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Abstract 

It would be highly desirable for operating systems to take a greater responsib-

ility for process placement and load balancing decisions in parallel machines. This 

would relieve the programmer of much of the burden associated with fine-tuning 

an application in order to achieve acceptable performance levels. Before such op-

erating systems can be developed, it is necessary to gain a better understanding of 

the factors that influence program performance. In particular, it would be useful 

to be able to identify classes of programs which, in a statistical sense, behaved in 

a similar manner. Then, given an arbitrary program whose class was known, rules 

and heuristics developed for the program class (in conjunction with program spe-

cific information) could be used to make informed placement and load balancing 

decisions. As a step in this direction, this thesis investigates the application of 

standard statistical techniques to the performance analysis of particular classes of 

parallel programs. 

Simple CSP-type parallel programs exhibiting loosely synchronous data paral-

lelism are used to illustrate how a common class of programs can be characterised 

in terms of a relatively small number of parameters representing time-averaged 

properties. In order to systematically explore parameter space, synthetic pro-

grams are used. The execution of these programs is simulated on an accurate 

performance model of a transputer-based machine. Standard experimental design 

techniques, such as the analysis of variance, are then applied to develop statist-

ical models relating to the program class. It is shown that useful quantitative 

predictions can be made for arbitrary class members. 

The accuracy of the performance model described above can be improved by 

taking account of run-time information. The analysis of covariance is a technique 

which enables this by allowing one to incorporate a number of covariates into a 

model. The covariates investigated in this thesis relate to the dynamic properties 



of programs. More specifically, they are a product of the complex interactions 

which occur at run-time between a program and the underlying machine. 

A representative process migration strategy of the type that might be incor-

porated into an operating system is presented. The covariate-based performance 

model developed earlier is then used to identify a number of performance measure-

ments which, when optimised, tend to result in improved processor utilisation. A 

modified migration strategy which makes migration decisions with these optimisa-

tions in mind is presented. It is shown that the new strategy can offer significant 

performance advantages over the original strategy. 

Finally, in order to demonstrate the generality of the new process migration 

strategy, it is tested on a class of dynamically varying programs. Statistical tech-

niques are used to identify the circumstances under which the strategy can offer 

the greatest performance benefits. The results obtained from the simulation sys-

tem are validated by showing that they apply to real programs running on a real 

transputer-based machine. 
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Chapter 1 

Introduction 

The von Neumann sequential model of computation has dominated computer ar-

chitectures for the past 45 years. However, it is becoming ever more difficult to 

obtain increased performance from conventional machines. One. solution to this 

problem is to use multiple processors in order to exploit the parallelism inherent 

in many problems; this technique is known as parallel processing. Parallel com-

puters are, generally speaking, concerned with the solution of a single problem. 

This is in contrast to distributed systems, which, while having multiple processors, 

are usually designed to maximise the throughput of large numbers of relatively 

independent jobs. 

Parallel computers are not new, research into such machines has been taking 

place for well over 20 years. For example, the ILLIAC IV [7] was constructed 

in 1968 and the C.mpp [133] in 1971. Historically speaking, parallel computers 

have tended to be built as research projects, designed to solve specific scientific 

problems. However, recently these machines have become more widely used in 

academia, commerce and industry. This is due to advances in technology which 

have resulted in the cost and size of microprocessors decreasing. Consequently, 

instead of concentrating on trying to produce faster and larger single processor 

machines, it has become cost effective to construct parallel computers from many 

smaller processors. 

1 
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Parallel computers can be classified in a variety of different ways, the most 

common classification scheme in use is Flynn's taxonomy [48]. Flynn partitions 

architectures according to whether single or multiple "streams" of instructions 

are used, and whether single or multiple "streams" of data are used. Within this 

scheme, the two dominant classes are known as SIMD and MIMD. 

SIMD (Single Instruction Multiple Data) computers are often massively par-

allel, being constructed of many relatively simple processors called processing ele-

ments. These processing elements operate in a lock-step fashion, simultaneously 

executing the same instructions on different data items. Examples of such ma-

chines include the AMT' DAP [64], and older models of the Connection Machine 

[129] from Thinking Machines. 

MIMD (Multiple Instruction Multiple Data) computers usually contain a smal-

ler number of processors than SIMD computers, although these processors are 

generally more powerful. Each processor is capable of executing its own code on 

its own data. However, often the processors are used in a Single Program Mul-

tiple Data (SPMD) mode, where the same program is run on each processor. This 

differs from the SIMD approach in the fact that the processors do not operate in 

a lock-step fashion. 

MIMD computers can be further divided according to the way processors com-

municate with one another. If there are a relatively small number of processors, 

each processor can have access to a shared global memory. Such computers are 

called shared memory multiprocessors, examples include the BBN Butterfly [33] 

and the Denelcor HEP [43]. Shared memory multiprocessors are reasonably easy 

to program since well understood operating system techniques such as semaphores 

can be used to control and synchronise the processors. However, they suffer from 

'Formerly ICL. 
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one great drawback: as the number of processors is increased, access to the shared 

memory becomes a bottleneck limiting the speed of the computer. 

To overcome this problem, distributed memory multiprocessors  have been de-

veloped; for example, the MEiKO Computing Surface [87], the Intel iPSC2 [1] 

and the NCUBE-2 [99]. Each processor node typically contains a CPU, a local 

memory, some sort of context switching mechanism to handle multiple processes, 

and a communications controller to exchange messages with other processors via 

high bandwidth links. In older machines, processor nodes are generally sparsely 

connected using a topology such as a hypercube, mesh or ring. The structure 

used is sometimes fixed, and sometimes configurable under user control. Messages 

are passed between processors using store and forward techniques, i.e. messages 

are read in and stored at each intermediate processor node, before being routed 

onwards towards their destinations. Consequently, these machines exhibit the 

concept of locality with respect to communications, with some processors be-

ing closer together than others. The latest generation of machines generally use 

circuit-switched networks to communicate between processors, thereby reducing 

communications latency. Locality is also less of an issue, since processors are 

often equidistant from one another. 

Distributed memory multiprocessors have the advantage of being scalable, but 

they are harder to program than their shared memory counterparts. This is largely 

due to the added complexity involved in managing inter-processor communications 

and synch ronisations. Process placement and load balancing issues must also be 

considered. Often a programmer will require a detailed knowledge of the tar-

get machine in order to obtain reasonable performance. The main reason for 

this is that software environments and programming languages for distributed 

memory multiprocessors have lagged far behind hardware developments. Pro- 

'Sometimes called multicomputers. 
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grams are often written in dialects of conventional sequential languages, such as 

C and FORTRAN, which have been extended to support message passing. One 

notable exception is the language occam [86], which was developed as the nat-

ive language for the transputer. There have been attempts to relieve the burden 

on the programmer by providing environments which handle some of the more 

mundane tasks, and abstract away from the underlying hardware; for example, 

Linda [36] and Strand [49]. However, even using such environments, it is still a 

demanding task to utilise the underlying hardware efficiently. 

This thesis is concerned with investigating the provision of operating system 

support for process placement and load balancing decisions in distributed memory 

multiprocessors. In future, any mention of multiprocessors can be taken to refer to 

distributed memory machines. Given a program and some information regarding 

its structure, it would be desirable for the operating system to be able to execute 

the program efficiently, making the best possible use of the available resources. The 

work presented here is exploratory, and is a first step in this direction. To limit 

the scope of the study I concentrate on analysing particular classes of parallel 

programs, and tend to keep the processor topology and run-time environment 

constant whenever possible. 

1.1 Research Objectives 

The study has two main objectives. The first is to investigate in a quantitative 

manner the relationships which exist between the structure of parallel programs 

and their performance characteristics. For example, I would like to be able to 

determine the particular aspects of a program's structure that had the greatest 

impact on performance. The second objective builds upon this work. It is to 

undertake a quantitative analysis of the behaviour of programs when executed 

under the control of a process migration strategy. I would like to be able predict the 
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circumstances in which a process migration strategy could improve performance, 

and estimate the likely performance benefits to expect. 

These two objectives determine the approach taken in this thesis, and lead me 

to consider the standard statistical methods of experimental design and analysis. 

1.2 Contributions of Thesis 

This section highlights the main contributions of this thesis. 

• It is shown how a class of loosely synchronous data parallel programs can be 

adequately characterised in terms of a smalinumber of program parameters 

describing time-averaged macroscopic properties. 

• Standard statistical techniques, such as the analysis of variance and analysis 

of covariance, are shown to be useful tools with which to, firstly, under-

take exploratory performance analysis experiments; and secondly, construct 

performance prediction models. 

• A systematic investigation of the behaviour a class of process migration 

strategies is presented, for various classes of programs characterised as de-

scribed above. Quantitative estimates of the relative importance of the 

factors influencing the performance of the strategies are obtained. 

• It is shown how the performance of a process migration strategy can be 

improved under certain circumstances by attempting to optimise the values 

of performance metrics identified using an analysis of covariance. These 

performance metrics characterise the interactions which occur between a 

program and the machine it is being executed on. 

• The design and construction of a novel process migration mechanism for a 

transpu ter- based machine is described. 
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1.3 Chapter Outline 

Chapter 2 presents a review of the literature relevant to the areas addressed by 

this thesis. Performance analysis techniques are surveyed, and the two dominant 

models of parallel computation are introduced. The scheduling and mapping prob-

lems, as found in distributed memory multiprocessors, are described. A discussion 

of load balancing techniques and process migration strategies is presented. 

Chapter 3 describes the tools and environments which have been construc-

ted in order to support the experiments described in this thesis. The statistical 

techniques used in subsequent chapters are also presented. 

Chapter 4 demonstrates how it is possible to characterise the behaviour of a 

particular class of parallel programs in terms of a small number of parameters 

describing time-averaged macroscopic properties. Analysis of variance techniques 

are used to investigate the impact of these parameters on program performance 

using a number of different metrics. 

Chapter 5 investigates a more realistic class of irregular parallel programs. 

Analysis of variance techniques are used to pin-point program parameters with 

the greatest predictive powers. A model using these parameters is then derived 

and shown to perform reasonably well given its simplicity. To improve the accuracy 

of the model, the analysis of covariance is used to identify suitable covariates to 

include. The covariates help to characterise the interactions which occur at run-

time between a parallel program and the machine it is being executed on. 

Chapter 6 examines process migration strategies, as applied to those programs 

which are mapped in an unbalanced manner, but do not vary over time. A relat-

ively simple strategy is derived, and shown to generally improve the performance 

of such programs. It is demonstrated that a better strategy can be constructed 

by attempting to optimise the values of the covariates identified in Chapter 5. 
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Chapter 7 shows that the improved migration strategy derived in Chapter 6 is 

suitable for use with programs whose behaviour varies over time. The relationships 

which exist between the structure of such programs and the performance of the 

migration strategy are investigated in a quantitative manner. 

Chapter 8 summarises, and presents the conclusions resulting from this study. 

Possibilities for future work are discussed. 



Chapter 2 

Background 

This chapter presents background material relevant to the issues addressed in this 

thesis. As discussed in the previous chapter, I am interested in a quantitative 

analysis of the performance characteristics of parallel programs; both with and 

without process migrations. Consequently, Section 2.1 gives an overview of the 

various techniques that have been used to analyse and reason about the behaviour 

of parallel systems, with particular attention to the performance analysis of par-

allel programs. The two dominant performance models of parallel computation 

are described in Section 2.2. Section 2.3 introduces the fundamental concepts of 

scheduling and mapping as applied to parallel programs. These activities greatly 

influence performance, and are one of the main reasons why parallel machines 

are harder to program than sequential machines. Section 2.4 presents a general 

overview of load balancing techniques for parallel machines. Since I am interested 

in studying the behaviour of programs when executed under the control of a pro-

cess migration strategy, Section 2.5 surveys the literature relating to this area. 

Finally, in the light of the preceding material, Section 2.6 sets the scene for the 

work presented in subsequent chapters. 
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2.1 Performance Analysis of Parallel Systems 

Performance analysis techniques allow us to characterise, model and analyse the 

complex behaviour patterns which occur within computer systems. Such methods 

can be used to explore the performance characteristics of existing hardware and 

software systems, or to explore design alternatives in systems which are yet to be 

constructed. 

Many performance analysis techniques have been developed for conventional 

sequential machines. Broadly speaking, these can be classified as falling into one 

of three areas: analytical methods, simulation methods or measurement methods. 

Although specialised techniques have been developed to handle the extra com-

plexity introduced by parallel systems, the same broad categorisation still holds. 

2.1.1 Analytical Methods 

The major advantage of analytical methods is that they can be used to construct 

performance models relatively quickly, and usually with less effort than required 

using either of the other two techniques. However, their great disadvantage is 

that they require many simplifications and assumptions to be made. This is be-

cause, using such high level techniques, it is very difficult to capture the complex 

nature of parallel systems to any great level of detail. Consequently, the accur-

acy of analytical models can be questionable, unless validated using simulation or 

measurement techniques. 

Standard queueing theory methods are often used in performance analysis stud-

ies to construct analytical models. A number of tools and techniques have been 

developed to reason about models constructed in this manner; a useful introduc- 

tion to these methods is given by King [75]. Queueing models are particularly well 
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suited to the performance analysis of distributed systems, since they can accur-

ately represent the multiple service sites and independent jobs that characterise 

such systems. For example, Eager et al. [41] use these techniques to investigate 

the appropriate level of complexity required of a load sharing policy in a distrib-

uted system. Queueing models may also be used to model programs executing 

on multiprocessors, as long as the tasks in the system are relatively independent; 

see [127] for example. However, queueing networks are unable to account for the 

complex behaviour patterns that a set of communicating processes exhibit. Con-

sequently, their usefulness is restricted with respect to the performance analysis 

of parallel programs running on distributed memory multiprocessors. 

The Petri net formalism can be used to represent and analyse the performance 

of parallel programs and machines. Given a Petri net representing the parallel 

system to be analysed, a reachability graph can be constructed defining the sys-

tem's state space, and thus its potential behaviour patterns. This is the approach 

adopted by Shatz and Cheng [116]. This reachability graph can then be inspected 

to detect properties of the system under investigation, for example, the possibility 

of deadlock occurring. A problem with the reachability graph approach is that 

the state space grows combinatorially with the size of the system being studied; 

a so called "state space explosion". To overcome this, structural techniques have 

been proposed: for example, Murata et al. [96] describe a technique for detecting 

deadlock in a Petri net representation of a program without generating the cor-

responding reachability tree. Such methods are based on the syntactic structure 

of the Petri net. Even so, it is not clear whether realistically large systems can be 

analysed using this approach. 

There have been a number of attempts to analyse the performance of iterative 

algorithms running on distributed memory multiprocessors from first principles 

using analytical techniques. For example, Marinescu and Rice [92] study the 

effects of communications latency and load imbalance, and suggest schemes for 

improving performance by reducing synchronisation overheads. Related research 
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is presented by Brochard et al. [19], who investigate the properties of different 

synchronisation schemes. 

It should be noted that both queueing networks and Petri net models can be 

simulated, as well as being manipulated using analytical methods. Indeed, in the 

case of Petri nets, simulation may be the only option if the reachability graph of 

the system under examination becomes too large. 

2.1.2 Simulation Methods 

Simulation models can incorporate more detail and require less assumptions than 

analytical models. The penalty to pay for this improvement in accuracy is an 

increase in the time required to obtain results. This manifests itself both during 

the construction of the model, and during the execution of the simulation trials 

themselves. 

A number of simulation systems have been implemented for parallel machines 

and programs. For example, Davis et al. [35] describe a system called TANGO 

which simulates the execution of a parallel program on a multiprocessor. The user 

is free to select the level of detail that they require a program to be simulated at. 

The simulation system itself runs on a conventional uniprocessor, but the ordering 

and timing of events of the simulated multiprocessor is preserved. Contention 

and interactions between processes are modelled in detail. The system uses an 

execution-driven simulation technique in order to improve execution times; rather 

than emulating instructions, the source code of the program being simulated is 

executed whenever possible. A similar tool called HYPERSIM is described by 

Bain and Shala in [5], the main difference between the two being that, in order 

to improve performance, the latter tool can itself be executed in parallel on a 

multiprocessor. 

Hayes and Andrews [61] describe a simulation system called ADAS that is par-

ticularly suited to early performance analysis studies of integrated hardware and 
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software systems. In contrast to TANGO, ADAS expects the candidate program 

to be specified in a graph theoretic manner. From this graph a Petri net is derived, 

and this is used to simulate the execution of the program running on an arbitrarily 

chosen number of processors. 

The three systems discussed above have one thing in common, they all attempt 

to simulate the behaviour of the program as well as the underlying machine. There 

have also been a large number of instruction-level simulation systems constructed 

for both uniprocessors and multiprocessors. These systems concentrate on simu-

lating the hardware at a detailed level, and are consequently slow, and unsuitable 

for large-scale experimentation. In addition, they are generally not concerned with 

program structures, and so are of little interest here. 

2.1.3 Measurement Methods 

Measurement techniques can be used to collect statistics in order to analyse the 

performance of existing programs running on existing machines. Such methods are 

not well suited to exploratory work, since they require the actual implementation 

of the systems under investigation. They are, however, suited to "fine-tuning" 

applications. Programmers of parallel machines often have to use such methods 

in order to achieve acceptable performance levels. 

Monitors can be event-driven, meaning that measurements are driven by changes 

in the system's state; for example, process creation, communications or remote-

memory accesses. Alternatively time-driven techniques can be used, meaning 

that statistics are collected at pre-defined time intervals. Monitoring can also 

be achieved with differing degrees of intrusion. Software monitors are the most 

intrusive, since they have the greatest impact on the execution of the program. 

Hardware monitors are the least intrusive, however, they require low level ar-

chitectural support. Hybrid schemes are also possible. For example, Zitterbart 

[138] describes an event-driven hybrid monitor called NETMON-II for transputer- 
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based machines; and Zhang et al. [136] present a software monitor for the BBN 

GP1000 multiprocessor. A good discussion of monitoring related issues is given 

by Marinescu et al. in [91]. 

Recently a great deal of effort has been dedicated to the construction of visual-

isation tools to help the programmer understand the performance characteristics 

of their programs in an intuitive manner. Example of such systems include Para-

Graph [62] and GRAIL [123]. 

2.1.4 Comments 

This thesis concentrates on the performance analysis of programs, rather than 

machines. Although a performance model of the machine is still required in order 

to obtain useful results. I want to carry out large scale systematic exploratory 

experiments, so measurement techniques are not suitable, since they require the 

actual implementation of the programs being investigated. On the other hand, 

analytic methods are not entirely appropriate, since it is desirable to model the 

complex interactions which occur between a program and the machine that it 

is executed on as accurately as possible. Consequently, simulation techniques 

suggest themselves; a suitable simulation environment is presented in Chapter 3. 

In addition, measurement techniques are used for validation purposes in Chapters 

6 and 7. 

2.2 Models of Parallel Computation 

Generally speaking, an underlying performance model of parallel computation is 

required before one can reason about the behaviour of a parallel program. The 

two types of model most commonly found in the literature are precedence graphs 

and process graphs. 
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2.2.1 Precedence Graphs 

A precedence graph (sometimes called a dependency graph or task graph) repres-

ents a parallel program as a precedence constrained set of tasks. As in [105,117, 

1271, the graph is generally constrained to be a Directed Acyclic Graph (DAG). 

The nodes in the graph represent the tasks, and the edges represent data depend-

encies between tasks. A task may not begin to execute until all the tasks that it is 

dependent on have finished executing. Obviously some program structures, loops 

for example, result in non-acyclic graphs. However, this problem can be overcome 

by un-rolling the graph. 

The tasks in a precedence graph are the atomic units of computation i.e. a 

task will only communicate before it commences execution (in order to receive 

information), and after it terminates (in order to output information). Execution 

times are generally associated with individual tasks by allocating weights to the 

nodes of the graph. A precedence graph can be defined as follows: 

Definition 2.1 A precedence graph is a weighted graph G(V, E) whose 

vertices, V = {1,2,..,NJ, represent the tasks of the program, and 

edges, E, represent the data dependencies between those tasks. The 

relative computational requirements -f task i are represented by w 1 . 

The top node in the graph (task 1) has no predecessors. The bottom 

node in the graph (task N) has no successors. At intermediate levels 

in the graph, nodes can only be dependent on nodes at higher levels. 

A number of extensions to conventional precedence graphs have been proposed 

in the literature. For example, Hwang et al. [68] add communications costs to the 

arcs, and Towsley [128] describes how to incorporate information relating to the 

probability of a communication occurring. 

Precedence graphs capture in a detailed manner the interactions and temporal 

relationships which exist between a set of tasks comprising a particular program. 
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They are particularly suited to characterising programs written in languages (or 

executed under environments) which tend to spawn large numbers of relatively 

short-lived tasks. Parallel functional languages and datafiow languages fall into 

this category. An alternative technique is to use a process graph to summarise the 

time-averaged properties of a program. 

2.2.2 Process Graphs 

A process graph (sometimes called a communication graph or problem graph) rep-

resents a parallel program as a graph in which the nodes correspond to processes, 

and the arcs correspond to communication channels between processes. These 

graphs tend to emphasise the overall process and communications structure of a 

computation. 

Process graphs have their origin in the work carried out by Stone [124]. He 

investigates the problem of assigning program modules to a heterogeneous network 

of processors, where some modules are particularly suited to certain processors. 

However, Stone's graphs do not represent parallel computations as we know them 

today, since they do not consider the possibility of modules being able to execute 

simultaneously. 

In [15], Bokhari assumes an unweighted process graph. This approach allows 

the communications structure of a parallel computation to be defined. Often, 

however, weights are located to the arcs of a process graph, thereby allowing the 

volume of communications passing between two processes to be specified, see [16] 

for example. In its most general form, both the nodes and edges of a process graph 

are allocated weights representing the time-averaged behaviour of a program; Ercal 

et al. [45] use this approach. The weights associated with nodes specify the 

computational requirements of the corresponding processes, and, as previously, the 

weights associated with arcs specify the volume of inter-process communications. 
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Arcs may either be directed, indicating one way message transfers, or undirected, 

indicating bidirectional message transfers. A more formal definition follows: 

Definition 2.2 A process graph is a weighted graph G(V, E), whose 

vertices, V = {1,2,..,N}, represent the processes of the program, and 

edges, E, represent the communications channels between those pro-

cesses. The relative computational requirements of process i are repres-

ented by w. The volume of communication associated with the channel 

connecting processes i and j is represented by c ii . 

Process graphs have been extended in a number of different ways. For ex-

ample, Lo [85] considers compute and communications phases, and shows how the 

temporal behaviour of the program corresponding to the process graph can be 

described in terms of these phases. Lee and Aggarwal [82] also use the concept 

of a phase. Their phase is defined as an interval during which an identifiable and 

distinct interaction pattern occurs between processes. 

Process graphs are best suited to programs which are structured as a set of 

persistent sequential processes that periodically communicate with one another. 

Often the process structure will be extractable at compile-time, and the processes 

will exist for the entire execution period. This paradigm is widely used, and 

corresponds to the CSP model of parallelism developed by Hoare [63]. The pro-

gramming language occam [86] was designed as a partial implementation of the 

CSP model of parallelism; consequently, an occam program can conveniently be 

represented by a process graph. Many other CSP-type parallel programs are writ-

ten in conventional languages, such as C or FORTRAN, which have been extended 

with support libraries to provide an environment within which processes can be 

created and inter-process communications can occur. CSTools [88] is an example 

of such a system. 
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2.2.3 Comments 

A process graph for a given program is an aggregate of the corresponding pre-

cedence graph. A typical process will consist of a (possibly large) number of 

tasks, these are represented explicitly in a precedence graph. In contrast, only 

the cumulative computational demands of the tasks are represented in a process 

graph. Similarly, a precedence graph gives detailed information about the data 

dependencies between tasks, whereas a process graph shows only which processes 

communicate with one another, usually along with an indication of the volumes 

of inter-process traffic. 

As described in Chapter 3, the approach adopted in this thesis is to attempt to 

characterise parallel program behaviour in terms of a small number of parameters 

relating to the time-averaged properties of a program. A process graph model of 

computation is best suited to this task. 

2.3 Scheduling and Mapping 

The problem of allocating parallel programs to run on parallel machines has re-

ceived a great deal of attention. The literature generally identifies two distinct 

problems. The first is called the scheduling problem, this is concerned with the 

assignment and ordering of tasks. The second is called the mapping problem, this 

is purely concerned with the assignment of processes to processors. These terms 

are not in universal use; for example, some authors include task scheduling within 

their definition of the mapping problem. In their general forms, both problems 

are known to be NP-hard [46,84,130]. Consequently, approximate methods are 

generally utilised to generate good sub-optimal solutions. 
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In the following sections the scheduling and mapping problems are defined and 

discussed in greater detail. It is assumed that the program graph (whether it be 

a precedence graph or a process graph) is known in advance. 

2.3.1 The Scheduling Problem 

The scheduling problem is concerned with the placement and ordering of tasks. 

A scheduling algorithm generally expects a precedence graph as its input. It 

produces as its output a schedule for the execution of the tasks which attempts to 

minimise the run-time of the program. This schedule specifies which processor to 

execute each task on, as well as the order in which the tasks should be executed 

on each processor. The problem can be stated a little more formally as follows: 

Definition 2.3 Given a set of processors and a set of tasks represented 

by a precedence graph as specified in Definition 2.1, find a schedule for 

the execution of the tasks on the processors such that the program's 

execution time is minimised. 

The scheduling problem has been addressed in numerous publications. For ex-

ample, El Rewini and Lewis [44] propose a heuristic which considers contention for 

resources, and schedules based on the level of each task in the precedence graph. In 

[117], Shirazi et al. describe a number of list scheduling algorithms. These include 

an algorithm that gives priority to computationally intensive nodes, and another 

that makes use of traditional critical path analysis techniques. Papadimitrou and 

Yannakakis [105] describe an algorithm which takes communication delays into 

account and works in an architecture-independent manner (in the sense that the 

number of processors is assumed to be unbounded). 
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2.3.2 The Mapping Problem 

The mapping problem is concerned with the assignment of processes to processors, 

and communications channels to physical links. A mapping algorithm generally 

expects a process graph as its input, and produces as its output a placement satis-

fying some mapping criteria which depends on the type of strategy being applied. 

Three types of strategy can be identified in the literature: topological mappings, 

cost optimisation mappings and adaptive mappings. These are discussed below. 

1. Topological Mappings 

Topological mapping strategies concentrate on ensuring that communicat-

ing processes are placed on adjacent processors; information relating to the 

volume of inter-process communications or computational intensity of pro-

cesses is not considered. Example of such strategies include those presented 

by Bokhari [15], and and Chen and Gehringer [24]. The following formula-

tion of the mapping problem is appropriate: 

Definition 2.4 Given a set of processors and a program represen-

ted by an 'unweighted process grcç with no more nodes than there 

are available processors: find a mapping such that neighbouring 

processes get assigned to neighbouring processors. 

The quality of a mapping generated using a topological mapping strategy 

can he assessed by considering the proportion of process graph edges that 

fall directly on hardware links. Contraction techniques are generally used 

if the number of processes in the program graph exceeds the number of 

processors. The topological mapping problem is known to be NP-hard in its 

general form [15], although useful results can be obtained for restricted cases, 

notably when the hardware and process graphs are regular in structure. 
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2. Cost Optimisation Mappings 

Cost optimisation mapping strategies define an objective function to charac-

terise the quality of a mapping. This function is then used in conjunction 

with a heuristic search procedure in order to find a good sub-optimal map-_ 

ping. One can specify the problem more formally as follows: 

Definition 2.5 Given a set of processors, a program represented 

by a process graph as specified in Definition 2.2, and an objective 

function characterising the quality of a mapping: find a mapping of 

processes to processors such that the value of the objective function 

is optimised. 

Obviously, the intention of the optimisation process is to achieve a mapping 

that will minimise the execution time of the program. However, due to the 

complex behaviour patterns that a set of competing and interacting processes 

exhibit, it is generally considered impractical to attempt to characterise 

the execution time of a program. In particular, simple additive models 

are often not appropriate. Consequently, a number of alternative forms 

for the objective function have been proposed. For example, minimising 

communications costs [16,82], or minimising communications costs subject 

to some computational load balancing constraints [13,45]. In the later case, 

the stated aims conflict with one another to a large extent: to eliminate inter-

processor communications costs completely, one could assign all processes to 

the same processor, but this would result in a very poor computational load 

balance. 

Techniques that have been used to implement the optimisation process are 

numerous and diverse. For example, Bollinger and Midkiff [16] describe a 

simulated annealing based approach; such techniques tend to produce good 

solutions, but are computationally demanding. Genetic algorithms are ex-

plored by Kramer and Muhienbein [94]. They use the methods of replication, 
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mutation and selection to evolve near optimal solutions. In [103], Mansour 

and Fox observe that simulated annealing and genetic algorithms take ap-

proximately the same time to produce results of a similar quality. Recursive 

mm-cut techniques are investigated by Ercal et al [45]. They advocate a 

two-phase approach whereby, given k processors, the process graph is par-

titioned into to k clusters so as to minimise inter-cluster communications 

costs. These clusters are then assigned to processors so as to minimise inter-

processor communications costs. It is reported that this technique produces 

slightly worse solutions than simulated annealing, but operates several orders 

of magnitude faster. 

3. Adaptive Mappings 

There is a class of mapping strategies that are adaptive in the sense that 

they monitor the execution of the program in order to improve on the (pos-

sibly arbitrarily chosen) initial mapping. This approach is typified by the 

post-game analysis techniques proposed by Sunter et al. [125], and leum-

wananonthachai et al. [67]. In these strategies, performance statistics are 

gathered and are then processed off-line by heuristics which make sugges-

tions in order to refine the mapping. The program is then re-mapped and 

re-executed. This process continues iteratively until a satisfactory mapping 

is achieved. 

2.3.3 Comments 

The different aims of scheduling and mapping flow directly from the respective 

characteristics of precedence and process graphs. Precedence graphs present a 

detailed representation of a program's structure, and there is enough information 

to attempt to minimise the program's execution time. Process graphs, on the 

other hand, are a higher level representation, so secondary objectives are used; 
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the intention being that satisfying these secondary objectives will result in a good 

execution time. 

I am not concerned with formulating new solutions to the mapping problem, 

indeed, the work described in this thesis utilises rather simple strategies. However, 

it is known that the particular mapping used can greatly influence performance. 

Consequently, in Chapter 5, techniques are explored for incorporating informa-

tion relating to the quality of a mapping into performance prediction models. In 

Chapters 6 and 7 I investigate how the mapping in force can be improved at 

run-time using process migration strategies. 

2.4 Load Balancing 

The scheduling and mapping strategies discussed in the previous section assumed 

that the program graph was known in advance. Often however, this will not be 

the case. In such situations the operating system is required to perform "on the 

fly" scheduling and mapping. This is usually implemented as some sort of load 

balancing heuristic. 

Load balancing is used in parallel machines in order to make the best use of 

the available resources. In a distributed memory multiprocessor running a single 

application this normally involves ensuring that: the computational load is distrib-

uted as equally as possible over all of the processors; and that the communications 

load is distributed as equally as possible over all of the links. 

Ideally, the load balancing strategy (or strategies) will be incorporated into 

the operating system, and will be able to perform effectively over a wide range of 

programs. Load balancing techniques are normally classified as falling into one of 

two categories: static load balancing methods or dynamic load balancing methods. 
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2.4.1 Static Load Balancing 

Static load balancing techniques allocate processes to processors before the pro-

gram commences execution. This technique is useful for applications whose beha-

viour is stable over time, and predictable to some extent. 

Simple approaches involve distributing processes randomly, or using some sort 

of cyclical allocation of processes to processors. As an alternative, there is a 

strategy known as the scattered spatial decomposition [1021. This technique op-

erates by dividing a computational domain into a large number of pieces which 

are then distributed equally among the available processors. The intention being 

that, on average, processors will have an equal amount of work to do. This method 

performs well for certain classes of problem, see Section 4.2 for further details. 

If one of these strategies is not appropriate, then one of the mapping strategies 

discussed in Section 2.3.2 generally has to be used. The topological and adaptive 

mapping strategies are particularly suitable, since they do not necessarily require 

any information about the computational or communications demands of the pro- 

cesses. 

2.4.2 Dynamic Load Balancing 

Many problems do not display stable behaviour patterns, instead they vary in 

unpredicatable and data-dependent ways. This often results in considerable load 

imbalances. Example of such problems include: particle dynamics applications, 

parallel discrete event simulations and adaptive mesh calculations. Dynamic load 

balancing strategies attempt to address these imbalances by moving load from 

one processor to another as the program is executed. A distinction is sometimes 

made between load balancing and load sharing, which refers to the less demanding 

task of attempting to ensure that no node in the system remains idle while work 

remains to be done [41]. 
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There are two types of dynamic load balancing strategy commonly identified: 

load distribution strategies and load migration strategies 

Load distribution tends to occur in systems which spawn large numbers of 

independent tasks in an unpredictable manner. Instead of attempting to migrate 

these tasks while they are executing, the operating system attempts to balance the 

system load by deciding which processor to execute them on as they are spawned. 

Once a task is executing on a processor, it is never subsequently moved. For 

example, Lin and Keller [83] propose a load distribution strategy based on the 

"gradient model". This strategy involves transferring unevaluated tasks to nearby 

idle processors according to a pressure gradient indirectly constructed by consid-

ering requests from those idle processors. Nazief [98] investigates the performance 

of a number of distribution strategies under different computational models and 

machine architectures. In [118], Shivaratri et al. present a comprehensive survey 

of load distribution strategies. 

A load migration strategy, on the other hand, also considers migrating a task 

once it has begun to execute. It is suitable both for programs that spawn tasks 

in an unpredictable manner, and programs that consist of a relatively constant 

number of communicating modules. Examples of load migration strategies include 

those presented in [34,56,114,131]. Load migration strategies are discussed in 

considerable detail in Section 2.5. A special case of load migration worth a brief 

mention here is dynamic remapping [101]. Rather than continually migrating 

processes in an attempt to achieve a load balance, a dynamic remapping strategy 

will suspend and remap all processes when a sufficient load imbalance is detected. 

Load distribution and load migration strategies address many of the same is-

sues. It has been reported that, although both strategies can improve over the 

no load balancing case, load migration strategies have the capability to signific-

antly out-perform load distribution strategies [80]. In particular, it appears that 

for programs structured as a set of long-lived modules, load migration is to be 

preferred [98]. 



Chapter 2. Background 
	

25 

2.4.3 Comments 

As already mentioned, this thesis will concentrate on a process graph model of 

computation. In addition, I will restrict myself to considering load migration as 

a means of dynamic load balancing. The remainder of this chapter is dedicated 

to a discussion of load migration strategies. The term process is used henceforth 

as a generic term to represent the migratable unit of work. This unit could take 

a number of forms: for example, it might be an extremely light-weight independ-

ent task. Alternatively, it could be a heavy-weight module which communicates 

intensively with other modules. 

2.5 Process Migration 

The ability to migrate processes at run-time can offer a number of attractive 

benefits. A good example is fault tolerance; in the event of a gradual processor 

failure, processes can be migrated to alternative homes. Another use is to enable 

processes to take advantage of special hardware or software capabilities unique to a 

particular node, or group of nodes. However, in the context of distributed memory 

multiprocessors, by far the most common use for a process migration facility is 

for the implementation of dynamic load balancing. This is the application that 

this thesis concerns itself with. In particular, I concentrate on process migration 

strategies that could be incorporated into an operating system, rather having to 

be embedded in the application itself. 

It is convenient to think of a process migration facility as comprising of three 

functionally separate components [2,81: namely, the statistics collection module, 

the decision making module, and the migration module. The statistics collection 

module gathers performance information about the processors and processes in 

the system. This information is subsequently used by the decision making module 

in order to decide which (if any) processes to migrate. Once this decision has been 
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made, the migration module is informed. The migration module is responsible for 

actually executing the migrations. In reality, the distinction between these three 

modules may be blurred, and they may be distributed over multiple processors. 

In the following sections the decision making and migration modules are dis-

cussed. The decision making module is referred to as the migration policy, and 

the migration module is referred to as the migration mechanism. The statistics 

collection module is not of any great interest here, for the purposes of this dis-

cussion it is assumed that a suitable monitoring facility exists (whether it be in 

hardware, software or, some sort of hybrid scheme). 

2.5.1 The Migration Policy 

A large number of migration policies have been proposed in the literature. Many 

of the older policies stem from the field of distributed systems; for example, those 

presented in [57,80,110,121]. There are significant differences in the dynamic load 

balancing problem between distributed systems and multiprocessors. Distributed 

systems are usually general purpose multi-user machines, whereas multiprocessors 

tend to be dedicated to a single application at any one time. Consequently, the 

processes running on the two types of machine display different characteristics. 

Processes running on a multi-user machine tend to be relatively independent of 

one another; for example, separate users' sequential programs. In contrast to 

this, processes running on a multiprocessor generally need to communicate with 

each other, since they are attempting to solve the same problem. Consequently, 

multiprocessors are usually constructed with a reasonably efficient inter-processor 

communications mechanism in place. 

In the light of the above discussion, it is clear why process migration policies 

for distributed systems have tended to ignore inter-process communications and 

dependencies when making migration decisions. A consequence of this is that 

these policies are not always directly applicable to multiprocessor systems. For 



Chapter 2. Background 	 27 

example, many programming paradigms produce processes which communicate 

and interact with each other in complex ways. Policies developed for distributed 

systems are not suitable without modification in such cases. 

It should be noted that there are programming paradigms that do generate 

relatively independent processes, and migration policies developed for distributed 

systems can be useful in such cases. A good example is the "divide-and-conquer" 

paradigm, where a problem is broken down into a number of independent sub-

problems which are solved and combined to give a final solution. Parallel imple-

mentations of functional languages also tend to generate independent processes. 

To summarise: process migration policies developed for distributed systems 

are generally developed without considering inter-process communications, and 

are designed to work in environments possibly lacking an efficient inter-processor 

communications infrastructure. Consequently, care should be taken when applying 

such policies in multiprocessor systems. 

General Characteristics of a Migration Policy 

In order to migrate a process a migration policy must make three separate decisions 

[381 1 : 

• When to attempt the migration. 

• Which process to migrate. 

• Where to migrate the process to. 

'This paper also identifies another decision that must be made, namely Who should 

take responsibility for initiating migrations. We generally assume that this is the re-

sponsibility of the operating system. 
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These decisions are common to all migration policies, although the three steps are 

not always easily identifiable. For example, in the policy presented in [341, the 

Where decision is not made according to the systems state, instead migrations can 

only occur between predetermined pairs of processors at any particular iteration 

of the policy. 

There are a number of properties which a good migration policy will display, 

the most important are listed below: 

• Stability 

Processes should not be migrated without reason [121]. Unnecessary mi-

grations can occur for a number of reasons: for example, the use of out of 

date load information, or in the process of trying to achieve too fine a load 

balance. This phenomenon is known as thrashing. 

• Good Convergence 

Once a load imbalance has been detected, a good process migration policy 

should converge to an improved placement as quickly as possible. The longer 

the time taken to achieve a good balance, the lower the possible performance 

benefits. 

• Scalahility 

In order to be suitable for use in massively parallel architectures, a process 

migration policy should be able to perform effectively with both large and 

small numbers of processors. 

Process migration policies can be classified in a number of different ways. Below 

four possible classifications are presented, and examples are given of policies that 

can be accommodated into each category. 
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Global vs. Local Information 

In order to make informed migration decisions, a migration policy requires inform-

ation about the state of the machine. This information is said to be global in nature 

if it is gathered from all of the processors, or local in nature if it is gathered from 

only a subset of processors. Both global and local policies have been proposed in 

the literature, and each have their own advantages and disadvantages. 

In the global case, the decision-making processor(s) gather information from 

all other nodes in the system with the aim of constructing an accurate image of the 

machine's state. For example, Corradi et al. [32] describe a global strategy specific 

to ring-based processor topologies (this restriction has the effect of minimising the 

number of communications required in order to distribute information relating to 

the global state of the machine). In [40], Dragon and Gustafson propose a global 

mechanism that is particularly suited to particle simulations. In current machines 

the information gathering process can impose significant communications and co-

ordination overheads for anything other than a small number of processors. This 

can result in performance statistics being out of date by the time they come to be 

used in the decision making process. Consequently, global policies are not gener-

ally scalable beyond perhaps a few tens of processor at most. Future distributed 

memory multiprocessors are likely to support very high performance communica-

tions mechanisms, and total connectivity of processors. When this occurs, global 

policies should become more attractive, since, in theory, they can make better 

informed migration decisions than local policies. 

It should be noted that, although the information in a global policy is gathered 

from all processors, the decision making process can be either centralised or de-

centralised. In the centralised case, all information is sent to a central point of 

control, and the migration instructions are issued by this processor; see [79] for 

example. In the decentralised case, all the processors that can issue migration 

instructions must know about the state of all other processors in the system; see 
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[40] for example. In the extreme case, all processors require to know the state of 

all other processors, obviously the overheads of such a mechanism quickly become 

intolerable. 

In order to reduce information collecting overheads and achieve scalability, 

distributed memory multiprocessors have tended to exploit local policies. Such 

policies are decentralised and use information from only a subset of processors in 

order to make migration decisions. The intention being that repeated local bal-

ancing will lead to a satisfactory global balance; this assumption appears to be 

relatively well founded. For example, Qian and Yang [111] show that for a repres-

entative strategy (in which processors average their workload with their nearest 

neighbours) the expected difference between the average load of an arbitrarily 

chosen processor and the system wide average is zero. Cybenko [34] investigates 

the performance of several local migration policies, and uses the eigenstructure of 

the iteration matrices that arise from dynamic load balancing to prove their con-

vergence properties. Local policies are often found to out-perform global policies 

for anything but a very small number of processors. However, the major drawback 

of such policies is that a local view of the machine is inevitably less accurate than 

a global view. Bad migration decisions can be made because each processor has 

only a partial view of the machine state. 

There are varying degrees of local information that can be used. At one end 

of the spectrum lie policies which, on each iteration, only consider load balancing 

between mutually exclusive pairs of processors. The processor pairs used are nor-

mally updated in a deterministic and cyclic manner between iterations. These 

techniques are generally known as Dimension Exchange Methods. Cybenko [34] 

proposes such a policy for hypercube processor topologies. The technique is exten-

ded to arbitrary processor topologies using graph colouring techniques by Hosseini 

et al. [65]. 

There is a relatively large class of policies which divide the machine up into 

a number of (often overlapping) balancing domains [90,111,114,131]. Within each 
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of the domains, the processors exchange load information and then cooperate in 

process migration decisions in order to balance the load locally. A common tech-

nique is for a 'processor to exchange load information with its nearest neighbours 

only, although more distant exchanges are also possible. 

Heuristics vs. Physical Analogies 

Process migration policies attempt to solve an NP-hard optimisation problem, the 

aim being to balance the load and in doing so achieve an optimal execution time 

for the program. The policies proposed in the literature can be classified according 

to whether they are based on based on heuristics, or some more formal physical 

analogy. 

A large number of policies are based on one or more heuristics around which 

the decision making process is centred. The intention is that the application of 

the heuristics will result in an acceptable load balance. Obviously, the choice 

of heuristic is of prime importance, and not all heuristics will be suitable for all 

machines or program models. However, a significant number of policies have been 

constructed in this manner. 

A bidding heuristic is proposed by Stankovic and Sidhu in [122]. This algorithm 

works by highly loaded processors distributing requests to receive work to all other 

processors in the network. Those processors in an under loaded state calculate 

a bid based on their current situation, and reply to the requesting processor. 

The highly loaded processor then evaluates its bids, and chooses the best node to 

migrate a process to. A verification message is sent to the winning bidder to ensure 

that its state has not changed. If this is the case, then the process is migrated. If 

the state has changed, then the process is re-started on the highly loaded node. 

A well known problem with the bidding algorithm is that highly loaded nodes 

tend to "gang up" and dump processes on the winner of the bids. The drafting 

algorithm proposed by Ni et al. [100] solves this problem, and is believed to result 
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in a fairer load distribution. The strategy works by each processor maintaining a 

table recording the state of all other processors in the system (i.e. whether they 

currently have a high, normal or low load). When a processor changes state it 

broadcasts this information to all other nodes. In addition, a processor entering the 

low state will send a draft-request to any highly loaded processors. On receiving 

such a message, the highly loaded processors respond with a draft-age message 

which contains some measure of load with respect to its migratable processes. 

On receiving all of its replies, the lowly loaded processor will send a draft-select 

message to the chosen highly loaded processor. If that processor is still in a high 

state, a process is migrated, otherwise the requesting processor has to begin the 

protocol all over again. 

In [134], Xu and Hwang propose and compare the performance of a number 

of migration heuristics. Two classes of policy are identified, depending on how 

the target processor is selected (i.e. the which decision). The first of these selects 

target processors in a cyclical manner in order to attempt a fair load distribution, 

and the second always selects the processor with the minimum load. The policies 

are applied periodically depending on the system load, and the processes to be 

migrated are chosen arbitrarily. 

As an alternative to heuristics, a number of techniques derived from the natural 

sciences have been used as models for process migration policies. These physical 

analogy-based strategies generally revolve around an objective function which rep-

resents a cost that the policy will attempt to minimise. Process migrations are 

used to minimise the costs quantified by the objective function at run-time, in 

an attempt to achieve a faster execution time. This is analogous to the approach 

used by the cost optimisation mapping strategies described in Section 2.3.2; the 

objective functions in both cases contains similar terms. 

Policies that fall into this category include those described in [47,50,52,78]. 

Fox et al. [50] use a particle analogy, treating a collection of processes as an en-

semble of "particles" of computation, which repel each other if they are situated 
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on the same processor, and attract each other if they communicate. They define 

a potential, and dynamically minimise the energy to generate favourable program 

configurations. Various techniques are proposed for this minimisation process, 

including neural networks [52], and simulated annealing [47]. It should be noted 

that simulated annealing, although capable of producing good solutions, is gen-

erally considered too computationally demanding to be applied at run-time. In 

[78], Koller describes the implementation of a load balancer based on the particle 

analogy. 

A criticism often levelled at this class of policies is that the objective functions 

constructed, being additive in nature, do not accurately account for the complex 

behaviour patterns exhibited by a set of interacting processes [67]. However, 

from a pragmatic point of view, such strategies do appear to result in improved 

performance in certain cases. 

Another physical analogy often used is the process of diffusion. Boillat et al. 

[12] describe a load migration strategy based on an analogy to the diffusion of 

heat in a metal bar. Processors are arranged in a pipeline and "particles" of com-

putation dissipate throughout the pipeline in order to balance the load. Further 

diffusion-based techniques are described in [34,65]. A common characteristic of 

such policies is that desirable properties, for example optimality and convergence, 

can be formally proved. 

Sender- vs. Receiver-Initiated Policies 

Migration policies (and dynamic load balancing policies in general) can be classi-

fied according to the party which takes the initiative in the transfer process [42]. 

Two types of strategy have been identified: sender-initiated, and receiver-initiated 

(although intermediate strategies are also possible). 

In a sender-initiated policy, heavily loaded processors actively seek lightly 

loaded processors and attempt to off-load processes onto them. Examples of 
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sender-initiated policies include the bidding heuristic of Stankovic and Sidhu [122], 

and the distributed threshold based mechanism proposed by Ashraf-Iqhal et al. 

[3]. 

In a receiver-initiated policy, lightly loaded processors search for heavily loaded 

processors and offer to receive surplus processes. Examples of receiver-initiated 

policies include the neighbourhood averaging technique proposed by LeMair and 

Reeves [131], the drafting algorithm described by Ni et al. [100], and the method 

based on balancing domains investigated by Gulati et al. [56]. 

Eager et al. [42] conclude that receiver-initiated policies are preferable at high 

system loads. For light and medium loaded systems, sender-initiated policies are to 

be preferred. They also point out that sender-initiated policies are to be favoured 

when load distribution (rather than migration) is used to implement dynamic load 

balancing. 

In [25], Chowkwanyun proposes a hybrid-strategy combining the best of the 

sender- and receiver-initiated strategies. In the policy described, a processor is able 

to change from being sender- or receiver- initiated according to its load. The idea 

being that the most appropriate technique can be used according to the current 

system load. 

Simple vs. Complex Policies 

Migration policies exhibit a wide range of characteristics with regard to the com-

plexity of the decision making process, and the amount of load information re-

quired. Examples of relatively complex policies include the bidding and drafting 

algorithms discussed earlier. Simple policies are typified by the random policy 

described by Grunwald et al. in [53]. 

As a general rule, the migration policy must be sophisticated enough to make 

good migration decisions, but not so complex that the overheads associated with 
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the policy out-weigh the possible benefits. Satisfying these two criteria involves 

making trade-offs between accuracy and minimal intrusion. 

Eager et al. [41] tend to favour simple policies using small amounts of load 

information, concluding that such policies can provide good solutions at a fraction 

of the cost of more complex strategies. However, it should be noted that this 

study assumes independent processes, so migrants can be chosen arbitrarily from 

the set of available processes. For many of the programming paradigms used in 

distributed memory multiprocessors, process interactions must be considered when 

making migration decisions, thereby increasing the complexity required in order 

to make good decisions. 

Comments 

There is no doubt that a well-designed process migration policy is capable of sig-

nificantly improving performance. However, ensuring that such a policy is robust, 

efficient, and sufficiently general purpose is still the subject of much on-going 

research. The above discussion highlights the complex trade-offs that must be 

considered when designing a policy. Many alternative approaches are possible, 

and none appears to be best in all circumstances. However, there seems to be 

a general consensus that in order to be scalable a policy should be distributed; 

and that to allow the potential benefits to be fully realised, policies should not be 

overly complex. 

The migration policies investigated in this thesis are described in Chapter 6. In 

terms of the framework presented above, these policies are distributed, heuristic- 

based, cooperative rather than sender- or receiver-initiated, and relatively simple. 
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2.5.2 The Migration Mechanism 

A number of migration mechanisms have been developed for distributed operating 

systems. Examples include those provided in the Accent [113], Demos/MP [110], 

Amoeba [95], Sprite [38] and Charlotte [2] operating systems. In recent years mi-

gration mechanisms have also been developed for multiprocessors, see [6,72,73,74, 

79] for example. There are no great differences in the requirements of a migration 

mechanism in the two cases, so no further distinction will be made: It should he 

noted that application-level migration mechanisms, where the mechanism is built 

into the code [12], are not considered here. The following section highlights the 

steps commonly required to be executed in order to migrate a process. 

Migrating a Process 

The migration mechanism executes migration decisions made by the migration 

policy. The scheme used to carry out the migration normally conforms to the 

following structure [2]: 

• Negotiation 

Both source and destination processors must reserve the appropriate re-

sources and commit themselves to carrying out the migration. If two pro-

cessors cannot reach agreement, then the migration is abandoned here. 

• Transfer 

The first stage of the transfer is to suspend the migrating process on the 

source processor. The process's code and data must then be sent to the des-

tination processor, where it should be copied into a suitable area of memory. 

If the process is large, the transfer of the process can be a considerable 

overhead. 
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. Establishment 

The space vacated by the process on the source processor should be marked 

as being available for reuse. On the destination processor, the process must 

be prepared for execution. For example, pointers need to be translated, ab-

solute addresses should be transformed, and if necessary, the process should 

be synchronised with the new local clock. Once all these tasks have been 

performed, the process can be placed in the active queue. 

Desirable Features 

There are number of (sometimes conflicting) characteristics that it is desirable for 

a process migration mechanism to exhibit. These are discussed below. 

. Minimal Residual Dependencies 

It is said that a process has a residual dependency on its original or any sub-

sequent node(s) if the correct operation of the system can only be guaranteed 

while these nodes remain active [38,74,126]. For example, if a message has to 

be sent to the original node of a process before it can be delivered to the pro-

cess's current home, a residual dependency exists on the original node. For 

the sake of performance, it is desirable to minimise residual dependencies. 

However, as residual dependencies are reduced, the migration mechanism 

becomes more complex. This is illustrated below. 

. Transparency 

A process migration mechanism is said to be transparent if, after a process 

migrates, that process and all others that communicate with it continue 

as if nothing had happened. Obviously the migration might result in dif-

ferent synchronisation patterns occurring, since communications with the 

migrant are likely to have been delayed. However, these delays should be 
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indistinguishable from delays caused by other reasons, for example, a heavily 

congested network or processor. 

Any general purpose migration mechanism must offer transparency, although 

some systems have to impose restrictions in order to achieve this goal. For 

example, Baker and Milner [6] limit the use of local clock references. 

The main overhead associated with maintaining transparency is ensuring 

that the correctness of message passing is preserved after migrations. Once a 

process has migrated, messages to the migrant must be re-routed so that they 

arrive at the correct location. A number of techniques have been proposed to 

achieve this. The Accent [113] and Demos/MP [110] operating systems use 

a simple technique whereby the source processor is relied upon to forward 

future messages to the migrant's new processor. It is clear that this technique 

imposes considerable residual dependencies; if a process migrates multiple 

times, then messages to that process will pass through multiple nodes until 

they find the migrant's current home. For this reason, this technique is only 

suitable for systems executing lightly communicating processes. 

The Emerald system [74] uses a modified form of message forwarding which 

informs senders of the correct location of the migrant, so that in future they 

will be able to route messages correctly. This reduces the residual depend-

encies, but the old home of the migrant is never sure when it is going to 

stop receiving incorrectly addressed messages. Joosen et at. [73] describe 

a technique to overcome this. Their migration mechanism displays time-

limited residual dependencies. When a migration takes place, a shadow is 

left behind on the source processor. The shadow initially contains a record 

of all the entities that can possibly communicate with the migrant. When an 

object, A, first communicates with a recently migrated process, B, A's pro-

cessor becomes informed of the new location of B. In addition, the reference 

to A is deleted from B's shadow on B's old processor. When all references 
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have been removed from B's shadow, the shadow can be deleted and the 

residual dependency will have been removed. 

The scheme used by the Charlotte operating system [2] minimises residual 

dependencies, but has high overheads. Information is maintained at each end 

of an inter-process channel about the location of the other end. If a process 

is migrated, all processes communicating with it are told of the new location. 

This method is more complex than those described above, and entails tables 

being maintained at each end of a channel. Its great advantage is that it 

results in no residual dependencies once all processes have been told of the 

new location of the migrant. 

Sprite [38] allocates a home processor to each process, which is then consulted 

whenever a message is sent to the process in question. A residual dependency 

remains, but it is restricted to the process's home processor. This technique 

increases the number of communications required in order to achieve a single 

message transfer, and would seem unsuitable for use in a multiprocessor. 

• Minimal Costs 

Three distinct types of cost can be distinguished: 

Firstly there are the costs associated with the actual transfer of the pro-

cess. This consists of the processing time and communications resources 

required to suspend, transfer and resume the process. Techniques have 

been developed to reduce this overhead. For example, Zayas [135] de-

scribes a copy on reference scheme for the Accent operating system. 

When a process migrates, the code is transferred, but portions of data 

are only transferred if and when they are needed. 

There is a cost associated with the migrant process being temporarily 

unavailable. While the process is suspended, other processes may be 

blocked waiting on some sort of response from the migrant. The V 
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system [126] attempts to minimise this time by pre-copying the state 

of the process before it is suspended. Consequently, only the data that 

has changed between the time the process was pre-copied and the time 

it was suspended needs to be subsequently transferred. The system is 

implemented using a "dirty bit" mechanism. 

3. Finally, residual dependencies result in extra communications costs; for 

example, message forwarding. 

Obviously there are trade-offs to be made. If residual dependencies are 

minimised, the migration mechanism tends to become more complex and 

time-consuming. Conversely, if a simple mechanism is used, for example one 

that uses message-forwarding to support transparency, considerable residual 

dependencies may be generated. 

Comments 

The above discussion indicates that is is difficult to design a general purpose pro-

cess migration mechanism that is efficient, transparent and minimises residual 

dependencies all at the same time. In [38,74,110], it is pointed out that conven-

tional processes complicate matters because they are difficult to contain, and it 

can be hard to define their boundaries. This is largely because the process state is 

often distributed throughout a number of operating system structures. It has been 

suggested that migration can be made easier by restricting the entities that may 

be migrated. For example, self-contained objects have been proposed as suitable 

migratable entities [26,73,74]. Such objects have the distinct advantage of having 

clean, well-defined boundaries. 

Two migration mechanisms were constructed as part of the work presented in 

this thesis, they are described in Chapter 3. 
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2.6 Summary and Conclusions 

The areas of performance analysis of parallel systems, scheduling and mapping, 

load balancing and process migration have all been introduced in this chapter. 

These techniques are generally applied in order to improve the performance of 

parallel programs. All too often the responsibility for this task is placed entirely 

on the shoulders of the programmer. It is generally accepted that the systems 

software should assume a more prominent role in this respect. 

As a first step in this direction, this thesis explores the relationships which ex-

ist between the structure of certain classes of parallel programs and their run-time 

behaviour, both with and without process migrations. I aim to derive quantit-

ative models by exploring the structure of these relationships. This area has not 

been addressed to any great extent. Previous research has tended to show that 

a particular mapping strategy or migration strategy improves performance for a 

particular application, or set of applications. 

In the following chapter the techniques, tools and environments used to carry 

out this study are described. 



Chapter 3 

Tools, Techniques and 

Environments 

This chapter describes the tools, techniques and environments that have been 

adopted in order to support the experiments presented in subsequent chapters. 

Some of the tools discussed here already existed, and were used in their original 

form; some were used in a modified form; and others were developed specifically 

for this work. Section 3.1 discusses the use of synthetic programs, and presents a 

methodology for their construction. This technique was first suggested by Cand-

un et a! [20].  Section 3.2 describes the framework used to define, execute and 

analyse experiments. The structure of the Experiment Definition Lar.iage de-

scribed here was developed jointly with Neil Skilling. The Experiment Generator 

and analysis of variance tool described were designed and implemented by Neil 

Skilling. Section 3.3 summarises the functionality of a simulation system designed 

specifically to model message passing programs executing on distributed memory 

multiprocessors. The modifications that were required to this system are dis-

cussed in Section 3.3.3; all the work described from this point onwards was carried 

out by the author. Section 3.4 describes the structure and implementation of 

a transputer-based process migration mechanism. A number of useful statistical 

techniques are described in Section 3.5. Finally, a summary is presented in Section 

3.6. 

42 
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3.1 Synthetic Programs 

The experiments presented in this thesis use a process graph model of computa-

tion. There are a number of reasons for this. First of all, to limit the bounds of 

the study, only programs obeying the CSP model of parallelism are considered. 

Such programs are generally structured as a set of long-lived sequential modules 

which communicate with one another, often in a fixed pattern. In particular, 

these programs frequently exhibit a strong iterative structure, with processes cyc-

ling through computation and communication phases. A precedence graph does 

not seem a natural representation for these programs, since each iteration would 

correspond to a new task. Another reason for selecting process graphs is their rel-

atively high level nature. One of the aims of the work presented here is to develop 

models that allow one to generalise about the behaviour of particular classes of 

programs. Process graphs are better suited to this task, precisely because they 

offer a cruder representation of program behaviour than task graphs. 

In order to characterise particular parallel programs within a class, a small 

number (say 5-10) of parameters relating to the time-averaged macroscopic prop-

erties of the programs as a whole are used. Possible candidates for parameters 

include the average grain size, or the average degree of the program graph. There 

are a number of desirable properties that one would seek in a possible parameter 

set: for example, the parameters should have useful predictive powers, they should 

be easily measurable, and ideally, they should be obtainable through compile-time 

analysis. Parameter sets suitable for characterising various classes of parallel pro-

grams are discussed in Chapters 4 and 7. 

To enable systematic investigations of particular classes of parallel programs, 

representative members from those classes are required. One could obtain a num-

ber of real programs and parameterise them using profiling tools and/or compile- 

time analysis. However, this approach poses a number of problems. Firstly, real 
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parallel programs are rather difficult to obtain, they are often protected by copy -

right and are of a sensitive nature. Secondly, there is no guarantee that programs 

gathered in this manner will be evenly spread about parameter space. Indeed, 

they may well be concentrated in a relatively small area of this space. This would 

happen because programmers tend to design their parallel programs with a defin-

ite machine in mind, and restrain them accordingly. As a result, the structure of a 

program might bear more relation to the target architecture, than to the structure 

of the problem. 

To overcome these difficulties synthetic programs are used. Synthetic pro-

grams allow parameter space to be systematically explored. Values for program 

parameters can be selected, and subsequently, programs exhibiting those partic-

ular values can be generated. By selecting parameter values carefully, one can 

ensure that real programs fall within the area explored. Synthetic programs have 

been used elsewhere with success. For example, Bemmerl et al. [9] describe a 

program generator for parallel computers which enables load to placed on the 

processors and/or the communications network. In [109], Poplawski investigates 

the generation of synthetic benchmarks for distributed memory multiprocessors. 

Most previous work has revolved around the generation of real source code, which 

can then be compiled and executed as one would do a real program. The tech-

nique proposed below operates at a slightly higher level, allowing programs to be 

specified and modelled in a more abstract manner. 

3.1.1 Constructing Synthetic Programs 

In order to construct synthetic programs conforming to a particular class, one 

must first of all select a value for each of the program parameters associated 

with the class. This set of parameter values must then be used to construct a 

process graph. However, this process graph cannot fully define the behaviour of 

the corresponding program. To do this a process template must be used in order to 
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specify the microscopic computational and synchronisation properties of processes 

conforming to the class of programs under consideration. A particular instance of 

a process template will behave in accordance with the weights associated with the 

node in the process graph to which it is allocated. The process template assumed 

in this thesis is described in Chapter 4. 

A methodology for generating synthetic programs is now presented: 

Select values for each of the program parameters in the set. 

Generate a weighted random process graph consistent with a program ex-

hibiting these parameter values. 

Take a template describing the behaviour of processes in the class of pro-

grams under consideration, and allocate one such template to each node in 

the process graph. 

Model the resulting program. 

This technique selects a representative program from an infinitely large class 

of programs exhibiting similar behaviour patterns. If the behaviour of different 

synthetic programs generated from the same parameter set varies to any great 

extent, it would indicate that the parameter set does not adequately characterise 

program behaviour. 

Once constructed, a synthetic program has to be modelled. 

3.1.2 Modelling Synthetic Programs 

A synthetic program constructed as described above could be simulated using 

some simulation system, or alternatively, it could be executed on a real parallel 

machine. 
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The approach taken in this thesis is to simulate the execution of such pro-

grams using the simulation system MIMD (which is fully described in Section 

3.3). MTMD runs on a conventional sequential machine, and uses discrete event 

driven simulation techniques to simulate the execution of CSP-type parallel pro-

grams on distributed memory multiprocessors. This technique offers a number of 

practical advantages over actually executing the programs on a real parallel ma-

chine. The most important of these is that it enables the provision of non-intrusive 

and arbitrarily complex monitoring facilities. Also, this approach removes a de-

pendency on the availability of parallel hardware. Experiments can be executed 

on conventional sequential machines, possibly concurrently. Another advantage is 

that one is able to capture the global state of the simulated machine and program 

at any point in time, a very useful feature when undertaking exploratory work. 

Throughout this thesis, in order to limit the scope of the study, the synthetic 

programs generated are interpreted as occam programs, and their execution on 

a transputer network is simulated. This is a representative environment. Occam 

fits well into the process graph model, so any results obtained can be expressed in 

terms of the original process graph, rather than in terms of the simulated program. 

The following section describes a suite of tools that have been developed in 

order to support experiments using synthetic programs. 

3.2 The Experimental Framework 

An experimental framework has been constructed to aid the definition, execution 

and analysis of experiments [107]. It consists of three components: an experiment 

construction tool to enable experiments to be conveniently defined and generated; 

a user-supplied modelling engine to model their execution on a given architecture; 

and some statistical tools to analyse the results. These three components are 

described below, and the relationships between them are illustrated in Figure 3-1. 
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3.2.1 Experiment Construction 

An experiment is defined as the task of investigating the effect of varying certain 

parameters characterising a parallel computation on its run time behaviour. In 

order to construct an experiment, one has to define exactly what it is that one 

wants to model; this can be done using an experiment definition. The experiment 

definition states in a formal manner which parameters are to be varied, and how 

they are to be varied within an experiment. A single experiment definition would 

normally define a set of programs to be modelled. Once an experiment has been 

defined, the experiment generator is invoked to read the experiment definition 

and produce a series of Execution Instances (Els), one for each program to be 

modelled. Each El contains all the information required to model a single parallel 

program. These two stages are described more fully below. 

Defining an Experiment 

The Experiment Definition Language (EDL) allows one to specify at a reasonably 

high level a set of parallel computations comprising a single experiment. An 

EDL script is divided into two parts. There is that part which is concerned with 

specifying the structure of the process graph and processor graph to be modelled, 

and a mapping between the two. This part of the script specifies the execution 

parameters which define what is to be modelled. The second part of an EDL 

script is concerned with controlling the actions of the modelling engine. These 

parameters are referred to as the modelling parameters, and they define how to 

model the programs. 

Those execution parameters defining the process graph structure and the map-

ping can be varied in order to define an experiment. However, to simplify matters 

the processor graph must remain constant within a single experiment. A variable 

parameter can be set to a fixed value (e.g. 7), an arbitrary list (e.g. [1.5, 4.75, 

5.25] ) or a list of equally spaced values (e.g. 3 to 5 step 1). Currently, the lan- 
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Generation Technique Degree Range I Node Range 

Redfield 3-5 0-160 
Random Regular 0-30 0-160 
Irregular 0-30 0-160 

Table 3-1: Random Graph Generation Strategies 

guage can only support full factorial experiments i.e. all possible combinations of 

all variable parameters are considered. There is no way to restrict the parameter 

combinations generated. An example EDL script is presented in Figure 3-2. 

Lines 3-8 define the graph parameters. First of all the structure of the process 

graph is specified. A number of techniques for generating regular and irregular 

random graphs have been implemented; they are listed along with their degree 

and node ranges in Table 3-1. The Redfield [104] and Random Regular [70] 

methods produce regular graphs, in the sense that all nodes are of the same degree. 

The Irregular method produces graphs where, although the nodes have different 

degrees, the mean degree over all the nodes in the graph can be specified. In this 

example the Redfield graph generation technique is selected. The degree and size 

of the process graph to be used is then defined. The number of nodes is varied 

between 12 and 24 in steps of 4, thereby specifying a number of process graphs. 

The degree could also be varied if desired. Alternatively, one could supply a user-

defined process graph, in which case the number of nodes and the degree of the 

process graph would be held constant for the duration of the experiment. The 

hardware is configured to a 4 by 3 mesh of processors. A number of topologies 

are available; for example, mesh, hypercube, star, ring, pipeline, tree, random or 

user-defined. 

Lines 10-15 specify a number of process definitions. Note that each process 

definition uses the same process template when modelled, since only a single tern-

plate can be specified for each individual experiment. A process definition has a 

name and a set of named numeric parameters which characterise a particular type 
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Begin Experiment 

Begin Graph Parameters 
Graph Type redfield 
Degree 4 
Number Nodes 12 to 24 step 4 
Hardware mesh 4 3 

End Graph Parameters 

Begin Define Processes 
prod { 

mt Paraml [500, 800, 10001 
Double Param2 12.5 } 
proc2 { ..... 

End Define Processes 

Begin Define Channels 
chani { 
mt Paraml 1000 to 3000 step 500 
mt Param2 50 } 

End Define Channels 

Begin Allocate Processes 
map procl to 70.0 'h 
map proc2 to 30.0 'h 

End Allocate Processes 

Begin Allocate Channels 
map chani to 100.0 'I. 

End Allocate Channels 

Begin Placement 
Algorithm [1,2] 

End Placement 

Begin Modelling Parameters 
Text Domain "MIMD" 
Double Simulation-Time 20E06 
mt Simulation-Runs 1 
Boolean Tracing true 
Double Snapshot_Freq 1E06 
mt Process-Template 1 

End Modelling Parameters 

End Experiment 
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Figure 3-2: An Example Experiment Definition 
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of process behaviour. In the simple case there will be only a single definition. The 

numeric parameters can be of type mt or double, and can be varied. In this ex-

ample the process definition procl has two parameters, one of which is varied over 

the experiment, and one of which remains constant. No meanings are attributed 

to the parameters at this stage, this is the task of the modelling engine. Channel 

behaviours are defined in a similar manner in lines 17-21. 

Lines 23-26 allocate process definitions to the nodes of the process graph. Pro-

cess definitions are assigned randomly about the process graph in the proportions 

specified. In this example 70% of nodes receive the behaviour defined by prod, 

and 30% receive that defined by proc2. Lines 28-30 allocate channel definitions to 

the arcs of the process graph in a similar manner. In this way a weighted process 

graph can be created. 

Lines 32-34 define the placement algorithm to be used, this can be varied 

within an experiment. A number of algorithms have been implemented; for ex-

ample, round-robin or random placements. These algorithms are coded in the C 

programming language and so can easily be modified, or new ones added. 

The modelling parameters are used to control the way in which Els are inter-

preted by the modelling engine, they can be varied in the same manner as the 

execution parameters. The modelling parameters specified in this example (lines 

36-43) are tailored towards a MIMD-based modelling engine. They instruct the 

modelling engine to run each simulation for 20,000,000 clock cycles of simulated 

machine time; to turn tracing information on; and to take snapshots of the sim-

ulated machine every 1,000,000 clock cycles. Finally, the process template that 

should be used to interpret the process definitions is specified. 

The Experiment Generator 

The Experiment Generator (eg) is a tool which allows full factorial experiments 

to be generated from a EDL script. It produces a series of Els, one for each of 
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the possible combinations of varying parameters defined in an EDL script. For 

example, the script in Figure 3-2 would produce 4 x 3 x 2 = 24 Els. The Els are 

generated in a way that is independent of any particular modelling domain; they 

are simply text files describing the computations to be modelled i.e. the process 

graph, the processor graph, and a mapping between the two. This tool runs on 

Sun workstations. 

3.2.2 Experiment Execution 

In order to execute an experiment, the Els produced by eg must be passed to 

a modelling engine for processing. A modelling engine reads an El, models the 

execution of the computation described by the El, and reports its results. These 

can then be processed and combined as part of the experiment as a whole. If de-

sired, particular actions of the modelling engine can be controlled by the modelling 

parameters. 

The modelling engine can be a real parallel program, which is able Lu emulate 

the parallel computation specified by the El in a real domain. Alternatively, the 

modelling engine can be a simulation system which takes the El and simulates the 

specified computation. This is the approach used in this thesis, full details are 

given in Chapter 4. 

It is only at the modelling stage that the process and channel definitions are 

interpreted. For example, some of the values associated with a process could be 

interpreted as the computational intensity of that process. Some of the values 

associated with a channel might be interpreted as the mean length of messages 

passed down that channel. 
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3.2.3 Analysis of Results 

Most of the experiments described in this thesis were analysed using the general 

purpose statistical package GENSTAT 5 [31]. In addition, the results presented 

in Chapter 4 made use of a tool designed specifically in order to analyse two level 

full factorial experiments (these designs are fully discussed in Section 3.5.2). 

3.3 MIMD 

MIMD [21,55,120] is a Multiple Instruction stream, Multiple Data stream com-

puter simulation system which has been developed at Edinburgh over a number of 

years. MIMD allows the execution of arbitrary message passing parallel programs 

to be simulated. 

3.3.1 Overview 

MIMD is built on top of DEMOS [11] and Simula [108] and runs on Sun work-

stations. DEMOS is an extension to the Simula programming language providing 

class definitions for modelling discrete event simulations. MIMD provides new 

classes which are appropriate for modelling the execution of message passing par-

allel programs on distributed memory architectures. 

The system has been designed to model correct parallel programs, so features 

such as deadlock detection have not been provided. MIMD is not an instruction-

level simulator; rather, computations are represented by time delays and inter-

process messages are specified by their packet size. In this manner the computa-

tional and communications characteristics of a parallel program can be adequately 

represented. The programs simulated have no "meaning" in the usual sense of the 

word, they merely represent certain patterns of activity. The system works by 

ensuring that the control structure of the Simula program constructed is the same 
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as that of the parallel program to be modelled, accordingly the execution of the 

Simula program corresponds to the simulation of the original parallel program. 

A very attractive feature of the approach described here is that non-intrusive 

monitoring of the parallel program being simulated can easily be implemented. 

Although the Simula program is simulating a distributed memory multiprocessor, 

it is in fact just a conventional sequential program, and so can be suspended at 

any point in time in order to view the state of the simulated machine. This would 

not be possible in a truly distributed implementation. 

At the moment MIMD is tailored towards simulating occam programs on 

transputer-based machines. However, the range of languages and machines sup-

ported could easily be extended by defining new subclasses to handle different 

processor characteristics, communications protocols and scheduling strategies. 

An experimental validation of MIMD for occam programs running on transputer-

based machines can be found in [55]. The simulated execution times for the test 

programs were found to be within 5% of the values measured on the real machine. 

3.3.2 Modelling a Computation 

Within a MIMD program, objects representing the components of a parallel com-

putation must be declared i.e the hardware, the program and a mapping between 

the two. 

The hardware is represented by an undirected graph of homogeneous processors 

joined by bidirectional hard links. A processor is characterised by a relatively 

small number of parameters such as the processor cycle time and hard link speed. 

Processors and links are treated as resources which may be claimed and released as 

and when they are required. Objects representing the processors must be declared 

and wired into the desired configuration. This can be done by using one of the 

standard topologies provided within MIMD, or by defining an arbitrary topology. 
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The program is represented by a directed graph of processes joined by unidirec-

tional channels. Each of these processes may have an arbitrary number of parallel 

sub-processes. Processes can only engage in four types of behaviour: compute, 

sleep, send a message, and receive a message. A compute(n) statement places 

a process in the CPU scheduling queue with a requirement for n cycles of CPU 

time; a sleep(n) statement sends a process to sleep for n clock cycles; a send(C, n) 

statement sends a message of length n bytes down channel C; and a receive(C) 

statement receives a message on channel C. These statements allow different pat-

terns of activity in message passing parallel programs to be adequately modelled. 

Processes are mapped to processors by calling procedures that set up suitable 

objects describing the mapping. The execution of the resulting Simula program 

corresponds to the simulation of the parallel computation that is to be modelled. 

A mechanism has been provided so as to allow synchronous communications 

between processes positioned at arbitrary positions within the processor domain. 

This is implemented by explicitly acknowledging each message sent; while this is 

rather inefficient, it does provide a convenient and safe framework in which to 

carry out experiments, especially those concerned with process migration. 

The actual time taken for a computation or message transfer is usually longer 

than the value specified, due to competition for resources. The computational 

power of the processors and the bandwidth of paths between processors are re-

sources which have to be shared between the competing processes of the concurrent 

computation. This is achieved by time-slicing processors and queuing messages at 

links. The mechanisms of process scheduling and message passing can be mod-

elled explicitly at a fairly low level. Time-slicing then occurs as it would in a real 

system, by maintaining a queue of active processes for each processor. However, 

it should be noted that context switching overheads are not modelled i.e. context 

switches are assumed to occur instantaneously. Message passing is implemented 

using a "store and forward" mechanism where inter-processor message hops are 

explicitly modelled by passing the data through communications processes running 
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on each processor. A message has to compete for both CPU time on the processors 

it passes through, and message transfer time on the hard links separating those 

processors. Message setup and throughrouting costs have been obtained experi-

mentally, the figures used are 20 microseconds and 10 microseconds respectively. 

The experiments described in this thesis all use MIMD in the mode described 

above. 

Alternatively, faster simulations can be achieved by using simplified scheduling 

and message passing mechanisms. Elapsed computation times can be calculated 

by multiplying estimated execution times by the number of processes active on 

a given processor. In order to estimate message transfer times a formula must 

be generated relating message transfer times to the number of intermediate nodes 

and to the message size. One such formula has been obtained from experiments 

on a Meiko Computing Surface and is described in [23]. 

The MIMD system collects a wealth of hardware and software statistics which 

may be examined in a post-mortem manner. They include information on pro-

cessor usage, link usage, process activity and channel activity. The user can choose 

to view only a particular subset of the statistics collected. 

3.3.3 Modifications Implemented 

As part of the work presented in this thesis a number of improvements and addi-

tions were made to the MIMD system, and to the underlying DEMOS package. 

The most significant of these are described below. 

An Improved Random Number Generator 

The DEMOS package is provided with a rather old random number generator [39], 

whose properties are not ideal. According to Jam [69], a good random number 

generator should exhibit the following features: 
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• it should be efficiently computable 

the period should be large 

• successive values should be independent and uniformly distributed 

The li near- congruenti al generator: 

xx,, = 75 x_1rnod(2 31 - 1 

exhibits these properties, and is recommended by Park and Miller in [106], who 

show that it conforms to a minimal standard. The default random number gen- 

erator in DEMOS has accordingly been replaced with an implementation of this 

generator. 

Periodic Reporting 

Facilities have been added to support periodic reporting at user-defined intervals 

throughout the simulation, rather than just at the end. This facility enables one to 

gather information relating to the way in which a particular computation evolves. 

The amount of information generated can easily be controlled. 

Priority Scheduling 

A scheduling policy with two levels of priority has been implemented, previously 

all processes were treated equally. Processes are now classified as being either 

low or high priority; a high priority process can interrupt a low priority process 

and seize control of a processor at any point in time. This facility allows MIMD 

to simulate more closely the functionality of the transputer (an overview of the 

transputer is presented in Section 3.4.1). 

Message passing can now be simulated more realistically, since messages that 

have to pass through intermediate processors to reach their destinations can be 
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serviced at these processors without having to queue behind ordinary processes. 

This is how a store and forward message routing system is typically implemented 

in distributed memory machines [28]. 

The enhanced scheduling mechanism also allows one to model operating system-

type processes, where a single level of priority is inadequate. System calls usually 

reflect some degree of urgency and demand rapid responses. For example, the pro-

cess migration mechanism described below runs at high priority so as to respond 

as quickly as possible to requests. 

A Process Migration Mechanism 

To support experiments investigating the behaviour of different process migration 

policies, a process migration mechanism has been constructed for MIMD. 

Once a request is made to migrate a process, a series of resource negotiations 

between the source and destination processors are simulated. At this stage the 

destination processor can refuse the process for some reason. For example, assum-

ing that there is a notion of process size in the simulation, the process in question 

might be too large. Suitable delays for these resource negotiations have been meas-

ured experimentally on a transputer-based machine, and are incorporated into the 

simulation system. 

Once the destination transputer has decided to accept the process, it, along 

with its subordinate processes, must be suspended on the source processor. This 

is implemented by waiting until the process enters or leave the CPU queue. Once 

suspended, a message of the appropriate size is passed between the two processors 

to represent the transfer of the process. Some data structures within the simu-

lation are then updated in order that the process in question will subsequently 

request compute time from the destination processor rather than from the source 

processor. Garbage collecting can be modelled probabilistically on the source 

processor if desired. 
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In order to ensure transparency, message transfers between the migrant and 

other processes must take place as if the process had never migrated. This is 

easy to implement within a simulation, since every process has access to global 

knowledge, therefore messages can always be correctly routed. However, on a real 

distributed memory machine, this would not be the case. To allow for this, a 

message redirection system exactly the same as that used in the real migration 

mechanism described in Section 3.4.3 is simulated. This ensures that message 

transfers take place in a realistic manner. 

Migrations are permitted to take place concurrently, but only one process can 

be in transit between any two processors at any time. The migration mechanism 

described here simulates process migrations in a realistic manner and at a reason-

ably detailed level. A number of migration policies have been constructed on top 

of this mechanism; they are described in Chapter 6. 

3.4 Transputer- based Process Migration 

In order to validate the results of simulation experiments involving process migra-

tions, a migration testbed has been constructed [22]. The machine used for this im-

plementation was the Edinburgh Concurrent Supercomputer (ECS), a transputer-

based MEiKO Computing Surface based in the Edinburgh Parallel Computing 

Centre 1  

The T800 transputer does not provide a particularly attractive environment 

within which to implement an operating system-type application such as a process 

'The Edinburgh Parallel Computing Centre is supported by major grants from the 

Computer Board, the Department of Trade and Industry, the Science and Engineering 

Research Council and Industry. 
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migration mechanism. For example, it lacks any support for memory protection or 

exception handling. The construction of a general purpose migration mechanism 

would have required robust and relatively sophisticated implementations of mod-

ules handling such things as dynamic memory management, process suspension 

and resumption, process transfers, message passing consistency and transparency. 

Such a project would have been a substantial undertaking in its own right, the 

decision was therefore taken to concentrate on the implementation of an experi-

mental system. 

The approach taken involves loading the code and data for every process onto 

every transputer. This is possible since occam programs have a static process 

structure which is known at compile-time. Processes can then be enabled and 

disabled to reflect the initial placement, and subsequently to reflect process mi-

grations. In this way one avoids the need to worry about many of the robustness 

and correctness issues that would arise in a full implementation of a migration 

mechanism. The main disadvantage of this approach is that it is not appropriate 

for larger applications since the whole program must fit onto a single transputer. 

It is, however, well suited to an experimental system. 

An alternative process migration mechanism for transputers is described by 

Baker and Milner [6]. Their implementation uses a library call to stop and start 

processes. This has the side effect of enforcing a fixed parameter set on user 

processes. More specifically, processes are only allocated a single input and output 

channel. Consequently, some of the purity of the CSP model is lost, since multiple 

channels must be multiplexed onto these single channels. 

3.4.1 Transputer Overview 

Before describing the migration system, a brief overview of the transputer's schedul-

ing mechanism and memory organisation is presented. 
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Figure 3-3: A Transputer's Memory and Registers 
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Processes on the transputer can be run at two levels of priority, high or low. 

High priority processes run until completion, whereas low priority processes run 

only when there are no high priority processes ready to run. Low priority processes 

are descheduled when they block; for example, on a message transfer, or when 

they have occupied a complete time-slice. To implement this scheme two separate 

scheduling queues are maintained. 

Each process is allocated its own area of memory called its workspace to hold 

local declarations. A process is uniquely identified by its workspace rather than by 

a section of code, since multiple processes might be executing the same section of 

code. Subordinate processes are typically created within the parent's workspace, 

so processes are organised in a nested fashion. Just below each process's workspace 

there are some words reserved to hold scheduling information. This information 

consists of the current value of the process's instruction pointer, a pointer to the 

workspace of the next process in the scheduling queue, and some words used to 

implement channel transfers and the ALT instruction. 

The transputer has a small number of registers: a workspace register (W), an 

instruction pointer (I), an operand register (0), and a three register evaluation 

stack (A, B, C). In addition to these, there are four registers (FptrO, BptrO, Fptrl, 

Bptrl) pointing to the front and back of each of the respective scheduling queues. 

Figure 3-3 shows the transputer executing the processes P1  - P4  in parallel. 

It is assumed that all the processes are being executed at the same priority level 

(either low or high). The process P1  is currently being executed, so the workspace 

register is pointing to its workspace, and the instruction pointer register is pointing 

to its current instruction. The remaining processes are descheduled and waiting 

in the queue pointed to by Fptr and Bptr. Below the workspace of each of these 

processes is stored the scheduling information i.e. the process's instruction pointer 

and a pointer to the next process in the queue. In this diagram the words used to 

implement channel transfers and the ALT instruction are not shown. 
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Module 

Figure 3-4: An Example Process Configuration 

3.4.2 Process Configuration 

Figure 3-4 illustrates an example process configuration on a transputer running the 

migration system. Every transputer in the system will have an identical process 

structure. However, the transputers will differ in which user processes are enabled 

and disabled. In this example there are two user processes, P2  is drawn with a 

dotted line to indicate that it is disabled on this transputer. Each transputer runs 

a migration module which cooperates with migration modules on other transputers 

in order to make and execute migration decisions. 

A user process has a number of ports over which it can send or receive messages. 

All messages are sent using the communications harness Tiny [27], and there is a 

Tiny routing kernel resident on each transputer. Tiny can be used to implement a 

true virtual channel mechanism if each port is used to communicate with only one 

other process. Alternatively, Tiny can be used to implement a more general corn- 
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munications structure where messages can be sent to (or received from) arbitrary 

processes on a single port. 

In general, one is free to use any number of processes and an unrestricted 

communications topology, subject to the constraint that the entire program must 

fit onto a single transputer. 

Messages sent (or received) on a particular port are passed to (or from) Tiny 

via a dedicated port controller. These transfers have been optimised to use pointers 

rather than ordinary channels. The port controllers are responsible for enforcing a 

synchronous communications protocol for processes positioned at arbitrary points 

within the transputer array. This is done by using control signals to explicitly ac-

knowledge messages in a similar way to that described in [112]. The port control-

lers are also responsible for redirecting messages incorrectly addressed to disabled 

processes, and for collecting statistics on message transfers. This functionality is 

fully described in Sections 3.4.3 and 3.4.4. 

The synchronous communications protocol used means that deterministic pro-

grams will produce the same results, with or without process migrations. However, 

non-deterministic programs might not, since the detailed ordering of events will be 

disturbed by migrations. This would be an undesirable feature in process migra-

tion experiments, since one would like to be able to compare the performance of 

programs being executed with and without process migrations. If two executions 

of the same program gave different results, it would not be possible to make a 

valid comparison. Consequently, it is assumed that candidate programs do not 

use the occam ALT construct. 

The following sections describe the migration and statistics mechanisms imple-

mented. Different migration policies can easily be incorporated into the testbed, 

and indeed, several have been implemented (see Chapter 6). 
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3.4.3 The Migration Mechanism 

To simplify matters, it is assumed that a candidate program consists of some ini-

tialisation code followed by a number of self-contained, top-level processes running 

in parallel at low priority. In a sense, these processes exhibit many of the char-

acteristics of objects, having clean well-defined boundaries (as noted in Chapter2, 

objects are generally thought to simplify the construction of a migration mechan-

ism). It is the top-level processes which are the candidates for migration; subor-

dinate processes cannot be migrated independently of their parent processes. It is 

not necessary to consider the situation where a migration fails, since it is known 

that there are always adequate resources (due to the fact that the entire program 

must fit onto a single transputer in order to execute in the first place). In the 

migration mechanism described here, there are three stages involved in migrating 

a process. Firstly, the process must be suspended; secondly, it must be transferred 

to its new home and restarted; and lastly, any messages destined for the process's 

old home must be redirected. Before describing how these three stages are imple-

mented, the modifications that must be made to a user program before it can be 

considered a suitable candidate are discussed. 

Modifications to User Code 

Figure 3-5 illustrates the sorts of modifications that must typically be made to a 

user's code, they are relatively minor and only affect the top-level processes. It 

is assumed that the behaviour of each top-level process is encapsulated within a 

procedure. The steps then involved are described below: 

1. Two extra parameters must be introduced into each top-level procedure. A 

channel migSignal must be supplied, down which control signals are sent 

from the migration module. In addition, an array, wSpa.celnfo, must be 

passed. This is used to return information regarding the size and position 

of the workspace used by this particular process. 
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PROC userCode(<paralfleter list>) 
INT firstDeclaratiOfl: 

other declarations 
INT lastDeclaratiofl: 
SEQ 

initialisation 
WHILE <condition> 

SEQ 
action 1 
action 2 

etc 

.JJ. 

PROC userCode(<parameter list>, 
CHAN OF ANY migSignal, DINT wSpacelnfo) 

INT firstDeclaratiofl 
local declarations 

INT lastDeclarat ion: 
SEQ 

report workspace and suspend 
initialisation 

WHILE <condition> 
SEQ 

suspend if received signal 
action 1 
action 2 

etc 

Figure 3-5: Modifications Required to User Code 
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2. Each user process must be modified so that the first statement that it ex-

ecutes is to return its workspace requirements in the parameter wSpacelnfo. 

Although known, this information is not readily available at compile-time. A 

simple procedure is provided for this purpose; for the example in Figure 3-5 

it would be called as follows: 

report(firstDeclarat ion, lastDeclarat ion ,wSpacelnf o) 

For the mechanism to work correctly, one has to ensure that all variables 

within a process's workspace are stored at contiguous locations in memory. 

On a Meiko Computing Surface running OPS this involves setting the com-

piler parameter separate. vector. space to False. The area of memory defined 

by the first two parameters in the above call to report can then be assumed 

to include all variables defining the state of the process. 

Once the workspace information has been supplied, processes suspend them-

selves using the STOP? assembly language command. Each migration module 

is then responsible for enabling those processes which it initially has con-

trol of, this is done with the RUN? assembly language command. The initial 

placement is user-defined. 

3. User processes must be modified to periodically check the ciannel migSignal 

to see if they have been requested to suspend. This technique is fully de- 

scribed below. 

Suspending A Process 

The problem of suspending a process on the transputer at some arbitrary point is 

non-trivial [72]. There are a number of operations that a process can be carrying 

out that make it difficult to capture its state in a straightforward manner. For 

example, the process could be involved in an off-chip message transfer, it could 

he dependent on a timer channel, or it could be using the Floating Point Unit. 
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A solution to this problem is described in [6]. It involves placing the emphasis 

on the user processes, they must be modified to periodically check whether they 

have been requested to suspend. If a process detects a suspend signal it must 

immediately execute the STOPP assembly language command in order to suspend 

itself. 

It is the responsibility of the user to embed these checks at suitable positions 

within the code. For example, the user should avoid attempting to migrate a 

process which is currently dependent on a local timer. The checks must occur in 

the top-level thread of the process in order to enable execution to be suspended in 

a clean manner. In Figure 3-5 a single check has been included, although multiple 

checks are also possible. The frequency of these checks determines the sensitivity 

of user processes to migration requests, and hence the performance characteristics 

of the migration mechanism. 

Transferring A Process 

The state of a suspended process will be completely defined by the contents of 

its workspace and its instruction pointer. It is known that this is true because a 

suspended process cannot be executing a user's ALT statement, since it has been 

assumed that a candidate program will not contain any ALT statements; and it 

cannot be engaged in a message transfer, since the process has just suspended 

itself. To migrate a suspended process, the migration mechanism on the source 

transputer must transfer the workspace defining the current state of the process 

to the migration mechanism on the destination transputer, where it can be over-

layed in the correct position in memory. In addition, the current value of the 

instruction pointer must be passed to the destination transputer so that the mi-

grated process will resume execution at the correct instruction. The contents of 

the process's instruction pointer will be stored one word below its workspace on 

the source transputer as a consequence of the transputer's scheduling mechanism; 
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it can therefore be easily transferred. The migration mechanism on the destina-

tion transputer must then start the process by using the RUNP assembly language 

instruction. 

Message Redirection 

Inter-process communications must continue to take place correctly, even after 

many process migrations, in order to ensure transparency. This is implemented 

by ensuring that each transputer keeps a record of where it thinks each process in 

the system is currently positioned. This record is updated every time a message 

or message acknowledgement is received (by piggy-backing the id of the source 

transputer on the message or message acknowledgement). In this way a transputer 

will tend to know the correct positions of those processes with whom its processes 

communicate;. this is sufficient to enable messages to be, in general, correctly 

addressed. This strategy is similar to the one used by the Emerald system [74}. 

It exhibits manageable residual dependencies, being neither the most efficient nor 

the most inefficient in this respect. 

When a message is sent, it is forwarded to the transputer where the target 

process is thought to be. A redirection mechanism is built into each of the port 

controllers. When a process is enabled, the port controllers are responsible for 

implementing the synchronous message passing protocol. However, if a process is 

disabled and one of its port controllers receives a message, it redirects it to the 

transputer where it thinks the target process is currently enabled. If this proves 

to be the wrong location, then the message will be repeatedly redirected until 

it reaches the active instance of the target process. At this point the sender's 

transputer will be updated with the current location of the target process (via a 

message acknowledgement) and message passing between these two processes will 

then take place correctly until one of them migrates. 
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If processes are allowed to migrate too often, then thrashing might occur and 

messages will never reach their targets. It is the user's responsibility to ensure 

that a reasonable period of time is left between process migrations so that the 

system is allowed to enter a steady state. 

3.4.4 Statistics Collection 

A statistics collectioh mechanism has been implemented so that intelligent mi-

gration decisions can be made. Information is collected on processor utilisation, 

process activity and channel activity over a user-defined interval. The transputer 

does not have any monitoring support built in, so one has to rely on a number of 

tricks in order to implement these facilities. 

The method described in [71] is used to monitor processor utilisation. The 

technique consists of two stages, a calibration phase followed by a measurement 

phase, both of which run at low priority. The calibration phase runs in isolation 

and measures how fast the transputer's scheduling mechanism is. The meas-

urement phase then runs in parallel with the user processes and calculates the 

percentage utilisation over a given time period. This is achieved by noting how 

often the low priority process queue is found to be empty. 

The approach described in [77] is used to monitor the activity of processes. 

The processor utilisation monitor described above has been extended so that it 

also collects information on the amount of computation achieved by user pro-

cesses. Only the migration candidates (i.e. the top-level user processes) need to 

be monitored, and it is known that these will be running at low priority. When the 

utilisation measurement process detects that the low priority queue is not empty, 

it scans the queue noting which top-level processes the subprocesses in the queue 

belong to. This is easily done since subprocesses are stored within their parent's 

workspace, and the area of memory occupied by each top-level process is known. 

If: 
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P is a top-level process, 

. T is the elapsed time since the measurement process was last active, 

• S is the total number of subprocesses found in the low priority queue in the 

previous cycle, and, 

• Sp is the number of subprocesses of P found in the low priority queue in the 

previous cycle, 

then an estimate for the total amount of computation achieved by P since the 

measurement process was last active can be written as: 

Tx sp 

This is only a crude measure since individual subprocesses may not be act-

ive for the same length of time. Some are likely to become descheduled before 

the end of their time-slice, for example, by blocking on a channel transfer or by 

terminating. This effect can be minimised by ensuring that the top-level pro-

cesses have a sequential internal structure as far as possible. Generally, the results 

will he more accurate if the processes are dominated by computation rather than 

communications. A detailed analysis of the errors involved can be found in [77]. 

Each port controller is responsible for collecting information on the number 

and total volume of messages sent to individual processes. This information can 

be made available to the statistics collection mechanism whenever necessary. 
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3.5 Statistical Techniques 

This thesis aims to investigate in a quantitative and empirical manner the relation-

ships which exist between the structure of parallel programs and their performance 

in a given environment. This naturally leads me to consider statistical analysis 

techniques. This section describes the main statistical techniques used. The dis-

cussion is not exhaustive, since I felt that some details and techniques were best 

presented in context. A general appreciation of the material presented here is 

necessary in order to facilitate the understanding of subsequent chapters. 

3.5.1 Design and Analysis of Experiments 

The aim of an efficient experimental design is to gain the maximum information 

with the minimum number of experiments. Various designs have been proposed, 

and a number are discussed in Section 3.5.2. In order to draw conclusions from 

an experiment, appropriate analysis techniques must be applied. Several such 

techniques are discussed in Sections 3.5.3 and 3.5.5. 

The design and analysis of experiments is a subject that ha0 seen addressed 

by a large number of text books, see [18,30,93] for example. These books tend 

to draw examples from the fields of agriculture, manufacturing and chemical en-

gineering, since this is where these methods have been most widely used. For a 

discussion of their applicability to the performance evaluation of computer sys-

tems see [69]. These techniques offer a number of attractive features that would 

be difficult to obtain using experiments designed in an ad-hoc manner. Firstly, 

they allow quantitative estimates to be made of the relative importance of factors 

affecting performance. Secondly, they allow one to examine the importance of any 

interactions that might exist between two or more factors. Lastly, they allow one 

to investigate whether observed differences in behaviour can be explained in terms 
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of the factors explored within the experiment, or whether they must be attributed 

to the effects of uncontrolled parameters. 

A brief summary of the terminology used in the design and analysis of experi-

ments is now presented. 

• An experiment consists of a number of trials. 

• The response variable (or just response) is a measure of the outcome of a 

particular trial. This would normally be a performance metric for studies of 

computer systems. 

• The quantities that are under experimental control are known as factors, 

parameters or predictor variables. We are generally interested in how the 

factors affect the response variable. 

• The values that a factor can assume are called its levels or treatments. These 

levels can be quantitative or qualitative. 

• The effect of a factor is defined to be the change in the response produced 

by a change in the level of the factor. 

• An interaction is said to exist between two factors A and B if the effect of 

one depends upon the level of the other. 

• Experiments are often replicated in order to isolate experimental errors. 

• In order to analyse an experiment, it is must be assumed that the measure-

ments can be adequately characterised by a particular model. 

• The differences between the observed values of the response and those pre-

dicted by a particular model are known as errors or residuals. 
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An experimental design involves specifying a set of factors, a number of levels 

of each factor, a definition of the particular factor level combinations to be con-

sidered, and an indication of the number of replications of the experiment to be 

carried out. The particular class of experimental designs used in this thesis are 

known as factorial designs. 

3.5.2 Factorial Designs 

Factorial designs offer an efficient way of studying the effects of two or more factors. 

The general principle is to consider the observed response at a number of factor 

level combinations. The major advantage over just varying one factor at a time, 

is that this technique allows any interactions that may be present to be detected. 

A full factorial design considers all combinations of every possible factor level. 

However, these designs can be costly in terms of the quantity of trials required if 

the number of factors (or number of factor levels) is not relatively small. A special 

case of the full factorial design, which is often found to be useful in exploratory 

experiments, is the two level full factorial design. In such designs, only two levels 

of each factor are considered. However, a great deal of information can be derived 

relatively quickly by ensuring that factor levels are chosen correctly. If a factor is 

quantitative, the levels should be chosen to be extreme values so that the likely 

possible values of the factor will fall in the range explored. If a factor is qualitative, 

then only two states can be considered; for example, on and off. A two level full 

factorial design with n factors using r replications is known as a 2r design. It 

should be noted that two level full factorial experiments can only consider linear 

relationships between the predictor variables and the response. More complex 

relationships can be investigated if one considers more levels. 

A partial factorial design can be used if the number of trials required for a full 

factorial design becomes too large, yet one still wishes to investigate more than two 

levels for certain factors. In such a design, only a subset of the possible factor level 
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combinations are considered. This saves time, but less information is obtained. 

For example, it may not be possible to assess all possible factor interactions. 

This thesis uses full factorial designs, with particular emphasis on two level 

full factorial designs. 

3.5.3 Analysis of Variance 

The results of a full factorial experiment can be analysed using a conventional 

analysis of variance (ANOVA) [115]. The analysis of variance is a useful tool for 

obtaining quantitative estimates of the relative importance of a set of factors, with 

respect to the observed values of some response variable. The factors in question 

are assumed to be qualitative in nature, although some may have a correspondence 

to a numerical scale. However, the analysis is not concerned with these numerical 

values. Rather, it is concerned with analysing the effects of changing factors from 

one level to another. For the experiments presented in this thesis, I am gener-

ally concerned with investigating the relative importance of a set of parameters 

characterising the behaviour of a parallel program, with regard to an appropriate 

performance metric. 

The general model underlying an analysis of variance is illustrated below for 

two factors, A and B: 

Yjk P + ai  + /3j + 'Y + fijk 	 (3.1) 

where Yjk represents the observed value in the kth replication with factor A at 

level i and factor B at level j. The mean response is represented by ; c, is the 

effect of factor A at level i; f3 is the effect of factor B at level j; my,, is the effect 

of the interaction between factor A at level i and factor B at level j; and tjk  is 

the experimental error. This model can be extended in a straightforward manner 

to an arbitrary number of factors. 
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There are, however, several assumptions underlying an analysis of variance 

which must be satisfied in order for the analysis to be valid. These 
assumptions 

are listed below: 

Errors must have constant variance over the entire range of the response i.e. 

homoscedasticitY of variance. 

Errors must be Independent and Identically Distributed (lID) normal vari-

ates with zero mean. 

The effects of factors and errors must be additive i.e. the underlying model 

must be structurally adequate. 

These assumptions should always be tested before proceeding with an analysis. 

The first assumption can be tested by constructing a scatter-plot of the residuals 

versus the predicted response. If a definite trend is visible in such a plot, then one 

can conclude that the errors do not have constant variance. The second assumption 

can by tested by preparing a normal quantile-quantile plot of the residuals. In 

general, a quantile-quantile plot allows one to test whether a set of 
observations 

comes from a particular distribution by plotting the observed quantile versus the 

theoretical quantile. An approximate straight line in such a plot indicates that 

the observed data does indeed come from the theoretical distribution; see [69] for 

full details. In the case of an analysis of variance, if the points plotted do not form 

an a
pproximate straight line passing through the origin, then the errors cannot 

be described by a normal distribution with a mean of 0. There are a number 

of situations that would lead one to question whether the third assumption was 

satisfied. The first of these is if the residuals were observed to be of the same 

order as the response. Another is if the response covered more than a single order 

of magnitude. 

If any of the assumptions are discovered to have been violated, then a trans-

formation of the response should be considered. Several transformations found to 
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be useful with respect to the experiments presented in this thesis are described in 

Section 3.5.4. 

The analysis of variance partitions the total variance observed in the response 

variable into its constituent parts. This variation is quantified using a measure 

known as the sum of squares which, given a set of observations, is defined as 

the sum of the squares of the differences between the individual observations and 

the mean value of those observations. The mean squares for a particular term 

in the model can be calculated by dividing the sum of squares by the number of 

degrees of freedom for that term. In order to test the significance of a particular 

term, with respect to the variation observed in the response variable, one should 

divide its mean squares value by the mean squares value for the error term. The 

corresponding quantity will have an F distribution, so one can then carry out 

formal statistical tests. 

It is clear from the above discussion that replications are essential in order 

to carry out an analysis of variance, since there would be no error term if there 

was only one replication. In fact, the estimate of error becomes a basic unit of 

measurement for determining whether observed differences in the data are really 

statistically different. 

In undertaking an analysis of variance, one would hope that much of the vari-

ation due to high order interaction terms would turn out not to be significant. 

This would then enable higher order interactions to be disregarded in further 

experiments. 
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3.5.4 Transformations 

A transformation of the response variable can often help if the assumptions un-

derlying an analysis of variance have not been satisfied [4] 
2  The analysis can 

then proceed in terms of the transformed response. The penalty for using a trans-

formation is a loss of clarity in interpretation. 

Although any transformation may be applied, there are a number described in 

the literature that have been found to be generally useful. A selection appropriate 

to the experiments described in this thesis is now presented. 

The Box-Cox Transformation 

Box and Cox [17] describe a technique which can be used to estimate the exponent, 

A, to use in an arbitrary power transformation. The method uses a family of 

transformations defined as follows: 

{ A  

(y - 1)1(,\g -\- ,) A 	0 
= 	 (3.2) 

gln(y) 	 A=O 

In this definition, y is the original response and g is the geometric mean of all the 

original responses. To estimate the value of A which should be used in a power 

transformation of the form y, a standard analysis of variance should be carried 

out on w, for various values of A. The maximum likelihood value for A, is that 

for which the residual sum of squares from the model fitted to w is minimised. 

The Box-Cox transformations attempt to satisfy the normality, homoscedasticity 

of variance and additivity criteria simultaneously. GENSTAT can be used to 

calculate the optimal value of A. 

2 However this is not always the case, it may be that the simple additive model un-

derlying the analysis variance is not adequate, and that more sophisticated techniques 

are required. 
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If the original responses contain some negative values then Definition 3.2 needs 

to be adjusted by a constant, c, to give: 

w = 	
((y + c)A - 1)/(Ag 1 ) A =A 0 	

(3.3) 
gln(y+c) 
	

A=0 

Values of c and A which minimise the residual sum of squares can be estimated 

simultaneously, the resulting power transformation will be (y + c)A. 

Atkinson [4] devotes a chapter to the study of transformations for response 

variables which are expressed as percentages (or proportions). He suggests that 

the transformation (1 - y/100)" is often useful for responses where the observed 

values are close to 100%. A suitable value of A can be estimated using the technique 

described above. 

The Guerrero and Johnson Transformation 

The Guerrero and Johnson transformation [4,54] is particularly suited to response 

variables which are expressed as percentages; it involves the application of the 

Box and Cox power transformation to y/(100 - y) rather than y. A Guerrero and 

Johnson transform takes the following form: 

A 

Y / = 100_y) —1 
(3.4) 

where A denotes a suitable exponent and y is the original response. The value of 

A to be used can be estimated using the following family of transformations: 

	

= I

{(Y/(1 - Y))A - 111AG (Y1/(i - y)A+1) A 0 	
(3.5) 

ln(Y/(1 - Y))G(Y(1 - Y)) 	 A = 0 

In this definition, G is the geometric mean operator and Y = (y/100), i.e. Y 

represents the response expressed as a proportion rather than a percentage. The 

maximum likelihood estimate of A, is that for which the residual sum of squares 

from an analysis of variance carried out on w is minimised. 
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3.5.5 Analysis of Covariance 

An analysis of covariance (ANCOVA) [29,661 allows the predicted value of the 

response variable to be adjusted for the effects of one or more nuisance variables; 

these are referred to as covariates since they normally vary along with the response. 

This technique is used in Chapter 5 in order to construct an improved performance 

prediction model incorporating information relating to the dynamic properties 

of programs, i.e. the complex interactions which occur at run-time between a 

program and the underlying machine. In the literature, covariates typically relate 

to environmental effects, since examples usually come from agriculture or the 

behavioural sciences, and, as such, are generally considered to be outside the 

control of the experimenter 3 . 

Let us consider the case of the full factorial experiment. A single covariate, x, 

can be incorporated into the model specified in Equation 3.1 to give: 

Yjk = IL + a + /3  + -y + (xk - ) + E 3 j 	 (3.6) 

where X•jk is the measurement made on the covariate x in the kth replication with 

factor A at level i and factor B at level j. The mean of all the x values is given 

by 7 , and S is a linear regression coefficient indicating the dependency of YIjk  on 

Xijk. The above model can be extended, in a straightforward manner, to support 

an arbitrary number of covariates. 

As well as the usual assumptions regarding the distribution of the errors, there 

are a number of extra assumptions underlying Equation 3.6 which should be sat-

isfied in order for an ANCOVA to be valid. Firstly, the true relationship between 

the response variable and the covariate must be linear and of non-zero gradient. 

A gradient of zero would imply that the covariate did not vary with the response 

31n fact, as we shall see in Chapter 6, in my case the values of covariates can be 

controlled to some extent, but this need not concern us at the moment. 
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at all. Secondly, the regression coefficients associated with individual treatment 

groups should be equal. This is implicit in the model, since there is only one pos-

sible value of 6, which is a pooled estimate across all treatment groups. Finally, 

for the most unambiguous interpretation of an ANCOVA, the covariate should 

be relatively independent of the treatments. This condition is not mandatory, 

however, care should be taken in interpretation when the treatments affect the 

covariate, since the covariate might either remove or introduce differences in the 

response that might be misinterpreted as treatment effects. 

If the value of a covariate is measured before an experiment begins, then there 

will he no possibility of the treatments affecting the value of the covariate. For 

example, in an agricultural experiment, the concentration of fertiliser detected in a 

plot of land before treatments are applied might be used as a covariate, since this 

factor would be likely to influence the results obtained between different plots. 

Alternatively, the covariate might be measured during or after the experiment, 

in which case there is always the possibility that the treatments will affect the 

covariate. 

The distinction between an analysis of variance, an analysis of covariance and 

a conventional regression analysis is somewhat blurred. In the general case, an 

analysis e  covariance can be considered to be a combination between an analysis 

of variance, which relates to a set of qualitative factors, and a straightforward 

regression analysis, which relates to a set of quantitative factors. However, this 

classification is not a rigid one, since, as we will see in Chapter 5, an analysis of 

variance can be extended to handle quantitative factors and produce regression 

models through the method of orthogonal polynomials. 

3.5.6 Paired T tests 

A paired t test is a standard statistical technique used to compare two alternatives. 

The aim of the test is to decide whether the mean values observed under each of 
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two treatments differ significantly- This technique is used in Chapters 6 and 7 in 

order to compare the observed performance of a set of programs, 
executed both 

with and without a process migration strategy active. 

There are two possible types of test: in a two tailed test one is simply testing 

for a difference in means; in a one tailed test, one is looking to see if one mean is 

significantly larger than the other. The observations must be paired in the sense 

that there should be a one to one correspondence between observation i under the 

first treatment and observation i under the second treatment. 

The test statistic can be calculated using the following formula: 

(3.7) 

where D is the mean of the differences between observations under the two treat-

ments, SD 
is the standard deviation of the differences between observations, and 

n is the number of pairs of observations. The t test assumes that the differences 

are normally distributed. The critical value, for a given significance level, can be 

looked up in a table of t values using n - 1 degrees of freedom. 

3.6 Summary 

This chapter has discussed a methodology for 
constructing synthetic programs, 

and described an experimental framework in which the behaviour of such programs 

can be investigated. An overview of the functionality of the MIMD simulation 

system has been given. Process migration mechanisms for MIMD and transputer-

based machines were described. Finally, a number of useful statistical analysis 

techniques were presented. 

In the following chapter, I investigate the feasibility of using analysis of variance 

techniques in order to explore the performance characteristics of a particular class 

of parallel programs. 



Chapter 4 

Performance Analysis: A Statistical 

Approach 

This chapter describes a methodology which can be used to investigate the per-

formance of parallel programs from a statistical perspective. To illustrate the 

application of the technique, a particularly simple class of regular parallel pro-

grams is investigated; more realistic programs are studied in subsequent chapters. 

The proposed methodology makes use of standard statistical techniques in order 

to ascertain the relative importance of parameters characterising the behaviour of 

parallel programs. The techniques developed in this chapter are used frequently 

throughout the remainder of this thesis. 

Section 4.1 discusses the motivation behind this work. Section 4.2 describes 

the particular class of programs investigated here. The experiments themselves 

are presented in Section 4.3, and some validation results regarding the experi-

mental approach are given in Section 4.4. Finally, a summary and conclusions are 

presented in Section 4.5. 
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4.1 Motivation 

The standard methods of experimental design and analysis have not been used 

frequently in computer performance analysis studies, although there are a small 

number of examples of their successful application, see [89,97] for example. The 

interactions that occur between a parallel program, the run-time software and the 

underlying machine are, generally speaking, complex and rather poorly under-

stood. This makes it difficult to construct accurate analytical models. However, 

it may still be possible to obtain empirical models which are derived purely ex-

perimentally. The principles of experimental design were proposed specifically in 

order to aid such investigations. Therefore, I shall use these techniques, and adopt 

a conventional experimentalist 's approach. 

In order to increase our understanding of parallel programs, it would be desir-

able to be able to identify those program characteristics which have the greatest 

impact on performance. I am interested in the macroscopic properties of parallel 

programs, rather than in information relating to the detailed ordering of events. 

Consequently, I shall use the methodology described in Section 3.1, and will work 

in terms of program classes characterised by small numbers of easily measured 

parameters, which summarise time-averaged properties. A particular program in-

stance can be defined by specifying the values of the program parameters. This 

high level approach tends to lead one to consider the features that programs have 

in common, as opposed to concentrating on their differences. 

The methodology described here uses two level full factorial experiments in 

conjunction with analysis of variance techniques. Assuming that the necessary 

conditions underlying the analysis of variance are satisfied, and that the paramet-

ers selected adequately characterise performance, this approach allows quantitative 

estimates of the relative importance of program parameters to be obtained. 
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The experiments presented in this chapter were inspired by an exploratory 

experiment conducted by Candlin et al. [20]. My approach is similar to theirs in 

the sense that I use the standard methods of experimental design and analysis; and 

I use a related program model and similar program parameter set. However, my 

experiments are considerably more rigorous, and I extend their work in a number 

of ways. Firstly, as discussed in Section 4.2, I propose a framework for classifying 

loosely synchronous data parallel programs, and generalise the program model 

adopted. Secondly, I consider several different performance metrics. Thirdly, I 

explore the adequacy of the model underlying the analysis of variance in this case; 

and study the use of transformations of the response variable where this helps to 

satisfy the conditions for a valid analysis. Lastly, I consider a number of different 

processor topologies. 

4.2 A Class of Parallel Programs 

A model of loosely synchronous data parallelism has been used in the experiments 

described in this thesis. This form of parallelism is frequently used for problems 

defined over some data domain. This domain can often be divided into sections, 

which can then have similar operations applied to them in parallel. Examples 

of problems that can be solved in this manner include molecular dynamics sim-

ulations, finite element analysis and the solution of partial differential equations. 

Indeed, in [51] Fox found that 76% of the parallel programs investigated in a sur-

vey could be classified as belonging to this class. Typically, in order to calculate 

the results at one point in the data domain, knowledge is required of other, often 

neighbouring, points. Consequently, these types of programs generally exhibit it-

erative behaviour patterns, with the actions of a process being characterised by a 

computation phase, where local results are calculated, followed by a communica-

tions phase, where data is exchanged between a set of neighbours. 
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Two strategies which are often used to decompose a loosely synchronous data 

parallel problem are the geometric decomposition and the scattered spatial de-

composition. These two strategies are related, but differ in the granularity of 

processes that they generate. In a geometric decomposition, processes are usually 

of a rather large granularity, the problem space being divided up into a relatively 

small number of regular sections. As the sizes of the processing grains used in-

creases, the amount of communications required decreases relative to the amount 

of computation that must be achieved between synchronisation points. However, 

load-imbalance can occur if processing grains grow too large, since some data sec-

tions might be heavily populated whereas, others might be relatively empty. In a 

scattered spatial decomposition, smaller processing grains are used, and they are 

allocated randomly to each processor in the system. The intention is that, on aver-

age, processors will have an approximately equal amount of work to do. However, 

as the grain size decreases, the communications overheads increase. There is, 

therefore, a trade-off between the size of processing grain used, and the commu-

nications overhead and degree of load imbalance encountered. 

The experiments described in this thesis assume a model of loosely synchron-

ous data parallelism, but they are independent of any particular decomposition 

strategy. Before describing the program model and parameter set used, a classi-

fication scheme for loosely synchronous data parallel programs is presented. 

4.2.1 Loosely Synchronous Data Parallelism: A Classifica-

tion Scheme 

Unless otherwise stated, one can assume that the programs being discussed in 

the remainder of this thesis exhibit loosely synchronous data parallelism. Such 

programs can be classified according to their temporal and spatial characteristics. 

Those programs whose computational and communications patterns vary signific-

antly over time can be referred to as time-varying parallel programs; those whose 
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patterns do not vary significantly over time can be referred to as time-invariant 

parallel programs. A more tormal detinition is now given, tne consualiub u au'- p 

determine the sensitivity of the classification. It is assumed that an iteration cor-

responds to that activity which occurs between successive synchronisation points. 

Definition 4.1 Assume that a program consists of a fixed set of pro-

cesses, PROC, and a fixed set of channels, CHAN. Let COMP pi  

represent the computational requirements of process p during iteration 

i (i 1, 2, ..), and similarly let MESS,, represent the size of mes-

sage sent down channel c during iteration i. If, V i and V p c PROC, 

COMP is within the range [COMP 1  —a, COMP21  +a] and, V i and 

V c c CHAN, MESS, is within the range  /MESS —/3, MESS C, +01, 

then a program can be classed as being time-invariant. Otherwise it can 

be classed as being time-varying. 

Within these two classes, programs can be further sub-divided, with respect to 

their spatial characteristics, into those displaying uniform behaviour and those 

displaying non-uniform behaviour. Programs displaying umiorm oenaviour geli -

erally act on regular problem domains, and so, at any point in time, processes 

will have approximately equal amounts of work to do and channels will be evenly 

loaded. On the other hand, non-uniform programs operate on irregular problem 

domains, so processes will typically have different amounts of work to do, and 

some channels will be more heavily loaded than others. A more formal definition 

is now given, the constants 'y and 6 determine the sensitivity of the classification. 

Definition 4.2 Assume that a program consists of a fixed set of pro- 

cesses, PROC, and a fixed set of channels, CHAN. Let COMP pi  

represent the computational requirements of process p during iteration 

and similarly let MESS C  represent the size of mes- 

sage sent down channel c during iteration i. If, V i and V p e PROC, 

COMP, is within the range [COMPq  - y, COMPq  + y] for some 
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arbitrary q e PROC, and, V i and V c € CHAN, MESS, is within 

the range [MESSd1 - 6, MESS d1  + 8] for some arbitrary d € CHAN, 

then a program can be classed as being uniform. Otherwise it can be 

classed as being non-uniform. 

A general purpose program model for loosely synchronous data parallel pro-

grams is now described. 

4.2.2 A Program Model for Loosely Synchronous Data Par-

allel Programs 

It is assumed that a program consists of a fixed set of processes, each displaying 

an iterative compute-communicate structure. This is a relatively simple type of 

computation to model. A program is constructed from a number of identical 

processes, each process computes for a length of time and then communicates 

with all connected processes. The message transfers take place in parallel so as 

to prevent deadlock from occurring. A program modelled in this way will exhibit 

the basic characteristics of loosely synchronous data parallelism. 

To fully model such a program, one must be able to define the computational 

requirements of processes, and the lengths of messages sent down channels. This 

is achieved by allocating functions to the nodes of the underlying process graph. 

These functions are designed so as to act consistently with the weights associated 

with individual nodes and arcs. In the program model described here, each node 

in a process graph has two behavioural functions allocated to it: 

• Computation Function 

This function defines the amount of computation that must be achieved by 

a process on each iteration before it can communicate with its neighbours. 

This quantity determines the granularity of the process. 
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• Message Function 

This function defines the lengths of messages to be sent down the outgoing 

channels attached to a process. It is assumed that all outgoing channels for 

a particular process display the same behaviour patterns. 

Each of the functions described above takes a single parameter, the current 

simulation time. They each return a single value which is interpreted according 

to the context of the function. The values generated will typically be drawn from 

some statistical distribution, for example, a normal or chi-squared distribution 

relating to the particular set of program parameters in force. The program para-

meters assumed in this Chapter are described in Section 4.2.3. If the functions 

behave constantly over time, time-invariant behaviour will be generated. Altern-

atively, functions with periodic or phased characteristics can be used to represent 

time-varying behaviour. If all nodes are allocated identical functions, uniform 

behaviour will result. Alternatively, if a number of different functions are used, 

non-uniform behaviour will result. 

Figure 4-1 shows the process template corresponding to the program model 

described above. The behaviour is specified using a Simula-based syntax with calls 

to MIMD procedures (see Chapter 3). Each process computes for a time defined 

by its computation function and the current simulation time. Then messages are 

sent on outgoing channels and received on incoming channels'. Message lengths 

are decided by the appropriate message function and the current simulation time. 

As mentioned earlier, the simulation time would be ignored if modelling time-

invariant programs. 

A modelling engine has been constructed to simulate programs obeying the 

model described here in the MIMD domain, it is fully described in [107]. You will 

'The directions of individual channels are decided randomly before execution 

commences. 
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class process(compute_func,message_fnnc) 
begin 

while true do 
begin 

compute(compute_func(simulation time)) .  
for each connected channel C do in parallel 
begin 

if C is outgoing then 
send(C ,message_func(simulation_time)) 

else 
receive(C); 

end; 
end; 

end; 

Figure 4-1: A Process Template for Loosely Synchronous Data Parallelism 

recall that the output from the experiment generator, eg, is a set of Els, each one 

describing a particular parallel computation. The modelling engine reads an El 

and generates suitable MIMD objects representing the processes and processors 

specified therein. Subsequently, the corresponding Simula program can be ex-

ecuted, and this will be equivalent to simulating the program specified in the El 

(as an occam program running on a transputer-based machine in this case). 

This chapter investigates the behaviour of loosely synchronous data parallel 

programs displaying uniform and time-invariant behaviour. A set of program 

parameters supporting these programs, and time-invariant programs in general, 

is now described. A program parameter set suitable for modelling time-varying 

programs is presented in Chapter 7. 

4.2.3 Characterising Time-invariant Behaviour 

In order to characterise the macroscopic properties of time-invariant parallel pro-

grams a set of program parameters are required. I shall use the following parameter 

set: 

{ N, c, /cg 7 0 cg /1mg I amg , 7c' °•m} 
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N and c represent the number of nodes and connectivity of the process graph. The 

parametersand a define a normal distribution describing the distribution of 

mean compute times (the amount of computation that must be achieved between 

message transfers) over the nodes of the process graph. Normal distributions weie 

chosen for convenience, although they may not be entirely realistic. However, 

preliminary investigations indicated that the results obtained were not sensitive 

to the choice of distribution. Similarly, img 
and a define a normal distribution 

mg 

describing the distribution of mean message lengths over the edges of the process 

graph. The parameters o, and 0m 
define chi-square distributions describing the 

variation, from one iteration to the next, in compute times and message lengths 

respectively. This variation corresponds to possible different paths through the 

sequential part of a process. The chi-square distribution is used to describe squares 

of normal variates, and hence is appropriate for characterising variance. One can 

see that o and a,, are concerned with specifying the degree of time-invariance 

present; they are in fact related to the values of a and 0 used in the definition of 

time-invariant parallel programs given in Definition 4.1. 

Note that o and a,, were not contained in the the original program parameter 

set proposed by Candlin et al. [20]. These parameters allow one to characterise 

non-uniform behaviour by allocating processes and channels different mean com-

putation times and mean message lengths. The behaviour of such programs is 

explored in Chapter 5. 

Once the program parameters have been specified, an arbitrary number of 

process graphs can be generated. First of all eg must be used to construct a 

random graph using the values N and c. The remaining program parameters are 

then used to generate and allocate suitable normal distributions to the graph (this 

is implemented within the modelling engine). These distributions characterise the 

compute times and message lengths of the processes and channels, and are used 

to generate the Computation and Message functions used by the process template 

when the corresponding program is simulated. 
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A program simulated using a program graph constructed in the manner de-

scribed above will be a typical program, a representative of the class of programs 

with the same parameter set and process template. It should be noted that the 

distributions used to construct synthetic programs from a parameter set are really 

hidden parameters to the model. It has been assumed that: unweighted graphs 

are uniformly distributed, means are normally distributed, and variances are dis-

tributed as chi-square. The normal distributions used are truncated at zero to 

prevent negative values being returned. 

4.3 A Study of Uniform Time-invariant Programs 

Uniform time-invariant programs form a relatively simple class of parallel compu-

tation. They therefore represent a suitable starting point for a systematic invest-

igation of program behaviour. 

4.3.1 Experiment Description 

The execution time of a message passing parallel program is a function of the 

program structure, the hardware topology it is to be executed on, and the map-

ping between the two. To simplify matters in the first instance, the hardware and 

placement strategy were held constant within a single experiment. Various pro-

gram parameters were then varied in an attempt to gain an understanding of the 

relationships which exist between the structure of time-invariant uniform parallel 

programs and their execution times in the given environment. 

A two-level full factorial experiment varying four of the eight program para-

meters specified in Section 4.2.3 was executed. A regular program graph was used, 

i.e. each node was of equal degree. In fact, regular program graphs are assumed 

throughout this thesis. The values of the varied parameters were set so as to in- 
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Program Parameters 
Vaus ) Param 

Paramet ers 

N {32,142} 
{4, 12} c 

PCg 13000, 300,0001 
acg  0 
c7 10 

Pmg {10, 50001 
amg  0 
0m 1 

Other Parameters 
Param Value(s) 

Hardware 4 x 4 Mesh 
Placement Round Robin 

Trial Length 20,000,000 (1 Sec) 
Replications 3 

Table 4-1: Parameter Settings for Initial Investigation into Time-invariant Pro-

gram Behaviour 

dude a large subset of possible real programs. The levels used are summarised in 

the Program Parameters section of Table 4-1. 

All of the parameters concerned with specifying the computational character-

istics of the processes (i.e. IL 2 , 0'.. and o) are expressed in terms of clock cycles 

of the simulated machine. The T800 transputers simulated are assumed to run 

at 20MHz. Therefore, a computation of 3000 clock cycles corresponds to a relat-

ively fine grained program. A floating point multiply takes approximately 30 clock 

cycles, so in 3000 clock cycles one could afford to carry out several floating point 

operations on, say, 20 data items. A computation time of 300,000 clock cycles 

corresponds to a large grained, compute-bound program. 

All of the parameters concerned with specifying message lengths (i.e. I-1 mg ' 0 m g  

and °m) are expressed in terms of bytes. 

The remaining program parameters were set so as to impose the uniformity 

and time-invariance conditions upon the programs generated. By setting o and 
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o,,, to 0, the processes within a program were allocated identical mean compute 

times, and the channels were allocated identical mean message lengths. By setting 

IL c  and 11m 
to 10 and 1 respectively, the variation in the values generated from 

one iteration to the next was kept to a minimum. Consequently, processes and 

channels displayed very similar behaviour patterns, both within a given iteration 

and between successive iterations. 

In addition to the program parameters described above, a number of other 

factors had to be set defining the hardware to be simulated, the mapping strategy 

to be used, and the state of various simulation parameters. These factors are 

specified in the Other Parameters section of Table 4-1. The hardware was set 

to a 4 x 4 mesh of transputers with wrap-around connections 2 . A round-robin 

mapping strategy was used. The length of each of the simulation trials was fixed 

at 20,000,000 clock cycles of the simulated machine (equal to 1 second of real 

time). The experiment was conducted with three replications, each replication 

differing both in the random graph and random number seed used. The entire 

experiment took approximately 24 hours to complete on a Sun 4 Workstation. 

The output of a single simulated execution would ideally be a direct measure of 

execution time. However, the synthetic programs used here are non-terminating. 

A suitable performance metric must therefore be chosen. Two metrics will be 

considered: firstly, the mean amount of computation achieved per process, T, 

which is expressed in clock ticks; and secondly, the mean percentage utilisation 

of the simulated processors, U. Both quantities are measured over the entire 

simulation period. It is clear that T is related to the rate of computation of 

the processes. U, on the other hand, reflects the utilisation of the underlying 

machine (which is in turn related to the parallel speedup achieved). One should 

2j  fact all the mesh-based processor topologies used in this thesis are assumed to 

have wrap-around connections. 
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bear in mind that the calculation of U includes all clock cycles, whether they be 

directly attributable to the user program or not. This means, for example, that in 

theory U could be artificially boosted by a poor mapping as a result of including 

extra throughrouting costs. However, as we shall see, the performance of the 

programs investigated in this thesis tends to be dominated by computation costs 

rather than communication costs. Consequently U provides a good indication of 

program performance. 

4.3.2 Results 

Two sets of results are presented here, one where the response variable is taken 

to be program oriented metric, T, and one where it is taken to be the machine 

oriented metric, U. In each case I investigate whether the assumptions underlying 

an analysis of variance are satisfied (these are detailed in Section 3.5.3), and 

derive suitable transformations of the response where appropriate. In addition, a 

summary of the results obtained by repeating the experiment with two alternative 

processor topologies is given. 

The Metric T 

The results of a two level full factorial experiment can be analysed using analysis 

of variance techniques. However, it is necessary to first check whether the as-

sumptions underlying the analysis have been satisfied. A scatter plot of residuals 

versus the predicted response can be used to test the homoscedasticity of variance 

assumption, if this is satisfied there should be no visible trend in such a plot. 

Figure 4-2 shows a residual scatter plot for this experiment. One can see that 

the size of error is related to the magnitude of the response variable, with smaller 

errors occurring at the extreme values of the response variable, and larger errors 

occurring at intermediate values. 
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Careful examination of the residuals revealed that closely spaced errors tend 

to occur when the simulated machine is very highly utilised. This is quite a likely 

situation with very regular programs, since there are minimal synchronisation 

overheads. When such an upper bound is approached, i.e. a fully utilised machine, 

the variation between replicates will naturally tend to decrease. The points on the 

left of the scatter plot correspond to programs where N is equal to 142. With so 

many processes to be serviced, it is unlikely that a processor will find itself idle, 

consequently parallel slackness can be fully exploited. The points on the right of 

the scatter plot correspond to compute-bound programs with fewer processes, i.e. 

where ji is equal to 300,000 and N is equal to 32. There is minimal variation in 

these trials because there is little scope for different interaction patterns to emerge. 

Greater variability occurs at intermediate values of the response variable, when 

both IL,, and N are set at their lower levels, i.e. communications-intensive pro-

grams with a smaller number of processes. Since replications differ only in the 

graph shape and random number seed used, one can conclude that in these pro-

grams the detailed ordering of events and interactions between processes become 

more significant. One would expect this sort of behaviour from communications-

intensive programs. 

The normality of errors assumption can be tested by examining a normal 

quantile-quantile plot of the residuals. Such a plot is shown in Figure 4-3. One 

can see that the larger positive and negative residuals do not follow a straight line; 

this indicates that the residuals have a distribution which has a longer tail than 

the normal distribution. 

The above analysis suggests that at least two of the three assumptions under-

lying the analysis of variance do not hold for the raw data, so an analysis using 

T would not adequately describe the relationship between the predictor variables 

and the response variable. A transformation of the response can help to solve 

such problems. Direct application of the transformations described in Section 

3.5.4 were found to lead to only marginal improvements in this case, due to the 
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Figure 4-2: Predicted Response vs. Residuals Using Response T 
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rather extreme bulging nature of the residual scatter plot. By re-examining Figure 

4-2, one can see that the errors at either end of the response variable range need 

to be exaggerated so that they compare with those found in the middle of the 

graph. The following sinh transformation was found to be useful in this respect: 

( T -  7000000" 
sinh 	

1000000 ) 	
(4.1) 

The original response is scaled before applying the sinh function so that the trans-

formed responses can be located in a suitable area of the sinh curve. A suitable 

transformation, T', was then constructed for the original response, T, using Equa-

tion 4.1 in conjunction with a Box-Cox transformation (see Section 3.5.4 for full 

details). It is presented below: 

+ 150 

	

T' = {sinh 
1T - 7000000\ 	

2.41 

(4.2) 

	

1000000 ) 	
}  

Figure 4-4 shows a residual scatter plot and Figure 4-5 shows a residual normal 

quantile-quantile plot for the transformed variable V. In both cases the problems 

identified with the untransformed response seem to have been solved to a great 

extent. Specifically, the points in Figure 4-4 do not display a significant trend, and 

the points in Figure 4-5 form an approximate straight line. In addition, the fact 

that the residuals are of a smaller order than T' indicates that an additive model 

is structurally adequate (i.e. it can adequately explain the observed variation in 

the response). 

The analysis of the experiment can now proceed in the transformed scale. The 

analysis of variance table is given in Table 4-2 (the derivation of such a table 

is discussed in Section 3.5.3). The residual stratum indicates the proportion of 

the observed variation in the response that cannot be explained by the model 

underlying the analysis. The F ratios are calculated by dividing the mean squares 

for the appropriate stratum by the residual mean squares. These values are used 

to derive the F probabilities. The F probabilities are a measure of the likelihood 



Chapter 4. Performance Analysis: A Statistical Approach 

600 

500 

400 

300 

200 

100 

0 cc 

-100 

-200 

-300 

-400 

-500 

•. 

S 

0 
5 • $ 
• 0 

• S 

0 	 50000 	 100000 	 150000 	 200000 
Predicted Response 

Figure 4-4: Predicted Response vs. Residuals Using Response T' 

600 

500 
	 •1 

400 

0 
300 	 S 

0 •  

S 
100 
	 so. 

a 
	

0 

-100 

-300 

-400 	0 

-500 
-2.5 	-2 	-1.5 	-1 	-0.5 	0 	0.5 	1 	1.5 	2 	2.5 

Normal Quantile 

Figure 4-5: Normal Quantile vs. Residual Quantile Using Response T' 



Chapter 4. Performance Analysis: A Statistical Approach 	 100 

I Source 	 I D o F ' Sum of Squares Mean Squares I F Ratio I F Prob. 

Between Replicates 2 202674 101337 2.094 	0.141 

Between Treatments 15 3.09871e+11 2.06581e+10 426850 	< .01 

Residual 30 1.4519e+06 48396.6 

Total I  3.09873e+11  

Table 4-2: Analysis of Variance Table Using Response T' 

that the F ratios observed could have arisen by chance. The variance observed 

in the response due to differences in parameter settings (the "treatment" mean 

squares) is very marked, and much larger than the variance observed between 

replicates at the same parameter settings. The F probabilities can be used to 

interpret these results in a formal manner. For example, one can reject the null 

hypothesis that different parameter settings produce the same results at the 1% 

level. This result indicates that is very unlikely that such large observed variations 

in the response variable will have come about by chance. Similarly, one can accept 

the null hypothesis that different replicates produce the same results at the 1% 

significance level. 

Estimates of the effects of individual parameters and their interactions can 

be derived from a transformation of the 16 means at each combination of the 

parameter settings. These values are presented in the second column of Table 

4-3, and correspond to the terms present in the model underlying the analysis 

(see Equation 3.1 in Section 3.5.3). The first line in the table, labelled (gm), 

specifies the overall mean value of T' (the grand mean). Each estimate has the 

same standard error which is given at the foot of the table. The t-values given 

in the third column of this table are the ratio of estimates to standard error, 

they can be used to indicate the relative importance of individual terms in the 

model. Values of t less than 3 can be taken as a guide to those terms which 

are of little importance. A less formal technique that can be used to assess the 

relative importance of various terms in the model is to consider the percentage 

variation in the response that can be attributed to each term. These figures are 
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Effect Estimate t-value 	T % Var T % Var 

(gm) 111435.12 
-3976.92 -125.24 0.245 0.617 

c 
N -78388.06 -2468.67 95.183 88.713 

cN -2179.03 -68.62 0.074 0.226 
6.203 

16317.56 513.89 4.125 
Y Cg 

3542.19 111.55 0.194 0.567 
c9 

N,a9 2311.49 72.80 0.083 3.008 
0.206 

cNp9 2303.34 72.54 
-16.06 

0.082 
0.004 0.108 

Pmg 
-510.04 
138.08 4.35 0.000 0.007  

C/Lmg 

N,9 p 540.02 17.01 0.005 0.110  
0.007 

cNumg -122.89 -3.87 0.000 
0.002 0.100 

pcgImg 
384.31 

-141.82 

12.10 
4.47 0.000 0.007 

C1LcgPmg 
-414.72 -13.06 0.003 0.102 

N/Lcgpmg 
141.18 4.45 0.000 0.007 

cN,i 	,am 
Total 99.999 99.988 

Standard Error = 31.75 

Effects of Using Response T' 
Table 4-3: Estimates 

shown for T' 
in the fourth column, and are calculated by expressing the sum 

of squares a
ttributable to a particular term as a proportion of the total sum of 

squares. For comparison purposes, the percentage variation observed using the 

original response is also shown in the fifth column. 

The t-values for the N and Acg 
effects are markedly high relative to the other 

terms, together explaining 99.3% of the variation in V. This suggests that these 

two pa
rameters dominate, even though other terms also have t-values greater than 

3. comparing the fourth and fifth columns, one can see that the t
ransformation 

from T to T' 
has greatly lessened a dependence on the first order interaction 

between N and j, as well as decreasing the importance of other higher order 

interactions. This is a desirable property since such interactions could be ignored 

in future experiments. 
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Figure 4-6: Predicted Response vs. Residuals Using Response U 

The Metric U 

I will now analyse the experiment using the metric U, the mean utilisation of the 

simulated processors. However, before proceeding, the assumptions underlying 

an analysis of variance are once again investigated. Figure 4-6 shows a residual 

scatter plot for U, one can see that there is a funneled tendency in the graph, 

with values of U closer to 100% giving smaller errors. This is not surprising, since 

variation will naturally tend to decrease as the simulated machine approaches full 

utilisation. One can test for the normality of errors by examining Figure 4-7 

where a normal quantile-quantile plot is presented. The curvature indicates that 

the errors follow a distribution with a longer tail than the normal distribution. 

The above discussion suggests that once again a transformation of the response 

should be considered. You will recall from Section 3.5.4 that when the observed 

values of the response (U in this case) are close to 100%, a transformation of the 

form (1 - U/100)A can often be helpful. Indeed, this appears to be the case. An 

exponent of 0.06 was found to minimise the residual sum of squares. Consequently, 
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Figure 4-7: Normal Quantile vs. Residual Quantile Using Response U 

the following transformation was used: 

= (1

U 
) 0.06 

_(4.3) 
100 

Figure 4-8 shows a residual scatter plot and Figure 4-9 shows a normal quantile-

quantile plot for the transformed response U'. The problems identified with the 

untransformed data appear to have been solved, since the points in Figure 4-8 do 

not display a definite trend, and the points in Figure 4-9 form an approximate 

straight line. In addition, there is no reason to doubt the structural adequacy of 

the model, since U' covers only a single order of magnitude, and the residuals are 

of a smaller order than U. 

The analysis of variance table for U' is given in Table 4-4. The mean squares 

figures indicate that once again the differences between parameter settings are 

very pronounced, and much larger thaii the differences between replicates at the 

same parameter settings. 

Estimates of the parameter effects and their interactions are presented in Table 

4-5. The parameter it has the greatest effect on U', followed by the first order 

interaction between 1u and N. The terms N, mg and their first order interaction 
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Source D o F Sum of Squares Mean Squares F Ratio F Prob. 

Between Replicates 2 0.000189 9.47e-05 3.28 0.051 

Between Treatments 15 0.31 0.0206 715.64 < .01 

Residual 30 0.000865 2.88e-05  

-Total 47 0.311 1 

Table 4-4: Analysis of Variance Table Using Response U' 
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(gm) 	I 
c 

0.7641 
0.0066 8.46 0.665 0.006 

N 0.0181 23.35 5.061 8.544 

cN -0.0040 -5.15 0.247 0.035 

-0.0563 -72.56 48.881 28.012 
Acg 

0.0023 2.94 0.080 0.001 

NACg 
0.0441 56.87 30.021 18.216 

cNILcg -0.0042 -5.42 0.273 0.040 

0.0206 26.61 6.576 10.815 
AMg 

-0.0046 1 -5.89 0.322 0.234 

N/Lmg -0.0217 -28.03 7.293 11.612 

CN/Lmg 0.0038 4.86 0.219 0.155 

0.0002 0.26 0.001 10.191 
PcgP'mg 

-0.0002 -0.19 0.000 0.239 
C/g/Lmg 

NILcgitmg 0.0008 1.08 0.011 10.956 

cN,a 	pt  m 
0.0008 1.04 0.010 0.168 

Total 1  99.661 99.223 

Standard Error = 0.000775 

Effects of Using Response U' 
Table 4-5: Estimates 

H

700000  ) + 1501 1-96  

	

Me
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Table 4-6: Summary of Transformations Used 

sinh (.Q0000' + 150 
1000000 1 

I U 	
-0.17 

-1 

are the three next most important. These five explain more than 97.8% of the 

variation in U'. 
Higher order interactions, other than those already highlighted, 

appear to be relatively unimportant. By comparing the fourth and fifth columns, 

one can see that the transformation of U to U' has simplified matters by removing 

the dependence on the /tcg/img and N/L cg tmg  interactions. 

Alternative Processor Topologies 

To increase confidence in the results obtained, further experiments were carried 
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out using two alternative processor topologies: a 4-dimensional hypercube and a 

16 node ring. All of the other experimental parameters remained unchanged. Both 

T and U 
were investigated for each of the processor topologies. Table 4-6 shows 

the transformations that were found to be useful in satisfying the conditions for a 

valid analysis. The first column summarises the t ransformations that were derived 

for the mesh topology. The second column refers to the hypercube topology, one 

can see that the t ransformations found to be useful are very similar to those used 

for the mesh, differing only in the exponent. The third column deals with the ring 

topology. The T' transformation is similar to those used for the mesh and hyper -

cube, however a different scaling of T was required and no power transformation 

was needed. The U transformation is of a different form to those seen so far. 

The previous U' t ransformations relied on the observed values being close to 100. 

However, the values of U observed with the ring were lower than those observed 

for the mesh and hypercube (as a result of larger synchronisation overheads due 

to increased contention for communications resources). The particular transform-

ation used is known as a Guerrero and Johnson transformation [4]; it is designed 

for percentages and proportions, and is fully described in section 3.5.4. 

Tables 4-7-4-10 give the analysis of variance tables for the hypercube and 

ring processor topologies for both T' and U'. In each case the differences in mean 

squares between parameter settings are far greater than the differences between 

replicates at the same parameter settings. This agrees with the results obtained 

earlier for the mesh. 

Table 4-11 summarises the percentage variation that can be attributed to 

individual terms in the model for each of the three processor topologies and each 

of the two metrics. The first thing to notice is that the results for the mesh and 

the hypercube are very similar for both T' and U'. However, the ring produces 

different results. For T', the impact of N is reduced and the importance of the 

lj,cg 
and NA, terms are both much increased. For U', there are even greater 

differences, with the effects of c and IL my 
 becoming more significant and the effect 
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[source D o F Sum of Squares Mean Squares F Ratio 	F Prob. 

Between Replicates 2 485.9 242.95 0.548 	0.584 

Between Treatments 15 2.92e+09 1.95e+08 439556 	< .01 

Residual 30 13299.3 443.31 

Total I 47 2.92e+09 

Table 4-7: Analysis of Variance Table for Hypercube Using Response T' 

Source D o F Sum of Squares Mean Squares F Ratio F Prob. 

Between Replicates 2 5.80e-05 2.90e-05 0.169 0.846 

Between Treatments 15 0.798 0.0532 309.41 < .01 

Residual 30 0.00516 0.000172  

Total 47  

Table 4-8: Analysis of Variance Table for Hypercube Using Response U' 

I Source D o F Sum of Squares Mean Squares F Ratio F Prob. 

Between Replicates 2 0.223 0.111 0.56 0.577 

Between Treatments 15 58523.4 3901.56 19648 < .01 

Residual 30 5.96 0.199  

Total 47 58529.6  

Table 4-9: Analysis of Variance Table for Ring Using Response T' 

Source D o F Sum of Squares Mean Squares F Ratio F Prob. 

Between Replicates 2 0.00272 0.00136 1.71 0.197 

Between Treatments 15 2.21 0.148 185.92 < .01 

Residual 30 0.0238 0.0008 

Total 47 2.24 1 

Table 4-10: Analysis of Variance Table for Ring Using Response U' 
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Effect 
Mesh 

T' 
Hyper 

T' 
Ring 
T' 

Mesh 
U' 

Hyper 
U' 

Ring 
U' 

c 0.245 0.419 1.093 0.665 0.291 4.213 
N 95.183 93.384 49.109 5.061 4.291 0.007 
cN 0.074 0.208 0.022 0.247 0.002 0.264 
Acg 4.125 4.908 33.280 48.881 50.520 47.380 
cjL C'q  0.194 0.357 0.329 0.080 0.010 1.471 
N 9  0.083 0.498 14.851 30.021 26.938 8.887 
CNI.L cg  0.082 0.216 0.370 0.273 0.285 1.734 
12mg  0.004 0.003 0.434 6.576 8.231 19.347 
CIL mg  0.000 0.000 0.102 0.322 0.000 2.258 
N/l mg  0.005 0.003 0.012 7.293 8.059 3.656 
CNIA mg  0.000 0.000 0.052 0.219 0.009 0.883 
/1c9Prng 0.002 0.002 0.117 0.001 0.362 6.698 
CIL cg 11m9  0.000 0.000 0.026 0.000 0.007 1.691 
N/i cg /1mg  0.003 0.002 0.043 0.011 0.348 0.013 
CN/1 cg /.img  0.000 0.000 1 	0.150 0.010 0.000 1.315 
Total 99.999 99.999 199.989 99.661 99.351 99.816 

Table 4-11: Summary of Percentage Variation Figures 

of N becoming less so. In addition,. many more higher order interactions seem to 

be important. 

4.3.3 Discussion 

It is worth recalling that two characteristics of a concurrent program that might 

be thought to affect performance have been ignored. These are the shape of the 

program graph, and the detailed pattern of synchronisations between processes as 

the program is executed. These effects would be picked up by large differences 

between replicates, since individual trials differ both in the random graph and 

random number seed used. It has already been shown that the differences between 

replicates are relatively small, so programs with the same parameter values tend 

behave in a similar manner. The differences between parameter settings have 

tended to explain the bulk of the variation in the response variables, so one can be 

confident that the four parameters explored have useful predictive powers for the 
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particular class of programs considered. Of course, these properties are dependent 

on the assumption that all other factors, for example the hardware configuration 

and placement strategy, remain constant. 

The effects of the various parameters can be plausibly interpreted in terms of 

what is known about the particular program model and machine simulated. Let 

us first consider the results obtained using a mesh processor topology and the 

performance metric T', the (transformed) mean computation time achieved per 

process (see Table 4-3). By far the most important influence comes from N, the 

number of nodes in the program graph. This seems reasonable since the transputer 

divides its time equally between the processes it is executing, so, adding extra pro-

cesses will result in a proportionate slow down in the rate of computation for each 

process. The other significant parameter is j&, the mean amount of computa-

tion carried out between message transfers. It is well-known that programmers 

should attempt to achieve large-scale granularity on message-passing machines, 

and this result provides a quantitative estimate of the benefits to be obtained 

relative to the metric V. The remaining parameters have very little influence. 

One would expect c, the degree of the program graph, to have a relatively small 

effect since the processes modelled send and receive messages in parallel, rather 

than in sequence. This technique results in efficient code on the transputer since 

inter-processor message transfers can be executed in parallel on all four links, and 

computation can be overlapped with link transfers. Perhaps a little more sur-

prising is the small impact of the mean message length. This indicates that 

the synchronisation costs of executing a message transfer tend to outweigh the 

costs of actually moving the data; this is why programmers of distributed memory 

machines tend to bundle a number of small messages into a single large message 

whenever possible. This effect is probably exaggerated by the message-passing 

protocol used, in which messages are explicitly acknowledged in order to enforce 

a synchronous communications mechanism. 

We have seen that the metric T' tends to be dominated by the N, the number 
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of processes in the program. While this is reasonable for a program oriented 

metric, it is sometimes desirable to use a metric that is rather more sensitive to 

the performance of the underlying machine. The (transformed) mean percentage 

utilisation of the processors, U', is useful in this respect. For the mesh processor 

topology, the dominant parameter when using U' is Pcg  (see Table 4-5). This 

reflects the fact that, increasing the frequency of message transfers will increase the 

proportion of time that processes spend blocked (waiting to synchronise with their 

partners), and so the utilisation of the processors will drop accordingly. The mean 

message length, Itmg,  is also of some importance; this is because longer messages 

result in increased contention for links, which causes longer blocking times for 

processes and reduced utilisation of processors. The number of processes also 

appears to have an influence; the more processes there are, the less likely the chance 

that a processor will finds itself idle. There are some important interactions, 

especially that between N and 1L 9 . This indicates that the impact on performance 

of increasing the number of processes is dependent on the frequency of message 

transfers. Obviously, if message transfers occur infrequently then processors will 

be highly utilised, so adding more processes will have a negligible effect. However, 

if message transfers occur frequently, then the message passing overheads will be 

significant, and adding more processes will increase these overheads. 

The results for the hypercube are very similar to those obtained for the mesh 

(see Table 4-11). This is to be expected, since these two topologies have similar 

interconnection properties for 16 nodes i.e. both degree and diameter are equal 

to 4 (since the mesh is constructed with wrap-around connections). Accordingly, 

one would expect similar behaviour to result from executing an arbitrarily chosen 

random process graph on either of these two topologies, all else remaining equal. 

In contrast to this, a 16 node ring has degree equal to 2 and a diameter equal 

to 8. Link contention will therefore be a bigger problem in the ring, since mes- 

sages have to be mapped onto fewer links, and have further to travel on average. 

Consequently, one would expect the performance of the ring to be more sensitive 
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to the frequency and lengths of message transfers. This effect can be seen in the 

T' results for the ring, where the importance of jt,g  and the first order interac-

tion between N and jL,g  is larger than that observed for the mesh and hypercube 

(at the expense of N). This is a reflection of the increased importance that the 

frequency of message transfers is having on performance. The metric T' is not 

sensitive enough to pick up the effects of increased message lengths, but it is pos-

sible to detect this effect if one uses U. In the last column of Table 4-11 one 

can see that lUmg, and almost all terms containing it,, are more important for 

the ring, compared to both the mesh and the hypercube topologies. In addition, 

the importance of c also increases because it determines the number of message 

transfers that must be carried out within each iteration. The number of nodes is 

of very little importance, and the effect of jt g  remains largely unchanged. 

It has been shown that the results obtained can vary a great deal according to 

the choice of performance metric. This choice between T' and U' depends largely 

on whether one wishes to take a program oriented or machine oriented view. T 

would be a more useful metric for the applications programmer concerned with 

program structure, whereas U would be more appropriate if one was attempting 

to make the best of a program with a fixed structure. In general, T' produces 

fewer terms of importance but tends to be dominated by N. On the other hand, 

U' is more sensitive to the other parameters, but generates a model with a larger 

number of significant terms. This is especially true for the ring, where higher order 

interactions become more important as a result of the more complex behaviour 

patterns arising from increased link contention. 
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4.4 Validation of Experimental Approach 

This section presents a number of results concerned with validating the exper-

imental approach. I concentrate on the metric T, but similar results could be 

obtained for U. 

4.4.1 Structure of Synthetic Parallel Programs 

The experiments described in this chapter have assumed that random process 

graphs can be used to represent real parallel programs. It is not clear how the 

shapes of these graphs relate to the shapes of graphs which might be used to 

solve real problems. It would therefore be useful to examine how the behaviour of 

random process graphs compares with the behaviour of program graphs structured 

in a rather more regular fashion. The results presented here compare random 

process graphs with mesh and hypercube shaped graphs of the same size and 

connectivity. 

Figure 4-10 illustrates the performance observed using both mesh and random 

shaped process graphs. The results of three separate experiments are shown, cor-

responding to three different sized graphs. The connectivity is fixed at 8, since it 

would not be possible to vary the connectivity for a mesh in a meaningful manner. 

The 8 edges adjacent to each node in a mesh connect an outgoing and incoming 

channel to each of the north, south, east and west neighbours. The three exper-

iments executed were essentially the same as the experiment described earlier in 

this chapter. However, since the graph size and connectivity were fixed within an 

experiment, only li g  and I1mg  could be varied, so there were four trials in each 

experiment. For each parameter combination, Figure 4-10 compares the perform-

ance achieved by the random graph with that achieved by a mesh of identical 
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U) 
C 

Parameter Setting 

Random ME Mesh 

Figure 4-10: Comparison of Mesh and Random Shaped Graphs for T 

size and connectivity. One can see that the results are reasonably close, typically 

within 5%. 

Figure 4-11 compares the behaviour of hypercube and random shaped process 

graphs in a similar way. However, in this case the degree of the graphs can be 

varied along with the number of nodes. The results for the random graph are close 

to those obtained with the hypercube. So, it seems that randomly constructed 

process graphs seem to display comparable behaviour to more regularly shaped 

graphs of the same size and connectivity (assuming that they are executed under 

the same conditions). 

4.4.2 Simulation Lengths 

All simulations so far have been run for 20,000, 000 cycles (1 second) of simulated 

machine time. A question arises as to whether, when compute times are large, 

this period is long enough for the simulation to reach a stable state. For example, 

for the experiments described in this chapter, a process might only reach the front 
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Figure 4-11: Comparison of Hypercube and Random Shaped Graphs for T 

I1m g  10 x 1 sec 10 secs % duff 
4 32 10 99825650 99817856 -0.0078 

12 32 10 99474830 99505008 0.0003 
4 142 10 22214430 22190130 0.11 

12 142 10 22142920 22128880 0.063 
4 32 5000 99685500 99662688 -0.023 

12 32 5000 99248640 99260512 0.012 
4 142 5000 22215220 22187828 -0.12 

12 1 142 5000 22141970 22121962 -0.09 

Table 4-12: Comparison of Short and Long Simulation Runs for T 
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of its processor queue as little as 7 or 8 times if N was set to 142, and jt was set 

to 300,000. 

To investigate whether this is a problem, an experiment was carried out using 

a mesh processor topology. The value of 1L,, was fixed at 300,000. Each trial 

was executed for both 1 second and 10 seconds of simulated machine time. The 

remaining parameters were varied as normal, the results obtained are summarised 

in Table 4-12. One can see that the values of T obtained for the 10 second simu-

lations are very close to 10 times the values obtained for the 1 second simulations. 

This indicates that there is no significant start-up phase, and that the simulation 

very quickly enters a stable state. 

4.5 Summary and Conclusions 

This chapter has used standard statistical techniques to develop a methodology 

for the performance evaluation of parallel programs. A representative program 

model was described, and the results of a series of simulation experiments were 

presented. These experiments concentrated on a relatively simple class of parallel 

programs, namely those displaying uniform time-invariant behaviour. A number 

of transforms were developed to help in the analysis of these experiments, both in 

terms of the metric T, the mean computation achieved per process, and the metric 

U, the mean utilisation of simulated processors. These transformations allowed 

the assumptions underlying an analysis of variance to be satisfied, at the expense 

of a certain lack of clarity in interpretation. 

The programs investigated in this chapter were deliberately kept simple in or-

der to illustrate the usefulness of the methodology. It has been demonstrated that 

it is possible to characterise program behaviour in terms of a small number of 

rather high-level program parameters. Also, it has been shown how the standard 

methods of experimental design and analysis can be used to obtain quantitative 
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estimates of the relative importance of these parameters with respect to a number 

of different performance metrics. In turn, this produces a model which provides 

a good explanation of the observed performance. The results obtained seem con-

sistent and meaningful, and can be interpreted in terms of what we know about 

real programs executing on a real machine. It is encouraging to see that such a 

crude approach produces promising results. In the next chapter non-uniform time-

invariant programs are considered, and techniques for constructing performance 

prediction models are investigated. 



Chapter 5 

Performance Prediction Models 

The experiments described in this chapter have been designed to illustrate how 

performance prediction models can be constructed for a particular class of parallel 

programs. Specifically, I concentrate on loosely synchronous data parallel pro-

grams exhibiting time-invariant non-uniform behaviour. Analysis of variance and 

covariance techniques are used to provide a framework in which to construct per-

formance prediction models. A particularly interesting consequence of using the 

analysis of covariance is that the covariates identified can shed considerable light 

on the problem of understanding the dynamics of program behaviour. This know-

ledge can then be used to guide the development of process migration strategies; 

this is illustrated in Chapter 6. 

Section 5.1 describes an exploratory experiment designed to discover which pro-

gram parameters have the greatest predictive powers. Section 5.2 investigates the 

performance characteristics of these parameters in greater detail, and illustrates 

how a performance prediction model can be constructed. Section 5.3 shows how 

the performance of the model can be improved by including covariates containing 

information relating to the various interactions which occur between the program 

and the machine it is executed on. Section 5.4 helps to establish the generality of 

the method presented here, by showing that it can applied successfully to a larger 

processor domain. A summary and conclusions are presented in Section 5.5. 

117 
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5.1 Exploratory Analysis 

Time-invariant non-uniform parallel programs operate on irregular problem do-

mains. At any point in time individual processes and channels exhibit significantly 

different behaviour patterns, however, these patterns remain relatively constant 

throughout the execution period. I concentrate on the performance metric U, the 

mean utilisation of the simulated processors. In order to construct performance 

prediction models, this chapter is concerned with investigating the relationships 

which exist between the structure of a parallel program, and its behaviour when 

executed on a given parallel machine. Consequently, a machine oriented met-

ric seems a natural choice. Indeed, the metric U will be used throughout the 

remainder of this thesis. 

5.1.1 Experiment Description 

The same set of program parameters that was used in Chapter 4 is assumed, 

namely 

{ N, c, IL c9 , O•cg, I-mg  0-mg  °c' or. I 

When uniform parallel programs were investigated, orc_q and 0mg  were set to 0, 

so that all nodes received identical mean compute times, and all edges received 

identical mean message lengths. By using non-zero values of 0cg  and 0mg  non-

uniform patterns of activity can be generated, since individual nodes and edges 

will be allocated different mean compute times and mean message lengths. The 

degree of non-uniformity present depends upon the sizes of a and arngi relative 

to their respective means. For example, if iucg  = 5000 and 0 cg  = 3000, then 

mean compute times would vary greatly across the nodes of the process graph. If, 

however, ,u 9  = 200, 000 and a = 3000, then the degree of variation would be far 

less significant, since the standard deviation is small compared to the mean. To 
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Program Parameters 
Param Value(s) 

N 132, 1421 
c {4, 12} 

Icg  13000, 300,0001 
{10, 80} 

0" 10 

1m g  110, 50001 
{10, 80} 

0 m  1 

Other Parameters 
Param Value(s) 

Hardware 4 x 4 Mesh 
Placement Round Robin 

Trial Length 20,000,000 (1 Sec) 
Replications 3 

Table 5-1: Parameter Settings for Initial Investigation into Non-uniform Pro-

gram Behaviour 

prevent this ambiguity, the labels 0g%  and cT% will be used to express 0cg  and 

as proportions of ji and y ng  respectively. For example, if o ,,g %  = 10, o 

would be equal to 10% of the value of 

To investigate the behaviour of non-uniform parallel programs, a two level full 

factorial experiment was carried out varying six of the eight program parameters. 

The exact settings for the experiment are summarised in Table 5-1. You will see 

that this experiment is identical to that presented in Chapter 4, except for the 

fact that a,, %  and 0mg%  are now allowed to vary. As previously, each replication 

within the experiment differed both in the random graph and random number 

seed used. 

To limit the scope of the study, I only consider mesh-based topologies. It has 

already been demonstrated that analysis of variance techniques can equally be 

applied to other processor topologies. 
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Figure 5-1: Residual Scatter Plot for U 

5.1.2 Results 

A residual scatter plot for the untransformed response, U, is shown in Figure 5-

1. It is clear that the residuals display a funneled tendency, and so do not have 

constant variance (as is necessary for a valid analysis of variance). To overcome 

this problem the following Guerrero and Johnson transformation was found to be 

useful (see Section 3.5.4): 

U 	)0.08 

 -1 	 (5.1) 

Figure 5-2 shows a residual scatter plot and Figure 5-3 shows a residual normal 

quantile-quantile plot for U'. Both plots give no cause for concern, indicating that 

the normality and homoscedasti city of variance assumptions hold. Furthermore, 

U' covers only a single order of magnitude, and the residuals are not of the same 

order as U'. There is no reason, therefore, to doubt the suitability of an additive 

model. 

The analysis of variance table for U' is given in Table 5-2. The differences in 

the mean values observed between different parameter levels are large compared to 

the differences observed between replicates. This is reflected in the F probabilities, 
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Source D o F Sum of Squares Mean Squares F Ratio F Prob. 
Between Replicates 2 0.00124 0.000621 1.013 0.366 
Between Treatments 63 1.96 0.0311 50.273 < .01 
Residual 126 0.0773 0.000613  
Total 191 2.038 1 1 

Table 5-2: Analysis of Variance Table Using Response U' 

which indicate that the null hypothesis, that different replicates produce the same 

overall mean value, can be accepted at the 1% significance level. Similarly, the 

null hypothesis, that different factor levels produce the same mean value, can be 

rejected at the 1% significance level. One can be reasonably confident, therefore, 

that the program parameters used adequately characterise performance. 

To examine the influence of the program parameters in greater detail, estimates 

of the effects of individual factors and their interactions were obtained, these are 

presented in Table 5-3. You will recall that the t values indicate the relative 

importance of individual terms in the model. To aid readability the % suffix has 

been dropped from the parameters °cg%  and cTmg %. It is clear that the dominant 

terms are N, the number of nodes, and a 9 %, the standard deviation of process 

compute times (expressed as a proportion of the mean compute time). These, 

together with their first order interaction, account for 84.1% of the variation in 

U'. The I.L,g  and iL,, g  effects are of less importance, accounting for 1.54% and 

1.39% of variation respectively. The remaining two factors, c and °,,,g%,  have very 

little influence indeed. In total, the program parameters explain 96.15% of the 

observed variation in U'. 

5.1.3 Discussion 

Large synchronisation delays in a parallel program will inevitably lower the util- 

isation of the machine that the program is being executed on, since a processor 

can do nothing while the processes it has been allocated are blocked. One would 



Chapter 5. Performance Prediction Models 

Effect Estimate t-value % Var 

(gin) 0.1557 87.09 
-0.0023 -1.31 0.05 

N 0.0505 28.27 24.05 

cN -0.0051 -2.84 0.24 

Acg 0.0128 7.15 1.54 

c 9  -0.0114 -6.39 1.23 

Nitc g  0.0035 1.95 0.11 

cNz 9  -0.0055 -3.08 0.29 
-0.0783 -43.83 57.80 

cacg 0.0023 1.29 0.05 

Nc 9  -0.0155 -8.65 2.25 

cNic g  0.0021 1.16 0.04 

lLcgOg 0.0140 -7.81 1.84 

CPcgOg 0.0025 1.38 0.06 

Ncgcrcg 0.0019 1.09 0.04 

cNL cg cTc g  0.0025 1.40 0.06 

ttmg -0.0122 -6.80 1.39 

CLmg 0.0003 0.14 0.00 

Npm g  0.0068 3.81 0.44 

cNim g  0.0013 0.74 0.02 

12cg1.Lmg 0.0014 0.78 0.02 

CPcg Pm g  0.0015 0.83 0.02 

Nic g pm g  -0.0067 -3.73 0.42 

cNi g /2m g  0.0003 0.15 0.00 

cg/.Lmg 0.0077 4.30 0.56 

Ccg/hng 0.0005 0.31 0.00 

Ncc g im g  0.0060 -3.38 0.34 

cNoc g im g  0.0005 0.30 0.00 

/cg Ccg/ing 0.0034 4.90 0.11 

CLc g cgJtmg 0.0007 0.37 0.00 

N cg e7c g pm g  0.0090 5.02 0.76 

cNzc g cgLmg 0.0001 0.08 0.00 

mg 0.0033 4.83 0.10 

Cmg 0.0003 0.14 0.00 

Nam g  0.0033 1.83 0.10 

cNCm g  0.0003 0.17 0.00 

!Lc g m g  0.0033 1.84 0.10 

CllLcgCmg 0.0001 0.06 0.00 

Nc g um g  -0.0021 -1.17 0.04 

cN/L cg um g  0.0002 0.11 0.00 

cgmg 0.0013 0.72 0.02 

COgmg 0.0018 1.01 0.03 

Ncc g m g  0.0045 2.54 0.19 

cNUc g Tm g  0.0010 0.58 0.01 

LcggOng 0.0021 4.17 0.04 

CILc g Ocg amg 0.0008 0.43 0.01 

Nacg cc g cmg 0.0005 0.30 0.00 

cN/.icgcgTmg 0.0012 0.67 0.01 

mgmg 0.0014 0.81 0.02 

cigUmg 0.0006 0.33 0.00 

N/2mgong 0.0028 1.59 0.08 

cNiim g um g  0.0002 0.12 0.00 

icg !m g amg  0.0092 5.13 0.79 

C cg $Lm g Cm g  0.0000 0.03 0.00 

Nic g iim g Cm g  0.0008 0.45 0.01 

cNLc g /ng Cm g  0.0005 0.27 0.00 

Ccg/Lmgmg 0.0041 -2.32 0.16 

cccggog 0.0015 0.84 0.02 

Ncc g im g uin g  -0.0034 -1.90 0.11 

cNtr cg im g amg  0.0017 0.94 0.03 

/cgcgiLmgUmg -0.0051 2.84 0.24 

C/Lc g Ccg /2m g Cm 9  0.0011 0.59 0.01 

Nc g acg itm g amg  0.0056 3.15 0.30 

cNc g Tc g /im g um g  0.0008 1 	0.44 1 0.01 
Total 1 	96.15 

Standard Error = 0.00179 

123 

Table 5-3: Estimates of Effects Using Response U' 
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expect, therefore, processor utilisation to drop as the value of 0g%  grew larger, due 

to increased synchronisation overheads. This indeed appears to be the case, since 

the sign of the a 9% effect in Table 5-3 is negative. The relative unimportance of 

it indicates that it is the degree of variation in mean compute times, rather than 

their magnitude, which has the greater impact on processor utilisation. This is in 

sharp contrast to the conclusions drawn in Chapter 4, where tt ,9 was always the 

most important factor, whenever U, or some transformation thereof, was used as 

the response variable. This apparent anomaly can be explained if one remembers 

that the experiments in Chapter 4 were executed with o set to 0, resulting in 

a restricted set of very regular programs and highly utilised processors. In this 

relatively small area of parameter space, ,a had a larger impact on performance. 

However, with more general programs, such as those with non-uniform synchron-

isation patterns, processor utilisation tends to drop, and a c,overtakes li cg  as a 

predictor of performance. 

The number of nodes, N, is also of some importance. This is because the larger 

the number of processes a processor has, the less chance there is of it finding itself 

idle. Consequently, mean processor utilisation tends to increase as the number of 

processes increases; this is confirmed by the positive sign of the N effect in Table 

5-3. 

As noted in Chapter 4, the program model and synchronous message passing 

protocol used mean that the parameters related to the lengths of messages (i.e. 

Itmy  and °mg%)  are of no great predictive value. Also, the degree of the process 

graph, c, has very little impact on performance. This is due to the parallel nature 

of message transfers, and the characteristics of the transputer. 

It is worth re-examining Figure 5-1, the residual scatter plot for the untrans-

formed data. The magnitudes of the residuals are, in general, considerably larger 

than those observed in Chapter 4. At certain parameter combinations (typically 

those exhibiting non-uniform behaviour) replicates with identical program para-

meters can differ in the observed value of U by more than 25 percentage points. 
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Source % Var 

seed 6.24 
graph 18.30 
interaction 75.46 

Table 5-4: Comparison of Influence of Random Seed and Graph Shape 

The only factors that differ between replicates are the random number seed and 

random process graph used. The impact of these cannot easily be separated, but 

it is convenient to think of the random number seed as influencing the detailed 

patterns of synchronisation, and the graph shape as influencing the characteristics 

of the mapping being used'. In any case, they both affect the form of the interac-

tion between the program and the underlying machine, and this is an important 

factor which has not so far been accounted for. 

To confirm that it is both the random number seed and graph shape which can 

influence the response variable, a combination of parameter levels which caused 

large residuals was taken, and a simulation trial was executed at every possible 

combination of four random number seeds and four random process graphs. The 

particular levels used were: c = 4, N = 32, y cg  = 3000, O% = 80, /-mg = 5000 and 

= 80. Only one replicate of this experiment was possible, since the factors 

that would have normally varied between replicates were controlled. Consequently, 

a conventional analysis of variance of table would be of little use, since F values 

cannot be obtained without replications. As an alternative, Table 5-4 shows the 

percentage variance in U attributable to the random number seed, the graph shape, 

1 A deterministic mapping strategy, such as a round-robin placement, will always map 

the same process to the same processor, assuming that the number of processors and 

processes remain constant between replicates. However, each individual random graph 

has a different inter-connection structure, so replicates will exhibit different mapping 

characteristics, even under a deterministic mapping strategy. 
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and the interaction between the two. These figures were obtained by expressing 

the sum of squares attributable to a particular source as a percentage of the total 

sum of squares. One can see that the most important effect, accounting for over 

75% of the variation in U, comes from the interaction between the graph shape 

and random number seed. This supports the assertion above, that the effects of 

the two cannot easily be separated. The remaining variation is split in favour of 

the graph shape, with the choice of random number seed also being significant. 

5.2 A Model for Performance Prediction 

The remaining sections in this chapter illustrate how factorial experiments and 

standard analysis methods can be used to construct performance prediction models 

for non-uniform parallel programs. 

It would be desirable to be able to construct an equation which, when presented 

with a set of predictor variables set at randomly chosen levels, would be able to 

produce a reasonable estimate of the response variable. Generally speaking, the 

analysis of variance treats factors as being qualitative in nature. However, it is 

possible to use a designed experiment in conjunction with an analysis of variance 

in order to treat factors as being quantitative. A polynomial response surface can 

then be fitted to the observed data using the method of orthogonal polynomials. 

This technique involves a recoding of the original predictor variables in terms of 

linear combinations of simple polynomials. These recoded variables are said to be 

orthogonal since they are guaranteed to be uncorrelated with one another. The 

technique enables one to decompose the effects of individual factors and their 

interactions into linear, quadratic, cubic and possibly higher order components. 

The contribution of each component to the overall regression equation can be 

tested, since individual sums of squares can be produced. The method requires 

the levels of the factors used in the experiment to be chosen so that they are 
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equally spaced. The generation of the response surface then follows directly from 

an analysis of variance, and the results are equivalent to those produced using 

conventional least squares techniques. The method of orthogonal polynomials is 

described fully in [93]. It is best illustrated by example, so an experiment is now 

described which was designed to enable the construction of a regression equation 

for non-uniform parallel programs. 

5.2.1 Experiment Description 

In Section 5.1 it was demonstrated that the two dominant parameters influencing 

the performance of non-uniform data parallel programs, were N, the number of 

nodes, and O%, the standard deviation of compute times (expressed as a percent-

age of the mean compute time). It would seem reasonable to suppose, therefore, 

that a performance prediction model constructed using just these two parameters 

might provide useful estimates of performance, regardless of the levels of the other 

parameters. 

To develop such a model, a full factorial experiment was executed with N 

set at six equally spaced levels, and °y set at eight equally spaced levels. The 

values used are summarised in Table 5-5. You will note that the four program 

parameters that were previously varied have been given arbitrary intermediate 

values. As usual, a 4 x 4 mesh of transputers were simulated and trials were 

executed for 20,000,00 clock cycles of the simulated machine. Three replications 

were carried out, each one differing in the random graph and random number 

seed used. However, unlike previous experiments, a round-robin placement was 

not used. This was because, for non-uniform programs, the mapping used can 

significantly impact the performance of programs which are identical in all other 

respects. To allow for an extraneous factor such as this as fully as possible within 

an experimental design, one should attempt to properly randomise the factor in 

question. The idea being that its effect will then be "averaged out" over all trials. 
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Program Parameters 
Param Value(s) 

N {32, 54, 76, 98, 120, 1421 
c 8 

40000 

0-c9% 110, 20, 30, 40, 50, 60, 70, 801 

0-c 10 
It my 1000 

0-mg% 30 
0-rn 1 

Other Parameters 
Param Value(s) 

Hardware 4 x 4 Mesh 
Placement Restricted Random 

Trial Length 20,000,000 (1 Sec) 
Replications 3 

Table 5-5: Parameter Settings for Model Construction Experiment Using 

Non-uniform Programs 

The round-robin placement was deterministic, and inadequate in this respect. 

To overcome this problem a placement strategy known as a restricted random 

mapping was used. This mapping is restricted in the sense that it will attempt, as 

far as possible, to load the same number of processes onto each processor in the 

system (a truly random mapping would be a naive strategy to use). 

5.2.2 Results 

A residual scatter plot for the untransformed response, U, revealed that the re-

siduals exhibited a funneled tendency, and so did not have constant variance. 

To remedy this problem the following Guerrero and Johnson transformation was 

found to be useful: 
0.11 

U'= 
() 	

—1 	 (5.2) 
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Figure 5-4: Residual Scatter Plot for U' 

Source D o F Sum of Squares Mean Squares F Ratio F Prob. 

N 5 0.191 0.0383 33.61 <0.01 

0c9% 7 0.546 0.0781 68.57 <0.01 

35 0.0681 0.00195 1.71 0.021 

Residual 96 0.109 0.00114  

Total 143 0.915  

Table 5-6: Extended Analysis of Variance Table Using Response U' 

Interestingly, the estimate of the exponent in the above equation is very close to 

the value estimated in the preliminary experiment (see Equation 5.1)2. 

Figures 5-4 and 5-5 show residual scatter plots and residual normal-normal 

quantile plots for U', in each case there is no cause for concern. There is no 

reason to suppose that an additive model is not adequate, since, as previously, 

U' covers only a single order of magnitude, and the residuals are not of the same 

magnitude as U'. The corresponding analysis of variance table is given in Table 

21n fact a common value could have used, for example 0.1, and almost all the benefits 

of the transformations would still have been obtained. 
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Figure 5-5: Normal Quantile-Quantile Plot for U' 

5-6. This is an extended analysis of variance table with the "between treatments" 

stratum decomposed to show components relating to N, 0%' and their interac-

tion term. This type of table can be useful when a small number of factors are 

being investigated. It contains much the same information as can be found in a 

traditional analysis of variance table, taken in conjunction with a table containing 

t values and estimates of effects . The F value is equivalent to the square of the 

corresponding effect estimate, and a F probability less than 0.01 is equivalent to 

having a t value greater than 3. See page 129 of [76] for a full explal!ituion of the 

relationship between the F and t distributions in this context. 

The relative importance of the terms in the model is consistent with the results 

obtained in Section 5.1; with acg% being most important, followed by N, and then 

their interaction term. The N and cr% effects are significant at the 1% level, 

and the interaction term is significant at the 5% level. The difference between 

replicate means (usually shown in the "between replicates" stratum) is small, and 

has been absorbed into the residual term in this case. One should note that the 

3J fact, only some information regarding the signs of effect estimates is lost. 
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Figure 5-6: Surface Generated by Experiment 

model explains over 88% of the variation in U', compared to only 84% for a similar 

analysis of U (not shown here), so the transformation would appear to have been 

worthwhile. 

Figure 5-6 shows a plot of the response surface generated by this experiment, 

i.e. the mean values of U, over the three replicates, at each possible combina-

tion of N and acg %. One can see that the surface is rather uneven, although it 

has a general downward slope as N decreases and a 9 % increases; this is as one 

would expect. To fit an extremely accurate model to this data would be a diffi-

cult and rather pointless task. The surface does not appear to lend itself to an 

easy interpretation in terms of any of the common functions; for example, a logar-

ithmic, exponential or reciprocal based model. Therefore, a reasonable approach 

would seem to be to attempt a polynomial approximation, using the method of 

orthogonal polynomials. 

The statistical package GENSTAT has an option which allows an analysis 

of variance table to be produced with entries decomposed to show the amount of 

variation due to the linear, quadratic, cubic and quartic components of each effect. 

Such a table for this experiment is given in Table 5-7. In the Na 9 % stratum, the 
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Source D o F Sum of Squares Mean Squares F Ratio F Prob. 
N 

Lin 1 0.175 0.175 153.98 < .01 
Quad 1 0.00223 0.00223 1.96 0.165 
Cub 1 0.00218 0.00218 1.91 0.17 
Quart 1 0.0115 0.0115 10.08 < .01 
Deviations 1 0.000135 0.000135 0.12 0.732 

0 cg% 

Lin 1 0.466 0.466 409.07 < .01 
Quad 1 0.068 0.068 59.77 < .01 
Cub 1 0.00451 0.00451 3.97 0.049 
Quart 1 0.000314 0.000314 0.28 0.601 
Deviations 3 0.0079 0.00263 2.31 0.081 

Nacg % 

Lin.Lin 1 0.00127 0.00127 1.11 0.294 
Quad.Lin 1 0.0087 0.0087 7.64 < .01 
Lin.Quad 1 0.000003 0.000003 0.00 0.959 
Cub.Lin 1 0.00141 0.00141 1.24 0.268 
Quad.Quad 1 0.00227 0.00227 1.99 0.161 
Lin.Cub 1 0.000193 0.000193 0.17 0.681 
Deviations 29 0.0543 0.00187 1.65 0.038 

Residual 	1 96 0.109 0.00114 
Total 	1 143 0.915 1  

Table 5-7: Analysis of Variance Table Showing Polynomial Components of Ef-

fects 

"Lin.Lin" entry refers to that part of the interaction between N and 0g%  which 

can be explained by a linear function of N and a linear function of C%. The 

entries for "Quad.Lin" etc. can be similarly interpreted. Terms higher than the 

fourth order are not shown. For each effect, there is an entry marked "Deviations"; 

this is a measure of how much of the variation in U', due to the effect in question, 

is not explained by the preceding polynomial terms. 

The F value and F probability columns allow one to compare the relative im-

portance of terms in the model. It is clear that most of the variation can be 

explained by linear terms, although other terms are of some importance, notably 

the quadratic component of the 	effect. In all cases the "Deviations" compon- 
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ents are relatively small. Some selection criteria are required in order to choose 

which terms should be incorporated into a regression model. The one applied 

here is to take only those terms which are significant at the 1% level, i.e. those 

which have F probabilities less than 0.01. This yields 5 terms: the linear and 

quartic components of the N effect, the linear and quadratic components of the 

0cg% effect, and the "Quad.Lin" component of the No 9% effect. 

Once the terms to be included in the model have been selected, the method 

of orthogonal polynomials can be used to derive a regression equation. The pro-

cedure is mechanical and reasonably straightforward using tables generated by 

GENSTAT, see [93] for full details. The five terms selected above lead to the 

following regression equation: 

10"U'= 14782 + 92.9N + o.o01(N - 87) - 3.38(N - 87) 2 _ 

208.47a% + 4.74(09% - 45)2 - 0.028(N - 87)2(cTcg% -45) 

To express the predicted values in the original scale, equation 5.2 can be reversed 

to give: 

U = 
100(U' + i)•° 	

(5.4) 
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The response surface corresponding to Equation 5.3 is illustrated in Figure 5-7 

in terms of the original metric, U. The shape is considerably smoother than the 

observed surface. This is as one would expect considering that a proportion of the 

variation in U', attributable to the missing polynomial terms and the deviations, 

is not accounted for in Equation 5.3. 

5.2.3 Discussion 

The accuracy of the model given by Equation 5.3 can be tested by comparing 

the values predicted by it, to those observed in the original experiment. A useful 

way of displaying the results of such a comparison is to use a histogram, such as 

that presented in Figure 5-8, of the absolute differences between the observed and 

predicted values. The differences are expressed in terms of the original scale, U. 

The labels on the x axis refer to the lower class boundaries of the respective classes. 

One can see that the values are positively skewed, with many more small differences 

occurring than large differences. The median absolute difference between observed 

and predicted values is 3.1, indicating that 50% of the predicted values are within 

3.1 percentage points of their corresponding observed values. While this seems 

reasonable, there are a significant number of larger differences. The upper quartile 

is equal to 6.0, so 25% of predictions are at least 6.0 percentage points away 

from their corresponding observed values. The worst prediction is 13.5 percentage 

points in error. 

The errors in the predicted values originate from two sources. Firstly, even if 

the regression equation predicted exactly the values given by the observed surface 

presented in Figure 5-6, there would still be errors present due to the differences 

between replicates (i.e. the residuals). Additionally, inaccuracies arise from the 

polynomial approximation of the observed surface. The relative importance of 

these various sources of error can be calculated from Table 5-7, by expressing 

individual sum of squares as a percentage of the total sum of squares. In this way 
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Figure 5-9: 5-9: Differences In Observed and Predicted Responses for 200 Random 

Trials 
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Program Parameters 
Param Value(s) 

N [32, 1421 
c [4, 12] 

[3000, 300,0001 

cr 9% [10, 80] 
0" 10 

/tmg [10, 50001 

amg% [10, 80] 
am  I 	1 

Other Parameters 
Param Value(s) 

Hardware 4 x 4 Mesh 
Placement Restricted Random 

Trial Length 20,000,000 (1 Sec) 

Table 5-8: Parameter Ranges used to Randomly Generate Programs 

it can be calculated that the regression equation explains 79.7% of the variation in 

U'; the remaining polynomial terms explain 1.5%; deviations from the polynomial 

approximation account for 6.9%; and the residuals explain the remaining 11.9%. 

N and 0g% 
were used as predictor variables because they were found to be the 

most influential parameters from the set: 

IN, C, IL cg , 	IL my , 7mg%} 

Accordingly, in the derivation of the regression equation described above, the 

factors c, ,U c9 , Img and mg% were set at arbitrary levels. To test how well the 

regression equation holds for other values of these parameters, as well as different 

values of N and acg %, 200 simulation trials were carried out, where, for each 

individual trial, the values of the six parameters were selected at random. The 

parameters were allowed to vary in the range of values explored by the preliminary 

two level factorial experiment described in Section 5.1.1. The exact values used 

are summarised in Table 5-8. Note that o and 0m continue to be set at 10 and 

1 respectively, in order to ensure strongly time-invariant behaviour. 
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Figure 5-9 is a histogram showing the distribution of absolute differences 

between the observed and predicted values of U. The median value is 4.0, the 

upper quartile value is 6.8, and the worst prediction is 16.3 percentage points in 

error. These figures are slightly worse than those observed for the original exper-

imental data (where the mean was 3.1 and the upper quartile was 6.0). However, 

given the crudity of the model, the results are reasonably encouraging. 

A model of the type developed in this section provides a useful means of pre-

dicting the performance of an arbitrary program with known parameter values 

belonging to the class in question. However, so far I have only considered the ef-

fects of different parameter settings on the response variable. In the next section, 

techniques are presented for improving the accuracy of predictions by taking into 

account factors which differ between programs which have identical parameter 

settings. This task involves investigating the interactions which occur between a 

program and the machine it is being executed on. 

5.3 Improving the Model: Covariates 

The analysis of covariance can be used to reduce the proportion of variability 

attributed to experimental error within a designed experiment, by making an al-

lowance for factors which are not directly under the experimenter's control (so 

called nuisance variables). This enables the properties of the response variable to 

be characterised with greater precision, and so improves the accuracy of a pre-

dictive model derived from such an analysis. In my case, the factors not directly 

under control are the particular initial mapping and random number seed used, 

these in turn influence the interactions which occur between a program and the 

machine it is being executed on. If one can incorporate appropriate terms char-

acterising these interactions into the model, it may be possible to go some way 
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towards being able to account for the observed differences in performance between 

programs with identical parameter settings. 

You will recall from Section 3.5.5 that the model underlying an analysis of 

covariance for a full factorial experiment with two factors, A and B, and a single 

covariate x, can be summarised as follows: 

Yjk 	+ ai + #j + 	+ 8(x -'Y) + € 	 ( 5.5) 

where Xik is the measurement made on the covariate x in the kth replication with 

factor A at level i and factor B at level j. The mean of all the x values is given by 

, and S is a linear regression coefficient indicating the dependency of Yjk on Xk. 

A set of possible covariates is now defined, and their characteristics investigated 

using the experimental data obtained in Section 5.2. Throughout this section, I 

continue to use the transformation of the response specified by Equation 5.2, and 

it can be assumed that all the necessary conditions required for an analysis are 

satisfied unless otherwise stated. 

5.3.1 Selecting a Set of Covariates 

Within the simulation framework provided by MIMD, it is possible to collect 

almost any imaginable performance related data. Therefore, in searching for one 

or more suitable covariates, I am not restricted by the physical characteristics 

of the parallel machine; for example, the lack of a global clock or the difficulties 

presented by distributed memories. Since I am attempting to characterise the form 

of the interactions which occur between a program and the machine it is executed 

on, the covariates selected should be concerned with such things as the structure of 

the mapping, patterns of synchronisation and rates of computation. Listed below 

is the set of covariates that were investigated. Each was chosen for its possible 

predictive properties, with respect to the relative efficiency of the execution of a 

candidate program. 



Chapter 5. Performance Prediction Models 	 139 

hops-mean 

This is the mean, over all channels, of the number of processor hops between 

sender and receiver. So, if D(i,j) represents the length, in processor hops, 

of the channel cij  connecting process i and process j; and NC represents the 

total number of channels, then: 

hopsmean= -D(i,j) 	 (5.6) 
NC 

VCiJ 

prox 

This is a measure of the proximity of processes, a similar metric is used in 

[14] in the context of a distributed mapping algorithm. The derivation of 

prox is similar to that of hops-mean, except that channels which span more 

than one processor hop are given extra weight, so 4 : 

prox 
= 

1, 	 (1, J) < 1 	
(5.7) 

NC V Cij { 2 x D(i,j), D(i,j)> 1 

pro x_len 

This is similar to prox, except some information regarding the average 

lengths of messages is included. If ML(i,j) represents the mean length 

of messages sent down channel c, then: 

proxlen = 	
{ i ML( i,j), 	D(i,j) - 1 	

(5.8) 
) x ML(i j) 2 x D(i,j ,, D(i,j) > 1 

'Since no distinction is made between processes situated on the same processor, and 

those situated on adjacent processors, an assumption explicit in the definition of prox 

(and prox_len for that matter) is that the cost of a context switch is the same as the 

cost of sending a message to a neighbouring processor. This is unlikely to be the case. 

For example, on the transputer a context switch takes approximately 5 microseconds. In 

contrast, the initiation cost of sending a message to a neighbouring processor is approx-

imately 20 microseconds. 
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sync-mean 

This is a measure of the average time taken, across all channels, for the 

processes at either end of the channels to synchronise. The synchronisation 

time for a particular message on a given channel is the absolute difference 

between the time at which the process at one end is ready to send (or receive), 

and the time at which the process at the other end is ready to receive (or 

send). If SYNC(i,j) represents the mean synchronisation time for channel 

c, then: 

sync-mean = NC > SYNC(i,j)  
Vc, 

sync_sd 

This is a measure of the spread, across all channels, of the time taken for pro-

cesses to synchronise. It is equal to the standard deviation of the SYNC(i, j) 

times: 

1 
syncsd = 	NC SYNC (i,j) 2  - 	SYNC(i)) 	(5.10) NC 	

VC i., 	 (Vcij  

link. cont 

This is a measure of how much contention there is for links. If NUSED(k) 

represents the total number of times link k is used, and WAIT(k) represents 

the total number of times a message has to wait for link k to become free, 

then: 

> link_cont =Vk WAIT(k) 
 
>Vk NUSED(k) 	

(5.11) 

ce_ratio_mean 

This quantity is related to the average rate of computation achieved by the 

processes in the system. If COMP(p) represents the amount of computation 

achieved by process p, ELAPSED(p) represents the actual time taken to 
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achieve that computation  and NP is equal to the number of processes, then: 

cc-ratio-mean = 	
COMP(p) 

(5.12) 
ELAPSED(p) VP 

ce_ratio_sd 

This is a measure of the spread in the rates of computation achieved by 

the processes in the system. It is equal to the standard deviation of the 

compute-elapsed time ratios defined above: 

ceratiosd = 	
NP (ELAPSED(p))

COMP(p) 2 

NP 	p  
( 	COMP(p) 

\2 
- 
	ELAPSED(p) ) 

(5.13) 

A metric similar to prox_len, using message counts rather than message lengths 

to weight channels which are used frequently, might seem attractive. However, the 

loosely synchronous structure of the program model assumed here ensures that, at 

any one time, the number of messages that have been sent down any two channels 

is approximately equal. Therefore, this metric would be of little use in this case. 

Table 5-9 shows the residual sum of squares obtained from carrying out an AN-

COVA incorporating each of the individual performance measure defined above 

as a covariate. The lower the residual sum of squares, the greater the propor-

tion of variation in the response variable that has been explained. One can see 

that the three measures concerned with the distances between processes (namely 

hopsmean, prox and proxlen) have had very little affect on the residual sum of 

squares. This is not surprising if one considers the response variable being used. 

There is no direct relationship between the time taken for message transfers and 

processor utilisation, since while one process is waiting for a message, another is 

5 This will generally be longer than the actual compute time due to contention for 

compute resources. 
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ovariate 
70~. I None 

hops_mean  
prox 0.1088 
prox_len 0.1090 
sync - mean 0.0342 
sync_sd 0.0392 
link_cont 0.1086 
ce_ratio_mean 0.0755 
ce_ratio_sd 0.0741 

Table 5-9: Comparison of the Impact of Covariates 

likely to be available to use any spare compute resources. The metric link_cont 

also fails to reduce the residual sum of squares by any significant amount, so link 

contention does not appear to affect performance to any great degree for the pro-

gram model assumed here. One can conclude that these four measures do not 

contain enough information (with respect to the efficiency with which a program 

is being executed) to be used as covariates. 

The remaining four measures, sync-mean, sync_sd, ce_ratio_mean and 

ce_ratio_sd, all seem to have a significant impact on the residual sum of squares. 

A strong positive correlation exists between the observed values of sync-mean and 

sync_sd, and a similar although weaker correlation exists between the observed 

values of ce_ratio_mean and ce_ratio_sd. The corresponding correlation coefficients 

are 0.98 and 0.72 respectively. Consequently, it would seem sensible to select a 

single covariate from each of these two groups, since a second from either group 

would provide largely redundant information. From Table 5-9 it can be seen that 

sync-mean and ce_ratio_sd have the greatest impact on the residual sum of squares, 

so I will concentrate on these. 

The correlation coefficient between sync-mean and ce_ratio_sd is —0.47, indic- 

ating that they are not particularly strongly correlated. This is promising, since 
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one could expect a model with both variables as covariates to reduce the residual 

sum of squares to a greater extent than either could do separately. 

The question remains as to how one would interpret various values of sync-mean 

and ce_ratio_sd. The metric sync-mean can be thought of as answering the follow-

ing question: 

For how long, on average, does a sender (or receiver) have to wait for 

the remote receiver (or sender) to become ready? 

Similarly, the metric ceratio_sd can be thought of as quantifying an answer to the 

question 

To what extent are all processes computing at the same rate? 

The smaller the value of ce_ratio_sd, the more uniform the rates of computation 

are across all the processes in the system. 

Both of these metrics are a product of the interaction between the program 

and the underlying machine, and consequently they provide information relating 

to the relative efficiency with which a program is being executed. However, the 

metrics are also related in part to the inherent characteristics of the program. 

For example, a program with badly synchronised processes will tend to exhibit a 

large value of sync-mean, regardless of how efficiently it is executed. Even so, it is 

likely that the smaller the value of sync-mean obtained, the faster the execution 

will be. The possibility of using both sync-mean and ce_ratio.sd as covariates in 

a predictive performance model will now be investigated. 

5.3.2 An Improved Model 

Before I can proceed with an analysis using both sync-mean and ce_ratio_sd as 

covariates, it is necessary to confirm that these two metrics satisfy the assumptions 
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Source D o F I Sum of Squares Mean Squares F Ratio I Coy. Ef. 	F Prob. 

N 5 0.158 0.0316 87.62 0.26 	< 0.01 

01
c9 % 7 0.088 0.0126 34.88 0.7 	< 0.01 

35 0.0466 0.00133 3.7 0.99 	< 0.01 

Covariate 1 0.075 0.075 208.15 <0.01 

Residual 95 0.0342 0.000361  

LTotal 143 0.915  

Table 5-10: Analysis of Covariance Using sync-mean as a Covariate 

for a valid analysis (see Section 3.5.5). Tables 5-10 and 5-11 show the full details 

of separate ANCOVA analyses carried out for sync-mean and ce_ratio_sd. The 

first thing to notice is that the treatment sums of squares and the covariate sum 

of squares do not add up to the total sum of squares minus the residual sum of 

squares, as one might imagine. This is due to the non-orthogonal nature of the 

relationship between the treatments and the covariate. A detailed explanation of 

this phenomenon is given in [31], but in any case, the F ratio values still indicate 

the relative importance of terms in the model. In both tables, the Covariance 

Efficiency Factor column ( marked "Coy. Ef.") is a measure of the extent to which 

the effects of individual treatment terms in the model have been masked by the 

covariate. A value close to zero indicates that the term in question is completely 

correlated with the covariate, and so once the covariate has been fitted, there is no 

information left about the corresponding treatment effect. A value that is greater 

than 0, but significantly less than 0.8, is not particularly desirable. Such a value 

should be taken as a warning that the measurement used as a covariate has been 

influenced by the treatment term, which, while not invalidating an ANCOVA, 

complicates its interpretation. A value of 1 indicates that the treatment term and 

the covariate are orthogonal. 

One can see in Table 5-11 that, when ce_ratio_sd is used as a covariate, the 

covariance efficiency factors give no cause for concern. However, Table 5-10 shows 

that when sync-mean is the covariate, the covariance efficiency factor for the "N" 

stratum is only equal to 0.26. This indicates that sync-mean is relatively strongly 
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Source m of Squares Mean Squares F Ratio Coy. El. F F'rob. 

N 0.0764 0.0153 19.6 0.83  

0.143 0.0204 26.12 0.85 < 0.01 
Ucg%  

No9%  

a143 

0.0423 0.00121 1.55 0.99 0.05 

Covari  0.0352 0.0352 45.13 < 0.01 

Residu  0.0741 0.00078  

Total  0.915  

Table 5-11: Analysis of Covariance Using ce_ratio_sd as a Covariate 

r Source D o F Sum of Squares Mean Squares F Ratio Coy. Ef. F Prob. 

N 5 0.191 0.0381 96.88 0.98 < 0.01 

7 0.0773 0.011 28.05 0.64 < 0.01 

No 9 % 35 0.0404 0.00115 2.93 0.99 < 0.01 

Covariate 1 0.0719 0.0719 182.64 < 0.01 

Residual 95 0.0374 0.000394 ___ 

Total 143 0.915 ______ t 
Table 5-12: Analysis of Covariance Using Modified Definition of sync-mean as 

a Covariate 

correlated with the value of N. This is not surprising, since, once a process is 

ready to send (or receive) on a channel, the time taken for the remote process to 

become ready is proportional to the load of the remote processor. Now, as N is 

increased, the load on the processors also increases. To try and compensate for 

this, the definition of sync-mean can be modified as follows: 

1 
sync-mean = (LOAD > NC) SYNC(i,j) 	(5.14) 

where LOAD represents the mean number of processes per processor. The results 

obtained using this modified definition of sync-mean as a covariate are summarised 

in Table 5-12. It is clear that the strong dependence on N has disappeared; 

also, the residual sum of squares is equal to 0.0374 , which is comparable to the 

value obtained with the original definition of sync-mean. The definition given in 

Equation 5.14 will be assumed from now on. 
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Figure 5-10: U' vs. sync-mean Scatter Plot 
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Source 	 D o F Sum of Squares Mean Squares F Ratioj 

rogeneous slopes 	47 	0.0212 	0.000451 	1.33 

ogeneous slopes 	48 	0.0162 	0.000338 

Iii1 	 96 	0.0374  

Table 5-13: Test for Homogeneous Regression Slopes for sync-mean 

[Source D o F Sum of Squares Mean Squares F Ratio 

heterogeneous slopes 47 0.0417 0.000887 1.31 

homogeneous slopes 48 0.0324 0.000675 

Residual 96 0.0741 

Table 5-14: Test for Homogeneous Regression Slopes for ce_ratio_sd 

The remaining conditions which should be satisfied for sync-mean and 

ce_ratiosd are: firstly, the linearity of the relationship between covariate and 

response; and secondly, the homogeneity of regression slopes associated with dif-

ferent treatment groups. Figures 5-10 and 5-11 plot the values of sync-mean and 

ce_ratiosd against the response, U'. It is clear that, in both cases, there is a definite 

tendency towards linearity; so the first condition is satisfied. The second condition 

can be verified using a technique described in [66] designed to test the homogeneity 

of regression slopes between treatment groups. In the experiment being analysed 

here, there are 8 x 6 = 48 different treatment groups, corresponding to the different 

possible combinations of levels of N and cTcg%. Within each treatment group there 

are three observations, one for each replication of the experiment. Tables 5-13 

and 5-14 attribute the residuals obtained, when using sync-mean and ce_ratio_sd 

as covariates, to that part which can be explained by a single regression slope, 

and that part which can only be explained by heterogeneous regression slopes. In 

both cases the null hypothesis, that treatment regression slopes are equal, can be 

accepted at the 1% significance level since F( .01,47 , 45) = 1.96. 

All the required conditions have been satisfied for the variables sync-mean and 

ceratiosd to be used as covariates. The results obtained when incorporating both 
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Source D o F I Sum of Squares Mean Squares I F Ratio 

N 5 0.107 0.0215 62.38 
Coy. Ef"Prob. 

0.81 

7 0.0441 0.0063 0.6

35 

18.3 
0.0331 0.000947 2.75 0.9  

Covariates 1 0.0769 0.0769 111.63 < 0.01 

Residual 95 0.0324 0.000345  

Total 143 0.915  

Table 5-15: Analysis of Covariance Using sync-mean and ceratio_sd as a Co-

variates 
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Figure 5-12: Residual Scatter Plot with sync-mean and ce_ratio_sd as Covariates 

sync-mean and ce_ratio_sd into an analysis are presented in Table 5-15. It should 

be remembered that the transformation specified by Equation 5.2 is still being 

used. The covariance efficiency factors give no great cause for concern, although 

a little more of the cr 9 % effect is masked than would be ideal. The residual sum 

of squares is equal to 0.0324, which is an improvement over any of the single 

covariate analyses. It can be seen that the N, o% and Ncr 9% effects, as well as 

the covariate effects, are all significant at the 1% level. The residual scatter plots 

and residual normal-normal quantile plots associated with this analysis are shown 

in Figures 5-12 and 5-13; they give no cause for concern. 
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Figure 5-13: Normal Quantile-Quantile Plot with sync-mean and ce_ratio_sd as 

Covariates 

If Uk  represents the observed value of U' in the kth replication with N at 

level i and 0cg%  at level j, and sync-mean and ce_ratio_sd are denoted by x and y 

respectively, then the model underlying the above analysis can be summarised by 

the following equation: 

U'k = + P3  + S(x 3 k 	) + 5 (Yk -v) + tjk 	 (5.15) 
=y + P - 0.0000078(x 23k  - 22952) - 0.3(yk - 0.18) + Ej3 k 

where P represents that part of the variation explained by the program paramet-

ers, N and c, set at levels i and j respectively. The regression slopes (53, and 

Si,) used in the above equation were generated by GENSTAT. 

That part of Equation 5.15 represented by Pj  can be approximated by a poly-

nomial function using the method of orthogonal polynomials. In this way a general 

purpose performance prediction equation can be constructed. The details of this 

technique were discussed in Section 5.2, and the derivation of the function is 

straightforward. Selecting those polynomial component terms which are signific-

ant at the 1% level, an expression to approximate P, for arbitrary values of N 
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Figure5-14: Performance of an Improved Model 

and 0g%  can be written as follows: 

P = 0.00084(N - 87) - 0.00056(o %  45) + 0.0000398(7cg% - 45)2_ (5.16) 

0.0000117(N - 87)(O• cg%  - 45) - 0.0209 

Combining Equations 5.15 and 5.16 leads to the following regression equation: 

105 U' = 34654 + 136.7N - 312.4a 9%  + 3.98O%— 	
(517) 

1.17Na 9%  - 0.78x - 30000y 

The performance of the model given by Equation 5.17 was tested by comparing 

the values predicted by it, with the actual data observed in the original experiment 

(described in Section 5.1.1). These results are summarised in Figure 5-14, and they 

compare very well to those illustrated in Figure 5-8 (where the model contained 

no covariates). The median value is 1.9 and the upper quartile is 3.2, compared 

to 3.1 and 6.0 for the model with no covariates. The worst prediction is only 7.4 

percentage points in error. 

To test the generality of Equation 5.17, performance predictions were made 

for the same 200 randomly generated programs used in Section 5.2.3. However, 



Chapter 5. Performance Prediction Models 	 151 

sync -mean cc_ratio_sd 
c -0.259 -0.023 

Acg 0.853 -0.506 

Prng 0.018 -0.052 
acg % 0.001 0.013 

Table 5-16: Check for Influence of "Lurking Variables" on Covariates 

the results obtained were poor, and are not presented here. This failure can be 

attributed to the influence of so called "lurking variables" on the covariates i.e. 

there are factors which affect the covariates that have not been accounted for in 

the model. To confirm this, the relationships between sync-mean and cc_ratio_sd 

and the program parameters c, N, ,u and 0,,,g%  (which were fixed during the 

derivation of Equation 5.17) were examined. Table 5-16 shows the correlation 

coefficients calculated between sync-mean and ceratio.sd and the four program 

parameters, using data from the 200 random trials. The only correlations of note 

exist with j 9 , the mean compute time of the processes. In the case of sync-mean, 

this correlation is intuitive. One can conclude that the value of sync-mean (and 

ce_ratio_sd to a lesser extent) is strongly influenced by the value of li, g , therefore 

it seems unlikely that Equation 5.17 will hold for any values of ycg  significantly 

different from 40000. 

Despite this setback, it is still possible to show that the inclusion of covariates 

in a general purpose performance prediction model can improve accuracy. This 

can be achieved using conventional regression methods. GENSTAT was used to 

derive a regression equation using conventional least squares techniques. The data 

required to construct the model was taken from 200 random trials executed spe-

cifically for this purpose. The selection of terms to include in the model was guided 

by the terms found in Equation 5.17, and the interactions between the covariates 

and IL,, noted above. Tables of t-values were used to judge the relative import-

ance of the terms included in a particular model. After some experimentation, 

the following regression equation was found to explain the greatest proportion of 
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Figure 5-15: Performance of a General Model for 200 Random Trials 

variation in the response: 

10 5 U' = —26906 - 37.1N + 209.7a 	- 1.65o, 2  + 9cg% 	 (5.18) 
0.2x - 51722y - 0.0002I1 cg X + 10(_h1) X 0.23iL 9 x 

where x represents sync-mean, y represents ce_ratio_sd, and U' was calculated 

using the following Guerrero and Johnson transformation: 

, 	 ( 

U 
= 100_U) 

 

The transformation was necessary to satisfy the assumptions underlying such a 

regression analysis, which are much the same as those discussed in Chapter 3 with 

reference to ANOVA and ANCOVA techniques. 

Note that most of the terms appearing in Equation 5.17 also appear in Equation 

5.18. In addition, there are some terms to characterise the interaction between ji 

and sync-mean. The interaction between jL,, and ceratiosd, which was already 

known to be the less important interaction (see Table 5-16), does not appear to 

have any strong predictive properties in this case. 

The performance of Equation 5.18 was tested, once again using the set of 200 

random trials introduced in Section 5.2.3. The results of a comparison between 



Chapter 5. Performance Prediction Models 	 153 

the actual data, and the figures predicted by Equation 5.18 are presented in the 

form of a histogram in Figure 5-15. The median value is 2.3, the upper quartile 

is 4.1 and the worst prediction is 15.7 percentage points in error. This is an 

improvement on the results obtained using the model with no covariates, where 

the corresponding figures were 4.0, 6.8 and 16.3 respectively 

The general purpose regression methods used to derive Equation 5.18 are not 

ideal, since they lack the rigour of formal ANOVA and ANCOVA techniques, and 

rely on the ad-hoc selection of terms to include in the model. The method has 

been tolerated in order to illustrate the general predictive properties of sync-mean 

and ce_ratio_sd. 

This section has demonstrated how the predictive power of a small number 

of carefully selected covariates can be used to improve the accuracy of a general 

purpose performance prediction model. So far, I have concentrated on a single 

processor configuration, a 4 x 4 mesh. Section 5.4 extends these investigations by 

considering a larger processor domain. 

5.4 A 7 by 7 Processor Mesh 

To see whether the results obtained in Sections 5.1-5.3 apply to larger processor 

domains, a similar set of experiments were carried out for a 7 x 7 mesh of simulated 

processors; the results are summarised below. Guerrero and Johnson transforma-

tions were used whenever necessary, but the exact details of these are not presented 

here. 

Table 5-17 contains the effect estimates for a two level full factorial experiment 

carried out varying the usual six program parameters; namely c, N, acg %, Img 

and o,,,,,%. Except for N, the levels for these factors were set to be the same as 

those used in Section 5.1. The high and low values used for N were 98 and 198, 

this change was necessary in order to ensure that there were at least twice as many 
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I 	Effect Estimate I t-value I % Var j 
(gm) 	 70.24 	316.49 

I 	c 	 0.61 	2.76 	0.17 

N 	 3.04 	13.71 	4.31 

cN 	 -0.27 	-1.22 	0.03 

1tcg 	 1.58 	7.14 	1.17 	I 
cAcg 	 -1.74 	-7.84 	1.41 

Njt cg 	 -0.58 	-2.63 	0.16 

cNA cg 	 -0.21 	-0.97 	0.02 

o 	 -12.04 	-54.27 	67.58 

cacg 	 0.43 	1.93 	0.09 

Nc 9 	 3.31 	14.92 	5.11 

cNoc g 	 0.11 	0.51 	0.01 

JLcgcg 	 -1.76 	-7.91 	1.44 

C/LcgOcg 	 0.56 	-2.54 	0.15 

Niicg7cg 	 1.82 	8.21 	1.55 

cNitc g icg 	 0.03 	0.11 	0.00 

/img 	 -2.49 	-11.24 	2.90 

C/Lm g 	 0.22 	0.98 	0.02 

Nm g 	 1.30 	5.84 	0.78 

cNijm g 	 -0.01 	-0.03 	0.00 
2.09 	9.40 	2.03 

CIAcg/4mg 	 0.17 	0.74 	0.01 

Nc g im g 	 4.41 	-6.34 	0.92 

cNu cg i.tm g 	 -0.06 	-0.29 	0.00 

cg/mg 	 0.75 	3.39 	0.26 

Cacg/Lmg 	 0.12 	.0.53 	0.01 

Nacgpmg 	 -1.29 	-5.81 	0.77 

cNcr cg zm g 	 -0.01 	-0.04 	0.00 

/LcgcgImg 	 -0.91 	-4.09 	0.38 

CL cg Oc g Lmg 	 0.26 	1.17 	0.03 

Nii cg t7c g irng 	 1.68 	7.58 	1.32 

cNicgcg /.Lm g 	 0.06 	0.27 	0.00 

Cmg 	 0.97 	4.35 	0.43 

Camg 	 0.15 	0.69 	0.01 

Ncm g 	 1.08 	4.87 	0.54 

cNcrm g 	 0.00 	0.01 	0.00 

lcgmg 	 0.55 	2.49 	0.14 

CLc g Cmg 	 0.18 	0.82 	0.02 

Nc g mg 	 0.69 	3.12 	0.22 

cNjc g m g 	 0.00 	0.02 	0.00 

cgm9 	 0.38 	1.71 	0.07 

Ccgmg 	 0.11 	0.51 	0.01 

Ncc g 7mg 	 0.22 	0.98 	0.02 

cNc g am g 	 0.11 	0.51 	0.01 

iicgOcg0g 	 0.92 	4.13 	0.39 

C/ cg Ccg Umg 	 0.09 	0.40 	0.00 

Ncg7cgOmg 	 0.02 	0.09 	0.00 

cNi cgcgam g 	 -0.01 	-0.03 	0.00 

Lm g m g 	 -1.10 	-4.93 	0.56 

CiLmgCmg 	 0.15 	0.68 	0.01 

N/Lm g 7mg 	 1.30 	5.88 	0.79 

cNizm g 7mg 	 0.04 	0.16 	0.00 

iLc g Zmgamg 	 0.90 	4.06 	0.38 

CILcgPmgmg 	 -0.12 	-0.54 	0.01 

NiL cg ,m g cTmg 	 -0.78 	-3.54 	0.29 

cNjz cg m g 7m9 	 0.08 	0.38 	0.00 

c g Lm g mg 	 0.76 	3.41 	0.27 

C g pm g Um g 	 -0.15 	-0.67 	0.01 

Nc cg IA,n g cm g 	 0.06 	0.28 	0.00 

cNc. g p mg cmg 	-0.02 	-0.10 	0.00 

/2cgOcg14mgmg 	 -0.67 	-3.03 	0.21 

CZcgcgiLmgmg 	 0.18 	0.82 	0.02 

Ntc g crcg iimgamg 	 0.26 	1.16 	0.03 

cNii cg rcg im g um g  1 	0.08 1 	0.36 1 0.00 
Total 1 	97.08 

Standard Error = 0.222 

Table 5-17: Estimates of Effects for 7 x 7 Processor Mesh 



Chapter 5. Performance Prediction Models 	 155 

processes as processors for the lower value of N. One can see from Table 5-17 

that, once again, the three most important effects are N, a 9%  and their first order 

interaction. However, the importance of N has decreased and the importance of 

cg% 
has increased compared to the results observed for the 4 x 4 mesh (see Table 

5-3). The overall importance of these three terms has decreased, from accounting 

for 84% of the variation for the 4 x 4 mesh, to 77% of the variation for the 7 x 7 

mesh 

If one compares the effects of the other terms in Table 5-17 with those ob-

served in Table 5-3, it can be seen that the ,U cg  effect is of approximately the 

same importance. However, the influence of I1mg  has more than doubled, it now 

explains 2.9% of the variation in the response. The increased importance of terms 

involving ,umg  is to be to expected, since on a larger processor domain the av-

erage distance between processes will tend to increase, assuming that the shape 

of the process graph is unrelated to the shape of the processor graph. Now, as 

message sizes increase, the time taken for a message to traverse a link will increase 

proportionately. The greater the number of links messages have to traverse, the 

larger the resulting synchronisation delays will be; this is likely to have a negative 

impact on processor utilisation if these times become too large. The effects of c 

and amg% 
are largely unchanged between the two experints. It is interesting to 

note that higher order interactions are of less importance for the 4 x 4 mesh than 

the 7 x 7 mesh; this suggests the prescence of more complex behaviour patterns 

in the latter. 

As previously, the parameters N and 0% were selected for further investiga-

tion. The choice is not as clear cut as with the 7 x 7 mesh, but N and still 

explain over 77% of the variation in the response. A full factorial experiment was 

carried out with N set at 6 levels and 0% set at 8 levels. 

A predictive model with no covariates was constructed using the method of 

orthogonal polynomials, selecting those terms significant at the 1% level. The 
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Upper Worst 
Median Quartile Case 

Self-test, 
No Covariates 3.5 (3.1) 5.9 (6.0) 11.7 (13.5) 
Random Trials, 
No Covariates 3.7 (4.0) 6.2 (6.8) 17.2 (16.3) 
Self-test, 
2 Covariates 1.6 (1.9) 3.1 (3.2) 6.1 (7.4) 
Random Trials, 
2 Covariates 2.4 (2.3) 	1 4.1 (4.1) 1 	14.8 (15.7) 

Table 5-18: Comparison of the Performance of Regression Equations (4 x 4 

Figures in Brackets) 

resulting equation was: 

10 5U, = - 56758 + 894.3N - 8.82(N - 148 )2 - 0.01(N - 148)+ 

0.0048(N - 148 )4 - 1098.2a 9%  + 21.4(019% - 45)2_ 	
(5.20) 

0.113(o 9%  - 45)(N - 148) 2 - 0.233(N - 148)(o% - 45) 2 + 

0.0134(N - 148)(a9% - 45)3 - 12.4(N - 148)oC% 

Comparing the U values predicted by this equation with the observed experimental 

data resulted in a median absolute difference of 3.5 percentage points. The up-

per quartile was 5.9 and the worst prediction was 11.7 percentage points in error. 

To further test Equation 5.20, 200 random trials were executed with the the six 

program parameters being randomly varied in the range explored by the prelimin-

ary two level factorial experiment. A different random number seed was used for 

each trial. The median absolute difference between observed and predicted values 

was 3.7, the upper quartile was 6.2 and the worst prediction was 17.2 percentage 

points in error. These two sets of results are summarised in the first two lines of 

Table 5-18, the figures in brackets refer to the corresponding figures obtained for 

the 4 x 4 mesh. One can see the same trends occurring for both the 7 x 7 mesh 

and the 4 x 4 mesh, with the predictions for the random trials being slightly less 

accurate than the predictions for the original experimental data. 
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To improve the accuracy of the model given by Equation 5.20, the covariates 

sync-mean and ce_ratio_sd were incorporated into the analysis. The resulting 

performance prediction equation was: 

105 u' = 913429 - 137 

362.2a99,ON - 

0.0107Na 3  
cg% 

81N - 26761o,,%  + 85.7N2  + 256.3o.2%+ 

- 1.9a 9% N2  - 1•6NO• g%  + 0.004cr 9% N3 + 	(5.21) 

- 0.18N3 - 1.60,3 %  - 2.65x - 110000y 

where x represents sync-mean and y represents ce_ratio_sd. Testing this equation 

on the original experimental data resulted in a median absolute difference between 

observed and predicted values of 1.6. The upper quartile was 3.1, and the worst 

prediction was 6.1 percentage points in error. These figures are a significant im-

provement over those obtained when no covariates were used, and one can see from 

the third line of Table 5-18 that, once again, the improvements are comparable 

to those obtained for the 4 x 4 mesh. 

The performance of Equation 5.21, when presented with the set of 200 random 

trials, was predictably poor due to interactions between the covariates and 

which were not allowed for in the model. To test the usefulness of sync-mean and 

ce_ratiosd, GENSTAT was once again used to generate a general purpose regres-

sion equation from a set of random trials executed specifically for this purpose. 

The equation generated was as follows: 

2 10 5 U' = —18974 - 15N + 233.2o% - 1.76a 
cg . - 0.00074N2o-9%+ 

(5.22) 
0.11x - 46350y - 0.0000006 9 x + 10" x 0.111 x 

Cg 

Knowledge of the likely important predictors and interactions was used to guide 

the initial selection of terms, and t values were then used to discard unimportant 

terms. The same 200 random trials that were used to test Equation 5.20 were 

then used in order to test Equation 5.22. The median absolute difference between 

observed and predicted values was 2.4, the upper quartile was 4.1, and the worst 

prediction was 14.8 percentage points in error. These results are summarised in 

the last line of Table 5-18, and one can see that they agree closely with those 

obtained for the 4 x 4 mesh. 
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One can conclude that models with similar predictive powers can be construc-

ted for varying sizes of processor domain. Generally speaking, the models obtained 

for the 7 x 7 mesh contained a larger number of higher order terms than their 4 x 4 

mesh counterparts, indicating more complex behaviour patterns. The predictive 

properties of the covariates sync-mean and ce_ratio_sd were observed to remain 

strong as the number of processors was increased. A possible extension of this 

work would to be to incorporate the domain size into the model by estimating its 

effect experimentally. 

5.5 Summary and Conclusions 

In this chapter I have developed a variety of models designed to predict the per-

formance of non-uniform parallel programs, with respect to the machine-oriented 

metric U. I have considered both small, and larger, processor domains. The mod-

els have been shown to produce performance predictions with reasonable error 

distributions, and the consistency of the results indicates that these techniques 

could be practically useful. For example, one might use them to arbitrate between 

two alternative program structures; or to help select the most appropriate program 

characteristics to concentrate on when performance tuning. 

The models derived here can be divided into two classes. Firstly, there are 

those which are purely a function of a set of program characteristics; in this case 

the number of nodes and the standard deviation of the compute times across the 

processes. Secondly, there are those models which, while retaining a component 

derived from a set of program characteristics, also include information calculated 

from a set of covariates relating to the dynamic behaviour of the program, i.e. 

its interaction with the underlying machine. Not surprisingly, the latter type of 

model proved to be the more accurate, although considering the crudeness of the 

simpler models, their predictions were reasonably good. 
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While program parameters could possibly be estimated before execution, the 

values of covariates certainly could not. One might question, therefore, the useful-

ness of a model which could only produce a performance prediction after the target 

program had been executed. While this would be of limited use for performance 

prediction purposes, these models allow us to understand why programs with the 

same program parameters can have drastically different performance characterist-

ics when executed. From Equations 5.17 and 5.21 it can be seen that, ignoring 

the inherent program characteristics, the utilisation of the underlying machine is 

maximised when the covariates sync-mean and ce_ratio_sd are minimised (since 

the signs of these two terms are always negative). Therefore, any adjustments 

to the program mapping which enables this is to be encouraged. These mapping 

adjustments could be done in a post-mortem manner, in which case one would 

tend to iterate towards a better mapping. Alternatively, they could be attempted 

at run-time using a suitable process migration strategy. The remaining chapters 

in this thesis are concerned with investigating this idea. 



Chapter 6 

Analysis of a Class of Process 

Migration Strategies 

This chapter analyses the behaviour of a class of distributed process migration 

strategies suitable for use in a loosely coupled multiprocessor system. I continue 

to concentrate on time-invariant non-uniform programs, and investigate the cir-

cumstances under which a migration strategy can improve a non-optimal initial 

mapping. This is analogous to the problem of improving the mapping of a time-

varying program which has undergone a phase change and become unbalanced. 

Time-varying programs are discussed in Chapter 7. 

Section 6.1 describes the structure of the class of strategies being studied. 

Section 6.2 presents a representative migration policy, and investigates its per-

formance characteristics when presented with a selection of unbalanced workloads. 

In Section 6.3 some exploratory experiments are presented, and drawing on the 

work concerning covariates presented in Chapter 5, an improved policy is derived. 

Section 6.4 investigates further the performance characteristics of this improved 

policy, and presents the results of some validation work carried out on a real 

transputer- based machine. Finally, a summary and conclusions are presented in 

Section 6.5. 

160 
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6.1 Introduction 

This section describes a class of process migration strategies suitable for use in 

a distributed memory multiprocessor. I concentrate on dynamic load balancing; 

other applications such as fault tolerance, machine reconfiguration or resource 

sharing, are beyond the scope of this thesis. Also, I do not consider the issues 

arising from remote execution of processes, or dynamic placement of spawned pro-

cesses. A suitable migration mechanism is assumed to be available. The MIMD-

based mechanism described in Section 3.3.3 is used for simulation trials, and the 

transputer-based mechanism described in Section 3.4 is used for validation work. 

These mechanisms both assume that a program consists of a set of communicat-

ing, self-contained, long-lived processes. It is these top-level processes which are 

candidates for migration, subordinate processes are never migrated independently. 

The migration strategies investigated here are adaptive, in the sense that mi-

gration decisions are made according to the current state of the machine; and dis-

tributed, so that there is no global point of control. Migrations take place between 

immediate neighbours only, accordingly, the communications and computational 

overheads required to carry out dynamic load balancing are kept to a minimum. 

Furthermore, as in [114] I shall assume that the operation of a migration strategy 

revolves around the periodic, synchronous exchange of load information between 

immediate neighbours. Since processors exchange load information, rather than 

demanding it of one another, these strategies can be classed as being cooper-

ative, rather than sender- or receiver-initiated. The local nature of information 

exchange implicitly divides the machine into a set of overlapping neighbourhoods, 

with each processor sitting at the centre of one such neighbourhood. Consider the 

mesh-based topology illustrated in Figure 6-1, processor P5 sits at the centre of 

neighbourhood N5, which encompasses P5's immediate neighbours: P2, P4, P6 

and P8. A number of strategies have used this approach, see [90,111,114,131] for 



Chapter 6. Analysis of a Class of Process Migration Strategies 	 162 

N2_ - 

N 

/ 	 N 

A I' 	I 
P1 	 P2 	V 

- t 

- N4/ 	 A\ 	N5 	 N6 

I\/ 
P4 	 P5 	 Pfr______ 

I 	_-u 

N/A 

Iy 	xl 	/ 
P7 V/ 	P8 y \ 

n-4 	_- 

V / 
N / 

N 

N8 

Figure 6-1: Overlapping Neighbourhoods for Mesh Topology 

example. A global, although generally non-optimal, balance can be achieved by 

independently attempting to balance the load within each of the local neighbour-

hoods [34,111]. 

I will continue to assume the performance metric U, the mean utilisation of 

the processors. Many dynamic load balancing strategies have concentrated on 

maximising U; see [58,83,90,114] for example. U is particularly well suited to 

dynamic load balancing studies, since processor utilisation is strongly related to 

the speedup of a parallel system, i.e. in order to approach a linear speedup, all 

processors must be kept busy at all times. 

As well as defining a performance metric, a load metric must also be specified 

in order to be able to accurately gauge the load of individual processors. This is 
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a complex issue since it is difficult to summarise load with a single number. In 

systems with many dynamically spawned, relatively short-lived tasks (for example, 

multi-user distributed operating systems) the number of active tasks is often used 

as the load metric. In the context of a single user multiprocessor with persistent 

processes, this metric is of little use, since it takes no account of the relative 

weights of processes, or their synchronisation patterns. I shall use the percentage 

utilisation of the processor as the load metric, since this is a good reflection of 

the current load. One must always bear in mind that the actions of the migration 

strategy itself places a load on the processors. However, it will be demonstrated 

later in this Chapter that this load is not excessive for the cases investigated here, 

so I can be confident that U truly represents the system load. 

Once a processor knows its own load, and that of its neighbours, it can calculate 

its state relative to those neighbours. Three states are often identified [56,83,100]: 

low (L), medium (M) and high (H). The thresholds used to distinguish processor 

states can be fixed, but more often they are adaptive, and are defined as lying 

a specified distance away from the average load within each neighbourhood [119, 

134]. At this point, each processor has a local view of its state, relative to the 

state of its immediate neighbours. 

Migrations can only take place between H and L loaded processors. To en-

sure that this condition is satisfied, a further round of negotiations is entered into 

between each processor which sees itself as being H, and those neighbours which 

it sees as being L. The purpose of this is to give those neighbours a chance to 

confirm whether they are truly in the L state, or whether that view was merely a 

consequence of the prevailing local conditions. In this way, each H processor con-

structs a set of immediate neighbours who are in the L state, and are consequently 

possible targets for migrating processes. At this point the processors have com-

pleted the preliminary negotiations phase and are ready to initiate migrations. 

As discussed in Section 2.5.1, there are three decision stages associated with 

a process migration. Firstly, when to initiate the migration; secondly, where 
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to migrate the process to; and lastly, which process to migrate. In the class of 

strategies described above, the "when" decision is made automatically on the basis 

of the state of the processors and the period of load information exchange. The 

"where" decision is partly made after the preliminary negotiations phase, in the 

sense that each H processor knows which of its neighbours are in the L state, and 

so are available to receive processes. The "who" decision, and the remainder of 

the "where" decision, i.e. the protocols for deciding which processes to migrate 

(the selection policy), and which of the possible processors to migrate them to 

(the location policy), is dependent on the details of the particular migration policy 

implemented. However, the aim of the selection and location policies should always 

be to attempt, as far as possible, to ensure that all H or L processors in the system 

converge towards the M state, thereby achieving equilibrium. 

Once the selection and location policies have been executed, migrations will 

take place between H and L loaded processors, via the migration mechanism, 

subject to the inundation policy in operation on the L processors. The inundation 

policy is responsible for ensuring that a L processor does not accept too many 

processes. A L processor might abandon a particular migration because it does 

not have enough resources for the migrant, or because it has already accepted 

enough migrants for it to reach the M state, and fears that accepting another will 

push it into the H state. 

6.2 Analysis of an Example Process Migration Strategy 

A particular member of the class of migration strategies described above can be 

specified by constructing a migration policy defining the following: 

. Threshold values 

. Period of application 
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• Process selection policy 

• Process location policy 

• Inundation policy 

These migration control parameters are defined below for a relatively simple mi-

gration policy which is investigated in this section. 

1. Threshold values. 

The threshold values categorising II, M and L processors are defined, for 

each local neighbourhood, to be 5% either side of the mean processor utilisa-

tion within the neighbourhood. For example, if the mean utilisation is 75%, 

then the thresholds specifying the L—M and the M—H boundaries would 

be 71.25% and 78.75% respectively. 

Period of application. 

The migration strategy is invoked after a fixed time period of 2,000,000 clock 

cycles of the simulated machine (i.e. every 100 milliseconds). 

Process selection policy. 

The strategy uses a selection policy based on the activity of processes on 

each H loaded processor in the most recent monitoring period (the period 

since the migration strategy was last active). An assumption underlying this 

approach is that future behaviour will repeat past behaviour. This is not 

necessarily true, especially for time-varying programs. However, the most 

recent behaviour is the best available guide to future behaviour. The policy 

attempts to satisfy two objectives. Primarily, it attempts to select as many 

processes for migration as there are immediate neighbours in the L state. 

If this goal is not achievable, it will try and select the maximum number of 

processes possible. The secondary aim is to ensure that the processes chosen 
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are the most computationally intensive possible i.e. those processes which 

are using the greatest proportion of the available compute resources. Both 

of these objectives are subject to the restriction that the processor should 

not move directly from the H state to the L state as a result of migrating 

the processes in question. In order to be able to check this, one must be able 

to estimate the effect of removing a set of processes from a processor. 

The problem of assessing the impact on processor utilisation of removing a 

group of processes is a difficult one. This is due to the interacting and com-

peting nature of processes. If all of the processes on a processor were com-

pletely independent of one another, i.e. whenever one process was executing 

there were never any other processes waiting in the queue, then the effect 

of removing a group of processes could easily be estimated with reference 

to the most recent monitoring period. The expected utilisation of the pro-

cessor, had the processes in question not been present, would be calculated 

by simply removing the utilisation due to them from the total figure. This 

approach actually gives a lower bound on the expected utilisation. In real-

ity, however, processes are likely to interfere with one another, so the actual 

utilisation is likely to be higher than that estimated, since those processes 

left behind will be able to mop up a proportion of the spare compute time 

previously used by the migrating processes. The selection policy described 

here uses the lower bound to estimate whether the destination processor is 

likely to move from the H state to the L state as a result of migrating a set 

of processes. 

4. Process location policy. 

Given a set of N immediate neighbours in the L state, and a set of no more 

than N candidate processes, then the process location policy will randomly 

map the processes to the processors in a one to one fashion. In any one mi- 
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gration cycle, therefore, no more than one process can be migrated between 

any two processors. 

5. Inundation policy. 

A null inundation policy is used, so that a L processor will never reject any 

migrating processes sent to it. It is therefore assumed that there are always 

adequate resources to service an incoming process 1 , and the strategy does 

not attempt to prevent a processor moving directly from the L state to the 

H state as a result of accepting migrants. 

The policy defined above is now investigated with reference to non-uniform 

time-invariant programs, to see whether it can improve their performance. In a 

sense, these programs correspond to single phases of time-varying programs. If 

the strategy can be shown to generally converge to a better placement, then it is 

reasonable to assume that it would be able to do the same for a particular phase 

of a time-varying program. 

6.2.1 Slightly to Moderately Unbalanced Workloads 

This experiment was designed to show how well the migration policy described 

above performs when presented with non-uniform time-invariant programs produ-

cing slightly to moderately unbalanced workloads. 

Experiment Description 

I shall assume the usual set of program parameters: 

{ N, c, j-i9, 0 cg, u rn9 7 mg 0 c 0 m } 

1 1n fact, this is always true for the transputer-based migration mechanism described 

in Section 3.4, and one can easily insist on it for the MIMD-based migration mechanism. 
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Program Parameters 
Param Value(s) 

N 132, 1421 
c 8 

1L 9  40000 
0 cg % 110, 801 

Cc  10 
/1mg  1000 

0mg% 10 
C m  1 

Other Parameters 
Param Value(s) 

Migration Strategy {On, Off} 
Process Size 2000 

Hardware 4 x 4 Mesh 
Placement Restricted Random 

Trial Length 100,000,000 (5 Secs) 
Replications 6 

Table 6-1: Parameter Settings for Exploratory Experiment Using Slightly to 

Moderately Unbalanced Workloads 
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It was observed in Chapter 5 that the two most important program paramet-

ers, with respect to the metric U, were: N, the number of nodes; and 0',,%, the 

standard deviation of compute times expressed as a percentage of the mean com-

pute time. So, in order to test the performance of the migration strategy, a two 

level full factorial experiment was carried out varying N, 0' 9%, and the status of 

the migration strategy. The remaining program parameters were set to the same 

intermediate values that were applied in Chapter 5. The exact values used are 

summarised in Table 6-1. The mean compute time across the nodes of the process 

graph, was set to 40000, corresponding to a small to medium grained pro-

gram. The degree of the program graph, c, was set to 8, allowing 4 incoming and 

4 outgoing channels per process on average. The mean message length, gumg ; and 

standard deviation of message lengths, 0mg%  were set to 1000 and 10 respectively. 

Finally, to enforce time-invariance, o and 0m  were set to 10 and 1. Note that I 

could, in fact, have explicitly defined the values of a, since the mean compute 

time is fixed within this experiment. However, the percentage notation is retained 

here for consistency. 

A number of other parameters had to be fixed in order to fully define the 

experiment. Firstly, a migrating process was assumed to occupy 2000 bytes of 

space (this assumption also holds for all subsequent eriments involving pro-

cess migration). As usual, the hardware was set to a 4 x 4 mesh of transputers. 

A restricted random placement was used to ensure that, as far as possible, each 

processor received the same number of processes 2 . Each simulation run was ex-

ecuted for 100,000,000 clock cycles (5 seconds) of simulated machine time, in the 

hope that this would allow sufficient time for the migration policy to operate. In 

order to increase confidence in the results obtained, and look for smaller effects, 

six replications were executed rather than the usual three. This did not require 

2j  a real system a more sophisticated mapping strategy might be used, however that 

is not of concern here. 
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an excessive amount of experimental effort due to the relatively small number of 

parameters being explored. Each replicate differed both in the random graph and 

random number seed used. 

Results 

A residual scatter plot of U produced a funneled shape, indicating the need for 

a transformation. As was often the case in Chapter 5, a Guerrero and Johnson 

transform was found to be useful, specifically the transformation: 

0.18  

100 

u 

 U 

 ) 
U'= 	 —1 	 (6.1) 

This transformation allows the assumptions underlying the analysis of variance 

to be satisfied. Table 6-2 presents a table of effects for the response U'. The 

presence of the label .s in the first column indicates that the migration strategy is 

active. It is clear that all three main effects have a significant impact on perform-

ance. Furthermore, the sign of the s effect is positive, indicating that having the 

migration strategy turned on increases the estimated value of U', and so improves 

performance (since U' is a monotonically increasing function of U). The various 

interactions of s with the other two parameters are also important, accounting for 

more than 10% of the variation in U. Their signs are also positive. 

The above analysis seems to suggest that, generally speaking, the migration 

strategy improves performance. It would be useful to know the extent of this 

improvement, and the circumstances under which the possible gains are greatest. 

This can be achieved by examining the data in greater detail using paired t tests 

(see Section 3.5.6). 

One can use a one tailed paired t test in order to test whether the values of 

U' observed with the migration strategy turned on, are significantly larger than 

those observed with the migration strategy turned off. The test is paired, since, 

ignoring the activities of the migration strategy, corresponding observations will 
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Effect Estimate t-value I % Var 

(gm) 0.407 
'9 0.079 9.79 9.53 
N 0.136 16.84 28.19 
sN 0.037 4.6 2.10 

-0.174 -21.64 46.57 

Sacg% 0.063 7.8 6.05 

No 9 % 0.01 1.2 0.14 
sNa 9%  0.049 6.02 3.61 

Total 1 	96.19 
Standard Error = 0.0081 

Table 6-2: Estimates of Effects for Exploratory Experiment Using U' 

be identical in all others factors under experimental control. The assumption 

regarding the normality of the distribution of the differences underlying the t test 

is automatically satisfied as a result of the assumptions underlying the analysis 

of variance being satisfied (see page 110 of [81]). As well as considering the data 

as a whole, similar tests can be carried out for various subsets of the data. For 

example, by fixing N and/or 0%  at certain values, one can partition the data in 

a number of different ways. This approach allows one to gain an understanding of 

the exact conditions under which performance can be improved. 

Table 6-3 contains the results of a number of t tests of the type described above 

for various partitions of the data. The first column specifies which particular subset 

of the observed data values is being tested. For example, the t test referred to in 

the first line considers all observations, the second considers only those where a 9% 

was set to 10 etc. The second column gives the observed mean values of U across 

the six replications when the migration strategy was inactive. The third column 

gives the corresponding figures when the strategy was active. The fourth column 

specifies the number of pairs of observations that each test is based upon. The 

final column gives the results of the t tests, which are carried out in terms of the 

transformed metric U'. The null hypothesis (H 0 ) is always that, the mean value of 

U' across all six replications for the observations where the migration strategy was 
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Data U U 
overall 76.22 86.35  

crcq%=lO 91.37 92.48 

ffin 
61.07 80.22 

N=32 70.95 78.53 
N=142 81.49 94.17  

a 9%=lO 
N=32 87.79 89.83 6 No 

acg % =80 
N=32 54.11 67.23 6 Yes 1% 

O cg %_10 
N=142 94.96 1 95.14 6 1 	No 

O%80 
N=142 68.02 FU.20 1 	6 Yes 1% 

Table 6-3: Results of Paired t Tests for Exploratory Experiment using U' 

inactive, U', is greater or equal to the mean value of U' for the observations where 

the migration strategy was active, 	That is, the migration strategy does not 

improve performance. So, in order to be able to conclude that any improvements 

in performance are due to the migration strategy, and not due merely to sampling 

fluctuations, one must be able to reject H 0 . For various subsets of the data, the 

final column indicates whether H 0  can be rejected, and if so, at what significance 

level (I only consider the 1%, 5% and 10% significance levels). Examining the data 

as a whole, one can accept the alternative hypothesis, that the migration strategy 

improves performance, at the 1% significance level. A more detailed examination 

reveals that the performance benefits are not significant for reasonably uniform 

programs, i.e. those trials when o cg%10. For all other partitions of the data 

however, including those which are only partly composed of trials where 

one can be confident that the migration strategy improves performance. Although, 

no doubt, this is due to the presence of data gathered from trials where 	%=80• 
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Discussion 

So, I have shown that a simple migration strategy appears to improve performance 

significantly (with respect to a processor utilisation based metric) for a subset 

of time-invariant programs exhibiting non-uniform behaviour which have been 

mapped in a well balanced manner. It should be noted that in the cases where 

the strategy does not significantly improve performance, there is no evidence to 

suggest that it degrades performance. 

Several interesting questions can be asked about the results presented above. 

Firstly, is the increased utilisation observed mainly attributable to the improved 

performance of the user program, or do the migration overheads occupy a signific-

ant proportion? Remember that these overheads are modelled explicitly in MIMD. 

Secondly, the results concerning the covariates sync-mean and ce_ratio_sd obtained 

in Chapter 5 suggest that, for a given program, improvements in performance res-

ulting from an improved placement will produce lower values of sync-mean and 

ce_ratio_sd. Is this still the case if the improvements occur at run-time as a result 

of process migrations? These questions can be answered by considering altern-

ative metrics to U, and by carrying out paired t tests to see whether the results 

obtained are consistent with those observed for U. The results of a number of 

such tests are presented in Table 6-4, and are explained below. Transformations 

were used where necessary to satisfy the assumptions underlying the tests, these 

transformations were straightforward and are not discussed here. 

To confirm that the increased utilisation figures observed really are the result 

of improved performance, a metric M, directly related to the rate of computation 

of the user program was examined. M is defined as the mean number of messages 

sent down a program's channels during its execution. For the loosely synchronous 

program model assumed here, the number of messages sent down any two channels 

at any moment in time should differ by at most one or two. Therefore, this metric 

provides a good measure of how much work the program has done, since it is 
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Reject H0 : % Impro- Reject H0 : Reject H 0 : 

Data n M>M 3 ? vement S<35 ? C<C3 ? 

overall 24 Yes 1% 11.6% Yes 1% Yes 1% 

cTcg%=lO 12 No 1.9% No No 

acg%=80 12 Yes 1% 27.5% Yes 1% Yes 1% 

N=32 12 Yes 1% 10.7% Yes 1% Yes 5% 

N=142 12 Yes 1% 15.2% Yes 1% Yes 1% 

a 9%=lO 
N=32 6 No 2.3% No No 

0 cg % 8 O 
N=32 6 Yes 1% 24.8% Yes 1% No 

C %_10 
N=142 6 No 0.2% No No 

=80 
N=142 6 _Yes 1% 37.6% Yes 1% Yes 1% 

Table 6-4: Results of Paired t Tests for Exploratory Experiment Using Alterna-

tive Metrics 

directly related to the number of iterations achieved 3 . The results of the t tests 

for M are given in the third column of Table 6-4. One can see that the results 

are identical to those obtained for V. This seems to confirm that a processor 

utilisation based metric accurately reflects the performance of the program being 

executed, even when process migrations are being carried out. Indeed, the values of 

U and M are highly correlated; for example, if the data is partitioned into two sets 

according to the value of N, the corresponding correlation coefficients are 0.955 

and 0.974 respectively. I can therefore conclude that the migration overheads are 

not excessive, and that increases in U due to the activity of the migration strategy 

can be attributed mainly to improved program performance. The fourth column 

of Table 6-4 gives, for each data set, the percentage improvement in M, and hence 

in program performance, achieved by the migration strategy. The overall figure 

'The metric M is not suitable for general use since it relies very strongly on the 

details of the particular program model used. 
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Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6] 

%lO Ucg

N=32 0 0 0 0 0 0 

a 2 % 	80 
N=32 3 1 3 4 4 9 

O cg%=lO 
N=142 10 6 4 2 12 0 

N=142 43 34 1 	32 1 	70 40 53 

Table 6-5: Total Number Migrations Executed 

is 11.6%, with larger improvements generally being observed for higher values of 

01 
C9% 

The fifth and six columns of Table 6-4 contain the results oft tests carried out 

for the covariates sync-mean and ce_ratio_sd. For the sake of convenience, 3 is used 

to represent the mean value of sync-mean over the six replications; and similarly, 

is used to represent the mean value of ce_ratio_sd. Note that, in this case, I am 

looking to see whether the actions of the migration strategy decrease, rather than 

increase, the values of the covariates. Therefore, the signs used in the null hypo-

theses are the reverse of those seen so far. It is clear that the results for sync-mean 

agree exactly with those observed for U and M, so one can conclude that whenever 

the migration strategy significantly improves performance, the value of sync-mean 

obtained is significantly reduced. The results for ce_ratio_sd are reasonably close 

to those observed for U and M, the main difference occurring when there are a 

small number of nodes and a high standard deviation of compute times. However, 

generally speaking, improved performance also results in significantly lower values 

of ce_ratio_sd being observed, as one would expect. 

The final issue that should be addressed is the dynamic behaviour of the migra- 

tion strategy. Table 6-5 lists the total number of migrations carried out at each 

combination of N and cg% 
for each of the six replications. When N=32 and 

no migrations are carried out whatsoever. This is because the workload 
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is already balanced due to the uniform nature of the programs, and the fairness 

of the placement strategy. A small number of migrations occur when N is in-

creased to 142 and a% remains set at 10. These migrations are triggered because 

the increased numbers of processes mean that relatively small units of work can 

be moved from processor to processor. Consequently, processes can be migrated 

from H processors without sending them directly into the L state, so the migra-

tion strategy will attempt this in an effort to achieve a finer balance. However, we 

have already seen that these migrations do not bring any significant performance 

improvements. A small number of migrations occur when N=32 and 0r 9%80. We 

have seen that these migrations, although small in number, do result in significant 

performance benefits. This is because the non-uniform nature of the programs 

means that the initial placement is unlikely to be optimal. Larger numbers of 

migrations take place when N=142 and cr%=80. Once again, the non-uniform 

nature of the programs mean that these migrations achieve significant performance 

improvements. The increased numbers of migrations observed are a consequence 

of having a large number of processes, and hence smaller migratable units of work. 

This means that a finer balance is possible, but the strategy is required to carry 

out more migrations in order to converge to a stable state. 

It is interesting to study how the performance of the migration strategy evolves 

with time, in order to see how efficiently it converges to a good balance. For this 

purpose, imagine that the 5 second simulation time is divided up into 10 x 0.5 

second time frames. The cases where N=32 and O cg %=80, and where N=142 

and g%='° are straightforward, since all of the migrations are completed within 

the first two time frames. Figure 6-2 illustrates how the number of migrations 

and mean utilisation of the processors evolve with time for the situation where 

N=142 and acg%80. The labels on the x axis refer to the upper class bounds 

of each of the time frames. The labels on the y axis refer to the number of 

migrations and percentage utilisation respectively. For both sets of data, the points 

plotted correspond to the mean value taken over the six replicates, 95% confidence 
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Figure 6-2: Performance of Migration Strategy Over Time When N=142 and 

intervals are also shown for each of the points, contracted where necessary to 

prevent negative migration count values being displayed. One can see that the 

migration strategy performs most of its work within the first 1.5 seconds, with a 

good mean utilisation, and the majority of migrations, being achieved within that 

period. To give an idea of how quickly the strategy can improve performance, the 

mean utilisation in the first half second, had the migration strategy not been active, 

would have been just 68.03%. So a 20 percentage point increase in performance 

is achieved, just within the first half second. The time between 1.5 seconds and 

3.5 seconds is spent settling down, with no significant performance benefits being 

obtained. After 3.5 seconds a completely stable global balance is achieved. So, it 

seems that the migration strategy acts in a stable manner, and converges to an 

improved placement in an acceptable time for non-uniform programs mapped in 

a relatively well balanced manner. 
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Effect Estimate t-value % Var 

(gm) 

7N 

65.84 7 
s 11.68 16.01 43.97 I 

12.34 16.9 49.05 
sN 0.84 1.15 0.23 
Ucg % 0.15 0.21 0.01 

sacg % -0.12 -0.17 0.00 
Nacg % -0.3 -0.41 0.03 
sNa 9%  -0.15 1 	-0.2 0.01 

Total I 	93.3 

I Standard Error = 0.73 

Table 6-6: Estimates of Effects for Strongly Unbalanced Workloads Using U 

6.2.2 Strongly Unbalanced Workloads 

To see how efficiently the migration strategy performs when presented with strongly 

unbalanced workloads, a very similar experiment to that described above was car-

ried out. The only difference between this experiment, and the one defined by 

Table 6-1, was that a truly random, rather than restricted random, placement 

strategy was used. Programs mapped in this manner have the potential to be 

very unbalanced, since one processor might be responsible for many more processes 

than another. The problem of improving the performance of these programscor-

responds to the problem of improving the performance of a time-varying program 

that has evolved to a particularly unbalanced state. 

Diagnostic plots were examined and they indicated that there was no need to 

consider using a transformation of the response. The table of effects derived from 

an analysis of variance on U is shown in Table 6-6. The only two significant terms 

in the model are the main effects of s and N, together accounting for 95.7% of 

the variation in U. The relative unimportance of a 9% conflicts with the results 

obtained up to now, but can be explained if one considers the impact of using a 

completely random placement. The unbalanced behaviour due to a high value of 
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Data U U n 
Reject H 0 : 

overall 54.15 77.52 24 Yes 1% 

01 9%_10 53.88 77.4-9 -12 Yes 1% 

0cg%80 54.43 .55 Ye 1% 

N=32 42.66 
t77,Ms 

 Yes 1% 

N=142 65.65  Yes 1% 

N=32 42.23 63.86 6 Yes 1% 

N=32 43.08 64.81 6 Yes 1% 

cTcg%=lO 
N=142 65.52 91.12 6 Yes 1% 

F =80 
N=142 65.77 90.29 6 Yes 1% 

Table 6-7: Results of Paired t Tests for Strongly Unbalanced Workloads Using 

U 

becomes overshadowed by the unbalanced behaviour caused by the placement 

strategy 

The size and positive sign of the s effect suggests that the migration strategy 

has a very beneficial impact on performance. As in the previous experiment, 

this can be examined in greater detail using pair t tests. Table 6-7 shows the 

results of t tests carried out on various subsets of the data. One can see that 

the improvements in performance due to the migration strategy are definitely 

worthwhile, and are always significant at the 1% significance level. 

To confirm, once again, that the improvements observed in Table 6-7 come 

about as a result of improved performance rather than as a result of migration over-

heads, and that the expected decreases in the values of the covariates sync-mean 

and ce_ratio_sd are obtained, further t tests were carried out using alternative met-

rics. The results of these tests are summarised in Table 6-8. The results obtained 

for all three metrics are very close to those seen for U, the only differences being 

that several of the hypotheses can only be accepted at the 5% significance level, 
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Data n 
Reject H 0 : 

M > M3 ? 

% Improv— 
ement 

Reject H0 : 

< 3 .,  ? 
Reject H 0 : 

C < C? 
overall 24 Yes 1% 47.5% Yes 1% Yes 1% 
a%=10 12 Yes 1% 48.0% Yes 1% Yes 1% 
01 9%=80 12 Yes 1% 46.9% Yes 1% Yes 1% 
N=32 12 Yes 1% 50.7% Yes 1% Yes 1% 
N=142 12 Yes 1% 38.2% Yes 1% Yes 1% 

N=32 6 Yes 1% 51.1% Yes 5% Yes 1% 

N=32 6 Yes 1% 50.3% Yes 1% Yes 1% 
acg %=lO 
N=142 6 Yes 1% 39.1% Yes 1% Yes 1% 
0',g %=80 
N=142 6 Yes 5% 37.2% Yes 1% Yes 1% 

Table 6-8: Results of Paired t Tests for Strongly Unbalanced Workloads Using 

Alternative Metrics 

Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 

OICA =10 
N=32 5 6 6 7 8 5 
a 9 % =80 
N=32 4 10 5 6 5 4 
acg%=10 
N=142 64 49 67 62 35 46 
0 cg%8O 
N=142 44 25 53 55 62 55 

Table 6-9: Total Number Migrations Executed for strongly Unbalanced Work-

loads 
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Figure 6-3: Performance of Migration Strategy Over Time for Strongly Unbal-

anced Workloads When N=142 and crC9 %=10 

rather than at the 1% significance level. The fourth column of Table 6-8 gives, 

for each of the data sets, the percentage increase in performance attributable to 

the use of the migration strategy. Overall, the performance of the strategy is very 

encouraging, increasing the rate of computation achieved by an average of almost 

50%. 

Table 6-9 lists, for each replication, the number of migrations carried out for 

each of the parameter combinations. It is clear that the number of migrations 

required to achieve a good balance increases as the number of nodes increases. 

This is consistent with the results observed for lightly to moderately unbalanced 

workloads. 

When N=32, the migrations are always completed before the simulation time 

reaches 0.5 seconds, so the strategy very quickly converges to an improved place-

ment. The behaviour of the strategy when N=142 is illustrated in Figures 6-3 and 

6-4. These graphs show the mean number of migrations and the mean processor 

utilisation (with 95% confidence intervals) across the six replications. The values 

plotted refer to half second time frames throughout the simulation period. Both 
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Figure 6-4: Performance of Migration Strategy Over Time for Strongly Unbal-

anced Workloads When N=142 and a cg%=80 

graphs give a similar picture to that seen already in Figure 6-2. A good balance 

is generally achieved after 1.5 seconds, the time between 1.5 and 3.5 seconds is 

spent settling down, and after 3.5 seconds a stable global balance is achieved. 

6.2.3 Summary 

We have seen how a representative process migration strategy can be used to 

improve the performance of a variety of time-invariant non-uniform programs. 

This is encouraging, since the choice of control parameters defining the behaviour 

of the strategy, i.e. the selection policy, location policy etc., was not given a great 

deal of consideration. 

The extent of the improvement achieved by the strategy is dependent on the 

degree of unbalance present in the workload, due either to the placement used, or 

the structure of the program. For slightly to moderately unbalanced workloads, the 

benefits increase as the degree of non-uniformity present in the program increases. 

For strongly unbalanced workloads, the benefits seem relatively independent of the 
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structure of the program. The time taken to achieve a balance is dependent on 

the number of nodes in the user program, with more migrations being required for 

larger numbers of nodes. This characteristic is a direct consequence of limiting to 

one the number of processes that can be transferred between any two processors 

within a single migration cycle. The strategy has been shown to possess good 

stability and convergence properties, generally reaching a reasonable placement 

within 1.5 seconds. 

The overheads imposed by the migration strategy are acceptable, and the 

metric U would seem to accurately reflect the performance of the program being 

executed. In addition, the migration strategy was shown to decrease the values of 

the covariates sync-mean and ceratiosd as performance was improved. 

6.3 An Improved Migration Strategy 

You will recall that a particular member of the class of migration strategies being 

studied can be defined by specifying its migration control parameters, i.e. the 

threshold values, period of application, process selection policy, process location 

policy and inundation policy. This chapter investigates each of these in turn, 

with the aim of constructing an improved strategy. In order to achieve this, 

an incremental approach has been adopted. The migration control parameters 

have been divided into three groups which will be explored in sequence, thereby 

allowing the results of one experiment to be used in subsequent experiments. 

The first two migration control parameters to be considered are the quantitative 

factors concerned with the method of application of the policy, i.e. the migration 

threshold values and migration period. Next, the control parameters concerned 

with process selection and location are studied, and finally the effect of using an 

inundation policy is examined. 
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To simplify matters, the program parameters were not varied within these 

experiments. Instead, a representative workload was chosen, and the effects of 

altering the migration strategy were examined with reference to it. The results 

obtained are generalised for different programs and processor domains in Section 

6.4. 

The program parameters N and Ucg% were fixed at 100 and 40 respectively, 

since these are reasonable intermediate values. With the exception of the place-

ment strategy used, the remaining parameters were set to the values listed in 

Table 6-1. A truly random placement strategy was used to generate strongly un-

balanced workloads, which have the most to gain from the application of process 

migrations. However, this placement strategy was applied in a different manner 

than has been seen previously. So far, when using a random placement strategy, 

a different mapping has been generated for each individual simulation trial within 

a replication. So, for example, two trials within a replication which differed in 

some parameter not affecting the shape of the program graph, would still receive 

different random mappings. This has been the correct approach to take up to 

now, since it has allowed me to generalise across the entire population of random 

placements. However, there is now a need for greater precision since I wish to ex-

amine how the performance of the migration policy is influenced by the parameters 

controlling it. If the initial placement were to vary within a single replication, the 

effects of the migration control parameters might be confused with the effects of 

the different placements. Since N and c are not varied in these experiments, the 

same program graph applies to an entire replication, so it is possible to use exactly 

the same initial mapping within that replication. This allows any observed effects 

to be attributed to the factors under experimental control, rather than to different 

mappings. However, individual replications are still allocated different program 

graphs and random number seeds. 
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6.3.1 Method of Application 

The definition of the migration threshold values affects the likelihood of processes 

being considered for migration. The further away the thresholds become from 

the mean utilisation within a neighbourhood, the less susceptible processes will 

be to migrations, since processors will be more likely to be classified as being in 

the neutral M state. Defining the L—M and M—H boundaries as being fixed 

percentages away from the mean utilisation within a neighbourhood leads to a 

convenient stability property. For example, imagine that the threshold was set at 

now, since x% of 40% is smaller than x% of 90%, it is harder for processors 

to achieve the M state at lower utilisations (since M spans a smaller interval). At 

higher utilisations the M state is easier to achieve, and so migrations are less likely 

to occur. This is a desirable property, since, due to the asymptotic nature of the 

metric U, it is not sensible to waste too much effort trying to improve performance 

at high processor utilisations. However, at lower utilisations improvements in 

performance are easier to achieve, and so should be attempted whenever possible. 

The migration period defines the interval at which migrations are considered. If 

this period is too short, the monitoring information gathered will be inadequate, 

since the computation itself will not have time to stabilise between migration 

cycles. If the period is too long, then the convergence to an improved placement 

will take an unnecessarily long time. 

In order to find the best levels for these two migration control parameters, a 

full factorial experiment was carried out. Each of the two parameters was set at 

six levels, i.e. the migration period was set at 1,000,000, 1,500,000, 2,000,000, 

2,500,000, 3,000,000 or 3,500,000 clock cycles; and the migration threshold was 

set at 1%, 3%, 5%, 7%, 9% or 11%. The remaining migration control parameters 

remained unchanged from the initial migration policy described in Section 6.2, i.e. 

process selection was based on selecting the largest number of computationally in- 
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tensive processes possible, processes were located randomly, and a null inundation 

policy was used. 

The optimal performance of the migration strategy was observed to occur 

when the threshold was set to 5% and the period was set to 2,000,000 clock cycles 

(i.e. 100 milliseconds). By chance, these are the values that have already been 

used. At thresholds above 5%, performance tended to tail off because processors 

were finding it too easy to achieve the M state, and so migrations were being 

inhibited. At thresholds below 5% migrations were also observed to be inhibited, 

but for a different reason. At low thresholds one might expect many migrations 

to be triggered, because it would be relatively difficult for processors to achieve 

the M state. However, this is in fact not the case due to the characteristics 

of the selection policy used. You will recall that processes are only considered 

as migration candidates if it is estimated that their migration will not cause the 

source processor to move directly from the H state to the L state. As the threshold 

is reduced, it becomes more difficult to find processes that satisfy this criteria, and 

so migrations are inhibited. 

Obviously, the choice of migration period is very sensitive to the characteristics 

of the program being executed, as well as other external factors. Indeed, in a 

general purpose implementation of process migration, it would be desirable to 

activate the migration policy adaptively according to the current system load, 

rather than at fixed intervals. This approach is investigated in [134,137]. However, 

it is necessary to restrict the scope of this study, so I will assume a fixed period. 

Other migration strategies have used fixed periods with success. In [114], Saletore 

uses a value of 100 milliseconds, and in [32], Corradi et al. investigate periods 

in the range 50-150 milliseconds. A period of 2,000,000 clock cycles is consistent 

with these values. 

A migration threshold of 5% and a migration period of 2,000,000 clock cycles 

are assumed for the remaining experiments in this chapter. 
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6.3.2 Process Selection and Location Policies 

To examine the extent to which the choice of selection and location policies influ-

ence performance, a full factorial experiment was carried out using four different 

process selection policies and four different process location policies. Some of 

these policies were designed to minimise the values of the covariates sync-mean 

and ce_ratio_sd. This seems a sensible approach to take, since it has already been 

established that lower values of these covariates are associated with improved per-

formance. It is unclear, however, whether purely local decision making will enable 

the values of the covariates to be optimised at a global level. Before presenting 

the results of an exploratory experiment, the particular policies used are defined. 

In both cases, the policies are presented in approximate increasing order of com-

plexity. Suitable computation delays have been incorporated into the simulation 

system to allow for the decision making process. 

Process Selection Policies 

1. Maximum number of most computationally intensive possible (select-1). 

This is the same policy as used previously. It attempts to satisfy two ob-

jectives. Primarily, it tries to find as many processes as there are immediate 

neighbours in the L state. The secondary aim is to ensure that the processes 

selected are the most computationally intensive possible. This policy, and 

indeed all the other selection policies, are subject to the restriction that the 

processes removed should not result in the processor moving directly from 

the H state to the L state. The method used achieve this was described in 

Section 6.2. 

2. Maximum number of least computationally intensive possible (select-2). 

This policy is very similar to select-1, the only difference being that in- 

stead of selecting the most computationally intensive processes possible, the 
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least computationally intensive ones are chosen. This means that processes 

are less likely to be inhibited from migrating as a result of the mechanism 

detecting that the source processor might enter the L state. 

3. Minimisation of covariate sync-mean (select-3). 

This policy attempts to select processes so as to minimise the value of the 

covariate sync-mean. The policy necessarily operates locally, trying to select 

those processes which tend to delay synchronisations. 

The policy is based on a piece of information called the blocking factor, which 

is maintained for each process. When a process communicates on a chan-

nel, two outcomes are possible: either the partner in the message transfer is 

ready, in which case the communication can proceed; alternatively, the mes-

sage transfer will block because the partner is not ready. This information 

can be gathered for the channels attached to a particular process, assuming a 

synchronous communications mechanism. The ratio of the number of times 

a message transfer does not block, to the number of times it does block, for 

a given process, is defined as its blocking factor. 

If the blocking factor for a process is greater than 1, then it indicates that 

the process tends not to block more often than it does block, and vice versa if 

the blocking factor is less than 1. The selection policy works on the premiss 

that a process with a blocking factor greater than 1 tends not to block, 

and so could possibly benefit from being executed faster. If these processes 

are executed faster, then the global sync-mean value should be reduced. 

Accordingly, the processes with the highest blocking factors are selected to 

be migrated. The policy attempts to select one process for each of the L 

immediate neighbours. 
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4. Minimisation of covariate ce_ratio_sd (select-4). 

This policy attempts to select processes so as to minimise the value of the 

covariate ce_ratio_sd. Once again the policy necessarily operates locally, 

trying to choose those processes which will decrease the variability in the 

ratio of compute to elapsed times. 

The policy works by ranking the processes on a processor according to their 

absolute distance from the mean ce_ratio observed on that processor. The 

processes which have ce_ratio values furthest away from the mean (either 

above or below) are duly selected for migration, the intention being to min-

imise the ce_ratio_sd on the source processor (and hopefully reduce its value 

globally). As usual, it is attempted to select one process for each of the L 

immediate neighbours. 

Process Location Policies 

Random allocation (locate-1). 

This is the policy used previously. Processes are mapped to the available 

processors in a random fashion, subject to the triction that each processor 

can only receive a single migrant from any particular processor within a single 

migration cycle. 

Minimisation of communications overheads (locate-2). 

This policy uses the communications characteristics of the processes to guide 

the mapping. A process will be attracted to the processor connected to the 

link down which it has transferred the most messages during the preceding 

monitoring period. A problem can arise if two processes want to migrate 

to the same processor. Such conflicts are resolved by comparing a message 

count for each process, the loser has to attempt to migrate to its second 
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choice processor. The aim of this strategy is to minimise the communications 

overheads by reducing the number of links which messages have to traverse. 

Minimisation of covariate sync-mean (locate-3). 

This policy attempts to minimise sync-mean by mapping processes to the 

available processors according to their blocking factors. The basic idea is 

that the process with the highest blocking factor could most benefit from 

being executed more quickly. It should therefore be sent to the available 

processor with the lowest utilisation in the preceding monitoring period. 

The process with the next highest blocking factor should be migrated to the 

processor with the next lowest utilisation, and so on. 

Minimisation of covariate ce_ratio_sd (locate-4). 

Locating processes so as to minimise ce_ratio_sd is problematic. This is 

because the ce_ratio value associated with a process is intimately linked to 

the processor on which the process was executing, since the ce_ratio is an 

indicator of the extent to which the process interacts with the other processes 

resident on the processor. The only way to use the information is to assume 

that a process which has been involved in contention for processor resources 

on one processor (i.e. low ce_ratio value) will continue to be involved in 

contention if migrated to another processor. Similarly, a process that has 

been involved in very little contention will continue to execute in the same 

manner if migrated. These assumptions may not be very realistic, but they 

are necessary if a migration location policy based on local information is to 

be derived that attempts to minimise ce_ratio_sd. 

The policy attempts to minimise the ce_ratio_sd value within a neighbour-

hood by mapping processes so as to bring the processors whose local 

cc-ratio-mean values are furthest away from the mean value closer to the 

mean. Therefore, processes with low cc-ratio values are mapped to pro- 
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cessors whose local ce_ratio_mean values are higher than the neighbourhood 

average. Similarly, processes with high cc-ratio values are mapped to pro-

cessors whose local cc-ratio-mean values are lower than the neighbourhood 

average. 

Results 

The relative performance of the different selection and location policies can be 

examined by studying the mean values of U obtained over the six replications. 

Table 6-10 shows the mean values of U obtained for each of the four selection 

policies. Each of these means is based on 24 values i.e. six replications for each 

of the four location policies. The mean values for select-2 and select-3 are 

very similar to those observed for the original selection policy, select-1. The use 

of select-4 however, seems to result in better performance. As usual, a paired 

t test can be used to test whether this improvement is statistically significant 4 . 

The value of the test statistic is 1.79, so, consulting a table of t values, one can 

conclude that select-4 out-performs select-1 at the 10% significance level. 

Table 6-11 contains a similar table for the location policies. The behaviour of 

locate-1, locate-2 and locate-4 are very similar; locate-3 performs a little 

better than the other three, but, statistically speaking, this improvement is not 

significant. 

Table 6-12 gives a more detailed breakdown of the mean values obtained at 

each combination of the selection and location policies. Each of the values in the 

table is the mean of six observations. It is clear that all of the combinations, 

with the exception of select-3/locate-4, produce higher mean values of U than 

4  W can assume here, and in subsequent tests, that the assumptions underlying the 

t test have been satisfied, appropriate transformations will have been used whenever 

necessary. 
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select-1 select-2 select-3select-4 
87.50 	86.86 	87.84 	89.45 J 

Table 6-10: Observed Mean Values of U for Each Selection Policy 

lo cate-1 locate-2 locate-3 locate-4 

87.72 1 	87.80 88.79 87.34j 

Table 6-11: Observed Mean Values of U for Each Location Policy 

locate-1 locate-2 locate-3 locate-4 

select-1 85.07 87.46 88.81 88.65 

select-2 86.25 88.64 86.43 86.13 

select-3 89.60 88.25 88.92 84.58 

select-4 89.95 86.85 90.99 89.99 

Table 6-12: Observed Mean Values of U for Each Combination of Selection and 

Location Policy 

the combination used in earlier experiments (i.e. select- i/locate-i). The best 

performance is obtained using select-4/locate-3, this is consistent with the 

figures observed in Tables 6-10 and 6-11, where these two policies gave the best 

performance. A t test can be used to test whether the value obtained using 

select-4/locate-3 is significantly higher than that obtained using select-1/ 

locate-1. The corresponding test statistic is 2.72. So, with reference to a table of 

t values, one can conclude that the performance of select-4/locate-3 is better 

than that of select- 1/locate-1 at the 5% significance level. This conclusion 

cannot be reached for any of the other policy combinations. 

The objectives of select-4 and locate-3 are to minimise the values of 

ce_ratio_sd and sync-mean respectively. To confirm whether this objective has been 

achieved, paired t tests can be used to show whether using select-4/locate-3 

rather than select- 1/locate-1 results in lower values of ce_ratio_sd and 

sync-mean. With reference to ce_ratio_sd, the observed values are 0.143 for 
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select —i/locate—i and 0.124 for select-4/locate-3. The corresponding test 

statistic is 1.9. For sync-mean the values are 123927 and 115134 respectively, 

leading to a test statistic of 3.76. Consequently, it can be concluded at the 10% 

significance level that select-4/locate-3 reduces the value of ce_ratio_sd. Sim-

ilarly, it can be concluded at the 5% significance level that select-4/locate-3 

reduces the value of sync-mean. 

Discussion 

It is clear that using a migration selection policy based on minimising the coy-

ariate ceratiosd, and a migration location policy based on minimising the coy-

ariate sync-mean, leads to significant performance benefits for this representative 

workload. The improvements over using select— i/locate—i are all the more 

impressive if one bears in mind the asymptotic nature of the metric U. It also 

seems that local decision making is effective in reducing the values of ce_ratio_sd 

and sync-mean at a global level. It is not surprising that a process selection policy 

based on minimising ce_ratio_sd turns out to be better than one based on minim-

ising sync-mean. This is because the ce_ratio values for the processes on a given 

processor contain a lot of local information relating to the competing processing 

demands of those processes. So, when a processor is selecting which of its processes 

to migrate, this information is very relevant. Similarly, process location based on 

minimising sync-mean, rather than ce_ratio_sd, is more effective since sync-mean 

values contain globally oriented information relating to the interaction between 

processes on different processors. 

One might expect the location policy based on minimising the communications 

overheads (locate-2) to have a significant impact on performance. However, its 

unspectacular performance is consistent with the program model being simulated. 

Since each process communicates on all of its channels at each iteration, any at-

tempt to reduce the communications overheads by moving certain processes closer 
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together will be negated by the extra overheads associated with the communic-

ations which each process must still maintain with its other partners. Under 

a different program model, this policy could well operate more efficiently. For 

example, one could imagine the situation where two processes suddenly started 

communicating heavily and exclusively with one another; it would then make good 

sense for them to move closer together. 

6.3.3 Inundation Policy 

This section presents an experiment to test whether the use of an inundation 

policy can improve performance. So far, a null policy has been used, so migrants 

are never rejected. However, to prevent processors moving directly from the L 

state to the H state, it might be desirable for a receiving processor to refuse 

a process permission to migrate. Such a policy has been implemented, and is 

investigated here. It works by a processor including the processing time achieved 

by the migrating process (in the previous monitoring period) in an estimate of 

what its utilisation would have been had the process in question been present. 

If a particular process results in the estimate crossing the M—H border, then 

that process is refused permission to migre. The experiment described below 

compares the performance obtained using this inundation policy, to that obtained 

using a null policy. 

The remaining migration control parameters were configured in an optimal 

fashion, i.e. a migration period of 2,000,000 clock cycles, a threshold of 5%, 

selection policy select-4 and location policy locate-3. The usual representative 

workload was used, and six replications were executed. 

In the following discussion, let the variable i/i_count denote the number of times 

that a processor moves directly from the L state to the H state. When the in-

undation policy is inactive (i.e. a null policy) the mean i/i_count value observed is 

15, this is a very small number if one considers the maximum possible. With 16 
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Figure 6-5: Evolution of Low to High Count With Inundation Policy Active or 

Inactive 

processors and a migration period of 2,000,000 clock cycles, there are approxim-

ately 800 opportunities for a processor to move directly from the L state to the 

H state as a result of processes migrating. When the inundation policy is active, 

the mean ih_count value is reduced, as one would expect, to 8.83. Using a t test 

one can conclude that this reduction is significant at the 1% significance level. 

Figure 6-5 illustrates how the mean l/icount values evolve with time when the 

inundation policy is active and inactive, 95% confidence intervals are given. One 

can see that the non-zero values of i/i_count occur early in the simulation, as the 

migration strategy is converging to an improved placement. Once this placement 

is obtained, processors rarely move directly from the L state to the H state. As 

one would expect, the lhcount declines more sharply when the inundation policy 

is active. 

So, it seems that the inundation policy can reduce the value of i/i_count. 

However, it is not yet clear how this influences performance. When the inundation 

policy is inactive, the mean value of U obtained is 88.85%. In contrast, when the 

inundation policy is active, the mean value of U obtained is 80.39%. It appears 
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Figure 6-6: Evolution of Utilisation With Inundation Policy Active or Inactive 

that the inundation policy has a negative effect on performance, indeed, statist-

ically speaking, one can conclude at the 1% significance level that the inundation 

policy reduces performance. 

Figure 6-6 illustrates how utilisation evolves with time when the inundation 

policy is active and inactive. It is clear that the inundation policy results in lower 

utilisations being achieved early in the simulation. It is then not possible for 

the migration strategy to fully recover from the sub-optimal placement, and so a 

lower overall utilisation is obtained. This phenomenon could be explored further 

by studying the geography of process movements at a microscopic level. However, 

that level of detail is not appropriate for the work presented here. 

So, it seems that inhibiting the dissemination of processes about the processor 

domain in order to reduce the lh_ count value is not a good idea. This is because 

it disrupts the convergence properties of the migration strategy, reducing the rate 

at which processes can be migrated. In any case, instances of processors moving 

directly from the L state to the H state are relatively rare, and tend to disappear 

altogether when a good placement is achieved. This is a consequence of the sta-

bility properties already inherent in the migration strategy, i.e. a processor can 
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never accept more than four processes in a single migration cycle (one per link), 

and a processor can never move directly from the H state to the L state as a result 

of migrating processes. 

6.4 Generality of Results 

In Section 6.3 optimal settings for the migration control parameters were derived, 

i.e. a migration period of 2,000,000 clock cycles, a threshold of 5%, selection policy 

select-4, location policy locate-3 and a null inundation policy. This was done 

with respect to a representative workload executed on a 4 x 4 mesh of processors. 

In this section it is shown how well the results obtained can be generalised for a 

larger hardware topology, and different types of workload. In addition, the results 

of some validation work carried out on a real machine are presented. 

6.4.1 A Larger Processor Topology 

To test the scalability of the results obtained so far, with respect to the number 

of processors, several simulation experiments were carried out using a 7 x 7 mesh. 

With the exception of N, the remaining program parameters were set to the values 

used for the 4 x 4 mesh experiments presented in Section 6.3. N was increased 

to 200, allowing an average of approximately four processes per processor. As 

previously: six replications were carried out; the random number seed and program 

graph were varied between replications; simulations were run for 5 seconds of 

simulated machine time; and a truly random initial placement was used. Within 

each replication, three trials were executed. The first used 110 migration strategy, 

the second used select— i/locate—i and the third used select-4/locate-3. For 

the latter two trials, the migration period was always set to 2,000,000 clock cycles, 

the threshold to 5%, and a null inundation policy was used. 
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The mean value of U obtained using no migration strategy was 40.61%, com-

pared to 71.26% using the select— i/locate—i strategy. Statistically speaking, 

this result is significant at the 1% significance level. In addition, it is consistent 

with the results obtained for a 4 x 4 mesh of processors in Section 6.2.2, where it 

was observed that a simple migration strategy could always significantly improve 

performance for programs mapped in a truly random fashion. 

The mean value of U obtained using select-4/locate-3 was 74.67%. Con-

sequently, one can conclude that select-4/locate-3 results in better perform-

ance than select —i/locate—i at the 10% significance level. This result is encour-

aging, since it indicates that the performance of the migration strategy based on 

minimising the covariates ce_ratio_sd and sync-mean is scalable. Refering to Table 

6-12, it can be seen that the corresponding figures for the 4 x 4 mesh were 85.07% 

and 90.99% respectively. These utilisations are higher, because in the 4 x 4 mesh 

case there were more processes available, relative to the number of processors. 

So, for this example workload, the results observed for a 4 x 4 mesh of processors 

have been shown to scale to a 7 x 7 mesh of processors. Namely, a simple migration 

strategy is better than none at all, and a strategy based on minimising ce_ratio_sd 

and sync-mean seems better than a simple one. 

6.4.2 Alternative Workloads 

The experiments described in this section were designed to gather more informa-

tion about the exact conditions under which the covariate-based migration strategy 

(select-4/locate-3) out-performs the simple strategy (select-1/locate-1) for 

a 4 x 4 processor mesh. Two experiments are presented, the first uses a truly ran-

dom placement (a strongly unbalanced workload), and the second uses a restricted 

random placement (a lightly to moderately unbalanced workload). In order to de-

tect the effects of the migration strategies as accurately as possible, within each 

replication, program graphs of the same shape were are allocated the same initial 
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placement. Two level full factorial experiments were used to undertake this ex-

ploratory work. The program parameters varied were N, which was allocated the 

value 32 or 142, and o,,,%, which was allocated the value 10 or 80. The remaining 

program parameters were given their usual intermediate values. Six replications 

were executed, and the results are presented below. 

Strongly Unbalanced Workloads 

Table 6-13 gives the results of t tests carried out for various subsets of the data. 

Li111  is used to represent the mean value of U over the six replicates when the 

simple migration strategy was used. Similarly, U413  is used for the covariate based 

migration strategy. Considering the data as a whole, one can conclude at the 

10% significance level, that the covariate strategy performs better than the simple 

strategy. A closer examination reveals that this improvement is only realised when 

there are a smaller number of nodes in the program graph, this is especially true 

when the standard deviation of compute times is also high. For high numbers of 

nodes, the two migration strategies give very similar performance. However, it 

has already been shown that the covariate-based migration strategy out-performs 

the simple one when N = 100, so the point of convergence occurs at some value 

of N higher than 100. 

Lightly to Moderately Unbalanced Workloads 

Table 6-14 gives the results of t tests carried out for various subsets of the data. 

It is clear that, for lightly to moderately unbalanced workloads, the behaviour of 

the two migration strategies is very similar. 
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Data Li 111  U413  n 
Reject H 0 : 

u l/I > U 413  ? 
overall 72.55 75.33 24 Yes 10% 
cTcg%=10 74.68 76.27 12 No 
cTcg%=80 70.41 74.4 12 Yes 10% 
N=32 54.60 59.89 12 Yes 5% 
N=142 90.49 90.78 12 No 
acg % = 10 
N=32 57.61 60.96 6 No 
a 9 %=80 
N=32 51.60 58.81 1 	6 Yes 10% 
acg % = 10 
N=142 91.75 91.58 6 No 

cg% =80 
N=142 89.23 89.98 6 No 

Table 6-13: Results of Paired t Tests Comparing Migration Strategies on 

Strongly Unbalanced Workloads 

Data Li111  U413 n 
Reject H0 : 

U11 	~! 
U413  ? 

overall 84.99 84.87 24 No 
Ucg% =10 90.92 90.26 12 No 

cg%80 79.10 79.48 12 No 
N=32 77.81 77.82 12 No 
N=142 92.22 91.92 12 No 

N=32 88.74 88.74 6 No 

N=32 66.87 66.89 6 No 
cg%_10 

N=142 93.11 92.78 6 No 
0 cg%8O 
N=142 91.32 92.06 6 No 

Table 6-14: Results of Paired t Tests Comparing Migration Strategies on Lightly 

to Moderately Unbalanced Workloads 
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Discussion 

We have seen that the more unbalanced the workload, and the lower the number 

of nodes in the program graph, the better the covariate-based migration strategy 

performs in relation to the simple migration strategy. This is most likely because 

the accuracy of each migration decision becomes more important as the number 

of processes decreases, since the processes in question will correspond to relatively 

large units of work. For large numbers of processes, each process corresponds to a 

relatively small unit of work, so the improvements to be had from migrating one 

process, as opposed to another, are not particularly great. 

The covariate-based migration strategy never performs significantly worse than 

the simple strategy. So, even considering the fact that it only improves perform-

ance under certain circumstances, it still seems a worthwhile choice. 

6.4.3 Validation 

In order to confirm that the results obtained in this chapter are valid, some experi-

ments were carried out using the transputer-based migration mechanism described 

in Section 3.4. The programs executed were synthetic, and of exactly . same 

structure as those used in the simulation experiments described in this chapter. 

As previously, the program parameters N and cr% were set at 100 and 40 respect-

ively. The program graph was structured as a 10 x 10 mesh of processes, since this 

is a valid member of the set of random program graphs. The remaining program 

parameters were set to the values assumed throughout this chapter (see Table 6-

1). Each process in the program carried out arithmetic operations corresponding 

to its computation weight, before exchanging dummy messages with neighbours. 

The migration control parameters were initially configured as one would expect, 

i.e. a threshold of 5%, a period of 2,000,000 clock cycles (every 0.1 seconds) and 

no inundation policy. The selection and location policies were set to select-1/ 
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Rep 
No 

Migrations 

Overheads 
Included ' Strategy 

Covariate 
Strategy 

1 53.95 54.78 42.85 39.51 

2 51.27 52.03 39.57 38.02 

3 65.55 57.51 42.29 39.97 

4 50.77 51.29 43.3 40.88 

5 54.05 54.82 42.12 40.34 

6 56.01 56.71 41.46 40.1 

Overall 53.77 54.52 41.93 39.8 

Table 6-15: Execution Times Observed Using A Truly Random Placement 

locate-1 or select-4/locate-3, according to whether a simple or covariate-

based migration strategy was being investigated. However, a migration period 

of 2,000,000 clock cycles turned out to be unsatisfactory, since thrashing was 

observed to occur. A value of 4,000,000 was found to be acceptable i.e. every 0.2 

seconds. This anomaly can be easily understood if one considers the differences 

between the migration mechanism used for the simulation experiments, and that 

used on the transputer. In the simulations, when a particular process is marked for 

migration, MIMD suspends it the next time it either enters or leaves the processor 

queue. In contrast, the transputer-based migration mechanism can only suspend 

a process when the process itself decides to check whether it has been requested to 

suspend. Therefore, the time for a suspend instruction to be realised is dependent 

on the program itself, and in any case is longer than the MIMD mechanism, since 

processes must reach the front of the CPU queue in order to be suspended. 

A 4 x 4 mesh of transputers was used, and each trial was run for 1000 iterations. 

Table 6-15 shows the results observed using a truly random initial placement. Six 

replications were executed, each differing in the initial placement and mapping of 

weights to the nodes and arcs of the process graph. For each replication, six trials 

were executed, and it is the means of these execution times (in seconds) which are 

presented in Table 6-15. In addition, the overall mean values are displayed in the 

final line. 
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The second column contains the execution times observed with no migration 

strategy. The third column contains the times observed with the statistics collec-

tion and selection /location policies of the migration strategy active. However, in 

this case instead of migrating processes, dummy messages were sent. The small 

difference between the second and third columns confirms that the overheads of 

operating the migration strategy are relatively small. It can be seen from columns 

four and five that both the simple and covariate-based strategies dramatically im-

prove performance. If one considers the overall figures, using select— i/locate—i 

leads to a 21.9% improvement in performance, and using select-4/locate-3 

leads to a 26% improvement in performance. Paired t tests can be used to give 

a formal comparison, the corresponding test statistics are 11.27 and 14.4 respect-

ively. Consequently, one can conclude that both strategies improve performance 

at the 1% significance level. 

Examining the performance of the two migration strategies, it can be seen that 

select-4/locate-3 out-performs select— i/locate—i as the analysis in Section 

6.3.2 would suggest. Once again, this comparison can be formalised using a paired 

t test. The corresponding test statistic is 7.1. With reference to a set of t values, 

one can conclude that select-4/locate-3 out-performs select —i/locate—i at 

the 1% significance level. This is an even stronger result than that reported in 

Section 6.3.2 (where the test was only significant at the 5% level). 

Table 6-16 shows a corresponding set of results to those discussed above, ob-

tained using a restricted random placement. Once again six replications were used, 

and the figure given for each replicate is the mean of six observations. The first 

point to notice is that the difference between columns two and three is small, again 

indicating that the overheads of executing the strategy are acceptable. An exam-

ination of columns four and five reveals that the migration strategy still brings per-

formance improvements. However, these are not as striking as previously, since the 

restricted random placement will usually provide a better initial mapping than a 

truly random placement. This agrees with the observations made in Section 6.2.1, 
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Rep 
No 

Migrations 
Overheads 
Included 

Simple 
Strategy 

Covariate 
Strategy 

1 42.46 43.06 39.98 39.03 
2 38.84 39.49 37.6 36.58 
3 43.89 44.39 39.55 39.34 
4 42.14 42.93 39.37 39.17 
5 40.58 40.99 37.77 37.99 
6 1 	41.7 42.33 1 	38.38 38.14 

Overall 1 	41.6 42.2 1 	38.77 38.37 

Table 6-16: Execution Times Observed Using A Restricted Random Placement 

i.e. that the use of a migration strategy can improve the performance of programs 

mapped using a restricted random placement, as long as the programs themselves 

display a degree of non-uniformity. This was the case in this experiment, since 

a value of 40 was assumed. As usual, t tests can be used to confirm that 

both migration strategies improve performance. The corresponding test statistics 

are 6.74 for a comparison between no strategy and select- 1/locate-1; and 9.79 

for a comparison between no strategy select-4/locate-3. Accordingly, one can 

conclude at the 1% significance level that both strategies improve performance. 

The investigation presented in Section 6.4.2 into the circumstances in which 

select-4/locate-3 out-performs select -i/locate-i suggests that the perform-

ance of both strategies are very similar for programs mapped using a restricted 

random placement strategy. If one examines Table 6-16, it can be seen that this 

indeed appears to be the case. The performance of the two strategies are very 

similar. Indeed, using a paired t test and a corresponding test statistic of 2.04, 

one can conclude at the 10% significance level that the execution times observed 

under the two strategies are the same. 

An investigation of the convergence properties of the migration strategies using 

the transputer- based migration mechanism gave no cause for concern. The sta-

bility properties observed in the simulation experiments were also found to hold, 

as long as the migration period did not fall below 0.2 seconds. Convergence was 
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generally reached after 6-8 seconds, with the vast majority of the migrations oc-

curring in the first 3-4 seconds or so. This is a longer time than that observed 

in the simulations, however, this is consistent with the use of a longer migration 

period. 

The results obtained from the validation experiments described here give no 

reason to doubt the results of the simulation work presented earlier. Indeed, 

it seems that we can be confident that the simulation environment provides an 

acceptable approximation of the behaviour of a real machine. 

6.5 Summary and Conclusions 

It has been demonstrated how a relatively simple migration policy can be used 

to, generally speaking, improve the performance of a class of time-invariant, non-

uniform parallel programs mapped in an unbalanced manner. It was shown that 

the policy exhibited good convergence and stability properties. The parameters 

controlling the operation of the migration strategy were explored, with reference 

to a representative workload, in order find their optimal settings. Process selec-

tion and process location policies based on minimising the covariates ce_ratio_sd 

and sync-mean were shown to significantly improve the performance of the policy. 

Further experiments revealed that the performance of the covariate-based strategy 

was best for strongly unbalanced workloads (as long as the number of nodes was 

not too high). In any case, the covariate-based strategy never performed signific-

antly worse than the simple strategy. Some validation work was carried out on a 

transputer-based machine, and the simulation results were found to be accurate. 

So, we can see that the covariates identified using the analysis of covariance in 

Chapter 5 can be used to guide the construction of a process migration strategy. 

It appears to be possible to use local decision making in order to globally optimise 

the values of these covariates at run-time, and so improve performance. These 
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techniques presented here are general in nature, and could equally be applied in 

alternative environments. 



Chapter 7 

Time-varying Programs and 

Process Migration 

This chapter presents a preliminary investigation into the behaviour of the covariate-

based migration strategy derived in Chapter 6, when presented with time-varying 

programs. The motivation behind this study is, given a particular program, to be 

able to predict whether the process migration strategy can improve its perform-

ance. It would also be desirable to be able to predict the extent of any possible 

performance improvements. 

Section 7.1 shows how the program parameter set assumed up to this point 

can be extended to support time-varying behaviour. Section 7.2 describes an 

experiment designed to explore the nature of the relationship existing between the 

structure of time-varying programs, and the performance of a process migration 

strategy. Section 7.3 presents the results of some validation work carried out on a 

real transputer- based machine. Finally, a summary and conclusions are presented 

in Section 7.4. 

207 
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7.1 Characterising Time-varying Behaviour 

You will recall that I am concentrating on loosely synchronous, data parallel pro-

grams. Many programs conforming to this model display time-varying behaviour, 

in the sense that they proceed through a number of phases characterised by dis-

tinct patterns of activity. Furthermore, these behaviour patterns are often data-

dependent, and it may not be possible to predict them in advance. 

Time-varying behaviour could be modelled in a number of different ways. For 

example, computation times and message lengths could follow time-dependent 

patterns of activity defined by sine waves or step functions. Such techniques are 

used to characterise the workloads of multi-user systems in [10]. However, in the 

interests of simplicity and continuity, an extended form of the existing program 

model will be used to represent time-varying patterns of activity. 

So far, the following program parameters have been assumed: 

IN, c, /L 9 , cg  Img  0 mg  °c or. I 

It is clear that both o and 0m  are related to the time-varying behaviour of a pro-

gram, since they characterise the differences between one iteration of the program 

and the next. However, simply using large values of o and 0m  in order to gener-

ate significantly different compute times and message lengths between successive 

iterations of each process is not an appropriate approach to take. This is because 

the behaviour of programs constructed in this manner would fluctuate wildly, and 

consequently, it would be very difficult for a process migration strategy to keep up 

with the evolution of the program. In addition, such unstable programs would ap-

pear to have little correspondence with real programs (for the loosely synchronous 

program model assumed here). 

Rather than fluctuating wildly, loosely synchronous parallel programs tend to 

exhibit phases where, generally speaking, each process will either be in a steady 
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state or a transitional state. Within a steady state, processes will display similar 

behaviour patterns from one iteration to the next. According to the characteristics 

of the individual program, the relative lengths of steady and transitional phases 

will vary. At one end of the spectrum lie programs whose behaviour patterns are 

constantly evolving; in such cases the program is permanently in a transitional 

state. Alternatively, the transitional phases might be of negligible length, so that 

processes pass through a series of distinct states. Of course, the behaviour of most 

programs will lie somewhere between these two extremes. 

The program parameter set used in previous chapters can be extended with a 

number of extra parameters enabling time-varying parallel programs to be ad-

equately represented. I am interested in generating relatively straightforward 

time-varying patterns of activity in order to carry out exploratory experiments. 

Accordingly, some simplifying assumptions have been made. Firstly, it is as-

sumed that transitional phases are of negligible length, so processes move directly 

between consecutive steady states i.e. the processes modelled display sharp phase 

changes. Secondly, I only attempt to characterise the time-varying behaviour of 

compute times, and not message lengths. This would seem reasonable, since it 

has already been established that the particular program structure and message 

passing protocol used in this thesis results in message passing costs being dom-

inated by synchronisation times, rather than by actual message transfer times. 

Message lengths, therefore, do not have a major impact on performance. 

So, in order to model time-varying behaviour, four new parameters are now 

introduced defining the phase characteristics of processes. The new parameters 

are: 

{ lip9, 
O•pg ,  Op, o} 

The parameters 1a and o define a normal distribution describing the distribution 

of phase lengths over the nodes of the program graph, and 01 
2 
 defines a chi-square 

distribution describing the variance in phase lengths between successive phases. 

Note, that for the sake of consistency, a 9%  may be used to express o pg  as a 
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proportion of it. The parameter a 7, describes the degree of variation in compute 

times between successive phases of the computation (i.e. the magnitude of phase 

changes), it is drawn from a chi-square distribution. The parameters described 

above allow the following behaviour to be characterised: 

The mean phase lengths of the processes (ft pg , Upg%). 

An overall measure of the degree of variation in phase lengths between suc-

cessive phases (a.,,). 

An overall measure of the degree of variation in compute times between 

successive phases (a.,,). 

The choice of a normal distribution to represent phase lengths is a simplifying 

assumption. The approach described here is consistent with that used previously 

to allocate compute times to processes, and message lengths to channels. 

To give an idea of the sorts of time-varying behaviour that can be generated 

using the new program model, two simple simulation trials were executed. The 

parameter values that were used are summarised in Table 7-1. The values of 

and amg% were set so that there was relatively little variation in the initial mean 

compute times and mean message lengths across the nodes and arcs of the process 

graph. Also, by setting a and 	to 0, I ensured that there was little variation in 

behaviour between successive iterations within a single phase. The four new pro- 

gram parameters were used to specify the time-varying behaviour. A 	value of 

10,000 resulted in a reasonable amount of variation in compute behaviour between 

successive phases, considering that the mean compute time for the processes was 

set to 40,000 clock cycles. The mean phase length of the processes was set to 

20,000,000 clock cycles. Two trials were carried out, one with 0p%  set to 1, and 

one with a 9%  set to 20. The first of these trials represented a program display-

ing synchronised global phase changes, since phase lengths were defined to be of 

a very similar length for all processes. The second trial introduced more locally 
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Program Parameters 
Param Value(s) 

N 32 
c 4 

I1 cg  40000 
Ucg % 10 

o.c  0 
IL my  1000 

amg % 10 
Urn 0 

20,000,000 
apg % {1,20} 

cr1, 10 
UPC 10000 

Other Parameters 
Param Value(s) 

Hardware 4 x 4 Mesh 
Placement Restricted Random 

Trial Length 100,000,000 (5 Secs) 
Replications 1 

Table 7-1: Parameter Settings for Preliminary Experiment 

oriented behaviour, with processes undergoing phase changes at different times. 

To simplify matters, the phase length displayed by each process, once allocated, 

was kept almost constant by setting a to 10. 

Only one replication was used, since the purpose of this experiment was merely 

to illustrate the different types of activity which can be represented using the 

extended parameter set. The patterns of activity generated by the first trial, where 

was defined to be 1, are shown in Figure 7-1. This graph shows the compute 

requirements of six randomly chosen processes over the entire simulation period. 

One can clearly see the phase changes occurring every second ( 20,000,000 clock 

cycles). The phase changes are of a global nature, occurring at approximately the 

same time for each process because of the small value of a 9% . Successive phases 

are of similar length because of the small value of a. Figure 7-2 shows a similar 

graph for the second trial. The patterns of activity are far more interesting in this 
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Figure 7-1: Evolution of Compute Times With Global Phase Changes for Six 

Arbitrarily Chosen Processes 
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Figure 7-2: Evolution of Compute Times With Local Phase Changes for Six 

Arbitrarily Chosen Processes 
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case, because the larger value of cT 9% has resulted in phase lengths varying over 

the nodes of the program graph. Consequently, phase changes occur at different 

times for individual processes. 

This section has demonstrated how the addition of four extra parameters to 

the original program parameter set has allowed reasonable, although admittedly 

simple, time-varying patterns of activity to be generated. I now investigate the 

behaviour of these time-varying programs when executed under the control of a 

process migration strategy. 

7.2 Process Migration and Time-varying Programs: 

Preliminary Investigations 

In Chapter 6 we saw how process migration strategies could be used to improve the 

performance of time-invariant parallel programs by improving a non-optimal initial 

mapping. The strategies were observed to display consistent and stable behaviour 

patterns. The experiment described in this section explores the behaviour of 

time-varying programs when executed using the covariate-based process migration 

strategy. 

7.2.1 Experiment Description 

A full factorial experiment was carried out varying three of the twelve program 

parameters. At each of these parameter combinations, two trials were executed, 

one with the migration strategy turned on, and one with the migration strategy 

turned off. The exact parameter values used are summarised in Table 7-2. 

This experiment was designed to study the influence of the structure of a 

time-varying program on the performance of the migration strategy. As a result, 
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program parameters concerned with such things as the shape of the graph and 

the sizes of messages remained fixed at reasonable intermediate levels. Some ran-

dom noise was introduced between successive iterations within the same phase by 

setting o to 1000. This was done in order to mimic the situation often found 

in real programs, where computation demands vary between successive iterations, 

as well as between successive phases (although to a lesser extent). The phase 

characteristics of the programs were defined by setting o, ILP.1  a 2%  and ap  to 

appropriate values. The value of o was varied from 2000 to 32,000 in steps of 

10,000, thereby defining phases changes of increasing magnitude. The mean phase 

length of the processes (in clock cycles) was varied from 1,000,000 to 22,000,000 

in steps of 7,000,000. The standard deviation of the phase lengths over the nodes 

of the graph was set to either 1% or 20% of the mean, corresponding to purely 

global or more local phase changes. By setting a, to 1000, the phase lengths of 

processes were defined to remain relatively constant once decided upon. 

The migration strategy was applied according to its optimal settings derived 

in Chapter 6. You will note that each trial was run for 30 seconds of simulated 

machine time (i.e. 600,000,000 clock cycles). This period is longer than that used 

in previous experiments in order to allow time-varying behaviour to be observed 

over a reasonable period. Replicates differed both in the random graph and ran-

dom number seed used. Those trials within a replication which differed only in 

the state of the migration strategy, were allocated the same initial placement in 

order that any differences in performance could be attributed solely to the actions 

of the migration strategy. 

7.2.2 Results 

Table 7-3 shows an extended analysis of variance table using U as the response 

variable (diagnostic plots revealed no need for a transformation). The letter .s is 

used to represent the state of the migration strategy, which can either be active 
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Program Parameters 
Param Value(s) 

N 100 
c 8 

40000 
a 9 % 10 

orc  1000 
/2mg  1000 

Umg % 10 
0 m  1 
/2p9 {1e7, 8e7, 1.5e8, 2.2e8} 

01 Pg% {1,20} 
1000 

UP C 	1  12000, 12000, 22000, 320001 

Other Parameters 
Param Value(s) 

Migration Strategy {On, Off} 
Process Size 2000 

Hardware 4 x 4 Mesh 
Placement Restricted Random 

Trial Length 600,000,000 (30 Secs) 
Replications 1 	 6 

Table 7-2: Parameter Settings for Investigation into Time-varying Program Be-

haviour 
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Effect D o F Sum of Squares Mean Squares F Ratio F Prob. 
s 1 15420.2 15420.2 7371.1 <.01 
UP C 3 7012.3 2337.4 1117.3 <.01 

3 246.35 82.12 39.25 <.01 
1 7.64 7.64 3.65 0.057 

3O 3 3042.2 1014.1 484.73 <.01 
s,a 3 698.24 232.75 111.26 <.01 
01pc 1Lpg  9 223.93 24.88 11.89 <.01 
SO" 

Pg% 
1 4.73 4.73 2.26 0.134 
3 22.25 7.42 3.55 0.015 

/.Lpg O pq % 3 5.28 1.76 0.84 0.472 
soi 9  9 223.4 24.82 11.87 <.01 
SOOp9 % 3 10.62 3.54 1.69 0.169 
S/ipg O pg% 3 0.76 0.25 0.12 0.948 
01 Pd'PgO'PgO1- 9 35.23 3.91 1.87 0.056 
so, PC1'PgO'Pg% 9 21.86 2.43 1.16 0.32 
Residual 320 669.44 1 	2.09  
Total 383 27644.42 1 

Table 7-3: Extended Analysis of Variance Table 

or inactive. You will recall that the F ratio column allows the relative importance 

of the main effects and their interaction terms to be compared. The F probability 

column shows the level at which each of the terms is statistically significant. 

The model fitted by the analysis of variance explains 97.6% of the variance in 

U. This value was obtained by expressing the sum of squares attributable to the 

various terms as a percentage of the total sum of squares. The remaining variation 

can be attributed to experimental error. From the F ratio column it can be seen 

that the migration strategy effect, s, is clearly the dominant factor, itself explaining 

over 55% of the variation in U. The next most important factors are the o effect, 

and the so-pc interaction term (you will recall that u pc  represents the magnitude of 

phase changes). To confirm that the effects of s and o operate in the expected 

directions, one can examine the mean values of U observed after partitioning the 
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data according to the values of s and 	When .s was active the mean value of 

U observed was 90.29, compared to a value of 77.61 when s was inactive. This 

confirms that the migration strategy has a beneficial effect on processor utilisation. 

Similarly, the values of U observed when 2000, 12000, 22000 and 32000 were 

88.91, 86.26, 81.03 and 78.05 respectively. This is as one would expect; as phase 

changes increase in magnitude, synchronisation delays are greater and processor 

utilisation decreases. 

The other terms in the table seem relatively unimportant in comparison to 

those discussed above. However, of those remaining, the mean phase length, PP., 

seems to have the greatest influence. The standard deviation of phase lengths, 

0pg%' 
has a relatively small impact on processor utilisation. 

7.2.3 Discussion 

The above analysis, while indicating that the migration strategy can improve 

performance, reveals very little about the dynamic behaviour of the strategy. For 

example, are there any significant interactions between the strategy and programs? 

What are the circumstances in which the strategy performs at its best? To answer 

questions like these I will now study in some detail the dynamic behaviour of the 

migration strategy. This is essential in order to understand the relationships which 

exist between the program parameters and the performance of the strategy. 

A large number of statistics are collected by MIMD during the execution of 

simulation trials. As well as providing total figures relating to the entire simulation 

period, the statistics can be collected at user-defined intervals throughout the 

simulation period. For the experiment described here, the 30 second simulation 

'This is necessary since an extended analysis of variance does not contain any inform-

ation regarding the signs of effects. 
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period was divided into 60 x 0.5 second time frames. In each of the graphs that 

follow, I plot three data sets (consisting of 60 observations each) over the entire 

simulation period. These three data sets are: the values of U observed with the 

migration strategy inactive; the values of U observed with the migration strategy 

active; and the number of migrations executed. The analysis is divided into two 

sections. First of all, those trials exhibiting synchronised global phase changes 

(a 9%  = 1) are examined. I then turn my attention to those trials exhibiting more 

locally oriented behaviour, where processes undergo phase changes at different 

times = 20). 

Global Phase Changes 

Figures 7-3 and 7-4 present graphs of the form described above for each of the 

possible combinations of the parameters o and li p., when a 9%  is equal to 1. Each 

of the points plotted is the mean value taken over the six replications; confidence 

intervals are not shown since they would make the graphs too difficult to read. 

Graphs (a)-(d) in Figure 7-3 illustrate the dynamic behaviour of the migration 

strategy when presented with time-varying programs displaying phase changes 

of small magnitude i.e. o = 2000. As one would expect, the computational 

demands of processes change little between successive phases. By studying the 

behaviour observed when the migration strategy is turned off, one can see that 

processor utilisation is almost constant. This is to be expected from programs 

of this type. By examining the observed processor utilisation figures with the 

migration strategy turned on, it can be seen that in all all four cases improved 

figures are obtained. In addition, these improvements are sustained for the entire 

simulation period. The graphs in Figure 7-3 also show the actions of the migra-

tion strategy over time. It is clear that relatively small numbers of migrations 

are required (usually less than 20) in each 0.5 second observation period. This 

is of the order shown to be acceptable in Chapter 6, so I can be confident that 
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the increased utilisation observed under the migration strategy can be attributed 

to improved program performance, rather than to migration overheads. However, 

this can be confirmed by studying the o-  = 2000 section of Table 7-4. This table 

includes the results of paired t tests carried out on the data corresponding to each 

of the graphs in Figure 7-3. For each parameter combination, the results of two t 

tests are presented. The tests compare the mean values of two different metrics, 

U and M, obtained with the migration strategy inactive (denoted by Li or M) 

to those obtained with it active (denoted by L 3  or TM 5 ). Each test is based on 

six pairs of observations, since there were six replications of the experiment. You 

will recall from Chapter 6 that M is defined as the mean number of messages sent 

down a channel. This metric is specific to the program model used here, and is 

very closely related to the rate of computation. For both metrics, one can always 

conclude that the migration strategy improves performance at the 1% level. This 

confirms that the increased processor utilisation can be attributed to improved 

program performance. It seems that, for programs exhibiting phase changes of 

small magnitude, the migration strategy is capable of obtaining significant per-

formance improvements with relatively small numbers of migrations. 

Graphs (e)-(h) in Figure 7-3 illustrate the behaviour observed as phase changes 

are increased in magnitude i.e. o = 12000. Ignoring Graph (e) for the moment, 

Graphs (f)-(h) show the migration strategy working well for programs displaying 

increasing phase lengths. The phase changes are clearly visible in the processor 

utilisation plots. When the migration strategy is active, sustained performance 

improvements of the order of 10% or so are consistently achieved. Each time 

a phase change occurs, performance begins to drop off as the mapping used for 

the previous phase becomes inappropriate. At this point the migration strategy 

detects an unbalanced situation developing and activates itself. An improved 

mapping is generally obtained very quickly. One can see that the actions of the 

migration strategy are stable, and good convergence properties similar to those 

observed in Chapter 6 are displayed. These conclusions are confirmed by the 
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U TJ 	I v M M 8  I Reject H 0 : Lev 

701 = :2:00 0

11P9 
 1e7 87.28 90.98 

R7C~ 
2030 2114 M ~ M5 1% 

8e7 pg  85.68 91.46 % 2003 2170 M ~ M 3  1% 

PPg 
= 1.5e8 86.36 91.48 Li ~ Li, 1% 2027 2150 M ~ M 8  1% 

/Lpg :-- 2.2e8  85.71 92.01 Li ~ U 5  1% 2005 2158 M 8  1% 

UPC = 12000 
1e7 85.57 89.67 U ~ U!8  1% 1940 2041 M ~ M 5  5% 

Apg
= 8e7 82.8 91.45 Li >_ Ti.5  1% 1970 2180 M > M8  1% 

11P9
= 1.5e8 80.94 92.96 Li 	Li 8  1% 1903 2192 TM' ~ M 8  1% 

= 2.2e8 82.43 93.05 Li 	U 8  1% 1938 2202 TM' 1% 

UPC = 22000 
= 1e7 74.11 82.11 U 	U 5  1% 1705 1803 M > M8  10% 

= 8e7 72.52 91.19 Li 	Li 8  1% 1695 2123 TM' -:~: M8  1% 

11P9
= 1.5e8 74.03 92.31 Li 	Li 8  1% 1697 2164 TM' > M5  1% 

2.2e8 73.66 92.83 Li 8  1% 1694 2141 M > M8  1% 

cr 	= 32000 
= 1e7 69.67 79.41 U > U8  1% 1508 1601 M _2~ M3  10% 

/L pg  

ILPg
= 8e7 67.15 90.21 Li > Li3  1% 1489 1924 TM' ~! M 5  1% 

= 1.5e8 69.17 91.57 Li 	Li 8  1% 1525 1970 TM' 	M5  1% 

/t pg  = 2.2e8 67.64 90.48 Li 	Li 8  1% 1509 2000 TM' 	M8  1% 

Table 7-4: Results of Paired t Tests for Different Values of c and p p.,  when 

= 1 

UPC = 12000 section of Table 7-4, which indicates that one can conclude at the 1% 

significance level that the migration strategy improves performance for both the 

U and M metrics in all three cases. 

However, if Graph (e) in Figure 7-3 is examined, it is possible to see a rather 

different picture emerging for programs with very short phase lengths. In such 

cases the activity of the migration strategy seems unstable. This is because the 

strategy is unable to keep up with the programs it is operating on. Just as it is 

beginning to adapt to one phase, another phase change occurs, and it has to start 

all over. This results in a phenomenon known as thrashing, i.e. processes tend to 

migrate back and forward between processors without ever settling in one place. 

The overheads imposed by this activity mean that I need to investigate the extent 



C 
0 

L 

.21 z 

S 
a z 

a 

)c) 

C 
0 

ci 

1.. 
a 

-Q 
S 
z 

(a) 

C 
0 

(0 

ci 

E 

S 
a z 

a 

)g) 

C 
0 

L 
ci 

a: 

a 
0 
S 
a z 

)b) 100 

90 

a 	80 
C 
0 

70 

60 

50 

40 

30 

20 

10 

80 
c 
0 

70 

60 

50 

40 

30 

20 

10 

• I I'  
-fr 

10 	15 	20 
Simulated Machine Time (Secs) 

0 

90 
0 

70 
(0 

60 

50 

40 

30 

20 

10 

80 
C 
0 
-. 	70 
(0 

60 

50 

40 

30 

20 

10 
i A 

94 

Simu)a1r%d MacFiia 'ri 0la(-(i 

0 

Chapter 7. Time-varying Programs and Process Migration 	 222 

U - Policy Active 
Miorations - - 

U - Policy Inactive a 

(a) 

10 	1.5 	20 
Simulated Machine Time(Secs) 

'vi \
• 	 '"J khv. A 

Simula1td Mac} 11e Tim ° ais a((0i 25 
	31 

Simuia1td Mac)1e Tim
0
(Secs1 

,\,Aj 

 
1015 

Time Simulated 	
20 	25 	31 

(Seasi Machine  

Figure 7-4: Dynamic Behaviour Where 	= 1 and o 	= 22000 or 32000: 
(a) cx, = 22000, it 9 =1e7 (0.5 secs) (b) o 	= 22000, ji 9 =8e7 (4 secs) 
(c) cr 	= 22000, jcpg =1.5e8 (7.5 secs) (d) o 	= 22000, iUpg =2.2e8 (11 secs) 
(e) o 	= 32000, /1pg =1e7 (0.5 secs) (f) o 	= 32000, i 9 =8e7 (4 secs) 
(g) o 	= 32000, 1u50 =1.5e8 (7.5 secs) (h) o,, 	= 32000, it50 =2.2e8 (11 secs) 



Chapter 7. Time-varying Programs and Process Migration 	 223 

to which the increased utilisation observed under the migration strategy can be 

attributed to migration overheads. In Table 7-3 one can see that when a = 12000 

and m pg  = 1e7 it is still possible to conclude that the migration strategy improves 

U at the 1% level. However, it is possible to conclude that the migration strategy 

increases the value of M only at the 5% level. This indicates that the migration 

overheads are beginning to occupy a sizeable proportion of the increased processor 

utilisation generated by the actions of the migration strategy. 

Figure 7-4 presents activity graphs for trials exhibiting phase changes of in-

creasing magnitude. Graphs (a)-(d) relate to those trials where o = 22000, and 

Graphs (e)-(h) relate to those trials where o 7,, = 32000. For the moment I will 

ignore the trials with the shortest phase lengths i.e. Graphs (a) and (e). Consider 

the remaining graphs. It can be seen that the actions of the migration strategy 

consistently improve processor utilisation. The larger the value of upc,  the greater 

this improvement appears to be. This is because phase changes of increased mag-

nitude result in more unbalanced programs, therefore the potential benefits of a 

migration strategy are greater. The activity of the strategy seems stable, and 

good convergence properties are displayed, similar to those observed in Chapter 

6. Slightly more migrations are required to reach an improved mapping than ob-

served in Figure 7-3, where phase changes were of smaller magnitude. This is 

because phase changes of larger magnitude mean that successive phases have less 

in common with one another, so a larger number of migrations are required to 

reach an improved placement each time round. Table 7-4 confirms that, at the 

1% significance level, the migration strategy improves performance for both U and 

M in the cases discussed above. 

Returning to Graphs (a) and (e), we can see that the trend noted in the 

discussion of Graph (e) in Figure 7-3 continues. Namely, for short phase lengths 

the activity of the migration strategy becomes unstable, and convergence is never 

reached. The entries in Table 7-4 corresponding to Graphs (a) and (e) show that 

one can accept at the 1% significance level that the migration strategy increases 
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Data Li Li 3  Lev M M 5  Reject H 0 : Lev 

2000 

FPg 
= 1e7 86.51 91.53 

RejecJH O :  

Li ~ 1% 2024 2141 M ~ M 3  1% 

8e7 85.3 91.93 U > 1% 2002 2176 M > M 5  1% 

gU pg  = 1.5e8 86.34 91.65 Li ~ U 3  1% 2013 2148 M ~ M 3  1% 

[L pg  = 2.2e8 86.65 91.74 Li ~ U 3  1% 2032 2133 M ~ M 3  1% 

= 12000 
1e7 85.93 89.59 U >  713  1% 1987 2065 

- 

M ~ M 3  5% 

= 8e7 82.32 92.13 U 	Li 3  1% 1954 2159 1% 

Apg 
= 1.5e8 Q1.84 92.28 Li 	Li 3  1% 1919 2147 M M3  1% 

PPg
= 2.2e8 82.1 92.51 Li 	Li 3  1% 1907 2160 TM' ~ M 5  1% 

UPC 	22000 

APg 	
1e7 73.73 81.82 

- - 

U ~ U3  1% 1703 1805 
- - 

M ~ M 3  10% 

8e7 72.79 89.89 Li 	Li 3  1% 1693 2104 TM' 	M3  1% 

PP9
= 1.5e8 72.33 90.92 Li 	Li 3  1% 1699 2115 TM' ~ M3  1% 

/tpg  = 2.2e8 70.73 91.62 Li 	Li3  1% 1644 2120 TM' > M5  1% 

cr=32OOO 
= 1e7 69.55 78.48 

- - 

U ~ U3  1% 1506 1554 
- - 

M 	M 3  10% 
APg 

/lpg  = 8e7 67.57 88.52 Li 	Li 3  1% 1476 1917 TM' ~ M3  1% 

/L pg  = 1.5e8 68.43 90.17 Li 	713  1% 1475 1928 TM' 	M3  1% 

= 2.2e8 70.1 90.78 Li 	Li 3  1% 1523 1 1925 TM' 	193  1 	1% 
/.L pg  

Table 7-5: Results of Paired t Tests for Different Values of a and p when 

= 20 

U. In contrast, one can accept that the migration strategy increases M only 

at the 10% significance level. This indicates that I cannot be as confident that 

the increased utilisation provided by the migration strategy can be attributed to 

increased program performance, rather than migration overheads. 

Local Phase Change's 

This section concentrates on those trials where °% was set to 20. These trials 

do not display the synchronised global phase changes which were observed when 

apg % = 1. Instead, phase changes occur at different times for different processes, 

thereby resulting in gradual transitions in behaviour over the processes of the 

program. 
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Graphs (a)-(d) of Figure 7-5 illustrate the behaviour observed for relatively 

time-invariant programs i.e. where o = 2000. These behaviour patterns are very 

similar to those shown in Figure 7-3 for trials exhibiting global phase changes. 

This is to be expected. The small magnitude of the phase changes means that 

their exact timing does not have any great influence on the behaviour observed. 

The a, = 2000 section of Table 7-5 confirms that the increased processor utilisa-

tion can be attributed to improved program performance, rather than migration 

overheads. 

Graphs (e)-(h) of Figure 7-5 are concerned with trials where o, = 12000. One 

can observe similar performance improvements in Graphs (f)-(h) to those seen 

in Figure 7-3 for trials where °% = 1. However, the activity of the migration 

strategy in Figure 7-5 seems markedly different to that observed in Figure 7-3. 

The local nature of the phase changes has resulted in the migrations being spread 

throughout the entire simulation period, and the sharp peaks of activity noted 

earlier are no longer present. The number of migrations executed still remains 

relatively small. Table 7-5 shows that for Graphs (g)-(h) one can conclude at the 

1% significance level that the migration strategy improves performance for both 

the U and M metrics. 

A different picture emerges in Graph (e) of Figure 7-5, which relates to pro-

grams displaying short phase changes. As was the case for trials in Figure 7-3, 

short phase lengths result in unstable behaviour and increased numbers of migra-

tions. In Table 7-5, it can be seen that when a = 12000 and ttpg  = 1e7, the 

significance level at which it is possible to conclude that the metric M increases 

is 5%. This indicates that the actions of the migration strategy are beginning to 

result in non-negligible overheads. 

Figure 7-6 presents activity graphs for programs displaying phase changes 

of increasing magnitude. It can be seen that the migration strategy provides 

similarperformance improvements to those observed in Figure 7-4 for trials where 

CPA
= 1. Due to the local nature of the phase changes, the actions of the migration 
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strategy are now spread across the entire simulation period. For Graphs (b)

(d) and Graphs (f)-(h) the migration overheads are tolerable due to the large 

performance gains achieved. This is confirmed by the relevant entries in Table 

7-5. However, for Graphs (a) and (e) the migration overheads occupy a sizeable 

proportion of the increased processor utilisation. Indeed, by examining the entry 

in Table 7-5 where o = 32000 and p p, = 1e7, it can be concluded at the 10% 

significance level that the value of M observed with the migration strategy active 

is not significantly different to that observed with the migration strategy inactive. 

Conclusions 

The experiment and subsequent analysis presented here have enabled us to de-

velop a detailed understanding of the relationships which exist between a class of 

loosely synchronous time-invariant parallel programs, and the performance of a 

representative migration strategy. It has been demonstrated that the strategy is 

capable of significantly improving the performance of programs, as long as phase 

lengths are not too short. The actions of the strategy are generally stable, espe-

cially for programs exhibiting global phase changes. In such cases, phase changes 

are detected accurately and convergence to an improved placement is obtained 

rapidly, just as was observed in Chapter 6. For programs exhibiting more loc-

ally oriented phase changes, the actions of the migration strategy are spread more 

evenly across the entire simulation period. In this way the strategy is able to react 

to local fluctuations in behaviour in order to improve performance. 

The results of paired t tests using the two performance metrics U and M have 

indicated that the overheads imposed by the strategy seem acceptable, as long as 

the phase changes do not occur too frequently. However, for short phase lengths, 

the actions of the migration strategy become unstable, thrashing tends to occur, 

and the overheads associated with the migrations become non-negligible. The 

notable exception to this is the case where o = 2000. For these trials there is 



Chapter 7. Time-varying Programs and Process Migration 	 229 

not a great deal of imbalance present in the programs, so migrations are naturally 

inhibited 

It is interesting to note that this detailed examination of the behaviour of the 

migration strategy has provided conclusions that were not at all obvious from 

the preliminary analysis of variance table. For example, it is clear that programs 

with short phases lengths are not ideal candidates, yet the ,a and 3pg terms in 

Table 7-3 give little indication that these factors might play important roles in 

determining performance. 

7.3 Validation 

To confirm that the simulation results presented in this chapter are applicable 

to real programs, some validation experiments were carried out on a transputer-

based machine using an example loosely synchronous time-varying program. The 

program used was a well known ocean evolution simulation called WATOR, first 

described in [37]. 

The problem domain of WATOR is a 2-dimensional ocean with wrap-around 

borders. The population of this ocean consists of sharks and fish whose behaviour 

is governed by a number of simple rules which are applied at each simulation step. 

During each cycle, a fish or shark may move to a randomly chosen adjacent location 

(North, South, East or West), provided that the location in question is not already 

occupied by a member of the same species. Fish exhibit simple behaviour patterns, 

tending to move to empty locations. Sharks exhibit more complex behaviour since 

they need to eat fish in order to survive, and accordingly, they tend to move to 

locations occupied by fish in preference to empty locations. Sharks and fish both 

give birth to a single offspring after a fixed number of simulation steps, defined 

by the two parameters sbreed and fbreed respectively. Finally, a shark will die if it 

fails to eat a fish for starve consecutive simulation cycles. 
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In order to begin a WATOR simulation five parameters must be initialised. 

Three of these, sbreed, fbreed and starve were introduced above. In addition, the 

parameters ns/iarks and nflsh define the number of sharks and fish present at the 

beginning of the simulation. It is assumed that these are distributed randomly 

and uniformly across the ocean. 

A simulation obeying the rules outlined above would not be particularly close 

to any real population process. However, the WATOR program is interesting be-

cause, although simple, it exhibits many of the characteristics of more complex 

dynamic algorithms typically implemented on parallel machines. For example, fish 

and sharks tend to aggregate quickly into schools, regardless of the initial distri-

bution. This suggests load balancing problems, since for any particular simulation 

cycle, the shark and fish population is unlikely to be uniformly spread across the 

ocean. In addition, the behaviour of WATOR cannot be predicted in advance; in 

order to know the population distribution after it simulation cycles, it is necessary 

to execute all n - 1 previous cycles. This indicates that static load balancing 

techniques are unlikely to be suitable. 

For the reasons outlined above, it is clear that WATOR can be classified as a 

non-uniform time-varying program. It is therefore not surprising that it has been 

used a number of times as a testbed program for investigations into dynamic load 

balancing techniques; see [51,59,132] for example. 

7.3.1 Implementation 

First of all the ocean must be divided into a number of equally sized sub-domains, 

each of which is allocated to a process. A standard data parallel approach is ad-

opted, with processes being cyclic in nature, computing their own internal data 

movements, before exchanging information with their neighbours in order to up-

date boundary locations. 
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Using this technique in a naive manner, it is possible for data items to collide 

with one another at domain borders, i.e. exist in the same location at the same 

point in time. This breaks one of the rules of the WATOR simulation as originally 

stated. Fox [51] describes a technique based on rollback to prevent such collisions. 

This technique involves keeping a record of every data movement made so that 

it is always possible to rewind data items to a previous step if a collision occurs. 

However, in undoing one collision, another might be caused, so multiple rollbacks 

are possible. Indeed, there is no upper bound on the number of rollbacks that 

might need to be performed. 

To overcome this problem, Hanxleden and Ridgway-Scott advocate a slight 

modification of the WATOR algorithm so that it is possible for two data items 

to temporarily share the same ocean location [60]. However, the general trend 

for data items to repel one another is maintained (except for sharks when they 

find a fish). The characteristics of this modified simulation were demonstrated to 

be almost identical to the original WATOR simulation. It is this version of the 

WATOR simulation that is implemented here. 

One other point of note is that, in order to maintain determinism under the 

migration strategy, each process has its own random number generator. 

To enable phases of differing lengths to be created artificially, an extra para-

meter, nreps, was added to the simulation. This parameter specifies the number of 

times that each process should repeat a cycle (where each repetition corresponds 

to a complete iteration, including communications). So, when nreps = 1 the simu-

lation behaves as normal. As the value of ureps is increased, the lengths of phases 

increase, because the simulation spends time repeating the same computation over 

and over. 
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Migrations I Migrations 
nrep Inactive Active 

1 187.55 218.72 
10 188.28 171.29 
20 183.85 153.32 
30 1 	181.51 140.21 

Table 7-6: Execution Times Observed for WATOR with Repeated Cycles 

7.3.2 Results 

An 80 x 80 ocean was assumed, and this was partitioned among 100 processes. 

The simulation was executed on a 4 x 4 mesh of transputers and the migration 

strategy parameters were set to the optimal values derived in Chapter 6. The 

WATOR parameters were set as follows: nfish = 320, risharks = 60, fbreed = 

10, sbreed = 6 and starve = 5. 

The results obtained are presented in Table 7-6, the figures refer to execution 

times in seconds. In each case, the program was run for as many iterations as were 

necessary to give an execution time of between 180 and 190 seconds for the case 

where the migration strategy was inactive. One can see that when nreps = 1, the 

migration strategy actually degrades performance. This is a more extreme effect 

than was seen in the simulation experiments. As the value of rireps is increased, 

however, the migration strategy begins to improve performance. The magnitude of 

the improvement (in percentage terms) seems proportional to the value of nreps, 

which is, in turn, proportional to the phase length. These results agree with the 

simulation results observed earlier, i.e. the likely performance improvements of a 

migration strategy increase as the phase length increases. Accordingly, it appears 

that we can have a reasonable degree of confidence in the simulation results. 

Figure 7-7 illustrates the dynamic behaviour of the machine and the migration 

strategy for different values of nreps, graph (a) refers to the program with the 

shortest phase lengths, and graph (d) refers to the program with the longest 
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phase lengths. The features observed are very similar to those seen in Figures 7-5 

and 7-6, which contained graphs relating to simulation trials exhibiting locally 

oriented phase changes. 

7.4 Summary and Conclusions 

This chapter has demonstrated how time-varying patterns of activity can be ad-

equately characterised and generated using a relatively simple program model. 

This model has been used to examine the behaviour of a migration strategy when 

presented with programs displaying time-varying behaviour. We have been able 

to gain an understanding of the conditions under which the migration strategy 

performs well, and those under which it does not. Consequently, given an arbit-

rary program with known program parameters, it is possible to make statements 

regarding the suitability of this particular migration strategy. In addition, ap-

proximate estimates of the improvement in performance to expect can be made. 

The results of some validation experiments using a real program running on a 

real transputer-based machine were presented. These results broadly agree with 

those obtained using simulation techniques. 



Chapter 8 

Summary and Conclusions 

This thesis has demonstrated how the standard methods of experimental design 

and analysis can be applied to performance analysis studies of parallel programs. 

In particular, the techniques were shown to be appropriate for a study of the 

performance characteristics of a class of process migration strategies. 

Chapter 3 discussed the tools, techniques and environments that were util-

ised in order to carry out this work. A methodology was described enabling the 

construction of synthetic parallel programs. An experimental framework and a 

simulation system called MIMD were then presented. These tools were designed 

specifically to specify, construct and model synthetically generated programs. The 

environment was tailored to simulate occam programs and transputers. Two pro-

cess migration mechanisms were described, one for MIMD, and one for real occam 

programs running on transputer- based machines. Finally, the main statistical 

techniques used in this thesis were discussed. 

Chapter 4 illustrated how simple two level full factorial experiments could be 

used, in conjunction with analysis of variance techniques, in order to undertake 

quantitative performance analysis experiments. A classification scheme and pro-

gram model for loosely synchronous parallel programs were defined. It was decided 

to concentrate on a particularly simple class of regular programs in this chapter 

235 



Chapter 8. Summary and Conclusions 	 236 

in order to illustrate the methodology. A program parameter set designed to 

characterise the time-averaged properties of this class of programs was proposed. 

Using an analysis of variance, it was shown that programs displaying similar 

macroscopic parameters (i.e. having the same program parameters), but differ-

ing in their microscopic details (i.e. having different synchronisation properties 

due to different program graphs and random number seeds), displayed very sim-

ilar performance characteristics. This was illustrated for a number of different 

processor topologies, and for two different performance metrics: the mean com-

putation achieved by the processes, and the mean utilisation of the underlying 

machine. Various transformations of the response were shown to be necessary in 

order to satisfy the assumptions underlying an analysis of variance. I concluded 

that the program parameter set chosen adequately represented performance. In 

addition, it was demonstrated that quantitative estimates of the relative import-

ance of program parameters could be determined. These estimates seemed con-

sistent and meaningful, bearing in mind what is known about the program model 

and machine that were simulated. 

Chapter 5 investigated the construction of performance prediction models. A 

more realistic class of programs was assumed, in which processes and channels 

could display different behaviour patterns. However, these patterns were con-

strained to remain relatively constant over time. As in Chapter 4, an analysis of 

variance revealed the program parameters with the greatest impact on perform-

ance with respect to U, the mean utilisation of the underlying processors. An 

exploratory experiment was carried out varying just these parameters, and the 

method of orthogonal polynomials was then used to fit a response surface to this 

data. Given an arbitrary program with parameters chosen within the range ex-

plored, 75% of predicted values were found to be within 6.8% of the corresponding 

observed values of U. 

The analysis of covariance was then used in an attempt to characterise the 

relationships existing between the predictor variables and U with greater preci- 
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sion. This technique is generally used in order to take account of factors which 

are not under the experimenter's immediate control. In this case, these factors ex-

plained the differences in performance observed between programs with identical 

program parameters. Consequently, a number of covariates characterising the in-

teraction patterns occurring between the program and the underlying machine 

were explored. Two useful covariates were identified, and it was shown that the 

assumptions underlying an analysis of covariance were satisfied. The first covariate 

sync-mean can be thought of answering the following question: 

For how long, on average, does a sender (or receiver) have to wait for 

the remote receiver (or sender) to become ready? 

The second metric ce_ratio_sd can be thought of as quantifying an answer to the 

question: 

To what extent are all processes computing at the same rate? 

A model constructed using these covariates, as well as the more conventional 

program parameter terms, resulted in 75% of predicted values of U being within 

4.1% of the corresponding observed values of U, given an arbitrary program with 

parameters chosen within the range explored. 

I concluded that the covariates sync-mean and ce_ratio_sd contained useful in-

formation relating to the interactions which occur between a program and the 

machine it is being executed on, at least for the program model investigated here. 

The performance prediction equations revealed that lower values of the two coy -

ariates were associated with improved performance. 

Chapter 6 investigated the performance of a class of process migration strategies 

when applied to the problem of improving a non-optimal initial mapping. A rep-

resentative strategy was described, and it was shown that this strategy exhibited 

good stability and convergence properties for a variety of different workloads. Es-

timates of the likely performance benefits obtainable were presented. An improved 
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migration strategy that attempted to minimise dynamically the values of the co-

variates sync-mean and ce_ratio_sd was then derived. This strategy was shown 

to perform as well as the simple strategy, and out-perform it in certain circum-

stances (typically for smaller numbers of processes and unbalanced workloads). 

Some validation results were presented using real occam programs running on a 

transputer-based machine. I concluded that it seems possible to use local actions 

to reduce the values of sync-mean and ce_ratio_sd globally at run-time, and so 

improve performance. 

Chapter 7 investigated the performance of the improved strategy when presen-

ted with programs which varied over time. A set of program parameters suitable 

for characterising such behaviour patterns was described. An exploratory exper-

iment was carried out, and the actions of the strategy were shown to lead to im-

proved performance as long as phase lengths were not too short. For short phase 

lengths thrashing was observed to occur, and the performance of the strategy 

deteriorated. Some validation work was presented using a real program that 

conformed to the program model simulated. The experiments described in this 

chapter allowed us to pinpoint the situations when the strategy investigated was 

able to improve performance; and they also allowed quantitative estimates to be 

made of the likely performance benefits to expect. 

The work presented here has demonstrated that the standard methods of ex-

perimental design and analysis can be used to increase our understanding of the 

performance characteristics of parallel programs. This area had not been ad-

dressed to any great extent previously. I have shown that it is feasible to search 

for simplified program models that are characterised in terms of a small number 

of parameters representing time-averaged properties. Quantitative performance 

prediction models can be derived in terms of these program parameters, using 

designed experiments and synthetic programs. Such models could be used to aid 

program configuration decisions. For example, the initial performance prediction 

equations developed in Chapter 5 indicate the factors that one should concentrate 
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on when trying to fine-tune the performance of a program obeying the particular 

program model under consideration. Given a choice between reducing synchron-

isation overheads and reducing message lengths, one should concentrate on the 

former, since it is known that message lengths do not have a great impact on 

performance in this case. It is also possible to obtain quantitative estimates of the 

likely performance benefits available by carrying out these optimisations. 

It has also been demonstrated how these models can be extended to take 

account of environmental factors, using the analysis of covariance. This allows the 

impact of different program mappings and communication patterns to be explored, 

thereby providing considerable insight into the dynamics of program behaviour. 

As an example of a practical application of these techniques, we have seen how 

information derived from an analysis of covariance can be used to improve the 

performance of a representative process migration strategy. 

The results obtained in Chapters 6 and 7 demonstrated how the performance of 

programs running under a particular run-time environment (typified by a process 

migration strategy) can be estimated quantitatively. Such techniques allow us to 

better understand the circumstances under which a migration strategy can improve 

performance. Models of the type developed here could possibly be incorporated 

into an operating system. Then, given a program with known parameter values, 

the operating system would be able to decide whether it was worth applying a 

given process migration strategy. 

8.1 Future Work 

There are a number of directions in which future work could proceed. It would 

be interesting to extend these investigations to alternative program models; for 

example, divide and conquer or task farm models. It is not clear how well other 

classes of programs could be characterised in terms of time-averaged parameters, 
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or what those parameters would be Since some programs are more naturally 

represented in terms of precedence graphs rather than process graphs, techniques 

for characterising the time-averaged behaviour of precedence graphs need to be 

explored. 

Even retaining the program model assumed in this thesis, there are a num-

ber of avenues to explore. I have only considered a single machine, and gener-

ally speaking, have held constant the processor topology. It would be interesting 

to investigate whether the details of the particular machine and topology used 

could be adequately incorporated into performance prediction models. The res-

ults presented in Chapters 5-7 relating to covariates and process migration were 

derived exclusively using mesh based topologies. It would be informative to study 

how easily these results could be extended to alternative machines and topologies. 

Also, although I have illustrated the plausibility of my results using real programs, 

it would be desirable to undertake a more extensive validation study. 

Another area that requires further work is the problem of deciding whether a 

given program belongs to a particular program class. It needs to be determined 

to what extent this information can be derived automatically by analysing the 

source code and/or executing the program. 

The particular covariates identified in Chapter 5 are, to a certain extent, tied 

to the program model used. However, the information that they provide, i.e. that 

synchronisation overheads should be minimised and computation rates equalised, 

is general in nature and applies to all programs. Alternative program models 

should be explored, and suitable covariates derived. It would then be interesting 

to see if the essential essence of these covariates could be extracted and expressed 

in general terms. Ideally, one would like to be able to define covariates that were 

universally applicable. 

This thesis has concentrated on optimising the values of covariates dynamically 

at run-time in order to improve performance. An alternative approach would 
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be to attempt this in a post-mortem manner. This idea is related to the post-

game analysis adaptive mapping strategies described in [67,125). These strategies 

execute a program collecting monitoring information, and then use heuristics in 

an attempt to propose an improved mapping. The process is then repeated, the 

idea being that one will eventually converge to an acceptable mapping. It would 

be an interesting application of the analysis of covariance to provide a formal 

framework in which to develop suitable heuristics. For example, for the class of 

programs investigated in this thesis, the heuristics should propose alterations to 

the mapping such that the values of the covariates sync-mean and ce_ratiosd were 

minimised. Note that, unlike the situation found when constructing a distributed 

migration strategy, global knowledge could be used in this case. 

With regard to process migration strategies, there is a large volume of work 

remaining to be done before their use can be adopted on a widespread scale. For 

example, instead of using simplistic mapping strategies, it would be informative 

to study the effect of using more sophisticated mapping heuristics. A greater un-

derstanding needs to be obtained of the precise conditions under which particular 

process migration strategies can improve performance, for a wide variety of differ-

ent program models. It would be only at this stage that one could consider incor-

porating such strategies into a general purpose multiprocessor operating system. 

To support this, there is a requirement to develop general purpose performance 

prediction models capable of estimating the performance benefits to expect, given 

an arbitrary program with known program parameters, and a particular process 

migration strategy. 

The work described in this thesis has illustrated the application of the stand-

ard methods of experimental design and analysis to the performance analysis of 

parallel programs. This is just a first step, and there is a requirement for further 

systematic studies in order to establish the extent to which the approach proposed 

here is applicable to other types of programs and machines. In the longer term, 

it would be desirable to be able to construct operating systems that, given an 
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arbitrary program, could determine what class the program belonged to, and con-

sequently make suitable mapping and run-time decisions in order to execute the 

program as efficiently as possible. 
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