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Abstract 

Animal breeders and evolutionary geneticists are often faced with the problem of 

analysing traits that change as a function of age or some other independent and 

continuous variable. Three main approaches have been put forward to deal with 

this kind of data: random regression models, that are the most commonly used at 

present, character processes (CP) that have recently been proposed and focus on a 

parametric modelling of the covariance structure, and structured antedependence 

(SAD) models suggested in the statistical literature. 

The first objective of this work was to compare and contrast these different 

methodologies for genetic analysis. As the range of all possible models can be 

very large in practice, it is advisable to have a preliminary idea of the covariance 

structure of the data, and a non-parametric approach based on the variogram was 

proposed. It is especially adapted for exploratory analysis when a large number 

of observations is available per subject over time and was applied to the anal-

ysis of daily records for milk production in dairy cattle. Model comparisons in 

the univariate case showed that character processes were generally better able 

to fit the covariance structure than random regression with fewer parameters. 

However, CP models do not allow a straightforward extension to the multivari-

ate case. Further research showed that structured antedependence models offer 

similar advantages to character processes compared to random regression while 

allowing an extension to multi-trait analyses. SAD models were even able to cap-

ture the highly non-stationary correlation pattern in the application to lactation 

curve analysis. For genetic evaluation of dairy cattle, longitudinal models can 
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easily provide estimation of individual cumulative milk productions as well as 

genetic values at 305 days. However, these predictions do not take into account 

the drying-off process and can be highly overestimated for short lactations. A 

methodology to correct them was suggested. All these analyses were performed 

in the case of normally distributed longitudinal data. An extension to the genetic 

analysis of non-normally repeated measures was considered. Estimation proce-

dure becomes much more complicated and requires the use of Markov Chain 

Monte Carlo methods. 

In this study antedependence models appeared to be the most appropriate for 

genetic analysis of longitudinal data. In their traditional specification, however, 

times of measurement were assumed to be on a discrete scale and equally spaced. 

This can be quite a stringent assumption in practice and a continuous extension 

of these models was proposed. 
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Chapter 1 

General Introduction 

Animal breeders and evolutionary geneticists are often faced with the problem of 

analysing traits that change as a function of age or some other independent and 

continuous variable. This work was initially motivated by the genetic analysis of 

lactation curve for dairy cattle. Advantages of using individual test day informa-

tion instead of summary measure of 305-day yield to evaluate the genetic merit 

for milk production are widely accepted. Firstly, more environmental variation 

can be removed from the phenotypic observations by considering the effects act-

ing on the repeated measures that cannot be taken into account when modelling 

305-day yields. Secondly, larger accuracy of cows' genetic evaluations may be 

achieved because of the use of more data per animal. Thirdly, selection tools to 

improve lactation shape characteristics such as persistency may be obtained. Ge-

netic analysis of repeated measures is also a more general issue and can be applied 

to a wide range of areas such as growth curve analysis of laboratory and agricul-

tural species, or the study of age-specific fitness components such as reproductive 

output. 

Detailed descriptions of the extension of classical quantitative genetics to the 

analysis of function-valued traits is given by Kirkpatrick and Heckman (1989) and 

Pletcher and Geyer (1999). In short, the method assumes the observed character 

is best described by a function (or stochastic. process) of some independent and 
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continuous variable. Although any continuous variable is acceptable (e.g., the 

level of some environmental factor), the most common is age, and all of the 

examples will focus on characters that change with age. Further, it is assumed 

that the character values at each age constitute a multivariate normal distribution 

on some scale. This assumption is for most practical cases a good approximation 

and is very convenient for calculations. It was however relaxed by Pletcher and 

Jaifrezic (2001, appended to this thesis). 

As with traditional quantitative genetics, it is assumed that the observed 

phenotypic trajectory of the character is random and influenced by one or more 

unobservable factors. In the simplest case one might consider the additive con-

tribution of many genes along with unpredictable environmental effects. More 

complicated models involving interactions among different genes or specific envi-

ronmental effects (e.g., maternal effects) are straightforward, although computa-

tional difficulties will likely arise. For the additive model, we assume the observed 

phenotype can be decomposed as 

X(t) = j(t) + g(t) + e(t) + c, 	 (1.1) 

where i(t) is a nonrandom function, the genotypic mean function of X(t), and 

g(t) and e(t) are Gaussian random functions, which are independent of one an-

other and have an expected value of zero at each age (Kirkpatrick and Heckman, 

1989 ; Pletcher and Geyer, 1999). They represent the age-dependent genetic and 

environmental deviations, respectively. In this context, e(t) is often referred to as 

the permanent environmental effect and c is the residual variation—c is assumed 

normally distributed with constant and unknown variance over time. 

The goal of the analysis is to decompose the observed variation in X(t) into 

its genetic and environmental contributions by estimating covariance functions 

for g(t) and e(t). A covariance function, r(s, t), is a bivariate continuous function 

that describes the covariance between any two ages, r(s, t) = Coy {X(s), X(t)}. 

By the independence of g(t) and e(t), the phenotypic covariance function of X(t) 
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is given by P(s,t) as 

P(s, t) = G(s, t) + E(s, t). 	 (1.2) 

where G(s, t) is the genetic covariance function, and E(s, t) the environmental 

covariance function, which also includes the residual variance. These functions 

are estimable via maximum likelihood (ML) or restricted maximum likelihood 

(REML) when there are data on individuals of various relatedness (Lynch and 

Walsh, 1998 ; Pletcher and Geyer, 1999). 

There have been at least four different methods suggested for estimating the 

desired covariance functions: orthogonal polynomials (Kirkpatrick and Heckman, 

1989), random regression (Diggle et al., 1994 ; Jamrozik et al., 1997 ; Meyer, 

1998), character processes (Pletcher and Geyer, 1999), and structured antede-

pendence models (Nunez-Anton and Zimmerman, 2000). All four methods are 

based on likelihood estimation—although the orthogonal polynomial approach 

was originally published as a least squares estimation (Kirkpatrick et al., 1990). 

Random Regression (RR): Random regression models employ parametric 

forms for the unobserved functions in (1.1). Although traditionally a parametric 

mean curve is often used to estimate i(t), this is not essential. However, the 

individual deviations from this curve (i.e., the g(t) and e(t)) are assumed to 

be parametric functions of time, and polynomials are often used. For example, 

the age-dependent deviations from the population mean due to an individual's 

genotype might be linear in time, such that 

g(t) = a1  + a2 t. 

where the a i  are random genetic regression coefficients. The regression coefficients 

are unobservable, random effects; they have a specific value for each individual; 

and they are assumed to be multivariate normally distributed. The environmental 

deviations, e(t), are assumed independent of the genetic effects, and they are 

modelled similarly. 
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Genetic and environmental covariances as a function of age are determined 

by the variances and covariances among the regression coefficients. Following the 

example presented above, the genetic covariance between ages s and t is 

G(s, t) = Cov(g(s), g(t)) 

= Cov(a i  + a2 s, a1  + a2 t) 

= Var(a 1 ) + (s + t)Cov(a i , a2 ) + stVar(a2 ). 

The primary objective in these models is to choose the most appropriate para-

metric functions for the genetic and the permanent environmental deviations. In 

many cases the parametric functions are nested and likelihood ratio testing can be 

used. Since this involves testing the significance of parameters on the boundary of 

their feasible parameter space, the test statistics are often mixtures of Chi-square 

distributions (Stram and Lee, 1994). 

Character process model (CP): In contrast to the RR models, the character 

process model does not attempt to model the forms of the g(t) or e(t) functions. 

Instead, parametric models for the covariance functions themselves (i.e., G(s, t) 

and E(s, t) in equation (1.2)) are the target of analysis (Pletcher and Geyer, 

1999). 

Again taking the genetic covariance function as an example, the covariance 

function can be decomposed into 

G(s, t) = VG(S) VG(t)pG(IS - tI) 	 (1.3) 

where VG(t) 2  describes how the genetic variance changes with age and ,oG(Is - ti) 
describes the genetic correlation between two ages. There are no restrictions 

on the form of VG(.),  and it is often modelled using simple polynomials (linear, 

quadratic, etc.). As presented in Pletcher and Geyer (1999) the character process 

model assumes correlation-stationarity, i.e. the correlation between two ages is as- 

sumed to be a function only of the time distance (Is - tI) between them. Although 
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strictly speaking this assumption is almost surely wrong, experience suggests that 

it is expected to provide a reasonable approximation in most cases (Pletcher and 

Geyer, 1999). The benefit of correlation stationarity is that it allows numerous 

choices for p(•), all of which satisfy several theoretical requirements (Fletcher and 

Geyer, 1999). Chapter 2 presents a possible non-stationary extension of these 

models using a non-linear transformation upon the time axis. When the data are 

collected at equally spaced intervals, CF models with a constant variance and an 

absolute exponential correlation (p(s, t) = OCI  function are equivalent to an 

autoregressive model of order 1. 

Orthogonal Polynomials (OP): Kirkpatrick and Heckman (1989) originally 

presented the use of orthogonal polynomials as a non-parametric way of "smooth-

ing" previously estimated covariance matrices. This was the first attempt to for-

malize the estimation of covariance functions in a genetic context. As with the 

CF model, the shapes of the individual age-dependent deviations were not con-

sidered, and models for the structure of the variance-covariance matrix itself were 

the focus of attention. Kirkpatrick and Heckman (1989) suggest that the genetic 

covariance function be represented as 

mm 

G(s,t) = 	 (1.4) 
i=O j=O 

where m determines the number of polynomial terms used in the model, k ij  are 

the m(m + 1)/2 unknown parameters to be estimated (the coefficients of the 

linear combination), and Oi  is the i' Legendre polynomial (Kirkpatrick et al., 

1990). The environmental covariance function is modelled similarly. Meyer and 

Hill (1997) present a method for estimating covariance functions such as (1.4) 

directly from the data using REML. 

As originally presented, the orthogonal polynomial approach is similar in spirit 

to the CP model, and both differ in principle from the RR approach. In the RR 

methods, the primary model development occurs at the level of individual de- 



viations (equation (1.1)). The analyst begins by considering the behaviour of 

individual age-specific deviations. The resulting covariance structure is a conse-

quence of these deviations. For the CP and OP models, the situation is reversed. 

The analyst begins by considering the structure of the covariance matrix (equa-

tion (1.2)), and the shapes of the individual deviations are a consequence of this 

structure. Although RR and OP methodologies were originally proposed as two 

different concepts, Meyer (1998) showed that in most cases they are equivalent. 

Structured antedependence models: The concept of this methodology is 

again different from the previous ones. The idea of antedependence models, as 

originally proposed by Gabriel (1962), is that an observation at time t can be ex-

plained by the previous ones. An antedependeuce structure of order r is defined 

by the fact that the ith observation (i > r) given the r preceding ones is inde-

pendent of all further observations (Gabriel, 1962). Generalizing this concept to 

genetic analysis, a second order structured antedependence model for the genetic 

part g(t) can be written as: 

g(t0) = f 9  (to) 
	

(1.5) 

9(t1) = 01 g(to) + c9 (t1) 
	

(1.6) 

9(t3 ) = 0 g(t3 _ 1 ) .+ 02 9(t3 _) + f9 (t) 	 (1.7) 

for j > 2. Here, 01 and 02  are regression parameters, and f9 (t) is assumed to 

be normally distributed, with mean zero and variance a 9 (t) that can change with 

time. This corresponds to a generalization of simple autoregressive models that 

assume constant variances. In structured antedependence (SAD) models, Nunez- 

Anton and Zimmerman (2000) propose to use a parametric function for variances 

a9 (t) using for example a polynomial of time. SAD models require very few pa- 

rameters for the covariance structure, and increasing the order of antedependence 

only involves one extra parameter at each step. The same model can be written 

for environmental effects e(t). At their first order, SAD models are closely related 
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to character processes with an exponential correlation and a quadratic variance. 

The CP approach is more general in the sense that many different correlation 

functions can be considered. However, SAD models of order s allow more flexi-

bility for the correlation function as 2s parameters are included whereas only 2 

parameters were included for the CP models. 

The first objective of this work was to compare and contrast these different 

methodologies and evaluate their performance. In Chapter 2, a variety of simu-

lated data sets was explored and types of covariance structures (genetic and envi-

ronmental) accommodated by each method are described. Empirical data on age-

specific mortality and reproductive output in fruit fly, Drosophila melanogaster, 

and growth in beef cattle were considered. Ability of each model to adequately 

fit empirical data was evaluated. 

The range of all possible models can be very large in practice, especially 

for the character process methodology where it is possible to combine different 

functions of variance and correlation for both genetic and environmental parts. 

It is in general not possible to investigate all the possible combinations, and it 

would therefore be extremely useful to have a preliminary idea of the covariance 

structure in order to choose the most appropriate model. The object of Chapter 

3 is to propose a non-parametric approach based on the variogram (Diggle and 

Verbyla, 1998) especially adapted for exploratory analysis when a large number 

of observations is available per subject over time and data are unbalanced. The 

methodology is illustrated using both simulated data sets and actual data on 

age-specific fertility in Drosophila and daily records for milk production in dairy 

cattle. 

Models were compared in Chapter 2 in the case of univariate genetic analysis. 

Character process models were generally better able to fit the covariance structure 

than random regression with fewer parameters. However, CP models do not have 
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a straightforward extension to the multivariate case. We focus in Chapter 4 

on structured antedependence models, that have similar advantages to character 

processes and can easily be extended to the multivariate case. Their performance 

was compared to random regression models. Bivariate phenotypic and genetic 

analysis of fertility and mortality in Drosophila, and of milk, fat and protein 

yields in dairy cattle are presented. 

An application and comparison of the different models in the case of lactation 

curve analysis is presented in Chapter 5 in order to help deciding which would 

be the most appropriate for genetic evaluation of dairy cattle based on test-day 

records. The most commonly used at present are random regression models, but 

very few comparisons with other methodologies have been done. A methodology 

to model residual variances that change with time using a structural model is 

proposed in Chapter 6. 

Genetic evaluation of dairy cattle for milk production requires prediction of in-

dividual genetic values at 305 days. Longitudinal models can easily provide these 

predictions as well as individual cumulative milk productions which are much 

more accurately estimated than with extrapolation procedures previously used. 

However, classical models (random regression, character process, antedependence 

models) ignore completely the drying off process and predictions obtained rely 

on the assumption that cows are never made dry. This can be a problem espe-

cially for cows with shorter lactations as it will induce an overestimation of the 

predicted productions, and eventually of the genetic values. A methodology that 

corrects predictions obtained with longitudinal models for the probability of each 

cow to be dried off at each time is proposed in Chapter 7. 

All these analyses were performed in the case of normally distributed longi-

tudinal data. An extension of character process models to the genetic analysis of 

non-normally distributed repeated measures is appended to this thesis. Estima-

tion procedure becomes much more complicated and Markov Chain Monte Carlo 

N. 



methods were used. This approach was investigated using simulated data and 

applied to a large data set measuring mortality rates in Drosophila (Pletcher and 

Jaifrezic, 2001). 
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Chapter 2 

Statistical models for estimating 

the genetic basis of repeated 

measures and other 

function-valued traits 

2.1 Introduction 

A simple and efficient procedure for the genetic analysis of characters that change 

as a function of age (or some other independent and continuous variable) is de- 

sirable for researchers in several fields of biology and genetics. Plant and animal 

breeders are often faced with the genetic analysis of "repeated measures" data, 

such as lactation in dairy cows or growth rates in important agricultural species. 

Biologists interested in the evolution of life histories study the genetic basis of 

age-specific fitness components, such as survival or reproductive output; while 

evolutionary ecologists often examine the genetic relationship between values of 

a single character expressed over a continuous range of environmental variables. 

Recent conceptual and computational advances have made the genetic anal- 

ysis of such function-valued traits readily accessible. Four methods have been 

advanced in the literature. First, random regression (RR) models have been 
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widely used for the analysis of longitudinal data in the traditional statistical lit-

erature (Diggle et al., 1994 ; Verbeke and Molenberghs, 1998) and recently have 

been applied in the animal breeding context (Jamrozik et al., 1997). Second, 

the use of orthogonal polynomials (OP) to approximate covariance matrices was 

initially suggested by Kirkpatrick and Heckman (1989) and is closely related to 

random regression models (Meyer and Hill, 1997 ; Meyer, 1998). Third, the char-

acter process (CP) model was recently proposed by Pletcher and Geyer (1999) 

and is based on stochastic process theory. Fourth, structured antedependence 

(SAD) models that correspond to a generalization of autoregressive models and 

have been proposed by Nunez-Anton and Zimmerman (2000). We develop and 

consider a general extension of the process model to take advantage of new meth-

ods for estimating complicated correlation structures. Each of these methods has 

been implemented in relatively easy to use computer software packages which are 

freely available. 

The aim of this chapter is to compare and contrast the four approaches and 

evaluate their performance. We explore a variety of simulated data sets and de-

scribe the types of covariance structures (genetic, environmental, and otherwise) 

accommodated by each method. Using empirical data on age-specific mortality 

and reproductive output in the fruit fly, Drosophila melanogaster, and on growth 

in beef cattle, we evaluate the ability of each model to adequately fit empirical 

data. 

2.2 Examples and Analyses 

2.2.1 Estimation procedures 

Models considered have been described in the Introductory Chapter. We propose 

to relax the stationarity assumption for character process models using a method 

proposed by Nunez-Anton (1998) and Nunez-Anton and Zimmerman (2000). The 
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idea is to implement a non-linear transformation upon the time axis, 1(t), such 

that correlation stationarity holds on the transformed scale—on the original scale 

the correlation is non-stationary. The correlation function is then defined as 

p(s, t) = p(f(s) - f(t)), and the functions suggested by Pletcher and Geyer 

(1999) remain valid. Ideally the transformation function should contain a small 

number of parameters with interpretable effects. 

Nunez-Anton and Zimmerman (2000) suggest a Box-Cox power transforma-

tion such that 

(t - 1)/A if A 54 0 

= Log 	ifA=0 

where A is a parameter to be estimated. For an absolute exponential corre-

lation function: p(s, t) = 011(s)—f(t)I the correlations on the sub-diagonals are 

monotone increasing if A < 1 or monotone decreasing if A > 1. If A = 1 the non-

stationary model reduces to a stationary one. Thus, a likelihood ratio test of the 

null hypothesis H0  : A = 1.0 can be used to quantitatively examine the extent of 

non-stationarity in the data. Additional flexibility in the non-stationary pattern 

might be achieved by considering more than one parameter A. For example, one 

might incorporate distinct A, for different values of Is - ti, which is equivalent to 

a separate A 2  for each sub-diagonal of the covariance structure. 

All covariance parameters were estimated using restricted maximum likelihood 

(REML). In all cases a non-parametric mean function was used (i.e., a separate 

mean was fitted for each distinct age in the data), which ensures a consistent 

estimate of the covariance structure (Diggle et al., 1994). Comparison among 

models was based on the Bayesian Information Criterion (BIC) (Schwarz, 1978), 

which provides for likelihood based comparison among non-nested models. It 

penalizes the likelihood for the number of parameters involved in the model and 

takes into account the number of observations (which is not the case for criterion 
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such as AIC (Akaike, 1974)). BIC is 

Loglikelihood - x number of parameters in the model x log n 

where n = n - p when using REML with n the number of observations in the 

data set and p the number of fixed effects. The model selected is the one that 

maximizes the criterion. Other selection criteria could also have been considered: 

minimizing the standard error of genetic value predictions (for beef cattle data), 

or using the score test to check the goodness-of-fit of covariance structures. 

To determine the best fitting model under each technique, a large number 

of models were fitted to each data set. For the character process method, over 

100 different models (i.e., different combinations of polynomial variance functions 

and stationary and non-stationary correlation functions) were investigated, and 

the best model was chosen according to the BIC criterion. We chose to examine 

a large number of CP models for reasons of thoroughness. The CP models are 

relatively new, and the behaviour of these models is not well-known. In practice, 

such an exhaustive search is not required, as standard model selection procedures 

(e.g., sequential addition of polynomial terms to the variance function) result 

in identical conclusions (results not presented). For both random regression and 

orthogonal polynomial methods, the appropriate polynomials of increasing degree 

were fit until an increase in degree no longer resulted in a significant increase in 

the log-likelihood at the a = 0.05 level (Meyer and Hill, 1997). We find that a 

reasonable approach to model selection requires of the order of 5-10 model fits 

for each method. For SAD models, the order of antedependence was increased 

until the added correlation coefficient was close to zero. Quadratic variances were 

first considered and the polynomial order was reduced when appropriate. A more 

detailed description of these models is given in Chapter 4. 

Estimates of the covariance structure based on random regression, orthogonal 

polynomials and antedependence models were obtained using the software package 

ASREML (Gilmour et al., 2000), while estimates of the character process model 
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(and certain orthogonal polynomial models) were obtained using computer soft-

ware developed by S. Pletcher (personal communication, C code and executable 

files freely available). A series of exploratory analyses were conducted to ensure 

the two software packages produced comparable log-likelihoods. A small number 

of covariance structures could be fitted by both packages (models of constant 

variance and correlation across ages, and small orthogonal polynomial models) 

and these structures were fitted to several data sets. In all cases, identical log-

likelihoods were reported by each package. 

2.2.2 Simulated Data 

Many data sets were simulated according to various covariance structures. All 

were built assuming a standard sire design (i.e., groups of half-sibs) in which 

12 offspring from each of 70 sires were measured at five different ages. Under 

such a design, the estimated between-sire covariance function is directly propor-

tional to the genetic covariance function. The environmental covariance function 

and residual error are estimated based on the within-sire and the within-animal 

variation. We present the results of four representative data sets. Because the 

magnitude of the variance and covariances were different among the simulations, 

we set the residual variance for all simulations to approximately 10% of the total 

variance at age 0. 

Figure 2.1: Contour plots of the simulated genetic covariance structures for: A-

data generated according to a stationary character process (CP) model, B-data 

simulated according to a CP model with arbitrary and non-stationary correlation 

(this is a discrete valued matrix rather than a continuous function), C-data gen-

erated under a random regression (RR) model with linear deviations, and D-data 

simulated assuming an orthogonal polynomial (OP) model of degree two. 
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The first data set was simulated according to a stationary CP covariance struc-

ture, the purpose of which was to assess the behaviour of SAD, RR and OP models 

when the genetic correlation decreases to zero within the range of the data. The 

genetic covariance function was composed of a quadratic variance (i.e., a quadratic 

V'(-) from equation 1.3) and "normal" correlation (p(t 2 , t3 ) = ezp(-0.8(t2 - t3 ) 2 ) 

(Figure 2.1a). The environmental covariance function was composed of a lin-

ear variance and "Cauchy" correlation function (p(t, t 3 ) = 1/(1 + 0.05(t, - t3 ) 2 ) 

(Pletcher and Geyer, 1999). We refer to this data set as the stationary CP data. 

To examine a well-behaved covariance function with a somewhat non-stationary 

correlation, we simulated data with genetic variance function identical to that in 

the stationary CP data, but with an arbitrary non-stationary correlation struc-

ture (Figure 2.1b). The environmental covariance was assumed identical to that 

in the stationary CP data. This data set is the non-stationary CP data. 

The third data set was simulated according to a random regression model 

with linear deviations for both the genetic and environmental parts. The chosen 

parameter values resulted in genetic and environmental correlations that remained 

quite high over all ages in the data (Figure 2.1c). 

The last data set that we present was simulated according to an OP model, 

with quadratic Legendre polynomials for the genetic and environmental parts (i.e., 

m = 2 in equation 1.4). The shapes of the covariance functions were rather undu-

lating, as is expected from functions based on orthogonal polynomials. Parameter 

values were chosen such that the environmental correlation remained quite high 

over time while the genetic correlation was highly non-stationary (Figure 2.1d). 

To compare the fit of the models we calculated goodness-of-fit statistics for 

the estimated variance and correlation functions under each model with respect 

to the simulated structure. Goodness-of-fit was quantified by the concordance 

correlation coefficient, r, described by Vonesh et al. (1996) (see appendix). The 

possible values of r are in the range —1 < 1, with a perfect fit correspond- 
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ing to a value of 1 and a lack of fit to values < 0. This coefficient allowed separate 

evaluation of the fit for variance and correlation for the genetic and environmental 

parts, which was not possible with likelihood based criteria that only provide one 

measure for the overall fit of the model. 

2.2.3 Empirical Data 

Drosophila reproduction and mortality: Age-specific measurements of re-

production and mortality rates were obtained from 56 different recombinant in-

bred (RI) lines of Drosophila melanogaster, which are expected to exhibit genet-

ically based variation in longevity and reproduction (J.W. Curtsinger and A.A. 

Khazaeli, unpublished results). Age-specific measures of mortality and average 

female reproductive output were collected simultaneously from two replicate co-

horts for each of 56 RI lines. Live/dead observations were made every day, while 

egg counts were made every other day. For both mortality and reproduction the 

data were pooled into 11 5-day intervals for analysis. Mortality rates were log-

transformed and reproductive measures were square-root transformed to ensure 

the age-specific measures were normally distributed. 

Growth in beef cattle: These data come from the Wokalup selection experi-

ment in Western Australia and correspond to January weights of 436 beef cows, 

from 77 sires. Weights were recorded between 19 and 82 months of age, with up 

to 6 records per cow. Analyses are carried out within 83 contemporary groups 

(year-paddock-age of weighing subclasses), fitted as fixed effects. Additional in-

formation, along with access to the data, can be obtained from Dr. Karin Meyer's 

web page at the Animal Genetics unit of the University of New England, Australia 

(http://agbu.une.edu.au/—meyer). 

The aim of experimental data such as reproduction and mortality in Drosophila 

is to study the genetic variation and correlations of such fitness components over 
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time. On the other hand, data such as growth in beef cattle, or milk production 

of dairy cattle as analysed later, are used to calculate genetic values for breeding 

programs. Although these two goals are very different, they both require the most 

appropriate modelling of the covariance structure, either to be studied directly 

or to provide more accurate breeding value predictions. 

2.3 Results 

2.3.1 Simulations 

For the stationary CP data, the best random regression model according to the 

BIC criterion was characterized by quadratic and linear deviations for the genetic 

and environmental parts, respectively. Higher order polynomials did not converge 

to a maximum and could not be considered. The best OP model contained a cubic 

polynomial for the genetic covariance and a quadratic for the environmental part. 

As expected, the simulated structure was accurately recovered by the stationary 

character process model. Concordance coefficients r describing the goodness-

of-fit for the variance and correlation functions are given in Table 2.1. For the 

RR and OP models, the environmental covariance structure (including both the 

variance and correlation) was very well fitted (r 1). The genetic variance 

was also well modelled, but both models had trouble dealing with the rapidly 

decreasing genetic correlation function. Although the OP model could better 

estimate the genetic correlation (r c=0.61 for OP compared to 0.36 for RR), it 

contains significantly more parameters than the regression model (17 vs. 10), and 

both models exhibit similar behaviour. The polynomial structures are unable to 

handle correlation patterns that decrease asymptotically to zero within the range 

of the data, and the correlation obtained by both models goes negative (Figure 

2.2). 
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Table 2.1: Goodness-of-fit values for covariance functions estimated from three 

different methods on simulated data. 

Simulated Covariance 

Structure 	 Model VarG CorrG VarE CorrE BIC 

Stationary CP 

Non-stationary CP 

Random Regression 

Orthogonal Polynomial 

CP 0.98 1.0 1.0 1.0 -4591 

SAD 0.99 0.98 0.35 0.99 -5652 

RR 0.96 0.36 0.93 0.87 -7414 

OP 0.98. 0.61 0.98 0.98 -6605 

CP 0.91 0.03 0.99 1.0 -4454 

SAD 0.90 0.75 0.44 0.99 -5479 

RR 0.95 0.10 0.94 0.81 -7397 

OP 0.84 0.70 0.98 0.97 -6628 

Cpf 1.0 0.93 0.96 0.93 -3817 

SAD 0.99 1.0 0.83 0.96 -3965 

RR 1.0 0.94 0.99 1.0 -3803 

OP 1.0 0.94 0.99 1.0 -3803 

CPt 0.86 0.10 0.69 0.94 -14334 

SAD 0.98 0.30 0.74 0.99 -14276 

RR 0.30 0.15 0.94 0.90 -14371 

OP 0.99 0.83 0.99 1.0 -14272 

f The best fitting correlation function was a non-stationary CP model 



The best SAD model was of second order antedependence for both genetic and 

environmental parts with a linear 'variance' for the genetic part and quadratic 

for the environmental one. Regarding BIG criterion, they performed better than 

either RR or OP models, with fewer parameters (only 8). They could deal better 

with the asymptotic correlation pattern (r=0.98) as shown on Figure 2.2. 

Figure 2.2: Genetic correlations between age 1 and other for the simulated sta-

tionary character process data and fitted genetic correlations obtained from the 

random regression model with linear deviations, orthogonal polynomial of degree 

three and second order structured antedependence model with linear innovation 

variance. 
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The aim of the second simulated data set was to investigate the behaviour 

of these models in the case of a rather simple non-stationary genetic correlation 

structure. The best RR and OP models were the same as for the stationary 

CP data detailed in the previous paragraph. The RR model dealt very poorly 
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with the non-stationary pattern of the genetic correlation (r=0.10); the corre-

lation was estimated to be very high over all ages. Again, the greater number 

of parameters in the best fitting OP model over the regression model provided 

a better fit to the correlation structure (r=0.70). Surprisingly, the CP model 

failed to accurately estimate the non-stationary correlation pattern (Table 2.1). 

Our non-stationary extension did not significantly improve the goodness-of-fit 

(BIC=-4454 and —4456 for stationary and non-stationary models, respectively; 

P=0.052 for a likelihood ratio test of ). = 1.0). However, the goodness-of-fit of 

the fitted non-stationary correlation (r 0.55) is substantially better than that 

of the stationary model (r = 0.03), which provides an interesting commentary 

on model selection criteria. In retrospect, the non-stationarity in this data set 

was predominantly between extreme ages (ages 1 and 5). It is possible that more 

observations per individual are needed to detect small to moderate levels of non-

stationarity (see fly reproduction data). The best SAD model was of first order 

antedependence with linear variance for the genetic part and second order an-

tedependence with quadratic variance for the environmental part. It proved to 

be the best model to capture the non-stationary correlation pattern (r=0.75). 

The BIC criterion was again higher than for either RR or OP models. 

All methods did a reasonable job of estimating the genetic and environmen-

tal covariance structures generated according to a random regression model with 

linear deviations. Under this model the correlations (both genetic and environ-

mental) remained quite high over time. Our non-stationary extension of the CP 

model was successful in providing a good fit to the data. The genetic covariance 

structure was described by a quadratic variance and non-stationary correlation 

given by the characteristic function of the Uniform distribution (Pletcher and 

Geyer, 1999), and the environmental variance function was linear with a Cauchy 

correlation. The goodness-of-fit for the genetic correlation structure was im-

proved substantially over a stationary model (r=0.74, BIC=-3819 and r=0.93, 
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BIC=-3817 for the stationary and non-stationary CF models, respectively). 

The data set simulated with an OP structure might be considered pathological 

in that the genetic covariance structure is highly irregular. In fact, the genetic 

correlation is negative between early ages but highly positive between late ages 

(Figure 2.1d). This pattern may not be found very often in practical cases, but 

it is, however, typical for OP models (Kirkpatrick et al., 1994). Convergence 

problems hindered our ability to obtain estimates of high dimensional random 

regression models, and the best RR model was not able to accommodate either 

the simulated genetic variance or correlation (r = 0.30 and r = 0.15, respec-

tively). Both the genetic and environmental covariance structure was described 

by a quadratic variance and non-stationary correlation given by the characteris-

tic function of the Uniform distribution. When compared to random regression, 

the CP model is much better at estimating the genetic variance function but is 

slightly worse at approximating the correlation structure (Table 2.1). The envi-

ronmental covariance is better behaved and much less of a problem. As seen with 

the random regression simulations, the strong positive correlation across all ages 

is well fitted by all the methods. SAD model with a third order antedependence 

for the genetic part and second order for the environmental part with quadratic 

variances proved to be better able to deal with this covariance structure than 

either CF or RR models and had a higher BIC value. 

2.3.2 Empirical 

Drosophila reproduction and mortality: For age-specific mortality and re-

production in Drosophila both SAD and CP models provided a significantly better 

fit, according to the BIC criterion, than either the orthogonal polynomial or ran-

dom regression methods (Table 2.2). In fact, they achieved higher likelihoods 

despite containing fewer parameters than the OP or RR models. 
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Table 2.2: Results of covariance function estimation on empirical data. NPCov: 

number of parameters in the covariance structure. N: total number of observa-

tions. 

Method Genetic Environmental NPCov Log L BIG 

Fly Mortality 

(N=955) 

11 fixed effects SAD ante(3)-quad ante(1)-quad 10 -162.4 -234.3 

CP Quad-Cauchy Lin-Cauchy 7 -186.0 -247.7 

OP Cubic Quadratic 17 -242.1 -338.0 

RR Quadratic Quadratic 13 -298.2 -380.4 

Fly Reproduction 

(N=1109) 

11 fixed effects CP Const-Expt QuadCauchyt 8 494.1 427.5 

SAD ante(2)-quad ante(2)-const 8 461.8 395.3 

OP Cubic Quadratic 17 451.4 353.4 

RR Quadratic Linear 10 374.0 300.5 

Beef Cattle Growth 

(N=1626) 

24 fixed effects CP Lin-Exp Lin-Exp 7 -6895.6 -7010.0 

RR Constant Linear 6 -6910.7 -7021.4 

OP Linear Linear 8 -6908.3 -7026.4 

t The best fitting correlation function was a non-stationary CP model. 
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Table 2.3: Character process model estimates of genetic and environmental 

covariance functions for empirical data (standard errors are given in brackets). 

0, 01 and 02: parameters of the variance function such that a quadratic variance 

is represented as v 2 (t) = 00+01 t+02  t2 . Oc  and A: parameters of the correlation 

function. 

Parameters 	Genetic 	Environmental 	Residual 

Fly Mortality 

Fly Reproduction 

00 	0.28(0.12) 	0.53(0.05) 

01 	0.35(0.08) 	-0.03(0.007) 

02 	-0.03(0.007) 	- 

oc 	0.10(0.02) 	1.76(0.29) 

None 

00 
	0.18(0.03) 
	

0.10(0.02) 
	

None 

01 	 -0.01(0.01) 

02 	 -0.002(0.001) 

0c 
	0.26(0.15) 
	

4.0(2.0) 

A 	-0.63(0.30) 
	

0.51(0.13) 

Beef Cattle Growth 

00 
	0 . 0001*(186 . 3) 0 . 0001*(257 . 8) 1000.8 (85.35) 

01 
	4.12(6.95) 	38.94 (7.77) 

oc 	0.99(0.02) 	0.99 (0.003) 

* Parameter estimate is at the lower boundary and asymptotic standard errors 

may not be reliable. 
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For age-specific mortality, the best CP model for the genetic covariance was a 

quadratic variance with a Cauchy correlation function (pG(t,  t3 ) = 1/(1 + O(t - 

t,) 2 )). The BIC criterion was slightly higher for SAD model with antedepen-

dence of order 3 for the genetic part and order 1 for the environmental part with 

quadratic variances. For fly reproduction the best character process model was a 

constant variance at all ages coupled with a non-stationary correlation function 

described by the absolute exponential, PG (t i ,  t3) = 0I1(t1(t)I• Parameter esti-

mates and their standard errors for the CF model are presented in Table 2.3, and 

the fitted genetic covariance structures are presented in Figure 2.3(a and b). 

The simplicity of the character process model allows quantitative statements 

about the predominant attributes of the genetic covariance function. Genetic 

variance for Drosophila mortality declines significantly with age, while genetic 

variance is constant at all ages for reproductive output. For mortality, the pa-

rameter in the genetic correlation function was significantly different from zero 

(p < 0.0001) suggesting that mortality rates become less genetically correlated 

as ages become further separated in time. This is true for reproductive output 

as well, and the significant non-stationarity parameter in the genetic correlation 

provides evidence for an increase in the correlation between two equidistant ages 

with increasing age. 

Figure 2.3: Contour plots of genetic covariance functions fitted by the character 

process model. A—age-specific mortality in the fruit fly, Drosophila melanogaster, 

B—age-specific reproduction in D. melanogaster, C—age-specific growth in beef 

cattle. 
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Beef cattle: Although differences in fit among the methods are less dramatic 

for beef cattle than for Drosophila, the character process model again provides 

a significantly better fit (as determined by the BIC criterion) than either ran-

dom regression or orthogonal polynomial methods (Table 2.2). The best fitting 

model for the genetic part was a linear variance (increasing with age) and an 

absolute exponential correlation (PG (ti , t3) = Olt_tiI). There was no evidence for 

non-stationarity in the data. Parameter estimates and their standard errors for 

the CP model are presented in Table 2.3, and the fitted genetic covariance struc-

ture is shown in Figure 2.3c. SAD models were not fitted to this data set because 

it was too unbalanced: at most 6 measures were available per animal whereas 24 

different times of measurement were possible. 

2.4 Discussion 

The quantitative genetic analysis of repeated measures and other function-valued 

traits requires the estimation of continuous covariance functions for each source 

of variation in a particular statistical model. Traditionally, statistical geneticists 

interested in characters that change gradually along some continuous scale have 

had to settle for models that are either overparameterized (i.e., standard mul-

tivariate methods) or oversimplified (e.g., composite character analysis) (Meyer, 

1998 ; Pletcher and Geyer, 1999). In recent years, however, the introduction 

and development of random regression models, orthogonal polynomial models, 

and models based on stochastic process theory (i.e., the character process model) 

have provided important alternatives. Other types of random regression models 

(e.g., non-linear models as suggested by Lindstrom and Bates (1990) and Da-

vidian and Giltinan (1995)) may prove useful, but they are currently difficult to 

implement. 
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Through extensive investigation of a variety of simulated covariance structures 

and empirical data, we find that under most conditions structured antedepen-

dence (SAD) and character process (CP) models provide the best description of 

the underlying covariance structure. It is clear from the simulation results that 

they can adequately capture a correlation that declines rapidly to zero as char-

acter values become further separated in time, whereas both random regression 

models and orthogonal polynomials have noticeable problems approximating such 

a structure (Table 2.1; stationary CP data and Figure 2.2). Polynomials do not 

have asymptotes, and the rapid decline in correlation tends to force both meth-

ods to estimate correlations that are strongly negative within the range of the 

data. Although the characteristics of covariance functions for natural organisms 

remain generally unknown, this is a serious limitation as asymptotic behaviour 

in covariances/correlations are to be expected (Pletcher and Geyer, 1999). Other 

parameterizat ions of the RR models (e.g., using orthogonal polynomials in the 

regression) may prove more useful in this regard. On the other hand, RR and 

OP models deal quite well when the correlation structure remains high over time 

(see environmental correlation in CP simulated data; Table 2.1). 

A further advantage of the CP models appears to be the ability to model 

the variance and correlation separately. As mentioned previously, for random 

regression models the entire covariance structure is implicitly determined by the 

shapes of the regression polynomials, and covariance surfaces described by or-

thogonal polynomials have a fixed relationship between variance and correlation. 

This limitation is exemplified in the analysis of growth in beef cattle. For the 

genetic deviation, the best fitting RR model included only a random intercept. 

This implies not only that the variance is considered constant over time, but also 

that the correlation is constant and equal to 1 across all ages, which is proba-

bly not appropriate (Figure 2.3c). Applying the same argument to the fertility 

data in Drosophila, the best fitting CP model for the genetic part was a constant 
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variance with a rather rapid decline in correlation between increasingly separated 

ages (Table 2.3). Such a combination is simply not possible under the RR or 

OP methods. It is also likely that the separation of variance and correlation 

was a major factor contributing to the ability of the CP model to reasonably 

estimate the genetic variation with a much smaller number of parameters (four 

parameters) than random regression (10 parameters) or orthogonal polynomial 

(17 parameters) models (Table 2.2). 

The data sets we examined were small in comparison to those commonly an-

alyzed in agricultural and breeding contexts. Using extremely large data sets, 

complicated covariance and correlation models may be of greater use, and the 

random regression and orthogonal polynomial methods may begin to show an 

advantage. Large data sets would also relieve the convergence problems we ex-

perienced with high order random regression and orthogonal polynomial models. 

Unfortunately, most quantitative genetic studies of natural and experimental pop-

ulations are extremely labor intensive, and sample sizes will often be similar to 

those reported here. For these situations, the properties of the character process 

models (e.g., easy hypothesis testing, few and interpretable parameters) make it 

a useful option. 

Despite their apparent success in this study, there are several important limi-

tations of the process models that suggest avenues for further development. First, 

additional ways of relaxing the stationarity assumption (Pletcher and Geyer, 

1999) without greatly increasing the number of parameters are needed. Although 

not appropriate in all situations, a promising direction proposed by Nunez-Anton 

and Zimmerman (2000) has been studied here and seems to offer reasonable flex-

ibility in practice. As shown in the simulation study, SAD models offer a higher 

degree of flexibility than character processes in capturing non-stationary correla-

tion patterns. Second, CF models require the manipulation (inversion, factoriza-

tion, etc.) of matrices whose dimensions are proportional to the number of ages 
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in the data set, regardless of the size of the model itself (Meyer, 1998). A method 

of reparameterization, similar to that used for RR and OP models (Meyer, 1998), 

would be useful. Third, a method for estimating the eigenfunctions of covariance 

functions used by the process models would provide insight into patterns of ge-

netic constraints across ages (Kirkpatrick et al., 1990 ; Kirkpatrick and Lofsvold, 

1992). 

Lastly, the genetic analysis of two or more function-valued traits is an impor-

tant goal. Generalization of regression models to multi-trait analyses is straight-

forward and has already been used, for instance, to analyze age-dependent milk 

production, fat, and protein content in dairy cattle (Jamrozik et al., 1997). Bi-

variate character process models might be implemented by defining a parametric 

cross-covariance function between the two traits, but appropriate forms for this 

function are yet to be discovered. A promising way forward for multivariate 

analysis seems to be offered by antedependence models as shown in Chapter 4. 



Appendix 

Goodness-of-fit of the covariance structure 

The concordance correlation coefficient r described by Vonesh et al. (1996) 

was used in the simulation study to evaluate the goodness-of-fit for both the 

variance and correlation functions estimated by the models when compared to 

the simulated structure. For the correlation structure, for instance, we consider: 

- 

.ç-'T-1 .ç'T 	( 

1 	 L_.j1 	+l3 - YiJ) 	
(2.1)  - - 

	- )2 + E
,,j(ij 

- )2 + T(T - 1)( - 

where qjj  represents the estimated correlation between times t j  and t3  given by 

the model, and Yij  is the correlation between times t j  and t3  in the simulated 

data. T represents the total number of times at which measurements were taken. 

and 9 are the mean of the correlation values for the simulated data and for 

the model, respectively. The concordance coefficient for the variance estimate is 

much simpler and given by 

ET 

= 1 - 	- 2 	
- 	

- 	2 	(2.2) 
- y) + >(y - y) + T(y - y) 

where the y now refer to the actual and estimated variances rather than correla-

tions. 

The coefficient r is directly interpretable as a concordance coefficient between 

observed and predicted values. It directly measures the level of agreement (con-

cordance) between Yij  and Qjj,  and its value is reflected in how well a scatter plot 

Yij versus qjj falls about the line identity. The possible values of r are in the 

range : —1 < r < 1, with a perfect fit corresponding to a value of 1 and a lack 

of fit to values <0. 
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Chapter 3 

Non-parametric estimation 

3.1 Introduction 

Animal breeders and evolutionary geneticists are often faced with the problem 

of analysing traits that change as a function of age or some other independent 

and continuous variable. This is the case for example for lactation curve analysis 

in dairy cattle, growth curve analysis of laboratory and agricultural species, or 

the study of age-specific fitness components such as reproductive output. Many 

techniques have already been proposed to deal with this kind of data. The most 

commonly used at present are random regression models (Diggle et al., 1994). 

Another approach, called 'character process models', has recently been proposed 

by Pletcher and Geyer (1999), and corresponds to a parametric modelling of 

the covariance structure. An overview of these techniques is presented in the 

introductory chapter. 

These methods require an a priori formulation of a parametric model, how-

ever, and so the main difficulty is to choose the most appropriate model. In fact, 

the number of possible models can be very large in practice, especially for the 

character process methodology where it is possible to combine different functions 

of variance and correlation for both the genetic and environmental parts. It is in 

general not possible to investigate all the possible combinations. It would there- 

30 



fore be extremely useful in practice to have an idea of the covariance structure in 

order to choose the most appropriate parametric model. 

When a small number of measures with common times of measurement is 

available for each subject, it is possible to estimate an unstructured covariance 

matrix with standard software. However, this is in general not feasible when 

the number of measurements per subject is large and when data are unbalanced, 

which can be the case for example for daily records for milk production in dairy 

cattle. The aim of this chapter is to propose a non-parametric procedure that 

deals with this kind of data, and requires no a priori assumption about the model. 

This methodology is based on the 'variogram' (Diggle and Verbyla, 1998), and 

will be illustrated using simulated and actual data sets. 

3.2 Variogram approach 

We focus here on the analysis of repeated measures over time, but this approach 

can also be applied to traits that change as a function of another independent 

and continuous variable. In order to present the variogram methodology, we first 

consider the case of a phenotypic analysis, and then propose a way to extend it 

to genetic analysis. 

3.2.1 Phenotypic analysis 

Let t3  (j = 1 ..., J) be the times of measurement, and Yij  the measure on in-

dividual i (i = 1 ..., I) taken at time t. It is not necessary for individuals to 

have measures at all times. It is assumed that Yij  is the realization of a ran-

dom variable (t), where (t) are a set of I mutually independent Gaussian 

processes with mean value functions p2 (t) = E(Y2 (t)) and common covariance 

function P(s, t) = cov(Y(.$), Y(t)). 

For a general Gaussian process Y(t) with mean value i(t) and covariance 
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function P(s, t) we define the residual process to be the zero-mean process Z(t) = 

Y(t) - /. i(t). Then, as presented by Diggle and Verbyla (1998), the variogram of 

Z(t) is the function: 

(s, t) 	E[(Z(s) - Z(t)) 2 ] for s 54 t 	 (3.1) 

As, E(Z(s)) = E(Z(t)) = 0 7  it follows that: 

	

(s, t) = [P(s, s) + P(t, t) - 2P(s, t)} 	 (3.2) 

where P(s, t) is the phenotypic covariance function. This description of the van-

ogram does not assume stationarity, i.e. it is not assumed that 'y(s, t) = 'y(s - t) 

as in classical definitions. 

For a set of longitudinal data (yij,  t3 ) with known mean value function /L(t), 

the variogram cloud is the set of points ((ti , tk, vk), for i 1, ..., I, j = 1, ..., J 

and k > j) in three-dimensional space, where: 

	

Vjjk = 1 [(Yij - jt(t)) - (Yik - /L(tk))] 2 	 (3.3) 

If the data contain replicated pairs (t3 , tk) across subjects, the sample van-

ogram tk) is defined as the average of such pairs across subjects. Let r(t3 , tk) 

be the number of subjects contributing to ii(t, tk). When all the r(t3 , tk) are 

large, the sample variogram may be an adequate estimator for 'y(t3 , tk). When 

r(t3 , tk) are small, a smoother estimator for 'y(t, tk) is desirable. Note that when 

the data are balanced in the sense that the observation times are common to all 

I subjects, r(t3 , tk) = I for all (t3, tk). 

If the mean value structure is known, then the squared residuals, z = (yij - 

are unbiased for the variance function v(t 3 ). As for the variogram, if 

replicated values of A at each time t 3  are available from different subjects, the 

sample means of these sets of replicated values provide adequate non-parametric 

32 



estimates of the variance function. In other cases, a smoother estimator for v(t 3 ) 

is again desirable. 

In most applications, (t) is unknown and will then have to be replaced 

by an appropriate estimate i(t). In practice, we propose to pre-correct data 

Yij for fixed effects using a simple regression model, and to fit a non-parametric 

mean-curve in the variogram with: i(t) = 9j . Diggle et al. (1994), in Chapter 

4, provide a discussion about fixed effects estimation. As it is to be used for 

exploratory purposes, the aim of this estimation procedure is to be simple and 

computationally fast rather than statistically efficient. 

3.2.2 Genetic analysis 

It is assumed that the observed phenotypic process Y(t) is a Gaussian process 

and can be decomposed as: 

Y(t) = p(t) + g(t) + e(t) 	 (3.4) 

where (t) are the fixed effects, g(t) and e(t) the genetic and environmental ef-

fects, which are assumed to be mean zero Gaussian processes, independent of 

each other, and with covariance functions G(s, t) and E(s, t), respectively. 

In the case of a one-way classification, data are assumed to be divided into 

groups (eg. half-sib families, clones, etc.). The idea is to consider simple ANOVA 

on group means for each time independently that will provide variance estimates, 

and to combine these with the variogram approach in order to obtain covariance 

estimates. 

The linear mixed model can be written as: 

Ysij = /lj + Usj + e32 	 (3.5) 

where Ysij  is the observation at time t3  for individual i from group s (j = 1, ..., J, 

n and s = 1, ..., S), u is the group effect and e,ij  the residual term 
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at time t3 . When considering each time t3  independently, u and e are assumed 

to be independent and normally distributed with variances v(t3) and VE(t,), 

respectively. If the groups are half-sib families, for example, VG(t 2 ) is equal to a 

quarter of the additive genetic variance at time t3 . 

Variance functions 

Let us assume first a balanced setting, i.e. all groups have the same number n3  

of subjects and individuals have observations at all times t3 . Observations Ysij 

are assumed to have been corrected previously for fixed effects. p j  represents the 

mean curve in the population and can be approximated by the average y.. j  at 

each time t3 . Using a simple ANOVA on group means, the variance cloud v1 8  = 

- 	provides an estimate for 'y1(t) = (1— (11S))(vG(t) + ( 1/n3)vE(t)), 

and v28 = (Ysij - 
	)2  for 'y2(t) = (1 - (1/n 3 )) VE(t 3 ). 

Variogram cloud 

Extending results for single times, two variogram clouds can be defined: 

V1jk = 	- 	- 	- 	 (3.6) 

and 

	

V2sjjk = [(Ysij - 	- (Ysik - 9s.k)} 2 	 (3.7) 

Extending the ANOVA result and the variogram approach, the first variogram 

cloud provides estimates for: 

71(t,tk) = 	—_' [(v(t) + VG(tk) - 	
1 

+ — (vE(t) + vE(tk) - 2E3k )J (3.8) 2S ns  

and the second provides estimates for: 

2(t,tk) 	
S  - 1 

- 2n5 (VE(t) +VE(tk) —  2Ejk ) 	 (3.9) 
-  

where G,k and E3k represent the group and environmental covariances between 

times t, and tk, respectively. 

Extension to the unbalanced case is given in the appendix. 
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3.3 Simulation study 

Implementation of the variogram genetical analysis was easy and consequently, 

calculations were fast. In order to check the behaviour of this estimation proce-

dure, different data sets were investigated. 

3.3.1 Stationary correlation 

A balanced design was considered, with 100 sires, 20 progeny per sire, and 10 

measures per progeny. A stationary character process model was considered 

with a linear variance (U2 (t) = VarG(t) = 0.3 + 0.4t) and Gaussian correla-

tion (PG (t,S) = exp(-0.1(t - 8) 2 )) for the genetic part, and quadratic variance 

(VarE (t) = 0.5 + 0.6t + 0.2t2 ) and Gaussian correlation (pE(t, s) = exp(-0.8(t - 

)2))  for the environmental part. 

The time (t) values were discrete. In order to check the simulated covariance 

structure, REML estimates for a character process model were calculated on the 

simulated data set using ASREML (Gilmour et al., 2000). Figure 3.1 presents 

the estimated genetic and environmental variances and correlations using the 

non-parametric estimation procedure presented above. The non-parametric esti-

mation procedure provided very good estimates for both the genetic and environ-

mental covariance structures. For 10 repeated measurements, the non-parametric 

estimates were also relatively smooth, and no additional smoothing seemed to be 

required. The slight discrepancy observed for the genetic correlation for large lag 

times is probably due to a lack of information. More simulated replicates should 

be studied in order to make sure this discrepancy is not significant. 
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Figure 3.1: Variance and correlation functions for a stationary process. Bal-

anced design: 100 sires with 20 progeny per sire and 10 measures per subject. 

NP: Non-parametric estimates. 

Genetic correlation 

1.2 
 1 

0.8 

Time 

H- NP ...  Simuiatedj 

36 



3.3.2 Non-stationary correlation 

The proposed non-parametric estimation procedure makes no assumption about 

stationarity of the covariance or correlation structure. In order to check its be-

haviour for a non-stationary correlation pattern, the non-stationary extension of 

the character process models proposed by Jaifrézic and Pletcher (2000) - Chapter 

2 - was used to simulate a data set with the same balanced sire design as pre-

viously and 10 measures per subject. The parameter of non-stationarity A was 

chosen to be 0.5 with exponential correlations for both the genetic and environ-

mental parts (p(t,$) = exp(_0.1(ItAI)), pE(t,S) = 

Table 3.1: Non-stationary environmental correlation (exponential with A = 0.5). 

Balanced design: 100 sires with 20 progeny per sire and 10 measures per subject. 

Simulated (above diagonal) and non-parametric estimated (below diagonal) cor-

relation. 

1 2 3 4 5 6 7 8 9 10' 

1 1 0.52 0.31 0.20 0.14 0.10 0.07 0.05 0.04 0.03 

2 0.54 1 0.60 0.39 0.27 0.19 0.14 0.10 0.08 0.06 

3 0.33 0.60 1 0.65 0.45 0.32 0.23 0.17 0.13 0.10 

4 0.22 0.37 0.63 1 0.69 0.49 0.36 0.27 0.20 0.16 

5 0.10 0.20 0.40 0.68 1 0.71 0.52 0.39 0.29 0.23 

6 0.07 0.14 0.28 0.50 0.72 1 0.73 0.55 0.41 0.32 

7 0.05 0.10 0.21 0.36 0.52 0.72 1 0.75 0.57 0.44 

8 0.01 0.05 0.13 0.26 0.38 0.54 0.75 1 0.76 0.59 

9 0.01 0.02 0.07 0.19 0.28 0.40 0.55 0.75 1 0.77 

10 0.02 0.01 0.05 0.13 0.19 0.28 0.41 0.55 0.75 1 
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The simulated genetic correlation remained quite high over time, whereas 

the simulated environmental correlation rapidly decreased as ages were further 

apart and was highly non-stationary. Table 3.1 gives the simulated and estimated 

environmental correlation matrices. It appeared that the non-parametric estima-

tion procedure was able to capture the non-stationary pattern of the correlation 

function, and the estimates provided were very close to the actual values. This 

non-parametric estimation procedure can therefore be useful in practice to check 

the Aationary assumption for the correlation function. 

3.4 Application 

3.4.1 Daily records in dairy cattle 

Daily records for milk production for first lactation were analysed using this non-

parametric procedure. Data came from the Langhill experimental farm (Edin-

burgh, UK), and comprised 438 cows from 50 sires. The number of daughters per 

sire varied from 1 to 22, with 9 on average. Using a simple regression model, data 

were previously corrected for fixed effects: age at calving, percentage of Holstein 

genes, line (selected or control), diet (forage or concentrates). Estimation for the 

mean curve is included in the definition of the variogram: a non-parametric curve 

is considered, fitting one mean at each time. In order to have enough observations 

per sire at each time, we considered only data from day 10 to day 240. The total 

number of observations was 83634, with a maximum of 230 records for cows with 

complete measures. 

Figure 3.2 shows the estimates of genetic and environmental variances. In 

order to check the non-parametric estimates, as well as their ability to deal with 

unbalanced data and fixed effects estimation, REML estimates for the variances 

were also calculated using ASREML and considering each time independently. 



REML1 represents estimates obtained while estimating fixed effects at the same 

time, and REML2 are estimates obtained on the data set previously corrected for 

fixed effects. It can be seen that variance estimates obtained here with the three 

methodologies were extremely close. A similar analysis was performed for the 

covariance estimates. Unstructured covariance matrices for both the genetic and 

environmental parts were obtained using the package REMLPK (Meyer, 1985). 

However, as it cannot provide estimates for unstructured covariance matrices of 

size 230 by 230, this analysis was performed for only a few given times. It can be 

seen that covariance estimates obtained with the non-parametric approach and 

with REML were also very similar. 

As completely unstructured covariance matrices cannot be obtained with stan-

dard software for all the observed ages, this non-parametric methodology should 

prove to be extremely useful to study the covariance and correlation structure 

for these daily records. Figure 3.3 shows estimates of genetic and environmental 

correlations for days in milk 10, 80 and 210. As expected from previous analyses 

(White et al., 1999), the genetic correlation is quite high for all pairs of ages 

(about 0.8), except for the early stage of lactation. For example, the correlation 

between day 210 and day 10, as well as between day 80 and day 10, is about 

0.2. For all stages of lactation, the environmental correlation is high for days in 

milk close in time (for example, correlation of 0.8 between day 210 and 190), and 

decreases steadily as days become further apart (correlation of 0.6 between day 

210 and day 130, and of 0.2 between day 210 and day 10). 
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Figure 3.2: Genetic and environmental variances for daily records for milk pro-

duction in dairy cattle, given in kg 2  (DIM: Days in milk). NP: Non-parametric es-

timates. REML1: REML with fixed effects estimated at the same time. REML2: 

REML on the data set pre-corrected for fixed effects. 
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Figure 3.3: Genetic and environmental correlations for daily records for milk 

production in dairy cattle. DIM 10 : Correlation between day in milk 10 and 

others. DIM 80 : Correlation between day in milk 80 and others. DIM 210 

Correlation between day in milk 210 and others. 
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3.4.2 Fertility data in Drosophila 

Age-specific measurements of reproduction were obtained from 56 different re-

combinant inbred (RI) lines of D. melanogaster, which are expected to exhibit 

genetically based variation. Age-specific measures for average female reproduc-

tive output were collected from two replicate cohorts for each of the lines. Egg 

counts were made every other day, and observations were square-root transformed 

so that the age-specific measures were approximately normally distributed. In or-

der to have enough observations for each line, only the 18 first ages (out of 34) 

were considered. 

Figure 3.4 shows estimates of genetic and environmental variances using both 

the non-parametric procedure presented above and a REML analysis performed 

with the software ASREML. The procedures showed very similar results for both 

genetic and environmental parts. If a parametric model were to be chosen, a 

quadratic function would probably be appropriate for the environmental variance. 

For the genetic variance, however, the choice of a parametric function may be 

more difficult. In fact, in a previous study (see Chapter 2 ; Jaffrezic and Pletcher 

(2000)), data were pooled into 5-day intervals, and it was found that the best 

parametric model for the genetic variance, using a likelihood based criterion, was 

a constant function estimated at 0.18. However, the variation observed here for 

the genetic variance with both the non-parametric and REML methodologies may 

be worthwhile to study. The genetic variance seems to drop quickly for early ages, 

then increases rapidly at about age 10, and decreases thereafter. The causes of 

these large changes may therefore be worth investigating. 

Table 3.2 gives non-parametric estimates for the correlation matrices. It 

appears that both the genetic and environmental correlations seem to be non-

stationary, as was also found in Chapter 2. 
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Figure 3.4: Genetic and environmental variances for fertility data in Drosophila. 

Each age corresponds to a 2-day interval. NP: Non-parametric estimation. 
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Table 3.2: Non-parametric estimates for genetic (above diagonal) and environ-

mental (below diagonal) correlation for fertility data in Drosophila (table gives 

correlation for every 4-day interval). 

1 2 3 4 5 6 7 8 9 

1 	1 0.34 0.50 0.37 0.34 0.47 0.44 0.34 0.56 

2 	0.03 1 1.0 0.44 0.54 0.32 0.20 0.33 0.22 

3 	0.30 0.16 1 0.87 0.68 0.80 0.67 0.50 0.73 

4 	0.17 0.31 0.32 1 0.76 0.77 0.58 0.46 0.45 

5 	0.33 0.04 0.48 0.35 1 1.0 0.90 0.87 0.91 

6 	-0.04 0.22 0.20 0.17 0.07 1 0.92 1.0 0.93 

7 	0.16 0.09 0.35 -0.03 0.30 0.37 1 0.95 1.0 

8 	0.05 -0.20 0.14 0.08 0.22 0.12 0.37 1 1.0 

9 	-0.05 0.03 -0.13 0.03 0.00 0.24 -0.07 0.17 1 

3.5 Discussion 

In the analysis of repeated measurements, before assuming a parametric model it 

is advisable to have an idea of the shape of the variance and correlation functions 

for both the genetic and environmental parts. When a small number of observa-

tions is available for each subject at a fixed set of times, it is possible to estimate 

unstructured covariance matrices with standard software. However, this is not 

feasible when the number of observations over time is large, and when data are 

unbalanced. In this case, the proposed non-parametric procedure would prove to 

be extremely useful. 

As shown in the above analyses, this methodology presents several positive 

aspects. It is, first of all, easy to implement as it involves mainly sum and average 

calculations. Moreover, the computing time required is small even for a large data 

set such as the daily records for milk production, especially because it is a non-

iterative procedure. Secondly, it is able to provide estimates close to REML even 



for a non-stationary correlation structure, as was shown in the simulation study, 

or for unbalanced data sets, as the Langhill data. Finally, it is able to deal with 

a large number of observations over time, and provides estimates for covariances 

and correlations between all ages, which was not possible with usual softwares. 

It should however be used mainly for exploratory purposes as it does not 

always provide statistically efficient estimates. As pointed out by Diggle and Ver-

byla (1998), one of the difficulties of this approach can be fixed effects estimation. 

Nevertheless, when only a few fixed effects are considered, as was the case for the 

Langhill data, it was shown that the non-parametric analysis on pre-corrected 

data performs well compared to the REML which estimates fixed effects at the 

same time. Another point that needs to be further investigated concerns exten-

sion to an animal model, that would take into account the relationship matrix. 

This does not seem to be straightforward, and requires further study. 

The extension of this non-parametric approach to multiple trait analysis is 

obvious as formulae given in this chapter can also be used to estimate cross-

covariance and cross-correlation functions between different traits. This could 

for example be useful for the joint analysis of milk, fat and protein in dairy 

cattle, and could also help generalizing the character process methodology to 

multivariate analyses. 
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Appendix 

Unbalanced analysis 

In the case of an unbalanced design, let n 3  be the number of individuals in 

group s with measures at time t3 . The ANOVA variance estimate at time t3  is: 

1j = 	' 	E n(V — ) 2 	 (3.10) 
s=1 SJ  s=1 

Let ndj the average number of daughters per sire with measures at time t3 . 

The previous variance cloud will provide estimates for: 

= (1— ) (VG (t) + — VE(tJ)) 	 (3.11) 
dj 

A straightforward extension of this result to covariance estimates is: 

Vljk = 	
1 	flsJk[( 	

- 	- 9..k 	 (3.12) (3.12) 
>1s1 sjk s=1 2 

where n,jk  is the number of individuals in group s with measures for both time 

t3  and tk. 

This variogram cloud will give estimates for: 

1 	 sjk 'yl(t3,tk) = 
S -1  

[(vG(tj)+vG(tk)-2Gk)+ 
2S 	 Is1 71sjk s=1flsj 	nsk 	 nsjnsk 

(3.13) 

Provided that rijk is not too different from n83  and ri5k, this variogram cloud 

will give estimates for: 

71 (ti, tk) 
= s-i 

[ (VG (t) + VG(tk) - 2G 3 k) + 
1 

— (VE(t 3 ) + VE(tk) - 2E3k )] (3.14) 
2S 	 djk 

where ndik  is the average number of subjects per group with measures at times t3  

and tk. Other weights could also be used, such as those proposed by Robertson 

(1962). 



Chapter 4 

Genetic analysis of multivariate 

repeated measures 

4.1 Introduction 

The need for a rigorous method of analysis for biological characters that are best 

considered as functions of some independent and continuous variable is rapidly 

expanding. Important examples of such function-valued traits include growth 

curves, age-specific fitness components such as survival or reproductive output, 

lactation curves in dairy cattle, and gene expression profiles across age or envi-

ronmental treatments. 

Several techniques have been proposed for single trait (univariate) analyses. 

These include random regression models, which are based on a parametric mod-

elling of individual curves (Diggle et al., 1994); character process models, which 

focus on parametric modelling of the covariance structure (Pletcher and Geyer, 

1999); and orthogonal polynomials (Kirkpatrick and Heckman, 1989), which can 

be interpreted in terms of either individual curves or the covariance structure 

(Meyer, 1998). A comparison among these methods revealed that, in most cases, 

character process models provided a better fit to the covariance structure (genetic 

and non-genetic) than either random regression or orthogonal polynomials, and 
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they did so with fewer parameters (see Chapter 2 ; Jaifrezic and Pletcher, 2000). 

Unfortunately, extension of the character process models to the simultaneous 

analysis of two or more function-valued traits (i.e., a multivariate function-valued 

analysis) is not straightforward. The primary hinderance is the development of 

reasonable parametric forms for the cross-covariance functions, which describe 

the genetic and non-genetic covariance between the two traits. Athough a mul-

tivariate extension of random regression models is straightforward, their poor 

performance in the univariate case argues strongly against their use in a multi-

variate setting. Moreover, the nature of the parameterization results in a dramatic 

increase in the number of parameters required to describe the covariance struc-

ture (for example, for a quartic random regression model, a genetic univariate 

analysis requires 30 parameters, whereas a bivariate analysis would require 110 

parameters). 

The aim of this chapter is to develop techniques that maintain the spirit 

of the character process models, which make reasonable assumptions about the 

covariance structure in the data in order to greatly reduce the number of param-

eters in the model, and at the same time allow for a straightforward extension 

to the multivariate case. Structured antependence (SAD) models (Zimmerman 

and Nunez-Anton, 1997 ; Nunez-Anton and Zimmerman, 2000) provide an ideal 

framework for this development, and we extend the SAD models to study the 

relationship between two function-valued traits. The performance of these mod-

els is compared to character process and random regression models, and several 

examples, including phenotypic and genetic analysis of age-specific fertility and 

mortality in Drosophila and of milk, fat and protein yields through lactation for 

dairy cattle, are presented. 



4.2 Materials and Methods 

4.2.1 Structured antedependence models 

Univariate 

As in classical quantitative genetics for the analysis of function-valued traits 

(Kirkpatrick and Heckman, 1989 ; Pletcher and Geyer, 1999), it is assumed that 

the observed phenotypic trait X(t) changes continuously over time or some other 

independent variable and that its trajectory can be decomposed as follows: 

X(t) = t(t) + g(t) + e(t) 	 (4.1) 

In the simplest case, 1i(t) represents the mean value at each time for the pop-

ulation, for example the average number of eggs in the case of fertility analy -

sis ; g(t) and e(t) represent individual deviations from this mean value due to 

the genetic and environmental effects, respectively. Traditionally, the genetic ef-

fect is assumed to be the additive contribution of a very large number of genes. 

It is assumed that g(t) and e(t) are Gaussian variables, independent of each 

other, with mean zero and covariance functions G(s, t) and E(s, t), respectively. 

G(s, t) = Cov(g(s), g(t)) represents the covariance for the genetic effects between 

any two times. The aim of the analysis is therefore to be able to estimate these 

genetic and environmental covariance functions. 

Several methodologies have already been proposed for this purpose. The most 

commonly used are random regression and character process models. Jaifrezic 

and Pletcher (2000) as well as the Introductory Chapter present a description of 

these two approaches. They rely on very different concepts: random regression 

models focus on modelling individual deviations g(t) and e(t), and the covariance 

structure is a consequence of these deviations. Character processes directly model 

the covariance structures G(s, t) and E(s, t) by assuming parametric functions for 

variances and correlations. Shapes on the individual deviations are a consequence 
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of this structure. In previous analyses (see Chapter 2 Jaifrezic and Pletcher, 

2000), character process models have proved to be generally able to fit better the 

covariance structure than random regression models with fewer parameters. How -

ever, their extension to the multivariate case is not straightforward as parametric 

cross-covariance functions between different traits are yet to be discovered. 

As genetic analysis of two or more function-valued traits is an important goal, 

we considered another kind of models that have been proposed in the statistical 

literature by Zimmerman and Nunez-Anton (1997), and seem to offer similar 

advantages to character processes to model the covariance structure adequately 

with few parameters. The concept of this methodology is again different from the 

two previous ones. The idea of antedependence models, as originally proposed by 

Gabriel (1962), is that observation at time t can be explained by the previous ones. 

For example, a first order antedependence model will assume that observation at 

time t depends only on observation at time (t - 1). Generalizing this concept to 

genetic analysis, a second order structured antedependence model for the genetic 

part g(t) can be written as: 

g(t) = 01 g(t - 1) + 72  g(t - 2) + E9 (t) 	 (4.2) 

where 0 1  and 02  are correlation parameters, and f9 (t) is assumed to be normally 

distributed, with mean zero and variance c g (t) that can change with time. In 

structured antedependence (SAD) models, Nunez-Anton and Zimmerman (2000) 

propose to consider a parametric function for these variances, for example a poly-

nomial of time. This parametrization requires very few parameters to model the 

covariance structure, and increasing the order of antedependence only involves one 

extra parameter at each step. The same model can be written for environmental 

effects e(t). It would also be possible to consider a dependence for non-successive 

lags, for example lags (t— 1), (t-2) and (t-6) without the inbetween coefficients. 

This pattern has previously been observed in some practical cases. 

Structured antedependence models correspond to a non-stationary extension 
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of autoregressive processes, and their first order is also closely related to character 

process models with an exponential correlation and a quadratic variance. The CP 

approach is more general in the sense that many different correlation functions 

can be considered. However, SAD models of order s allow more flexibility for 

the correlation function as 2s parameters are included whereas only 2 parameters 

were included for the CP models. 

Let G be the genetic covariance matrix. It is of dimension J x J, where J 

is the number of measurement times, and has components G(s, t). Parametric 

specification of the genetic covariance function with structured antedependence 

models is not straightforward. However, using a result presented by Pourahmadi 

(1999), it is easy to obtain the genetic covariance matrix. Based on a Cholesky 

decomposition of the inverse of the covariance matrix, it can be shown that G' 

can be written as: 

= L'D'L 	 (4.3) 

where L is a lower triangular matrix with l's on the diagonal and the negatives of 

the correlation coefficients Oj  as below-diagonal entries. D is a diagonal matrix 

with variances u9 (t3 ) as components. The parametric specification of antedepen-

dence models of order s is equivalent to the last J - s - 1 subdiagonals of G' are 

zero. Correlation and variance parameters are estimated by REML procedures. 

Bivariate 

If two variables Yit  and Y2t  are considered, it is easy to extend structured an-

tedependence models to study the relationship between the two variables. For 

example, considering data ordered as y = 
(yi', y2')', it is possible to study the 

influence of Yi On  Y2 

,2iTJi 
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If a first order antedependence model is considered, the model can be written 

M. 

Yit = 01 Yi,t-i  + eit 

Y2t = 02 Y2,t-1  + 01  Yi,t + 72 Yi,t-i + e2t 

The error terms e 1  and e2  are assumed to have zero means and to be uncorrelated 

over time. It is possible to generalize Pourahmadi's (1999) covariance matrix 

parametrization, in this bivariate case, considering matrix L as: 

1 

—01 

(0) O1 1 

-01 (0) 1 

— 02 —0 2  

(0) -& (0) 
— 02 	1 

When allowing variances to change over time, for example as a linear function, 

the diagonal matrix D can be written: D = Diag{exp(a 1  +b1 t3 )}, for j = I,-, n1 , 

and Diag{exp(a 2 --b2 t3 )}, for 1' = n1 +1, ...,n1 +n2  where n 1  and n2  are the number 

of times of measurement for the first and second trait, respectively. 

It is straightforward to extend this covariance parametrization to higher order 

antedependence models, and other relationships between the two traits. 

4.2.2 Bivariate random regression models 

The extension of random regression to the multivariate case is straightforward. 

For example in a bivariate analysis with linear random deviations and ignoring 

fixed effects for simplicity, the model can be written as: 

Yit = a1  + b i t, + e 1 	 (4.4) 
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Y2t, 	a2  + b 2 t3  + e2 	 (4.5) 

where e 1  and e2  are independent error terms. Therefore the cross-covariance 

function between the two traits can be calculated as: 

Cov(yi t% , y2t,) = Cov(a i  + b1  t2 , a2  + b2 t3 ) 

= Cov(ai ,a2 ) + Cov(a i ,b2 )t3  +Cov(bj ,a2 )t. +Cov(b1 ,b2 )t 2 t 

4.3 Examples 

Two real examples were considered to illustrate these methodologies: firstly, the 

bivariate analysis of fertility and mortality rate in Drosophila, and secondly the 

multivariate analysis of milk, fat and protein yields for dairy cattle. Calculations 

were performed using ASREML (Gilmour et al., 2000). 

4.3.1 Data sets 

Drosophila reproduction and mortality: Age-specific measurements of re-

production and mortality rates were obtained from 56 different recombinant in-

bred (RI) lines of Drosophila inelanogaster, which are expected to exhibit genet-

ically based variation in longevity and reproduction. Age-specific measures of 

mortality and average female reproductive output were collected simultaneously 

from two replicate cohorts for each of 56 RI lines. Live/dead observations were 

made every day, while egg counts were made every other day. For both mortal-

ity and reproduction, the data were pooled into 11 5-day intervals for analysis. 

Mortality rates were log-transformed and reproductive measures were square-root 

transformed so that the age-specific measures were approximately normally dis-

tributed. 
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Milk, fat and protein yields for dairy cattle: These data comprised records 

on 9277 cows in first lactation, daughters of 464 Holstein-Friesian sires. The lac-

tation stage of animals at first test varied between 4 and 40 days, with successive 

tests at approximately 30 day intervals. Records on milk yield, as well as fat and 

protein yields were available, with 10 measurements per cow for each of these 

three variables. Fixed effects considered were the age at calving, the percentage 

of North American Holstein genes, and herd-test-month. For the mean curve, a 

non-parametric curve was considered, fitting one mean at each test. 

4.4 Results 

4.4.1 Fly data 

Univariate phenotypic analysis: Preliminary univariate analyses were per-

formed in order to select the most appropriate structured antedependence model 

(SAD) for both variables. Models of order r (r = 1, 2,..., R) were considered 

until the correlation coefficient c'R+1  was close to zero. For all SAD models, a 

quadratic function was considered to model variances: Log U2 = a + b t + c t. 

These models were compared to a character process with quadratic variance and 

exponential correlation (CP) as well as to a quadratic random regression model 

(RR2). 

Table 4.1 shows that for both variables a first order structured antedependence 

model (SAD(1)) can be considered. Improvement obtained with a second order 

was not significant. SAD(1) fitted much better than a quadratic random regres-

sion model with fewer parameters, and almost as well as the character process 

model. 
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Table 4.1: Univariate phenotypic analysis for fertility and mortality rate in 

Drosophila. CP: character process model with quadratic variance and exponen-

tial correlation. RR2: quadratic random regression model. 

Fertility Mortality 

Model NPCov Log L Parameters Log L Parameters 

1 	02 1 	& 
SAD(1) 4 390.14 0.75 -256.59 0.73 

SAD(2) 5 390.59 0.73 	0.03 -255.89 0.76 	-0.04 

CF 4 405.59 -259.39 

RR2 6 339.64 -342.04 

4.4.2 Bivariate analysis 

Structured antedependence models 

Influence of fertility on mortality rate (Ml): Data were ordered considering 

fertility first and mortality after in order to be able to study the effect of fertility 

on mortality rate using an antedependence model. Variances were modelled with 

quadratic polynomials. Let Fert(t) and Mort(t) be the fertility and mortality 

variables at time t, respectively. As chosen previously, a first order SAD model 

was considered for fertility. For mortality rate, models with increasing antede-

pendence order were considered until the added correlation coefficient was close 

to 0. The chosen model had a likelihood equal to 160.8 and can be written as: 

Fert(t) = 0.75 Fert(t - 1) + ft 	 (4.6) 

Mort(t) = 0.67 Mort(t - 1) - 0.33 Fert(t) + Et 	 (4.7) 

This analysis shows that mortality rate at time t is strongly positively correlated 

with mortality rate at time (t - 1), but is also negatively correlated with fertility 

at time t. This could in fact be expected as a high fertility level proves good 
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health conditions and therefore low mortality rate. 

Influence of mortality rate on fertility (M2): The chosen model had a 

likelihood of 176.4 and can be written as: 

Mort(t) = 0.73 Mort(t - 1) + et 	 (4.8) 

Fert(t) = 0.66 Fert(t - 1) - 0.11 Mort(t) + € 	 (4.9) 

As this model (M2) has a higher likelihood than the previously considered struc-

tured antedependence model (Ml), it will be chosen for the bivariate analysis. 

Figure 4.1: Phenotypic correlation for mortality between age 11 and others. 

US: Unstructured model, SAD: chosen structured antedependence model (M2), 

RR2: quadratic random regression model, CP: character process model with 

exponential correlation. 

Phenotypic correlation between age 11 and 
others 

1.2 

:: . 

	................................. 

	
SAD 

Age 
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Random regression model: A quadratic random regression model for both 

fertility and mortality variables involved 21 parameters, and likelihood was equal 

to 67.74. This was much lower than for structured antedependence models de-

spite the larger number of parameters (only 9 parameters for SAD model). This 

likelihood difference seemed to be mainly due to the poor ability of random re-

gression models to deal with asymptotic correlation patterns, as illustrated by 

Figure 4.1. In fact, the correlation for mortality rate between early and late ages, 

for example, was close to 0. However, instead of decreasing asymptotically to 

zero, as polynomials do not have asymptotes, the random regression correlation 

went negative. This problem has already been pointed out in Chapter 2 and 

Jaifrezic and Pletcher (2000). 

4.4.3 Bivariate genetic analysis 

Table 4.2 gives likelihood and parameter estimates for the two structured antede-

pendence models (Ml and M2) as well as for the quadratic random regression, 

considering the same model for both genetic and environmental parts. In the ge-

netic analysis, difference in the number of parameters between SAD and random 

regression models was even larger than in the phenotypic analysis: 18 compared 

to 42. In spite of this difference, the likelihood was much higher for SAD model 

than for the quadratic random regression model. 

The genetic cross-correlation matrix for the chosen structured antedepen-

dence model (M2) is given in Table 4.3. Figures 4.2 and 4.3 show genetic cross-

correlation patterns for some given ages for fertility and mortality. The genetic 

cross-correlation matrix was found to be asymmetrical with very low genetic cor-

relation for fertility at early ages and mortality rate. Correlations were strongly 

negative between fertility and mortality at late ages. 
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Table 4.2: Bivariate genetic analysis for fertility and mortality rate in Drosophila 

(Ml and M2: structured antedependence models. RR2: Quadratic random re-

gression model. 0 1 : cross-correlation parameter). 

Model NPCov LogL Parameter 0 1  
Genetic 	Environmental 

Ml 18 287.2 -0.13 	-0.34 

M2 18 302.3 -0.12 	-0.06 

RR2 42 134.7 

Table 4.3: Genetic cross-correlation with the chosen structured antedependence 

model (M2). 

1 3 

Fertility 

5 	7 9 11 

1 -0.12 -0.20 -0.22 -0.20 -0.17 -0.13 

3 -0.04 -0.33 -0.50 -0.51 -0.46 -0.38 

Mortality 	5 -0.02 -0.18 -0.55 -0.69 -0.68 -0.59 

7 -0.02 -0.15 -0.44 -0.68 -0.73 -0.66 

9 -0.02 -0.14 -0.42 -0.65 -0.72 -0.66 

11 -0.02 -0.14 -0.41 -0.64 -0.72 -0.66 



Figure 4.2: Genetic cross-correlation for fertility at ages 1, 5 and 11 and mor -

tality at all ages with the chosen structured antedependence model. 

Genetic cross-correlation for fertility at ages 1, 5 
and 11 
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Mortality ages 

Figure 4.3: Genetic cross-correlation for mortality at ages 1, 5 and 11 and 

fertility at all ages with the chosen structured antedependence model. 
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4.4.4 Dairy cow data 

Univariate phenotypic analysis 

The same steps as presented previously were followed in order to choose the most 

appropriate antedependence model. Different orders of structured antedepen-

dence models (SAD) were compared to character process models with quadratic 

variance and exponential correlation (CP), or non-stationary correlation (CPNS), 

as well as to quadratic (RR2), cubic (11113) and quartic (11114) random regression 

models. Fat and protein yields were multiplied by 10 in order to have variances 

of about the same order as for milk. Likelihoods for these different models are 

given in Table 4.4. 

Parameter estimates for the fourth order structured antedependence model 

(SAD(4)) were: 

Milk(t) = 	0.50 Milk(t - 1) + 0.22 Milk(t - 2) + 0.10 Milk(t - 3) + 0.05 Milk(t - 4) + e i ( t 

Fat(t) = 0.37 Fat(t - 1) + 0.21 Fat(t - 2) + 0.14 Fat(t - 3) + 0.11 Fat(t - 4) + e2 (t) 

Prot(t) = 	0.51 Prot(t - 1) + 0.22 Prot(t - 2) + 0.10 Prot(t - 3) + 0.06 Prot(t - 4) + e 3 (t 

Univariate analysis for milk, fat and protein yields showed that structured antede-

pendence models of order 1 were about equivalent to character process models 

(see Table 4.4). Increasing orders of SAD allowed more flexibility and had a 

higher likelihood than CP models. SAD models of order 3 or 4 performed better 

than cubic random regression models, and even better than a quartic random 

regression model in the milk yield analysis, while requiring far fewer parameters: 

7 parameters for a 4th order SAD model, 15 parameters for a quartic random 

regression model. This difference in the number of parameters would be even 

larger in a bivariate anlaysis as 55 parameters would be required for a bivariate 

quartic regression, but only 18 in a bivariate SAD(4) model. 
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Table 4.4: Univariate phenotypic analysis for milk, fat and protein yields in 

dairy cattle (SAD : structured antedependence models up to order 4. CP and 

CPNS: character process model with quadratic variance and exponential cor-

relation stationary and non-stationary, respectively. RR: quadratic, cubic and 

quartic random regression models. NPCov: number of parameters in the covari-

ance structure). 

Log L 

Model NPCov Milk Fat Protein 

SAD(1) 4 -1731 346 1334 

SAD(2) 5 1587 3674 4581 

SAD(3) 6 2155 4798 5238 

SAD(4) 7 2253 5217 5371 

CP 4 -1874 604 1852 

CPNS 5 -1505 1175 2593 

RR2 6 677 4230 1948 

RR3 10 1564 4943 4564 

RR4 15 2046 5365 6163 

Phenotypic bivariate analysis for Milk and Protein yields 

In all SAD models, a quadratic function of time was used to model variances. 

As before, the model was chosen by progressively increasing the order of the 

structured antedependence model until the added correlation coefficient was close 

to 0. The chosen model was: 

Milk(t) = 0.63 Milk(t - 1) + 0.24 Milk(t - 2) + c t 	(4.10) 

Prot(t) = 0.65 Prot(t - 1) + 0.31 Milk(t) - 0.21 Milk(t - 1) + et 	(4.11) 

where Milk(t) and Prot(t) represent milk and protein yields at time t, respectively. 

For this model, likelihood was equal 1294.4. This model was compared to a 
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bivariate quadratic random regression model (Log L = -284.1). The likelihood 

was therefore higher for structured antedependence model (11 parameters) than 

for quadratic random regression (21 parameters). 

Table 4.5 gives the phenotypic cross-correlation between milk and protein 

yields for the structured antedependence model. It appeared that the correla-

tion between milk and protein yields was quite high for all tests, with a cross-

correlation of about 0.95 along the diagonal. The cross-correlation matrix was 

nearly symmetrical. 

Table 4.5: Phenotypic cross-correlation between milk and protein, and milk and 

fat yields with the chosen structured antedependence model. 

1 2 

Milk 

4 	6 8 10 

1 0.94 0.58 0.50 0.43 0.35 0.26 

2 0.56 0.93 0.67 0.56 0.46 0.34 

Protein 	4 0.50 0.67 0.95 0.76 0.62 0.46 

6 0.42 0.56 0.75 .0.97 0.76 0.57 

8 0.35 0.46 0.61 0.74 0.97 0.69 

10 0.26 0.34 0.45 0.54 0.67 0.97 

1 0.73 0.44 0.38 0.33 0.27 0.20 

2 0.35 0.70 0.49 0.40 0.33 0.25 

Fat 	4 0.40 0.56 0.76 0.60 0.48 0.36 

6 0.37 0.49 0.65 0.80 0.62 0.46 

8 0.32 0.42 0.55 0.66 0.83 0.58 

10 0.25 0.32 0.43 0.52 0.62 0.85 



Phenotypic bivariate analysis for Milk and Fat 

The chosen model was: 

Milk(t) = 0.60 Milk(t - 1) + 0.26 Milk(t - 2) + €t 	(4.12) 

Fat(t) = 0.44 Fat(t— 1)+0.14 Fat(t-2)+0.31 Milk(t) —0.18 Milk(t— 1)+et (4.13) 

For this model, likelihood was equal 1091, with 12 parameters to model the co-

variance structure. Bivariate quadratic random regression model had a likelihood 

equal to -333, and 21 parameters. This likelihood was again lower than for the 

structured antedependence model in spite of a larger number of parameters. Table 

4.5 gives the phenotypic cross-correlation between milk and fat yields obtained 

with the structured antedependence model. The correlation was lower than be-

tween milk and protein, and was equal to about 0.75 along the diagonal. The 

cross-correlation matrix was again nearly symmetrical. 

4.5 Discussion 

Structured antedependence models were considered for the genetic analysis of 

bivariate repeated measurements. These models require few parameters to model 

variance and correlation structures. Univariate analyses showed that structured 

antedependence models of order 1 (SAD(1)) are about equivalent to character 

process (CP) models. Increasing orders of SAD models allow more flexibility 

to model the correlation structure than CP models, and therefore significantly 

improve the goodness-of-fit for the covariance structure. These analyses also 

showed that SAD models of order 3 or 4 performed better than cubic random 

regression and even, in some cases, than a quartic random regression model, with 

far fewer parameters. 

Multivariate extension of random regression models requires a very large num-

ber of parameters. For example, a bivariate genetic analysis considering only a 
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quadratic model for both genetic and environmental parts requires 45 parame-

ters. When increasing to the cubic order for both parts, the number of parameters 

jumps to 75 ! In contrast, increasing the order of a structured antedependence 

model only adds 2 parameters at each step. Moreover, the examples analysed 

showed that bivariate SAD models generally perform better than random regres-

sion, with fewer parameters, and offer a high degree of flexibility to model the 

cross-covariance structure. 

The parametrization considered here for the covariance matrix in the bivari-

ate analysis allows only an asymmetrical modelling of the dependence between 

the two traits. Further study should therefore be undertaken in order to model 

simultaneously the dependence on trait 1 over trait 2 as well as trait 2 over trait 

1. However, the chosen structured antedependence models proved to be able to 

deal with a symmetric cross-correlation pattern as shown in the cow data analysis 

as well as an asymmetric pattern as for the fly data. 



Chapter 5 

Contrasting models for lactation 

curve analysis 

5.1 Introduction 

Several methodologies have already been proposed for genetic evaluation of pro-

duction traits for dairy cattle based on test-day-records. Currently, the most 

commonly used are random regression models (Diggle et al., 1994 ; Jamrozik 

and Schaeffer, 1997). The idea of these models is to consider a mean curve in 

the population, which can be either parametric or non-parametric, and to model 

individual deviations from this mean curve for each animal. These deviations 

are usually modelled with polynomial functions and more specifically orthogo-

nal polynomials that have desirable numerical properties. Estimates of genetic 

values at each time are directly obtained from these individual curves. Another 

approach, called character process models, has recently been proposed by Pletcher 

and Geyer (1999) and concentrates on the modelling of the covariance structure. 

If a completely unstructured matrix were considered, which corresponds to a mul-

tivariate analysis, the number of parameters to be evaluated would be very large. 
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The character process approach aims at reducing the number of parameters in 

the covariance structure by considering appropriate parametric functions for the 

variance and correlation. Structured antedependence models (Zimmerman and 

Nunez-Anton, 1997 ; Nunez-Anton and Zimmerman, 2000) have also been pro-

posed in the statistical literature. They seem to offer the same advantages as 

character processes, ie. flexibility in modelling the covariance structure, with few 

parameters. They correspond to a generalization of autoregressive models, allow-

ing the variance to change with time. The aim of this chapter is to investigate and 

compare the behaviour of these different approaches for lactation curve analysis. 

5.2 Materials and methods 

Models considered were described in the Introductory Chapter. All calculations 

were performed using the program ASREML (Gilmour et al., 2000). An average 

information algorithm (Gilmour et al., 1995) was used for covariance parameter 

estimations. 

In order to implement the structured antependence models, a Cholesky de-

composition of the inverse of the covariance matrix as presented in Chapter 4 and 

by Pourahmadi (1999) was used. 

Data set 

These methodologies were applied to the genetic evaluation of first lactation milk 

production for dairy cattle. Lactation curves were fitted to test day records for 

9277 progeny of 464 Holstein-Friesian sires, assumed unrelated. Observations 

were made over two years (1993 and 1994). The lactation stage of animals at first 

test varied between 4 and 40 days, with successive tests at approximately 30 day 

intervals. All cows had 10 measurements. The fixed effects considered were the 

age at calving, the percentage of North American Holstein genes, and herd-test- 



month. An exponential curve (Wilmink, 1987) was fitted as a fixed regression 

model for the general curve of the population: 

g(t) = o + alt + a2exp(—Dt) 	 (5.1) 

where t stands for days in milk and parameter D was assumed to be known and 

equal to 0.068, chosen based on previous studies (White et al., 1999). 

Model comparisons 

The aim was to compare the performance of the three approaches in modelling 

genetic and permanent environmental parts for lactation curve analysis. Many 

different combinations of variance (polynomials up to quadratic) and correla-

tion functions (exponential: 0 1 'i 1 , Gaussian: exp(—O(t - t) 2 ), Cauchy: 1/(1 + 

O(t - t) 2 )), stationary or non-stationary, were considered for the character pro-

cess approach. Polynomials up to the quartic order were fitted for the random 

regression models. Antedependence up to order 4 was considered for SAD models. 

5.3 Results 

Phenotypic analysis 

As shown in Chapter 4 and in Table 5.1, likelihood was higher for a structured an-

tedependence model of order 3 compared to a quartic random regression, although 

the number of parameters was much smaller (7 compared to 15). Parameter es-

timates for the fourth order structured antedependence model were: 

Milk(t) = 0.50 Milk(t-1)+0.22 Milk(t-2)+0.1OMilk(t-3)+0.05 Milk(t-4)+e(t) 

(5.2) 

The fourth correlation parameter was quite small, therefore a third order SAD 

model may be enough for the phenotypic analysis of milk production. Likelihood 
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for character process models was about the same as a first order antedependence 

model. CP models had trouble dealing with the highly non-stationary phenotypic 

correlation structure. 

Table 5.1: Model comparison for the phenotypic analysis of milk production 

(NPCov: number of parameters in the covariance structure, CP and CPNS: 

character process with quadratic variance and exponential stationary or non-

stationary correlation, RR: random regression models up to the quartic order). 

Model NPCov Log L 

SAD(1) 4 -1731 

SAD(2) 5 1587 

SAD(3) 6 2155 

SAD(4) 7 2253 

CP 4 -1874 

CPNS 5 -1505 

RR2 6 677 

RR3 10 1564 

RR4 15 2046 

Genetic analysis 

Based on likelihood (Table 5.2), antedependence models seem to offer a high de-

gree of flexibility for the covariance structure with few parameters. In fact, like-

lihood was in general much higher for these models than most random regression 

or character processes. The genetic part was well fitted by a simple correlation 

structure, and an antedependence of order 1 was appropriate. Increasing the 

order of antedependence beyond this did not provide a significant improvement. 

On the other hand, the environmental part had a much more complex covariance 

structure and an antedependence of order 3 was necessary. 



Table 5.2: Model comparison for the genetic analysis of milk production (NPCov: 

number of parameters in the covariance structure). 

Model Genetic Environmental NPCov Log L 

Unstructured 

1 US US 110 4126 

2 SAD(1) US 59 4109 

Structured antedependence model 

3 SAD(1) SAD(3) 11 3845 

4 SAD(2) SAD(3) 12 3852 

5 SAD(3) SAD(3) 13 3854 

6 SAD(2) SAD(2) 11 3796 

7 SAD(1) SAD(1) 9 3580 

Character process 

8 Quad-ExpNS Quad-ExpNS 11 3266 

9 Quad-Exp Quad-ExpNS 10 3259 

10 Lin-Exp Quad-ExpNS 9 3244 

11 Quad-Exp Quad-Exp 9 2759 

12 Lin-Exp Quad-Exp 8 2733 

Random regression 

13 Quartic Quartic 31 3623 

14 Quad Quartic 22 3607 

• 	 15 Cubic Cubic 21 3336 

16 Quad Quad 13 2767 
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The chosen SAD model provided a likelihood even higher than a quartic-

quartic random regression, that has many more parameters (31 instead of 11). 

Parameter estimates were: 

Gen(t) = 0.997 Gen(t - 1) + €(t) 	 (5.3) 

Env(t) = 0.67 Env(t - 1) + 0.16 Env(t - 2) + 0.06 Env(t - 3) + e(t) 	(5.4) 

Table 5.3 gives the estimated genetic and environmental correlation matrices 

for the chosen antedependence model. The genetic correlation remains quite high 

over time and therefore can be well modelled with a simple correlation structure. 

On the other hand, the environmental correlation is highly non-stationary and re-

quires a much more complex correlation structure. The non-stationary extension 

of character process models could not deal well with this pattern as correlations 

on the sub-diagonals were not monotone either increasing or decreasing. Other 

more appropriate parametric forms of correlation functions need to be discovered. 

Figure 5.1 shows the genetic and environmental variance estimates for the 

different models. It can clearly be seen that although the innovation variance 

considered for the structured antedependence model was quadratic, the fit was 

considerably improved compared to character process models with a quadratic 

variance, and estimates were much closer to the unstructured ones. The diffi-

culty in modelling the environmental variance seems to be mainly due to the last 

test. Without this variance increase at the end of the lactation, much simpler 

polynomial functions would fit adequately. 
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Figure 5.1: Genetic and environmental variances estimated under the four dif-

ferent models (US: Model 1 in Table 5.2. 0P44: Model 13. SAD(1,3): Model 3. 

CP: Model 9). 
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Table 5.3: Genetic correlation for SAD(1) (above diagonal) and environmental 

correlation for SAD(3) (below diagonal). 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

1 1 0.82 0.75 0.71 0.69 0.67 0.66 0.65 0.63 0.61 

2 0.66 1 0.92 0.87 0.85 0.83 0.81 0.79 0.77 0.75 

3 0.62 0.79 1 0.95 0.92 0.90 0.88 0.86 0.84 0.82 

4 0.60 0.75 0.85 1 0.97 0.95 0.93 0.91 0.89 0.86 

5 0.56 0.71 0.80 0.88 1 0.98 0.96 0.94 0.91 0.89 

6 0.52 0.67 0.76 0.83 0.89 1 0.98 0.96 0.94 0.91 

7 0.49 0.63 0.71 0.78 0.83 0.89 1 0.98 0.96 0.93 

8 0.45 0.58 0.66 0.72 0.77 0.82 0.87 1 0.98 0.95 

9 0.41 0.52 0.60 0.65 0.70 0; 75 0.79 0.85 1 0.97 

10 0.36 0.46 0.52 0.57 0.61 0.65 0.69 0.74 0.81 1 

In order to check the goodness-of-fit of the genetic part, an unstructured 

covariance was fitted for the environmental part and a first order antedependence 

model (SAD(1)) was used to model the genetic part. The likelihood difference 

compared to a completely unstructured model was equal to 17 whereas it was 281 

for the chosen SAD model (SAD(1,3)). It can therefore be concluded that the 

genetic part was well fitted with the first order antedependence model, and that 

some improvement in the fit of the environmental part can still be achieved. It 

would for example be possible to consider a residual variance changing with time 

as proposed in Chapter 6. 

5.4 Discussion 

These analyses showed that structured antedependence models offer a high degree 

of flexibility in modelling covariance structure for genetic analysis of milk pro- 

duction in dairy cattle. The environmental correlation pattern is quite complex 
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and highly non-stationary, but seems to be well modelled with a third order an-

tedependence structure that performed better than a quartic random regression, 

with far fewer parameters. The genetic correlation pattern is simpler and can be 

captured with a first order SAD model. 

There is however one limitation concerning the use of SAD models for na-

tional genetic evaluation: they do not provide simple individual genetic curves 

as random regression models, and at present one genetic value is estimated for 

each animal at each time of measurement. This may still be possible for monthly 

records, where at most 10 measures are available per animal over time, but will 

be a problem when the number of observations is larger. Chapter 2 showed that 

random regression models can deal well with a correlation that remains quite high 

over time. Therefore, a possible way to overcome this difficulty could be to con-

sider a simple random regression model, either linear or quadratic, for the genetic 

part, and a structured antedependence model for the more complex environmen-

tal part. In that case, only two or three genetic parameters will be estimated for 

each animal, regardless the number of observations over time, while the number 

of parameters for the environmental covariance structure will be kept low with 

the SAD model. 

It would also be possible to achieve more flexibility with structured antede- 

pendence models by allowing heterogeneous variances. In the previous analyses, 

variances were assumed to change as a polynomial function of time, but it would 

also be possible to incorporate other covariables as originally proposed by Foulley 

and Quaas (1995) in their structural models. This would improve the accuracy of 

estimation of the covariance structure and therefore the genetic value predictions. 

Calculation of loss of efficiency of genetic response under the different models 

is presented in the following Appendix. Losses in the response to selection are 

found to be quite small. However, when applied to the dairy cattle selection 

scheme involving millions of animals, the slight differences can have a significant 
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economic impact, as was already observed with the introduction of heterogeneous 

variances. The impact will be mainly on individual cow selection for which the 

ranking may be changed, and on early bull testings when not much information 

is available on daughters. 
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Appendix: Response to selection 

Using the selection index theory as presented by Cameron (1997), let us consider 

the 10 tests as 10 correlated traits Y1 , Y2 , ..., Y10 . Each trait is assumed to have 

the same economic weight a i  = 1 for all i = 1, ..., 10. For individual selection 

on cows, the selection index is given by: I = >, bj Yj . Let P be the phenotypic 

covariance matrix between the 10 traits and G the genetic covariance matrix. 

The selection criterion coefficients b = {b}_ 1 ,..., 10  can be calculated by: 

b= P'Ga 
	

(5.5) 

When genetic and phenotypic parameters are known, the response to selection is 

given by: 

R=z  
Vb'Pb 

b'Ga 	
(5.6) 

where i is the standardised selection differential in the selection criterion I. In 

general, however, genetic and phenotypic parameters have to be estimated, and 

coefficients of the selection criterion are given by: 

b=P'Ga 
	

(5.7) 

The actual response to selection given the estimated selection criterion coefficients 

is 

* 	• 

R =z b'Ga 

If the estimated genetic and phenotypic parameters are not equal to the pop-

ulation parameters, then the response will be -less than the maximum response. 

The loss in efficiency due to the difference between the estimated and population 

parameters (Sales and Hill, 1976) is: 

R * 

d=1---- (5.9) 

Considering estimates provided by the unstructured model as true parame-

ters, the loss in efficiency was calculated under each model for individual cow 

(5.8) 
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selection, and values are given in the table below. Although the loss of efficiency 

was small under each model, it was the smallest for structured antedependence 

models, that also have the highest likelihood. 

Table 5.4: Loss of efficiency of the genetic response for individual cow se-

lection under structured antedependence model (SAD(1,3): Model 1 in Table 

5.2), quartic-quartic random regression (0P44: Model 13), and character process 

model (CP: Model 9). 

Model 	Loss of efficiency LogL 

SAD(1,3) 0.021 3845 

0P44 0.023 3623 

CID 0.060 3259 

Assuming a balanced sire design, let ii be the number of daughters per sire. 

The selection indices for sires are now based on averages of daughters observations: 

I = Ej  bj Yj  where Y = > 1'. The phenotypic covariance matrix P8  is given 

by: 

P8  = 1 —P+ (1— 
1
—)G 	 (5.10) 

n 	n 

where C is the between-sire covariance matrix. Replacing this value in formulae 

given above, it is possible to calculate the loss of efficiency for sire selection 

depending on the number of daughters per sire. Values are presented in the 

graph and table below. 
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Table 5.5: Loss of efficiency of the genetic response for sire selection under each 

model, depending on the number of daughters. 

Loss of efficiency 

Model 	n=1 n=5 n=10 n=20 n=50 n=100 LogL 

SAD(1,3) 0.021 0.015 0.012 0.008 0.004 0.002 3845 

0P44 0.023 0.016 0.011 0.007 0.004 0.002 3623 

CP 0.060 0.042 0.029 0.018 0.008 0.004 3259 

Figure 5.2: Loss of efficiency for sire selection depending on the number of 

daughters. 
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Chapter 6 

Residual variance modelling 

6.1 Introduction 

In the longitudinal data framework, part of the heterogeneity of variances across 

time in the population can be modelled via random regression (Jamrozik and 

Schaeffer, 1997 ; Verbeke and Molenberghs, 1997) or covariance functions (Kirk-

patrick et al., 1994 ; Meyer and Hill, 1997). Nevertheless, heterogeneity usually 

remains in the residual variances. More specifically, in the case of the analysis of 

test day records for milk production in dairy cattle, different studies (Brotherstone 

et al., 1999; White et al., 1999) have shown that the residual variance changes 

over time. To cope with this heterogeneity, authors divide the lactation length in 

different intervals, assuming homogeneity within intervals and heterogeneity be-

tween them (Jamrozik and Schaeffer, 1997 ; Rekaya et al., 1999). However, this 

method can lead to a large number of variance parameters to be estimated and, 

moreover, requires the definition of arbitrary subclasses within which the variance 

is assumed constant, whereas the change of the residual variance is continuous 

over time. 

Recently, Rekaya et al. (1998) proposed a changepoint technique to account 
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for the heterogeneity of residual variances along lactation. This approach offers 

a way to model continuously the changes of the residual variance over time, but 

assumptions need to be made about the number of changepoints and the relation-

ship between the residual variance and the number of days in milk. Moreover, 

the number of parameters that have to be estimated may still be quite large and 

the estimation (using for instance Bayesian techniques) time consuming. 

The aim of this chapter is to propose another way to account for this hetero-

geneity, and to model the changes of the residual variance along lactation as a 

continuous function of time. In this purpose, a structural model, as proposed by 

Foulley and Quaas (1995) is assumed on the residual variances, and the covariates 

of this model are parametric functions of time. This procedure offers two main 

advantages: the number of parameters to be estimated for the residual variances 

is reduced compared to a purely heterogeneous model, and the changes in the 

residual variance are considered to be continuous over time, so there is no need 

to define arbitrary classes of heterogeneity. 

The estimates of the parameters for this model on the variances were ob-

tained using an EM-REML type algorithm. The equivalence between this system 

of equations and the GLM estimating equations was shown by Lee and Nelder 

(1999). This methodology is illustrated by an analysis of a real data set of monthly 

records for milk production in dairy cattle. 

6.2 Materials and methods 

6.2.1 Model 

Consider a population with I individuals, with individual i having n i  observations. 

The time and the number of measurements may be different for each individual. 

For the sake of simplicity, a simple mixed model (Laird and Ware, 1982) for the 
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analysis of longitudinal data was assumed: 

Yij = x/3 + 	+ eij 	 (6.1) 

where yij  is the th  measurement on individual i at time tj (i =1 ..., I and j = 1, ..., n 1 ). 

/3 are the fixed effects associated to the incidence matrix X (of row x), and u 1  

is the vector of random effects for individual i, with incidence matrix Z (of row 

ij It is assumed that u = (u, ..., u)' '-'-' .Af(O, G), and that the residuals e ij  are 

independent and such that: 

(6.2) 

In order to model the heterogeneity of the residual variances over time, a struc-

tural model (Foulley and Quaas, 1995 Foulley et al., 1998) was assumed: 

Inc, ij  = p:5 
	

(6.3) 

For instance, if a quadratic function of time is appropriate for the data studied, 

then 

lna2  = a + bt 1  + ct 	 (6.4) e 1  

and p,j  = (1 tij t). The model can easily be extended to higher order polynomials 

or other parametric functions of time. A step-wise procedure could be used to 

choose the covariates in the structural model, as discussed by Foulley and Quaas 

(1995). 

Using an EM-REML procedure (Dempster et al., 1977) and Lee and Nelder's 

(1999) result (as detailed in the appendix), estimation of all the parameters in 

this model can be obtained by iterating between the following procedures which 

can be achieved with existing software (SAS, Genstat, AS-REML, etc.): 
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Mixed model equations (MME) are constructed assuming a fixed residual 

variance to obtain estimates of the factors in the model and residuals ê. 

A regression model is applied to the log of the squared residuals (GLM equa-

tions described in the appendix), to obtain an estimate of 6 in equation (6.3). 

Mixed model equations are constructed again, but using the regression function 

to determine the appropriate residual variance for each time t,j, of., the inverse 

of which is used as the weighting of the MME. 

Back to step 2, until convergence is reached. 

Other algorithms such as those proposed by Foulley et al. (1990), Verbyla 

(1993) and Schnyder et al. (1999) could also be used for estimating the parameters 

in the structural model, and may differ in convergence rate, ability to remain in 

the parameter space and computing time. 

6.2.2 Application 

The preceding theory was applied to the data set used by White et al. (1999). Lac-

tation curves were fitted to test day records of milk production for 2885 progeny 

of 30 Holstein- Friesian sires in 503 herds. The lactation stage of animals entering 

the first test varied between 4 and 40 days, with successive tests at approximate 

30-day intervals (10 tests for each cow). The fixed effects considered were the age 

at calving, the percentage of Holstein genes, and herd-test-month. White et al. 

(1999) considered a sire model, and modelled the mean curve of the population as 

well as the genetic and environmental effects non-parametrically using smoothing 

splines. 

Here, the exponential curve of Wilmink (1987) was fitted as a fixed regression 

model for the general mean curve of the population: 

g(t) = b0  + b i t + b2 exp(—Dt) 	 (6.5) 
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where t stands for days in milk (DIM). The parameter D was assumed to be 

known and equal to 0.068, chosen based on previous studies (Brotherstone et al., 

1999 ; White et al., 1999). A sire model was considered, and quadratic random 

regressions were assumed to model both the genetic and environmental effects 

Yij = 	+ ako + ak1tI + ak2t IJ  + b10  + b11  t 1  + b 2t + eij 	(6.6) 

where Yij  was the milk production of cow i taken at time t ij , x/3 were the 

fixed effects described above, ako + ak1t + ak2Qj  was the quadratic random re-

gression for the genetic effect (sire k), b 10  + b 1 t 1  + b12 t was the quadratic ran-

dom regression for the environmental effect (for cow i within sire k). Parameters 

ak = (ako, aki, ak2) '  and b 1  = (b10 , b 1 , b12 )' were assumed to follow multivariate 

normal distributions, and was the residual term (e A/(0, o..)). 

Two different models for the residual variances were considered: 

Model 1: Ten classes were assumed for the residual variances, i.e. one for each 

measurement as considered by White et al. (1999). 

Model 2: A structural model was assumed on the residual variances, as equation 

(6.4) a quadratic polynomial of time being considered. The estimates of the 

parameters for the latter model were obtained by iterating between AS-REML 

for the mixed model equations and SAS for the GLM equations, but this procedure 

could also easily be incorporated in a REML package. 

6.3 Results 

Fixed effect solutions were very similar for both models, and were also similar to 

those obtained by White et al. (1999), who fitted a 10-knot spline on the same 

data set. In fact, the breed difference (Holstein-Friesian) was estimated in the 

first model at 1.56 kg (SE=0.44) and in the second model at 1.51 kg (SE=0.44), 

and the effect of age at calving as 0.18 kg/mo (SE=0.02) in the two models. As 



seen in Table 6.1, the estimates of genetic parameters were also very similar in 

the two models and very close to the results of White et al. (1999). 

Table 6.1: Mean DIM, variance estimates (kg'), and heritabilities by test (G=Genetic, 

E= Environmental, R=Residual). 

Model 1 	 Model 2 

Test DIM 	G 	E 	R h2 	G 	E 	R h2  

1 18 3.08 9.17 4.93 0.21 

2 48 3.02 7.90 4.10 0.24 

3 78 3.11 7.42 3.74 0.26 

4 109 3.25 7.31 3.23 0.29 

5 139 3.36 7.33 2.36 0.32 

6 169 3.41 7.33 2.69 0.31 

7 199 3.43 7.33 2.49 0.32 

8 229 3.45 7.49 2.43 0.32 

9 259 3.56 8.09 2.07 0.32 

10 290 3.90 9.63 3.56 0.28 

3.11 9.20 5.16 0.21 

3.05 7.91 4.17 0.24 

3.13 7.42 3.49 0.27 

3.26 7.31 3.01 0.29 

3.37 7.32 2.72 0.31 

3.42 7.32 2.54 0.32 

3.44 7.32 2.46 0.32 

3.47 7.49 2.47 0.32 

3.60 8.11 2.57 0.31 

3.96 9.69 2.78 0.29 

Figure 6.1 shows that the quadratic function was a good representation for the 

changes of the residual variance. Table 6.2 gives the estimates of the parameters of 

the structural model (Model 2) with their standard errors. All were significantly 

different from 0, and the quadratic function for the residual variances was: 

1no.. = 0.97 - 0.073 t ij  + 0.018 t 	 (6.7) ij  

(with t 1 =(DIM-150)/30). Although this quadratic function seemed to be quite 

appropriate, the likelihood was higher for the first than the second model (differ-

ence of 32 for the Log-likelihood). Nevertheless, as there were fewer parameters 

for the residual variance to be estimated in the second (three) than in the first 

model (ten), a criterion such as Schwarz Bayesian Criterion (1978) is more ap- 



propriate. This criterion penalizes the likelihood with respect to the number of 

parameters and is defined by 

Loglikelihood - 	x number of parameters in the model x Log ri 

where n = ri - p when using REML with n the number of observations in the 

data set and p the number of fixed effects. It showed a slightly better fit for the 

second than the first model (difference of 4). 

Figure 6.1: Changes of the residual variance over time for the two models. 

Model 1: 10 different classes of heterogeneity (1 for each test). Model 2 : Struc-

tural model on the residual variance (lno.. = 0.97 - 0.073 tj + 0.018 t, whereIj  

t•=(DIM-150)/30). 
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Table 6.2: Estimates and SE of the parameters of the structural model on the 

residual variances (Model 2) (P <0.001 for each parameter). 

Parameters Estimate SE 

a 	0.970 0.008 

b 	-0.073 0.002 

c 	0.018 0.001 

6.4 Discussion 

The improvement in fit of the structural model on the residual variance compared 

to the heterogeneous model (assuming ten different classes of heterogeneity) was 

not great. However this method would prove to be much better in the case of 

high heterogeneity within classes. For instance, with model 1 modified so that 

the lactation was divided into five intervals rather than ten, the likelihood was 

greater for the second than the first model (difference of 9 for the Log-likelihood), 

even though model 2 still had fewer parameters. 

Nevertheless, the polynomial functions may not be the most appropriate, es-

pecially because of their lack of flexibility to model the variances at the beginning 

and at the end of the lactation. Other more flexible parametric functions could 

be considered using the same methodology. 

This method offers two important advantages: there are fewer parameters to 

be estimated than in the classical heterogeneous model, and the variance is a 

continuous function of time, with no arbitrary classes. This approach could also 

be a useful alternative for other longitudinal studies that arise in animal breeding, 

for instance growth curve analyses. 

Other factors of heterogeneity could be taken into account in the structural 

model on the residual variances (Foulley and Quaas, 1995), for instance the age 



at calving, month of calving, region, year, and even the herd-test-month (perhaps 

as a random effeèt). This aspect of the heterogeneity of variances, which applies 

to the residual variances as well as the genetic and permanent environmental 

variances, has to be investigated more thoroughly. 



Appendix 

The REML estimates of the parameters in the structural model for the residual 

variance were obtained using an EM algorithm (Dempster et al., 1977). 

Letting c = (y', 0')' be the complete set of data, and 0 = (/3', u')' the vector of 

the missing values. The likelihood function of the complete data is: 

	

p(cô, G) = p(y)3, u, 6)p(/3, uG) 	 (6.8) 

Therefore, the log-likelihood is: 

—21np(c6, G) = —2L(6, G; c) = —2L(6; e) - 2L(G; u) 	(6.9) 

and the estimation of 6 can then be separated from that of G, considering the 

log-likelihood: 

I 	n1 

—2L(6; e) = const. + 	[1n0.. + --e] 	 (6.10) 
i=1 j=1 	 e 1  

The E-step is defined as usual, i.e. at iteration (r) one calculates the condi-

tional expectation of L(5; e) given the data y and ö = 

	

Q(515(r) ) = E(-2L(6;e)y,6 (") 	 (6.11) 
I 	n1 	 1 

= const. + 	[1no.. + ---E(e)] 	(6.12) 
i=1 j=1 	 eij  

where E(e) stands for the conditional expectation E(ey, 5), andIj 

E(eIy, (r)) = (E(eIy, 6(r)))2 + trace (Var(e1Iy, ö(r))) 	(6.13) Ij 

= 	+ Var(ey, (r)) 	 (6.14) Ij  

The M-step consists of calculating the next value (r+1)  by minimizing the 

function Q(öIô) with respect to 6, 



	

9Q - 	Da.
(6.15) 

- t9O e2iJ  ôlnci.. 	06 
eij  

Then 

	

I 	n 

- 	[1 - —Ec (e)]p1 	 (6.16)Ij  
i=1 j=1 	e 1  

OQ 	
'ni 1 

= 	>(1 - w)(i - --d )p 1 	 (6.17) 
i=1 j=1 	 eij  

where wjj  = 4-Var(e j Iy, 6(r))  and d = ê/(1 - 
o.e ij  

Lee and Nelder (1999) showed that this system of equations is equivalent to 

the estimating equations for a GLM (McCullagh and Nelder, 1989) with response 

dj (where d is the square of the residuals divided by the weight (1 - w 1 )), mean 

error gamma, log-link (1n(cr.)), linear predictor: jj = p6, and prior weight 

(1 - w 1 ). 

The values of ê and Var(e ly, 6(r)) can be calculated from the solutions of the 

MME (mixed model equations) as follows: 

= y1 - x,i3 - zü 	 (6.18) Ij  

where 3 and ü are the BLUP solutions. 

Letting 6 = (/3', u')' and bij = (x, z), then eij = Yij - b 1 O and therefore 

Var(e1jly, o') = b1Var(OIy, 	 b'ij 	 (6.19) 

where Var(Oly, 6(r)) corresponds to the inverse of the coefficient matrix in the 

MME. 



Chapter 7 

How to deal with incomplete and 

short lactations 

7.1 Introduction 

Classical longitudinal data models, such as random regression, are often said to 

be able to deal with missing values and unbalanced data sets. They are indeed 

able to deal with data that are missing at random, as defined by Little and Rubin 

(1987). Laird (1988) in fact showed that in this case inferences about parameters 

in the model are not influenced by the missing process that can then be ignored. 

This study concerns parameters in the population such as fixed effects or variance 

parameters. Individual predictions will however be affected by a missing process 

related to the observed character as illustrated by the examples below. In the case 

of milk production for dairy cattle, longitudinal models are able to extrapolate 

incomplete lactations and to predict a production at 305 days, for example. This 

prediction however does not take into account the fact that the cow may be dried 

off before day 305. Moreover, at present no special treatment is considered for 

cows with short lactations. As for incomplete lactations, the model predicts a 



production at day 305, that can even be negative with some random regression 

models, although production of the cow is known and equal to zero. An easy 

way to deal with short lactations would be to add zeros in the data set when 

the cow has been dried. However, for models such as random regression that try 

to fit a parametric individual curve, genetic value estimations would be greatly 

penalized at all times due to these zeros and the risk of having negative predictions 

for milk production at late stage of the lactation will be even greater. Moreover, 

variances at the end of the lactation would be underestimated. We therefore 

propose to keep analysing data as usual and to perform an a posteriori correction 

of phenotypic and genetic predictions using parameters estimated in the model 

combined with the probability for the cow to be dried off at each time. This 

procedure will be adapted to deal with both incomplete and short lactations and 

can be used with any longitudinal model. A simulation study illustrates the use 

of this methodology. 

7.2 Model 

There are two different ways by which missing data can arise in genetic evaluation 

for milk production based on test day records. The first one is when genetic 

analysis is decided at a given date and cows can be included in the analysis even 

if their lactation is not complete yet and they are still producing milk but the 

following records are still unknown (incomplete lactations). Another reason for 

missing data is when the cow is dried off (short lactations). Although data are 

not really missing as the production values for the cow are known and equal to 

0, they appear as missing values in the data file. 

Many papers have been published in the statistical literature about how to 

deal with missing data in longitudinal studies (Wu and Carroll, 1988; Diggle and 

Kenward, 1994). We are concerned here with the drop-out process, i.e. when 
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the subject gets out of the study (either because the cow has been dried off or 

because measurements stopped at a given date). Little and Rubin (1987) propose 

to consider three kind of missingness: 

Completely random dropout: the dropout and measurement processes are 

independent, which is the case for incomplete lactations. 

Random dropout: the dropout process depends on the observed measure-

ments, i.e. those preceding dropout. This is typically the case for short lactations 

when the cow is dried off by the breeder when its production drops below a given 

threshold. 

Informative dropout: the dropout process depends on the unobserved mea-

surements, i.e. those that would have been observed if the subject had not 

dropped out. 

Laird (1988) showed that a completely random, but also a random dropout can 

be ignored and will not affect inferences about parameters of the measurement 

process. Therefore, fixed effects and covariance parameters provided by the lon-

gitudinal model for lactation curve analysis will be valid. This conclusion about 

ignorability of the dropout process is based only on parameters in the population. 

Individual predictions, however, will have to be corrected for the dropout process, 

even for a randomly missing data. This will be illustrated later on in the case 

of short and incomplete lactations for evaluation of individual cumulative milk 

production. 

Let y,  be the production for animal i at time t if the cow was assumed to 

be never dried off. Classical longitudinal models that do not take into account 

the dropout process work on variable Yjt  instead of working with the actually 

observed data y.  For simplicity, it is assumed that the cow is dried off by the 
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breeder when its production drops below a given threshold s: 

Yit 
* if Y(ti) ~ 8 

Yit = { o if Y(t-1) < S 

This model is very similar to the Tobit model used in econometrics. The 

cumulative production at time T is the sum of all the observed daily productions 

of cow i up to time T and is given by: 

T 

ST = 	Yit 
	

(7.1) 

Classical longitudinal models approximate this sum by >II y, which corre-

sponds to the cumulative milk production if the cow was never dried off. This 

will therefore overestimate the cumulative milk production for cows with short 

lactations. 

For short as well as incomplete lactations, observations for cow i are missing 

from a given time T0 . The idea would therefore be to use expectation instead 

of actual milk production in order to evaluate the cumulative value. It is also 

clear that short and incomplete lactations should not be treated the same way in 

order to evaluate the cumulative milk production. The model presented above, 

assuming that the cow is dried off when its production goes below a given thresh-

old will allow to treat them differently, as cows with short lactations will have a 

lower production level (probably below threshold s) than cows with incomplete 

lactations, except for the ones that will be dried off early. So, this model seems to 

be flexible, and will correct predictions for both short and incomplete lactations. 

The longitudinal model can be written as: 

Yt = g(t) + xf3 + Zak + qit bi  + 6ikt 	 (7.2) 

where g(t) is the mean curve in the population, that can be either parametric 

or non-parametric, xJ3 are fixed effects, that can be time-dependent, zak is 

the genetic value for sire k at time t and qi t bi  is the permanent environmental 

effect for animal i at time t. It is assumed that ak .A1 (O, G), b r'.i  .A1(O, P) and 
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e1  .Af(O, R). This model is very general and can be any longitudinal model such 

as random regression or character process models. 

The corrected cumulative milk production for animal k is given by: 

T 
E(STjak) = I: E(yit lak ) 	 ( 7.3) 

In a sire model, ak is the genetic value for sire k of animal i. With the model 

given in equation (7.2), it follows that: 

E(yIak) = g(t) + 	Zak = I.Lit 	 (7.4) 

Var(y,Iak) = + = (7.5) 

Cov(y,y_ l ak) = qPq_1  = cJj(t_1) (7.6) 

Using calculations presented in the appendix, it can be shown that: 

I-ti(t-1) - S 	 - 
E(ylak) = 	1( 	

) + Oit(t_1) 	/ii( 
( 	

t....1) 	
S) 	( 7.7) 

0 i(t-1) 	Ui(t_1) 	0 i(t-1) 

where P(.) and q(.)  are the cumulative probability and density functions of a 

A1(O, 1), respectively. This expectation corresponds to a corrected prediction of 

the production of animal i at time t, taking into account the drying off process. It 

is easy and fast to compute from parameter estimates obtained in the longitudinal 

model (fixed effects, genetic values and variance parameters). As explained above, 

the dropout process is either completely random (for incomplete lactations), or 

random (for short lactations) and inference for parameters in the model remains 

valid. Estimates can therefore be used in the corrected individual predictions. 

This procedure can also be used to correct the prediction of genetic values at 

time t. This correction can in fact simply be obtained by: 

E(yIak) - E(y) 	 (7.8) 

that corresponds to the sire deviation k from the mean curve. 
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7.3 Simulation study 

7.3.1 Phenotypic analysis 

A data set for daily records of milk production was simulated, considering 1000 

cows with 300 measures per cow. Data were simulated according to a quadratic 

random regression model, using a Wilmink curve for the population mean. Pa-

rameters of the model were based on analyses of real data sets for milk production. 

The daily production threshold s for a cow to be dried off was set to 10 kg, and 

the minimum length of lactation curve was assumed to be 150 days. 

Figure 7.1: Individual milk production: simulated curve, prediction obtained 

with the random regression model, corrected prediction taking into account the 

drying off process. 
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Expectation of total milk production at day 300 was calculated from the model 

and using the proposed corrected procedure. Figure 7.1 shows an individual curve 
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for a simulated short lactation. Observed (simulated) production as well as curves 

estimated with the model and the proposed procedure are presented. It can be 

seen that the proposed methodology significantly improves the accuracy of the 

predicted production values compared to a classical random regression model. 

This is especially the case at the end of the lactation where expected production 

value is equal to 0 with the corrected approach, whereas it was predicted at - 

4.5 kg (with a negative expected production !). The methodology also provides a 

more accurate estimation of the cumulative production. The observed (simulated) 

cumulative production in this case was 4329 kg. It was overestimated by 454 kg 

by the random regression model, and only by 222 kg with the corrected procedure. 

7.3.2 Genetic analysis 

The problem of dealing with short lactations will also have an important impact 

on genetic evaluation, especially for genetic values at the end of the lactation. 

For example, for a sire having most of his daughters dried off before day 300, the 

genetic value predicted with classical longitudinal models will be overestimated 

if the drying off process is not taken into account. 

In order to illustrate this problem, a data set was simulated as previously con-

sidering 100 sires, 10 daughters per sire and 300 observations per cow. Figure 7.2 

shows the average milk production for the daughters of one of the simulated sires. 

Predicted curve obtained with the model as well as corrected curve are presented. 

This graph nicely illustrates the fact that the model predicts a production curve 

assuming that the cows are never dried off. The proposed correction seems to 

be able to model much more accurately the actual production, and will therefore 

provide a much more accurate genetic value for the given sire, especially in the 

late stage of lactation. It can also be seen that genetic values in the first part of 

the lactation will be the same with both procedures. This would not be the case 

if zeros were added in the data file, as genetic values would then be underesti- 
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mated all over the lactation. Figure 7.2 also shows that the longitudinal model, 

when the drying off process is ignored, overestimates genetic values at the end of 

the lactation. The proposed corrected procedure therefore appears to be a good 

compromise between the two approaches as it keeps genetic values predicted by 

the longitudinal model in the first part of the lactation and penalizes them in the 

second part for shorter lactations. 

Figure 7.2: Average milk production for the daughters of a given sire: sim-

ulated curve, prediction obtained with the random regression model, corrected 

predictions taking into account the drying off process. 
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7.4 Discussion 

This chapter presents a simple procedure to correct predictions of milk production 

for lactation curve analysis taking into account the drying off process. It will be 

especially useful for incomplete lactations in order to have better estimates of 

individual cumulative production at 305 days. The proposed procedure is very 



simple and flexible as it can be adapted to any kind of longitudinal models: 

random regression, character processes, etc. Data used for genetic evaluation do 

not have to be modified, and calculations for the proposed correction are very 

simple and fast to compute. 

The simulation study showed that the corrected procedure greatly improves 

the estimation of the cumulative milk production compared to a simple random 

regression that does not take into account the drying off process. It also avoids 

predicting negative production values, which is one drawback of classical longi-

tudinal models. The procedure will also have an important impact for genetic 

value predictions and should help correcting the overestimations obtained with 

traditional models, especially at the end of the lactation. 

More complicated models for the drying off probability could be used. For 

example, different values for the threshold could be considered for each herd and 

other covariables could be taken into account. 
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Appendix: Calculations 

Let two variables y and y  be defined as: Yi = y (Yi  is always observed), and 

Y2 
Y if  Yi > S 

= { 
0 otherwise 

y and y are assumed to be correlated and normally distributed such as: 

Af 
((L' 	 012 

k/L2) \U21 U 

The aim is to calculate E(y 2 ). 

E(y 2 ) = E(y2Iyi > s)P(y i  > s) + E(y2 1y 1 	s)P(yi 	s) 	(7.9) 

When (Yi < s), Y2 = 0, therefore E(y2 y1  < s) = 0. 

As 
1 	+00 

f(Y2IYI > s) 
= P(yi  > s) f 	f(y1,y2) dy 1 	(7.10) 

It follows that: 

+00 

E(y2) = 	Y2 f(y2y1 > s) dy 2  x P(y i  > s) 

1 	+00 	+00 

- 	 I 	y2[f 	f(yi,y2)dy i]dy2 xP(y 1 >s) 
- P(yi  > s) i-co 	is 

f+= 

=  L
+00 +00 

IL00 Y2 f(Y2Y1) dy2 1 f(yi)  dy,  

00 

E(yy) f(yi)  dy,  

+00 = L 	[2 + 	(Yi - i)1 f(yi) dy,. 
a'  

a2 1 a21  
= (J2 - -- j) P(y, > s) + —i-  / 	y '  f(y,) dy 1  

a, 	 a1  j8 



It can be shown that 

S 

I 
+00 

' f(yi) dy, = 	('_-_)+ai (_
l_S) 	

(7.11) 
is Orl  

where P(.) and 0(.) are the cumulative probability and density functions of a 

.A1(O, 1), respectively. 

This leads to: 

E(y2) = 2 (Ll_-_S) + 	
-_S) 	

(7.12) 
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Chapter 8 

General discussion 

8.1 Thesis Overview 

Modelling of time or age dependent traits is obtaining increasing attention. Ran-

dom regression models are the most well-known and the most commonly used. 

In animal breeding, they have already been implemented for the genetic evalu-

ation of dairy cattle for milk production. However, very few studies have been 

performed to compare them to other approaches. One of the aims of this work 

was therefore to search the statistical literature for other ways of analyzing lon-

gitudinal data. Two other approaches were considered, namely character process 

models (CP) and structured antedependence models (SAD). They rely on very 

different concepts from random regression and are not well known yet. However, 

the comparative study performed here proved that they offer very interesting 

characteristics and that they can model very different kinds of covariance struc-

tures, with few parameters. In most of the examples considered, they performed 

better than classical random regression models. More attention should therefore 

be given to these models for the genetic analysis of longitudinal data. 

As originally proposed by Pletcher and Geyer (2000), character process models 
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assumed stationarity of the correlation function. Ways of relaxing this quite 

stringent assumption were suggested in Chapter 2. 

As the range of all possible models to be tested is very wide in practice, a 

non-parametric approach was proposed in Chapter 3 for preliminary exploratory 

analysis of the covariance structure. It is especially suitable when the number of 

measurements per subject over time is large, for example for daily record anal-

ysis for milk production. In this case, it is not possible to estimate completely 

unstructured covariance matrices with standard software. The proposed method-

ology, based on the variogram, is easy to implement and computing time required 

is small, even for large data sets. 

In previous longitudinal studies, the residual variance was often found to be 

changing over time. A possible way to model it as a continuous function of time 

was proposed in Chapter 6 to avoid the problem of considering different discrete 

classes. 

The practical aim of this research project was genetic analysis of dairy cattle 

for milk production. At present, the genetic evaluation is based on prediction for 

individual cumulative milk production at 305 days. Advantages of using longitu-

dinal models as presented in this thesis are now well known. In particular, such 

models can easily provide individual cumulative predictions even for incomplete 

lactations without needing other extrapolation procedures. However, predictions 

obtained rely on the assumption that cows are never dried off, which is obviously 

not the case and can lead to overestimation of cumulative milk production. A 

way to correct these predictions by taking into account the drying off process 

was suggested in Chapter 7. The methodology is simple and easy to implement. 

Ways of improving it are possible, but the main objective of this study was to 

point out and illustrate potential problems in genetic evaluation. 

All the analyses presented here were based on the normality assumption of 

the observations. Implementation of the character process methodology for non- 
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normally distributed traits was considered and appended to the thesis. The esti-

mation procedure is much more complex in this case as no analytical form for the 

likelihood is available, and methods based on Markov Chain Monte Carlo were 

used. An application to survival analysis was presented but other traits such as 

threshold characters could be analysed the same way. 

8.2 Model comparison 

Through extensive investigation of a variety of simulated covariance structures 

and empirical data it was found (see Chapter 2) that character process models 

provide under most conditions a better description of the underlying covariance 

structure than random regression models. This was especially clear for a correla-

tion declining rapidly to zero as observations became further separated in time. 

Polynomials do not have asymptotes and the estimated correlation obtained with 

random regression models went negative instead of decreasing asymptotically to 

zero. This can be a serious drawback as such an asymptotic correlation pattern 

is often to be expected in practice. 

A further advantage of character process models is their ability to model 

variance and correlation separately, whereas for random regression the entire co-

variance is implicitly determined by the shapes of the regression polynomials, and 

covariance surfaces described by orthogonal polynomials have a fixed relationship 

between variance and correlation. This was also a major factor contributing to 

the ability of CF models to give reasonable estimates of the covariance structure 

with a much smaller number of parameters than random regression models. 

There are still however a few limitations of the character process models. The 

first concerns the stationary assumption of correlation functions. One possible 

way to relax this assumption was proposed in Chapter 2 based on a time-scale 

transformation. It seems to be a promising direction and offers reasonable flex- 
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ibility in practice with only one extra parameter. However, it cannot deal with 

all kinds of non-stationary pattern as it assumes that correlations on the sub-

diagonals are monotone. Other more general parametric non-stationary correla-

tion functions should therefore be investigated. The second limitation of process 

models is their extension to multi-trait analyses. Generalization of random re-

gression models to the multivariate case is straightforward and has already been 

used (Jamrozik et al., 1997). Bivariate character process models might be imple-

mented by defining a parametric cross-covariance function between the two traits 

but appropriate forms for this function are yet to be discovered. 

Structured antedependence models (SAD), proposed by Zimmerman and Nunez-

Anton (1997), seem to offer similar advantages to character processes to capture 

adequately the covariance structure with few parameters and to deal with asymp-

totic correlation patterns. They also overcome limitations of CF models concern-

ing the non-stationary specification and the extension to multi-trait analyses, as 

shown in Chapter 4. They proved in particular to be able to deal with the non-

stationary correlation pattern observed in the data analysis for milk production of 

dairy cattle, which was not well dealt with by the CF models. For the phenotypic 

analysis of milk production, SAD models performed even better than a quartic 

random regression with many fewer parameters (see Chapter 5). A first order 

structured antedependence model (SAD(1)) is in general about equivalent to CP 

models. Increasing orders of antedependence allow a high degree of flexibility to 

capture very different kinds of correlation patterns (see Chapter 4). Moreover, 

multivariate extension of random regression models requires a very large number 

of parameters. For example, a bivariate analysis with only a quadratic model 

for both genetic and environmental parts requires 45 parameters. With cubic 

order polynomials for both parts, the number of parameters jumps to 75! In 

contrast, increasing the order of structured antedependence model adds only two 

parameters at each step. As shown in Chapter 4, SAD models offer flexibility also 
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for the cross-covariance structure and perform in general better for a bivariate 

analysis than random regression models, with fewer parameters. However, in the 

antedependence formulation presented in Chapter 4, it is required that times of 

measurement are on a discrete scale and equally spaced. This can be an impor-

tant limitation in practice for the analysis of function-valued traits. A way to 

relax this assumption is proposed in the next section. 

8.3 Continuous antedependence models 

8.3.1 Model 

As presented in Chapter 4, a third order antedependence model can be written 

as 

Yt = 01 Yt-i  + 02 Yt-2  + 03  Yt-3 + e 1 	 (8.1) 

where Yt  is an observation at time t and et is a random error assumed normally 

distributed with mean zero and variance U2  that can change with time as a poly-

nomial function. As mentioned above, this antedependence parametrization how-

ever requires times of measurement to be on a discrete scale and equally spaced. 

This can be an important drawback when traits are expressed continuously over 

time and can be recorded at different time points for each individual. The pro-

posed continuous extension of the SAD models is based on the following idea: 

instead of considering s correlation parameters (qi, ...) , ..., q) for each lag time 

for an antedependence model of order s, a continuous parametric function q5(k) 

of the lag time k is fitted to the discrete points (, ..., çb). For example, if a first 

order SAD model is considered, there is only one non zero parameter q  for lag 

time 1, therefore, the parametric function q5(k) should decrease very rapidly to 

have q(k) 0 for k > 1. For example, an exponential function of order 4 could 
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be appropriate: q(k) = exp(—O k 4 ). For an SAD(3), the function should try to 

fit points (, 02, and the function should therefore decrease less rapidly to 

zero. An exponential function may fit well in this case: q5(k) = exp(—O k). A very 

large range of parametric functions can be considered for this continuous extension 

depending on the dependence of the trait of interest on the previous observations. 

8.3.2 Simulation study 

In order to check the behaviour of the proposed continuous antedependence mod-

els, a data set was simulated with 100 sires, 20 progeny per sire and 10 measures 

per progeny. Data were simulated for a phenotypic analysis with the covariance 

matrix estimated from a multivariate analysis (unstructured covariance) of the 

cow data for milk production considered in Chapters 4 and 5. The correlation pat-

tern was quite complex and non-stationary. Structured antedependence models 

up to order 3 were considered and compared to random regression models up to 

the cubic order and to character process models with an exponential correlation, 

either stationary or non-stationary. Variance functions were assumed quadratic 

for both CP and SAD models. Estimates for the correlation parameters in the 

third order antedependence model were: 

Trait(t) = 0.51 Trait(t - 1) + 0.22 Trait(t - 2) + 0.11 Trait(t - 3) + et (8.2) 

The best continuous antedependence model had an exponential correlation func-

tion: 

0(k) = exp(-0.77 k) 	 (8.3) 

where k represents the lag time. In Figure 8.1 correlation parameters obtained in 

the SAD(3) model are plotted against the lag time and compared to the estimated 

exponential curve of the continuous antedependence model (CAD). 
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Table 8.1 shows that the continuous extension has a likelihood even a little 

higher than SAD(3), although it has only one parameter for the correlation func-

tion instead of three. Both SAD(3) and CAD performed better than random 

regression models up to the cubic order, although they require fewer parameters. 

Antedependence models in this case also proved to offer better flexibility than 

character process models to capture the correlation structure. In fact, the simu-

lated non-stationary correlation pattern was quite complex, and was problematic 

for the non-stationary extension of character process models proposed in Chapter 

2, as correlations on the subdiagonals were not monotone increasing or decreas-

ing. It was however very well captured with the continuous antedependence model 

that has the same number of parameters as the CF model, as shown in Table 8.2, 

which gives the simulated correlation matrix as well as that estimated with the 

continuous antedependence model. 

Figure 8.1: Correlation parameters for SAD(3) and exponential correlation func-

tion for CAD model. 
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Table 8.1: Log-likelihood for the different models for the simulated non-stationary 

correlation structure (CAD = continuous antedependence model, CP and CPNS 

= stationary and non-stationary character process, RR2 and RR3 = quadratic 

and cubic random regression, NPCov = number of parameters in the covariance 

structure). 

Model NPCov Log L 

CAD 4 1613 

SAD(3) 6 1566 

SAD(2) 5 1511 

SAD(1) 4 807 

CID 4 764 

CPNS 5 802 

RR2 6 1447 

RR3 10 1566 

Table 8.2: Simulated non-stationary correlation structure (below diagonal) and 

estimated correlation with the continuous antedependence model (above diago-

nal). 

1 	0.49 0.47 0.45 0.43 0.40 0.37 0.34 0.31 0.27 

0.60 	1 	0.60 0.57 0.54 0.51 0.47 0.43 0.39 0.34 

0.53 0.69 	1 	0.67 0.63 0.59 0.55 0.51 0.46 0.40 

0.49 0.64 0.71 	1 	0.71 0.67 0.62 0.57 0.51 0.45 

0.47 0.62 0.69 0.73 	1 	0.73 0.68 0.63 0.56 0.50 

0.44 0.58 0.65 0.71 0.77 	1 	0.74 0.68 0.61 0.54 

0.42 0.56 0.62 0.68 0.74 0.78 	1 	0.73 0.66 0.58 

0.40 0.52 0.59 0.64 0.70 0.74 0.78 	1 	0.72 0.63 

0.36 0.48 0.55 0.59 0.64 0.67 0.71 0.76 	1 	0.69 

0.29 0.38 0.44 0.48 0.52 0.55 0.58 0.62 0.70 	1 
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8.4 Practical considerations 

Analyses in this thesis have been performed on relatively small data sets compared 

to the extremely large size of data for national genetic evaluation. Estimation 

procedure used for the covariance parameters for all models was an average in-

formation algorithm as implemented in the ASREML program (Gilmour et al., 

2000). A new function has been added to the program during the course of this 

work in order to allow the user to define his own covariance matrix. This was 

extremely useful and allowed all the models presented here to be fitted, which 

would not have been possible with standard software. 

For large data set applications, structured antedependence models have a 

very interesting property: the inverse of the covariance matrix is sparse, and the 

Cholesky decomposition presented in Chapter 4 makes it easy to calculate. 

At present, in some countries (France in particular), national evaluation incor-

porates information about heterogeneous variances, using for example structural 

models as presented by Foulley and Quaas (1995). It should be easy to keep this 

information in models such as SAD or CAD. In fact, the variance is assumed to 

change as a function of time, and it would be straightforward to include other 

covariates. It should therefore be necessary only to add an estimation procedure 

for correlation parameters to existing programs. Incorporation of heterogeneous 

variances is far less straightforward for random regression models. 

Increasing power of computing facilities should now allow 10 tests for each 

animal to be dealt with in the national evaluation. However, the question about 

which measure has to be considered as breeding value still has to be solved. Is 

the predicted total milk production at 305 days the most appropriate measure? 

Should it be corrected for the drying off process? Should not information about 

length of the lactation be taken into account? Breeders would in fact probably 

prefer a cow that would give a certain amount of milk in 280 days rather than in 

305 days. 
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8.5 Further directions of research 

The proposed continuous antedependence models seem to present all the ad-

vantages observed for character process models over random regression. They 

can also deal with complex non-stationary correlation patterns as shown in the 

simulation study presented above while requiring very few parameters for the co-

variance structure. Like SAD models, they allow a straightforward extension to 

multi-trait analyses. There are still however some remaining difficulties. Firstly, 

analytical forms for variance and correlation functions for antedependence models 

are in general quite complex, as shown in the following appendix for a continuous 

antedependence model with an exponential correlation function. It is therefore 

difficult to have a clear idea of all the possible range of covariance structures 

that can be dealt with by these models. If an analytical study is not possible 

to answer this question, a simulation study should be performed, considering a 

wide range of covariance structures. With SAD or CAD models, it is also dif-

ficult to see clearly how the autoregressive coefficients and innovation variances 

are related to the estimated variance and correlation functions. Their parameter 

interpretations are not straightforward, and their biological meaning will have 

to be further investigated. In contrast to CP models, variance and correlation 

modelling are not completely separated. It would therefore be interesting to see 

how much flexibility can still be achieved for the two components and which are 

the combinations that cannot be fitted. 

Secondly, with antedependence models, as with character processes, no simple 

analytical form for individual genetic curves has been found yet, and at present 

a genetic value has to be predicted at each time for each animal. More research 

is needed in order to make clearer the relationship between covariance matrices 

as modelled with CP or SAD and individual curves as considered in random 

regression models. 

Results of Chapter 5 also suggest that the genetic part can be well fitted 
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with simple models as the genetic correlation remains quite high over time. It 

could therefore be possible to consider a simple random regression model (linear 

or quadratic) for the genetic part while keeping a structured or continuous an-

tedependence model for the environmental part. In that case, only two or three 

genetic parameters have to be estimated for each animal regardless of the number 

of observations over time, while the number of parameters for the complex envi-

ronmental covariance structure would be kept low thanks to the antedependence 

structure. 

Calculations have been presented in Chapter 5 concerning the loss of effi-

ciency in response to selection under each model. However, more analyses should 

be performed to study the actual genetic improvement reached when using the 

different approaches, as well as changes that can be obtained in the lactation 

shape: improvement in persistency, or higher productivity and shorter lactations, 

etc. 

As mentioned above, generalization of structured antedependence models to 

take into account heterogeneous variances as proposed by Foulley and Quaas 

(1995) is quite straightforward. Further avenues to improve their flexibility could 

also be obtained by allowing correlation parameters to depend on characteristics 

of the population as proposed by Pourahmadi (1999), or to change as a function 

of time as proposed by Nunez-Anton and Zimmerman (2000). These models offer 

a very promising direction for the genetic analysis of longitudinal data and will 

undoubtedly attract increasing attention in the near future. 
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Appendix: Analytical form for covariance func-

tions with CAD models 

Assuming an exponential function for the correlation in the continuous antede-

pendence model: 0(t3 , tk) = Oti_tk, observations y, can be written as: 

= 

Yt2 = 0t2-tl yt1+e12 

Yt3 
= O32 

Yt2 + O31 Yt 1  + et3  

Yt4 
= 043 

Yt 3  f• 042 Yt + 941 Yt1 -i- e 

Ytj 
= 0tj-tj_1 	+ 0tJtJ_2 Yt_

2  + 
•.. + 0tj-ti 

Yt1 + Ctj 

It is possible to express y tj  for j = (2, ..., J) as a function of the 	'5: 

Ytj 
= 	e 1  + 2j-30t3 	e 2  + 2j-40t 

-
t3 
 et3  + ... + Otj -31 

 et, - 1 + et, (8.4) 

As Cov(et) ,etk ) = 0 for all j $ k, it follows that covariance function for the 

observations is: 

Cov(y 3 , Ytk) 
= 2j+k-40t3+t-2ti Vt

1  + 
2j+k-60tj+tk-2t2 

 Vt 2  + ... + 2j-k-l0tj-tk 
Vik 

(8.5) 

for k <j and j> 2. 

Var(yt) = 22(j-2)02(t,-tj) 
Vt 1  + ... + 	vt_ 1  + Vt 	 (8.6) 

where v t  = Var(e t,). 
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Abstract 

The genetic analysis of characters that change as a function of some independent 

and continuous variable has received increasing attention in the biological and 

statistical literature. Previous work in this area has focussed on the analysis of 

normally distributed characters that are directly observed. We propose a frame-

work for the development and specification of models for a quantitative genetic 

analysis of function-valued characters that are not directly observed, such as ge-

netic variation in age-specific mortality rates or complex threshold characters. 

We employ a hybrid Markov Chain Monte Carlo algorithm involving a Monte 

Carlo EM algorithm coupled with a Markov Chain approximation to the likeli-

hood, which is quite robust and provides accurate estimates of the parameters in 

our models. The methods are investigated using simulated data and applied to a 

large data set measuring mortality rates in the fruit fly, Drosophila melanogaster. 

A.1 Introduction 

Function-valued quantitative genetics (Pletcher and Geyer, 1999) or the genetics 

of infinite-dimensional characters (Kirkpatrick and Heckman, 1989) is concerned 

with estimating the genetic contribution to observed variation in characters that 

change as a function of age or some other continuous variable. Taking advantage 

of observations from related individuals, observed variation in the function-valued 

character is decomposed into genetic and non-genetic contributions by estimat-

ing continuous, bivariate covariance functions (Kirkpatrick and Heckman, 1989). 

These models have been shown to be effective when applied to a variety of char-

acters from age-dependent patterns of reproductive output in fruit flies to growth 

and lactation curves in cattle (Jaifrezic and Pletcher, 2000 ; Pletcher and Geyer, 

1999 ; Kirkpatrick et al., 1994). 

In this chapter, we present theory and implementation of the genetic analysis 
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of survival and other threshold characters thought to be influenced by a continu-

ously distributed underlying trait, commonly termed "frailty" or "liability," which 

is unobserved and changes as a function of some continuous variable, such as age. 

An important example is inference concerning age-specific mortality rates, which 

are genetically influenced but unobserved (Shaw et al., 1999). Other applica-

tions include estimating the genetic component of variation in the appearance of 

an environmentally induced phenotype across different environmental conditions 

(Roff and Bradford, 2000) or in the expression of an ordered categorical character 

across age and space (Wright, 1934). As a foundation for our development of a 

generalized function-valued quantitative genetics, we have chosen the character 

process model (Fletcher and Geyer, 1999). It has several desirable properties; 

most important for us is its improved efficiency—this model fits many observed 

covariance structures better and with fewer parameters than other popular mod-

els such as random regression and other repeated measures type analyses (see 

Chapter 2 ; Jaifrezic and Pletcher, 2000). 

A.2 Generalized Process Models 

We are interested in inferring the genetic basis of some character Y, which is not 

observed, given a series of measurements on an observed trait, which is denoted 

by X. We assume that some reasonable model for the relationship between X and 

Y is available and that all genetic and shared environmental effects are modeled 

with respect to the Y value. This is in keeping with the standard interpretation 

of threshold characters (Wright, 1934) and of correlated frailty (Yashin et al., 

1999). 

When considering function-valued traits, it is assumed that the trajectory 

(over some continuous variable) of the character is random and influenced by one 

or more unobservable factors. For the additive model, we assume the unobserved 
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character can be decomposed as 

y(t) = i(t) + g(t) + e(t) + E, 	 (A.1) 

where t is some continuous measure, g(t) and e(t) are Gaussian random functions, 

which are independent of one another and have an expected value of zero at each 

age (Kirkpatrick and Heckman, 1989; Pletcher and Geyer, 1999). These represent 

genetic and environmental deviations at each value of t. The mean function is 

[i(t), and c is the residual variation. 

In practice, a finite number of observations (each associated with a particular 

value of the continuous variable) are made on a number of individuals i of varying 

relatedness. Thus, let y 2 (t3 ), etc. denote the effects for individual i at point t3  and 

y be a vector containing all data on all individuals in the order y i (t i ), yi (t2 ), ..., 

then the distribution of y, fo1  (y), is multivariate normal with density 

fo1(y) = C1 V 1 1 112 exp1-1/2 (y - ii)Tv_l(y - )}. 	( A.2) 

where 

V=A®Z+I®R 	 (A.3) 

where ® denotes the Kroneker product, A is a matrix containing coefficients 

of relatedness and I is the identity matrix. The remaining matrices, Z and 

R, are discrete representations of the covariance functions for the genetic and 

environmental processes given in (A.1). IfG(s,t) = Cov{g(s),g(t)} and E(s,t) = 

Cov{e(s), e(t)} then Z[i, j] = C(t, ti ), and R[i, j] = E(t, t3 ) ( Pletcher and Geyer, 

1999). The vector jt describes the mean function non-parametrically by specifying 

a unique parameter for each value of t in the data set. 

Parametric forms for the covariance functions are based on the character pro-

cess model where, taking G(s, t) as an example, the functions are written as 

G(s, t) = VG(S) vc(t)pc(Is - ti) 	 (A.4) 
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where V(t) 2  describes how the genetic variance changes with age and ,oG(Is - ti) 

describes the genetic correlation between two ages. There are no restrictions 

on the form of VG(.),  and it is often modeled using simple polynomials (linear, 

quadratic, etc.). If the correlation between two ages is a function only of the 

time distance (Is - ti) between them (correlation stationarity) then numerous 

choices for p(.) are available, all of which satisfy several theoretical requirements 

(for a list see Pletcher and Geyer, 1999). Strict correlation stationarity can be 

relaxed by implementing a non-linear transformation upon the time axis, f(t) 

(Nunez-Anton, 1998 ; Jaifrezic and Pletcher, 2000). The correlation function is 

then defined as p(s, t) = p(If(s) - f(t)J), and the functions suggested by Pletcher 

and Geyer (1999) remain valid. 

The elements of the observed vector x are conditionally independent given y, 

and 
N 	 N 

fo2 (xl y) = [If92  (Xi Iyi, .... YN) = Hfo2 (X i Iy). 	 (A.5) 
i=1 	 i=1 

The likelihood associated with the observed data is 

fo(x) = 
f

fo2(xiIy)fe1(y)dy 	 (AM) 

where 02 is a vector of parameters describing the relationship between X and 

Y, and 01  contains parameters describing the distribution of Y, which includes 

parameters of the variance functions, mean function, and potential fixed effects 

(Meyer and Hill, 1997 ; Pletcher and Geyer, 1999). 

A.3 Likelihood maximization 

The likehood was maximized using a hybrid algorithm composed of Markov Chain 

Monte Carlo EM (MCEM) (McCulloch, 1997) and Markov Chain Monte Carlo 

integration/maximization (MCMLE) (Shaw et al., 1999; Geyer, 1995). The com-

putational cost of the MCEM algorithm is much lower than that of the MCMLE. 
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However, parameter estimates obtained from MCEM show a good deal of varia-

tion (McCulloch, 1997; S. Pletcher, unpublished results) and confidence intervals 

are not easily obtained. The MCMLE provides accurate parameter estimates and 

confidence intervals, but it is computationally expensive and requires a reference 

point in the parameter space of 0 = 10, 02} that is close to the MLE (Shaw et 

al., 1999). We found the following three step procedure combines the strengths 

of both methods. First, the MCEM is used to determine the reference point, call 

it 0, for the MCMLE. Second, a single chain of random deviations from Jo0 (ylx) 

are obtained using a Metropolis algorithm (Shaw et al., 1999). These deviates 

are used to approximate the likelihood function (A.6) through a Monte Carlo 

evaluation of the integral (Geyer, 1995). Third, the approximation is maximized, 

and estimates and standard errors of the parameters are obtained. Details of the 

computational algorithms and relevant computer code are available from the first 

author (or see http://www.ucl.ac.uk/biology/goldstein/scott-index.html).  

A.4 Example 

For the following examples, the character we are interested in, y(t), is the age-

specific mortality function for a specific cohort of genetically identical individuals. 

The observed character x(t) is the number of individuals dying in that cohort 

at age t. Shaw and colleagues assumed parametric forms for the unobserved 

mortality curves using Gompertz and Logistic functions (Shaw et al., 1999), which 

is analogous to a random regression on the age-dependent trajectories (Jaifrezic 

and Pletcher, 2000). Because the character process models have been shown 

to perform better than random regression models for observed function-valued 

characters (see Chapter 2 ; Jaifrezic and Pletcher, 2000), we extend the Shaw 

model to the generalized character process theory. 

Measurements are taken at a finite number of ages, and therefore we observe 

a "census vector" {x 3 }, which contains the number of individuals alive in cohort 
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i at census number j. Similarly, we assume each cohort has a log-mortality rate 

Yi j  at census number j, and tij  is the age at which census number j was taken. 

We estimate a separate mean mortality rate for each t (call these parameters 

as well as genetic and environmental covariance functions. 

Assuming a piece-wise exponential hazard function, the probability of an in-

dividual alive at the start of census j - 1 surviving the interval [t(_1), t 3 ) is 

pt, = exp{—H(zt)e"} 	 ( A.7) 

where Atij =tij -  tj_l and 

H(At) = 	(eii_1t - 1)Lt. 	 (A.8) 
- Pj-i 

Equation A.8 is valid for uneven census intervals and intervals over which mor-

tality rates change substantially. 

The number of deaths in the interval is binomially distributed with frequency 

ptij  and number of trials Xi(j_i). Writing xi  = {x 1 , x 2  .... } and y j similarly, the 

conditional probability of observing a specific census vector for a specific cohort 

is 

f (Xi  y) = C1  flp(i - pt)xi(31)_3. 	 (A.9) 

where J is the number of census times (Shaw et al., 1999). This distribution is 

substituted into A.5 and combined with A.2 to yield the likelihood A.6 for use in 

the Metropolis algorithm and in likelihood maximization. 

A.4.1 Simulated Data 

Simulated ages at death were generated for 600 distinct cohorts (20 replicate 

cohorts from each of 30 genetically distinct lines) of 500 individuals each. The 

data were simulated using a covariance function with a constant variance (i.e., 

VG (t) = 0.2 in equation A.4) and standard normal correlation function (i.e., 

p(s, t) = e_9c(8_t)2) for both the genetic and environmental parts (Oc = 0.1 and 
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Oc = 0.4 for the genetic and environmental correlations, respectively). Similar 

results were obtained using other covariance functions and experimental designs. 

The small number of lines in the simulated data leaves open the possibility that 

the realized genetic variance and covariance among lines may deviate significantly 

from the target values. To compensate for this, we estimated covariance functions 

for the realized y-values themselves (i.e., the unobserved age-dependent mortality 

rates), which are saved during the course of the simulation, and we used these 

estimates as metrics for determining the accuracy of the covariance functions 

estimated from the x-values (the observed ages at death). 

The MCEM routines provided an excellent 00  for the MCMLE routines. The 

sample paths for the four covariance parameters (two for both the genetic and en-

vironmental covariance functions) show a rapid convergence to the neighborhood 

of the simulated value, with the genetic variance converging less quickly than the 

others (data not presented). Oo  for the MCMLE was obtained by averaging the 

values from the last 200 (of a total of 500) iterations. 

The MCMLE routines were then used to obtain estimates and confidence in-

tervals for the genetic and environmental covariance functions and for the mean 

mortality trajectory. The approximation of the likelihood was based on a MCMC 

sample size of 1000 random deviates sampled from the chain every 1000 steps. The 

genetic covariance function obtained from this analysis is in complete agreement 

with that obtained when standard methods are used on the unobserved y-values 

themselves (Table A1.1). The environmental covariance functions, which are esti-

mated accurately with smaller sample sizes, are essentially identical. As expected, 

the asymptotic standard errors on the parameter estimates are much larger (up 

to five times larger) when obtained from the observed data (Table A1.1). It may 

be that increasing the MCMC sample size would reduce this difference. It is more 

likely, however, that there is simply more uncertainty in the estimates. 
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Table A1.1: Estimated genetic and environmental covariance functions for sim-

ulated data. Covariance functions are composed of a constant variance across 

ages ( V  (t) 2 = 0) and a normal correlation function p(s, t) = e-o  C '.s-t2 Asymp-

totic standard errors of the estimates are in parentheses. y-values indicate results 

from a function-valued analysis directly on the unobserved frailty. x-values rep-

resent the results of the Markov Chain Monte Carlo models on the observed ages 

at death. Parameter estimates from the two methods are nearly identical, but 

standard errors are higher for the MCMC analysis. 

VG 	 VE 

Data 	 0 	Oc 	 0 	 oc 

.y-values (Unobserved) 0.15 (0.03) 0.095 (0.041) 0.20 (0.006) 0.402 (0.006) 

x-values (Observed) 	0.17 (0.16) 0.083 (0.140) 0.20 (0.030) 0.403 (0.014) 

A.4.2 Mortality in Drosophila melanogaster 

The Drosophila data are taken from a large mortality experiment composed of 

29 genetically distinct lines of flies. The lines were created using an experimental 

mutagenesis technique whereby single mutational events were initiated in a genet-

ically homogeneous background (S. D. Pletcher, unpublished data). Experimental 

populations differed among themselves genetically via one mutational event. Ge-

netic variation in mortality rates as a function of age and genetic covariation in 

mortality between ages provide important insights into the age-specific properties 

of these mutations (Pletcher et al., 1998). Ages at death were recorded for four 

replicate cohorts (each of approximately 300 males) from each line, and pooled 

into 3 day intervals for analysis. 

Exploratory analyses, including an examination of the phenotypic covariance 

structure and an estimate of the genetic variogram cloud (see Chapter 3), sug - 
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gested the use of genetic and environmental covariance functions that are com-

posed of a linear variance function (i.e., v2(t) = 'Yo + 'y1 t in equation A.4) and 

a normal correlation function (i.e., p(s,t) = e_(3_0 2 ). The Oo  value for the. 

MCMLE procedures was obtained by averaging 500 consecutive iterations of the 

MCEM algorithm after it was determined to have converged to a stable region 

for each parameter. The MCMLE routines were then executed with a MCMC 

sample size of 2000, and the chain was sampled every 1000 steps. 

Figure A1.1: Contour plots of the genetic and environmental covariance func-

tions estimated from a large mortality experiment using the fruit fly, Drosophila 

melariogaster. Functions represent age-dependent covariance in log-mortality 

rates. Both genetic and environmental covariance functions are described by 

a linear variance function v(t) = 'Yo + 'y1 t and normal correlation function 

p(s,t) = e_C(8_t)2. A: Estimated genetic covariance function. lo < 0.0001, 

11  = 0.047, = 0.075. 'yo  was estimated at its lower boundary ( 0). B: 

Estimated environmental covariance function. 'o = 0.21, ' = 0.024, Ic = 0.59. 

Figure A1.2: Likelihood profiles for the parameters of the genetic covariance 

function estimated from a large mortality experiment in Drosophila. The es-

timated genetic covariance function is described by a linear variance function 

VG == 'yo + 'y1 t and normal correlation function p(s, t) = e_Yc(s_t)2. Estimated 

values are: jo  <0.0001, ' = 0.047, and Ic = 0.075. 'yo  was estimated at its lower 

boundary ( 0). Insets focus on a narrow range of parameter values and provide 

guidance for the construction of 99% confidence intervals on the estimates. 
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We found that both genetic and environmental variance for age-specific mor -

tality increased with age. Early in life environmental variance was very high, 

'Yo = 0.21 and 'Yo < 0.0001 for the environmental and genetic variances, respec-

tively, but the rate of increase in genetic variance with age was faster (Figure 

A1.1). The correlation parameter was much higher in the environmental correla-

tion function than it was in the genetic function (0.59 vs. 0.075) implying that 

environmental covariance decreases much more rapidly as ages become more and 

more separated in time. This suggests a rather high degree of pleiotropy (single 

genes affecting mortality at more than one age) and a relatively transient influ-

ence of the environment. The degree of uncertainly in the parameter estimates 

of the genetic function is illustrated by profile likelihoods (Figure A1.2). 

A.5 Discussion 

We present a flexible approach for examining the genetic basis of function-valued 

characters. that are unobserved but that influence the expression of an observed 

character through some arbitrary, hypothesized form. The complexity of the mod-

els necessitated the use of stochastic methods for model specification, and we rely 

heavily on Markov Chain Monte Carlo methods, which can be troublesome and 

difficult to implement. To alleviate some of the difficulties we implemented a com-

posite algorithm consisting of a Markov Chain EM algorithm (MCEM) followed 

by a Markov Chain approximation to the actual likelihood (MCMLE). This com-

bination was found to work well for generalized linear mixed models (McCulloch, 

1997), and many of the properties of convergence discussed in McCulloch (1997) 

apply to the models we develop here. The MCEM algorithm robustly provided 

excellent reference values (i.e., O) from a wide range of starting points, which 

were then used in the MCMLE to estimate parameters and to obtain likelihood 

statistics and confidence intervals. Results obtained through the analysis of sim-

ulated data and of mortality rates in the fruit fly, Drosophila melanogaster, show 
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that variation accumulated through heterogeneity of starting values and through 

the stochastic nature of the Markov chain algorithms is surprisingly small (essen-

tially inconsequential) in comparison to the support of the parameter estimates 

provided by the data (data not shown). 

Although the algorithms are successful in recovering the underlying genetic 

structure in simulated data sets and in capturing the variation in Drosophila 

mortality rates, some limitations are apparent. Despite the large number of in-

dividuals in our data sets, the asymptotic standard errors (and profile likelihood 

functions) of the estimates in our analyses are considerable. This suggests that 

large sample sizes may be required for inference regarding the genetic basis of 

unobserved characters. In addition, our choice of covariance model was based on 

exploratory algorithms that will not apply in all situations. The development of 

model selection criteria similar to those used for observed function-valued traits 

is an important issue and work is currently underway in this area. 

Our examples have focussed exclusively on age-specific mortality rates. How-

ever, precisely the same theory applies to any non-normally distributed phenotype 

that is thought to be determined by an unobserved, normally distributed charac-

ter (Wright, 1934). An example may be the expression of a threshold character, 

such as the occurrence of a disease, over space or time. The distribution of the 

observed trait given the unobserved liability f ., I y  is the only aspect of the the-

ory and computer code that requires change. Furthermore, although we prefer 

the character process model for describing the covariance structure of the unob-

served character, random regression or orthogonal polynomial models could be 

implemented with small modifications to the procedure described above. 
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