 mg I' 1.61 mg I"  
11.8 mg I' 0.85 mg l' 1.42 mg I 
25.3 mg l' 0.75 mg I Not estimated 
10.7 mg I' 2.20 mg 1 -1  
10.01 mg 1' 2.79 mg l 1.9 mg I' 
24.2 mg l' 1.09 mg I' 1.72 mg l' 
10.5 mg 0 1.99 mg l 2.19 mg l' 
2.14 mg I 5.26 mg 1' 6.07 mg 
12.8 mg I' 2.94 mg l' 4.35 mg 1* 1  
2.88 mg l' 4.04 mg l' 6.04 mg I' 
7.98 mg l' 3.30 mg l' Not estimated 
22.9 mg l•' 1.11 mg 1 -1  
8.76 mg r' 2.50 mg 
8.82 mg 1' 2.72 mg 1' 0.32 mg I-I 
23.8 mg r' 0.14 mg l' 0.313 mg 1-1 
8.96 mg 1' 1.84 mg I' 0.36 mg 1-1 
30.2 mg l' 0.01 mg 0 0.47 mg I-I 
8.80 mg l' 2.58 mg 1' Not estimated 
24.1 mg l 0.00 mg I' 
9.26 mg 1' 2.23 mg I' 
7.59 mg r' 1.73 mg I' 0.23 mg 1' 
21.8 mg l 0.00 mg i 0.33 mg 1' 
8.60 mg I' 1.99 mg I 0.30 mg 1 -1  
4.74 mg 0 0.29 mg 1' 1.26 mg 
7.31 mg 1' 2.33 mg l' Not estimated 
19.5 mg 1' 0.12mg i 
8.40 mg l 1.58 mg 1' 

Miller etal.. (200 1) Scotland Glensaugh Cairn Mean 5.74 mg 1. 1  Not estimated Not estimated 	 Not estimated Not estimated 	 Not estimated 
min 1.4 max 32.8 

England Cottage Hill Mean 17.68mg I' 
min 3.5 max 58.2 

England Rough Sike Upper Mean 10.99 mg 1 -1  
min 3.1 max 23.9 

England Trout Beck Mean 8.82 mg 1 -1  
min 2.0 max 26.2 

Hope Cf al., (1997) Scotland River Dee 22.1 kg C ha-' yr 	(11.6) 1.9 kg C ha-' y(' (1.3) Not estimated 	 Not estimated Not estimated 	 Not estimated 
Method 2 Method 2 
28.4 kg C ha-1  yr' (6.1) 2.4 kg C ha 	yr t  (1.0) 
Method 5 Method 5 
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Reference 	 Country 	Site 	 DOC POC 	 DIC 	 H CO3 -C 	 Free CO2 	 CH4  - C 
Hope Cl al.. (1997) 	Scotland 	River Dee 	21.1 kg C ha -1  yr4  (11.1) 1.3 kg C ha' yr 	(0.9) 

Method 2 Method 2 
27.5 kg C ha yr1  (6.5) 1.6 kg C ha-1  yr1  (0.6) 
Method  Method 5 
19.8 kg C ha4  yr' (9.4) 1.4 kg C ha4  yr1  (1.5) 
Method 2, Method 2 
27.2 kg C ha 	yr1  (6.2) 1.9 kg C ha1  yr1 	(1.4) 
Method 5 Method 5 

Hope et al., (1997) 	Scotland 	River Dee 	20.4 kg C hi' yr1  (11.1) 1.9 kg C ha4  yr4  (3.3) 	Not estimated 	 Not estimated 	 Not estimated 	 Not estimated 
Method 2 Method 2 
26.3 kg C ha- ' yr1  (5.3) 2.4 kg C ha" yr4  (2.2) 
Method 5 Method 5 
30.6 kg C ha' yr1  (19.6) 2.5 kg C ha-1  yr1  (2.2) 
Method 2 Method 2 
39.8 kg C ha1  yr1  (86.0) 3.2 kg C ha-1  yr' (13.8) 
Method 5 Method  
32.2 kg C ha1  yr1  (15.9) 4.5 kg C ha- ' yr1  1 	(5.5) 
Method 2 Method 2 
38.8 kg C ha-1  yr4  (7.0) 5.5 kg C ha4  yr1  (4.2) 
Method 5 Method 5 
27.2 kg C ha1  yr1  (18.1) 1.1 kg C ha- ' yr1  1(1.3) 
Method 2 Method 2 
13.4 kg C ha1  yr1  (6.0) 1.2 kg C ha4  yr1  (1.7) 
Method 2 Method 2 
82.5 kg C ha-1  yr4  (77.1) 14.3 kg C ha1  yr1  (20.9) 
Method 2 Method 2 
79.7 kg C ha1  yr' 13.6 kg C ha1  yr1  (25.7) 
(I0l.6) Method 2 Method  
92.6 kg C ha' yr1  (38.7) 15.8 kg C hi' yr4  (13.1) 
Method 5 Method 5 
64.3 kg C hi' yr1  (79.4) 9.7 kg C ha1  yr' 	(17.2) 
Method 2 Method 2 
21.4 kg C ha4  yr1  (11.7) 1.5 kg C ha-1  yr4  (1.7) 
Method 2 Method 2 
23.9 kg C hi' yr' (11.3) 1.0 kg C ha4  yr4  (0.7) 
Method 2 Method 2 
113.4 kg C ha - ' yr1  3.5 kg C ha" yr1  (55.7) 
(122.3) Method 2 Method 2 
101.7 kg C ha- ' yr1  85.3 kg C hi' yr1  
(136.8) Method 2 (184.5) Method 2 
13.2 kg C ha1  yr4  (9.7) 1.0 kg C ha1  yr1  (1.6) 
Method 2 Method 2 
115.0 kg C hi' yf' 21.3 kg C hi' yr' (32.6) 
(123.1) Method 2 Method 2 
39.6 kg C hi' yf' (36.6) 2.5 kg C hi' yf' (3.0) 
Method 2 Method 2 
74.7 kg C hi' yf' (51.0) 5.4 kg C hi' yr' (6.4) 
Method 2 Method 2 
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Reference 	 Country 	Site 	 DOC POC 	 DIC 	 H CO3 -C 	 Free CO2 	 014 - C 

Hope cial., (1997) 	Scotland 	River Don 	 18.2 kg C ha' yr' (19.4) 5.3 kg C ha' yf' (4.0) 	Not estimated 	 Not estimated 	 Not estimated 	 Not estimated 

Method 2 Method 2 
5.5 kg C ha' yr' (2.6) 

Method 5 
19.4 kg C ha' y(' (11.6) 4.5 kg C ha' 	(4.1) 
Method 2 Method 2 

4.6 kg C ha' yr' (2.3) 

Method 5 
16.4 kg C ha' yr' (10.2) 4.0 kg C ha' yr 	(3.2) 

Method 2 Method 2 

4.1 kgC ha" yr 	(2.0) 

Method 5 

Hope eta/., (1997) Scotland River Don 7.kg C ha' yr 	(3.5) 2.5 kg C ha' yr' (0.7) 

Method 2 Method 2 

2.8 kg C ha' yr' (0.5) 
Method 5 

• Hope and Billet Scotland River Halladale 103.4 kg C ha' yr' Not estimated Not estimated Not estimated Not estimated Not estimated 

(1997). (in Worrall el 

al., 2003) 

Scott et al., (1998) England Great Dun Fell 15 g m 2  yr Not estimated Not estimated Not estimated Not estimated Not estimated 

15 gm 2 yr' 

7 gm 2 yr' 

logm 2 yr' 
II gm 2 yr' 

II gm 2 y(' 

7 gm 2 yr' 
9 g m 2  yr 

Tipping et al., (1999) England Great Dun Fell 27.8 g C m 2  (5.1) sd, Not estimated Not estimated Not estimated Not estimated Not estimated 

and Newton Rigg n=3 
27.4 g C m 2  (4.2) sd 
n=6 

56.3 g C m 2  (6.55) sd 

n=2 
55.1 gCm 2 (15.8)sd 
,t=3 

56.8 g 	m 2  (8.1) sd 
n=5 
78.8 g 	m 2  (12.7) sd 

n=3 

Cole et al., (2002) England Hard Hill 16 mg 1' Not estimated Not estimated Not estimated Not estimated Not estimated 

low at 50cm depth 
41.2 mg I - ' 

high at 10 cm depth 
26.4 mg l 
mean at 10 cm depth 

18.6 mg l' 

mean at 50cm depth 
7.1 gCm 2  yr1  flux rate 
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Reference 	Country Site DOC 	 POC 	 DIC 	 H CO3  -C 	 Free CO2 	 CH4 - C 
Monteith & Evans 	Scotland Loch Coire nan 2.2 mg l' mean, 	Not estimated 	 Not estimated 	 Not estimated 	 Not estimated 	 Not estimated 
(2002) Arr 5.2 max, <0.1 mm 

Scotland Alit a Mharcaidh 2.3 mg i 	mean 
12.1 max <0.1 mm 

Scotland Alit na Coire nan 3.9 mg 1.1  mean 
Con 10.0 max <0.1 mm 

Scotland Lochnagar 1.1 mg Ii  mean 
3.4 max 0.2 mm 

Scotland Loch Chon 3.2 mg l 	mean 
6.2 max 1.7 min 

Scotland Loch Tinker 4.7 mg l 	mean 
8.1 max 1.9 min  

Scotland Round Loch of 3.0 mg I' mean 
Glenhead 5.0 max 1.6 mm 

Scotland Loch Grannoch 4.3 mg I' mean 
12.8 max 2.7 min 

Scotland Dargall Lane 1.7 mg I 	mean 
5.9 max 0.3 min 

Monteith & Evans 	England Scoat Tarn 0.9 mg I 	mean 	Not estimated 	 Not estimated 	 Not estimated 	 Not estimated 	 Not estimated 
(2002) 2.7 max <0.1 mm 

England Burnmoor Tarn 2.0 mg I- ' mean 
4.7 max 0.9 mm 

England River Etherow 5.28 mg I' mean 
34.0 max 0.3 mm 

England Old Lodge 5.0 mg 	mean 
15.0 max 1.7 min  

England Narrator Brook 1.4 mg 1.1  mean 
5.8 max 0.3 min 

Wales Llyn Llagi 2.4 mg 	mean 
5.5 max <0.1 min 

Wales Llyn Cwm 2.6 mg I mean 
Mynach 10.7 max <0.1 mm 

Wales Afon Hafren 1.9 mg 1 	mean 
8.1 max <0.1 mm 

Wales Afon Gwy 2.12 mg 1' mean 
6.3 max <0.1 mm 

Northern Beagh's Burn 11.1 mg l 	mean 
Ireland 30.0 max 3.1 mm 
Northern Bencrom River 4.1 mg 1.1  mean 
Ireland 15.5 max 1.3 mm 
Northern Blue Lough 3.5 mg 	mean 
Ireland 6.8 max 1.4 min 
Northern Coneyglen Burn 8.3 mg 1.1  mean 
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CHI Appendix Table 4: Management and soil characteristics for studies in CFI2 Appendix Table 5. * 

indicates information from a review article 

Reference Site Name Catchment Soils Management/Land Use 
Dawson et at (2002) Brocky Burn Includes blanket peat Burning for grouse 

Upper Hafren Includes blanket peat Grazing sheep 

Worrall et at (2003) Trout Beck Mainly blanket peat Not stated but known to be grazed and burnt 

Dawson et at (2001b) Brocky Burn 65% peat 25% peaty podzol Burning for grouse 

Water of Dye 65% peat 25% peaty podzol Burning for grouse 

Dawson et at (200 Ia) Brocky Bum 59% peat 22% peaty podzols 19% Burning for grouse 
rankers <1% fluviosols 

Miller et at (2001) Glensaugh Cairn Hill peats, peaty podzols, humus Rough grazing sheep and cattle 
podzols 

Cottage Hill 98% peat Erosion present and sheep grazed in summer 

Rough Sike Upper 97% peat Erosion present and sheep grazed in summer 

Trout Beck 90% peat Erosion present and sheep grazed in summer 

Hope et at (1997) River Dee Peat at high alt to lowland till Dee 12% wood, 63% upland grass/moor, 9% agric grass, 
12% agric crop 4% other 

Hope et at (1997) River Don Peat at high alt to lowland till Don 10% wood, 30% upland grass/moor. 24% agrc 
grass, 32% agric crop 4% other 

* Hope and Billet (1997). (in River Halladale Not known Not known 

Worrall et al., 2003) 
Scott et at (1998) Great Dun Fell Acid ranker and peat Not stated 

Tipping et at (1999) Great Dun Fell and Newton Rigg Peaty Gley Not stated 

Cole et at (2002) Hard Hill Peat Not stated 

Monteith and Evans (2000) Loch Coire nan Arr Peat 99% moorland 1% forestry 

AlIt a 'Mharcaidh 

AlIt na Coire nan Con 

Lochnagar 

Loch Chon 

Loch Tinker 

Round Loch of Glenhead 

Loch Grannoch 

Dargall Lane 

Scoat Tarn 

Bummoor Tarn 

River Etherow 

Old Lodge 

Narrator Brook 

Llyn Llagi 

Llyn Cwm Mynach 

Afon Hafren 

Afon Gwy 

Beagh's Bum 

Bencrom River 

Blue Lough 

Coneyglen Burn 

Alpine, peaty podzols and blanket 98% moorland 2% native pine 
peat 
Peaty podzols, peaty gleys, peats 54% moorland 42% conifers 4% recently felled 

Peals 100% alpine - moorland 

Peaty gteys, peaty podzols 52% moorland, 44% conifers 4% recently felled 

Blanket peats 100% moorland 

Peat peaty podzols 100% moorland 

Peats, peaty podzols, peaty gleys, 70% conifers, 30% moorland 
skeletal soils 
Podzols, peaty gleys, blanket peat 100% moorland 

Shallow peaty rankers 100% moorland 

Podzols, shallow peat, rankers 100% moorland 

Peaty podzols, blanket peat 	100% moorland 

Podzots 80% heathland, 15% deciduous woodland, 15% 
coniferous woodland 

Iron pan stagnopodzols, brown 98% moorland acid grassland, 2% deciduous woodland 
podzols 
Stagnopodzols, stagnohumic gleys, 100% moorland 
blanket peat 
Blanket peat, acid rankers 55% conifers, 55% moorland 

Podzols and organic peals 
	

50% moorland, 50% conifers 

Peals, peaty podzots 
	

100% moorland 

Blanket peats 
	

99% moorland 1% deciduous trees 

Blanket peat 
	

100% moorland 

Blanket peat 
	

100% moorland 

Blanket peat 
	

95% moorland, 5% conifers 
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8.2 Chapter 2 Appendix 

Below are tables of raw data from reviewed gaseous flux literature used in Chapter 2 

for carbon dioxide (Clymo & Reddaway, 1971, 1972; Choularton et al., 1995; Clymo 

& Pearce, 1995; Fowler et al., 1995a; Fowler et al., 1995b; Nedwell & Watson, 

1995; Beverland et al., 1996; Chapman & Thurlow, 1996; Fowler et al., 1996; 

Gallagher et al., 1996; Beswick et al., 1998; Chapman & Thurlow, 1998; Daulaut & 

Clymo, 1998; Hargreaves & Fowler, 1998; Lloyd et al., 1998; MacDonald et al., 

1998; Moncrieffet al., 1998; Hughes etal., 1999; Freeman et al., 2002; Gauci et al., 

2002; Hargreaves et al., 2003; Beckmann et al., 2004) and methane (Clymo & 

Reddaway, 1971, 1972; Choularton et al., 1995; Clymo & Pearce, 1995; Fowler et 

al., 1995a; Fowler et al., 1995b; Nedwell & Watson, 1995; Beverland et at., 1996; 

Chapman & Thurlow, 1996; Fowler et al., 1996; Gallagher et al., 1996; Beswick et 

al., 1998; Chapman & Thurlow, 1998; Daulaut & Clymo, 1998; Hargreaves & 

Fowler, 1998; Lloyd et al., 1998; MacDonald et al., 1998; Moncrieff et al., 1998; 

Hughes et al., 1999; Freeman et at., 2002; Gauci et at., 2002; Hargreaves et al., 2003; 

Beckmann et al., 2004). 

Although not included in the review data on the recorded fluxes and concentrations 

of carbon species from river systems within peatland systems in the UK are also 

included here (Hope et al., 1997; Scott et at., 1998; Tipping et at., 1999; Monteith & 

Evans, 2000; Dawson et al., 2001a; Dawson et al., 2001b; Miller et al., 2001; Cole et 

at., 2002; Dawson et at., 2002; Worrall et at., 2003). These also include tabulated site 

characteristics for the river studies. Studies included in river export data tables are 

those who have not only attempted to estimate carbon exports within river 

catchments but also direct production within the soil environment. It should be noted 

that where authors have calculated annual river fluxes there is some dispute over 

which calculation methods should be used. Some methods produce systematic 

underestimates; others suffer from imprecision making it difficult to make 

comparisons between stations (Webb et al., 1997). Further, it is difficult to compare 

concentration measurements (usually reported in mg 11)  without adequate 

information such as stream are and discharge for use in flux calculation methods. 

Also there appear to be few studies concerned with assessing the error attached to 
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riverine carbon fluxes (Hope et al., 1997), therefore care should be taken when trying 

to interpret the results reported below. 

Data from both gases fluxes and river exports are held in a Microsoft Access 

database available from the author on request. 

CFI2 Appendix Table 1: Published fluxes of methane from research on peatlands in the UK. 

Reference 	Country Site Name Method 	Bog Type Management Reported CH4 flux 
Beckman Sheppard and Scotland 	Ellergower 	Peat cores static and Not stated 	Not stated 	341 jig h' m 2  Dark 
Lloyd (2004) 	 Moss 	dynamic chambers 	 598 jig h' m 2  Dark 

695 jig h' m 2  Dark 

674 pg h' m 2  Light 

562 pg h m 2  Light 

271 pg h' m 2  Light 

Beswick etal. (1998) Scotland 	North Scotland Aircraft 	 Blanket 	N/A 	 48 pmol m' h 

Beverland etal. (1996) Scotland 	Strathy Bog 	* Conditional 	Blanket 	Not stated 	188 jimol m 2  h' 
sampling using GC t 	 106 jimol m 2  h' 

490 jimol m 2  h' 

572 jimol m 2  h 

* Conditional 	 155 jimol m 2  h 
SdJiIiiii 	using '..j.. L 343 jimol m 2  h 

106 jimol m 2  h' 

Beverland et aL (1996) Scotland Loch More Conditional sampling Blanket Not stated 22.7 jimol m 2  h1  

14.7 pmol m' h' 

Chapman and Thurlow Scotland Bad a Cheo Static chamber 	Blanket Not stated 1.05 mg C m 2  h' 
(1996) - 

(Choularton etal., 1995) Scotland Strathy Bog Flux gradient Balloon Blanket Not stated 7-52 pmol m 2  h'night 

Nocturnal Box Model lOijimol m 2  h t night 

38 pmol m 2  h' night 

49 pmol m 2  h' night 

Loch More Eddy correlation 	Blanket Not stated IS jimol m 2 ht  night 

40 pmol m 2  h' day 

30 j.tmol m 2  h' night 

39 jimol m 2  h' mean 

Relaxed Eddy 15 pmol m 2  W night 
correlation -2 	-i 22.7 jimol m h mean 

37 jimol m 2  h' day 

21 jimol m 2  h'night 

28 pmol m 2  h' mean 

Aircraft 79 pmol m 2  h' NE Scotland 

205 jimol m 2  h SW-NE 
Scotland 
128 jimol m 2  h NE Scotland 

270 jimol m 2  V Scotland 

Clymo and Pearce Scotland Ellergower Static chamber 	Raised Not stated 23 pmol m 2  h' 
(1995) Moss 62 jimol m 2  h' 

Clymo and Reddaway England Moor House Static chambers 	Blanket Not stated 0.07 g C dm-2  yr 
(1971 and 1972) Burnt Hill 0.04gCdm2yr' 

0.01 9Cdm 2 yr' 
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Reference Country Site Name Method Bog Type Management Reported CH4 flux 
Daulat and Clymo Scotland Caithness Cores Blanket Not stated 18 llmol m 2  h' 
(1998) 

46 iimol m 2  h' 

100 pmol m 2  h' 

Fowler etal. (1995a) Scotland Loch More Eddy covariance Blanket Not stated 38.6 pmol m 2  h' 

Monolith 111 pmol m 2  h' 
laboratory 

103 pmol m 2  h' 

8 imol m 2  h' 

Fowler etal. (1995b) Scotland Loch More Eddy covariance Blanket Not stated 40.3 jimol m 2  h' Day 

30.2 tmol m 2  h' Night 

38.6 tmol m 2  h' 

Fowler etal. (1996) Scotland Loch More Vertical profile Blanket Not stated 34-45 limol m 2  h' 

Tethered balloon 56 timol m 2  h' 

Eddy covariance? 50-60 pmol m 2  h' 

Caithness Aircraft 128 jimol m 2  h' 

270 jimol ni 2  h' 

100- 150 jimol m 2  h 

Portree to Wick Aircraft 52 itmol m 2  h4  

Freeman etal. (2002) Wales Cerrig-yr-Wyn Cores Sol igenous Not stated 43 ng g (peat)' h' 
Gully Mire 

6 ng g (peat)' h' 

40 ng g (peat)' h' 

99 ng g (peat)' h' 

Gallagher et at (1994) Scotland Caithness Aircraft Blanket Not stated 0.91 ± 0.51 ig m 2  s '  

0.45:L 0.28 pg m 2  s' night 

Gauci Dise and Fowler Scotland Moidach More Static chambers Raised Pristine?? 21.2 imol m 2  d-1 
(2002) Unaffected by 

21.3 jimol m 2  d' 
drainage or cutting 

21 imol m 2  d' 

19.8 tmol m 2  d' 

23.8 tmol m 2  d' 

64.8 tu.nol  m 2  d' 

Hargreaves and Fowler Scotland Loch More Eddy covariance Blanket Not stated 39 tmol m 2  h' 
(1998) 

40.3 imol m 2  h' day 

30.2 jimol m 2  h' night 

Hughes etal. (1999) Wales Cerrig-yr-Wyn Static chambers Soligenous Not stated 280 mg Cl-I, m 2  d' control 
Gully Mire peak emission 

90 mg Cl-I, m 2  d' experiment 
peak emission 

Lloyd et at (1998) Scotland Ellergower Monolith Raised Not stated 35 pmol m 2  h' light 
Moss laboratory 

17 jimol m 2  h' dark 

310 j.tmol m 2  h' light 

266 jimol m 2  h' dark 

MacDonald etal. (1998) Scotland 	Loch More 	Static chambers Blanket 	Not 

Loch Calium Monolith 
laboratory 

Blanket 	Not stated 

17.5 jimol m 2  h' 

128.8 jimol m 2  h' 

14.5 jimol m 2  h' 1 

175.6 jimol m 2  h- ' 

78 jimol m 2  h' 

98.5 jimol m 2  h' 

8.4 jimol m 2  h' 

81 jimol m 2  h' 

11.3 jimol m 2  h' 

235 



Appendices 

Reference 	Country Site Name Method Bog Type Management Reported CH4 flux 
MacDonald eral. (1998) Scotland Loch Calium CON VIRONS Blanket None stated 55.1 imol m 2  h4  

Monoliths 21.9 IIMOI  m 2  h1  
Laboratory 

50.2 jimol m 2  h' 

Moncrieffei al. (1998) 	Scotland Strathy Bog Conditional Blanket Not stated 15 tmoI m 2  h' 
sampling 40 pmol m 2  h' 

Nedwell and Watson 	Scotland Ellergower Monolith Ombrotrophic Not stated 0.04 mmol C m 2  d' 
(1995) Moss laboratory Bog 1.4 mmol C M-2  d' 

2.3 mmol C m 2  d' 

0.003 mmol C m 2  d' 

0.158 mmolC M-2  d'  

0.336 mmol C m 2  d' 
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CR2 Appendix Table 2: Mean methane flux results from published papers examined by this thesis, 
units are j.tmol CH4  m 2  s'. Note; n in column 5 relates to the number of reported values from which a 
study mean was derived. 
Reference Site Mean SE n Study Winter 	Method 

CH4  flux duration incl. 
Beckman Sheppard and Ellergower 0.009 0.001 6 Not stated Not stated Peat cores static and dynamic chambers 
Lloyd (2004) Moss 
Beswick et al (1998) North Scotland 0.013 * 1 29 Nov 1994 Yes 	Aircraft 

Beverland et al (1996) Loch More 0.005 0.001 2 29/07/1992, No 	Conditional sampling 
02/08/1992, 
04/08/1992 
and 
05/08/1992 

Beverland et al (1996) Strathy Bog 0.078 0.020 7 31 May -8 No 	Conditional sampling 
June 1993 

Chapman and Thurlow Bad a Cheo 0.024 * I May 1991 - Yes 	Static chamber 
(1996) Nov 1992 
Choularton et al (1995) Loch More 0.019 0.005 15 1992 Not stated Flux gradient Balloon Eddy correlation 

Relaxed Eddy correlation Aircraft 
Nocturnal Box Model 

Choularton et al (1995) Strathy Bog 0.015 0.008 3 1992-94 Not stated Flux gradient Balloon, Nocturnal Box 
Model 

Clymo and Pearce (1995) Ellergower 0.012 0.005 2 Not stated Not stated Static chamber 
Moss 

Clymo and Reddaway Moor House 0.011 0.004 3 Apr- Oct Yes 	Static chamber 
(1971 and 1972) 1969 and 

winter 
Daulat and Clymo (1998) Caithness 0.015 0.007 3 Oct-Sept No 	Peat cores 

Fowler et al (1995a) Loch More 0.019 0.007 4 28th May No 	Eddy covariance, monoliths 
1993, May - 
June 1994,3 
weeks, 24th 
July 

Fowler et al (1995b) Loch More 0.009 0.002 4 May - June No 	Eddy covariance 
1994,3 
weeks 

Fowler et al (1996) Caithness 0.045 0.010 4 24th July 3rd No 	Aircraft 
June 1993 

Loch More 0.014 0.001 5 28th May No 	Vertical profile, tethered balloon, eddy 
24th, July covariance 
1993 

Portree to Wick 0.014 * I 29-Nov-94 Yes? 	Aircraft 

Gallagher et al (1994) Caithness 0.042 0.014 2 1992? Not stated Aircraft 

Gauci Dise and Fowler Moidach More 0.020 0.005 6 21/05/97- Yes 	Static chambers 
(2002) 25/06/97, 

02/07/97- 
17/12/97, 
31/03/98- 
11/09/98 

Hargreaves and Fowler Loch More 0.010 0.001 3 26th May - No 	Eddy covariance 
(1998) 9th June 

1994 
Hughes et al (1999) Cerrig-yr-Wyn 0.131 0.067 2 1992 - 1997 No 	Static chambers 

summer 
Lloyd et al (1998) Ellergower 0.044 0.021181 4 Not stated Not stated Monolith laboratory 

Moss 
MacDonald et al (1998) Loch Calium 0.014 0.003 8 31/5/94- No 	Monolith laboratory 

20/6/94 
MacDonald et al (1998) Loch More 0.019 0.010 5 10/92-11/92, N/A 	Static chambers 

05/93-07/93, 
08/95-09/95 

Moncrieffet al (1998) Loch More 0.011 * I Not stated Not stated Conditional sampling 

Moncrieffet al (1998) Strathy Bog 0.004 * I Not stated Not stated Conditional sampling 

Nedwell and Watson Ellergower 0.001 0.001 6 Jan-Aug Yes 	Monolith laboratory 
(1995) Moss 1993 
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CH2 Appendix Table 3: Carbon dioxide fluxes in common units from reviewed sources. 

Light 
Reference Site Name Dark jmol CO2 m 2  s 1  ig CO2 m 2  s 

Beckman Sheppard and Lloyd (2004) Eltergower Moss Dark 0.024 3800.000 

Beckman Sheppard and Lloyd (2004) Ellergower Moss Dark 0.125 19800.000 

Beckman Sheppard and Lloyd (2004) Ellergower Moss Dark 0.142 22500.000 

Beckman Sheppard and Lloyd (2004) Eltergower Moss Light -0.057 -9000.000 

Beckman Sheppard and Lloyd (2004) Eltergower Moss Light 0.119 18900.000 

Beckman Sheppard and Lloyd (2004) Ellergower Moss Light -0.106 -16800.000 

Beverland et al (1996) Loch More Light -2.778 -439900.000 

Beverland et at (1996) Loch More Light -8.333 -1319700.000 

Bevertand et at (1996) Loch More Dark 0.000 0.000 

Bevertand et at (1996) Loch More Dark 2.778 439900.000 

Chapman and Thurlow (1996) Gtensaugh Dark 0.232 36700.000 

Chapman and Thurlow (1996) Gtensaugh Dark 0.157 24900. 000 

Chapman and Thurlow (1998) Shetland and on mainland Dark Not readily converted Not readily converted 

Ctymo and Pearce (1995) Etlergower Moss Dark 0.086 13636.900 

Clymo and Pearce (1995) Ellergower Moss Dark 0.035 5498.750 

Ctymo and Reddaway (1971 and 1972) Moor House Burnt Hilt Dark 0.143 22600.000 

Clymo and Reddaway (1971 and 1972) Moor House Burnt Hill Dark 0.081 12900.000 

Clymo and Reddaway (1971 and 1972) Moor House Burnt Hill Dark 0.132 20900.000 

Fowler et at (1995) Loch More Light -1.000 -158364.000 

Fowler et at (1995) Loch More Dark 0.611 96778.000 

Hargreaves Milne and Cannelt (2003) Auchencorth Moss Net rate -0.002 -285.100 

Lloyd et al (1998) Ellergower Moss Light 0.147 233 14.700 

Lloyd et at (1998) Ellergower Moss Dark 0.119 18915.700 

Lloyd et al (1998) Eltergower Moss Light 1.261 1997 14.600 

Lloyd et at (1998) Ellergower Moss Dark 1.025 162323.100 

238 



Appendices 

CH2 Appendix Table 4: Methane fluxes in common units from reviewed sources. 

Reference Site Name ILmol CH4 m 2  s '  pig CH4 m 2  s' 

Beckman Sheppard and Lloyd (2004) Ellergower Moss 0.006 0.095 

Beckman Sheppard and Lloyd (2004) Ellergower Moss 0.010 0.166 

Beckman Sheppard and Lloyd (2004) Ellergower Moss 0.012 0.193 

Beckman Sheppard and Lloyd (2004) Ellergower Moss 0.011 0.187 

Beckman Sheppard and Lloyd (2004) Ellergower Moss 0.010 0.156 

Beckman Sheppard and Lloyd (2004) Ellergower Moss 0.005 0.076 

Beswick et al (1998) North Scotland 0.013 0.218 

Beverland et al (1996) Strathy Bog 0.052 0.853 

Beverland et al (1996) Strathy Bog 0.029 0.481 

Beverland et al (1996) Strathy Bog 0.136 2.223 

Beverland et al (1996) Strathy Bog 0.159 2.599 

Beverland et al (1996) Strathy Bog 0.043 0.703 

Beverland et al (1996) Strathy Bog 0.095 1.556 

Beverland et al (1996) Strathy Bog 0.029 0.481 

Beverland et al (1996) Loch More 0.006 0.103 

Beverland et al (1996) Loch More 0.004 0.067 

Chapman and Thurlow (1996) Bad aCheo 0.024 0.397 

Choularton et al (1995) Strathy Bog 0.002 0.032 

Choularton et al (1995) Strathy Bog 0.014 0.236 

Choularton et al (1995) Loch More 0.004 0.068 

Choularton et al (1995) Loch More 0.011 0.181 

Choularton et al (1995) Loch More 0.008 0.136 

Choularton et al (1995) Loch More 0.011 0.177 

Choularton et al (1995) Loch More 0.004 0.068 

Choularton et al (1995) Loch More 0.006 0.103 

Choularton et al (1995) Loch More 0.010 0.168 

Choularton et a] (1995) Loch More 0.006 0.095 

Choularton et al (1995) Loch More 0.008 0.127 

Choularton et al (1995) Loch More 0.022 0.358 

Choularton et al (1995) Loch More 0.057 0.930 

Choularton et al (1995) Loch More 0.036 0.581 

Choularton et al (1995) Loch More 0.075 1.225 

Choularton et al (1995) Strathy Bog 0.028 0.458 

Choularton et al (1995) Loch More 0.011 0.172 

Choularton et al (1995) Loch More 0.014 0.222 

Clymo and Pearce (1995) Ellergower Moss 0.006 0.104 

Clymo and Pearce (1995) Ellergower Moss 0.017 0.281 

Clymo and Reddaway (1971 and 1972) Moor House Burnt Hill 0.018 0.302 

Clymo and Reddaway(197l and 1972) Moor House Burnt Hill 0.011 0.172 

Clymo and Reddaway (1971 and 1972) Moor House Burnt Hill 0.003 0.043 

Daulat and Clymo (1998) Caithness 0.005 0.082 

Daulat and Clymo (1998) Caithness 0.013 0.209 

Daulat and Clymo (1998) Caithness 0.028 0.454 

Fowler et al(1995a) Loch More 0.011 0.175 

Fowler et a] (1995a) Loch More 0.031 0.504 
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Reference Site Name jimol CH4 m 2  s ig CH4 m 2  s' 

Fowler et at (1995a) Loch More 0.029 0.467 

Fowler et at (1995a) Loch More 0.002 0.036 

Fowler etal(1995b) Loch More 0.011 0.183 

Fowler et al (1995b) Loch More 0.008 0.137 

Fowler et at (1995b) Loch More 0.011 0.175 

Fowler et at (I 995b) Loch More 0.004 0.067 

Fowler et at (1996) Loch More 0.009 0.154 

Fowler et at (1996) Loch More 0.013 0.204 

Fowler et at (1996) Loch More 0.016 0.254 

Fowler et at (1996) Caithness 0.036 0.581 

Fowler et at (1996) Loch More 0.014 0.227 

Fowler et at (1996) Loch More 0.017 0.272 

Fowler et at (1996) Caithness 0.075 1.225 

Fowler et at (1996) Caithness 0.028 0.454 

Fowkr et at (1996) Caithness 0.042 0.680 

Fowler et at (1996) Potree to Wick 0.014 0.236 
Not readily 

Freeman et at (2002) Cerrig-yr-Wyn converted Not readily converted 
Not readily 

Freeman et at (2002) Cerrig-yr-Wyn converted Not readily converted 
Not readily 

Freeman et at (2002) Cerrig-yr-Wyn converted Not readily converted 
Not readily 

Freeman et at (2002) Cerrig-yr-Wyn converted Not readily converted 

Gallagher et a! (1994) Caithness 0.056 0.910 

Gallagher et at (1994) Caithness 0.028 0.450 

Gauci Disc and Fowler (2002) Moidach More 0.015 0.245 

Gauci Disc and Fowler (2002) Moidach More 0.015 0.247 

Gauci Disc and Fowler (2002) Moidach More 0.015 0.243 

Gauci Disc and Fowler (2002) Moidach More 0.014 0.229 

Gauci Disc and Fowler (2002) Moidach More 0.017 0.275 

Gauci Disc and Fowler (2002) Moidach More 0.046 0.750 

Hargreaves and Fowler (1998) Loch More 0.011 0.177 

Hargreaves and Fowler (1998) Loch More 0.011 0.183 

Hargreaves and Fowler (1998) Loch More 0.008 0.137 

Hughes et at (1999) Cerrig-yr-Wyn 0.198 3.241 

Hughes et at (1999) Cerrig-yr-Wyn 0.064 1.042 

Lloyd et at (1998) Ettergower Moss 0.010 0.159 

Lloyd et at (1998) Ellergower Moss 0.005 0.077 

Lloyd et at (1998) Eltergower Moss 0.086 1.406 

Lloyd et at (1998) Ettergower Moss 0.074 1.207 

MacDonald et at (1998) Loch More 0.000 0.007 

MacDonald et at (1998) Loch More 0.005 0.079 

MacDonald et at (1998) Loch More 0.036 0.584 

MacDonald et at (1998) Loch More 0.004 0.066 

MacDonald et at (1998) Loch More 0.049 0.797 

MacDonald et at (1998) Loch Catium 0.022 0.354 

MacDonald et at (1998) Loch Catium 0.027 0.447 

MacDonald et at (1998) Loch Catium 0.002 0.038 

MacDonald et at (1998) Loch Catiurn 0.023 0.367 

MacDonald et at (1998) Loch Catiuin 0.003 0.051 
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Reference Site Name jimot CH4 m 2  s '  jig CH4 m 2  s '  

MacDonald et al (1998) Loch Calium 0.015 0.250 

MacDonald et at (1998) Loch Calium 0.006 0.099 

MacDonald et at (1998) Loch Calium 0.014 0.228 

Moncneffet at (1998) Strathy Bog 0.004 0.068 

Moncrieffet all (1998) Loch More 0.011 0.181 

Nedwell and Watson (1995) Ellergower Moss 0.000 0.001 

Nedwell and Watson (1995) Ellergower Moss 0.003 0.044 

Nedwell and Watson (1995) Ellergower Moss 0.004 0.072 

Nedwell and Watson (1995) Eltergower Moss 0.000 0.000 

Nedwell and Watson (1995) Eltergower Moss 0.000 0.005 

Nedwell and Watson (1995) Ellergower Moss 0.001 0.011 
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8.3 Chapter 3 Appendix 
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CH3 Appendix Figure 1: Axes I and 2 of DCA of samples from Forsinard vegetation relevés with (a) 

all samples and (b) only gas flux samples. Plot codes are as in Table 3.5. Axes I and 2 accounted for 

13.1 % and 9.1 % respectively of total variation in vegetation data 

242 



Appendices 

MI Map 2C Percentage of Deer and Sheep Prints Within 0.5m of Transect Line 
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CH3 Appendix Figure 2: Deer and sheep footprints mapped across the Forsinard and 

Dorrery reserve. 

8.4 Chapter 5 Appendix 

CH5 Appendix Table 1: Missing value ordinary least squares regression model equations. Kin Temp = 
Kinbrace air temperature, Kin RH = Kinbrace relative humidity. Note: For PAR chamber temperature 
and relative humidity were modelled from Kinbrace data but soil temperature were measured on site. 

Missing 	Modelled Regression Equation 	R adj p 	degrees 

data 	 % 	value of 

freedom 

Air 	 Chamber Temp O.683614±(1.22216 * Kin 	86.6 	<0.001 	12 

temperature 	
Temp) 

 

Relative 	Chamber RH = 14.3692 + (0.873334 * Kin RH) 46.2 	0.006 	12 

humidity 

PAR 	Chamber PAR = 530 + (30.4 * Chamber Temp) 74.6 	<0.01 	50 
- (5.20 * Chamber RH) - (20.3 * Soil Temp) 
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Forsinard mean daily PAR 

CH5 Appendix Figure 1: Forsinard daily mean PAR versus modelled daily PAR for 

the same days in 2004, R 2  adj = 73.6% n = 47 days. 

8.4.1 Minitab GLM Output 

Below is the Minitab output for the modelled fluxes. Please note that Minitab does 

not compute all the sums of squares automatically, therefore some of these had to be 

computed by hand. These are identified as tabulated sum of squares using the 

combination of plot and interaction, and plot and site models. The most parsimonious 

model was used for determination of site or damage effects. For each model the 

effects of site environment interactions were first analysed, if these interactions were 

significant then they were retained in the model, however if these were not 

significant then the model without interactions was used. The one exception to this 

was the Main site 2003-4 dataset since this data had derived climate variables, the 

Main site 2005 dataset was used to identify the parsimonious model (which 

contained a site PAR interaction) the site effects for the 2003-4 data were thus 

analysed using the model with the site PAR interaction even though this was not 

significant in the 2003-4 dataset. 
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8.4.1a Main Sites 2003-4 CO2 Light Flux 

Residuals Versus the Fitted Values 
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Chapter 5 Appendix Figure 2: Residual plots for Main sites 2003-4 CO2 Light Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 
AT Leir 1 	2.8801 	0.0171 0.0171 0.09 0.767 
AT Maol 1 	6.3090 	0.0136 0.0136 0.07 0.791 
AT Nam i 1 	0.0577 	0.7945 0.7945 4.09 0.044 
AT Slet 1 	6.8057 	0.0062 0.0062 0.03 0.858 
RH Leir 1 	0.3532 	0.9347 0.9347 4.82 0.029 
RH Maol 1 	0.5009 	0.8827 0.8827 4.55 0.034 
RH Nam i 1 	0.0458 	0.0637 0.0637 0.33 0.567 
RH Slet 1 	3.5401 	0.3163 0.3163 1.63 0.203 
PAR Leir 1 	3.8642 	1.5465 1.5465 7.97 0.005 
PAR Maol 1 	0.0694 	0.2151 0.2151 1.11 0.294 
PAR Nam 1 	0.1406 	1.2975 1.2975 6.69 0.010 
PAR SLet 1 	0.7932 	0.3479 0.3479 1.79 0.182 
Plot 19 	10.3921 	7.6562 0.4030 2.08 0.007 
Month 9 	16.0104 	16.0104 1.7789 9.17 0.000 
Error 223 	43.2733 	43.2733 0.1941 
Total 263 	95.0358 

Term Coef 	SE Coef 	T P 
Constant -1.1852 	0.4990 	-2.38 0.018 
AT Leir 0.00786 	0.02646 	0.30 0.767 
AT Maol -0.00623 	0.02350 	-0.27 0.791 
AT Nam i 0.05241 	0.02590 	2.02 0.044 
AT Slet 0.00385 	0.02157 	0.18 0.858 
RH Leir 0.02523 	0.01149 	2.19 0.029 
RH Maol 0.014363 	0.006735 	2.13 0.034 
RH Nam i -0.002346 	0.004093 	-0.57 0.567 
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RH Slet 0.01390 0.01089 1.28 0.203 
PAR Leir -0.001747 0.000619 -2.82 0.005 
PAR Maol -0.000576 0.000547 -1.05 0.294 
PAR Nam -0.001840 0.000712 -2.59 0.010 
PAR SLet -0.001049 0.000783 -1.34 0.182 

Unusual Observations for Flux /um 

Obs Flux /urn Fit SE Fit Residual St Resid 
90 0.00000 -0.07967 0.31528 0.07967 0.26 X 

142 -2.27282 -1.07138 0.19058 -1.20144 -3.03R 
149 0.00000 -0.95172 0.12126 0.95172 2.25R 
155 0.42123 -0.83163 0.12675 1.25286 2.97R 
156 0.00000 -0.88804 0.19147 0.88804 2.24R 
157 0.21927 -0.69706 0.14106 0.91633 2.20R 
169 -0.78476 0.11924 0.13122 -0.90400 -2.15R 
175 1.34200 0.28403 0.20756 1.05797 2.72R 
193 0.76830 -0.11698 0.14287 0.88528 2.12R 
197 -1.57557 -0.16219 0.13721 -1.41338 -3.38R 
200 -1.37514 -0.22402 0.13205 -1.15112 -2.74R 
217 -1.78736 -0.86678 0.13165 -0.92058 -2.19R 
218 0.27860 -0.55308 0.22099 0.83168 2.18R 
222 0.00000 -1.01545 0.20756 1.01545 2.61R 
224 -2.80949 -1.47628 0.16914 -1.33321 -3.28R 
241 0.40282 -0.49025 0.14797 0.89307 2.15R 
252 -2.04697 -1.11393 0.18521 -0.93304 -2.33R 
253 -2.44188 -1.28655 0.13273 -1.15533 -2.75R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

General Linear Model: Flux Ipmolslm2!s versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS Adj SS Adj MS F P 
RH Leir 1 	1.1053 1.0489 1.0489 5.33 0.022 
RH Maol 1 	0.8191 0.6504 0.6504 3.30 0.070 
RH Nam i 1 	1.1893 0.0108 0.0108 0.06 0.815 
RH Slet 1 	6.8468 0.2919 0.2919 1.48 0.225 
PAR Leir 1 	6.3723 1.8138 1.8138 9.21 0.003 
PAR Maol 1 	2.7103 0.6344 0.6344 3.22 0.074 
PAR Nam 1 	0.0200 0.2454 0.2454 1.25 0.265 
PAR SLet 1 	4.0037 0.4690 0.4690 2.38 0.124 
Air Temp 1 	1.5519 0.0611 0.0611 0.31 0.578 
Plot 19 	10.0030 7.4409 0.3916 1.99 0.010 
Month 9 	15.9130 	15.9130 1.7681 8.98 0.000 
Error 226 	44.5013 	44.5013 0.1969 
Total 263 	95.0358 

Term Coef 	SE Coef T P 
Constant -1.1617 	0.4956 -2.34 0.020 
RH Leir 0.02449 	0.01061 2.31 0.022 
RH Maol 0.012213 	0.006720 1.82 0.070 
RH Nam i -0.000956 	0.004076 -0.23 0.815 
RH Slet 0.01316 	0.01081 1.22 0.225 
PAR Leir -0.001671 	0.000551 -3.04 0.003 
PAR Maol -0.000876 	0.000488 -1.79 0.074 
PAR Nam -0.000524 	0.000469 -1.12 0.265 
PAR SLet -0.001080 	0.000700 -1.54 0.124 
Air Temp 0.01089 	0.01955 0.56 0.578 

Unusual Observations for Flux /um 

Obs Flux /um 	Fit 	SE Fit Residual 	St Resid 



Appendices 

90 0.00000 -0.02587 0.31683 0.02587 0.08 X 
122 -0.24235 -0.25745 0.29868 0.01510 0.05 X 
134 -0.56688 -1.26520 0.27434 0.69832 2.00R 
142 -2.27282 -1.02685 0.18746 -1.24597 -3.10R 
149 0.00000 -0.89084 0.11321 0.89084 2.08R 
155 0.42123 -0.83585 0.12649 1.25708 2.96R 
156 0.00000 -0.89402 0.18870 0.89402 2.23R 
157 0.21927 -0.70721 0.14194 0.92648 2.20R 
175 1.34200 0.20372 0.20644 1.13828 2.90R 
193 0.76830 -0.13070 0.13872 0.89900 2.13R 
197 -1.57557 -0.17600 0.13425 -1.39957 -3.31R 
200 -1.37514 -0.23586 0.12682 -1.13928 -2.68R 
216 -1.95018 -1.10928 0.14928 -0.84090 -2.01R 
217 -1.78736 -0.86931 0.13243 -0.91805 -2.17R 
218 0.27860 -0.52333 0.21310 0.80193 2.06R 
222 0.00000 -1.00165 0.20056 1.00165 2.53R 
224 -2.80949 -1.45369 0.15474 -1.35579 -3.26R 
241 0.40282 -0.56024 0.14549 0.96306 2.30R 
252 -2.04697 -1.12845 0.18641 -0.91852 -2.28R 
253 -2.44188 -1.28615 0.13160 -1.15572 -2.73R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Air temp site interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	223 	43.2733 	43.2733 	0.1941 

Model without interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	226 	44.5013 	44.5013 	0.1969 

Combining these gives 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Site.AT 	3 	1.2280 	1.2280 	0.4093 	2.12 	0.0985 
Error 	223 	43.2733 	43.2733 	0.1941 

Conclusion no site air temperature interaction 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
AT Leir 1 2.8801 0.0252 0.0252 0.13 0.722 
AT Maol 1 6.3090 0.1036 0.1036 0.52 0.470 
AT Nam 1 1 0.0577 0.3720 0.3720 1.88 0.172 
AT Slet 1 6.8057 0.0087 0.0087 0.04 0.834 
PAR Leir 1 4.9870 3.3397 3.3397 16.87 0.000 
PAR Maol 1 0.5661 0.4890 0.4890 2.47 0.117 
PAR Nam 1 0.2842 0.6706 0.6706 3.39 0.067 
PAR SLet 1 0.9194 0.6032 0.6032 3.05 0.082 
RH 1 1.4545 0.3700 0.3700 1.87 0.173 
Plot 19 6.9495 6.8862 0.3624 1.83 0.021 
Month 9 19.0833 19.0833 2.1204 10.71 0.000 
Error 226 44.7391 44.7391 0.1980 
Total 263 95.0358 

Term Coef 	SE Coef 	T P 
Constant -0.3247 0.3525 -0.92 0.358 
AT Leir 0.00938 0.02629 	0.36 0.722 
AT Maol -0.01669 0.02307 	-0.72 0.470 
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AT Nam 1 0.03472 0.02533 1.37 0.172 
AT Slet -0.00448 0.02138 -0.21 0.834 
PAR Leir -0.002267 0.000552 -4.11 0.000 
PAR Maol -0.000798 0.000508 -1.57 0.117 
PAR Nam -0.001259 0.000684 -1.84 0.067 
PAR SLet -0.001223 0.000701 -1.75 0.082 
RH 0.004382 0.003205 1.37 0.173 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
134 -0.56688 -1.26808 0.27813 0.70120 2.02R 
142 -2.27282 -1.00402 0.18528 -1.26880 -3.14R 
149 0.00000 -0.96790 0.12108 0.96790 2.26R 
155 0.42123 -0.92263 0.12005 1.34386 3.14R 
156 0.00000 -0.92987 0.19255 0.92987 2.32R 
157 0.21927 -0.83935 0.12295 1.05862 2.48R 
169 -0.78476 0.16491 0.13068 -0.94967 -2.23R 
175 1.34200 0.25980 0.20935 1.08220 2.76R 
193 0.76830 -0.17918 0.13552 0.94748 2.24R 
197 -1.57557 -0.20525 0.13207 -1.37032 -3.23R 
200 -1.37514 -0.22852 0.13103 -1.14662 -2.70R 
216 -1.95018 -1.04559 0.13269 -0.90459 -2.13R 
218 0.27860 -0.50091 0.21666 0.77951 2.01R 
222 0.00000 -0.88954 0.19129 0.88954 2.21R 
224 -2.80949 -1.32379 0.13741 -1.48570 -3.51R 
241 0.40282 -0.52986 0.14636 0.93267 2.22R 
252 -2.04697 -1.09369 0.18403 -0.95328 -2.35R 
253 -2.44188 -1.21405 0.11801 -1.22783 -2.86R 

R denotes an observation with a large standardized residual. 

Site RH interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	223 	43.2733 	43.2733 	0.1941 

Model without interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	226 	44.7391 	44.7391 	0.1980 

Combining these gives 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Site.RFI 	3 	1.4658 	1.4658 	0.4886 	2.52 	0.0588 
Error 	223 	43.2733 	43.2733 	0.1941 

Conclusion no interaction 

General Linear Model: Flux Ipmolslni2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
AT Lair 1 2.8801 0.0012 0.0012 0.01 0.937 
AT Naol 1 6.3090 0.0232 0.0232 0.12 0.730 
AT Nam 1 1 0.0577 0.7164 0.7164 3.69 0.056 
AT Slet 1 6.8057 0.0460 0.0460 0.24 0.627 
RH Leir 1 0.3532 1.7642 1.7642 9.08 0.003 
RH Maol 1 0.5009 0.5129 0.5129 2.64 0.106 
RH Nam i 1 0.0458 0.0127 0.0127 0.07 0.798 
RH Slet 1 3.5401 0.3012 0.3012 1.55 0.214 
PAR 1 2.9262 1.9956 1.9956 10.27 0.002 
Plot 19 11.3611 8.6246 0.4539 2.34 0.002 
Month 9 16.3427 16.3427 1.8159 9.35 0.000 
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Error 226 	43.9133 	43.9133 0.1943 
Total 263 	95.0358 

Term Coef SE Coef T P 
Constant -1.1987 0.4707 -2.55 0.012 
AT Leir 0.00207 0.02610 0.08 0.937 
AT Maol 0.00753 0.02180 0.35 0.730 
AT Nam i 0.03857 0.02009 1.92 0.056 
AT Slet 0.00921 0.01892 0.49 0.627 
RH Leir 0.030069 0.009979 3.01 0.003 
RH Maol 0.009918 0.006105 1.62 0.106 
RH Nam i -0.000986 0.003856 -0.26 0.798 
RH Slet 0.012130 0.009742 1.25 0.214 
PAR -0.001214 0.000379 -3.20 0.002 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
90 0.00000 -0.14071 0.31054 0.14071 0.45 X 

134 -0.56688 -1.40887 0.24872 0.84199 2.31R 
142 -2.27282 -1.05434 0.19004 -1.21848 -3.06R 
149 0.00000 -0.93749 0.12101 0.93749 2.21R 
155 0.42123 -0.82743 0.12667 1.24866 2.96R 
156 0.00000 -0.91470 0.19016 0.91470 2.30R 
157 0.21927 -0.69217 0.14070 0.91144 2.18R 
169 -0.78476 0.07459 0.12838 -0.85935 -2.04R 
175 1.34200 0.29694 0.20753 1.04506 2.69R 
193 0.76830 -0.13345 0.14257 0.90174 2.16R 
197 -1.57557 -0.17743 0.13694 -1.39813 -3.34R 
200 -1.37514 -0.24558 0.13120 -1.12956 -2.68R 
217 -1.78736 -0.85432 0.12854 -0.93303 -2.21R 
218 0.27860 -0.52345 0.21921 0.80205 2.10R 
222 0.00000 -1.04015 0.20630 1.04015 2.67R 
224 -2.80949 -1.48932 0.16850 -1.32017 -3.24R 
241 0.40282 -0.48627 0.14752 0.88908 2.14R 
252 -2.04697 -1.14371 0.18419 -0.90326 -2.26R 
253 -2.44188 -1.29651 0.13259 -1.14536 -2.72R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Site PAR interaction 

Model with interaction 
Source DF Seq SS Adj SS AdI MS 
Error 223 43.2733 43.2733 0.1941 

Model without interaction 
Source DF Seq SS Adj SS Adj MS 
Error 226 43.9133 43.9133 0.1943 

Combining these gives 
Source DF Seq SS Adj SS Adj MS 
Site.PAR 3 0.6400 0.6400 0.2133 
Error 223 43.2733 43.2733 0.1941 

F 	P 

F 	P 

F 	P 
1.099 	0.3504 

Conclusion no interaction 
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General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 
Air Temp 1 	9.4710 	0.0006 0.0006 0.00 0.956 
RH 1 	1.6570 	0.4283 0.4283 2.15 0.144 
PAR Leir 1 	5.5743 	3.1774 3.1774 15.91 0.000 
PAR Maol 1 	2.9675 	1.0759 1.0759 5.39 0.021 
PAR Nam 1 	1.9375 	0.0570 0.0570 0.29 0.594 
PAR SLet 1 	1.9316 	0.7520 0.7520 3.77 0.054 
Plot 19 	7.2099 	6.8180 0.3588 1.80 0.024 
Month 9 	18.5633 	18.5633 2.0626 10.33 0.000 
Error 229 	45.7237 	45.7237 0.1997 
Total 263 	95.0358 

Term Coef 	SE Coef 	T P 
Constant -0.3576 	0.3496 	-1.02 0.307 
Air Temp 0.00107 	0.01923 	0.06 0.956 
RH 0.004709 	0.003215 	1.46 0.144 
PAR Leir -0.002064 	0.000517 	-3.99 0.000 
PAR Maol -0.001059 	0.000456 	-2.32 0.021 
PAR Nam -0.000244 	0.000457 	-0.53 0.594 
PAR SLet -0.001232 	0.000635 	-1.94 0.054 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
134 -0.56688 -1.32728 0.27280 0.76040 2.15R 
142 -2.27282 -0.97269 0.18312 -1.30013 -3.19R 
149 0.00000 -0.89405 0.11165 0.89405 2.07R 
155 0.42123 -0.94702 0.11444 1.36825 3.17R 
156 0.00000 -0.96546 0.18665 0.96546 2.38R 
157 0.21927 -0.86612 0.11773 1.08539 2.52R 
175 1.34200 0.19454 0.20780 1.14746 2.90R 
193 0.76830 -0.23318 0.11976 1.00147 2.33R 
197 -1.57557 -0.25408 0.12081 -1.32149 -3.07R 
200 -1.37514 -0.27671 0.12013 -1.09843 -2.55R 
216 -1.95018 -1.03728 0.13295 -0.91290 -2.14R 
222 0.00000 -0.89454 0.19009 0.89454 2.21R 
224 -2.80949 -1.32592 0.13376 -1.48357 -3.48R 
241 0.40282 -0.57950 0.14407 0.98232 2.32R 
252 -2.04697 -1.09727 0.18454 -0.94970 -2.33R 
253 -2.44188 -1.21122 0.11849 -1.23066 -2.86R 

R denotes an observation with a large standardized residual. 

General Linear Model: Flux Ipmolslm2ls versus Site, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
Air Temp 1 9.4710 0.0115 0.0115 0.05 0.816 
RH 1 1.6570 1.0725 1.0725 5.04 0.026 
PAR Leir 1 5.5743 4.1053 4.1053 19.31 0.000 
PAR Maol 1 2.9675 1.0770 1.0770 5.06 0.025 
PAR Nam 1 1.9375 0.0093 0.0093 0.04 0.834 
PAR SLet 1 1.9316 0.7329 0.7329 3.45 0.065 
Site 3 0.8365 0.4418 0.1473 0.69 0.557 
Month 9 18.5605 18.5605 2.0623 9.70 0.000 
Error 245 52.0999 52.0999 0.2127 
Total 263 95.0358 

Term Coef 	SE Coef 	T P 
Constant -0.6422 0.3379 -1.90 0.059 
Air Temp 0.00446 0.01918 	0.23 0.816 
RH 0.007034 0.003132 	2.25 0.026 
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PAR Leir 	-0.002281 	0.000519 	-4.39 	0.000 
PAR Maol 	-0.001004 	0.000446 	-2.25 0.025 
PAR Nam 	-0.000096 	0.000456 	-0.21 0.834 
PAR SLet 	-0.001193 	0.000642 	-1.86 0.065 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
90 0.00000 -0.33135 0.26202 0.33135 0.87 x 

117 -1.31939 -1.23869 0.23565 -0.08070 -0.20 X 
122 -0.24235 -0.44079 0.27570 0.19844 0.54 X 
129 -0.23893 -0.29566 0.23606 0.05673 0.14 X 
134 -0.56688 -1.40121 0.26839 0.83433 2.22RX 
135 -0.36779 -0.49912 0.22491 0.13133 0.33 X 
142 -2.27282 -0.94792 0.12410 -1.32490 -2.98R 
155 0.42123 -0.75252 0.10044 1.17375 2.61R 
175 1.34200 -0.03090 0.15299 1.37290 3.16R 
197 -1.57557 -0.06548 0.10779 -1.51009 -3.37R 
200 -1.37514 -0.09418 0.10699 -1.28096 -2.86R 
216 -1.95018 -0.98682 0.12234 -0.96336 -2.17R 
217 -1.78736 -0.81772 0.10170 -0.96963 -2.16R 
218 0.27860 -1.15492 0.12222 1.43352 3.22R 
222 0.00000 -1.14322 0.11590 1.14322 2.56R 
224 -2.80949 -1.19374 0.12152 -1.61575 -3.63R 
226 -1.31517 -0.36398 0.11225 -0.95119 -2.13R 
241 0.40282 -0.50179 0.13689 0.90461 2.05R 
250 0.35611 -0.68285 0.10560 1.03897 2.31R 
252 -2.04697 -0.85991 0.09813 -1.18706 -2.63R 
253 -2.44188 -1.04911 0.10482 -1.39276 -3.10R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Site test 

Model with Plot 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	229 	45.7237 	45.7237 	0.1997 

Model with site 
Source DF Seq SS Adj SS Adj MS F P 
Error 245 52.0999 52.0999 0.2127 

Combining these gives 
Source DF Seq SS Adj SS Adj MS F P 
Site 3 0.8365 0.4418 0.1473 0.370 0.7757 
Plot(3ite) 16 6.3762 6.3762 0.3985 

Plot 19 7.2127 6.8180 0.3588 1.8 0.0238 

Other effects 
Residual 229 45.7237 45.7237 0.1997 

General Linear Model: Flux Ipm0lslm2ls versus Damage, Month 
Analysis of Variance for Flux /um, 	using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
Air Temp 1 9.4710 0.0597 0.0597 0.28 0.597 
RH 1 1.6570 1.0669 1.0669 5.02 0.026 
PAR Leir 1 5.5743 4.1281 4.1281 19.42 0.000 
PAR Maol 1 2.9675 2.5551 2.5551 12.02 0.001 
PAR Nam 1 1.9375 0.0335 0.0335 0.16 0.692 
PAR SLet 1 1.9316 1.7213 1.7213 8.10 0.005 
Damage 1 0.0040 0.0399 0.0399 0.19 0.665 
Month 9 18.9912 18.9912 2.1101 9.93 0.000 
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Error 247 	52.5017 	52.5017 0.2126 
Total 263 	95.0358 

Term Coef SE Coef T P 
Constant -0.6968 0.3291 -2.12 0.035 
Air Temp 0.00932 0.01758 0.53 0.597 
RH 0.007003 0.003126 2.24 0.026 
PAR Leir -0.001917 0.000435 -4.41 0.000 
PAR Maol -0.001323 0.000381 -3.47 0.001 
PAR Nam -0.000171 0.000431 -0.40 0.692 
PAR SLet -0.001208 0.000424 -2.85 0.005 

Unusual Observations for Flux /urn 

Obs Flux /um Fit SE Fit Residual St Resid 

90 0.00000 -0.33609 0.26184 0.33609 0.89 x 
117 -1.31939 -1.10336 0.21124 -0.21603 -0.53 X 
120 -1.63490 -0.75281 0.14343 -0.88208 -2.01R 
122 -0.24235 -0.44935 0.27475 0.20700 0.56 x 
129 -0.23893 -0.18833 0.21720 -0.05060 -0.12 X 
134 -0.56688 -1.55711 0.24133 0.99023 2.52RX 

135 -0.36779 -0.39512 0.21143 0.02733 0.07 X 
142 -2.27282 -0.93090 0.12137 -1.34192 -3.02R 
155 0.42123 -0.78686 0.09693 1.20810 2.68R 
157 0.21927 -0.70630 0.09734 0.92557 2.05R 

175 1.34200 -0.01996 0.15265 1.36195 3.13R 
197 -1.57557 -0.10855 0.10204 -1.46702 -3.26R 

200 -1.37514 -0.13485 0.10175 -1.24029 -2.76R 

216 -1.95018 -1.01572 0.12006 -0.93446 -2.10R 
217 -1.78736 -0.82882 0.10110 -0.95854 -2.13R 

218 0.27860 -1.11171 0.11685 1.39031 3.12R 
222 0.00000 -1.11306 0.11360 1.11306 2.49R 

224 -2.80949 -1.15528 0.11777 -1.65421 -3.71R 
226 -1.31517 -0.36425 0.11220 -0.95092 -2.13R 

250 0.35611 -0.74224 0.09341 1.09835 2.43R 
252 -2.04697 -0.88964 0.09514 -1.15733 -2.57R 

253 -2.44188 -1.04633 0.10460 -1.39554 -3.11R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Damage test 

Model with Plot 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	229 45.7237 45.7237 0.1997 

Model with Damage 
Source 	DF Seq SS Adj SS Adj MS F P 

Error 	247 52.5017 52.5017 0.2126 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS F P 

Damage 	1 0.0040 0.0399 0.0399 0.106 0.7485 

Plot(Dama) 	18 6.7780 6.7780 0.3766 
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8.4.1b Main sites 2003-4 CO2 Dark Flux 

Residuals Versus the Fitted Values 
(rlspoiee iS Fka q) 

15 

10 

• .''. '•'.• 	•.. 

'-5 

0.0 	 0,5 	 tO 	 1.5 

Fitted Value 

Main sites 2003-4 CO 2  dark residuals 

Normal Probability Plot of the Residuals 
(rp 	Fte ) 

Residuals Versus the Order of the Data 
lroee a FU swl 

•1. 	 . 	. 	... 

	

• . 	• 	• . ...•. • 	• 	• .. 	• 	. 	. 

50 	100 	ISO 	2DO 	250 

Obsetsation Order 

Histogram of the Residuals 

Residual 	 Residual 

Chapter 5 Appendix Figure 3: Residual plots for Main sites 2003-4 CO 2  Dark Flux 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
ST Leir 1 1.24412 0.09750 0.09750 2.24 0.136 
ST Maol 1 1.59750 0.06763 0.06763 1.55 0.214 
ST Nam i 1 11.71567 0.13926 0.13926 3.20 0.075 
ST Slet 1 6.34646 0.05154 0.05154 1.18 0.278 
Plot 19 3.59497 3.02577 0.15925 3.65 0.000 
Month 9 4.52495 4.52495 0.50277 11.54 0.000 
Error 238 10.37160 10.37160 0.04358 
Total 270 39.39527 

Term Coef 	SE Coef T 	P 
Constant 0.51587 0.08510 	6.06 0.000 
ST Leir 0.02194 0.01467 	1.50 0.136 
ST Maol 0.01491 0.01197 	1.25 0.214 
ST Nam i 0.01912 0.01070 	1.79 0.075 
ST Slet 0.01265 0.01163 	1.09 0.278 

Unusual Observations for Flux sqr 

Obs 	Flux sqr Fit SE Fit Residual St Resid 
18 	0.00000 0.41874 0.07863 -0.41874 -2.17R 
42 	0.57802 0.02197 0.08184 0.55605 2.90R 
66 	0.34466 -0.04788 0.09854 0.39254 2.13R 

110 	0.00000 0.41215 0.07850 -0.41215 -2.13R 
119 	0.00000 0.40350 0.08215 -0.40350 -2.10R 
125 	1.18309 0.72537 0.05292 0.45772 2.27R 
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128 1.35910 0.73634 0.05155 0.62276 3.08R 
136 0.86063 1.22804 0.17042 -0.36741 -3.05RX 
151 1.51372 1.08325 0.08919 0.43047 2.28R 
181 1.68317 1.21129 0.06236 0.47188 2.37R 
184 1.67635 1.24241 0.06806 0.43394 2.20R 
193 0.39185 0.88328 0.06226 -0.49143 -2.47R 
195 0.00000 0.65631 0.08666 -0.65631 -3.46R 
241 0.00000 0.41361 0.07823 -0.41361 -2.14R 
242 0.00000 0.52633 0.04982 -0.52633 -2.60R 
265 0.00000 0.64374 0.08150 -0.64374 -3.35R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
Soil Tern 1 19.25498 0.10022 0.10022 2.32 0.129 
Plot 19 5.09864 5.53971 0.29156 6.74 0.000 
Month 9 4.61695 4.61695 0.51299 11.86 0.000 
Error 241 10.42470 10.42470 0.04326 
Total 270 39.39527 

Term Coef 	SE Coef 	T P 
Constant 0.53382 0.07728 	6.91 0.000 
Soil Tern 0.01524 0.01001 	1.52 0.129 

Unusual Observations for Flux sqr 

Obs Flux sqr Fit SE Fit Residual St Resid 
18 0.00000 0.41508 0.07788 -0.41508 -2.15R 
42 0.57802 0.01491 0.07791 0.56312 2.92R 
66 0.34466 -0.04900 0.09814 0.39365 2.15R 

110 0.00000 0.40763 0.07788 -0.40763 -2.11R 
119 0.00000 0.40335 0.08162 -0.40335 -2.11R 
125 1.18309 0.73840 0.05053 0.44469 2.20R 
128 1.35910 0.74602 0.05036 0.61308 3.04R 
136 0.86063 1.17385 0.16241 -0.31323 -2.41RX 
151 1.51372 1.10762 0.08182 0.40610 2.12R 
181 1.68317 1.19570 0.05062 0.48747 2.42R 
184 1.67635 1.22049 0.05475 0.45585 2.27R 
193 0.39185 0.89826 0.04990 -0.50641 -2.51R 
195 0.00000 0.67129 0.07807 -0.67129 -3.48R 
241 0.00000 0.41280 0.07792 -0.41280 -2.14R 
242 0.00000 0.52521 0.04962 -0.52521 -2.60R 
265 0.00000 0.64217 0.08118 -0.64217 -3.35R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Site soil temperature interaction 

Model with interaction 
Source 	DF 	Seq SS 
Error 	238 	10.37160 

Model without interaction 
Source 	DF 	Seq SS 
Error 	241 	10.42470 

Combining these gives 
Source 	DF 	Seq SS 
Site.ST 	3 	0.0531 
Error 	238 	10.37160 

AdjSS AdjMS F P 
10.37160 0.04358 

AdjSS AdjMS F P 
10.42470 0.04326 

AdjSS AdjMS F P 
0.0531 0.0177 0.406 0.7488 

10.37160 0.04358 
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Conclusion no interaction 

General Linear Model: Flux sqroot versus Site, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source 	DF Seq SS Adj SS Adj MS F 	P 
Soil Tern 	1 19.2550 0.0713 0.0713 1.41 	0.236 
Site 3 2.4316 3.0005 1.0002 19.83 	0.000 
Month 9 4.7448 4.7448 0.5272 10.45 	0.000 
Error 257 12.9639 12.9639 0.0504 
Total 270 39.3953 

Term Coef 	SE Coef T 	P 
Constant 0.57998 0.08089 	7.17 0.000 
Soil Tern 	0.01251 0.01053 	1.19 0.236 

Unusual Observations for Flux sqr 

Obs Flux sqr Fit SE Fit Residual St Resid 
18 0.00000 0.60104 0.04663 -0.60104 -2.74R 

110 0.00000 0.57233 0.04660 -0.57233 -2.60R 
119 0.00000 0.60853 0.04708 -0.60853 -2.77R 
125 1.18309 0.70711 0.04683 0.47598 2.17R 
128 1.35910 0.71337 0.04657 0.64573 2.94R 
136 0.86063 1.06967 0.17172 -0.20904 -1.44 X 
151 1.51372 1.03343 0.05736 0.48029 2.21R 
181 1.68317 1.13209 0.04731 0.55108 2.51R 
184 1.67635 1.15245 0.05308 0.52390 2.40R 
193 0.39185 0.85461 0.04681 -0.46276 -2.11R 
195 0.00000 0.85586 0.04691 -0.85586 -3.90R 
207 0.50370 0.95382 0.04706 -0.45011 -2.05R 
241 0.00000 0.49893 0.04679 -0.49893 -2.27R 
242 0.00000 0.49393 0.04657 -0.49393 -2.25R 
265 0.00000 0.79196 0.04673 -0.79196 -3.61R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Site test 
Model with Plot 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	241 10.42470 10.42470 0.04326 

Model With Site 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	257 12.9639 12.9639 0.0504 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS F P 
Site 	3 2.4316 3.0005 1.0002 6.302 0.005 
Plot(site) 	16 2.5392 2.5392 0.1587 

Plot 	19 
	

4.9708 	5.5397 
	

0.29156 	6.74 	<0.001 

Other effects 
Error 	241 
	

10.42470 	10.42470 
	

0.04326 

Descriptive Statistics: Flux sqroot by Site 
Variable 	Site N Mean Median TrMean StDev 

Flux sqr 	Leir 64 0.6988 0.7831 0.7030 0.3793 

Maol Don 71 0.6420 0.6837 0.6434 0.3720 
Nam Brea 64 0.8591 0.7823 0.8480 0.3128 
Sletill 72 0.4990 0.5061 0.4832 0.3749 
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Variable 	Site 	SE Mean Minimum Maximum Ql Q3 
Flux sqr 	Leir 	 0.0474 0.0000 1.3591 0.5128 0.9310 

Maol Don 	0.0442 0.0000 1.3214 0.4477 0.9232 
Nam Brea 	0.0391 0.0000 1.6832 0.6708 1.0372 
Sletill 	0.0442 0.0000 1.5137 0.0000 0.7039 

8.4.1c Main Sites 2003-4 CH4 Flux 
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Chapter 5 Appendix Figure 4: Residual plots for Main sites 2003-4 CH4 Flux 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F 	P 
ST Leir 1 	0.044160 	0.001049 0.001049 1.79 	0.182 
ST Maol 1 	0.812509 	0.016783 0.016783 28.61 	0.000 
ST Nam i 1 	0.003041 	0.000000 0.000000 0.00 	0.997 
ST Slet 1 	0.322727 	0.012456 0.012456 21.24 	0.000 
WT Leir 1 	0.017607 	0.000464 0.000464 0.79 	0.375 
WT Maol 1 	0.000081 	0.000051 0.000051 0.09 	0.768 
WT Nam i 1 	0.000025 	0.000013 0.000013 0.02 	0.884 
WT Slet 1 	0.006564 	0.001243 0.001243 2.12 	0.147 
Plot 19 	0.110988 	0.086435 0.004549 7.76 	0.000 
Month 9 	0.124007 	0.124007 0.013779 23.49 	0.000 
Error 234 	0.137252 	0.137252 0.000587 
Total 270 	1.578961 

Term Coef 	SE Coef 	T P 
Constant 0.04244 	0.01516 	2.80 0.006 
ST Leir 0.003190 	0.002385 	1.34 0.182 
ST Maol 0.010419 	0.001948 	5.35 0.000 
ST Nam i 0.000007 	0.002046 	0.00 0.997 
ST Slet 0.008968 	0.001946 	4.61 0.000 
WT Leir 0.000041 	0.000047 	0.89 0.375 
WT Maol 0.000059 	0.000199 	0.30 0.768 
WT Nam i -0.000010 	0.000070 	-0.15 0.884 
WT Slet 0.000129 	0.000089 	1.46 0.147 
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Unusual Observations for Flux sqr 

Obs Flux sqr Fit SE Fit Residual St Resid 
4 0.000000 0.015005 0.016123 -0.015005 -0.83 X 
5 0.000000 0.046869 0.006311 -0.046869 -2.00R 
8 0.000000 0.049559 0.006395 -0.049559 -2.12R 

29 0.000000 0.046431 0.018709 -0.046431 -3.02RX 
36 0.000000 -0.026765 0.016663 0.026765 1.52 X 
43 0.000000 0.080780 0.006927 -0.080780 -3.48R 
45 0.000000 0.082864 0.006835 -0.082864 -3.57R 
66 0.000000 0.050214 0.011451 -0.050214 -2.35R 

169 0.000000 0.048252 0.006776 -0.048252 -2.08R 
172 0.160789 0.091557 0.010101 0.069232 3.15R 
173 0.000000 0.048253 0.006770 -0.048253 -2.08R 
176 0.000000 0.048254 0.006776 -0.048254 -2.08R 

194 0.344741 0.264212 0.007740 0.080529 3.51R 

198 0.214691 0.262239 0.010357 -0.047548 -2.17R 

248 0.271621 0.209003 0.007457 0.062618 2.72R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 

ST Leir 1 	0.044160 	0.001011 0.001011 1.74 0.189 

ST Maol 1 	0.812509 	0.016603 0.016603 28.48 0.000 
ST Nam i 1 	0.003041 	0.000002 0.000002 0.00 0.951 

ST Slet 1 	0.322727 	0.012615 0.012615 21.64 0.000 

Water Ta 1 	0.020361 	0.000660 0.000660 1.13 0.289 

Plot 19 	0.102919 	0.095482 0.005025 8.62 0.000 

Month 9 	0.135080 	0.135080 0.015009 25.75 0.000 
Error 237 	0.138163 	0.138163 0.000583 
Total 270 	1.578961 

Term Coef 	SE Coef 	T P 
Constant 0.04187 	0.01510 	2.77 0.006 
ST Leir 0.003118 	0.002367 	1.32 0.189 
ST Maol 0.010355 	0.001940 	5.34 0.000 
ST Nam i 0.000124 	0.002028 	0.06 0.951 
ST Slet 0.008991 	0.001933 	4.65 0.000 
Water Ta 0.000039 	0.000037 	1.06 0.289 

Unusual Observations for Flux sqr 

Obs Flux sqr Fit SE Fit Residual St Resid 

5 0.000000 0.047322 0.006077 -0.047322 -2.03R 

8 0.000000 0.050020 0.006151 -0.050020 -2.14R 

43 0.000000 0.079942 0.006608 -0.079942 -3.44R 

45 0.000000 0.082013 0.006512 -0.082013 -3.53R 

52 0.000000 0.044563 0.009936 -0.044563 -2.03R 

66 0.000000 0.050673 0.011410 -0.050673 -2.38R 

169 0.000000 0.048001 0.006705 -0.048001 -2.07R 

172 0.160789 0.091735 0.010020 0.069054 3.14R 

173 0.000000 0.048013 0.006696 -0.048013 -2.07R 

176 0.000000 0.048038 0.006698 -0.048038 -2.07R 

194 0.344741 0.264652 0.007364 0.080089 3.48R 

198 0.214691 0.263078 0.010118 -0.048388 -2.21R 

248 0.271621 0.208932 0.005815 0.062689 2.68R 

R denotes an observation with a large standardized residual. 
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Test of site water table interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	234 	0.137252 	0.137252 	0.000587 

Model without interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	237 	0.138163 	0.138163 	0.000583 

Combining these gives 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Site.WT 	3 	0.000911 	0.000911 	0.000304 	0.602 0.6143 
Error 	234 	0.137252 	0.137252 	0.000587 

Conclusion No site water table interaction 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source 	OF Seq SS Adj SS Adj MS F 	P 
WT Leir 	1 0.129278 0.000268 0.000268 0.31 	0.580 
WT Maol 	1 0.133126 0.002311 0.002311 2.65 	0.105 
WT Nam i 	1 0.089094 0.005551 0.005551 6.36 	0.012 
WT Slet 	1 0.028759 0.002941 0.002941 3.37 	0.068 
Soil Tern 	1 0.476332 0.017497 0.017497 20.04 	0.000 
Plot 	19 0.398450 0.350351 0.018440 21.12 	0.000 
Month 	9 0.117020 0.117020 0.013002 14.89 	0.000 
Error 	237 0.206902 0.206902 0.000873 
Total 	270 1.578961 

Term Coef 	SE Coef T 	P 
Constant 	0.01474 0.01687 	0.87 0.383 
WT Leir 	0.000030 	0.000055 	0.55 0.580 
WT Maol 	0.000388 	0.000239 	1.63 0.105 
WT Nam i 	0.000204 	0.000081 	2.52 0.012 
WT Slet 	0.000198 	0.000108 	1.84 0.068 
Soil Tern 	0.009926 	0.002217 	4.48 0.000 

Unusual Observations for Flux sqr 

Obs 	Flux sqr Fit SE Fit Residual St Resid 
4 	0.000000 0.012291 0.019653 -0.012291 -0.56 X 
8 	0.000000 0.057358 0.007728 -0.057358 -2.01R 

29 	0.000000 -0.015651 0.021510 0.015651 0.77 X 

30 	0.056388 -0.001859 0.012109 0.058248 2.16R 
36 	0.000000 -0.028457 0.020217 0.028457 1.32 X 
43 	0.000000 0.100743 0.007482 -0.100743 -3.52R 
45 	0.000000 0.102728 0.007404 -0.102728 -3.59R 

103 	0.051984 -0.008642 0.011660 0.060627 2.23R 
169 	0.000000 0.072696 0.007396 -0.072696 -2.54R 
173 	0.000000 0.073689 0.007354 -0.073689 -2.58R 
176 	0.000000 0.075674 0.007288 -0.075674 -2.64R 
194 	0.344741 0.239944 0.008229 0.104796 3.69R 

208 	0.163320 0.108224 0.012838 0.055096 2.07R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 
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Test of site water table interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 

Error 	234 	0.137252 	0.137252 	0.000587 

Model without interaction 
Source DF Seq SS Adj SS Adj MS 	F 	P 

Error 237 0.206902 0.206902 0.000873 

Combining these gives 
Source DF Seq SS Adj SS Adj MS 	F 	P 

Site.ST 3 0.069650 0.069650 0.023217 	39.55 

Error 234 0.137252 0.137252 0.000587 

Conclusion site soil temperature interaction 

General Linear Model: Flux sqroot versus Site, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 

ST Leir 1 0.044160 0.000134 0.000134 0.18 0.673 

ST Maol 1 0.812509 0.011706 0.011706 15.58 0.000 

ST Nam i 1 0.003041 0.000591 0.000591 0.79 0.376 

ST Slet 1 0.322727 0.008533 0.008533 11.36 0.001 

Water Ta 1 0.020361 0.000489 0.000489 0.65 0.421 

Site 3 0.040820 0.043542 0.014514 19.32 0.000 

Month 9 0.145239 0.145239 0.016138 21.48 0.000 

Error 253 0.190104 0.190104 0.000751 

Total 	270 	1.578961 

Term Coef SE Coef T P 

Constant 0.05626 0.01649 3.41 0.001 
ST Leir 0.001098 0.002597 0.42 0.673 
ST Maol 0.008299 0.002103 3.95 0.000 
ST Nam i -0.001927 0.002173 -0.89 0.376 
ST Slet 0.007062 0.002096 3.37 0.001 
Water Ta 0.000024 0.000030 0.81 0.421 

Unusual Observations for Flux sqr 

Obs Flux sqr 	Fit 
43 0.000000 0.079193 
45 0.000000 0.080853 
169 0.000000 0.058366 
172 0.160789 0.058700 
173 0.000000 0.058173 
176 0.000000 0.057787 
191 0.111933 0.164935 
194 0.344741 0.260018 
197 0.191599 0.259188 
203 0.153266 0.091720 
209 0.194590 0.135509 
227 0.148448 0.084485 
248 0.271621 0.205664 

SE Fit Residual St Resid 
0.006843 -0.079193 -2.98R 
0.006712 -0.080853 -3.04R 
0.006750 -0.058366 -2.20R 
0.006797 0.102090 3.84R 
0.006741 -0.058173 -2.19R 
0.006744 -0.057787 -2.17R 
0.007441 -0.053002 -2.01R 
0.007679 0.084723 3.22R 
0.007633 -0.067589 -2.57R 
0.007624 0.061546 2.34R 
0.005994 0.059081 2.21R 
0.006067 0.063963 2.39R 
0.005726 0.065957 2.46R 

P 

P 

R denotes an observation with a large standardized residual. 

Model with plot 
Source 	DE' Seq SS Adj SS Adj MS 	F 

Error 	237 0.138163 0.138163 0.000583 

Model with site 
Source 	DF Seq SS Adj SS Adj MS 	F 

Error 	253 0.190104 0.190104 0.000751 
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Combining these gives 
Source DE' 	Seq SS 	Adj SS 	Adj MS 	F P 
Site 3 	0.040820 	0.043542 	0.014514 	4.47 0.0184 
Plot(site) 16 	0.051941 	0.051941 	0.003246 

Plot 19 	0.092761 	0.095483 	0.005025 	8.62 < 0.001 

Other effects 
Residual 237 	0.138163 	0.138163 	0.000583 

Descriptive Statistics: Flux sqroot by Site 
Variable Site N Mean 	Median TrMean StDev 

Flux sqr Leir 64 0.04555 	0.04064 0.04292 0.04570 
Maol Don 71 0.16318 	0.16576 0.16325 0.07070 
Nam Brea 64 0.03889 	0.03696 0.03642 0.03625 
Sletill 72 0.08004 	0.05738 0.07802 0.06956 

Variable Site SE Mean Minimum 	Maximum Qi Q3 

Flux sqr Leir 0.00571 0.00000 	0.15327 0.00000 0.09105 
Maol Don 0.00839 0.00000 	0.34474 0.10376 0.22090 
Nam Brea 0.00453 0.00000 	0.16079 0.00000 0.05942 
Sletill 0.00820 0.00000 	0.20632 0.00000 0.14730 

8.4.1d Main Sites 2005 CO2 Light Flux 
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Chapter 5 Appendix Figure 5: Residual plots for Main sites 2005 CO2 Light Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source 	DF 	Seq SS 	AdI SS 	Adj MS 	F 	P 

AT Leir 	1 	0.0001 	2.2073 	2.2073 	5.23 0.024 
AT Maol 	1 	7.1216 	0.2763 	0.2763 	0.66 0.420 
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AT Nam i 1 	1.4308 	0.3185 0.3185 0.76 	0.387 

AT Slet 1 	3.4792 	0.1137 0.1137 0.27 	0.605 

RH Leir 1 	1.8820 	0.0000 0.0000 0.00 	0.993 

RH Maol 1 	3.7948 	0.0070 0.0070 0.02 	0.898 

RH Nam i 1 	0.0151 	0.0335 0.0335 0.08 	0.779 

RH Slet 1 	0.5248 	0.7124 0.7124 1.69 	0.196 

PAR Leir 1 	12.8188 	8.5075 8.5075 20.17 	0.000 

PAR Maol 1 	10.0835 	4.7914 4.7914 11.36 	0.001 

PAR Nam 1 	1.3732 	1.5709 1.5709 3.72 	0.056 

PAR SLet 1 	3.5334 	4.1471 4.1471 9.83 	0.002 

Plot 19 	10.4442 	10.6303 0.5595 1.33 	0.181 

Month 4 	3.3196 	3.3196 0.8299 1.97 	0.104 

Error 113 	47.6670 	47.6670 0.4218 

Total 148 	107.4881 

Term Coef 	SE Coef 	T P 

Constant 0.862 	1.261 	0.68 0.496 
AT Leir 0.09854 	0.04308 	2.29 0.024 

AT Maol -0.05484 	0.06776 	-0.81 0.420 
AT Nam i 0.03733 	0.04296 	0.87 0.387 

AT Slet -0.03041 	0.05859 	-0.52 0.605 
RH Leir 0.00018 	0.01909 	0.01 0.993 
RH Maol -0.00236 	0.01831 	-0.13 0.898 

RH Nam i 0.00553 	0.01963 	0.28 0.779 
RH Slet -0.04350 	0.03348 	-1.30 0.196 
PAR Leir -0.003818 	0.000850 	-4.49 0.000 
PAR Maol -0.002269 	0.000673 	-3.37 0.001 
PAR Nam -0.000940 	0.000487 	-1.93 0.056 

PAR SLet -0.001807 	0.000576 	-3.14 0.002 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 

1 -1.90317 -0.40590 0.25581 -1.49726 -2.51R 

20 0.26120 -0.76156 0.45304 1.02276 2.20R 

61 1.42288 -0.56492 0.21672 1.98780 3.25R 

62 1.92274 -0.03148 0.27260 1.95423 3.32R 

71 -2.38314 -1.23384 0.33645 -1.14930 -2.07R 

94 1.43030 -0.23151 0.24114 1.66180 2.76R 

115 -1.74370 -2.65887 0.48691 0.91516 2.13R 

R denotes an observation with a large standardized residual. 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 

RH Leir 1 0.0085 1.1621 1.1621 2.67 0.105 

RH Maol 1 1.8341 0.8254 0.8254 1.90 0.171 

RH Nam i 1 4.4700 0.0456 0.0456 0.10 0.747 

RH Slet 1 2.7845 0.1020 0.1020 0.23 0.629 

PAR Leir 1 1.5239 8.7394 8.7394 20.07 0.000 

PAR Maol 1 20.7577 7.4624 7.4624 17.14 0.000 

PAR Nam 1 1.1237 1.5772 1.5772 3.62 0.059 

PAR SLet 1 6.7762 6.6161 6.6161 15.19 0.000 

Air Temp 1 2.2647 0.6194 0.6194 1.42 0.235 

Plot 19 12.4913 12.0055 0.6319 1.45 0.117 

Month 4 2.9439 2.9439 0.7360 1.69 0.157 

Error 116 50.5095 50.5095 0.4354 

Total 148 107.4881 

Term Coef 	SE Coef 	T P 

Constant 0.036 1.177 	0.03 0.976 

RH Leir -0.02604 	0.01594 -1.63 0.105 
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RH Naol 0.01752 0.01273 1.38 0.171 
RH Nam j 0.00457 0.01412 0.32 0.747 
RH Slet -0.01072 0.02214 -0.48 0.629 
PAR Leir -0.003788 0.000846 -4.48 0.000 
PAR Maol -0.002560 0.000618 -4.14 0.000 
PAR Nam -0.000935 0.000491 -1.90 0.059 
PAR SLet -0.002106 0.000540 -3.90 0.000 
Air Temp 0.03343 0.02803 1.19 0.235 

Unusual Observations for Flux /um 

Obs Flux /urn Fit SE Fit Residual St Resid 
1 -1.90317 -0.38458 0.25357 -1.51859 -2.49R 

20 0.26120 -0.80063 0.45902 1.06183 2.24R 
61 1.42288 -0.53240 0.21832 1.95527 3.14R 
62 1.92274 -0.17937 0.26963 2.10211 3.49R 

94 1.43030 -0.27543 0.23740 1.70573 2.77R 

131 0.00000 -1.12273 0.38459 1.12273 2.09R 

R denotes an observation with a large standardized residual. 

Site air temperature interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 

Error 	113 	47.6670 	47.6670 	0.4218 

Model without interaction 
Source DF Seq SS Adj SS Adj MS 	F 	P 

Error 116 50.5095 50.5095 0.4354 

Combining these gives 
Source OF Seq SS Adj SS Adj MS 	F 	P 

Site.AT 3 2.8425 2.8425 0.9475 	2.25 	0.0864 

Error 113 47.6670 47.6670 0.4218 

Conclusion no site air temperature interaction 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source OF 	Seq SS 	Adj SS Adj MS F P 
AT Leir 1 	0.0001 	3.7850 3.7850 9.08 0.003 
AT Maol 1 	7.1216 	0.3877 0.3877 0.93 0.337 

AT Nam i 1 	1.4308 	0.2489 0.2489 0.60 0.441 

AT Slet 1 	3.4792 	0.2138 0.2138 0.51 0.475 

PAR Leir 1 	10.3669 	11.1926 11.1926 26.86 0.000 
PAR Maol 1 	14.1516 	5.5525 5.5525 13.32 0.000 

PAR Nam 1 	1.4165 	1.9199 1.9199 4.61 0.034 

PAR SLet 1 	4.0271 	4.2158 4.2158 10.12 0.002 

RH 1 	0.0035 	0.0411 0.0411 0.10 0.754 

Plot 19 	14.1684 	13.0748 0.6881 1.65 0.055 

Month 4 	2.9781 	2.9781 0.7445 1.79 0.136 

Error 116 	48.3445 	48.3445 0.4168 
Total 148 	107.4881 

Term Coef 	SE Coef 	T P 
Constant 0.067 	1.081 	0.06 0.951 
AT Leir 0.10129 	0.03361 	3.01 0.003 
AT Maol -0.04959 	0.05142 	-0.96 0.337 
AT Nam i 0.02555 	0.03307 	0.77 0.441 
AT Slet 0.02658 	0.03712 	0.72 0.475 
PAR Leir -0.003990 	0.000770 	-5.18 0.000 
PAR Maol -0.002383 	0.000653 	-3.65 0.000 
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PAR Nam 	-0.000996 	0.000464 	-2.15 	0.034 
PAR SLet 	-0.001821 	0.000572 	-3.18 0.002 
RH -0.002943 	0.009375 	-0.31 0.754 

Unusual Observations for Flux /um 

Obs Flux /urn 	Fit SE Fit Residual St Resid 

1 -1.90317 	-0.38008 0.23352 -1.52308 -2.53R 
20 0.26120 	-0.98419 0.41404 1.24539 2.51R 
61 1.42288 	-0.52125 0.20762 1.94413 3.18R 

62 1.92274 	-0.01899 0.25869 1.94173 3.28R 
71 -2.38314 	-1.25562 0.32379 -1.12752 -2.02R 

94 1.43030 	-0.24259 0.23466 1.67288 2.78R 

115 -1.74370 	-2.69315 0.46975 0.94945 2.14R 

R denotes an observation with a large standardized residual. 

Site RH interaction 
Model with interaction 
Source 	OF 	Seq SS 	Adj SS 	Adj MS 	F 	P 

Error 	113 	47.6670 	47.6670 	0.4218 

Model without interaction 
Source DF Seq SS Adj SS Adj MS 	F 	P 

Error 116 48.3445 48.3445 0.4168 

Combining these gives 
Source DF Seq SS Adj SS Adj MS 	F 	P 

Site.RH 3 0.6775 0.6775 0.2258 	0.535 	0.659 

Error 113 47.6670 47.6670 0.4218 

Conclusion no site relative humidity interaction 

General Linear Model: Flux IjmolsIm2Is versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 

AT Leir 1 	0.0001 	1.4056 1.4056 3.17 0.078 

AT Maol 1 	7.1216 	1.0358 1.0358 2.34 0.129 

AT Nam i 1 	1.4308 	0.8560 0.8560 1.93 0.167 

AT Slet 1 	3.4792 	0.3789 0.3789 0.85 0.357 

RH Leir 1 	1.8820 	0.6934 0.6934 1.56 0.214 

RH Maol 1 	3.7948 	0.0539 0.0539 0.12 0.728 

RH Nam i 1 	0.0151 	0.0074 0.0074 0.02 0.897 

RH Slet 1 	0.5248 	0.9438 0.9438 2.13 0.147 

PAR 1 	21.0073 	13.0900 13.0900 29.52 0.000 

Plot 19 	13.0115 	13.6137 0.7165 1.62 0.063 

Month 4 	3.7893 	3.7893 0.9473 2.14 0.081 

Error 116 	51.4316 	51.4316 0.4434 
Total 148 	107.4881 

Term Coef 	SE Coef 	T P 
Constant 0.802 	1.255 	0.64 0.524 
AT Leir 0.07670 	0.04308 	1.78 0.078 
AT Maol -0.09563 	0.06257 	-1.53 0.129 
AT Nam i 0.06007 	0.04323 	1.39 0.167 
AT Slet -0.05241 	0.05670 	-0.92 0.357 
RH Leir 0.02148 	0.01718 	1.25 0.214 
RH Maol -0.00651 	0.01868 	-0.35 0.728 
RH Nam i 0.00253 	0.01957 	0.13 0.897 
RH Slet -0.04988 	0.03419 	-1.46 0.147 
PAR -0.001762 	0.000324 	-5.43 0.000 

Unusual Observations for Flux /um 
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Source DF Seq SS 
Error 113 47.6670 

Model without interaction 
Source DF Seq SS 
Error 116 51.4316 

Combining these gives 
Source DF Seq SS Adj SS Adj MS 
Site.RH 3 3.7646 3.7646 1.2549 
Error 113 47.6670 47.6670 0.4218 

Adj SS Adj MS 
47.6670 0.4218 

Adj SS Adj MS 
51.4316 0.4434 

F 	P 

F 	P 

F 	P 
2.98 	0.0345 
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Obs Flux /um Fit SE Fit Residual St Resid 
1 -1.90317 -0.33321 0.25791 -1.56996 -2.56R 
6 -0.23649 -1.32960 0.45384 1.09311 2.24R 

20 0.26120 -0.76421 0.46107 1.02541 2.13R 
61 1.42288 -0.40794 0.20976 1.83082 2.90R 
62 1.92274 -0.10946 0.24833 2.03221 3.29R 
71 -2.38314 -0.97836 0.32926 -1.40478 -2.43R 
94 1.43030 -0.28889 0.24434 1.71919 2.78R 

R denotes an observation with a large standardized residual. 

Site PAR interaction 

Model with interaction 

Conclusion site PAR interaction 

Site Model then with PAR interaction but no air temp or RH 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
PAR Leir 1 2.2520 7.6615 7.6615 17.21 0.000 
PAR Maol 1 21.0026 15.3399 15.3399 34.47 0.000 
PAR Nam 1 0.1233 3.8783 3.8783 8.71 0.004 
PAR SLet 1 12.3461 9.2277 9.2277 20.73 0.000 
Air Temp 1 4.2412 1.6520 1.6520 3.71 0.056 
RH 1 0.0210 0.0443 0.0443 0.10 0.753 
Plot 19 11.1087 10.4997 0.5526 1.24 0.237 
Month 4 3.4284 3.4284 0.8571 1.93 0.111 
Error 119 52.9649 52.9649 0.4451 
Total 148 107.4881 

Term Coef 	SE Coef 	T P 
Constant -0.850 1.060 	-0.80 0.424 
PAR Leir -0.002689 0.000648 -4.15 0.000 
PAR Maol -0.003163 0.000539 -5.87 0.000 
PAR Nam -0.001131 0.000383 -2.95 0.004 
PAR SLet -0.002080 0.000457 -4.55 0.000 
Air Temp 0.05168 0.02683 1.93 0.056 
RH 0.002966 0.009399 0.32 0.753 

Unusual Observations for Flux /urn 

Obs 	Flux /um Fit SE Fit 	Residual St Resid 
1 	-1.90317 -0.43721 0.23711 	-1.46596 -2.35R 

20 	0.26120 -0.90919 0.38160 1.17039 2.14R 
61 	1.42288 -0.53000 0.20965 1.95287 3.08R 
62 	1.92274 -0.04749 0.26636 1.97023 3.22R 
71 	-2.38314 -1.12556 0.32956 	-1.25758 -2.17R 
94 	1.43030 -0.30335 0.23746 1.73365 2.78R 
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R denotes an observation with a large standardized residual. 

General Linear Model: Flux Ipmolslm2ls versus Site, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source 	DF Seq SS Adj SS Adj MS F 	P 
PAR Leir 	1 2.2520 8.4869 8.4869 18.30 	0.000 
PAR Maol 	1 21.0026 19.7029 19.7029 42.48 	0.000 
PAR Nam 	1 0.1233 3.3542 3.3542 7.23 	0.008 
PAR SLet 	1 12.3461 9.3359 9.3359 20.13 	0.000 
Air Temp 	1 4.2412 2.0912 2.0912 4.51 	0.036 
RH 	 1 0.0210 0.0402 0.0402 0.09 	0.769 
Site 	3 1.2621 0.8549 0.2850 0.61 	0.607 
Month 	4 3.6301 3.6301 0.9075 1.96 	0.105 
Error 	135 62.6097 62.6097 0.4638 
Total 	148 107.4881 

Term Coef 	SE Coef 	T P 
Constant -0.907 1.010 	-0.90 0.371 
PAR Leir 	-0.002687 0.000628 	-4.28 0.000 
PAR Maol 	-0.003168 0.000486 	-6.52 0.000 
PAR Nam 	-0.000989 0.000368 	-2.69 0.008 
PAR SLet 	-0.002056 0.000458 	-4.49 0.000 
Air Temp 	0.05505 0.02593 	2.12 0.036 
RH 	 0.002626 0.008916 	0.29 0.769 

Unusual Observations for Flux /um 

Obs 	Flux /um Fit SE Fit 	Residual St Resid 
1 	-1.90317 -0.35686 0.21541 	-1.54631 -2.39R 
3 	-0.85818 -0.77401 0.36317 	-0.08417 -0.15 x 
6 	-0.23649 -0.94336 0.39916 0.70687 1.28 X 

18 	-1.55326 -2.13478 0.41631 0.58152 1.08 X 
61 	1.42288 -0.46459 0.18601 1.88747 2.88R 
62 	1.92274 0.10904 0.22921 1.81370 2.83R 
71 	-2.38314 -0.81670 0.17461 	-1.56645 -2.38R 
73 	-3.28684 -1.58358 0.29241 	-1.70326 -2.77R 
94 	1.43030 -0.31168 0.20839 1.74197 2.69R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Site test 

Model with plot 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	119 52.9649 52.9649 0.4451 

Model with Site 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	135 62.6097 62.6097 0.4638 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS F P 
Site 	3 1.2621 0.8549 0.2850 0.473 0.705 
Plot(site) 	16 9.6448 9.6448 0.6028 

Plot 	19 10.9069 10.4997 0.5526 1.24 0.2379 

Other effects 
Residual 	119 52.9649 52.9649 0.4451 
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General Linear Model: Flux Ipmolslm2ls versus Damage, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source 	DF 	Seq SS 	Adj SS 	Adj MS 
PAR Leir 	1 	2.2520 	14.2989 	14.2989 
PAR Maol 	1 	21.0026 	25.6811 	25.6811 
PAR Nam 	1 	0.1233 	3.3461 	3.3461 
PAR SLet 	1 	12.3461 	16.2864 	16.2864 
Air Temp 	1 	4.2412 	1.9470 	1.9470 
RH 	 1 	0.0210 	0.0673 	0.0673 
Damage 	1 	0.2018 	0.3009 	0.3009 
Month 	4 	4.1365 	4.1365 	1.0341 
Error 	137 	63.1637 	63.1637 	0.4610 
Total 	148 	107.4881 

Term 	 Coef SE 	Coef 	T 	P 
Constant 	-0.982 	1.001 	-0.98 0.328 
PAR Leir -0.002600 0.000467 	-5.57 0.000 
PAR Maol -0.002875 0.000385 	-7.46 0.000 
PAR Nam 	-0.000980 0.000364 	-2.69 0.008 
PAR SLet -0.002309 0.000389 	-5.94 0.000 
Air Temp 	0.05294 	0.02576 	2.05 0.042 
RH 	 0.003337 0.008732 	0.38 0.703 

Unusual Observations for Flux /um 

F 	P 
31.01 0.000 
55.70 0.000 
7.26 0.008 
35.32 0.000 
4.22 0.042 
0.15 0.703 
0.65 0.421 
2.24 0.068 

Obs Flux /um 	Fit 
1 -1.90317 -0.32898 
3 -0.85818 -0.76312 
6 -0.23649 -0.94751 
18 -1.55326 -2.31907 
61 	1.42288 -0.47350 
62 	1.92274 -0.00795 
71 -2.38314 -0.80490 
73 -3.28684 -1.57274 
94 	1.43030 -0.18058 

SE Fit Residual 
0.21327 -1.57419 
0.36105 -0.09506 

	

0.39796 	0.71102 

	

0.37445 	0.76581 

	

0.18527 	1.89638 

	

0.18563 	1.93069 
0.17308 -1.57824 
0.27247 -1.71409 

	

0.16155 	1.61088 

St Resid 
-2.44R 
-0.17 X 
1.29 x 
1.35 x 
2. 90R 
2. 96R 

-2. 40R 
-2.76R 
2. 44R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Site test 

Model with plot 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	119 52.9649 52.9649 0.4451 

Model with Site 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	137 63.1637 63.1637 0.4610 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS F P 
Damage 	1 0.2018 0.3009 0.3009 0.531 0.4756 
Plot(Dama) 	18 10.1988 10.1988 0.5666 
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8.4.1e Main sites 2005 CO 2  Dark Flux 
Residuals Versus the Fitted Values 

	
Residuals Versus the Order of the Data 
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CH5 App Figure 6: Residual plots for Main sites 2005 CO2 Dark Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
ST Leir 	1 	0.12096 	0.98636 	0.98636 	14.44 	0.000 
ST Naol 	1 	1.02939 	0.14725 	0.14725 	2.16 	0.145 
ST Nam i 	1 	1.31362 	2.24872 	2.24872 	32.92 	0.000 
ST Slet 	1 	10.92405 	2.09269 	2.09269 	30.63 	0.000 
Plot 	19 	4.67353 	4.55036 	0.23949 	3.51 	0.000 
Month 	4 	2.50871 	2.50871 	0.62718 	9.18 	0.000 
Error 	121 	8.26605 	8.26605 	0.06831 
Total 	148 	28.83631 

Term 	 Coef 	SE Coef 	T 	P 
Constant 	-0.3934 	0.2313 	-1.70 	0.092 
ST Leir 	0.11846 	0.03117 	3.80 	0.000 
ST Maol 	0.04093 	0.02788 	1.47 	0.145 
ST Nam i 	0.14141 	0.02465 	5.74 	0.000 
ST Slet 	0.12732 	0.02300 	5.53 	0.000 

Unusual Observations for Flux /um 

Obs 	Flux /urn 	Fit 	SE Fit 	Residual 	St Resid 
8 	2.32934 	1.71152 	0.09572 	0.61782 	2.54R 

16 	0.73790 	1.42367 	0.10204 	-0.68577 	-2.85R 
24 	1.11944 	1.66880 	0.10738 	-0.54936 	-2.31R 
67 	1.24505 	0.71712 	0.12849 	0.52793 	2.32R 

134 	1.50455 	0.83540 	0.08627 	0.66915 	2.71R 

R denotes an observation with a large standardized residual. 
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General Linear Model: Flux IimolsIm2Is versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Soil Tern 	1 	9.54354 2.71747 2.71747 36.43 	0.000 
Plot 	19 	7.36270 7.42430 0.39075 5.24 	0.000 
Month 	4 	2.67977 2.67977 0.66994 8.98 	0.000 
Error 	124 	9.25031 9.25031 0.07460 
Total 	148 	28.83631 

Term 	 Coef 	SE Coef P 	P 
Constant 	-0.5384 	0.2291 -2.35 0.020 
Soil Tern 	0.11854 	0.01964 	6.04 0.000 

Unusual Observations for Flux /um 

Obs 	Flux /um 	Fit SE Fit Residual St Resid 
8 	2.32934 	1.61380 0.07733 0.71553 2.73R 

16 	0.73790 	1.38734 0.07682 -0.64944 -2.48R 
30 	0.75896 	1.35581 0.13010 -0.59685 -2.49R 

134 	1.50455 	0.65603 0.07530 0.84852 3.23R 

R denotes an observation with a large standardized residual. 

Site soil temperature interaction 

Model with interaction 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Error 	121 	8.26605 8.26605 0.06831 

Model without interaction 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Error 	124 	9.25031 9.25031 0.07460 

Combining these gives 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Site.ST 	3 	0.98426 	0.98426 	0.32809 	4.803 0.0034 
Error 	121 	8.26605 	8.26605 	0.06831 

Conclusion site soil temperature interaction 

General Linear Model: Flux /pmols/m2Is versus Site, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS Adj SS Adj MS F P 
ST Leir 1 	0.1210 0.8624 0.8624 9.68 0.002 
ST Maol 1 	1.0294 0.1016 0.1016 1.14 0.287 
ST Nam i 1 	1.3136 2.3285 2.3285 26.15 0.000 
ST Slet 1 	10.9241 2.0302 2.0302 22.80 0.000 
Site 3 	0.7212 0.6171 0.2057 2.31 0.079 
Month 4 	2.5278 2.5278 0.6320 7.10 0.000 
Error 137 	12.1993 	12.1993 0.0890 
Total 148 	28.8363 

Term Coef 	SE Coef T P 
Constant -0.2763 	0.2548 -1.08 0.280 
ST Leir 0.10805 	0.03472 3.11 0.002 
ST Maol 0.03350 	0.03136 1.07 0.287 
ST Nam i 0.14214 	0.02780 5.11 0.000 
ST Slet 0.12211 	0.02557 4.77 0.000 

Unusual Observations for Flux /um 
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Obs 	Flux /um Fit SE Fit Residual St Resid 
8 	2.32934 1.58453 0.09820 0.74481 2.64R 

16 	0.73790 1.38734 0.10096 -0.64945 -2.31R 
67 	1.24505 0.54566 0.07856 0.69939 2.43R 

118 	1.02440 0.45833 0.11371 0.56607 2.05R 
134 	1.50455 0.67741 0.08723 0.82714 2.90R 
148 	0.00000 0.72960 0.08283 -0.72960 -2.54R 

R denotes an observation with a large standardized residual. 

Model with Plot 
Source 	DF Seq SS Adj SS Adj MS F 
Error 	121 8.26605 8.26605 0.06831 

Model with Site 
Source 	DF Seq SS Adj SS Adj MS F 
Error 	137 12.1993 12.1993 0.0890 

Combining these gives 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Site 	3 	0.7212 0.6171 0.2057 0.837 	0.4932 
Plot(site) 	16 	3.93325 3.93325 0.2458 

Plot 	19 	4.64535 4.55035 0.23949 3.506 	<.0001 

Other effects 
Error 	121 	8.26605 8.26605 0.06831 

General Linear Model: Flux IiimolsIm2Is  versus Damage, Month 
Analysis of Variance for Flux /urn, 	using Adjusted SS for Tests 

Source 	DF 	Seq SS Adj SS Adj MS F 	P 
ST Leir 	1 	0.1210 1.5632 1.5632 17.59 	0.000 
ST Maol 	1 	1.0294 1.0755 1.0755 12.10 	0.001 
ST Nam i 	1 	1.3136 3.6411 3.6411 40.97 	0.000 
ST Slet 	1 	10.9241 1.6635 1.6635 18.72 	0.000 
Damage 	1 	0.3169 0.4631 0.4631 5.21 	0.024 
Month 	4 	2.7780 2.7780 0.6945 7.81 	0.000 
Error 	139 	12.3533 12.3533 0.0889 
Total 	148 	28.8363 

Term 	 Coef 	SE Coef 	T P 
Constant 	-0.4394 	0.2430 -1.81 0.073 
ST Leir 	0.09847 	0.02348 4.19 0.000 
ST Maol 	0.07631 	0.02194 3.48 0.001 
ST Nam i 	0.15462 	0.02416 6.40 0.000 
ST Slet 	0.09191 	0.02124 4.33 0.000 

Unusual Observations for Flux /um 

Obs 	Flux /um 	Fit SE Fit 	Residual St Resid 
8 	2.32934 	2.05811 0.24178 0.27123 1.56 X 

16 	0.73790 	1.35210 0.07818 	-0.61420 -2.14R 
67 	1.24505 	0.58665 0.07646 0.65840 2.28R 
93 	1.35549 	1.57867 0.13989 	-0.22318 -0.85 X 

118 	1.02440 	0.39604 0.09170 0.62835 2.22R 
134 	1.50455 	0.56062 0.06375 0.94393 3.24R 
148 	0.00000 	0.76449 0.06628 	-0.76449 -2.63R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Damage test 

Model with Plot 

P 

P 
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Residuals Versus the Fitted Values 
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Source 	DF Seq SS Adj SS Adj MS F P 
Error 	121 8.26605 8.26605 0.06831 

Model with Damage 
Source 	DF Seq SS Adj SS Adj MS F P 
Error 	139 12.3533 12.3533 0.0889 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS F P 
Damage 	3 0.3169 0.4631 0.4631 1.81 0.1859 
Plot(Dama) 	16 4.08725 4.08725 0.25545 

Residuals Versus the Order of the Data 
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CH5 App Figure 7: Residual plots for Main sites 2005 CH4 Flux 

Descriptive Statistics: Flux sqroot by Site 

Variable Site N Mean Median TrMean StDev 

Flux sqr Leir 40 0.07788 0.07820 0.07708 0.03804 
Maol Don 40 0.22133 0.21633 0.22043 0.04386 
Nam Brea 36 0.07379 0.07162 0.07366 0.02403 
Sletill 32 0.16196 0.15960 0.16132 0.02724 

Variable Site SE Mean Minimum Maximum Q1 Q3 

Flux sqr Leir 0.00601 0.00000 0.17676 0.05311 0.09277 
Maol Don 0.00694 0.14264 0.31460 0.18855 0.25388 
Nam Brea 0.00400 0.00000 0.12736 0.06014 0.08069 
Sletill 0.00481 0.10843 0.22911 0.15034 0.18134 
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General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F 	P 
ST Leir 1 	0.165826 	0.000242 0.000242 0.50 	0.483 
ST Maol 1 	0.288684 	0.002469 0.002469 5.05 	0.026 
ST Nam i 1 	0.118909 	0.000350 0.000350 0.72 	0.399 
ST Slet 1 	0.003644 	0.000040 0.000040 0.08 	0.774 
WT Leir 1 	0.008472 	0.007063 0.007063 14.46 	0.000 
WT Maol 1 	0.007147 	0.000617 0.000617 1.26 	0.263 
WT Nam i 1 	0.000679 	0.000366 0.000366 0.75 	0.388 
MT Slet 1 	0.001811 	0.000985 0.000985 2.02 	0.158 
Plot 19 	0.100235 	0.094385 0.004968 10.17 	0.000 
Month 4 	0.009149 	0.009149 0.002287 4.68 	0.002 
Error 116 	0.056671 	0.056671 0.000489 
Total 147 	0.761227 

Term Coef 	SE Coef 	T P 
Constant 0.13768 	0.02348 	5.86 0.000 
ST Leir 0.001920 	0.002727 	0.70 0.483 
ST Maol 0.005643 	0.002510 	2.25 0.026 
ST Nam i -0.001793 	0.002117 	-0.85 0.399 
ST Slet -0.000566 	0.001967 	-0.29 0.774 
MT Leir 0.000270 	0.000071 	3.80 0.000 
MT Maol 0.000319 	0.000284 	1.12 0.263 
WT Nam i 0.000207 	0.000238 	0.87 0.388 
WT Slet 0.000280 	0.000197 	1.42 0.158 

Unusual Observations for Flux sqr 

Obs Flux sqr Fit SE Fit Residual St Resid 
28 0.253133 0.204309 0.011573 0.048824 2.59R 
32 0.217452 0.261346 0.009413 -0.043894 -2.19R 
51 0.299000 0.249981 0.007819 0.049019 2.37R 
52 0.154498 0.206103 0.011407 -0.051605 -2.73R 
53 0.306071 0.252238 0.007714 0.053833 2.60R 
54 0.215213 0.257314 0.011376 -0.042100 -2.22R 
67 0.300428 0.242447 0.011160 0.057981 3.04R 
69 0.000000 0.046828 0.008197 -0.046828 -2.28R 
76 0.000000 0.048364 0.008243 -0.048364 -2.36R 
81 0.000000 0.063735 0.007751 -0.063735 -3.08R 

105 0.314605 0.246497 0.007775 0.068108 3.29R 
133 0.269186 0.221332 0.007385 0.047854 2.30R 
135 0.142637 0.220768 0.007477 -0.078131 -3.76R 

R denotes an observation with a large standardized residual. 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
ST Leir 1 0.165826 0.000245 0.000245 0.51 0.475 
ST Maol 1 0.288684 0.002465 0.002465 5.17 0.025 
ST Nam 1 1 0.118909 0.000326 0.000326 0.68 0.410 
ST Slet 1 0.003644 0.000050 0.000050 0.10 0.747 
Water Ta 1 0.001138 0.007026 0.007026 14.74 0.000 
Plot 19 0.116782 0.114279 0.006015 12.61 0.000 
Month 4 0.009503 0.009503 0.002376 4.98 0.001 
Error 119 0.056741 0.056741 0.000477 
Total 147 0.761227 

Term Coef 	SE Coef T 	P 
Constant 0.13855 0.02102 	6.59 0.000 
ST Leir 0.001877 0.002618 	0.72 0.475 
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ST Maol 	0.005535 0.002434 
	

2.27 0.025 

	

ST Nam ± -0.001715 0.002074 	-0.83 0.410 
ST Slet 	-0.000627 0.001935 
	-0.32 0.747 

Water Ta 	0.000267 0.000070 
	

3.84 0.000 

Unusual Observations for Flux sqr 

Obs Flux sqr 	Fit 
28 0.253133 0.204327 
32 0.217452 0.260355 
51 0.299000 0.250981 
52 0.154498 0.206938 
53 0.306071 0.253195 
54 0.215213 0.257488 
67 0.300428 0.241979 
69 0.000000 0.046832 
76 0.000000 0.048334 
81 0.000000 0.064243 
105 0.314605 0.245762 
133 0.269186 0.221238 
135 0.142637 0.220684 

SE Fit Residual St Resid 
0.011343 0.048806 2.62R 
0.008141 -0.042903 -2.12R 
0.006472 0.048019 2.30R 
0.010689 -0.052439 -2.75R 
0.006462 0.052876 2.54R 
0.010930 -0.042275 -2.24R 
0.010859 0.058450 3.09R 
0.008083 -0.046832 -2.31R 
0.008140 -0.048334 -2.39R 
0.006879 -0.064243 -3.10R 
0.007003 0.068843 3.33R 
0.007266 0.047949 2.33R 
0.007360 -0.078047 -3.80R 

R denotes an observation with a large standardized residual. 

Site water table interaction 

Model with interaction 
Source 	DF 	Seq SS 
Error 	116 	0.056671 

Model without interaction 
Source 	DF 	Seq SS 
Error 	119 	0.056741 

Combining these gives 
Source 	DF 	Seq SS 
Site.WT 	3 	0.000070 
Error 	116 	0.056671 

AdISS AdjMS F P 
0.056671 0.000489 

AdjSS AdjMS F P 
0.056741 0.000477 

AdISS AdjMS F P 
0.000070 0.000023 0.048 0.986 
0.056671 0.000489 

Conclusion no site water table interaction 

General Linear Model: Flux sqroot versuS Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 

WT Slet 1 	0.023514 	0.001838 0.001838 3.57 0.061 
WT Nam i 1 	0.116722 	0.000838 0.000838 1.63 0.205 
WT Maol 1 	0.260945 	0.000430 0.000430 0.83 0.363 
WT Leir 1 	0.105544 	0.007471 0.007471 14.49 0.000 
Soil Tern 1 	0.001173 	0.000008 0.000008 0.02 0.898 
Plot 19 	0.184099 	0.182818 0.009622 18.67 0.000 
Month 4 	0.007888 	0.007888 0.001972 3.83 0.006 
Error 119 	0.061342 	0.061342 0.000515 
Total 147 	0.761227 

Term Coef 	SE Coef 	T P 
Constant 0.15984 	0.02204 	7.25 0.000 
WT Slet 0.000368 	0.000195 	1.89 0.061 
WT Nam i 0.000305 	0.000239 	1.28 0.205 
WT Maol 0.000262 	0.000287 	0.91 0.363 
WT Leir 0.000277 	0.000073 	3.81 0.000 
Soil Tern -0.000215 	0.001674 	-0.13 0.898 

Unusual Observations for Flux sqr 
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Obs Flux sqr 	Fit 
28 0.253133 0.191911 
51 0.299000 0.252257 
52 0.154498 0.204927 
53 0.306071 0.252171 
67 0.300428 0.236272 
69 0.000000 0.048473 
76 0.000000 0.048301 
81 0.000000 0.067262 
105 0.314605 0.252858 
135 0.142637 0.232762 

SE Fit Residual St Resid 
0.011026 0.061223 3.08R 
0.007969 0.046743 2.20R 
0.011676 -0.050428 -2.59R 
0.007887 0.053900 2.53R 
0.011255 0.064156 3.25R 
0.008388 -0.048473 -2.30R 
0.008360 -0.048301 -2.29R 
0.007823 -0.067262 -3.16R 
0.007508 0.061746 2.88R 
0.006436 -0.090125 -4.14R 

R denotes an observation with a large standardized residual. 

Model with interaction 
Source 	OF 	Seq SS 
Error 	116 	0.056671 

Model without interaction 
Source 	DF 	Seq SS 
Error 	119 	0.061342 

Combining these gives 
Source 	DF 	Seq SS 
Site.ST 	3 	0.004671 
Error 	116 	0.056671 

Adj SS Adj MS F 
0.056671 0.000489 

Adj SS Adj MS F 
0.061342 0.000515 

Adj SS Adj MS F 
0.004671 0.001557 3.18 
0.056671 0.000489 

P 

P 

P 

Conclusion Site soil temperature interaction 

Site Model is with soil interaction no water table interaction 
General Linear Model: Flux sqroot versus Site, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 
ST Leir 1 	0.165826 	0.000141 0.000141 0.12 0.731 
ST Maol 1 	0.288684 	0.001181 0.001181 0.99 0.321 
ST Nam i 1 	0.118909 	0.001192 0.001192 1.00 0.319 
ST Slet 1 	0.003644 	0.001789 0.001789 1.51 0.222 
Water Ta 1 	0.001138 	0.000375 0.000375 0.32 0.575 
Site 3 	0.014006 	0.010529 0.003510 2.95 0.035 
Month 4 	0.008530 	0.008530 0.002132 1.79 0.134 
Error 135 	0.160491 	0.160491 0.001189 
Total 147 	0.761227 

Term Coef 	SE Coef 	T P 
Constant 0.14877 	0.03168 	4.70 0.000 
ST Leir -0.001394 	0.004048 	-0.34 0.731 
ST Maol 0.003735 	0.003747 	1.00 0.321 
ST Nam i -0.003227 	0.003223 	-1.00 0.319 
ST Slet -0.003639 	0.002966 	-1.23 0.222 
Water Ta 0.000030 	0.000053 	0.56 0.575 

Unusual Observations for Flux sqr 

Obs Flux sqr 	Fit 
12 0.160386 0.083790 
51 0.299000 0.225338 
52 0.154498 0.229739 
53 0.306071 0.226832 
67 0.300428 0.221526 
72 0.176756 0.071194 
102 0.155265 0.224223 
105 0.314605 0.222881 

SE Fit Residual St Resid 
0.010113 0.076596 2.32R 
0.008278 0.073662 2.20R 
0.008877 -0.075241 -2.26R 
0.008204 0.079239 2.37R 
0.010673 0.078902 2.41R 
0.010347 0.105562 3.21R 
0.009418 -0.068958 -2.08R 
0.009832 0.091724 2.78R 
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112 	0.163299 0.093520 0.010109 0.069779 2.12R 
133 	0.269186 0.198603 0.010352 0.070584 2.15R 
144 	0.139322 0.072402 0.011260 0.066920 2.05R 

R denotes an observation with a large standardized residual. 

Model with Plot 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Error 	119 0.056741 0.056741 0.000477 

Model with Site 
Source 	DF 	Seq SS 
Error 	135 	0.160491 

Combining these gives 
Source 	DF 	Seq SS 
Site 	3 	0.014006 
Plot(site) 16 0.103750 

	

Adj SS 	Adj MS 

	

0.160491 	0.001189 

	

Adj SS 	Adj MS 

	

0.010529 	0.003510 

	

0.103750 	0.006486 

Plot 	19 	0.117756 	0.114279 	0.006015 
Other effects 
Residual 119 	0.056741 	0.056741 	0.000477 

F 	P 

F 	P 
0.54 	0.6617 

12.6 	< 0.001 

Conclusion No Site effect 

Damage Effect 
General Linear Model: Flux sq root versus Damage, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source 	DF 	Seq SS Adj SS Adj MS F 	P 
ST Leir 	1 	0.165826 0.008758 0.008758 7.15 	0.008 
ST Maol 	1 	0.288684 0.001809 0.001809 1.48 	0.226 
ST Nam 1 	1 	0.118909 0.001441 0.001441 1.18 	0.280 
ST Slet 	1 	0.003644 0.000401 0.000401 0.33 	0.568 
Water Ta 	1 	0.001138 0.001632 0.001632 1.33 	0.250 
Damage 	1 	0.006733 0.003201 0.003201 2.61 	0.108 
Month 	4 	0.008474 0.008474 0.002119 1.73 	0.147 
Error 	137 	0.167819 0.167819 0.001225 
Total 	147 	0.761227 

Term 	 Coef 	SE Coef T 	P 
Constant 	0.15006 	0.03018 	4.97 	0.000 
ST Leir 	-0.008114 	0.003035 	-2.67 	0.008 
ST Maol 	0.003502 	0.002882 	1.22 	0.226 
ST Nam i 	-0.003542 	0.003266 	-1.08 	0.280 
ST Slet 	-0.001586 	0.002772 	-0.57 	0.568 
Water Ta 	0.000060 	0.000052 	1.15 	0.250 

Unusual Observations for Flux sqr 

Obs 	Flux sqr 	Fit SE Fit Residual St Resid 
12 	0.160386 	0.076482 0.009775 0.083905 2.50R 
51 	0.299000 	0.227155 0.008357 0.071845 2.11R 
52 	0.154498 	0.233228 0.008779 -0.078729 -2.32R 
53 	0.306071 	0.228556 0.008281 0.077515 2.28R 
67 	0.300428 	0.222757 0.010088 0.077672 2.32R 
72 	0.176756 	0.073007 0.010471 0.103749 3.11R 
92 	0.077352 	0.066234 0.017054 0.011118 0.36 X 

105 	0.314605 	0.219764 0.007885 0.094840 2.78R 
133 	0.269186 	0.195836 0.007887 0.073350 2.15R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 
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Model with Plot 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Error 	119 0.056741 0.056741 0.000477 

Model with Damage 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Error 	137 0.167819 0.167819 0.001225 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Damage 	1 0.006733 0.003201 0.003201 0.49 	0.494 
Plot(site) 	16 0.103750 0.103750 0.006486 

8.4.1g Fire sites CO2 Light Flux 
Residuals Versus the Fitted Values Residuals Versus the Order of the Data 

0 FOe FOe 0ev) 

Fitted Value 
	

Observation Order 

Fire CO2  light residuals 

Normal Probability Plot of the Residuals 
	

Histogram of the Residuals 
(re,ovse FOe 0ev) 

CH5 App Figure 8: Residual plots for Fire sites CO2 Light Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
AT Burn 1 0.5591 1.1114 1.1114 1.35 0.261 
AT Unbur 1 13.0306 0.0033 0.0033 0.00 0.950 
RH Burn 1 16.1992 1.1752 1.1752 1.43 0.248 
RH Unbur 1 7.7130 0.0520 0.0520 0.06 0.805 
PAR Burn 1 2.4932 1.4542 1.4542 1.77 0.201 
PAR Unbu 1 0.6087 0.0039 0.0039 0.00 0.946 
Plot 5 7.3733 5.0214 1.0043 1.22 0.341 
Month 3 6.0480 6.0480 2.0160 2.45 0.099 
Error 17 13.9739 13.9739 0.8220 
Total 31 67.9991 

Term Coef 	SE Coef 	T P 
Constant -32.88 30.82 	-1.07 0.301 
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AT Burn -1.430 	1.230 	-1.16 0.261 
AT Unbur 0.075 	1.180 	0.06 0.950 
RH Burn 0.5673 	0.4745 	1.20 0.248 
RH Unbur 0.0641 	0.2550 	0.25 0.805 
PAR Burn 0.08059 	0.06059 	1.33 0.201 
PAR Unbu 0.00286 	0.04142 	0.07 0.946 

Unusual Observations for Flux /um 

Obs 	Flux /um 	Fit 	SE Fit 	Residual St Resid 
3 	-6.17387 	-4.31361 	0.52445 	-1.86026 -2.52R 

13 	-1.80621 -3.49696 	0.49559 	1.69076 2.23R 

R denotes an observation with a large standardized residual. 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, 	using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F 	P 
RH Burn 1 	0.2755 	0.0610 0.0610 0.07 	0.792 
RH Unbur 1 	29.6790 	0.0630 0.0630 0.07 	0.788 
PAR Burn 1 	0.0399 	0.2864 0.2864 0.34 	0.569 
PAR Unbu 1 	8.7037 	0.1144 0.1144 0.13 	0.718 
Air temp 1 	1.8972 	0.2821 0.2821 0.33 	0.572 
Plot 5 	6.8299 	4.0564 0.8113 0.95 	0.471 
Month 3 	5.2806 	5.2806 1.7602 2.07 	0.140 
Error 18 	15.2932 	15.2932 0.8496 
Total 31 	67.9991 

Term Coef 	SE Coef 	T P 
Constant -5.59 	22.42 	-0.25 0.806 
RH Burn 0.0737 	0.2753 	0.27 0.792 
RH Unbur 0.0706 	0.2592 	0.27 0.788 
PAR Burn 0.02433 	0.04191 	0.58 0.569 
PAR Unbu 0.01503 	0.04096 	0.37 0.718 
Air temp -0.614 	1.065 	-0.58 0.572 

Unusual Observations for Flux /um 

Obs 	Flux /um 	Fit 	SE Fit 	Residual St Resid 
3 	-6.17387 -4.18126 	0.52250 	-1.99261 -2.62R 
4 	-3.16868 -4.17381 	0.78034 	1.00513 2.05R 

13 	-1.80621 -3.56541 	0.50085 	1.75920 2.27R 

R denotes an observation with a large standardized residual. 

Site air temperature interaction 

Model with interaction 
Source 	OF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	17 	13.9739 	13.9739 	0.8220 

Model without interaction 
Source 	DF Seq SS Adj SS Adj MS 	F 	P 
Error 	18 15.2932 15.2932 0.8496 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS 	F 	P 
Site.AT 	1 1.3193 1.3193 1.3193 	1.605 	0.2223 
Error 	17 13.9739 13.9739 0.8220 

Conclusion no interaction 
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General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F 	P 
AT Burn 1 0.5591 0.2893 0.2893 0.34 	0.567 
AT Unbur 1 13.0306 0.2643 0.2643 0.31 	0.584 
PAR Burn 1 11.2849 0.2875 0.2875 0.34 	0.568 
PAR Unbu 1 11.2439 0.0920 0.0920 0.11 	0.746 
RH 1 0.0024 0.0505 0.0505 0.06 	0.810 
Plot 5 11.4479 8.5254 1.7051 2.01 	0.126 
Month 3 5.1514 5.1514 1.7171 2.02 	0.147 
Error 18 15.2788 15.2788 0.8488 
Total 31 67.9991 

Term Coef 	SE Coef 	T P 
Constant -4.59 21.47 	-0.21 0.833 
AT Burn -0.623 1.067 	-0.58 0.567 
AT Unbur -0.597 1.070 	-0.56 0.584 
PAR Burn 0.02410 0.04142 0.58 0.568 
PAR Unbu 0.01356 0.04120 0.33 0.746 
RH 0.0632 	0.2591 0.24 0.810 

Unusual Observations for Flux /um 

Obs 	Flux /um Fit SE Fit 	Residual St Resid 
3 	-6.17387 -4.15686 0.51773 	-2.01700 -2.65R 
4 	-3.16868 -4.17466 0.77984 1.00598 2.05R 

13 	-1.80621 -3.53109 0.50286 1.72488 2.23R 

R denotes an observation with a large standardized residual. 

Site RH interaction 

Model with interaction 
Source 	DF 	Seq SS Adj SS Adj MS 	F 	P 
Error 	17 	13.9739 13.9739 0.8220 

Model without interaction 
Source 	DF 	Seq SS Adj SS Adj MS 	F 	P 
Error 	18 	15.2788 15.2788 0.8488 

Combining these gives 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Site.RH 	1 	1.3049 	1.3049 	1.3049 	1.587 	0.2248 
Error 	17 	13.9739 	13.9739 	0.8220 

Conclusion no interaction 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
AT Burn 1 0.5591 0.1707 0.1707 0.20 0.663 
AT Unbur 1 13.0306 0.3241 0.3241 0.37 0.549 
RH Burn 1 16.1992 0.0002 0.0002 0.00 0.989 
RH Unbur 1 7.7130 0.0538 0.0538 0.06 0.806 
PAR 1 1.7015 0.1256 0.1256 0.14 0.708 
Plot 5 7.9072 3.7015 0.7403 0.85 0.532 
Month 3 5.2207 5.2207 1.7402 2.00 0.150 
Error 18 15.6677 15.6677 0.8704 
Total 31 67.9991 

Term Coef 	SE Coef 	T P 
Constant -1.79 22.57 	-0.08 0.938 
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Source DF Seq SS 
Error 17 13.9739 

Model without interaction 
Source DF Seq SS 
Error 18 15.6677 

Combining these gives 
Source DF Seq SS Adj SS Adj MS 
Site.PAR 1 1.6938 1.6938 1.6938 
Error 17 13.9739 13.9739 0.8220 

Adj SS Adj MS 
13.9739 0.8220 

Adj SS Adj MS 
15.6677 0.8704 

F 	P 

F 	P 

F 	P 
2.06 	0.1694 
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AT Burn 	-0.470 	1.063 	-0.44 0.663 
AT Unbur 	-0.667 	1.092 	-0.61 0.549 
RH Burn 	0.0039 	0.2743 	0.01 0.989 
RH tinbur 	0.0653 	0.2624 	0.25 0.806 
PAR 	 0.01580 	0.04160 	0.38 0.708 

Unusual Observations for Flux /um 

Obs Flux /um 	Fit 	SE Fit Residual 	St Resid 

	

3 -6.17387 -4.14724 	0.52633 -2.02663 	-2.63R 

	

4 -3.16868 -4.17417 	0.79083 	1.00550 	2.03R 

	

13 -1.80621 -3.58390 	0.50616 	1.77769 	2.27R 

R denotes an observation with a large standardized residual. 

Site PAR interaction 

Model with interaction 

Conclusion no interaction 

General Linear Model: Flux Ipmols!m2Is versus Plot, Month 
Analysis of Variance for Flux /urn, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
Air temp 1 10.064 0.076 0.076 0.08 0.787 
RH 1 20.425 0.115 0.115 0.11 0.739 
PAR 1 1.950 0.025 0.025 0.02 0.877 
Plot 5 10.888 6.265 1.253 1.24 0.329 
Month 3 4.421 4.421 1.474 1.46 0.257 
Error 20 20.252 20.252 1.013 
Total 31 67.999 

Term Coef 	SE Coef 	T P 
Constant 2.59 22.70 	0.11 0.910 
Air temp 0.298 1.087 	0.27 0.787 
RH -0.0913 0.2704 -0.34 0.739 
PAR -0.00676 0.04304 -0.16 0.877 

Unusual Observations for Flux /um 

Obs 	Flux /urn Fit SE Fit 	Residual St Resid 
3 	-6.17387 -3.73115 0.51146 	-2.44272 -2.82R 

13 	-1.80621 -3.74882 0.50477 1.94261 2.23R 

R denotes an observation with a large standardized residual. 
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General Linear Model: Flux Ipmolslm2ls versus Site, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F 	P 
Air temp 1 10.064 0.273 0.273 0.26 	0.616 
RH 1 20.425 0.325 0.325 0.31 	0.585 
PAR 1 1.950 0.238 0.238 0.23 	0.639 
Site 1 1.956 1.127 1.127 1.07 	0.312 
Month 3 8.215 8.215 2.738 2.59 	0.076 
Error 24 25.390 25.390 1.058 
Total 31 67.999 

Term Coef 	SE Coef 	T P 
Constant 7.71 	21.14 	0.36 0.719 
Air temp 0.520 1.023 	0.51 0.616 
RH -0.1395 	0.2518 -0.55 0.585 
PAR -0.01891 0.03983 	-0.47 0.639 

Unusual Observations for Flux /um 

Ohs 	Flux /urn Fit SE Fit 	Residual St Resid 
3 	-6.17387 -3.34070 0.45891 	-2.83317 -3.08R 

R denotes an observation with a large standardized residual. 

Site test 

Model with plot 
Source DF Seq SS Adj SS Adj MS F 	P 
Error 20 20.252 20.252 1.013 

Model with site 
Source DF Seq SS Adj SS Adj MS F 	P 

Error 24 25.390 25.390 1.058 

Combining these gives 
Source DF Seq SS Adj SS Adj MS F 	P 
Site 1 1.956 1.127 1.127 0.877 	0.402 
Plot(site) 4 5.138 5.138 1.2845 

Plot 5 7.094 6.265 1.2530 1.24 	0.3277 

Other effects 
Error 20 20.252 20.252 1.013 
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Residuals Residuals Versus the Order of the Data 
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8.4.1h Fire sites CO2  Dark Flux 
Residuals Versus the Fitted Values 
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CH5 App Figure 9: Residual plots for Fire sites CO2 Dark Flux 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F 	P 
ST Burn 1 0.00004 0.06790 0.06790 2.68 	0.116 
ST Unbur 1 3.25346 0.03141 0.03141 1.24 	0.278 
Plot 5 0.23449 0.15410 0.03082 1.22 	0.336 
Month 3 0.35063 0.35063 0.11688 4.61 	0.012 
Error 21 0.53188 0.53188 0.02533 
Total 31 4.37049 

Term Coef 	SE Coef 	T P 
Constant 2.3520 0.8258 	2.85 0.010 
ST Burn -0.11967 0.07309 	-1.64 0.116 
ST Unbur -0.09003 	0.08084 	-1.11 0.278 

Unusual Observations for Flux sqr 

Obs 	Flux sqr Fit SE Fit 	Residual St Resid 
2 	1.60409 1.88116 0.08753 	-0.27707 -2.08R 
4 	2.37163 2.04459 0.10908 0.32703 2.82R 

R denotes an observation with a large standardized residual. 

General Linear Model: Flux sqroot versus Plot, Month 
Analysis of Variance for Flux sqr, 	using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F 	P 
Soil Tern 1 3.07563 0.09233 0.09233 3.55 	0.073 
Plot 5 0.25352 0.30449 0.06090 2.34 	0.076 
Month 3 0.46892 0.46892 0.15631 6.01 	0.004 
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Error 	22 	0.57241 0.57241 0.02602 
Total 	31 	4.37049 

Term 	 Coef 	SE Coef 	T P 
Constant 	2.7015 	0.7888 	3.43 0.002 
Soil Tern 	-0.13706 	0.07276 	-1.88 0.073 

Unusual Observations for Flux sqr 

Obs 	Flux sqr 	Fit SE Fit 	Residual 	St Resid 
4 	2.37163 	2.01356 0.10772 0.35807 2.98R 

R denotes an observation with a large standardized residual. 

Model with interaction 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Error 	21 	0.53188 0.53188 0.02533 

Model without interaction 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Error 	22 	0.57241 0.57241 0.02602 

Combining these gives 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Site.ST 	1 	0.04053 0.04053 0.04053 1.6 	0.2198 
Error 	21 	0.53188 0.53188 0.02533 

Conclusion no site soil temperature interaction 

General Linear Model: Flux sq root versus Site, Month 
Analysis of Variance for Flux sqr, 	using Adjusted SS for Tests 

Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Soil Tern 	1 	3.07563 0.08728 0.08728 3.17 	0.087 
Site 	1 	0.11438 0.16016 0.16016 5.81 	0.023 
Month 	3 	0.46374 0.46374 0.15458 5.61 	0.004 
Error 	26 	0.71674 0.71674 0.02757 
Total 	31 	4.37049 

Term 	 Coef 	SE Coef 	T P 
Constant 	2.6321 	0.8006 	3.29 0.003 
Soil Tern 	-0.13137 	0.07383 	-1.78 0.087 

Unusual Observations for Flux sqr 

Obs 	Flux sqr 	Fit SE Fit 	Residual 	St Resid 
4 	2.37163 	1.89580 0.07894 0.47583 3.26R 

R denotes an observation with a large standardized residual. 

Site test 

Model with plot 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Error 	22 	0.57241 0.57241 0.02602 

Model with site 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Error 	26 	0.71674 0.71674 0.02757 

Combining these gives 
Source 	OF 	Seq SS Adj SS Adj MS F 	P 
Site 	1 	0.11438 0.16016 0.16016 4.44 	0.1028 
Plot(site) 	4 	0.14433 0.14433 0.03608 
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Plot 	5 	0.25871 	0.30449 	0.19624 	7.54 	0.0003 

Other effects 
Error 	22 	0.57241 	0.57241 	0.02602 

Conclusion no site effect 

8.4.1i Fire sites CH 4  Flux 
Residuals Versus the Fitted Values 	 Residuals Versus the Order of the Data 
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C145 App Figure 10: Residual plots for Fire sites CH 4  Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source OF 	Seq SS 	Adj SS 	Adj MS F 	P 
ST burnt 1 	0.0016470 	0.0000000 	0.0000000 0.00 	0.974 
ST Unbur 1 	0.0016906 	0.0000078 	0.0000078 0.39 	0.538 
WT Burn 1 	0.0001391 	0.0000007 	0.0000007 0.03 	0.858 
WT unbur 1 	0.0001929 	0.0000062 	0.0000062 0.31 	0.583 
Plot 5 	0.0007608 	0.0005040 	0.0001008 5.05 	0.004 
Month 3 	0.0001900 	0.0001900 	0.0000633 3.17 	0.048 
Error 19 	0.0003792 	0.0003792 	0.0000200 
Total 31 	0.0049997 

Term Coef 	SE Coef 	T 	P 
Constant 0.00689 	0.02567 	0.27 	0.791 
ST burnt 0.000082 	0.002466 	0.03 	0.974 
ST Unbur 0.001444 	0.002304 	0.63 	0.538 
WT Burn 0.000003 	0.000018 	0.18 	0.858 
WT unbur -0.000022 	0.000039 	-0.56 	0.583 
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Unusual Observations for Flux Iuru 

Obs 	Flux Iuin 	Fit SE Fit 	Residual St Resid 
26 	0.020127 0.027305 0.002909 -0.007178 -2.12R 

R denotes an observation with a large standardized residual. 

General Linear Model: Flux !pmols/m2Is versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS Adj SS 	Adj MS F 	P 
ST burnt 1 	0.0016470 0.0000036 	0.0000036 0.18 	0.674 
ST Unbur 1 	0.0016906 0.0000082 	0.0000082 0.42 	0.524 
Water Ta 1 	0.0000011 0.0000005 	0.0000005 0.03 	0.875 
Plot 5 	0.0010913 0.0010378 	0.0002076 10.67 	0.000 
Month 3 	0.0001804 0.0001804 	0.0000601 3.09 	0.050 
Error 20 	0.0003892 0.0003892 	0.0000195 
Total 31 	0.0049997 

Term Coef 	SE Coef 	T 	P 
Constant 0.01364 	0.02355 	0.58 	0.569 
ST burnt -0.000873 	0.002042 	-0.43 	0.674 
ST Unbur 0.001475 	0.002275 	0.65 	0.524 
Water Ta 0.000003 	0.000018 	0.16 	0.875 

Unusual Observations for Flux /um 

Obs 	Flux /um 	Fit SE Fit 	Residual St Resid 
26 	0.020127 0.027654 0.002831 -0.007527 -2.22R 

R denotes an observation with a large standardized residual. 

Model with interaction 
Source 	DF 	Seq SS Adj SS Adj MS F P 
Error 	19 	0.0003792 0.0003792 0.0000200 

Model without interaction 
Source 	DF 	Seq SS Adj SS Adj MS F P 
Error 	20 	0.0003892 0.0003892 0.0000195 

Combining these gives 
Source 	DF 	Seq SS Adj SS Adj MS F P 
Site.WT 	1 	0.0000100 0.0000100 0.0000100 0.5 0.4881 
Error 	19 	0.0003792 0.0003792 0.0000200 

Conclusion no site water table interaction 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
WT Burn 1 0.0002513 0.0000022 0.0000022 0.11 0.744 
WT unbur 1 0.0017159 0.0000628 0.0000628 3.18 0.090 
Soil Tern 1 0.0002094 0.0000038 0.0000038 0.19 0.664 
Plot 5 0.0022254 0.0020713 0.0004143 21.00 0.000 
Month 3 0.0002030 0.0002030 0.0000677 3.43 0.037 
Error 20 0.0003946 0.0003946 0.0000197 
Total 31 0.0049997 

Term Coef 	SE Coef T 	P 
Constant 0.00292 0.02513 	0.12 0.909 
WT Burn 0.000006 0.000018 	0.33 0.744 
WT unbur -0.000047 0.000026 	-1.78 0.090 
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Soil Tern 	0.000983 0.002230 	0.44 0.664 

Model with interaction 
Source 	DF 	Seq SS Adj SS Adj MS F P 
Error 	19 	0.0003792 0.0003792 0.0000200 

Model without interaction 
Source 	DF 	Seq SS Adj SS Adj MS F P 
Error 	20 	0.0003946 0.0003946 0.0000197 

Combining these gives 
Source 	DF 	Seq SS Adj SS Adj MS F P 
Site.ST 	1 	0.0000154 0.0000154 0.0000154 0.77 0.3912 
Error 	19 	0.0003792 0.0003792 0.0000200 

Conclusion no site soil temperature interaction 

General Linear Model: Flux Ipmolslm2!s versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS 	Adj SS Adj MS F P 
Soil Tern 1 0.0009318 	0.0000247 0.0000247 0.83 0.372 
Water Ta 1 0.0002446 	0.0000306 0.0000306 1.03 0.321 
Plot 5 0.0030675 	0.0026166 0.0005233 17.68 0.000 
Month 3 0.0001340 	0.0001340 0.0000447 1.51 0.241 
Error 21 0.0006217 	0.0006217 0.0000296 
Total 31 0.0049997 

Term Coef 	SE Coef T 	P 
Constant 0.04442 0.02689 	1.65 0.113 
Soil Tern -0.002255 0.002470 	-0.91 0.372 
Water Ta 0.000021 0.000021 	1.02 0.321 

General Linear Model: Flux Ipmolslm2ls versus Site, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F 	P 
Soil Tern 1 0.0009318 0.0000236 0.0000236 0.63 	0.435 
Water Ta 1 0.0002446 0.0000226 0.0000226 0.60 	0.446 
Site 1 0.0026553 0.0022980 0.0022980 61.10 	0.000 
Month 3 0.0002276 0.0002276 0.0000759 2.02 	0.137 
Error 25 0.0009403 0.0009403 0.0000376 
Total 31 0.0049997 

Term Coef 	SE Coef T 	P 
Constant 0.03765 0.02929 	1.29 0.210 
Soil Tern -0.002144 0.002704 	-0.79 0.435 
Water Ta -0.000014 0.000018 	-0.77 0.446 

Model with Plot 
Source DF Seq SS Adj SS Adj MS F 	P 
Error 21 0.0006217 0.0006217 0.0000296 

Model With Site 
Source DF Seq SS Adj SS Adj MS F 	P 
Error 25 0.0009403 0.0009403 0.0000376 

Combining these 
Source DF Seq SS Adj SS Adj MS F 	P 
Site 1 0.0003186 0.0003186 0.0003186 10.76 	0.0036 
Error 21 0.0006217 0.0006217 0.0000296 
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Plot(site) 22 0.0009403 0.0009403 0.0000427 	1.44 	0.2037 
Residual 	21 0.0006217 0.0006217 0.0000296 

Descriptive Statistics: Flux Ipmolslm2ls, Soil Temp, Water Table by Site 
Variable Site N Mean Median TrMean StDev 
Flux /urn Burnt 16 0.02640 0.02751 0.02656 0.01106 

Unburnt 16 0.00719 0.00656 0.00701 0.00377 
Soil Tern Burnt 16 10.814 10.210 10.666 2.801 

Unburnt 16 10.901 10.350 10.786 2.512 
Water Ta Burnt 16 -193.8 -140.0 -177.9 168.5 

Unburnt 16 -147.2 -95.0 -139.6 116.4 
Variable Site SE Mean Minimum Maximum Ql Q3 
Flux /um Burnt 0.00277 0.00859 0.04200 0.01455 0.03747 

Unburnt 0.00094 0.00210 0.01480 0.00405 0.00953 
Soil Tern Burnt 0.700 7.900 15.800 8.348 13.731 

Unburnt 0.628 8.000 15.400 8.692 13.562 
Water Ta Burnt 42.1 -580.0 -30.0 -247.5 -102.5 

Unburnt 29.1 -380.0 -20.0 -245.0 -80.0 

General Linear Model: Flux Ipmoislm2ls versus Site, Month 

Factor Type Levels Values 
Site fixed 	2 Burnt 	Unburnt 
Month fixed 	4 	July 	August September 	October 

Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS 	Adj MS F 	P 
Soil Tern 1 	0.0009318 	0.0000236 	0.0000236 0.63 	0.435 
Water Ta 1 	0.0002446 	0.0000226 	0.0000226 0.60 	0.446 
Site 1 	0.0026553 	0.0022980 	0.0022980 61.10 	0.000 
Month 3 	0.0002276 	0.0002276 	0.0000759 2.02 	0.137 
Error 25 	0.0009403 	0.0009403 	0.0000376 
Total 31 	0.0049997 

Term Coef 	SE Coef 	T 	P 
Constant 0.03765 	0.02929 	1.29 	0.210 
Soil Tern -0.002144 	0.002704 	-0.79 	0.435 
Water Ta -0.000014 	0.000018 	-0.77 	0.446 
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8.4.1j Drain sites CO2 Light Flux 
Residuals Versus the Fitted Values 

	
Residuals Versus the Order of the Data 
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CH5 App Figure 11: Residual plots for Drain 2003-4 CO2 Light Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS Adj SS Adj MS F P 
AT Block 1 	0.3180 0.0760 0.0760 0.20 0.656 
AT Centr 1 	6.1665 0.1755 0.1755 0.46 0.499 
AT Unblo 1 	29.2228 0.0013 0.0013 0.00 0.954 
RH Block 1 	0.4225 0.2609 0.2609 0.69 0.410 
RH Centr 1 	0.9914 1.4886 1.4886 3.92 0.051 
RH Unblo 1 	0.2505 0.0391 0.0391 0.10 0.749 
PAR Bloc 1 	1.8918 1.4014 1.4014 3.69 0.058 
PAR Cent 1 	8.6097 9.4345 9.4345 24.82 0.000 
PAR Unbi 1 	2.6473 2.4926 2.4926 6.56 0.012 
Plot 14 	3.3106 2.9610 0.2115 0.56 0.892 
Month 4 	9.3690 9.3690 2.3422 6.16 0.000 
Error 92 	34.9666 	34.9666 0.3801 
Total 119 	98.1667 

Term Coef 	SE Coef T P 
Constant -1.196 	1.314 -0.91 0.365 
AT Block -0.03267 	0.07308 -0.45 0.656 
AT Centr 0.02928 	0.04309 0.68 0.499 
AT Unblo -0.00330 	0.05682 -0.06 0.954 
RH Block 0.01561 	0.01884 0.83 0.410 
RH Centr 0.02646 	0.01337 1.98 0.051 
RH Unblo 0.00563 	0.01757 0.32 0.749 
PAR Bloc -0.002288 	0.001192 -1.92 0.058 
PAR Cent -0.002373 	0.000476 -4.98 0.000 
PAR Unbl -0.001990 	0.000777 -2.56 0.012 
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Unusual Observations for Flux /um 

Obs 	Flux /urn 	Fit SE Fit 	Residual St Resid 
33 	0.00000 	-1.19354 0.18203 1.19354 2.03R 
40 	-3.37434 	-1.80947 0.33334 	-1.56487 -3.02R 
72 	-2.17550 	-2.50809 0.52074 0.33259 1.01 X 
82 	-2.43610 	-0.99904 0.20726 	-1.43706 -2.48R 

108 	-2.03878 	-0.53123 0.20678 	-1.50755 -2.60R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, 	using Adjusted SS for Tests 

Source 	DF 	Seq SS Adj SS Adj MS F 	P 
RH Block 	1 	2.9853 0.5226 0.5226 1.39 	0.241 
RH Centr 	1 	0.4553 1.2693 1.2693 3.38 	0.069 
RH Unblo 	1 	19.2306 0.0945 0.0945 0.25 	0.617 
PAR Bloc 	1 	2.1661 2.9688 2.9688 7.92 	0.006 
PAR Cent 	1 	18.9945 9.6153 9.6153 25.64 	0.000 
PAR Unbl 	1 	6.1248 3.9996 3.9996 10.66 	0.002 
Air Temp 	1 	0.5551 0.0437 0.0437 0.12 	0.734 
Plot 	14 	3.2279 2.8506 0.2036 0.54 	0.901 
Month 	4 	9.1747 9.1747 2.2937 6.12 	0.000 
Error 	94 	35.2524 35.2524 0.3750 
Total 	119 	98.1667 

Term 	 Coef 	SE Coef 	T P 
Constant 	-1.634 1.203 	-1.36 0.178 
RH Block 	0.02049 	0.01736 	1.18 0.241 
RH Centr 	0.02338 	0.01271 	1.84 0.069 
RH Unblo 	0.00787 	0.01567 	0.50 0.617 
PAR Bloc 	-0.002769 	0.000984 	-2.81 0.006 
PAR Cent 	-0.002243 	0.000443 	-5.06 0.000 
PAR Unbl 	-0.002147 	0.000657 	-3.27 0.002 
Air Temp 	0.01254 	0.03674 	0.34 0.734 

Unusual Observations for Flux Iura 

Obs 	Flux /um 	Fit SE Fit 	Residual St Resid 
33 	0.00000 	-1.20443 0.18017 1.20443 2.06R 
40 	-3.37434 	-1.78502 0.32904 	-1.58932 -3.08R 
82 	-2.43610 	-0.94737 0.19484 	-1.48874 -2.56R 

108 	-2.03878 	-0.48621 0.19810 	-1.55258 -2.68R 

R denotes an observation with a large standardized residual. 

Site air temperature interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	92 	34.9666 	34.9666 	0.3801 

Model without interaction 
Source 	DF Seq SS Adj SS Adj MS 	F 	P 
Error 	94 35.2524 35.2524 0.3750 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS 	F 	P 
Site.AT 	2 0.2858 0.2858 0.1429 	0.376 	0.6877 
Error 	92 34.9666 34.9666 0.3801 

Conclusion no interaction 
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General Linear Model: Flux !pmols/m2/s versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 
AT Block 1 	0.3180 	0.0581 0.0581 0.15 0.695 
AT Centr 1 	6.1665 	0.0949 0.0949 0.25 0.616 
AT Unblo 1 	29.2228 	0.0442 0.0442 0.12 0.732 
PAR Bloc 1 	2.3120 	1.4440 1.4440 3.84 0.053 
PAR Cent 1 	9.4571 	10.0615 10.0615 26.78 0.000 
PAR Unbi 1 	2.4518 	2.9374 2.9374 7.82 0.006 
RH 1 	0.4914 	1.3761 1.3761 3.66 0.059 
Plot 14 	2.9798 	2.9862 0.2133 0.57 0.884 
Month 4 	9.4448 	9.4448 2.3612 6.28 0.000 
Error 94 	35.3226 	35.3226 0.3758 
Total 119 	98.1667 

Term Coef 	SE Coef 	T P 
Constant -1.681 	1.151 	-1.46 0.148 
AT Block -0.02654 	0.06749 	-0.39 0.695 
AT Centr 0.02110 	0.04198 	0.50 0.616 
AT Unblo 0.01769 	0.05158 	0.34 0.732 
PAR Bloc -0.002291 	0.001169 	-1.96 0.053 
PAR Cent -0.002426 	0.000469 	-5.17 0.000 
PAR Unbl -0.002124 	0.000760 	-2.80 0.006 
RH 0.018104 	0.009460 	1.91 0.059 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
33 0.00000 -1.18926 0.18092 1.18926 2.03R 
40 -3.37434 -1.80567 0.32511 -1.56867 -3.02R 
72 -2.17550 -2.50957 0.51763 0.33407 1.02 X 
82 -2.43610 -0.99339 0.20588 -1.44271 -2.50R 

108 -2.03878 -0.46232 0.18967 -1.57647 -2.70R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

Site RH interaction 
Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	92 	34.9666 	34.9666 	0.3801 

Model without interaction 
Source 	OF Seq SS Adj SS Adj MS 	F 	P 
Error 	94 35.3226 35.3226 0.3758 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS 	F 	P 
Site.RH 	2 0.356 0.356 0.178 	0.468 	0.6277 
Error 	92 34.9666 34.9666 0.3801 

Conclusion no interaction 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
AT Block 1 0.3180 0.0974 0.0974 0.26 0.611 
AT Centr 1 6.1665 0.1424 0.1424 0.38 0.538 
AT Unblo 1 29.2228 0.0207 0.0207 0.06 0.814 
RH Block 1 0.4225 0.2824 0.2824 0.76 0.386 
RH Centr 1 0.9914 1.5217 1.5217 4.08 0.046 
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RH Unblo 
PAR 
Plot 
Month 
Error 
Total 

1 0.2505 0.0619 
1 13.0613 11.4762 

14 3.2041 3.0127 
4 9.4868 9.4868 

94 35.0429 35.0429 
119 	98.1667 

0.0619 0.17 0.685 
11.4762 30.78 0.000 
0.2152 0.58 0.877 
2.3717 6.36 0.000 
0.3728 

Source DF Seq SS 
Error 92 34.9666 

Model without interaction 
Source DF Seq SS 
Error 94 35.0429 

Combining these gives 
Source DF Seq SS Adj SS Adj MS 
Site.PAR 2 0.0763 0.0763 0.03815 
Error 92 34.9666 34.9666 0.3801 

Adj SS Adj MS 
34.9666 0.3801 

Adj SS Adj MS 
35.0429 0.3728 

	

F 	P 

	

F 	P 

	

F 	P 

	

0.1 	0.9049 
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Term 
Constant 
AT Block 
AT Centr 
AT Unblo 
RH Block 
RH Centr 
RH Unblo 
PAR 

	

Coef 	SE Coef 

	

-1.305 	1.277 

	

-0.03124 	0.06112 

	

0.02568 	0.04156 

	

0.01097 	0.04655 

	

0.01583 	0.01819 

	

0.02673 	0.01323 

	

0.00698 	0.01713 
-0.002283 0.000412 

T 	P 
-1.02 0.310 
-0.51 0.611 
0.62 0.538 
0.24 0.814 
0.87 0.386 
2.02 0.046 
0.41 0.685 
-5.55 0.000 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
33 0.00000 -1.20616 0.17790 1.20616 2.07R 
40 -3.37434 -1.80996 0.32079 -1.56438 -3.01R 
82 -2.43610 -0.97744 0.19902 -1.45867 -2.53R 

108 -2.03878 -0.53048 0.20478 -1.50830 -2.62R 

R denotes an observation with a large standardized residual. 

Site PAR interaction 
Model with interaction 

Conclusion no interaction 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF 	Seq SS 	Adj SS Adj MS F P 
Air Temp 1 	34.3949 	0.0712 0.0712 0.19 0.660 
RI-i 1 	0.9358 	1.8477 1.8477 5.06 0.027 
PAR 1 	14.1566 	12.7370 12.7370 34.85 0.000 
Plot 14 	3.4280 	3.2010 0.2286 0.63 0.838 
Month 4 	9.4386 	9.4386 2.3596 6.46 0.000 
Error 98 	35.8129 	35.8129 0.3654 
Total 119 	98.1667 

Term Coef 	SE Coef 	T P 
Constant -2.057 	1.076 	-1.91 0.059 
Air Temp 0.01569 	0.03555 	0.44 0.660 
RH 0.020292 	0.009024 	2.25 0.027 
PAR -0.002328 	0.000394 	-5.90 0.000 

Unusual Observations for Flux /um 

Obs Flux /um 	Fit 	SE Fit Residual 	St Resid 

IM 
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33 	0.00000 -1.19637 0.17585 1.19637 2.07R 
40 	-3.37434 -1.70771 0.29823 -1.66663 -3.17R 
82 	-2.43610 -0.95770 0.18981 -1.47841 -2.58R 

108 	-2.03878 -0.45970 0.18499 -1.57908 -2.74R 

R denotes an observation with a large standardized residual. 

General Linear Model: Flux Ipmolslm2ls versus Site, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source 	DF Seq SS Adj SS Adj MS F 	P 
Air Temp 	1 34.3949 0.0580 0.0580 0.16 	0.686 
RH 	 1 0.9358 1.8244 1.8244 5.17 	0.025 
PAR 	 1 14.1566 12.7644 12.7644 36.19 	0.000 
Site 	2 0.4437 0.2110 0.1055 0.30 	0.742 
Month 	4 9.4329 9.4329 2.3582 6.69 	0.000 
Error 	110 38.8029 38.8029 0.3528 
Total 	119 98.1667 

Term Coef SE Coef T 	P 
Constant -2.047 1.036 -1.98 	0.051 
Air Temp 0.01392 0.03432 0.41 	0.686 
RH 0.019777 0.008696 2.27 	0.025 
PAR -0.002282 0.000379 -6.02 	0.000 

Unusual Observations for Flux /um 

Obs 	Flux /urn Fit SE Fit Residual 	St Resid 
40 	-3.37434 -1.46793 0.14761 -1.90641 -3.31R 
82 	-2.43610 -0.85770 0.16297 -1.57840 -2.76R 

108 	-2.03878 -0.35972 0.15457 -1.67906 -2.93R 

R denotes an observation with a large standardized residual. 

Model with plot 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Error 	98 35.8129 35.8129 0.3654 

Model with site 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Error 	110 38.8029 38.8029 0.3528 

Combining these gives 
Source DF Seq SS Adj SS Adj MS 	F 	P 
Site 2 0.4437 0.2110 0.1055 	0.423 	0.6645 
Plot(site) 12 2.99 2.99 0.2492 

Plot 14 3.4337 3.2010 0.2286 	0.626 	0.2596 
Other effects 
Residual 98 35.8129 35.8129 0.3654 
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8.4.1k Drain sites CO2 Dark Flux 

Residuals Versus the Fitted Values 
	

Residuals Versus the Order of the Data 
(reese is Flux Mn) 
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CH5 App Figure 12: Residual plots for Drain CO2 Dark Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source 	DF Seq SS Adj SS Adj MS F 	P 
ST Block 	1 1.40464 0.18066 0.18066 2.74 	0.101 
ST Centr 	1 0.00888 0.00025 0.00025 0.00 	0.951 
ST Unblo 	1 7.39199 0.08938 0.08938 1.36 	0.247 
Plot 	14 2.65190 2.49550 0.17825 2.70 	0.002 
Month 	4 1.39377 1.39377 0.34844 5.28 	0.001 
Error 	98 6.46172 6.46172 0.06594 
Total 	119 19.31290 

Term Coef 	SE Coef T 	P 
Constant 0.3524 	0.3895 	0.90 0.368 
ST Block 	0.06635 0.04009 	1.66 0.101 
ST Centr 	0.00245 0.04019 	0.06 0.951 
ST Unblo 	0.04772 0.04099 	1.16 0.247 

Unusual Observations for Flux /urn 

Obs 	Flux /um Fit SE Fit Residual St Resid 
45 	0.75963 1.37184 0.13823 -0.61221 -2.83R 
48 	0.31899 1.08663 0.13014 -0.76764 -3.47R 
50 	0.00000 0.74461 0.08900 -0.74461 -3.09R 
82 	0.00000 0.63758 0.08635 -0.63758 -2.64R 
93 	1.60754 0.82163 0.12570 0.78591 3.51R 

R denotes an observation with a large standardized residual. 
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General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /urn, using Adjusted SS for Tests 

Source 	DF Seq SS Adj SS Adj MS F 	P 
Soil Tern 	1 7.71778 0.09482 0.09482 1.42 	0.236 
Plot 14 3.60963 3.51200 0.25086 3.76 	0.000 
Month 4 1.32096 1.32096 0.33024 4.96 	0.001 
Error 100 6.66453 6.66453 0.06665 
Total 119 19.31290 

Term Coef 	SE Coef T 	P 
Constant 0.4213 	0.3891 	1.08 0.281 
Soil Tern 	0.04021 0.03371 	1.19 0.236 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
45 0.75963 1.34408 0.12729 -0.58446 -2.60R 
48 0.31899 1.03417 0.12473 -0.71519 -3.16R 
50 0.00000 0.69877 0.08534 -0.69877 -2.87R 
82 0.00000 0.58221 0.08036 -0.58221 -2.37R 
93 1.60754 0.82746 0.12500 0.78009 3.45R 
97 0.83685 0.32611 0.07455 0.51075 2.07R 

R denotes an observation with a large standardized residual. 

Site soil temperature interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	98 	6.46172 	6.46172 	0.06594 

Model without interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	100 	6.66453 	6.66453 	0.06665 

Combining these gives 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Site.ST 	2 0.20281 0.20281 0.101405 1.54 	0.2195 
Error 	98 6.46172 6.46172 0.06594 

Conclusion no site soil temperature interaction 

General Linear Model: Flux /pmols/m2Is versus Site, Month 
Analysis of Variance for Flux /um, 	using Adjusted SS for Tests 

Source 	DF Seq SS Adj SS Adj MS F 	P 
Soil Tern 	1 7.7178 0.1061 0.1061 1.19 	0.278 
Site 	2 0.2885 0.1900 0.0950 1.07 	0.348 
Month 	4 1.3201 1.3201 0.3300 3.70 	0.007 
Error 	112 9.9866 9.9866 0.0892 
Total 	119 19.3129 

Term Coef SE Coef T 	P 
Constant 0.3483 0.4426 0.79 	0.433 
Soil Tern 0.04197 0.03848 1.09 	0.278 

Unusual Observations for Flux /um 

Obs 	Flux /um Fit SE Fit Residual 	St Resid 
15 	1.78002 1.07145 0.07315 0.70857 2.45R 
30 	1.84840 1.21216 0.07257 0.63623 2.20R 
48 	0.31899 1.09025 0.07269 -0.77126 -2.66R 
50 	0.00000 0.70544 0.08724 -0.70544 -2.47R 
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65 	0.34013 0.92809 0.07669 -0.58796 -2.04R 
82 	0.00000 0.64485 0.08086 -0.64485 -2.24R 
93 	1.60754 0.59282 0.07290 1.01472 3.50R 

R denotes an observation with a large standardized residual. 

Site test 

Model with plot 
Source 	DF Seq SS Adj 	SS Adj MS F 	P 
Error 	100 6.66453 6.66453 0.06665 

Model with site 
Source 	DF Seq SS Adj SS Adj MS F 	P 
Error 	112 9.9866 9.9866 0.0892 

Combining these gives 
Source 	DF 	Seq SS Adj SS Adj MS F 	P 
Site 	2 	0.2885 0.1900 0.0950 0.34 	0.7184 
Plot(site) 	12 	3.32207 3.32207 0.2768 

Plot 	14 	33.61057 3.4107 0.24362 3.66 	<.0001 
Other effects 
Error 	100 	6.66453 6.66453 0.06665 

Conclusion no site effect 

8.4.11 Drain sites CH4  Flux 
Residuals Versus the Fitted Values Residuals Versus the Order of the Data 
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CH5 App Figure 13: Residual plots for Drain CH 4  Flux 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 
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Source 	DF 	Seq SS 	Adj SS 	Adj MS 
ST Unblo 	1 0.0005872 0.0001256 0.0001256 
ST Centr 	1 0.0000804 0.0000203 0.0000203 
ST Block 	1 0.0000000 0.0000197 0.0000197 
Plot 	14 0.0053111 0.0052485 0.0003749 
Month 	4 0.0021631 0.0021631 0.0005408 
Error 	98 0.0017779 0.0017779 0.0000181 
Total 	119 0.0099197 

Term 	 Coef SE Coef 	T 	P 
Constant 	0.003355 0.006482 	0.52 0.606 
ST Unblo 	0.001613 0.000613 	2.63 0.010 
ST Centr 	0.000604 0.000572 	1.06 0.293 
ST Block 	0.000616 0.000592 	1.04 0.300 

F 	P 
6.92 0.010 
1.12 0.293 
1.09 0.300 
20.66 0.000 
29.81 0.000 

Unusual Observations for Flux /um 

Obs Flux /um Fit SE Fit Residual St Resid 
7 0.009184 0.025381 0.002117 -0.016197 -4.38R 
9 0.009767 0.001120 0.001423 0.008647 2.15R 

43 0.019014 0.011393 0.003038 0.007621 2.55R 
44 0.018370 0.021028 0.003659 -0.002658 -1.22 X 
55 0.048579 0.036490 0.002021 0.012090 3.22R 
89 0.009063 0.021133 0.001302 -0.012070 -2.98R 

R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large influence. 

General Linear Model: Flux Ipmolslm2ls versus Plot, Month 
Analysis of Variance for Flux /um, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
Soil Tern 1 0.0000196 0.0000437 0.0000437 2.25 0.137 
Plot 14 0.0058407 0.0057311 0.0004094 21.01 0.000 
Month 4 0.0021111 0.0021111 0.0005278 27.09 0.000 
Error 100 0.0019483 0.0019483 0.0000195 
Total 119 0.0099197 

Term Coef 	SE Coef T 	P 
Constant 0.004901 0.006692 	0.73 0.466 
Soil Tern 0.000868 0.000579 	1.50 0.137 

Unusual Observations for Flux /um 

Obs Flux /um 	Fit 
7 0.009184 0.022683 
9 0.009767 0.001247 
20 0.004916 0.013368 
44 0.018370 0.030623 
47 0.041389 0.030623 
55 0.048579 0.034698 
89 0.009063 0.020928 

SE Fit Residual St Resid 
0.001993 -0.013499 -3.43R 
0.001473 0.008520 2.05R 
0.001468 -0.008452 -2.03R 
0.001953 -0.012253 -3.10R 
0.001953 0.010766 2.72R 
0.002005 0.013881 3.53R 
0.001346 -0.011865 -2.82R 

R denotes an observation with a large standardized residual. 

Site Soil temperature interaction 

Model with interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	98 0.0017779 0.0017779 0.0000181 

Model without interaction 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	100 0.0019483 0.0019483 0.0000195 



Adj SS 
0.0060945 

Adj SS 
0.0000090 
0.0043166 

	

AdjMS 	F 	P 
0.0000554 

AdjMS 	F 	P 

	

0.0000045 	0.0125 0.9876 
0.0003597 
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Combining these gives 
Source DF Seq SS Adj SS Adj MS F 	P 
Site.ST 2 0.0001704 0.0001704 0.0000852 4.71 	0.0111 
Error 98 0.0017779 0.0017779 0.0000181 

General Linear Model: Flux IpmolIm2Is versus Drain, Month 
Analysis of Variance for Flux /urn, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F 	P 
ST Unblo 1 0.0005872 0.0000270 0.0000270 0.42 	0.517 
ST Centr 1 0.0000804 0.0000691 0.0000691 1.08 	0.300 
ST Block 1 0.0000000 0.0001385 0.0001385 2.17 	0.144 
Drain 2 0.0000099 0.0000090 0.0000045 0.07 	0.432 
Month 4 0.0022248 0.0022248 0.0005562 8.72 	0.000 
Error 110 0.0070174 0.0070174 0.0000638 
Total 119 0.0099197 

Term Coef 	SE Coef T 	P 
Constant 0.002103 0.009743 	0.22 0.829 
ST Unblo 0.000708 0.001088 	0.65 0.517 
ST Centr 0.001071 0.001029 	1.04 0.300 
ST Block 0.001621 0.001101 	1.47 0.144 

Unusual Observations for Flux /um 

Obs 	Flux /um Fit SE Fit Residual 	St Resid 
47 	0.041389 0.011538 0.002429 0.029851 3.92R 
55 	0.048579 0.016036 0.002166 0.032544 4.23R 
95 	0.036964 0.014150 0.002458 0.022813 3.00R 

R denotes an observation with a large standardized residual. 

Model with Plot 
Source 	DF 	Seq SS 	Adj SS 	Adj MS 	F 	P 
Error 	98 0.0017779 0.0017779 0.0000181 

Model with Drain 
Source 	DF 	Seq SS 
Error 	110 0.0060945 

combining these gives 
Source 	OF 	Seq SS 
Drain 	2 0.0000099 
Plot(drain)12 0.0043166 

Plot 	14 0.0043265 0.0043256 0.0003090 	17.07 	< 0.001 
Error 	98 0.0017779 0.0017779 0.0000181 

Conclusion significant site soil temperature interaction but no drain effect 
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