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ABSTRACT 

The word-based approach to automatic speech recognition is one which has 

received attention from many researchers and has been exploited in various 

practical applications. A typical recognition system has a set of stored reference 

patterns, one or more for each word in the vocabulary to be recognised. These 

reference patterns are formed from training utterances supplied before a recog-

nition session begins, either by the intended user of the system or, for a 

speaker-independent system, by a representative set of speakers. When the sys-

tem is used for recognition, each new input utterance is compared with the 

stored patterns and is recognised as the word (or sequence of words) for which 

the minimal value of a distance (dissimilarity) measure, or equivalently the 

maximal likelihood, is obtained. The comparison of the input with the reference 

patterns is typically accomplished by an algorithm incorporating dynamic pro-

gramming, which finds the optimal alignment of input and reference patterns 

and the corresponding distance or likelihood. 

This approach to recognition, in its basic form, retains the same reference 

patterns unchanged throughout the recognition of any sequence of input utter-

ances. Thus the recognition system has no capability of learning from the new 

utterances presented during a recognition session. If a recognition system can 

be made to adapt its reference patterns during its operation, to incorporate infor-

mation from the recognised utterances, then this may be expected to allow pro-

gressive improvement of the modelling of the words (as pronounced by the 

current speaker), and hence enhancement of the accuracy of recognition - pro-

vided that the adaptation of incorrect words' reference patterns in cases of 

misrecognition can be prevented or kept to a sufficiently low level. By adapta-

tion, speaker-specific initial reference patterns can be made more reliably 

representative of the speaker's typical pronunciations, by the use of data from 

additional utterances of the words; and speaker-independent reference patterns 

can be made speaker-specific through the incorporation of information from 

utterances by the speaker currently using the recognition system. Adaptation 

can also permit the dynamic adjustment of reference patterns to track any gra-

dual drift, or systematic difference from one occasion to another, in the speaker's 

voice or pronunciations or in the level and characteristics of background noise. 
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In this thesis, the development of an isolated word recognition system 

which incorporates various adaptation options is described, and the results of 

experiments to measure the effects of adaptation are presented and discussed. 

Both supervised adaptation (which is controlled by feedback from the user as to 

the correctness or incorrectness of each recognition) and unsupervised adaptation 

(without such feedback) are explored. The adaptation operates by a weighted 

averaging of the current reference pattern (template) with the recognised input. 

Two main weighting options have been defined: one which results in optimisa-

tion of the templates for the speaker's typical realisations of the words (if these 

are assumed to be invariant in time), and one which results in tracking of gra-

dual variations in time. Various values of the relative weights on the existing 

template and on the input have been tested. Adaptation has been applied both 

to speaker-specific initial templates and to speaker-independent ones. In each 

case, the statistical significances of comparative results are computed from the 

means and variations across a set of test speakers. 

A compensation technique has been introduced, whereby the distance 

obtained in matching a template with an input utterance is adjusted according 

to the number of times that template has been adapted. This is necessary 

because adaptation reduces the typical distances obtained for the adapted tern-

plate even when this template does not correspond to the correct recognition of 

the input. Appropriate values of the compensation parameters, to optimise the 

recognition performance, have been found for various adaptation options. 

The main conclusions from the experiments are that adaptation, especially 

supervised adaptation, can yield consistent and useful improvements in the per-

formance of an isolated word recognition system, and that the application of 

appropriate word distance compensation is important for the attainment of the 

maximum benefit from the adaptation. 

Possible refinements and extensions of the adaptation technique are dis-

cussed. Results of a limited evaluation of template adaptation in a connected 

word recognition system are presented. 

Other aspects of the recognition system which are described and discussed 

include an efficient multiple-stage decision procedure and some features of the 

user-system interface design. 
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1: INTRODUCTION 

The field of automatic speech recognition is one which has received atten-

tion in recent years among researchers in engineering, computer science, 

artificial intelligence, phonetics and linguistics. There is a wide range of poten-

tial applications for machines which can recognise and respond to spoken words, 

phrases or sentences. 

(Examples of actual and potential applications include entry of data or 

instructions to computers and automated systems when the user's hands or eyes 

are busy for some other task, making the use of a keyboard inconvenient - as 

for instance in parcel handling, quality control inspection, computer-aided 

design, air traffic control and cartography 

- [208,209,211,213,214,215,216,218,219,220]; telephone information and transac-

tion services [16,128,129,221,223,227]; and control of computers and other equip-

ment by those who are physically handicapped and so cannot use a keyboard 

[96,208,210,212,220,223]. Voice input may also be advantageous in physically 

hostile environments [215,216,217,238,239], since a microphone is easier than a 

keyboard to protect from dirt, harsh weather or vandalism. If reliable recogni-

tion of fluently spoken sentences of unrestricted natural language can be 

achieved, this will open up many more applications, such as text composition by 

dictation to a machine; but this goal is an ambitious one and as yet unattained 

[15,216,2201.) 

Various technical approaches have been developed, some of them based on 

the identification of (phoneme-sized) phonetic segments in the speech to be recog-

nised [15,171,174,175,178], and others based on the recognition of larger units 

such as diphones [180], demisyllables [173], syllables [248] and whole words [12]. 

In each case, the main source of difficulty is the inherent variability of speech, 
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whereby realisations of the same phoneme, syllable, word or other unit vary 

widely in their acoustic characteristics from one occasion or context to another. 

The acoustic signal corresponding to any linguistic unit will depend on the 

immediate and wider context in which it is pronounced; on various characteris-

tics of the speaker, some of which vary significantly in time; and on features of 

the physical environment including the level and type of background noise. 

Many of these factors cannot easily be controlled or predicted [15]. 

Speech recognition strategies using units smaller than the word, especially 

those which work by identifying phonetic segments, must cope with a high 

degree of variation in the pronunciation of each such unit resulting from its 

interaction with the preceding and following speech [15]. Recognition systems 

based on such phonetic units generally have to include a large amount of 

linguistic knowledge, expressed for instance in a set of phonological rules 

[9,11,151, to represent the possible variations of each unit in different phonetic 

environments. 

Approaches based on recognition of whole words, without their segmenta-

tion into smaller phonetic or linguistic units, can avoid much of the problem of 

context-dependent variability, since the immediate phonetic context of each part 

of a word is similar on each occasion when the word is uttered. In particular, in 

the isolated word recognition task (a limited but useful case of speech recogni-

tion), where the input consists of single words spoken with pauses between 

them, there is very little effect on whole-word patterns due to immediate context 

- although in a sequence of isolated words variations may occur, especially in 

intonation, according to the position of each word in the sequence. In the iso-

lated word case, each utterance to be recognised consists of just one unit, and 

can be recognised directly by comparison with reference patterns which 

correspond to the words in the system vocabulary. In the more complicated case 
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of connected speech (with careful enunciation), the inter-word coarticulation and 

assimilation effects which occur [15] affect mainly the beginnings and ends of 

the words. 

This whole-word-based pattern-matching approach to speech recognition is 

a simple one from a linguistic point of view, in that it makes very little use of 

knowledge about the structure and characteristics of spoken language. The 

pattern-matching algorithms used are not specific to speech, and may be used for 

any of a wide variety of problems involving the recognition of sequential pat-

terns, such as handwritten character recognition. However, the simplicity of the 

approach and the ease of its implementation (by comparison with those methods 

using phonetic units and detailed speech knowledge) have allowed it to be 

exploited in commercially viable products, while the more sophisticated 

knowledge-based approaches have remained mostly in the research stage. 

One form of variability that affects word-based speech recognition is the 

non-linear extension and compression of the timescale of a word from one utter-

ance of it to another. Early isolated word recognition systems based on whole-

word reference patterns [4] used linear time-alignment of input and reference 

words, which was not always satisfactory. A major advance in the development 

of successful isolated and connected word recognition was the introduction of 

non-linear time-alignment techniques using dynamic programming [1,2,9,18,19]. 

This thesis is concerned with certain developments of the word-based speech 

recognition technique using dynamic programming alignment. In particular the 

thesis highlights the improvement in system performance obtainable by adapta-

tion of the reference patterns to the recognised input words. The results 

presented are mainly for isolated word recognition, but the extension to con-

nected word recognition will be considered briefly. 
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The mathematical principles involved in the basic pattern matching tech-

nique incorporating dynamic programming alignment, and the results of experi-

ments by other researchers with various formulations and extensions of this 

technique, are reviewed in chapter 2. In chapter 3, some aspects of these results 

are discussed, and areas of particular interest for further research are identified. 

The remaining chapters describe experiments conducted in order to investigate 

these areas, and give an analysis of the results obtained together with a discus-

sion of their implications. 

Chapter 4 describes some preliminary experiments comparing several forms 

of linear and acoustically-based segmentation of word reference patterns which 

can be used as preprocessing for a template-matching isolated word recogniser, 

and the development of a multiple-stage recognition system which incorporates 

these segmentation techniques to provide a substantial reduction in the amount 

of computation required to recognise each word. 

Chapter 5 describes the further development of the system to incorporate 

an interactive recognition mode and several options in template adaptation. 

Chapter 6 contains the results of experiments with adaptation of speaker-

specific initial templates. The different forms of adaptation are compared, and 

some observations on the interaction between the system and the user are given. 

Chapter 7 describes experiments carried out with speaker-independent ini-

tial templates, exploring the effectiveness of adaptation for making the tem-

plates correspond more closely to the pronunciations of a particular speaker. 

Chapter 8 contains a review and summary of the main features of the 

results, and a discussion of possible extensions, developments and applications of 

the techniques explored. 



An appendix describes the statistical analysis which was applied to the 

results of the experiments. 

The references are arranged by subject category, and within each subject 

category by date of publication. An alphabetical index of authors is provided, 

following the reference list. 

Several papers [97,255,258,259] containing brief statements of some of the 

results of the author's research are reproduced at the end of the thesis. 
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2: REVIEW OF WORD-BASED SPEECH RECOGNITION USING 

DYNAMIC PROGRAMMING FOR TIME ALIGNMENT 

2.1: Introduction 

Most currently available automatic speech recognition systems rely on com-

parison of the input speech to be recognised with stored reference patterns, with 

each reference pattern representing one of the words of the vocabulary being 

used. The stored pattern for each word may be a template (16,18,19,48], derived 

from one or more training utterances (tokens) of the word obtained before the 

recognition session begins; or a statistical model of the word's characteristics, 

derived from multiple training utterances (16,104,119]. (In fact, the use of tem-

plates can be viewed as a special case of statistical modelling, with some simpli-

fying assumptions of uniformity in the structure of the model which allow it to 

be derived from a small amount of training data. The relation between tem-

plates and a more general class of statistical models is explored in detail in sec-

tion 2.5 below.) In either case, it is usually necessary to time-align a series of 

input vectors, each containing spectral information derived from a short section 

(frame) of the input speech, with the reference pattern. In this way it is possible 

to compute a measure of the similarity between the input word and the word 

which that reference pattern represents. 

In many word-based speech recognition systems, the alignment of input and 

reference patterns is accomplished using the optimisation technique known as 

dynamic programming (1]. Where the reference patterns are templates, the 

dynamic programming alignment procedure [2,18] is known as dynamic time 

warping [51,601. (The phrase "dynamic time warping" is not universally 

approved among speech recognition researchers [161; however, it will be retained 



in this this thesis, as the most generally understood term for this particular applica-

tion of dynamic programming.) The corresponding procedure for hidden Markov 

models [16,104,119] (a commonly used class of statistical models) is called the 

Viterbi algorithm [5,104]. 

This chapter reviews the variants and developments of the basic methods 

which have been devised and tested by numerous researchers, and gives a com-

parison of the results obtained. Much of the material in this chapter has 

appeared elsewhere [17]. 

In section 2.2, a description is given of the operation of a word recognition 

system using template matching; the time registration problem for a template 

and an unknown utterance is stated; and the basic principles of dynamic time 

warping (DTW) as applied to this problem are explained. 

In sections 2.3-2.7, various options in the design of speech recognisers using 

DTW are described. Applications to isolated word recognition, spotting of key 

words in continuous speech and connected word recognition are considered. 

Methods for improving the computational efficiency of a recogniser using DTW 

are described. The Viterbi and forward-backward algorithms, for recognition 

using hidden Markov models, are introduced in section 2.5, and the conceptual 

unity of the DTW and Viterbi algorithms is demonstrated. In each section, the 

results of experiments by various researchers comparing the performances of 

different techniques and algorithm formulations are summarised. 

Finally, in section 2.8, a brief discussion and summary of the results is 

given. Some of the main points emerging from these results, which have a par-

ticular bearing on the topic of this thesis, are discussed further in chapter 3. 
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2.2: Template matching and time registration 

The basic idea involved in template matching is that each word -in the sys-

tem vocabulary is represented by a template (in some cases more than one 

[48,54,561), which is a reference pattern created from speech data and stored in 

the machine's memory. Each unknown input word to be recognised is compared 

with the stored templates and identified as an instance of that vocabulary word 

whose template best matches the unknown input. 

Each word template consists of a sequence of representations of short time 

segments or "frames" of the reference speech waveform. The representation for 

each frame may be a vector of bandpass filter outputs, or a set of autocorrelation 

and/or linear prediction coefficients, or some other set of parameters such as cep-

stral coefficients. The unknown input speech waveform is similarly processed 

into input frame representations. 

Figure 2.1: a typical isolated word recognition system 

InDut waveform 

endpoint detection I 
reference patterns 

(templates) 

I acoustic analysis I 
Jrecognition I 	 word matching frame representations ' decision 

(acoustic parameter vectors) 
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The components of a typical isolated word recognition system are shown in 

figure 2.1. The input waveform is digitised, the beginning and end of the word 

are identified and an acoustic analysis is performed in each frame of the 

(endpoint-detected) word. The resulting sequence of frame representations is 

matched against each stored word template in turn, so as to identify the word 

which has been spoken. 

In comparing the input with a template, each input frame is matched with 

• reference frame from the template, and a frame distance is computed, which is 

• measure of how different the two frame representations are. (An alternative 

formulation is in terms of similarities instead of distances; the details of the 

algorithm are the same in either case, except that, wherever a distance is to be 

minimised, the corresponding similarity is to be maximised.) Then an overall 

distance is computed from the frame distances for all the matched pairs of 

frames. The sequence of matched pairs of input and reference frames forms a 

time registration path, which can be depicted as a graph of reference frames 

against input frames, as shown in figure 2.2. The point (m,n) on the path, 

where m and n are integers, corresponds to the matching together of the mth 

input frame and the nth reference frame. The slope of the path represents the 

degree of compression (expansion, where the slope is less than 1.0) applied to the 

template in aligning it with the input frames. In particular, a vertical step in 

the path corresponds to the matching of two successive reference frames to the 

same input frame, and a horizontal step corresponds to the matching of the same 

reference frame to two successive input frames. 

The overall distance is a weighted sum of the individual frame distances for 

the pairs of frames on the path. The weight given to each frame distance can be 

made to depend on the slope of the time registration path near the point defined 

by the pair of frames in question. 
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Figure 2.2: a time registration path 
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The time registration problem is that of finding the best possible time regis-

tration path for given input and reference data, i.e. the path which minimises 

the overall distance subject to appropriate constraints. Three obvious types of 

constraints are the following:- 

Endpoint constraints: the beginning and end of the input data must be 

matched with the beginning and end, respectively, of 

the reference data. This requirement may be relaxed to 

allow for inaccuracies in the identification of endpoints 

when the frame sequences were created. 

Continuity: 	 successive points on the time registration path should 

be close together (in both the input and the reference 

dimensions). 

Monotonicity: 	as the path progresses in input time, it should move for- 

ward (not backward) through the reference template. 
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Further constraints can be imposed, such as restrictions on the slope of the path, 

on the sharpness of changes of slope, or on the region of the input-reference 

plane in which points on the path may lie. 

The simplest way to construct a path satisfying the constraints is linear 

time registration, in which the path is made to correspond as closely as possible 

to a straight line joining the initial and final points. This may be achieved 

either by constructing an approximately straight-line path through the array of 

integer points (m,n) (which may not be of equal extent in the input and refer-

ence directions, since the two utterances may be of different durations) or else by 

normalising both patterns (input and reference) to the same length so that an 

exact linear path (of slope 1.0) can be defined. This linear registration is not 

totally satisfactory for speech recognition, especially where polysyllabic words or 

connected strings of words are being matched, since the speeds at which 

different parts of an utterance are spoken can vary independently of one 

another. 

It would be possible to solve the time registration optimisation problem by 

computing overall input-template distances for all time registration paths satis-

fying the constraints and selecting the path giving the smallest overall distance. 

However, this would involve an excessive amount of computation. 

A much more efficient procedure relies on the application of dynamic pro-

gramming [1]. (In this phrase, the word "programming" is essentially an 

optimisation-algorithm term, not a computer-science term.) Dynamic program-

ming is relevant to a whole class of problems where a path is to be chosen from 

an initial point to a final point so as to minimise or maximise a sum of quanti-

ties which correspond individually to the individual segments of the path. The 

essential principle involved is that, if a point, P, lies on the optimal complete 

path, then the partial path (i.e. the part of the optimal complete path) from the 
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initial point to P is the optimal path from the initial point to P. Thus, if the 

optimal path from the initial point to P has been found, any other path from the 

initial point to P can be discarded, and excluded from further consideration, in 

the attempt to construct the optimal complete path. 

This dynamic programming procedure when applied to the time registration 

problem takes the form of  dynamic time warping (DTW) algorithm. The algo-

rithm proceeds along the input one frame at a time and, for each successive 

input frame, computes a frame distance d(m,n) and an accumulated distance 

D(m,n) for each value of n permitted by the search area constraints (where m is 

the input frame number and n is the reference frame number). The accumu-

lated distance is the weighted sum of the frame distances on the optimal partial. 

path from the initial point to (m,n) and is found by optimising over the points 

permitted as predecessors of (m,n) on such partial paths. Thus, in the simple 

example illustrated in figure 2.3, where the constraints permit 

(m - 1,n —2), (m - 1,n —1) and (m - 1,n) as previous points, and the weighting on 

each frame distance is 1.0 (i.e. the accumulated distance is simply the sum of the 

Figure 2.3: simple local path constraints 

(rn-I, n) n) 

(rn-I, n-I) (m,  

(rn-I, n-2) 
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frame distances on the path so far), 

D(1,1) =-d(1,1) 	 (2.1) 

(and D(1,n) is treated as infinite for n > 1), and for m > 1 

D(m,n) = min D(m-1,n-2),D(m-1,n-1),D(m-1,n)} + d(m,n). 	(2.2) 

When the final point (MN) is reached, the overall distance between the input 

and the template (with optimal time alignment) is simply D(M,N). 

2.3: Options in a DTW system for isolated word recognition 

The simplest application of DTW for speech recognition is to the recognition 

of a single word spoken in isolation, as already described in section 2.2. The 

ideas introduced in this section apply primarily to this isolated word recognition 

problem, but will also be applicable (with appropriate modifications) to the more 

complex problem of recognising words in connected speech. 

2.3.1: Frame representations and distance measures 

The first requirement for a template matching system is that there should 

be a method of representing the speech waveform in each time frame, with an 

associated distance (or similarity) measure for comparing frame representations. 

Various types of representation have been reported, notably those based on 

bandpass filtering [19,23,28,30,31] and those based on linear predictive coding 

(LPC) analysis [18,19,20,22,23,24,36,47]. 
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2.3.1.1: Bandpass filter representations 

A bandpass filter system [31] has a filter (analogue or digital) for each of a 

number of frequency bands covering the range of frequencies being used. For 

each time frame, a measure of the signal energy within each filter band is com-

puted. The filter outputs (energy levels) are usually transformed logarithmically 

and then normalised in each frame by subtracting the overall log energy in that 

frame. Filter outputs can be used either directly as frame representations or to 

compute some other representation, such as cepstral coefficients [23], which pro-

vide a convenient expression of the overall (smoothed) shape of the speech spec-

trum. These representations can also be computed from discrete Fourier 

transform (DFT) coefficients [23]. 

The normalisation of each frame vector by subtracting the overall log 

energy in the frame entails the loss of information in that all parts of a word are 

adjusted to the same loudness. This can be corrected by including in the frame 

representation a measure of the overall energy in the frame, or by some normal-

isation procedure taking into account the energy level of the utterance as a 

whole [58,76]. 

The number of bandpass filters used has varied considerably from one sys-

tem to another, but has usually been in the range 6-20. Increasing the number 

of filters used generally improves the rate of correct recognition achieved by the 

system [19,311, although it has been observed [311 that recognition rates for 

female speakers decline when the filter bandwidths become too narrow. The fre-

quency spacing of the filters can be linear [31] (with a constant frequency 

difference between adjacent filter bands), logarithmic [19,31] (e.g. octave or 

third-octave filters) or some other non-linear spacing - such as the mel fre-

quency arrangement [23], in which the filters are linearly spaced up to about 
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1000Hz, and logarithmically spaced over higher frequencies, to accord with the 

distribution of significant information in speech. Cepstral coefficients derived 

from filters on a mel frequency scale have been found to yield good recognition 

performance [23,72,146,160]. The filter bands can be non-overlapping or over-

lapping [31]. 

The distance between two frame representations consisting of filter energies 

or cepstral coefficients is often taken to be the absolute value (Li) norm of the 

difference of the two vectors, i.e. 

dps(m,n) 
= 	

(2.3) 
k=l  

where X(m,k) is the kth component of the mth (Q-dimensional) input frame 

representation and Y(n,k) is the kth component of the nth reference frame 

representation [19]. (This absolute value distance measure is also called the 

city-block distance (32], or sometimes the Chebyshev norm [19,49]. However, 

this use of the term "Chebyshev norm" or "Chebyshev metric" is best avoided, 

since historically the name of Chebyshev is associated with a norm consisting of 

the maximum - rather than the integral (for functions) or sum (for vectors) - of 

absolute values [1631.) The Euclidean norm of the vector difference, 

dEuC(m,n) = 	
(2.4) 

or its square, 

dsQ(m,n) = 	 (2.5) 
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can be used as a distance measure [23], but this requires more computation than 

the absolute value distance [19]. Depending on the other characteristics of the 

system, the Euclidean metric may give recognition results slightly better than 

those obtained with the absolute value metric [19,58], or in some cases slightly 

worse [30]. These two distance measures are the most widely used, but various 

others have been devised [26,27,30,36,66]. In particular, for filter energies or 

formant-based representations, distance measures using dynamic programming 

for non-linear alignment in the frequency domain have been found to yield 

enhanced recognition rates, with a considerably increased amount of computa-

tion [37,431; and, in the case of a cepstral representation, applying different 

weights to the individual coefficients before the distance computation has been 

observed to improve the performance [39,40]. If a mixed set of acoustic parame-

ters is used as the frame representation - if, for instance, an overall energy 

term is included - then it will usually be necessary to assign different weights 

to the different types of components in the distance measure [36,38,42]. 

If the system is to operate in noisy conditions and the spectrum of the noise 

is known or can be measured, a noise masking or compensation technique can be 

applied [351, which will result in modified filter energy vectors or a modified 

frame distance function. Such a technique can greatly improve performance at 

low signal-to-noise ratios. 

2.3.1.2: LPC representations 

The LPC approach [18,20,21,22,47] involves sampling the (time domain) 

speech waveform (typical sampling rates being from 6 to 20kHz) and then 

estimating prediction coefficients (a(1),a(2),...,a(p)) for the sequence of sample 

values (...,s(t-1),s(t),s(t+1) .... ) so that the mean squared value of the error term 
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e(t) defined by 

e(t) = s(t) + ±a(i)s(t— i) 
	

(2.6) 

is minimised. The mean squared error (a 2) is called the prediction residual, and 

is given by 

= aRa', 	 (2.7) 

where a is the row vector (1,a(1),...,a(p)), "'" denotes "transpose" and R is the 

(p + 1) X (p +1) autocorrelation or covariance matrix of the signal samples. 

Before the prediction coefficients are calculated, preemphasis [75] is usually 

applied to the sequence of sample values; this reduces the energy at low frequen-

cies, thus compensating for the spectral tilt which is typical of voiced sounds in 

speech, and can result in an improvement in the performance of the recogniser 

[22]. (Preemphasis may be applied, also, as preprocessing for a filter bank 

[19,30].) 

The order of the LPC analysis, p, has varied from system to system. The 

value of p required for adequate modelling of the vocal tract depends on the 

sampling frequency for digitisation of the signal: the higher the sampling fre-

quency, the larger the analysis order p should be. It has been suggested that, 

when the sampling frequency in kHz is n, the analysis order should be at least 

n+4 [201. Thus values in the region of 10 may be adequate for telephone 

speech, which has a bandwidth of about 4kHz and is typically sampled at 

between 6 and 7 kHz [48,87]; where a wider-band signal is available, and a 

higher sampling frequency is employed to make use of this, the analysis order 

should be increased. In practice, 8th-order analysis has often been used for tele- 
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phone speech [36,48,60,901, while for speech sampled at 10kHz analysis orders 

from 10 to 14 have been applied [19,23,47,134,160], and the recognition results 

obtained with 10th-order analysis have been observed to be as good as those 

with 14th-order [47]. 

The windows of sample values for consecutive frames are overlapped, to 

produce typically 45ms windows at 15ms separation, with 30ms overlap between 

adjacent windows [12,18,36,60] (although shorter windows have also been 

applied (23,48,751). Two methods for estimating prediction coefficients, the auto-

correlation and covariance methods, are compared in [221. In estimating the 

vector a by the autocorrelation method, a windowing function is used - one fre-

quently used example being the Hamming window [12,22]. 

A possible distance measure between LPC representations is the Itakura 

metric or "log likelihood ratio" (18,221, defined by 

d(m,n) = log 
9.re )R in(m)3.rdfi)' 	

(2.8) 

where a1 (m) and aret4n)  are the vectors of prediction coefficients for the input 

and reference frames and R 1 (m) is the autocorrelation or covariance matrix for 

the input frame. This is the log ratio of the prediction residuals when the input 

signal is predicted using the coefficients derived from the reference data and 

when it is predicted using the (optimal) coefficients derived from the input itself. 

(The word "metric" is used loosely in describing this function, since it does not 

satisfy the requirements of the mathematical definition of a metric; in particu-

lar, it is not symmetric, i.e. it does not necessarily take the same value if the 

reference and input data are swapped.) Other LPC distance measures, involving 

the prediction coefficients and autocorrelations (or covariances) of the reference 

and input samples, have been devised [21,24,27,361. Some of these, which are 
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symmetric  with respect to the two frames being compared, have been found to 

have better properties for distinguishing correct and incorrect frame matches 

than the Itakura metric [24]. 

The performance of LPC-based recognisers in noisy conditions can be 

improved by filtering the noisy signal before carrying out the LPC analysis 

[29,134]. 

Other representations such as reflection coefficients and cepstral coefficients 

can be derived from an LPC analysis [21,23,134], and for these the absolute 

value and Euclidean distances described above can be used. A theoretical and 

experimental study of several LPC-based distance measures is given in [211: it is 

shown that the Euclidean distance on cepstral coefficients and a symmetric 

likelihood-ratio ("cosh") distance are approximations to the root-mean-square 

(r.m.s.) distance between log spectra. 

The autocorrelation coefficients can be used directly as a speech representa-

tion, rather than to compute prediction coefficients; a distance measure allowing 

for autocorrelation lag offsets between the two frame representations compared 

has been formulated [2351. 

2.3.1.3: Comparison of representations 

Comparative studies of LPC and bandpass filter representations [19,311 sug-

gest that an LPC representation gives better results on telephone-quality speech, 

which is band-limited so that high frequencies are lost, but not on speech 

without this band-limiting. 

In a comparison of several LPC-based and filterbank-based representations 

for recognition of monosyllabic words [23], the best recognition accuracy was 

obtained using cepstral coefficients derived from filters on a mel frequency scale. 
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Among the LPC representations, the prediction coefficients with the Itakura dis-

tance yielded the best results (only a little poorer than those with the mel cep-

stral representation), and cepstral coefficients were better than reflection 

coefficients. 

Speech representations based on models of human auditory processing have 

been proposed [33,34,41]. In some cases these have been found to yield improve-

ments in recognition performance over the more conventional representations 

[41]. 

In experiments into the representation of the dynamic characteristics of 

speech [42], better recognition results were obtained by the use of a linear com-

bination of each cepstral coefficient and its time derivative (estimated by regres-

sion analysis) than with either the instantaneous value or the derivative alone. 

A similar improvement was achieved by using the cepstral coefficients and their 

time derivatives as separate parameters [381; but the linear combination tech-

nique has the advantage that it does not increase the dimension of the frame 

representations, and so does not add to the computation for each frame distance. 

Some further improvement was obtained by using the log-energy derivative as 

an extra component of each frame representation. It has also been shown 

[44,45] that improved recognition performance can be obtained by using a con-

catenation of the feature vectors from two frames with a 40xns time separation 

and applying a transformation to adjust the distance for inter-frame covariance. 

(The recognition accuracy was increased even more when the transformations 

were made specific to reference frames, and when components of the vectors 

were selected to optimise the discrimination of different words; but this was pos-

sible only by the use of a large number of training utterances, and these tech-

niques also increased the computational load significantly.) 
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2.3.2: Training and template creation 

A speaker-trained (speaker-dependent) word recogniser, in which the tem-

plates are created from speech data from the specific speaker who will speak the 

input words to be recognised, can operate using just one template, derived from 

a single reference utterance, for each word in its vocabulary. The speaker has to 

utter a full list of the words in the vocabulary to train the system (i.e. provide it 

with reference data) before using it to recognise subsequent speech input. It has 

sometimes been found beneficial to have several templates for each word 

[56,60,76,151], or to derive each template from two or more utterances of the 

word [23,56,76,86,151]; in either of these cases, the speaker must provide more 

than one utterance of each word for training. 

This requirement of training to each new speaker is acceptable if the voca-

bulary is small or if only one speaker is to use the recogniser. However, for a 

system with a larger vocabulary and a high turnover of different speakers, it 

becomes a limitation. There are at least two possible options for avoiding the 

training requirements of this fully speaker-dependent mode of operation. These 

are (a) the speaker-adaptive mode, in which the recogniser is trained to each 

new speaker using a selected subset of the full vocabulary (from which speaker-

adapted templates are deduced for the remaining words using previously stored 

speaker-independent information); and (b) the fully speaker-independent mode 

[48,54,55], in which templates are created from the speech of a limited number 

of training speakers, and are then used in the recognition of words spoken by 

whatever speakers may use the system. (The speaker-adaptive mode of training 

referred to here is different from the adaptation which will be considered in 

detail in chapters 6 and 7 of this thesis, in that it requires at least a short train-

ing session to derive the adapted templates before the recognition can corn- 
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mence, and after this session no further adaptation is performed.) 

The first of these possibilities is difficult because of the complexity of the 

pattern representing a word. Using any of the types of frame representation 

described above, large amounts of previously stored information and computa-

tion are likely to be required to adapt every frame of every vocabulary word to 

the characteristics of a new speaker (as determined from the smaller training 

vocabulary). A system using pretraining and a statistical analysis of the data 

from the pretraining speakers has been reported [237], but this uses phoneme 

templates rather than word templates. Other adaptive recognition systems that 

have been developed or proposed [11,172,242,243,248,249,251] also rely on hav-

ing reference patterns (or synthesis parameters [2421) for phonetic or syllabic 

units, from which the word reference patterns are built. However, adaptation to 

word-independent speaker characteristics by a spectral transformation is feasible 

in a word-based recogniser and has been applied with some success [240,2521. 

Speaker adaptation methods based on vector quantisation (see section 2.4 below) 

have also been devised [244,250,257]. 

The second possibility, a speaker-independent recogniser, has been investi-

gated by various researchers [26,47,48,53,54,55,89,90,99,100,102]. It is here 

that multiple reference utterances for each word in the vocabulary become very 

important. Because of the variations in pronunciation among speakers, a tem-

plate derived from an utterance of a word by a single training speaker may not 

be adequate for recognition of the same word spoken by another speaker. Thus 

utterances of the same words by several different training speakers must be 

used in the creation of the templates if input from a range of subsequent speak-

ers is to be recognised accurately. 
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There are various possible ways to make use of multiple tokens (replica-

tions) of a word in making templates for it. One possible approach [481 is to use 

each token separately as a template. This, however, may result in an excessive 

amount of computation in the recognition process (unless the number of tokens 

is small, in which case they may not adequately cover all. the possible varia-

tions) - since each unknown word must be compared with all the templates for 

all the reference words. Another possibility is to average the representations for 

all the tokens to produce a single word template. (The "averaging" of word 

representations is not altogether straightforward: they must first be aligned so 

that corresponding frames match up - using linear alignment, DTW or some 

other procedure [50,86,88] - before taking the average of the representations in 

each frame.) However, if the variations among different speakers' pronunciations 

are large, this will not provide adequately for all the variants. Better speed and 

accuracy in recognition can be obtained by more sophisticated techniques for 

choosing or creating templates from the reference tokens. A clustering analysis 

(48,53,54,55,94,100] can be carried out, forming clusters of similar tokens, and 

then a template can be formed for each cluster, by averaging the tokens in the 

cluster or by some other procedure. This clustering of tokens is done separately 

for each word in the vocabulary. Typically the recognition performance 

improves as the number of cluster templates used per word of the vocabulary is 

increased up to about 10, but this improvement levels off as further templates 

are added beyond that number [54]. Templates obtained by clustering give 

better recognition accuracy than the same number of templates chosen at ran-

dom from among the training tokens [54,55]. (Clustering experiments with a 

speaker-trained recogniser have also been reported [56]. The results were quali-

tatively similar to those for the speaker-independent system, though fewer tem-

plates were required for optimal performance. The difficulty in applying 
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speaker-specific clustering in practice is that several training repetitions of the 

vocabulary are required.) An alternative to clustering, which has been found to 

yield better recognition results [1021, is a procedure of selecting those training 

tokens required to obtain correct recognition of the training data set (after elimi-

nation of outliers): this results in condensed nearest neighbour classification 

(when used with a nearest neighbour decision rule, as described in section 2.3.8 

below). 

Where the vocabulary contains words which differ only in small portions, 

recognition errors are liable to occur because of differences between those parts 

of the templates which represent similar parts of words. For instance, if the 

vocabulary contains the words "stalactite" and "stalagmite", and the templates 

for these words differ in the initial "stala-" section, the input word "stalactite" 

may well be recognised as "stalagmite", because the linguistically insignificant 

difference between the templates in the (longer) "stala-" section outweighs the 

significant difference between "gm" and "ct". Such errors may be prevented 

[84,85] by combining the similar parts of templates for different words, so that, 

for example, the frame representations for the initial and final parts of the 

"stalagmite" template are identical to those for the corresponding parts of the 

"stalactite" template, and separate data for the two words are stored only for the 

distinguishing portions. 

Experiments show [30,77,2461 that, for recognition in noisy conditions, it is 

best to conduct the training in the same level of noise in which the unknown 

input words are to be spoken. If the characteristics of continuous background 

noise during the recognition session are analysed, this noise can be added to the 

original templates (obtained in quiet conditions) to improve the performance in 

the noisy environment [219,247]. 



-27 -  

2.3.3: Local path constraints 

As mentioned in section 2.2, constraints of continuity and monotonicity are 

required for the time registration path, and it may also be desirable to impose 

restrictions on the steepness of the slope and the sharpness of changes in slope 

to prevent excessive distortion of the patterns being aligned. 

These constraints can conveniently be combined in a specification of which 

points are allowed as predecessors to a given point. Let the possible sequences 

of recent preceding points at the point (m,n) be P(1), . . , P(i), . . , P(r). 

(These sequences are "productions" [70): the complete time registration path is 

constrained to be a concatenation of sequences each of which takes one of these r 

forms.) A condition C(i) may be imposed on the permissibility of P(i). For each 

permitted sequence P(i), an accumulated distance D(m,n) is calculated. Let the 

sequence P(i) be defined by 

PCi) = [(m,n), 	. ,(mk(I)...l,nk()_l)] 	 (2.9) 

(where K(i) is the number of points in the sequence P(i)). Then 

K(i)-1 - 
D'(m,n) = D(m,n) + 	wLd(mL,nL) + wk()d(m,n), 	 (2.10) 

k=1 

where w, 	,wk() are weighting factors (considered below in section 2.3.4). 

The accumulated distance D(m,n) is then defined by 

D(m,n) = min{D'(m,n), 	,D(m,n), 	, D'(m,n)}. 	 (2.11) 

For example, the Itakura constraints [18,51,60], as illustrated in figure 

2.4(a), have P(1) = [Cm - 1,n — 2)]; P(2) = [(m - 1,n —1)]; and P(3) = [(m - 
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permitted on the condition C(3) that the best path to (m - 1,n) (already found by 

the DTW algorithm) does not go through (m - 2,n). Note that in this case each 

of the sequences P(1), P(2) and P(3) consists of a single point. These constraints 

force the average slope of the path to be no less than 0.5 and no greater than 

2.0. 

Other sets of constraints, denoted by Type I, Type II and Type III [601, are 

also shown in figure 2.4, with the sequences of preceding points permitted. In 

each case, no conditions C(i) are imposed. (The naming of these sets of con-

straints is not consistent in the literature: in [1421, the phrases "Type I" and 

"Type II" are interchanged.) 

When conditions C(i), such as C(3) in the Itakura constraints, are allowed, 

the optimality principle of dynamic programming is no longer strictly valid. The 

Itakura constraints give only an approximation to the optimisation of the path 

which is afforded by the Type III constraints, since the optimal path may be 

excluded from consideration if it contains a step (1,0) starting at a point which 

can be reached by a partial path (which is not a part of the optimal complete 

path) ending with a step (1,0). 

Comparative recognition tests [60,63] have shown that the Itakura con-

straints give a better rate of correct recognition than the Type Ill constraints. 

Very similar results to those using Itakura constraints were obtained [601 when 

Types I and II constraints were used. 

All these constraints impose the same limits on the average slope of the 

path. Further examples of local path constraints, permitting different ranges of 

slopes, are given in [491; the best results were obtained when the range of slopes 

permitted was from 0.5 to 2.0, as in the above instances. (When the search area 

in the input-reference plane is reduced to a narrow band about the linear path 
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Figure 2.4: some local path constraints 
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not go through (m-2,01 
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= [(m-2,, n—i), (rn—i, n) I 
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(see section 2.3.6), however, a restriction on the range of slopes may not be 

necessary [681.) 

The Itakura and Type III constraints are not symmetric with respect to the 

reference and input directions. They could be modified by interchanging 

occurrences of "rn" and "n" in the specifications of the sequences P(i). This 

would correspond to having the reference frames in the horizontal direction and 

the input frames in the vertical direction in figures 2.2 and 2.4 [60]. Another 

modification [58] is to have the reference or input pattern in the horizontal 

direction according to which pattern has more frames. Having the longer pat-

tern in the horizontal direction has the advantage that the steps which involve 

skipping a frame in the vertical direction are likely to occur less often. 

2.3.4: Weighting of frame distances 

The weight given to the frame distance at each point on a time registration 

path in calculating the accumulated distance, and hence the overall distance for 

the path, can be made to vary according to the slopes of the segments of the 

path near that point [49,60,65], and also according to other variables, such as 

the positions of the frames in the reference and input patterns [83,130,135,153]. 

Considering first the variation of weighting with path slope, this can be 

incorporated in the calculation of accumulated distances by means of the weight-

ing factors wk
' 

(where, for each value of i, k ranges from 1 to KM) mentioned 

above. Various schemes of weighting coefficients have been devised [60]. Two of 

the most commonly used are those called (c) and (d) in [60]:- 

Scheme (c): 	weighting proportional to the distance moved in one chosen direc- 

tion: 
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= mL - mL_i 
	 (2.12) 

(if the input direction is chosen), where, for convenience of nota-

tion, mk(1)  is defined to be m, and nk() is defined to be n. 

Scheme (d): weighting proportional to the sum of the distances moved in the 

two directions: 

= (mL — m,_i) + (nL — nL-i). 	 (2.13) 

As it stands, scheme (c) has the disadvantage that if a vertical segment 

occurs in a path a weighting of 0 will be assigned to the frame distance follow-

ing that segment. This can be prevented [49,601 by smoothing (averaging) the 

weighting coefficients over the points (rn,n), . . , (m,n) for each production 

P(i). In scheme (c) the sum of the weights for the whole path is M (the number 

of input frames) or, choosing the reference direction, N (the number of reference 

frames), and in scheme (d) the sum is M+N. 

One modification [651 which can be applied to any weighting scheme 

involves using the weighting coefficient defined by a step in the path to multiply 

the distances at both the initial point of that step and its final point (rather than 

just the distance at the final point). This "trapezoidal" weighting has a smooth-

ing effect, since the total weight on a frame distance is the average of the 

weights derived from the steps in the path preceding and following the point. 

There are many other possible weighting schemes, such as those designed 

to penalise very steep or shallow slopes [231, but scheme (c) seems to have been 

the most frequently used. The choice of direction on which to base the weighting 

can be quite significant when this scheme is used [58,60]: it is better to base the 

weighting on the progress of the path through the input pattern rather than the 
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reference  pattern [60], or the longer of the two patterns rather than the shorter 

one [581. Such weights based on the input utterance have been found to give a 

better recognition rate than other options [601. Weighting in the input direction 

also has the advantage that no template-specific normalisation of the word dis-

tances is required in making a recognition decision, because the total weight 

depends only on the length of the input word. 

It is less usual to make the weighting depend on variables other than the 

slope of the path. However, it has been suggested [130] that the first and last 

parts of a word, for instance, may exhibit greater variability than the intermedi-

ate section, and in that case, to compensate for this, a smaller weight can be 

assigned to each frame distance in the corresponding parts of the time registra-

tion path than to each one in the rest of the path. (A more sophisticated adjust-

ment of the weighting, which is made to depend on the rate of spectral change in 

the part of the word being matched, is described in [251; but it is probably better 

to treat this as a modification of the frame distance function. The same applies 

to the weighted spectral slope metrics described in [271.) 

A two-pass recognition procedure [611 and a subsequent modification of it 

[751 use special weights in a second-stage distance calculation, following the 

ordinary DTW matching, to improve discrimination between similar words. For 

each pair of words to be distinguished, a weighting function is used which takes 

larger values in those regions where the words differ most. These procedures 

require preliminary computation to determine the weighting functions, but have 

been found to improve recognition rates. They are rather similar in concept to 

the frame-specific and discriminatory distance functions [44,45] mentioned in 

section 2.3.1 above. 
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To penalise paths containing steps with slopes other than 1.0, additive 

penalties on such steps may be imposed, instead of multiplicative weights. In 

this case, the contribution made to the overall distance by the slope of each part 

of the path does not depend on the frame distances in that part of the alignment. 

A method for deriving such penalties on the possible path steps for each 

part of a word individually, according to the frequency with which these steps 

tend to occur, has been proposed [70,83], and has been observed to improve 

discrimination between words differing mainly in their timescales, although 

having no beneficial effect on recognition in other cases. These reference-frame-

dependent penalties are similar to the state-dependent transition probabilities in 

the Markov modelling approach described in section 2.5 below. 

2.3.5: Endpoint constraints 

Correctly locating the beginning and end of an utterance is not in general 

an easy task (15]. Speech sounds must be distinguished from background noise, 

and in particular from breath noise, clicks etc. made by the speaker at the end of 

the utterance. 

The endpoint detection rule is commonly based on signal amplitude thres-

holds [62,87]. In this case, some sounds, notably voiceless fricatives such as the 

"1" in "five", may be classified as background noise, and thus excluded from the 

utterance. The risk of this may be reduced by adjusting the thresholds for dis-

tinction between speech and non-speech signals, but then there will be an 

increased tendency for background noise to be included as speech. It is possible 

to refine the endpoint detection procedure by incorporating a measure sensitive 

to fricatives, such as the zero-crossing rate [46]; but then any background hiss or 

other high-frequency noise occurring immediately before or after a word is liable 
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to be treated as part of the word. In general, the effectiveness of any particular 

set of parameters for endpoint detection will depend on the bandwidth of the sig-

nal, and on the spectral and temporal characteristics of the noise occurring. (For 

instance, the zero-crossing rate is not appropriate for use with telephone speech 

[62].) 

To allow for errors in endpoint identification, the endpoint constraints on 

the time registration path may be relaxed to allow it to start and finish any-

where in specified regions at the beginnings and ends of the input and reference 

patterns, instead of only at the points (1,1) and (MN) respectively [511. This 

can be expected to result in some increase in the amount of computation 

required, as the region of the input-reference plane where frame distances are 

calculated will typically be increased. 

Having a choice of pairs of endpoints complicates the identification of the 

optimal path. Firstly, the decision must be made whether to perform a separate 

time warp from each possible initial point or to include them all as points from 

which paths may come in a single warp (in which case the procedure will tend to 

favour paths from later initial points, since these paths will tend to have smaller 

accumulated distances). Secondly, whichever way that decision is made, at the 

end of the warping process there will be a number of complete paths to choose 

from, with different final points, and possibly also different initial points. Sim-

ply choosing the path with the smallest overall distance has the disadvantage 

that the paths are of different lengths and there will be a bias towards the 

shorter paths, and so it may be desirable to normalise the overall distances for 

- path length before comparing them [51]. (The edge-free staggered array DP 

algorithm [38,73] avoids these problems, where the weighting is proportional to 

the sum of the distances moved in the input and reference directions, by allow- 

ing paths to start and finish anywhere on selected diagonals of slope -1 (where 
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m + n = 2 and where m + n = M +N, respectively). This requires the inclusion 

of sections of the reference and input signals beyond the detected word end-

points.) 

An endpoint relaxation technique can improve the performance of. a 

recogniser (51,63], but, depending on the characteristics of the vocabulary used, 

and of the acoustic background conditions and endpoint detection procedure, it 

may also introduce errors which outweigh the improvements [911. 

Another endpoint modification technique (91,93,160] is a procedure in 

which a silence or noise frame, which can be matched repeatedly with successive 

frames of the input speech, is appended to each end of each template, and extra 

frames of the input signal beyond the detected utterance endpoints are used. 

This reduces the incidence of errors due to exclusion of parts of the input utter-

ance, while allowing any non-speech frames in the extra input regions to be 

matched to the initial and final silence frames and so generate no errors (since 

the distance added by the matching of a given input frame to silence will be the 

same for each template, as the silence frames of all the templates are the same). 

Like the edge-free version of staggered array DP [38,73], this technique elim-

inates the problem of unequal total weights on partial paths from different start-

ing points - since a silence-frame distance is added to the accumulated distance 

for every input frame preceding the effective start of the matching, and so the 

total number of local (silence-frame and template-frame) distances is the same 

on every path. A modification has been formulated [95] in which no prior detec-

tion of input word endpoints is required. 

Another possibility, to improve endpoint alignment without calculating so 

many extra frame distances, is to do some preliminary testing at the beginning 

and end regions and, in each of these regions, to choose the alignment so that 

the local match is optimised. This procedure [58] gives new initial and final 
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points for the time registration path, which is then determined in the usual way 

with these new points replacing (1,1) and (MN). Thus the extra distance calcu-

lations involved are only in small initial and final regions. In a comparative 

test [91] this technique was found to increase recognition accuracy slightly, but 

not as much as the technique with silence frames described above. 

2.3.6: Global (search area) constraints 

When the endpoints of the time registration path are specified exactly, the 

area of the input-reference plane in which the path may lie is a parallelogram 

determined by the maximum and minimum slopes allowed by the local path con-

straints. When the endpoints are variable, it is a significantly larger polygon. 

It is possible to impose further restrictions on the area to be searched for possi-

ble paths; this reduces the number of local and accumulated distance computa-

tions, and may also improve the accuracy of the recogniser by preventing exces-

sive distortion. 

One simple form of area restriction is to exclude points more than a fixed 

number of reference (or input) frames away from the straight line joining (1,1) to 

(M,N) [58,68]. An even simpler method is to use the line of slope 1.0 from (1,1) 

instead of the line from (1,1) to (MN), so that (m,n) is excluded if Im -n 

exceeds some constant value e [49,60,68]. This has the disadvantage that if the 

durations of the reference and input words differ by more than the chosen value 

e there will be no permissible time registration path. 

A more sophisticated area restriction method is the adaptive one used in 

the UELM (unconstrained endpoints, local minimum) algorithm [51]. Here the 

values of n considered for a given in are those not more than e away from ii, 

where the value of ii is chosen to minimise D(m —1,ii). In this case no con- 
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straint can be imposed on the final point: if the matching is successful, the algo-

rithm will find the final point itself. 

2.3.7: Word length normalisation techniques 

There are certain advantages in having the same number of frames in each 

of the two words being matched together. A simple search area restriction (sec-

tion 2.3.6) can sensibly be applied, as can weighting coefficients which penalise 

steps of slopes other than 1.0 (since the optimal path can be expected to be fairly 

close to the linear path from (1,1) to (MN), which in this case (M =N) has slope 

1.0). 

2.3.7.1: Linear word length normalisation 

If the durations of the words are determined before the frame representa-

tions are computed, it is possible to adjust the frame separations so as to have 

the same number of frames in every word [47] (whether a reference template or 

an input word). This, however, introduces a time-lag in the operation of the 

recogniser, and requires the calculation of frame representations to be adaptable 

for varying frame separations, although with overlapping windows the latter is 

not such a significant point since the separation can be changed while keeping 

the window length constant without leaving gaps of unused data between win-

dows. 

Another way to adjust the numbers of frames is a linear interpolation tech-

nique [60]. In this method, frame representations are computed with a standard 

time separation in the usual way, and then once they have all been stored (and 

the duration of the word is known) they are replaced by a preset number of 

frame representations at equal intervals throughout the word. These frame 
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representations are calculated from the original representations by linear inter-

polation. The reference templates are stored in length-normalised form, so that 

only the input word needs to be normalised before each word recognition. The 

time warping cannot start until the whole input word has been read in, but the 

time-lag will be less than with the preceding method provided that the interpo-

lation procedure takes less time than the calculation of frame representations 

from raw sampled input. Also, for this interpolation procedure only the frame 

representations, rather than the individual sample values, must be stored until 

the word has been fully read in, so that it is likely to be more economical in use 

of memory than the preceding method. Experiments show [60] that, when word 

lengths are normalised, imposing a restriction Im -ni :s'. e can improve the 

recognition slightly, rather than degrading it. 

Another way to apply the interpolation procedure would be to leave the 

input frame representations as they are and apply the interpolation to the refer-

ence words to normalise each of them to the length of the input word. This 

would have the advantage of adapting the number of frames used so that more 

were used for a long input word than for a short one, thus possibly achieving a 

better combination of recognition performance and economy in frame distance 

calculations, but would require the interpolation to be done each time for all the 

reference words, rather than just for the one input word. 

2.3.7.2: Trace segmentation 

A trace segmentation procedure [76,80,81] has some similarities to the word 

length normalisation technique outlined above. It uses linear interpolation to 

form new frame representations from the original ones, and it results in word 

representations of a fixed length. However, there is an important difference, in 
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that the new representations are not regularly spaced in time, but are chosen so 

that the amount of spectral change in the speech signal from one representation 

to the next is constant over all parts of the word. 

Bandpass filter energies are extracted at regular time intervals in the usual 

way, and extra frames representing silence are appended to the utterance, one 

at the beginning and one at the end. If the vectors of filter outputs for the suc-

cessive frames, including the initial and final silence frames, are denoted by 

,x(J) (where the number of non-silence frames is J —1), then 

J 
T = 	d(x( - 	 (2.14) 

j=t 

where T is the total length of the trace in Q-dimensional space (Q = number of 

filters) formed by joining the points defined by consecutive frame vectors. (Here 

d is a distance function for vectors, such as the absolute value distance.) The 

trace is divided into S segments each of length -   -, where typically S is about 

The vectors defining the segment boundaries are computed, and these are 

used as the new frame vectors (together with the initial and final silence vec-

tors). 

This trace segmentation procedure followed by the usual DTW alignment of 

the (new) vector sequences makes up the word matching method called DYPATS 

(dynamic programming after trace segmentation) [761. It not only adjusts each 

word to a standard number of frames but also gives greater weight to parts of a 

word where spectral change is occurring, which is probably more sensible than 

giving equal weight to equal segments of time [25]. Moreover, it can result in 

considerable savings in computation and data storage, especially when used in 

conjunction with a strict search area restriction, while maintaining or improving 
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on  the level of recognition accuracy obtained with straightforward DTW [761. 

Although the formulation above is for a recognition system using bandpass 

filter representations, without logarithmic transformation (761, trace segmenta-

tion can be used with other acoustic representations [80,81,152]. The appending 

of silence frames may not be appropriate in this case. 

Another form of trace segmentation [80,81] divides the trace into segments 

of a predetermined constant length, rather than into a predetermined number of 

segments. This has the advantage that processing can start as soon as the first 

input frame vectors are calculated, but does not result in normalisation of all 

words to the same number of frames. 

There are various other acoustically-based non-linear segmentation tech-

niques [66,69,80,82,168]. These rely, like trace segmentation, on measuring dis-

tances between nearby frame vectors of a word (but not always successive ones) 

and applying a threshold to determine where to start a new segment. 

Other possible methods of deriving a sequence of vectors to represent a seg-

mented word, instead of interpolation at the segment boundaries, are selection of 

the nearer of the two neighbouring input vectors at each segment boundary [81] 

and averaging of all the vectors in each segment [152]. (An experimental com-

parison of these methods will be given below, in chapter 4.) 

2.3.8: The recognition decision 

Once an unknown word has been read in and compared by the DTW pro-

cedure with all the reference templates, there will be a list of overall distances 

(perhaps normalised for template length, depending on the weighting scheme 

adopted) from the input word to the various templates. (It has been found 

beneficial [98] to normalise the distance for each word according to the word's 
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variability, as determined from a statistical analysis; this requires a number of 

reference utterances for each word of the vocabulary.) 

The way in which these distances are used will depend on various aspects of 

the system. If there are several templates for each vocabulary word, it maybe 

decided to assess a reference word by the distances to all or several of its tem-

plates rather than just by the distance to the nearest of them. Decision rules for 

this case are discussed below, in section 2.3.8.2. But even where there is just 

one template for each word there are different ways to use the distances. 

2.3.8.1: Decision procedures in a single-template system 

In a recogniser with one template per word, the most straightforward deci-

sion procedure is to recognise the input utterance as the word whose template 

gives the smallest distance. 

A modification is to make a recognition decision like this only if the dis-

tance is less than some fixed value [18], or only if it is less than the second-

smallest distance by at least some fixed difference or ratio [54], or only on both 

of these conditions [1261, and to give a "reject" or "no recognition" response if 

the condition is not met: this reduces the rate of wrong recognitions, at the 

expense of a rejection rate which will generally include some rejections of correct 

nearest templates. This modification is appropriate for a system in which high 

reliability of recognised words is desired and the operator does not mind having 

to repeat some words when they are not clearly recognised the first time. 

Another option is for the output from the template matching process to con-

sist not just of a single best-matching word but of an ordered list of the best 

several candidates [54,551. This is particularly useful in a system where there 

are restrictions on what word sequences may occur (due to the syntax or format 
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of the input) [126,127], since these restrictions can be used to eliminate some of 

the words listed as possible by the template matching process at each position in 

the sequence. This procedure can be applied, for example, in a directory assis-

tance system, to the recognition of names spelt out (so that the words to be 

recognised are letter names), with the restriction on word sequences being that 

the name formed must be in the directory [12,1281. 

2.3.8.2: Multiple-template decision rules 

In the case of several templates for each word, there are various decision 

rules that can be applied to define the best identification for an input word, 

among them the nearest neighbour (NN), K-nearest neighbour (KNN) and 

majority vote decision rules. 

The NN rule is the simplest: the input word is recognised as the word 

corresponding to the template whose distance from the input pattern is smallest. 

This is similar in implementation to the procedure described above for the case 

where each word in the vocabulary is represented by just one template. 

The KNN rule [54,55,901 takes the average, for each word in the vocabu-

lary, of the distances from the input word to the K nearest templates of the 

vocabulary word, and then chooses the vocabulary word for which this average 

is smallest. (With 10-12 speaker-independent templates per word, 2 or 3 is a 

suitable value for K [12,54,55,901.) Notice that the NN rule is a particular 

instance of the KNN rule, namely that in which K = 1. 

The majority vote rule (sometimes confusingly called KNN [47,891) takes 

into account the K templates (of whatever words) nearest to the input pattern, 

and chooses the word represented by the greatest number of these K templates. 

In the event of a tie among different words, the NN criterion is used to decide 
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among them. (K will usually be larger for this rule than for the KNN rule: the 

value K = 7 has been found to give good results [47,89] when there are 12 or 14 

templates per word.) This too reduces to the NN rule when K = 1, and indeed 

also when K = 2. 

Many other decision rules could be devised, such as modifications of the 

KNN rule using weighted averages, or combinations of majority vote rules with 

several different values of K. A procedure using NN or majority vote, depending 

on features of the distribution of templates around the input pattern, was found 

(47] to give better recognition performance than either of the two rules used 

alone. 

2.4: Modifications to reduce computation and storage requirements 

DTW algorithms are computationally expensive, especially when the voca-

bulary is large and each input word has to be compared with every one of the 

templates. Various means of reducing the amount of computation, and in some 

cases also the storage requirements (for reference data or for quantities used in 

the algorithm such as accumulated distances), have been proposed. 

2.4.1: Template elimination procedures 

One way to eliminate a good deal of the computation is to impose some sort 

of accumulated distance threshold on each template as it is being matched with 

the input word, and to abandon the matching process if the threshold is exceeded 

[12,18,54]. The accumulated distance threshold typically takes the form Am +B, 

where m is the current input frame number [12,54]. 
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Another procedure [47] which has a similar effect is to carry out the match-

ing with the input word for all the templates in parallel and, at certain stages, 

to exclude from consideration prespecified proportions of the templates (choosing 

those with the largest accumulated distances). 

A beam search strategy [64,66] can be adopted, in which all the templates 

are matched in parallel, and at each input frame only those templates - or only 

those partial paths, in whatever template - which have accumulated distances 

less than a fixed threshold above the best current accumulated distance are 

retained. This has an advantage of adaptiveness over the fixed absolute thres-

hold method, and, unlike the fixed-proportion exclusion method, it allows the 

number of templates under consideration at each stage to depend on whether 

there are many templates with accumulated distances close to the current 

minimum. 

The amount of computation required to recognise each word can be reduced 

by such methods by a factor of 3-20, depending on details of the implementation 

and on the vocabulary [18,47,64,66]. 

A branch-and-bound or best-first strategy [641 involves continuing, at each 

stage, the path (in whatever template) which has the least accumulated dis-

tance. Thus not all paths under consideration at any stage will necessarily have 

reached the same input frame. A pruning technique can then be applied, by 

which any path which falls behind the longest current partial path (in the input 

direction) by a set number of frames is abandoned. This method of pruning has 

the same advantages mentioned above for beam searching. A drawback of the 

branch-and-bound approach is the large number of accumulated distance com-

parisons required to identify the paths to be extended. 
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If some words in the vocabulary are very dissimilar to the input word, it 

may not be necessary even to begin the DTW matching for these words: they can 

be eliminated by some simpler procedure before they get to the DTW stage. For 

instance, a "match limiter" has been employed [2291 which makes an initial 

comparison of each template with the input, using only duration and three aver-

aged spectra to represent each word; only the K words (for some fixed value of 

K) with the best scores, out of a much larger vocabulary, are passed on to the 

second stage which performs standard DTW matching. Procedures similar in 

principle to this have been devised using a variety of other comparison methods 

to obtain the preliminary scores [230,231,232,233,234,235,236]. A threshold on 

the distance in the preliminary match, possibly depending on the distance 

obtained for the best-scoring template, can be applied to decide which words are 

passed on, as an alternative to specifying a fixed number of words [231,232]. 

(Options in a two-stage comparison procedure of this sort are discussed in more 

detail in chapter 3 below. The implementation of such a procedure, which can 

be extended to more than two stages, is described in chapter 4.) 

In a multiple-template system, another option is to match initially only a 

certain number of the templates for each word, and on the basis of the distances 

obtained to select a few words for matching of all their templates [99]. 

2.4.2: Reductions in computation and storage per template 

Another approach, which can be combined with the techniques already 

described, concentrates not on eliminating templates but on reducing the 

amount of computation to be done for each template in aligning it with the input 

word. Some examples of this sort of reduction have already been examined, 

namely the restrictions on the area in which paths are allowed. Another tech- 
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nique which reduces the amount of searching done to find the time registration 

path is an ordered graph search (OGS) [67,74] - which is rather similar to the 

branch-and-bound technique described above, but applied to each template 

separately. This procedure reduces the number of frame distances calculated, 

but requires considerably more computation for other parts of its execution than 

the standard DTW search: thus its usefulness depends on details of the imple-

mentation. 

2.4.2.1: Reduction of the number of frame representations 

Both the computation of frame distances for each word pair matched and 

the storage requirement for templates can be reduced by reducing the number of 

frame representations stored for each word. One way to do this [52] is (in con-

trast to storing separately the representations for successive frames where these 

are similar) to store only the first frame representation for a steady section of 

speech. Representations for succeeding frames are treated as being identical to 

the first one as long as they differ from it by less than some preset amount. In 

the system in which this procedure was implemented, it was found that the 

reference storage requirements could be reduced by a factor of 2, and the frame 

distance calculations reduced by a factor of 4 (since the reduction was applied to 

both input and reference frames), without significant loss of recognition perfor-

mance [52]. 

Various methods of variable frame rate coding and acoustic segmentation 

have been devised [57,66,69,76,80,81,82,168], to reduce the number of (frame or 

segment) representations per word. Information about the durations of the seg-

ments represented may be stored, and used to control the matching of segments 

[57,66,1681 or to determine how many times each representation should be 
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repeated in a "segment expansion" procedure [69]; the latter case is very similar 

to the procedure of [521 described above. If there is no expansion by repetition of 

representations, there is a saving in accumulated distance computation, as well 

as a reduction in the number of frame distances to be calculated, but in this case 

the accuracy of the recogniser may deteriorate as the number of segments per 

word is reduced [691. 

The DYPATS process [76] described in section 2.3 reduces computation and 

storage - because S < J and so the number of frames in each word is reduced; 

and also because the trace segmentation stage provides part of the time warping 

required (in the case of reference and input being the same word) and so the 

DTW search can be restricted to a narrow band around the diagonal from (0,0) 

to (S,S) without much loss of recognition accuracy. 

2.4.2.2: Vector quantisation 

The technique of vector quantisation (VQ) [32,78,79,80,104,164] can be used 

to reduce the reference storage requirements and the number of frame distances 

to be calculated, particularly if the number of templates is large. This technique 

generally results in some degradation of the recognition performance. 

Vector quantisation can be one-sided or two-sided [80,164]. In the case of 

one-sided quantisation, a codebook is constructed, consisting of vectors of speech 

frame parameters, and each frame of each template is represented by one of the 

codebook vectors, usually the one nearest to the actual frame vector. When an 

input frame vector is received, it is matched with all the codebook vectors, and 

the distances thus obtained are used in place of the true input-reference frame 

distances in the DTW algorithm. The templates are stored as sequences of code-

book vector indices, rather than sequences of actual vectors; the codebook vec- 
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tors themselves are stored separately. In two-sided VQ, both reference and 

input frames are represented by vectors from the codebook. This has the advan-

tage that the distances for all pairs of vectors in the codebook can be stored as a 

table, so that they do not have to be calculated afresh when they are required; 

some computation will have to be done, however, to identify which codebook vec-

tor should be used to represent each new input frame. (This need not involve 

matching the input vector with all the codebook vectors: a faster VQ technique 

such as binary tree coding [164,1711 can be used - though this may reduce the 

recognition accuracy.) Depending on the size of the codebook, quite a large 

amount of memory may be required for the table of distances. 

2.5: Dynamic programming applied to hidden Markov models 

A more sophisticated approach to speech recognition is to construct a sta-

tistical model (rather than a template or templates) of each word in the vocabu-

lary, and recognise each input word as that word of the vocabulary whose model 

assigns the greatest likelihood (probability or probability density) to the 

occurrence of the observed input pattern. One type of statistical model 

[7,103,104,105,107,154,171] is the hidden Markov model (HMM) described 

below. If such a model is adopted, a form of dynamic programming algorithm, 

called the Viterbi algorithm [5], can be applied to calculate, for each word's 

model, the likelihood for the optimal matching of the input to a sequence of 

states of the model [5,7,103,104,107,171]. 

The essential idea of the HMM approach is that each word in the vocabu-

lary is represented by a set of states, including at least one initial state and at 

least one final state, with probabilities of transitions from state to state, and for 

each state a probability distribution for the emission of a vector of acoustic 
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parameters. (The states and transitions can be shown in the form of a network, 

as in figure 2.5.) When the word is spoken, the process is assumed to be in an 

initial state when the word begins, and then to make state transitions at time 

intervals equal to the separations between speech frames, in such a way that it 

is in a final state when the word ends. At each time frame, a vector is emitted 

whose probability distribution is that associated with the current state. (An 

alternative formulation [7,105] has the emission probabilities associated with 

the transitions rather than with the states.) The states themselves are not 

assumed to be observable, but only the emitted frame vectors which are proba-

bilistically related to the states - hence the use of the word "hidden". (The 

name "Markov" is applied because the state transitions form a first-order Mar-

kov chain: that is, the probabilities of transitions from a given state depend only 

on the identity of that state, and not on which states the process has been in at 

previous times.) 

Figure 2.5: state transition network for a Markov model 
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To apply the Viterbi dynamic programming algorithm to the matching of a 

sequence of input frames to a given HMM, the states of the Markov model are 

arranged along the reference axis, as in figure 2.6, where the possible transi-

tions at I1'ach input frame are shown in the form of a trellis [51 and the optimal 

alignment is marked by the heavy line. In the following discussion of the algo-

rithm, it will be assumed that the model to be matched has N states, including 

one initial state, state 1, and one final state, state N. 

At each step, the path must advance exactly one frame in the input direc-

tion, and can move in the reference direction to any state to which there is a 

possible transition from the preceding state. Thus, for instance, if the allowable 

transitions to state n are from states n —2, n —1 and n, the possible predecessors 

of the point (m,n) are (m-1,n-2), (m-1,n-1) and (m-1,n). Note that the 

Figure 2.6: alignment of input to states of a Markov model 
using the Viterbi algorithm 

state 
5 
4 
3 
2 
I 

i2 	
i 	

M 
input frame 

Optimal state sequence: I. 1, I, 2, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5. 
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possible steps in the path are not necessarily the same at all points (even ignor-

ing endpoint effects): they depend on which transitions exist among the particu-

lar states in the part of the Markov model that the path has reached. (In the 

case illustrated, however, the model has a regular structure, and so the possible 

path steps exhibit a corresponding regularity.) 

Assuming that all transition and emission probabilities are independent 

(which is not a very realistic model of the structure of speech, but is convenient 

for mathematically tractable modelling), the probability to be calculated is the 

product of the probabilities (and probability densities, if the emission probability 

distributions are continuous) of the individual transitions and emissions occur-

ring when the observed input word is generated by the model. (In the para-

graphs below, "emission probability" will be used loosely to mean "emission pro-

bability or probability density", to allow for the possibilities of discrete or con-

tinuous distributions.) Let the transition probabilities be defined by 

aij  = P(statej at time t I state i at time t-1) 
	

(2.15) 

(where the times are measured in frame intervals), and let bi  be the vector emis-

sion probability distribution associated with state i, so that 

b(x) = P(vector x emitted I state = i) 
	

(2.16) 

- where i and j range from 1 to N. Then the probability, given this model, that 

the state sequence (i 1 , iri) occurs and the vector sequence (x 1 , . . , XM) is 

emitted is 

M 
M; x1 	, xM I model) = b 1(x1) fi (ajm _ j jm bj,,(xm)). 	 (2.17) 

m=2 
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The task of the Viterbi algorithm is to find the state sequence (i1, 	, i) 

which maximises this probability for the observed (input) acoustic vector 

sequence (x 1, , Xv), subject to the constraints that i 1  = 1 and im = N. This 

state sequence corresponds to the optimal path through the trellis (as in figure 

2.6). 

For computational reasons, it is convenient to use the logarithms of the pro-

babilities (and probability densities)in the dynamic programming procedure, 

rather than working with the probabilities themselves. Products of probabilities 

will then be transformed to sums of log probabilities. Furthermore, to demon-

strate the underlying similarity of the Viterbi and DTW algorithms, it is best to 

use the negatives of the log probabilities. Thus the maximising of the product of 

probabilities in (2.17) is replaced by the minimising of the corresponding sum of 

negative log probabilities. Define the following negative log probabilities:. 

u(x) = —logb(x); 	 (2.18) 

zij  = —loga. 	 (2.19) 

Then the negative log probability of the first m states and emitted vectors is 

given by 

U(m,n) = u1(x1) +(zi't-iijk  + 
	

(2.20) 

(where im  = n). From (2.17-2.20), with a logarithmic transformation of the pro-

duct of probabilities in (2.17), it can be seen that 

U(M,N) = - logP(i1, . . . iM;xl, . 	, XM I model). 	 (2.21) 
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The correspondence [13,14] between the Viterbi algorithm and DTW (expressed 

in the notation of sections 2.2 and 2.3 above) is then as follows. 

DTW 
	

Viterbi 

frame distance: 

d(m,n) 

penalty on step (1,r& - n') in path 

(see end of section 2.3.4) 

accumulated distance: 

D(m,n)  

negative log emission probability (density): 

Un(Xm) 

negative log transition probability: 

zig , ,'  

negative log probability of sequence 

of transitions and emissions so far: 

U(m,n) 

word distance: 	 negative log probability of completed 

sequence: 

D(MN) 	 U(MN) 

The dynamic programming procedure to find the optimal state sequence is 

initialised by setting 

U(1,1) = ui(x1) 
	

(2.22) 

(with U(1,n) infinite for ii > 1). Then, if the possible predecessors for state n 

are states a 1, • , 	 '2r the recursion is 

U(m,n)= rnin{U(m-1,n 1) + z,,, 11 !-- i :5 r}+uig(x). 	 (2.23) 

(Compare equations (2.1), (2.2), (2.8) and (2.9).) 
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The Viterbi algorithm reduces to a simple form of DTW (with 

P(i) = [(m —1,n1)] for each i, weighting scheme (c) and an appropriate distance 

function) if a state is defined for each template frame and all the transition pro-

babilities are equal - apart from an additive quantity, depending only on the 

input frame number, due to the addition of negative log transition probabilities. 

The emission probability distribution for each state in the HMM corresponds to 

a frame vector in the template and the associated frame distance function. 

In particular, if the emission probability distribution for state ii is mul-

tivariate Gaussian with mean equal variances a 2  for all components and zero 

covariances, then u, has the form 

(x(i) —y(i)) 2  

u(x) = Qlog("a) + 2 a2  
(2.24) 

where Q is the dimension of the vectors and (for i = 1, 2, . . , Q) x(i) and y,1(i) 

are their ith components. Then, if all allowable transitions to state n have the 

same negative log probability z, equation (2.23) becomes 

U(m,n) = min{U(m-1,n j ) 1 1 	I 	r} 

+ z + Qlog(Va) + ______________ 	
(2.25) 

2a2  

(where Xm(I) is the ith component of x m ): this is the equation for the DTW recur- 

sion with the squared Euclidean metric, apart from the additive constant 

z + Q log(V'a) and the constant factor 	Indeed, if 
2a 

e -ZI Q  
0 	,-, 	 (2.26) 
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the additive constant disappears, and, by scaling the input and reference vectors 

to eliminate the factor 2 — j- , equation. (2.25) can be made identical to the 
a 

appropriate case of the general DTW equation (2.9). (To make this hold true for 

all states of the model, while retaining a fixed scaling of the vectors, the value *of 

z must be held constant: thus, if the number of possible transitions from state n 

is not the same for all n (excluding N if transitions from state N are not allowed 

- to occur), the stochastic constraint on the transition probabilities (that their sum 

must be 1.0) will not be perfectly satisfied.) 

Similarly, HMM formulations of other forms of DTW algorithm can be dev-

ised. One corresponding to the Type III constraints [1591, for instance, involves 

two copies of each state (strictly, two states with the same emission probability 

distribution but different transitions); the second copy is used when a state is 

repeated (corresponding to a step (1,0) in the path). Weighting schemes other 

than scheme (c) can be implemented by having copies of each state with 

differently scaled emission probability distributions (though this again involves 

a departure from the strictly stochastic framework of modelling). Frame dis-

tances other than the squared Euclidean metric can be generated by using other 

forms of emission probability distribution [131. (The relation between HMMs 

with Gaussian autoregressive probability densities and DTW with an LPC-based 

distance measure is developed in detail in [141.) 

Thus DTW is in principle a special case of the Viterbi algorithm. The pecu-

liarities of D'FW are that the number of states (template frames) per word tends 

to be larger than in other word recognition techniques using the Viterbi algo-

rithm, and indefinite repetition is not usually permitted, and that the variability 

of the transition and emission probabilities from one state to another is more 

constrained. 
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The Viterbi algorithm does not, strictly speaking, obtain the likelihood (pro-

bability or probability density) of the observed input speech given the HMM for 

the hypothesised word: it obtains the likelihood of the more restricted event 

that, given the HMM, the observed input vectors are emitted from a specific 

sequence (the optimal sequence) of states. The overall likelihood of the observed 

input vectors, given the model, is the sum of the likelihoods with specified 

sequences of states. The above algorithm can be adapted to calculate this by 

first returning to the multiplicative domain (multiplying probabilities, instead of 

adding their negative logarithms), and then at each point adding the accumu-

lated partial-path probabilities, instead of selecting the maximal one, before 

multiplying by the local likelihood. (This adapted algorithm is related to the 

forward-backward algorithm described below [103]: the quantity computed at 

each point is the forward probability.) This calculation of the overall likelihood 

(called Baum-Welch scoring [1031) is more expensive computationally than 

Viterbi scoring, because of the multiplications involved. 

As already mentioned, the emission probability distribution for each state 

can be discrete or continuous. In the discrete case [103,104,105,171], the output 

of the model is assumed to be a sequence of symbols from a finite alphabet. To 

cope with input consisting of acoustic parameter vectors, vector quantisation (see 

section 2.4.2) must be applied; then the HMMs are matched with the sequence of 

VQ codebook indices derived from the input. In the continuous case, the distri-

bution associated with each state is typically some form of Gaussian distribu-

tion, or a mixture of such distributions [107,110,112,1131 - though a system 

incorporating non-parametric distributions, obtained using a Parzen estimator, 

has been reported [114]. Continuous distributions have been found to yield 

better recognition performance than discrete ones [107,110]. (The reliable esti-

mation of continuous mixture distributions requires a large amount of training 
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data; but an improvement in performance over the discrete case can be attained, 

without such a large training requirement, by the semi-continuous HMM tech-

nique, in which one-sided VQ is applied, and the vector probability distributions 

corresponding to the codebook vectors are estimated when the codebook is 

formed and are used in the recognition phase to compute likelihoods for input 

vectors [120,1211.) 

For the case where the emission probability distributions are discrete and 

are associated with transitions rather than states, an alternative formulation [8] 

has separate transitions, with appropriately adjusted probabilities, correspond-

ing to all the possible emitted symbols; in this case the Markov model is explicit, 

rather than hidden, but essentially the same parameter estimation and recogni-

tion algorithms can be applied. 

Models for words which are similar in some (initial and final) parts can be 

combined into a single model, thus economising on storage and computation - 

rather as the templates for such words are combined in the discriminative tech-

nique described in section 2.3.2 above. The problem of computing appropriate 

transition probabilities for such models is addressed in [1111. 

Standardised forms of state transition network have been devised. One 

such is the Bakis model [156,171], which allows a state to be repeated 

indefinitely or to be omitted: thus the local path constraints are those of the sim-

ple example in section 2.2 above. (The transition network in figure 2.5 is for a 

five-state Bakis model.) 

A comparison of digit recognition results using speaker-trained HMMs with 

different structures is given in [117]. The best results were obtained when the 

number of states was large (e.g. 20) and arbitrary left-to-right transitions were 

permitted. Most other results reported have been for models with fewer states - 
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typically  about five [103,104,105,107,11O,111,112,1131. 

Markov models have been used particularly in connected word recognition 

[8,159,1961, as described in section 2.7 below. 

2.5.1: Estimation of HMM parameters 

The training procedure for each word of the vocabulary is rather more com-

plex for an HMM-based recogniser than for a template-based one. First, the 

number of states to be used to represent the word must be decided, and allow-

able transitions between states must be defined [103,104,117]. Then the emis-

sion and transition probabilities must be estimated; this can be done in various 

ways. 

One method of estimating the transition probabilities [10,156,159,171] is to 

apply the forward-backward algorithm (described below) or the Viterbi algo-

rithm iteratively to the training data for the word being modelled. Before this is 

done, each state in the word model must be assigned a probability distribution 

for the emission of frame vectors. This is done by analysis of the distribution of 

frame vectors from the training data which might (as indicated, perhaps, by 

least-squares segmentation of training utterances of the word [131,1331) 

correspond to that state. Then the transition probabilities are estimated by 

starting with (for example) equal probabilities for all transitions from each state, 

applying the forward-backward or Viterbi algorithm to each training token of 

the word and adjusting the probabilities to accord with the frequencies of 

occurrence of the transitions. The emission probability distributions can be rees-

timated at the same time by accumulating statistics on the vectors in the train-

ing data that are associated by the algorithm with each state. This procedure 

can be iterated several times. 
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The forward-backward algorithm [8,10,14] is a recursion procedure which 

accumulates statistics from all possible alignments of the data with state 

sequences of the model, rather than only the alignment with the optimal state 

sequence which is found by the Viterbi algorithm. The iterative training algo-

rithm which uses these statistics is called the Baum-Welch algorithm [103,104]. 

Statistics on the vectors occurring with each state are assigned weights in the 

training procedure which correspond to the probabilities with which the state-

vector combinations occur. Similarly, the reestimated probabilities for transi-

tions from a state are proportional to the weighted sums of occurrences of these 

transitions over all possible alignments - where the weights are again the pro-

babilities assigned to the occurrences by the model with its existing parameters. 

To compute these weighted sums efficiently, they are formulated in terms of for-

ward and backward probabilities, which can be calculated by the forward-

backward algorithm. 

The forward probability for state n and input (training) frame m is defined 

by 

a(m,n) = P{x 1,... ,xm ; state = n at frame m I model} 	 (2.27) 

and the backward probability is defined by 

fl(m,n) = P Ix.  +i, 	,XM I model; state = n at frame m}. 	 (2.28) 

Note that the probability of the utterance, given the model, is equal to a(MN). 

Thus the probability of state n at frame m, given the model and the training 

data, is 
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s(m,n) 
- cz(m,n)$(m,n) 
- 	a(M,N) 

(2.29) 

Likewise, the probability of a transition from state n to state n' at frame m is 

t(m,n,n') = 
a(nz - l,n)a n,i . b,(x m )fl(m,n') 

a(MN) 
(2.30) 

By adding the quantities computed by (2.29) and (2.30) over all values of m, 

overall probability-weighted frequencies of states and transitions can be 

obtained. These statistics can be accumulated over multiple training utterances, 

and used to reestimate the transition probabilities. Similarly, probability-

weighted statistics for occurrences of acoustic vectors can be computed and used 

to reestimate the emission probability density parameters. 

The computation of the forward probabilities starts with the values of 

a(1,n) for all state numbers n: a(1,1) = b1(x 1) and a(1,n) = 0 where n > 1 

(assuming that state 1 is the unique initial state). It then proceeds by the recur-

sion 

r 

a(m,n) = (a(m—1,n j)a,).bn (xm ), 	 (2.31) 

where, as in (2.23), the possible transitions to state n are from states 

The computation of the backward probabilities starts at the end of 

the utterance, where fl(MN) = 1 and (M,n) = 0 for all other values of n 

(assuming that state N is the unique final state); the recursion for backward 

probabilities is 

k 

$ (m,n) = 	a, bn i(Xm  +1)fl(m + 1,n'), 	 (2.32) 
i =1 



- 61- 

where the possible transitions from state n are to states n', 	, n (For com- 

putational efficiency, the values of b,i (xm )P(m ,n) should be computed and stored, 

since these are used both in the recursion (2.32) and in the formula (2.30) for 

transition statistics.) 

There is experimental evidence to suggest that the Viterbi algorithm, 

though theoretically inferior, since it does not provide maximum-likelihood esti-

mates (when applied to training) or the overall likelihood of a word given a 

model (when applied to recognition), is as good as the forward-backward algo-

rithm in practice, at least for some applications [103,104,117]. 

A Bayesian estimation procedure for estimating emission probabilities, 

assuming the availability of transition probability estimates, is described in 

[154]. This also involves iterative application of the Viterbi algorithm to train-

ing data, but uses speaker-independent prior probability distribution estimates 

for the model parameters, whose inclusion-was found to improve the recognition 

performance of the models generated. It could be modified to incorporate reesti-

mation of the transition probabilities. 

A maximum mutual information estimation procedure, differing from the 

usual maximum likelihood estimation in that all the models' parameters are 

estimated together to optimise the discrimination between different words, has 

been observed to yield improved recognition performance [115]. 

There are other algorithms, including some based on Lagrangian tech-

niques, which can be used to estimate both emission and transition probabilities 

[103,104]. 

A problem with many HMM training techniques is that they find locally 

optimal values in the space of model parameters which are not guaranteed to be 

globally optimal. Improvements in this respect have been obtained (at consider- 
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able computational expense) using a simulated annealing process [1081, in which 

random perturbations are allowed to shake the parameter values out of a local 

optimum so that the globally optimal values can be found. Another approach 

[117] is to improve the chance of reaching the global optimum by deriving a 

good set of initial parameter values from training data by a procedure involving 

word segmentation. 

The advantages of the HMM approach are that more of the information con-

tamed in several training tokens can be incorporated in a single word model 

than could be incorporated in a single template, and that probabilistic informa-

tion from frequency-of-occurrence statistics can be conveniently represented; but 

to make use of these advantages several training tokens of each word are 

required. The greater the number of parameters to be estimated, the greater 

the quantity of training data required to make the estimates reliable [1171. One 

HMM per word has been found to give fairly good results in speaker-

independent word recognition, though not always as good as those obtained 

(with considerably more computation) using multiple templates [103,104]. 

Improvements have been found to result from using two HMMs per word 

(one for male and one for female speakers, or by a clustering procedure), instead 

of pooling all the training data to make a single model for each word 

[107,110,1161. 

An adaptation procedure for HMMs, based on the forward-backward algo-

rithm, has been implemented (2531; this allows models to be improved as more 

examples of the words become available, by a weighted averaging of the original 

training statistics and those derived from the new input, and can be used to 

adapt the models to a new speaker. 
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2.5.2: Modifications to improve duration modelling 

A shortcoming of Markov models for representing spoken words is the 

assumption that the state transition and emission probabilities at each frame of 

the word are independent of the state transitions that have occurred earlier in 

the utterance and the frame vectors that have been emitted at earlier times. In 

particular, the probability that the process will remain in a given state at frame 

rn, given that it is in that state at frame rn-i, is taken to be independent of the 

number of frames preceding frame rn-i during which the process has been in 

that state. In the common and computationally convenient case where each 

state has a transition to itself to allow indefinite repetition, this gives rise to an 

exponential probability distribution for the duration of each state, which does 

not correspond well to the characteristics of real speech [106,107,119]. 

Modifications of HMM-based recognition have been proposed to overcome this 

problem, by incorporating durational information into the dynamic programming 

procedure [106,i07,ilO,i19], or by adjusting the word distances after alignment 

to take account of duration probabilities [107,110]. (Hidden semi-Markov 

models [109,119], which incorporate a specification of the probability distribution 

of the duration of each state, can be trained by an extension of the forward-

backward algorithm [1091.) Improvements in recognition accuracy have been 

observed to result in some cases [106,107,110]. It is also possible to improve 

state duration modelling, while retaining the computational simplicity afforded 

by the first-order Markov property, by using multiple "copies" of each state (i.e. 

states with identical emission probabilities) in some suitably devised 

configuration [118,119]. 
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2.6: DTW applied to word spotting 

Usually in a speech recognition system the aim is to recognise all the words 

spoken. The word spotting task is an exception to this: here the aim is just to 

find all occurrences of designated key words in a sample of connected speech, 

and there is no attempt to identify the other words in the utterance. This has 

applications in selection of those parts of a large corpus of speech (consisting for 

instance of intercepted radio messages) which are of interest for some specific 

purpose. 

A method of matching a key word template to appropriate portions of a 

sample of connected speech has been described [1301. Like the isolated word 

recognition procedures already described, this involves time warping and frame 

distances; but in other respects there are differences due to the different nature 

of the problem. Instead of being given input with a specified word-beginning 

frame or region, the procedure must investigate each input frame to see whether 

an instance of the key word begins there. When a likely key-word-beginning is 

found, the end of the word is still undetermined, and so no final input frame can 

be specified to constrain the warping path. The decision required as output from 

the template matching process is not which word or sequence of words best 

matches the input pattern, but rather whether any parts of the input pattern are 

instances of the key word, and, if so, which parts. 

The method described depends on defining a local similarity function F 

which is a weighted sum of frame similarity values at recent points along a par-

tial path, with the weights decaying exponentially away from the current point. 

(The procedure does not give an overall distance or similarity measure for a 

completed path.) 
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Figure 2.7: application of DTW to word spotting 
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The search for a region matching the key word is illustrated in figure 2.7. 

From each input frame, a path is started, and is extended as long as the values 

taken by F continue to be above a set threshold. A path which is completed sub-

ject to this condition is taken as indicating an occurrence of the key word. There 

may well be several completed paths very close together, perhaps with points in 

common. In such a case a rule can be applied to ensure that the word is recog -

nised as occurring only once there. 

A modified version (132] of this word spotting method involves the use of 

multiple templates to form a composite template during the matching procedure. 

For each key word, several templates are stored, perhaps from different speak-

ers; then, for each point (m,n) on a warping path, the frame similarity used is 

the maximum of the similarities between the mth input frame and the nth 

frames of all the templates. Thus the template effectively used for a path has its 

nth frame chosen from the nth frames of the available templates so as to max-

imise the similarity at the appropriate point on the path. 
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The threshold on F must be chosen to achieve a satisfactory rate of spotting 

of genuine occurrences of key words without introducing too many false alarms. 

It is best to choose the threshold value for each speaker and each key word indi-

vidually; a problem with this is that the input speakers may not be available for 

training, and so some method of automatic adjustment to the characteristics of 

speakers is desirable (134]. 

A secondary testing procedure can be applied [135] for identification of the 

better "putative hits", using template-specific linear combinations of various 

matching statistics, to add to the information obtained in the primary matching 

process. A weight is assigned to each combination of a frame matching statistic 

and a template frame, depending on how significant that statistic is at that 

frame of the template for discrimination between true hits (on genuine 

occurrences of key words) and false alarms. 

A word spotting technique based on segmentation of each template, with 

matching by a dynamic programming algorithm incorporating limits on segment 

duration, has been found to yield better results than the whole-word matching 

method with standard DTW [136]. 

2.7: Dynamic programming algorithms for connected word recognition 

In a connected word recognition system, the input consists of words spoken 

without gaps between them. (Connected speech is not necessarily fluent speech: 

the latter has more coarticulation and assimilation between words, whereby the 

realisations of the initial and final parts of a word are affected by the preceding 

and following words [151, making the application of a template-matching system 

rather difficult [228].)  The whole utterance is typically a sentence or a string of 

digits. Thus the recognition involves not only deciding what each word is but 
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also finding where words begin and end, and, usually, deciding how many words 

the utterance contains. (A rather similar problem occurs in isolated word recog-

nition if the gaps between words are not long enough to be distinguished, by 

their duration, from stop consonant silences within words.. The "Quiktalk" algo-

rithm described in [59] is designed to cope with this problem, and is similar in 

principle to the two-level algorithm for connected word recognition described 

below.) A DTW system with word templates can make all these decisions 

together. Various DTW algorithms for connected word recognition have been 

devised; these are described in the subsections below. 

Except where stated otherwise, the asymmetric scheme of weighting in the 

input direction (scheme (c)) is employed in these algorithms: this allows com-

parison (without normalisation) of accumulated distances obtained by matching 

different numbers of templates, or templates of different lengths, to the same 

section of the input speech. 

2.7.1: The two-level algorithm 

A two-level algorithm has been proposed [138] in which, in the first stage, 

each word template is matched against every part of the input, and then, in the 

second stage, these matchings are combined to give a recognition of a whole 

string of words. 

In the first part of the two-level algorithm, word level matching, a template 

is chosen for each permissible input section (permissible in the sense that it is of 

such a length that at least one of the templates can be matched to it) to minim-

ise the word distance obtained by matching against that part of the input. The 

output of the word level matching consists of a template, index and a correspond-

ing word distance for each permissible pair of starting and ending frames. 
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The  second part of the algorithm is phrase level matching. This uses the 

information given by the word level matching and builds up the word reference 

string by a dynamic programming search in the (l,m) plane, where 1 is the 

number of the word (counting from the start of the utterance) and m is the input 

frame number. The accumulated distance G(l,rn) at each point is obtained by 

minimising over all possible beginning frames for an lth word ending at frame 

m. A backpointer, which is a record of the beginning frame used (or, 

equivalently, of the previous word's ending frame), is kept at each point (l,m) 

during the phrase level matching. The path ends at (L,M), where L is the 

number of words in the utterance and M is the number of input frames. If the 

number of words in the utterance has been specified, L is fixed and so the end-

point (L,M) is automatically determined; if not, several paths may be completed, 

with different values of L at their endpoints, corresponding to matchings of con-

catenations of different numbers of reference words to the input. In this latter 

case, L is chosen so as to minimise the total distance G(L,M). The recognised 

sequence of words can be recovered (in reverse order) by tracing through the 

array of backpointers. 

Two implementations of this two-level matching procedure have been given 

[1381: one suitable for computer simulation, in which tables of frame distances 

for all possible input-reference frame pairs are computed and referred to in the 

course of the word level matching, and the phrase level matching is not begun 

until the word level matching has been completed; and one suitable for real-time 

recognition, in which, as each input frame is read in, the word level and phrase 

level matching procedures are advanced to incorporate words and partial 

phrases ending at that input frame. In a real-time implementation, it is possible 

to avoid repeated computation of frame distances (during word level matching 

operations with the same template but different starting frames) by temporarily 
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storing all the required frame distances for the current input frame. 

An algorithm similar to the two-level algorithm but allowing an overlap or 

a gap between successive words has been formulated and tested [167]. The best 

results (with templates formed from connected speech as well as from isolated 

words) were obtained when no overlap was allowed but a gap of up to 15 or 20 

frames (150 or 200ms) was permitted. 

2.7.2: The sampling algorithm 

An algorithm which reduces the computation involved by matching tern-

plates only to selected parts of the input is described in [139,140,141,1421. This 

builds up strings of words from left to right, and at the lth stage keeps a list of 

the best few candidate strings of identifications of the first 1 words, with their 

ending frames and accumulated distances. To extend a partial recognition 

string, templates are matched to the portion of input speech following its ending 

frame; the UELM search area constraints (described in section 2.3.6) are used. 

An overlap of up to A frames between successive words is allowed and, within 

the range defined by this parameter, every Ith input frame is tried as a starting 

frame. A string is considered complete when its last word ends within a 

specified number of frames of the end of the input pattern. 

Once all strings of words have been either completed or abandoned, the one 

with the smallest overall distance can be taken as the recognition of the utter-

ance, or else a post-error correction procedure can be employed. In the post-

error correction, a whole-utterance template is constructed for each of the best 

few complete strings already found, by concatenating the templates in the 

string, and is matched against the input utterance by a large-scale constrained-

endpoint DTW; the final decision as to which string best matches the input can 
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then be based either purely on the distance obtained in this way or on the aver-

age of this and the original distance derived in building up the string. 

A modified version of the sampling algorithm, with reduced weighting near 

word boundaries where coarticulation occurs, is described in [147]. 

Unlike the other connected word DTW algorithms described here, the sam-

pling algorithm does not guarantee optimality of the sequence of words found. 

2.7.3: The level building algorithm 

The level building algorithm [143] is proposed as a more computationally 

efficient implementation of the basic idea of the two-level algorithm. The funda-

mental difference between the two is that, whereas the two-level algorithm 

minimises accumulated distance at each possible partial phrase ending frame m 

firstly over template index u (separately for each possible beginning frame m' of 

a word ending at m) and then over word beginning frame m', the level building 

algorithm minimises it firstly over m' (separately for each u) and then over u. 

(Again the minimisation is done separately for each possible value of 1 

corresponding to the ending frame m.) The meaning of "level" in this algorithm 

is different from that in the two-level algorithm: here there is no division into 

word level and phrase level matching, and a "level" is a value of 1. The 

improvement in efficiency is because duplication of accumulated distance calcu-

lations occurs only due to matching the same word at different levels in the 

same region of the input pattern: there is no duplication for different beginning 

frames of the same word at the same level, since all the matching for a given 

word and level is carried out in a single application of the basic DTW procedure. 

The operation of the level building algorithm is illustrated in figure 2.8. 

The computation proceeds level by level, and, at each .level, template by 
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template. At the beginning of each level, there are various possible previous 

frames, each with its accumulated distance derived from the previous levels. (In 

the case of the first level, there is only one previous frame, namely input frame 

0 (added for convenience of notation), with accumulated distance 0.) In the 

Figure 2.8: the level building algorithm for connected word recognition 
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notation used above for the two-level algorithm, the accumulated distance to 

input frame m at the beginning of level I is G(1 - 1,m). For each template, a 

DTW matching is carried out starting from these previous-level ending frames 

and their accumulated distances, which gives a set of ending frames for that 

template on the current level, with corresponding accumulated distances. (The 

optimal starting frame of the word does not have to be found separately for each 

ending frame: paths to all the ending frames are found by the single DTW 

operation.) Once all the templates have been matched at the lth level, accumu-

lated distances G(l,m) are found by minimising for each ending frame m over 

the accumulated distances calculated there using the various templates. As 

usual, a record must be kept at each point of how that point has been reached, 

so that the words can be recovered at the end of the whole process. 

Within each level, paths may be allowed to start within a specified interval 

at the beginning of a template, and to end within a specified interval at the end 

of it, to allow for the reduced pronunciations which often occur in connected 

speech [143,144,145,146]. This modification has been found to be important for 

the attainment of optimal performance, when the templates are derived from 

isolated-word utterances [145]. 

A reduced level building algorithm [143] incorporates a restriction of the 

lth-level ending frame M(l) to a set range around the value m which minimises 

G(I,m) 
the length-normalised accumulated distance 	

m 
, and an accumulated dis- 

tance threshold to eliminate badly-matching templates at each level (basically as 

described in section 2.4). This reduced algorithm involves about the same 

number of frame distance computations as the sampling algorithm, but yields 

significantly better recognition rates [144,145]. 
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2.7.4: The one-stage algorithm 

A conceptually simple connected word recognition algorithm, originally for-

mulated by Vintsyuk in 1971 [3], is described in [148,162]. Essentially the same 

algorithm has been adopted in various connected word recognition systems 

[151,153,156,157,159,160,185]. It has the advantage over the algorithms 

described above that only one accumulated distance calculation is performed for 

each input-reference frame pair. It also requires only a fairly small amount of 

storage for data obtained during its execution. 

The principle of its operation is illustrated in figure 2.9. For the purpose of 

the dynamic programming procedure, the word templates are made into a com-

pound template, with special rules for going from the end of one word template 

to the beginning of another. A frame in this compound template has a word 

template index u, and a frame number n within the word template; so a point in 

the input-reference plane can be specified by three coordinates (m,n,v), where as 

usual m is the input frame. Where n > 1 (or 2, if path constraints such as 

those specified in section 2.3.3 are used), the permitted predecessors of (m,n,u) 

are as specified by the usual path constraints, except for the extra coordinate u. 

Where n = 1 (or 2, depending on the path constraints), the preceding point may 

be (m - 1,N(v '),v') for any template index u' (or it may be any preceding point in 

template u permitted by the ordinary path constraints, such as (m - 1,1,v)). 

(Here N(u) is the number of frames in the uth word template RM.) Apart from 

this modification to the local path constraints, the DTW proceeds as for the iso-

lated word case, one input frame at a time. One or more columns of accumu-

lated distances, depending on the path constraints, must be stored at each stage 

in the procedure. (As is usual in a connected word system, a record must also be 

kept of the word templates used on the path to each point reached, and this is 
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Figure  2.9: the one-stage connected word recognition algorithm 
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accomplished efficiently by means of arrays of backpointers.) A complete path 

may end at the final frame of any of the word templates, that is, at any point 

(M,N(u),u); this may be relaxed to allow for errors in identifying endpoints. 

Thus there will generally be at least V complete paths formed, where V is the 

number of words in the vocabulary; a decision is made among the paths on the 

basis of their overall distances. 
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It is possible to make allowance for coarticulation and reduction at word 

boundaries by permitting jumps to (m,1,v) not just from (m-1,N(v'),v') but also 

from (m-1,n,u') where N(v') - n < some constant. (This allows for the omis-

sion of the end of a word in the input speech, which is more usual in natural 

speech than the omission of the beginning of a word. But a similar modification 

could be applied to the beginnings of word templates also.) Further 

modifications [148,162,163] are the inclusion among the word templates of a 

silence or noise template (to allow for pauses) and of a pseudotemplate with a 

fixed distance from all possible frame representations (to match input which does 

not match any of the reference words well). Each of these has just one frame. 

Implementations have been described [1601 with weights other than scheme 

(c); the total weight on a path through a word template depends in this case on 

the length of the template as well as on the number of input frames matched to 

it, but a normalisation for template length is carried out whenever a path 

reaches the end of a template, so that the total weight after normalisation is the 

same for all sequences of templates ending at a given input frame. (Similar nor-

malisation could be applied in any of the other algorithms described in the 

preceding three sections, to allow the use of various weighting schemes within 

each matching of a reference word.) Type I local path constraints and a sym-

metric weighting scheme were found to be better than Itakura constraints and 

the asymmetric scheme. A modification has also been described [1531 in which 

different weights are assigned to different frames of a template (cf. the frame-

specific weighting suggested in [130] and mentioned in section 2.3.4 above), with 

a similar normalisation for total weight at the end of each word. A connected 

word recognition algorithm for use with variable frame rate analysis, incorporat-

ing weighting according to the durations of the frames being matched together, 

has been implemented, and was found to give better results than without use of 
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duration information; the variable frame rate analysis technique (rather similar 

to trace segmentation with averaging) improved the recognition performance 

while reducing the amount of computation [1681. 

One disadvantage of the one-stage algorithm in its basic form (relative to 

the two-level and level building algorithms) is that it includes no specification of 

the number of words in the utterance. Such a specification could, however, be 

incorporated by means of syntactic constraints [1481, as described below. 

Implementations of the one-stage algorithm designed to reduce the number 

of memory access operations required are described in [169]. 

2.7.5: Incorporating syntactic constraints 

In a connected word recogniser with a large vocabulary, it is desirable to be 

able to make use of any syntax known to apply to the input utterance, in order 

to reduce the number of words that have to be tried at each point, and to 

increase the recognition accuracy by ruling out likely-sounding but impossible 

word sequences. (The use of syntactic information has been found to result in 

greatly improved recognition accuracy in a system with input of sentences spo-

ken as isolated words [12,126,127].) All the above algorithms can be modified 

fairly easily to incorporate syntactic constraints. 

In the sampling algorithm, the matching of templates to extend partial 

recognition strings can be restricted so that only syntactically permissible words 

are tried. 

In the level building algorithm, levels can be replaced by states in a loop-

free transition network representing a simple grammar, and adding 1 to the 

level number 1 to get to the next level when passing on accumulated distances 

can be replaced by making a transition to another state [143]. (The record kept 
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of the path taken to each point will have to include information about which 

state transitions have been made.) This adaptation of the level building algo-

rithm is described in more detail in [150]. By arranging the computation so that 

all levels are extended in parallel along the input, it is possible to dispense with 

the requirement that the syntax be loop-free, since in this case each transition 

need not always be from a preceding level. 

The two-level algorithm could be modified [145] to allow the application of 

syntax, specified again by a transition network (not necessarily loop-free). In 

this case, the phrase level matching would have syntactic states in place of word 

numbers, and for each input section the optimal template and distance would 

have to be determined (in the word level matching) not just from the whole voca-

bulary but from each subset of the vocabulary corresponding to a syntactic state 

transition. 

An advantage of the two-level algorithm [1451 is that it can generate the K 

best candidate strings, for any specified value of K - which can be useful in an 

application where the direct implementation of word sequence constraints is 

unwieldy (as in the recognition of spellings of names from a directory (1301). 

This is done by recording the K best words and distances for each input section 

(or all the word distances if K > V), and retaining the K best partial strings of 

words at each point in the phrase level matching. 

In the one-stage algorithm, each reference word can be given a "from prede-

cessor" set, which is the set of all words which may precede it; then the preced-

ing points allowed for (m,1,v) will include (m-1,N(u'),v') only for those tem-

plate indices u' for which R(u') is in R(v)'s "from predecessor" set [162]. The 

points at which warping paths may start will be (1,1,u) only for those values of u 

for which R(u) is designated as a word which may begin an utterance; similarly, 

paths will be allowed to end at points (M,N(u),u) only where the words R(u) are 
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permissible  final words. If R(u) occurs at more than one position in the syntax, 

then several copies of R(u) can be included in the compound template, each with 

a different "from predecessor" set; they will be treated as different words during 

the DTW procedure, except that the frame distances can be computed just once 

(for each input frame) and used for all the copies. The syntactic network need 

not be loop-free. (A particular case, where in fact the network is loop-free, is 

where the syntax specifies only the number, L, of words in the utterance; then 

there are L copies of each template, the "from predecessor" set of the lth copy of 

a template consists of the (1— 1)th copies of all the templates, the permissible 

initial words are the first copies of all templates and the final words are the Lth 

copies. The algorithm with this syntax is identical to the level building algo-

rithm.) Details of the implementation of the syntactically constrained one-stage 

algorithm are given in [148] and [185]. 

If a Markov modelling approach (section 2.5) is adopted, an integrated syn-

tactic and acoustic network can be constructed [159,196], in which each word in 

the syntactic network is replaced by the transition network for the Markov 

model of the word (with possible insertion of silence states at word boundaries). 

Then the Viterbi algorithm can be applied to this integrated network just as it 

would be applied to the transition network for a single word. This connected 

word recognition procedure corresponds to the one-stage algorithm with syntac-

tic constraints in the same way that the isolated word Viterbi algorithm 

corresponds to ordinary isolated word DTW. (Other connected word recognition 

procedures using HMMs include one using stack decoding [6,8,10], and one using 

level building with Viterbi matching for each individual word [165]. The first of 

these, unlike procedures using the Viterbi algorithm, computes an overall likeli-

hood for the recognised word sequence, by storing and adding the probabilities 

for all alignments of the sequence of word models with the input.) Probabilistic 
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information on the occurrence of words and word sequences can conveniently be 

incorporated into a Markov-model-based recogniser [8]. 

2.7.6: Training for connected word recognition 

Because words often have different characteristics when spoken connectedly 

(due to coarticulation with preceding and following words), training on isolated 

words may not be satisfactory for a connected word recognition system. To 

improve performance in the presence of interword coarticulation, a technique of 

training on words from connected speech may be used. Training tokens 

extracted from connected speech can be used to construct templates correspond-

ing to different speaking rates and degrees of coarticulation, which can then be 

used alongside the templates obtained from isolated word tokens (149,158]. In 

an HMM-based recogniser, strings of words may be used for training, instead of 

isolated words [154]. It is also possible in a template-based recogniser to 

improve templates trained initially on isolated or manually-extracted words, by 

matching concatenated templates to known connected strings of words to find 

the word boundaries, and so extracting instances of the words for further train-

ing [166,167,170]. 

2.8: Summary and discussion 

In the preceding sections, a particular class of word-based automatic speech 

recognition techniques has been described in some detail. These techniques are 

characterised by their use of dynamic programming algorithms for time align-

ment of the input speech with word reference patterns. Two main types of refer-

ence patterns have been considered, with their respective forms of dynamic pro-

gramming algorithms: templates (the simpler of the two types), for which the 
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dynamic programming algorithm takes the form known as dynamic time warp-

ing (DTW), and the more sophisticated hidden Markov models, to which the 

Viterbi algorithm can be applied. The main emphasis in the discussion of these 

techniques has been on template matching and DTW; but the conceptual link 

between this approach and the hidden Markov model approach using the Viterbi 

algorithm has been demonstrated. 

It is evident from published results (19,49,76,82,101] that dynamic pro-

gramming is an effective method of performing time alignment of speech pat-

terns, and that DTW provides a substantial improvement over linear time regis-

tration in template-based word recognition, as measured by recognition rates. 

(Some methods of word matching without non-linear time alignment have, how -

ever, yielded good results. These include methods using segment-specific VQ 

codebooks (without fine temporal information) [123,124], or histograms of 

occurrences of VQ labels [125], in equal-duration segments, for which linear 

alignment is adequate because the temporal variations are represented impli-

citly in the histograms or codebooks. These methods require several training 

utterances for each word, and are thus most applicable to speaker-independent 

recognition.) 

The major disadvantage of DTW, especially for large vocabularies, is the 

large amount of computation required, particularly for the numerous frame dis-

tance calculations. (Other methods of non-linear time alignment have been dev-

ised (82,1221 which require less computation, but the recognition accuracies of 

these methods are inferior to those obtained with DTW.) Therefore a good deal of 

effort has been devoted to finding ways to reduce the computational load without 

losing too much recognition accuracy. 
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Among  the most promising reduction techniques are preliminary trace seg-

mentation [76,80,81] (combined with search area restrictions [76,811); accumu-

lated distance thresholds [18,54], progressive rejection procedures [47] and beam 

searching [64,66], for rejection of templates (and, in the case of beam searching, 

individual paths) before completion of the matching; and, for large vocabularies 

in particular, match limiting by an initial simple comparison 

[229,230,231,232,233,235,236]. (Note, however, that the first and last of these 

may not allow the DTW matching to start until the input word has been com-

pleted.) These three techniques could be combined quite effectively in an iso-

lated word recogniser. (Progressive rejection procedures and match limiting 

have in common the principle that unpromising candidate templates need not be 

matched to the input in full. This will be discussed further in chapter 3. The 

ideas of segmentation and of match limiting are integrated together in the 

multiple-stage recognition system which will be described in chapter 4.) Beam 

searching is also applicable to connected word recognition using the one-stage or 

Viterbi algorithm, and has frequently been so applied [8,11,148,152,159,196]. 

The variable-length trace segmentation described in [80,81] has some of the 

merits of the fixed-length trace segmentation procedure, and allows the match-

ing to begin during the speaking of the input word; but it does not result in nor-

malisation to a constant number of frames per word (and hence the severe 

search area restrictions of [76] cannot be applied). This technique, unlike fixed-

length trace segmentation, can be applied to connected word recognition with an 

unknown number of words in the input utterance [147,152,161]. Numerous 

acoustic segmentation techniques have been devised 

[52,66,69,76,80,81,82,92,147,152,161], varying in the criteria for defining seg -

ments,. the derivation of a representation for each segment (or each segment 

boundary) and the use, if any, made of information on segment durations. 
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Vector quantisation (VQJ [32,78,80,103,104,156,157,159,160,171] can reduce 

the amount of computation to be done in evaluating frame distances. There 

tends to be a loss of accuracy in recognition when VQ is applied; this can be 

counteracted by using a large quantisation codebook, but then significant compu-

tational savings are achieved only when the vocabulary is fairly large. 

One motive for applying the above computation reduction techniques is the 

desirability (for most applications) of real-time or near-real-time recognition. 

Another approach altogether (though the two can in some cases be combined) is 

to use special hardware on which DTW can be performed rapidly. Descriptions 

of devices designed specifically for DTW computation are given in 

[183,185,186,187,188,189,190,191,192,194,195]. DTW algorithms lend them-

selves to parallel processing; several parallel processing schemes for DTW are 

described and compared in [184], and the arrays of [183], [187] and [192] imple-

ment two of these schemes. Systolic array architectures for connected word 

recognition, using algorithms similar to the two-level algorithm, are described in 

(1951. A pipelined structure for beam searching is described in [193]. 

The choice of local path constraints and weighting functions in the basic 

DTW algorithm tends not to make very much difference to the quality of recog-

nition obtained; however, the results of [49,60,63,140,142] suggest thatItakura 

or Type II constraints (in the notation of [601, as defined in section 2.3.3 above), 

with weighting according to movement in the input direction, give a slight 

advantage in recognition accuracy over other combinations while being quite 

economical computationally. Where paths are confined to a narrow band from 

the initial to the final point of the warp, the ban on repetition of the step (1,0) in 

the Itakura constraints has been found to be unhelpful [68]. 
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The superiority of Itakura constraints to Type III [63] might seem surpris-

ing, since the former constraints yield only an approximation to the optimal 

alignment given by the true dynamic programming formulation of the latter. 

Presumably the explanation is that the word distance computed using the 

Itakura constraints tends to be more suboptimal for incorrect-word matches than 

for correct-word ones. This can be understood by considering the nature of the 

cases where an optimal path, obtained with Type III constraints, is liable to be 

excluded by the condition for horizontal steps in the Itakura constraints. Such 

cases include those where one frame of the template (assumed to be on the verti-

cal axis) is similar to several successive input frames but the adjacent frames of 

the template are dissimilar: horizontal steps will tend to occur at that template 

frame during the search for the alignment path, and so a horizontal step in the 

minimal-distance path may well be forbidden because of a previously chosen hor-

izontal step, one input frame earlier, at the same frame in the template. Such 

instances of isolated well-matching template frames seem more likely to occur in 

the alignment of incorrect-word templates than with correct-word templates. 

Results of experiments on endpoint relaxation indicate that in some cases it 

can be helpful [51,58,63] but in others it increases the error rate [30,91]. 

Methods of adjusting the endpoints by preliminary testing [58,911 or methods 

using extended input and initial and final silence frames appended to the tem-

plates [91] (cf. the noise template method of [1601) appear to be better than sim-

ple endpoint relaxation. Where a symmetric weighting scheme is adopted, how-

ever, an endpoint relaxation technique such as that adopted in edge-free stag-

gered array DP [38,73] can attain a similar effect to the silence-frame technique, 

without the need for silence frames (but with extended input and reference pat-

terns). (The appropriateness of any endpoint modification technique will depend 

on the characteristics of the method used to locate the endpoints in the first 



,84, 

place, and on the conditions in which the recogniser is being used.) 

Any speech recogniser is only as good as its reference patterns. For 

speaker-dependent recognition, a robust training procedure [30,31], which 

obtains two sufficiently similar repetitions of each word and averages them, can 

help to ensure that the templates formed are free from mispronunciations and 

extraneous noise. For speaker-independent recognition, a clustering analysis 

[48,53,54,55,100] - or, alternatively, editing and condensing (102] - of training 

data from a representative set of speakers is an appropriate means of deriving 

templates. 

A development of the idea of training to the speaker is progressive adapta-

tion of templates during the input of speech to be recognised. This will be dis-

cussed in chapter 3, and a description of a recognition system incorporating tem-

plate adaptation, and results obtained with this system, will be given in 

chapters 5-7. 

Recognisers using whole word templates tend to perform badly on vocabu-

laries containing words which differ only in short sections. Refinements to the 

basic template-matching method, such as discriminative networks [84,851 to 

eliminate the effects of linguistically insignificant differences, and two-pass deci-

sion procedures using weighting to emphasise distinguishing features [61,751, 

result in improved performance on such vocabularies. In the special case where 

durational information is important for distinguishing words, the techniques of 

[70,831 can be helpful. In each case, DTW is still used, with appropriate 

modifications. The maximum mutual information training procedure for HMMs 

[115] is similar to the discriminative weighting technique, in that it takes into 

account characteristics of the vocabulary as a whole, rather than only of each 

word individually. 
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For recognition of connected speech, the one-stage algorithm 

[148,151,153,162] has certain advantages over the other algorithms described: it 

performs each accumulated distance calculation only once, and it can easily be 

adapted to incorporate syntactic constraints. If the number of words in each 

input utterance is fixed, however, the level building algorithm [143,144] may be 

better [190], since it always finds the best-matching string of L words for a 

specified value of L. (The one-stage algorithm can be converted into an imple-

mentation of the level building algorithm by imposing appropriate constraints.) 

The use of templates extracted from connected speech can significantly 

improve the performance of a connected word recogniser [149,166]. It is also 

helpful to permit the omission of the end (or beginning) of a word, which com-

monly occurs in connected speech [145]. However, the word template matching 

approach has the fundamental limitation that, because the basic unit is the word 

(rather than something smaller), it is difficult to make full allowance for coarti-

culation effects by incorporating detailed phonological rules. Thus it may be 

better to use a phoneme-based (or phonetic-segment-based) strategy where 

natural continuous speech is to be recognised [15]. The "phonemes" used in a 

recognition system will not necessarily be what would be called phonemes in 

standard linguistics; it may well be found necessary [237] to include, several 

realisations of each (strictly so-called) phoneme. (Dynamic programming algo-

rithms, similar in principle to the connected word recognition algorithms 

described in section 2.7, have been formulated to match continuous speech with 

concatenated . templates or models for subword units 

[171,173,174,176,178,179,180], and to compare a phoneme lattice derived from 

unknown input speech with reference lattices or models [1821; related algorithms 

can also be used in automatic training of a recogniser on continuous speech 

(172,177,1811.) 
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Another disadvantage of the word template matching approach is the 

amount of training required for each new speaker (in a speaker-trained system) 

or for each new word added to the vocabulary (in a speaker-independent system 

using clustering analysis for template creation). This too is less of a problem in 

a system based on units smaller than words, since there are fewer reference pat-

terns to be determined, and also partial-vocabulary training (as in [2371) 18 more 

feasible. 

Even in a system where the primary recognition strategy is one of segmen-

tation into phoneme-sized (or smaller) units, or of matching with phoneme tem-

plates, DTW matching of word templates may have a part to play: as suggested 

in [137], it can be used to verify the recognition hypotheses produced by the pri-

mary analysis. (The verifier described in [137] used templates generated by a 

synthesis-by-rule program, but it would be quite possible to use natural word 

templates instead.) For verification in a continuous speech recogniser, an algo-

rithm such as ZIP [1551 could be used, with either concatenated word templates 

or synthesised speech on the reference axis. (The post-error correction procedure 

of [141] is a verification procedure using concatenated word templates.) 

Dynamic programming has been successfully applied to speech recognition 

using hidden Markov models [103,104,154,156,159,171,196]. (While template 

matching using DTW is technically a form of hidden Markov model matching by 

the Viterbi algorithm, in practice there have tended to be two distinguishable 

approaches.) The Markov modelling approach has the advantage that more 

information about the variability of the pronunciation of a word can be incor-

porated into a Markov model than into a template. The use of Markov models 

instead of templates has been found to lead to improved accuracy in recognition 

[1561, or to similar accuracy with reduced computation (103,104,1591. However, 

a large amount of training is required for a Markov modelling system [103,1041, 
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which may make it unsuitable for some applications. The case for progressive 

adaptation during recognition sessions is perhaps even stronger for Markov 

model systems than 'for template-based systems, since the asymptotic optimal 

performance is reached more slowly as the amount of training data increases. A 

method which could be applied to accomplish such adaptation has been 

described, and has been found to allow improvement of models [253]. 

Word recognition systems using dynamic programming techniques have 

been produced commercially by various manufacturers [198,203,204,2161. Many 

of the available recognisers are designed for isolated word recognition only, but 

others, such as the NEC DP-100 [196,207] and DP-200, the British-produced 

Logos [1851 and Marconi SR128 and the Verbex 1800 (2071, incorporate con-

nected word algorithms. A few of the commercially produced recognisers, such 

as the Verbex 1800 and 4000, and Dragon speech recognition software (2061, use 

Markov models; IBM has produced an experimental HMM-based recogniser with 

a 5000-word vocabulary, designed for dictation of sentences spoken as sequences 

of isolated words [172,175]. Comparative evaluations of speech recognisers in 

terms of accuracy and other features are given in [197,198,200,202,207]; a com-

parison of human and machine speech recognition is reported in [71]. Standards 

for evaluating recognition systems are in the process of development 

[199,201,205]. 

An important aspect of many potential applications of isolated and con-

nected word recognition is that the possible sequences of words are strongly con-

strained by the syntax, semantics and pragmatics of the task (12,16]. The use of 

syntactic constraints to restrict the output of the recognition system can greatly 

improve its accuracy, whether the input consists of a sequence of isolated words 

[12,126,127] or of a connected utterance [16,165]. In a dialogue system, the use 

of a semantic model to exploit the relations between successive sentences can 
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further improve the performance by allowing acoustic recognition errors to be 

corrected automatically, or detected and corrected by querying the user 

[12,16,129]; and where understanding rather than transcription is the goal some 

word errors may not affect the outcome [129]. Thus the task may be accom-

plished with much greater reliability than would be possible using the word-

level acoustic pattern-matching alone. 

The above discussion indicates that, although so much research has already 

been done on word-based speech recognition using dynamic programming algo-

rithms, there are still areas where further investigations could be worthwhile. 

These include the formation of templates, networks or statistical models (in an 

initial training process or by adaptation), and the construction of effective 

matching procedures and decision rules to be used with them, to provide optimal 

discrimination among the words of a specific vocabulary (rather than simply 

optimal modelling of each word individually) (61,75,84,85,102,115,254,256]; and 

the design of whole speech systems, incorporating use of the available informa-

tion at all levels [12] and appropriate interaction between the machine and the 

user [12,220,222,223,224,225,226,227,228]. Some specific topics for investigation 

are mapped out in chapter 3. 
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IN WORD-BASED SPEECH RECOGNITION 
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3: AREAS FOR FURTHER RESEARCH AND IMPROVEMENT 

IN WORD-BASED SPEECH RECOGNITION 

3.1: Introduction 

For the reasons discussed in chapter 1, techniques using whole-word refer-

ence patterns have been adopted in many experimental and commercial speech 

recognition systems; and it seems likely that such word-based techniques will 

continue to be the most effective methods available for many practical applica-

tions of automatic speech recognition. Approaches based on units smaller than 

the word - particularly using phoneme-level Markov models - are becoming 

increasingly practicable [2161, and these will partly replace the word-based tech-

niques, especially for large-vocabulary recognition (where the use of a few 

phonetic units can eliminate the training requirements imposed by word-based 

recognition) and for the recognition of continuous speech (where a phonetically-

based approach should be able to cope better with coarticulation and related 

effects). However, there will probably still be applications, particularly in iso-

lated word recognition for strictly defined tasks (where a small vocabulary is 

often adequate), in which word-based techniques are more appropriate. 

Among the most effective word-based recognition techniques are those 

described in chapter 2, using templates and hidden Markov models to represent 

the words of the vocabulary, and incorporating dynamic programming algo-

rithms (DTW and Viterbi) for optimal time-alignment. 

It is therefore of practical as well as theoretical interest to investigate pos-

sible improvements to the existing template-matching and HMM-based word 

recognition techniques, and to discover the relative effectiveness of different 

options. While a great deal of research has been conducted with word recogni- 
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tion systems over the past few years, there are still questions to be answered 

and possible enhancements to be explored. It is of particular importance to 

study the effects of the interaction between system and user on the performance 

of (isolated or connected) word recognisers, since this interaction will occur, in 

some form, in any practical application of a speech recognition system. 

Some of the outstanding questions to be answered, and areas for improve-

ment and development, in the light of the results reviewed in chapter 2, are con-

sidered in the sections that follow. Experiments conducted to explore these 

areas will be described in later chapters. 

3.2: Time segmentation and segment representation 

One fairly simple topic for investigation is the comparison of the various 

forms of trace segmentation and similar techniques, applied as preprocessing for 

words to be compared by DTW, referred to in section 2.3.7 above. 

Numerous acoustic segmentation techniques have been devised 

[52,66,69,76,80,81,82,92,147,152,161,168], varying in the criteria for defining 

segments, the derivation of a representation for each segment (or each segment 

boundary) and the use, if any, made of information on segment durations. 

These techniques are useful in reducing the number of vectors representing 

each word (and hence the computation involved in comparing the words); in nor-

malising each word to a standard length (though not all the techniques permit 

this); in representing more fully those parts of each word which show more rapid 

acoustic change (which are likely to be the parts with a higher density of 

linguistically significant information); and in performing some initial non-linear 

timescale adjustment. 
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The question of the different possible methods of deriving segment 

representations does not seem to have been addressed systematically by any of 

the previous researchers who have used such techniques. In some systems, a 

vector is derived by linear interpolation at each segment boundary [76,80,161]; 

in others, the nearest vector to each segment boundary is selected [81,82,147]; 

and in others, a vector is derived for each segment (rather than each boundary) 

by averaging of the vectors in the segment [152,168]. It is of interest to know 

which of these techniques yields the best performance in a recognition system, 

for any given segmentation of the input and reference words. Experiments to 

compare these segment representation techniques have been performed [971, and 

details of these experiments and their results are given in chapter 4 below. 

Comparisons of trace segmentation with linear time segmentation (in both 

isolated and connected word recognition systems) [81,92,161] have shown that 

the non-linear adjustment provided by trace segmentation, with less severe 

compression in regions of rapid spectral change, yields an improvement in recog-

nition performance over the equivalent linear segmentation. However, there are 

also some results - those of Ney [152] for connected word recognition - which 

show the same degree of degradation of recognition performance with trace seg -

mentation as with linear downsampling of the data. There are several• possible 

explanations for these results, since the vocabularies used were different (and 

indeed taken from different languages: French [81,1611, English [92] and Ger-

man [1521), and Ney's experiments, unlike those of the other researchers, used a 

cepstral representation and the averaging method of segment representation. 

The experiments reported in chapter 4 include a comparison of trace segmenta-

tion and linear segmentation in isolated word recognition for two English-

language vocabularies, with mel cepstral coefficients [23] as the acoustic 

representation, and with different segment representation techniques. 
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3.3: Refinement of the recognition decision procedure 

The basic- DTW template-matching isolated word recogniser has a rather 

crude strategy for determining which template best matches the input word. It 

performs a computationally costly DTW matching operation for every template, 

even though some templates, in a typical vocabulary, will be very dissimilar to 

the input word and should not require such a sophisticated comparison to elim-

inate them from consideration. This exhaustive comparison approach is a very 

poor approximation to the human word recognition process, which seems to 

proceed by narrowing down the range of possible recognitions progressively as 

more of the input is received and processed [151. 

There are various possible modifications of the recognition procedure (as 

described in section 2.4 above) which allow poorly-matching templates to be 

eliminated without full-scale DTW matching. Some of them do this by begin-

fling the matching process for every template but abandoning some templates 

part-way through the comparison [12,18,47,54,64,66]; others use simplified com-

parison techniques to eliminate unpromising candidates without even starting 

the full DTW matching for them [230,231,232,233,235,236]. Features which 

have been used or proposed for a rapid preliminary comparison to exclude 

unlikely recognitions include word duration [229]; characteristics of the end of 

the word [2301; vector quantisation distortions obtained for word-specific code-

books (231,232,2331; averaged acoustic parameter vectors for coarse time seg-

ments, compared using linear alignment or simplified non-linear alignment 

[229,235]; Fourier coefficients of gross spectral features across the word [236]; 

broad phonetic string classifications [234]; and prosodic characteristics such as 

syllabification, stress and rhythm [151. 
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Whether the DTW matching process is begun for all words and then aban-

doned before completion for some of them, or whether a separate preliminary 

comparison stage is employed, the condition for abandoning templates can take 

any of three basic forms, illustrated in figures 3.1-3. The condition to abandon a 

template can be a threshold on a distance measure, not dependent on the dis-

tances for the other templates under consideration (figure 3.1) [12,54]; or a con-

dition on distance relative to the best template's distance (figure 3.2) 

[64,66,232,233]; or one which ensures retention of only a preset number of tem-

plates (figure 3.3) [47,229,235,236]. (Conditions combining more than one of 

these three types can also be devised [2321.) The fist of these can result in the 

Figure 3.1: elimination of templates using an absolute distance threshold 
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Figure 3.2: elimination of templates using a relative distance threshold 
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elimination  of all the templates, and hence a "no-recognition" decision, if no 

template matches the input closely enough - which may or may not be a desir-

able possibility to allow, depending on details of the system and its application. 

The second and third types of condition avoid this by making the decision as to 

elimination of a template depend on its performance relative to the other tem-

plates, instead of its absolute performance. They differ in that the retention of a 

fixed number of templates results in a fixed number of word matching operations 

to be done, whereas the use of a relative distance threshold allows the number of 

templates retained, and hence the number of word comparisons, to be increased 

if there are many closely competing candidates, or reduced if a few templates 

match the input much better than all the others. If the first or second type of 

condition is imposed, an absolute or relative distance threshold must be set to 

give an appropriate combination of computational efficiency and accuracy in 

recognition. 

An isolated word recognition system [255,258,260] which incorporates up to 

four stages of comparison, with increasing degrees of accuracy and computa-

tional expense, is described in chapter 4. This system incorporates trace seg-

mentation or linear time segmentation, as referred to in section 3.2 above, at 

each stage, and was developed following examination of the results of the com-

parative experiments with segmentation techniques, described in the earlier 

part of chapter 4. It uses a condition of the second type above, based on the 

ratios of the word distances to the best word distance at each comparison stage, 

to make template elimination decisions. The number of comparison stages, the 

segmentation used at each stage and the thresholds applied to the word distance 

ratios can be adjusted to yield any desired tradeoff between speed and accuracy 

for a given vocabulary and application. Measurements of the recognition times 

and accuracies attained will be given. On the basis of these results, the 
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segmentations and threshold values for use in subsequent experiments were 

chosen, to maintain a level of accuracy similar to that attained without any 

early elimination of templates, while achieving a substantial reduction in com-

putation time. 

3.4: Adaptation of reference patterns during recognition 

One respect in which the basic word pattern matching method is clearly 

deficient, relative to human recognition of speech, is that it derives its informa-

tion about the words in the vocabulary only from the training utterances, 

without making any use of the additional repetitions that are made available 

during a recognition session. Adaptation of the reference patterns (templates or 

HMMs) to take account of new input data during recognition sessions 

[238,239,241,246,256] can have several benefits. By adaptation, initial speaker-

trained patterns can be made more reliably representative of the speaker's 

pronunciations, through the incorporation of more data into each pattern; the 

recogniser can adapt to gradual changes in the speaker's voice or the acoustic 

background conditions; and, in the case without speaker-specific training, pat-

terns which are initially speaker-independent can be tuned to the characteristics 

of a particular current input speaker. (It has been observed [228] that a user's 

voice changes due to fatigue in the course of a long recognition session, or in the 

course of a day's work during which a speech recogniser is being used intermit-

tently, and this can seriously affect the recognition performance attained using 

templates formed at or before the beginning of the session. Also, there may be 

systematic differences between the pronunciations occurring during a training 

session and those occurring when the system is being used for recognition, 

because of the differences in the mode of user-system interaction and the 



different tasks being undertaken [228,2391.) 

An adaptive system may modify its existing reference patterns, by an 

averaging procedure of some sort [238,239,241,256]; it may also include an 

option for the creation of a new reference pattern where the recognised input is 

not close enough to any of the existing ones [256]. 

Adaptation will be most reliable and effective when there is feedback in 

some form (explicit or implicit) as to the correctness of each recognition. This 

will allow the appropriate reference pattern to be adapted whenever an input 

word is correctly identified, while preventing adaptation of a best-matching but 

incorrect reference pattern. In the absence of such feedback, precautions must 

be taken [238,2391 to prevent the system from becoming unusable because of 

repeated adaptation of wrongly chosen reference patterns - either by ensuring 

that such adaptation does not occur or by providing a means to correct the cor-

rupted reference patterns when it does occur. A possible development in the 

supervised case (i.e. where there is feedback) is adaptation of the best-matching 

template away from the input word when this word is known to have been 

recognised incorrectly, with the aim of reducing the likelihood of a recurrence of 

the same misrecognition. (A training procedure incorporating such adjustment 

away from incorrectly recognised words has been reported, using weighted 

averaging with a negative weight [501.) A further development is the 

verification and adaptation of the template for the second-best recognition candi-

date, if the first candidate (corresponding to the best-matching template) is 

incorrect. This may be extended to "full verification" [2451, in which the system 

continues to prompt the user for yes/no responses to all possible recognitions of 

the input, in order of increasing word distance, until a "yes" response is 

obtained. 
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In  a multiple-template speaker-independent system, it is possible to apply 

another form of adaptation [2541, in which it is the template set or the decision 

procedure which is adapted, rather than the individual templates. Templates 

which are found not to match the current speaker's voice well - such as those 

from training speakers of the opposite sex - can be eliminated from considera-

tion, reducing the range of possible errors. 

In chapter 5, a description is given of template adaptation options which 

have been incorporated into the multiple-stage isolated word recognition system 

described in chapter 4 [255,258,259,2601. These permit supervised or unsuper-

vised adaptation, and, in the supervised adaptation case, negative adaptation to 

misrecognised words and adaptation of the template for the second-best recogni-

tion candidate when the best-matching template is incorrect. Two systems of 

weighting for the weighted averaging of templates and input words are intro-

duced - one which results in tracking of gradual changes in the speaker's voice 

or the acoustic conditions, and one which results in optimisation of the templates 

for the speaker's average pronunciations if these are assumed not to vary in 

time. Various options for control of the adaptation are provided. Chapters 6 

and 7 describe experiments with adaptation of speaker-specific and speaker-

independent initial templates, and report the effects of this adaptation on recog-

nition accuracy and on the computation required to obtain each recognition. 

Possible extensions of the adaptation technique are discussed in chapter 8. 

3.5: User-system interaction and interface design 

To achieve optimal performance of speech recognition systems in practical 

applications, attention must be devoted not only to the acoustic representation of 

the speech signal and to pattern-matching techniques, but also to the design of 
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the whole system into which these will be integrated. The modes of interaction 

between the system and the user must be so designed as to facilitate the efficient 

accomplishment of the task or tasks for which the system is to be used. 

In section 3.4 above, the possibility of adaptation by the system to the user 

was introduced. But in any practical speech recognition task there is likely also 

to be adaptation by the user to the system [228]. This may be beneficial (for 

example, if the user learns to speak more consistently so as to obtain good recog -

nition performance) or harmful (as in the case where the user becomes irritated 

by the system's repeated failure to recognise a particular word and begins to 

shout, making correct recognition of the word even more unlikely). The user-

system interface should be designed so as to encourage helpful adaptation and to 

avoid producing harmful adaptation. 

Possible features of such an interface include messages from the system 

(audible or visual) which guide the user as to mode of speaking (suggesting an 

increase or decrease in volume or speaking rate for instance), and the provision 

of convenient means for correcting wrong recognitions and for retraining when 

particular templates are inadequate [225]. A retraining option is particularly 

desirable if adaptation is incorporated and the stability of the system cannot be 

guaranteed. A method of correcting the most recent recognition - whether by 

saying a designated word such as "correction" or by some other means such as 

pressing a key - can also allow adaptation to be supervised without the need for 

an explicit yes/no response from the user to each recognition: the system can be 

designed to adapt the reference pattern for the recognised word only if the user 

gives no indication that the recognition is incorrect. 

The adaptive multiple-stage isolated word recognition system described in 

chapter 5 has an interactive mode, in which some of the features mentioned 

above are incorporated [258,2601. Chapter 6 includes observations and statistics 



from interactive interactive recognition sessions, using this system, with several speakers. 

Some aspects of the interface and interaction between system and user are dis-

cussed in chapter 8. 
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4: SEGMENTATION AND SEGMENT REPRESENTATION TECHNIQUES, 

AND THEIR APPLICATION IN A MULTIPLE-STAGE 

DECISION PROCEDURE 

4.1: Introduction 

Various preprocessing techniques for template-based speech recognition 

have been devised [60,66,69,76,80,81,82,92,147,152,161,168] which involve time 

segmentation of each utterance and the derivation of representations for the seg-

mented utterance from the original frame representations. Some of these tech-

niques result in normalisation of each word pattern to a fixed number of vectors 

[60,76,80,81,82,92,161], while in other cases the number of vectors derived for a 

word depends on the duration or acoustic characteristics of the word 

(66,69,80,81,82,147,152,161,168]. The segmentation can be linear [60,81,92,1611 

(resulting in equal time segments), or defined by some data-dependent rule so 

that the durations of the segments vary with variations in the rate of change in 

the characteristics of the speech signal [66,69,76,80,81,82,92,147,152,161,1681. 

One class of segmentation techniques consists of the various forms of trace 

segmentation [76,80,81,92,147,152,1611 (as described in section 2.3.7 above). 

The parameters defining a form of trace segmentation include the acoustic 

representation and distance function used to define and measure the.trace in 

acoustic vector space; the choice of fixed segment length (yielding a variable 

number of segments per word - hence the term "variable length trace segmenta-

tion") or of a fixed number of segments per word ("fixed length trace segmenta-

tion"); and the method chosen to derive representations for segments or segment 

boundaries from the original frame vectors. Only the second of these - the 

choice of fixed or variable length trace segmentation - has been systematically 
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investigated in the literature referred to in chapter 2; one of the published com-

parisons (on several vocabularies) [81] shows some advantage in having a fixed 

number of segments per word (especially when a strict global path constraint is 

applied), though other results [80] show a slight disadvantage in this. In experi-

ments with a variable frame rate coding technique which is similar to trace seg-

mentation [82], a fixed number of segments per word was found to be better. 

The other two considerations - acoustic representation and distance measure, 

and segment representation - are discussed below. 

Some of the previously reported results with trace segmentation [76] were 

obtained using a spectral representation (derived from a filter bank, without any 

logarithmic transformation) allowing the use of zero frames at the beginning 

and end of an utterance to represent silence - which could help to counteract 

the effects of unreliable endpoint detection whereby the beginnings and ends of 

utterances might be truncated. Other systems with trace segmentation 

(80,81,92,147,161] have used log filter energies. One set of results, for connected 

word recognition, was obtained using a cepstral representation [1521. The dis-

tance measure used has been the absolute value metric [761 or the Euclidean 

metric (801. (In some cases, the published accounts of the experiments do not 

state whether the same metric was used to measure the trace as to compute dis-

tances in the subsequent matching; but the distance function used for the latter 

purpose was the absolute value metric [81,147,1611 or in one case the squared 

Euclidean metric (1521.) 

Once the trace has been defined (by the choice of acoustic analysis and dis-

tance measure) and segmented, it remains to derive a sequence of acoustic vec-

tors from the segmented utterance. This may be done by some technique which 

yields a vector for each segment, or by one which produces vectors corresponding 

to the segment boundaries. Three different segment representation techniques 
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have been used by previous experimenters. The first [76,80,161] consists of 

linear interpolation of a vector at each segment boundary. This yields S +1 vec-

tors, where the number of segments is S - provided that the initial and final 

vectors, corresponding to the start and end of the trace, are included. The 

second technique [81 82,1471 is selection of the nearest of the original frame vec-

tors to each segment boundary. This yields an approximation to the representa-

tion that would be obtained by interpolation; again the result is S +1 vectors, 

one for each segment boundary. The third technique [152] derives a vector for 

each segment (rather than for each segment boundary), by averaging of all those 

original vectors which occur in that segment of the trace. In this case the 

number of vectors resulting is S. If it is possible for a segment to occur which 

does not include any of the original vectors (because it lies entirely between two 

successive frame vectors on the trace in the acoustic parameter space), then 

some procedure to cope with this will be required - such as an adjustment of the 

segmentation to ensure that every segment contains at least one original vector, 

or the derivation of a vector by some other method where the usual averaging is 

not possible. 

Most of the comparisons of trace segmentation with linear time segmenta-

tion show that the acoustically determined non-linearity introduced by the trace 

segmentation yields an improvement in recognition performance over that 

obtained with linear segmentation [81,92,1611. The exception is in Ney's experi-

ments with connected German digits, where the error rates were similar with 

trace segmentation and with linear downsampling [152]. There are several pos-

sible reasons for this apparent inconsistency: it could be a result of the choice of 

acoustic representation (cepstral coefficients rather than log filter energies), the 

distance function used to measure the trace, the segment representation tech-

nique (averaging instead of interpolation or selection), or some effect of the 
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vocabulary and speakers. 

In the next section of this chapter (section 4.2), some experiments with 

trace segmentation and linear segmentation (with a mel cepstral representation, 

a fixed number of segments per word and the three different segment represen-

tation techniques) are described, and the results are presented and discussed. 

Section 4.3 describes an isolated word recognition system with a multiple-stage 

decision procedure, which combines the computational economy of template 

matching with a small number of segments per word and the recognition accu-

racy possible with larger numbers of segments; and section 4.4 gives the results 

of tests of the performance of this system to determine appropriate values of the 

system parameters. Section 4.5 summarises the results in the chapter. 

4.2: Segmentation and segment representation experiments 

The results reported in the sections below have previously appeared in a 

paper [971 which is reproduced at the end of this thesis. Minor errors in the 

plots of results in that paper have been corrected in figures 4.1 to 4.4 below. 

4.2.1: Speech data base 

Two vocabularies were used in these experiments: the digits (0 to 9, with 0 

pronounced "zero"), and a vocabulary of 20 mostly polysyllabic words (listed in 

table 4.1). (The words in the second vocabulary were chosen from among those 

occurring in the "golden passage" selected for use in the Edinburgh University 

Speech Input Project, and will be referred to below as "the GP vocabulary".) 

Three speakers - two male (speakers 1 and 2) and one female (speaker 3) - 

provided utterances of the words of these two vocabularies. The training data 

for each speaker consisted of five repetitions of the digits (in order from 0 to 9) 
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Table 4.1: words in GP vocabulary 

against framework retaining these 
begin horizontal single those 
evergreen Japanese sometimes trained 
flowering possible spring training 
following remaining susceptible year 

and three repetitions of the GP vocabulary (in alphabetical order). Each speaker 

also spoke each vocabulary five times (in five different random orders) to provide 

test data. The utterances were collected in a recording studiousing a high qual-

ity boom-mounted microphone, and recorded digitally, and were subsequently 

transferred to analogue tape, Iowpass filtered at 5kHz and digitised at a 10kHz 

sampling rate. The detection of word endpoints was accomplished by visual 

inspection of waveform displays. 

The endpoint-detected words were analysed to obtain eight cepstral 

coefficients, based on a simulated filterbank with bandpass filters on a mel fre-

quency scale (23], for each frame of speech, where the interval between succes-

sive frames was 12.8ms. The number of frames per word ranged from 16 to 57 

(with average 33.8) in the case of the digits, and from 23 to 75 (average 45.5) for 

the GP words. The range of durational variation for utterances of any one word 

was considerably narrower, however. For the three speakers, the average 

lengths of the digits were 30.8, 32.2 and 38.4 frames, and the average word 

lengths for the GP vocabulary were 40.4, 46.7 and 49.5 frames, respectively. 

4.2.2: Segmentation and recognition of words 

After the processing described above, each word was represented by a 

sequence of vectors of eight floating point numbers, each vector consisting of the 

first eight mel cepstral coefficients derived from one frame of speech. For recog- 

nition without segmentation, these sequences of vectors were used directly in the 
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DTW matching process. For the experiments with segmentation, they were 

taken as the input to the segmentation procedure, which generated a sequence of 

vectors for each word, to be used in the DTW matching. 

A Fortran program was composed to perform segmentation (optionally) and 

recognition. Options available in the segmentation stage included the choice of 

fixed segment length or of a fixed number of segments per word; the absolute 

value or Euclidean metric for measuring the trace; and the interpolation, selec-

tion or averaging form of segment representation. There was also a linear time 

segmentation option, with a choice of fixed segment duration or of a fixed 

number of segments per word, again with the three possible forms of segment 

representation. 

The recognition stage used Itakura's form of local path constraints and 

weighting scheme (c) (as described in sections 2.3.3 and 2.3.4), with the input 

word on the horizontal axis. The frame distance function used was the absolute 

value metric. The global constraints could take the form of a parallelogram 

(with sides of slope 0.5 and 2.0 - corresponding to the minimum and maximum 

gradients allowed by the local path constraints), a band of some specified width 

centred on the line of slope 1.0, or a band centred on the linear path from the 

initial to the final point (as described in section 2.3.6); the second and third of 

these options are identical if the input word and template are normalised to the 

same length. No endpoint relaxation was employed. 

In the averaging form of segment representation, when a segment of the 

trace occurred which did not contain any of the original frame vectors, the seg-

ment was extended as far as the next frame vector, which was then used as the 

representation for that segment; each subsequent segment was then defined, as 

usual, by measuring the previously determined distance ( - - in the notation of 
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section 2.3.7) along the trace from the end of the previous segment. Thus it was 

possible, with the averaging option, for the number of segments, and hence of 

vectors after segmentation, to be less than the specified number S. This was 

particularly liable to occur where S. approached or exceeded the number of 

frames in the word. 

4.2.3: Recognition performance measures 

In the experimental evaluation of segmentation and segment representation 

techniques as preprocessing for DTW-based word recognition, three measures of 

word recognition performance were used. 

The first measure was the rate of correct recognition, expressed as a percen-

tage over all the trials for a given set of segmentation conditions. 

Secondly, a "recognition quality measure", R, was defined, as follows. For 

one recognition of one utterance, let r be the ratio of the smallest word distance 

obtained for an incorrect template to the word distance obtained for the correct 

template. (If r >1, the correct template is the nearest template to the test word, 

and so the word is recognised correctly. If r < 1, the best-matching incorrect 

template is closer than the correct one, and so the word is misrecognised.) Then, 

for a given set of word recognitions, 

R - 	(mean value of r) - 1 
standard deviation of values of r (4.1) 

R is a measure of the ability of the recognition system, with the segmentation 

used, to discriminate correct and incorrect templates. If the distribution of 

values of r is assumed to be of a similar shape for each set of segmentation con-

ditions, and to differ only in its mean and standard deviation, then the value of 

R is monotonically related to the expected recognition accuracy, which is the 
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probability that r > 1. The advantage of R over the simple recognition rate as a 

measure of performance is that it makes fuller use of the word distance informa-

tion derived from a set of experiments, and so can provide a reliable measure-

ment from a relatively small number of recognition trials. Measuring perfor-

mance by the recognition rate is equivalent to quantising r to only two values, 

corresponding to cases where r > 1 (correct recognition) and where r < 1 

(incorrect recognition). The disadvantages of using R values alone to measure 

performance are that R does not give an explicit estimate of recognition accu-

racy (since the relation between R and the recognition accuracy depends on the 

shape of the distribution of r), and that the monotonic relation between R and 

expected accuracy breaks down if the shape of the distribution of r is not con-

stant across different segmentation conditions. It should be noted, also, that the 

relation between R and the expected recognition accuracy is not linear (the 

recognition accuracy is a concave function of R, assuming a consistently-shaped 

unimodal distribution for r, as long as the modal value of r is greater than 1), 

and so the recognition accuracy corresponding to the average value of .R (taken 

from the individual R values for a population of template sets, or of speakers) 

will not usually be equal to the average recognition performance for the same 

population: averaging values of R and reading off the corresponding expected 

recognition accuracy will tend to yield an optimistic estimate. 

The third, measure adopted was based on the idea of setting a threshold on 

the ratio of the word distances for the best two templates (i.e. those closest to the 

current test word), so as to give a "rejection" response instead of a recognition in 

cases where the decision between these two recognition candidates was uncer-

tain ('as indicated by a ratio too close to 1.0). The performance measure calcu-

lated was the rejection rate corresponding to the minimum threshold value 

required to reduce the rate of wrong recognitions to 2%. This measure has the 
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disadvantage that it is sensitive to the value of one particular word distance 

ratio in a set of recognitions, namely the ratio (for an incorrect recognition) 

which determines the setting of the threshold. However, it complements the - 

recognition-rate measure by giving an indication of how well the recogniser 

would perform with a rejection option implemented. A more sophisticated 

rejection-rate measure could be constructed by accumulating the rejection rates 

corresponding to several different rates of incorrect recognition, instead of using 

only that corresponding to 2%; however, this development was not pursued in 

these experiments. 

4.2.4: Preliminary experiments and setting of fixed parameters 

Informal experiments were carried out on subsets of the data base to deter-

mine the effects of different settings of some of the options described in section 

4.2.2. Appropriate settings of these options were thus determined, and these 

were used throughout the main series of experiments. 

No advantage was detected in using the Euclidean metric, rather than the 

simpler absolute value metric, to measure the trace. Accordingly, the absolute 

value metric was chosen for subsequent use. Also, an analysis of the distances 

obtained for correct templates and for best-scoring incorrect templates revealed 

no advantage in using the squared Euclidean metric instead of the absolute 

value metric as the frame distance function in the DTW matching procedure, 

and so, here also, the absolute value metric was adopted. 

It was found that no major reduction in computation could be achieved by 

applying global path constraints, without diminishing the recognition accuracy 

from that attained with the full parallelogram in the input-reference plane. The 

parallelogram constraints were therefore adopted. 
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One other parameter choice adopted for the main series of experiments was 

the specification of a fixed number of segments per word, rather than a fixed seg-

ment length. 

4.2.5: Experiments 

In the main series of experiments with segmentation and segment represen-

tation techniques, recognition performance was evaluated on the whole data 

base (with the two vocabularies treated separately) for each set of segmentation 

conditions (with certain exceptions as noted below). The segmentation condi-

tions were defined by the choice of trace segmentation or linear time segmenta-

tion; the number of segments per word (S); and the choice of segment represen-

tation technique (interpolation, selection or averaging). The performance with 

no segmentation was also evaluated. All the experiments used speaker-specific 

templates: no cross-speaker recognition results were obtained. 

For each set of segmentation conditions, and for each speaker, recognition 

experiments were carried out as follows. 

In the case of the digits, each of the five training repetitions of the vocabu-

lary in turn was used as a template set for recognition of the five test repeti-

tions. The value of R was computed for each set of 50 recognitions with one 

template set, and the values of R and rates of correct recognition for the five 

template sets were averaged. The rejection threshold for a 2% misrecognition 

rate was determined by examination of the full set of 250 ratios of second-best to 

best template distances (pooled across the five template sets), and the rejection 

rate was computed using this threshold value. 

In the case of the GP vocabulary, a similar procedure was followed, but in 

this case there were only three sets of templates (from the three training 
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repetitions) per speaker, and the test data consisted of 100 words (five repeti-

tions of the 20 words in the vocabulary). Thus each R value was computed from 

100 recognitions, and the rejection threshold and rate were determined from 300 

recognitions. 

In the experiments with the digits, the number of segments per word, S, 

was varied from 1 to 30 in the case with averaging, and from 6 to 31 in the 

cases with interpolation and selection. For the GP words, S was varied from 1 

to 45 (linear segmentation) or 46 (trace segmentation) with averaging, and from 

9 to 45 with interpolation or selection. (It was found that the performance with 

interpolation or selection was much poorer than with averaging when S was 

small, and so full experiments with small values of S were performed only with 

averaging.) 

Because the recognition performance with selection was found to be con-

sistently poorer than with interpolation, when evaluated on the digits and on 

one speaker's utterances of the GP vocabulary, the selection technique was not 

applied to the utterances of the GP words by the remaining two speakers. 

4.2.6: Results 

The results obtained with the various segmentation and segment represen-

tation techniques are presented in figures 4.1-4.4. 

Figures 4.1 and 4.2 show the results for recognition of digits using linear 

time segmentation and trace segmentation respectively. For each set of segmen-

tation conditions, the recognition error rate and the value of the recognition 

quality measure R (each computed as described above and then averaged over 

the three speakers) are plotted against the average number of vectors per word. 

(The rejection rate for 2% error was found to be subject to a greater degree of 
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Figure 4.1: recognition results for digits using linear time segmentation 

Figure 4.2: recognition results for digits using trace segmentation 
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irregular variation than either of the other two measures, and is therefore not 

plotted.) The results with averaging, interpolation and selection are joined by 

solid, broken and dotted lines respectively. The results without segmentation 

are plotted (against the average number of frames per word) at the right of each 

figure, and are also marked by horizontal lines to facilitate comparison of perfor-

mance with and without segmentation. 

It will be noticed that the points corresponding to the averaging technique 

for segment representation are not all at integer numbers of vectors per word. 

This is because the segmentation adjustment adopted (as described in section 

4.2.2) allows the number of segments in a word to be reduced in cases where 

some segment contains no frame vector. With this adjustment, the number of 

vectors per word after segmentation need not be the same for all words, for a 

given value of S, but will vary according to the length of each word and (in the 

case of trace segmentation) according to the positions of the frame vectors along 

the trace. Thus the average number of vectors per word is liable to be less than 

S, and will not in general be an integer, especially when S approaches or 

exceeds the number of frames in the shortest word. 

Figures 4.3 and 4.4 show the corresponding results for the GP vocabulary, 

with the averaging and interpolation techniques only. 

4.2.7: Discussion of results 

4.2.7.1: General comments 

The overall average level of accuracy attained was rather poor, especially 

for the digits, where the average recognition rate without segmentation was only 

85.6%. (The corresponding recognition rate for the GP vocabulary was 87.2%; 

but the performance on this vocabulary might have been expected to be poorer 
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Figure 4.3: recognition results for GP vocabulary 
using linear time segmentation 

-__ 

_ I __ 

MENEM 
5 	10 	15 	20 	25 	30 	35 	40 	45.5 (NO SEGMENTATION) 

NUMBER OF VECTORS PER WORD 

z 

0.1 

0.1 

01 

, 2 
w 

2( 

1 
0 

w 

C 

-- INTERPOLATION 

- AVERAGING 

Figure 4.4: recognition results for GP vocabulary 
using trace segmentation 

z 

I- - 

LU 

LU 

0 

LU 

INTERPOLATION 

AVERAGING 

5 	10 	15 	20 	25 	30 	35 
	

40 	45.5 (NO SEGMENTATION) 
NUMBER OF VECTORS PER WORD 



117- 

because of the larger vocabulary size and the occurrence of confusable word 

pairs such as {remaining,retaining} and {flowering,following}, whereas the digits 

are generally found to be a fairly easy vocabulary for recognition.) 

A more detailed examination of the results for individual speakers and sets. 

of templates reveals considerable variations from one speaker to another, and 

also, in some cases, from one template set to another for a given speaker. The 

average recognition rates for the three speakers were 93.2%, 75.2% and 88.4% 

for the digits, and 85.3%, 87.7% and 88.7% respectively for the GP vocabulary. 

The recognition accuracies for the individual template sets are shown in table 

4.2. (All these results are for the case without segmentation. The variability 

was similar in cases with segmentation.) 

The poor results obtained using some sets of templates, such as the first 

four sets of digit templates for speaker 2, suggest that a major reason for the 

overall low recognition accuracy is that certain templates did not well represent 

the pronunciations of the words occurring in the test input - perhaps because of 

inconsistent pronunciations by the speakers, inclusion of non-speech sounds, or 

inaccurate placing of word endpoints. (The endpoint location was done entirely 

on the basis of visual inspection of waveform displays, without any auditory 

checking, which could lead to the omission of low-amplitude fricative sounds at 

Table 4.2: recognition accuracies for individual template sets 

Speaker 
Recognition accuracies for template sets (%) 

Digits 	 I 	GP words 
1(m) 92 	96 	90 	96 	92 I 	90 	79 	87 
2 (m) 72 	78 	66 	70 	90 I 	87 	90 	86 
3 U) 88 	90 	88 	90 	86 82 	91 	90 
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the beginnings and ends of words.) This explanation is supported by the obser-

vation that the recognition errors occurring for a given template set often consist 

mainly of repeated occurrences of a small set of misrecognitions (e.g. 5-9, 7-2 

and 8-3 in the confusion matrix, shown in table 4.3, for the second digit template 

set from speaker 2), and the distribution of such word confusions occurring 

varies among the different template sets for one speaker although the input for 

recognition is kept the same. 

However, the aim of these experiments was to assess the relative perfor-

mance of different forms of segmentation and segment representation, rather 

than to attain an optimal level of performance as expressed in absolute recogni-

tion scores. The presence of some bad templates introduces statistical "noise" 

into the results, but does not invalidate the comparison of techniques, especially 

as the same phenomena of variable pronunciation, non-speech sounds and mac-

curate endpoint detection are liable to occur in practical applications. 

Table 4.3: confusion matrix for a template set including some bad templates 
(speaker 2, digits, template set 2) 

Word spoken 0 1 2 
Word recognised 
3 	4 	5 	6 7 8 9 

0 5 0 0 0 	0 	0 	0 0 00 
1 0 5 0 0 	0 	0 	0 0 0 0 
2 0 0 5 0 	0 	0 	0 0 0 0 
3 0 0 0 5 	0 	0 	0 0 0 0 
4 0 0 0 0 	5 	0 	0 0 0 0 
5 0 0 0 0 	0 	3 	0 0 0 2 
6 0 0 0 0 	0 	0 	5 0 0 0 
7 0 0 4 0 	0 	0 	0 1 0 0 
8 0 0 0 5 	0 	0 	0 0 0 0 
9 0 0 0 0 	0 	0 	0 0 0 5 
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Another general observation on the results is that the performance obtained 

with segmentation, with interpolation and a number of segments per word which 

approaches the average word duration in frames, is usually better than the per-

formance with no segmentation. This can be seen most clearly from the plots of 

R in figures 4.1-4.4. Two possible factors contributing to this are the beneficial 

effect of word length normalisation (observed by some previous experimenters 

[60,811, though not by others [801) and the smoothing effect which occurs with 

interpolation (as considered in section 4.2.7.3 below). 

As the number of vectors per word, obtained by segmentation, is reduced, 

the recognition accuracy attainable (with appropriate choices of segmentation 

and segment representation techniques) declines only slowly, until the number 

of vectors reaches about one third of the average number of frames per word. 

This is true particularly in the case of digit recognition, where the temporal 

structures of the words are simpler than in the other vocabulary: accuracies 

similar to that without segmentation can be obtained with as few as 9 vectors 

per word, as seen in figure 4.1. Even with only 2 vectors per word, derived by 

averaging, accuracies of 80.8% (digits, linear time segmentation) and 67.0% (GP 

words, trace segmentation) were obtained. 

4.2.7.2: Comparison of trace segmentation and linear time segmentation 

In general, little difference was observed between the performance figures 

for trace segmentation and for linear time segmentation. This is in agreement 

with the results of Ney [152], though not with those of other researchers 

[81,92,161] who were using acoustic representations other than cepstral 

coefficients. 
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There was, however, a tendency for the results on the digits to be better 

with linear time segmentation, and for the results on the GP words to be better 

with trace segmentation. These differences between trace segmentation and 

linear time segmentation results were not observed uniformly across all segment 

representation techniques and numbers of segments per word. 

In the case of the digits, the difference was largest and most statistically 

significant with the averaging method of segment representation and a small 

number (up to about 10) of segments per word: the average recognition accuracy 

for 4 to 7 segments per word was 5.87% higher with linear time segmentation 

than with trace segmentation, and the standard error of this figure, estimated 

from the variation across speakers, was 1.52 - which yields the conclusion that 

linear time segmentation is better than trace segmentation, for this vocabulary 

and these numbers of segments, with confidence 0.97. (Details of the statistical 

analysis applied - which incorporates a one-tailed t test - can be found in the 

appendix.) The corresponding average difference and standard error estimate for 

8 to 12 segments per word were 2.19% and 1.09 respectively, corresponding to 

confidence 0.91. Over all numbers of segments per word, the average difference 

was 2.05% (standard error 1.33, confidence 0.87) with averaging, and 0.85% 

(1.09, 0.74) with interpolation. 

In the case of the GP vocabulary, the difference between trace segmentation 

and linear time segmentation was less consistent than for the digits, but a sta-

tistically significant difference was found with small numbers (11-15) of seg-

ments per word and the interpolation technique: here the accuracy with trace 

segmentation was 4.56% higher, and the standard error estimate for this 

difference was 0.33, yielding a confidence level of 0.997. The difference between 

trace segmentation and linear time segmentation results over larger numbers of 

segments per word (24-43) was less significant: over this range the average 



difference, again with interpolation, was 0.60%, with standard error estimated 

at 0.69, and hence confidence 0.76. The differences, standard error estimates 

and confidences over all numbers of segments were 1.36% (0.63, 0.92) with inter-

polation and 0.20% (0.34, 0.69) with averaging. With averaging, as these figures 

indicate, the difference was less consistent: in some cases the results with linear 

time segmentation were better than those with trace segmentation. 

A possible reason why trace segmentation is better (relative to linear time 

segmentation) for recognition of the GP vocabulary than for digit recognition is 

that this vocabulary contains more disyllabic and polysyllabic words, in which 

the range of non-linear timescale variability is likely to be greater than for 

monosyllabic words, and so the non-linear adjustment of the timescale (in accor-

dance with the acoustic structure of the word) provided by trace segmentation 

will tend to be more helpful. This does not, however, account for the fact that 

the performance on the digits is actually poorer with trace segmentation than 

with linear time segmentation. 

A possible explanation for the results with the digits is that trace segmen-

tation tends to emphasise the transitional or varying portions of speech rather 

than the steady portions: if, because of features of the vocabulary or of the 

speakers, the steady portions, such as vowels, are the main recognition cues, or 

if non-speech sounds (such as breath noise) are included and these have a high 

degree of frame-to-frame variability, the emphasis on the more rapidly varying 

portions may worsen the recognition. If this phenomenon were due to speaker 

characteristics or non-speech sounds, it should occur both with the digits and 

with the GP words, but the effect might be cancelled out in the case of the latter 

by the timescale variability compensation referred to above. 
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These explanations of the results remain conjectural, in view of the degree 

of variability occurring among speakers and among segment numbers and seg-

ment representation techniques, and the small number of speakers used in the 

experiments. However, it does appear that trace segmentation is not greatly 

superior to linear time segmentation when applied to a mel cepstral representa-

tion of speech, at least for recognition of the digits vocabulary; and that its use-

fulness depends on vocabulary characteristics. 

4.2.7.3: Comparison of segment representation techniques 

The comparative results obtained for the three segment representation tech-

niques are more consistent, and easier to account for, than those for the two seg-

mentation techniques examined above. 

The averaging of the vectors within each segment gives better recognition 

results than either interpolation or selection of vectors at segment boundaries 

when the number of segments per word is small. This is what might be 

expected, since averaging makes full use of all the original vectors, whereas 

interpolation uses only the two neighbouring vectors at each segment boundary, 

and selection uses only one of these. With the interpolation or selection tech-

nique, when a segment contains three or more vectors - which occurs frequently 

when the number of segments per word is small - the intermediate vectors in 

the segment are ignored once the trace (or for linear time segmentation the 

timescale) has been defined and measured. 

When the number of segments per word approaches the number of frames, 

interpolation becomes better than averaging. This may be partly because inter-

polation results in a more precise representation of the progress along the trace 

(in trace segmentation) or of the timescale: the interpolation operation is a 
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weighted averaging of two vectors, in which the weights depend on their relative 

distances from the segment boundary, whereas in the averaging technique all 

the vectors in a segment are assigned equal weight regardless of their precise 

positions relative to the segment's boundaries. But also, when the number of 

segments exceeds.half the number of frames, interpolation results in more 

effective smoothing of the original vector sequence than averaging: each interpo-

lated vector is the weighted average of two original vectors, whereas, because 

there are some segments which contain only one vector, with the averaging tech-

nique there will be points at which no smoothing of neighbouring vectors occurs. 

A feature of the averaging technique used in these experiments is the 

adjustment of the segment boundaries when a segment contains none of the ori-

ginal vectors. This may not be the optimal way to handle such cases: some other 

technique, such as interpolating a vector at the centre of the segment, might be 

better. This too affects mainly the results with large numbers of segments per 

word. 

The performance with selection is consistently slightly poorer than with 

interpolation. (The mean differences, over all number of segments per word, for 

the digits are 1.21%, with linear time segmentation, and 2.02%, with trace seg-

mentation; the corresponding estimated standard errors are 0.44 and 0.93 

respectively, giving confidences 0.94 and 0.92. For the GP words, the mean 

differences for the one speaker on whose data the selection technique was 

evaluated are 2.51% for linear time segmentation and 3.25% for trace segmenta-

tion.) This also is what might be expected: the position, on the trace or on the 

timescale, of the nearest original vector, adopted in the selection technique, is 

only a rough approximation to the position of the segment boundary at which a 

vector would be interpolated; and the smoothing effect of the weighted averaging 

used in interpolation is not obtained by selection, leaving a more sensitive 
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dependence on individual vectors in the original sequence, which are subject to 

unpredictable variations. 

4.3: Design of a multiple-stage decision procedure 

4.3.1: General features of the design 

The observations as to the performance attainable with a small number of 

vectors per word (as reported at the end of section 4.2.7.1 above) led to the idea 

of using segmentation in a multiple-stage system, with an initial coarse and 

computationally simple comparison using a small number of segments per word, 

to eliminate the most unlikely candidate templates, followed by successively 

more detailed comparisons using larger number of segments per word to make 

the choice among the remaining candidates. It was envisaged [97] that a 

slightly higher recognition accuracy might be attained by such a system than by 

a single-stage recognition system using DTW without segmentation, because the 

final stage of the multiple-stage system could incorporate segmentation with a 

large number of segments per word, which had been observed to provide an 

improvement in performance over the no-segmentation condition. 

Hierarchical decision procedures incorporating similar strategies had been 

implemented previously by various researchers, as described in section 3.3. 

However, the system described here based on segmentation has certain advan-

tages of flexibility and extensibility over some of the hierarchical systems 

developed elsewhere. 

Most hierarchical decision procedures for isolated word recognition have 

just two stages - a pre-matching stage to eliminate unlikely recognition candi-

dates, and a main comparison stage to make the decision among the remaining 

candidates. The system described here, however, can operate with any number 
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of stages, allowing as many levels of pattern discrimination as may be required 

between the coarsest (and quickest) and the finest (and most time-consuming). 

In the present implementation, up. to four stages can be accommodated, but this 

maximum could easily be increased. 

Each stage of the decision procedure uses the same basic techniques - seg-

mentation of the input and templates, and DTW matching. It is only the param-

eters such as the number of segments per word and the choice of segment 

representation technique which change from one stage to the next. Thus the 

same software modules can be applied at all the stages, with only changes in the 

arguments that are supplied to them. (In a hardware implementation, similarly, 

the same specialised processor or processors might be used at all the stages, pro-

vided that the processor architecture allowed rapid matching of many successive 

templates when the number of vectors per word was small.) 

Because the same modules are used at all stages, the system configuration 

is easily programmable: both the number of stages and the parameter values 

within each stage can be redefined each time the system is used, to give an 

appropriate tradeoff between speed and accuracy of recognition for any vocabu-

lary and application. The parameters at each stage include not only the seg-

mentation conditions and details of the DTW algorithm, but also the thresholds 

applied to the ratios of word distances for rejection of the input and for elimina-

tion of poorly-matching templates. 

As mentioned in section 3.3, the decision rule for elimination of templates 

at each stage is based on the ratios of the distances obtained to the distance for 

the best-matching template. This allows the number of templates retained at 

the next stage to vary according to the number of plausible candidates. Thus 

the same decision threshold settings can be retained for vocabularies of varying 

size and difficulty, without resulting in unnecessary amounts of computation for 
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small and easy vocabularies, or in loss of accuracy on larger and more difficult 

ones. Also, for any given vocabulary, the system will adjust the amount of pro-

cessing appropriately for recognition of the more confusable and less confusable 

words within the vocabulary. As many or as few templates will be retained at 

the later stages as the difficulty of each recognition requires. 

4.3.2: System and implementation details 

The structure of the multiple-stage recognition system (programmed in C 

on a Masscomp MC550 computer) is shown in figure 4.5. The number of stages 

is programmable and can range from 1 to 4. The structure of each stage is the 

same, as shown for the first and second stages. 

Figure 4.5: multiple-stage recognition system 
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At the start of a series of recognition trials, the previously stored templates 

are loaded in, and segmented versions of them are derived for use in each word 

comparison stage. Normally the segmentation at the first stage uses a small 

value of S so as to generate a small number of vectors per word; the compressed 

versions of the templates resulting from this segmentation are kept for use in 

the coarse initial (first-stage) comparison. The segmentation at the second stage 

has a larger value of S, to produce less severely compressed forms of the tem-

plates which will facilitate a finer and more computationally complex com-

parison. The segmentations at later stages, if these are in use, have successively 

larger S values. It is also possible for one stage to have no segmentation, in 

which case the templates are kept in their original forms for use at that stage. 

Once the templates have been segmented, the input patterns, representing 

the utterances to be recognised, are processed sequentially. For each input 

utterance, the processing is asfollows. 

The first-stage segmentation is applied to the input to generate a reduced 

version for use in the first-stage comparison. (The original unsegmented input 

pattern is kept to be used in deriving further versions for matching at the later 

stages if required.) This segmented version of the input is then compared by the 

DTW algorithm with each of the similarly segmented templates already derived. 

This comparison results in a set of word distances, one for each template. These 

distances are used in the first-stage template elimination procedure, which has 

the structure shown in figure 4.6. The minimal distance De  is identified, where 

DU  is the distance for template v and u is the index of the template best match-

ing the input at this stage. A threshold t1  is set on the ratios of the distances to 

D*: if 
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Figure 4.6: template elimination procedure after the first stage of comparison 

D0  
> t1, 	 (4.2) De  

template u is eliminated, and otherwise it is retained. A threshold r1  (which 

should be lower than t1) may also be imposed, to allow rejection of the input 

utterance if the second-best recognition candidate yields a distance too similar to 

the minimal distance DL,.: the input is rejected if 

D0  
< r 	 (4.3) 

LI 0. 

for some template index u such that template v represents a different word of 

the vocabulary from template 0*. (Some care must be taken in stating this cri-

terion: if several templates are in use for each word of the vocabulary, there will 

be template indices u other than u  which correspond to templates for the same 

word, and the distances D. for such templates can be close (or even identical) to 
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D without making the identification of the word unreliable.) Normally, how-

ever, r1  is set to 1.0, so that a rejection decision cannot be taken at the first 

stage. 

If all but one (the one corresponding to the template index v*)  of the words 

in the vocabulary have been eliminated from consideration by the first-stage 

template elimination procedure, the recognition decision is taken at this stage, 

without recourse to the more detailed comparison available in the second and 

subsequent stages. Otherwise (and assuming that a rejection decision has not 

been reached), the second-stage versions of all the templates not eliminated are 

used in the second stage of word comparison. 

The second stage is similar to the first: a second segmented version of the 

input pattern is derived, and this is compared by DTW with the second-stage 

version of each of the templates not eliminated from consideration at the first 

stage. If only two stages are in use, the recognition (or rejection) decision is 

taken on the basis of the distances obtained at the second stage. Otherwise, a 

template elimination procedure, similar to that at the first stage, but with thres-

hold values t2 and r2 , is applied, using the second-stage distances. Again, a 

recognition decision, or possibly a rejection decision, may be reached, in which 

case the third stage and (if it exists) the fourth stage are not required. Other-

wise, the third stage is invoked, to make a more detailed comparison of the 

input with all the templates not eliminated at the first or second stage. 

This process of progressive comparison and template elimination continues 

until a recognition (or rejection) decision is made, either by elimination of all 

candidates but one (or fulfilment of the rejection condition) at some non-final 

stage or else by the nearest neighbour criterion (or, again, fulfilment of the 

rejection condition) at the final stage. (The rejection criterion at the final stage 

takes the same form as the criterion for rejection at a non-final stage: this is the 
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same as (4.3) except for the threshold value r1  which becomes r at stage n.) 

The parameters to be defined for each stage of the procedure fall into three 

groups: segmentation parameters, DTW algorithm settings and decision thres-

holds. The segmentation parameters are the choice of segmentation technique 

(trace segmentation, linear time segmentation or none) and (except for the case 

with no segmentation) the value of S and the segment representation technique. 

The DTW algorithm parameters include the global constraints (with the option 

of restricting paths to a band of some specified width in the input-reference 

plane), the presence or absence of endpoint adjustment (described below), the 

choice of the absolute value metric or squared Euclidean metric as the frame dis-

tance function, and the parameters of an accumulated distance threshold func-

tion 112,541 to prevent full matching of templates yielding large distances. Two 

decision thresholds are defined for each non-final stage: at stage n these are t, 1  

(the template elimination threshold) and r (the rejection threshold). At the 

final stage, only a rejection threshold (rn ) is defined. 

The endpoint adjustment technique included as an option is a variation on 

the technique of Haltsonen [91] using initial and final silence frames. The 

difference between the silence frame technique and that adopted here is that the 

latter has, in place of a vector representing silence or background noise, a one-

frame pseudotemplate, as used in some connected word recognition algorithms 

(148,162]. When an input vector is matched to the pseudotemplate, a fixed dis-

tance is generated, regardless of the acoustic parameter values composing the 

input vector. The initial and final pseudotemplates are intended to match any 

intervals at the beginning and end of the input which do not correspond well to 

the beginning and end of the template. Thus this technique can allow correct 

alignment of input with the correct-word template when non-speech intervals 

have been erroneously included at the beginning and end of the input word 
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during the endpoint detection. This endpoint adjustment option was introduced 

to alleviate the effect of unreliable endpoint detection, and was not used in later 

experiments after the endpoint detection had been improved. It can compensate 

for the inclusion of non-speech in the input, or the omission of initial and final 

parts of words in the templates, but not for omissions from the input or the 

inclusion of extraneous sounds in the templates: thus it is best suited for use in 

conjunction with an endpoint detection technique (applied to the input utter-

ances to be recognised) which allows additional regions to be included beyond 

the probable word endpoints. 

The other DTW parameters have been kept fixed during the experiments 

conducted with the system. On the basis of the results of preliminary experi-

ments reported in section 4.2.4, no global constraints were adopted to restrict 

the locus for time registration paths within the parallelogram defined by the 

maximum and minimum slopes, and the absolute value metric was used in 

preference to the more computationally expensive squared Euclidean metric. 

The accumulated distance thresholds were useful for reducing the computation 

during one-stage experiments by allowing early abandonment of poorly-

matching templates, but were judged to be unnecessary in multiple-stage opera-

tion, as a rather similar effect (though with a relative distance criterion instead 

of an absolute one) could be attained by the rejection of templates at the early 

stages, so that detailed matching would not even begin for unlikely candidate 

templates. Therefore the thresholds were set to fairly large values which would 

allow any plausible candidate to be matched in full. 

The next section of this chapter describes experiments conducted with the 

data base already described, and with further data from a different set of speak-

era, to investigate the tradeoffs between speed and accuracy of recognition 

attainable with the multiple-stage system. Recognition accuracies and 
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computation times are given for various choices of the number of stages in the 

recognition procedure, the segmentation parameters at each stage and the deci-

sion threshold values. 

4.4: Multiple-stage recognition experiments 

4.4.1: Aims and design of experiments 

If optimal performance is to be obtained from a multiple-stage recognition 

system as described in the preceding section, appropriate settings of a number of 

system parameters must be found. These include the number of stages to be 

used; the segmentation, number of segments and segment representation at each 

stage; and the threshold for template elimination after each non-final stage. 

Experiments were devised to explore the recognition accuracies and computa-

tional requirements resulting from various values of these parameters. 

Several combinations of three or four sets of segmentation parameters (one 

set for each stage) were defined. In each case, a small number of segments per 

word was adopted at the first stage, and progressively larger numbers were used 

at later stages. The segment representation technique for each stage was deter-

mined on the basis of the findings reported in section 4.2.7.3 above: thus averag-

ing was adopted at the first stage, and interpolation at the final stage, and 

averaging or interpolation was applied at each intermediate stage. Various 

combinations of linear segmentation and trace segmentation were employed. 

For each of the combinations of segmentation parameters formed in this 

way, the recognition error rate and the average computation time per input 

word were found for each of a range of sets of template elimination threshold 

values. The error rate was plotted against the computation time for each set of 

threshold values, to give an indication of the accuracy-speed tradeoffs attainable 
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with the specified combination of segmentation parameters. The reduced cases 

in which not all the stages were used were plotted as extreme points: these cases 

- correspond to the setting of the appropriate template elimination threshold 

values to 1.0 (to pass no templates on, so that only the earlier stages are used) 

or (to pass all templates on to the later stages, effectively eliminating the pre-

vious stage). (However, where a threshold value was set to co, the computation 

time was obtained by actually omitting the preceding stage, so as not to require 

the templates to be processed at that stage when they were in any case going to 

be passed on for matching at the following stage.) 

Some of the experiments were conducted using a simulation mode, in which 

the word distances at each stage, for all combinations of input and reference 

utterances, were computed once and stored, and then these precomputed dis-

tances were used repeatedly in the experiments with different elimination thres-

hold values. For each set of threshold values, and for each stage of the recogni-

tion procedure, the number of input utterances requiring use of that stage and 

the total number of word matching operations executed were recorded. These 

counts were multiplied by estimates of the times required per input word (for 

segmentation and associated overheads) and per matching operation, derived 

from previously conducted timing experiments, to obtain overall times per recog-

nition. 

4.4.2: Details of multiple-stage experiments 

Multiple-stage recognition and accuracy experiments, using the procedures 

outlined in section 4.4.1, were conducted on three data bases: (1) the GP words 

and digits from the data base already described, produced by three speakers and 

represented by mel cepstral coefficients; (2) utterances of the digits by four 
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speakers,  represented by linear predictive cepstral coefficients; and (3) words 

from a 50-word vocabulary spoken by one male speaker, also represented by 

linear predictive cepstral coefficients. 

The details of the second data base were as follows. There were four speak-

erg, two male and two female (of whom one of the males was the same as 

speaker 1 in the previous data base). For each of these speakers, two sets of 

templates were created, and 30 repetitions of the 10 digits were collected during 

several recognition sessions on separate occasions (usually 50 words per session, 

comprising five repetitions of each digit) using the interactive recognition system 

described in chapter 5 below. (More details of the procedures employed in the 

data collection may be found in chapter 6.) One of the two template sets for each 

speaker consisted of single-token templates (as in the segmentation experiments 

reported above); the other consisted of templates constructed by a robust two-

token averaging procedure [30,3 1,255]. The acoustic representation of each word 

consisted of 12 cepstral coefficients per frame, derived by 24th-order LPC 

analysis. The frame shift was lOms, and the frame length 25.6ms; a Hamming 

window was applied. (The order of the analysis was chosen to match the 

bandwidth of the input signal, which was lowpass filtered at 8kHz and sampled 

at 20kHz.) 

The vocabulary for the third data base consisted of numbers up to "million", 

days of the week and month names, as listed in table 4.4. Six repetitions of the 

vocabulary (300 utterances in all) were collected from a single speaker (the same 

as speaker 1 in the previous speaker sets) and were recognised using each of two 

sets of templates. Again, one set consisted of single-token templates, and the 

other of two-token averaged templates. The data collection procedure and acous-

tic analysis were the same as for data base 2. 



- 135- 

Table 4.4: 50-word vocabulary 

zero ten - 	 twenty million March 
one eleven thirty Sunday April 
two twelve forty Monday May 
three thirteen fifty Tuesday June 
four fourteen sixty Wednesday July 
five fifteen seventy Thursday August 
six sixteen eighty Friday September 
seven seventeen ninety Saturday October 
eight eighteen hundred January November 
nine nineteen thousand February December 

For each of the three data bases, error rates and times were obtained as 

described above for each speaker and template set, and the results for each com-

bination of segmentation parameters and elimination thresholds were averaged 

across the speakers and template sets to obtain overall results. Separate aver-

aged results for the single-token template sets and for the two-token template 

sets were also computed in the case of the second data base. 

The combinations of segmentation parameters considered in each case are 

listed in table 4.5. 

4.4.3: Results 

The results of the multiple-stage recognition experiments were plotted for 

each of the combinations of segmentation parameters as listed in table 4.5. 

Plots of error rate against time per recognition for selected cases are reproduced 

here as figures 4.7-4.20 (as indicated in the final column of table 4.5). (The 

results for the other combinations of segmentations were qualitatively similar.) 

Figures 4.7-4.15 show results for the first data base - for the GP vocabu-

lary with a variety of combinations of segmentation parameters (figures 4.7- 
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Table 4.5: combinations of segmentation parameters 
(given as "segmentation, segments per word, segment representation") 

Segmentation: T - trace segmentation; L- linear time segmentation 
Representation: a - averaging; i - interpolation 

Data base Segmentation parameters Figure 
(vocabulary) stage 1 stage 2 	stage 3 	stage 4 numbers 
1(GP) L 2a T 5a T20a - - 

L 2 a T 	5 T30i - 4.7 
L 2 a T 	5 T40i . - 
L 2a LlOa L20a - 4.8 
L 2a TlOa T20a - - 
L 2a LlOa T30i - - 
L 2a TlOa T30i - 4.9 
P 2a TlOa T30i - 4.10 
L 2a T10a T40i - 4.11 
T 2a T15a T30i - 
L 2a T15a T40i - 4.12 
T 2a T15a T40i - - 
L 2a T 5a TlOa T30i - 
L 2 a T 5a T 10 a T 40 i 4.13,4.14 
L 2a T 5a T20a T40i - 

1 (digits) L 2 a L 10 a L 30 i  4.15 
2 L 2 a L 10 a L-29 i - I 4.16-4.18 
3 L 2 a L 10 a L 29 i - 4.19,4.20 

4.14), and for the digits with one combination of segmentation parameters 

(figure 4.15). For each case with three sets of segmentation parameters, the 

times and error rates are plotted for each of a number of values of the threshold 

t 1  for template elimination after the first stage. The points on the graph for 

each value of t1 correspond to different values of t2, at intervals of 0.05, starting 

with 1.00. Thus, the first point plotted on each line represents the result with 

only the first and second stages in use. The last point on each line corresponds 

to t2  = oo - that is, it represents the result with only the first and third stages. 

Where there are four stages (in figures 4.13 and 4.14), the results plotted in each 

diagram are for one value of t 1, and each line corresponds to a value of t2, with a 

point for each value of t3 (starting from 1.00); in this case the first point on each 

line represents a result obtained with only the first three stages. 
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(It should be noted that the scales on the axes are not the same for all of 

figures 4.7-4.20, and in particular that in figures 4.7-4.15 the error rate scale 

starts from 10%, not from 0.) 

For comparison, the times for recognition of this data base using only the 

final stage (i.e. those corresponding to threshold values t, = w for all non-final 

stages n) were about 2.9s per input utterance for the digits vocabulary, or 5.9s 

for the GP words, with 20 segments per word; 6.7s or 13.5s with 30 segments per 

word; and 11.5s or 23.1s with 40 segments per word. (In each case, the time per 

(single-stage) recognition is roughly proportional to the size of the vocabulary.) 

The average time per recognition with no segmentation was 7.2s for the digits, 

or 25.1s for the GP words: in this case the time per recognition depends not only 

on the vocabulary size but also on the durations of the training and input utter-

ances (which are typically greater for GP words than for digits). 

After the experiments on this data base (and some other experiments with 

utterances of the digits), the segmentation parameters for use in subsequent 

work were chosen. The number of stages of comparison was set to be three, with 

linear time segmentation at each stage; the numbers of segments per word were 

fixed at 2, 10 and 29 at the respective stages; and the averaging technique was 

adopted at the first two stages, with interpolation at the third stage. These 

parameter choices result in 2, 10 and 30 vectors in the three segmented forms of 

each word. The choice of these parameters is explained in section 4.4.4.2 below. 

Figures 4.16-4.18 show the results for the digits in data base 2, with the 

single-token and two-token template sets, and averaged over all the template 

sets. In each case, the previously determined segmentation parameters were 

used. The experiments with this data base were run on a different computer, a 

Masscomp MC5700, which was faster than the MC550 used for the experiments 

with the other data bases. To compare the results on the different data bases, 
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the times per recognition for data base 2 should be multiplied by 6.7. The time 

per recognition using only the third stage (30 vectors per word) was 1.29s. (This 

corresponds to the right-hand end of the line for t1 =w in each diagram.) 

Figures 4.19-4.20 show results similarly obtained (on the MC550) for data 

base 3 (the 50-word vocabulary spoken by one speaker). Experiments were also 

conducted on this data base, with the single-token templates, using trace seg-

mentation instead of linear time segmentation in some or all of the stages; the 

results were very similar to those with linear segmentation. The time per recog -

nition using only the third stage was 49.6s. 

4.4.4: Discussion of multiple-stage recognition results 

4.4.4.1: Combinations of segmentation parameters 

Figures 4.7-4.14 illustrate some general findings as to the effects of using 

different combinations of segmentation parameters in a multiple-stage recogni-

tion system. The criterion for evaluation and comparison of combinations of 

parameters is the best accuracy obtainable for a given amount of computation 

per recognition. For any specified computation time per recognition, this 

optimal accuracy can be estimated from the diagram by reading off the error 

rate from the plotted line which is lowest at the specified position on the compu-

tation time scale. For small values of computation time per recognition, the 

error rate should be read from 0 a line (not shown) joining the initial points of the 

successive plotted lines: this corresponds to interpolating between the values of 

t1 (or t2 for four-stage recognition) for which results have been obtained. (The 

graph of optimal accuracy against time per recognition is the envelope of the 

(theoretically infinite) set of lines corresponding to all possible choices of t1 - or 

choices of t 1  and t2  in the case of four-stage recognition.) 



- 139 -  

Figure 4.7: results for three-stage recognition of GP words 
(parameters L 2 a; T 5 a; T 30 i) 
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Figure 4.8: results for three-stage recognition of GP words 
(parameters L 2 a; L 10 a; L 20 a) 
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Figure 4.9: results for three-stage recognition of GP words 
(parameters L 2 a; T 10 a; T 30 i) 
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Figure 4.10: results for three-stage recognition of GP words 
(parameters T 2 a; T 10 a; T 30 i) 
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Figure 4.11: results for three-stage recognition of GP words 
(parameters L 2 a; T 10 a; T 40 i) 
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Figure 4.12: results for three-stage recognition of GP words 
(parameters L 2 a; T 15 a; T 40 i) 
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Figure 4.13: results for four-stage recognition of GP words 
(parameters L 2 a; T 5 a; T 10 a; T 40 i; t 1  = 1.5) 
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Figure 4.14: results for four-stage recognition of GP words 
(parameters L 2 a; T 5 a; T 10 a; T 40 i; t 1  = 1.6) 
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Figure 4.15: results for three-stage recognition of digits 
(data base 1) (parameters L 2 a; L 10 a; L 30 i) 
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In every case considered, the number of segments per word at the first 

stage was 2. With each word thus represented by two averaged vectors, the 

DTW matching at the first stage reduces to a linear alignment requiring only 

two vector distance computations. Thus the total computation required to recog-

nise a word can be greatly reduced if many templates are eliminated after the 

first stage. The appropriateness of using such a simple first-stage comparison is 

confirmed by the observation that, once t 1  has been increased to 1.6, a further 

increase to 1.7 (allowing more templates to be retained for consideration at the 

second and subsequent stages), with no change in the value of t 2 , yields at best a 

marginal improvement in recognition accuracy (figure 4.9), and in some cases 

actually causes more errors (figure 4.7), while increasing the computation time. 
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Also, it appears, from comparison of the results in figures 4.13 and 4.14 with the 

corresponding results (t 1  = 1.5 or 1.6) in figure 4.11, that inserting a second 

early elimination stage, with five segments per word, only increases the compu-

tation time required to attain a specified accuracy: the use of a five-segment 

comparison does not, result in more effective elimination of templates than can 

be achieved with the two-segment comparison alone. (No results with t 2  > 1.25 

are shown in figures 4.13 and 4.14; but the use of a large value of t 2  can be 

expected to yield almost the same results as with the second stage omitted, as in 

figure 4.11 - with some increase in computation time.) The effect of omitting the 

first stage completely (or setting t 1  to ) can be seen in the results for recogni-

tion of data bases 2 and 3, plotted in figures 4.16-4.20: the best accuracy 

attained using the remaining two stages is similar to the best accuracy with the 

three-stage configuration and a t 1  value of 1.6 - or worse with the digits and 

single-token templates (figure 4.16) - while the computation time per recogni-

tion is several times greater. 

In the experiments with data base 1, the best accuracy with a computation 

time under 2s per recognition (error rate 13.0%, with computation time 1.7s) was 

attained using 2, 15 and 40 segments per word (figure 4.12). This is almost as 

good as the 87.2% accuracy (12.8% error rate) obtained in one-stage recognition 

with no segmentation. The three-stage result is 0.9% poorer than the accuracy 

obtained using only the final stage (40 segments per word and interpolation, 

resulting in 41 vectors per word), which is plotted in figure 4.4. 

The accuracy attainable was very similar (13.2% error rate at 1.6s per 

recognition), or better if rapid computation (under is per word) was required, 

when the number of segments at the second stage was reduced from 15 to 10 

(figure 4.11). A comparison of results with 5 and 10 segments at the second 

stage (as in figures 4.7 and 4.9 respectively) indicates that better accuracy for a 



- 145- 

Figure  4.16: results for three-stage recognition of digits 
(data base 2; single-token templates) (parameters L 2 a; L 10 a; L 29 i) 
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Figure 4.17: results for three-stage recognition of digits 
(data base 2; two-token templates) (parameters L 2 a; L 10 a; L 29 i) 
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Figure 4.18: results for three-stage recognition of digits 
(data base 2; averaged over template sets) (parameters L 2 a; L 10 a; L 29 i) 
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given computation time can be attained using 10 than using 5. Although no 

three-stage experiments were conducted with more than 15 segments per word 

at the second stage, a comparison of the four-stage results with 10 segments at 

the third stage (as shown in figures 4.13 and 4.14) and with 20 shows that, in 

this case, using a larger number of segments per word does not improve the tra-

deoff of speed and accuracy; it is to be expected that this result would still hold 

true if the preceding stage (using 5 segments per word) were omitted. Thus the 

optimal number of segments per word at the second stage appears to be in the 

region of 10 or 15. 

The results with 2, 10 and 30 segments per word at the three stages (figure 

4.9) show better performance for computation times under 1.4s per recognition 

than when 40 segments per word were used at the third stage (figure 4.11). 
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Figure 4.19: results for three-stage recognition of 50-word vocabulary 
(single-token templates) (parameters L 2 a; L 10 a; L 29 i) 
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Figure 4.20: results for three-stage recognition of 50-word vocabulary 
(two-token templates) (parameters L 2 a; L 10 a; L 29 i) 
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With 30 segments at the third stage, however, very little further improvement 

was attained when more computation time was allowed, and the lowest error 

rate was 13.7% instead of 13.2%. Comparison of the results in figure 4.8 with 

those for the combination "L 2 a; L 10 a; T 30 i" (as in figure 4.9 but with linear 

time segmentation instead of trace segmentation at the second stage) shows a 

similar pattern when the number of segments at the third stage is reduced from 

30 to 20: the results with 20 were better for computation times under 1.0s, but 

the lowest error rate attained overall was 14.6%, whereas with 30 segments per 

word at the final stage the error rate could be reduced to 13.4%. 

The results for the GP words with 2, 10 and 30 segments per word show the 

effects of different combinations of segmentation techniques. In each case trace 

segmentation was applied at the third stage; but in one case (not plotted here, 

due to accidental loss of the results file) the first two stages used linear time seg-

mentation; in the second case (figure 4.9) trace segmentation was introduced at 

the second stage; and in the third case (figure 4.10) trace segmentation was used 

throughout. 

A comparison of the results for the first two of these cases shows that when 

only the first two stages were used (i.e. with t 2  set to 1.0 - as represented by the 

first point plotted for each value of t1) the use of trace segmentation at the 

second stage (figure 4.9) gave markedly better recognition accuracy than with 

linear time segmentation (which was what might be expected from the results 

with 10 vectors per word in figures 4.3 and 4.4), but as the value of t 2  was 

increased, to allow more use of the third stage, the results with linear segmenta-

tion at the second stage became similar to the corresponding results with trace 

segmentation, or slightly better. A possible explanation is that it is beneficial to 

have different segmentation techniques at the second and third stages, so that, if 

the decision between two candidate templates can be made reliably when they 
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are compared with the input using the first type of segmentation, the decision is 

taken at the second stage, but if not, they are passed on to the third stage where 

the other segmentation is applied. There may be some words which are more 

reliably recognised when linearly segmented, and others for which trace segmen-

tation is more effective. 

The comparison of figures 4.9 and 4.10 reveals a similar effect with the 

choice of linear segmentation or trace segmentation at the first stage, when the 

second stage incorporates trace segmentation. For small values of t1 , the error 

rates with trace segmentation at the first stage, shown in figure 4.10, were lower 

than those with linear time segmentation shown at the corresponding points in 

figure 4.9; but for larger values of t1 the results with linear segmentation at the 

first stage were better. Another difference apparent from these figures is that 

the computation time is increased by using trace segmentation at the first stage, 

even when (as happens when t 1  = 1.0) the number of templates passed on to the 

second stage is unaltered. This is because of the vector distance calculations 

required to measure the trace during the segmentation of each input word. 

4.4.4.2: Choice of segmentation parameters 

It is clear from the results discussed above that a three-stage recognition 

configuration, with 2 segments per word at the first stage, 10 or 15 at the second 

stage, and 30 or 40 at the third, yields near-optimal accuracy and speed of recog-

nition. From the previous experiments comparing segment representation tech-

niques, it is evident that the vectors should be derived by averaging at the first 

and second stages, and by interpolation at the final stage. On the basis of these 

results, and vocabulary considerations, a decision was made as to the system 

parameters to be adopted for subsequent experiments. 
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As most of the experiments, to be carried out with the multiple-stage recog-

nition system were with the digits vocabulary, on which better results had been 

obtained with linear time segmentation than with trace segmentation, linear 

segmentation was adopted for use at each of the three stages. (If the explana-

tion suggested above for the results on the GP vocabulary with different combi-

nations of linear segmentation and trace segmentation is correct, there might 

have been some advantage in using trace segmentation instead of linear seg -

mentation at the second stage for the digits; but, from a comparison of the 

results in figure 4.9 with the corresponding results with linear segmentation at 

the first two stages, it seems likely that the advantage, if any, would be only a 

slight one.) 

Also on account of the vocabulary, the numbers of segments per word were 

fixed at 2, 10 and 29 (yielding 2, 10 and 30 vectors per word respectively): it 

seemed inappropriate to use 40 segments per word when the words to be 

represented were mostly monosyllabic and of short duration (often having fewer 

than 40 frames), as the digits are. 

Some further investigations of the effects of the segmentation technique 

were later carried out with the 50-word vocabulary; the replacement of linear 

segmentation by trace segmentation at some or all of the three stages gave per-

formance indistinguishable from that obtained with linear segmentation 

throughout. 

4.4.4.3: Template elimination threshold values 

As already mentioned (in section 4.4.4.1), near-optimal recognition accuracy 

for a moderate amount of computation can be reached when the value of the 

threshold t1 for template elimination after the first stage is approximately 1.6. 
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The smallest value of t2 at which the best possible accuracy is attained, when t1 

= 1.6, ranges from 1.1 (as in figure 4.17) to 1.2 (figure 4.9). Similar accuracies, 

with reduced computation, can be attained with t 1  equal to 1.5 and the same 

value of t2. The results on the digits from data base 1 (figure 4.15) and on data 

bases 2 and 3 (figures 4.16-4.20) show that reducing t 1  to 1.5 may even improve 

the accuracy (figure 4.16), and on these data bases a further reduction of t 1  to 

1.4 degrades the accuracy only slightly or not at all. The further reduction of 

computation time is best achieved by reducing t2 to a value close to 1.0, while 

keeping t1 at a constant value: reducing t1 below about 1.4 is appropriate only if 

the speed (rather than accuracy) of recognition is the main consideration. 

The choice of the most appropriate elimination threshold values for any 

particular application of the multiple-stage recognition system will depend on 

details of the implementation and of the application. Relevant considerations 

include the size and difficulty of the vocabulary to be recognised; the number of 

templates per word; the processing power of the machine on which the recogni-

tion system is implemented (and, if it is a time-sharing system, the level of com-

petition from other processes running simultaneously); and the balance of speed 

and accuracy requirements for the desired application. For any given 

specification of speed and accuracy requirements, the most suitable settings of t1 

and t2 can be determined from the plot of error rates against computation times 

(with the times normalised, if necessary, for machine power and load) for the 

requisite vocabulary. 

For the application primarily in view here, namely research into recogni-

tion accuracy improvements attainable through template adaptation, the first 

requirement was near-optimal accuracy, to allow realistic simulation of the per-

formance of a hardware recognition system using customised components, in 

which speed would be less of a problem than with a software system on a 
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general-purpose computer. 

In view of the results on data base 1, and some preliminary results on 

digits represented by linear predictive cepstral coefficients (later found to have 

been incorrectly computed, and therefore replaced by data base 2), the threshold 

values t 1  and t2  were set at 1.6 and 1.2. These threshold values were used in 

the interactive recognition sessions in which data bases 2 and 3, and additional 

data for subsequent experiments, were collected, and also in some of the later 

experiments as described in chapters 5 and 6. Other pairs of template elimina-

tion threshold values 41,t2) adopted for some later experiments (chapters 6 and 

7) were (1 .4,1.15), (1.6,1.1) and (1.6,1.12). 

With these segmentation parameters and threshold values, the average 

computation per recognition can be reduced by a factor of about 20 in the case of 

the digits vocabulary (figures 4.16-4.18), or about 30 in the case of the 50-word 

vocabulary (figures 4.19-4.20), without any loss of accuracy, relative to the case 

where the final stage of comparison is applied to all templates. It should be 

remembered that this is an average: with the three-stage comparison, the com-

putation time varies from one recognition to another, according to the difficulty 

of recognition of particular input utterances, whereas with single-stage recogni-

tion (assuming no early abandonment of template matches by accumulated dis-

tance thresholding) the time per recognition will be nearly constant. (These 

results on data bases 2 and 3 show greater improvements in efficiency than the 

results on data base 1, where the computation reduction factor is only about 15 

for the digits This confirms the finding that data base 1 is of poorer quality in 

some respect (perhaps because of suboptimal endpoint location or acoustic pro-

cessing), as indicated by the generally high recognition error rates on this data 

base.) 
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These results are for unadapted templates. When the templates have been 

optimised by adaptation, even greater computational efficiency can be attained 

(as reported in sections 6.3.2.5 and 7.3.3.4). 

4.5: Summary of results 

In this chapter, some experiments with time segmentation and segment 

representation techniques, as preprocessing for isolated word recognition using 

DTW, have been described, and the results have been presented and discussed. 

Two segmentation techniques - trace segmentation and linear time segmenta-

tion - were compared; for one vocabulary (the digits), linear time segmentation 

yielded slightly better results than trace segmentation, while for another voca-

bulary (the "golden passage" (GP) vocabulary) trace segmentation showed a 

slight advantage over the linear segmentation. Once a word has been seg-

mented, using either of these techniques, representations must be derived for the 

segments (or segment boundaries). It was found to be best to average the acous-

tic parameter vectors in each segment when the number of segments per word 

was small (i.e. less than about half the average number of vectors in an unseg-

mented word pattern), and to interpolate vectors at segment boundaries when 

the number of segments per word was large. 

The recognition results obtained with appropriate segmentation and inter-

polation, with a number of segments per word approaching the typical number of 

frames per word before segmentation, were slightly better than those with no 

segmentation applied. Also, results only a little poorer than those with many 

vectors per word were obtained - with a considerable saving in computation in 

the DTW matching - when each word was represented by only a few vectors, 

each derived by averaging. These features of the results led to the idea of a 
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multiple-stage recognition system, with a computationally economical matching 

using a small number of segments per word at the first stage to eliminate the 

most poorly-matching templates from consideration, and increasingly detailed 

comparisons using larger numbers of segments per word at the subsequent 

stages to yield optimal accuracy in the final recognition. Such a system was con-

structed, and was tested to determine appropriate settings of its parameters. 

The best combinations of accuracy and speed of recognition were found to 

occur when three stages of comparison were used, with approximately 2, 10 and 

30 segments per word respectively. The results with the three-stage system 

show recognition accuracies similar to those attained using the final stage alone 

(or by single-stage recognition without segmentation), with reduction factors in 

the average computation required per recognition ranging from 15 to 30 across 

the data bases used in the experiments. In some cases, the use of the multiple-

stage decision procedure yielded a slightly higher accuracy than was attained 

using the final stage alone. 

The three-stage recognition procedure was adopted for use in the subse-

quent experiments (to be described in chapters 6 and 7) with template adapta-

tion. This allowed more experiments to be completed in the time available than 

would have been possible without the substantial improvement in computational 

efficiency. It was also employed in the interactive recognition sessions 

(described in chapter 6) in which the main data base for speaker-dependent 

recognition experiments was collected; its use in these sessions helped to make 

the data collection procedure more realistic as a simulation of a practical appli-

cation of speech recognition, by reducing (by several seconds) the recogniser's 

response time for each input utterance. 
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CHAPTER 5 

AN INTERACTIVE WORD RECOGNITION SYSTEM 

WITH TEMPLATE ADAPTATION 
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5: AN INTERACTIVE WORD RECOGNITION SYSTEM 

WITH TEMPLATE ADAPTATION 

5.1: Introduction 

The isolated word recognition system described in section 4.3 has been 

further developed to operate interactively (using direct speech input, rather than 

requiring previously stored analysed data), and to incorporate adaptation of tem-

plates by weighted averaging with recognised utterances. The interactive sys-

tem includes automatic endpoint detection and LPC analysis, as well as the 

actual recognition component. This chapter describes the modes of interaction 

and adaptation which have been implemented. 

With this interactive adaptive recognition system, it is possible to explore 

experimentally the topics of adaptation by the system to the user's speech and of 

more general user-system interaction and interface design, which were identified 

in chapter 3 as being of particular relevance to the development of accurate and 

readily usable speech recognisers. The interactive mode is useful in allowing 

demonstration and observation of the ways in which a user may respond to a 

recognition system (with a particular form of interface design) during a recogni-

tion session; it also permits more realistic data collection than would be achieved 

in a recording procedure without immediate recognition of the words, as the 

manner in which the user speaks when simply recording data may not be the 

same as when interacting with a recognition system. 

The next two sections give details of the interactive mode and of the adap-

tation options, respectively. The final section of this chapter contains the results 

of some experiments conducted to determine appropriate settings of certain sys-

tem parameters. Experiments and results with template adaptation, and obser- 
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vations on the interaction between the system and the user, are reported in the 

subsequent two chapters. 

5.2: The interactive mode 

To facilitate interactive use of the recognition system already developed, it 

was necessary to compose software to digitise the input, to detect the beginning 

and end of the word spoken and to perform some form of signal analysis in each 

time frame of the detected utterance; to interface this software to the recognition 

program; and to make provision for control of the system by the user (by speech 

or keyboard input) to allow the identification and correction of errors and the 

termination of the recognition session. 

The digitising, endpoint detection and acoustic analysis were implemented 

in a C program (del) making use of the analogue-to-digital èonvertor and array 

processor on the MC550 computer. This program prompts the user to speak a 

word in a designated time interval (set to 1.5s for isolated word input), takes in 

the digitised waveform, performs endpoint detection and LPC analysis, and 

writes a sequence of vectors of acoustic parameter values to a file. Once this has 

been done, a signal is sent to the recognition program (called awr, for "adaptive 

word recognition"), which then reads the analysed data from the file and per-

forms recognition. When the recognition decision has been made (and the user's 

response obtained, if verification is in use), awr signals del to prompt the user 

for another utterance, or to terminate if the user has indicated that the session 

is finished. The interactions of the system components with each other and with 

the user are shown in figure 5.1. 

Prompting for speech input is by audible signals: the system gives a double 

"beep" (using the standard facility built into the terminal) at the start of the 
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Figure 5.1: interactions of user and recognition system components 
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recording interval, and a single "beep" to mark the end of it. The input is 

passed through a Iowpass filter with a cutoff frequency of 8kHz, and the result-

ing waveform is digitised at 20kHz, with 12-bit resolution. 

Once the input has been digitised, the endpoint detection processing begins. 

This involves computing the power of the signal and the number of zero-

crossings in each successive lOms interval, and then applying thresholds on the 

power and zero-crossing rate to find the frames at which the speech begins and 

ends. (The measure of signal power used in this system is not the true power, 

which is proportional to the sum of squares of sample values, but the sum of 

their absolute values.) The algorithm is a development of one devised elsewhere 

[461 in which provisional endpoints are determined using the signal power and 

then the word is extended at either end if a region of high zero-crossing rate is 

detected there (to allow the inclusion of certain low-power speech sounds such as 

voiceless fricatives). 
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Three power thresholds are used: inner and outer start/end thresholds, to 

find the points of transition between background noise and speech, and a thres-

hold on the maximum power attained during a possible word, to determine 

whether it should be accepted. The provisional start frame is the first frame at 

which the outer threshold value is exceeded, or the first frame at which the 

inner threshold is exceeded if this occurs more than a specified number of frames 

later. When the start of a word has been detected, the powers in subsequent 

frames are examined until either the power has dropped below the outer thres-

hold and remained below it for too many successive frames (in which case the 

provisional word is abandoned and the search for a new start frame begins) or 

else the power has exceeded the maximum power threshold for the required 

number of frames to confirm the detection of a word. If the detection is 

confirmed, the (provisional) end of the word is found using the inner and outer 

thresholds. These inner and outer thresholds are adapted dynamically, by a 

heuristically determined formula, according to the level of background noise, 

which is determined from the signal power in frames not classified as speech. 

If two words are detected which are close together, they may be combined 

to form a single word, provided that the resulting word does not exceed a stipu-

lated maximum duration. This is to allow correct detection of words containing 

low-energy intervals (e.g. in stop consonants). If, after the combining of any 

such closely adjacent words, a word has less than the specified minimum dura-

tion, it is rejected: this allows elimination of brief but loud non-speech noises. 

After the detection of provisional endpoints by this procedure, the zero-

crossing rates are examined in frames within specified intervals before and after 

each detected word. If a pulse of high-zero-crossing frames of sufficient duration 

is found, the word is extended to include this. Also, if the maximum zero-

crossing rate attained in any high-zero-crossing pulse is more than twice the 
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threshold value, and the pulse is either close to the provisional start of the word 

(with no preceding zero-crossing pulse detected) or after the provisional end, it is 

included regardless of its duration. This latter case is permitted to improve the 

detection of word-initial and word-final stop consonants. 

The endpoint detection parameter values used are listed in table 5.1. These 

were determined by experiments on 90 words from the data base of section 4.2.1, 

so as to optimise the correspondence of the automatically and manually located 

endpoints, and subsequently modified to improve the performance in interactive 

data collection. The power thresholds are expressed in arbitrarily scaled units; 

the time thresholds in lOms frames; and the zero-crossing threshold in zero-

crossings per frame. The "interval to search for zero-crossing pulses", as listed 

in table 5.1, is the length of the interval before the provisional start of the word 

in which the zero-crossings are examined; the length of the interval searched 

after the provisional end, however, is t-1 frames, where t is the length. (in 

frames) of the minimum time between words: thus, with parameter settings such 

as those shown in the table, a longer interval is searched at the end of a word 

than at its beginning. A correction is made for DC offset (measured over the 

first 10 frames of the digitised signal) before the zero-crossing counts are com-

puted. 

The threshold adaptation rate is the quantity by which the value of 

p(t) — f(P) is multiplied to obtain the increment in the power threshold P at 

frame t, where p(t) is the power in this frame and f is a suitably chosen 

quadratic function (which is of the form 

f(P) = aP 2 +bP, 	 (5.1) 

with a and b positive, and thus is increasing over positive values of its 



161- 

argument P). (The motivation for using a function of this form is that the thres-

hold level P corresponding to a steady noise level P0 - which will be such that 

f(P) = Po, once the threshold adaptation has converged - should exceed Po  by a 

larger factor when Po  is small than when Po  is large. The underlying assump-

tion is that the background noise level may vary considerably from one input to 

another but the volume range of the word to be detected will remain relatively 

consistent: under these conditions it is desirable to keep the endpoint detection 

threshold well above the noise level so long as this does not cause it to exceed 

the typical word-initial or word-final speech power level.) 

The endpoint detection parameter settings listed in table 5.1 were chosen 

specifically for the case where a single word is expected to be spoken during 

each digitisation interval. For the more general task of locating an indefinite 

number of utterances in each digitised interval, it might be appropriate to alter 

some of the parameters - for instance, to reduce the minimum time permitted 

between words, so as to prevent two words spoken in rapid succession from being 

counted as a single word. 

Table 5.1: endpoint detection parameters 

Parameter 	 - Value 
outer start/end threshold (before adaptation) 10.0 
inner start/end threshold (before adaptation) 15.0 
rise/fall time threshold 4 
high power threshold 25.0 
minimum number of high-power frames 4 
maximum number of successive low-power frames 3 
minimum word length 10 
maximum word length 120 
minimum time between words 40 
threshold adaptation rate 0.1 
interval to search for zero-crossing pulses 25 
zero-crossing threshold 27 
minimum duration of zero-crossing pulse 3 
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If  (after all the adjustments described above) exactly one word has been 

detected in the digitised input, the LPC analysis is applied in each frame of the 

detected word. Otherwise, the system abandons the current input and prompts 

the user for a new utterance. 

The LPC analysis is performed by the autocorrelation method, with a 

25.6ms (512-point) Hamming window every lOms. Preemphasis (factor 0.98) is 

applied to the speech prior to this analysis. Cepstral coefficients are derived 

from the linear prediction coefficients by a recursion formula [20,211. The 

analysis order and the number of cepstral coefficients output per frame can be 

specified separately. (Experiments to determine appropriate values of these 

parameters are described in section 5.4.) 

Once a word has been digitised, detected and analysed, the recognition pro-

cess begins. The recognition program awr receives the "data ready" signal from 

del, reads the sequence of cepstral vectors, and performs segmentation, DTW 

comparison and template elimination as described in chapter 4. When the recog-

nition decision has been reached, the identified word is written to the terminal 

screen, allowing the user to check whether the recognition is correct and respond 

accordingly. If no recognition decision can be taken, because the word distance 

ratio is below the rejection threshold, an asterisk is output instead; the user can 

then speak the word again until it is recognised by the system. The processing 

for one input utterance, from the beginning of the digitisation interval to the 

output of the recognition, takes typically about lOs on the MC550 for a small 

vocabulary (such as the 10 digits). Most of this time is occupied by the digitis-

ing, endpoint detection and LPC analysis. When the vocabulary is larger (or 

more confusable, so that more templates are matched at the later stages of the 

comparison process), the time for digitising, detection and analysis remains the 

same (if the average word duration is the same), but the time for the template 
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comparison is increased. 

There are two main modes of interaction which can be selected by setting 

the system parameters. The first of these involves verification of each recogni-

tion by the user (through the keyboard); the second relies on the use of desig-

nated control words incorporated in the vocabulary, spoken and recognised in 

the usual way, to control the system's operation. 

If the verification option is selected, the system waits, once the recognition 

has been output, for the user to respond by keyboard input. Possible user 

responses, and the system's actions on receiving them, are listed below. 

("<return>" denotes a carriage return, and "<space>" denotes spacebar, on 

the keyboard.) 

< return > 	 accept recognition as correct, and signal del to prompt 

for another utterance 

< space > <return> 	recognition incorrect: delete recognition from screen; if 

this is the first recognition candidate, then find the 

second-best candidate and display it; otherwise, signal 

del to prompt for another utterance 

/< return > 	 abandon utterance: delete recognition, and signal del to 

prompt for another utterance 

q< return > 	 end recognition session (and signal del to terminate) 

r< return > 	 retrain one or more templates: prompt the user for 

details, collect new training utterances (using del) and 

form a new template for each word specified; when 

retraining is complete, signal del to prompt for next 

recognition input 



-164 -  

In cases where a recognition is indicated by the user to be correct or 

incorrect, this information is recorded in the results file, which also contains 

other details of each recognition such as the ratio of the best two word distances. 

If the utterance is abandoned (by typing of "I" or "q"), the system does not make 

any assumption about the correctness or incorrectness of the recognition. This 

allows the user to exclude from the subsequently computed recognition statistics 

any cases where noises in the background or mistakenly uttered words are 

detected and recognised. 

The retraining procedure allows the user to select a word of the vocabulary 

for which a new template is to be formed, and to specify how many utterances 

are to be averaged together to form this template, and (if more than one utter-

ance per template is specified) what threshold value should be imposed on the 

distance per frame as a precondition for averaging. Once the user has specified 

these details, the system prompts for an utterance of the word. If the template 

is to be formed from a single utterance, this utterance (once detected and 

analysed by del) is adopted as the new template which replaces the template 

previously in use for that word. (If the existing templates include more than one 

for the specified word of the vocabulary, the one that is replaced is the first of 

these in order of appearance in the template list.) Otherwise, the system contin-

ues to collect utterances, and compare them by DTW matching, until two are 

obtained whose average distance apart (per frame) is less than the stipulated 

threshold; it then averages these two together (again using DTW alignment: 

details of this process are given in section 5.3) to form the replacement template. 

If the specified number of utterances is greater than two, further utterances are 

collected and incorporated into the template (on meeting the threshold condition) 

until it is the average of the required number of utterances. (This is the same 

procedure [86] which is employed - in a separate training program - for the 
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formation of the initial template set.) Once the new template has been formed, 

the user has the option of specifying one or more further words of the vocabulary 

for retraining, or of returning immediately to the recognition session. 

If verification by keyboard input is not in operation, the control of the sys-

tem by the user depends on the incorporation of certain special words in the 

vocabulary. When one of these words is recognised during a recognition session, 

the system responds in an appropriate way. These control words can be used, 

like the keyboard inputs in the verification option, to identify misrecognitions, to 

initiate retraining or to terminate the recognition session. The control words 

permitted and the system's responses to them are as follows. 

STOP 	end recognition session (and signal del to terminate) 

RETRAIN 	retrain the template or templates for specified word or words 

(obtaining the details from the user by keyboard input, as 

above) 

CORRECTION previous recognition incorrect: signal del to prompt for another 

utterance 

When an input is recognised as any word in the vocabulary other than a 

control word, the recognition is displayed and the recognition program signals 

del to prompt the user for the next input utterance. 

The only one of the three control words which is essential for the operation 

of the system is "STOP". If this is not included in the vocabulary, there is no 

way for the user to terminate the recognition session (except by killing the pro-

cess). The inclusion of "RETRAIN" in the vocabulary is necessary only if the 

option of replacing existing templates is desired. The benefits of including 

"CORRECTION" are that the output can be augmented (using the command 

facility described below) so that the preceding recognition is deleted when 
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"CORRECTION" is recognised; that it permits a form of supervised adaptation 

(as described in section 5.3); and that occurrences of "CORRECTION" in the 

results file can be used subsequently to identify misrecognitions (on the assump-

tion that "CORRECTION" itself is recognised reliably). 

This mode of operation (without verification by keyboard input) has the 

advantage that the user does not need to use the keyboard during the recogni-

tion session (unless retraining is required), and can thus perform a "hands-busy" 

task, or one which involves moving away from the keyboard, while using the 

recogniser. Because each recognition does not have to be verified explicitly 

before the next utterance can be taken in, the process of using the system is 

simpler and more convenient, as long as the input is generally recognised 

correctly. However, the correction procedure when a recognition is incorrect is 

slightly more time-consuming in this mode than with the verification option, 

because at least two additional utterances ("CORRECTION", and the repetition 

of the misrecognised word) must be recognised to accomplish a correction. 

Perhaps the main disadvantage of the mode without explicit verification is 

that the control words may not be recognised reliably, and the consequences of 

this are particularly serious. If "STOP" cannot be recognised correctly, the user 

will not be able to end the recognition session (except by the unsatisfactory 

method of killing the process on the computer). If "CORRECTION" cannot be 

recognised, any misrecognition which may occur cannot be corrected. Also, if 

any other word is misrecognised as "STOP" or "CORRECTION", the session will 

be terminated early or a correct preceding recognition will be treated as 

incorrect. These problems can be overcome by replacing the templates which 

are causing the errors (after starting a new session in the case of early termina-

tion), using the retraining facility. (If the vocabulary includes words which are 

easily confused with the control words, it may be preferable when retraining to 
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substitute synonyms (e.g. "FINISH" and "WRONG") for the control words to 

improve the accuracy; these will be interpreted by the system as being simply 

new pronunciations of the original control words.) However, if "RETRAIN" can-

not be recognised successfully, this retraining facility will not be available, and 

a separate training session to create new templates will be required before the 

recogniser can be used effectively. 

Another disadvantage, though a less serious one, of the mode using spoken 

control words is that templates for these words must be included in the system: 

this adds slightly to the length of the training session, and also adds to the com-

putation for each input utterance (since the input must be compared with all the 

templates), and increases the range of possible misrecognitions and hence the 

error rate. 

This mode, as implemented, does not permit inspection of the second-best 

recognition candidate, or abandonment of the input utterance. These possibili-

ties could in principle be incorporated by providing additional control words such 

as "NEXT" and "ABANDON" at the risk of making the system less simple to 

use. 

Because of the potentially more serious consequences of misrecognitions 

when the system is being used without explicit verification, it is useful, for this 

mode of operation, to have a rejection capability, to allow a "no recognition" 

decision when the recognition is not reliable. This is accomplished by setting 

appropriate rejection thresholds, to be applied to the ratios of word distances, as 

described in section 4.3.2. When the system is being used with verification, the 

rejection thresholds may be set to 1.0 so that rejection does not occur; any wrong 

recognition can easily be eliminated by the user. When verification is not in 

use, the rejection threshold at the final comparison stage should be set to some 

value greater than 1.0. A rejection threshold slightly greater than 1.0 at the 
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second stage may also be desirable, to allow early rejection of inputs whose 

recognition is very uncertain, and thus save computation time. 

The system has a command execution facility built into it, to allow user-

specified commands to be run in response to the spoken input. If this facility is 

in use, when any word is recognised, a corresponding Unix shell script is exe-

cuted, using the "system" command within awr, before the recognition session 

continues. This command facility has been used mainly to enhance the output of 

the system during interactive recognition sessions: the shell command 

corresponding to each non-control word simply writes that word in a window on 

the terminal screen (separate from the window in which the direct output of awr 

appears), and the command corresponding to "CORRECTION" deletes the most 

recent word from that window, while the commands for "RETRAIN" and "STOP" 

do nothing. Thus the user can see the details of all recognitions (including those 

of control words), and of the retraining procedure when it is called, in the win-

dow used for the direct output of awr, but can also see just the recognised 

sequence of non-control words - with any corrections that have been made - in 

the auxiliary window. Although the application of the command facility in these 

experiments has been limited to this enhancement of the output, the mechanism 

implemented would allow the execution of much more extensive commands if 

desired. 

5.3: Template adaptation 

Options have been built into the recognition system which permit super-

vised or unsupervised adaptation of the templates, to incorporate information 

from the recognised input, during a recognition session. The structure of the 

adaptive word recognition system is shown in figure 5.2. 
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Figure 5.2: adaptive isolated word recognition system 
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When a word has been recognised, an adaptation condition is applied, and if 

this condition is satisfied the template corresponding to the recognition is 

adapted by weighted averaging with the input word. There are various types of 

adaptation condition, and the adaptation itself can take any of a variety of 

forms. These adaptation options are described in detail below. 

5.3.1: Adaptation conditions for supervised and unsupervised adaptation 

The forms which the adaptation condition can take depend on the 

verification available. If immediate verification of each recognition by the user 

is in operation, as in the first of the two interaction modes described in section 

5.2, the condition can be imposed that the recognition must be correct. (That is, 

supervised adaptation can be implemented.) In this case also the template can 

be adapted negatively, to make it less like the wrongly recognised input, if the 
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recognition is incorrect. If the second-best candidate word is also found and 

verified when the best-matching template is incorrect, the template for this 

second-best candidate can be adapted too, positively or negatively depending on 

whether it is correct or incorrect. (There is also a modified option for negative 

adaptation, in which an incorrect first-candidate template is not adapted nega-

tively unless the second candidate is correct. This is intended to prevent adapta-

tion away from utterances which are badly affected by noise or endpoint detec-

tion failure.) 

If no information from the user as to the correctness of the recognition is 

available, the adaptation condition must be based on some other source of infor-

mation. The condition adopted in this case (for unsupervised adaptation) is that 

the ratio of the word distances for the second-best recognition candidate and for 

the best candidate must exceed a specified threshold. If the ratio exceeds this 

threshold, the recognition is assumed to be reliable, and the template for the 

best candidate word is adapted (positively) to the input. Otherwise, the recogni-

tion is assumed to be insufficiently reliable, and no adaptation takes place. (In 

fact, such a distance ratio criterion can also be imposed as an additional condi-

tion in the case where the correctness of the recognition is known; this might be 

useful to prevent adaptation to inputs which, though correctly recognised, were 

affected by noise or endpoint detection failure.) 

In the mode of operation without immediate verification, a modified form of 

supervised adaptation can still be achieved, provided that the word "CORREC-

TION" is included in the vocabulary. In this case, when a word other than a 

control word is recognised, the input is not used immediately for adaptation, but 

is stored, along with its recognised identity, until the next recognition is 

obtained (corresponding to the next input utterance, or to some subsequent one 

if the next is rejected). If this next recognition is "CORRECTION", the 
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preceding recognition is assumed to be incorrect, and negative adaptation may 

be applied using the stored data. Otherwise, the preceding recognition is taken 

as correct, and the stored word is used to adapt (positively) the template 

corresponding to its recognised identity - unless the new input is recognised as 

"RETRAIN", in which case the stored information is discarded. Thus, provided 

there are no recognition errors involving the control words, the template 

corresponding to each recognition obtained can be adapted positively or nega-

tively according to its correctness or incorrectness - with a one-utterance delay 

in the adaptation, to allow the user to say "CORRECTION" if the recognition 

was incorrect. The templates for control words, however, are adapted immedi-

ately on recognition of these words (subject to a distance ratio condition). This 

immediate adaptation is particularly necessary in the case of the word "STOP", 

since the recognition session is terminated when this is recognised and so there 

is no following utterance to be used for verification. (Supervised adaptation of 

"STOP" would require a slightly more complex session ending procedure, for 

instance with keyboard input requested to confirm or deny that the word 

"STOP" had been spoken.) But also, it was decided that the benefit of imple-

menting delayed verification and adaptation for "CORRECTION" and 

"RETRAIN" would not justify the probable confusion that it would cause to the 

user. The harmful effect of mistaken adaptation of the template for "RETRAIN" 

can be overcome quite easily: if any word is misrecognised as "RETRAIN", then 

the retraining procedure automatically invoked as a result of this misrecognition 

can be used to replace the wrongly adapted "RETRAIN" template with a new 

one. 
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5.3.2: Selection of the template to be adapted 

When the adaptation condition is satisfied, the template to be adapted is 

identified, and (subject to certain conditions on the lengths of the template and 

the input word) the weighted averaging operation is applied. This results in a 

new template which is stored for subsequent use in place of the old one. 

If there is only one template for each word of the vocabulary, the selection 

of the template to be adapted is straightforward: it is simply the template for the 

specified word of the vocabulary (which is the best or second-best recognition 

candidate). In the case of the best candidate word, this is the template which 

has been found, during the recognition procedure, to match the input with the 

minimal distance (at the stage of comparison at which the recognition decision is 

reached); in the case of second-best candidate adaptation, it is the template with 

the second-smallest distance. 

If there are two or more templates per word, however, then there are vari-

ous possible criteria for selecting one of a given word's templates to be adapted. 

Two options have been implemented. In the first of these, the template adapted 

is the template, from the set of templates for the specified word of the vocabu-

lary, yielding the minimal distance. (For first-candidate adaptation, this is, as 

in the case with only one template per word, the template with the minimal dis-

tance out of all the templates in use. For a second-best candidate word, how-

ever, it is no longer necessarily the template with the second-smallest distance, 

as this may belong to the first candidate word.) In the second option, the tem-

plate adapted is the next template after the minimal-distance template (in the 

arbitrarily ordered template list) representing the same word of the vocabulary 

[238,2391. (If the minimal-distance template is the last in the list for the 

specified word, the first template in the list for that word is used.) This 
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"skewed" adaptation is intended for use in the case where the adaptation is 

unsupervised, to improve the stability of the system: if one of the templates for 

one word of the vocabulary (word A) is similar to the pronunciation of another 

word (B), so that an utterance of B is misrecognised as A, then the template for 

word A which is wrongly adapted to this input is not the template which was 

already similar to B and so caused the misrecognition, but another "A" template 

(which was less like the input utterance), and so the risk of recurrence of the 

same misrecognition is not increased as much as it would be by adaptation of 

the minimal-distance template. 

5.3.3: The weighted averaging procedure 

When the template to be adapted has been identified, a word length test is 

applied. No adaptation is performed if the lengths (in frames) of the template 

and the input are so different that alignment is impossible, or if the adaptation 

would result in an adapted template too long to fit into the designated region of 

the template data array. (The first of these conditions is necessary only if the 

DTW method of alignment is to be used in the adaptation: linear alignment can 

accommodate any disparity in word lengths.) 

If the word length conditions are satisfied, the weighted averaging pro-

cedure is invoked to construct the new adapted template from the old template 

and the input. The parameters controlling the weighted averaging are the 

choice of alignment (DTW or linear) and the weights assigned to the existing 

template and to the input. 

In the following description of the weighted averaging procedure, the con-

vention is adopted that frame numbers in a template or an input word start 

from 0, rather than from 1. Thus the first frame of an N-frame template is 
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frame 0, and the last is frame N —1. 

The details of the DTW algorithm used in the non-linear alignment option 

are the same as in the recognition phase (except that the alignment is not pre-

ceded by segmentation), and have been described in sections 4.2.2 and 4.3.2. 

During the DTW computation, a record is kept of the predecessor to each point 

on a possible alignment path, so that the optimal path can be recovered when 

the final point is reached. Once the alignment has been found, the input and 

template vectors matched together at each point on the path are averaged, with 

the weights which were given as parameters to the adaptation procedure. Also, 

at each step of the form (1,2) in the path, from (m —1,n —2) to (m,n), an extra 

vector is interpolated between the input vectors for frames m —1 and m, and 

this is averaged with the vector for frame n —1 in the template. For each aver-

aged vector, a time is computed on the timescale of the new template. The time 

(in frames) for the vector derived from input vector m and template vector n is 

wm +(1—w)n, where w and 1—w are the weights on the input word and the 

template respectively. This corresponds to projection of the point (m,n) in the 

(1—w) 
input-reference plane onto a line of gradient 	, as illustrated (for the case 

where w = -f-) in figure 5.3. In fact, the distance along this line between points t 

apart on the new timescale is 
	t 	

1 
The first averaged vector is 

(w2+(1—w)2) 2 

taken as the first vector in the adapted template. (Its position on the new times- 

cale is 0 unless any input vectors have been matched to the pseudotemplate 

frame (as described in section 4.3.2) at the beginning of the template.) Subse- 

quent vectors are interpolated at intervals of 1.0 on the new timescale. If the 

position of the last averaged vector on the timescale exceeds the position of the 

last of these interpolated vectors by more than 0.5, this averaged vector is 
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Figure 5.3: weighted averaging operation for template adaptation 
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appended to the sequence of interpolated vectors. The resulting sequence of vec-

tors constitutes the adapted template. The number of vectors in the adapted 

template is the nearest integer to wM + (1 - w)N, where N is the number of vec-

tors in the template before the adaptation and M is the number of input vectors 

which are matched to template vectors. (M is not necessarily equal to the 

number of vectors in the input, because of the possibility that some of the frames 

at the beginning and end of the input may be matched to pseudotemplate frames 

and thus excluded from the averaging. The extent to which this happens is con-

trolled by the value of the constant distance assigned to pseudotemplate frame 

matching.) 

During the experiments described in chapters 6 and 7, the version of the 

weighted averaging function in use contained a minor flaw, whereby the first 
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vector in the (unsegmented) adapted template was replaced by either a zero vec-

tor or a vector left in the array from the previous invocation of the function. 

This also affected the averaging of training utterances to form initial templates. 

It was discovered too late to allow the experiments to be rerun. However, a 

comparison of the uncorrected and corrected versions was made, using the digits 

spoken by the 49 test speakers, with template set D6 (as in chapter 7), and the 

difference was not found to be significant. The correction improved the recogni-

tion result with supervised adaptation (over four random orders of the input for 

each test speaker) from 94.69% to 94.71%, but reduced the recognition accuracy 

with unsupervised adaptation from 93.37% to 93.33%. (Neither of these accu-

racy differences was statistically significant.) 

If linear alignment instead of DTW alignment is specified for the adapta-

tion procedure, one point (m,n) is defined in the alignment path for each input 

frame number in; the value of n is chosen so that -- is as close as possible to 

where N and M are the numbers of vectors in the template and the 

input respectively. (With this linear alignment there is no provision for omis- 

sion of frames at the beginning and end of the input.) The weighted averaging 

then proceeds as in the case with DTW alignment. If the word length ratio 

exceeds 2.0, steps of the form (1,k) will occur, where k > 2. In such a 

case, where successive points on the path are (m - 1,n —k) and (m,n), the pro-

cedure adopted is similar to that for a step of the form (1,2): k - 1 extra vectors 

are interpolated, equally spaced between input vectors m —1 and m, and are 

averaged with vectors n - k +1 to n —1 from the template. The same procedure 

as in the DTW case is employed to derive vectors on a new timescale, which 

form the adapted template. 
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Once an adapted template has been formed by this weighted averaging pro-

cess, it is stored in place of the previously existing template from which it was 

obtained. Segmented versions of the adapted template are derived, and are 

stored, in place of the segmented versions of the unadapted template, for use in 

the recognition of subsequent input utterances (as shown in figure 5.2). 

5.3.4: Adaptation weighting options 

The weights (w and 1— w) on the input data and on the existing template 

control the extent to which the template is adapted to the input utterance: the 

greater the value of w, the greater the amount of adaptation. In the special case 

where w = 1.0, the adaptation becomes simply a replacement of the template by 

the input. If w = 0, the adapted template is the same as before adaptation. For 

negative adaptation, a negative value of w is adopted - typically about -0.05 - 

and so the weight 1 ---\w on the existing template is greater than 1. Apart from 

the fact that w is negative, the alignment, averaging and timescale definition 

procedure is exactly the same for negative adaptation as for positive adaptation. 

Two options are provided for the weighting of the template and the input at 

successive adaptations. The two forms of weighting are referred to as "tracking" 

and "optimisation". 

In the tracking formulation, the weight w on the input is kept constant (w 

= w& for all (positive) adaptations of any template. Thus, after the first adap-

tation of a particular template, the adapted template is a weighted average of 

the original template and the input used to adapt it, with weights 1— w 0  and w0  

respectively. After a second adaptation (to a subsequent input), the template is 

a weighted average of the previous adapted template and the new input, with 

weights 1— w 0  and w 0  again - or, equivalently, a weighted average of the origi- 
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nal template and the two inputs, with respective weights (1— wo) 2 , w0(1 - w0) 

and w0. At each subsequent adaptation, the weight of the original template's 

contribution to the adapted template is reduced by a factor of 1— w 0 , as is the 

weight of each earlier adaptation input's contribution, while the most recent 

input is given weight w 0. Thus the contribution of each utterance (whether from 

the initial training session or from the adaptive recognition input) to the tem-

plate in use decays exponentially with successive adaptations. The rate of this 

exponential decay (relative to the rate of occurrence of adaptations of a particu-

lar template) is —log (I - w&: it is more rapid, the larger the value of w 0 . 

In adaptive recognition with this tracking form of weighting, the current 

form of each template depends most on the most recent input utterances to 

which it has been adapted. This form of adaptation is suitable for tracking gra-

dual variations in the acoustic realisation of a word. Such variations may occur 

during a protracted recognition session, owing to the effects of fatigue on the 

user, or perhaps because of gradual changes in the level and characteristics of 

background noise, or in other aspects of the acoustic conditions such as the dis-

tance from the user's mouth to the microphone. On a longer timescale, if the 

same person is using a recognition system on different occasions, there is likely 

to be some drift in the user's voice characteristics and habitual pronunciations of 

words. The value of w 0  to be chosen for use in any particular application will 

depend on the typical timescale of the variations which the adaptation is 

intended to follow, and also on the rate at which adaptations of a template occur 

in time. (The greater the number of templates in the system, the less fre-

quently, on average, each one can be adapted during a recognition session.) A 

large value of w 0  allows rapid adjustment to changes in voice, pronunciation or 

acoustic environment, but may also make the system vulnerable to corruption of 

templates through adaptation to atypical, noisy, inaccurately endpoint-detected 
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or (in the case of unsupervised adaptation) rnisrecognised inputs. Thus the 

optimal value of w 0  will depend on the tradeoff between the speed of adaptation 

desirable and the requirement for stability of the templates. 

In the optimisation formulation, the weights on the input and the template 

are adjusted at successive adaptations, so that the relative weight on the tem-

plate (i.e. the ratio of the template weight to the input weight) increases accord-

ing to the number of utterances which have been used so far to form it. (For 

each template in the system, a record must be kept of the number of positive 

adaptations performed so far. No account is taken of negative adaptations.) If, 

in the first (positive) adaptation of a particular template, the relative weight on 

the unadapted template is u 0 , then, when the template is adapted (positively) for 

the nth time, the weights are adjusted so that the relative weight on the tem-

plate (which has already been adapted n-i times) is 

= vo+(n-1). 	 (5.2) 

After n adaptations, the template is a weighted average of the original template 

and the ii input utterances used to adapt it, in which the original template's con- 

V0 
tribution has weight 	and the contribution from each of the n input utter- 

V0 +11 

ances has weight 	. In particular, if v 0  is set to 0 (so that the original tem- 
U0 + fl 

plate is replaced by the recognised input in the first adaptation), then the 

adapted template (after any number of adaptations) is simply the average of the 

input utterances used in forming it. If u0  is set to 1.0, then the adapted tem-

plate is the average of the original template and all the inputs used to adapt it. 

The weight w, on the input in the nth adaptation is related to the relative 

weight on the template, u,_1, by the equation 
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1 
=(5.3) 

Un _1+1 ,  

the weight on the template is 

1—w, 
= 	

. 	 (5.4) 
V.-1 + 

This is because, when the input weight is w, the template weight is 1— w, and 

hence the relative weight on the template, u, is given by 

U 
= 1w = - ;-_1. 	 (55) 

The two special cases mentioned above, where uO is 0 or 1.0, correspond to set-

ting w 1  to 1.0 or 0.5, respectively. If a value of w 1  smaller than 0.5 is adopted, 

to improve the stability of the template at its first adaptation, then the resulting 

value of 00 will be greater than 1.0. Whatever the value of 00,  however, the 

template after a sufficiently large number of adaptations will closely resemble 

an average of all the inputs used to adapt it. (This statement must be qualified 

slightly, in that the ultimate length of the template after many adaptations can 

be substantially affected by the value of 00; this is discussed in detail below.) 

Thus the optimisation form of weighting is appropriate for adaptation whose 

goal is not to track gradual changes in the typical realisation of a word, but to 

optimise the conformity of the template to a typical (or average) realisation of 

the word which is assumed to be invariant with time. 

The length, in frames, of the adapted template becomes fixed after the n th 

adaptation, for the first value of n for which 



_181 -  

W11+11 < 	 0.5  
max{L L min , L m,L n}' 

(5.6) 

where L is the length of the template after n adaptations, and L m jn  and L m  

are the minimum and maximum possible lengths of input words to be used .in 

subsequent adaptations (which depend on the parameters for digitisation and 

endpoint detection, and also on L if DTW alignment is in use) - because after 

this value of n the weighted-average length of template and input in any subse-

quent adaptation is always within 0.5 of the existing template length L. Thus 

the ultimate length of the template is determined by the lengths (and the order) 

of the initial template and a limited number of utterances at the beginning of 

the adaptive recognition. The value of n at which (5.6) is satisfied depends on 

the value of u 0 ; in particular, for large enough values of u 0 , (5.6) is satisfied 

when n = 0, and so the length of the template is not altered at all by any adap-

tation. However, the actual values of the vectors making up the adapted tem-

plate are still affected by all the input utterances used to adapt it, and so, disre-

garding the length normalisation, the template after a large number of adapta-

tions is nearly the average of all the adaptation inputs. Another effect of word 

lengths, which occurs only when DTW alignment is used in the adaptation pro-

cedure, is that the length of the current template restricts the lengths of words 

which may be aligned to it, so that adaptation is not performed for inputs which 

are too long or too short. This restriction on the inputs which may be used for 

adaptation of a given template applies equally whatever the current adaptation 

weights are; but it is likely to be more severe in its effects if the value of u 0  is 

large, because then the length of any template which is (initially) particularly 

long or short will have less opportunity to be moderated by adaptation. 
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This discussion of word length effects has assumed the optimisation form of 

weighting. However, similar effects can occur with the tracking formulation. If 

w 0  is small enough to allow (5.6) to be satisfied for some value of L, the length 

of a template may become permanently fixed (after any number of adaptations 

from 0 upward); and in general, the smaller w 0  is, the more limited and less fre-

quent the modification of template lengths will be. 

In the supervised adaptation option where negative adaptation is applied in 

cases of misrecognition, the (negative) input weight used in this adaptation must 

be defined. In the tracking formulation, this weight, like the input weight for 

positive adaptation, is read in from the parameter file at the beginning of the 

recognition session and is not changed thereafter. In the optimisation formula-

tion, the weight for negative adaptation is adjusted so that the relative weight 

on the template in negative adaptation increases linearly, as the template is 

adapted positively, with the relative weight on the template for positive adapta-

tion. 

5.3.5: Compensation for adaptation 

It was found in experiments with adaptive recognition that, as any tem-

plate was adapted, the distances obtained in comparing this template with input 

utterances tended to become smaller, not only in the case of input words for 

which the template represented a correct recognition, but also in the case of 

other input words. This effect of adaptation can lead to recognition errors, 

where the template for the correct recognition of a particular input has not yet 

been adapted (or, with multiple templates, where none of the templates for the 

correct recognition has been adapted) but some incorrect template has been: the 

adapted incorrect-candidate template may be closer to the input than any correct 
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template, so that the input is recognised as the (incorrect) word whose template 

has been adapted. (Details of these experiments and their results will be given 

in sections 6.3.2.1 and 7.3.1.) To compensate for this effect on the recognition 

accuracy during adaptive recognition, provision was introduced into the system 

for the adjustment of each word distance obtained (at any of the comparison 

stages) according to the amount of adaptation previously applied to the template 

being matched. When any template is matched with an input utterance, at any 

of the stages of the recognition process, the distance obtained is multiplied by a 

quantity (a compensation factor) which depends on the number of times that 

template has been (positively) adapted. The compensation factors can be 

specified for values of n (where n is the count of adaptations of the template) 

from 1 to 19. (The compensation factor for n = 0 is fixed at 1.0.) If the max-

imum value of n for which a compensation factor is specified is n m., then the 

compensation factors for larger values of n are made the same as the factor for 

11max The compensation factors are chosen so that they increase with n. 

5.3.6: Word distance normalisation 

Another form of adaptation - not template adaptation, but adaptive word 

distance normalisation - was introduced into the system to take account of the 

possible differences in typical correct-template distances for different words of 

the vocabulary. A normalisation quotient is defined for each template, for each 

comparison stage. Initially, the quotients for all templates (for any particular 

comparison stage) are the same. When an input is recognised, and (if 

verification is in operation) the recognition is verified as correct by the user, the 

quotient for the best-matching template, at each comparison stage used in this 

recognition, is adapted towards the distance value (after any compensation) 
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obtained in matching the template at that stage. The default quotients, for tem-

plates which have not yet been selected as correct recognitions of any input, are 

also adapted, so that for each comparison stage the default quotient is the aver-

age of the quotients which have been adapted. Then, for each new input utter-

ance, the distances obtained from the comparison (at any stage) are normalised, 

by dividing by the current values of the appropriate quotients, before being used 

to determine the recognition of the input. The intention of this procedure is that 

the normalisation should compensate for any bias, in the recognition decision, in 

favour of templates yielding smaller distances. 

If a template is retrained during a recognition session, any counts of recog-

nitions or adaptations associated with that template (for the purpose of deter-

mining normalisation quotients, adaptation weighting or compensation factors) 

are reset to 0. 

5.4: Experiments with recognition system parameters 

The word recognition session described in the previous sections of this 

chapter incorporates a number of components which have parameters to be 

specified. Some of the parameters define the form and rate of template adapta-

tion, and the amount of word distance compensation required for any particular 

case of adaptation; as template adaptation is the main topic of the research 

reported in the next two chapters, the choice of values for these parameters will 

not be discussed in this section. Values for some of the other parameters have 

already been specified, in sections 4.2.4, 4.4.4 and 5.2. However, there remain 

certain parameters whose values must be defined, both in the acoustic represen-

tation of each frame of speech and in the recognition processing. This section 

describes briefly some experiments conducted to determine appropriate settings 
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of these parameters, and states the parameter values adopted for the work 

described in the subsequent chapters. 

In the LPC analysis component of the system, the order of the analysis and 

the number of cepstral coefficients output have to be specified. The higher the 

analysis order is, the more features of the spectrum can be modelled for each 

frame of speech; but also, as the order of analysis is increased, the amount of 

computation required in the acoustic processing expands. The number of cep-

stral coefficients output from the acoustic analysis determines the amount of 

detail in the linear predictive spectra which is available for use in obtaining 

frame distances, and hence word distances and recognition decisions; but the 

computation required in the recognition and adaptation processes increases with 

the number of coefficients per frame, since the computation for each frame dis-

tance, interpolation or vector averaging operation is approximately proportional 

to the vector length. Also, the storage requirements for analysed data increase 

with the number of coefficients per frame. Therefore, it is of interest to deter-

mine what analysis order must be used, and how many cepstral coefficients per 

frame are required, to obtain satisfactory recognition results. 

Several combinations of analysis order and number of coefficients were corn-

pared. The analysis orders used were 8, 12 and 24; the number of coefficients 

per frame ranged from 8 to 24. Each order (p) of LPC analysis in turn was 

applied to the same set of sampled data, obtained from isolated utterances of 

words from two vocabularies (the 10 digits, and the 50-word vocabulary of 

numbers, days and months listed in table 4.4, with the control words "STOP", 

"RETRAIN" and "CORRECTION" added in each case), and p cepstral 

coefficients per frame were output. The representations of the data containing 

smaller numbers (c) of coefficients per frame were subsequently derived by selec-

tion of the first c coefficients per frame from each analysed data file. The 



_186 -  

sampled data were collected during interactive recognition sessions, using an 

option in del which permitted output of each detected word to a sampled data file 

between the endpoint detection and LPC analysis stages. Similar processing 

was applied to training utterances to obtain appropriately analysed and 

represented versions of a number of sets of templates. Each combination (p,c) of 

analysis order and number of coefficients was then evaluated by recognition 

experiments, with and without template adaptation. 

The results of these experiments with the analysis order and the number of 

coefficients per frame are shown in table 5.2. "F" and "W" are the codes for the 

two vocabularies (of 13 and 53 words respectively). All the training and test 

data were from a single speaker, who was the same as speaker 1 In the data 

bases described in section 4.4.2. Results are tabulated for recognition of "F" 

data collected during a single session, using four template sets (F1-F4), and for 

recognition of two sets of "W" data from separate sessions using two template 

sets (Wi and W2); the average recognition accuracies over the template sets for 

each vocabulary are also given. (All the template sets consisted of single-token 

templates, except F3, which was made up of two-token averaged templates.) 

The results identified by "0" in the "adaptation" column are with no template 

adaptation; those identified by "1" are with supervised adaptation, with the 

tracking formulation, input weight w 0  = 0.2, negative adaptation weight -0.05, 

and second-best template adaptation where the best-matching template is 

incorrect, but with no compensation. 

The best recognition results overall were obtained with the 24th-order LPC 

analysis. On the "F" vocabulary, the accuracies attained with 24th-order 

analysis were generally better than those with 12th-order analysis. (When 12 

coefficients were used, the average differences in recognition accuracy between 
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Table 5.2: recognition accuracies with different analysis orders 
and numbers of cepstral coefficients per frame 

Input 
(number 
of words) 

Template 
set and 
adaptation 

LPC order and number of cepetral coefficients (p ,c) 

(8,8) 	(12,8) 	(12,10) 	(12,12) 	(24,8) 	(24,10) (24,12) (24,16) (24,24) 

F (119) Fl 0 86.6 87.4 88.2 86.6 90.8 92.4 92.4 
Fl 1 88.2 89.1 90.8 89.1 91.6 93.3 94.1 

F2 0 85.7 87.4 89.9 88.2 90.8 91.6 93.3 
F2 1 89.1 89.9 93.3 92.4 93.3 95.8 94.1 

F3 0 90.8 94.1 96.6 96.6 95.8 97.5 97.5 
F3 1 92.4 92.4 94.1 94.1 95.0 94.1 95.8 

F4 0 86.6 86.6 89.9 85.7 87.4 89.1 94.1 
F4 1 89.9 89.9 92.4 90.8 93.3 95.0 95.0 

ave 0 87.4 88.9 91.2 89.3 91.2 92.6 94.3 
ave 1 89.9 90.3 92.6 91.6 93.3 94.6 94.8 

W(a) WI 0 79.5 80.8 79.9 79.5 81.7 180.8 81.2 81.2 
(224) Wl 1 83.9 84.4 83.5 83.5 84.4 82.6 83.5 84.4 

W2 0 88.4 89.7 90.6 91.5 89.3 92.0 92.0 90.6 
W2 1 86.6 88.8 91.5 90.6 90.2 91.5 90.6 90.2 

ave 0 83.9 85.3 85.3 85.5 85.5 86.4 86.6 85.9 
ave 1 85.3 86.6 87.5 87.0 87.3 87.1 87.0 87.3 

W (b) Wi 0 82.0 80.9 84.3 84.3 82.0 84.3 82.0 
(89) 

W2 0 74.2 77.5 77.5 77.5 76.4 76.4 76.4 

W (a,b) ave 0 82.3 83.6 84.0 84.2 83.7 84.7 84.5 
(313 ) 

the cases of 12th-order and 24th-order analysis were 1.5% (without adaptation) 

and 1.9% (with adaptation); the standard errors of these figures, estimated from 

the variation across template sets, were 1.04 and 0.63 respectively, yielding 

confidences 0.88 and 0.97.) On the "W" vocabulary, the results attained with 

24th-order LPC did not differ significantly from those with 12th-order LPC. On 
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both vocabularies, 8th-order analysis gave poorer results than 12th-order or 

24th-order even when only the first 8 coefficients from the higher-order analysis 

were retained. 

For a given analysis order (12 or 24), the accuracy was improved in most 

cases by an increase in the number of cepatral coefficients retained for use in the 

recognition processing. For the 'T" vocabulary, the results with 10 or 12 

coefficients were nearly always better than the corresponding results with 8 

coefficients, and (with 24th-order analysis) there was a further improvement in 

accuracy (along with a larger increase in the computational and memory 

requirements) with retention of the full set of 24 coefficients. For the "W" voca-

bulary, the results were less consistent, and there was little difference on aver-

age among the results with differing numbers of coefficients. 

A side-effect of the use of different cepstral representations in these experi-

ments was that the numbers of templates retained for matching at the second 

and third stages in the recognition procedure varied according to the number of 

coefficients per frame and the order of the LPC analysis by which they were 

obtained. In most cases, as the number of coefficients per frame was increased, 

the word distance ratios determining the elimination of templates became closer 

to 1.0, and in consequence the numbers of templates retained at the later stages 

of comparison were increased. Given the design of the three-stage recognition 

system, it is difficult to assess how much of the improvement observed with an 

increase in the number of coefficients was due to this retention of more tem-

plates for detailed comparison. (This effect could be eliminated by using only 

one comparison stage, but this would make the results less directly applicable to 

the three-stage system. Ideally, the acoustic representation parameters and the 

segmentations and thresholds in the multiple-stage decision procedure should be 

optimised together, rather than sequentially, but this might be difficult in 
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practice  because of the large number of parameters to be combined.) 

A full assessment of the effects of the analysis order and the number of cep-

stral coefficients retained would have required more extensive experiments with 

a larger data base (preferably collected from several male and female speakers). 

In particular, it might be of interest to explore the effects of analysis orders 

between 12 and 24, and to determine whether the differences between the "F" 

and "W" vocabularies' results were due to characteristics of the vocabularies, or 

merely to peculiarities of the specific sets of data collected for the experiments. 

However, as the optimisation of the acoustic analysis and frame representation 

parameters was not the main goal in view, but was merely a preliminary step to 

the study of template adaptation, no further experiments were conducted to 

explore these topics. For subsequent work, the LPC order was fixed at 24, and 

the number of cepstral coefficients output for use in recognition was fixed at 12. 

The choice of 24th-order analysis is in agreement (given the 20kHz sampling of 

the input speech) with the recommendation, on theoretical grounds, that the 

analysis order should be at least n +4 when the sampling rate in kHz is n 

[20:p.1541; it was also the same analysis order which had been adopted for other 

work within the Centre for Speech Technology Research. The decision to use 12 

cepstral coefficients per frame represented a compromise between optimisation of 

the recognition accuracy (which would have demanded a larger number of 

coefficients) and a compact representation which would improve the speed of vec-

tor distance computations. 

Some experiments were conducted with weighting of the cepstral 

coefficients, as this had been found by other researchers [39,40] to improve 

recognition accuracies. The weighting was applied to the stored coefficients 

before they were used as input to the recognition program. (Thus the weighting 

operation had to be applied only once for each frame of speech, rather than 
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every time a distance was computed, but the effect was the same as that of using 

a weighted distance measure with fixed weights.) Two types of weighting were 

tested: weighting of each cepstral coefficient by the reciprocal of its standard 

deviation, found over a large number of frames of speech [39], and weighting of 

the ith coefficient (for each i from 1 to 12) by a quantity of the form 

wi  = 6sinf +1 
	

(5.7) 

[40]. The reciprocal-standard-deviation weighting, applied to 500 words from 

the 50-word vocabulary (table 4.4) and one set of templates, with each frame 

represented by 8 cepstral coefficients, and with the standard deviations 

estimated from the same data used as test input, reduced the recognition accu-

racy from 90.0% to 85.8%. The weighting defined by (5.7), applied to 300 words 

from the same vocabulary and to each of three template sets, with 12 cepstral 

coefficients per frame, reduced the average accuracy from 89.0% to 87.6% - 

though there were also reductions in the numbers of templates matched to the 

input at the second and third stages of the recognition procedure. Further 

experiments, with adaptation, and with the thresholds in the recognition pro-

cedure adjusted to yield similar comparison statistics to those without weighting, 

still showed losses in average accuracy. Therefore no weighting of the cepstral 

coefficients was adopted for subsequent recognition experiments. 

The adaptive word distance normalisation technique described at the end of 

section 5.3 was evaluated on utterances from the "F" vocabulary and the 50-

word vocabulary. The results obtained were inconclusive; on average the recog-

nition accuracies were very similar with and without the normalisation tech-

nique. No further work was done on word-specific distance normalisation, and 

the technique was not used in the subsequent experiments. It remains possible, 
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however, that the technique might yield some enhancement of recognition accu-

racy if tested over a larger number of template sets with long sequences of input 

utterances. (Improvements in recognition have been recorded (981 with a more 

sophisticated word-specific distance normalisation technique, which involves the 

use of a large set of training data to estimate parameters of the distribution of 

correct-match distances for each word of the vocabulary.) 
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CHAPTER 6 

ADAPTATION OF SPEAKER-SPECIFIC TEMPLATES 
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6: ADAPTATION OF SPEAKER-SPECIFIC TEMPLATES 

6.1: Introduction 

Applications for an adaptive isolated word recognition system can be 

divided into two main classes: those where the initial templates are provided by 

the intended user (during a training session before the recognition session 

begins), and those where the initial templates are speaker-independent (so that 

no training session is required for a new user). In the first of these cases, the 

role of the adaptation during the recognition session is to improve or update 

templates which are already speaker-specific; in the second case, it is to make 

initially speaker-independent templates specific to the current speaker. The first 

of these two cases is considered in the present chapter, and the second in chapter 

7. 

(It is also possible to implement a system in which speaker-specific tern-

plates are formed for only some words of the vocabulary, and speaker-

independent templates are used for the other words. Such selective training to a 

new speaker may be appropriate if there are some. words in the vocabulary 

which are more frequent in the input, more variable from speaker to speaker, or 

more confusable than the other words, or some words for which reliable recogni-

tion is particularly important (such as the control words "STOP", "RETRAIN" 

and "CORRECTION" for instance). This intermediate case between speaker-

trained and initially speaker-independent recognition is not explored here.) 

The experiments reported in this chapter, with speaker-specific initial tern-

plates, were conducted using the adaptive recognition system described in 

chapter 5. The system was used firstly in its interactive mode for recognition 

sessions in which input utterances were collected to form a data base for subse- 
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quent experiments. The main series of experiments were conducted using the 

recognition system in its non-interactive mode, with the stored data as input. 

This use of stored data allowed comparison of different sets of adaptation param-

eters on the same input utterance sequences, and re-use of the same data in 

different orders and with different template sets to improve the statistical relia-

bility of the results obtained. (A comparison of different adaptation parameters 

on the basis of recognition performance obtained during interactive recognition 

sessions would have required an impracticably large number of interactive ses-

sions, to smooth out the random variations associated with particular utterances. 

However, recognition statistics for the interactive sessions (during which adapta-

tion was applied) are given in section 6.5.) 

In section 6.2, the interactive procedures for template formation and data 

collection are described, and the sets of utterances forming the data base are 

listed. 

The experiments conducted using this data base are described in section 

6.3, and the results obtained are presented and discussed in detail. Section 6.4 

contains a more general discussion of the main findings of the experiments, and 

of options in adaptation of speaker-specific templates. 

Section 6.5 contains some statistics on the interactive recognition sessions, 

and comments on the forms of interaction occurring between the users and the 

system. 
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6.2: Interactive training and data collection 

6.2.1: Training procedure 

For each speaker and vocabulary, the first requirement was the formation 

of a set of templates for use in the interactive recognition sessions. In fact, at 

least two template sets were formed, on separate occasions, for each speaker and 

vocabulary - one consisting of a single-utterance template for each word in the 

vocabulary, and one consisting of one template per word derived by a robust 

averaging procedure [30,31,255] from two utterances. The training procedure 

for forming a set of templates is as follows. 

The speaker sits at a terminal, wearing a Sennheiser HME1019 headset 

which incorporates a microphone on an adjustable mounting. The microphone is 

positioned close to the mouth, but not directly in front of it (so as not to pick up 

breath noise). The volume setting on the recording equipment is adjusted so 

that the typical maximum amplitude of a spoken word is within the range of the 

analogue-to-digital convertor. (The amplitude of the signal can be monitored 

visually using an oscilloscope which is connected into the data path after the 

lowpass filter.) 

The parameters required by the training procedure are the vocabulary, the 

number of utterances to be averaged to form each template and (in the case of 

more than one utterance per template) the threshold on distance per frame for 

utterance averaging. Once these have been specified, the training program 

displays one word at a time on the terminal screen and the speaker is prompted 

to utter the word. The training program operates in conjunction with del, in the 

same way that awr does, as described in section 5.2. If each template is to be 

formed from more than one utterance, the system prompts the speaker for more 

utterances of the same word, until two are obtained whose average distance per 
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frame (computed by D'FW alignment) is below the threshold, and then averages 

the cepstral representations of the two utterances; if the number of utterances to 

be used per template is greater than two, further utterances are collected and 

averaged into the template as required. (This utterance collection and averag-

ing procedure is very similar to that incorporated in the retraining facility 

within awr, as described in section 5.2.) Once the template has been formed, the 

training program displays the next word of the vocabulary, and the process is 

repeated. When templates have been formed for all the words of the vocabulary, 

the complete set of templates (consisting of time sequences of cepstral vectors) is 

stored in a file on the computer. 

(Although an option exists in del to allow storage of the sampled data in a 

file between the endpoint detection and LPC analysis stages (as mentioned in 

section 5.4), this option was not used in most of the training and recognition ses-

sions during the collection of the data base described here - partly because the 

writing of sampled data to disc memory slows the operation of del, making the 

session rather tedious for the speaker, and partly because of the large amount of 

disc space (40000 bytes per second, with 20kHz sampling) required for storage of 

sampled speech. The decision to store only the cepstral coefficients has the 

disadvantage that the data base cannot be played back - unless a suitable 

resynthesis program is available - for aural checking.) 

The distance threshold for averaging was set, for each speaker, so that the 

number of extra repetitions required (because of excessive distances between the 

first two utterances) was fairly small. For two-token average templates, the 

average number of training utterances required per template ranged from 2.2 to 

2.5 across different speakers and template sets. 
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The training sessions were conducted in a room containing several com-

puter terminals, and on some occasions there were other people present, working 

at the terminals, besides the speaker and the experimenter. There was continu-

ous background noise from the air conditioning equipment in the adjoining com-

puter room, and there were occasional louder noises such as the opening and 

closing of doors. On one occasion the slamming of a door was detected as a word 

by del and a template was formed from it; this template was replaced, using the 

retraining option in awr, at the beginning of the first recognition session using 

that template set. 

6.2.2: Interactive recognition sessions 

For each speaker and vocabulary, once templates had been formed, several 

recognition sessions were conducted, on different days and at varying times of 

day. The format adopted for most of the recognition sessions (in which the voca-

bulary consisted of the 10 digits and the control words "STOP", "RETRAIN" and 

"CORRECTION") was that of a "data entry simulation", in which a list of digits 

was displayed on the terminal screen and the speaker had to reproduce that list 

by speech input. The interactive recognition system (as described in chapter 5), 

running in one window on a graphics terminal screen, was interfaced to another 

window on the same terminal (using the command facility described at the end 

of section 5.2) so that recognised digits were displayed in the second window and 

the most recently displayed digit was deleted on recognition of "CORRECTION". 

Any indication of rejected input, and any prompting for keyboard input in the 

retraining procedure, appeared only in the first window. Once the complete list 

of digits had been entered, the speaker terminated the session by saying 

"STOP". 
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In some of the recognition sessions for one speaker (speaker 1), a slightly 

different format was adopted, without the interface to the second window; but 

the task was the same - to enter a prespecified sequence of words, using 

"CORRECTION" in cases of misrecognition. In these sessions, the sequence of 

words was read from a sheet of paper, or in some cases from an additional win-

dow on the terminal which allowed scrolling of the text so that each word (or 

group of a few words) was revealed just before it was to be spoken. 

In most cases, the same template set was used for consecutive sessions, for 

a given speaker and vocabulary. Template adaptation was applied during most 

of the recognition sessions; at the end of each adaptive recognition session, the 

adapted templates were stored, and these adapted templates were used in the 

next recognition session. 

Most of the recognition and adaptation parameters were kept constant 

across different sessions. The parameters of the three comparison stages were as 

specified in section 4.4.4 (with the endpoint adjustment technique incorporated 

into the third stage in a few of the earlier sessions); the template elimination 

thresholds t 1  and t2  were set at 1.6 and 1.2 respectively; and the distance ratio 

thresholds r2  and r3  to ensure rejection of unreliably recognised input were set 

at 1.05 and 1.15. (Lower thresholds were tried, but the higher values were 

restored after two recognition sessions because of the danger of errors: the lower 

value of r3  had allowed an utterance of "6", affected by noise, to be recognised as 

"STOP".) The delayed adaptation option was adopted, to allow supervised adap-

tation without explicit verification of each recognition (as described in section 

5.3.1). The adaptation used the tracking form of weighting, with w 0  equal to 

0.2, and incorporated DTW alignment. No negative adaptation was employed. 

Various compensation factors were used; in particular, smaller compensation fac-

tors were applied when the templates in use had already been adapted during a 
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previous session than when they were initially unadapted. 

The environment and conditions for the interactive recognition sessions 

were the same as for the training sessions. Occasions when particular utter-

ances were badly affected by noise (and the words were therefore rejected or 

misrecognised, and had to be repeated) were noted, to allow exclusion of these 

utterances from the data files for subsequent experiments. 

6.2.3: Vocabularies and speakers 

Two vocabularies were adopted for the data collection: the digits ("0" to "9" 

- with "0" pronounced "zero") with the control words "STOP", "RETRAIN" and 

"CORRECTION" (a 13-word vocabulary, denoted by the vocabulary code "F"); 

and a 53-word vocabulary (denoted by "W") consisting of the numbers, days and 

months (as listed in table 4.4) and the three control words. The corresponding 

vocabularies without the control words are denoted by "d" (for the 10 digits) and 

"t" (for the 50 numbers, days and months). The vocabularies including the con-

trol words ("F" and "W") were used in the interactive training and recognition 

sessions, and then utterances of the non-control words (belonging to vocabularies 

"d" and "t" respectively) were extracted from the stored data obtained in these 

sessions to make up the data base for subsequent experiments. 

Four speakers contributed to the data base: two male (speakers 1 and 2) 

and two female (speakers 3 and 4). Speaker 1 was the same as speaker 1 in the 

data base for the segmentation experiments described in section 42. All the 

speakers were members of the Centre for Speech Technology Research, and had 

had some experience of using the isolated word recognition system before the 

collection of this data base; they represented a variety of British accents (two 

being Scottish - speakers 1 and 4 - and the other two English). 
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6.2.4: Details of data base 

The digits portion of the data base consists of utterances by each of the four 

speakers. The "t" vocabulary portion contains utterances by speaker 1 only. 

The digits data base includes two sets of templates for each speaker, 

obtained by the interactive training procedure as specified in section 6.2.1 - one 

consisting of a single utterance of each word, and the other consisting of two-

token averaged templates (one per word). It also includes 500 test utterances 

(50 repetitions of each of the 10 digits) by each of the four speakers. For each 

speaker, the sequence of 500 test utterances consists of 10 repetitions of a stan-

dard 50-digit sequence, devised so that no sequence of two digits occurs more 

than once in it. (The sequence is "2 0 4 15 7 3 9 8 6 5 3 2 1 7 9 4 0 7 6 1 9 5 5 

49278033672450891066348128".) 

In each interactive recognition session using the "data entry simulation" 

format, the standard sequence of 50 digits was displayed as the set of data to be 

entered. Thus 10 sessions were required for each speaker; in each session, the 

input consisted of the specified sequence of 50 digits, with repetitions and utter-

ances of "CORRECTION" and "RETRAIN" where necessary, and an utterance of 

"STOP" to conclude the session. In fact, for speaker 1, not all the sessions had 

this form: the first five repetitions of the 50-digit sequence were collected in six 

sessions (without the two-window data entry simulation), four of which (all on 

the same day) each included only part of the sequence (the four partial 

sequences composing two complete repetitions), and one of which included two 

repetitions of the sequence. For speaker 2, also, one of the repetitions was in 

two sessions (though with only a brief pause between them), because the first 

session ended early through the recognition of "6" as "STOP" (mentioned in sec-

tion 6.2.2 above). Apart from these cases, however, each session provided one 
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complete repetition of the 50-digit sequence, and all sessions for a given speaker 

were on different days. Details of the individual recognition sessions are 

presented in section 6.5. 

Where a session included repetitions of a word in the sequence because the 

first utterance was rejected or misrecognised, the first utterance of the word was 

selected for inclusion in the data base, unless it had been noted as being badly 

affected by noise or endpoint detection failure, in which case the next utterance 

of the word (not marked as noisy or badly detected) was selected instead. In the 

whole 2000-digit data base, four first utterances were excluded as noisy or badly 

detected. 

(The digits data used for the multiple-stage recognition experiments 

already described (section 4.4) consisted of the first six repetitions of the 50-digit 

sequence from each of the four speakers - except for one of the 50-digit subse-

quences for speaker 1: in this case, the 50 utterances used in the multiple-stage 

experiments, which came from three sessions (because of repeated recognition of 

117" as "STOP"), were replaced by another set of 50 utterances when the larger 

data base was constructed.) 

The "t" vocabulary portion of the data base consists of various sequences of 

words provided by speaker 1 in interactive recognition sessions with the "W" 

vocabulary. Some of the sessions used a standard ordering of the 50 non-control 

words, repeated a varying number of times per session; in others, a longer target 

input sequence was generated randomly or to simulate a possible data entry 

task. Several input sequences for subsequent experiments were constructed 

from the utterances collected in these sessions. In particular, six repetitions of 

the standard 50-word sequence, obtained from six recognition sessions over a 

period of nearly two weeks, were concatenated to form the 300-word sequence 

used in the experiments of section 4.4. (This sequence was also used for some 
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further experiments, and is designated "t4" in section 6.3.2.3:)  The rule for 

selecting utterances from the input in cases of repetition was the same as in the 

case of the digits, as stated above. In the construction of the 300-word sequence 

t4 and of the 1000-word sequence t3 (used in the experiments of section 6.3.2.1), 

the number of first utterances excluded by this rule was eight in each case. 

Details of all the "t" vocabulary sessions, and of additional digit recognition ses-

sions with randomly-ordered sequences spoken by speaker 1, are given in section 

6.5. 

6.3: Experiments and results 

6.3.1: Design of experiments 

In experiments with template adaptation, unlike most other forms of iso-

lated word recognition experiments, the order, in which the input utterances are 

presented to the recognition system is significant. Details of the input sequence 

ordering can affect both the recognition accuracy obtained during the adaptive 

recognition and the adaptation of the templates. The recognition of any given 

utterance depends on the current state of the templates, and therefore on the 

adaptations which have occurred to preceding input utterances; and, in turn, 

those adaptations depend on the recognitions of all the input utterances 

presented thus far. Thus, the system's response (both of recognition and of adap-

tation) to any input utterance depends not only on that input utterance itself but 

on the whole sequence of inputs up to and including it. 

An atypical utterance occurring early in the input sequence may cause 

degradation of a template, so that this template does not closely match subse-

quent utterances of the word it is meant to represent, and thus fails to be 

improved by adaptation to them - whereas if the atypical utterance is later in 
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the input sequence it will have less of a harmful effect on the overall recognition 

performance, both because of the smaller number of subsequent utterances (on 

which errors may occur because of the degraded template) and because the tem-

plate may already have been (beneficially) adapted several times before the 

atypical utterance is encountered so that it is more robust against unhelpful 

adaptation. (The latter effect will occur particularly in the case of adaptation 

with the optimisation system of weighting, where the weight on the input in the 

averaging is smaller when the template has been previously adapted.) Also, if 

one word of the vocabulary occurs in the input sequence several times before the 

first occurrence of another word, the template for the former word is liable to be 

adapted several times while the latter word's template is still unadapted, and 

this may affect the overall performance; by contrast, if the input consists of suc-

cessive repetitions of a fixed sequence containing each word of the vocabulary 

once, the progress of the adaptation will tend to be nearly uniform across all the 

words (with the exception of any words whose initial templates correspond too 

poorly to the input utterances for adaptation to occur, or words which are confus-

able with other words in the vocabulary and therefore are often not recognised 

correctly). These effects of input order will cause some variation in the results 

with supervised adaptation; but in the case with unsupervised adaptation the 

effects will be magnified because of the possibility of adaptation to wrongly 

recognised inputs. 

The design of experiments to evaluate a recognition system with template 

adaptation must take this sensitivity to input ordering into account. The varia-

bility of the results according to particular input utterances and their positions 

in the input sequence introduces a high level of statistical "noise" into the 

evaluation. To obtain statistically significant results, therefore, it is necessary 

either to compensate for the fluctuations (for instance by use of the same data in 
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the same order for the testing of different sets of system parameters, or of 

differently adapted templates, so that in the comparative results the effects of 

particular input utterances or sequences are cancelled out) or to overcome them 

by averaging over a large number of trials with different input sequences. In 

practice, to obtain reliable results without requiring an excessive amount of data 

and computation, both of these techniques may have to be combined. 

Another source of variability in the results, which is common to all experi-

mental evaluations of template-based word recognisers, is the choice of the tem-

plate set. To overcome this, it may be necessary to perform experiments using 

several template sets and then average the results obtained (as was done in the 

experiments already described in chapter 4). 

The need for appropriate design of experiments to overcome these forms of 

variability was demonstrated empirically in the course of the work done on tem-

plate adaptation. The experimental design was therefore developed, as the 

research progressed, until a satisfactory level of reliability in the results could 

be attained. 

The two main series of experiments (with the four-speaker digits data base) 

were designed to evaluate the degrees of improvement in the templates attained 

after specified amounts of adaptation. In the first series of experiments, each 

trial consisted of recognition of a specified sequence of utterances, using a 

specified set of (initial) templates, without adaptation and with each of a number 

of sets of adaptation parameters. The differences in recognition accuracy 

between the cases with adaptation and the case without adaptation were found, 

for each successive short section of the input sequence. Each such difference was 

a measure of the improvement in the templates' recognition performance 

attained through adaptation up to the section of the input sequence on which it 

was computed. (This improvement could alternatively have been measured by 
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comparing the results on different (earlier and later) subsequences of the input 

during the adaptive recognition. However, the use of differences between results 

(with and without adaptation) on the same input subsequence has the advantage 

that it eliminates much of the variability in recognition accuracy due to charac-

teristics of the particular utterances in the different input subsequences.) These 

differences were computed for a number of trials, for the different speakers and 

(for each speaker) for different template sets and input sequences. Statistics 

(means and the corresponding standard error estimates) of these differences 

were used to evaluate the effects of the adaptation (according to the procedure 

set out in the appendix). 

In the second series of experiments, a slightly more complicated procedure 

was adopted. This had two phases - an adaptation phase, in which a sequence 

of words was recognised with template adaptation, and at certain points in the 

sequence of input (after specified numbers of recognitions) the adapted templates 

were stored; and an evaluation phase, in which a standard set of input data 

(different from the adaptation input) was recognised using each of the stored 

template sets (including the original set of unadapted templates) in turn, 

without any further adaptation. In this case, the evaluation of the adaptation 

was based on the results obtained in the second phase using the adapted tem-

plates on the standard set of evaluation data. This two-phase procedure has the 

advantage that the results after different amounts of adaptation are more 

strictly comparable, being based on recognition of the same set of evaluation 

data, rather than on the improvements over non-adaptive recognition on 

different input subsequences. Because the recognition in the evaluation phase is 

without continuing adaptation, the evaluation data sequence can contain any 

number of utterances, without loss of resolution on the amount-of-adaptation 

scale (such as would be occasioned by the use of results on longer subsequences 
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in the one-phase procedure used in the first series of experiments). Having a 

large number of utterances in the evaluation data set reduces the level of ran-

dom variability in the evaluation phase. As in the first series, results were 

obtained for a number of template sets and input sequences for each speaker, 

and means and standard error estimates (of the improvements due to adapta-

tion, and of the actual recognition accuracies) were computed over all the trials. 

The number of trials required was smaller with the two-phase procedure, how-

ever, because of the reduced variability of the results from individual trials. 

Because of the significance of the input ordering in adaptive recognition 

(discussed above), and the limited amount and fixed word order of the data col-

lected in the interactive sessions, in most of the experiments random permuta-

tions were applied to the original chronologically-ordered data to obtain the 

input sequences. This allowed different input sequences to be constructed from 

the same set of utterances. A different random reordering was used for each 

trial, but within each trial the same randomly ordered sequence was preserved 

for recognition using all the different sets of adaptation parameters. 

With this random reordering of the input data, detailed chronological infor-

mation is lost. If the randomised input sequence consists of utterances from a 

single interactive session, then any characteristics of the session as a whole are 

retained - and thus the difference between intra-session recognition (with tem-

plates formed from utterances collected on the same occasion) and inter-session 

recognition (with templates from a different session) can be evaluated - but any 

systematic variations with time during the session will be dispersed by the 

reordering and will be indistinguishable from random utterance-to-utterance 

variations. And if the randomised sequence includes utterances from two or 

more sessions on different occasions, both within-session changes and session-to-

session differences will be dispersed. Thus procedures with randomised input 
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ordering do not allow realistic evaluation of the tracking form of adaptation, 

which is designed to track those gradual changes and session-to-session 

differences which are blurred completely by the randomisation. Accordingly, in 

most of the experiments, which used random ordering of the input, only the 

optimisation form of adaptation was evaluated. 

(Some temporal information could be retained in a randomised reordering of 

input by restricting the randomisation to groups of utterances close together in 

time - for instance, by randomising each short subsequence of the utterances 

within a session, and then concatenating the subsequences in their chronological 

order; or, in the multiple-session case, by randomising the order of the utter-

ances within each session and then concatenating the randomised single-session 

sequences. This limited randomisation would entail loss only of local (short-

term) temporal information: any longer-term effects would be preserved. How-

ever, the effectiveness of the randomisation in overcoming the effects of particu-

lar utterances and of a fixed word order would be reduced by these limitations. 

In particular, after randomisation each subsequence would still contain the same 

number of occurrences of each word of the vocabulary as before (unless the ran-

dom rearrangement was accompanied by the omission of some utterances ran-

domly selected from the sequence).) 

In addition to the main series of experiments, some more limited experi-

ments were conducted to explore particular aspects of the adaptation parame-

ters. These included some experiments with data collected by input of randomly 

generated word sequences during the interactive sessions; in these cases, unlike 

those with repetitions of a standard sequence of words as input, more realistic 

evaluation of the tracking form of adaptation was possible, since the distribution 

of words of the vocabulary in the chronologically ordered input sequence had a 

more natural degree of variability. (The results were less general than those 
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from the main series of experiments, however, in that the input was from only 

one speaker). In these experiments, the one-phase procedure, with comparison of 

subsequence results with and without adaptation, was employed, as in the first 

series of experiments with the four-speaker data base. In some cases only the 

overall recognition accuracies, without adaptation and with the adaptation 

parameters under consideration, were measured; this is the simplest case of the 

one-phase procedure, in which there is only one subsequence, consisting of the 

whole input sequence, in each trial. 

6.3.2: Details of experiments and results 

The subsections below (sections 6.3.2.1 to 6.3.2.5) contain details of several 

series of experiments conducted to investigate aspects of template adaptation in 

speaker-specific isolated word recognition. In each section, the results of the 

experiments described are tabulated, and features of these results are discussed. 

The results presented relate mostly to the effects of adaptation on recognition 

accuracy; but section 6.3.2.5 includes also some results as to its effects on the 

computation required per recognition in the three-stage comparison procedure. 

Some results (with adaptation but no compensation) have been published previ-

ously, in the third paper [258] attached at the end of this thesis. Further results 

(as in sections 6.3.2.1 and 6.3.2.5 below) are included in another paper [260] 

whose publication is anticipated during 1988 or 1989. 

The results of some early adaptation experiments (with the tracking form of 

adaptation weighting, and no compensation) with a different data base are given 

in the second of the attached papers [255]. The recognition accuracies obtained 

in these experiments were substantially poorer than those achieved in the later 

experiments, because of errors in the LPC analysis program used during the col- 
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lection  of the earlier data. All the experiments described below were conducted 

with data processed using the corrected analysis. 

6.3.2.1: Estimation of compensation factors 

The initial estimates of the compensation factors to be applied to the dis-

tances for adapted templates (as mentioned in section 5.3) were obtained from 

an examination of the ratios of correct-word distances (on the same input utter-

ances) before and after adaptation, for several sets of digit templates. (The 

adaptation used incorporated the tracking system of weighting, with input 

weight w 0  equal to 0.2.) The compensation factor for a template adapted n times, 

for each value of n from 1 to 4, was made approximately equal to the average 

ratio of the distance before adaptation to the distance after n adaptations of the 

template. The distances and ratios were found for all three comparison stages 

used in the decision procedure. The ratios tended to be slightly smaller (closer 

to 1.0) for the second and third stages than for the simple first-stage comparison, 

implying that the distances obtained at these later stages were altered less by 

adaptation of the templates. However, it was not thought to be worthwhile (in 

view of the increased complexity of the system parameters that would result) to 

specify different compensation factors for distances at the three stages, and so, 

for each class of initial templates, only a single factor was determined for each 

value of n. Three classes of initial template sets were defined: unadapted tem-

plates (formed from utterances on a separate occasion), adapted templates 

(stored after a previous recognition session) and new templates (formed from 

training utterances provided immediately before the input to be recognised). 

The compensation factors used for these three classes of initial templates were 

designated "u", "a" and "n" respectively. The factors for values of n exceeding 4 
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were  extrapolated to continue the trends observed in the factors for the values of 

.'& up to 4. These compensation factors, and others which were defined later, are 

listed in table 6.1. Compensation "a" was adopted for the interactive recognition 

sessions, using adapted templates, in which the digits data base was collected; 

for some of the later interactive sessions this was replaced by compensation "c". 

Recognition tests with various compensation factors were conducted on 

input sequences collected from speaker 1, using several initial template sets in 

each case. The sequences of words collected for these experiments were con-

structed so as to include instances where one word occurred several times before 

the first occurrence of another word, as might happen in most practical applica-

tions of an isolated word recognition system. The data consisted of two repeti-

tions (used separately in the experiments, and denoted by dia and dib) of a 

160-digit sequence obtained from a statistical table, containing different 

numbers of occurrences of the different digits; a randomly ordered 200-digit 

Table 6.1: compensation factors for speaker-specific template adaptation 

Compensation 
code 

Number of adaptations 
1 	2 	3 4 5 6 7 8 

1 1.1 1.15 1.18 1.19 1.2 
a 1.035 1.07 1.09 1.11 1.12 
b 1.03 1.05 1.07 1.08 1.09 
c 1.02 1.035 1.05 1.06 1.07 
d 1.055 1.1 1.14 1.175 1.2 1.22 
e 1.08 1.15 1.21 1.26 1.29 1.31 1.33 
f 1.11 1.2 1.265 1.365 1.395 1.415 1.43 
g 1.12 1.22 1.29 1.35 1.39 1.43 1.45 1.46 
h 1.14 1.25 1.32 1.385 1.43 1.475 1.5 1.51 
i 1.2 1.3 1.36 1.4 1.43 1.475 1.5 1.51 
j 1.16 1.26 1.33 1.39 1.44 1.47 1.5 1.51 
k 1.18 1.26 1.33 1.39 1.44 1.475 1.5 1.51 
n 1.07 1.13 1.19 1.25 1.28 1.3 
u 1.1 1.185 1.25 1.31 1.35 1.38 1.4 
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sequence (0) containing each digit 20 times; a sequence of 300 words from the 

50-word "t" vocabulary (ti), based on a list of sunrise and sunset times, and con-

taining different numbers of occurrences of different words (in particular, each 

month name occurred only once); another 300-word sequence from the "t" voca-

bulary (t2), devised so as to include each word six times; and a randomly gen-

erated 1000-word sequence 43) containing differing numbers of occurrences of 

the words in the "t" vocabulary. In each case, the utterances for use in the 

adaptation and compensation experiments were selected from the input from the 

interactive recognition (as listed in section 6.5) by the method described in sec-

tion 6.2.4, and there was no subsequent reordering of the sequence. (Thus the 

tracking form of adaptation could be tested, as well as the optimisation form.) 

The results of these experiments are given in table 6.2. For each input 

data sequence, results are shown for different classes of initial template sets. In 

the "Templates" column, "1" stands for unadapted single-token templates, "2" for 

unadapted two-token templates and "a" for adapted templates; the number in 

brackets following this template class indicator is the number of template sets 

whose results were averaged to obtain the figures tabulated. The results 

marked with an asterisk (to the left of the adaptation parameters) were obtained 

using threshold settings t1 = 1.4 and t2 = 1.15 in the three-stage comparison; 

those without an asterisk are with t1 = 1.6 and t2 = 1.2. In the "Adaptation" 

column, "trk" stands for the tracking formulation, and "opt" for the optimisation 

formulation; the number following this is the weight on the input in the first 

positive adaptation of each template; and the second number is the weight on 

the input in negative adaptation (if any). The adaptation was supervised in 

each case. The sets of compensation factors are listed in increasing order across 

the table. 
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Table 6.2: results of adaptation compensation experiments 

Input 
(words) 

Templates 
. 

Adaptation 
Compensation factors 

 none 	c 	b 	a d 	n e 	u f 

dia 1 (5) none 97.6 
(160) trk .2 -.05 99.6 99.6 99.6 99.5 

2 (1) none 100.0 
trk .2 -.05 99.4 99.4 99.4 99.4 

dib 1 (5) none 95.25 
(160) trk .2 -.05 99.1 99.0 98.75 98.6 

2 (1) none 98.1 
trk .2 -.05 99.4 99.4 99.4 99.4 

ti 1 (3) none 85.8 
(300) trk .2 -.05 90.3 91.0 90.8 90.9 89.9 88.9 

a(2) none 95.0 
trk .2 -.05 96.5 96.3 95.8 92.5 90.0 

d2 1 (5) * none 97.0 
(200) * trk .15 99.2 99.0 99.0 98.9 98.9 

* trk .2 99.7 99.7 99.6 99.6 99.5 99.5 99.5 99.4 99.4 
* opt .2 98.9 

2 (1) * none 97.5 
* trk .15 99.0 99.0 99.0 99.0 99.0 
* trk .2 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 
* opt .2 98.5 

t2 1 (3) * none 88.8 
(300) * trk .15 89.6 90.6 90.4 90.6 91.0 91.4 

* trk .2 89.7 90.4 91.3 91.4 91.7 92.0 92.2 92.7 92.8 
* trk .25 92.1 92.2 92.6 92.7 
* opt .2 89.8 90.7 91.2 91.7 91.9 92.1 92.6 92.2 92.6 

2M * none 96.7 
* trk .15 97.3 97.0 97.3 97.3 98.0 97.7 
* trk .2 96.7 97.0 97.0 98.0 98.7 98.3 98.0 97.3 97.3 
* trk .25 98.0 97.7 97.7 96.7 
* opt .2 96.7 96.7 96.7 97.0 97.7 97.3 97.0 96.7 96.3 

t3 1 (3) * none 85.3 
(1000) * trk .2 89.0 89.9 91.2 91.5 91.4 

* opt .2 88.9 90.0 89.9 90.7 91.2 
2M * none 93.1 

* trk .2 93.6 94.1 94.4 94.2 94.0 
* opt .2 94.1 94.2 94.1 94.4 94.5 
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The  results in table 6.2 for the "t" vocabulary show improvements in recog-

nition accuracy (over the case with adaptation and no compensation) when 

appropriate compensation factors are applied. In the results on t2 and t3, with 

single-token initial templates, the increase in accuracy due to the compensation 

technique is typically greater than 2%. Smaller and less consistent improve-

ments can be seen in the recognition of U. The confidence - as estimated from 

the differences in the individual template sets' overall accuracies (computed over 

all three "t" input sequences) - that compensation "a" is better than no compen-

sation for the "t" vocabulary when single-token initial templates are used, with 

the tracking form of adaptation and input weight 0.2, is 0.993; the confidence 

that compensation "n" is better than no compensation is 0.97. The results for 

the digits show no such improvements: with small compensation factors, the 

results are the same as with none, and with larger compensation factors the 

accuracies tend to be reduced slightly. This inconsistency between the two voca-

bularies could be associated with characteristics of the words they contain, 

whereby unadapted templates for the "t" vocabulary may be more suboptimal for 

matching new utterances of the words they represent than unadapted digit tem-

plates, so that adaptation can make greater improvements in the distances 

obtained, and hence a greater degree of compensation is appropriate. However, 

it should be noted that the numbers of errors on the digits in all cases of adap-

tive recognition (with and without compensation) are small, and the differences 

among these cases involve different recognitions of only a very few utterances, 

so that the comparative results on this vocabulary are not highly significant. 

Indeed, because of the small numbers of recognition trials conducted (with only a 

single speaker), and the high degree of variability inherent in adaptive recogni-

tion results, all the results in table 6.2 should be treated with caution. 
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A general tendency apparent in the results is that the optimal compensa-

tion factors for two-token or previously-adapted templates are smaller than 

those for (unadapted) single-token templates. This is as might be expected, since 

single-token templates will have greater random deviations from the typical 

forms of the words, and will thus tend to yield larger distances, which can be 

reduced considerably by adaptation of the templates. It is also evident that the 

difference between the accuracies with optimal compensation and with none is 

generally smaller for two-token or previously-adapted templates. 

The results with input weight 0.15 in the adaptation are generally poorer 

than those with input weight 0.2, while those with weight 0.25 are similar to 

those with weight 0.2. The best results with optimisation weighting are in most 

cases slightly poorer than the best results obtained with the tracking form. No 

clear difference in optimal compensation can be seen among the different adap-

tation weightings, though it might have been expected that the optimal compen-

sation factors (for small numbers of adaptations) would increase as the input 

weight increased, since each adaptation would make a greater difference to the 

template. In general, no reliable conclusions about adaptation weighting can be 

drawn from this limited set of experiments. 

Some further comparison of compensation factors was included in the two 

main series of experiments, in which the larger numbers of trials yielded a 

higher level of statistical significance in the results. The results obtained are 

stated in sections 6.3.2.4 and 6.3.2.5. 

The results for successive 200-word subsequences of the 1000-word sequence 

t3, without adaptation, with adaptation (tracking, input weight 0.2) but no com-

pensation, and with adaptation and compensation "u", averaged over the three 

single-token template sets, are plotted in figure 6.1. It can be seen that almost 

the same level of accuracy is attained on the last 600 words with adaptation and 
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Figure 6.1: results for 1000-word sequence from "t" vocabulary 
with and without adaptation and compensation 
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no compensation as with adaptation and optimal compensation, but this level is 

approached more slowly (over the first 400 words) in the case without compensa-

tion. 

6.3.2.2: Experiments with negative adaptation 

Some experiments were conducted with input data sets d2 and t2 (as used 

for the experiments with compensation factors in section 6.3.2.1) to determine 

the effects of adjusting the negative weight on misrecognised input for negative 

adaptation. The results are summarised in table 6.3 (in which the notation 
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Table 6.3: results of negative adaptation experiments 

Input 
(words) Templates emp Positive 

adaptation 
Compens- 
ation 

Input weight for negative adaptation - 
0 	-.025 	-.03 	-.04 	-.05 	-.06 	-.07 

12 1 (5) * trk .2 n 995 994 995 99.5 99.5 
(200) * opt .2 n 98.9 98.9 

2(l) * trk .2 n 995 995 995 995 99.5 
* opt .2 n 98.5 98.5 

2 1 (3) * trk .2 none 89.7 89.9 
300) * trk .2 n 92.0 92.2 92.2 92.4 92.2 	92.3 	92.3 

* opt .2 n 92.1 92.1 
2(l) * trk .2 none 96.7 96.7 

* trk .2 n 98.3 98.3 98.3 98.3 98.3 	98.3 	98.3 
* opt .2 n 97.3 97.3 

adopted is similar to that in table 6.2). Negative adaptation was found to make 

almost no difference to the accuracy on the digit sequence d2 (not surprisingly 

since there were very few misrecognised utterances to adapt away from), and to 

yield a small improvement overall on t2, which was essentially due to the 

improvements attained with one of the three sets of single-token templates. (On 

other sets of templates, the accuracy was in some cases reduced slightly by the 

negative adaptation.) 

Some further comparison of results with and without negative adaptation is 

included in section 6.3.2.4. 

6.3.2.3: Comparison of alignment options in adaptation 

Experiments were conducted with data sets dia, dib and ti (as in section 

6.3.2.1) and with another set of "t" data 44) (as used in the multiple-stage recog-

nition experiments in section 4.4, and described in section 6.2.4), to compare the 

effects of adaptation with linear alignment and with DTW alignment. (All the 

experiments with adaptation reported in the preceding sections used DTW 
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alignment.) The tracking form of adaptation was adopted, with input weight 0.2 

in positive adaptation and -0.05 in negative adaptation. No compensation was 

applied. The elimination thresholds t 1  and t2  in the comparison procedure were 

set to 1.6 and 1.2 respectively. The results are given in table 6.4. The same 

notation for template sets is adopted as in tables 6.2 and 6.3. 

The results for the "t" words show a fairly consistent superiority of DTW 

adaptation to linear adaptation. (For six of the seven "t" template sets used in 

these experiments, the overall average accuracies were better with DTW adapta-

tion than with linear adaptation; for the seventh, the accuracies with the two 

alignment options were identical.) The results on the digits show little 

difference overall between the two forms of alignment, and are less consistent 

across template sets; the significance of the difference due to alignment in these 

digit recognition results is very low. It seems likely that the superiority of DTW 

over linear alignment will in general tend to be greater for vocabularies contain- 

Table 6.4: results of comparison of alignment options in adaptation 

Input 
(words) 

Templates 
Adaptation 

 none linear DTW 
dia 1 (5) 97.6 99.25 •99.6 
(160) 2(l) 100.0 100.0 99.4 

dib 1 (5) 95.25 99.0 99.1 
(160) 2M 98.1 100.0 99.4 

U 1 (3) 85.8 89.7 90.3 
(300) a (2) 95.0 95.3 96.5 

t4 1 (3) 89.0 90.3 90.7 
(300) a (1) 90.0 90.7 92.3  

2M 95.3 96.3 96.7 
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ing long words, since these give more scope for non-linear variations of timescale 

which may result, with linear alignment, in the averaging together of parts of 

different repetitions which are phonetically distinct and acoustically very 

different. 

For the main series of experiments, described in the next two sections, and 

for the experiments with speaker-independent initial templates described in 

chapter 7, the DTW alignment option was adopted. However, it is worth noting 

that the linear alignment option requires an order of magnitude less computa-

tion than the DTW option, and therefore it might in some circumstances be 

worthwhile using linear alignment to gain an improvement in the speed of adap-

tive recognition (at the cost of some loss of accuracy). 

6.3.2.4: First main series of adaptation experiments 

Experiments were conducted, by the one-phase procedure described in sec-

tion 6.3.1, with the four-speaker digits database, to measure the improvements 

in recognition performance (over the case without adaptation) attained during 

adaptive recognition of sequences of 50 digits. 

The first experiments were conducted using the two template sets (of 

single-token templates and of two-token averaged templates) which had been 

formed in interactive training sessions for each speaker. For each of the first 

three speakers, for each template set, each of the 10 50-utterance sequences in 

turn was used as input for recognition, without adaptation and with each of a 

number of adaptation parameter settings. The recognition accuracies on the five 

10-word subsequences of each input set were found, and the differences between 

corresponding subsequence accuracies with adaptive recognition and with non-

adaptive recognition were derived. The overall accuracies for the 50-word 



- 219 -  

sequences, and their differences, were also found. For each speaker and tem-

plate set, the results were averaged over the 10 50-utterance input sequences. 

These results are summarised in table 6.5. 

In the "adaptation" column of the table, "U" stands for unsupervised adap-

tation, and "S" for supervised; "t" for tracking, and "o" for optimisation; the 

number following "t" or "o" is the weight on the input utterance in the first 

adaptation of each template; and the second number is, in the case of unsuper-

vised adaptation, the threshold imposed on the ratio of the best two word dis-

tances as a condition for adaptation, or, in the case of supervised adaptation, the 

weight on the input in negative adaptation. In the cases marked with an aster-

isk, the endpoint adjustment technique was incorporated in the third stage of 

the recognition procedure (and in the adaptation). The template elimination 

thresholds t 1  and t2  were set to 1.6 and 1.1 respectively. (These threshold values 

were retained throughout the subsequent experiments described in this section 

and in section 6.3.2.5.) Compensation "a" (as in table 6.1) was applied in each 

case. For each input sequence or 10-word subsequence, the results given are the 

mean increase in recognition accuracy over the case with no adaptation, over the 

three speakers, and an estimate of the standard error of this mean (considered 

as an estimate of the mean that would be obtained for a population of many 

speakers) computed from the variability of the recognition improvements across 

the speakers. (These experiments were not extended to speaker 4 because it had 

become evident that more template sets per speaker would be required to 

improve the reliability of the results.) 

One feature of these results is that larger and more consistent improve-

ments in accuracy were attained by adaptation in the case of single-token initial 

templates than in that of two-token templates. This was to be expected, since 
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Table 6.5: adaptive recognition results on 50-digit sequences 
using interactively formed template sets 

Template 
sets Adatati pon Mean (standard error) of improvement in 

percentage accuracy over non-adaptive recopiiition 
input subsequence 

1 	2 	3 	4 	5 
overall 

1-token U t .2 (1.15) 0.00 0.33 1.33 1.00 0.00 0.53 
(0.00) (0.29) (0.76) (0.86) (1.32) (0.48) 

U o .2 (1.15) * -0.33 0.00 0.67 1.33 0.33 0.40 
(0.33) (0.00) (0.66) (0.66) (1.20) (0.50) 

S t .2 0 0.00 1.00 1.67 2.67 1.67 1.40 
(0.00) (0.86) (0.58) (0.58) (0.29) (0.23) 

S t .2 -.05 0.00 1.00 2.33 3.00 2.33 1.73 
(0.00) (0.86) (0.58) (0.86) (0.29) (0.55) 

S o .2 0 0.00 1.00 1.67 2.67 1.67 1.40 
(0.00) (0.86) (0.58) (0.58) (0.29) (0.31) 

S o .25 0 0.00 1.33 1.33 3.00 1.33 1.40 
(0.00) (1.16) (0.29) (0.86) (0.29) (0.40) 

2-token U t .2 (1.15) 0.00 0.00 1.00 0.00 0.67 0.33 
(0.00) (0.00) (0.58) (0.58) (0.66) (0.18) 

U o .2 (1.15) 0.00 0.00 1.00 -0.67 0.67 0.20 
(0.00) (0.00) (0.58) (0.88) (0.66) (0.23) 

U o .2 (1.15) * 0.33 0.00 1.33 0.33 1.00 0.60 
(0.33) (0.00) (0.33) (0.88) (1.00) (0.42) 

S t .2 0 0.00 0.00 1.00 0.00 0.33 0.27 
(0.00) (0.00) (0.58) (0.58) (0.88) (0.24) 

S t .2 -.05 0.00 0.00 1.00 0.00 0.67 0.33 
(0.00) (0.00) (0.58) (0.58) (1.20) (0.29) 

S o .2 0 0.00 0.00 1.00 -0.33 0.33 0.20 
(0.00) (0.00) (0.58) (0.66) (0.88) (0.23) 

S o .25 0 0.00 0.00 1.33 -0.33 0.33 0.27 
(0.00) (0.00) (0.33) (0.66) (0.88) (0.29) 

the accuracies without adaptation were poorer for the single-token templates 

(averaging 94.2% over the three speakers) than for the two-token templates 

(which had an average accuracy of 97.8%), thus leaving more room for improve-

ment. 

To improve the reliability of the results, a revised experimental design was 

adopted. For each of the four speakers, 10 template sets were defined, each 
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consisting  of the first occurrences of all the digits in one of the 10 50-digit 

sequences. For each of these template sets, each of the remaining nine 50-digit 

sequences was used as an input sequence. Thus, for each speaker, the results 

could be averaged over 90 trials (instead of only 10 as in the experiments 

without multiple template sets). The results are given in table 6.6. The nota-

tion for adaptation parameters is the same as in table 6.5; again the compensa-

tion factors in each case were those denoted by "a" in table 6.1. The improve-

ments over non-adaptive recognition, for 10-word subsequences and overall, are 

represented by their means and standard error estimates, computed over the 

four speakers. (These results are not directly comparable with those in table 

6.5, because of the inclusion of speaker 4.) The mean and standard error for the 

overall recognition accuracy are also given, for non-adaptive recognition and for 

each case of adaptive recognition. 

The standard error figures in table 6.6, especially those for the overall 

improvements on the 50-digit sequences, are mostly smaller than the 

corresponding standard errors (for single-token templates) in table 6.5. This is 

partly because of the larger number of speakers (since the expected standard 

error of a mean of n samples from a given population is inversely proportional to 

': here n is 3 for the results in table 6.5, and 4 for those in table 6.6); but also 

because the variability is reduced by using a larger number of trials (with 

different template sets) for each speaker. The overall trends in the results are 

similar to those in table 6.5: the improvement over the non-adaptive case tends 

to increase with successive 10-word input sequences, and the improvements are 

generally greater for supervised adaptation than for unsupervised. There is also 

a slight difference between the results (with supervised tracking adaptation) 

with and without negative adaptation, which is consistent across the four speak- 
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Table 6.6: adaptive recognition results on 50-digit sequences averaged 
over 10 template sets per speaker 

Adaptation Mean (standard error) of improvement in 
percentage accuracy over non-adaptive recognition 

	

input subsequence 	
overall 

1 	2 	3 	4 	5 

Mean (s.e.) 
overall 
recognition 
 accuracy 

none 95.633 
(0.69) 

U t .2 (1.15) -0.20 0.56 1.28 1.17 1.03 0.766 96.400 
(0.15) (0.15) (0.17) (0.34) (0.40) (0.13) (0.56) 

U o .2 (1.15) 0.00 0.36 1.00 0.72 0.78 0.572 96.205 
(0.08) (0.07) (0.32) (0.25) (0.25) (0.07) (0.67) 

S t .2 0 -0.20 0.86 1.89 1.75 2.00 1.261 96.894 
(0.14) (0.14) (0.24) (0.46) (0.52) (0.19) (0.51) 

S t .2 -.05 -0.11 1.02 2.03 1.92 2.19 1.411 97.044 
(0.14) (0.21) (0.29) (0.54) (0.62) (0.24) (0.45) 

S o .2 0 -0.20 0.92 1.83 1.67 1.86 1.217 96.850 
(0.14) (0.12) (0.23) (0.38) (0.44) (0.16) (0.55) 

S o .25 0 -0.20 1.00 2.11 1.81 1.92 1.328 96.961 
(0.15) (0.20) (0.16) (0.41) (0.63) (0.19) (0.52) 

ers; the average difference in the overall results is 0.15%, and the estimated 

standard error of this difference is 0.054, so that the confidence that negative 

adaptation improves the recognition is 0.97. The other differences, between the 

results with tracking and with optimisation, and between those with different 

initial input weights (0.2 and 0.25) in the optimisation case, are likewise of low 

significance. The results with adaptation on the first few words of each sequence 

(input subsequence 1) tend to be poorer than without adaptation, as indicated by 

the negative entries in the first column of results; this suggests that the compen-

sation factors used were not optimal. 

Some additional non-adaptive recognition tests were conducted, using the 

10 templates from each session to recognise the remaining 40 words from the 

same session, so as to obtain a comparison of within-session recognition (tern- 

plates and input from the same session) and cross-session recognition (templates 
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from one session and input from another - as in the preceding experiments). 

The average within-session recognition accuracy was 96.25%; this was 0.55% 

higher than the average cross-session accuracy on the same input data, but this 

difference is not very significant (its standard error, assessed from the distribu-

tion of the single-speaker average differences, being 0.49, which yields 

confidence 0.83). 

Although the variability of the results is reduced, and thus the reliability of 

the comparative results is improved, by the use of multiple template sets, there 

remain some fluctuations from one subsequence number to another. For 

instance, for each set of adaptation parameter values, the average improvement 

on the fourth 10-word subsequence in table 6.6 is smaller than that on the third 

subsequence. This could be an effect of the fixed order of the input utterances 

(in each set of 50) used for all the 10 template sets. To eliminate this effect, a 

further refinement of the experimental procedure was adopted. For each 50-

utterance input set, nine random permutations of the 50 digits were defined. 

(These were different for each input set.) Before recognition of the input utter-

ances using the nth of the nine template sets derived from the other data sets, 

the nth of the nine permutations was applied to rearrange the input sequence. 

The results with the randomly ordered input sequences are presented in 

table 6.7. The notation for adaptation parameters is the same as in tables 6.5 

and 6.6. The results in the first few lines of table 6.7 are those obtained with 

the same combinations of adaptation and compensation parameters as in the 

preceding experiments without random ordering. The remaining results are 

those with fixed sets of adaptation parameters (unsupervised and supervised 

adaptation, incorporating the optimisation weighting in each case) and various 

sets of compensation factors. (As was noted previously, randomly reordered 

input sequences do not permit realistic evaluation of the tracking form of 
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Table 6.7: adaptive recognition results on randomly ordered 
50-digit sequences (averaged over 10 template sets per speaker) 

Adaptation 
and 
compensation 

Mean (standard error) of improvement in 
percentage accuracy over non-adaptive recognition 

input subsequence 
1 	2 	3 	4 	 overa 

Mean (s.c.) 
overall 
recognition 
accuracy 

S t .2 0 a 0.16 0.86 1.17 1.48 2.22 1.178 96.811 
(0.10) (0.18) (0.23) (0.31) (0.16) (0.10) (0.59) 

S t .2 -.05 a 0.16 0.89 1.20 1.70 2.33 1.256 96.889 
(0.10) (0.16) (0.19) (0.31) (0.27) (0.12) (0.57) 

S o .2 0 a 0.22 0.95 1.14 1.34 2.14 1.155 96.789 
(0.16) (0.13) (0.21) (0.27) (0.19) (0.07) (0.62) 

S o .25 0 a 0.19 0.89 1.17 1.59 2.22 1.211 96.844 
(0.09) (0.14) (0.22) (0.31) (0.14) (0.11) (0.59) 

U t .2 (1.15) a 0.03 0.33 0.42 0.97 1.58 0.667 96.300 
(0.16) (0.16) (0.19) (0.22) (0.14) (0.04) (0.71) 

U o .2 (1.15) a 0.08 0.36 0.34 0.56 1.00 0.467 96.100 
(0.13) (0.19) (0.16) (0.39) (0.31) (0.15) (0.70) 

S o .25 -.05 none -0.14 0.22 0.44 0.67 1.47 0.533 96.167 
(0.09) (0.29) (0.45) (0.20) (0.19) (0.17) (0.63) 

S o .25 -.05 a 0.22 0.86 1.22 1.59 2.25 1.228 96.861 
(0.07) (0.09) (0.23) (0.31) (0.16) (0.12) (0.58) 

S o .25 -.05 d 0.45 1.11 1.41 1.89 2.55 1.483 97.117 
(0.14) (0.20) (0.32) (0.26) (0.25) (0.15) (0.54) 

S o .25 -.05 n 0.39 1.28 1.67 2.03 2.72 1.617 97.250 
(0.11) (0.30) (0.32) (0.33) (0.33) (0.20) (0.49) 

S o .25 -.05 u 0.47 1.53 1.81 2.08 2.75 1.728 97.361 
(0.16) (0.36) (0.41) (0.32) (0.27) (0.22) (0.48) 

S o .25 -.05 f 0.45 1.53 1.86 2.14 2.78 1.750 97.383 
(0.19) (0.36) (0.35) (0.34) (0.30) (0.21) (0.49) 

S o .25 -.05 g 0.50 1.45 2.00 2.14 2.81 1.778 97.411 
• (0.19) (0.38) (0.41) (0.32) (0.33) (0.24) (0.46) 

S o .25 -.05 h 0.42 1.53 2.03 2.20 2.83 1.799 97.433 
(0.09) (0.38) (0.49) (0.30) (0.32) (0.26) (0.46) 

U o .2 (1.15) none -0.34 -0.64 -0.61 -0.58 -0.56 -0.544 95.089 
• (0.14) (0.20) (0.16) (0.26) (0.14) (0.11) (0.72) 

U o .2 (1.15) d 0.05 0.67 0.70 1.02 1.59 0.805 96.439 
(0.09) (0.08) (0.14) (0.32) (0.34) (0.13) (0.65) 

U o .2 (1.15) n 0.08 0.81 0.95 1.28 1.97 1.016 96.650 
(0.09) (0.16) (0.17) (0.30) (0.19) (0.10) (0.63) 

U o .2 (1.15) u 0.11 0.86 1.28 1.56 2.08 1.178 96.811 
(0.13) (0.20) (0.32) (0.20) (0.14) (0.11) (0.59) 

U o .2 (1.15) f 0.16 0.86 1.28 1.64 2.06 1.200 96.834 
(0.09) (0.20) (0.34) (0.20) (0.17) (0.12) (0.58) 

U o .2 (1.15) g 	• 0.16 0.86 1.22 1.64 2.08 1.194 96.827 
(0.13) (0.20) (0.34) (0.16) (0.25) (0.12) (0.57) 

U o .2 (1.15) h 0.05 0.84 1.27 1.61 2.03 1.161 96.794 
(0.14) (0.26) (0.39) (0.15) (0.16) (0.18) (0.52) 
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adaptation; but the randomised word order does allow a better comparison of 

different settings of the compensation factors than a fixed word order would.) 

For each set of adaptation parameters, the results with different compensation 

factors are listed in increasing order of the amount of compensation. 

The results without adaptation on the randomly ordered input are identical 

to those in table 6.6: in non-adaptive' recognition, the order of the input utter-

ances makes no difference to the overall recognition accuracy. 

The results with compensation "a" in table 6.7 are broadly similar to the 

corresponding results in table 6.6. The main differences are, firstly, that the 

overall improvements in recognition accuracy are smaller for the randomly 

ordered input, and, secondly, that the irregular variations across input subse-

quences, and the standard errors (estimated from the variations across speakers) 

for individual subsequence numbers, are reduced by the random reordering. The 

first of these differences is accentuated by the fact that the compensation factors 

have values smaller than the optimal ones: with optimal compensation factors, 

the advantage of the more regular word order over the random orders should be 

smaller. The reduction of the level of variability in subsequence results, due to 

the use of multiple random orderings of the input data, allows the underlying 

trend of increasing improvement with successive subsequences to be seen more 

clearly in table 6.7 than in table 6.6: in table 6.7 the improvement due to adap-

tation nearly always increases from one subsequence number to the next. The 

difference between corresponding supervised adaptation results with and 

without negative adaptation is smaller than in table 6.6, but still fairly 

significant: the mean difference is 0.077%, and the standard error is 0.03, yield-

ing the conclusion that negative adaptation improves recognition with confidence 

0.96. 
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The results with different compensation factors reveal the importance of 

appropriate compensation for optimal performance. With no compensation, the 

recognition of randomly ordered input is consistently degraded (relative to the 

case without adaptation) by unsupervised adaptation, and is improved by only 

about 0.5% over the 50-word input sequence by supervised adaptation. With 

optimised compensation, an improvement of 1.2% is attained using unsupervised 

adaptation, and the improvement with supervised adaptation is increased to 

1.8%. (The optimal compensation factors are greater for the supervised adapta-

tion case than for the unsupervised, probably because the weight assigned to the 

input, relative to the weight on the initial template, in the adaptation is greater; 

but the differences in performance among compensation settings "u", "f", "g" and 

are small, and of low significance, in each case.) The average improvement 

on the fifth 10-word input subsequence (with optimal compensation) is about 

2.1% using unsupervised adaptation, and 2.8% using supervised adaptation. 

This level of improvement is approached more gradually, over the earlier subse-

quences, with unsupervised adaptation than with supervised adaptation. (This 

may be partly an effect of the larger weight on the input in the supervised adap-

tation in these experiments; but the same difference in the rates of progress of 

unsupervised and supervised adaptation can be seen in the results with compen-

sation "a" where the same weighting was used for both. There is a case for 

keeping the input weight small in unsupervised adaptation because of the possi-

bility of adaptation to wrongly recognised inputs.) The improvements, on the 

fifth subsequences and overall, due to adaptation (supervised or unsupervised) 

with optimal compensation are highly significant: the confidence that the adap-

tation improves the recognition ranges from 0.997 to 0.9994. 

The variation across speakers in the actual percentage recognition accuracy 

obtained is reduced by adaptation; and more so as the compensation factors are 
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improved - whereas the variation across speakers in the improvement over the 

non-adaptive case is not generally reduced. This is particularly evident in the 

supervised adaptation results. Here, with no compensation, the standard error 

of the recognition accuracy (as estimated from the variation across speakers) is 

0.63, and the standard error of the improvement over non-adaptive recognition 

is 0.17; with compensation "n", these figures are reduced and increased (respec-

tively) to 0.49 and 0.20; with -compensation "h", they become 0.46 and 0.26. This 

indicates that, when the adaptation and compensation settings are optimised, 

the improvement in recognition accuracy due to the adaptation tends to be 

greater for a speaker whose recognition rate without adaptation was poorer - 

which is a desirable feature of the adaptive system. 

Figure 6.2: results for 50-digit sequences without adaptation 
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The results for the individual speakers, together with the averaged results, 

are plotted in figures 6.2 to 6.6, for the case without adaptation and for the cases 

of supervised and unsupervised adaptation, without compensation and with 

optimised compensation. In each of these figures, the results marked by the 

numbers from 1 to 4 are those for the respective speakers, and the line 

represents the results averaged over the speakers. It can be seen from a com-

parison of these figures that the improvements, with adaptation and optimised 

compensation factors, over the case without adaptation, and over the case with 

adaptation but no compensation, are consistent across the four speakers. The 

plots also confirm that the improvement due to adaptation (with optimal com-

pensation) is greater for a speaker with poor non-adaptive performance: without 

adaptation, the recognition of speaker 3's utterances was poorer (averaging 

93.58%) than the recognition for the other speakers (whose average accuracies 

ranged from 96.18% to 96.51%), but with adaptation this gap was narrowed, and 

the respective overall accuracies were 96.13% and 97.60%-98.29% in the case of 

supervised adaptation, and 95.04% and 97.36%-97.44% with unsupervised adap-

tation. 

6.3.2.5: Second main series of adaptation experiments 

Further experiments were conducted, with the same four-speaker digits 

data base, using the two-phase procedure described in section 6.3.1, to measure 

the effects of adaptation over longer sequences of input utterances. As in the 

preceding experiments, 10 template sets were used for each speaker, derived 

from the first occurrences of the digits in the 10 50-word sequences. For each 

template set, the input data for adaptive recognition consisted of the 450 utter-

ances (45 of each digit) from the other nine 50-word sequences. In each trial, 
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Figure 6.3: results for 50-digit sequences with supervised adaptation 
and no compensation 
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Figure 6.4: results for 50-digit sequences with supervised adaptation 
and compensation "h" 
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Figure 6.5: results for 50-digit sequences with unsupervised adaptation 
and no compensation 
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Figure 6.6: results for 50-digit sequences with unsupervised adaptation 
and compensation "u" 
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the 450 utterances were randomly reordered and recognised with and without 

adaptation; during the adaptive recognition, the adapted templates were stored 

after every multiple of 10 recognitions up to 100, and also after 150, 200 and 

250 recognitions; and the improvements in the templates were evaluated by 

using each adapted template set (and the original unadapted template set) to 

recognise the last 200 input utterances. This procedure was applied twice for 

each set of initial templates, with two different random orders of the same 450 

input utterances. (Different random orders were used for all the different initial 

template sets.) 

In each trial, several sets of adaptation (and compensation) parameter 

values were tested, including both supervised and unsupervised adaptation. The 

optimisation form of weighting was adopted in every case, because the experi-

mental design with random reordering of the input data was unsuitable for the 

evaluation of the tracking form. The sets of parameter values included two of 

those used in the previous experiments (those denoted in table 6.7 by "S o .25 

-.05 u" and "U o .2 (1.15) u"), and also some others with larger input weights (or 

equivalently, smaller weights on the initial templates). 

During the adaptation phase of each trial, a list of adaptation counts was 

stored for use with each set of adapted templates: for each template, the number 

stored was the number of times that template had been (positively) adapted so 

far. In the evaluation phase, these adaptation counts were read in along with 

the templates, and compensation factors were assigned to the templates accord-

ingly. 

• In these experiments, the main evaluation was based on the results of the 

(non-adaptive) recognition of the last 200 input utterances, following the adap-

tive recognition phase. However, the recognition results obtained on 10-

utterance subsequences during the adaptive recognition were also computed. 
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These allow comparison of the effects of adaptation in these experiments with 

those in the first series of experiments (as presented in table 6.7). The results 

on the first 10 10-word subsequences, and on the full 450-word sequences, are 

given in table 6.8. 

A comparison of the results for the first five 10-digit subsequences in table 

6.8 with the corresponding results in table 6.7 reveals that the improvements in 

table 6.8 are consistently smaller. There are two factors which may contribute 

to this effect. 

Firstly, the results in table 6.8 are for input sequences composed of utter-

ances from nine different interactive sessions, rather than single-session input 

Table 6.8: adaptive recognition results on randomly ordered 
450-digit sequences (averaged over 10 template sets per speaker) 

Adaptation 
and 
compensation 

Mean (standard error) of improvement in 
percentage accuracy over non-adaptive recognition 

(10-digit) input subsequence 	
overall 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

Mean (s.e.) 
overall 
recognition 
accuracy 

none 95.633 

(0.688) 

S o .25 -.05 	u 0.38 	0.75 	1.25 	1.25 	1.63 	2.13 	2.00 	3.25 	2.63 	2.88 2.684 98.317 
(0.43) (0.60) (0.66) (0.66) (0.38) (0.32) (0.94) (0.48) (0.69) (0.13) (0.352) (0.340) 

S o .5 -.05 	h 0.00 	0.13 	1.50 	1.62 	1.75 	1.38 	2.13 	3.25 	2.62 	2.50 2.691 98.325 
(0.36) (0.65) (0.36) (0.87) (0.43) (0.52) (0.63) (0.48) (0.78) (0.29) (0.285) (0.404) 

S o .5 -.05 	j -0.13 -0.38 	1.50 	1.50 	1.50 	1.25 	1.88 	3.25 	2.88 	2.37 2.636 98.270 

(0.13) (0.43) (0.21) (0.82) (0.54) (0.43) (0.85) (0.48) (0.72) (0.24) (0.305) (0.386) 
S o .5 -.05 	i -0.38 	0.00 	1.50 	2.00 	1.75 	1.50 	2.00 	3.25 	2.75 	2.50 2.633 98.267 

(0.38) (0.89) (0.21) (0.64) (0.43) (0.54) (0.64) (0.48) (0.83) (0.29) (0.315) (0.382) 

U o .2 (1.15) 	u -0.13 	0.38 	0.88 	1.00 	1.13 	1.50 	0.87 	2.87 	2.25 	2.00 2.236 97.869 
(0.24) (0.38) (0.38) (0.73) (0.24) (0.21) (0.52) (0.56) (0.78) (0.45) (0.178) (0.528) 

U o .25 (1.15) u 0.13 	0.50 	1.00 	0.88 	0.75 	1.50 	1.00 	2.75 	2.25 	1.88 2.119 97.753 
(0.24) (0.36) (0.68) (0.75) (0.14) (0.29) (0.36) (0.66) (0.78) (0.65) (0.093) (0.645) 
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sequences. With a randomised multiple-session input sequence, at any point in 

the adaptive recognition process, the correct template will not, in general, 

correspond so well to the current input utterance as in the case of single-session 

input, since any previous utterances on which it has been adapted were not 

necessarily from the same session. 

Secondly, in the cases in table 6.8, the numbers of occurrences of the 

different digits during the first 50-digit subsequence are likely to be unequal, so 

that the adaptation proceeds more unevenly than in the cases in table 6.7 

(where each 50-digit sequence contains exactly five occurrences of each of the 

digits). Even with appropriate compensation, it may be expected that adapta-

tion which proceeds unevenly across the vocabulary will not improve the overall 

recognition as much as adaptation which is more evenly spread. 

In the first of these respects, the results in table 6.7 are more realistic than 

those in table 6.8: normally, in practical use of a recognition system, successive 

utterances will be spoken on the same occasion, with only occasional longer gaps 

in the chronological sequence. In the second respect, however, the results in 

table 6.8 are more realistic. 

The results from the evaluation phase of the second series of experiments 

are set out in tables 6.9 and 6.10. The figures in table 6.9 are the means and 

standard errors (computed, as usual, from the average results for individual 

speakers) of the improvements in accuracy on the sequences of 200 evaluation 

utterances resulting from prior adaptation of the templates. Those in table 6.10 

are the means and standard errors of the actual accuracies obtained on the 

evaluation data. 

The compensation factors applied to the adapted templates' distances dur-

ing the evaluation phase were the same as those applied (after the same 
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Table 6.9: improvements in digit recognition accuracy resulting from prior 
adaptation of templates (averaged over 10 template sets per speaker) 

Adaptation 
and 
compensation 

Mean (standard error) of improvement in 
percentage accuracy after adaptation 

number of input utterances for adaptation 
10 	20 	30 	40 	50 	60 	70 	80 	90 	100 	150 	200 	250 

S o .25 -.05 	u 0.78 	1.26 	1.43 	1.90 	2.14 	2.22 	2.42 	2.52 	2.54 	2.65 	2.72 	2.77 	2.79 
(0.09) (0.15) (0.10) (0.21) (0.19) (0.22) (0.24) (0.26) (0.29) (0.32) (0.35) (0.40) (0.44) 

S o .5 -.05 	h 0.56 	1.09 	1.43 	1.84 	2.04 	2.36 	2.51 	2.60 	2.64 	2.71 	2.79 	2.82 	2.84 
(0.14) (0.26) (0.18) (0.25) (0.18) (0.20) (0.21) (0.24) (0.26) (0.27) (0.31) (0.35) (0.39) 

S o .5 -.05 	j 0.48 	1.16 	1.46 	1.88 	2.10 	2.39 	2.53 	2.60 	2.67 	2.73 	2.79 	2.82 	2.84 
(0.15) (0.23) (0.18) (0.27) (0.20) (0.23) (0.23) (0.24) (0.27) (0.28) (0.31) (0.35) (0.40) 

S o .5 -.05 	(j) k 0.34 	1.16 	1.49 	1.92 	2.12 	2.38 	2.54 	2.60 	2.68 	2.72 	2.79 	2.82 	2.83 
(0.15) (0.20) (0.21) (0.26) (0.20) (0.23) (0.23) (0.24) (0.27) (0.28) (0.31) (0.35) (0.40) 

S o .5 -.05 	i 0.22 	1.04 	1.51 	1.95 	2.16 	2.43 	2.54 	2.59 	2.66 	2.71 	2.78 	2.78 	2.78 
(0.22) (0.16) (0.20) (0.25) (0.21) (0.25) (0.24) (0.25) (0.30) (0.32) (0.34) (0.38) (0.43) 

U o .2 (1.15) 	u 0.52 	0.86 	1.03 	1.36 	1.63 	1.68 	1.95 	2.07 	2.18 	2.23 	2.36 	2.39 	2.39 
(0.13) (0.13) (0.06) (0.10) (0.04) (0.13) (0.12) (0.06) (0.12) (0.11) (0.17) (0.20) (0.24) 

U o .25 (1.15) u 0.60 	0.94 	1.14 	1.36 	1.69 	1.67 	1.91 	2.01 	2.10 	2.15 	2.12 	2.17 	2.16 
(0.11) (0.14) (0.06) (0.12) (0.06) (0.11) (0.15) (0.11) (0.10) (0.06) (0.04) (0.11) (0.16) 

Table 6.10: digit recognition accuracies with unadapted and adapted templates 
(averaged over 10 initial template sets per speaker) 

daptation 
Lnd 
:ompensation 

Mean (standard error) of percentage accuracy after adaptation 

number of input utterances for adaptation 
0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100 	150 	200 	250 

o .25 -.05 	u p5.84 96.61 97.10 97.27 97.74 97.98 98.06 98.26 98.36 98.38 98.49 98.56 98.61 98.63 
(0.74) (0.76) (0.59) (0.65) (0.54) (0.60) (0.58) (0.57) (0.54) (0.50) (0.45) (0.44) (0.38) (0.36) 

1 o .5 -.05 	h p5.84 96.39 96.93 97.27 97.68 97.88 98.19 98.35 98.44 98.48 98.55 98.63 98.66 98.68 
(0.74) (0.76) (0.57) (0.60) (0.50) (0.60) (0.59) (0.61) (0.58) (0.53) (0.50) (0.47) (0.44) (0.39) 

o .5 -.05 	j 35.84 96.31 97.00 97.30 97.71 97.94 98.23 98.37 98.44 98.51 98.57 98.63 98.66 98.68 
(0.74) (0.77) (0.59) (0.61) (0.49) (0.59) (0.58) (0.61) (0.58) (0.52) (0.50) (0.47) (0.44) (0.39) 

o .5 -.05 	O)k 95.84 96.18 97.00 97.33 97.76 97.96 98.22 98.38 98.44 98.52 98.56 98.63 98.66 98.67 
(0.74) (0.79) (0.60) (0.59) (0.49) (0.59) (0.59) (0.61) (0.58) (0.51) (0.50) (0.47) (0.44) (0.39) 

o .5 -.05 	i D5.84 96.06 96.88 97.35 97.79 98.00 98.27 98.38 98.43 98.49 98.54 98.61 98.62 98.62 
(0.74) (0.80) (0.60) (0.59) (0.51) (0.60) (0.56) (0.57) (0.56) (0.48) (0.47) (0.44) (0.42) (0.38) 

J 

 

o.2(1.15)  ii 5.84 96.36 96.70 96.87 97.19 97.47 97.51 97.79 97.91 98.01 98.07 98.20 98.23 98.23 
(0.74) (0.67) (0.64) (0.70) (0.73) (0.77) (0.85) (0.80) (0.77) (0.64) (0.64) (0.58) (0.55) (0.53) 

J o .25 (1.15)u D5.84 96.44 96.78 96.98 97.19 97.52 97.51 97.75 97.84 97.94 97.99 97.96 98.01 98.00 
(0.74) (0.70) (0.62) (0.70) (0.68) (0.73) (0.79) (0.82) (0.81) (0.70) (0.70) (0.71) (0.66) (0.64) 
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numbers of adaptations) during the adaptation phase, except for one case where 

compensation "j" was used in the adaptation phase but was replaced by compen-

sation "k" in the evaluation phase. (This was done in order to compare the two 

sets of compensation factors without having to run the computationally intensive 

adaptation phase twice.) 

It is clear from tables 6.9 and 6.10 that the recognition accuracy attained 

increases progressively as the templates are adapted. The average increase in 

accuracy after adaptation on 250 utterances was 2.84%, from 95.84% to 98.68%, 

in the best cases of supervised adaptation; or 2.39%, from 95.84% to 98.23%, in 

the better of the two unsupervised adaptation cases. In each case, more than 

half of this improvement was attained over the first 30 or 40 input utterances 

for adaptive recognition, and after 100 inputs the accuracy improved only 

slightly (by less than 0.2%) with continuing adaptation to the next 150 inputs. 

This suggests that, in general, if the size of the vocabulary to be recognised is V, 

and the words occur randomly with equal probability in the input sequence, and 

there is no significant "drift" (systematic change) in the speaker's voice and 

pronunciations over the period of use of the recogniser, near-optimal perfor-

mance will be attained after adaptive recognition of about 10V utterances. 

The improvement was greater and more rapid with supervised adaptation 

than with unsupervised, on the whole. The advantage of supervised adaptation 

over unsupervised was fairly, but not entirely, consistent across different speak-

ers and amounts of input. The mean difference in the results after 250 inputs, 

between the supervised case with weight 0.5 and compensation "j" and the unsu-

pervised case with weight 0.2 and compensation "u", was 0.44%, and the 

estimated standard error of this difference was 0.17, yielding a confidence of 0.96 

for the superiority of the supervised adaptation; for the more directly compar-

able results with weight 0.25 and compensation "u", the result after supervised 
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adaptation  was on average 0.63% better, and the standard error estimate was 

0.31, yielding confidence 0.93. 

For supervised adaptation, two weighting options were evaluated. The case 

with input weight 0.25 in the first adaptation corresponds to giving three times 

as much weight to the initial template as to each input utterance, whereas input 

weight 0.5 corresponds to equal weighting of all utterances (given that each ini-

tial template is derived from a single utterance). The latter case should produce 

the optimal estimates of the speaker's typical realisations of the words, after any 

specified amount of input. However, it can be seen from the results that the 

improvement attained after the first 10 inputs is greater with input weight 0.25, 

and it is only after larger amounts of input that the equal-weighting option 

begins to yield an advantage. The difference between the results after 10 inputs 

with the different weights is consistent across the four speakers: the mean 

difference is 0.22% (with compensation factors "h" and "u") or 0.30% ('j" and 

"u"), and the estimated standard error of this difference is 0.06 (in either case), 

giving confidence 0.98 or 0.99 respectively. The differences after larger amounts 

of adaptation input are smaller and less consistent. It should be noted that the 

results with input weight 0.25 may not be optimal for that weight value, since 

the compensation factors used were not optimised. With input weight 0.5, com-

pensation "j"  appears to be nearly optimal over long input sequences, though the 

results with compensation "h" or "k" are very similar, especially after 20 or 

more input utterances. 

For unsupervised adaptation, initial input weight values of 0.2 and 0.25 

were tested. After up to 50 input utterances, the larger weight yielded a greater 

improvement, but after longer input sequences the results with the smaller 

input weight were better on average. The danger in having a large input 

weight in unsupervised adaptation is that adaptation to a misrecognised input 
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may seriously corrupt a template, and result in repeated occurrences of the same 

misrecognition, and hence repeated incorrect adaptations. With the smaller 

weight on the input, the total number of incorrect adaptations occurring (for all 

speakers, over the 450 inputs in each trial: 36000 recognitions in all) was 256; 

with the larger weight, it was 303. The main component of the difference 

between these numbers came from one instance of instability, for the third tem-

plate set for speaker 3, where "0" was repeatedly recognised as "7" and hence 

the "7" template was repeatedly adapted to utterances of "0". (With the smaller 

input weight, this happened with only one of the two input sequence orderings, 

but with the larger weight it occurred with both of them.) The statistical 

significance of the comparison of weight values on the basis of these experiments 

is moderate (the mean difference in accuracy after 250 inputs was 0.23%, and its 

estimated standard error was 0.11, yielding confidence 0.94); but it seems rea-

sonable to suppose that there will be some initial input weight value (which may 

be 0 or some positive number) above which the risk of instability increases. 

As in the previous series of experiments (section 6.3.2.4), the improvements 

attained through adaptation were greatest for the speaker (speaker 3) who had 

the poorest recognition accuracy without adaptation. This is revealed in the 

standard error figures in tables 6.9 and 6.10, especially those for recognition 

after supervised adaptation. As the adaptation progresses, the variability across 

speakers in the actual percentage recognition accuracy (table 6.10) is reduced, 

whereas the variability in the improvement due to adaptation (table 6.9) 

increases because the improvement for the worst-recognised speaker becomes 

increasingly greater than the improvements for the other speakers. This ten-

dency for the individual speakers' results to be pulled closer together can be seen 

also in figures 6.7 and 6.8, where results with supervised adaptation and with 

unsupervised adaptation are plotted against numbers of input utterances. The 
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Figure 6.7: results after supervised adaptation on up to 250 digits 
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Figure 6.8: results after unsupervised adaptation on up to 250 digits 
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factors by which the speakers' recognition error rates were reduced after super-

vised adaptation (on 250 inputs) ranged from 2.6 (speaker 3: 6.38% to 2.45%) to 

5.1 (speaker 1; 3.58% to 0.70%); after unsupervised adaptation, from 1.9 (speaker 

3: 6.38% to 3.35%) to 3.1 (speaker 2: 3.45% to 1.12%). (It can be seen from these 

results that, although the absolute difference in recognition accuracy, or 

equivalently in error rate, due to adaptation was greatest for speaker 3, whose 

results with unadapted templates were poorest, the proportional reduction in 

error rate for this speaker was the smallest.) 

As well as improving the accuracy of recognition, adaptation of the tem-

plates reduces the numbers of templates matched against the input at the second 

and third stages of the recognition procedure, and thus improves the speed of 

recognition. The numbers of template matches per recognition at the second and 

third stages (in the evaluation phase of the experiments) are plotted against the 

number of utterances for adaptation, for the best cases of supervised and unsu-

pervised adaptation, in figures 6.9 and 6.10. (The results plotted are for only 

one of the two random orders of input, for each template set; but the effects of 

adaptation are quite consistent across different speakers and template sets, and 

should likewise be consistent across different input orders for the same template 

sets.) The saving in computation due to this effect of adaptation is still less than 

the extra computation required for the adaptation itself. Thus, while adaptive 

recognition should become slightly faster as it proceeds, it will still take more 

computation than non-adaptive recognition, unless the adaptation is switched off 

after a while (as it was between the adaptation and evaluation phases of these 

experiments), or unless the faster linear alignment option is used in the adapta-

tion. 
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Figure 6.9: second and third stage matching statistics 
with supervised adaptation 
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Figure 6.10: second and third stage matching statistics 
with unsupervised adaptation 
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6.4:  Discussion of speaker-specific template adaptation results 

Some comments on specific results have already been given, alongside the 

results, in section 6.3.2. The following remarks summarise the findings of the 

experiments in more general terms. 

Firstly, it is clear from the results that adaptation can substantially 

improve speaker-specific templates which are initially derived from one or two 

utterances of each word. After several adaptations of each template, using the 

optimisation weighting, the recognition error rate with the adapted templates is 

typically about half what it would be with the unadapted templates, if each of 

these is derived from a single training utterance. In some cases considerably 

more than half of the errors are eliminated (e.g. for speakers 1, 2 and 4 in the 

digit recognition experiments). Smaller improvements have been observed for 

two-token initial templates (as shown in tables 6.2 and 6.5). The exact degree of 

improvement attained will depend on many variables, such as the incidence of 

confusable word pairs in the vocabulary, the representativeness of the initial 

training data, the consistency of the speaker and the variability of background 

noise. Greater improvements can be achieved when the adaptation is super-

vised, since stability can be ensured without the imposition of a threshold condi-

tion which restricts the occurrences of adaptation. However, substantial 

improvements have been demonstrated with unsupervised adaptation. When 

the adaptation is unsupervised, instabilities are liable to occur occasionally, in 

which particular misrecognitions and wrong adaptations occur repeatedly; to 

correct this, a retraining facility should be provided. 

Secondly, for the attainment of the optimal improvement with adaptation it 

is important that appropriate compensation factors be applied to the word dis- 

tances, to allow for the tendency for adapted templates' distances to be smaller 
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than those for unadapted templates. The values of the optimal compensation 

factors will depend on the adaptation weighting. In the above experiments 

(using optimisation weighting), the best results with supervised adaptation were 

obtained with initial input weight 0.5 (equal weighting of all training and adap-

tation data) and the compensation factors identified (in table 6.1) as "j";  the best 

results with unsupervised adaptation were with initial input weight 0.2 and 

compensation "f". 

Where the adaptation is supervised, negative adaptation to misrecognised 

inputs, with a small negative weight on the input, appears to yield a slight 

enhancement of accuracy; from the experiments conducted, the statistical 

significance of this result is moderate. 

Two basic types of weighting were formulated for use in template adapta-

tion: the tracking form and the optimisation form. Because of the experimental 

design using randomly permuted input sequences, only the optimisation form 

has been thoroughly evaluated in these experiments. Some limited experiments 

were conducted with tracking adaptation (without reordering of the input utter-

ances). The results (in tables 6.2, 6.5 and 6.6) show that tracking adaptation, 

with input weight 0.2, can yield recognition improvements similar to those with 

optimisation (initial input weight 0.2 or 0.25), or slightly better, over five to 20 

repetitions of the vocabulary; but the statistical significance of the comparison 

between tracking and optimisation is low. A full comparison of optimisation and 

tracking would require the use of a large amount of data (to ensure statistical 

significance, given the limitations imposed by the need to retain the chronologi-

cal order), and separate determination of the optimal initial input weight values 

and compensation factors for the two forms of weighting. Moreover, the results 

would be affected by the lengths of the data collection sessions, and the lengths 

of time between successive sessions - though variations in these quantities 
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could  be simulated by collecting the utterances in long sessions close together in 

time, and then selecting sessions or parts of sessions for use in the experiments. 

It may be expected that some form of adaptation which takes account of 

gradual drift in time will yield the best possible results - better than those 

attained with the optimisation form which takes no account of this phenomenon. 

However, the tracking form of weighting, as currently formulated, is probably 

not optimal, since it treats all templates the same, regardless of whether they 

are previously adapted or unadapted. It seems reasonable that unadapted tem-

plates (formed on a previous occasion) will be the least representative of the 

realisations of the words in the current recognition session; templates adapted 

during a previous session will be somewhat more representative, as will tem-

plates formed during the current session but not yet adapted; and templates 

adapted several times during the current session will be the most representative 

of all. The more reliable a template, the more it should be weighted in adapta-

tion (or, equivalently, the less each new input used. in adapting it should be 

weighted). A possible method of adaptation, allowing for all these factors, is as 

follows. During a recognition session immediately following the initial forma-

tion of a template, begin by using the optimisation weighting, with initial input 

weight Wnew,  and then change to the tracking form of weighting, with input 

weight Wtrack, after 71new  adaptations. (Here W new  should be fairly large - 

perhaps 0.5 in the case of single-utterance training and supervised adaptation. 

For a smooth transition from optimisation to tracking, Wfrack should be between 

the input weight values, derived by the optimisation method, for the 1Znewt11 and 

(7Z riew +1)thl adaptations, i.e. 

Wnew 	 Wne w  
C= Wtrack ~= 1 +(flnew l)Wnew  1 + 1new1-new 

(6.1) 
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(using  equations (5.1), (5.2) and (5.4)).) During a subsequent recognition session, 

begin with the optimisation weighting again, with initial input weight Wojdk for 

a template previously adapted k times, and change to tracking (with input 

weight Wfrack again) after n.1d,k  adaptations, where 

Wold,k Woldk 
'a  1 + (12o1d,k —l)w o ld, k 	 1 + flold,kWold,k 

(6.2) 

(The size of Woldk should decrease as k increases; also, WOId,O  should be greater 

than Wnew,  and woId,k should be greater than Wtrk for all values of k. A possi-

ble formula for wold,k is 

1 
W01d,k = v Old,o+ka+1 

for k :5 11new'  and 

1 
WoJdk = 	 (6.4) 

U 01d0+A + 1 

for k > anew - where the relative weight VO!dk = Void 0 + ha is a scaled-down 

version (a < 1.0) of the first-session relative weight Vnewk  computed according to 

(5.1), and flnewa 2—c A :5 (flnew+ 1)a.) With this system of weighting, which dis-

tinguishes between previous-session and current-session adaptations, a 

correspondingly more sophisticated system of compensation factors would be 

required. A problem with such a complex form of adaptation is that the number 

of parameters to be specified is considerably larger than with either of the two 

(6.3) 

basic forms already described. Estimating optimal values of these parameters 

would require extensive experiments. 
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6.5: Observations on the interactive recognition sessions 

Statistics of the interactive recognition sessions in which the four-speaker 

digits data base was collected are set out in table 6.11. Under "date and time", 

the format is "year month day hour minute", where each component is expressed 

as a two-digit number. (The time given is for the start of the session.) In the 

next column is a template code followed by an algorithm parameter code and a 

compensation code. The template code is "1" for single-token templates and "2" 

for two-token averaged templates; in most cases, the templates were adapted 

ones (usually the results of the preceding session's adaptation), but unadapted 

templates, where these were used, are marked by "#" (if created on a previous 

occasion) or "*" (if created on the current occasion). The algorithm parameter 

codes are as follows:- 

r2  = 1.05; r3  = 1.15; endpoint adjustment; 

r2  = 1.05; r3  = 1.15; 

r2  = 1.01; r3  = 1.05. 

In each case, the template elimination thresholds were t 1  = 1.6 and t2  = 1.2; the 

threshold on the word distance ratio for adaptation was equal to the rejection 

threshold r3 ; the adaptation operated in the supervised mode using "CORREC-

TION" (as described in section 5.3); the tracking form of adaptation weighting 

was employed, with input weight 0.2; and there was no negative adaptation. 

The compensation codes are as in table 6.1, with "0" for "no compensation". The 

compensation factors applied were based on the numbers of adaptations so far 

within the current session: there was no use of stored adaptation counts for pre-

viously adapted templates. The statistics of each session are given in the next 

six columns: these contain, respectively, the total number of utterances in the 

session; the numbers of correct recognitions, errors (wrong recognitions) and 
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Table 6.11: statistics of interactive digit recognition sessions 
used to collect the four-speaker data base 

Speaker 
(sex) 

Date 
and 
time 

Templates 
and system 
parameters 

Numbers of words 

total cor 	err rej cor+ 	err+ 

Retrain Comments 

1(m) 8706171216 l# A 0 47 40 	1 	6 44 	3 9 24CC; 0-STOP 
8706171247 1 A 0 18 15 	0 	3 16 	2 STOP 24CC 
8706171329 1 A 0 31 29 	0 	2 30 	1 24CC; NS 
8706171352 1 A 0 23 22 	0 	1 23 	0 24CC 
8706261402 1# A 1 93 91 	0 	2 93 	0 
8707031713 1 B a 104 101 	0 	3 103 	1 
8707171302 2 B a 54 53 	0 	1 54 	0 
8707220916 2 B a 53 53 	0 	0 53 	0 
8708031706 2 B c 51 51 	0 	0 51 	0 
8708040849 2 B c 51 51 	0 	0 51 	0 
8708060855 2 B c 51 51 	0 	0 51 	0 

2 (in) 8707131400 2*  B b 52 51 	0 	1 52 	0 
8707141635 2 B 0 52 51 	0 	1 52 	0 
8707171621 2 B a 53 51 	0 	2 51 	2 
8707201701 2 B a 52 51 	0 	1 52 	0 
8707221704 2 C a 44 43 	1 	0 43 	1 6-STOP 
8707221722 2 B a 10 9 	0 	1 10 	0 STOP 
8707240926 2 B a 54 51 	0 	3 52 	2 
8707271518 2 B a 52 51 	0 	1 52 	0 
8707301444 2 B a 53 51 	0 	2 53 	0 
8707311259 2 B c 54 51 	0 	3 52 	2 
8708201005 2 B c 53 51 	0 	2 52 	1 

3 (f) 8707141401 2# B e 53 52 	1 	0 52 	1 3-8 
8707171558 2 B a 53 51 	0 	2 51 	2 
8707211427 2 B a 69 57 	4 	8 61 	8 0-5,3-8,1-5,STOP-7 
8707221352 2 C a 55 54 	1 	0 54 	1 1-5 
8707241321 2 B a 51 51 	0 	0 51 	0 
8707270905 2 B a 52 51 	0 	1 51 	1 
8708041004 2 B c 56 53 	2 	1 54 	2 9-5,4-5 
8708050917 2 B c 54 51 	0 	3 53 	1 
8708061222 2 B c 55 52 	1 	2 52 	3 4-5 
8708201332 2 B c 53 51 	0 	2 53 	0 

4 (0 8707150908 2*  B n 51 51 	0 	0 51 	0 
8707171234 2 B a 52 51 	0 	1 52 	0 
8707220856 2 B a 58 53 	0 	5 56 	2 
8707230924 2 B a 52 51 	0 	1 52 	0 
8707241245 2 B a 55 53 	0 	2 55 	0 
8707281320 2 B a 51 51 	0 	0 51 	0 
8707311318 2 B c 51 51 	0 	0 51 	0 
8708271417 2 B c 58 54 	1 	3 56 	2 STOP-7 
8709091401 2 B c 55 54 	1 	0 54 	1 1-7 
8709100927 2 B c 52 51 	0 	1 1 	52 	0 
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rejections; and the numbers of correct recognitions and errors obtained with the 

rejection thresholds set to 1.0 to force a recognition of every input. Under 

"Retrain" are listed any words whose templates were retrained during the ses-

sions. (In each case, the number of utterances used in retraining was the same 

as the number of training utterances used to form the initial template.) Under 

"Comments", "24CC" means that the full set of 24 cepstral coefficients per frame 

was used, instead of only the first 12; an entry of the form "wordl-word2" means 

"wordi was misrecognised as word2"; and "NS" means that the adapted tem-

plates were not saved for use in the next recognition session. 

In each case listed in table 6.11, the input sequence consisted of digits in 

the standard order (as listed in section 6.2.4), beginning where the previous ses-

sion had ended if the 50-digit sequence had not been completed in the previous 

session, and finishing with "STOP" unless some other word was misrecognised as 

"STOP". Additions to the standard sequence of words resulted from misrecogni-

tions and rejections (after which the speaker said "CORRECTION", in case of 

misrecognition, and repeated the word which had not been recognised); human 

errors (where the speaker said the wrong word - followed by "CORRECTION"); 

occurrences of "RETRAIN"; and, in speaker l's fifth session, the inclusion of four 

repetitions of the 10 digits in numerical order, to provide data for the initial 

estimation of compensation factors. There were eight instances of "human 

error"; in three of these cases, the error consisted of going on to the next word in 

the sequence when the word preceding it had not been recognised. 

The sessions listed in table 6.11 are those which were actually used to pro-

vide utterances for the data base. In addition to these, during the period of the 

data base collection, there were several digit recognition sessions which were not 

used - in some cases because the input data were accidentally lost, and in other 

cases because only part of the 50-digit sequence was collected in a session, and it 
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was considered preferable to take each set of 50 digits from a single session (or, 

failing that, from sessions with only a few minutes between them). There were 

also some digit recognition sessions (with speaker 1 only) in which more irregu-

lar sequences of digits were spoken instead of the standard 50-digit sequence. 

(These were used to provide the data sets dia, dib and d2 for the compensation 

experiments described in section 6.3.2.1.) These additional digit recognition ses-

sions are listed in table 6.12. The notation is the same as in table 6.11, with the 

addition that "D" under "Templates and system parameters" is the same as "A" 

Table 6.12: statistics of additional digit recognition sessions 

Speaker 
(sex) 

Date 
and 
time 

Templates 
and system 
parameters 

Numbers of words 

total cor 	err rej cor+ 	err+ 

Retrain Comments 

1(m) 8706161618 1# A 0 27 22 	0 	5 24 	3 24CC 

8706171148 1# A 0 12 7 	0 	5 11 	1 24CC 
8706261356 1 A 1 14 12 	1 	1 13 	1 2-STOP; NS 

8707011717 1 D 0 16 14 	1 	1 15 	1 7-STOP; NS 
8707011723 1 D 0 4 3 	1 	0 3 	1 7-STOP; NS 
8707011727 1 D 0 38 38 	0 	0 38 	0 7,STOP NS 

8707021240 i A u 174 163 	0 	11 170 	4 
8707031034 1 B n 174 161 	1 	12 168 	6 RETRAIN 3-RETRAIN 
8707061725 1s B n 87 76 	3 	8 79 	8 7 7-1,7-6,6-1 
8707081231 2 	B xi 213 203 	1 	9 208 	5 RETRAIN 8-RETRAIN 

8707150927 2 B a 216 209 	0 	7 214 	2 
8707151328 2 B a 23 21 	0 	2 22 	1 
8707151716 2 B a 31 31 	0 	0 31 	0 

2 (m) 8707091232 1 B 0 32 29 	3 	0 29 	3 9 9-5,4-5,2-STOP 
8707091244 1 B 0 49 32 	4 	13 39 	10 STOP,STOP, STOP-7 (x4) 

7,STOP 

8707311254 2 B c 6 5 	1 	0 5 	1 7-STOP; NS 

3 (0 8707091315 1 B 0 67 54 	2 	11 58 	9 0 0-7,0-5 
8707131443 2 B b 41 38 	0 	3 40 	- 1 NS 

4 (0 8707131316 1 B b 56 53 	1 	2 54 	2 STOP-7 
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without the adaptation. The 160-digit sequences dia and dib were taken from 

the sessions dated 8707021240 and 8707031034 respectively, and the 200-digit 

sequence d2 was taken from the session dated 8707150927: 

Accumulating all the results in tables 6.11 and 6.12, the total number of 

input utterances is 3471, of which 3282 (94.6%) were correctly recognised, 32 

(0.9%) misrecognised and 157 (4.5%) rejected. Without the elimination option, 

3373 (97.2%) would have been correctly recognised, and 98 (2.8%) misrecognised. 

Counting only the 2000 utterances which were included in the data base, 

1939 (96.95%) were correctly recognised; 9 (0.45%) were misrecognised; 52 (2.6%) 

were rejected; and, without the rejection option, there would have been 1969 

(98.45%) correctly recognised and 31 (1.55%) misrecognised. This "without rejec-

tion" accuracy is higher than was attained in the main series of experiments 

with the data base, even with optimal adaptation and compensation; but those 

experiments used single-token initial templates, did not allow retraining in 

cases of persistent error, and took no account of the chronological sequence of 

the utterances. With optimal adaptation and compensation (as in the main 

experiments), and appropriate retraining (as in the interactive sessions), higher 

accuracies should be possible than were demonstrated in sections 6.3.2.4 and 

6.3.2.5. 

Of the 32 recognition errors, 14 involved the word "STOP". Two reasons for 

this may be suggested: the difficulty of endpoint detection (during training or 

recognition) for a word containing two stop consonants, and the less frequent 

occurrence (and hence adaptation) of "STOP" in the input sequences. The latter 

should have been countered to some extent by the use of compensation factors; 

but the compensation applied during the interactive sessions was not optimal in 

that no record of the number of adaptations of each template was kept from one 

session to the next, and so all the templates were assigned the same 
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compensation factor (1.0) at the beginning of each session even though the con-

trol words' templates might be considerably less adapted than the others. (The 

problem of compensating for previous-session and current-session adaptation is 

rather complex: adaptation during a previous session will tend to reduce a 

template's distances in the current session, but not as much as adaptation dur-

ing the current session does. A refinement of the compensation technique - 

with or without a refinement of the adaptation weighting as described in section 

6.4 - may be required to treat this problem adequately.) The other two control 

words caused less difficulty: there were no errors involving "CORRECTION" 

(though it was sometimes rejected), and only two involving "RETRAIN". 

Retraining was invoked 14 times, including twice by accident when digits 

were recognised as "RETRAIN". It was mainly with single-token initial tem-

plates that retraining was found necessary. 

Details of interactive sessions conducted using the 53-word "W" vocabulary 

are listed in table 6.13. These sessions were conducted for only one speaker. 

The vocabulary is larger than the 13-word "F" vocabulary (digits plus control 

words) used for the sessions in tables 6.11 and 6.12, and is considerably more 

difficult for recognition, since it contains pairs of words like {seventeen,seventy} 

and {thirty,Thursday}; this difficulty is reflected in the greater frequencies of 

errors, rejections and retrainings occurring. The notation in table 6.13 is the 

same as in tables 6.11 and 6.12. In the "Retrain" and "Comments" columns, the 

number words are expressed in figures, and the day and month names are 

abbreviated, to save space. 

The totals of the results in table 6.13 are 3362 utterances; 2708 (80.5%) 

correct; 63 (1.9%) misrecognised; 591 (17.6%) rejected; and, with no rejection 

option, 2926 (87.0%) correctly and 436 (13.0%) wrongly recognised. There is a 
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Table 6.13: statistics of interactive recognition sessions 
with the "W" vocabulary (speaker 1) 

Date 

and 

time 

Templates 

and system 

parameters 

Numbers of words 

total 	cor 	err 	rej 	cor + 	err + 

Retrain Comments 

8706181338 1' A 0 88 63 	5 	20 70 	18 1000,18,19, 18-15,Thu-30(x4) 

Thu,Thu,40,40 

8706221232 1 A 0 136 110 	6 	20 117 	19 70,Thu,40 Thu-30(x4),40-14,40-30 

8706241336 1# A 0 89 58 	4 	27 68 	21 Thu,Sun,16 8-May,Sep-6,16-6,80-18 

8706261259 1 A 1 46 33 	1 	12 39 	7 Tue-Thu; NS 

8706261320 1 A 1 56 48 	0 	8 49 	7 7,Wed NS 

8706261343 1 A 1 35 28 	0 	7 28 	7 50,Wed 

8706291550 1 A a 151 116 	2 	33 129 	22 Tue(x3),10 Tue-Thu,40-4 

8706301209 1' A n 496 346 	10 	140 392 	104 19(x2),1,40,30, 6-60,13-3,13-10,19-13, 

Thu(x5),Wed,14, 30-40,50-15(x3), 

20(x2), 13,Jun(x2), Wed-Mon,Wed-Aug 

Tue,Dec,50(x3) 

8707100923 2# B u 123 104 	3 	16 114 	9 17-70,30-Thu,60-6 

8707101634 2 B a 123 103 	1 	19 115 	8 Apr 70-7 

8707111636 2 B a 344 313 	5 	26 325 	19 Wed 60-6(x2),Apr-8, 

30-Thu,Thu-30 

8707161713 2 B a 115 101 	1 	13 106 	9 15-50 

8707171654 2 B a 112 102 	0 	10 107 	5 90 

8707240948 2 B a 36 26 	0 	10 32 	4 70 

8707271628 2 B a 242 199 	6 	37 207 	35 70-7,40-14,80-8, 

16-60,50-15(x2) 

8707281123 2 B a 361 310 	7 	44 323 	38 Apr-8,80.18,19-90(x2), 

30-Thu,14-40,40-4 

8707291044 2 B a 366 308 	4 	54 322 	44 50 17-70(x2),14-40,90-19 

8707291705 2 B a 151 121 	4 	26 133 	18 14-40,13-30,Apr-8 

8707301509 2 B a 83 56 	1 	26 72 	11 90,70 4-Oct 

8707301700 2 B a 76 53 	1 	22 57 	19 Thu Wed-70 

8708041039 2 B a 64 54 	1 	9 58 	6 50-60 

8708071215 2 B a 69 56 	1 	12 63 	6 70-17 

noticeable difference between the results for sessions starting with unadapted 

530 single-token templates ( - -, or 78.8% correct, with no rejections) and the 

362 
results for sessions starting with adapted single-token templates ( - -, or 

424 

85.4%) or with two-token templates 
2034 

 or 898%). Among the results with 
2265 
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two-token templates, there is no discernible improvement with adaptation: 

indeed, the accuracy attained in the first session, with no prior adaptation, is 

114 
123 , 

 or 92.7%, which is higher than the overall accuracy in the subsequent ses-

1920 
sions 

2142' 
 or 89.6%) - although this may not be significant, especially as the 

former result is derived from only one session and there were differences in the 

word order and compensation factors from session to session. 

The single-token and two-token template sets used in the "W" vocabulary 

recognition sessions were the same (apart from the inclusion or omission of the 

control words) as those later used for the experiments described in sections. 

6.3.2.1 to 6.3.2.3. The input data sets used in those experiments were derived as 

follows: ti, from session 8706301209; t2, from 8707111636; t3, from 8707271628, 

8707281123, 8707291044, 8707291705, 8707301509 and 8707301700; and t4, 

from the first six sessions (8706181338 to 8707261343). 

The sessions for speaker 1 listed in tables 6.12 and 6.13 included some ses-

sions considerably longer than those (of just over 50 words) used in the collection 

of the main digits data base. The longest session was that dated 8706301209, 

with the "W" vocabulary (table 6.13), which included 496 input utterances and 

took two hours and 42 minutes. Some of the other "W" recognition sessions also 

lasted over an hour. The time per recognition was typically slightly longer for 

this vocabulary than for the digits, both because most of the words were longer 

(so that the LPC analysis took longer) and because of the larger numbers of tem-

plates to be matched, especially at the second and third stages, due to the 

greater size and confusability of the vocabulary. Also, when the initial tern-

plates were formed from single utterances, retraining was required considerably 

more often for the "W" vocabulary than for the "F" vocabulary, because of per-

sistent errors and rejections on certain words (such as "Thursday", "forty" and 
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"fifty") which were very similar to other words of the vocabulary. The "W" 

recognition sessions were thus more tedious and stressful for the speaker than 

the "F" sessions. The training session to construct the set of two-token "W" tern-

plates was also found rather long. For these reasons, no attempt was made to 

construct templates or conduct recognition sessions for the "W" vocabulary with 

speakers 2, 3 and 4. 
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CHAPTER  7 

ADAPTATION OF SPEAKER-INDEPENDENT TEMPLATES 
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7: ADAPTATION OF SPEAKER-INDEPENDENT TEMPLATES 

7.1: Introduction 

The experiments reported in chapter 6 have shown the benefits of template 

adaptation in an initially speaker-trained word recognition system. It has been 

shown that adaptation, supervised or unsupervised, with appropriate compensa-

tion, can substantially improve the recognition performance of speaker-specific 

templates by incorporating more utterances (by the same speaker) into each 

template. It may be expected that even greater improvements will be attained if 

adaptation can be successfully applied to an initially speaker-independent tem-

plate set. In this case, the initial unadapted templates incorporate no data from 

the speaker whose inputs are to be recognised (being formed instead from utter-

ances by a standard set of training speakers); by adaptation, it should be possi-

ble to "tune" these templates to the current input speaker, improving their 

correspondence to that speaker's typical realisations of the words, so that they 

yield better recognition performance for the speaker concerned. 

This chapter contains a description and results of experiments conducted 

with a 100-speaker digits data base, in which utterances from 50 of the speakers 

were used to form the initial speaker-independent templates, and utterances 

from each of the remaining speakers were used as input for adaptive and non-

adaptive recognition. Section 7.2 gives a description of the data and initial tem-

plate formation; section 7.3 records the experiments and results, and includes 

some analysis and discussion of details of the results; and section 7.4 contains a 

more general discussion. 
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7.2: Data base and template formation 

7.2.1: The 100-speaker digits data base 

A multiple-speaker data base had already been collected for use in another 

project at the Centre for Speech Technology Research (CSTR). This included 

recordings of the digits spoken three times by each speaker, as well as various 

other words and sentences. The digits uttered by 100 of the speakers were 

chosen for use in the speaker-independent template adaptation experiments. A 

brief account of the speaker set, data collection and processing is given below. 

The set of 100 speakers consisted of 30 from Edinburgh (15 male and 15 

female: mostly members of CSTR and their wives and husbands), and 70 (59 

male and 11 female) from industrial and commercial sites in Maidenhead, Ports-

mouth and London. Thus there were 74 male and 26 female speakers in all. 

These were divided into two sets: 50 training speakers, and 50 test speakers - 

with 37 male and 13 female in each set. The two sets were made as similar as 

possible in their composition, in the sense of both having equal or nearly equal 

numbers of speakers of each possible combination of location and sex. One of 

the Edinburgh female speakers was subsequently excluded from the test set 

because of an error during the processing of the data, leaving a set of 49 test 

speakers (37 male and 12 female). 

Each speaker participated in a single data collection session, in which three 

repetitions of the 10 digits, in random orders, were recorded. Each 10-digit 

sequence was recorded during a 30-second period, in which each digit in turn 

was displayed on a computer screen (printed in letters, to ensure the use of the 

pronunciation "zero" for "0") to prompt the subject to speak it. There was a 

short pause (until the speaker gave a "ready" signal by pressing a joystick but-

ton) between successive 10-digit sequences. The recordings were monitored by a 
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member of the research project, who initiated repetitions of any 10-digit 

sequences badly affected by noise or mispronunciation. The utterances were col-

lected using a table-mounted Sennheiser MKH406 microphone, passed through a 

PCM digital coder, and recorded onto video cassette. The level of background 

noise varied among sessions, although efforts were made to reduce it by remov-

ing noise sources (when possible) and using a sound-absorbing screen around the 

speaker. 

The utterances were transferred onto the MC550 computer using an analo-

gue connection into the analogue-to-digital convertor. As with the data base of 

chapter 6, the sampling rate was 20kHz, with 12-bit resolution. Endpoint detec-

tion was performed by the method described in section 5.1 (but with different 

parameter settings from those listed in table 5.1). The detected digits in each 

sequence of 10 were rearranged into numerically increasing order. A 12th-order 

LPC analysis was applied, in a 25.6ms Hamming-windowed frame every lOms, 

to derive 12 cepstral coefficients. 

7.2.2: Formation of speaker-independent templates 

The first utterances of all the digits by each of the 50 training speakers 

were taken as training data for the formation of speaker-independent templates. 

(The second and third repetitions of the digits by the training speakers were not 

used.) 

A program was developed to perform clustering and template formation 

using the criterion based exchange (CEx) algorithm (100]. This clustering algo-

rithm was chosen because it had been reported [100] to yield better template 

sets for speaker-independent recognition than the commonly-used K-means algo-

rithm, and because it could operate, without much further computation, from a 
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precompiled table of distances among the training tokens of each word. The 

required distance tables were computed by the same program which had earlier 

been used to provide distances for multiple-stage recognition simulations (as 

mentioned in section 4.4.1). 

For each word of the vocabulary, the clustering algorithm starts by reading 

in the table of word distances and selecting c cluster centres C(0), . ,C(c - 1), 

where c is the designated number of clusters per word of the vocabulary. (The 

cluster centres are used only in the initialisation of the clustering, and not in 

the subsequent criterion based exchange procedure.) The first cluster centre 

C(0) is the first token in the (arbitrarily ordered) set of training tokens for the 

current word. Thereafter, each successive cluster's centre is chosen from among 

the training tokens so as to maximise the minimum distance between it and a 

previously chosen cluster centre. That is, 

C(r) = argmax (mm D(C(i),n)), 	 (7.1) 
11 

where D is the word distance function, and the integer n is used to identify the 

nth training token. Once the cluster centres have been determined in this way, 

all the training tokens are classified into clusters by a minimum-distance rule: 

i.e. the nth token is assigned to cluster i where i minimises D(C(i),n). 

It is possible to specify an exclusion parameter e, so that centres which 

result in clusters of e or fewer tokens are replaced until every cluster has more 

than e tokens in it. In this case, the process of determining new cluster centres 

and then classifying all the training tokens is iterated. At each iteration, the 

tokens which are centres of small clusters (if any) are excluded from considera-

tion as possible cluster centres, so that the minimisation in (7.1) is carried out 

only over values of n which have not been excluded. (A token which is excluded 
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at a given iteration remains excluded at all following iterations, so that it can 

never again be tried as a cluster centre. Otherwise there would be the danger of 

an infinitely repeating loop.) The number of r values for which (7.1) is 

evaluated in each iteration (after the first) is equal to the number of cluster cen-

tres excluded at the previous iteration. (When (7.1) is to be applied in an itera-

tion other than the first, the k cluster centres retained from the preceding itera-

tion are first renumbered so that their numbering is consecutive from 0 to k —1; 

then (7.1) is evaluated for r from k to c —1.) 

Once the initial clusters have been determined and, if necessary, adjusted 

by the small-cluster exclusion procedure, the criterion based exchange process 

begins. The criterion function is of the form 

c—i 

F=>( mm 	 D(n,m)) 
i=O is incluster i in in cluster i 

- that is, it is the sum of intra-cluster distances taken from cluster miniav cen-

tres. This quantity F is to be minimised by exchanging tokens among the clus-

ters. In each iteration of the process, each token n is considered in turn, and if 

F can be reduced by moving n from its present cluster to a different one then it 

is moved (in such a way as to cause the greatest possible reduction in F). The 

procedure is iterated until no further reduction in F can be achieved by any 

single-token exchange operation. (Thus it always finds a local minimum of F, 

though this is not guaranteed to be the global minimum.) 

A postprocessing step may be executed once the exchange process has ter-

minated. In this case, any single-token clusters are augmented to size 2, by 

moving into each such cluster the nearest token which is in a cluster of more 

than two tokens. (This works, and takes k moves, where k is the number of 

single-token clusters, provided that the number of clusters c is not more than 
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half the number of training tokens for this word of the vocabulary; if c is too 

large, at least one single-token cluster must remain, since there are not enough 

tokens for two per cluster.) 

When the partitioning of the training tokens into clusters has been com-

pleted, the tokens in the cluster are averaged together sequentially, using either 

DTW or linear averaging. (The averaging and weights are the same as in the 

optimisation form of adaptation, as described in section 5.3. With the DTW 

method, if a token cannot be averaged into the cluster template because it is too 

long or too short, it is not used.) 

A length normalisation of each training token to 30 vectors, by linear seg-

mentation and interpolation (as in the third stage of the recognition procedure), 

was applied in some cases before the averaging. This reduced the computation 

required for the averaging (since the average word length before normalisation 

was more than 30 frames), and ensured that no tokens were excluded because of 

excessive length mismatch. When length-normalised templates were being used 

for recognition, the input words were also normalised, and then no segmentation 

was required in the third stage of the recognition procedure. The use of length 

normalisation was found to make no significant difference to the recognition 

results. 

Some preliminary experiments were conducted to determine appropriate 

values for the clustering parameters - namely, the number of clusters per word 

c, the small-initial-cluster exclusion size e, the presence or absence of postpro-

cessing for single-token clusters, and the choice of DTW or linear averaging. In 

each case, the training data consisted of the first repetitions of the digits by each 

training speaker, and the test data consisted of all three repetitions by each of 

the test speakers. These experiments revealed that the value of e (in the range 

from 0 to 2), the use of postprocessing and the choice of the averaging method 
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made little difference to the recognition accuracy attained. With six templates 

per digit, the accuracy ranged from 92.8% to 93.1% (depending on the values of 

the other clustering parameters); with four templates per digit, it was 92.9%; 

with two templates per digit, derived by separate (DTW) averaging of the male 

and female training speakers' utterances, 91.7%; with one template per digit 

(constructed by averaging together the tokens from all 50 training speakers), 

again 91.7%. (However, in preliminary adaptive recognition experiments, it was 

found that the results with adaptation were better, by amounts ranging from 

0.5% to 1.7%, for the set of two templates per digit than for a single template 

per digit.) 

Three template sets were used in the main series of adaptation experi-

ments: one (referred to as D6) consisting of six templates per digit, derived using 

e = 2, with postprocessing and DTW averaging; one (D4) containing four tem-

plates per digit (e = 1, postprocessing, DTW); and one (D2) containing two tem-

plates per digit, derived from separate averaging of the utterances of the male 

and female training speakers. In each case, the length normalisation was 

applied to the training data before the clustering procedure. For D4 only, length 

normalisation was also applied at an earlier stage, as preprocessing for the com-

parison of the training tokens to generate the table of distances for use in the 

clustering. 

7.3: Adaptive recognition experiments and results 

Several series of experiments with template adaptation were conducted 

using the data base described above. The recognition system and the experi-

mental procedure were improved as the experiments progressed, to incorporate 

compensation for adaptation (by the mechanism described in section 5.3.5) and 
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random ordering of the input sequence for each test speaker. The experiments 

are described, and their results are presented and discussed, in sections 7.3.1-

7.3.3 below. 

Some of the speaker-independent template adaptation results without com-

pensation (section 7.3.1) have appeared in a conference paper [258] which is 

reproduced at the end of this thesis. Results with compensation and random 

reordering (section 7.3.3), for one initial template set (D6), were published in a 

more recent paper [259], which is also attached. These and other results (for 

template set D2) are included in a further paper [260] which has been submitted 

for publication (as mentioned in section 6.3.2). 

7.3.1: Experiments without compensation 

In the first experiments conducted with adaptation of speaker-independent 

templates, no compensation factors were applied (as the provision for compensa-

tion factors had not yet been incorporated into awr). The input for each test 

speaker consisted of the three repetitions of the digits, in order, with the digits 

ordered from 0 to 9 within each repetition. This input sequence was recognised 

with and without adaptation; the differences between adaptive and non-adaptive 

recognition results on the three repetitions were computed, and averaged across 

the 49 test speakers. (This procedure is the same as the one-phase procedure 

described in section 6.3.1, and used in the first main series of speaker-specific 

template adaptation experiments in section 6.3.2.4. The two-phase procedure 

was not adopted for the speaker-independent template adaptation experiments 

because the small number (30) of utterances from each test speaker did not 

allow construction of adequate adaptation and evaluation data sets.) The results, 

for template sets D6 and D2, are given in tables 7.1 and 7.2. As in tables 6.5 to 

6.8, the standard errors were estimated from the variations in the improvements 
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across test speakers. In these and all the other speaker-independent template 

adaptation experiments reported here, the template elimination thresholds used 

(t 1  and t2) were 1.6 (after the first stage of comparison) and 1.12 (after the 

second stage). The accuracies without adaptation on the successive repetitions of 

the digits were, for D6, 92.45%, 94.49% and 92.04% respectively, and, for D2, 

91.43%, 92.65% and 90.61%. 

The notation for adaptation parameters in these tables is basically the 

same as in tables 6.5 to 6.10 (as described in section 6.3.2.4). An "s" after the 

adaptation parameters indicates "skewed" adaptation (as described in section 

5.3); "+" indicates that the template for the second-best candidate word was 

adapted (positively or negatively as appropriate) when the best-matching tem-

plate was incorrect. 

The results with supervised adaptation in tables 7.1 and 7.2 show fairly 

significant improvements on the third repetitions of the digits by each test 

speaker, resulting from the prior adaptation to the first two repetitions. Without 

second-best-candidate adaptation, the improvement on the third repetition (aver-

aged across the test speakers) ranged from 2.04% (D6, tracking, input weight 

0.2) to 3.67% (D2, optimisation, initial input weight 1.0). With second-best 

adaptation, higher levels of improvement were attained, ranging from 4.69% to 

6.74%; the significance of the improvements was also greater. (The confidences 

corresponding to the greatest third-repetition improvements without second-best 

adaptation are 0.998 (for D6) and 0.97 (D2); the confidences for the best cases 

with second-best adaptation are in excess of 0.9999 for both template sets.) 

However, the overall improvement in accuracy, over all three repetitions of 

the vocabulary, was rather small, or in some cases negative, especially without 

second-best adaptation. This deficiency in the overall improvement with adapta- 
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Table 7.1: results of adaptive digit recognition experiments 
with speaker-independent initial templates (set D6) 

Adaptation Mean (standard error) of 
improvement over non-adaptive recognition 

input repetition 	 overall 
1 	2 	 3 

Mean (s.e.) 
overall 
recognition 

 accuracy. 
none 92.99 

(1.00) 

S t .2 -.05 -1.22 -0.20 2.04 0.20 93.20 
(0.47) (0.74) (0.77) (0.36) (1.07) 

S t .2 -.05 + -1.22 1.02 4.69 1.50 94.49 
(0.47) (0.73) (1.17) (0.39) (0.82) 

S o .33 -.05 -2.04 -0.41 2.86 0.14 93.13 
(0.58) (0.82) (0.97) (0.44) (1.10) 

S o .5 -.05 -2.24 -0.61 2.65 -0.07 92.92 
(0.60) (0.98) (1.12) (0.63) (1.22) 

S o .67 -.05 -2.86 -0.82 2.86 -0.27 92.72 
(0.71) (1.04) (1.13) (0.72) (1.27) 

S o 1.0 -.05 -2.04 -0.20 3.27 0.34 93.33 
(0.77) (0.99) (1.07) (0.65) (1.09) 

S o .33 -.05 + -2.45 1.22 5.31 1.36 94.35 
(0.69) (0.69) (1.24) (0.51) (0.90) 

S o .5 -.05 + -3.47 1.84 5.71 1.36 94.35 
(0.80) (0.70) (1.20) (0.55) (0.89) 

S o .67 -.05 + -3.88 1.84 5.51 1.16 94.15 
(0.87) (0.70) (1.20) (0.57) (0.98) 

S o 1.0 -.05 + -2.65 1.63 5.51 1.50 94.49 
(0.86) (0.84) (1.24) (0.62) (0.94) 

U t .2 (1.1.5) -1.02 -2.45 -1.02 -1.50 91.50 
(0.44) (0.74) (0.84) (0.46) (1.24) 

U t.2 (1.1) -1.22 -2.45 -1.63 -1.77 91.22 
(0.47) (0.69) (0.89) (0.47) (1.25) 

U o .2 (1.15) -1.02 -2.04 -0.61 -1.22 91.77 
(0.44) (0.71) (0.74) (0.43) (1.22) 

U o .2 (1.15) s -0.41 -1.43 0.00 -0.61 92.38 
(0.29) (0.58) (0.58) (0.25) (1.10) 

U o .33 (1.15) s -0.41 -2.86 -1.22 -1.50 91.50 
(0.29) (0.82) (0.86) (0.38) (1.21) 

tion was due to the large decrease in accuracy which the adaptation caused on 

the first repetitions. Without second-best adaptation, this loss of accuracy on the 

first 10 digits ranged from 1.22% to 3.88%, and was highly significant across test 

speakers (with confidences exceeding 0.99, and in some cases exceeding 0.999); 
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Table  7.2: results of adaptive digit recognition experiments 
with speaker-independent initial templates (set D2) 

Adaptation Mean (standard error) of 
improvement over non-adaptive recognition 

input repetition 	 overall 
1 	2 	 3 

Mean (s.e.) 
overall 
recognition 

 accuracy .  
none 91.56 

(1.11) 

S t .2 -.05 -1.22 0.82 2.86 0.82 92.38 
(0.47) (0.82) (1.17) (0.57) (1.16) 

S t .2 -.05 4- -1.43 3.06 5.31 2.31 93.88 
(0.50) (0.93) (1.34) (0.60) (0.94) 

S o .33 -.05 -2.45 -0.41 2.86 0.00 91.56 
(0.62) (1.01) (1.30) (0.79) (1.40) 

S o .5 -.05 -3.67 -1.63 2.45 -0.95 90.61 
(0.86) (1.14) (1.44) (0.86) (1.49) 

S o .67 -.05 -3.88 -0.41 2.86 -0.48 91.09 
(0.87) (1.13) (1.40) (0.82) (1.40) 

S o 1.0 -.05 -2.04 -1.22 3.67 0.95 92.52 
(0.77) (1.04) (1.84) (0.72) (1.20) 

S o .33 -.05 + -2.65 2.86 6.12 2.11 93.67 
(0.64) (1.01) (1.42) (0.69) (1.00) 

S o .5 -.05 + -4.90 2.86 6.74 1.56 93.13 
(0.97) (1.05) (1.58) (0.78) (1.06) 

S o .67 -.05 + -5.51 3.06 6.33 1.29 92.86 
(0.97) (1.14) (1.51) (0.80) (1.13) 

S o 1.0 -.05 + -3.67 2.86 6.74 1.97 93.54 
(0.86) (1.17) (1.58) (0.80) (1.00) 

U t .2 (1.15) -0.41 -2.24 -3.06 -1.90 89.66 
(0.29) (0.98) (1.34) (0.70) (1.41) 

U t .2 (1.1) -1.02 -2.24 -2.45 -1.90 89.66 
(0.44) (1.06) (1.32) (0.78) (1.53) 

U o .2 (1.15) -0.41 -2.65 -2.24 -1.77 89.80 
(0.29) (0.86) (1.02) (0.56) (1.34) 

U o .2 (1.15) s -0.61 -0.61 -1.63 -0.95 90.61 
(0.35) (0.45) (0.98) (0.39) (1.18) 

U o .33 (1.15) s -1.22 -2.86 -3.06 -2.38 89.18 
(0.47) (0.97) (1.17) (0.62) (1.40) 

and there was also usually some loss in accuracy on the second 10-digit 

sequence. With second-best adaptation, the reduction in accuracy on the first 

repetition was from 1.22% to 5.51% (again with a high level of significance), but 

an improvement (ranging from 1.02% to 3.06%, and of moderate to high 
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significance) was attained on the second repetition. The poor performance on the 

first repetition of the digits can be explained by the lack of compensation for the 

unequal adaptation of the templates up to a given point in the input. As was 

explained in section 5.3, when an adapted template exists for one word but not 

for another, an utterance of the latter word is liable to be misrecognised as the 

former, because adapted templates tend to have smaller distances from input 

utterances than unadapted templates have. This is especially true when the ini-

tial (unadapted) templates are not specific to the current speaker: in this case, 

the correspondence of an adapted incorrect-word template to the speaker's voice 

characteristics may outweigh its lack of correspondence to the particular word 

spoken, resulting in a better match than is obtained for an unadapted correct-

word template. 

In the cases of supervised adaptation with the optimisation weighting, the 

best overall results tended to be attained with a small initial input weight (0.33, 

corresponding to twice as much weight on the initial template as on each input 

utterance) or a large one (1.0, corresponding to zero weight on the initial tem-

plate) rather than with an intermediate weight value (0.5 or 0.67). The results 

with tracking, with input weight 0.2, were also relatively good. However, this 

preference for small or very large input weights could be a side-effect of the lack 

of compensation for the adaptation. It may be expected that the lack of compen-

sation will degrade the performance more for weightings for which the optimal 

compensation factors are large. 

The results with unsupervised adaptation were in all cases poorer than 

those with no adaptation - except that in one case, on the third repetitions of 

the digits, with skewed adaptation of template set D6, using the optimisation 

weighting with initial input weight 0.2, an accuracy equal to that without adap-

tation was achieved. The skewed form of adaptation reduced the loss of 



267. 

accuracy relative to the direct form, but could not eliminate it completely. 

Again, the uneven adaptation effect, in the absence of compensation, may be 

blamed; With unsupervised adaptation, the system is less able to recover from 

errors on the first few input utterances than if the adaptation is supervised; 

adaptation to wrongly recognised inputs may occur, so that the accuracy on the 

affected words becomes progressively poorer, instead of better, as the adaptive 

recognition proceeds. The unsupervised adaptation results with adaptation 

threshold 1.1, and (especially) those with initial input weight 0.33, are worse 

than the corresponding results with threshold 1.15 or initial input weight 0.2: 

keeping the threshold high and the weight on the input small helps to restrict 

the effect of incorrect adaptations. (The difference between the results with 

thresholds 1.15 and 1.1 (with tracking in each case) is not significant: the 

confidences are 0.82 for D6 and 0.50 (corresponding to no difference between the 

two cases of threshold value) for D2. The difference between the results with 

weights 0.33 and 0.2 (with the optimisation weighting) is significant, however: 

the confidence associated with it is greater than 0.99 for each template set.) 

7.3.2: Experiments with compensation and regular input order 

In view of the observed phenomena with uneven adaptation, the compensa-

tion factor mechanism was incorporated into awr, and further experiments were 

conducted to determine the optimal compensation factors and the corresponding 

adaptive recognition results. The sets of compensation factors tested in these 

experiments are listed in table 7.3. (Cf. table 6.1.) 

The first 13 sets of compensation factors in table 7.3 ("A" to "M") were 

designed for use in the supervised adaptation experiments. In these cases, com- 

pensation factors were defined only for templates adapted up to three times, 
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Table 7.3: compensation factors for speaker-independent template adaptation 

Compensation 
code 

Number of adaptations 
1 	 2 

- 

3 4 
A 1.3 	1.45 1.55 
B 1.2 	1.3 1.36 
C 1.15 	1.22 1.27 
D 1.1 	1.15 1.18 
E 1.17 	1.25 1.3 
F 1.08 	1.12 1.15 
G 1.2 	1.25 1.28 
H 1.2 	1.26 1.3 
I 1.1 	1.14 1.16 
J 1.13 	1.16 1.18 
K 1.15 	1.19 1.22 
L 1.13 	1.17 1.2 
M 1.11 	1.155 1.18 
N 1.05 	1.08 1.1 1.11 
0 1.08 	1.12 1.15 1.16 
P 1.1 	1.15 1.18 1.19 

1.15 	1.19 1.22 1.23 

since each test speaker's input included only three utterances of each digit, and 

no additional (incorrect) adaptations of a given template were permitted by the 

correctness condition imposed in the supervised adaptation. Sets "N" to "Q" 

were used in the unsupervised adaptation experiments, where incorrect adapta-

tions could occur and so it was possible for a template to be adapted more than 

three times. (For templates adapted no more than three times, factors "0", "P" 

and "Q" are equivalent to factors "F", "D" and "K" respectively.) 

The first speaker-independent template adaptation experiments with com-

pensation were conducted using initial template set D6, with the utterances 

from each test speaker in the same order as before (i.e. three repetitions of the 

numerically increasing sequence from 0 to 9). Only two sets of (supervised) 

adaptation parameters were considered. The results are listed in table 7.4. For 

each of the two sets of adaptation parameters, the results are listed in order of 
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Table 7.4: results of adaptive digit recognition experiments with 
speaker-independent initial templates (set D6) and compensation factors 

Adaptation 
and 
compensation 

Mean (standard error) of 
improvement over non-adaptive 

input repetition 
1 	2 	 3 

recognition 
overall 

Mean (g.e.) 
overall 
recognition 

 accuracy. 
none 92.99 

(1.00) 

S o .5 0 none -2.45 -0.82 2.65 -0.20 92.79 
(0.62) (0.96) (1.12) (0.64) (1.25) 

S o .5 0 F -0.41 1.22 4.29 1.70 94.69 
(0.50) (0.81) (0.92) (0.46) (0.89) 

S o .5 0 D 0.00 0.82 4.29 1.70 94.69 
(0.41) (0.87) (0.92) (0.47) (0.88) 

S o .5 0 C 0.00 1.22 4.08 1.77 94.76 
(0.41) (0.81) (0.87) (0.42) (0.85) 

S o .5 0 E 0.20 1.02 4.08 1.77 94.76 
(0.36) (0.84) (0.92) (0.44) (0.85) 

S o .5 0 G 0.41 0.82 4.29 1.84 94.83 
(0.29) (0.82) (1.05) (0.51) (0.79) 

S o .5 0 B 0.41 0.82 3.88 1.70 94.69 
(0.29) (0.82) (1.00) (0.51) (0.78) 

S o .5 0 A 0.82 -0.20 0.41 0.34 93.33 
(0.40) (0.85) (1.16) (0.62) (0.89) 

S o 1.0 -.05 none -2.04 -0.20 3.27 0.34 93.33 
(0.77) (0.99) (1.07) (0.65) (1.09) 

S o 1.0 -.05 F -0.41 1.63 4.29 1.84 94.83 
(0.58) (0.89) (1.05) (0.52) (0.85) 

S o 1.0 -.05 I -0.20 1.63 3.88 1.77 94.76 
(0.54) (0.98) (1.08) (0.61) (0.80) 

S o 1.0 -.05 D -0.20 1.63 4.49 1.97 94.97 
(0.54) (0.98) (1.09) (0.60) (0.77) 

S o 1.0 -.05 J 0.41 1.84 3.47 1.90 94.90 
(0.41) (1.04) (1.03) (0.61) (0.78) 

S o 1.0 -.05 L 0.41 1.84 3.47 1.90 94.90 
(0.41) (1.04) (1.03) (0.61) (0.78) 

S o 1.0 -.05 K 0.61 1.22 2.86 1.56 94.56 
(0.35) (1.04) (1.05) (0.62) (0.81) 

S o 1.0 -.05 C 0.61 1.22 2.86 1.56 94.56 
(0.35) (1.04) (1.09) (0.62) (0.80) 

S o 1.0 -.05 G 0.61 0.61 1.63 0.95 93.95 
(0.35) (0.94) (1.07) (0.61) (0.84) 

S o 1.0 -.05 H 0.61 0.61 1.63 0.95 93.95 
(0.35) (0.94) (1.07) (0.61) (0.84) 
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increasing compensation. (In the case with initial input weight 0.5, negative 

adaptation was (unintentionally) not performed, and so the results with no com-

pensation are slightly different from those in table 7.1.) 

It is apparent from these results that the use of appropriate compensation 

factors can improve adaptive recognition performance with speaker-independent 

initial templates, especially over the first two repetitions of the vocabulary in 

the input sequence. The optimal compensation factors are larger for the case 

with initial input weight 0.5 (where the performance without compensation was 

poorer) than for the case with initial input weight 1.0. 

These results are not very realistic, however, in that the input for each test 

speaker consisted of three successive repetitions of the digits in order, rather 

than a randomly ordered digit sequence. With such regularly ordered input, it 

should be possible to obtain artificially high recognition accuracy by applying 

large compensation factors - since, whenever a word occurs in the input 

sequence for the nth time, each other word in the vocabulary has occurred either 

n —1 or n times already, and so the best templates for incorrect recognitions will 

mostly have been adapted, and hence be penalised by the compensation factors, 

at least as much as the best correct template. (This is most clearly true when 

there is only one template for each word of the vocabulary; the effect becomes 

blurred as the number of templates per word increases, since then the 

occurrence (and correct identification) of a given number of utterances of a word 

becomes less likely to result in that number of adaptations of the same tern-

plate.) To obtain more realistic results, in further experiments, the order of each 

test speaker's input utterances was randomised before each recognition trial. 
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7.3.3: Experiments with randomly ordered input 

- For each of the 49 test speakers, four different random permutations of the 

30-digit sequence were constructed. All the permutations for different test 

speakers were generated separately. In each trial, the randomly ordered 

sequence was recognised, with and without adaptation, using each of the three 

template sets (D6, D4 and D2). Differences between adaptive and non-adaptive 

performance were computed for the 10-digit input subsequences. For each test 

speaker, these differences were averaged across the four random orderings. 

Means and standard error estimates were obtained from the averaged 

differences for the 49 speakers. 

The results of these experiments with randomly ordered input, for the three 

initial template sets, are shown in tables 7.5 to 7.7. Selected results (with no 

compensation, and with optimal compensation, for each set of adaptation param-

eters) are also plotted in figures 7.1 to 7.6. 

7.3.3.1: Comparison of results with and without random ordering 

Comparing the figures in tables 7.5 and 7.7 with the corresponding results 

for fixed-order input sequences in tables 71., 7.2 and 7.4, it is evident that, with 

adaptation but no compensation, the overall performance is usually slightly 

poorer for the randomly ordered input sequences. When the input consists of 

three successive repetitions of the vocabulary, the results with supervised adap-

tation show losses of accuracy on the first two repetitions, but a fairly significant 

improvement (averaging about 3%) on the third. (The contrast between the 

improvements on the first two repetitions and those on the third may be partly 

due to the difference in the non-adaptive recognition performance: the recogni-

tion accuracy without adaptation (given in section 7.3.1) was lower on the third 
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Table 7.5: results of adaptive digit recognition experiments 
with speaker-independent initial templates (set D6) 
and randomly ordered input sequences 

Adaptation 
and 
compensation 

Mean (standard error) of 
improvement over non-adaptive recognition 

input subsequence 	overall 
.1 	2 	3  

Mean (s.e.) 
overall 
recognition 
accuracy 

none 92.99 
(1.00) 

S o .5 0 none -0.66 -1.22 -0.77 -0.88 92.11 
(0.46) (0.62) (0.80) (0.48) (1.15) 

S o .5 0 D 0.71 1.28 2.96 1.65 94.64 
(0.38) (0.43) (0.64) (0.56) (0.81) 

S o .5 0 K 0.92 1.28 2.91 1.70 94.69 
(0.39) (0.43) (0.68) (0.36) (0.81) 

S o .5 0 G 0.82 1.48 3.01 1.77 94.76 
(0.30) (0.49) (0.73) (0.24) (0.79) 

5 o 1.0 -.05 none 0.46 -0.56 0.61 0.17 93.16 
(0.46) (0.64) (0.77) (0.47) (0.95) 

S o 1.0 -.05 D 1.12 1.12 2.70 1.65 94.64 
(0.41) (0.50) (0.72) (0.43) (0.76) 

S o 1.0 -.05 M 1.12 0.97 2.65 1.58 94.57 
(0.41) (0.51) (0.73) (0.44) (0.77) 

S o 1.0 -.05 K 0.20 0.15 0.26 0.20 93.20 
(0.16) (0.22) (0.15) (0.13) (0.99) 

S o 1.0 -.05 G 0.15 0.20 0.31 0.22 93.21 
(0.17) (0.23) (0.21) (0.14) (0.99) 

U o .2 (1.15) none -0.41 -1.53 -2.65 -1.53 91.46 
(0.21) (0.54) (0.73) (0.43) (1.22) 

U o .2 (1.15) N -0.10 -0.56 -0.46 -0.37 92.62 
(0.13) (0.37) (0.57) (0.28) (1.10) 

U o .2 (1.15) 0 0.10 0.05 0.10 0.09 93.08 
(0.16) (0.33) (0.41) (0.24) (1.03) 

U o .2 (1.15) P 0.20 0.61 0.31 0.37 93.37 
(0.19) (0.35) (0.45) (0.26) (0.97) 

U o .2 (1.15) Q 0.31 0.36 0.31 0.32 93.32 
(0.24) (0.41) (0.56) (0.32) (0.91) 

U o .2 (1.15) s none -0.26 -0.92 -0.92 -0.88 92.11 
(0.17) (0.30) (0.32) (0.19) (1.05) 

U o .2 (1.15) s N -0.05 0.31 0.41 0.22 93.21 
(0.09) (0.16) (0.17) (0.11) (0.96) 

U o .2 (1.15) s 0 0.20 0.31 0.26 0.26 93.25 
(0.16) (0.14) (0.17) (0.11) (0.98) 

U o .2 (1.15) s P 0.20 0.15 0.26 0.20 93.20 
(0.16) (0.22) (0.15) (0.13) (0.99) 

U o .2 (1.15) a Q 0.15 0.20 0.31 0.22 93.21 
(0.24) (0.41) (0.56) (0.14) (0.99) 
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Table 7.6: results of adaptive digit recognition experiments 
with speaker-independent initial templates (set D4) 
and randomly ordered input sequences 

Adaptation 
and 
compensation 

Mean (standard error) of 
improvement over non-adaptive recognition 

input subsequence 	overall 
1 	2 	3 

Mean (s.e.) 
overall 
recognition 

 accuracy 
none 92.86 

(1.02) 

S o .5 0 none -1.33 -1.84 -1.79 -1.65 91.21 
(0.46) (0.80) (0.84) (0.56) (1.23) 

S o .5 0 D 0.41 1.73 2.55 1.56 94.42 
(0.37) (0.64) (0.78) (0.45) (0.81) 

S o .5 0 K 0.82 2.09 2.65 1.85 94.71 
(0.30) (0.62) (0.80) (0.46) (0.76) 

S o .5 0 G 0.51 1.84 1.94 1.43 94.29 
(0.23) (0.71) (0.77) (0.47) (0.78) 

S o 1.0 -.05 none -0.41 0.15 0.31 0.02 92.87 
(0.39) (0.71) (0.91) (0.53) (0.97) 

S o 1.0 -.05 D 0.26 1.99 2.40 1.55 94.40 
(0.28) (0.68) (0.83) (0.50) (0.76) 

S o 1.0 -.05 M 0.31 1.84 2.30 1.48 94.34 
(0.27) (0.74) (0.83) (0.51) (0.76) 

S o 1.0 -.05 K 0.31 1.63 2.14 1.36 94.22 
(0.31) (0.78) (0.86) (0.54) (0.75) 

SOLO-.05 G 0.00 1.12 1.68 0.94 93.79 
(0.33) (0.84) (0.83) (0.57) (0.71) 

U o .2 (1.15) none -0.77 -1.53 -2.40 -1.56 91.29 
(0.41) (0.48) (0.69) (0.12) (1.23) • o .2 (1.15) 0 0.31 0.87 0.87 0.68 93.54 
(0.19) (0.31) (0.45) (0.25) (0.92) • o .2 (1.15) P 0.46 0.77 0.97 0.80 93.66 
(0.20) (1.00) (0.46) (0.29) (0.88) .  • o .2 (1.15) Q 0.15 1.02 0.36 0.51 93.37 
(0.22) (0.56) (0.64) (0.42) (0.84) 

U o .2 (1.15) s none -0.51 -1.48 -1.53 -1.17 91.68 
(0.23) (0.39) (0.54) (0.30) (1.10) 

U o .2 (1.15) s 0 -0.05 0.10 -0.10 -0.02 92.84 
(0.05) (0.22) (0.21) (0.10) (1.02) 

U o .2 (1.15) s P 0.00 0.05 0.05 0.03 92.89 
(0.00) (0.19) (0.17) (0.08) (1.02) 

U o .2 (1.15) s Q 0.00 -0.10 0.00 -0.03 92.82 
(0.00) (0.19) (0.22) 1 	(0.11) 1 	(1.01) 
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Table 7.7: results of adaptive digit recognition experiments 
with speaker-independent initial templates (set D2). 
and randomly ordered input sequences 

Adaptation 
and 
compensation 

Mean (standard error) of 
improvement over non-adaptive recognition 

input subsequence 	overall 
2 	 3 

Mean (s.e.) 
overall 
recognition 

 accuracy .  
none 91.56 

(1. 11) 

S o .5 0 none -0.71 -0.61 -1.43 -0.92 90.64 
(0.70) (0.94) (1.04) (0.74) (1.35) 

S o .5 0 D 1.07 3.21 3.01 2.43 94.00 
(0.46) (0.74) (0.61) (0.49) (0.99) 

S o .5 0 K 1.22 2.91 3.16 2.43 94.00 
(0.43) (0.69) (0.69) (0.48) (0.90) 

S o .5 0 G 1.12 2.76 3.11 2.33 93.90 
(0.41) (0.79) (0.75) (0.51) (0.86) 

5 o 1.0 -.05 none 0.20 0.87 0.41 0.49 92.06 
(0.56) (0.86) (0.86) (0.65) (1.11) 

S o 1.0 -.05 D 1.12 2.81 3.52 2.48 94.05 
(0.43) (0.79) (0.74) (0.54) (0.86) 

S o 1.0 -.05 M 1.22 2.76 3.57 2.52 94.08 
(0.45) (0.79) (0.76) (0.54) (0.84) 

S o 1.0 -.05 K 0.87 2.09 2.30 1.75 93.32 
(0.30) (0.65) (0.54) (0.38) (0.93) 

S o 1.0 -.05 G 0.97 1.84 2.04 1.62 93.18 
(0.32) (0.61) (0.55) (0.37) (0.93) 

U o .2 (1.15) none -0.66 -1.79 -3.88 -2.11 89.45 
(0.33) (0.63) (0.93) (0.52) (1.37) 

U o .2 (1.15) N 0.31 1.58 0.82 0.90 92.46 
(0.25) (0.40) (0.50) (0.29) (1.09) 

U o .2 (1.15) 0 0.56 1.33 0.97 0.95 92.52 
(0.29) (0.37) (0.48) (0.29) (1.03) 

U o .2 (1.15) P 0.77 1.58 1.12 1.16 92.72 
(0.34) (0.42) (0.46) (0.31) (1.01) 

U o .2 (1.15) Q 0.77 1.99 1.53 1.43 92.99 
(0.35) (0.51) (0.51) (0.34) (0.93) 

U o .2 (1.15) s none -0.20 -0.51 -2.24 -0.99 90.58 
(0.22) (0.47) (0.62) (0.35) (1.16) 

U o .2 (1.15) s N 0.10 0.82 0.41 0.44 92.01 
(0.10) (0.30) (0.29) (0.16) (1.13) 

U o .2 (1.15) s 0 0.05 1.48 0.71 0.75 92.31 
(0.14) (0.41) (0.26) (0.22) (1.11) 

U o .2 (1.15) s P 0.20 1.58 0.97 0.92 92.48 
(0.18) (0.44) (0.29) (0.25) (1.09) 

U o .2 (1.15) s Q 0.20 1.28 0.77 0.75 92.31 
(0.16) (0.38) (0.27) . 	 (0.21) (1.12) 
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repetition than on the first or second, for each of the template sets D6 and D2, 

leaving more room for improvement through adaptation.) With randomly 

ordered input, however, the results in the case with initial input weight 0.5 

show losses of accuracy spread across all three 10-word input subsequences; and, 

while improvements were attained in the case with initial input weight 1.0, 

these were relatively small (for all subsequence numbers) and of low 

significance. This confirms, for the case with no compensation, the expectation 

that the benefit of adaptation should be greatest if the adaptation proceeds 

evenly across the words of the vocabulary. (The differences in overall accuracy 

between the two cases of input ordering are not highly significant; but there are 

significant differences in the improvements on the third 10-digit subsequences 

(confidences 0996 and 0.998 for D6 with the two sets of supervised adaptation 

parameters, and 0.997 and 0.994 for D2) - though part of the difference here 

may be due to the effect (already mentioned) of the non-adaptive recognition 

accuracy on the improvement attainable through adaptation in the case without 

random reordering.) 

In the case of the template set (D6) with which the previous compensation 

experiments were conducted, the overall improvements due to adaptation with 

appropriate compensation are somewhat smaller with the randomly ordered 

input - 1.77% and 1.65% for the two supervised adaptation parameter settings 

(table 7.5), against 1.84% and 1.97% respectively (table 7.4). However, the 

significance of this difference is very low. Even on the third subsequences, 

where the difference in the degree of improvement is greatest, it is only weakly 

significant (with means 1.28 and 1.79, and standard errors 1.06 and 1.15, giving 

confidences 0.88 and 0.94, for the respective adaptation parameters). It appears, 

then, that there is less difference between results with regular and random ord-

ering with appropriate compensation than in the absence of compensation. 
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Figure 7.1: results for template set D6 with supervised adaptation 
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Figure 7.2: results for template set D6 with unsupervised adaptation 
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Figure 7.3: results for template set D4 with supervised adaptation 
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Figure 7.4: results for template set D4 with unsupervised adaptation 
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Figure. 7.5: results for template set D2 with supervised adaptation 
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Figure 7.6: results for template set D2 with unsupervised adaptation 
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7.3.3.2: Observations on the supervised adaptation results 

With appropriate compensation, supervised adaptation yields substantial 

improvements in recognition accuracy, with high levels of statistical significance 

across the test speakers. The accuracies on the third 10-digit subsequences were 

improved, with the optimal adaptation and compensation, by amounts greater 

than 2.5%, and accuracies between 95% and 96% were attained on these subse-

quences, for all three initial template sets. The confidences for the third-

subsequence improvements, with input weight 0.5 and compensation "K", are 

better than 0.9999 for template sets D6 and D2, and 0.9992 for D4. (The 

improvements with input weight 1.0 and compensation "D" were of fairly similar 

size and significance.) Fairly significant, though smaller, improvements were 

attained even on the first 10-digit subsequences of the input: the confidences in 

these improvements, again with input weight 0.5 and compensation "K", are 

0.99 (D6), 0.995 (D4) and 0.997 (D2). 

As in the experiments without reordering of the input, it is noticeable in 

tables 7.5 to 7.7 that the optimal compensation factors are larger for the case 

with initial input weight 0.5 (equally weighted averaging of the initial template 

and input utterances) than for the case with initial input weight 1.0 (zero weight 

on the initial template). For each template set, with initial input weight 0.5, 

the overall improvement with compensation "K" is greater than that with com-

pensation "D", whereas this inequality is reversed in the case with initial input 

weight 1.0. Using results averaged (for each test speaker) across the three ini-

tial template sets, the preference for compensation "D" over compensation "K" 

with initial input weight 1.0 is at least fairly significant on each of the three 

input subsequences (and highly significant on the third), and has a high level of 

significance overall (mean 0.79, standard error 0.18, confidence greater than 
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0.9999); the preference for compensation "K" over compensation "D" with initial 

input weight 0.5 is less significant (mean 0.11, standard error 0.11, confidence 

- 0.84); and the difference between the preferences for the two cases of weighting 

is also highly significant overall (mean 0.90, standard error 0.22, confidence 

0.9999) and is moderately to highly significant on the individual subsequences. 

The fact that adaptation with initial input weight 0.5 has larger optimal 

compensation factors than adaptation with initial input weight 1.0 indicates that 

the reduction of word distances due to adaptation is more rapid in the former 

case. That is, over short input sequences such as those used in these experi-

ments, averaging the speaker-independent initial template with the inputs 

recognised so far results in templates more closely matching the current 

speaker's speech than replacing the initial template completely by the average 

of the speaker-specific recognised input utterances (which after one adaptation is 

just a single utterance). (The effect is seen most clearly in the case of template 

set D6, which is the best of the three initial template sets: with this template 

set, the overall accuracy with initial input weight 1.0 drops sharply, from 

94.57% to 93.20%, when the compensation factors are increased from the "M" 

values to the "K" values, whereas compensation "K" yields good results with ini-

tial input weight 0.5.) This phenomenon was not, however, accompanied by a 

significant difference between the recognition accuracies attainable (with suit-

able compensation factors) with the two weight settings. The mean difference 

(in overall accuracies averaged across the three template sets) between results 

with initial input weight 1.0 and compensation "D" and those with initial input 

weight 0.5 and compensation "K" is 0.10, and the standard error is 0.12, yield-

ing a confidence of only 0.79 that the latter case is better. The corresponding 

results for the individual template sets are likewise inconclusive. (It should be 

remembered, however, that negative adaptation was in operation in the case 
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with initial input weight 1.0, and not in the case with initial input weight 0.5. 

If the negative adaptation had been consistent across the two cases, the 

difference in accuracy between them might have been slightly larger and more 

significant.) 

The amount of improvement attained over non-adaptive recognition was 

greatest for initial template set D2 (where the maximal overall improvement 

was 2.52, from 91.56% to 94.08%), next greatest for D4 (1.85, from 92.86% to 

94.71%), and least for D6 (1.77, from 92.99% to 94.76%). This is as expected: the 

fewer templates per word in a speaker-independent template set, the less well it 

covers the range of variant pronunciations and voices; hence, the lower its accu-

racy will tend to be (without adaptation), and the more room there will be for 

improvement through adaptation. The differences between corresponding 

results with different template sets are not very consistent across test speakers, 

however. The differences between non-adaptive results for D6 and D2 and for 

D4 and D2 are fairly significant (respectively, 1.43 (standard error 0.67, 

confidence 0.98) and 1.29 (0.62, 0.98)), but the difference of D6 and D4 is not 

significant. With adaptation (and appropriate compensation), the differences 

between different template sets' results are only moderately significant at best 

(the mean does not exceed 1.5 standard errors, and so the confidence does not 

exceed 0.93): the distributions of accuracy (across test speakers) for the different 

template sets have moved closer together and so overlap considerably. However, 

the change, due to adaptation, in the difference between template sets' accura-

cies is also not highly significant: its mean value is, for each of the template set 

pairs (D6,D2) and (D4,D2), between 1.0 and 1.5 times its standard error (and for 

(D6,D4) it is less than one standard error). (This "change in the difference" is 

also, by a trivial rearrangement of subtractions, the difference between the accu-

racy improvements due to adaptation for the different template sets.) No 
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improvement in significance is obtained by considering results on the third 

subsequences instead of overall results. 

The effects of supervised adaptation on the accuracies for individual test 

speakers are shown by the histograms in figures 7.7 and 7.8. In each of these 

figures, the histograms in the first column show results for template set D6; 

those in the second column, for D4; those in the third column, for D2. The quan-

tities whose frequency distributions (over the 49 test speakers) are shown in the 

first two histograms in each column are the numbers of errors in the non-

adaptive and adaptive recognition of the third 10-digit subsequences, accumu-

lated over the four random orderings of the input data for each test speaker. 

These numbers are counts of errors occurring in 40 recognitions, and can there-

fore be converted to percentage error rates for individual test speakers by multi-

plication by 2.5. The third histogram in each column shows the distribution of 

the improvement in accuracy due to adaptation, again accumulated over the 

final 10-digit subsequences in the four random orders for each speaker. Thus 

the quantity appearing in the third histogram, for each test speaker, is the 

difference between the error counts for that speaker which contribute to the two 

histograms above it. These error counts and differences are shown in figure 7.7 

for adaptation with initial input weight 0.5 and compensation "K" and in figure 

7.8 for adaptation with initial input weight 1.0 and compensation "D". (For each 

template set, the histograms of error counts for non-adaptive recognition in 

figures 7.7 and 7.8 - and indeed in figures 7.9 and 7.10 - are identical: they are 

repeated in the different figures for ease of comparison with the histograms for 

adaptive recognition.) 

The error count histograms illustrate both the improvements in mean 

recognition accuracy due to supervised adaptation with appropriate compensa-

tion (seen in the "subsequence 3" columns of tables 7.5 to 7.7) and the reductions 
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Figure  7.7: histograms of individual test speakers' results 
with supervised adaptation (parameters S o .5 0; compensation "K") 

Results in each column: 
error counts without adaptation; 
error counts with adaptation; 
reductions in error count due to adaptation 

- computed over third 10-digit subsequences in all random orders 
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Figure 7.8: histograms of individual test speakers' results 
with supervised adaptation (parameters S o 1.0 - .05; compensation "IY') 

Results in each column: 
error counts without adaptation; 
error counts with adaptation; 
reductions in error count due to adaptation 

- computed over third 10-digit subsequences in all random orders 
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in the variation of accuracy across speakers (which are revealed, for the full 30-

digit sequences, in the reduced standard error estimates for the overall accura-

cies in the final columns of tables 7.5 to 7.7). For each template set, the tail of 

high error rates for particular speakers in the histogram for the non-adaptive 

case is shortened, and the occurrence of zero error counts is increased, in the his-

togram for each adaptive case. The difference histograms show that, for each 

template set and adaptation weighting, there were only a few of the 49 speakers 

(never more than six of them) whose third-subsequence results in adaptive 

recognition were poorer than the results on the same data in non-adaptive recog-

nition, and the loss of accuracy in such cases was usually small (amounting to 

one recognition out of 40, or occasionally two) - whereas a large proportion of 

the test speakers (often more than half of them) had improvements in accuracy, 

which were sometimes very substantial (e.g. five more correct recognitions out of 

40, an improvement of 12.5%). 

7.3.3.3: Observations on the unsupervised adaptation results 

Without compensation, the results with unsupervised adaptation, like those 

in tables 7.1 and 7.2, show only losses of accuracy relative to the performance 

without adaptation. Moreover, the loss in accuracy generally increases from one 

input subsequence to the next. With direct adaptation (i.e. not skewed), the 

reduction in overall accuracy, and in accuracy on the third subsequence, is 

greater for template set D2 than for D4 and D6 - though this difference has 

only moderate significance (confidences 0.84 and 0.87 for the respective 

differences in the overall results, and 0.96 and 0.93 for those on the third subse-

quences). With skewed adaptation, the reduction in accuracy is smaller than 

with the direct form, especially for D2, but is still highly significant. The 
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confidences for the reductions in overall accuracy, derived from results averaged 

across the three template sets, are greater than 0.9999 for both direct and 

skewed adaptation, and the same is true for the reductions in accuracy on the 

third subsequences. 

With compensation, however, some improvement over non-adaptive recogni-

tion is attained. The improvement is greater for direct adaptation than for 

skewed adaptation - especially for template sets D4 and D2. Using results 

averaged across the three template sets, the mean improvements with compen-

sation "P" are 0.78 (standard error 0.18, confidence > 0.9999) with direct adap-

tation and 0.39 (0.09, > 0.9999) with skewed adaptation; the difference between 

the direct and skewed adaptation results is 0.39, with standard error 0.18, and 

hence confidence 0.98. Thus, the improvement over non-adaptive recognition is 

highly significant overall for each form of unsupervised adaptation, and the 

difference between the improvements with direct and skewed adaptation is fairly 

significant. The improvements, averaged across the three template sets, with 

compensation "Q" are slightly smaller than those with compensation "P". The 

confidences in the overall improvements with direct adaptation and compensa-

tion "P" for the individual template sets are 0.92 (for D6), 0.995 (for D4) and 

0.9998 (for D2); the confidences in the improvements with skewed adaptation are 

0.93, 0.65 and 0.9997 respectively. 

The rate of incorrect adaptations (relative to all recognitions, over all three 

template sets) with no compensation is 2.6% for direct adaptation, and 1.8% for 

skewed adaptation; with compensation "P", these rates are reduced to 1.3% and 

1.1% respectively. 

It is difficult to tell from the results of these experiments, where the length 

of each input sequence was limited to 30 digits (three repetitions of the vocabu-

lary), what the outcome of unsupervised adaptation would be for long input 
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sequences. It seems likely that instabilities would set in, through repeated 

adaptation to misrecognised inputs, in some cases. This would probably tend to 

happen more with direct adaptation than with skewed adaptation (in which the 

effect of an incorrect adaptation is moderated because the adaptation is not 

applied to the best-matching template), and so, over long sequences of input 

utterances, the performance with skewed adaptation might prove to be better 

than that with direct adaptation. However, for many applications of speech 

recognition, the user will not tolerate repeated failure to recognise a particular 

word, and will prefer to retrain the templates for the affected words whenever 

such an instability occurs. The assessment of system performance is less 

straightforward if a retraining facility is assumed. It might be better to use 

direct adaptation, despite the risk of instabilities, if these could be corrected 

easily and the recognition performance was otherwise better than with skewed 

adaptation. 

In the case of template set D2 particularly, it was to be expected that the 

improvement with skewed adaptation would be less than that with direct adap-

tation, since this template set contains one male and one female template for 

each word. When, for instance, a word spoken by a female test speaker is recog-

nised correctly - the best-matching template being the one formed from the 

female training speakers' utterances - the adaptation is applied to the template 

formed from the male training speakers' utterances. It may take several such 

adaptations before the adapted (originally male) template matches the test 

speaker's voice well enough to contribute usefully to the recognition. 

For a complete study of unsupervised adaptation, it would be desirable to 

obtain results with several different adaptation weightings, and with several 

values of the distance ratio threshold used in the adaptation condition. It might 

be found that a. smaller input weight, or a higher threshold on the distance 
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ratio,  would prevent many of the incorrect adaptations, while retaining an ade-

quate rate of correct adaptation, and so yield an improvement greater than was 

obtained with the weighting and threshold value adopted here. However, these 

experiments have demonstrated that, with appropriate compensation factors, it 

is possible to improve the overall recognition accuracy of an initially speaker-

independent system by unsupervised adaptation. 

Histograms of the recognition errors on the third 10-digit subsequences, and 

of the improvements (on the third subsequences) due to the unsupervised adap-

tation, for individual test speakers are presented in figures 7.9 and 7.10. The 

layout of these figures is the same as that of figures 7.7 and 7.8. Figure 7.9 

shows the error counts and improvements with direct adaptation, and 7.10 those 

with skewed adaptation. 

One noticeable feature of the difference histograms in figures 7.9 and 7.10, 

when they are compared with those in figures 7.7 and 7.8, is that, when the 

adaptation is unsupervised, considerably larger numbers of test speakers have 

their recognition accuracies unchanged by it. This is especially true in the case 

of skewed adaptation applied to template sets D6 and D4. With direct unsuper-

vised adaptation, the incidence of worsenings in performance for individual test 

speakers is only a little greater than with supervised adaptation, but there are 

substantially fewer cases of improvement, and the amount of improvement when 

it does occur tends to be smaller. Given the shortness of the test input 

sequences, this lesser degree of improvement may be partly because of the 

smaller input weight which was adopted (to reduce the danger of instability) in 

the unsupervised adaptation, as well as because of the reduced number of correct 

adaptations (resulting from the distance ratio threshold condition) and the coun-

terproductive effect of incorrect adaptations. With skewed adaptation, the 

amount of improvement observed for any one speaker is further reduced (never 
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Figure 7.9: histograms of individual test speakers' results 
with unsupervised adaptation (parameters U o .2 (1.15); compensation "F') 

Results in each column: 
error counts without adaptation; 
error counts with adaptation; 
reductions in error count due to adaptation 

- computed over third 10-digit subsequences in all random orders 
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Figure 7.10: histograms of individual test speakers' results 
with unsupervised adaptation (parameters U o .2 (1.15) s; compensation "P") 

Results in each column: 
error counts without adaptation; 
error counts with adaptation; 
reductions in error count due to adaptation 

- computed over third 10-digit subsequences in all random orders 
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exceeding a difference of two recognitions out of the 40), but the amount of 

deterioration that occurs is also restricted (usually to a loss of one recognition 

out of 40). 

Overall, with unsupervised adaptation, the shortening of the tail of poor 

single-speaker results (seen in the non-adaptive error histograms) is much less 

evident than with supervised adaptation. Indeed, in one case (D2, direct adapta-

tion), the worst error rate in the population was increased by the adaptation 

(from 11 to 13 out of 40 - though the speaker with 13 errors was one who had 

only eight errors without adaptation); and in only one case (D4, direct adapta-

tion) was it reduced (from 15 to nine out of 40). A problem with unsupervised 

adaptation is that if a speaker's pronunciations of certain words do not 

correspond well enough to the templates to allow recognition with a word dis-

tance ratio above the threshold then these words' templates will never be 

adapted and the error rate for that speaker will remain high. 

7.3.3.4: The effect of adaptation on computational requirements 

As was mentioned in section 6.3.2.5, template adaptation can reduce the 

numbers of templates matched against the input at the second and third stages 

of the three-stage recognition procedure, and so improve the computational 

efficiency of the recognition. This effect is greater in the case of an initially 

speaker-independent template set, since the numbers of templates retained at 

the second and third stages in the non-adaptive case are larger than with 

speaker-specific templates - especially when there are several templates per 

word of the vocabulary. 
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Table 7.8: Numbers of template matches at the second and third stages 
(per recognition) in digit recognition with speaker-independent 
initial templates (during third subsequences of input) 

Adaptation Template set 
and D6 D4 D2 
compensation stage stage stage 

2 3 2 	3 2 3 
none 12.52 1.02 9.41 	0.88 6.52 0.66 
S o .5 0 K 5.68 0.38 3.92 	0.30 2.39 0.23 
S o 1.0 -.05 D 4.63 0.40 3.23 	0.29 2.07 0.26 
U o .2 (1.15) P 10.12 0.78 7.37 	0.65 4.65 0.47 
U o .2 (1.15) s P 11.68 0.94 8.65 	0.76 5.34 0.54 

The average numbers of templates matched at the second and third stages 

during recognition of the third 10-digit subsequence of each test speaker's input, 

in cases without adaptation and with adaptation (and optimal compensation), 

are listed in table 7.8. These numbers were taken from the output of the experi-

ments with randomly-ordered 30-digit input sequences. Thus, the numbers for 

the cases with adaptation show the effects of the preceding adaptation to the 

first 20 input utterances, and also of the continuing adaptation during the third 

subsequence. 

With normalisation of all utterances to 30 interpolated vectors (which was 

applied in these experiments), the computation for one template adaptation is 

somewhat greater than that for a template match at stage 3, since the adapta-

tion process involves a DTW alignment and some weighted averaging and inter-

polation operations. The DTW alignment is the most computationally costly 

part of the adaptation, however, and so the computation for an adaptation will 

not be as much as twice that for a stage 3 matching operation. A stage 3 match 

requires about eight or nine times as much computation as a (10-vector) tern- 

plate match at stage 2. Thus, in the case with the greatest recognition computa- 
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tion reduction (relative to non-adaptive recognition) in table 7.8 (D6, supervised 

adaptation, initial input weight 1.0), the computational saving during the recog-

nition (7.89 matches per recognition at stage 2 and 0.62 at stage 3) is probably 

sufficient to outweigh the additional computation required for the adaptation. 

The same may be true for the other cases with initial templates D6 or D4 and 

supervised adaptation. With the initial template set D2, or with unsupervised 

adaptation, however, the computation reductions observed are outweighed by the 

computation for the adaptation. Greater reductions in computation during the 

recognition process can be expected after more prolonged adaptation, as the tem-

plates become more perfectly attuned to the voice and pronunciations of the 

speaker, and so it may be expected that, with a speaker-independent set of four 

or more templates per digit (such as D4 or D6), supervised adaptation will 

reduce the overall computation over long sequences of input utterances. 

In general, the number of templates per word at which the long-term com-

putational benefit of adaptation begins to outweigh its computational cost will 

depend on the confusability of the vocabulary: for a more confusable vocabulary, 

in which more templates tend to be retained at the second and third stages, the 

adaptation will pay off with fewer templates per word than for a less confusable 

vocabulary. 

It may be noted in passing that the figures for non-adaptive recognition in 

table 7.8 show a beneficial effect of multiple-stage recognition in a system with 

several templates per word: although the total number of templates in use is 

twice as large in the case of D4 as in the case of D2, and three times as large in 

the case of D6, the numbers of templates retained at the second and third stages 

do not increase proportionately. 
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7.4: Discussion of speaker-independent template adaptation 

Various features of the results have been examined in detail in the preced-

ing sections (7.3.3.1 to 7.3.3.4). A few of the more general findings are discussed 

briefly in this section, and some issues relating to the evaluation and application 

of speaker-independent template adaptation are considered. 

The main conclusions of these experiments with adaptation of speaker-

independent templates are that the recognition performance can be substantially 

and significantly improved by supervised adaptation and that it can also be 

improved in general, though not so rapidly and not so consistently across initial 

template sets and test speakers, by unsupervised adaptation. By adaptation, 

templates which initially correspond rather poorly to the current speaker's 

pronunciations of the words, because they have been formed from utterances by 

a standard set of training speakers (not including this speaker), can be made 

speaker-specific during the course of a recognition session, and the recognition 

accuracy can be correspondingly increased. There is some improvement in 

recognition even on the first few words of the new speaker's input, and this 

improvement increases markedly over further repetitions of the words. 

As with adaptation of speaker-specific templates, it has been found that the 

application of appropriate compensation factors is essential to the attainment of 

optimal performance with adaptation. Without compensation, and with ran-

domly ordered input sequences, the results with supervised adaptation of 

speaker-independent templates show only fairly small and inconsistent improve-

ments at best, and in some cases an overall loss of accuracy, relative to non-

adaptive recognition; and the results with unsupervised adaptation are con-

sistently poorer than those without adaptation. With compensation, however, 

significant improvements are attained by both supervised and unsupervised 
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adaptation. 

The optimal compensation factors (those identified as "K" in table 7.3) for 

the case with speaker-independent initial templates derived by clustering and 

averaging, with equal weighting of the speaker-independent template and the 

new speaker's utterance in the first adaptation (i.e. initial input weight 0.5), 

have a first factor value (1.15) similar to that occurring in the optimal compen-

sation factors ("Ii" or "j" in table 6.1) for the case with single-token speaker-

specific initial templates, again with equal weighting of initial template and 

inputs. This indicates that the effect on typical word distance values of the 

change (occurring at the first adaptation of each template) from speaker-

independent cluster average templates to speaker-specific templates, each incor-

porating one utterance from the current speaker, is similar to the effect of the 

change from speaker-specific single-utterance templates to speaker-specific two-

utterance templates. The increase in the effect on word distance which might be 

expected in the case with speaker-independent initial templates (relative to that 

with speaker-specific ones), due to the fact that the initial template was not 

specific to the current speaker, appears to be balanced by the effect of the fact 

that in the other case the initial speaker-specific template was derived from only 

a single utterance and so did not have the benefit of the smoothing effect of 

averaging (as used in the formation of cluster templates). 

The experiments described in this chapter have been limited in that only 

one set of training utterances, from a fixed set of 50 speakers, has been used to 

construct the speaker-independent initial templates: only the parameters of the 

clustering procedure applied to the data have been varied to produce different 

template sets. The effects of using greater or smaller numbers of training utter-

ances, from the same or different speakers, have not been explored. However, it 

seems reasonable to expect that the qualitative results obtained as to the 
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improvement of recognition performance through adaptation would hold true 

over a wide range of initial template sets. 

Another limitation is that only one vocabulary (that of 10 digits) has been 

considered. This vocabulary is, however, one which is likely to occur, on its own 

or as part of a larger vocabulary, in many of the possible practical applications 

for speaker-independent isolated word recognition. 

A more serious limitation is that only 30 utterances from each speaker - 

three repetitions of the vocabulary - were available in the data base for these 

experiments. Because of this, it has not been possible to explore the longer-term 

effects of adaptation of initially speaker-independent templates. An exploration 

of such effects would be of particular interest in the case of unsupervised adapta-

tion, where it is desirable to ensure stability over long input sequences. The 

problem of instability will be less easily solved by the provision of a retraining 

facility in many potential applications of speaker-independent word recognition, 

because these applications involve interaction over telephone lines, where speech 

is the only means of communication from the user to the system: this makes the 

specification by the user of the word to be retrained more problematic than in a 

case (as described in chapter 5) where a keyboard input facility is available. (A 

procedure for retraining in a system using only speech communication has been 

devised [225], but it is somewhat more cumbersome than the procedures which 

can be adopted when other channels of communication are available.) 

It would also be of interest to try interactive adaptive recognition using 

speaker-independent initial templates, rather than performing experiments only 

on prerecorded input data as was done here. (It was not feasible to use the 

speaker-independent template sets constructed for these experiments for recogni-

tion of input data collected using the interactive recognition system as in 

chapter 6, because of the differences in the acoustic background conditions and 
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microphones used, and also (though this could have been overcome) in the LPC 

analysis applied.) In an interactive recognition task, it would become evident 

whether the speaker-independent templates corresponded well enough to the 

current speaker's pronunciations to allow recognition, and hence adaptation, to 

get started on every word of the vocabulary. If this were not the case, the user 

would have to retrain the system for the words which failed to be recognised 

correctly; then the template set in use after retraining would be a mixture of 

speaker-independent and speaker-specific templates (with perhaps some adapted 

templates - initially speaker-independent, but now containing speaker-specific 

information - if other words of the vocabulary had already been recognised). 
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CONCLUDING DISCUSSION 
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8: CONCLUDING DISCUSSION 

8.1: Review of results 

8.1.1: Segmentation and segment representation techniques 

• The first topic addressed in this research was the comparison of several 

varieties of time segmentation and segment representation techniques, applied 

as preprocessing to template-based isolated word recognition with DTW align-

ment. The experiments and results are described in detail in section 4.2. 

Two segmentation techniques were compared: one (linear time segmenta-

tion) dividing the endpoint-detected word into a specified number of equal time 

intervals (without any reference to the acoustic data); and one (trace segmenta-

tion) which used a distance measure, applied to each pair of consecutive frame 

representations, to obtain segments containing equal amounts of acoustic 

change. In each case, the number of segments per word was fixed, and the seg-

ment length (measured in time or in acoustic distance) was adjusted to yield the 

specified number of segments for each word which was segmented. 

Three segment representation techniques were also compared (applicable to 

segments defined by either of the segmentation techniques): linear interpolation 

at each segment boundary, selection of the nearest frame vector at each boun-

dary, and averaging of the frame vectors for each segment. 

The results showed little overall difference in effectiveness between linear 

time segmentation and trace segmentation. However, with small numbers of 

segments per word especially, there was a preference for linear time segmenta-

tion in the case of one vocabulary (the digits), and for trace segmentation for the 

other vocabulary (of mainly disyllabic and polysyllabic words), and the 

difference between vocabularies in this respect was consistent across the three 
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speakers. It is difficult to generalise from these results, since they were 

obtained using only two vocabularies and only three speakers. 

The comparison of the different segment representation techniques showed 

that selection was consistently poorer than interpolation, and that averaging 

was better than interpolation when the number of segments per word was small, 

but interpolation was slightly better when the number of segments approached 

the average number of frames per (unsegmented) word. These results are what 

might have been predicted from theoretical considerations. Firstly, the tech-

nique which makes the use of most information from the unsegmented word is 

the technique which yields the best recognition accuracy. When the number of 

segments per word is small, only averaging uses all the original frame vectors, 

and so it yields the best results. Secondly, there is some benefit from smoothing 

the acoustic vectors in neighbouring time frames. Selection does not do this at 

all; interpolation and averaging both result in smoothing, but some of the 

smoothing effect of averaging is lost when some segments contain only one 

frame vector each (as happens when the number of segments is more than half 

the number of frames), and so interpolation becomes better than averaging when 

this occurs. 

The recognition accuracies obtained with large numbers of segments per 

word (and interpolation) were slightly better than those obtained without any 

segmentation. Also, accuracies only a little poorer than these were obtained 

with much smaller numbers of segments per word (and averaging); and 

moderate accuracies (error rates about 1.5 times or twice those for the optimal 

case, for the respective vocabularies) were attained using only two segments per 

word, with averaging. 
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More  significant and reliable results (particularly on the comparison of 

linear time segmentation and trace segmentation) might have been obtained by 

using a larger data base, preferably collected from a larger number of speakers 

(rather than reusing the same small set of data as recognition input with several 

template sets for each speaker). However, the facilities available at this stage in 

the project made the collection and processing of data a time-consuming task. It 

may be reasonably assumed that the main results on segment representation 

and on numbers of segments per word, which are plausible on theoretical con-

siderations, would be confirmed by any more extensive experiments. 

8.1.2: Multiple-stage recognition 

The results of the segmentation experiments led to the idea of a multiple-

stage recognition system using different numbers of segments at the successive 

stages. This could improve computational efficiency, by allowing the most 

unlikely candidate templates to be eliminated at an early stage using a simple 

comparison with few vectors per word; and it might also improve the overall 

accuracy by combining the discriminatory powers of different segmentations. 

Experiments with a multiple-stage system (described in section 4.4) showed 

that the average computation per recognition could be reduced by a factor of 

about 20 in the case of the vocabulary of 10 digits, or 30 in the case of a more 

confusable 50-word vocabulary, using three stages with appropriate segmenta-

tion parameters and template elimination thresholds. The three stages involved 

representing each word by two, 10 and 30 vectors respectively. The recognition 

accuracy with the three-stage comparison was similar, and in some cases 

slightly superior, to that attained using only the third stage. No improvement 

over the best three-stage performance was attained by using a four-stage corn- 
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parison. 

The three-stage structure was adopted for all the subsequent experiments. 

This facilitated the collection of data in interactive sessions (without subjecting 

the speakers using the recognition system to long delays between utterance and 

response), and also allowed experiments to be performed much more efficiently 

than would have been possible with a one-stage comparison. 

One minor drawback of a multiple-stage recognition procedure is that it 

makes it difficult to define a sensitive recognition quality measure based on 

correct-word and incorrect-word distances (like the measure R defined in section 

4.2.3). The problem lies in pooling statistics of word distance ratios -across cases 

where the recognition decision is taken at different stages. For instance, how 

much better is a recognition at the first stage, with a best-incorrect/correct word 

distance ratio slightly greater than the threshold value t1, than a recognition at 

the second stage, with a much smaller word distance ratio, in a case where the 

ratio at the first stage was only slightly below t1? Because of the difficulty of 

devising a suitable recognition quality measure for a three-stage system, the 

results of all the experiments using this system were assessed using only the 

correctness or incorrectness of each recognition. However, the loss of sensitivity 

in measuring performance, due to the lack of a measure based on distance 

values, is greatly outweighed by the smoothing effect of the increased number of 

experimental trials made possible by the improved efficiency with the three-

stage recognition. 

In view of the correspondence between distances and (negative) log proba-

bilities in the word model (section 2.5), it might be more appropriate that an 

additive threshold (or threshold on the difference of word distances) should be 

used for template elimination after each non-final comparison stage, rather than 

a multiplicative threshold (or threshold on the word distance ratio). A 
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multiplicative threshold is, however, convenient in that it is likely to be less 

necessary to adjust its value whenever the form of the acoustic representation of 

each frame or segment of speech is changed (e.g. to a vector of 12 linear predic-

tive cepstral coefficients instead of eight mel frequency cepstral coefficients). 

A general feature of a multiple-stage decision procedure, with elimination 

of templates depending on the best word distance at each stage, is that it intro-

duces non-monotonicity into the recognition process. For instance, for a given 

input utterance, adding more (incorrect) templates to the template set in use can 

occasionally improve the recognition (changing an incorrect recognition into a 

correct one), by eliminating at an early stage one of the original incorrect tem-

plates which otherwise would cause an error at a later stage - whereas in a 

one-stage system (with all templates matched in full) adding more incorrect tem-

plates could only make the recognition worse. 

8.1.3: Template adaptation 

The principal focus of the research project was on the adaptation of tern-

plates during a recognition session. Experiments were conducted with both 

speaker-specific and speaker-independent initial templates, using a number of 

different forms of adaptation (as reported in chapters 6 and 7). 

The main conclusion of the adaptation experiments is that adaptation of 

templates during the recognition process can substantially and reliably improve 

recognition performance. This is particularly true of supervised adaptation 

(where there is feedback from the user as to the correctness or incorrectness of 

each recognition); smaller improvements were observed with unsupervised adap-

tation. With the system which has been implemented, supervised adaptation 

does not require an explicit response from the user to each recognition: it is 
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assumed that the recognition is correct unless the user takes action to correct it. 

Since the correction of any errors is a necessary part of the user-system interac-

tion in most applications of isolated word recognition (whether or not the tem-

plates are being adapted), it should usually be possible in practice to apply 

supervised adaptation without imposing any extra requirements on the user. 

When the initial templates are derived from training utterances by the 

speaker who is to use the recognition system, the possible benefits of adaptation 

include the following:- 

Templates formed from one or two utterances of each word of the vocabu-

lary can be improved by the incorporation of further utterances. This 

allows the reliability of multiple-token templates to be attained without the 

necessity of a lengthy training session before use of the system can begin. 

If the difference between the tasks of training and using the system results 

in a difference in the user's manner of speaking, so that templates formed 

in a training session are not fully representative of the pronunciations 

occurring during a recognition session, then adaptation can correct this 

effect, because the additional utterances which are averaged in to each tem-

plate are taken from the recognition input. 

Adaptation in which the greatest effective weights in the adapted template 

are given to the most recent utterances used in forming it (as happens with 

the tracking form of adaptation described in section 5.3, and also with the 

more sophisticated form proposed in section 6.4) can keep track of gradual 

changes in the speaker's voice and pronunciations, whether within one ses-

sion or over a period of many days, and of differences in the voice, steady 

background noise or manner of pronunciation from session to session. 



The experiments conducted with speaker-specific initial templates (chapter 

6) measured mainly the first of these three effects. It was found that the recog-

nition error rate occurring with single-utterance initial templates (taken, 

incidentally, from recognition sessions rather than training sessions, so that 

effect (2) above could not occur) was reduced typically by a factor of about 3 in 

the case of the digits vocabulary, or nearly 2 in the case of the more difficult 50-

word vocabulary, after a sufficient number of adaptations of each template. 

The contribution of effect (2) could be assessed by comparing recognition 

results obtained on the same input utterances, without adaptation, using tem-

plates taken from training sessions and from recognition sessions. To achieve 

statistical significance, it would be necessary to collect a large number of sets of 

templates, in training sessions on different occasions, from the speakers who 

were participate in the recognition sessions to provide the test input. This was 

not attempted in the research reported here. 

As explained in section 6.4, the measurement of effect (3) would require the 

collection of large amounts of data, to allow the effects of random variations to 

be overcome, given the restrictions imposed on the use of the data by the neces-

sity of preserving chronological order. The data collection should also ideally be 

done in a more rigorously controlled manner than was adopted here, with 

specified intervals between sessions, and with sessions distributed in a principled 

way across the range of possible times of day. To measure long-term speaker 

drift effects, it would, of course, be necessary to extend the collection of data 

from each speaker over a period of several months or preferably years. 

When adaptation is applied to speaker-independent initial templates, it has 

a further potential benefit, in that templates which contain no information about 

the characteristics - of the current speaker (being formed from utterances by a 

standard set of training speakers) can be made speaker-specific. Experiments 
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with speaker-independent templates were conducted (as described in chapter 7), 

to explore the improvements attainable through adaptation to a specific new 

speaker. 

It might have been expected that adaptation would yield greater and more 

rapid improvements when applied to speaker-independent templates than when 

applied to initial templates already specific to the current speaker. This expec-

tation was not clearly confirmed by the experiments conducted with speaker-

independent initial templates, however. With the best of the sets of speaker-

independent templates used in these experiments (set D6), the accuracy attained 

on the third 10-digit subsequence of a randomly-ordered 30-digit sequence, with 

prior adaptation on (typically) two repetitions of each digit during the recogni-

tion of the preceding 20 digits, was increased by about 3%, from 93% to 96%, 

relative to the case without adaptation - whereas in the experiments with 

speaker-specific initial templates (and recognition input from a single session, 

randomly ordered) the average improvement attained on the third 10-digit 

subsequence was about 2% (from 96% to 98%). The difference between these two 

results is not highly significant (as assessed from their respective standard 

errors: the comparison technique described in the appendix cannot be applied to 

this comparison since the speaker sets were different); and the proportional 

reduction in the error rate is similar in the two cases. It is in any case difficult 

to make a proper comparison of these results with speaker-specific and speaker-

independent initial templates, because the recording conditions, the speakers 

and also the adaptation weighting used were different in the two sets of experi-

ments. 

A possible reason for the lack of rapid improvement during the adaptation 

of speaker-independent templates is that the initial performance on some words 

of the vocabulary may be very poor, so that it takes several repetitions of a word 
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before it is recognised correctly and its template is adapted. (The words for 

which adaptation is slowest, because of this difficulty in getting started, are also, 

in the nature of the case, the words whose templates are in most need of adapta-

tion.) It still seems reasonable to suppose, however, that, provided that adapta-

tion can get started on each word of the vocabulary, the ultimate improvement 

on speaker-independent initial templates will be greater than that on speaker-

specific ones (even if it takes a larger number of utterances before near-optimal 

performance is achieved) - because the performance with the unadapted tem-

plates is poorer, leaving more room for improvement. (In interactive use of a 

speaker-independent recognition system, the user will not usually tolerate per-

sistent failure to recognise a particular word correctly, and will prefer to retrain 

the template for the word concerned, if the facility for retraining is provided. 

This should result in adequate recognition of the word, using the new (speaker-

specific) template, so that adaptation of this template can proceed as in the case 

with speaker-specific initial training.) 

Another possible factor reducing the contrast between the results with 

speaker-specific and speaker-independent templates is that in these experiments 

each speaker-specific template was formed (usually) from a single utterance, and 

was thus liable to be affected by random variability in the speaker's voice and 

manner of pronunciation and in the acoustic background, whereas the templates 

in the speaker-independent sets were mostly averaged from several utterances 

each, which would have a smoothing effect. (This is apparent in the fact (noted 

in section 7.4) that similar amounts of compensation were required for the 

reductions in typical word distance due to adaptation when the initial templates 

were single-token speaker-specific ones. and when they were speaker-

independent cluster-average templates.) 



To obtain the recognition improvements with adaptation discussed above, it 

was found to be necessary to apply a compensation technique, whereby each 

word distance was multiplied by a factor depending on the number of times the 

template had been adapted. Without this compensation, the distance for an 

adapted incorrect-word template can often be smaller than the distance for an 

unadapted correct-word template, and this causes recognition errors particularly 

on the first few repetitions of each word in the input sequence. With correct 

compensation, the accuracy is significantly improved by the adaptation, even on 

the first few utterances - as the means and standard errors of improvements 

(due to supervised adaptation) for the first 10-digit subsequences in tables 6.7 

and 7.5-7.7 indicate. Appropriate compensation factors for adaptation of 

speaker-specific and speaker-independent initial templates (with equal weighting 

of the initial template and of each input used to adapt it) would appear to be 

those designated "Ii" and "K" in tables 6.1 and 7.3 respectively. 

Adaptation can be applied not only when the recognition is known to be 

correct (so as to improve the template's correspondence to the recognised input 

utterance), but also when it is known to be incorrect (to make the template less 

like the wrongly recognised input). This can be achieved by using the same 

weighted averaging procedure as in the adaptation to a correctly recognised 

input, but with a (small) negative weight on the input instead of a positive one. 

The use of negative adaptation in cases of misrecognition was found to result in 

a small increase in the recognition accuracy, on average (as stated in section 

6.3.2.4); from the results obtained, the significance of this conclusion is 

moderate. A further option, when the recognition is incorrect, is verification of 

the second-best candidate word (and perhaps of the third and subsequent candi-

dates, if the second is incorrect), followed by adaptation (positive or negative) of 

the second-best-matching template. This was found, in experiments with 
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speaker-independent  initial templates (section 7.3.1), to increase considerably 

the degree of improvement attained through adaptation after recognition of a 

given number of inputs. Second-best candidate verification does, however, 

require additional feedback from the user of the recognition system. 

The above-mentioned results are all for supervised adaptation. In the case 

of speaker-specific initial templates, only slightly poorer long-term results 

(2.16% improvement, instead of 2.84%, after 250 input utterances) were attained 

with unsupervised adaptation (using a word distance ratio threshold to define 

the adaptation condition). For speaker-independent initial templates, however, 

the improvements resulting from unsupervised adaptation were further below 

those attained with supervised adaptation. With unsupervised adaptation of 

speaker-independent templates (tables 7.5-7.7), the maximum improvement on 

the third 10-digit subsequences ranged from 0.41% (D6) to 1.53% (D2), whereas 

the maximum improvement with supervised adaptation was always more than 

twice as great, ranging from 2.65% (D4) to 3.57% (D2). (For comparison, the 

maximal third-subsequence improvements with speaker-specific initial templates 

were 1.28% (unsupervised) and 2.03% (supervised), when - as in the speaker-

independent templates' case - the test utterances in each trial were all from a 

single session (table 6.7). In this case, the smaller ratio of supervised to unsu-

pervised adaptation improvements seems unlikely to be due simply to the use of 

a smaller supervised adaptation weight than in the case with speaker-

independent templates (0.25 instead of 0.5), in view of the results in table 6.8; 

this suggests that it is a genuine effect of the difference between speaker-specific 

and speaker-independent initial templates, with their corresponding different 

levels of non-adaptive recognition performance.) This difference between the 

cases of speaker-independent and speaker-specific initial templates indicates 

that, for unsupervised adaptation to approach the performance of supervised 
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adaptation,  each word's initial template (or one of its templates, if there are two 

or more templates per word) has to correspond fairly well to the realisations of 

the word occurring in the input. (If some words' templates correspond very 

poorly to the input, the unsupervised adaptation may never get started for these 

words, since the word distance ratios for correct recognitions of them may not be 

large enough to satisfy the adaptation condition.) It is difficult, however, given 

the limited number of utterances per speaker available for the speaker-

independent template adaptation experiments, to predict the results that would 

be obtained with unsupervised adaptation of speaker-independent templates over 

more extended input sequences. 

For unsupervised adaptation, the use of compensation factors is even more 

important than for supervised adaptation: the results with randomly ordered 

input (tables 6.7 and 7.5-7.7) show consistent decreases in accuracy, across all 

input subsequences, for unsupervised adaptation without compensation. 

The full range of possible unsupervised adaptation parameter settings was 

not explored in these experiments. However, the limited results that have been 

obtained suggest that, to ensure stability in unsupervised adaptation, the weight 

on each input in the averaging must be made smaller than the weight on the 

initial template. (Weights in a template:input ratio 4:1 - i.e. "input weight 0.2" 

- yielded slightly better long-term results than weights in the ratio 3:1 ("input 

weight 0.25"), as noted in section 6.3.2.5.) It was also found that, with speaker-

independent initial templates and no compensation, the loss of accuracy was 

greater with a lower threshold (1.1 instead of 1.15) in the adaptation condition 

(which allowed more of the input utterances to be used in the adaptation); but it 

is difficult to predict from this what the optimal threshold value is likely to be 

when correct compensation is applied. The optimisation of the threshold and 

weight values for unsupervised adaptation is an area where some further 
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research might usefully be done. 

A technique - "skewed" adaptation (238,2391 - intended to reduce the risk 

of instability in unsupervised adaptation (with multiple templates per word) was 

not observed in these experiments to improve the performance attained. It did 

reduce the losses of accuracy when no compensation was applied, but it also led 

to reduced improvements, relative to direct adaptation, when appropriate com-

pensation factors were introduced (as seen in tables 7.5-7.7). Skewed adaptation 

might, however, result in a useful improvement in stability, and also perhaps in 

some beneficial effects due to the wider spread of the adaptation across the mul-

tiple templates, in a comparison on longer sequences of input utterances, if the 

data were available for such a comparison. 

(The skewed adaptation procedure adopted here was not exactly the same 

as that in [238,239]. There, skewed adaptation was applied to multiple copies of 

the same initial template for each word, rather than to multiple (different) ini-

tial templates as used here; moreover, there were two sets of copies, and the 

adaptation was applied in the two sets alternately at successive recognitions of a 

word, subject to an adaptation condition requiring agreement between the recog -

nition decisions within the two sets. With this rather complicated decision and 

adaptation procedure, stability and an improvement in accuracy were attained 

in a recognition system whose basic (non-adaptive) performance was quite poor. 

It would be possible to implement such a procedure for the speaker-specific 

recognition task (with one training utterance per word) considered in chapter 6; 

however, this possibility has not been explored here, since reliable improve-

ments were found to be attainable with unsupervised direct adaptation when 

appropriate compensation factors were applied.) 
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The use of template adaptation in the recognition system was intended pri-

marily to improve the level of recognition accuracy. However, a side benefit of 

adaptation was observed during the experiments: given the three-stage structure 

of the comparison and recognition procedure in this system, the adaptation of 

the templates leads to a reduction of the average amount of computation 

required to recognise each word, because fewer templates are retained at the 

second and third comparison stages when the templates have been improved by 

adaptation. (This should apply to any other type of hierarchical decision pro-

cedure, such as beam searching, provided that the pruning criterion is of the 

type shown in figure 3.2 (a threshold depending on the minimal distance in the 

matching so far) - since the improvement of the templates should result in a 

better separation between correct and incorrect templates' distances.) The abso-

lute and relative reductions in computation per recognition will depend on the 

size and confusability of the vocabulary, and the number of templates per word. 

In these experiments, greater reductions were achieved in the case with 

speaker-independent initial templates (several per word) than in the case with a 

single speaker-specific template per word. Only in cases with multiple templates 

was the reduction in the computation for each recognition sufficient to outweigh 

the extra computation required for the adaptation process. However, in interac-

tive operation of the system, adaptation can still improve the overall speed, 

since the adaptation processing following a recognition is run in parallel with 

the digitisation, endpoint detection and acoustic analysis for the next input 

utterance. 

The computation involved in each adaptation operation can be substantially 

reduced by replacing the DTW alignment of the template and new utterance to 

be averaged by a linear alignment. This may result in some reduction in the 

performance improvement attained through the adaptation; this effect appears 
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(from  the results in table 6.4) to be greater for a vocabulary of longer words 

than for the digits. DTW alignment was used in all the main adaptation experi-

ments described in the preceding chapters. 

8.1.4: Endpoint adjustment 

One of the main causes of error in isolated word recognition appears to be 

the inaccurate location of word endpoints. It is difficult to construct an endpoint 

detection algorithm which will consistently generate accurate endpoints without 

using any word-specific information. 

Improved results can be obtained (at some computational cost) by methods 

which may take initial endpoint location estimates from a prior endpoint detec-

tion algorithm (such as the one incorporated into del), but which leave the final 

decision as to the endpoints effectively used (in the matching of any particular 

template) until after the alignment and distance computation has been per-

formed. When such a method is applied, the extended DTW algorithm has the 

task of optimising (by the usual minimum-distance criterion) the start and end, 

in input time, of the matching of the template, as well as the steps taken in 

aligning the template with the input frames between those start and end points. 

Examples of such techniques were discussed in section 2.3.5 - namely the 

technique using an extended input interval and repeatable noise or silence 

frames or one-frame pseudotemplates at the beginning and end of each template 

[91,93,160], and the edge-free staggered array DP matching algorithm, in which 

paths may begin and end anywhere on specified lines of gradient -1 in the 

input-reference plane [38,73]. The first of these is appropriate if weighting 

scheme (c) [601, in the input direction, is to be adopted; it allows for possible 

errors in the initial endpoint detection for the input utterance, but not for the 
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training utterance (or utterances) used to form the template. The second 

requires the use of a symmetric weighting scheme such as scheme (d); it allows 

correction of endpoint detection errors in the cases both of the input utterance 

and of the template. 

A DTW algorithm of the former type, with pseudotemplates, was imple-

mented as an option in the system described in chapters 4 and 5; but it could not 

be used to full advantage in the experiments conducted with this system, 

because extended endpoints had not been implemented in the prior endpoint 

detection program employed in the collection of the input utterances, and it was 

therefore not used in most of the adaptation experiments. It would be of some 

interest to collect a new data base, with the data for each utterance extended a 

few frames beyond the detected endpoints, and apply the pseudotemplate tech-

nique (with the extended input), and measure the improvements thus attained 

over recognition without the input extension and the pseudotemplates (in the 

cases with and without adaptation). 

A limitation of an endpoint-adjusting DTW algorithm in the multiple-stage 

recognition system is that the endpoint adjustment can be applied effectively 

only if the number of vectors per word is not too small. This is the case in the 

final stage of the three-stage system (with the parameters adopted, as stated in 

section 4.4.4.2), and possibly in the second stage, but not in the first stage. (In 

the few experiments with the three-stage system in which the pseudotemplate 

option was used (section 6.3.2.4), it was incorporated only in the third stage.) 

When the training utterances as well as the input utterances are subject to 

automatic endpoint detection, an endpoint adjustment technique such that incor-

porated in the edge-free algorithm of [38,73], with a symmetric weighting 

scheme, is likely to be better than one such as the pseudotemplate technique 

implemented here (with an asymmetric weighting scheme), because it allows for 
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error in the detection of the training utterances' endpoints as well as those of 

the input utterances. The same remarks about application in a multiple-stage 

system apply to both forms of endpoint adjustment technique. 

Another form of endpoint adjustment [621 which takes into account the 

results of word matching, without necessarily incorporating any modification 

into the DTW algorithm, is one in which the initial endpoint detection algorithm 

may propose several start points for the input word, and, for each template, a 

separate DTW matching operation is carried out starting from each of these 

points in input time, and then the start point yielding the best word distance 

(after appropriate normalisation for word length) is adopted for the matching of 

that template. (In each matching operation, the ending frame in the input may 

be fixed, or left to be discovered by the minimum-normalised-distance criterion.) 

This has the disadvantage that more computation is liable to be required for the 

DTW matching since multiple DTW operations have to be carried out for each 

template. 

8.1.5: Miscellaneous results and observations 

Some refinements to the recognition system were explored, but not adopted 

for the main series of experiments, because they did not appear to yield any 

improvement in performance. Details of these are given in sections 5.3 and 5.4. 

Weighting of the cepstral coefficients according to their standard deviations (as 

described in [391), or according to the formula of [40], was found only to decrease 

the recognition accuracy. The results with a word-specific distance normalisa-

tion technique were inconclusive. (A more sophisticated form of distance nor-

malisation might, however, yield improvements in recognition. A possible 

method of normalisation - which requires a fairly large number of training 
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tokens  of each word for the estimation of probability distributions - has been 

described by other researchers [981.) 

A general finding of the experiments, mentioned in chapter 6, is that, to 

obtain statistically significant comparisons of adaptation options, it is often 

necessary to carry out large numbers of trials, using different input utterances, 

or different random orderings of the input utterances. The use of different ord-

ers of the input utterances is appropriate because the result of an adaptive 

recognition test varies with the order in which the utterances are presented. To 

measure the statistical significance of a comparison, the analysis described in 

the appendix, using means and standard error estimates of differences in results 

on the same data, should be applied. 

For realistic evaluation of a speech recognition system, the test utterances 

should be collected under conditions similar to those in which the system might 

be used in practice. The use of an interactive procedure, as adopted here, in 

which the user can see the recognition result on each input utterance before 

speaking the next word, helps to provide realistic test data. 

The user-system interface design and the response time of the interactive 

recognition system are important for ensuring acceptability to the user, and thus 

encouraging effective use of the system and obtaining optimal performance with 

it. If the system is very slow in its responses, or difficult to use because of poor 

interface design, or if it does not attain an acceptable level of recognition accu-

racy, then the user may be unwilling to continue to work with the system, or 

may not attain optimal accuracy while using it. The user-system interaction 

should be designed so as to encourage consistency of pronunciation, and full real-

isation of the system's potential, on the part of the user. Helpful features of the 

interactive recognition system employed in the data collection for this project 

(described in chapter 5) include the default verification option (which permits 
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supervised adaptation without the need for explicit verification of each recogni-

tion by the user) and the retraining facility (which allows poor performance on 

particular words, due to noise or errors in template formation, to be improved). 

The response time of the system was acceptable to users - though several times 

real time (typically lOs per input utterance) - when the multi-user computer on 

which it was running was not heavily loaded; but on some occasions, when 

several other computationally intensive processes were competing for use of the 

CPU, it became unacceptably slow (and the data collection was then postponed 

until the load on the machine had decreased). It is difficult, however, to obtain a 

reliable quantitative assessment of the effects on recognition performance of 

such factors as response time, background noise, distractions or the user's fami-

liarity with the system, given the large number of possibly relevant variables 

(including the system's progressive adaptation of its templates as well as the 

speaker's adaptation to the system), and the fairly small numbers of speakers 

and sessions in this data base collection exercise. 

8.2: Possible extensions of adaptation 

The explorations of template adaptation described here have necessarily 

been limited in their scope in certain respects, and there are several directions 

in which the adaptation technique might be further extended. 

One possible extension is from discrete utterance recognition to connected 

speech recognition, using either whole-word templates or reference patterns for 

smaller linguistic units such as syllables, demisyllables, diphones or phonemes. 

A method for extracting words or other units from connected speech, given an 

alignment of that speech with a concatenation of existing reference patterns (e.g. 

isolated-word templates), has been described [149,166,170,1771. Once the 
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relevant  sections of the connected speech have been identified by means of this 

alignment, they can be used to form new reference patterns which are more 

representative of the utterances to be recognised - because they are taken from 

connected speech rather than isolated-word utterances, or because they are 

specific to the prospective user of the connected speech recognition system (in the 

case where the initial reference patterns are speaker-independent). Such a 

method - the segmental K-means clustering algorithm - has been successfully 

applied to the training of a connected word recognition system, using a set of 

utterances of known strings of words (166,170]. In this case, the initial tem-

plates were used only to extract the occurrences of the words from the training 

data: they were not incorporated into the templates generated following the 

training procedure. (This is similar to the use of a zero weight on the initial 

template in some of the experiments with adaptation of speaker-independent 

templates described in chapter 7.) However, a similar procedure can be 

employed during the use of a connected word recognition system (in which the 

utterances are not known in advance, but are recognised using an algorithm as 

described in section 2.7 - with possible verification of the recognitions by the 

user), to enhance the initial templates (however these have been formed) by 

incorporation of more data. Once an occurrence of a word in the input has been 

located and verified, the weighted averaging of the existing template with the 

section of input speech can proceed as in the adaptive isolated word recognition 

system (as described in section 5.3). 

A syntax-constrained connected word recognition program, cwr, using the 

one-stage algorithm [148] with beam searching [64,661, and with a template 

adaptation option, has been implemented, and has been tested on a language 

domain with a small vocabulary (33 words) and a simple syntax. Using 

isolated-word templates, without adaptation, 51% sentence recognition accuracy 
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was  obtained. When the templates for the shorter words in the vocabulary were 

reduced in duration by linear time segmentation and interpolation, to allow for 

the more rapid pronunciations occurring in connected speech, the accuracy was 

improved to 90%. With supervised adaptation (optimisation, initial input weight 

1.0) of these reduced templates over 92 utterances (three repetitions of the same 

36 sentences, with 16 utterances omitted from one of the repetitions, and the 

utterance order randomised), the overall accuracy was improved to 99.5%, and 

the accuracy on the last 46 sentence utterances was 100% instead of 89%. Using 

templates derived by automatic extraction and averaging from words in 16 

known sentence utterances (those omitted from the test set), the accuracy on the 

92 test utterances was 99% (99% on the last 46) without adaptation, and 99.5% 

(100%) with adaptation. (These results are averaged over two random orders of 

the input.) It was found that large compensation factors were required when the 

initial templates were formed from isolated utterances and the adaptive recogni-

tion was performed on connected sentences: the compensation factors used to 

obtain the results quoted were (1.00 1.25 1.40 1.47 1.52 1.56 1.60). 

These connected word recognition experiments used only one (speaker-

specific) template for each word in the vocabulary. It would be possible to use 

multiple templates in adaptive connected word recognition; this would open up 

the possibility of automatically developing context-specific variants of an initial 

template during the adaptive recognition. 

Another possible extension of the idea of reference pattern adaptation is 

from templates to (more general) hidden Markov models. An HMM can express 

information about the variability of words, more effectively than a template, and 

so the HMM might continue to improve as more input utterances were incor-

porated into it, beyond the point where near-optimal performance would be 

reached in adaptive template-based recognition. The main drawbacks of HMMs 
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(with many specifiable parameters, rather than the relatively few occurring in 

the special, highly constrained case corresponding to template matching) as the 

basis of an adaptive recognition system are that more initial training is required 

than for templates, to achieve an adequate level of accuracy so that the adapta-

tion can get started, and that the improvement with adaptation will tend to be 

slower than with templates. 

Even within the domain of template-based isolated word recognition, there 

are various possible extensions and refinements of the adaptation by weighted 

averaging which has been investigated here. One possibility is to average the 

new input with the best-matching existing template only if the match between 

the input and that template is close enough, and otherwise to create an addi-

tional template (for the same word of the vocabulary) from the input instead 

[256]. With this form of adaptation, a recognition system which starts out with 

one template per word can develop into one with several templates per word; the 

number of templates created will vary from one word of the vocabulary to 

another, depending on the range of variant pronunciations of the word occurring 

in the input. (With such a form of adaptation, the development of contextual 

variant templates for connected word recognition, as suggested above, could 

perhaps be achieved without the need for multiple initial templates for each 

word.) 

Where adaptation is unsupervised, it may in some circumstances be 

beneficial to employ some more sophisticated control procedure than the simple 

imposition of a threshold on the ratio of the best two word distances (as adopted 

in the system described here), in order to improve the stability of the adaptive 

system. Such a procedure has been described [238,239], incorporating skewed 

adaptation and multiple template sets - as mentioned in section 8.1.3 above. 
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As was mentioned in section 2.3.2, adaptation can be applied in a speech 

recognition system at the level of units smaller than the word, such as phonemes 

or the vectors in a vector quantisation codebook. Some of the ideas developed 

and explored in this thesis for the adaptation of word templates may also be 

applicable to the adaptation of patterns representing smaller phonetic or acous-

tic units. In particular, the questions of user interface and verification will be 

relevant to any system which performs adaptation during recognition sessions; 

and the idea of compensation factors may well have applications beyond the 

domain of word-based speech recognition in which it has been applied here. 

8.3: Summary 

A template-based isolated word recognition system has been implemented, 

which incorporates a programmable multiple-stage comparison procedure and a 

range of template adaptation options, and which can operate interactively (with 

direct speech input) or in batch mode (with previously digitised and analysed 

data). The multiple-stage comparison makes the recognition computationally 

efficient, and the adaptation capability allows the system to learn and thus 

improve its performance as it receives and recognises more utterances. 

Improvements in recognition accuracy have been demonstrated to result 

from template adaptation, both when the initial templates are speaker-specific 

(formed from single utterances of the words) and when speaker-independent ini-

tial templates are used (formed by clustering from utterances by a set of train-

ing speakers). The greatest improvements are possible when the adaptation is 

supervised, though improvements are also attained with unsupervised adapta-

tion. In most practical applications of isolated word recognition, it should be 

possible to implement supervised adaptation, which need not involve explicit 
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verification of each recognition by the user. (It is possible to improve the perfor-

mance further if, When a recognition is incorrect, the second candidate recogni-

tion is presented to the user for verification. This could be extended to "full 

verification", in which the system ascertains from the user the true identity of 

each input utterance and adapts the appropriate template. However, these 

options complicate the user-system interface, and will thus not be suitable for all 

applications.) 

In order to attain optimal performance with the adaptive recognition sys-

tem, it was found to be necessary to apply a compensation technique, whereby 

the distance obtained in the comparison for each template is adjusted according 

to the number of times the template has been adapted. Appropriate compensa-

tion parameters have been found experimentally for various cases of adaptive 

recognition. 

The main form of adaptation explored has been the "optimisation" formula-

tion, in which the adapted template is an average of the initial template and 

input utterances in which all the inputs have equal weight (regardless of their 

order in time). A "tracking" form of adaptation has also been implemented, in 

which the adapted template for a word at any point in a recognition • session 

depends mainly on the most recent input utterances of the word; this allows for 

gradual changes in the speaker's voice and pronunciations. However, experi-

ments to evaluate the tracking formulation would require the collection of a 

large amount of speech data, since the temporal order of the input data must be 

preserved in the experiments and so a randomisation technique (as applied in 

the optimisation experiments) is not permissible. 

There remains scope for further exploration of a number of possible exten-

sions of reference pattern adaptation in speech recognition, including extensions 

to connected speech recognition and to hidden Markov models as well as 
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variations on adaptive template-based isolated word recognition. In general, 

adaptation of reference patterns is a valuable enhancement to a speech recogni-

tion system, especially where the speech encountered as recognition input is 

expected to differ systematically in some respect from the training speech, or to 

exhibit a drift over time, or where it is inconvenient to use an extensive initial 

training procedure. 
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APPENDIX 

STATISTICAL ANALYSIS OF RESULTS 
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APPENDIX: STATISTICAL ANALYSIS OF RESULTS 

A.1: Comparison of two techniques or recognition tasks 

On many occasions in speech recognition research, it is of interest to com-

pare the accuracies attained using two different recognition techniques, or under 

two different sets of conditions. Examples of comparisons of techniques from the 

preceding chapters include the comparisons of segmentation techniques and of 

segment representation techniques (in chapter 4), and the comparisons of adap-

tive and non-adaptive recognition and of different sets of adaptation parameters 

and compensation factors (in chapters 6 and 7). Comparisons of different condi-

tions include the comparison of results on different vocabularies. An example 

involving the combination of vocabulary and recognition technique variations 

occurs in chapter 4, namely the assessment of the observed vocabulary effect on 

the preference for linear time segmentation or trace segmentation. 

In such cases, it is usually possible to test both of the possibilities being 

compared on data from the same set of speakers - and in many instances (where 

it is the processing and recognition techniques, rather than the vocabularies or 

recording conditions, which are being compared), to test them both on the same 

set of utterances. This allows variations which are irrelevant to the comparison 

- perhaps due to the characteristics of particular speakers, or even to the pecu-

liarities of individual utterances - to be cancelled out, by the use, in the statisti-

cal analysis, of the differences between corresponding results for the two possibil-

ities being compared. That is, if the results (usually recognition accuracies) for 

the K individual utterances, or individual speakers, in the test data base are 

a1, - - - aK for the first possibility A, and (respectively) b 1 , - - - bK  for the second 

possibility B, then the statistics should be evaluated on the differences 
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 cK defined by 

Ck = ah - 
	 (A.1) 

Any systematic variation in the results for the individual utterances or speak-

ers, which affects the results for A and for B similarly, is cancelled out by the 

subtraction. 

(It might in some cases be better, depending on the nature of the systematic 

variation expected to occur, to use error rate ratios 100% - 
ah 

instead of the 
100% - bk 

differences ch. A problem with using ratios is that if any of the error rates 

100% - are particularly small then this may result in a long tail of high 

ratio values, and this tends to reduce the validity of the normal approximation 

adopted below; in particular, if bb  = 100% for any k, then the ratio for that 

value of k is undefined (if a, = 100%) or infinite. There are various other possi-

ble operations which could be applied to the results ak and b,, to cancel sys-

tematic variations; but only the simple case of subtraction is considered here.) 

The object of the comparison is to find out whether A is better than B (or 

whether it is worse) in terms of the recognition accuracies attained. That is, a 

statistical test is to be applied to distinguish the two hypotheses 

HA = {A is better than B] 	 (A.2) 

and 

HB = {B is better than Al. 	 (A.3) 

(The possibility that A and B yield exactly equal performance in general on the 

recognition task in view is assumed to have probability zero, and may therefore 
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be  neglected.) 

Unless there is some strong a priori reason to suppose that one of these two 

hypotheses is more probable than the other, the prior probabilities P(HA) and 

P(H8) may both be set to 0.5. Then the desired output of the statistical test is, 

by Bayes' theorem, 

P(HA Ial,-.,ag ,b l,,bK ) 

0.5P(al,..-,aK ,b l ,...,bK IHA ) 
- 	 (A.4a) 
- 0.5P(a I,,aK,b l, .,bKIH A ) + 0.5P(a 1 , 	,aK,bl, 	,bKIHB) 

- 	 P(cl,•••,cKIHA) 

- P(c 1,•• ,CKIHA)  + P(cl,".,cKIHB) 
(A.4b) 

on the assumption that only the differences ck are important for distinguishing 

HA and HB. 

Let the difference between the mean recognition accuracies for A and for B 

(on the theoretically infinite population from which the K samples have been 

drawn) be r. (This is also equal to the mean of the difference of recognition 

accuracies between A and B.) If c 1 , ,CK are independent random samples 

from the population of recognition accuracy differences between A and B, then 

the minimum-variance unbiased estimate of r given c 1, ,CK is 

CCK. 	S 	 (A.5) 
k=1 

The standard error of this estimate is 

Cr 
1 = VK 

(A.6) 

where a is the standard deviation of the differences between accuracies with A 
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and accuracies with B on the population. The population standard deviation a 

is estimated by 

1 

= 	(ck_c)2I 2 . IK-I k=1 

(A.7) 

The corresponding estimate of. the standard error q of ë as an estimate of r is 

e 
	

(A.8) 

It may be assumed that F, being a sum of independently and identically dis-

tributed random variables f c i, ,- CK, is approximately normally distri-

buted, with mean r and standard deviation i. This normal approximation 

becomes more accurate, in general, as K is increased; its accuracy for small 

values of K depends on the distribution of the individual accuracy differences ck. 

Assuming the validity of this normal approximation, the statistic 

= c—r 	 (A.9) 
e 

(for a fixed value of r) has a t distribution with K—i degrees of freedom [261]. 

The hypothesis HA (A.2) can be expressed in terms of r as 

HA = {r > O}; 	 (A.10) 

and similarly 

HB = {r < O}. 	 (A.11) 
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In computing probabilities of HA and HB (posterior probabilities, given the sam-

ples c 1, ,C), r must be treated as a value of a random variable R. Assume 

that the a priori distribution of R is symmetric about 0, and is uniform in the 

vicinity of 0. This a priori distribution may be approximated by the uniform 

distribution on the interval of real numbers r such that - w :5 r !=' w, for some 

positive real number w. This fulfils the requirement, stated above, that the 

a priori probability of HA should be 0.5. With this form of a priori distribution, 

the a posteriori probability (A.4b) becomes 

P(HA Ic 1 , 	,CK) = 
	o w 	e 	

(A.12a) 

+ flf( - r)dr  

fr(c_r)d r  

(A.12b) 

where f is the probability density function of t (defined by (A.9)). (A factor 

P(c 1 , ,cKIR =r, t= Cr) not shown in (A.12), occurs in each integral, but 

can be cancelled, since it is equal to P(c 1 , 	,cK IF,  é', R =r), which is indepen- 

dent of r on the assumption that the only dependency between the true mean 

difference r and the observations c1, ,CK is through ë and é.) Transforming to 

integration with respect to t, (A.12b) becomes 
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f êf(t)dt 

P(HA Ici, 	
c)- __________ — 	 (A.13a) 

f éf(t)dt 

Of 
- F(2---) 	

(A. 13b) 
- F() 

where F is the cumulative distribution function for t. As the width 2w of the 

a priori uniform distribution assumed for R is increased, the value of this 

expression approaches F(1). That is, the confidence in HA is given by a one- 

C 
tailed t test, with K —1 degrees of freedom, on -. 

e 

(For an instance of the use of t tests in evaluation of comparative speech 

recognition results, see [218]; there the results of the tests (not stated whether 

one-tailed or two-tailed) are expressed as significances p = (1-confidence), 

instead of confidences as in this thesis. Cf. [2271.) 

A.2: Treatment of hierarchical distributions 

The procedure proposed in the preceding section assumes the availability of 

K independent samples c 1 , ,CK from the distribution of differences between 

results with A and with B. 



- 331 -  

If there are K independently-collected individual test utterances, then each 

difference ck can be taken to be the difference between the (binary-valued) 

correctnesses of recognition with technique A and with technique B on the kth 

of these utterances: thus ck is 0 if the recognitions with A and with B are both 

correct, or both incorrect, and 1 or -1 if they differ in correctness. Then the sam-

ples for which ck = 0 can be ignored (since they carry no information for decid-

ing which of A and B is better), and significance testing can be carried out on 

the subset of values of k for which C,, ;e 0. An example of the comparison pro-

cedure for such a case has been given elsewhere [262]. (The approach taken in 

(2621 differs from that taken above, in that a two-tailed test is applied to find a 

significance level for rejecting the null hypothesis that A and B have indistin-

guishable performance (and the standard error estimate for the mean of the set 

of non-zero samples Ck  is taken from this null hypothesis, rather than from the 

observed distribution). However, the same strategy of using the differences c 

between corresponding results a, and b,, is adopted.) 

The assumption of K independent single-utterance samples is appropriate if 

the K utterances are from speakers selected independently from the population 

to be modelled. 

If the population is, in principle, infinite, then, to satisfy the independence 

requirement, the utterances should be from K different speakers. This is 

unlikely to be a practicable way to evaluate a speaker-trained recogniser, since 

each of the K speakers has to train the system, and the value of K required to 

obtain significant results with only one test utterance per speaker will generally 

be very large (typically of the order of several hundreds or thousands). For a 

speaker-independent recogniser, however, it may be practicable, given a suitable 

multi-speaker data base. Even so, it will usually be possible to improve the reli-

ability of the results by using several test utterances (for instance, one utterance 
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of each word in the vocabulary) from each speaker in the data base, rather than 

just a single one. 

The opposite extreme to an infinite population is the case where the popula-

tion being considered consists of only one speaker. In this case, the K "speakers 

selected independently from the population" (stipulated above) will all be the 

same speaker. That is, the differential results on K utterances from a single 

speaker are acceptable as K independent samples c 1 , , c, provided that only 

the comparison of A and B for this particular speaker is of interest. There may 

be cases where this is so - where a recognition system is to be tuned to the 

requirements of a particular user - but it is not so if a general-purpose recogni-

tion system, to be used by any of a large set of possible speakers, is required. 

(In the single-speaker case, if the templates are to be formed from utter-

ances by the target speaker, the question of training becomes problematic. To 

overcome the effects of peculiarities of particular templates, it may be desirable 

to use several different template sets during the testing, but then the individual 

results on different test utterances with the same template set will not be 

independent samples from the speaker's overall distribution, and so the analysis 

of section A.1 (or that of [2621) will not be correct for the complete set of single-

recognition results in the test - unless a new template set is adopted for each 

single-recognition trial of A and B. (Also, results on the same test utterance 

with different template sets will not be independent, and so, to obtain the 

desired set of independent results, it will be necessary to avoid reusing the same 

test utterances.) In practice, however, if the vocabulary for which the speaker 

intends to use the system is the same as the test vocabulary, the aim will usu-

ally be to optimise the performance over all choices of system parameters, 

including the choice of a template set, rather than to distinguish between perfor-

mances (with different choices A and B of the other system parameters) 
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averaged  over several template sets. Thus any two different template sets will 

correspond to two cases to be distinguished (an A and a B, in the notation used 

above), and the testing will use the differences between these template sets' 

results on the same utterances, rather than any results averaged or collated 

across the template sets. In this case, the recognition performance which is to 

be optimised is a very specialised one, namely the performance for the specified 

speaker, using the specified vocabulary, with a fixed set of templates. While this 

may be a useful thing to optimise for a very specific practical application, its 

optimisation will not necessarily yield any reliable information of interest for 

the design of speech recognition systems in general.) 

If it is not feasible to use a set of K independent single-recognition 

differences as the samples c1, ,, then the set of samples c1, XK will 

have to be derived in some way from a set of (more than K) single-recognition 

results which are not all independent. In particular, to obtain results applicable 

to a theoretically-infinite population of speakers, it will usually be necessary to 

conduct the testing on multiple recognition results for each of a limited set of 

speakers. 

In general, the optimal estimate of the mean difference (r) in recognition 

accuracy between A and B, based on independent results (accuracy differences) 

c1, ,CK for K different speakers, is 

1 	K 	Ch 

K 	1 	k=171+0 2 
	

(A.14) 

k=1 

where lk  is the standard error of Ck as an estimate of the mean rk for the k th 

speaker, and 0 is the standard deviation of the distribution of single-speaker 

means rk about r. (This does not necessarily hold true if the standard errors qj 
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are correlated with the means rk , since then the weighting of the samples c, in 

(A.14) will introduce a bias towards those values of rk which correspond to small 

values of q k , so that the statistic F, while still having minimal variance over all 

weighted sums of the samples Ck, may not be an unbiased estimate of r. In this 

case, a bias term must be introduced. However, if the variances 711, are fixed by 

some criterion which is independent of the speaker means rk  - for instance, if 

they are determined by the numbers of utterances collected from the speakers, 

and these are arbitrarily fixed without reference to any characteristics of the 

speakers - then (A.14) will give an unbiased estimate of r.) The standard error 

of F is 

________ 	i i  1 	1K 	1 
= II K 	1 	12 E1 

	2 02 (ch_r)2112 	 (A.15a) 
Lk=1 tJk + 

2+82  

[k=1 

(since the samples ck are independent) 

1 	K 	1 = I K 	1 	12 k1 	
+02 [E[(ck —rh)2] + E[(rk _r)2]112 	 (A. 15b) 

[I J.k=171. +02 J 	 J 
11 

1 	K 	1 = 1 K 	1 	2 k1 + 2 [,2 +02112 

t=' 
2 + 821 

(using the definitions of q,, and 0) 

1 
I 

K 

2 
k=1 71h 

(A. 15d) 

In the case where each single-speaker difference Ck is an average over n recogni- 

tions (for some constant n), and the structure of the recognition tests is the same 
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for all speakers (using the same number of template sets, the same amount of 

input data, the same randomisation techniques, etc.), it is plausible to use an 

approximation to (A.14) in which the standard errors are taken to be the 

same for all speaker indices k. In this case 

= - 	ce,, 	 (A.16) 
1k k=I 

and 

1 = 	 (A.17) 

where 

	

= ,i+6 2 	 (A.18) 

(which is the same for all values of k). Thus, when equal standard errors i are 

assumed for the single-speaker mean results, the estimate of r obtained from a 

hierarchical distribution of results (grouped by speaker) is simply F (as in (A.5)), 

where each sample Ck is the mean accuracy difference for one (the kth) of the K 

speakers. Also the estimated standard error of is given by (A.8) - since 

E[áI
1 K ))2 = EE ]((c —r) - (F_r 

K — lkl I (A. 19a) 

_i 	 __ 
— K—i 	Et[ K1 (ck_r)_J K ?]1 	(A.19b)

k=1 	K 

- 	K J(K— 1)' 
- K—i 	K2 

E[(ck _r)2J + 	E[(cj_r) 21J 	(A.19c) 
2k 

(since the random variables c - r and 

Ck - r are independent with mean 0) 
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- 	K (K— 1)2 

- K—i k=1[ 	2 

(,,2 + 92) + 	(qj2+82) 	 (A.19d) 
K K , 

(by substitutions as in (A. 15a-c)) 

- 1 K '(K - 1)2 + K-1 
 ff21 - _k _- 1 k1 1 K 2 	K 2  

= a2 . 

(A. 19e) 

(A.191) 

The details of (A.14-A.19) are unnecessary if the single-speaker average 

differences Ck are treated simply as independent samples from the same distribu-

tion, as in section A.1. However, the above analysis demonstrates how this sim-

ple case relates to the more general case with different theoretical single-

speaker means r, and standard errors q, and this may be of some interest. The 

important point to note is that the quantities Ck used in the mean and standard 

error estimation must be independent samples from the distribution being stu-

died, and therefore if the individual recognition results (differences in single-

utterance recognition correctness) are from a hierarchy of distributions (as in the 

case with a number of results for each of a set of test speakers) then these indi-

vidual results must be grouped together (e.g. by averaging the results for each 

speaker) to form a set of independent samples from a distribution at the most 

general level of the hierarchy, before the mean, the standard error estimate and 

the corresponding confidence are computed. 
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COMPARATIVE STUDY OF TIME SEGMENTATION 

AND SEGMENT REPRESENTATION TECHNIQUES 

IN A DTW-BASED WORD RECOGNISER 

lEE Conference Publication No.258 (Proceedings of the lEE International 

Conference on "Speech Input/Output; Techniques and Applications", 

London, March 1986), pp. 21-26  

Note:- The statement made in this paper that Kuhn and Tomaschewski used 
unnormalised log filter energies in their trace segmentation procedure 
is incorrect: in fact, according to their paper (reference 4 here), 
and as stated in the main text of the thesis, they used filter energies 
which were normalised for overall energy in each frame but were not 
logarithmically transformed. 



COMPARATIVE STUDY OF TIME SEGMENTATION AND SEGMENT REPRESENTATION TECHNIQUES IN A 
DTW-BASED WORD RECOGNISER 

P.R. McInnes, M.A. Jack and J. Layer 

Centre for Speech Technology Research, University of Edinburgh, UK 

Results of experiments comparing segmenta-
tion techniques as preprocessing for a 
DTW-based isolated word recognition system 
are presented. Various features of these 
results, and those of previously reported 
experiments, are discussed. An application 
of segmentation techniques in an efficient 
multiple-pass'recognition system is 
described. 

Many isolated and connected word recogni-
tion systems operate by comparison of the 
input speech with reference patterns (tem-
plates), where each template represents one 
word of the designated vocabulary. This 
comparison can be accomplished with an 
optimal non-linear time alignment by the 
dynamic programming technique known as 
dynamic time warping (DTW). (See for 
instance Itakura (1); Myers et al (2)). 

In the basic DTW-based isolated word 
recogriiser, the pattern representing each 
(reference or unknown input) word is a 
sequence of vectors of parameters 
representing short time sections (frames) 
of speech. The number of frames varies 
according to the duration of the word. 
Various researchers have applied prepro-
cessing techniques to normalise all the 
words to a standard number of vectors 
before the DTW comparison. (This normalisa-
tion is helpful in allowing the computa-
tionally expensive search for the optimal 
alignment in the DTW stage to be consider-
ably reduced (2), and is also necessary for 
some hardware implementations, such as that 
described by Brown et al (3)). In some 
cases this normalisation of the timescale 
is linear (2); in other cases a non-linear 
normalisation based on characteristics of 
the original pattern has been applied (Kuhn 
and Tomaschewski (4); Pieraccini and Billi 
(5); Chuang and Chan (6); Gauvain et al 
(7)). One form of non-linear word length 
normalisation which has been applied with 
some success is trace segmentation (4), in 
which the 'trace' formed by connecting suc-
cessive frame vectors by line segments in 
acoustic parameter vector space is divided 
into segments of equal length and a parame-
ter vector is derived to represent each 
segment or each segment boundary. Three 
methods of deriving these vectors have been 
described. Two of these methods derive 
representations at segment boundaries - in 
one case by linear INTERPOLATION between 
the two frame vectors adjacent to the seg-
ment boundary (4); in the other case by 
SELECTION of whichever of those two vectors 
is closer to the boundary (7). The third 
method derives a vector to represent each 
segment, by AVERAGING the frame vectors 
within that segment (Ney(8)). 

This present paper presents an experimental 

comparison of these different segment 
representation methods. The three methods - 
interpolation, selection and averaging - 
were applied both with linear time segmen-
tation and with trace segmentation. 

Two English-language vocabularies were 
selected for the experiments: one compris-
ing the digits from 0 to 9 (with 0 pro-
nounced zero'), and one consisting of 20 
mostly disyllabic or polysyllabic words 
(against, begin, evergreen, flowering, fol-
lowing, framework, horizontal. Japanese. 
possible, remaining, retaining, single, 
sometimes, spring, susceptible, these, 
those, trained, training. year). 

Recognition tests were carried Out 
separately. in a speaker-dependent mode, 
for each of three speakers (two male and 
one female). Each speaker first read each 
vocabulary aloud several times (five times 
for the digits, and three times for the 
other vocabulary), in a fixed order, to 
provide templates for the recogniser, and 
then read Out a further five repetitions, 
in which the order of the words was varied-
from one repetition to another, to provide 
test data. All the utterances were recorded 
in a quiet environment using a fixed micro-
phone. 

The recordings were lowpass filtered at 5 
kHz and digitised at 10 kHz. The beginning 
and end of each word were located by visual 
inspection of a display of the waveform. 

For each reference or test word, an acous-
tic analysis is performed to derive vectors 
of eight mel frequency cepstrum coeffi-
cients (as defined by Davis and Mermeistein 
(9)) at intervals of 12.8 ms. The resulting 
sequences of vectors are used directly as 
input for the DTW comparison, or else pro-
cessed to obtain segment representations. 
If trace segmentation is applied, the dis-
tances along the trace can be measured 
using either the Euclidean norm or the 
absolute value norm. In fact, the absolute 
value norm was used in the experiments 
reported here, since it was found in prel-
iminary tests to yield better results. The 
DTW routine incorporates  Itakuras local 
path constraints (1,2) with type (c) 
weighting (2) and with the test word along 
the x-axis. The absolute value norm is used 
as the vector distance measure. In these 
experiments no global path constraint 
(warping window or band) was imposed, but 
endpoint constraints were strictly 
observed. 



For each vocabulary and speaker, various 
preprocessing conditions were defined. For 
each set of preprocessing conditions, 
recognition tests were carried Out On the 
five test repetitions of the words using 
each of the training repetitions in turn to 
provide the templates. The results were 
averaged over the different choices of tem-
plate set. 

A set of preprocessing conditions consisted 
of normalisation to N segments per word, 
for one of various values of N. by one of 
six combinations of segmentation and seg-
ment representation techniques. The six 
combinations resulted from the choice of 
linear time segmentation or trace segmenta-
tion and the three possible methods of seg-
ment (or segment boundary) representation. 
In each case, the same preprocessing was 
applied both to the templates and to the 
test utterances. 

For each vocabulary and speaker, recogni-
tion tests were also carried out (again 
using each of the template sets in turn) 
with no segmentation of the test and refer-
ence words. 

RESULTS 

The results of the experiments with word 
length normalisation are plotted, for 
respective vocabularies and segmentation 
procedures, in figures 1-4. Each of these 
diagrams shows word recognition error rate 
(averaged, for each set of preprocessing 
conditions, over all speakers and over all 
the sets of templates for each speaker) 
plotted against the average number of vec-
tors used to represent each word. (The 
experiments with the digits, and some with 
the other vocabulary, showed that the 
selection method was inferior to the inter-
polation and averaging methods, and there-
fore full experiments with the other voca-
bulary were conducted using only interpola-
tion and averaging). Also plotted is a 
measure R of the quality of discrimination 
between correct and incorrect words' tem-
plates. This is defined by 

R 	 (mean value of r) - 
standard deviation of values of r 

where, for one recognition of one test 
word, r is the ratio of the smallest word 
distance obtained for an incorrect-word 
template to the distance obtained for the 
correct word's template. (The word is 
recognised correctly if r>1). The value of 
R was computed separately for each template 
set, and then averaged in the same way as 
the error rate. 

The results obtained without preprocessing 
are plotted at the right of each figure, 
and are marked by horizontal broken lines 
to allow comparison with those obtained 
with preprocessing. 

It will be seen from the graphs that, in 
the case of the averaging method of segment 
representation, the average number of vec-
tors per word is not always an integer. 
This is because, as part of the segmenta -
tion and averaging procedure. when none of 
the original frame vectors falls within a 
particular segment, that segment is 
extended to include the next frame vector 

(and the start of the next segment is moved 
along correspondingly): thus the final 
number of segment representations obtained 
for a word may be less than the initially 
specified value of N. This occurs particu-
larly for values of N which approach (or 
exceed) the number of frames per word. It 
also occurs more with trace segmentation 
than with linear time segmentation. Where 
either of the other two segment representa-
tion techniques is applied, the number of 
vectors per word is N+1, because there are 
N+1 segment boundaries (including the ini-
tial and final ones). 

These results have been obtained from a 
fairly small data base, consisting of a 
total of 780 isolated word utterances by 
only three speakers. Continuation of this 
work to include more data from different 
speakers could improve the reliability of 
the conclusions drawn in the paragraphs 
below, some of which can only be tentative 
with the existing results. 

The results varied considerably from 
speaker to speaker, especially for the 
digits, where, for example, the three 
speakers' error rates with no preprocessing 
were 6.8%, 24.8% and 11.6% (average 14.4%). 
(The corresponding figures for the other 
vocabulary were 14.7%, 12.3% and 11.3% 
respectively (average 12.8%). In each case 
the first two are the male speakers' 
results). The average word length before 
segmentation also varied among the speakers 
for each vocabulary, by as much as 20% in 
the case of the 20-word vocabulary. 

Overall the recognition accuracy attained 
was rather poor. This was partly because 
each template was derived from only one 
training utterance; further experiments 
with the same data showed that the error 
rates could be nearly halved by deriving 
each template from two or three of the 
training utterances using an averaging pro-
cedure. 

It should be noted in interpreting the 
results that the discrimination measure R 
is less subject to statistical variation 
than the percentage error rate; but also 
that the expected value of R is non-
linearly related to the expected error 
rate, and so the averaging of R over dif-
ferent speakers or different sets of tem-
plates, where the quality of recognition 
varies considerably, will not necessarily 
give an accurate indication of the expected 
average recognition performance. 

Comparison of secrmentation technioues 

The results for trace segmentation (figures 
2 and 4) are similar on the whole to those 
obtained using linear time segmentation 
(figures 1 and 3). This is surprising in 
view of the results of previous experiments 
(6.7) which indicated that trace segmenta-
tion gave substantially better recognition 
performance. It is, however, in agreement 
with Ney's connected word recognition 
results (8). A possible explanation for 
this discrepancy lies in the fact that both 
Ney's experiments and those reported in the 
present paper were obtained using cepstral 
coefficients, whereas some of the other 



trace segmentation experimenters (4,7) used 
log bandpass filter energies. (Chuang and 
Chan (6) used LPC). One difference between 
these two types of acoustic representation 
is that log filter energies (used in unnor-
malised form for trace segmentation (4)) 
contain some information as to the overall 
energy in each frame of speech, whereas 
cepstral coefficients do not (since the 
zeroth order coefficient is omitted). To 
investigate this hypothesised explanation. 
some experiments were conducted on part of 
the data base, in which the segment boun-
daries were determined by trace segmenta-
tion using log spectral coefficients 
(corresponding to 32 bandpass filters), and 
representations for the segments thus 
defined were derived as before from the 
cepstral coefficients. The recognition 
results (for the 20-word vocabulary spoken 
by one male speaker) were consistently 
poorer than those obtained using trace seg-
mentation based on the cepstral coeffi-
cients. However, this may indicate merely 
that the use of different acoustic 
representations for the trace segmentation 
and word comparison phases introduces 
recognition errors. 

The superiority of linear time segmentation 
or trace segmentation may depend partly on 
the nature of the vocabulary to be recog-
nised: on the digits, which are mostly 
monosyllabic words (in which less non-
linear timescale variation between utter-
ances may be expected), the best results 
were obtained using linear time segmenta-
tion, whereas on the other vocabulary, 
which includes many words of two, three or 
four syllables, trace segmentation gave 
better results. 

For each vocabulary, both linear time seg-
mentation and trace segmentation (with 
interpolation) yielded an improvement in 
recognition over what was obtained with no 
preprocessing, where the average numbers of 
vectors per word were similar. (On average, 
over the two vocabularies and the two tech-
niques, the reduction in error rate was 
about 0.6%, and the increase in the value 
of P was about 0.07). This suggests that 
there is some advantage in normalising all 
words to the same number of vectors - 
besides the benefits mentioned in the 
introduction above. This agrees with the 
results of (6) and (7) on fixed and vari-
able length segmentation, though not with 
those of (5). 

Comparison of seqment representation 
techniques 

The results for digit recognition plotted 
in figures 1 and 2 show that selection of 
one of the original frame vectors at each 
segment boundary leads to recognition per-
formance consistently worse than is 
obtained when vectors are interpolated. 
(The same phenomenon was observed when 
these techniques were compared for the 
other vocabulary, though in this case the 
results for the selection technique are not 
plotted here because it was applied to the 
words of only one of the speakers). This 
is as might be expected, since the selec-
tion of the nearest original vector gives 
only a rough approximation to a representa-
tion for the segment boundary. Even with 
selection, however, the best results were 
slightly better than those obtained with no 

preprocessing of the original vector 
sequences. 

The comparison of averaging with the other 
two techniques is less straightforward. 
When the number of segments per word (N) is 
small (less than about half the average 
number of frames per word), averaging is 
clearly better than interpolation (or 
selection). This is what could be expected, 
since, when a segment contains more than 
two of the original vectors, averaging is 
the only one of the three techniques to 
make use of the information contained in 
all the vectors. When N becomes larger, 
however, interpolation produces better 
results than averaging. This may be attri-
buted to the fact that interpolation takes 
account of the exact positions of the seg-
ment boundaries, rather than just of which 
frame vectors are contained in each seg-
ment. But also the present formulation of 
the averaging procedure, which adjusts the 
segment boundaries when a segment contains 
no frame vector, is probably not optimal - 
particularly as it leads to variations in 
the number of vectors per word after seg-
mentation. A better procedure might be to 
interpolate a vector at the centre of any 
segment which contains no vectors. 

It is worth noting that, using the 
averaging method, performance fairly simi-
lar to that with no segmentation was 
obtained when the number of vectors per 
word was reduced to about a third of its 
original value. This suggests that the 
frame rate of the original analysis (78.125 
frames per second) was probably unneces-
sarily high. 

Application of seamentation in a multiple-
pass recoaniser 

Computational efficiency is a major con-
sideration in applications of DTW-based 
word recognition. The basic DTW recogniser 
compares each input word with all the tem-
plates in turn, which is computationally 
costly especially for large vocabularies. 
Among the modifications proposed to reduce 
the computational load is the application 
of a preliminary simple comparison to elim-
inate poorly - matching templates before the 
DTW stage. (See for instance Kaneko and 
Dixon (10); Pan et al (11)). This can be 
achieved very easily in a recognition sys-
tem with a segmentation capability: the 
initial comparison can be made using aver-
aged representations for a small number of 
segments per word (2 seems a good choice 
for the number of segments here, from the 
above results): then only those templates 
giving distances within a prespecified fac-
tor of the smallest word distance need be 
considered in the more computationally 
intensive comparison with a larger number 
of segments per word. 

This two-pass recognition procedure can be 
extended to a multiple-pass procedure using 
progressively more refined comparisons to 
eliminate more of the templates. The 
overall accuracy obtained may be better 
than in a conventional (less efficient) 
single-pass DTW recogniser without segmen-
tation, on account of the improvements 
noted above as resulting from the prepro-
cessing. It is also possible that an 
increase in accuracy can be obtained by 
making the final recognition decision (in 



cases of doubt) by a procedure combining 
different segmentation conditions. More-
over • the number of vectors per word and 
the elimination threshold at each pass can 
easily be adjusted, to give the desired 
tradeoff between accuracy and speed for any 
particular vocabulary and application. 

Experiments are currently in progress with 
a flexible multiple-pass recognition system 
using segmentation and DIV. to determine 
the effects of different numbers of passes 
and various values of the parameters at 
each pass. 

The work reported in this paper was enabled 
by support from the Science and Engineering 
Research Council. 
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INTRODUCTION 

The use of whole-word templates (reference patterns), obtained by a training 
procedure from utterances of the words to be recognised, is a well-established and 
successful approach to automatic recognition of isolated words from a small to 
medium-sized vocabulary. Each unknown input word is compared with all the 
stored templates, and is recognised as the word whose template yields the smallest 
value of a "word distance" or dissimilarity measure. Each template, and each 
input word, is represented for this comparison by a sequence of vectors of acoustic 
parameters (such as bandpass filter energies or cepstral coefficients), each vector 
being derived from a short time segment of the speech signal [1,2]. 
There are various problems which arise with this word recognition procedure, 
because of the degree of variability that occurs among utterances of the same word, 
by the same speaker on different occasions or (even more) by different speakers. 

Temporal variation, and DTW matchin 
One form of variability is in the timescale of a word. The overall duration of the 
word varies from one utterance to another; also the relative durations of its parts 
(e.g. phones or syllables) vary. To cope with this temporal variation, the com-
parison procedure employs the dynamic programming technique known as dynamic 
time warping (DTW) [1,31, which finds the optimal alignment of a given pair of 
input and reference patterns, together with the corresponding word distance. 
The main drawback of DTW is that it is computationally expensive; the amount of 
computation required is directly proportional to the number of templates to be 
matched, and to the square of the number of vectors per word. Various 
modifications have been proposed to reduce the computational requirements. 
Among these is the application of a relatively simple preliminary comparison to 
eliminate templates which are very dissimilar to the input word, so that only the 
most likely candidates are subjected to full DTW matching [4]. It is also possible 
to reduce the computation for each DTW matching operation by first compressing 
the representation of each word to a small number of acoustic vectors: various seg-
mentation techniques exist which can be used to accomplish this [5,61. 
These ideas of segmentation to compress word representations and of elimination 
of unlikely words by a simple comparison can be combined, as described below, to 
build a multiple-stage recognition system which achieves a substantial reduction of 
the time required to recognise each word, with little or no loss of accuracy, relative 
to the basic single-stage DTW-based recogniser. 

Other forms of variability, and template adaptation 
The effectiveness of a template-based word recogniser depends on its having good 
templates for all the words in the designated vocabulary. If the vocabulary is 
small, and the speaker and conditions are consistent, this can be achieved by deriv-
ing a template for each word from several utterances provided by the prospective 
user of the system during an initial training (enrolment) session [7]. However, if 
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the vocabulary is large, or there are frequent changes of speaker, this requirement 
of training becomes burdensome and time-consuming. In these cases, an alterna-
tive, is to use a speaker-independent set of templates, generated by a representative 
set of speakers [8]. A speaker-independent system, to achieve satisfactory perfor-
mance, requires several templates per word [81; this, however, increases the com-
putational requirements for the template matching process. A further disadvan-
tage of a speaker-independent recogniser is that, when a new word is added to the 
vocabulary, it must be spoken by a representative set of speakers to train the sys-
tem, in order to maintain the desired standard of recognition accuracy. 
A method of improving the performance of a suboptimally trained word recognition 
system, whether speaker-trained or speaker-independent, is to incorporate adapta-
tion of the templates during the recognition session [9]. The user can start using 
the recogniser with a small set of speaker-independent templates, or a set of 
single-utterance templates generated in a short training session, and the system 
will improve the templates by adapting them to the recognised input, so that its 
accuracy increases as it is used. This adaptation will also keep track of gradual 
changes in the speaker's voice or the background noise or transmission conditions. 
The adaptation can be supervised (conditional on feedback as to the correctness of 
the recognition) or unsupervised. It may be helpful, especially in the case of unsu-
pervised adaptation, to impose some condition as to the closeness of the word 
match or the certainty of the recognition decision before allowing a word to be used 
in adaptation of the best-matching template. A further option in the case of super-
vised adaptation is to implement negative adaptation in instances of incorrect 
recognition, so that the template becomes less similar to the input word which has 
been misrecognised, thus making the recurrence of the same error less likely. 
Various techniques for template adaptation have been proposed [9,10]. The tech-
nique considered in this paper is a fairly straightforward one, in which a weighted 
averaging process is applied to the existing template and the input word. This 
adaptation technique has been incorporated into the multiple-stage recogniser 
already mentioned. The remaining sections of this paper contain a description of 
the system, the results of some preliminary experiments into possible adaptation 
options and an indication of directions for intended further research. 

WORD RECOGNITION SYSTEM 

The overall structure of the recognition system is shown in figure 1. The subsec-
tions below describe the components of the system and the operation of the 
multiple-stage decision and adaptation procedures. 

Data acquisition, acoustic analysis and endpoint detection 
The system is implemented in software on a Masscomp MC5500 minicomputer, 
using a built-in analogue-to-digital convertor for data acquisition, and an AP501 
array processor to perform acoustic analysis. During training, interactive recogni-
tion or test data collection, the speaker is prompted, by visual and audible signals 
from a terminal, to utter each word during an interval of 1.5s. The speech is low-
pass filtered at 8kHz, and digitised at a 20kHz sampling rate. The beginning and 
end of the word are located automatically using thresholds on energy and zero-
crossings in lOms frames. (If the number of words detected in the 1.5s interval is 
not exactly 1, the speaker is prompted to repeat the word.) After this endpoint 
detection, the speech signal is subjected* to preemphasis (factor 0.98), and to 8th-
order LPC analysis in a 25.6ms Hamming-windowed frame every lOms, and 8 cep-
stral coefficients are derived to represent each frame. 
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Word comparison technique 
In each stage of the recognition process, the input word is segmented and compared 
with the (similarly segmented) templates for the words of the vocabulary under 
consideration. (At the first stage, all the templates are used; at later stages, some 
of them may have been eliminated.) 
The segmentation technique involves dividing each word into a fixed number, N, of 
segments, and either averaging the acoustic vectors in each segment (so that the 
pattern after segmentation consists of N vectors) or interpolating a vector at each 
segment boundary (which generates N +I vectors, including those at the beginning 
and end of the word). Either linear time segmentation or a form of trace segmen-
tation [51 can be used. (Previous experiments comparing these segmentation tech-
niques have been reported elsewhere [111.) 
The segmented input word is compared with each template by DTW using 
Itakura's form of local path constraints and type (c) weighting [3], with the input 
word along the x-axis. The vector distance function in the DTW matching is the 
absolute value distance. (A pseudotemplate frame [12],  with a constant distance to 
any input vector, which can be matched to any number of successive input vectors, 
is optionally appended before and alter each template, to adjust for the possible 
inclusion by the endpoint detector of intervals before and after the input word.) 
This results in a word distance for each template matched. 

FIGURE 1 STRUCTURE OF RECOGNITION SYSTEM 
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Multiple-stage decision procedure 
The system incorporates a number of word comparison stages with different seg-
mentation parameters. The number of stages, the details of each stage and the 
condition after each non-final stage for passing on templates for further comparison 
can easily be adjusted each time the recogniser is used. For the experiments 
reported here, the number of stages was fixed at 3, with segmentations resulting in 
2, 10 and 30 vectors per word; the pseudotemplate frame technique was included in 
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the DTW at the third stage. 
Appropriately segmented versions of all the templates are derived at the beginning 
of the recognition session and stored for use in the comparison stages. When the 
input word has been processed by the acoustic analysis into a sequence of vectors, 
this (unsegmented) word pattern is stored temporarily. In the first stage, the first 
segmentation is applied to the input word and it is matched by the DTW algorithm 
to the first segmented version of each template. The output of this stage is a set of 
word distances, one for each template. Let the distance obtained for template v be 
D.; and let v*  be the value of the template index v that minimises D.  Then the 
co'hdition for passing template v on to the next stage is that 

D< tiD* , 	 (1) 
where t 1  (>1) is the threshold for the first stage. If only one value of v (i.e. v*) 
satisfies (1), the input word is recognised as the word represented by template v*. 
In this case, the remaining stages are not required for this word. Otherwise, the 
second segmentation is applied to the input word, and it is compared with the 
second segmented version of each template whose index v satisfies (1). 
The output of the second stage is, like that of the first, a set of word distances. If 
there is no third stage in use, the input word is now recognised as the word whose 
template yields the smallest word distance in the second-stage comparison. If 
there is a third stage, a template retention criterion similar to (1), with a different 
threshold t9 , is applied to the second-stage word distances, arid the templates satis-
fying this condition are passed on to the third stage. As before, if only one tem-
plate satisfies the condition, the recognition decision is made and no further input 
segmentation or comparison is required. 
Subsequent stages, if these exist, are similar to the second stage: at each stage, the 
appropriate segmentation is applied to the input word, and it is compared with the 
similarly segmented versions of those templates not eliminated by preceding 
stages. At some stage a recognition decision is reached. 
It is possible to include a "rejection" or "no recognition" option, in which no recog -
nition decision is made for the current input word if at any stage the ratio of the 
second-best to the best word distance is less than a set threshold. The rejection 
threshold can take a different value at each stage. 

Template adaptation 
The recognition procedure, when the recogniser is being used in its primary, 
interactive mode, is as follows. Once an input word has been recognised, the recog-
nised word is printed out on the terminal screen. If the verification option is in 
use, the user is prompted for an indication of the correctness or incorrectness of the 
recognition. If it is incorrect, the second-best candidate word is displayed, and 
again the user is asked to verify its correctness. When a recognition is ack-
nowledged as correct, or when both the best and the second-best candidates have 
been dismissed as incorrect, the system prompts for the next input utterance. 
There is also a simulation option (used for the experiments described below), in 
which verification is achieved using a table of input word identities. 
Template adaptation is applied whenever a recognition decision is reached and cer-
tain conditions are satisfied. Conditions which may be imposed are the following:- 

Correctness of recognition: as confirmed by the user's response, or by reference 
to the input word identity file. 
Word distance ratio: the ratio of the second-best to the best word distance, at 
the stage at which the decision is reached, must exceed a threshold. (This 



AN ISOLATED WORD RECOGNITION SYSTEM 

threshold is not specified separately for each stage of comparison; but higher 
thresholds at the earlier stages are in effect imposed by specifying sufficiently 
high thresholds for template elimination in the recognition procedure.) 

The main purpose of the distance ratio condition is to prevent adaptation in cases 
where there is no verification of the recognition and the degree of certainty of its 
correctness is low. 
If there is verification 6.e. the adaptation is supervised), so that the correctness 
condition can be imposed, then there is also an option of negative adaptation, to 
make the template less like the misrecognised word; and not only the best candi-
date template, but also (where the best candidate is incorrect) the second-best, can 
be adapted, positively or negatively depending on whether it is correct. 
The adaptation procedure consists of DTW alignment of the unsegmented versions 
of the template to be adapted and of the input word, and weighted averaging of 
each pair of vectors thus matched together, and interpolation of the vectors of the 
adapted template at integer points on a weighted-average timescale, as described 
in [7]. The weight on the input word is a constant, W, in the range from 0 to 1; 
the weight on the existing template is 1-W. (W=0 corresponds to no adaptation; 
W=i, to replacement of the template by the input word.) In negative adaptation, 
the procedure is the same, but W is negative (and so 1-W is greater than 1). When 
a template has been adapted, segmented versions of it are derived, replacing the 
previous versions, for use at all the stages of the recognition procedure. 

EXPERIMENTS AND RESULTS 

The adaptive recognition experiments reported here involve speaker-dependent 
recognition of utterances of the 10 English digits. Results have been obtained, to 
date, for two male speakers. 

Speech data 
Each set of templates, consisting of one for each digit, was formed in an interactive 
training session by a robust averaging procedure with DTW alignment. (The aver-
age number of utterances required per word of the vocabulary, to obtain two 
sufficiently similar ones, was about 3.) In these experiments two sets of templates 
for speaker 1 (designated R1A and RiB) and one set for speaker 2 (R2) were used. 
The test data for adaptive recognition consisted of digit utterances collected in sets 
of 50 on separate occasions using the automatic data collection procedure men-
tioned above. The same sequence, containing 5 repetitions of each digit, was 
displayed and pronounced in each of these data collection sessions. For speaker 1, 
there were 10 data collection sessions over a period of nearly three weeks, provid-
ing 500 test utterances (designated Ti). For speaker 2, 300 utterances (T2) were 
obtained in 6 sessions on successive working days. In each case, the templates 
were formed during the first few days of the data collection period. 
All utterances, both for template formation and for testing, were recorded using a 
Sennheiser HME 1019 headset microphone in a computer terminal room. There 
was a low level of continuous background noise, and there were also people work-
ing at nearby terminals during some of the sessions. 

Adaptation parameters and results 
The words in data set Ti were recognised using each of template sets R1A and 
RiB, and those in T2 were recognised using R2. The templates were adapted dur- 
ing the recognition process. Figures 2 and 3 show, for various adaptation 
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parameter values, the average word recognition accuracies obtained (over 1300 
recognitions in all: 500, 500 and 300 with the respective template sets). Figure 2 
shows results for adaptation with verification, with no distance ratio condition, 
with a number of combinations of positive and negative adaptation weight values. 
Figure 3 shows the performance using adaptation without verification, with and 
without a distance ratio condition. In the cases with verification, the second-best 
candidate template was also adapted when the first candidate was incorrect. The 
performance with no adaptation is shown as the first point marked "0" in each 
figure. 

FIGURE a 
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The best recognition performance was obtained using supervised adaptation, with 
weights of 0.2 and -0.05 on the input in positive and negative adaptation. The best 
result for unsupervised adaptation was obtained when the adaptation was condi-
tional on a word distance ratio exceeding 1.15 and the input weight was 0.2. 
(These values may not be optimal, as only two distance ratio thresholds and three 
weights have been tested for unsupervised adaptation.) The rates of correct recog-
nition were 79.2% without adaptation (69.2%, 91.0% and 76.3% for the individual 
combinations of test data and templates); 92.8% (94.2%, 95.0%, 87.0%) with the 
optimal supervised adaptation; and 85.4% (85.2%, 92.4%, 74.3%) with the best 
unsupervised adaptation. The improvement is greater for R1A than for R2A: 
before adaptation the performance of R1A was considerably poorer, but with adap-
tation the two template sets yielded similar results. The poor results for speaker 
2, even with adaptation, suggest that many of the errors for this speaker were due 
to deficiencies in the test data rather than in the templates. 

DISCUSSION 

The results obtained thus far indicate the usefulness of the template adaptation 
technique in enhancing speaker-dependent isolated word recognition performance. 
In particular, the adaptation procedure with verification can improve the 
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performance of a poor set of templates (such as R1A) to an apparently near-optimal 
level. More detailed examination of the results indicates that most of the improve-
ment in the templates has occurred after about 50 input words. (This suggests 
that about 5 utterances of each word of the vocabulary are required for effective 
adaptation; but further experiments will be necessary to establish a more accurate 
estimate.) 
The negative adaptation for misrecognised input appears to be of some benefit, but 
only if the negative weight is kept small and it is used in conjunction with the 
positive adaptation. It might be helpful to impose some word distance condition on 
negative adaptation, or to apply it only where the second-best candidate was 
correct: this could prevent adaptation away from noisy or, badly detecteed input. 
Even without feedback for verification, template adaptation can still improve the 
system's performance - though in this case it is preferable to have a threshold 
imposed on the ratio of the best two word distances, to prevent adaptation in cases 
of uncertainty. The choice of the distance ratio threshold is significant: if it is set 
too low, there is a risk that a template will be adapted repeatedly to utterances of 
the wrong word, resulting in severely degraded recognition performance on the 
misrecognised word and on the word that the template is intended to represent. 
More extensive experiments will be required to show whether it is possible to 
prevent this instability from arising over long sequences of input words. (If this 
cannot be guaranteed, a retraining procedure will have to be provided: see below.) 
Further research is planned to extend the above results to more repetitions of the 
same words; to other vocabularies; to a larger number of speakers; to isolated word 
recognition using speaker-independent initial templates; and to connected word 
recognition, with initial templates derived from isolated utterances or a limited set 
of embedded utterances. There are also various options using multiple templates 
which could be explored: for instance, in a connected word recognition system, the 
adaptation procedure might be employed to generate from each word's initial tem-
plate a set of adapted templates corresponding to contextual variations. 
In applications of speech recognition, an important field of investigation is the 
interaction between the user and the system. The interactive recognition mode of 
the system that has been developed will allow experiments to be carried out in 
which the user can adapt to the recogniser as well as vice versa. The interactive 
mode allows more flexibility in the operation of the system, as the user can repeat 
words which are wrongly recognised, and, in the event of repeated failure to recog -
nise a particular word, can abandon an existing template and generate a new one 
by providing one or more fresh training utterances of the word. (In practice, a user 
of a word recognition system is unlikely to tolerate very poor performance on par-
ticular words of the vocabulary - especially if each word has to be repeated until it 
is recognised correctly. So it is preferable to have a retraining procedure available 
for use as required during the recognition session.) The assessment of a system's 
performance becomes more complex as the degree of interaction between system 
and user increases; but this interaction is such an important feature of any appli-
cation of a speech recogniser as to merit investigation despite this difficulty. 

SUMMARY 

An implementation of an isolated word recognition system incorporating a 
multiple-stage decision procedure and template adaptation has been described. 
Preliminary results of experiments with this system indicate that the template 
adaptation procedure can greatly improve recognition accuracy, especially where 
the initial set of templates gives poor performance. There is scope for further 
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investigation of a number of aspects of the adaptive recognition process, and for 
application of the adaptation technique to speaker-independent and multiple. 
template systems and to connected word recognition. 
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ABSTRACT 

A template-based isolated word recognition system, with adaptation of templates by weighted averaging 
with recognised input utterances is described. Experiments with adaptation of speaker-specific and 
speaker-independent templates are reported. The results show substantial improvements in the recogni-
tion accuracies attained. Aspects of interaction between the system and the user are discussed. 

INTRODUCTION 

The technique of whole-word template matching (ref 1) for isolated and connected word recognition has 
attained considerable success and has found practical applications for tasks which involve recognition of 
words from small to medium-sized vocabularies. The systems available mostly employ speaker-specific 
templates, formed from utterances of the words by the intended user in a training session. Some success 
has been attained (ref 2) with speaker-independent systems, using several templates for each word of the 
vocabulary, formed by clustering from utterances by a standard set of speakers. 

A shortcoming of the template-matching approach in its basic form is that the templates are derived 
entirely from the training utterances provided before the start of a recognition session: no use is made of 
the additional data acquired during the recognition session in the form of recognised input utterances. 
An adaptation procedure, by which the initial templates are modified progressively to incorporate infor-
mation from recognised input, can enhance the performance of a template-based speech recognition sys-
tem by making the templates more truly representative of the user's pronunciations. This is particularly 
desirable in a system which starts with speaker-independent templates, as the current user's pronuncia-
tions may not correspond closely to any of these templates. Adaptation may also help to track gradual 
changes in the speaker's voice, during an extended recognition session or over a period of days or 
months. - 
An isolated word recognition system incorporating a weighted averaging procedure for adaptation of 
templates is described briefly below (further details may be found in ref 3), and results are reported 
which show the effects of this adaptation on the accuracy of recognition. Some issues relating to adapta-
tion and the user-system interface are discussed. 

DESCRIPTION OF THE SYSTEM 

The structure of the isolated word recognition system is illustrated in figure 1. It incorporates a 
multiple-stage decision procedure, in which successively more detailed comparisons of the input with the 
templates are carried out until a recognition decision is reached. 

For the experiments reported here, three stages were used. Each stage involves division of the input 
word pattern into a number of equal time segments, and comparison of the resulting normalised pattern 
with correspondingly segmented forms of the templates by a dynamic programming algorithm (dynamic 
time warping or DTW) (ref 4). The representation of each word consists of vectors of cepstral coefficients 
derived from an LPC analysis (ref 5); the segmented form is obtained by averaging these vectors to 
derive one vector for each segment (or, at the third stage where there are 30 segments per word, interpo-
lating to derive a vector at each segment boundary) (ref 6). 
The distances obtained by the DTW comparison at each non-final stage are used to decide which (if any) 
templates should be matched to the input word at the next stage. If at any comparison stage the ratio of 
the distances for the best two recognition candidates exceeds a threshold set for that stage, the input is 
recognised as the word whose template has the smallest distance. Thus the recognition decision may be 
taken at any of the three stages, depending on whether one word of the vocabulary matches the input 
much better than any of the others. If the decision can be made after the first stage, the computational 
cost of the recognition process is very small, as each word is represented at this stage by just two aver-
aged cepstral vectors, and the DTW thus reduces to a very simple linear matching of the input and the 
template. 

Centre for Speech Technology Research. University of Edinburgh, 80 South Bridge, Edinburgh Efil IRN 
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Once an input word has been recognised, it may be used to adapt the template which has yielded the 
smallest distance. There are several possible criteria that may be applied to determine whether to per-
form adaptation. 
If there is explicit feedback from the user as to the correctness of the recognition, the condition can be 
imposed that the recognition must be correct. This case is referred to as supervised adaptation. If the 
recognition is incorrect, the template may be adapted negatively, away from the input word, to make the 
recurrence of the same misrecognition less likely. It is also possible to test the second-best candidate, 
where the best is incorrect, and adapt its template also, positively or negatively as appropriate. 

Another form of verification of the recognition is possible if the vocabulary includes the special word 
"CORRECTION". In this case the adaptation to the most recent input word is delayed until the next 
input is recognised; if this next word is not identified as "CORRECTION", the preceding recognition is 
assumed to be correct. The indications of correctness or incorrectness obtained by this means can be 
used to control template adaptation as in the case with explicit verification. The main disadvantage of 
this option is that wrong adaptations can occur if the word "CORRECTION" is not recognised reliably. 

A third form of adaptation condition, which allows unsupervised adaptation, does not rely on having any 
verification of the recognition by the user. The condition imposed in this case is that the ratio of the best 
two candidates' distances should exceed a threshold value, set to prevent adaptation in cases where the 
identification of the input is not sufficiently certain. 

The adaptation procedure consists of a weighted averaging with DTW alignment (ref 7) applied to the 
recognised input word and the template to be adapted. The weights on the input and the existing tem-
plate can be kept constant at successive adaptations, or they can be adjusted so that the ratio of the tem-
plate weight to the input weight increases linearly with the number of utterances that have gone into 
forming the template. The former system of weighting is called the tracking formulation, because the 
contribution of each input utterance to the adapted template decays exponentially with subsequent adap-
tations and so the form of each template depends mainly on the most recent inputs. The latter system is 
the optimisation formulation. Here weights are assigned according to amounts of data, and so an 
adapted template contains equally weighted contributions from all input utterances used to adapt it. 

To improve the stability of the system when the adaptation is unsupervised, a "skewed" adaptation 
option is provided, for use when there are several templates for each word of the vocabulary (ref 8). The 
template adapted to any input utterance is not the template with the smallest distance, but the next 
template in the list for the same word of the vocabulary. 
Besides "CORRECTION", two other special words can be included in the vocabulary: "STOP", which, 
when recognised, causes the termination of the recognition session; and "RETRAIN", which allows 



retraining (i.e. formation of a new template to replace the existing one) for any word or words of the 
vocabulary (which the user selects by keyboard input). 

EXPERIMENTS AND RESULTS 

Isolated word recognition experiments with template adaptation have been performed using two data 
bases, with speaker-specific and speaker-independent initial templates respectively. 

The data for the speaker-specific template adaptation experiments consisted of words uttered by one 
male speaker, collected during interactive adaptive recognition, sessions with the system described above. 
The vocabulary, of 50 words, comprised numbers, days of the week and month names. The training and 
recognition sessions were conducted in a computer terminal room with a moderate but variable level of 
background noise, using a headset microphone. 

Two initial template sets were used, each containing one template for each word in the vocabulary. In 
template set Ti, each template was formed from a single utterance; in set T2, each template was derived 
by averaging from two utterances of the word. The test data consisted of 10 repetitions of the vocabu-
lary. The numbers of recognition errors occurring on these 10 repetitions are shown in table 1, for cases 
with and without adaptation. The tracking form of weights was used. (Similar results were obtained 
with the optimisation form, except that the result using T2 with unsupervised adaptation was improved 
to 92.8%). In the supervised adaptation case, negative adaptation was employed in cases of misrecogni-
tion, but there was no adaptation of the second-best template. 

Table 1 Results with adaptation of speaker-specific templates 

Adaptation 
1st 2nd 

Errors on repetitions of 50 words 
3rd 	4th 	5th 	6th 	7th 	8th 9th 10th 

Overall 
accuracy 

(Ti) 
None 7 11 8 4 6 2 5 8 5 5 87.8% 
Supervised 6 9 7 3 3 2 5 5 3 2 90.0% 
Unsupervised 7 10 7 6 6 5 6 9 4 3 87.4% 

(T2) 
None 5 5 6 4 8 5 4 7 2 4 90.0% 
Supervised 	. 6 4 4 2 1 3 2 4 1 2 94.2% 
Unsupervised 6 4 6 2 7 4 4 6 2 2 91.4% 

For the speaker-independent recognition experiments, the training data consisted of one repetition of the 
10 digits by each of 50 training speakers (37 male and 13 female). Results are given here for two sets of 
templates, the first (Dl) containing six templates for each digit, derived by a criterion based exchange 
clustering procedure (ref 9), and the second (D2) containing two templates per digit, obtained by separate 
averaging of the utterances of the male and female training speakers. The test data were three repeti- 
tions of the digits spoken by each of 49 speakers (37 male and 12 female) who were not in the training 
set. The words spoken by each test speaker were recognised, with and without adaptation, using each of 
the two sets of initial templates. Various forms of adaptation, with the optimisation form of weighting, 
were tested. A word length normalisation (to 30 vectors per word) by linear time segmentation was 
applied to all the utterances prior to the clustering and recognition processes. 

The results, averaged over the 49 test speakers, are shown in table 2. Average recognition accuracies 
are given for the first, second and third repetitions of the digits by each speaker, and for the whole set of 
three repetitions, using each set of initial templates. 

Line (1) of table 2 shows the results with no adaptation of the templates. The remaining  lines show 
results with adaptation. The number given after "w" in the left column of the table is the ratio of the 
weights assigned to the initial template and to each input utterance used in template adaptation. The 
smaller this ratio is, the faster the adaptation. When it is 0, each adapted template is simply the aver-
age of the input utterances used to adapt it. 

•Lines (2) and (3) show results with supervised adaptation, including negative adaptation (with a small 
negative weight on the input utterance) for misrecognitions, but not including any adaptation of second-
best recognition candidates. Lines (4) and (5) give the corresponding results with second-best candidate 
adaptation allowed. The improvements over line (1) for the third repetitions show the effect of the adap-
tation to the preceding two repetitions. 

Lines (6) to (8) show results with unsupervised adaptation. The results in line (6) are with adaptation of 
the best-scoring template; those in lines (7) and (8) are with skewed adaptation. With one exception, 
these results with unsupervised adaptation show decreases in recognition accuracy. 



Table 2 Results with speaker-independent initial templates 

Adaptation 
1st 

Template set Dl 
Input repetitions 
2nd 3rd all 1st 

Template set D2 
Input repetitions 
2nd 3rd all 

None 
 92.4% 94.6% 92.0% 92.99% 91.4% 92.7% 90.6% 91.56% 

Supervised 
wi 90.2% 93.9% 94.7% 92.92% 87.8% 91.0% 93.1% 90.61% 

wO 90.4% 94.3% 95.3% 93.33% 89.4% 91.4% 94.3% 92.52% 

wi + 89.0% 96.3% 97.8% 94.35% 86.5% 95.7% 97.4% 93.13% 

wO + 89.8% 96.1% 97.6% 94.49% 87.8% 95.7% 97.4% 93.54% 

Unsupervised 
w4 91.4% 92.4% 91.4% 91.77% 91.0% 90.0% 88.4% 89.80% 
w4 skew 92.0% 93.1% 92.0% 92.38% 90.8% 92.0% 89.0% 90.61% 
w2 skew 92.0% 91.617c 90.8% 91.77% 91.0% 90.0% 88.4% 89.80% 

The recognition of each speaker's first repetition of the digits is consistently poorer with adaptation than 
without. This occurs because, during recognition of the first repetition of the vocabulary, the template 
set is a mixture of unadapted and adapted templates; an adapted template for an incorrect candidate 
recognition may be closer to the input word than the unadapted correct-candidate template, because 
adapted templates correspond better to the speaker's voice. 

DISCUSSION AND CONCLUSIONS 

It is evident from the results obtained that supervised adaptation of templates during recognition ses-
sions can significantly improve isolated word recognition accuracy, whether the initial templates are 
speaker-specific or speaker-independent Moreover, the improvement is attained more rapidly, at least 
with speaker-independent initial templates, if adaptation can be applied not only to the best-matching 
template but also, where the best candidate is incorrect, to the, second-best. 

The results with unsupervised adaptation are less consistent. It yielded a net improvement in results 
with speaker-sj,eciflc templates, but a deterioration with speaker-independent templates • though in the 
case of skewed adaptation for multiple templates (Dl) the results are not conclusive, and experiments 
with more extended input sequences will be required to determine whether this adaptation is beneficial. 

In the system described here, template adaptation improves not only the accuracy but also the speed of 
recognition, because, when the templates are well tuned to the speaker, fewer comparisons are required 
at the later stages of the decision procedure. However, the adaptation itself takes some computing time - 
often more than the actual recognition. This computation could be reduced by using a linear averaging 
operation instead of the DTW method. 

The design of the interaction between the recognition system and the user is important By including a 
convenient means for the user to correct wrong recognitions, and delaying the adaptation to each input 
until an opportunity for such correction has been given, supervised adaptation can be implemented 
without the need for an explicit yes/no response by the user to each recognition. The facility for retrain-
ing templates as required is a desirable feature, particularly if there is any risk of instability arising 
from adaptation to inputs which are misrecognised or affected by noise. 
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REFERENCE TEMPLATE ADAPTATION IN 
SPEAKER-INDEPENDENT ISOLATED WORD 
SPEECH RECOGNITION 

Indexing terms: Signal processing. Speech processing, Speech 
recognition 

A technique which permits the adaptation of reference pal-
term (templates) in isolated word speech recognition systems 
is described. Experimental results for supervised and 
unsupervised adaptation with speaker-independent initial 
templates are presented. 

Introduction: Many automatic speech recognition systems rely 
on a whole-word template-matching technique, using a 
dynamic programming algorithm' 'referred to as 'dynamic 
time warping' (DTW). In a system using this technique, the 
recognition accuracy depends critically on the relationship 
between the reference templates and the speech of a specific 
user. 

There are two common approaches to deriving the refer-
ence templates for use in such a system. The speaker-
dependent approach constructs reference templates by 
requiring the prospective user to provide at least one utter-
ance of each word in the vocabulary, before starting to use the 
system. The alternative approach constructs a speaker-
independent set of reference templates from utterances by a 
representative group of training speakers.' Here several tem-
plates per word are required, to allow for the variations in 
pronunciation among potential users. 

A technique is presented here for use in template-based 
word recognition systems, which permits ongoing adaptation 
of speaker-independent reference templates during a recogni-
tion session, to take account of the information in the 
recognised utterances. Adaptation can be supervised 
(conditional on the user's verification of each recognition) or 
can be unsupervised. Several different adaptation options are 
defined and compared here. The performance of the template 
adaptation technique is discussed when it is incorporated in a 
multiple-stage decision processor s  for speaker-independent 
isolated word recognition. 

System description: The structure of the recognition system 
has been described in detail elsewhere.° It incorporates three 
stages of word pattern comparison, with progressively more 
complex representations of the words (derived by a segmen-
tation technique for time compression) at successive stages. 
This allows some templates to be eliminated with a small 
amount of computation: a fuller comparison is performed 
only for the best-matching templates. The recognition decision 
may be reached at any of the three stages. 

When using the supervised mode for adaptation of reference 
templates, the system determines (by prompting the user) 
whether the recognition of the word is correct. If the recogni-
tion is correct, a weighted averaging procedure (with DTW 
alignment) is applied to adapt the correct reference template 
towards the recognised word. Otherwise, an incorrect refer-
ence template can be adapted away from the input word, to 
make recurrence of the error less likely. 

In the unsupervised mode, the condition for adaptation is 
that the ratio of the DTW distances obtained for the best two 
candidate words (at the stage where the recognition decision is 
reached) should be greater than a specified threshold. If this 
condition is satisfied, the recognition is assumed to be reliable, 
and the weighted averaging is applied; otherwise, no adapta-
tion takes place. 

The adaptation here incorporates the 'optimisation' form of 
weighting:" the weights on the existing reference template and 
on the input word in the weighted averaging procedure are 
adjusted at successive adaptations so that the relative weight 
on the template increases linearly with the number of input 
utterances that have been used to adapt it. After any number 
of adaptations, each reference template is a weighted average 
of the initial template and the input utterances used to adapt 
it, in which all these inputs have equal weight. 

Experimental results: Results are presented in Figs. I and 2 for 
recognition of spoken digits using speaker-independent initial 
templates with supervised and unsupervised adaptation, 
respectively. The results obtained on the same data without 
template adaptation are also shown, for comparison. 

Speaker-independent initial templates (six templates for 
each digit from 'zero' to 'nine') were derived by clustering and 
averaging from 50 utterances of each digit, one by each of 50 
training speakers. The test data consisted of three repetitions 
of each digit by each member of a (different) group of 49 test 
speakers. Because the behaviour of the system with adaptation 
depends on the order of the input words, the results given are 
averaged over four different random orderings of the 30 digits 
from each test speaker. 

Fig. I shows the effects of supervised adaptation. Average 
recognition accuracies, with and without adaptation. are 
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Fig. I Digit recognition results with supervised adaptation 

Adaptation: 	 Compensation: 
a none 	 - - - - none 
o template weight = 1'0 	optimal 
O template weight =0 

plotted for the first, second and third 10-word subsequences of 
each sequence of 30 digits. Results are shown for two different 
weighting options. In the first weighting option (identified as 
'template weight = 1'0'), when a template is adapted for the 
first time, the initial template and the input utterance are 
given equal weights. At the nth adaptation the weights on the 
template and on the input are adjusted to be in the ratio 
n :1 -0,  so that the adapted template is the average of the 
initial template and all the inputs used to adapt it In the 
second weighting option ('template weight = 01 the initial 
template is given a weight of 0, so that the weighted averaging 
in the first adaptation of a template reduces to a simple 
replacement of the original speaker-independent template by 
the recognised input utterance. Here, at the nth adaptation, 
the weights on the template and on the input are adjusted to 
be in the ratio (n - 1): 1'O. In each case, negative adaptation 
was applied in cases of misrecognition. 

It has been shown previously' that recognition errors occur 
with template adaptation because, when-some but not all of 
the templates have been adapted, the adapted templates corre-
spond more closely to the speaker's voice characteristics than 
the unadapted ones, and so an adapted template for an incor-
rect candidate recognition can be closer to the input than an 
unadapted correct-candidate template. To compensate for this 
effect, an adjustment of the DTW distances has been intro-
duced here, whereby each distance is multiplied by a quantity 
which increases with the number of times the template has 
been adapted. The results plotted with broken lines in Fig. 1 
are without this compensation, while those plotted with solid 
lines are results obtained using heuristically optimised com-
pensation factors. Without compensation, no significant 
improvement in recognition accuracy was obtained over the 
results without adaptation. With compensation, however, 
improvements of 2'9% and 2'7% over the performance 
without adaptation can be seen for the last 10 words of each 
input sequence, revealing the beneficial effect of the previous 
adaptation to the first 20 words. 
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Fig. 2 shows similar results with unsupervised adaptation 
Here, at the nth adaptation the template and input weights 
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Fig. 2 Digit recognition results with unsupervised adaptation 

Adaptation: 	 Compensation: 
x none 	 - - - - none 
o template weight = 4-0 	- optimal 
O template weight = 40, skewed 

are adjusted to be in the ratio (n + 3-0): 1-0, to help ensure 
stability of the system. Again, results without compensation 
and with optimised compensation are given. Without com-
pensation, instabilities occurred, as some templates were 
repeatedly adapted towards wrongly recognised input utter-
ances. A distinction is made in Fig. 2 between straightforward 
adaptation of the best-matching template and a 'skewed' form 
of adaptation. In the skewed adaptation, designed to improve 
the stability of the unsupervised system, the template adapted 
is not that which yields the smallest distance, but the next 
template in the list for the same word of the vocabulary.' It 
can be seen that, without compensation, the instability effect 
was lessened by the use of skewed adaptation, but, when 
appropriate compensation factors were applied, the direct 
form of adaptation yielded marginally greater average 
improvements than the skewed form. 

Conclusions: It has been demonstrated that speaker- 
independent template-based word recognition performance 

can be progressively improved by supervised adaptation. Less 
significant improvements have been observed with 
unsupervised adaptation. The importance of applying com-
pensation factors, to prevent errors arising from the uneven 
progress of the adaptation across the different words of the 
vocabulary, has been demonstrated. In these experiments no 
benefit was observed to accrue from using a more sophisti-
cated adaptation strategy ('skewed' adaptation) to improve 
the system's stability in the unsupervised case. 

Supervised adaptation need not require explicit verification 
of each recognition by the user of the recogniser: the 'recogni-
tion correct' signal can consist of the absence of an attempt by 
the user to correct the recognition before proceeding to the 
next word of input. Thus the benefits of supervised adaptation 
can be obtained without making much extra demand on the 
user, if the interface to the recognition system includes a 
means of correcting tnisrecognitions. 
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