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Abstract

The motion of a single duck wave energy converter in the presence of
waves is described by a linear matrix equation, formulated in the
frequency domain. An equation for the extracted power in spectra is
derived for any linear controller. The parameters in the equation of

. motion, namely, the radiation impedance and wave force coefficients, are
found from a model by experiment in a wave tank. Predictions for the
absorbed power are compared against further measurements made in the
tank when the duck’s motion is governed by a simple linear controller,

implemented on a digital. computer.
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Introduction

The duck is a partially submerged rigid body which extracts power from
water waves through its motion. The design considered here is intended
to be a single unit which would operate in ocean waves and generate
electricity. We investigated the absorption characteristics of a
particular solo duck, with the ultimate aim of optimiéing its design

from productivity and cost constraints.

There are two areas to be explored when designing a device of this type,

the shape and the motion control for maximum power.

We took two approaches to the appraisal of shape. In one, a scale model
of the duck was tested in a 3D wave tank with its motion governed by a

particular linear controller. In the other, a minimal set of equations
was sought which would describe the motion given scme assumptions about

the physics.

Model testing under simulated operating conditions has the advantage of
differing from the final device only in scaie. As a result some
non-linearities are built in correctly, although others do not scale
properly. The method is one of trial and error with a great many
parameters, but with the possibility of discovering some empirical
rules. One drawback of this approach is that device shape and motion

control remain completely intertwined.

The most fundamental equations would describe the motion of the water in
the presence of a general boundary. The duck moves as a result of the

pressure distribution on its surface due to the water, and since it is a
rigid body this distribution can be integrated over the surface to yield

forces and torques.

Newman (1976) starts from hydrodynamic theory, forms surface integrals
and obtain impedances which describe the net effect of the pressure
distribution on the rigid body due to its motion and the waves. This
approach leads to two important theoretical results which are used here,
the symmetry of the impedances and the upper limit on capture width as

the device width tends to zero. It also provides a way to calculate the




impedances from the device shape, analytically if the integrals are of a
simple form or else by finite element techniques. In principle, an

equation for the optimal duck shape could be derived using this route.

We follow the phenomenological approach described by Falnes (1980) and
Evans (1979). Equations are written down and impedances defined without
explicit reference to the hydrodynamics. The impedances are available

through the measurement of a model in a wave tank.

The equations are formulated in the frequency domain and, inevitably,
restricted to the linear case. Fourier analysis offers the possibility
of identifying non-linearities through the harmonics when the effects
are small. Where appropriate, equations are written in matrix form with
the ‘intention of increasing ease of manipulation, readability and
generalisation.

Linear equations of motion and control are defined, then combined to
give the velocities and forces acting on the duck as a function of the
control parameters. Equations for the extracted power and efficiency

are derived and control parameters which maximise them are given.

Experiments are carried out to determine the parameters in the equation
of motion fér a particular duck shape. After further processing the
parameters are used to predict efficiencies under a limited set of wave
and control conditions. The predictions are then tested against

measurements made under those conditions.

The effect of control parameters on efficiency is discussed further by
evaluation of the efficiency function. The mathematical model aliows
linear controllers to be tested without being implemented. Finally,

- some remarks are made about full scale applications and possible reasons

for departure from linearity noted.




Mathematical model

The duck’s motion is assumed to be linear so that solutions for the

motion can be superposed. All quantities are defined in the frequency

domain. Mechanical impedance is strictly the ratio of force to

velocity, but is used as general term covering the ratio of force to

wave amplitude as well.

Definition of the variables

a)

b)

The state of the duck motion is represented by a force and

a velocity vector.

The incident waves are represented by a distribution of amplitudes in

frequency and angle.

Definition of the impedances

c)

d)

e)

The interaction of the duck motion and the water is represented by

a radiation impedance matrix.

The diffraction of incident waves is described by a force coefficient

vector with wave angle dependence.

The restraining forces are made functions of the motion by a
defined control matrix.

Derived quantities

£)

g)

The extracted power depends on the three impedances listed above.

A maximum for the absorbed power occurs when the control matrix is

the complex conjugate of the radiation impedance.

Definition of efficiency

h)

Efficiency is the absorbed power divided by the power incident per
metre and the duck width.




Experimental model

A physical model was used to determine the impedances and to measure

efficiencies when controlled by a computer.

Physical model

i) The duck is represented by a scale model in a wave tank with three

degrees of freedom: pitch, heave and surge.

j) Measurements can be made of the torque and 2 forces acting on the

duck, its velocities and the wave heights in the tank.
k) Each of the duck motions can be driven by a motor.

Measurement of efficiency

1) The duck’s motion is controlled by a digital computer which calculates

the force drive requirements from measurements of velocity.

m) Absorbed power is calculated by integrating the instantaneous power

over a whole number of cycles.







Main conclusions

Measurement of the impedances

1)

2)

3)

The measured radiation impedance matrix, shown in figure 3.1, has a
high degree of symmetry about the leading diagonal, in agreement
with theory, giving confidence in the experimental method.

The force coefficient vector can be determined from any linear motion

in incident waves.

Reflections from the wave tank walls cause most of the experimental noise.

Comparisons between predicted and measured efficiency

4)

5)

Using the measured impedances the efficiency can be predicted within

the limits of tank repeatability for regular waves and small mixed seas.

The maximum efficiency for a controller with four terms can be

predicted accurately in regular waves.

Predictions from the impedances for small waves

6)

7)

8)

In regular waves a capture width 1.6 times the duck width is achievable
when the wavelength is about 15 duck diameters. For longer waves

the capture width falls away from the small device limit.

In reqular waves the duck with a four term controller can almost reach
the maximum power absorption obtainable when the controller is the

complex conjugate of the radiation impedance.

In mixed spectra a controller with four terms achieves about half
the efficiency of the complex conjugate controller if it does not

have the correct frequency dependence.




General experimental description

The set of experiments described in this report were carried out in the
wide tank of the Edinburgh University Wave Power Project. For those not
familar with this facility some background information about the tank,

the apparatus and the experimental methodology is given.

In the wide tank we can generate regular waves with chosen height,
frequency and angle or a mixed spectrum comprising many such components. .
Under computer control the outputs from an instrumented model can be
sampled as the wave conditions are varied. Alternati§e1y, a model may
be driven directly in the absence of waves. Experiments consist of many
automated test” runs, usually with systematic changes between each test,

but all with the same physical arrangement.

The duck was originally intended to extract power from the incident
waves through the induced pitching motion. After years of testing in a
narrow wave tank the shape evolved from a plane flap into an asymmetric
cam with rounded corners, which moved in heave and éurge as well as
pitch. The duck model used for this set of experiments had the same

cross-section as the last in that generation.

The duck model was supported and its motion controlled through a rig
which was suspended from bridges above the water surface. The rig was
originally designed to straddle the parallel walls of the narrow wave
tank in which the duck model was almost as wide as the tank. As a
result only motion in pitch, heave and surge was possible, although this
is not thought to be an important restriction.

The forces and velocities measured at the duck axis were available for
sampling by the overseeing computer. In addition the velocities were
used by a BBC microcomputer to calculate force requirements for the
rig’s drive motors. The particular control functions of spring and
damping implemented on the BBC controller should be thought of as being
a subset of the complete linear controller described in the text.




In most experiments the duck was driven sinusoidally either directly or
by the waves. After a minute’s settling time the motion was steady and
sampling was carried out for a whole number of cyclés. Other
experiments were conducted in pseudo-random spectra, again ensuring that
the sampling time equalled the repeat time of the wave sequence.

The long-term repeatability of wave amplitude was around 4% for the
small waves used. Short term repeatability was better at about 2%.
When appropriate, we relied on good repeatability over a few hours by
replacing the duck model with a wavegauge and rerunning the wave
conditions. The tank transfer function was used to set up the waves,
but measurement at the model position also allowed the amplitude and

phase of the wave to be determined more accurately.

Two types of wavegauge were used. The heaving float gauge measures the
movement of a float on the water surface. It is best suited to the
measurement of parallel waves, but was used as the standard throughout
with an angle correction where necessary. The wire wavegauge measures
the conductance between two half immersed rods, providing wave

measurement in a much smaller area.




1) Mathematical description of the system

The interaction of the duck motion and the incident waves is described
by a linear equation. A control equation of similar form is written

down and expressions derived for the extracted power and efficiency.

Definition of the variables

In three dimensions a rigid body can move with six degrees of freedom,
which comprise a rotational and a translational mode for each dimension.
However, the duck model is constrained to move in a vertical plane with
just three of these modes, known as pitch, heave and surge. The state
of the duck may be represented by six functions of time t, chosen to

be three forces acting on the axis and three velocities measured at the

axis. The incoming wave is a function of position r as well as time.

T(t) torque acting in pitch 8(t) angular velocity in pitch
F(t) force acting in heave z(t) velocity in heave
E(t) force acting in surge x(t) velocity in surge

¢(t,r) incoming wave field

The same symbols are used to represent the variable and its Fourier
Transform. When the functional dependence is not explicit the Fourier
Transform is to be assumed.

T .
et
f(w) = % g f(t)e dt (1.1)

[¢]

£(8) =1 ). flae™ (1.2)
n=-00
Where T is the sampling period and is always a whole number of cycles
w is the angular frequency and «= 2nn/T

Note that f(t) is real and therefore f(w) = f?—w)

Since the equations for each degree of freedom take on a similar form it

is convenient to define two vectors :

F=T u= (9 (1.3)
E 2
E, =




& (r,t)

Displacements and forces

\

‘Y’I T(z,t)

'

y,

Figure 1.1 Definition of the variables

10



An individual wave front ¢(t,x,y) is represented by

ikx cosx + iky sinx + iwt

¢$(t,x,y) =Re { a e } (1.4)
Where a is the complex amplitude a= AeL¢
@ 1is the angular frequency w= 21

« 1is the angle of incidence
k is the wave number k(w)

I
3
~
y

Equation of motion

The linear relationship of the variables can be expressed in an equation
of motion. Following Evans (1979) the external forces are equated to
the hydrodynamic forces which are separated into two parts,

corresponding to radiated and incident waves.
F(t) = E(t) + Eft) or F(w) = E(w) + F(w) (1.5)

Where F, are the forces due to the motion of the duck in the water
and are linearly dependent on u only.
F, are the forces due to the incident wave and are

linearly dependent on a only.

Hence the equation of motion in the presence of waves can be written as
F(o) = Z(w).u(w) + Wlw,x) alw) (1.6)

Where 2 is the complex radiation impedance matrix

A
W is the complex force coefficient vector

The equation of motion gives the duck velocities resulting from the
external forces and the wave forces. The matrix multiplication is
necessary because the velocity in each mode depends on all the forces
acting. The incident wave amplitude might be responsible for the
exciting term with the external forces functions of the motion.
Alternatively, the external forces could be generated in the absence of
waves. The equation covers all linear possibilities and is written most
simply as

F=3%2u+Wa (1.7)

11




Z is a frequency dependent 3x3 complex matrix whose terms give the
magnitude and phase of the force acting in one direction due to unit
velocity in another. It is dimensionally inhomogeneous because of the
definitions of F and u.

— — - -

Z(w) =2, 2, 2,|=| _pitch torque pitch torque pitch torgue
= pitch velocity heave velocity  surge velocity
Z2. 2 2 heave force heave force heave_force

10 L1} k1

pitch velocity Theave velocity  surge velocity

Z, 2, 2, surge force surge force surge force
pitch velocity heave velocity surge velocity

- -

The real part of the radiation impedance matrix is often known as the
“added damping ° because energy is radiated from the duck when there is a
component of force in phase with the velocity. The imaginary part is
due to the effects of hydrostatic spring, duck inertia and the ‘added
mass~ of the water around the duck.

Making use of the equivalence %E = jo the matrix can be split up into

these four parts
Z(w) = D(w) + ivM(w) + iwp+ 1 o (1.8)
- E— = — m—-

Where D, is the real, frequency dependent added damping matrix

=

is the real, frequency dependent added mass matrix

is the duck inertia matrix

[}

g

is the hydrostatic spring matrix

Newman (1976) shows that the radiation impedance matrix is symmetric
about the leading diagonal.

W gives the forces required to hold the duck still when a wave of unit
amplitude is incident. The force phase is given relative to the phase of
the wave at the origin.

W(w,x) = [W|= [ pitch torque ]
Wave amplituds

W, heave force
wave amplitude

surge force
| wave amplitude

12




Control equation

In order to extract power from the system the motion of the duck must be
controlled. This could be achieved in any manner, but here the forces F

are made linear functions of the velocities u. In matrix form

F = -A.u (1.9)

A(w) is a frequency dependent 3x3 complex matrix, the control matrix.
Its terms may represent simple springs and dampers or other linear

filter functions. For example

A constant damping is to be applied in pitch t = -db
A spring force is to be applied in heave F,= -sz = -sz/iw
An inertia term is to be applied from surge to pitch T = -mX = —iomx
A general filter function is to be applied to surge F.= —-g(w)=x
Giving
a=1|aq 0  iom |
0 S 0
1w

0 0 g(ow)

The motion of the duck is now dependent on the parameters of A.
Combining (1.7) and (1.9)

_é.u -

e
[l
+

Wa

=> | u=-(A+tz).W a (1.10)

Substituting for u in (1.9)

F=A.(A+Z).W a : (1.11)

Extraction of power

In the time domain the average power P passing through the duck axis

is given by

™ R
P=1 S T(E)H(E) + E(t)Z(t) + E(t)X(t) dt

p=1 &T F(t).ult) dt (1.12)
T [

13




Note that the definitions of F and u lead to P being negative when
power is extracted.
By taking the Fourier Transform of equation (1.12) it is shown in

appendix B that in the frequency dgnain
o0
P= 1 Y. EFlo).ulod + Flon) .u(wd (1.13)

n=1

Where w,= 2rn/T

For a particular frequency w=w,

- * b 3
P = % [E_.g + E.g] (1.14)
=% Re{g‘.g*} (1.15)
or P = % [Re{E}.Re{g} + Im{E}.Im{g_}] (1.16)

This result may also be obtained by viewing each pair F ., u, as rotating

vectors in the complex plane.

Imag
Fj = (Re{FJ} rIm{E:})

u, = (Re{uj},Im{uJ.})

. iwt
Rotating e #7

/ Real
For each mode the amplitude of the extracted power is given by the scalar
product of the rotating vectors. The factor of a half appears because

of the time average and the total power is the sum of the three modes.

If the duck is driven in calm water it can be shown from (1.7) and (1.14)
and the symmetry of Z that

P=] u.Re{z}.u (1.17)
Since power must be put in under these circumstances the equation has to

be positive for all u, placing the condition on Z that it is positive

definite. 1In other words, the duck cannot absorb energy from calm water.

14




Maximisation of the extracted power

Substitution from equations (1.10) and (1.11) into (1.15) gives P
as a function of A

- -l '3 2
P = - 1 Re{(A.(A+Z).W).((A+Z).W) } |a] (1.18)

1
2
Differentiation of this equation is carried out in Appendix C, and it is

found that a maximum for the extracted power, minimum for P, occurs when

A(w) = Z () (1.19)

Where T denotes the transpose

Z is symmetric and by substitution the maximum power is

P=-1Wl(Rel{z}). W la (1.20)

g4

The control matrix given by equation (1.19) will be known as the
‘complex conjugate controller’. An electrical analogy is extracting the
most power from a battery by connecting a load whose resistance is equal
to the internal resistance of the battery. Any reactance should be
negated in the load so that the battery ’“sees” only resistance,
corresponding to the conjugation in equation (1.19).

Efficiency

Following on from earlier work efficiency is defined

m = capture width (1.21)
duck width

With capture width being defined as

C= power absorbed (1.22)
power 1ncident per metre

Newman (1976), Evans (1976) and Budal (1977) show that the theoretical
upper limit for the capture width of a device with two degrees of
freedom as the width tends to zero is

C,. = M (1.23)

Below some frequency the capture width of the ‘point absorber” will be

greater than the duck width, making its ‘efficiency’ greater than one.

15




Efficiency function

Equation (1.18) gives an expression for power in terms of the control
matrix and other parameters. In spectra the total power can be found by
superposition of the contributions from each frequency. Thus a function

for efficiency in regqular waves or pseudo-random spectra is obtained.

n = Power extracted (1.24)

Width x Power incident per metre

== Y, Re{(A®,) . (Alon)E(©,)) M6, ) T (B0 45@.)) W, %) [} (1.25)
2 « width « *tanh (k(w,)h) (1 + ZkEanu )
v Z; %% sin Wy
Where angular frequency of the nth front = 2mn/T

Q,=
a,= complex amplitude of the nth front
,= angle of the nth front

Summary

The equation of motion contains parameters known as the radiation
impedance matrix and the force coefficient vector. Both have frequency
dependence and the vector has a wave angle dependence too.

The linear control equation contains a frequency dependent control matrix.

Force and velocities can be expressed in terms of the parameters of
motion and control.

Mean power is obtained from the component of force, or torque, in phase

with velocity.
The extracted power in a mixed spectrum is found by superposition.

The efficiency function is the ratio of the power extracted and the
power incident in the duck width.

The extracted power is maximised when the control matrix is the complex

conjugate of the radiation impedance matrix.

16




2) Physical description of the system

Duck model description

A small model of the duck was made out of sealed expanded polystyrene
with width 290mm and cross sectional diameter between 100mm and 180mm.
Figure 2.1 contains a side view of the duck along with a list of its

main physical attributes.
Part of the duck mass does not rotate in pitch and is supported by an
external spring acting on the axis. The rotating mass is centred just

below the centre of buoyancy and is nearly balanced by it.

Hydrostatic spring matrix

The first order hydrostatic spring matrix g contains the linear

coefficients in the Taylor series expansion of F as a function of X

o = 3E with X = (8,z,x)
¥X;
4L
B l——l"ls
ZL—’ xl

=

When a small element AU is raised a small distance ds above the

waterlevel the restoring force is wpg at ds.

Hence: dt =wpg dl L 48 dtr = dt dz
dT = wpg gt = wpg
dE, = wpg at { ae dF, = wpg dl dz

By integrating. over { between the limits x, andx,, g was found and

evaluated using the measured values.

Inertia matrix

The inertia matrix M contains cross terms between pitch and heave/surge

because the centre of rotating mass is not at the origin.

17




Centre of mass

e at (r,R)
Figure 2.1 Duck model
Measured quantities Derived
Total mass M =4.31 kg I= (mr)g = .00636 kgm®
Rotating mass m =2.63 kg 4 )
Mass moment mr = .0722 kg m
Beak angle Yy = 36°
Centre of mass angle B = 16°
Waterline aft ¥, =-.015 m
Waterline forward X, = 107 m
Stern radius s = .05 m
Waterlevel H = .055 m
width w = .29 m
Natural frequency v, =1.68 Hz

First order hydrostatic spring matrix

o= wg | (£-x)1/3 (x5-x)/2 0 = 1.165 15.97
(x3- x,)/2 (%~ ) 0 15.97  347.1 0
0 0 0 0 0 0

M= I (mr)cosf -(mr)sinf| = .00636 .0694 -.0199
(mr)cosp M 0 .0694 4.31 0
~(mr)sinf 0 M -.0199 0 4.31

18



The Pitch, Heave, Surge Rig

The duck model is supported and its motion measured and controlled
through the rig shown schematically in figure 2.2. The rig and its
associated electronics sub-divide into blocks which are described in

outline, then in detail on the following pages.

The main linkage supporting the duck translates heave and surge motions
into independent rotations inside the body of the rig. Deviations from
linearity of about 1% are associated with 20mm movements of the duck
axis in heave or surge because of this linkage. Duck pitching motion is
measured directly at the axis.

Transducers measure the angular velocities of the three main rotation
points, along with three associated torques. This set contains
sufficient information to obtain the forces and velocities of the

orthogonal pitch, heave, surge coordinate system.

The signals from the rig are conditioned then combined to form the
orthogonal set. All heave and surge transducers are duplicated and
these are first summed together. After combination the signals pass
through 40Hz first-order low-pass filters, and calibration values are

measured from this point in the circuitry.

The orthogonal set is available for sampling after first passing through
low pass filters. The filters are second order with a 20Hz break point,
and since sampling was carried out at 40Hz aliasing of frequencies is
reduced.

The controller also has access to the signals. At present it is
implemented on a BBC microcomputer along with some additional
electronics. The BBC uses the velocity signals to calculate drive

requirements for the rig’s motors and updates them at 80Hz.

The drive requirements pass down to power amplifiers which provide the
current to move the brushless torque motors. The current can be
measured and because of the low losses this provides an excellent way of

measuring the pitch torque.

19




G Velocity transducers ¢ Sampling

' f
O Torque  transducers ¢; interrace
O Motors T, . 3
Low pass
filters
i y //\\
— Controller [T < y
\ Orthogonality
‘7‘ Power

/| amplifiers

Pre-
anps

Figure 2.2 Pitch, heave, surge rig
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Coordinate changes and orthogonality

There are three coordinate systems to consider. The duck’s motion is
described in the pitch, heave, surge system (PHS). However, the motors
which drive it and the transducers which measure its motion each form.
slightly different systems. The means of converting between these two

and PHS is discussed, assuming the linkage to be light and lossless.

Motor coordinate system

The most natural coordinates for the PHS rig are based on the three main
rotation points. The torques are those delivered at the motors and the

angular velocities those measured at the same points.

When changing coordinates to the PHS system most of the signals only
have to be rescaled. One exception is surge force which has pitch
torque subtracted because it passes through the surge motor. The second
is pitch velocity which has a contribution from surge velocity taken
away to account for the change of angle of its immediate support when

surge motion occurs. These two correction terms complement each other.

é =;‘,—;ﬁ, T =T
z=ag F,= Ua
x=adg, ‘ F.= (T~T,)/a (2.1)

Where a is the distance of the duck axis from the rotation points (12")

Transducer coordinate system

In this system torques ¢;, o, are measured in the linkage close to the
duck ‘s axis. It is the means of obtaining the heave and surge forces
because the measurements are not affected by the inertia of the linkage

or the friction in its joints.

é = %,- a:l -C = T‘,
z=af, E=(0-a)/a
%= ap, F.= (0~ T,)/a (2.2)
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Calibration

The calibration procedure for the PHS rig falls into five main parts:
checking the rig mechanics, checking the transducers, ensuring the six
outputs are orthogonal) calibrating the outputs and calibrating the
drive motors. The detailed procedure is described in separate

documentation, but some important points are noted here.

If an output is a combination of more than one transducer fine
adjustment of the balance is allowed by the inclusion of trimming
potentiometers in the conditioning circuit. Heave and surge force come
from the two torsional strain gauges and orthogonality is ensured by
holding the axis, driving ocne mode and making the force reading on the
other zero. By introducing a pitch torque in the absence of other
forces the heave and surge fofce outputs can be made independent of
pitch torque. Pitch velocity has a small contribution from surge
velocity which can be set by moving the rig in surge while holding pitch

still and adjusting the output to zero.

The torque and'force outputs are calibrated with the aid of weights and
and a weighing machine. Heave and surge velocities are measured while
the axis is moved with a circular motion of known amplitude, and pitch
velocity is measured by sinusoidal motion through a known angle. After
also finding the frequency of motion the calibration factors may be
calculated.

The calibration factors were measured before and after the set of

experiments and are recorded here

Calibration Units Estimated Drift over

value error two months
Pitch velocity 0.5735 rads /V + 1 2.4 %
Heave velocity 0.02843 ms'/V +1 % -0.6 %
Surge velocity 0.02888 ms'/V +1 % -1.1 %
Pitch torque 0.08475 Nm/V + 1% 0.4 %
Heave force 1.471 N/ V +1 % 5.2 %
Surge force 1.440 N/ V + 1 % 1.9 %
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Rig drive transfer function

The calibration values for the drive motors are measured in the absence
of motion. However, in the case of heave and surge torsional springs
and rotating inertias act in parallel with the motors. At the time of

the set of experiments these quantities were measured to be as follows

Heave spring S, 120 £+ 20 N m'
Surge spring S, 90 + 10 N m’
Heave inertia I, 1.4+ .1 kgm
Surge inertia I, S5+ .1 kgm

These mechanical controls should be added to any electronic control of the
motors to obtain the overall control function.

_
A=A+ | 0 0 0

0 Szt iwI, O
10

0 0 Set iwI,
iw

L ]

Where émis the control matrix due to the BBC controller

Any pitch torque applied also produces some surge drive, as can be
deduced from equations (2.1) in the description of the motor coordinate
system. An attempt to remove this effect was made by introducing an
appropriate cross term into the controller so that the surge motor would
balance the pitch torque as well as fulfilling its own drive

requirements.

In future it would be better to make the drive motors truly orthogonal
by feedback of the measured forces. The equations (2.1) are inadequate
because the linkage is assumed to be light with frictionless joints.
Feedback, if implemented ideally, would remove all effects due to the
linkage and it would not be necessary to know the exact values of the

springs and inertias given above.
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BBC controller transfer function

The digital controller takes the three velocities and calculates the
motor drive requirements. At present the controller is implemented on a
BBC computer and the control functions are limited to spring and damping
for each mode.

The digital integration and small time delay inherent in the controller
can be well accounted for in the pitch term since the motor and
transducer are the same. However, in heave and surge these smalls
effects are comparable with the friction in the joints of the linkage
and other errors in the rig. In most cases power was not extracted from
heave or surge and it was found that damping factors for these modes
were best set to zero by adjustment until no power was absorbed from

each.

In this report the BBC controller is the implementation of the four
control functions

Pitch damping D
Pitch spring s™
Heave spring s™
. BRC
Surge spring S

Corresponding to the control matrix

[ -iedt : a

A= l( 0% 6t ) e 0 0
- =1 6t

1 -Xxe

BB
0 0
1w
RBC
0 0 S,
1w
Where A =1 - 1/256

6t = 1/80 s
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Experimental environment

Figure 2.3 is a plan view of the wide tank. Waves are generated by a
bank of 80 wavemakers and absorbed by expanded metal “beaches” on two
sides. The wavemakers themselves also absorb most reflected waves and a
settling time of 50 seconds was found to be adequate for all the
experiments conducted.

The beaches have nonlinear absorption characteristics. Reflection
ratios are normally in the range 2% to 20% with the lowest values
available at higher frequencies and larger amplitudes. The wavemaker
absorption is good when they are also generating waves: reflection
ratios of 10% to 20% are typical. However, because of stiction in the
wavemaker motors, the very small waves generated when a model is driven

in a still tank are not well absorbed.

Incident and reflected regular waves at the model position

The complex amplitudes of the incident and reflected waves at the model
position were determined for the particular case of regular waves
parallel to the wavemakers. Waves were generated with expected
amplitude of 4mm over a range of frequencies and measurements made with
a line of wire wave gauges. Assuming that only incident and reflected
regular waves were present in the tank at each frequency,-their
amplitudes were calculated from a pair of readings. The experimental

arrangement is sketched in figure 2.4 with the results in modulus form.

Zx,t) =Tl t) + i, t)

At position (0) measured amplitude c=a-+hb a,b,c complex
At position (j) measured amplitude  ¢;= aeddd+ be"‘Lkdj ji=1,2,3
5> as= _g- et b= cetl g

2 §in K4, ~ 2% sin kg

The separations must be chosen to avoid kdj= nn/2, n integral

In this case the closest pair were chosen, such that kdj>7t/4

Freqg range (Hz) Separation (mm) Pair
0.467 to 0.801 139 + 1 0,1
0.820 to 1.211 309 * 0,2
1.230 to 2.031 681 + 1 0,3
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Sampling System

The sampling system consists of an overseeing computer, with direct
memory access capability, a real time computer containing the master
clock, and a sampling interface. The real time computer generates a set
of waveforms to drive the wavemaker array, or a single signal suitable
for directly driving the system under test. It also produces the
sampling clock by dividing the master clock and delaying it for an exact
period.

The sampling interface on receiving its clock signal, samples all the
channels required by the overseeing computer and enters the results
directly into its memory. Because signal generation and sampling are
synchronised all the waveforms can be made repeatable within the
sampling interval. Data collected in this way may be analysed without

worrying about effects due to the ends of the sampling window.

A particularly important method of analysis is the Fast Fourier
Transform (FFT) which is used most correctly when the boundary
conditions are periodic. By choosing sinusoidal drive signals which fit
into the sampling period an integral mumber of times, the response of
the system at this particular frequency can be found and the harmonics
identified. Figure 2.6 shows an FFT of a sampled signal obtained in
this way and fbr comparison there is an FFT of a non-synchronised

waveform.

Experiment specification

The following sampling parameters were used for all experiments

described in this report

Number of samples : 2048

Sampling rate : 40 Hz
~>  Sampling period : 51.2 s

Sampling delay : 50.0s

By only choosing fregencies at n/51.2 Hz with n integral the repeat time

of the waves was made equal to the sampling time.
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Heaving float wave gauge

A 190mm long cylinder of expanded polystyrene floats on the water
surface and its motion is translated by a linkage into a rotation. Two
small meters act as velocity transducers and their outputs are
pre-amplified then summed. The signal is then available as velocity or,
after integration, as amplitude. The gain of the outputs can be

adjusted during calibration.

Wave angle correction

For the float to work well the projected length in the direction the
wave is travelling should be small compared to the wavelength. This can
be assumed for parallel waves, corresponding to use in the narrow tank,

but not for fronts with small wavelengths and large angles.

The heaving float gauge was used for angled waves, nevertheless. A
formula for the resulting underreading can be derived by assuming that

the wave height is averaged over the projected length of the float.

= sin ( lgnsinmékiﬂ; ) (2.3)
g .mtsince /X {0
Where 1,is the float width

nY the wave frequency

o the wave angle

This equation was used to correct wave amplitudes measured in the tank.
For all reqgular wave fronts which were used the correction to be made
was less than 15%. The equation was checked for a few angles by
rotating the gauge on a spot while sending monochromatic waves across
the tank. Figure 2.8 contains the results of those measurements

compared to the prediction from the formula.

Phase correction

i
The integrator introduces a phase error, removable by multiplying by e
where

¢ = tan ( with a = .74, b = .158 Hz

-1 )
a(v/b - bA)
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Wire wave gauge

The wire wave gauge consists of two parallel metal rods half immersed in
the water. The circuitry shown in figure 2.9 is designed to measure the
conduction between the rods. The conductance of the water is measured

through a third wire and a compensation made for it.

This particular type of gauge was only used when the waves were to be
measured in several places at once. The calibration value of the output
was found before use by moving the gauge to known positions above and

below the operating point and measuring the difference.

Small amplitude effects

If the gauges are cleaned before use then for most amplitudes the
meniscus on the rods can be assumed to remain the same shape as the
waves rise and fall. However, the curvature of the meniscus is reduced
slightly as the water reaches its highest point creating noticable

effects when the waves are very small.

An experiment was conducted to see how much the gauges would underread
as the wave height became small. A gauge was attached near the pivoted
end of a long lever and its end placed in water. By moving the free end
of the lever through a known distance and moving the attachment point of
the gauge different amplitudes of motion were obtained. In figure 2.10
the ratio of the actual and measured amplitudes are plotted, showing

that underreading occurs when the waves are smaller than about lmm.

Comparison between Wire and Heaving float gauges

Monochromatic waves were measured at the model position for a range of
frequencies, first by the heaving float wave gauge then the wire gauge.
The fundamental camplex amplitudes were obtained by Fourier transforming
the measurements from each experiment. Figure 2.11 contains graphs of
the complex ratio in modulus/argument form. The gauges agree within the

limits of tank repeatability at low frequency.
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3) Experimental determination of the hydrodynamic parameters

Experiments were conducted to find the parameters in the equation of

motion, and the radiation pattern when the duck is driven.

Radiation impedance tensor Z(w)

This relates the forces and velocities when the duck is driven in calm
water. Recalling the equation of motion (1.7)
F=%.u+Wa

In the absence of incident»waves

E:

([N

.u (3.1)

The above represents three complex equations, the unknowns being the
nine complex terms which make up 4. In order to obtain enough
equations so that Z may be found, F and u need to be measured in

three linearly independent experiments. It is not necessary to fix the
modes which are not being driven, but only to ensure that the three
motions measured are sufficiently independent to minimise the effect of

noise.

For each frequency the following equations are constructed:

First experiment, driven in pitch °F = 2.u : (3.2)
Second experiment, driven in heave 'F = Z.u (3.3)
Third experiment, driven in surge F =20 (3.4)

The superscripts are indices

Equations (3.2),(3.3),(3.4) can be combined by defining matrices'gyéé
such that:

3=(%"E'F)

&
It
g
=
=

o
=

Then

lled

= Z.dk

Postmultiplying byxgj which will exist if the experiments are independent

7 =24 (3.5)

The right hand side of this equation is composed entirely of measurable

quantities and hence Z can be determined.
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Impedance. experiments

The results plotted in figure 3.1, and discussed in the next section,
where obtained from three experiments in which each mode was driven for
a range of frequencies while damping the others. The damping forces
were chosen to limit resonances in the rig without making it unstable.
By putting power into one mode and extracting some of it in the others a
high degree of linear independence was expected between the three

experiments.

The drive signal was taken from the filtered output of the wavemaking
computer and the damping forces applied by the BBC controller. The

usual set of frequencies was used

v = _n n = 24,25,...,104

The drive amplitudes were chosen such that the second harmonic of the
velocity of the driven mode was less than 10% of the fundamental. This
was taken to be a reasonable indicator of how linearly the duck was
behaving since if the second harmonic of velocity and of force are both
10% of the fundamentals then the power in the second harmonic is only
about 1%.

Figure 3.2 contains the harmonic amplitudes of the main velocity
signals, with each column coming from a separate experiment. Only the
responses of the modes being driven are shown. The drive amplitudes
which produced these velocities are plotted in figure 3.3.

Non-linearities may arise for many different reasons. The change of
waterline length with pitch angle and heave displacement leads to a
strong second order term in the hydrostatic spring rates of each of
these modes. Viscous damping can be expected to generate both
fundamental and third harmonic. When non-linear effects are small,
measurement of the harmonic response provides a starting point for

identifying their origins and behaviour.
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Radiation pattern vector R{®,r,x)

When the duck is driven in still water a particular radiation pattern is
set up on the water surface. The vector R links the wave amplitude at

position r, « to the duck velocities.
a(r,«<) = R(r,«x).u (3.6)

The camponents of R at a particular frequency and location may be
discovered by driving the duck in three independent experiments, as for

the radiation impedance, and measuring the wave height.

For each wave gauge and frequency the following are written down

First experiment, driven in pitch ’a = Rlu (3.7)
Second experiment, driven in heave ‘a = R.u (3.8)
Third experiment, driven in surge a = R& {3.9)

Equations (3.7),(3.8) and (3.9) may be combined by defining

A= (% ,'a,%a )

=

= (g, 'u,*u )
Then
A =R

Postmultiplying byug:'which will exist if the experiments are independent

R =l (3.10)

Since all the quantities on the right hand side can be measured this
equation provides the means to determine R.

Radiation pattern experiments

In the experiments which produced the graphs shown in figure 3.4 twelve
wire wave gauges were placed around the duck at 30" intervals and .92m
radius. The model was driven in the same way as during the
determination of the radiation impedance, the velocities and wave
amplitudes measured and the fundamental component calculated. The
modulus of the vector is plotted and only angles from 0’ to 180" are shown

since the results were very symmetric.
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Force coefficient vector W (w,o)

This vector gives the forces required to hold the duck still when a wave
of unit amplitude is incident. Its definition appears in the equation

of motion (1.7) described previously.

E:

liea

.u+Wa

If the duck were fixed, u=0, the vector W could be found without

knowing the radiation impedance Z, but this is not necessary.

If it is assumed that Z is known, then the three complex terms of the
vector W may be determined by sending waves of small amplitude towards
the duck at a range of frequencies and angles. The other quantities can

be measured and W calculated directly.

Regular wave experiments

The graphs plotted in figure 3.5 were obtained with incident waves of
nominal amplitude 4mm. This wave height was chosen to keep the harmonic
content of the duck’s motion small, while providing signals which were
large enough to measure. The duck was fixed in surge, and its motion in
pitch and heave damped. Other experiments were performed with different

controls applied and similar results obtained.

For each angle « measurements of F and u were made at 81 frequencies

in the range 0.469 to 2.031Hz. Wave fronts with high frequency and
large angle produce extra ‘ghost” fronts and tests were not conducted in
these cases. The forward angles were regarded as the most important and
measurements were made at 10° intervals up to 70 Larger angles were
obtained by placing the duck in two other orientations.

First experiment, with the duck in the model position o = (7105...,70°
Second experiment, with the duck turned through 90° x = 90°

Third experiment, with the duck turned through 180° o= 120%1507180°
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After each experiment was complete a wave gauge was placed in the model
position, the wave conditions repeated and the wave height measured.
For the results shown it was assumed that this amplitude was equal to
the incident amplitude, although in truth the waves reflected from the
beaches will interfere. For the case of « = 0 the effect of the
reflected wave may be calculated and removed. This is done in the next

section.

The graphs plotted in figure 3.5 show the modulus of the terms of W at

30" intervals while those in figure 3.6 show the phase for completeness.

When the frequency is low, the wavelength is much greater than the duck
dimensions and the pitch and heave forces are m radians out of phase
with the wave amplitude. This is expected since the duck has to be held
down when the water rises. At these frequencies the phase difference

between heave and surge is A/2 radians, like the water motion.

Summary
The radiation impedance matrix and the radiation pattern are determined
by driving the duck in calm water with three linearly independent

motions.

The presence of harmonics provides a useful guide to the extent of
linearity.

The force coefficient vector is found by measuring the duck motion in

the presence of waves and knowing the radiation impedance matrix.
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4) Discussion and Further Processing of the Experimental Results

The composition of the imaginary part of the radiation impedance matrix
is discussed and the real part related to the radiation pattern and the
force coefficient vector. The reflection noise is removed from the
impedance matrix by data processing and from the force coefficient
vector by considering the beach reflections. '

Radiation Impedance

The impedance tensor may be split into four parts up as described
in Section 1

Z(w) = D(w) + iwM(w) + iog + %g‘

=
0
Ia]
(]
lw}
b-4

is the real, frequency dependent added damping matrix

I

III’Z

is the real, frequency dependent added mass matrix
is the duck inertia matrix

=

g

is the hydrostatic spring matrix

In figure 4.1 curves for the predicted contributions of y and g are
plotted along with the imaginary part of Z reproduced again for

comparison. The graphs of u and g are based on experimental values
obtained for this particular duck model in Section 2 and are drawn

having multiplied by iw and 1/iw respectively.

The duck inertia 4 should be removed from Z(w) to leave values which
depend only on the underwater shape of the duck. The particular values
of u are arbitary and could be different while maintaining the same
underwater shape. However, it should be remembered that there are some
constraints on i, notably that vector sum of weight,AbuOQancy and

external static forces must be zero.

N —————

The hydrostatic spring matrix g depends on the shape of the duck around
the waterline, and should be left in Z.
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Ripple noise

The ripple noise which appears on all experimental curves of Z is due
to the radiated wave being reflected off the boundaries of the tank,
returning to interfere with the motion of the duck. The ripple was
found to be both highly repeatable and dependent on the position in the
tank.

Figure 4.2 shows the imaginary surge component of the impedance matrix
measured at the model position and about .25m further away from the
wavemakers. This distance corresponds roughly to A/4 at 1.2Hz and /2
at 1.8Hz. That the ripple is mainly due to reflection from the wave
makers is confirmed because at these two frequencies the graphs are out

of phase and in phase respectively.

An estimate for the effect of reflections can be obtained by combining
the equation for the radiation pattern vector (3.6) with the equation of
motion (1.7). The wave amplitude given by the radiation vector is
éssumed to propagate as a circular wave, reflect from the wavemakers as
if emminating from the duck’s mirror image and return to provide the

incident wave in the equation of motion.

.

a = R.u
ik(2d-r)
a=a‘(_re 4.1
’2d ( )
F=2.u+Wa

Where R was measured in front of the duck at radius r

d is the distance from the duck to the wave makers

By combining the three eqﬁation and estimate for the reflection noise is
found

’ ik ( 2d"'r)
= Zpt W, R\Jzzd‘e (4.2)

Figure 4.3 contains the predicted effect of reflection noise on the
imaginary surge component of the radiation impedance. The general form
of the curve corresponds well with with the observed ripple noise shown
in the graph above.
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Removal of ripple noise

The ripple is regarded as a non-linear characteristic of the tank. It
occurs when the duck is driven in a still tank because the radiated
waves are small and well reflected from all the boundaries, but would
not be present if the duck was driven in the presence of incident waves
when the wave makers and beaches absorb well. Our aim is to make
predictions for its motion when waves are incident so the ripple has to
be removed.

The method used to remove the ripple noise was first to subtract the
matriceskgand g , thus flattenning the ends of the curves. The spatial
Fourier transform of each curve was taken, the higher frequency

components removed and the inverse transform taken.

The radiation impedance

In figure 4.4 the radiation impedance curves are plotted with the ripple
and duck inertia subtracted. They show the effect of the duck shape in
an ‘infinite’ tank. The curves for surge, Z,, resemble the
characteristic shape for a wave maker flap, although its imaginary part
never goes below zero (Hyun 1976). Pitch and heave show some

similarities, with spring forces dominating both at low frequencies.

Note that the impedance matrix is very symmetric about the leading
diagonal, as predicted by Newman (1976). For example, the heave force
caused by unit pitch velocity is the same as the pitch torque caused by
unit heave velocity. This is also apparent in the curves for the duck

inertia and hydrostatic spring matrices.
The presence of strong symmetry shows that the calibration and the

experimental method were good.  Moreover, it provides the first

indication that the linear analysis is a worthwhile exercise.
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Conservation of energy in the radiated wave

If energy is only lost in the radiated wave, then in the steady state
the power loss measured at the duck must equal the power flux through
any surrounding boundary. This provides a way to link the radiation

resistance, the real part of the impedance, to the radiated wave pattern.
The power lost by the duck in calm water, using the symmetry of Z,
was given in equation (1.17). Rewriting in suffix notation

*
An estimate for the power flux through a circular boundary, radius r,
was obtained from the wave amplitudes at twelve equally spaced points on

the boundary. The regular wave power formula was applied to each arc,
assuming the power flowed radially, and the twelve contributions summed.

P

2: C |a(u“)r'r A (4.4)
n=0

*
tanh(kh){l + 4.5
%%' an ( )( sinh(2kh ) ( )

Using the definition of R from equation (3.6) for a particular o«

Where C

o * *
la] =a a = (Ryuy) (R, ) (4.6)

)

Substituting for |a| and A8 = 2m/12 into eqguation (4.4) and comparing
with equation (4.3)

1l

*

Re{Zy} = TCr Zo R, () R, () (4.7)

he .
This equation was used to predict the radiation resistance from the
radiation pattern and in figure 4.5 the predicted matrix is compared
with the previous experimental results. The imaginary terms are also
plotted on a single graph at the same scale as the corresponding real
parts. The diagonal imaginary terms have to be zero, but the small size

of the others indicates that the experimental values for R are good.

The predicted radiation resistance matrix differs significantly from
that measured at low frequency. The wave height was small in these
cases and this accounts for some of the discrepancy. Overall, the

agreement is very good considering the approximations made.
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Radiation impedance and force coefficients

The, real part of the radiation impedance matrix can be related to the

force coefficient vector. Newman (1976) shows that

7T %
Re{Zyt = _1_ g Wi () W () doc (4.8)
8AE, Jo ¢

A

Where B,is the power in a wave of unit amplitude per metre

A prediction for the radiation resistance was made by approximating the
integral in equation (4.8) with a summation. The experimental values
for W found in Section 3 were used, with an appropriate weighting for

the angular spread represented by each.

In figure 4.6 the predicted matrix is compared with that obtained by
direct experiment. Also shown, on a single graph, are the imaginary
contributions resulting from the calculation. These terms must be zero
when the indices are equal, and should be zero when the indices are
different if the equation is valid. The imaginary cross terms are close

enough to zero to suggest that the experimental values for W are good.

The predicted and measured resistance matrices are similar, but the
comparison is not exceptional at any frequency. Below 1.2Hz the
prediction is consistently smaller. Above 1.5Hz the discrepancy is
quite large, although in this region the wave tank was often close to

its angular limits and W was not determined for some angles.

Comment

At low frequency the predicted maximum efficiency is much less than the
point absorber limit (see figure 6.1), suggesting that the force
coefficient vector could be larger or the radiation resistance smaller
(see equation 1.20). It is in the same region that both predictions for
the radiation resistance matrix are indeed always smaller than the
values measured by direct experiment. This discrepancy could be due to
a phase error in the measurement of the duck’s motion. Alternatively it
may result from other loss terms, perhaps acting in parallel with the

hydrostatic spring, which do not produce radiated waves.
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Removal of reflection noise from the force coefficients

The force coefficient vector W(w,~) was obtained by substituting

experimental values into

E:

]

u+ Wa

The matrix Z was used with the ripple noise present and the amplitude
a was assumed to be equal to the measured amplitude at the model
position. These results are plotted again in the first row of graphs in

figure 4.7 for the case of o = 0.

When the tank is producing waves the smoothed values for Z are
appropriate and these are used to recalculate W with a as before.

This set of curves is shown in the second row of figure 4.7

Next the true incident wave amplitude a is calculated from the
measured amplitude c using the beach characteristic for parallel waves

given in section 2.
a = (a'/c') cC (4.8)

This value of a is now used in the calculation of W and the results
plotted in the third row of figure 4.7. This set of values is the most
appropriate to use when comparing predicted efficiencies with those
measured in the tank.

When reflections from the beach are present not only is the wave height
affected but also the forces felt by the duck. When the incident wave
is at 0’ and the reflected at 180°equation (1.7) can be extended

F=2.u+W0)at+ w(n) b (4.9)
Similarly when the duck is turned through 180"

F'= z.u'+ W(m) a’+ W(0) b’ (4.10)
a,b and a’,b” are calculated from ¢ and ¢’

F,u and F',u’ are measured and 2Z is the smoothed impedance matrix

Equations (4.9) and (4.10) are solved for W(0) and W(m) and the resulting

values for W(0) are shown in the fourth row of figure 4.7.
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Force coefficient vector and the control matrix

In its definition the force coefficient vector W is independent of the
way the duck is being controlled. Experiments were performed with

different control parameters to judge the extent of this independance.

In figure 4.7 curves for the vector W are plotted from two separate
experiments with different controllers. The measurements were made in
regular parallel waves and the effect of beach reflections removed. In
one case spring forces were applied in the surge direction allowing
considerable motion, in the other the surge axis was fixed. The other
control parameters were changed too and the sensitivity of the duck’s
motion to the parameters, particularly surge spring, can be judged by

reference to Section 6.
The two sets of curves differ within the limits of tank repeatability,
indicating that the separation of duck’s behaviour into radiation

impedance matrix, force coefficient vector and control matrix is valid.

Section summary

Tank noise reflections cause most of the experimental noise and are

removed from the radiation impedance by a data processing method.
The radiation impedance matrix is very symmetric, showing that
calibration and experimental are good, and suggesting that the linear

approximation is valid.

The pattern of the radiated wave can be used to estimate the radiation

resistance matrix with good agreement except at low frequency.

The force coefficient vector can be used to estimate the radiation

resistance matrix with moderate agreement.

Reflection noise can be removed from the force coefficients by

considering the beach reflections impinging on the rear of the duck.

The force coefficient vector can be found independent of the controller.
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5) Comparison between measured and predicted efficiency

The accuracy of the mathematical model in the prediction of efficiency

is checked under a range of conditions.

General remarks about the comparisons

There is a large amount of choice available when selecting the
conditions under which to test prediction against measurement. The
waves incident on the model were chosen to keep the motion linear and to
cover - a wide range of frequencies. The controller was implemented on
the BBC computer and control values set so that efficiencies were fairly

high. 1In all but one case power was extracted through pitch only.

Control functions

The control functions used on the BBC controller were

Pitch damping

Pitch spring

Heave spring

Surge spring
During the measurements the value for each was entered into the BBC by
hand. Small amounts of heave and surge damping were also added or

subtracted such that no power was extracted from these medes.

When a prediction is to be made the control function have to be
converted into parameters of the control matrix A. Ideally this would

be done by means of an equation of the type

a=[p+s o 0|
1w
0 s 0
1w
0 0
1w

However, there is a transfer function associated with both the BBC
controller and the PHS rig mechanics, which is described in Section 2.
This transfer function was used to modify A before use. In addition

the parameters of A were also found by measurement in most cases.

57




Measurement of efficiency

The definition of efficiency given in Secticn 1, equation (1.24), is
used here

7 = Power extracted

Width x Power incident per metre

When measurements were carried out the mean power passing through the

duck axis was calculated by approximating equation (1.12) with a sum

-l
P=1 ) F(n).uln) (5.1)
m n=¢
Where n is the sample number
m is the number of samples

The contribution due to the velocity offset was subtracted since this

must have been introduced by the transducer or electronics.

The incident power was found by placing a wave gauge in the model
position before or after the duck measurements. The heaving float gauge
was used and its readings corrected using the angle and phase

compensations described on page 29.

Prediction of efficiency

When predictions of efficiency were to be made the control matrix A
was first set up and then the efficiency function given in equation
(1.25) used. This function should be thought of as a function of 3,
the appropriate radiation impedance matrices Z and force coefficient
vectors W, and the sea state described as the superposition of a
number of fronts.

1 =7 ( Alw), Z(w), Wlwx), sea ) - (5.2)
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Pitch efficiency in reqular waves

Three small regular waves were chosen with low, middle and high
frequency. The wave amplitude of 4mm was the same as that used in the
determination of the force coefficientsand the wave angle 0. In each of
six cases one of the control functions was varied while the other three

were held constant.

In figure 5.1 the crosses correspond to the measurements made in the
tank. Since one frequency was being studied at a time the wave height
was determined by placing two heaving float wave gauges a quarter

wavelength apart. The incident wave height was taken as the mean.

The circles represent the prediction having determined the control
matrix A by measurement. The values in A were found by dividing the
fundamental force amplitudes by the fundamental velocity amplitudes.
The predictions were made using the smoothed values of the impedance Z
and the values of the force vector W in the presence of beach

relections.

The continuous curves were drawn by first calculating A with the
controller and rig transfer function, then evaluating the efficiency

function.

The abcissa in each case is the measured control parameter as this is
considered to be the most important.

The only major discrepancy between measurement and prediction occurs in
the middle right graph, when the rig transfer function is inadequate not
the mathematical model. Overall the efficiency function predicts very

well under these conditions, within the limits of tank repeatability.
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Pitch efficiency in small mixed seas

Two Pierson-Moskowitz spectra with Mitsuyasu spreading were selected
with the rms wave height much smaller than for the normal PM. 1In each
of four cases one of the control functions was varied as the other four
were held constant. The extra control function in these experiments was

surge damping.

In figure 5.2 the crosses represent measurements made when the model was
controlled in the appropriate test sea in the tank. The incident power
was found by replacing the duck with a heaving float wave gauge, Fourier
transforming the time series and calculating the power frequency by
frequency. A predicted angle correction was applied to the sum and no

account was taken of beach reflections.

The circles correspond to predictions made after detemining the control

matrix A from the measurements. The values of A were found by

dividing the force and velocity ampliudes at a central frequency. The
experimental values for the impedance Z and the force vector W from
Section 2 were used with no further processing, W being available at
ten degree intervals up to seventy degrees and found at intermediate

angles by interpolation.

The smooth curves were plotted by first calculating A at each
frequency using the controller and rig transfer function and then

evaluating the efficiency function.

The abcissa in all the graphs is the measured control parameter.

The predictions tend to be slighty greater than the measurements, but
this is within the limits of tank repeatability and is not significant.

Overall, the agreement is good, particularly in the positioning of peaks
and troughs.
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Maximum pitch efficiency in regular waves

In previous work, the highest efficiencies found in small regular waves

over a range of frequencies have been used to judge a shape’s potential.
In this comparison pitch efficiency was maximised in the tank and in the
mathematical model. The method of optimisation was essentially the same

in both cases.

" Efficiency was maximised at each of 32 frequencies in the tank and 81 in
the mathematical model. The wave height used was 4mm, the same as in
the determination of the force coefficients. All four control functions

were allowed to have variable settings.

The crosses in figure 5.3 show the highest efficiencies and best
settings found when varying the control parameters by hand on the BBC
controller. 1Initial values were set from experience and to save time
most effort was concentrated on a few frequencies, the control values
for the rest being found by interpolation. The wave amplitude was
measured with the heaving float gauge placed in the model position, then
corrected for beach relections using the beach characteristic described

on page 25.

The circles correspond to the best efficiencies and control parameters
predicted from the efficiency function. The starting values for each
parameter were the same for each frequency and the optimum was found by
the simplex method which was described by Nelder and Mead (1965). A

maximum was reached in all cases but one.

The comparison for each control parameter is limited because the other
parameters are not necessarily the same. The importance of any
discrepancy between their values depends on the flatness of the

efficiency response surface in that area.

The two methods produce very similar efficiency curves, well within the
limits of wave repeatability, except at high frequency. The simplex
maximisation the efficiency function is more reliable if many

frequencies are to be optimised.
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Maximum pitch efficiency in small mixed seas

A set of reduced Pierson-Moskowitz seas were selected and efficiency
maximised in the tank and with the mathematical model. The sea making
parameters were chosen to make the waves small and so that there was

only one front on each frequency.

Te Hrms Representation Number Repeat
multiplier for Energy of fronts time
0.5 .7 .4 75 51.2
0.6 6 .4 70 51.2
0.7 .5 .4 70 51.2
0.8 .4 .4 68 51.2
0.9 3 .4 60 51.2
1.0 .3 .4 60 51.2
1.1 .2 .4 55 51.2
1.2 .15 .4 55 51.2
1.3 .1 .4 50 51.2

The crosses in figure 5.4 represent the highest efficiencies and best
settings found while varying the BBC contol parameters. The incident
power was calculated from a heaving float wave gauge placed in front of

the model with an appropriate angular correction.

The circles show the best values obtained by optimising the efficiency
function with the simplex method. The control parameters are predicted
well, but the efficiency is consistently greater than that found in

practice.

Summary

The shape of the efficiency surface can be predicted within the limits

of tank repeatability for regular waves and small mixed seas.
The maximum possible efficiency using a simple controller with four

parameters can be predicted well in regular waves, not so well in mixed

seas.
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6) Predictions from the efficiency function

The efficiency function defined in the first section and using radiation
impedance and force coefficient measurements has been shown to predict
selected parts of the response surface adequately for small amplitudes.
Now it is used to make further predictions about the nature of the

response surface.

Maximum efficiency in regular waves

Figure 6.1 contains predicted maximum efficiencies for the duck model in
regular waves compared to the point absorber. The lower rough curve was
obtained by varying pitch damping and pitch, heave, surge spring until a
maximum was fourid. It was shown to be achievable on page 63. The upper
rough curve assumes the complex conjugate controller with all eighteen

control parameters and power extraction from each mode.

For comparison there are curves for a two degree of freedom point
absorber and the ‘sum’ of the point absorker with a device which
extracts all the energy in its own width. The latter is a guess at the

advantage of finite width.

Maximum efficiency in Pierson-Moskowitz spectra

The efficiency function was maximised for a range of PM spectra with
Mitsuyasu spreading by summing the contributions of each frequency. The
curves plotted against the energy period Te in figure 6.2 are the best
predicted for two controllers along with two theoretical predictions,
the order of the curves being the same as above. The curve
corresponding to the complex conjugate controller does not reach the
same maximum as for the regular wave case because the efficiency drops
with angle and the frequency convolution smoothes out the peaks. The
discrepancy between this curve and that for the “springs and damper’
controller is increased since the latter controller’s frequency

dependence is not the best possible.
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Maximum efficiency in angled regular waves

The efficiency function was set up using the force coefficents for
angled waves shown in figure 3.5. No attempt was made to remove
reflection noise as this can only be achieved satisfactorily for waves
parallel to the wave makers. The maximum of the function was found for

the complete controller and for two reduced cases.

In the left hand column of figure 6.3 the maximum total efficiency
predicted for the complex conjugate controller is plotted. The middle
column contains the maximum obtained when the controller was constrained
to have just four terms, pitch damping and pitch, heave, surge spring
rates. On the right is the maximum efficiency for the controller with

pitch damping and spring only, the other modes being fixed.

When waves are incident from the front the complete controller with
eighteen terms performs only slightly better than that with four. The
controller with just two terms compares badly in the region 0.7Hz to
1.2Hz, because the duck cannot move in surge. The advantage of surge
motion at these frequencies can either be thought of as the transfer of
power through the water from the surging motion to pitch, or further

cancellation of the incident wave by the radiated wave due to surge.

For angles above 90’ the amount that can be absorbed by pitch alone is
small, whereas the complex conjugate controller can extract about as

much as from in front.

It is useful to consider the duck’s radiation as a combination of two
waves, one circularly symmetric and the other with opposite sign in
front and behind, with power being absorbed when the radiated wave.
interferes with the incident wave. It follows that the maximum
absorption should be the same at 0’ and 180°and should be reduced at 90°
when only the circular wave has effect. This ignores the diffraction of

the incident wave which will change with angle.
When power is absorbed through all the modes, the symmetry of the

maximum efficiency curves for waves incident from the front or rear is

an indication that subtle shape variations are not very important.
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Deviations from maximum efficiency in reqular waves

It is not possible represent the 18 dimensional efficiency surface
graphically, even at one frequency. However, some of the control

parameters have characteristic effects which are noted here.

The parameters of pitch damping and pitch, heave and surge spring which
maximised efficiency at 1 Hz were found. Figure 6.4 shows the effect of
varying each of the control values away from this set. The parameters
are varied in pairs, real and imaginary, with each pair corresponding to
one term of the control matrix A. Note that in the optimisation only
four of the diagonal components were allowed to vary, the rest being
left at zero.

Where the efficiency drops below zero it is plotted as zero. The real
part of each control term corresponds to damping and the imaginary part
to inertia or negative spring. To convert from the imaginary part to
inertia or spring multiplication by or division by negative 1is

required respectively.

The pitch surface shows the characteristic form in the imaginary part
with the peak occuring in the region of negative spring. This peak is
quite senstitive to frequency because of the frequency dependence of the
corresponding component in the impedance matrix. In the direction of
the real part the curve rises sharply then falls slowly, the maximum

being fairly insensitive to frequency.

The surface has a minimum, nearly zero, at a low value of heave spring
and maxima when the heave spring rate is very high or the inertia large.
Conversely, the surface shows maximum for a finite value of surge spring
tailing off to a constant value as the spring rate increases. The

effect of these two parameters is of the same form at most frequencies.

The other curves are draw for completeness although in this part of the

space it seems that the best values on each are at zero.
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Sensitivity of control parameters to frequency

Perhaps the most important consideration when designing a controller is
the effect of frequency. It is relatively easy to achieve high
efficiencies at an individual frequency, but settings which yield good
results at one may perform badly at another. In a mixed spectrum the
aim is to extract the available power at all the frequencies

simultaneously.

aAn example of a control function which does not transfer well to mixed
spectra is surge spring. Figure 6.5 shows how the efficiency surface
varies with frequency and surge spring rate. The other control
functions of pitch damping, pitch spring and heave spring are not being

held constant, but set to their best values for each frequency.

The left hand portion of the surface is the most important, particularly
the ridge which runs up the page. The aim in a mixed sea is to be on
the top of this ridge throughout the spectrum. Clearly this is not
possible for surge spring and when the best efficiencies are found in

spectra considerable blurring of the ridge occurs.

Figure 6.6 contains the best efficiency surface plotted for PM spectra
against energy period and surge spring rate. The reduction of the peak
occurs mainly for the reason described, partly because of similar
effects with other parameters and also because of reduction in

efficiency with angle.
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Rotation of coordinate system

The coordinate system chosen for model testing is not necessarily the
most appropriate at full scale. In particular the duck may be moored by
lines to the sea bed, perhaps at 45, in which case the heave, surge

coordinates are best rotated.

HV

Rotation of the axes from S to S° is effected by the rotation matrix L

X =L.X 8 =11 0 0 8 (6.1)
z’ 0 cosy ~-siny ||z
x 0 siny cosy | |x

The control matrix A can be rotated into the new coordinate system by

using L twice

A" =L.A.L (6.2)
And
A=La"L (6.3)
Rewriting (6.3) in full
A=1}1 0 0 A, A, B, 1 0 0 (6.4)
0 cosy  siny w A AJ cosy -siny
0 -siny cosy A AS Al siny  cosy
For the case of diagonal terms in A" only
a=|p 0 0 (6.4)
0 cos'y h + siny s cosy siny (s—h)
0  cosy siny (s-h) sinyh + cos® s

In this way mooring lines may be simulated. Figure 6.7 contains
predicted efficiency surfaces in a 1.1 second PM spectra as the spring
rates of the mooring lines are varied for different angles of rotation.

The same values for pitch damping and pitch spring are used throughout.
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7) A full-scale application

An upper limit for the efficiency of the duck in a set of sea Spectra is

presented as a function of scale.

The South Uist 399 ° spectra

In March 1976 the Institute of Oceanographic Sciences began a wave data
collection programme. They deployed a Datawell Waverider buoy in about
42 m of water at site 8 nautical miles to the west of South Uist in the
Outer Hebrides. The data collected comprises the surface elevation

measured every 3 hours for a period of about 15 minutes. Complementary

wind data was also available from meteorological records.

By comparison with the long term annual wind statistics Crabb (1979)
selected 399 wave records to represent a typical year and converted them
to frequency distributions. Components in each spectra were identified
as being due to local wind conditions, wind conditions just before

sampling and distant storms.

Using a frequency dependent correction (Mollison 1983), we have modified
the raw spectral data to 100 m depth. Each spectrum is described as the
sum of Pierson Moskowitz components with spectral width compression
factor and angular spreading distribution type. The spectral parameters
are set so that if a depth water Pierson Moskowitz is generated the

power distribution matches that assumed for 100 m water depth.

A typical South Uist spectrum

In figure 7.1 the amplitude squared distribution is plotted for one of
the spectra, number 86. The original spectrum is shown along with that
generated from the statistical parameters. The curves show the form of

the energy distribution.

77




S.Uist spectrum 86

©76 173 14 58

s )(ll’lz/Hl)
=Y
th

SIGNIFICANT WAVE HEIGHT
ZERO CROSSING PERIOOD
WIND SFEEO

WIND DIRECTION

1:17 melres
368 scconds
14 hnols
150 degrees

g v T
0ot 02

Fréquency Hz

T y 4
03 04

05

m

Ampl L tudée®
=
i

8.1

IAl o

B.2

I I
8.3 @.4

B.5

Frequency Hz

Figure 7.1 South Uist spectrum 86. Measured and

78

fitted



Wave height and available power

The “399° set is taken to represent a typical year and comprise sea
states ranging from winter storms to summer calms all with equal

weighting.

Figure 7.1 shows the fraction of the year when a particular rms wave
height is exceeded. The geometric linearity of the duck depends upon

the ratio of wave height to duck size, along with other factors.

Figure 7.2 gives the fraction of time that a given power level is
exceeded. The area under the curve is the mean annual incident power,
assuming no power limit. Only 25% of the seas have power levels above

the mean, but these account for 75% of the annual power.

The seas are arranged in different orders to produce each graph, but the
order is only slightly different. The energy period distribution also
correlates well with that for power and rms amplitude. Since power
depends on period and the square of amplitude, its own distribution is

more heavily dominated by the largest seas.

The economic power limit will probably be near the mean annual incident
power. Care must be taken to ensure that the high power seas do not
distort any initial assessment of duck performance, since when the duck

is working at its power limit linear efficiency does not matter.
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Duck efficiency on the "399° weighted period axis

The “399° weighted period axis is produced by deforming the period axis
so that the distance between points is proportional to the power
available in the 399 spectra in that interval.

The maximum efficiency curve (figure 6.1) is replotted against full
scale period in figure 7.3. Curves are drawn for three different
scales, transformed from model scale after dividing frequency by the
square root of scale factér. The area under the curve is proportional
to the mean annual efficiency, assuming no power limit, linear behaviour

and no change of efficiency with angle.

In figure 7.4 the same efficiency curves are plotted assuming an
arbitary power limit of 1.5 times the mean incident power. 1In the
production of the weighted period axis all seas with power greater than
this limit are disregarded, since it is does not matter what the duck’s

efficiency is when its power output is limited.

The efficiency curves drawn against the power limited weighted axis give
a good idea of how useful a particular efficiency curve might be at full
scale. A guess for the best scale factor from this graph is might be

around 100.
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The effect of scale

In figure 7.5 the mean annual efficiency is plotted against scale factor
for three different power limits. The curves are obtained by scaling
the linear efficiency curves drawn in figure 6.3 and calculating the

extracted power in 46 of the “399° directional spectra.

The 46 spectra selected are those chosen by Rendal, Palmer and Tritton
(1981) to reflect the principal characteristics of the 399 and are used

because our present 399 ° data set is incomplete.

The top curve is for the case of no power limit. It assumes device
linearity in the heaviest seas and will be wrong for all but the largest

scale factors.

The bottom curve is produced assuming a power limit of 90kW/m, 1.5 times
the mean incident power, and some short term smoothing of the power
output. The imposition of the power limit means that the assumptionvof
linearity only goes badly wrong for scale factors below about 100.

The middle curve assumes a natural power limit per metre which will
alter with scale factor to the power 2.5. The limit is .9 W/m at model
scale, 90 kW/m when the scale factor is 100. The form of this limit

attempts to take account non-linearity when the duck is small.

Scale Diameter Width Displacement Power in width
factor (m) (m) (tonnes) (kW)

100 10 29 2630 1682

120 12 34.8 4545 2018

140 14 40.6 7217 2355

160 16 46.4 10770 2691

180 18 52.2 15340 3028

200 20 58 21040 3364

83




D  No power limit

2.6
? Power limit = (5/100) . 90kW/m
2) Power limit = 90kW/m

N

EFficlency

z ] 1 1 ] —I 1 1 ) I I i { I
) 100 200 300
Scale fFactlor
l T l 1
@ A c3 87
Duck width
| I { 1
¢ @ 20 30

Figure 7.6 Power limited linear efficiency for the 46

84

Duck diameter

rd



8) Further work

The limitations of the present work are noted and suggestions made for

further work, both theoretical and experimental.

Linearity

In all the experiments described care was taken to ensure the motion was
linear, avoiding the question of when this assumption would break down.
Unfortunately the “linear region’ is a rather nebulous area with no

simply defined boundaries, although some general remarks can be made.

The reasons for departure from linearity divide into three groups; those
due to the limits of the rig, the effects of the controller and those

associated with the motion in the water.

The current rig has a limit to the force that can be delivered to each
mode which is particularly easy to reach in surge. The main linkage
translates displacements into rotations introducing a 1% departure from

linearity when the motion amplitudes are around 20mm..

The controller can introduce non-linearities by making the duck motion
unstable. By including scme non-linear terms in the controller the duck
system might be made more linear. For example, the hydrostatic spring

in pitch is function of angle which could be negated in the controller.

In the presence of waves when the relative motion of the duck and water
becomes large, non-linearities can be expected because of effects due to
the geometry and viscous losses. The magnitude of the relative motion
depends on the controller, being smaller when the duck is close to
optimal power absorption and moving with the water. In regular waves
the size of the motion is also a function of amplitude, whereas in mixed

spectra large motions depend on the phasing of the fronts as well.

At low frequencies the predicted maximum efficiency is much less than
the point absorber limit and the radiation resistance is larger than
each of two predictions (see fiqures 6.1, 4.5, 4.6). Further work might

establish how these discrepancies would scale.
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Theoretical predictions

The radiation impedances can be obtained from hydrodynamic equations.
Comparison between theoretical predictions and experimental
determination would be a good starting point for the identification of

non-linearities.

Duck shape
Only one duck shape was used in this set of experiments. The effects of
changes in shape, particularly width and cross-sectional shape, are

required if the best device is to be found.

Implementation of the controller

Deciding the best form of the controller required is straightforward in
the frequency domain, but it must be implemented in the time domain with
knowledge of the past only. The equation of motion could be written as
a convolution integral and measurement of the duck response made by
impulse methods. The most appropriate digital controller would then be
found using the theory of z-transforms.

Scale changes

Some non-linear effects change with scale and could be identified by
testing larger models, or by comparison with theoretical predictions.
It is particularly important that the limits of scaling are understood
if conclusions about full-scale performance are to be made from model

tests.

Productivity analysis

The duck shape and the form of the controller can only be optimised if
the cost constraints are known, along with the sea conditions where it
is to operate. Towards this end a means of predicting performance,
given the design. of duck and controller and a set of test seas, is
required.
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Appendix A: List of symbols

Incident wave amplitude
Reflected wave amplitude
Total wave amplitude

Distance

Acceleration due to gravity
Water depth

Wave number
Water line length

Rotating duck mass

K Q ™ 0 9 85 ~= AN U ko Wau HtHh o Q0 T oo

Position vector
Stern radius

Time

= o

Duck velocities

Duck width

Coordinates

N K X £ <

Wave angle

Centre of mass angle
Mooring angle
Kronecker delta
Efficiency

Pitch angle

> ®3 o W R

Wavelength

Duck inertia matrix

=

87

MiE < A e vo =2 X B R HDOQ=MmMoaw

N <

£ <=8 AdiIq™° <

Control matrix

Buoyancy force

Damping factor

Duck forces

Hub depth

Marent of Inertia

Total duck mass

Mean power

Velocity response matrix
Radiation vector

Spring rate

Sampling time

Upward force from rig

Force coefficient vector

Duck displacement vector

Radiation impedance matrix

Frequency

Density of water
Hydrostatic spring matrix
Pitch torque

Phase angle

Wave front

Angular frequency




Appendix B: Derivation of the power equation
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Appendix C: Analytic maximisation of the extracted power

Recalling the equations of motion (1.7) and control (1.9)

F = %.u+ Wa [1.7]
F=-A.u [1.9]
with A =B + iC B, C real
Rearranging (1.7) and (1.9)
(A+Z).u = -Wa (9.1)
u = -Q.Wa | (9.2)
Where Q = (A+Z) (9.3)
Recalling the power equation (1.14)
4P = gﬁg + L_J_.E*
Substituting for F from (1.7) and rearranging
-> 4p=u'Wa+ uW ra + g*.(_Z; + Z*T).g ' (9.4)

This equation will be differentiated with respect to the real and imaginary
parts of the control matrix A. First the derivatives of u, gf are found.

In suffix notation equation (9.1) becomes
- Wa = (Apt Z)uy
Differentiating with respect to B,
%Shﬁuk + (A\‘+ Z )gBuh
+
Multiplying by QLS
0 = QlASJ“uﬁ + Q'»j(AJk + ij) 2—1-33;
Substituting for u, from (9.2) and renaming suffices

= QuQula and yuit= Q@ Wa (9.5)

J JXBR R
53,,; 3B, ¢

Similarly the derivatives with respect to C, are found

* X *
uJ Q ka a and i%é' _QdqunW\g (9.6)
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Rewriting (9.4) in suffix notation

_ X *_x * *
4P = uWa + yWa + up(Zt Zq) u,

Differentiating with respect to Bug

* * % * ® * *
> 4P =) uWa+duWa +du(Z2,+2,)u + u(Z,+ 2Z.)> uy
SR J S| 3 R 3
2B, gTde 4 3B, ) 3B, J Iy ERY):
*
= W - + du +
%_Re{ %_quoa _E (?# Z )u }
P “f
Substituting for }_uj and u, and rearranging
bB&ﬁ \
* 2
%:P Re{ QddQELWL SJ.M— (2 + Zg)Qb)W»} EY
Similarly
X X * *® 2
}é 2p = In{ Q QW S (Zy + 2 Q) W, } |a|

Combining (9.7) and (9.8)

- LK TR 3
%_B + la% 2P = QAW (& §.- (2 + z JAIW,, lal*
zxp o(F
Or i@,ﬁp Ll(_fw e (Q7(L ~ (z+ _Z__ ™. Q).W) lal2

Where O = (A+Z)  and L= 2 + i
= =e »Re A, um{%}

(9.7)

(9.8)

(9.9)

(9.10)

P is minimised, and the extraced power maximised, when the left hand

side of equation (9.10) is zero. One control matrix which satisfies

this condition for all W is found by setting

=
]
/1SN
+
[Ny
o=
+
[[[nN]

|
v
>

il

I

u= _% (Re{Z}).Wa
E=} 2- (Ref{z} ).
P=-1 w’."(Re{g})".w la)®

90

(9.11)

(9.12)
(9.13)

(9.14)



Appendix D: Wave equations

Monochromatic formulae

Cc = C5

~{e

= dw
dk

& = gk tanh(kh)

P(w) = ed]al' tanh(kh)(1 +__2kh P(w) for unit amplitude
o ) v 3
. i(k.r +wt)
¢ (r,t) = iac cosh(k(z+h)) e
sinh(kh)
v=V¢ r= (x,¥,2)
Spectra

Normalised energy distribution S(w,x)

ar oo

1 = gg S(w,x) do d

R _00
T,= || 2rs@,«) deax
0% W
W= 2T
€

™¢

P = SS Plw) S(w,o) dw de AR

= %i H T in deep water
1T

Separation of variables

Often the distribution can be split

S(w,x) = S(w) B(w,x)

[+72]
with 1 ={ s(@) de and 1 =g 0w, %) de
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Pierson-Moskowitz spectra

@ -y (e b
[st@) au= e yeso) with y= .675

Q

Angular spreading

COsA: B(w) = CNcoss(u—d) where C,is the appropriate
s normalisation constant
CSHA: ®(w) = C,cos (x-w)/2
-2.5
MITS: O, %) = chos“(u-u,)/z with s = s, (0 /) for w>w,
s, (w/s) for w<e,
and s, = 15.85 .
empirical constants
w, = 6p/1.137
Normal PM
2
H, = .0136 T,

T, = .625 U, where U, is the wind speed measured 19.5m above the water

the constants are empirical

Compression factor

The spectrum of energy against period is compressed about T, by
transforming the period

t =t - (1-C,) T,
Ce
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