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ABSTRACT 

This thesis concentrates on the immediate area of the joint between a 

single leaf, loadbearing, brickwork wall and a reinforced concrete floor 

slab. 

An experimental investigation is conducted on nine full scale models of 

a single leaf wall with a cantilevering floor slab bearing fully into 

the wall. The wall is first loaded to a set load and then an increasing 

slab load is applied to failure. The effect of the following two vari-

ables on the rotation of the floor slab and the strains in the wall is 

investigated : 

1 • Does- the magnitude of the load in the wall above the wall-slab 

junction affect the rotation of the slab ? Three different loads were 

compared. The load had little effect on the rotation of the slab unless 

tensile cracks developed in the joint; then an increase in load reduced 

slab rotation. 

2. that is the relation between slab rotation at the joint and the 

applied slab moment for three different walls made from the same brick 

but using different mortars - 1 :*:3, 1 :1 :6 and 1:2:9 cement:lime:sand 
mixes ? The moment-rotation curves had an approximately linear slope 

until tensile cracking developed in the joint. The weaker the wall the 

smaller the slope. 

Tests on axially loaded walls were necessary to obtain the stress-strain 

relationship of brickwork under increasing and decreasing load. The 

effect of a central gap in the mortar joint on the vertical strain 

distribution was investigated using the finite element technique. Using 

the results a theory is developed to explain the elastic and ultimate 

properties of single leaf brickwork under flexural loading. 

As a complement to the model tests, similar joints were tested in a full 

scale, five storey, brickwork structure. The slab restraining moments 

at the joints are significant - up to 30% of full fixity. The tests 

confirm that precompression has little effect on slab rotation if no 

tensile cracks develop in the joint. 
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PRINCIPAL NOTATIONS 	P 

a 	width of gap in the mortar joint 

a 	gap width of equivalent hollow wall 

A 	 cross-sectional area of a wall = bt or b(t - a) 

b 	 length of wall; bearing length of slab into wall 

c 	 coefficient taking into account the reduced stiffness of 

the wall due to tensile cracking (see fig A.1) 

d 	 overall depth of floor slab 

e eccentricity of load 

E compression modulus 

Eb, E brick and mortar compression moduli: 

experimental compression modulus based on a solid section 

E true brickwork compression modulus 

concrete cylinder strength 

g= 1/(1 +d/2h) 

h height of wall 

I second moment of area 	= b13 	 33  or 	b(t3- a3 )/12 

k ratio of unloading to loading modulus 

1 moment arm about the centre line of the wall of the slab 

load, V, applied to the test models 

N 	moment 

N, N1 	moment at slab level applied to the wall with constant pre- 
p 

compression 

N, N2 	moment at slab level applied to the wall with increasing 

load 

11 	moment induôed at the far ends of the walls in the test 

models 

N 
S 	

slab restraining moment 

P 	precompressive load on the walls in the test models 

R 	 see equations A4.20 and A4.21 

t 	 wall thickness 



x 

V 	 distance to the neutral axis of the flexural stresses 

measured from the tensile side of the wall 

V 	 slab load in the test models 

Vb 	proportion of brick covered by a gauge length on brickwork 

Z. 	 depth of tensile crack 

C 	 strain 

0 	 stress 

rotation of slab or wall at the joint 



CONVERSION FACTORS 

Imperial Units SI Units 

Length 1 ft 0.3018 rn 

1 in 25.4 nun 

Area .1 in 6).2 mm 

1 ft2  0.0929 

Section Modulus 1 in3  16.39 x10 6  rn3  

Second Moment of Area 1 in O.162 x106 m4 

Density 1 lb/ft3  16.02 kg/m3 

Force 1 Ibf 4.448 N 

1 tonI 9.964 kN 

Force/unit length 1 lbf/ft 149 N/rn 

1 tonI/ft 32.69 IdI/in 

Pressure 1 lbf/in2  6.895 kPa (kM/rn2 ) 

1 lbf/1t2  47.88 Pa 	(N/rn2 ) 

Moment of Force 1 lbf in 0.1130 N m 

1 lbf in/ft 0.3707 N rn/rn 

M. 

Angle 	 1 mrad 	 206 sec 
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CHAPTER 1 - INTRODUCTION 

1 .1 PROBLE?.S AND ASSUt'LTIONS IN JOINT DESIGN 

1.1 .1 Introduction 

The primary purpose of the junction between a loadbearing wall and a 

floor is the transfer of load from the floor to the wall. The floor 

load may be transferred eccentrically inducing a moment in the wall. 

In addition the end rotation of the floor may be restrained by the wall 

causing a transfer of moment to the wall equal to the slab restraining 

moment. Difficulty occurs in the analysis of the junction since the 

wall and the wall to slab joint can take little tensile stress. 

Factors affecting the behaviour of the joint are briefly discussed in 

the next two sections. This thesis concentrates on the inediate area 

of the joint (see section 1.2), investigating the behaviour of full 

scale models of a single leaf wall with a cantilevering concrete slab 

bearing fully into it. The effect of two variables - the load in the 

wall due to upper storeys (precompression) and brickwork strength - 

on the rotation of the floor slab and the strains in the wall is 

investigated. 

1.1 .2 The Unrestrained Slab 

If the slab rotation is not restrained, the moment applied to the wall 

will be due to the eccentric application of the slab load. This occurs 

with roof slabs and i assumed to occur in many cases at intermediate 

floors (6). The slab load is assumed to cause a triangular stress dis-

tribution under the bearing area of the slab If the slab is 

of moderate span a uniform stress distribution is sometimes assumed (6). 



Typical connections with little slab restraint : 

- 

r--- 

 

 

The assumption of a triangular stress distribution has some confirmation 

by experiment (39) at low slab rotations. Jith increasing loads and for 

more slender slabs the eccentricity at the joint increases to a limit 

(approaching t/2, local deformation reducing the eccentricity). The 

eccentricity may decrease at high loads as local crushing occurs in the 

mortar joint and/or possible large end rotations of the wall develop if 

the moment is high enough to cause tensile cracking in the wall, causing 

the wall to rotate more than the slab (near buckling loads). The max-

imum eccentricity in the wall may also occur at or near the point of 

madmum lateral deflection as will happen in the latter case. 

The eccentricity may he reduced by providing a hinge about the centre 

line of the wail or a rubber packing in the joint between the wall and 

the slab (39) Vith mortar mixes of 1 ::I or weaker, local deformation 

of the mortar joint is assumed to reduce the eccentricity (a). More 

effective would he a weaker mortar joint near the slab in comparison 

with the other joints in the wall. 

1 .1 .3 The Restrained Slab 

At intermediate floors restraint to slab rotation occurs at the wall-slab 

joint. '.,.ben there are no tensile cracks at the joint, the wll as resist 

a more 	equal to the slab restraining moment while the slab load is 

transferred to the centre of the wall cross-section. Moments can then 

be found usirg a moment distribution method. The moment distribution 

at the joint will depend on the end moment-rotation characteristics of 
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the floors and walls. The more the slab end is alio'Ted to rotate (slab 

not cantilevering) the smaller the slab restraining moment. The stiff-

ness of the imcracked walls is calculated by usual methods but if tensile 

cracks occur this reduces the stiffness of the wall. 

Reference 4 assumes a fixed connection when the average stress in the 
wall is greater than 100 lbf/in 2  and a 1 :-:3 mortar mix is used. But 

weaker mortars should also be able to give this fidty at that stress 

while the stress over which fixity occurs is dependent on the slab 

moment. The magnitude of the slab restraining moment is dependent on 

factors such as the length of bearing of the slab, the strength and 

stiffness of the wall, the load in the wall above the slab and the max-

mum moment the slab can resist. 

The effect of axi.al load and tensile cracking on a solid, linearly 

elastic wall has been investigated by Sahlin (30,32)  based on theory 

developed by Angervo and Piitkonen (2). Tensile cracking at the joint 

imposes a limiting slab restraining moment dependent on the load in the 

wall above the slab - failure may occur earlier in the slab, or compres-

sive or buckling failure may occur in the wall though buckling is not 

likely with usual storey height walls (32). 

The sequence of construction also affects the fixity of the slab. A 

precast slab may be considered to be hinged when considering moments 

due to slab dead loads since the slab is allowed to deflect and rotate 

when it is positioned (3). With an in-situ slab there is a different 

result since the slab is cast onto thetop course of the wall below. 

If the supports are withdrawn from the slab before the next storey walls 

are built, the slab ends will rotate - this rotation is opposed by the 

supporting wall thus imposing a restraining moment on the slab unless 

tensile cracking occurs. If cracking occurs, a moment is applied to 

the wall only, due to an eccentrically applied slab dead load. With 

increasing load from subsequently built walls above the slab, the moment 

applied to the wall below the slab may be considerable (see section 

Reference 4  neglects this and assumes the in-situ slab behaves as the 

precast slab. 

If the in-situ or precast slab is supported while the next storey is 

built, the dead load slab restraining moments will be distributed between 

- 	the top and bottom wails. 



Typical connections causing slab restraint 

1.2 EXPfliETTkL I1'WESflGATION 

The previous sections have given a brief review of the problems facing 

the designer when considering the floor-wall junction. Appendix 1 gives 

a review of previous experimental work on the floor-wall junction. 

Apart from Sahlints work (30,31,32) there has been little experimental 

or theoretical investigation into the behaviour of joints which do not 

resist tension. 

The experimental work in this  thesis is confined to a simple joint 

between a single leaf brick wall and a reinforced concrete slab bearing 

fully into it • No work had previously been conducted on this type of 

joint although this joint is now becoming more common. 

Tro variables were investigated making use of a full scale model of the 

joint : 	 S  

1. The effect of the load in the wall above,  the slab (precompression). 

Does the magnitude of the precompressive stress affect the fixity of 

the slab ? Three different precompressions were compared - 200 2  

400 and 600 lbf/in2  (p/bt). These were held constant while the slab 

load, 11, was increased from zero to failure. 



2. The effect of brickwork strength. Walls with lower strength mortars 

are likely to allow more rotation of the floor for a given moment - 

thus a lower slab restraining moment. How much more rotation is 

allowed ? A comparison is made between walls made from the same 

brick but with three differring mortars - 1 : 4
I :3.,  1:1:6 and 1:2:9 

cement:iime:sand mixes by volume. 

A combination of each of the above variables was tested giving a total 

of nine 'joint tests'. There were also two preliminary tests. For each 

test, slab rotation was measured as well as the lateral deflection of the 

wall. In addition flexural strains were measured in the walls - this 

has not been.done before but is considered necessary if the slab and 

wall rotations are to be properly understood. The assumption of a solid, 

linearly elastic material must be checked. These measurements are 

considered more useful and accurate than a measurement of the relative 

rotation between the floor slab and the wall at the joint as Sahlin (30) 

has done. 

Tests on axially loaded walls were necessary to obtain the stress-strain 

relationship of brickwork under increasing and decreasing load. The 

effect of a central gap in the mortar joint on the vertical strain dis-

tribution was investigated using the finite element technique. Making 

use of the results from axially lOaded walls, the elastic and. ultimate 

properties of single leaf brickwork under flexural loading were considered. 

As a complement to the model tests, similar joints were tested in a 

full scale five storey brickwork structure. A floor bearing into an 

outside wall was loaded up to LO lbf/ft2  to see how the wall-floor joint 

behaved. This was repeated for each floor level. 	 - 



The following chapters explain the tests and results in detail. Each 

chapter, except Chapter 8, has an appendix given the same number as the 

chapter but prefixed by the letter A. 
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CHAPTER 2 	- 	EXPRLiTAL A 	iirT AU!) PROCEDURE FOR TFU 

10DEL JOINT TSTSAJD WALLS 

2.1 INTRODUCTION 

This chapter gives the at.erial properties, the construction procedure, 

the experimental arrangeiaerit and the experiiental procethre for the 

model wall-floor joint tests and associated tests on small walls. 

2.2 BRIC1OR1 PR0EiTIES 

2.2.1 Brick 

Double frogged Blairadam bricks were used (fig 2.1). 

Compressive Strength : 5345 lbf/1n 2  

Standard deviation : 595 lbf/1n2  

Tested in accordance with CP 3921:1965 (10) 

Size : 2 1 in x l. - in x 8 	in 	exact 

3* in x L in x 9 in 	nominal 

21 



2.2.2 Nortar 

A building sand together with a rapid-hardening Portland cement and a 

hydrated lime were used for all mortars. 

Compressive Strength : IL inch cubes tested in accordance with the 

BCPA Model Specification (s). 
Average strength at ilL or more days 

1:2:9 245  lbf/in2  

1:1:6 510  lbf/in2  

1::3 2345  lbf/in2  

Individual results in Table 3.1 

Mix : The mix proportions are cement:lime:sand by volume. The compo-

nents are batched by weight based on the following bulk densi- 

ties : 

Sand 	90 - 100 lb/ft3  

Lime ILO lb/ft3  

Cement 90 lb/ft3  

The water content was left to the bricklayer. In practice this 

varied from w/c = 2 for the 1 :2:9 mortar to 

w/c = 1 
	

for the 1 ::3 mortar. 

203 W0RKIAN SHIP 

The walls were built to a standard expected of supervised brickwork 

in practice. 

A course rod ensured uniform mortar joints and overall height. Except 

for two preliminary tests, all the walls were built by the same brick-

layer. 

Mortar was laid with a furrow down the centre - this meant that gaps 

existed along the middle of the bed after the bricks were laid. This 

was further aggravated by incomplete filling of the shallow downward 

facing frog. This commonly happens in practice and as it is difficult 

to control it was decided to allow this extra variable. The effect 

of it is discussed in Chapter 3. The only certain way of avoiding this 

is to build with bricks without a downward facing frog. 
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2. Ii. CONSTRUCTION FROCURE 

Seven course walls were built onto 1 inch thick steel plates. For the 

joint tests, the slab was then bedded into position, its free end 

supported by a dexion frame. Seven more courses were built onto 

the slab. The same slab was used in all the tests. 

Walls were air cured in the laboratory with occasional moistening by 

a spray during the first few days. The top of the wall was later capp-

ed by either a 6 in x 3 in steel channel or a 1 inch steel plate using 
a 1 :3 alumina cement: sand mix by volume. 

2.5 SMALL WALLS 

2..1 Test Arrangement 

All walls were tested in a fixed head 100 ton Avery. The wall and load-

ing beams were accurately positioned along the axis of the Avery with 

the help of two theodolites. Plywood packing, rubber sheets and/or 

thin metal sheets were inserted at some points of the loading beams 

to produce a more even distribution of load (figs 2.2 & 2.3). 

4 

[1 

e 2 .2 	1all Type A 



2.,2 Test Procedure 

Instrumentation 

]Jemec gauges : 2 in and 8 in gauge lengths. 

Test: 

Load was applied in stages. At each stage strain readings were taken 

while the load was held constant (fig 2.3).  In most cases the load 

was increased to failure (no previous loading) but in a few walls the 

load was cycled. Tests lasted a long time due to the many strain read-

ings taken - it also approximated the time taken in the joint tests 

reducing differences due to creep. 

Some individual cases are now discussed 

1:2:9 mortar wall No. 5 - Type A 

In this test the load was cycled. In the first cycle the load in terms 

of stress was increased in stages from 0 to 280 lbf/in and then unloaded 

in stages back to zero. This was repeated for 18o ana 80 lbf/in . The 

wall was then loaded to failure. After reaching each load stage the load 

was held constant for 5  minutes before strain readings commenced. This 

reduced strain variations, due to creep, between the first and last 

strain readings at each stage. Total time spent on this test was approx-

imately 18 hours (about 5  hours/cycle and 3  hours for the test to 

failure). 

1: 1 	mortar wall No. 6 - Type B 

Load was cycled. At each load stage strain readings lasted for 20 min-

utes for the first cyóle and 10 minutes for later cycles. Readings 

were taken as soon as the load stage was reached as there was negligible 

creep except when nearing failure loads. Total time spent on this test 

was 9 hours. 

1 ::3 mortar wall No. L - Type A 

This wall was loaded to failure with the load applied in stages. Total 

time was 4 hours. 
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2.6 JOINT MODELS 

2.6.1 Test Arrangement  

Photographs and a diagram of the model and test arrangement can be seen 

in figures 2.4 to 2.7 

Two types of loading are applied to the model - a vertical Drecompressive 

load applied to the walls and a vertical load applied to the free end 

of the slab. 

The precompressive wall load was applied by a 100 ton Avery hydraulic 

testing- rig. 

Three small 6 ton hydraulic jacks applied an upward force to the free 

end of the slab - the loading was inverted compared to practice. This 

makes the application of the load easier and it avoids complete collapse 

of the model at failure. To measure the jack load a 3 ton load cell 

with a self-aligning cap was placed under each jack. A stabilised power 

supply provided 10 volts DC to the load cells while the output was given 

by a digital voltmeter. Hydraulic pressure to the jacks was supplied 

by a hand pump and in later exoeriments by an electric pump. The pres-

sure when using the hand pum p had to be adjusted frequently. h9.th  the 

electric pump, an Enerpac adjustable relief valve provided a constant 

pressure setting but at certain pressures tended to resonate causing 

sudden drops in pressure - again pressure would have to be manually 

controlled. In future tests a connection should he made to a more stable 

hydraulic unit such as the Avery. 

The models were built near to the Avery. Their size made handling 

reasonably easy. The wall sections were high enough to allow an even 

distribution of the precompressive stress near the joint (load at the 

top was applied over part of the wall only). The slab length was the 

maximum allowed by the test equipment thus providing the maximum poss-

ible  moment for a given jacking load. The model supported by a dexion 

frame was built onto a steel plate with castor wheels at each corner. 

The day before a test, the model was rolled into the Avery leaving the 

rollers clear of the bottom loading platen. When the platen was 

raised it bore directly onto the plate lifting the wheels from the 

surrounding floor. After positioning the model two channels were in-

serted under the slab and bolted back to back. Onto these were placed 

the load cells, the jacks and the loading bars. Onto the top wall were 
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placed a steel plate, a steel bar, plywood sheets and thin metal sheets, 

the latter filling any snail gaps between the bar and the top platen. 

The steel bar and the wall were lined up in the Avery with a theodolite. 

01 	11 

ly Am boa" 

Figure 2.L. 	Test Arrangement - iociel Joint Test 

2.6.2 Testing Procedure 

Instrumentation 

2 in and 8 in gauge length demec gauges. 

0.0001 in dial gauges. 

The 8 inch demec gauges measured the strain due to compression and 

bending in the wall above and below the slab. The 2 inch gauges mea-

sured deformation across the mortar joints - slab to wall and the 

course inrncdiateiy folloing. 

The dial gauges measured lateral deflection of the wall, rotation of 

the slab and on some occasions rotation of the loaded ends of the wall. 

The gauges were held in position by magnetic bases attached to the 

Avery frame. 

Figure 2. 5 shows the nosition of the Jial gaues and the layout of the 

strain measurements. 
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Test 

Initial readings were taken. The wall was then loaded in stages up to 

a set precomprëssjon. The strains obtained for this part of the test 

gave the stress-strain curve in compression. 

Next jacking loads were applied to the slab in stages while keeping 

the precoxnpression in the bottom section of the wall constant. This 

meant increasing the Avery load by the same amount as the jacking load. 

Strain and deflection readings were taken giving bending strains, rota-

tions and lateral deflection. Dial gauges were read at the beginning 

and end of each load stage. All tests were completed without a break. 

Time for a test was on average 4 hours (range 3 to 10 hours). 

6.5 in 	3.5 in 

o dial gauge 

* demec disc 

Fig. 2.5 	DIAL GAUGE AND DEMEC POSITIONS 
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CHAPTER 3 	- 	SINGLE LEAF BRIcKioRic UNDER AXIAL COMPRESSION 

3.1 INTRODUCTION 

Brickwork is a composite material composed of two phases - brick and 

mortar. The phases are in parallel, implying equal vertical stress in 

the brick and mortar. The mortar provides a bedding for the brick 

allowing a more uniform transfer of load from one brick to another. 

An investigation into the deformation of this two phase material under 

axial compression is the purpose of this chapter. 

The stress-strain relationship was experimentally investigated for three 

different strengths of brickwork - the same bricks were used throughout 

with three different mortars - 1 :2:9 5  1:1:6 and 1 : ; : 3 mixes - as used in 

the joint tests. Two loadings are considered 

Loading up to failure giving the stress-strain curve for a wall 

loaded for the first time. 

Cycled loading to see the effect of unloading and reloading on 

the stress-strain curve. 

The latter aspect is necessary for the analysis of axially loaded brick-

work subjected to flexural stresses. 

The latter part of the chapter deals with the transfer of load across 

the mortar joint. The effect of. a central gap in the mortar joint on 

the overall vertical strain distribution is considered. To simplify 

calculations, the solid brick wall is replaced by an equivalent hollow 

wall. This is done with the help of a finite element analysis. 

3.2 SINGLE LEkF BRICKWORK LOADED TO FAILURE 

3.2.1 Stress-Strain Relationship 

Typical stress-strain curves for walls of three different strengths are 

shown in figure 3.3 

The 1 :*:3 mortar pall has an initial linear curve while the 1:1:6 and 
1:2:9 mortar walls usually have a non-linear curve throughout. The 

non-linearity at the start is due to the mortar, the brick having an 

initial linear stress-strain curve. The curves are representative, there 

being variations in strain on different sections of the wall as well as 

on different walls. Variations are caused by differences between mdi- 
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vidual bricks (eg. cracks), differring mortar hatches, workmanship and 

uniformity of load application. To reduce positional variations the 

strains were always measured at the same positions, these being synnet-

rical about the centre of the wall and identical on both sides of the 

wall thus reducing the effect of load eccentricity. To reduce variations 

due to non-uniform brickwork properties, the final results were at least 

an average of four gauge positions (sometimes as many as twelve). Notes 

on the effect of gauge length are given in Appendix 3. 

3.2.2 Ultimate Strength 

Near failure continuous light cracking noises are heard - vertical hair-

line cracks develop at the ends (down centre and near the edge of the 

bricks) and through the bricks and collar joints at the side (figs 3.1 

& 3,2). Soon after small bits of mortar and brick, near to the mortar 

joints, spall off. With increasing loads cracks widen, finally causing 

the cracked sections to shear and buckle off causing failure. The 

failure process is slow, the ultimate load varying by a few tons depend-

ing on the rate of loading. 

For comparison, two brick sections after failure are shown in figure 3.7 '. 

Table 3.1 gives the mortar strength and the ultimate strength for the 

walls tested. 

* Three rectangular sections cut from the brick were tested. The nominal 

dimensions were 1 in x 3 in x 9 in . The specimens were capped with 
a dental plaster. Two 2. 5 inch vibrating wire strain gauges were 
attached to the sides. The brick properties are assumed to be isotro-

pic for this test as the load is applied along a different axis from 

that in practice. Their average corrpressive strength was 360 lbf/in 2  

(200, 3300 & 145 lbf/1n2), 
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TABLE 3.1 - WALL PPERTIES 

Mortar Wail Type Age at 14 in mortar Ultimate Notes 

Nix by No. Test cube strength Strength 

Volume days lbf/in2  lbf/in2  

1:2:9 1 A 21 180 1005 WS - wall slab 
S A 140 310 1185 joint model 

WS11b A 60 965 b -, bottom 

Idsi 112 325 
section 

WS3 15 1145 t-top 

15 110 section 

IS11 20 270 * 
2.78 	nch 

1,312 32 360 mortar cubes 

1:1:6 2 A 15 295 885 

3 A 26 585 1150 

7 B 51 670 13140 

wS5b A 514 990 

W36t A 135 1225 

W37b A 61 1315 

ws5 114 385 
ws6 15 57; 

28 5145 

14 A 107 23140 1790 

6 B 142 3200 11420 

W39b A 35 1585 
ws8 17 136 

TJ59 32 2510' 

84 2385 



3.3 CYCLID LOADING 

3-3.1 Tests and Results 

Take a wall with a constant precoirrpres- 

sive stress situated above a junction 	STRESS incile 

with a floor slab. When the slab is 
- - f

decreasing 

preconipressive 
loaded it applies a moment to the wall 	 stress 

causing a simultaneous increase and  

decrease of the strain on opposite 	
/ _______________ 

sides of the wall. Thus from a point 	
-______________SrjRkIN 

on the stress-strain curve given by 

the precorapressive stress, the stress-strain relationship with decreas-

ing stress must be known. 

The load on three walls was cycled to various stress levels before final 

loading to failure while three brick samples were loaded over one cycle. 

cures 3.4 to 3.6 show the stress-strain behaviour for brickwork under 

cycled loading. The figures show the behaviour over 8 inch gauge lengths 

covering two mortar joints and over 2 inch gauge lengths on brick only. 

The difference in strain magnitudes shows the effect of the mortar on 

the strain. 

Figure 3,3 shows the stress-strain behaviour for brick over one cycle. 

Table 3.2 gives, the tangent modulus of the initial linear portion of the 

loading path for each cycle and the ratio of the unloading to loading 

chord moduli about the maximum stress for each cycle. 

3.3.2 Analysis and Discussion 

The walls follow similar patterns. During the first load cycle, the 

stress-strain curve follows the usual path but on unloading a very 

different path is observed. The curve is non-linear and of opposite 

shape to that of the loading curve (convex looking upwards). A perma-

nent set occurs at zero stress, this being greatest for the 1:2:9 mortar 

wall. Reloading causes an initial convex upward portion which becomes 

approximately linear up to the previously attained stress level after 

which the curve takes up the shape of the initial loading path. If the 

previously attained stress level is not reached the unloading curve will 

show much reduced hysteresis with little set at zero stress. This is 

shown by the 1 :-:3 mortar wall. 
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The reloading curves for a given wall have similar slopes and can be 

considered to be ecuivalent to the initial tangent modulus. Table 3.2 

shows that cycling the load on the two weaker walls makes the reloading. 

curve considerably more linear except at low stresses. 

The unloading curves for the walls have a much steeper slope than the 

loading curves, the ratio being greater for the weaker walls and with 

increasing stress levels. The difference in the sloDe of the unloading 

curves for the walls is not large. Figure 3.9 shows the unloading curves, 

taking the origin as the point on the curve at which unloading started 

(maximum stress for a particular cycle). 

The tests on three brick samples show hysteresis and illustrate the pos-

sible variation between the bricks. 

Both brick and mortar exhibit hysteresis. In an elastic material 

hysteresis occurs when more work;is done during loading than unloading, 

the strain returning to zero but by a different path. Brickwork approx-

imately follows this pattern when the load is cycled below a previously 

attained stress level. 

For an initial load cycle or a cycle above a previously attained stress, 

the strain does not return to zero and larger hysteresis loops are observed 

mainly due to the non-linearity of the loading path. Some of the resi- 

dual strain will be recovered in time but the greater proportion is due 

to local failure within the brick and mortar. The i::3 mortar brick-

work shows relatively mall residual strain as is to be exected as the 

loading curve is linear over the range tested. Looking at the loading 

paths for the 1 :1 :6 and 1 :2:9 mortar walls, the tangent modulus decreases 

with increasing stress mainly due to the breakdown of the cement-aggregate 

bond. Khoo (20) found this to occur for 1:1:6 and 1 :*:3 mortars under 
triaxial compression. The brick also exhibits increasing residual strain 

with increasing stress. The bricks used contain many shrinkage cracks, 

and compaction and breakdown along these cracks is the most likely cause 

for the residual strain. 
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TABLE 3 2 - E'FCT OF LOAD CYCLI;G ON BRICKdORK MODULI 

Mortar Cycle Tangent Chord Modulus 
lax by 
Volume 

No. 'Modulus 
Loading rlax Sti Stress Average Loading Unloading Ratio 

.. 	., 
I, 

Interval Stress i-odu1us rodulus in Cyc 

1:2:9 1 0.95 180-.280 230 0,57 1.1 1.9 280 
Wall 2 0.88 385-' 85 435 0,16 i.1. 3.0 485 
No. 5 3 0.52 585-685 635 0.32 1,8 5.6 685 

failure 0.81 

1:1:6 1 0.70 100-200 150 0,70 1.0 1.11. 200 
WaU 2 0,87 295-395 3' 45 o,64 1.25 2,0 395 
No. 7 3 0,86 495-595 545 0 .54 1,65 3.0 595 

'aiJ_rn'e 0.82 

1 ::3 1 0.96 375-475 425 0.96 1.3 1.4 175• 
Wall 2 0,95 200 
No. 6 3 0,96 295-395 345 0.96 1.1 1.1 395 

4  3 1.0 4 495-595 545 0.37 1.2 1.1 595 
failure 0.95 

Brick 
Sections  

1 2.00 850-950 900 1.65 2.95 1.8 950 1 

2 1 2.58 810-910 860 2.4 3.1 1.3 910 

3 1 2.35 930-1030 980 2.35 3.7 1.6 1030 

Notes 

Units - stresses in lbf/in 2 	and moduli in x106  lbf/1n2  

In cycle 1, the tangent modulus is the initial tangent modulus. 

In cycles other than the first, the tangent modulus represents the  

best tangent in the initial portion of the curve before the previous 

load level is reached. At the start of loading the curve is usually 

of a convex upwards shape - this is neglected. 

In cycle h of the 1 :*:3 mortar wall the loading and unloading moduli 

may be too low. 	The values depend on the strain reading at maximum 

stress level. 0.87 x 10 	lhf/in 	is liieiy to he too low based on 

previous experience. 

e s s 
-e 



ey 

3.li c:rr. GA2S I. T: 	:oTLR JOT 

3..1 Load Transfer Across the Mortar Joint 

In brickwork the mortar ensures a more uniform transfer of load across 

the joint. This aspect is now discussed with regard to the walls used 

in the experintents. 

The mortar joint is often assumed to be solid but in practice the mortar 

is laid with a furrow down the centre - in effect introducing a central 

gap transferring no load. With solid bricks this gap may be small. 

th bricIs hang frogs facing downwards, the frog is often not properly 

fillcd and with shallow frogs often unfilled. This will produce an even 

larger gap lirited by the width of the frog (fig 3.1 0). At the mortar 

joints the load is therefore concentrated at the ed.es of the brick. 

.'rl chip in the Iortr Joint 	 C) 
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The gap affects the vertical strain on, the sides of the wall. If the 

stresses are based on the full cross-section, the calculated value for 

the coraDression modulus will be too small. Now if this modulus is used 

theoretically it •dU give the correct values for axial strains but not 

for flexural strains which will be overestimated. 

To obtain a better value for the compression modulus is difficult since 

the stresses are not uniform. . An analysis based on the finite element 

technique is used to find the effect of the gap on the surface strains 

of the wall. 

3.4.2 Theoretical Analysis 

To simplify calculations the following assumptions are made 

1 • The gap in the joint extends throughout the length of the mortar. 

course (neglecting the end sections of the brick in contact with 

the mortar).. 

2. The gap width is uniform. 

The purpose of this analysis is to replace the wall by an equivalent 

hollow section giving the same external strains (fig 3.11). 

-I a 

For the same axial load, P 

c1  = c 2  

F 	= P/bt = P/bt exp 	C 2  

Figure 3.11 - Wall with Gaps in the Mortar Joint replaced by an 

Equivalent Hollow Wall 

Notation 	a = width of gap in the mortar joint 

a  = gap width of equivalent hollow wall 

E 	=exp 	compression modulus of brickwork assuming a solid - 

section. 

E = 
S 	

true conm 	 kw ressive modulus of brickwork (ie. if the 
- 

section had been solid). 
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Eb = true brick modulus 

E = true mortar modulus 
m 

proportion of brick covered by gauge length 

E 	and E are related by the following equation 

..- 	I 	t 	' 
1 	= 1a 	Is 	) 

S 	exot - a 
- 	e 

Axial Loading 

The first wail section in figure 3.11 was analysed using a finite element 

program (section 10 .2). The analysis was carried out for differring 

values of gap width, a, and ratios of brick to mortar modulus, Eb/ 

The results of the analysis gave the vertical strain over the height of 

one mortar joint plus one brick. From this a value of E 	was obtained 

assuming a solid section. The value of E, is given by 

E. 
- 	 0 

S - 	+ Z'm CI - 
 

The dorivaion of this equation is given in the appendix (section A3.1.2). 

Using the values of E 	and E, the effective gap is found from exp 
equation 3.1 . Results are shown graphically in figure 3.12 

As an example, for a mortar gap width of 2.62 inches and a ratio of 

Eb/E = 1 , the effective gap width becomes 2.11 inches. 
M. 

Eccentric Loading 

The object of replacing the brick wall by an equivalent hollow one is 

its use in predicting experimental flexural strains in walls subjected 

to eccentric loading. 

Using the calculated values of a 
e 	s 
and E , the strains under eccentric 

loading can be predicted by simple theory. 	 * 

= NV/El 	 --- (3.3) 

where N = moment 

I = b(t3  - a3 )/12 

The results from this eouation compare well with those obtained from 

the finite element analysis (Table A3.1,  Appendix  3) - the difference 

only a few percent. 
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3. Application to Exerimental Analysis 

From experiment a value of E 	is obtained. Assiurdnop a value for the exp 
gap uidth in the mortar joint and a ratio of brick to mortar modulus 

(only a rough value is necessary), a value for the effective gap idtb 

is found using figure 3.12 . Equation 3.1 gives a value for E . The 

flexural strains can then be calculated. 

0 	 1.0 
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Figure 3.12 	Effective Gap versus Actual Gap for varying values 

of E/E 



3.5  CONCLUSIONS 

The loading and unloading paths of the brick and brickwork stress-

strain curves are different. A permanent strain occurs on unload-

ing. The difference in the loading end unloading paths and the 

magnitude of the permanent strain, increase with increasing stresses 

and with decreasing strength of brickwork (increasing, curvature of 

the stress-strain curve)(figs 3. - 3.6). 

Walls under axial load subjected to flexural stresses have different 

moduli for increasing and decreasing stress. In the first load cycle 

the ratio of the unloading to the loading modulus varied from 1 .4 
to 5 .6 (Table 3.2). 

Cycling the load produces a more linear stress-strain curve on 

reloading up to the point of the maxi-awn previously attained stress. 

This will reduce the ratio of the unloading to loading modulus to 

values approaching unity. More tests are needed to obtain these 

values. 

. Central gaps in the mortar joint will cause an incorrect exerimental 

value for tte brickwork compression modulus 1± this is based on the 

full cross-section. 

. Substituting an equivalent hollow wall with an increased compression 

modulus gives good results for both axial and flexural strains when 

compared with the theoretical results obtained from an analysis of 

a wall with gaps in the mortar joint only. 
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CHATTER ). 	- THE RELATION EET1EE.J THE EXPWENTAL STRAINS IN THE 

iALL AND THE APPLIED SLAB FORCES 

14.1 INTRODUCTION 

The experimental stress-strain behaviour of brickwork under axial load 

was shom in Chapter 3. The results are used to explain the behaviour 

of precompressed brickwork subjected to bending moment. 

Nine brick wail - floor models as described in Chapter 2 were tested. 

The walls were precoipressed to given loads and then the free end of 

the slab was loaded, superimosing a bending moment in both wall sections 

and an increasing axial load in one wall section. The vertical strains 

due to slab loading were measured in the walls above and below the slab. 

The strains were used to predict the applied slab loading. Simple bend-

ing theory, assuming a solid cross-section and an experimental compres-

sion modulus, underestimated the applied moment while the slab load was 

either correctly predicted or overestimated. The result for moment was 

surprising since the predicted moment if different from the applied 

moment would be expected to he larger because of possible stress concen-

trations near the joint inducing larger strains. 

Tho possible reasons are suggested for this 

Gaps along the centre line of the mortar joints due to unfilled 

frogs and furrowing of the mortar. This causes an underestima-

tion of the experimental compression modulus if based on a solid 

cross-section (section 3.14). 
An unloading modulus (decreasing stress) different from the load-

ing modulus (increasing stress). 

The effect of the two factors on the flexural behaviour of brickqork is 

investigated. 

14,2 EXPmENTAL STRAIN RESULTS 

Vertical strain readings were obtained on opaosite faces of the wails 

above and below the slab. Figures 14.1 to 14.3 show the strains result-
ing from the increasing moment and load clue to the slab, starting from 

the three initial precompressions for the three types of wall tested. 



3 

The strain planes have a common point of intersection and provide an 

experimental basis for the assumption that a cross-section remains plane 

under flexural deformation. Hailer (1 7) had conic to. this conclusion 

after testing a series of brick piers under vertical load at various 

eccentricities (fig 4.4). 

The position of the intersection of the strain planes is determined by 

the applied load eccentricity, the stress-strain relationship (loading 

and unloading), tensile cracking in the cross-section and to a lesser 

extent any effective gaps in the wall. If these factors remain constant, 

the intersection point will be in a fixed position. 

In eccentrically loaded. walls - increasing moment with increasing load - 

the position of the strain plane intersection point is determined by the 

load eccentricity, tensile cracks and the loading stress-strain curve. 

In I-killer's tests* (17), assuming a linear stress-strain curve and no 

tensile strength, the load eccentricity is predicted quite accurately 

by the intersection point of the strain planes (fig 1J). The predicted 

eccentricities are slightly larger than the applied eccentricities. The 

difference can he reduced by taking the exoerimental stress-strain curve 

and the lateral deflection of the pier into account. 

In tests described in this thesis the slab moment to slab load ratio is 

a constant in all the experiments - thus constant load eccentricity for 

the strains due to slab forces. The eccentricity of the existing axial 

wall load increases with increase in slab moment. There is a major 

difference between these results and those. ofHUer '-the moinentis 

applied after the wall has been loaded. The effect of the unloading 

stress-strain relationship must be taken into account. Thus loading 

history is important. 

* In this reference, the figure illustrating the strain planes contains 

incorrect values for the eccentricity due to elastic strains (compare 

to ref. 16). In both references one of the eccentricities due to 

total strain is incorrect. 
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A linear stress-strain theory, developed in Appendix 14, takes into account 
L he effects of a gap in the mortar joint and a d.iIT erring loading from 

unloading modulus. The basic parameters are illustrated in the following 

sketch shbwing a typical stress distribution 

cyt 

a= kE 
S 

Frecompressive 
Stress 

I 
k = ratio of unloading to 

a  = effective gap 

Moment = R A + 5tA 
cc 	•t 
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loading modulus 
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The effects of the ratio of the unloading to the loading modulus, k, and 

the gap in the mortar joint represented by an effective gap, ae,are 

illustrated grarhically. 

figure 14.6 shows, for a wall subjected to a pure bending moent, that 

a visible effect of k on the stress diagram is the displacement of the 

neutral añs from the centre line of the wall. This is shown for all 

values of a (section .4.14.1,  part 14). 

This displacement could also be due to an increasing axial load. When 

axial load is present and k >1, one of the dilTiculties in experimental 

analysis is differentiating the effects of the two. In figure 14.7 the 
effect of changing the value of k, by an amount Ak, on the magnitude 

of the axial load is shown (section A14.14.2). The effect is greatest 

when the neutral axis is displaced a small amount. Varying Ic has a 

greater effect on the magnitude of the axial load than varying a 

(a has no effect if k = 1). e 
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Figure 14.5 shows the effect of Ic on the magnitude of the moment for 
various values of a   (section 114.14.1 ) 	Here as opposed to the a.dal 

load, the effect of changing a is greater than that of changing k 

especially with higher values of k. The graph shows the ratio of the 

moment for a given value of k and a  e to the moment for a solid section 

with k = 1 (in both cases the same value of flexural compressive 

stiain, 	). 

0e it 

Fig. 45 	Effect of k and G e  on moment predicted 
from strains 
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I,4 	c 1RRELATI0T:EE ThE EXPEUEENTAL STRAINS A'E) TEE APPLIED SLAB 

I1c::EJT AflD L0J) usI1:G THE LIHEAR SThISS-STRAflI THECRY 

4.4.1 Forces Acting on the perin1ental ilodel 

The fo1loing sketch shors the forces acting on the wall•flocr test model 

(section 6.2 does this in detail). 

p +v 
H PV 

p~V 

tv p+v 
Vi 	Id 

1 P 	 V I .  

P 

N =Vl 
S 

I 	I 

N +Jyi 
±

+Vl 
H= 	PV 

2h + d 

If the ends of the wall are fully fixed 
iI = /21.11 

P 	P 

I'J 
I 	

= N 	/2 p+v 	p+v 

If hinged 

I 	I 

N =N 	=0 
P •p+v 

The top and bottom ci' the model are partially fixed. The possible range 

of moment along the wall is shorn in the sketch below. Strain results 

show that the end restraining iion-tents are very appro;-thnately 20 of the 

full fidng moment (section 5 - 4). That amount of fixity does not affect 

the moment much at the position where strain was measured. 

moment at the centre line 

inch strain gauge: 

) . 691-1 

N (= M3/2 if the top and bottom 

walls have the same properties) 
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4o1.2 Constants needed for the Linear Theory 

To use the linear theory, values of k, a  
e 	exp 
end E 	have to found for 

each test model. 

1. Ratio of the Unloading to. the Loading Modulus, k 

Assiraing there is no change in axial load due to slab forces in the 
lower wall section of the test models (only a moment is applied), any 
displacement of the point of intersection of the strain planes from the 

centre line of the wall is essimed to be caused by the ciifferring moduli 

under increasing and decreasing load. Knowing the displacement, the ratio 

of the unloading to the loading modulus, Ic, can be found using equation 4.1 

(Table I.i). 

1 +a
e
/t +LL(Q.-v/t) 

1 + a e/t - (O.5- v/t) 	 --- (.i) 

a/t1 -2v/t 

- v/t) = displacement from the centre line of the wall. 

Derivation in section Alt-3 

TABLE ii.. 1 - RATIO OF THE UNLOADING TO THE LOADING MODULUS FROM 

EXPERIME2'ITAL STRAINS 

Precompressive 	 Type of Brickwork 
Stress ,.-. - 

lbf/in 	
. 	 k 

in 	 in 	 {in 

200 0.41 1.8 	(1.8) 	0.3 11.6 	(1 .h) 	0 1.0 	(-) 
400 0.62 2.6 	(2.7) 	0.34 1.6 	(2.3) 	-0.07  1 0.9 	(_) 
600 0.82 3.8 	(,o) 	0,41 1.8 	(3.3) 	0.21 11.4 	(1.4) 

Notes :  Displacent v taken from figures 4.1 to 4.3 
 th.l2in 

 In calculations Ic taken to be > 1 

 In brackets are the values (some interpolated) obtained 

from the tests on adally loaded walls (Table 3.2) 

. Values of ae  1:2:9 = 1. 	in ; 
1:1:6 = 1. 	in ; 1::3 =1.2 in 
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Values of Eiffective Gao width - a 
e 

The 1 ::3 mortar walls at precompressions of 200 and 1400  lbf/in2  are 

assumed to have values of k = 1 since their strain planes in the wall 

subjected to moment only, pass through the centre line of the wall 

(fig 14.1). Using the results for the 1400  ilii',tin2  test, a value of 

a  was chosen to give results for moment e'uivalent to those in a model 

with hinged ends. This value of a was used to obtain values for the 
e 

other walls. 

The experimental value of a   was 1.2 inches (ae/t = 0.3). From 

figure 3.12, the actual gap width of the mortar joint is 1.9 inches. 

Taking this value, values of a   for the other walls are obtained from 

figure 3.12 - dependent on the ratio of the brick to mortar modulus 

The results are given in Table 14.2 

Values of the Experimental Comoression Modulus, Ee 

The values for the moduli are obtained from the stress-strain relation-

ships of the wall sections obtained when loaded to their set precompression. 

These can he determined fairly accurately for the 1 :*:3 mortar walls - 

a linear stress-strain curve over the precompressions tested. 

So that the linear theory could be applied to the 1:1:6 and 1:2:9 mortar 

walls, both having non--linear curves, the tangent modulus at the set 

precorajression is used. The estimation here is more approximate than 

the 1 ::3 mortar walls. As the weaker walls vary more in their proper-

ties, using strains to predict moments and loads can only be used with 

any accuracy if the experimental stress-strain curve is known. 

I.14.3 Results 

1. Moment Predicted from Strains 

Table 14.2 gives predicted moments in the upper and lower wall sections 

and compares their sum to the applied moment assuming a moment distri-

bution based on walls with one end hinged. Figure 14.8 shows the results 

graphically for the 1 : 1- :3  mortar walls and compares them to the results 

obtained assuming a solid section with k = 1. 

The overall results are good. For the weaker walls, the compression 

raoduJli are estimated to the nearest 50 x 103. lbf/in2  from their indi-

vidual-  stress-strain curves at the point of the set precomression, Thus 
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J. the possible error increases with decreasing modulus explaining the 

increasing variation with the weaker wails and the low result for the 

1 :2:9 mortar wall at 600 lbf/in precompression. See also the discussion 

in Chapter on lateral deflection (section 

The values of k are based on the bottom wall and assumed to be the 

same for the top wall - another source of error. In addition the gap 

in the mortar joint is assumed to be constant. 

The weaker walls show increasing difference between predicted and applied 

moment with increasing moment - probably due to a decreasing tangent 

modulus. 

The 1 :*:3 mortar walls give good results (to be expected for the 
400 lbf/1n2  wall) except for the 200 lbf/in 2  wall. The large difference 

at higher moments may be explained by tensile cracking which will occur 

at approximately a slab moment of 30 x 10 3 lbf in/ft (Table 4.4). 
A possibility at lower moments is an incorrect modulus for the wall, the 

modulus based on a curve extending  ending to onJ 200 lbf/in 2 . 

2. Increasing Axial Load Predicted from Strains 

Table 14.3 gives the predicted increasing axial load in the wall section 

with increasing precompression. Figure 14,8  shows the results graphically 
for the 1:2-:3  mortar walls and compares them to the results obtained 

assuming a solid wall with k = 1. 

The increasing axial load should be equivalent to the increase in slab 

jacking load. The only accurate results are those for the 1 ::3 mortar 
walls which have a linear stress-strain curve. The 1:2:9 mortar wall 

at 600 lbf/in 2  precompression gives good results too but this may be more 

luck when compared to the other results. 

Apart from the latter result, the results for the 1:1:6 and 1:2:9 mortar 

walls are far out in magnitude but not in proportion (i.e. twice the 

jacking load produces approximately twice the predicted load). Changing 

the value of k '.;ould correct most of the results without affecting the 

moment results very-  much.. The necessary changes in k range from 0. 

to 1 .. 



Lt' 

3. Conclusions .  
The experinental results were carefully analysed - curves for strain 

versus moment were drawn through the experimental points to get better 

estimates and spot obvious errors including zero errors. 

The results cannot be improved very much as they depend on too many 

variables. Many more tests are needed to evaluate the effect of these 

variables. 

Lth an increasing number of tests better average results will be obtained 

but nevertheless it will always be difficult to apply these to individual 

walls except for the 1 :-,',:3  mortar walls which can be expected to give 
consistent results. 
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Figure 4.8 	Moment and Axial Load Predicted from Eperimental Strains 

-. 1 ::3 mortar Test Models 



TABLE )4 .2 - 1,101"I1T PREDICTID FROM EXPER]iENTAL STRAIN RESULTS 

Precompression 	200 400 600 11bf/1n2  Notes I.:- 	

rM1M 5 	 P 	L 
N 	:M 

V 	p 	t 'T  N 	N 	IN p -V 	p 	t 
0.  :o.6: 0.6911 

mortar .  

10 6.9 3. 	)4.)4 1.1)4 3.6 3.1 	0.97 3.4 	3.8 	1.04 a/t 	0 4 
20 13.8 7.8 11 5.9 1.21 7.21 6.1 	0.96 6.9 	7.5 	1.04 

301 20.7. 13.)413,6 1.30 11. 	9.1 	1.00 10.8 	11.3 	1.0)4 
i 

1::3 

a/,-0.0 
40 27.6 22.6 18,)4 1.48 16.)412.1 	1,03 15.0 1 5 .0 	1,09 e 

1.07 o,8 
:6& 

1:2:9 1.06 1.06 1.0 0.96 exp 
k 1 	1 1 	1 1.4 11.4 	i a/t = 0.37 
t/2 - v 0.41 1 0 0d11 0 0.62 10. 21 

M 	=N 	+N t 	P+v 	p 
1 :1 :6 mortar 

Units: 
10 	6.9 3.3 3.4 	0.97 3.9 	3.4 	1.06 3.1 	3.8 	1.00 
20 	13.6  6.8 6.9 	0.99 8.2 	6.9 	1.09, 6.8 	7.5 	1.04 

Moment 
3 

30 	20.7 11 .4 10.4 	1.05 13.. 	io. 	:1.16  11.1 	11.3 	1.08 
xlO 	Ibf in/it 

40 	27.6 17. 13.9 	1.14 i6.)4 li l3.91.17 16.3 :i.O 	1.13 t/2 	V 

inch 
E 0.6 O. o.6 	0.5 o. 	o. exp 
k 1.6 11.6 	. 

.• 
1.6 	11 .6 

i 
1.8 	1.8 

E exp 

t/2 - v o.62o.3J o.961, 0 .34 0.96 O..41 xlO 	lbf/in2  

1:2:9 mortar 

10 	6.9 3.4 	3.8 	1.04 4.0 	3.7 	1.12 2.5 	2.3 1  0.70 
20 	13.8  7.8 	7.6 	1.12 8.8' 	7.5 1 1.18 4.9 	0.7 
30 	20.7 14-1111.3 	1.23  14.)4 	11.)4 	1.2 8.8 	7.6 	0.79 

40 	27.6 21.0 1 	1.32 13-3 10. 6 	0.87 
_L 

0.4 1 0.3 E 0.40 1:0.35 0.20,0.20 exp 
Ic 1.8 	118 2,6 	2 .6  3.8 	3.8 

V2 - v 0.9610.41 1.03 0.62 1.170,82 

Note : The sum of the moments at gauge points in terms of slab moment 
should. be 	0.69 	if the far ends of the walls are hinged 

S  

0.611 	if the far ends of the walls are fixed 
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TABLE 14.3 - AXIAL LOAD IiCRFASE PREDICTED BY EXPERIMENTAL STRAINS 

200 	 boO 	600 lbf/in2  

Vp+ /VVp ~v  V.JV!V W  

toni 	 toni 	 toni 

0,3 0.86 0.30  0.72 0.148 1,17 

0.76 0.914 0.71 0,87 0.914 1.16 

1.29 i 	1.05 1.18 0.97 1 .25 1.02 

1.8 0.97 1.83 1.12 i.68 1.03 

0,19 0.146 0,66 1.6o o.8 1,142 

0.148 0.9 1.314 1.6 i.OS 1.30 

0.78 0.614 1 1.99 1.614 1 1.62 1.33 

0.93 O.7 2.89 1.77 1 2.2 -1,38 

0.66 1.83 0.67 1,614  0.38 0.92 

1.32 1.86 1.32 1.63 0.77 rl 0.9 

2.26 2.11 11.88 1.14 1.13 .0.92 

2.147 1.1 1.60 lo.98 

Precompres sion 

N 	V 
X10 3 S 

1O 

lbi' in/ft toni 

1 ::3 mortar 

10 	0.141 

20 	0.81 

30 	1.22 

- 

1 :1 :6 mortar 

10 	0.141 

20 	0.61 

30 	1.22 

140 	1 1.63 

1 :2:9 mortar 

10 	0.41 
20 	1 0.81 

30 	1.22 

140 	11.63 

Notes 	N, is the applied slab moment 

a/t =  o,14 	(other values see Table 14.2) 

for  the 1:2:9 mortar test model at 200 1 1,Df/in 2  

precompression, the values of V are reduced 

by io%. 

V applied slab toad 

load obtained from strains 
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TNSI0N IN 13fICKW0RK 

4.1 Eccentricity Causing Zero Stress on Gne Face of the Tall 

When tensile strains occur, brickwork is assumed to take no tensile 

stresses although it has resisted stresses up to 135 lhi'/in 2  in 
laboratory tests (34) 

The point at which the strains become tensile is thus of interest. 

This is usually taken to occur when the load eccentricity exceeds one 

sixth of the wall thickness. This value is based on the assumption 

that the stress-strain relation is linear and the cross-section is 

solid and rectangular. 

A rectangular cross-section with a central gap increases the eccentri-. 

city necessary to cause tension while a non-linear stress-strain relation 

(reducing tangent modulus) reduces the eccentricity. This is illustrated 

in the following sketches based on results from Chapter 6. 

STRAIN 

0.167 

e/t = 0.12 

_ 

STRESS 

a 
--e -- 

e/t =  0.34 

e~t = 029 

__ 	 = o.6 

STF1ESS 

Section A4.6 in the Appendix gives the basic theory for walls with a 

linear stress-strain relation, a gap in the centre and an unloading 

modulus greater than the loading modulus.. The results are shom 

graphically in figure 4.9 

* 
Six brick high, two brick length waflettes were eccentrically loaded 

(10 in from centre line of wall - top and bottom). Using one brick 
- 	

i

2 (11 770 lDf/in comoressive  strength,  10.6 g/min/30 n suction 

rate), mortars similar to those in this thesis were tested - 1:2:9, 

1 :1:6 and 1 ::3 mixes giving flexural strengths of 8, 96 and 

135 lbf/in2  respectively (average of 5  samples). 
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&perimentaJ. Results 

Tensile cracks develop in the mortar joints, the bricks being able bo 

take considerably more tension. 

The moment at which tension occurs is predicted using the linear 

theory-  and compared to the experimental results (Table 14i). 

The follmiing values for effective gap and k (unloading/lo&ung modulus) 

give an an eccentricity of 0.23t  necessary to cause tension (fig 4.9). 
a 	= 0 ,30 k = 1 	1 :*:3 mortar 
a/t = 0.37 k = 2* 1:1:6 & 1:2:9 mortars 

The experimental strains were measured at two levels 

1 • A 2 inch gauge length across the mortar joint between the slab 

and the first brick in the wall. 

2. An 8 inch gauge length covering two mortar joints and brick 

(centre line 5  inches from the slab surface). 

The necessary moment in terms of the applied slab moment for tension 

to occur at these points is given by slab moments equal to 23Mc and 

2.914 respectively where moments larger than Mc  cause tension (derived 

assuming the far ends of the wall are hinged - any fid.ty 'iill increase 

the slab moment necessary to cause tension). 

The eerimontal slab moments produce a flexural tensile strain equalling 

the average precompressive strain. The effect of permanent residual 

strains is also considered for the 8 inch gauge length - this reduces 

the moment necessary to cause tension. 

Precompressive 

Strain 

Flexural 
.'Strain 

Residual 
-' Strain 

The theory developed gives better results than the usual assthnption of 

a solid section and a single modulus (values in brackets in Table t). 

*Here a linear unloading modulus depends on the residual strain at zero 

stress (see section iU1.6, part 3). 	

C9_ OUD),  



52 

TABLE 4.4 - SLAB MOMENT CAUSING TENSIOI! IN THE WALL SUBJECTED TO 

NONENT ONLY 

Precompression 	N 	Moment in terms of Applied Slab Moment 

lbf/in2 	- 	xi 03 	____ 	xl o 	lbf in/ft 
lbf in/ft 	 - in ga-uge 	8 in gauge 

ieOry 	1cp 	Theory 	Exp '! 	cp 

200 	9.5 22 22 27 	21 - 
(6.8) 1 	(16) 31 (20) , 	38 33 

34 2 
----•--- -.----- Ioo 	18. 42 45 54 	1 	60 1 	- 

(13.6) (31) 44 (39) 	71 62 

60 73 60 

600 	28 6 .69 81 	96 93 
(20.)4) 07) 68 (9) 	1 	84. 84 

70 70 

Notes 

When the tensile strain exceeds the average precompressive 

strain for the 1 :*:3, 1:1 :6 & 1 :2:9. mortar walls respectively. 
Residual strain at zero stress taken into account using 

values from figures 3.4 to 3.6 .' 

° 	Pe where P = precouuressive force/ft 
e = eccentricity at start of tension (0.23t) 

4. Values in brackets for a = 0.167t '(solid section) 
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14.6 CONCLUSIONS 

1. The relation between moment and the resulting flexural strains is 

affected by the following parameters 

Stress-strain relationship - loading and unloading. 

Central gaps in the mortar joint. 

2. The strain planes due to slab moment have a coL'mion point of inter-

section, large deviations only occurring when tensile cracks 

develop (figs 14.1 - 14.3). 	 - 

3 • A linear stress-•strain theory is proposed taking into account an 

effective central gap in the wall and an unloading modulus different 

from the loading modulus. This gives better results for moment 

than for ad.al load and in both cases better results than those 

obtained by assuming a solid section with a single modulus. The 

method can be used with accuracy with the 1 ::3 mortar walls having 
a linear stress-strain relationship over most of the stress range 

covered. Unless the stress-strain curve is kno for the other 

walls there will be large variations between theory and experiment. 

Lth repeated slab loading the modulus for the latter walls will 

become appromimately linear and thus may give better results. 

14. The eccentricity at which tension occurs in the wall is increased 

due to the central gap in the mortar joints. Residual strains on 

unloading will decrease this eccentricity. 

Oe/t 

Figure 14.9 	Eccentricity Causing Zero Stress on One Face of 

the UaU 
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CHAPTER 5 - FLOOR SLAB ROTATION AT ITS JULICTION 1.'JI2H THE WALL 

5.1 INTRODUCTION 

Two factors affecting floor slab rotation at its junction with the wall 

are the rigidity of the wall and the precornpression in the wall. The 

factors are investigated eerLrrientaliy and theoretically. 

The rigidity of the wall is varied by changing the mortar in the brick-

work thereby altering the elastic modulus. 

The precompression mainly affects the point at which tensile cracking 

occurs in the wall while to a lesser degree it may also affect the 

elastic modulus of the wall if the precompressive stress falls within 

the non-linear range of the stress-strain curve. Three different pre-

compressive stresses are compared - 200, 1400 and 600 lhf/in2 . The 

precompressions are high, allowing larger applied slab moments and thus 

larger strains and rotations before tensile cracking occurs - the effect 

of precompression is then more clearly seen. 

The theory concentrates on slab rotations before tensile cracking occurs 

giving values for the slope of the initial linear portion of the moment-

rotation curve. 

A final section discusses the lateral deflection of the walls and the 

slab. 

5.2 FLOOR SLAB ROTATION 

5.2.1 Results 

In each test, load was applied to the slab thereby producing a moment 

at the joint. Slab rotation at the joint was measured at regular-

intervals,;  the resulting moment-rotation relationships shown in 

figures 5.1 to 5.3 

5.2.2 Discussion 

The relationship between moment and slab rotation has a definite pattern. 

There is an initial approximately linear portion which begins to decrease 

in slope as tensile cracking begins in the wall and rapidly decreases 

as the ultimate moment is reached. Non-linear stress-strain curves would 

cause a decrease in slope too, although more gradual than that due to 

cracking. 
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For a given strength of brickwork, the initial slope has a fairly con-

stant value for the three precompressions considered. Thus low moments 

will produce similar rotations at all three precompressions - little 

effect on fidty. At higher moments curves will be non-linear, the 

point at which non-linearity occurs being mainly dependent on the 

precompression. Here, for a given moment, an increase in preconipressi011 

will cause a decrease in rotation - an increase in fid-ty. 

The slope of the linear portion of the curve decreases with decrease 

in brickwork strength. Taking values at a precompression of 200 lbf/in 2, 

the relative experimental values of rotation for a given moment over 

the linear portion of the curve are in the ratio of 1:1 .2:2.2 for the 

1 :
1:3, 1:1:6 and 1:2:9 mortar walls respectively. 

Another effect for the 1:1:6 and 1:2:9 mortar walls, although not 

clearly shon, is a reduction in slope with increase in precompression. 

This is due to their non-linear stress-strain curve - increasing stress 

causes a decrease in modulus although this is partly offset by the 

effect of the unloacLing modulus which is little affected by the precom-

pressive stress 2nd may even slowly increase with increasing stress 

levels (fig 3.9). 

( 
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5.3 SLAB ROTATION IN A TtL&IJ aTH iOTItTSIL CRACIS ANBA LINEAR STRESS-

IN CURVE 

5.3 .1 Theory and Results 

The initial part of the experimental moment-rotation relationship for 

the slab at the joint is linear. Tensile cracks in the rall's do not 

develop until the latter part of this initial stage. 

The angle of rotation at the ends of each wall at slab level are assumed 

to be the same - slab much stiffer than the wall. The angle of rotation 

at slab level is obtained using the equation shoin (equation A5.7., 

Apoendix 5) 

01 
.1'2h 	 (.i) 

where N1  & TI2  are wall end moments 

h = height of the wall 

The equation is then modified. One wall section is considered whose 

proper-des are the average of both sections. Thus moment from the slab 

is distributed equally to both walls. Assume the fixing siorients are 

zero (this assumption is considered later - section 5.1). 



Equation 5.1 becomes 

N 
- p 

S 	3, exp 

where M 
p = N p+v 	s 

= M /2.26 

N = V1. 
S 

Eexp = experimental compression modulus 

I =bt/12 

In terms of slab moment equation 5.2 becomes 

h 
(5.3) 

s 	exp 

Equation 5.3 gives values of 0/N for a solid section with an unloading 

modulus equal to the loading modulus (Ic 1). The results are shown 

in Table 5.1 

The equation is next adjusted to take into account a wall with a central 

gap and a value of k>1. Equation 5.3 becomes 

h 	 1 
TT - 8E i I s 	exp a 

e
,k a 

e
Ok=1 

where values for the latter term are obtained from figure 4.5 for given 
values of ae/t and k. Results are shown in Table 5.1 together with the 

experimental values. 

5.3.2 Discussion 

The theoretical values for rotation based on a solid section and a 

compressive tangent modulus overestimate the excerimental results while 

values based on a gap in the joint and an unloading modulus in addition 

to the loading modulus underestimate the results. This underestimation 

may be due to several factors such as variations in assired properties 

and local deformations in the mortar joints next to the slab. 

Slab rotation after tensile cracking occurs is not investigated although 

Appendix 5 gives an equation (A5.10)  for the rotation of a short, solid, 

linearly elastic wall with no tensile strength. A more thorough 

investigation -rill need to take into account walls with gaps in the joint, 

non-linear stress-strain curves, unloading curves different from the 

loading curve and a variable though small tensile strength. Test models 

will need lateral restraint at floor level and more accurately defined 

end conditions. 
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TABLE 5  .1 	- STAB ROTATION AT ITS JUNCTION 1 -11TH THE 1.-TALL 

1IortarIrecorn- Ee 	klae/t N 
Nix 	pression. j 1'1., 	: 	exp a,k 

lbf/i 2 1.2- keill 	S 

lbf a =0 a ,k 	exp 

xlO'rad/lbi' in/ft 

1 :*:3 200 1 .06 1 	0.30 1.38 	1 13 1 	46 33 0.77 

lOO 0.96 1 	0.30 1 .38 45 50 36 0.80 

600 0.98 1-4 	0.30 1 .46 38 49 34 0.90 

1:1:6 200 O. 1.6 :0.37:  1.6 88 1,06 

400 0.60 :16 	0.37 1.6 59 81 50 0.8 

600 o.8 i.8 	0.37 1.6 60 83 0.87 

1:2:9 200 0.140 1.8 	0.37 i,6 9 121 75 0.79 

1400 0.38 2.6 	0,37 1q69 109 127 7. 0.69 

600 0.20 3.6 	0.37 1.76 10 2142 137 1.30 

Notes : 1. For the 1 :1:6 and 1 :2:9 mortar walls, the compression 

modulus, based on 1 brick + 1 mortar joint, is about 6% 

less than Ee 	based on an 8 inch gauge length covering 

two mortar joints - thus theoretical values shown can be 

increased by 6%. 

The theoretical values of rotation are based cn walls with 

their far ends hinged. An end fixity of 20% full fixity 

will reduce the values by 6%. 

E e p is the average tangent modulus of the top and bottom 

walls at the given precompression (see Table 14.2 for 

individual values). 
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5-4  E--..TD FIXITY OF WALLS 

The fixity at the far end of the alls is difficult to estimate. If 

fully fixed, the fiming moment will be one half the applied moment at 

the slab end of the wall. 

Short walls with a resulting greater stiffness and smaller rotations 

will have less fixity for a given end condition. Yokel, Nathey and 

Dikkers 1) have found this to be so for eccentrically loaded concrete 

masonry walls with a flat ended condition. 

To obtain an estimate of the fixity, rotation was measured in some 

cases at the top wall end but, the few results are too erratic though 

they do show significant rotation. 

Another approach is to measure the bending strains at two different 

levels and then to compare their ratio with the same ratio assuming 

a fully fixed or hinged joint. The sum of the bending strains (both 

positive) was taken to be proportional to the moment. Here again the 

results vary especially for the bottom wall (Table .2). From the 

results the end of the top wall has a fixity of approximately 20 full 

fixity while the bottom wall up to twice that amount although one result 

gives hardly any fixity. There is also a tendency for the fixity to 

increase with increasing moment (increasing rotation) - this increase 

can be rked if there are large lateral deflections (such as the 1:2:9 

mortar wall at 200 lbf/±n 2  precompression - see figure S.). 

If a fixity of 20 full fixity is assumed, this would reduce the theo-

retical values of the rotation--moment ratio (,4i) for a hinged end 

condition by 6. 

TABLE 5.2 - FIXITY AT THE FAR RID OF TilE WALLS 

Slab Homent Percentage Full Fixity 

xlO 3 -. lb 	in/it Too Wall Bottom Wall 

1:2:9 	1:1:6 1:2:9 	I 	1:1:6 
200 	)400200 	

)400 L20° 
-T 400 	200 400 

10 h 	22 0 22 	j 30 	33 0 7 •  
20 15 	22 14 22 30 	48 0 7 
30 22 	22 h3 19 Li4 	56 0 7 
L,  0 - 	26 6)4 22 74 

 [ 	

6 7 11 

Note : 	Values are the percentage full fixity in a given mortar wall 

at a set precompression (lbf/in). 
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The reason for the discrenancy is orobably due to the initial precom-

pression which causes a much larger strain on the slab side of the model 
than the other, the effect being greater in the bottom wall (fig 4- 3). - 
On applying slab moment this difference in strain is further increased 

in the top wall while reduced in the bottom wall. The effective modulus 

for the top wall will be lower than predicted from average strains while 

the converse happens in the bottom wall. 

TopWail 	 Bottom Wall 

F ii 	
ecoressive 

modulus lower modulus higher 

	

Bending o-train 	 - 	. than predicted 	than predicted 
from average 	 _- 	from average 
strain 	 strain unloading 

modulus 

When cracking occurs at the joint, greatly increased lateral deflections 

occur towards the slab side. This is due to the upper wall resisting 

an increasod moment caused by eccentric application of the slab load 

(as opposed to moment). lateral deflection occurs until this extra 

moment is redistributed between the two walls - for example an increase 

in fixing moment for the bottom wall and a decrease in top wall fixity.. 

Not much adjustment occurs at slab level as the deflections there are 

still comparatively small compared to wall width - 0.08 inch (maximum 

observed) versus a wall thickness of 4.12 inches. 

The 1 :: mortar model at 200 lbf/in 2  precomoression deflects in the 

opposite direction to that expected at failure. This is probably due 

to tensile cracking occurring in the top wall while none occurs in the 

bottom wall (excluding the wail-slab joint)(see fig lt.i). The tensile 

cracking occurs first in the top wall due to the non-uniform precompres- 

sive strain (little compressive strain on the tensile face - figure 4- 1). 

The reduced top wall stiffness can cause iocreased rotation of the wall 

reducing the tensile crack at the joint, thus reducing the resisting 

moment. To counteract this effect a movement away from the slab side 

occurs. 



 

200 8 	 1::3 600 9 

 

600 10 Mortar - Precompression (lbtlin 2 ) - Test No, 

7P+ V 

Lateral Deflection  

X10- 4 in 

Deflection measured at 
levels indicuted 

I 	X Moment 

KEY 	 x10 3  lbf in ft 

II 
V Maximum observed deflectic 

--I-- - - --- -7-- 1 - along slab centre 

/ 	
I Corresponding moment 

L 

2
-

p—  
 

2CC 
I 	2 

Fig. 5.4 	LATERAL DEFLECTION DUE TO SLAB MOMENT 



Fig. 5.5 	 LATERAL DEFLECTION DUE TO SLAB MOMENT 

1:1:6 400 5 	 1:1:6 600 7 

FOR EXPLANATION SEE FIG. 5.4 73 

1:2:9 400 12 

•1 

20( 

1:2:9 600 4 	 1:1:6 200 6 1:2:9 200 11 

2 

44 
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5.6 coicusIoJrs 

The moment-rotation curves all have an initial appro:±aately linear 

portion. The initial rotation-moment ratio increases with decrease 

of brickwork strength - an average of 142 x 10-9   rad/lbf in/ft for a 

1 :*:3 mortar brickwork. 57 x 10 rad/lbf in/ft for a 1:1:6 mortar 
brickwork and 103 x 10-9 

  rad/lhf in/ft for a 1:2:9 mortar brickwork 

(figs 5.1 to 5.3 & Table 5.1). 

The theoretical values of slope based on a solid section and equal 

loading and unloading moduli overestimate the experimental results. 

Theoretical values taking into account a gap in the mortar joint 

and an unloading modulus larger than the loading modulus tend to 

underestimate the cxDerimenta]. results. The reasons for this could 

be variations in the assumed properties and local deformations near 

to the joint (Table 5.1). 

recompression has little effect on the slope of the initial linear 

portion of the moments--rotation curve. Thus no increase in fixity 

with increasing preconpression. There is the possibility of a dc-

crease in fixity with increasing precompression when it causes a 

reduction in the tangent compression modulus. 

h.. When tensile cracking occurs the slope of the moment-rotation curve 

rapidly decreases becoming zero at the equilibrium moment if wall or 

slab failure does not occur. In this range increasing precompression 

does reduce rotation (figs 5.1 to .3). 

5. The ends of the wall have a variable anount of fixity tending to 

increase with increasing rotation. Assuming 20% full fixity for 

both walls reduces the predicted rotation by 6% (Table 5.2). 

6, Lateral deflection curves intersect at a coraon point thus following 

a pattern similar to that shon br the strain planes (figs 5.4 & 5.5 
and i.1 to I.3). As opposed to the wall-slab joints in practice, 

lateral deflection at slab level occurs, this being small in the 

tests. The deflection is initially due to differences in stiffness 

between the top and bottom walls, and later, with tensile cracking, 

due to the extra moment resisted by the wall taking the slab load 

in addition to the pre compressive load. 
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CHAPTER 6 - FAILURE AT THE 1[ALL-FLCCR STAB JUHCTION 

6.1 mmoDuc TI ON 

This chapter investigates the failures in the wall-floor slab joint 

of the test models. 

The first section deals with the behaviour of the floor slab-wall joint. 

The top will is under a constant Drecompression while the applied slab 

moment is increased. Neither the wall nor the slab fails but as the slab 

moment increases tensile cracks appear in the joint between the wails 

and the slab (no tensile strength) until finally the slab levers the 

walls apart at a constant moment - equilibrium failure. 

Ecjuilibriin failure in three test models is then discussed and compared 

with a simple theoretical analysis. 

Wall failure occurs in test models under precompressions of )OO lhf/in 2  

and 600 lbf/in2 - snailing of the bricks near the joint. A theory is 

proposed which takes into account the gap in the mortar joint - this 

gives better results than the assumption of a solid section. 

Three different types of floor slab failure were observed - two shear 

and one tensile (first two may also be considered as tensile). Ttro of 

the failures occurred during preliminary tests after which the slab was 

designed to be stronger than the wall at failure loads. It enabled the 

slab to be used for the remaining tests. 

Photographs show the wall-floor slab joint in an inverted position while 

to avoid confusion in this chapter, the text treats the joints in their 

correct position. 

The notation for the applied wall moments is also changed - N becomes 

N and 11 	becom Nes 
1 	•p+v 	2 



6.2 FORCES ACTING AT THE J0flT 

6.2.1 No Tension Cracks 

The forces acting at the joint are shown in the following sketch 

-L 

dl 	H 

hI 

H 
1p+ 

'Ii 

 

A 
IP 

H 	i 

Top 
Wall 

N2  
-14 

P+v 
H--, 

 

jH 

N1  

Bottom 
Wall 

I - H 
P+v 

Moment applied by the slab = 1.15  

Moment applied to the walls above and below the slab : 

	

N1  =Ith-M 	 (6.1) 

	

N 	 (6.2) 

where. H = (K;  + N2  + N )/ (2h + d) 

If the far ends of the wall are hinged i& M = 0 and 

112  = 0 .N/ (i + d/2h) 

= 0.gN3 	 (6.3) 

where 1/g = 1 + d/2h 

For the test i7iiodels g = 0.88 (hinges assumed at far ends of the wall). 

For the full scale test building (Chapter 7) g 0.96 (hinges at 

0.5 or 0.7 of wall height). 
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X  = Fe1 
 ;e 	
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Id 
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6.2 .2 Nornent Distribution in the Test Ibdeis 'hen Tensile Cracking Occurs 

1. Tension Cracks at the Joint 

When tensile cracking occurs in the bottom joint, the slab reaction is 

off -centre transferring a greater proportion of the moment onto the 

bottom wall. 

Nor-lent applied to top wall = Iff 

Noraent applied to bottom wall = 112 M  + Vz/2 	(6.I) 

where z = depth of the tensile crack 

3(e - t/6) 	 --- (6.) 

(for a solid, rectangular wall - see figure A4.2) 

where e2  .112/(P + V) 

where  1.11 = g1. - 

Substituting the latter three exoressions into equation 6.4 

P+v 
112 = 2P + 0. (gM5  - 0.25V-'L, ) (6.6) 

For the test models this equation becomes (N 
S 

= vi) 
t Vt 

= 17.3V(P + v) 	 --.- (6.7) 

The relationship is presented graphically in figure 6.1 in the Lonu 

versus 11/Ft 

The rnad.rnum value of V occurs when e 2  = t/2 giving 112 = (P ± V)t/2 

Equation 6,7 then gives V JP = O. 	(see part I of this section). 
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2 Tension Cracks in the Joint and the Walls 

The previous analysis considered a tension crack at the joint. The 

effect of taking the wall behaviour into account is now investigated. 

Assumptions 

The far ends of the wall are hinged. 

The angle of rotation of the walls at the 

junction is equal throughout the cracking 

stage. 

The effect of aal load on lateral 

deflections is negligible ". 

b. Solid, rectangular walls. 

V 

$1 

J) 	) 1g, 
S 

I 

If the angles of rotation of the walls are equal at the junction with 

the floor slab, then 	2 or using equation A.10 

N1 /c1  = 	where c is a coefficient taking into account 

the reduced stiffness of the wall due to 

tensile cracking (fig A.1). 

Letting. 	111 + 112 = gN5 	 (6.8) 

e1 /t = ]11 /ft 
	

e2/t = N2/(P + V)t 

then 	gN = h2 (1 + c1 /c2 ) and 	= - e1 /t 

(c1 /c2 )M2  

Vt = 	
l/c2 	

-- (6.9) 
 -----7-)  e1  t 

iLiminating 1 ,112  between equations 6.8 and 6.9 gives 

gI'I/Vt 

5/ 	e1  /t - 	 (6.10) 1 g  
+ 1 

C2  - el  /t  

"For the test models at 600 lbf/1n 2  precoLmresion, the load is much 

less than the buckling load. In terms of h2/EI the range is 0.2I to 

1.2 1bf 1  for the 1:2:9 to 1:-:3 mortar walls compared to it 2  for 

buckling. 
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Letting MS  Vi equation 0". 10 becomes 

e2 
- 	23 

t 	2.35 +e 1/t 	 --- (6.11) 

C2 	e1/t 	)+i 

For a given value of e 1  /t the corresponding value of e 2  can be 
found by trial and error usin g  figure A.1 relating e/t to c. The 

results are presented graphically in figure 6.1 

3. Atmrod.mation to the Moment Distribution in the Cracked Stage 

The relationship between 1-12/g and N/Pb in figure 6.1 is replaced 

by a linear one. One point is given by the moment needed to start tension 

in the top wall and the other by the limiting equilibrium moment. In 

this way lines can be drawn for walls which crack at eccentricities other 

than t/6 

1.44 

- - 0.606 
0.60 

0.56 

142 
gM5  0.56 

0.54 

0.52 

0.50 

Considering joint only 
Taking walls into account 
Linear approximation 
Tension eli > 0.167 

Linear approximation 

Tension elt > 0.29 

9M5  = M1 + 

0.4 	 0.6 	 0.8 	 1.0 	 1.2 	 1.6 

M 5  / Pt 

Fig. 6.1 	DISTRIBUTION OF SLAB MOMENT TO WALLS AFTER 
TENSILE CRACKING 
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14. Nadmum Slab Moment - Equilibrium Failure 

P,  

	

T [_TH1 	 H1 — 

h 

j] JP! 
d 1  

i 	•iI 	 - p+v 2 	 H2  

h 

-- H2  

For equilibrium the horizontal forces must be the same at slab level. 

.LIIUS 

	

II 	H 	or1 - 	= Vt/2 

The slab in the test models cannot resist the difference in horizontal 

reactions. The horizontal forces are equalized by an increase in 

relative fldty between the top and bottom walls. The wall end fixing 

moments are assiried to increase and decrease in equal increments, thus 

	

- 	= Vt/14 	at failure. 

The horizontal forces thus become 

H1  = H2  = (t/2h)(P + O.v) 

The mad.mun possible value of v is found by taldng moments about B 

ft+Hd=V (1-t/2) 

	

1 	max 

substituting for H1  gives 

____ 	
t1 + d/2h) 	= 	t/g 	

--- (6.12) 

	

P 	1 - (tf2)1 + d/2h 	1 - t7j 



For the test models the value for madmu V is V t/P = 0. 

The niadmuju slab moment = N 	= V 1=09i.P s 	max max 

The madmijm moments applied to the wall are  

1 1  = Pt/2 	il2 	( + v)t/2 

and 	0N1  + 112 )/N = 0.88 = g 
Max 

In this case the ratio of the sum of the applied wafl moments to the 

slab moment has not changed. 

The maximum moment in the slab itself is not N but 
S 

V(1 - t/2) = N - Vt/2 	 --- (6.13) 

74 



7115) 

6,2.3 Hornent Distribution at the Joint when the Slab is Supported on 

iiore than One Side 

1. 1 '  inwuoi Slab Moment 

One of the joints of a floor slab supported on two sides is considered. 

There are two iirnortant differences with the test models 

The moment is statically indeterrii.nate - it is not proportional 

to the slab load except in a linearly elastic system with no 

tensile cracking. 

The floor slab provides restraint against lateral movement at 

slab level. 

The slab moment considered at the joint is the slab restraining moment 

and not necessarily a moment about the centre line of the walls (the 

latter will occur before tensile cracking at the joint). 

Top 

	

Wall 	h 	f Hi 1 

h 	
P+V 

	

H1 	
• 	 I  

P 	
b- 

I Bottom I H 	Wall - - --' 
2 

From the sketch, taking moments about B gives 

N = _Pt +Hd 
S 	 1 

Assuming pinned ends, the difference in horizontal forces is now 

resisted by the slab. 

H1 = Pt/2h 

N3 = Pb(i + d/2h) = Pt/g 
	

(6.i) 

The span of the slab is reduced by t/2 - .rh h is usually insignificant. 

The moments applied to the walls are 

H1  = ft/2 	N2  = (P + v)-b/2 
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The top moment is a niadmurn but the bottom moment can still increase 

with increasing slab load. 

2. Moment Distribution Throughout the Cracking Range 

Before cracking occurs the top wall moment is half the slab moment 

(slightly reduced by the factor g). When cracking occurs throughout 

the joint, the top wall moment is again half the slab moment. This 

is assumed to happen throughout the cracking range. Therefore 

	

= gN5/2 	 (6.15) 

112 = gN5/2 + Vz/2 	 (6.16) 

The bottom wall resists an extra moment from an eccentrically applied 

slab load. 

For a solid wall the crack depth is given by equation 6. 

z = 3(e2 - t/6) 

For a wall in the fill scale test structure (chapter 7), cracking is 

assumed to occur when e/t = 0.22. Assuming a linear relation for z , 

= 3.57e2  - 0.786t 	 --- (6.17) 

Substituting ecuation 6.5 into equation 6.16 gives 

	

2P-V ( 	- 0. vt) 	 -- - (6.18) 

Compare this with equation 6.6 

Substituting equation 6.17 into equation 6.16 gives 

P+v 
N2 = 2P - 1.75Vs - 0.786Vt) 	---(6.19) 
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6.3 	umBnrr FAILInE 

6.3 .1 ExDerjmental Results 

uiljbrjthm failure occurred in the test models when the precompre3sion 
was 200 lbf/1n2 . The results are given in Table 6.1, and photographs 

showing equ.ilibriura failure and local crushing of the mortar joint are 

shown in figires 6.2 and 6.3 

6.3.2 Other icnerimental Results 

The National Institute for Materials Testing in Sweden (2I, 31 & 32) 
tested two models similar to the test models. These also seem to have 

failed without failure of the slab or walls (except for some crushing 

at the mortar joint), but failure was due to instability as opposed 

to equilibrium. 

The tests have a different loading pattern - the precompression and slab 

load increase from zero to failure at the same rate and in the same 

proportion. Instead of having a constant precompression with increasing 

eccentricity, there is a constant precompressive eccentricity with an 

increasing precompressive load enabling the relative rotation between 

the slab and the wall to be investigated. 

The walls had hinged ends, the hinges placed off centre to simulate a 

full length wall with points of inflection half way up the wall. The 

point of zero moment is thus effectively 53 inches from the centre line 
of the slab (Appendix 1). 

108 Ibf/ in2 	 Pmax /A 	 - 	197 Ibf/ in  

1. 

 

in 

4.9 In 

H 

6.3 

  

 

VIP r a constant 	0.5 

0.55 in 

P+v 

3 in 

58 in 

-t 

20 000 Ibf in! ft - Maximum observed moment (VII -- 36 500 Ibf in! ft 
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The moment from the slab was enough to cause tensile stresses at the 

joint - eccentricity in the top wall load at slab level was 0.32t 

As the loads increased the two models failed in opposite directions 

from excessive lateral deflection. This produced two different ultimate 

moments - one about twice as large as the other. 

Havi.n.op pinned ends off-centre will give a more realistic behaviour of 

slab-wall interaction, but the slab should also be restrained from 

moving laterally. Ilithout this restraint, the model is unstable at 

higher loads and will give neither consistent nor relevant results. If 

the slab is restrained, failure would occur at much higher moments 

caused by failure of the slab or wall. Equilibrium failure will not 

occur as the wall resisting moment is larger than the applied s]ab moment 

a constant ratio throughout the test. 

6.3.3 Discussion 

The theoretical analysis of joint behaviour assumed small forces, the 

effects due to lateral deflection, local crushing and non-linear stress-

strain being neglected. 

Eien with low loads,an eccentricity ratio of c/b 0. 5 should theo-
retically cause failure in walls with no tensile strength. )hy this 

does not occur in the tests is due to several factors. 

The eccentricity in many cases is a maximum at the joint only. 

The brickwork can usually resist sonic tensile stress - one series of 

tests gave average tensile stresses ranging from 8 to 13 lbf/1n2  

(3)4, see footnote section )4..1). The British Code of Practice for 

Bric1cork (8) allows a value of 10 lbf/in 2 . A solid four inch wall 

alloiied the latter stress would resist a moment of 320 lbf in/ft or a 

load of 140  lbf/ft at an eccentricity of 0.5t  (equivalent to a moment 

of )180 lbf in/ft together with an axial load of 140 lbf/ft). 

In many cases the maximum eccentricity will tend to a value slightly 

lower than 0.t. Local deformation and crushing may occur especially 

in the mortar joint adjacent to the slab (fig 6.3). In the test models 

no crushing of the brick occurred up to avera.re precompressive stresses 

of 200 lbf/in2  - a stress not often encountered in practice . In the 

*The ma.dnum penidssible axial stress for 8 ft high walls supported top 

and bottom by concrete floors with 1 ::3 mortar and 000 lbf/in2  bricks 

is 1 ,30 lbf/in2  (a), 
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1:2:9 mortar test models spalling of the mortar joint to a depth of inch 

was observed, representing a limiting eccentricity of O.iLt. This reduces 

the ratio V /p to O.)46 . Local deformation reduces the limiting 
max' 

eccentricity even more. The limiting eccentricities for the test models 

failing in equilibrium ranged from e/t = 0.42 for the 1:2:9 mortar test 

models to cit = O.I for the 1 :1:6 and 1 ::3 modols (average of top and 

bottom walls). 

Watstein and Johnson (39) obtained a limiting eccentricity of O.ht for 

beam end rotations up to Ij. x 1 O radians, for a simply supported steel 

joist, one end supported on a brick by a bed of grpsum plaster enclosed 

by polyethylene sheets (thus no bond). A similar test with bonded plaster 

(no polyethylene) gave a limiting eccentricity of 0.2t. This result 

is surprising - a similar eccentricity to the previous test would be 

eected or if the bond had not broken a larger eccentricity. A reason 

for this could be restraint to lateral movement of the strut (see sketch). 

Load 

brick 

steel capping plate 

strain gauges 

hollow steel strut 

Nisalignment between the top and bottom walls can increase or decrease 

the ultimate equilibrium moment. This effect is exoected to be -.,iall 

in the test models - misalignment not greater than approx'i.mately 1/8 inch. 

The analysis of slender walls under high loads of varying eccentricity 

is complex. lateral deflections become significant, the point of max-

imun eccentricity occurring in the region of madaunn lateral deflection. 

The higher stresses usually' mean a reduction in the tangent modulus 

causing increased deflections. 

Sahlin (30) used an analysis for walls without tensile strength taldng 

the lateral deflections into account and assuming a linear stress-strain 

relation. The analysis shows greatly increased rotations and stresses 

at loads aproach±ng the buckling load. At high loads the wall end could 
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rotate more than the slab and would then be restrained by the slab 

reducing the effective buckling length of the wall. Methods for 

calculating the buckling curves for walls with no tensile strength 

having a mathematical non-linear stress-strain equation are reviewed 

by a French publication (12). More experimental tests on full scale, 

storey height walls are needed before these factors can be considered 

in detail. 

TABLE 6.1 - SlAB LOADS AND 1 ,101-1TS AT FAILURE 

Brickwork Test Precompression Maximum V Maximum 
Mortar Model Slab Load Slab Moment 

by volume No. lbf/in2  tons tons lb -L" in/ft 

1 :*:3 8 200 10 t.7 0.b7 51 0004  

9 1400 20 8.5 0.42 93 000 
10 600 30 12.5 0.142 137 000 

1:1:6 6 200 10 14.9 0.1481 14 000 

1400 1 	20 7.8 0.392 85 000 

7 600 30 9.0 0.30 99 000 

1:2:9 11 200 10 14.0 0.142 44 000 
12 1400 20 7.5 0.38 • 82 000 

14 600 30 6.9 0.23 76 000 

Notes : 	1. V= )4.9t 	when P + V 	15  t ; Vr/P = 0.48 
 V 7.8t 	w henP+V=28t;V /P=0,39 

max  max 
 V = 14 t 	when P + V = 13.5 t ; v/P = 0.142 . 	The 

jack load, V, should have been 3.5 t but the wiring 
to the load cells incorrect. 	stimated V =  14.1 	t max 
- difficult to hold load steady ; Va/P = 0.L3 

14. Moments to the nearest thousand - further accuracy 

not justified. 	Moments based on a moment arm of 

11 	inches. 	- 

. 	The theoretical 	VIP = 0.4 

13 
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'111 

Lr:o. 

1 :1:6 Mortar Walls - Precoriprossion 200 lbf/1n 2  

I 
T 

Lgiire 6.3 - Spalling of the I:ortar Joint Adjacent to the Slab 

Walls 1:2:9 ortar balls - Precompression 200 lbf/iri 2  



6.14 :LLL 	I: 

6 .14.1 	er!ntl Results 

The ultimate slab loads and rzoraents are shon in Table 6.1 . Failure 

of the wall is shon in figures 6.14 to 6.8 

6.142 Failure of the walls 

At higher preconrcssions, wall failure nay, occur before the eru.ilihriu'n 

condition is reached. 

Before failure, the joint tends towards an ecuilihriui failure - hori-

zontal cracks develop along the mortar joints, usually in the joint 

between the wall and the slab. In the test models the lover all 

resists in addition to the precompression, slab load and a moment up 

to 505  more than the upper wall (at equilibrium failure). ',.'hen failure 

is inriinent, spalling occurs from the surface of the mortar joints in the 

lower wall near the slab. Gradual failure then follows with spafling 

of the brickwork usually confined to the two or three courses adjacent 

to the slab although in the case of the 1:2:9 mortar wall at 63 lbf/in 2  

precompression failure c:t:nded over most courses (fig 6.). 

Sahlin (30, 31 & 32) han shou failure occurs a few courses away from 

the slab because of its restraining influence. In his case the slabs 

were cast in-situ resulting in an excellent bond with the top course of 

bric1m-ork which may be considered as an extension of the slab. The trend 

is not shown in the test models, only two cases (figs 6.5 & 6.6) failing 

a few courses away, but this may be due to variations in brichwork 

properties and lateral deflections if these are large. Sahlin (3 0) also 

tested some precast concrete connections in which the floor bore fully 

into the wall and there was no insitu connection - the walls failed in 

areas iimediately adjacent to the slab. 

1ith increasing orecoripression failure will occur without tensile cracks 

developing. The limiting precomoression is the ultimate anial strength 

of brickworl: when no slab mo:ient can be resisted. These asrects are 

discussed in the next section. 
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6.4.3 Strength of walls Under wial Load and Moment 

The precompressive force, slab load and slab moment may be considered 

to be equivalent to an adal load and a moment. A wall will resist 

no moment when there is no load (no tensile strength) nor when the load 

equals the ultimate compressive load for the wall. In between these 

values of load the moment capacity varies (fig 6.9), becomin a madimzn 
as half the ult.imate load is reached. 

An interaction curve based on a solid cross-section and a linear stress-

strain curve considerably underestimates the experimental results. 

Using an experimentally obtained stress-strain curve from a concentric 

loading test does not explain the difference. 

Axial Load - Moment Interaction Diagram 

An explanation for the difference in the test models may lie in the fact 

there is a central gap in the mortar joint. The actual ultimate stress 

at failure is then greater than that based on the full wall cross-section. 

The area adjacent to the mortar joint is considered and therefore values 

of actual gap width are used. 

Several moment-axial load interaction diagrams are derived for the 1 ::3 

mortar walls (fig 6.9 & Appendix 6). The experimental stress-strain 

curve is used to derive the interaction diagram for gap width to wall 

width ratios (a/b) of 0.64, 0.4 and 0. The first gap is based on the 

actual width of the frog while the second is based on strain readings 

(section 	T.zo further interaction curves assume a linear stress- 

strain curve and gap width ratios of 0.64 and 0. Curves based on the 

experimental stress-strain relation and a gap width ratio of 0.64 are 
drawn for the 1 :1 :6 and 1:2:9 mortar walls (fig 6.9). The curves are 

similar in shape to the one plotted for the 1 :?:3 mortar wall. If the 

interaction diagram were plotted in a dimensionless form the curves would 

coincide (load/max load vs. moment/max moment). 

Load Reduction Factors for Eccentricity 

The moment-axial load interaction diagram is also presented in the form 

of failure load versus eccentricity of the failure load (fig 6.10). 

The curves are compared with the proposed load reduction factors 

(slenderness ratio of wall = 6) given in the Draft B.S. Code of Practice 

for Brickwork (9). The resulting curve is similar except at low eccen-

tricities to a curve for a solid wall and an experimental stress-strain 



relation. The code factors greatly underestimate, at higher eccentri-

cities, the failure load for a wall with a central gap. 

.3 Noment - Axial Load Interaction Curve for the Test T'odels 

A curve is derived relating moment in terms of slab load to precompression 

for the test models (fig 6.11 & Appendix 6). The curve is the same for 

the three types of bricicork - dependent on the shape of the axial load-

moment interaction curve. At low values of precoression there is an 

initial slowly decreasing curve representing the increase in moment in 

the moment-dal load diagram. The suddenly decreasing portion repre-

sents the drop in moment with increasing axial load. Ilost of the 

experimental results fall ç-iitiiin the range covered by the curves for 

gap width ratios of O.45 to O.64 	The results follow the general trend 

of the curve, scatter being caused by the small number of tests and the 

variability in ultimate stress of the axially loaded specimens. 

_JjI. Discussion  

A central gap in the mortar joint increases the predicted moments sub-

stantially. Compared to the maLmum predicted for a solid wall with a 

linear stress-s -brain curve, the non-linear experimental curve with gap 

ratios of a/t = 0,6, O.h and 0 gives increases of 110, 80 and 20 

respectively. 

Yokel, Nathey and Dikkers (42) have derived the interaction diagram 

assuming a solid, rectangular cross-section and a linear stress-strain 

relationship, the wall failing when a limiting stress is reached eoual 

to the ultimate stress under axial load. The theoretical curve consider-

ably underestimates their experimental results on short prisms. Assuming 

an experimental stress-strain curve from a concentrically loaded prism 

does not make up the difference nor did they consider it likely to be 

due to end fixity conditions (eccentric loading at the top of the prism 

while the bottom has a flat support). Their explanation assumes that 

the flexural compressive strength of masonry increases with increasing 

strain gradients - the stress-strain curve for an axially loaded specimen 

is different from that in the compressive zone of a flexural specimen. 

But Clark, Geratle and Tulin (13) who investigated the effects of strain 

gradient in concrete and mortar specimens concluded tthere is practically 

no difference in the stress-strain curves up to the point of maximum 

stress as a result of subjecting either concrete or mortar to a strain 



gradient 1• The gradient did increase the strain at failure. A similar 

increase may occur in brickwork (Table A6.1), but the ecperimental 

results obtained depend to a large extent on how close to failure the 

strain was recorded. An increase in ultimate strain beyond that already 

assumed is not likely to increase the predicted moments much more than 

the 20 mentioned earlier. 

Clark, et al. found that the effect of strain rate is more important. 

With faster strain rates, the madrnum stress increases, the strain 

corresDonding to this stress decreases, and the ultimate strain also 

decreases. A ratio of strain rates of 2 (0.001 in/in/hr - 0.02 in/in/hr) 

showed variations between 2 and 10% for the above ouantities. Again 

for the test models this is not likely to explain the large difference 

in eerimental moments (assumfLng a solid wall). 

An investigation into eccentrically loaded short walls similar to that 

conducted by Yokel, el al. is needed to clarify some of their results as 

well as those in this thesis and the effects of strain gradient, strain 

rate and gaps in the mortar joint. The behaviour of the mortar joints 

will need careful investigation since failure is usually initiated at the 

joints. 

The load reduction factors in the proposed revision of the brickwork 

code (9) are based on solid walls with a linear stress-strain curve 

together with a 2% increase in permissible stresses. This in effect 

takes into account the non-linear behaviour of the stress-strain curve 

but nevertheless at low eccentricities the factors are too high. Factors 

based on an extcrimental curve throughout would be more realistic. 
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6.5 FLOOR SLAB FAILURE 

6..1 Introduction 

Slab specifications and design calculations are given in Appendix 6. 

The failures observed were shear failures in the portion of the slab 

enclosed by the walls and a tensile failure in the slab at the face of 

the wall. The following diagram of the principal stress trajectories 

will be a help in visualizing the discussed failures*. 

6.5.2 Shear Failure Round the End Reinforcement 

Test No. 1 - 1:2:9 mortar walls at 200 lbf/in precompression. 

The concrete sheared round the end reinforcemext as the slab began to 

lever the two wall sections apart (figs 6.12 & 6.13). The precoilipressive 

load was 10 tons producing an average shear stress of 200 lbf/iri 2  over 

the concrete cross-section. 

The theoretical failure stress of the concrete in shear without taking 

the reinforcement into account is 1)40 lbf/in 2  (equation 116.1 2 and 

section A6.)4). The reinforcement at the end might have been of some 

help in increasing the shear strength beyond this value. 

To stop this occurring again the slab was extended beyond the wall in 

the remaining tests. 

from a publication by Franz and Niedenhoff (14).  
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6,3 Shear Failure Across the Reinforcement 

Test No. 10 - 1 :*:3 mortar walls at 600 lbf/in 2  precompression. 

An inclined crack developed in the portion of the slab enclosed by the 
walls (fig 6.6). Horizontal cracks developed in the joints between the 

walls and the slab, the slab therefore resisting a pre compressive load 

of 30 tons causing an average shearing stress of 410 lbf/in 2 . 

The calculated shear stress causing diagonal cracking is 31 lbf/in 

(section A6.3.3). Stresses beyond this will not cause failure, the 

ultimate load going up to four times the cracking load. 

Johnson (19) mentions that at samall values of span/depth, the principal 

tensile stress at the neutral aids may be high enough for the diagonal 

crack to form before yielding of the tension reinforcement. The pro- ,  

portion of longitudinal reinforcement at the critical cross-section 

then has little influence on the cracking load, which is governed only 

by the dimensions of the cross-section and the strength of concrete. 

If the slab had not been carried through the wall, the failure would 

have occurred round the end reinforcement. 

Tensile Failure 

Test No. 3 •- 1:2:9 mortar walls at 400 lbf/1n 2  precompression. 

Failure was caused by tensile cracking, the tension steel yielding and 

the concrete hinging about the compression steel (fig 6.14). The 
recorded failure moment was 52 000 lbf in/ft. 

The calculated value is 45 000 lbf in/ft (section A6.). Ln a slab 
without compression steel the calculated ultimate moment would be 

approdmately 33 000 lbf in/ft 
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6.6 CCNCLTISIOITS 

1. After tensile cracking in a wall-floor slab connection, the bottom 

wall resists a greater proportion of the total applied moment 

because the slab reaction is displaced from the centre line of the 
wall. 

2. Nath the wall stresses allowed by the British Code of Practice on 

Brickwork (8), failure at the wall-floor slab junction is usually 

confined to 

equilibrium failure - the end of the floor levers the walls 

apart at constant moment causing horizontal cracks and local 

crushing of the joint with the weaker mortars. 

tensile failure of the floor slab at the inner face of the wall. 

shear failure round the end reinforcement or a diagonal crack 

across the reinforcement. 

3. An explanation is given for the failure of short single leaf walls 

with no tensile strength under axial load and moment. If the wall 

has central gaps in the mortar joint, the predicted ultimate moment 

based on axial loading tests is much increased. The maximum moment 

such a wall can resist occurs when the precompression is half the 

ultimate axial stress. 

)i. The load reduction factors for eccentricity in the proposed revision 

of the British Code of Practice on Structural Brickwork (9) greatly 

underestimates the strength of the walls in the test models. As the 

factors are based on a solid wall this may partly explain the 

difference. Even so, the factors are too high at low eccentricities 

and should be reduced to a level obtained for a solid wall and an 

experimental stress-strain curve. 
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CHAPTER 7 - FLOOR SLAB -  'TALL INT9ACTION IN A FULL SCALE BUILDING 

7.1 INTRODUCTION 

A mu scale )  five storey brickwork building (figs 7.1 & 7.2) was built in 
a disused quarry to investigate its properties under lateral loading (33). 

An investigation into the behaviour of the floor slabs at their junction 

with an outside wall is presented in this chapter. To questions led to 

this investigation. Is there increasing deflection and end rotation of 

the floor slabs in the higher storey levels ? What moment is transmitted 

by the floor slab to the outside wall ? 

A floor section supported on three of its sides (marked A in figure 7.2) 

was uniformly loaded. This was repeated for each floor level in turn. 

The free edge was instrwnented to give vertical slab deflection and 

rotation at its junction with the outside wall. Strain was measured in 

the walls surrounding the loaded slab. 

A simplified theoretical analysis is presented for the behaviour of the 

junction of the wall and the floor slab near to the free edge of the floor. 

This investigation was a preliminary one. Further tests are in progress 

on a full-scale)  five storey cavity wall structure built in the same quarry. 

In this structure the walls and slabs are supported on two oDposi -be sides 

only, ria!-dng a theoretical analysis relatively easier; 

7.2 MATERIALS 

7.2.1 Brick 

Perforated, wire cut bricks were used 	2 /8 inch Coatham Stob Corm-non 

Bricks. The average coiiipressive strength of 10 bricks is 5020 lbf/in 2 . 
(Tested in accordance with CP 3921 (io)). 

1 in 0 
1 1/8 x 1 1/8 in 

0 	 2/8in 

81  in 



7.2.2 Mortar 	 - 

The mortar was a 1 :*:3 cement:lirne:sand mix by volume. For proPortioning 
of the lime and sand, batching  boxes were used, their volumes in pro-

portion to that of a bag of cement. 

Cement - rapid-hardening Portland cement 

Lime - hydrated white lime 

Sand - a common building sand 

The average compressive strength of L inch mortar cubes at 28 days was 

(tested in accordance with the BCRA Model Specification (s)) 
2000 lbf/in2 - laboratory cured 

1730 lbf/in - site cured in air 

7.2.3 Concrete 

A 1 :2:4 cement:fine aggregate: coarse aggregate mix by volume was used. 
The bottom two inches of the floor slab were precast while the top three 

inches were in-situ ready mixed concrete. For the in-situ concrete 

Cement - Ordinary Portland cement 

Coarse Aggregate - 3/4 in and 3/8 in inadmum size 

The average compressive strength of b inch laboratory cured concrete 

cubes at 28 days was 31 65  lbf/in2 . 

7.2.4 Bricla-Tork 

Prisms, six bricks high, were tested between, plywood sheets to obtain 

their co1nressive strength and their stress-strain relationship. The 

average co:apressive strength of the brickwork at 28 days was 

2450 ibi/in (site cured in air). 

6 	.2 The average comoressive modulus was 1 .2 xlO lbf/in 	- range from 

0.9 to 1.7 x106  lbf/in2  (this excludes the Sth storey results where 

most prisms were damaged). 

7.2.5 Floor Slabs 

The floor slabs are composed of 2 inch precast I CI-.,Mia -' ,Tide Slabs 1  with 

a 3 inch in-situ concrete topping (fig 7.3). The result is similar to 

an in-situ slab while there is also a saving of shutt.erring and time. 

The 2 inch precast sections do not bear onto the walls, therefore a good 

bond is obtained with the in-situ concrete. Mesh reinforcement ( in 



square twisted bars at 8 in c/c) was provided in the bottom of the precast 

slab while similar reinforcement was provided in the top of the slab above 

the supports. The slab was designed to take a live load of 40 lbf/ft 2 . 

The modulus of elasticity to be used for the floor slabs presented some 

problems. 	ly two concrete cylinders were tested for their compressive 

modulus and these gave erratic results. The value used to obtain the 

theoretical slab deflections was taken to be 3 x-1 06 lbf/in2 . This is 

based on an enipirical formula suggested by t ie American Concrete 

Institute (1). 

E = 33 J? 
where f 1  = the concrete cylinder strength 

= 0.8* x 3165  lbf/in2  

the concrete density 

= 10 lbf/ft (value obtained from site cubes). 

Poisson's ratio taken as 0.1 

As a result of this uncertainty an extra floor slab was cast for the 

cavity wall structure mentioned in the introduction. An experimental 

value of the elastic modulus will be obtained from it and compared to 

the value obtained from cylinder and cube results, 

'from reference 2, page 397 or reference 1 9, page 29 
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Figure 7.1 - View of the ve Storer Building 
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7.3 PRECAUTIONS AND TECFIQUE IN OUTDOOR TESTING 

Testing a full scale structure in the open presents difficulties not 

encountered in the laboratory. To obtain reasonable results several 

points must be considered. 

Plan observations so values can be confirmed. This is done for slab 

rotation which is measured by dial gauges and a clinometer. Strains 

in the wall and slab deflection give indirect confirmation. 

With limited experienced personnel, there must be economy in observations 

to ensure reliable results. Recording of results must also be simplified. 

Printed forms were provided for gauge and clinometer readings while strain 

gauge readings were recorded on a portable tape recorder. Consistent 

numbering of gauge points is important - later analysis of results is 

then much easier. The same numbering is used on each floor, strain gauge 

points on opposite sides of a wall having the same initial number. 

All gauge points were measured after the floor was unloaded. The results 

could then be compared to the initial reading as a check on accuracy. 

Again, to improve accuracy it is best to repeat the tests - this was 

done in a few cases. 

Atmospheric effects are important. If possible, tests should be conducted 

on dry, overcast, calm days. This ensures a steady temperature and little 

mind. Wind affects, the dial gauge supporting frames while sun causes 
J- 

	variations, thermal expansion of the walls (= 6 x 10 /°c) 
masking some of the small strains due to slab load and also affecting 

the dial gauge supporting frames. 

Some good reviews on experimental technique are given by Rocha (29)  and 

a RILEi symposium on the Observation of Structures (28). 

The floor slabs were loaded with bricks (fig 7.4) - the sane bricks as 

those used for the walls. These were. available in quantity and easy to 

handle. The floors were divided into sixteen rectan gles by chalk lines. 

Into each of these rectangles was placed 19 + 1 9 bricks equivalent to 
loadings of 20 and LO lbf/ft2 . For most tests ten bricks were weighed 

n as a check on slab load. Differeces in weight were small and mainly 

caused by water absorption. Bricks were kept under cover when not in 

use. Neman (26) gives details on slab loading tests. 
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7.tt STAB LOADmG T1i;5T5 

7.4.1 Ecoeriental ileasurements 

The position of the gauges is best illustrated by the following diagram 
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Figure 7.4 - The 5th floor Loaded to 10 lbf/ft 2  

7.11. 2 	cperirncnta1 Procedure 

Initial gauge readings were recorded. The floor slab was then loaded 

to 20 lbf/ft 2 . This took about 20 riimthes as the bricks were brought 

up in a wheelbarrow by a diesel oowered hoist. The dial gauge and 

clino;eter readings were recorded. Next the slab load was increased 

to 40 lbf/ft and the gauges read in the following order 	dial gauges, 

demec readings, clinometer and finally the dial gauges again. This took 

30 to 40  minutes. The slab vras then unloaded and all the au-es read 

again. An aver,-, , -,:,,  test was four hours long. 

7. 4.3 .3 	erietal -Results 

1. Slab Rotation at the Joint 

-:ooriiaental results for slab rotation froiri both the dial gauges and the 

clinometer are shoim in Table 7.1 



Slab Deflection 

The deflection along the free edge of the floor slab under a uniform 

load of tO lbf/ft2  is shown in figure 7. 

Wall Strains Near the Wall-Slab Junction 

The bending strain distribution along the trails, above and below the 

floor slab, is shown in figure 7.6 . The axial strains are not presented 
as they are snail as well as showing considerable scatter. 

TABLE 7.1 - ROTATION OF THE FLOOR AT ITS JUNCTION WITH AN OUTSIDE 

BRICK WALL 

Floor 
Slab 

Load c> 

No. 

Ecoerimental Values 	inrad 

20 ibf/ft2 40 lbf/ft 	0 lbf/ft 

Clino. Dial 	Clino. DialClino. Dial 
Gauge I 	 Gauge 	 Gauge 

1 	0.13 o.16 0.30 0.40 0.07 0.11 

2 	0.23 0.13 - 0.33 (-.27) 0.22 

3 	0.10 0.13 0.23 0.24 -0.07' -0.07 

0.13 0.07 0.28 0.22 0 -007 

o.15 0.16 O.LO 0,36 -0.02 0.07 

0.17 0.13 0.28 0,29 0 0.07 

0.27 0.21 0.36 - 0 (-d7) 

- 0.27 - 0.47 - 0.09 

Notes 

Values in brackets - change in angle from 140 to 

0 lbf/ft 	load. 

Ttro sets of readings are the results of two tests. 

Clinometer resolution 0.03 nrad (7 see) 

Dial Gauge resolution : 	 - 0.02 rnrad (5 sec) 
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7. AIQAL-YSIS OF RESULTS 

7.. 1 Introduction 

The analysis is meant for wails and slabs spanning in one direction but 
has been adapted to explain the trend of the e:toerimental results along 

the free edge of the slab where its behaviour tends most to a one way 

system, ilore needs to be known about wall behaviour before a more complex 

analysis is used. 

The effect of dal load on the lateral deflection can be neglected as 

the loads are low and the wall is restrained at one end. 

The outside walls are assumed to have the same properties above and below 

the slab, thus before tensile cracking occurs, half' the slab restraining 

moment is talon by each wail. 

The analysis is divided into the following sections 

An estimate of the average dead load stresses in the outside wails. 

End moment - rotation relationship for the walls. 

Did moment - rotation relationship f or the slabs together with 

the deflection of the slabs. 

IL. Combining relations (2) and (3) to give the equilibrium position 

for the wail and slab. 

. Evaluating the moments applied to the wall together with the 

resulting strains in the wall. 

7.. 2 Precompression 

The precomoression was estimated on the basis of the following sketch. 

It assumes uniform support conditions for the slab which in practice 

is not the case but a more accurate analysis is not warranted. 

ft 

2.6 ft 

?tt 
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Weight of Brickwork 

The weight of brickwork is taken to he 320 l'of/ft run of 8 ft high wall. 

The stress at the bottom of a wall due to its own weight = 6 .5 lbf/in2 . 

Weight of F'oor. Slabs 

Dead load = 62. 5 11bf/ft 2  

live Load = 40 lbf/ft2  (one floor at a time). 

	

Average stress over wall due toslab dead load = ). 	lbf/in2  
Average stress over wall due to slab live load = 3 lbf/in2  

Average Stress in the Outside Walls Due to Dead Load 

Floor 	Stress (lbf/jn2 ) Above Slab Below Slab 

1 	 4-4 	49 
2 	 33 	38 
3 	 22 	27 

11 	16 
0 

7..3 Rotation of the Walls at the Junction with°  the Slab 

1. End Noment-Rotation RelationshiD 

The initial portion of the wall moment-rotation relationshi will be 

linear. As tensile cracking develops at the joint, the relationship 

becomes non--linear tending to a limiting equilibrium moment. 

For wall rotation the previous loading history must .be taken into account 

as the moment--rotation relationship is not linear throughout its whole 

range. Thus dead load must be considered. It is uniformly applied to 

all the floor slabs whilo the live load is applied to only one slab at 

a time. 

The slab dead load will induce an approximately equal moment in the top 

and bottom walls of a joint. The slab supports were not removed before 

the next storey was built. For dead load the following deflection pattern 

is assumed 

-I 

h 
2 

h, 
2 

-I- 

= h/i 2E1 

= 97 nrad/lbf in/ft 



direct bond 
to concrete 
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- For live load e_nother pattern is assumed 

T =  h/8Ea 
h 145 nrad/lbf in/ft 

where 

+4k ) 	 N s = slab restraining moment 

h 	I 	E = 1 .2 x 10'6  lbf/in2  

I I = 60, =4  
h = 96 in 

wall rotation at juaction vith 
the slab 

Ioment Causing Tensile Cracking at the Joint 

If there is an 1 inch gap in the mortar joint (nidth of perforations 

and mortar furrowing) cracking will be delayed". 

The ratio of mortar joint gap to wafl thiciaiess, a/t, becomes 0.24 

giving from figure 1.9 an eccentricity ratio, e/t = 0.22, the eccentri-

city necessary to start tensile cracks for a material with no tensile 

strength. Thus tensile cracking starts when e = 0.9 in as opposed to 

e = 0.7 in for a solid section. It is the point at which the moment-

rotation relationship becomes  non-linear. 

The cracking moment is given by 2 obt(0.22t) where a is the dead load 

stress. 

Ultimate Fiuilibrji'ii Moment 

The stresses in the walls are low* o and thus it is possible for the equi-

librium moment to be reached. The limiting equilibrium moment is reached 

when the eccentricity equals half the wall width. 

Slab restraining moment = Pt 

Moment in upper wall 	= Pt/2 

Moment in lower wall 	= (P+V)t/2 

This is an assumption but is inserted to show its effect on the calcu-

lation procedure. Its effect on the compressive modulus is small. 
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These equilibrium moments are based on a constant precompression. But 

for this building, uplift at the joint can cause considerable increases 

in precom;réssion (18) causing an increase in the limiting equilibrium 
moment. 

The equilibrium moment is the uper limit or the moment-rotation curve 

the rotation keeps increasing at constant moment. In tenis of the 

dead load stress the limiting moment is given by (obt)t 

The moment-rotation relationships are plotted in figure 7.7 . The non-

linear part is an estimate. 

Rotation and Deflection of tho Floor Slab 

1, Floor Slab Deflection and Rotatjón 

The floor slab deflection and end rotation were analysed using a computer 

program. Initially a finite difference technique was used and later 

a standard finite element program (see Appendix 7). 

This was tried for various boundary conditions - combinations of fixed 

and simple supports. The deflections for the free edge are shown in 

figure 7.4 

2. Moment-Rotation _Relationships 

Consider the junction of the slab with the outside wall. The end rotation 

and end restraining moment can vary between two limits 

Fully fixed - maximum moment with no rotation. 

Simply supported - no restraining moment with maminum rotation. 

dy 

r;f  f ixity  

Dead Load 	 Dead Load 	 Live Load 

N= 6800 lbf in/ft = 0 	M = 0 	 11 = 0 

Load" 
* 	 = 0.2 mrad 	 h m = 0.2 rad Live  

100 lbf in/ft 	0 

"Fiming moments from Theoiy of Plates & Shells by Timoshenko & 

Woinowsky-'Icrieger (36), 
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The limits are plotted on the graph in figure 7.6 and a straight line 

drami between them. This assumes a linear variation which is reasonable 

as long as no cracking occurs at the other boundaries of the slab and 

the slab has a constant stiffness within the load range taken. 

Interaction of the Floor and the Wail 

Slab Restraining ioment and id Rotation 

The slab restraining moment and end rotation are given by the intersection 

of the wail and slab moment-rotation curves. 

This is initially found for the slab dead load and then for  the slab 

dead load plus live load. The difference gives the rnomeit and rotation 

due to live load. If the wall moment-rotation curves were linear these 

values could be found directly taking only the live load into account. 

The wall curves are different for dead and live load, the latter having 

a smaller slope. 

The method used here is a graphical form of moment distribution which 

is easier to work wi -bh when the moment-rotation relationships become 

non-linear. 

The slab restraining moments and end rotations are given in Table 7.2 

I'loment Applied to the Walls 

The moments applied to the walls at their junction with the floor slab 

are given in Table 7.3 . The slab moment is distributed equally between 

the walls above and below. If tensile cracks occur in the joint with 

the bottom wall, the wall will have to resist an additional moment from 

an eccentrically ãD plied slab load.. Section 6.2.3 explains the procedure 

for calculating this additional moment. 

Before cracking occurs, the ratio of slab xestra±ning moment to slab load 

is appro:dinately 11 inches which coincides with the ratio in the test 

models, 

Strains in the Wall. 

Table 7.4 shows the bending strains for the outside wall towards the 

free edge of the slab at the level where the experimental strain measure-

ments were made. The assumed moment distribution is also shown. 
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TABLE 7.2 - FLOOR RFSTRAIHING MONEI'IT AND E2JD ROTAii0N 

Floor Dead Load Live Load Ii-ve+Dead Load 

]Rotation Rotation Moment 

lbf in mrad lbf in 	imrad lbf in rrad 

1 3000 (44) 0.29 11700 (39) 1 	0.2 4700 0.54 

3 2900 (43) 0,30 1200 (27) 	0.29 biOO O.9 
0 0.2 0 0.42 0 0.9), 

Note : 	Values in brackets are percentage of full fixity 

(no TaU rotation). 
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TABLE 7.3 - IiOIIEIJTS APPLIED TO THE OUTSIDE llLLS 

Floor Wall Noment _in/ft 

Dead Load IILV Load iLVc Dead 	Toad 

Ecceiric - Sllab Fccentrjc 3'- Slab Eccentric 	3' Slab 
- 	Slab Toad j ioment Slab Toad, 1-joment Slab Load 	oment 

1 Upper 1500 - 850 - 	 2350 
Lower 	0 1500 0 650 0 	2350 

3 Upper 	- 14$0 - 600 - 	 2050 
lower 	120 1450 535 600 655 	2050 

5 Lower 	460 0 300 0 760 	0 

TABLE 7.h - STHAINS IN THE WALLS DUE TO LIVE LOAD 

Floor 	 1 	 3 	5 
Wall 	 'Uppei7Lovrer HDer t lower;Lower 

Bending i  x1 0  	+15 1 +1 5 1  +10 1  ~20 Strain 

Notes 	Bending strains given by + N/EZ where E = 1 • 2 xl 06 	n lbf/i 2  

Strains at demec level. 	 Z = 34 in3 . 

Assumed I-Iorent ]stributjon 

Top Floor 	 Other Floors 

tensile 	 -' 	 M m 
 

crack 	'- " 	--.---- - 
i n 

d eme3 

/ 
fixed  

3m 

fixed 

 

 

demec 

3 in 

    

M ma  x 

 

U 	= 0.79U demec 	max N 	= 0.72N 
demec 	max 



116 

7.6 DISCUSSION 

This chapter measures the behaviour of the joint under working loads in 

a full-scale structure. Because joint behaviour under working loads 

was investigated outside the laboratory, the small deformations due to 

slab forces are difficult to measure accurately. In the model joint 

tests there were higher, loads and deformations under laboratory 
conditions 

The slab deflections causing the largest gauge readings gave the best 

results, the residual deflection on unloading being comparatively small 

(approximately 7). 

The slab end rotations show larger variations but this is mainly due to 

the smaller deformations measured - errors become more important. The 

difference between two gauge readings was no more than about 20 divisions 

(0.002 in). 

With st..rai.n measurements, only the difference of the strains on opposite 

sides of the wafl, equivalent to bending strain, gave good enough readings 

to show a general trend. The sum of the strains, equivalent to the axial 

strain, gave too large a scatter (compression +ve, tension -ye). 

This shows the care and accuracy needed to obtain good results. 

The theory predicts the general 'trend of the results with slab deflections 

falling within the limits of the theoretical calculations - these are 

based on the assumption that the correct section properties have been 

used. 

• The slab rotations for the first four floors are approximately in the same 

range, excierimer±tal scatter making it difficult to detect any differences. 

The roof slab definitely showed larger end rotations but less so with 

-slab deflection. There are also bending strains in the walls caused by 

the slab, the theory showing that the slab restraining moments are 	- 
aoro:-th;iately 30% of the full fixing moment. The maximum calculaleci 

restraining moment (including dead and live load) is 4700  lbf in/ft 

This would cause a ten 	 p tensile stress of aproximately 100 lhf/in 2  in the 

slab. But the concrete can take an estimated tensile stress of 500  lbf/in2  

(1 )*, thus no cracking would occur in practice but nevertheless some 

nominal top reinforcement should be provided. The slab centre span moment 

will also be reduced. 

7.5 	to 12 	(37 to 600 lbf/1n2 ) where 	= 0.8 x 3100 
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Changes in preconipression do not seem to alter the slab rotations nor 

the wall bending strains. This confirms  the results obtained from the 
model joiift tests. 

When cracking occurs, the precompression will have an effect but while 

theoretically the third and fourth floors are expected to develop cracks, 

the experlmental results do not definitely show this. The roof slab 

definitely cracked at the joint (one course down from the slab) to at 

least half way along the outside wall. The end brick of the top course 

at the free edge was in fact fully separated from the brick below due 

to faulty erection of edge shutterring used for placing the roof slab. 

These tests have been a good lesson in exeerimental technique outdoors 

and have shown it is possible to obtain reasonable results under working 

loads. 

7.7 CONCJJJSIaS 

1.. If there are no tensile cracks in the joint, the precoralpression does 

not affect the slab restraining moment. This is confirmed by the 

model joint tests. 

2 The slab restraining moment can be ciuite considerable - up to an 

estimated 30 of full ficity in these tests. Top reinforcement should 

be provided although the tensilestrengh of the concrete was not 

exceeded. 

Tensile cracking occurs in joints with very low precomoressions. This 

occurred in the roof slab. Although no moment is transferred from 

the slab, the slab load is applied eccentrically. 

With low loads, the possible failures are confined to cracking at the 

joint with possible tensile cracks in the slab at its junction with 

the wall. 



CHAPTER 8 - GENERAL CONCLUSIONS AND SUGGES TIONS FOR FURTHER 
RESEARCH 

8.1 GENERAL CONCLUSIONS 

A knowledge of the behaviour of the joint, wall and floor is needed to 

find the moment distribution between the floors and walls. The wall 

and the wall-slab joint have been investigated for a concrete slab 
bearing fully into a single leaf brick wall. 

Stress-Strain Relationship of the Wall Under Axial Load 

The stronger the wall the more linear the stress-strain curve at low 

stresses - wails with increasing mortar strength. Over the precom-

pressive stresses used in this thesis the 1 ::3 mortar wall has a 

linear curve while the 1:1:6 and 1 :2:9 mortar walls become non-linear 

in this range (reducing modulus with increasing stress). 

On unloading a different stress-strain path is observed of increased 

modulus, and a permanent  strain occurs at zero stress. The permanent 

strain and the ratio of unloading to loading modulus (at the point of 

maximum stress) increase with decreasing brickwork strength and with 

increasing stress levels. On reloading there is a more linear stress-

strain curve (except at very low stresses) up to the point of the max-

imum previously attained stress - the curve may be considered to be 

equivalent to the initial tangent modulus. 

The experimental compression modulus based on a solid cross-section is 

underestimated if there are central gaps in the mortar joint. 

FlexuraJ. Behaviour of the Wall due to Floor Loading 

No Tensile Cracks 

The flexural behaviour of the wall is related to its stress-strain 

relationship. A non-linear stress-strain curve (reducing modulus) 

causes increased rotations with increasing stress levels while an un-

loading curve with a higher modulus decreases the rotation. 

Central gaps in the mortar joint must be taken into account if the 

stress-strain relationship is found experimentally. Otherwise the 

calculated compression modulus will be underestimated. 
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A linear theory is proposed taking into account a central gap in the 

mortar joint and an unloading modulus different from the. loading modulus. 

This can be used with accuracy with the 1 :*:3 mortar brickwork. 
The experimental moment-rotation curves of the slab at the joint all 

have an initial approximately linear portion. The initial slope of this 

curve decreases with decrease in brickwork strength. The linear theory 

overestimate the experimental initial slope. Reasons for this could 

be variations in assumed properties and local deformation at the joint. 

Assuming a solid section and a single compression modulus will under-

estimate the experimental slope. 

The linear theory also predicts the rnoments and load applied to the wall 

by the floor slab, the best accuracy being obtained with the 1 :*:3 mortar 
walls. 	 0 

The experimental moment-rotation curves for a given mortar wall have 

approximately the seine initial slope for the three different, constant 

precompressions applied to the wall. Thus if there are no tensile cracks 

precompression has little effect on slab rotation. An exception to this 

may occur when the precompressive stress causes a reduction in the wall 

tangent compression modulus allowing increased slab rotation. 

Tensile Cracks 

In a solid, linearly elastic, rectangular wall, tension will occur uhen 

the load eccentricity exceeds one-sixth of the wall thickness. A non-

linear stress-strain curve (reducing modulus) and/or residual strain at 

zero stress will decrease the eccentricity necessary to cause tension 

while a central gap in the mortar joint will increase the eccentricity. 

Horizontal tensile cracking occurs in the mortar joints as these are 

usually weaker in tension than the bricks. The cracking reduces the 

slope of the moment-rotation curve of the slab, the slope becoming zero 

when a limiting eccentricity approaching half the wall thickness is 

reached or when failure occurs in the wall or slab. The maximum eccen-

tricity is limited  by local deformation and failure at the -Ibint. In 

the test models the limit ranged fromc/t = 0.42 to  0J5. Over the 

cracking range an increase in wall precompression will reduce the floor 

slab rotation at the joint. 
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With tensile cracking in a wall-floor slab connection, the bottom wall 

resists an additional moment because the slab reaction is displaced from 

the centre line of the wall. Failure in a wall therefore usually occurs 
in the wail below the slab. 

Moment Distribution 

When no tensile cracking occurs, the moment distribution may be calcu-

lated using standard methods but the flexural properties discussed in 

the previous section must be taken into account. 

In the tests on the full scale structure the slab restraining moment 

was quite considerable - up to an estimated 30% of the moment allowing 

no slab rotation (full fixity). Top reinforcement may be necessary 

although in this case the tensile strength of the concrete was not 

exceeded. 

With tensile cracking, the joint behaviour becomes non-linear. For ten-

sile cracking in the wall at the joint, an approximate graphical method 

has been proposed and used to explain results from the full scale 

structure. 

Tensile cracking in the wall makes analysis complex. A theoretical 

solution to this for a solid, linearly elastic wall has been given by 

Sahlin (30,32). 

Ultimate Strength of the Joint 

With wall stresses in practice, failure at the wall-floor junction is 

usually confined to : 

1 • Tensile cracking at the joint leading to equilibrium failure or shear 

failure round the end reinforcement of the floor slab or a diagonal 

crack across the reinforcement. 

2 Tensile cracking of the floor slab at its junction with the wall. 

Wall failure occurs at higher wall precompressions. If the central gaps 

in the mortar joint are neglected, the predicted ultimate moment based 

on the axial stress-strain relationship is considerably underestimated. 

With central gaps, the inaximinn moment a wall can resist occurs when the 

precompression is half the ultimate axial stress. 
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The load reduction factors for eccentric load in the proposed revision 

of the British Code on Brickwork (9) greatly underestimates the strength 

of the walls in the test models at higher eccentricities. The code 

relationship is similar to that for a solid wall with a non-linear 

stress-strain relationship. Even though the factors ny be far too low 

at high eccentricities, they are too high at low eccentricities. 

8 .2 SUGGESTIONS FOR FURThER RESE?JiCH 

The work in this thesis has shown there is a need to investigate some 

aspects in more detail. Two such aspects are 

1 	The stress-strain properties of brickwork under axial and flexural 

loading (including cycled loading). 

The ultimate strength of brickwork under flexural load. Are there 

other reasons apart from gaps in the mortar joint for the increased 

flexural strength ? Are these gaps significant in nine inch brick-

work ? The use of solid bricks with no frogs and perforated bricks 

may answer these questions. 

2. Further tests on wall-floor interaction models similar to those in 

this thesis but with more accurately defined end conditions - hinged 

ends together with lateral restraint at floor level. The investi-

gation should consider tests on differring joints, cycled loading 

and a theoretical curve for the non-linear part of the slab moment--  - 

rotation curve. The tests should concentrate on 1 ::3 mortar 

brickwork v1ich gives the most consistent results. 
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APPENDIX 1 

Al .1 REVIEW - SARLIN (30,31 ,32) 

Al .1 .1 Introduction 

A review of Sahlin's work is presented with coimnaits. Notation is 

Sahlin's. 

His work is the only extensive treatise on the subject of joint behaviour 

in brickwork. His experimental work on brickwork covers wall-slab joints 

where the slab bears half way into a 10 inch (two brick) thick wall. 

M.1.2 Theory 

1. Wall Behaviour 

Sahlin has further extended the theory for the behaviour of linearly 

elastic, solid walls wlth no tensile strength including the effect of 

a,-dal load on lateral deflection. This gives the relationship between 

wall end rotabions, 	and the magnitude and eccentricity of the applied 

load. 

2 2 	Euler buckling load - 

1 

Wall 	 - 

Load 	
\tcnsile 

strength 

Wall nhd 	1Xh 
Rotation- 	d 'v 

---..O tensile 
strength 

± 

Xh 

-i 
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floor Slab Behaviour 

A simple analysis is proposed, for slab end rotation for the following 

case.: 

The slab end rotation, 0h'  is equal to the simply supported rotation 
minus the rotation due to a restraining end moment = Pe 

U 
+ P1e1 . 

Assuming e 
U 
= e1  = e , the restraining moment becomes e(P 

U 
+ P1 ). 

In the analysis an error occurs when the roof slab is considered. There 

P= 0, allowing the slab to rotate freely but the analysis gives an end 

restraining moment = P1e]  which can only occur if tensile stresses are 

allowed. At low eccentricities before tensile stresses occur there is 

no end restraining moment either. 

Joint Behaviour 

Next Sahlin considers the joint between the wall and the slab. If the 

joint is rigid, the wall rotation equals the slab rotation, --= h' 

For a wall resisting no tensile stresses this relationship is valid 

throughout thr cracking range (assuming  no failure, local crushing and 

deformation). U the wall can resist tensile stresses except at the 

joint then a difference of rotation may occur dependent on the rigidity 

of the walls and slab. If local failure occurs at the joint but not in 

the rest of the wall then it is possible for the load to increase while 

the slab restraining moment is constant - 'plastification'. This latter 

case is considered by Sahlin, 
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The relation 	
= h is true up to a limiting slab restraining moment, 

after which there is a divergence between the two rotations given 

by 0, the 'joint rotation'. 

0=0 for N<N Pi 

Thereafter joint rotation increases at approximately constant moment, 

N 

II p1 

IN 

Idealized 
case. 

Quit 

Joint rotation is primarily due to failure at the joint and partly due 

to local deformation. Care must be taken in evaluating joint rotation 

when tensile cracking occurs at eccentricities greater than d/6. 

The limiting moment, 	and the ultimate joint rotation, 0uit' werepli 
measured experimentally in a series of full-scale model tests - both 

statically determinate and indeterminate. From these results a 

relationship between 9 	and the wall failure load, F, was proposed Ult 

This is a very approximate relationship there being a large scatter of 

results. A centrally loaded irall close to failure will tolerate little 

disturbance due to joint rotation. A more exact wording would be slab 

rotation - it is not necessary for joint rotation to occur at higher 
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loads especially for a slab carried through the wall. For slabs bearing 

half way into the wall the assumptions are more correct as initial failure 

is due to vertical splitting of the wall above the edge of the slab which 

may allow some joint rotation beIb re final failure. 

). Failure of the Wall and Jcint 

Using the experimental results the theory can be used to predict failure 

loads. Four cases are considered 

9 0 &./ 	 0 N 1 pl 	0edge 0ult axial 

Failure occurs when the ultimate edge stress is reached before 

the limiting slab restraining moment is attained. 

O<G<O ult 	 Ii = Np1 	
0edge Cult axial 

Failure occurs when the ultimate edge stress is reached after 

the limiting slab restraining moment is attained. 

OQ=Q 	 M=N 	0, <o ult 	 p1 	ectge tilt axial 

Failure occurs when the limiting joint rotation is reached. 

3b. 	
ult 
	 M < N p

1  

For cases where there is not a pronounced yield point - gradual 

yielding at the joint. The manium load is governed by the 

maxiuiuun peissih1e rotation Gult=Q(1 - P/F. 1 ). 

Equations for solving these cases are tabulated in reference 32. 



n=i 
P= (ri-i )a 	+ (n-i )Gall 

n=2 
12 u 

q = slab load/unit area 

G = wall load/unit length 

n = storey-  level numbered from 
n-4 the top. 

P 
U 

P1  

23 
22 
21 
20 
4, 
it 

(7 
4' 
Is 
'4 
U 
42 
4' 

II 

'V 

P. 

 

PS 

p3 _;i•_-• 

DE 

PP 

75 
75 
14 _jL 

/ 

 

'V 

Al .1 .3 Experimental 

1 	Test Procedure 

The following type of structure was considered 
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The wall-slab interaction models tested were 
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During each test a constant load ratio P/F1, was maintained 

 a joint in the structure sketched on the previous page in which 

all floors are simultaneously loaded. The storey level considered 

depends on the ratio of the loads, P/P 1 . The loads were increased 

from zero to failure in the same proportion. For a statically deter-

minate test this means a constant wall load eccentricity at the joint 

ifith an increasing pre compressive and slab load, enabling an investi-

gation into the relative rotation between the slab and the wall due to 

'olastification' - thus the effects of tensile cracking are minimized, 

or nil if the eccentricity is less than d/6 (this eccentricity is 

assumed to cause zero stress on one side of the wall). This test pro-

cedure is different from that used in the test models in this thesis 

where the eccentricity increases with a constant precompressive load 

- the latter procedure is also, in effect, used in Sahlin's tests on 

roof joints where the precompressive load may be considered to be 

constant and equal to zero iAhile the eccentricity of the load on the 

wall below the slab initially tends to increase. 

For the statically indeterminate tests the eccentricity reduces as higher 

loads are reached. This is caused by failure and local deformation at 

the joint, limiting the maxbnum moment even though a,-dal loads still 

increase while also limiting the ximimi eccentricity (for roof slabs). 

2, Material Properties and Construction Procedure 

The compressive strength of the concrete slabs, the brickwork, brick and 

mortar is : 

Brick 	3800 lbf/in 2  (tested according to the Swedish code) 

Mortar 	26 day strength of cylinders 

120 lbf/in2 	1:5 lime :sand by weight 
240 lbf/in2 	2:1:15 lime:cement:sand by weight 

Brickwork 600 lb.-Lc'/1n2 
	

1 : mortar mix 

1000 lbf/in2  2:1:15 mortar mix 

Concrete 	Six inch cube strength - statically indeterminate nioci.els 

4630 lhf/in2  
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Ilortar joint thickness was an average of 0.5  inch, The floor slabs were 

cast in-situ producing an excellent bond dth the adjacent brickiork. 

One test sh61.,-s brick failure before bond failure. 

3, Measurements 

The angle of rotation of the wall and of the slab were measured, the 

difference giving the angle of rotation of the joint. For slabs 

bearing into a wall, the joint was satisfactory (Q = 0) up to a limiting 

moment, INI 	which caused splitting in the wall above the slab. The 

increase in joint rotation is then very large while the moment is fairly 

constant or decreases. There is an uncertainty in the angle of joint 

rotation because of inaccuracies in wafl rotation obtained from deflec-

tion measurements on the outside face. 

For a slab bearing onto a wall (roof joint) there is an important 

difference uith the other tests. Tensile cracking starts at an early 

stage, a crack predominating in the first mortar joint below the slab. 

Joint rotation occurs at low loads increasing mith increasing load. 

Here the moment-rotation idealized diagram is not followed. Joint 

rotation is predominately due to tensile cracking mith increased differ-

ence at higher loads when local crushing may occur. 



Al .2 	REVIE1 - 	 NATIONAL INSTITUTE FOR NPTERL4IS TESTIflG (24) 

The work 	is exoerimental and has been reviewed by Sahlin (3102). 
'ickwork and blockwork models of the following type were tested : 
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:rete S1 

Wall 

I 
	

H 	tv 
	jpe 3 

53 ml 

53 in 

P2 

Type 2 

e 

P,0.: PI P2 

Inflection Point 

Type 1 

The tests measured joint rotation, the limiting moment, N, and the 

ultimate failure loads. 
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Model types 1 and 2 differ in some respects from a statically indeter-

minate model at failure. The slab moment is directly proportional to 

slab load thus any reduction in slab moment after the limiting 'plastic' 

moment, 14 
pl

, is reached means a reduction in slab load and therefore a 

reduction in the load on the wall above the slab (one control for both 

loads). The average stress at failure then is less than the stress 

when M p1 is reached. In addition there is no lateral restraint at slab 

level. Results for model 1 are not accurate due to lateral deflection 

partly initiated by tensile cracking (see section 6.3.2). For type 2 

the eccentricity of the load at slab level does not cause tension, the 

walls are thicker and the slab does not bear completely into the wall 

thus the lack of restraint is not so important. 

1. Material Properties 

The compressive strength of the concrete, the bricks, the blocks, the 

brickwork, the blockwork and the mortar is 

Bricks 	 420 lbf/1n2  

Concrete Blocks 	40 - 810 ibf/in2  

Mortar 	 18' 00 lbf/in2 	Class B 1:1.85:15 lime: cementsand 
by weight 

80 lbf/1n2 	Class C 1:1:15 	lime:cement:sand 
by weight 

2 Concrete 	 5700 Ebf/in 	6 men cube at 2 days. 	 - 

Slabs cast in-situ. 

Brickwork 	1060 1680 lbf/in2  

Biockwork 	310 - 630 lbf/in2. 



Al .3 REVIEW - WATSTEIN and JOHNSON (39) 

Watstein and Johnson have conducted some preliminary tests on the 

eccentricity of the floor load for attic type joints (see diagram). 

Load 
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brick 

steel capping plate 

strain gauges 

hollow steel strut 

An interesting point is their method of finding the eccentricity of the 

floor load. As the wall they use a hollow steel strut to which are 

attached e1ec - rical resistance strain gauges. The eccentricity is then 

found by measuring the strain on opposite faces of the strut. 

The results are preliminary and only simulate localized behaviour at 

the wall-floor joint. The floor is simulated by a steel joist bedded 

onto a brick which in turn is glued to the top of the steel strut. 

For an unbonded plaster joint (plaster confined between polyethylene 

sheets) with increasing floor load, the eccentricity increased from 

e/t =0.35  to a limiting value of 0.43  for the range tested. 

For a bonded plaster joint the eccentricity decreased from e/t = 0.32 

to a value of 0.24. This result is surprising - a higher initial 

eccentricity is. expected for small floor rotations if the bond was 

unbroken, the bond imposing a restraining moment on the floor. When 

tensile cracking occurred the eccentricity should drop to a similar 

level obtained in the unboncied case (see section 6.3.3). 

Tests using a rubber packing reduced eccentricity, the floor reaction 

tending towards the centre of the floor bearing length for the initial 

floor loads and slowly increasing with increasing load and floor. 

rotation. 



136 

Al .b REVIEW - cAJts 	(ii) 

Carisen tested a small number of joints between a precast concrete floor 

slab and a brick-,,Tall. 	
-. 	 - 

Axial compressive strength 

of brickwork = 980 1bf/1n 2  

adth of model = I ft 

7 in 5 ft 

The reference only gives very brief details about the experimental work 

and results. 

Precast concrete slabs were placed into position as shown in the sketch. 

The gap between the slabs was filled with concrete and then a further 

section of brickwork built onto the joint. 

The purpose of the investigation 	The effect of the length of bearing 

of the slabs on the bearing capacity of the joint and the ultimate slab 

restraining moment. The effect of slab moment on the ultimate strength 

of the wall. 

The conclusions 	The bearing capacity cL': the wall is not affected by 

the bearing length of the slabs. The slabs are clamped in position. 

A reduction in bearing length reduces the ultimate slab moment. 

From the information given it is not clear if both slabs were loaded 

although this seems likely - for all the loading cases there was 

little difference in the ultimate strength of the wall. 
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Al . 	REVIY - MAUl3RFCfl and HEDRY ( 2 2 ) 

aurenbrecher and Hendry have published experimental results given in 

this thesis covering the following two aspects 

1. Relationship between the slab rotation and the moment exerted by 

the slab at the joint for varied precompressions in the brick wall. 

2 The ultimate strength of the joint. 

The publication assumes a simplified analysis for ultimate equilibrium 

failure (section 6.2.2) and an incorrect ultimate moment for a joint 

tes& with a 1:2:9 mortar mix and a precorapression of 200 lb/in (too 

low a result because of faulty load cell wiring). 
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APPENDIX 2 

A2.1CPERflENTAL EQUIPMENT 

A2.1.1 The Demec Gauge 

The deiriec gauge is a demountable mechanical strain gauge (3, 23). Its 

main components are an invar main beam with two conical locating points, 

one fixed and the other pivoted on a knife edge. This pivoting move-

ment is transmitted to a dial gauge (graduated in 10 in). 'The gauge 

requires only very small temperature corrections during use. An invar 

reference bar - is provided as a check and is also useful as a guide to 

the general condition of the gauge. Reference bar readings are usually 

taken before and after a test. 

A setting out bar is provided to give the correct gauge length when 

gluing the stainless steel discs onto the test structure. The discs 

are 3 inch in diameter with a 0.04 inch hole into which the conical gauge 
points are located.. The surface of the test structure should be smooth, 

dry and clean. The position of the discs is marked'out by pencil lines, 

then a thin layer of Durofix is spread over the marked positions and 

allowed to dry. A second layer Is applied to two points at a time and 

the discs pressed onto the two positions and kept in place by the sett-

ing out bar for approximately one minute to allow initial setting of the 

glue. Several hours (preferably 24) should elapse between fixing' the 

discs and using them. An alternative to Durofix is sealing wax. Each 

locating disc is backed with a dab of sealing wax. One disc of a pair 

is then held in position by a small screwdriver and a soldering iron 

applied, melting the wax. When the wax has rehardened, the other disc 

is held in position with the setting out bar and similarly stuck on. 

Discs stuck in this way can be used immediately. Wax is more successful 

than Durofix on damp surfaces. 

When measuring strain with the Demec gauge just enough pressire should 

be applied to the gauge to provide good contact. The reading is repeated 

to improve accuracy. The gauge is always held in the same way for a 

particular position. When measuring vertically the fixed point should 

be in the lower disc. Throughout a test only one person snould take 

readings for a particular measuring point. With experience accuracy 

improves. 
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Specifications 

Manufactured by W H Mayes & Son Ltd 

Gauge lengths obtainable - 2 to 80 inches. 

Price range - gauge, setting out bar and invar reference bar - £57 to 

£128 . Stainless steel discs - 112 © zl.75 

Calibrated by the Cement & Concrete Association 

2 inch gauge - 2.48 x 10 	strain per division 

	

8 it 	 1.01 x 10-5   it 
12 	it 	 6.6 x 10 	 it 	 it 

	

24 " 
	

It
-  3.33 x 10-6 
	

It 	it 	 It 

A2.1.2 Vibrating Strain Gauge 

Gauge : 

Tyler Recoverable Surface Mounting 

Manufactured by Gage Technique at approx. £11 each 

Lengths used : 	2.5 in and 5.5 in 

Gauge factors 	0.54 x 10 	for the 2.5 inch gauge 

3.0 x 10 	for the 5.5 inch gauge 
Plucking voltage 	24 volts for the 5.5 inch gauge while 60 or 120 volts 

was necessary to obtain stable readings in the 2.5 inch 

gauge. 

Accuracy : 	 1 -5 	
-6 i,o 3 x 10 strain for equipment reading to 1 Hz 

Measurement Of Frequency 

A portable digital strain measuring instrument, Model P, measures the 

period over 100 or 1000 cycles. 

Manufactured by Deakin Instrumentation at approx. £600 

Mounting of Gauges 

Brackets were fixed onto the test specimen (fig 3.7) using a Cataloy 

paste. To make sure the brackets were in the same plane and the correct 

distance aoart they were bolted to a steel plate which kept the brackets 

in position while the paste hardened. The plate was then removed and the 

gauge put inits place. 

A2.1.3 Dial Gauge 

Specifications : 	Baty Dial gauge costing approx. £8 

1 division = 0.0001 in 

Range 0.2 in or 0.5 in 
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A2.1 Ai, Clinometer 

Inclinometer Model Ni manufactured by WH Nayes & Son Ltd 

Description : 

The instrument is based on an engineering sine bar with 3 inch centres. 
A micrometer thimble (graduated in 0.0001 inch/division) is fitted to 

obtain the vertical displacement. A bubble spirit level (sensitivity 

1 division = 1 minute) is fitted to provide a datum zero. The clinometer 
is supported by three hemispheres. 

Measurements 

The accuracy of the measurements are dependent on two main factors 

The first and main difficulty is in estimating the central position of the 

bubble - it depends on the direction from which the level is viewed. 

Thus the level should be viewed from the same position. To overcome 

this problem in future an optical system should be attached which makes 

the ends of the bubble coincide. 

The second difficulty is ensuring the clinometer is in the same position 

every time a reading is taken at a particular point. Plat steel plates 

were used as bases (see sketch), The clinometer was positioned by a 

cone shaped depression and a stop. The clinometer position could be 

reversed to further improve accuracy. The plates needed painting to 

prevent rust. In future completely flat plates would be best, the clino-

meter held in position by stops only. For outdoor use the plate should 

also be resistant to rust. 

in 

3 in 

conical depression 

stop in the form of a bolt 
screwed into the plate 

  



141 

A2.1.5 	ad Cells 

Load was measured using 3 ton Davey United Toroidal Load Cells with a 
self-aligning loading cap. They have an output of 13 mV at 3 tons with 
a 10 V DC stabilised power supply. 

A2.1 .6 Digital Voltmeter 

The output from the load cells was measured by a Dynamco Digital Volt-

meter. 

Resolution : 0>1T and a later model (i 2022) 1O,,V 



142 

APPENDIX 3 

A3.1 	OF GAUGE LE1GTH ON TIE NEASTJRTT OF VERTICAL STRAINS 

A3.1.1 Choice of Gauge Length 

The gauge length over which the strain is measured affects the accuracy 

of the strain. The length should be large in comparison to the compo-

nents of the material making up the structure and large enough to give 

deformations the strain gauge can measure. The gauge length is restricted 

by the condition that strains over the gauge length should either be 

constant or vary linearly. Rocha (29) discusses the choice of gauge 

and gauge length. 

Gauge lengths should be short enough to accurately represent the strain 

(no sudden variations within the gauge length). Full scale models and 

structures have the advantage of having gradual strain variations over 

larger gauge lengths - larger than in small scale models thus the choice• 

of gauge and gauge length is not unduly restricted by this factor. 

Bricktjork is a composite material thereby affecting the choice of gauge 

length. Figuare A3.1 illustrates the variation in the measured brickwork 

modulus with gauge length and position for a brick to mortar modular 

ratio of 5 - approd.mately equivalent to a 1:2:9 mortar wall ( the ver-

tical dimensions of the brick and mortar are 2 7/8 inch and 3/8 inch 

respectively). The Possible values of modulus calculated from measured 

strains are given by the area enclosed by the two limiting curves. 

When using demec gauges the demec discs are usually positioned on the 

brick thus the variation in modulus is given by either of the two limit-

ing curves, the area in between becoming significant when a fraction of 

a mortar J '4oint is enclosed in the gauge length. 

In the experimental work in this thesis gauge lengths are kept in 

consistent positions. When strains between different experiments are 

compared these will have been measured in similar Dositions on the 

brickwork. This removes some of the restrictions on gauge length. 

Quoted raoduli will usually be that obtained from an 8 inch gauge length• 

covering two mortar joints and thus not the moduli equivalent to one 

brick and one mortar joint. 
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GAUGE LENGTH 	inches 

Fig. A31 	Variation of the Brickwork Compression Modulus with the 
Size and the Position of the Gauge Length 

A3.1.2 RelationshiD between the Gauge Length and the Brickwork Nodulus 

Notation : E = brickwork modulus over the gauge length considered 

Eb  = brick modulus 

E = mortar modulus 

= strain in brick 

Em o/E = strain in mortar 

6br average strain over gauge length, 1br 

1br gauge length 

1 'a = thi..cicness of mortar joint 

n = number of mortar joints covered by gauge length 

Vb = proportion of brick in gauge length 

V = 1 -Vb = proportion of mortar in gauge length 

0 = vertical stress 

The brick and mortar are in parallel. The vertical stress is thus the 

same in both materials. In a vertical gauge length, 
1tr' 

 covering both 

brick and mortar, the proportion of brick covered is 

Vbbr - 'm"ir 	 (A3.1) 
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The average strain over the gauge length becomes 

Vblb c 	.. 
C r b 	mr in 

(A3.2) c = br 	
r 

The compression modulus becomes : 

=0b = Vb + (VE)( 1  - Vb) 	(A3.3) 

This expression assitnes that the brick and mortar moduli changes,due 
to their interaction at the interfaces,are negligible. Alternatively 

the moduli can be taken as those occurring in the composite state. 

Vertical strain measurements were usually carried out with gauge lengths 

of 2 and 8 inches. The corresponding values of Vb  are (assuming a 

3/8 inch mortar joint) 

8 inch gauge length across two mortar joints Vb = 0.91 

across three u 	 U 	Vb = 0.86 

2 inch gauge length across one " 	 It 	Vb 0.81 

A gauge length crossing the equivalent of one mortar joint and one brick 

has a value of Vb = 0. 88 (3* inch gauge length). Large gauge lengths 
will tend to this value. 

A3.2 EFFECT OF A GAP IN THE MORTAR JOINT - FINITE ELE lENT ANALYSIS 

A3.2.1 Finite Tqaemcntu Program 

A standard program provided by IE•I is used - STRUM, The Structural 

Design Language (21). Its finite element capability applied to two 

dimensional problems is quite extensive, allowing a choice of many 

different types of element. The element chosen was rectangular with 

four nodes giving eight degrees of freedom - Type PSR. The displacement 

function is of the form 

u(v) = a + bx + cy + dr 

there a, b, c and d are constants. 

Each element is given values of elastic modulus and Poisson's ratio 

(isotropic). The program allows plane stress or plane strain - the 

former is used. 

The program was run on an IBM 36010  computer. 
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A3.2.2 Analysis 

The finite element program was used to investigate the effect on vertical 

strains of gaps in the mortar joints of a single leaf brick walL. 

Two types of wall section were analysed 

1 • Three courses of single leaf brickwork under uniform load. The 

structure is syrnnietrical, therefore half the section is considered 

(fig A3.2). 

2. Four courses of single leaf brickwork under uniform and eccentric 

load. The effect of eccentric loads on the vertical strains was 

investigated (fig A3..3). 

The results from both analyses are shown in Table A3.1 . In addition 

the principal strain distribution is shown for the case E/Eb = 1 

(fig A3d1). 

Elements covering the gap in the mortar joint were given an elastic 

- 	modulus of. 1 lbf/in 2 , effectively removing them from the structure. 

To improve accuracy in the wall section with three courses, the applied 

loads at the top can be readjusted and the program rerun according to 

the results obtained from an intermediate mortar joint in the first run. 

TABLE A3.1 - RESULTS OF THE FINITE ELiENT ANALYSIS 

Input Output Simple Theory 
E 

Eb E 
M 

a H. H in H exp c H s I c a e 

H 

1. 2 2 0 2 2 2 113h2 70 111120 1 
0.3 2 0.6 0 1.98 0.61 1.7 3 1.55  7 70 63 0 1 
1 1.96 1.96 2.62 0.92 1.38 0.96 508  1.96 6o.5 521 2.11 0.119 
0,21 2.14 0, 2.62 09 0.25 0.71 637  1.66  57 63 2.36 0,143 
1 2.14 2.14 1.92 18 2.08 1.63 376 2.11 67.6 381 1.32 0.68 
1 2.11 2.14 1.06 2.08 2.33 2.11 - 2.14 70 - 0.36 0,88 

Notes : 

Units 	H x 10 	lbf/in2 ; 	a 	inches ; 	I ir. ; E + 	0_6 

- flexural strain due to applied moment. 
& Eobtained from equations 3.1 & 3.2 respectively 

I = b(t3 - a3 )/12 (here b = 12 in) 



One loading 
condition 

16 tons 

Depth 27 in 

108 elements 

V = 0,1 

CPUv 220 

Two loading 
conditions 

32 tons uniform 

32 tons eccentric 
(30000 lbfinlft) 

Depth 27 in 

189 elements 

V = 0.1 

CPU' 450 sec 

9.75 in 

6.75 	
2.O6 in 

13.38 in 

+0-7 5t
4.12 in 

146 

Fig. A3.2 Three Courses of 

Brickwork Divided into Elements 
	

Fig. A3.3 Four Courses of Brickwork 

Divided into Elements 

juDO 	11500 	2660 

1 20 	-: 

+121814 

6267 
•-\: 

6  

1459 1296 	
. 	

10113 

5\22 

9.31 1  392 

13  

1 23.  STRAIN 	xi0 6  

-293 
+ve 	compression 
-ye 	tension 

30 

E
b 	

E 	1 x 10 6 Ibt/in 2  
m 

V = 0.1 

90 
Average stress 	644 Ibf/in 2  

Position of elements 	given by 
19° x & y 	in fig A3.2 

99 

)ç 

 1 119988 	965 	717, 	 370 

_iso 	Ji3D 	1_aU 	1 -15  

204 
yJ 

Fig. A3.4 	Principal Strain Distribution 
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APP FImIX I. - LINEAR STRSS-STPAIN THEORY 

A4.1 IHTRODUCTION 

The effect of the following is considered 

1 Linear stress-strain 

Differring loading and unloading modulus 

A central gap in the wall 

Notation 

E 
C 

= compressive strain +ve 
Et = tensile strain +v 

v = distance to the neutral ads from the side under tensile 
strain. 

area under the compressive stress curve +ve 

At = area under the tensile stress curve +ve 

= compressive stress +ve 

tensile stress +ve 

t = thickness of wall 

= compressive modulus (loading) 

kEtensile modulus (unloading) 

a: width of central gap 

b = width of wall 

Assumptions 

Plane sections remain plane. 

Note 

The term tensile strain is used for convenience. The strains used 

in the, calculations are measured bending strains taken about . a set 

precomressive datum. Thus tensile strain is the unloading strain 

and does not become a true tensile strain until the initial corn- 

pressive strain is overcome. 



	

La 	lv 

	

t-v 	 I a-a9) 
S 	I 	Ti 

• 	 t-ti 

oJ  

t 
S 	 - -- ---5--- p-S 

at 

148,  

AJ4 .2 CENTRAL GP IN tLL 	a/t < 1 - 2v/t 

v/t = 

I 	E(t-2v+a) 
e 

c_ 	2(t-v) - 

CII 	

E(t-2v_a) 
C 	 e 

C = 	2(t 	y 

(a + a )(t - a)b 
C 	C  

A =  - 	 + 

o(t -ae - 2v)b 

At = 2 Q1yb 

A4.2..1 Moment 

Taking moments about the centre line of thewall'  

a)(t + 2aXo 	ci(t - ae )( 2t + aTh 	o(t - a - 2v)(t + 2a- 2v 
2)4 	 - 	2)1. 24 

o(3t 2v)vb 

12  

In temis of the compressive strain 

a3 	2 s 	c 	I 	e • v 	2v \1 	1 M 	
Ebt2E  
_-çj _ j  [1 - 	-- 3 _-:) :.l. j 	--- 

If k 1 	 C Ct 	
--- 

b(t' 	a ) 

	

tthere Z 
= 	ot 

_2_ 

	

i?ht E 	 2 
L'aO 	

2_t)(1hu] 
 

If a = 0 e 	 C - E 	E 
k=1 

there Z = bt2/6 



A4.2.2 Increasing Axial Load 

Lotting the increasing axial load = AP 

AP=A -A 

	

C 	t 

In terms of the compressive strain 

E bt(1 - a /t) E 	 ( /. 

	

s 	e 	c 	2v \ 	kV/t) k 	1 11 
2(1 -v/t) 	L' 	' 	1-a/LjJ 

A4.23 No Increase in Axial Load 

AA 
C 	t 

In terms of strain 

a/'t 

	

= cb 	- 	 t 	
(A4.7) 

If =1 	cet 

Ifa0 =O 

In terms of v 

(V) 2 
2 f - a71 T - 	

+ O. = 0 	 --- (J4.8) 

If k=1 	v/t=O. 

If a= 0 	v/t = i/(i + 

149 
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A-4 -3 CENTRAL GA? IN TALL 	ae/t 	1 - 2v/t 

	

v/t 	£t/ ( c + c 

c (t - 2v + a ) C 	 e 

	

c 	2(t-v) 

	

I 	Et( 2V_t+a) 

	

Et 	2v 

A C 	 e 
c 	2 	2 

6 

p 

a 

At 	
°t 

+ 0 (t 
- 
a)b 	

: 

A4.3.1 Moment 

Taking moments about the centre line of the wall  

b(t-a) 

24 	[ 0 + 	(t + 2a) + ( oc + .) (2t +  a)] 

.0 
t 

4-- 

(AL.9) 

 

In terms of compressive strain 

Ebt,2 6  
N 	4ry 

 
3 ) + 3(c

a  
	- 

2 	2 

- -) ~ -)J 	0) 

	

If k = 1 	See equation AI,3 

	

If a e  = 0 	Not valid unless Ic = 1 • See equation 

If k=1 

	

a 0 	See equation A).. 
C 

A-4 . 2 Increasing Axial Load 

Let the increase in adal load = 	P 

AP= A -A.. 
C 
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In terms of the compressive strain 

E (1 - a /t)bt c 
AP 

= 	8(1 	
[2 (1 - 2v/t) 	(1 + a. /t) 

- k [14v/t - (1 - a/t )} J 	--- (A4 .11 

A4.3.3 No Increase in AcLal Load 

Ac = At 

In terms ofv 

	

v/t = 0 
+ a/t)(1 - k) 

+ o. 	 --- (.12) 
b(1 + k) 

In terms of k : 

k 1 + a/t + 	- v/-b) 
 

	

tit 	4 (O.-v/t) 

A4.4 NONET AN]) AXIAL LOAD PREDICTED PROM STRAINS 

Tect of aeand  k on the Moment Predicted from Strains 

When experimental strains are used to predict the moment, the magnitude 

of this moment will depend on the chosen values of effective gap and the 

unloading to loading modulus ratio. 

Figure 4.5 shows the variation. It is based on the following equations 

Solid Section 

Using equation 104-5 
ES c c bt2  

6 

;there k = 1 
a0 e 
C=E 

C t 

(i.ii) 

Section with Gap 	a./t. 1 - 2v/t 
	

M 

Using equation At.1 0 and writing it in terms of E p  where 

E 	(1 - ae/t)E 

h5 (f -v/t)(1 - 	[ as equation A-11.10 ] 	--- 
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Dividing equation 	by its value when k=1 and aO gives 

r 
Lk 14 1,ae=0 	 - a/t) 	as equation t1..lO 	--- (.16 ) 

3. Section with a Gap a/t 4 1 - 2v/t 

Using equation A4.2 and writing it in terms of E 	gives exp 

C bt21? 	 a3 	2 = 	C 	
[(i - 	+ 	- 2v ( - 1)] 	--- (.17) 12(1 - \r/

_ 

t)(1 - a /t) 
e 	t 	t 

Dividing equation A4.1 7  by its value when k = 1 and A 
e=0 gives 

1
= 2(1 	/+)(i - a7 	[as equation A4.171 	--- (A.18) 

I. RelationshiD between v/t and k 

The. relationship between v/t and k is given by equations A)4.8 and A4.12 

Effect of a and k on the .da1 Load }redicted from Strains 

If the axial load increase is predicted from experimental strains, the 

magnitude of this predicted. load will depend on the chosen values of 

k and a 
e 

Figure 4. 7 shows the effect of k and a   on atal load. This graph is 
based on equations A.6 and A4.11 which give 

AP 	RE btE Ak exp 	C 

where R is given by 

a/t 1 - 2v/t 

 

(A)1..19) 

Lv/t 	a /t - 1 

- 7717---77T) (AL,  .20) 

ae/t 1 - 2v/t 	II  
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A4 .5 STRESS DISTRIBUTION DUE TO ECCENTRIC LOADING IN A SOLID, LINEARLY 

ELASTIC WALL ITITH NO TEIrSILE STRENGTH 

Consider a wall under two differring loading arrangements 

An increasing moment applied to a wall under a constant precoinpres-

sion (constant axial load and an increasing moment). 

An -increasing moment applied to a wall with an initial precompres-

sion which increases in proportion to the moment. 

Figures A1.1 and A4.2 illustrate and explain the two cases. The 

following points should be noted 

1 • Before tensile cracking occurs, the strain planes in both cases 

have the same slope for the same moment. With constant precoin-

pression all planes pass through a coimiion point situated on the 

centre line of the wall at a level equivalent to the constant 

precompression. With increasing precompression (increasing in 

direct proportion to the applied moment) all planes also pass 

through a common point at a level equivalent to the initial pre- 

compression but offset from the centre line of the wall (this 

offset depends on the ratio of the increasing precompressive 

force to the increasing moment). 

2. The diagrams are dram to the same scale thus giving an idea of 

the relative magnitudes of the stresses with increasing moment 

for the particular loading condition. 

A4.6 NONE'IT CAUSING TENSION IN THE WALL 

In the test models, tension occurs when the bending tensile strain ex-

ceeds the precompressive strain. In terms of stresses this occurs 

when 

1 . A Solid, Rectangular Section 

N = Pe ; Y = t/2 ; I = bt3/12 ; A = bt - with these values equation 

AI,22 gives 	
e = t/6 	 --- (A1.23) 

the eccentricity beyond which tension. 

occurs. 
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A Rectangular Section with a Central Gap 

H = Pe ;Y = t/2 ; I = b(t3  - a3 )/12 ; A = b(t - ae) - with these values 
equation 4.22 gives 	

a2 
e (t + ae + 	 --- (M.24) 

t 	
larger eccentricities causing 

tension. 

Equation A4.24 is illustrated graphically in terms of e/t and 

ajt (fig 4.9). 

A Rectangular, Solid Section with a '' Modulus larger than 

the Compressive Modulus (k> 1) 

An unloading stress-strain curve different from the loading curve becomes 

significant ror 1:1:6 and 1:2:9 mortar brickwork. The eccentricity 

causing tension depends on the loading stress-strain curve for the 

side under increasing compression and on the residual strain at zero 

stress for the opposite side.. (here a linear unloading modulus depends on 

the residual strain). Both are represented by a linear curve as 

shown in the following sketch. Typical stress and strain planes are 

also shorn. 

/ PI 
VPE

p 
 

_-4- residual 
strain 

LO/E 

k =1 k>1 

! 

IL 
! 

L. A Rectangular Section with a Central Gap and k>i 

Considering a similar' stress-strain curve as sketched in the previous 

section the case is considered where ae/t - 1 - 2v/t. 

Equation 'J,1.15  in terms of the tensile strain becomes 

- 	 a 

M = )8(v/t)(- a 7E7 [L( - k) * 2(k + xt 

2 	2 

+ 3(k -. 	- ) + 	 --- (.2) 
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where 	 v/t 
= c 1 

For no tensIon 	<btkE 
exp 

Substituting this into equation A4.2 

e
(7)71- eu1t) [as equation Ah.2] 	(A.26) 

If k = 1 	Equation 1U4.24 is obtained. 

Ifk>1 
e 	1 1-vJ 	

(17) v/t 	Nic=i , a
e =O 

the latter term of the equation is given by 

equation A1.16 or figure h. 

A siridlar procedure is used for the case ajt 	1 - 2v/t 

The effect of k on the eccentricity causing zero stress on one side of 

the wall is shown in figure 1.9 for k = 2. 
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PI 

P:2Obt 

'I 
N 

z 

M 
z 

-E 
bt P= 20bt 

M= 20Z 

e 

Lo 

L 	P= 20bt 

Mz24Z 

e: t15 

P 

constant 

increasing 

VI 

ress diagrams drawn 
scale with I=t 

Fig. A4-1 	Case 1 - MOMENT WITH CONSTANT PRECOMPRESSION 



1 .  

I 

Newt 

p+v' 

M 
2 

P+v 
bt 

bt 

V 

-F.— 
7 

15? 

t wall 

intersection of 
strain planes 
(no tensile cracking) 

Previous Cases 

Super imposed 

\ 	' 

'I 
'I 

-. 	a constant 
V- - 

NOTES 

TJNCRACKED SECTION 

Nadmun & IIinirnum Stresses 

P+V N 

where Z = bt 2/6 

Load Eccentricity 

e = M/(P-i-V) 

CRACKED SECTION 

Nadnium & 1Lnijnum Stresses 

* 

0niax 	--lb-b(1 - 2 e/t) 

min= 0 

Section Properties 

Effective depth = t - z 

Effective eccentricity about ceiibre 
of effective depth = e - z/2 

Effective eccentricity = (t - z)/6 

uating two previous expressions 
gives z = 3(e - t/6) 

Area under stress diagram = 
b(t - z) =P+V max 

• 	 2(P+V) Giving a 
MOO,  OC - z) 

Fig. A4-2 	Cc-,e 2 - MOMENT WITH INCREASING FRECOMPRESSION 



APPENDIX 

A5.1 EQUATIOi3 GOT n!cT1E BEHAVIGIB OF A SOLID, LI1T:RLY ELASTIC 

WALL :JITH NO TSILESTRENGTH 

41 

e + y 

(t - ZVO 	Z/2 

A5 .1 .1',,.-,Tall u±th No Tensile Cracks 

19 	+ P(e + y) = 0 	 (.i) 

where e = the eccentricity of load P 

If the effect of a--dal load on lateral deflections is neglected 

equalion A5.1  becomes 

2 
dx' + Pe0 
	

(i.2) 

A.5.1.2 Wall with Tensile Cracks 

+ P(±) = 0 
	

(Ar' 

w.aere z 3(e y - t 

If the effect of adal load on lateral deflections is neglected 

equation p5.3 is still used but z b000IQes 3(e - 
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A5.2 EQUATIONS FOR WALL DEi'LECTIO1T AND ROTATION 

N2  

Q2ffc\ 

 Mi '2 

ih 

X1 

+ y 

h 

H1  

A5 .2.1 Wall with No Tensile Cracks 

From equation A.1 the lateral deflection and end rotation become 

y = - •p.-. 
cos qx + 	1 _(N1 cos qh + N2 )sin qx 

- 	 'Ph 	
2 

+ 
N1 	

(A.b) 

there q 2  P/Ea 

N.h 	 N h 1 	 1 	2 - 	1 	 1 	 *
roff 

Gi 	
2u -tan 	

(2u) 	 (2u) 
2 - 	

- 2ui 

where u 	Ph 

If the effect of axial load is neglected, eo.uation A.2 gives 

~ 	
2 	

(2i - N, )h.x 
= 	

1 ( 1__ 	 2 
6 	 •..-. (.6) 

2U •- h,___1 	1.12   
IT" 	 --- (.7) 

- 

h 2 
=  

see T oheko (eferenee 37, Chapter 2) 
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A5.2.2 Wall with Tensile Cracks 

The effect of axial load on lateral deflections and end rotations is.-..  

taken into account by Sahlin (30, 32) and Angervo & Putkonen (2). 

Equations A5.2  and A.3 are used in the following analysis  in which the 
effect of axial load is neglected. 

Two portions of the wall have to be considered - a length where the 

eccentricity is greater than t/6 thus causing cracking and a length 

in which there is no tensile cracking. 
N2 	 0xh 

C 

	

£ 	
+N2 	= 	 2P 

h 	2 	
9Fro ( - (M1 - 	+ N2 

)X) ) 2 

	

A 	 h xh 

	

/ 	 C 
1i 	I 

I. /Ch 	= 	

:1+ 

	

Ni  M/ 	
= N1 + H 

It is assuned that 142  will never be large enough to cause tensile cracking 

in the top section of the wall. The resulting equations for deflection 

and rotation contain many terms and only one of main interest is given 

- the value of @1 

Ic 	1 
0
1 (t/2 - N1  /P + A) 	 --- (A5 . 9.) 

where k = 2P2hI/9b(1 + 

r=h/h 

Nh 
A = _4(i - r)3  - —(i - 3r + 2r3-) - 

I + 1I log 
0 ( 

t N 
2L (N1 + 1-,! 2)r 
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For the case where 1!2  0, equation A.9 becomes 

Nh 

3EIc 	 . . 	--- (5.1o) 

there= 6e/t 
)3 

+ 18 (e/t )2 
(•5 - e/t - 2eft - 	log 1. 5 - 3e/t 

e=M1jP 

The relationship between c and e/t is illustrated graphically in 

figure A5.1* 

0.6 

C 

0.4 

0.2 

 

0.1 	 0.2 	 0.3 	 0.4 	 0,5 

e/t 

Figure A5.1 	The Relationship Between c and e/t 

"Also presented graphically by Sahlin (o, 32) based on work by 

H. Nylander - Undersökning av brkraften hos murade cementstensvãggar 

(Investigation of the Load-CT.'rying Capacity of Cement Block Masonry 

Walls), Betong, }ifte 3, Stockholm, 19114. 
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APPHDIX 6 

A6.1 TIlE AXIAL LOAD - MOLiEIT fl'TT?JkCTIOiT DIAGRAM 

A6.1.1 linear Stress-Strain 

The walls are assiried to fail when a limiting stress is reached. The 

failure stresses are taken from values obtained in walls axially loaded 

to failure : 

1790 lbf/1n2  for a 1 :*:3 mortar brickwork. 

1340 lof/in for a 1 :1 :6 morar bricwor. 

1000 lbf/1n2  for a 1:2:9 mortar brickwork. 

Solid Cross-section 

To obtain the ivadmum stress, equations based on those in figure A4.2 

are used. 

No tensile cracks : 

Tensile cracks : 

- QN 
bt + Z 

3bt(1 - FIt'_
) 

(A6.i) 

(A6.2) 

where Q = axial load on the wall. 

Cross-section with a Central Gap 

The mortar joint is taken to be the critical section, thus the actual 

gap in the joint is considered - 2.62 in, the width of the frog in the 

brick (see ketch). 

No tensile cracks : N = ( 0 1 - 02) 	--- (A6.3) 

Q = b(t-a)( 0- 02)/2 --- (A6.4) 

where I = b(t3 - a3 )/12 

With tensile cracks : The moment and axial load are 

calculated directly from the stress distribution over, the 

cross-section of the wall. 

j I 	 - 	tenile 

01J 	 crack 

:02  



o 
ON 

Stress 

'I Wi 
0 

0 
0 

. , 

Strain 
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A6. 1 .2tperirnental Stress-Strain 

The stress-strain diagram obtained from an axially loaded wall is used 

to predict the stresses in an eccentrically loaded wall. Failure is 

assumed to occur when a limiting strain is reached. Using this strain 

as a fixed point various strain planes can be dram and the corresponding 

axial force and moment for each plane can be calculated by dividing the 

cross-section up into parallel sections with the stress variation linear 

over each section (see sketch). 

The limiting strains have been estimated from the ma-mum observed strains 

in the test models (Table A6..1). The strains used in the calculations 

are 	 6 3000 x 10 	for the 1 ::3 mortar brickTork. 

000 x 10-6  for the 1 :1:6 mortar brickwork. 

5000 x 10 	for the 1:2:9 mortar brickwork. 

Stress-Strain Curve 
1 :*:3 Mortar Brick-
work 

Strain 
L) xlO 	 xlO 

_2 

Gap 

0 N  ---tensile 
crack 

Strain 

! 

* Stress 
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TA]3LE A6.1 - NAXEMUN RECORDED CO1-PRES3IVE SAIN 

Wail No. 	 Strain Moment Stress 

Flexural 	Axial I Sum Strain Ultimate Strain 	Ultimate 

xl o_6 1 	
xl 0 	lbf in/ft Thf/in2  

1:2:9 	 1 1 
Mortar 

r7312 	4424 1  919 533 
772 82 4003 -  

WS4 	3439 1762 5201 66 76 600 - 

WI 	 - 2400 2400 - - 845 1005 

- 2485 2485 - - 1005 1185 

i:i:6 
Mortar 

WS5 	2459 773 3232 77 85 )400 - 

WS7 	2964 .939 3903 88 99 600 - 

143 	 - 1782 11782 - - 905 1150 

W. 	- 2630 2630 - 1185 1340 

Nortar 

WS9 	1616 454 2070 88 .93 400 - 

T.JS10 	2121 788 2909 132 137 600 - 

W6 	 - 1590 1590 - - 1180 1420 

w6 	 - 2360 2360 - - 1380 1420 

- 2285 2285 - - 1720 1790 

Notes 

For wall properties see Table 3.1 

WS = wall-slab test model. ; 	W = wall loaded adally to failure 

Flexural strains are measured in the more heavily loaded wall 

section and includes strain due to slab load. 

Flexural strain measured at this moment. 

3 	Axial strain measured at this stress. 
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A6.2 RELATI0N BET1ELH ULTIIIATE M02!T AND PRECOMPRESSION IN THE JOINT 

TEST NOD-EL 

Using the axial load - moment interaction curves, a curve can be drawn 

relating ultimate moment to precompression for the test models (fig 6.11). 

The more heavily loaded wall fails. From the axial load - moment inter- 

action curve, the ultimate moment is imoun for a given axial load 

(in this case P+v). If there are no tensile cracks at failure, the other 

wall is assumed to take the same moment. If there are tensile cracks, 

the more heavily loaded wall takes a greater proportion of the moment. 

Relationships for the latter case are obtained from figure 6.1 using 

a linear approximation. 

Relationships for three gap width ratios are given below 

alt = O.5 	
= 0.128 	+ O. 	 --- (A6.5)

Pt  gFI5  

V2  - (3.12(P+V) + 0.726N2 )v + 0.726(P+V)M2  = 0 --- (A6.6) 

(e/t) 	= 0.22 tension 

alt = 0. 64 	N2  

FS 
= 0.154 . 	+ 0.41 	 --- (A6.7) 

V2  - (8.57(P+v) + 2.16N2 )V + 2.16(P+V)N2  = 0 	--- (A68) 

(e/t) 	= 0.29 
tension 

a/t0 	
"2 gm  s gh5. = 0.103 - + 0.475 	 --- (A6.9) 

ft 

V2  - (2.04(P+v) + 0.4431i)V + 0,443(P+v)N2 = 0 	--- (A6.10: 

(e/t) 0.12 tension 

there 142/0N >, 0.5 ; if less 14 = g115/2 ; (e/t)tension based on 

an experimental stress-strain curve. 

Using these equations,. V may be found for a given value of P+V and 1'12 

(the moment in the more heavily loaded wall section). Knowing V, the 

slab moment, 	and the precompression, F, are found. The curves plotted 

in a dimensionless form are the sane for the three types of mortar tested. 
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A6,3 DESIGN OF THE SIX INCH SLAB 

A6.3-1 Specifications 

Design Loads 

The raximuin precompressive force, P, applied to the wall is 30 tons. 
The madminn possible jacking load, V, then becomes 16.2 tons (0.4P). 

The rnaDdrnmi shear force is either 16.2 tons or 30 tons as the slab 

levers the two wall sections apart; 

Concrete and Steel Strength 	 0 

Concrete 

A 1:2:14 mix by voline. 

The 14 inch cube strength at 28 days = 5300 lbf/1 2  n (average of 3 cubes). 
The equivalent cylinder strength is approximately 0.9(5300) = 147O lbf/in2  
(25). 

Steel : 

Plain iiild steel bars were used. 

Yield stress 36 000 lbI'/in2  
Ultimate stress = 63 000 lbf/1n2  

Dimensions and Reinforcement 

Width 
27 in IS 

.0 	
/• 
	

18x 	in $ bars 

@1in c/c 

Values froi reference 7 used. They compare well with experimental 

values. 
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A6.3,2 Ultimate Moment 

If the ultimate moment is reached the slab .Till fail by yielding of the 

tension reinforcement (p <pb).  •Using equations from a textbook by 

Uinter, Urquhart, 0' Rourke and Nilson 40)1  the ultimate moment is given 

by 
Pf 

N = 
U 	 s y l Tz = A f d 0 - 	p) 	 --- (A6.11) 

C 

= 365 000 lii!' in 

This is larger than the ma.dmirni design moment = 326 000 lbf in 

Notation to equation A6.11 

d1 S.Iin 

A = 2 in (18 x 3/8 in din. bars) 

P = A8/bd1  = 0.0137 

= 470 1bf/in2  

If = 36 000 lbf/1n2  

a = 0.69 

= o.1o6 

a faI'c 

C =f be air 

d1  

['3 

• 	3c 

z 

I 
_J 

 

T = A f 
S  

C =ctf be 
C 

A6.3.3 Ultimate Shear 

de Paiva and Siess (27)  have shon that deep beams can support a 

considerable additional load beyond diagonal cracking for shear span to 

depth ratios, a/cl 1  <. approximately 3. They give an equation 'thich 

predicts the inclined craoldng load due to diagonal tension 

V = 2.1L 	+ I6001DVd1 /N 	 --- (A6.12). 

For values of f 	000 lbf/1n2  a and p are constant (0.72 & 0i42). 

a. decreases by O.OL for every 1000 lex/in above 5000 !L-'L//in 

decreases by 0.02 for every 1000 lbf/in2  above 0O0 lhf/i 2  n. 



where v 
cr 
V cr 
M 

V 

average shear stress 

v bd 
cr 1 

moment at section considered 

shear at section considered 

The critical section is assumed at the middle of the shear span (for 

short beams the crack is initiated at the middle). 

For a 9 inch shear span of the slab (aid 1  = 1-7), Vcr= 221 lbf/in 2  or 

a shear force of 1I.I tons. This umderestiinated the nadirnmi possible 

load but should that load have been reached final failure would not 

have occurred. 

For a li inch shear span (if levering of walls occurred)(a/d 1  = 0.7h), 

Vcr=  315 lbf/in2  or a shear force of 20.5 tons. Thus if lifting of 
the walls occurred during ':a test with a 30 ton precompressive load,' 

diagonal cracking will occur. This will not cause failure, the ultimate 
load reaching up to four times more than the cracking load.' 

A6.3.4 Bond 

The minimum length necessary to develop, by bond, a given bar force, 

is given by (ho) : 

Ld = A f/u 1 	 (A6.13) 
s 

Su

=81n 

where I 
S 	 - 

= stress in steel at poi nt of maximum moment 

= 26 000 lbf/in 
F_ 0 =  sum of bar perimeters 

= 21.2 in 

u, = bond stress for plain steel bars 

= 300 lbf/in2  (ho) 

Adequate bond length is provided. 

A6.4 SLAB FOl?. TT MODEL NO. 1 

2 
1:2:9 mortar 	 in precompression. 

A6.4.1 Slab Properties 

Concrete Strength : 3x b inch cubes at 30 days = 460 lbf/in 2  

Size : 4 x 11 x 27 in 

Reinforcement : 13x * in diameter bars at 2 in c  
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A6.5 SLAB FOR TEST NODEL I.M. 3 

1 :2:9 mortar walls at I00 lbf/in 2  precompression. 

A6.5.1 Slab Properties 

Concrete Strength : 14x b inch cubes at 28 days = 616o lbf/in2  

Size: 4x17x27in 

Reinforcement : 13x in diameter bars at 2 in c/c 

f = 36 000 lbf/in2  ; f = 55 00 lbf/in2 * 

At = 0. 64 in 	; p = 0.007 

d1  = 3.14 in 	 ; cx = 0.66 	; 13 = 0.386: 

A6..2 Ultimate Moment 

From equation A6.11., the ultimate moment is 

11 = 76 000 lbfin 

At that moment the slab would fail by the y1elding of the tension 

reinforcement. In this case there was compression steel in the top of 

the slab (same amount as the tension steel) - this would retard failure 

of the concrete in compression and the slab would be able to take more 

moment allowing the steel stress to reach its ultimate tensile capacity 

(although together with large crack widths). 

Increase due to top reinforcement 

N = Af(d1  - d) 	 --- (A6.14) 

= 100 000 lbf in 

where d is the distance from the surface of the slab 

to the centroid of the compression reinforcement 

o.6 in 

At this moment the slab would hinge about the compression steel and rotate 

at constant moment. 

experimental value 
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APPENDIX 7 

A7.1 Fnite Eaement Analysis of the Floor Slab Deflection 

A standard program provided by 1B11 is used - GC 21 (Analysis of a plate 

in bending) (iS). It was rim on an IBM 360150 computer. The finite 

element approximation of the slab using rectangular elements is shown 

in figure A7.1 

The program allows the calculation of the displacements, internal moments 

and reactions of a plate of any shape in bending. The plate can be 

supported in any possible way and loaded by any external force.* 

The plate can be of constant or variable thickness. It can be simply 

supported or clamped on separate points or along segments of a straight 

line. The values of the displacement at some points can also be imposed; 

this possibility is used in the analysis of the subsidence of a support. 

The external forces are formed by distributed vertical loads, concentrated 

loads and concentrated moments applied to the boundary. Several load 

cases can be processed in the same run. 

The mathematical model of Kirchhoff is used; in this model, the unknown 

is the vertical displacement of the middle plane of the plate. The 

numerical calculation is then performed by the finite element method. 

The curved boundary is treated as polygonal lines; the plate is divided 

into triangular or rectangular elements; both types can be used together 

in a same computation. 

Rectangular and triangular elements (with four and three nodes respec-

tively) are used with six parameters to each node. The deflection, w, 

along the sides of an element is a polynomial of the fifth degree and 

the normal derivative, dw/dn, is a cubic polynomial. The elements 

satisfy the displacement compatibility (both deflection and slopes are 

continuous across element boundaries). 

* This paragraph and the fdllowing two are obtained from section I of 

the instruction manual (15). 
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A7.2 Finite Difference Analysis of the Floor Slab Deflection 

Before the finite element program uas available a finite difference 

technique was used to obtain the slab deflection'. A set of l2 

simultaneous equations obtained from the 16 inch grid representing the 

floor slab -rere solved by a program uritten in Fortran IV on an IBi' 

360/50 computer (fig A7.1 ). The program incorporated a standard matrix 

subroutine, SIMQ, tfnich solves AX=B by Gaussian elimination (X & B are 

single column matrices). 

Theory 

The basic equation to be satisfied is : 

&w/5x + 2ôlw/6x2ô y2 + 6t/6yIl. = oJD 	(A7.1) 

where D = Et.3/1 2(1 - v 
2  ) 

q = load/unit area 

t = thickness of the slab 

v = Poisson's ratio 

The finite difference approximation is 

20w0  - 8 Dil  + 2 Z  w5 	= 	q0/D 	--- (A7.2) 

where A = mesh size 

1 

-k 

The boundary conditions are given by (perpendicular to x direction) 

Fully fixed boundary 	8w/6x = 0 	 -S-- (A7.3) 

Simple support 	 62u/6x2  = 0 	 --- (A7.L) 

11 

see, for example, moshenko & Iothowsky-Krieger, Theory of Plates 

and Shells, P. 361, (36). 
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Free edge (two conditions). : 

62v/6 x2  + vöw/ö y2  = 0 	 (A7.5) 

+ (2 - v)63w/x6y2  = 0 	--- (A7.6) 

thite difference approximations 

(Ow/ox)= 2X 	 W -7) 

w + w - 2w 
(62/6x2)

0 

= 1 	3 	0 	 --- (A7.8) 

- 

(62w/6y2) = W2 	"74 	22w 0 	 --- (A7. 9) o 

if -w 1  - 2w + 2w 
(63w/5x3) = 9 	1 	1 _- 3 	 -_- (A7.10) 

0 	 2X 

w + w - WL - w - 2w + 2w 
(03w/OxOy2 ) = 	8 	 1 	- (A7.11) 

0 	 2X3 
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I  	 I y 

6 * 8 elements 

CPU time 260 sec 

' I  

1>4 

116 in 	 II 	12.2in 

16 in 
161n 

10 x 8 elements 

FINITE ELEMENT 	CPU time 400-500 sec 

'I 
- 7 - 

Ii 
	 FINITE DIFFERENCE 

II 
- 	 Slob divided into o 6* 8 grid 

- 	 CPU time 	20 sec 

Fig. A7.1 	FINITE ELEMENT AND FINITE DIFFERENCE MODELS 
OF THE FLOOR SLAB 


