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Abstract
State-of-the-art parsers suffer from incomplete lexicons, as evidenced by the fact

that they all contain built-in methods for dealing with out-of-lexicon items at parse

time. Since new labelled data is expensive to produce and no amount of it will conquer

the long tail, we attempt to address this problem by leveraging the enormous amount of

raw text available for free, and expanding the lexicon offline, with a semi-supervised

word learner. We accomplish this with a method similar to self-training, where a fully

trained parser is used to generate new parses with which the next generation of parser

is trained.

This thesis introduces Chart Inference (CI), a two-phase word-learning method

with Combinatory Categorial Grammar (CCG), operating on the level of the partial

parse as produced by a trained parser. CI uses the parsing model and lexicon to identify

the CCG category type for one unknown word in a context of known words by inferring

the type of the sentence using a model of end punctuation, then traversing the chart

from the top down, filling in each empty cell as a function of its mother and its sister.

We first specify the CI algorithm, and then compare it to two baseline word-

learning systems over a battery of learning tasks. CI is shown to outperform the

baselines in every task, and to function in a number of applications, including gram-

mar acquisition and domain adaptation. This method performs consistently better than

self-training, and improves upon the standard POS-backoff strategy employed by the

baseline StatCCG parser by adding new entries to the lexicon.

The first learning task establishes lexical convergence over a toy corpus, showing

that CI’s ability to accurately model a target lexicon is more robust to initial conditions

than either of the baseline methods. We then introduce a novel natural language corpus

based on children’s educational materials, which is fully annotated with CCG deriva-

tions. We use this corpus as a testbed to establish that CI is capable in principle of

recovering the whole range of category types necessary for a wide-coverage lexicon.

The complexity of the learning task is then increased, using the CCGbank corpus,

a version of the Penn Treebank, and showing that CI improves as its initial seed corpus

is increased. The next experiment uses CCGbank as the seed and attempts to recover

missing question-type categories in the TREC question answering corpus. The final

task extends the coverage of the CCGbank-trained parser by running CI over the raw

text of the Gigaword corpus. Where appropriate, a fine-grained error analysis is also

undertaken to supplement the quantitative evaluation of the parser performance with

deeper reasoning as to the linguistic points of the lexicon and parsing model.
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Chapter 1

Introduction

Imagine a language that is completely unfamiliar; the only means of study-
ing it are an ordinary grammar book and a very large corpus of text. No
dictionary is available. How can easily recognized, surface grammatical
facts be used to extract from a corpus as much syntactic information as
possible about individual words?
Michael Brent [1993]

Natural language is varied and changing. It is full of errors, conventions, and frag-

ments. Brent’s formulation of the word-learning problem above is both abstracted

and idealised. He envisions a problem space where we have a small amount of very

specialised and error-free training data in the form of a lexicon and a large set of un-

labelled sentences. Where once linguistics was comparatively rich in grammar books,

its current wealth of information is in treebanks, and it is currently easier to acquire

an inconsistently labelled corpus of sentences than to produce an exhaustive error-free

grammar. We still view raw text as a free resource, but the scale on which is it available

has exploded.

In the age of Google, Brent’s challenge can be meaningfully reinterpreted as fol-

lows: Given a parser trained on a small amount of labelled data, and a very, very

large corpus of text, how can the power of the parser be leveraged to extract as much

information as possible about the lexicon? In seeking to address this task of lexi-

con extension, this thesis constructs and tests a word-learning system that leverages

the known lexicon and statistical model to assign categories to out-of-lexicon (OOL)

words in context.

1
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1.1 Motivation from Linguistics

From a purely lexical perspective, many words can be categorised by contextual mutual

intersubstitutability, meaning that if two words occur in identical contexts, they must

share a syntactic category. This is certainly true for a large portion of the lexicon, since

certain contexts uniquely license certain categories:

(1) I like to run.

(2) I like to cook.

(3) *I like to potato.

Here, the context I like to X. licenses the intransitive verbal category (represented

as S[b]\NP in Combinatory Categorial Grammar (CCG)). No word that is not an in-

transitive verb ever occurs in this context, and conversely, any word in this context can

be shown to have an intransitive sense among its uses. potato is unlikely to occur as

above, but if it ever should, the lexicographer would be forced to classify it, if not a

typo, as a new use of the word. These contextual patterns can indicate the category for

a neologism, or previously unseen word, as in (4), or equally a new sense of a known

word that already has at least one category, as in (5)1.

(4) I like to mosh.

(5) I like to text.

However, we quickly begin to see see rarer constructions that defy this theory of

contextual patterns:

(6) We have recused ourselves.

(7) We have families ourselves.

No speaker of English would be inclined to think of families (a noun) and recused

(a verb) to have the same function, but here they are in the same sentential context:

We have X ourselves.. The deception is due to the ambiguity of surface forms. In

particular, forms that are common are most likely to occur with more than one struc-

tural category, as with have here. Extending the contexts to include standard Penn

Treebank-style part-of-speech information may provide a richer structure, but in this

case it is not helpful in distinguishing between the senses:

1The Penn Treebank (1992) contains no examples of mosh and only nominal senses of text.
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(8) We PRP have VBP recused ? ourselves PRP.

(9) We PRP have VBP families ? ourselves PRP.

Therefore we must look deeper into the syntactic structure of the contexts, dealing

with them not as surface regular expressions, but rich parse trees.

(10) We have recused ourselves .

NP (S[dcl]\NP)/(S[pt]\NP) (S[pt]\NP)/NP NP .
>

S[pt]\NP
>

S[dcl]\NP
<

S[dcl]

(11) We have families ourselves .

NP (S[dcl]\NP)/NP NP (S\NP)\(S\NP) .
>

S[dcl]\NP
<

S[dcl]\NP
<

S[dcl]

These CCG derivations show that the different uses of the third word in each sen-

tence are shown in the different category types given to the word ((S[pt]\NP)/NP or

transitive participle for recused and NP or bare noun phrase for families) and also to the

order of combination (recused combines first with ourselves and families with have.)

It is apparent that the differences are due to the lexical ambiguity in the words to either

side, and consequently to the internal structure of the parse tree.

Because both have and ourselves have (at least) two categorial senses, the structure

of the sentence is dictated by the category of the target word. If that word is unknown,

there is no way to distinguish between the two structures, and we must rely on prior

probabilities to choose the most likely parse. If, however, the goal is to deduce the

category of have, knowing whether the category of the third word is (S[pt]\NP) or NP

will make it not only possible, but unambiguous.

1.2 Motivation from Engineering

A lexicon is composed of a set of mappings from words to labels. Various smoothing

and backoff strategies are routinely used to make up for the fact that no lexicon covers

the entirety of any natural language. These missing lexical items are problematic for all
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computational parsing systems, especially if they cannot rely on a robust POS tagger

to support backoff, but they are a major cause of error in strongly lexicalised parsers

such as those based on CCG [Clark and Curran 2004; Hockenmaier 2003]. The prob-

lem is especially acute for languages for which there are fewer available resources for

building NLP systems, but even in the case of the Penn Treebank for English, widely

considered a large-scale corpus, we are aware of many CCG category types which it

misses entirely [Clark et al. 2004]. This includes both words that do not occur even a

single time in the corpus, such as mosh and words which do occur but for which some

additional category is licensed, such as text.

The current method used by StatCCG [Hockenmaier 2003] for dealing with unseen

words is part-of-speech backoff, which identifies words that are not in the lexicon, or

have not been seen a sufficient number of times to have a reliable model, and replaces

them with their POS tags. It affords an F-score of 93% over labelled dependencies

in the optimal configuration, despite the fact that 18% of the correct lexical items

(word/category pairs) are missing from the lexicon. It is difficult to predict how these

affect dependency errors in parses, but when we examine category match accuracy of

the StatCCG parser over §00 of CCGbank, we can attribute 80% of the error to the

model and the beam, since those pairs are available to the parser. For the remaining

20%, the correct word/category pair is absent from the lexicon. Adding all the needed

word/category pairs to the lexicon could result in up to 20% reduction in error, affecting

nearly a third of the sentences in the test set. This is a very important area for systems

that use parser output, as they necessitate wide coverage and accurate full-sentence

parses. Further to reducing parsing error, a robust method for learning words from

unlabelled data would result in the recovery of interesting and important category types

that are missing from our standard lexical resources.

In this thesis we will address the problem of lexicon acquisition, which, by merit

of operating within the lexicalised paradigm of CCG, is equivalent to grammar acqui-

sition. The two major goals are to learn a statistical lexicon (a mapping between words

and categories, weighted by expected frequency) and a language model (a dynamic dis-

tribution over head-dependencies.) Because of Zipf’s Law, we anticipate that simply

annotating more data will not be a practical method for widening parser coverage in

the long term. Instead, we try to supplement a treebank lexicon by adding experience

with unlabelled data.
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1.3 Theory

How do humans learn a new word? We hear or read it in a context, from which we

can deduce at least its syntactic role and possible subcategorisation frame, if not its

semantics. We can look it up in a dictionary, or ask another speaker what it means.

Often we will relate it to another word that we already know, linking it to a prototype

that already exists in our lexicon. When an artificial system learns a new word, it has

a different set of options. It cannot look it up in a dictionary, presumably because

by definition any word that is unknown to the system is outside of its dictionary. It

has a hard time asking someone else, but there are applications for that approach in

co-training or active learning. In this thesis we will focus on the task of learning an

unknown word’s syntactic category based on the context in which it is seen.

Pullum and Scholz [2007] posit that there are too many exceptions to write an

exhaustive learner based on intersubstitutability on the text level. One would need

to go deeper to make syntactic generalisations, and the set of these is dependent on

the grammar formalism of choice. In addition, the set of intersubstitutable categories

is so fine-grained as to be prohibitive (as illustrated by the inexhaustive coverage of

the Levin classes [Levin 1993]), so the relevant level of inquiry is not a word’s single

syntactic type, but a statistical distribution over a set of lexical categories.

Brighton et al. [2005]’s study of language evolution states that the most often-

used words in a language have the freedom to be morphologically and syntactically

irregular, because they are so often reinforced, but the rarer words have to conform

to a system so that the whole lexicon can fit within human memory constraints. This

suggests that, in the real task of learning the long tail, the job of finding the categories

of previously unseen words would be simpler than learning all the words of a language

from scratch, since we can assume that a word that has not been seen in a large amount

of training data will tend to be rare enough that it has to be conform to a small set of

regular patterns. Brighton et al. find that this is the case for morphological systems, but

Steedman [2000] points out that there are rare words out there that, while regular, are

used in ways that are not represented in the labelled data, such as bet, as in I bet you five

pounds you can’t eat that whole pie, which has the category (((S\NP)/NP)/NP)/S,

a verb subcategorising for three nominal arguments and one sentential. So on the one

hand, the theory tells us that rare words should be easy to categorise, and in practice

we find that they are not. There are even instances of whole category types missing

from CCGbank, which are addressed in chapter 8 of this thesis.
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There are several ways of framing the problem of learning words, all dependent on

the framework and formalism in which the learner is working. A system could have an

entry for a word/category pair, but not have accurate information about its distribution

or use. It could have several valid categories for a word form, but still be missing

one or more categories. Homonymy adds another level of complexity. Morphology

and alternation classes can go a long way toward generalising an existing lexicon, and

guiding how new forms are added, but when a word type is genuinely homonymous

with another word type of a different category, the problem is serious. The system

could know that font has the category N, but not understand that there are two types of

fonts that occur in different contexts 2. For a purely syntactic system, such as CCG,

this distinction is moot: the category for both is N.

This thesis focuses on word-learning from context. It seeks to place previously

unseen words into an existing lexicon with the correct category or categories, and to

estimate the probability of the word/category pair to an extent that it is useful in subse-

quent parsing tasks. POS backoff and self-training based on it are used as comparative

baselines.

1.4 Proposed Thesis

1.4.1 Hypothesis

This thesis hypothesises that a semi-supervised approach to lexicon acquisition can

make use of the best parts of existing lexical resources and an abundance of unlabelled

data, in order to produce an improved parser that is superior to the original without the

expenditure of additional labelled resources. We propose that Chart Inference (CI) is

an efficient and reliable strategy for deducing a ranked set of possible categories for an

unknown word using the partial chart formed from the known words that surround it.

CCG [Steedman 2000] is particularly suited to this problem, because category types

have a direct relationship to the surrounding constituents. CI is designed to take ad-

vantage of the full power of a generative CCGbank-trained parser, with access to the

full inventory of CCG combinators as well as non-combinatory rules from the trained

model. We propose that CI is capable of learning category types that are completely

missing from the lexicon, and of generating new lexical items that can be integrated

into an existing parser to improve its coverage. We compare it to existing learning

2Typeface, fountain
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systems designed for the same task in terms of both precision and efficiency.

CI is based on parsing a partial chart, where all but one of the categories for the

terminals are known. That empty terminal cell is the target, for which CI produces

an ordered list of possible categories, with probabilities estimated from a generative

model. CI selects a distribution of root categories for each sentence based on its end

punctuation, then performs a top-down modified chart parsing process which, given

the parent and one sister, fills in the missing sister. It has access to the full model and

rules of the original parser, plus the general CCG combinators in the form of inverted

rules, as described in chapter 4.

The ideal lexicon should strike a balance between coverage and accuracy. Too

specific, and the scores on the development set will outclass the scores on unseen

data. Too general, and the parser will be prone to overgeneration, and suffer from an

unnecessarily large search space. There are not established metrics for assessing the

level of generality of a lexicon, and there is no benchmark with which to compare

them. But we can approximate generality by measuring the lexical compression that

the training process achieves as the number of word tokens or types, divided by the

size of the resultant lexicon.

In StatCCG, POS-backoff is treated as a lexical problem. POS entries sit alongside

lexical entries and share probability mass in the lexicon. This simplifies the backoff

problem, but adds another layer of complexity to the generalisation problem. The

decision to add a POS entry removes some of the probability mass from lexical entries

of the same category, and creates a delicate balance at training time that supplemental

learning processes must be careful not to disturb.

1.4.2 Challenges

There are two places to encode lexical behaviour in a generative CCG parser: in the

lexicon and in the model. This problem can be seen clearly in an examination of the

treatment of prepositional types. Traditional CCG would determine the only lexical ne-

cessity for a preposition to be PP/NP (on it), but prepositional phrases often occur as

modifiers of nouns [(NP\NP)/NP] (kids on drugs), predicates [((S\NP)\(S\NP))/NP)]

(walked on water) or sentences [(S/S)/NP (on tuesday we swam) or (S\S)/NP] (we

swam on tuesday). Including all five of these category types for every preposition in

the lexicon is not necessarily the most efficient use of resources. Putting them in the

model as an unlexicalised rule [PP/NP→ (NP\NP)/NP] allows for more generality
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at the expense of widening the search space. However, it allows for a more compact

lexicon that is capable of wider coverage. It is possible that because CCGbank has been

semi-automatically translated from the Penn Treebank, rather than analysed afresh in

a CCG framework, the parser does not represent the optimal balance of lexical items

and rules.

The two best-performing publicly available CCG parsers, StatCCG Hockenmaier

[2003] and the C&C Clark and Curran [2007] parser, are successful in part because

they are trained on a relatively large number of reliably annotated sentences. In some

cases the annotations are inconsistent or erroneous, but the parser is robust to these

sources of noise. Self-training, which uses the parser itself to label new training data,

breaks down because the sentences added are of inferior quality compared to those

initial gold standard training sentences [Steedman et al. 2003b]. When the volume

of less-reliably-generated training sentences begins to overwhelm the original gold-

standard set, the quality of the lexicon decreases. In addition, even adding too many

good entries can upset the balance of the lexical model as, for example, large numbers

of new nouns can take some of the probability mass away from truly ambiguous lexical

entries, so that their rarer senses have a better chance of being ranked above their nom-

inal sense by the model. As such, the initial errors in the parser can get compounded by

bad parses that use them. Strategies for dealing with this include marking the training

sentences with a confidence value, where gold standard sentences are high and added

parses can either have a low value or get graded according to learner confidence [De-

oskar 2008; Deoskar et al. 2011].

1.5 Structure of Thesis

This thesis is organised in two halves: the first three chapters outline the background

and theory behind the learning of words, and the remaining five comprise experimental

results and analysis.

Chapter 2 sets out the background information necessary for understanding the

rest of this thesis, including a description of the grammar formalism and linguistic

resources used, as well as a review of the current literature relevant to the thesis as

a whole. Chapters 3 and 4 formally set out the word learning systems evaluated in

the subsequent chapters, the former representing the baseline systems and their im-

plementations, and the latter comprising the novel methodological contribution of this

thesis.
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The remaining chapters test the word learning mechanisms in practice. They are

ordered in increasing complexity of the corpora used and the learning tasks under-

taken. Chapter 5 comprises the most basic tests of convergence and completeness, and

deals with a toy corpus designed to test the relative strengths and weaknesses of the

learning systems. Chapter 6 introduces a novel natural-language corpus which is also a

contribution of this thesis. It tests the coverage of the learning systems in the presence

of complete information, and also on a held-out set. Chapters 7 and 8 extend the scope

to more conventional parsing tasks, using CCGbank first as a target set and then as a

training set, seeking OOL items. The most comprehensive wide-coverage evaluation

is undertaken in Chapter 9, where CCGbank is used as a training set and learning takes

place over the English Gigaword corpus. A conclusion and discussion of future work

follows.

A portion of this work was published as Thomforde and Steedman [2011].





Chapter 2

Background

2.1 Introduction

This chapter sets out the background necessary for understanding the main points of

the thesis, including the basics of CCG and a discussion of related work. We also

describe the software and data resources used in the remainder of the thesis. The

chapter concludes with an estimate of the capacity of a word learner to improve upon

the state-of-the-art results of the StatCCG parser.

2.2 Literature Review

Word learning is an important pursuit that has strands in a broad range of language

tasks. The two most closely related fields to the work in this thesis are the acquisi-

tion of a grammar or lexicon from scratch, and the improvement of existing lexical

resources. Either can be approached with any level of supervision, and for any lan-

guage. Deep Lexical Acquisition is taken to be the discovery of an extensive usage

grammar, encoding syntactic, morphological and semantic information about a set of

words, as well as the set rules that govern it. Shallow acquisition ranges from clus-

tering words according to their similarity, to acquiring subcategorisation frames for

verbs. The shape of the approach is closely linked to the mechanics of the grammar

formalism and the kind of information to be acquired. HPSG and CCG, for example,

allow for the encoding of multiple levels of information in the lexicon, in a way that

phrase structure grammars do not.

This section discusses a representative selection of work relevant to word learn-

ing. It varies along three major axes: the extent of supervision required, the depth

11
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of linguistic information acquired, and the complexity of the initial lexical resources

used. Within these environments, the learning targets are also varied: from syntactic

category labels to subcategorisation frames to CCG category types to HPSG SYNSEM

frames. We examine the related work in terms of the sources of linguistic information

that inform their features, which ranges from n-grams and suffixes to packed charts,

becoming more complex over the years as computational resources improve and gram-

mar formalisms multiply.

2.2.1 Surface Forms

This research programme is inspired by the work of Brent [1993]. He worked with

a system called Lerner that identified new verbs of six specified subcategorisation

frames. Lerner first identified verbs in surface strings by their diathesis alternations,

then recorded all the arguments in the vicinity of the verb, according to a hand-compiled

list of stopwords that were deemed good indicators of lexical categories. Finally,

hypothesis-testing was used to rule out all but the most reliable verb-frame pairings.

The really novel part of this experiment was in seeding an initial lexicon with a small

number of closed-class words that enabled Lerner to relatively unambiguously identify

the relationship between words from their surface forms.

It was Brent who framed the problem of automatic lexical acquisition in terms of

a human trying to learn a new language from just a grammar book and a large set of

sentences of the language. Though this “ordinary grammar book” is purely theoretical

and probably contains much more than just a lexicon, in practice Learner was only

given a few stopwords and was kept within the bounds of English by a very selective

learning algorithm. Though Brent attempted only a small part of the language, he

showed that a large proportion of syntactic structure can be bootstrapped from a very

small amount of linguistic information.

Clark undertook two relevant studies using distributional clustering to induce a

lexicon. The first [Clark 2000] sought to learn categories by automatically clustering

distributions of context trigrams, using Markov models on the text of the BNC. Once

the contextual clusters are produced, this amounts to a tagging class for rare words,

since membership in a category is determined by similarity to a cluster. Ambiguity

is encoded as similarity to more than one cluster. The system must have the number

of clusters pre-specified, which is a weakness. Clark [2001] extended this work by

evaluating category membership based on mutual information of the words on either
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side, using the Minimum Description Length (MDL) principle to restrain the size of

the lexicon, rather than specifying the number of clusters.

Deane [2003] employed a variant of Latent Semantic Analysis on surface n-gram

contexts to measure the similarity between words. His approach tried to find words

that were semantically similar to known words, while not guaranteeing syntactic simi-

larity. Deane compared words by their contexts and contexts by the words they license,

showing that relatively rare constructions, such as his/her/their/your way home are

very specific about the verbs they allow in the gap, and that this information allows in-

ductive learning of natural language. His investigations were limited to a small number

of rare constructions, and typically focused on nouns, but are nonetheless encouraging

in their success in the semantic domain.

Regier and Gahl [2004] contributed to the lexicon learning problem in the form of a

mathematical proof-of-concept to provide counter-evidence for the poverty of stimulus

argument. Using Bayes’ rule and the “size principle,” only a small number of positive

examples were necessary for handling a set of sentences using the anaphoric one, be-

cause the learner must favour the hypothesis that is most likely to generate the positive

examples, and not the incorrect ones (it knows they are incorrect because they are un-

seen). They showed that negative evidence is unnecessary for learning lexical/syntactic

patterns, because the system can infer it from not having seen it.

2.2.2 Syntax

Following Brent, Manning [1993] sought to construct a subcategorisation dictionary

for all verb types from unlabelled data. He first found arguments of target verbs using

a finite-state parser over raw text, keeping count of the verbs and their subcategorisa-

tion frames in the process. He then filtered the results using hypothesis-testing along

the same lines as Brent as discussed in chapter 1, but with a higher threshold, as the

automatic parses were more errorful. As such, he succeeded in automating the process

of finding unambiguous cues for all types of verbs, no longer limiting the process to

those cues which can be manually constructed. He also condoned a high-precision,

low-recall approach, stating that “the desire to combine hand-coded and automatically

learned knowledge suggests that we should aim for a high-precision learner (even at

some cost in coverage)...” [Manning 1993].

Also employing a parser for word learning, Briscoe and Carroll [1997] designed

their system to acquire subcategorisation information for verbs, annotating contexts
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with shallow parse structures and then automatically classifying the patterns into a dic-

tionary of verb classes. This was followed by Korhonen [2002]’s refinement through

statistical filtering of semantic frames. Carroll and Fang [2004] attempted to expand

the coverage of the ERG lexicon by automatically acquiring verb subcategorisation

frames. They processed their email corpus with the RASP tools in order to provide

rich morphological and syntactic features from which to extract frames. Combining

the resources of a precision grammar with unsupervised learning over an unlabelled

corpus, they were able to improve lexical coverage from 85.9 to 94.4%. Preiss et al.

[2007] built on this approach by developing a rule-based system for learning subcate-

gorisation frames for open-class words. They specified a level of grammatical relations

over head dependencies and extracted frames from these rather than from parse trees,

which allowed for abstraction away from any particular grammar formalism. Buttery

and Korhonen [2007] have extended that system to a corpus of child-directed speech.

Zhang et al. [2010]’s task was to classify a very narrow set of non-compositional

verb-particle constructions into four categories using a precision grammar. More in-

teresting than their classifier was their choice of features, which were based on the

partial chart generated by their parser when the target word was replaced by a dummy.

They found that performance was correlated with the frequency of the target word in

the training corpus; although the features only encoded partial information, many data

points could make up a fuller picture of a word’s properties.

Although these systems focus on learning verbs, the problem of word learning is

much wider, and a comprehensive system must cover all lexical types. One approach

is the clustering of words into sets according to their distributional similarity. Lin

[1998], for example, used a dependency-based feature set to automatically learn a

WordNet-like thesaurus. He trained his system on automatically parsed text containing

dependency and part-of-speech annotation. He then constructed vectors for each word

type that contained the dependencies they were likely to co-occur with, and clustered

these according to similarity. Lin’s system was able to learn nouns and adjectives

fairly well, but struggled with verbs because their syntactic contexts were far more

varied with respect to argument structure.

In a similar task to Lin’s, Widdows [2003] attempted to automatically place new

words into an existing taxonomy by learning clusters of structural features from un-

labelled data. This also qualifies as a semi-supervised method, as the clusters were

partially known, having been seeded with parts of WordNet. Widdows created feature

sets of selected words in a predefined context window, reduced the dimensionality with
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Latent Semantic Analysis, and then clustered them according to the cosine similarity

of the reduced feature vectors. Using the classification method, he was able to place

common nouns, proper nouns, and verbs into the taxonomy.

Watkinson and Manandhar [1999a] produced the lexicon learning system most

closely relevant to this thesis. Their learner made use of a statistical parser to choose

the best candidate label for an unknown from the set of all known categories. Their

concern was with a compact lexicon, so they reexamined past sentences each time they

made a change to the lexicon, in order to produce a set of lexical items that worked

most efficiently together. They highlight the fact that working within the lexicalised

formalism of CCG equates learning the lexicon with learning the grammar. A version

of Watkinson’s system is used as a baseline in this thesis and will be discussed further

in chapter 3.

A related field of investigation is the automatic discovery of whole grammars,

which shares our goal of learning the rules and lexicon of a language, but attempts to

learn the whole grammar at once. Osborne and Briscoe [1997] implemented one such

system, which learned an unsupervised stochastic categorial grammar using a combi-

nation of EM and MDL over bracketed parts of speech. Klein and Manning [2005] also

worked in the unsupervised domain, using EM and distributional clustering to induce

a model of linguistic structure from WSJ-10.

2.2.3 Morphology

While the features used by these systems are indeed rich and informative, the range

of available linguistic information extends beyond the syntactic. Baldwin et al. [2005]

notes that deep lexical acquisition can be informed by morphology, syntax, ontology,

or any combination of these features, and the same holds true for shallower systems.

For example, Cucerzan and Yarowsky [2000] used raw text to learn new words on

a morphological level, predicting the categories of unseen words from the distribu-

tional similarity of their suffixes to those of known words. They also take a hybrid

approach with their data, using the small amount of annotated text for training the vec-

tors, then mining the unlabelled data for new words to compare to the classification

scheme learned in the first phase. Not only did the unlabelled text help by providing

evidence for the distributional patterns of unseen words, it also boosted the counts for

the known words, such that the whole process is motivated by bare text, and enabled

by a small seed set of word-category pairs.
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Their focus on minimal supervision is a contentious one. Ideally, we should be aim-

ing for maximum supervision, fully exploiting the combined power of all the rare but

reliable labelled data and human effort that are available, while enabling our systems to

take full advantage of the abundance of cheap unannotated data. Though Cucerzan and

Yarowsky [2000] is useful in showing that small amounts of supervision are sufficient,

it suggests that hybrid methods are indeed the future.

2.2.4 Semantics

Semantic information has also been exploited for lexical acquisition tasks. Grenager

and Manning [2006] set out to learn subcategorisation frames from unlabelled data

using EM to map a set of syntactically derivable arguments to their semantic roles.

Their training data consisted of syntactic parse trees with no semantic annotation. By

defining a small set of features that depend only on the syntactic and morphological

structure of the text, they were able to move up a level to learning the semantic roles

of the arguments for each verb, which equates to subcategorisation information. They

made prudent use of unlabelled data by defining a set of features, gathering all the fea-

ture/target data pairs, and applying EM to find the mappings that gave the best results.

This process was designed for verbs, but in theory it could be expanded to learn any

relation between a constituent and its semantic role, provided the right set of features

were at hand. It is worth noting that although the learning process itself is unsuper-

vised, Grenager and Manning did peek at the gold standard to apply the correct labels

to the learned clusters. This is only a very small intrusion into the supervision, but it

does betray the fact that designing a system that learns automatically from unlabelled

data will not necessarily come up with answers that fit neatly into human-designed

language formalisms.

Zettlemoyer and Collins [2005] also used semantic information, inducing a CCG

grammar from pairs of database queries and their lambda calculus representations.

Syntax was therefore learned as a byproduct of mapping surface forms to lexical en-

tries through their GENLEX learning algorithm. Though the training data was not an-

notated with parse trees, they were able to ensure precision by concentrating on finding

a small lexicon that would result in the correct logical forms for each surface string.

In addition to the labelled sentences, the input to their learning algorithm included an

initial lexicon seeded with a variety of entries, including place names, common con-

structions, and stopwords, which they deemed “easily specified by hand.” It is also
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worth noting that their GENLEX algorithm generated all the possible mappings from

surface to logical forms, and therefore produces many spurious lexical entries, which

were then eliminated in a later pruning stage.

HPSG lends itself to the combination of syntactic and semantic features. Fou-

vry [2003] took a very basic approach to deep lexical acquisition, assigning a generic

underspecified frame to all unknown words. Bits of lexical information were slotted

into these frames as and when the morphological or contextual cues supported them.

His work set a precedent echoed by many subsequent systems, including Cholakov

and van Noord [2010a], who again treated lexical entries as collections of paradigms.

They simulated unknownness in a Dutch HPSG Treebank by removing a set of words

from their training set, then attempting to recover the most common 95% of them from

a combination of morphology and context. Though their best performance was on

nouns, they were able to reduce their error rate by 4%, while keeping parsing times

level. They note that it was not uncommon for their system to learn correct bits of

information, but get penalised for them at evaluation time because they were miss-

ing from the gold-standard lexicon. Barg and Walther [1998]’s approach to lexicon

acquisition took a similar shape, in that they did not treat words as simply known or

unknown, but subject to change in an online learning context. Working with a canon-

ical fragment of HPSG for German, they acquired bits of SYNSEM information in

word paradigms using an update and unification mechanism that allowed features to

be missing, incomplete or in conflict, and resolved only when enough supporting con-

text was encountered. Their main problem was the automation of the decision to halt

learning for individual words; they note that “[i]t is a topic of future research when to

consider information certain and when to make revisable information restrictive.”

2.2.5 Further Afield

Much recent work in the acquisition of lexicons and grammars has used a combination

of the feature types discussed above, and incorporated sources of linguistic information

derived in other fields. Baldwin [2005] attempted to improve an existing lexicon using

deep lexical features based on a combination of morphology, syntax and ontology.

He found the syntax-based learning most effective for learning the open classes of

words, morphological features helpful only for nouns, and ontological information

from WordNet both difficult to execute and below the baseline for most word types.

This was followed up by a system that used conditional random fields over a range
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of lexical and contextual features to generate supertags for word tokens [Blunsom and

Baldwin 2006]. Zettlemoyer and Collins [2005] seeded their system with stopwords

and learned the grammar rules as a byproduct of mapping surface strings to logical

forms. Deoskar [2009] took a sophisticated approach to the induction of PCFG parsing

models, using unlabelled data and smoothing to learn accurate estimates of lexical

parameters, and moved on to semi-supervised learning to focus on the rich Zipfian

tail of unknown words [Deoskar and Rooth 2008; Deoskar et al. 2009; 2011]. Snyder

et al. [2009] and Snyder and Barzilay [2010] made use of the information in parallel

structures of bilingual data to improve their parsing models. Kwiatkowski et al. [2010;

2011] took advantage of the structural relationship between syntax and semantics to

drive grammar induction on both child-directed and standard query data.

Error mining represents another step up in learning complexity. It not only uses

a parser to enrich the features about syntactic behaviour, but leverages the feedback

from the parser as another feature dimension to indicate where more learning is re-

quired. van Noord [2004]’s work with error mining of an HPSG treebank can be

considered a form of grammar learning starting with a very large initial lexical endow-

ment. He achieved a 4% increase in coverage over the original grammar by analysing

the n-grams in the parser output in terms of parseablility. The n-grams that went most

commonly un-parsed were considered points of deficiency and presented in a ranked

table to a human expert for repair, either in the lexicon or the original treebank. This

approach suffers from the fact that it can only diagnose non-parse errors, and can’t

find the errors in the lexicon that cause incorrect parses to be produced, which are

more problematic to the end user. Cholakov and van Noord [2010b] built a system

for identifying words that participated in parsing errors and improving their lexical

entries. They generated specific training sets for each target word by composing an

internet search, and finding the frames that cover 80% of the results. The target word,

though known with respect to the initial lexicon, was temporarily treated as unknown

and re-acquired with the larger training set. They tested it with only 36 target uni-

grams, but had promising results. This is an indicative example of the value of data

volume in distinguishing between rare constructions and noise.

Rule-based lexical acquisition is an unpopular but relevant field. One such effort

was Cussens and Pulman [2000], which attempted to learn HPSG grammar rules using

linguistic constraints coded in Prolog. Given a complete rule system, they delete one

or more rules from the grammar and attempt to recover them, based on maximising

features from the partial parse chart. The solution is presented in terms of ranked set
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of hypotheses for examination by a human annotator. They remark that their system is

designed to acquire rules rather than lexical items, but that other systems may operate

on the lexical level by treating lexical entries as a type of grammar rule. As this distinc-

tion is easily blurred in CCG, we take advantage of their suggestion. A recent lexical

acquisition system, uniquely employing a small set of CG-based rules, was that of Yao

et al. [2009a;b]. Though their system was small, it derived the category of unknown

words using simple transformation operations on the surrounding categories, yielding

a fast system that was capable of learning more linguistic patterns than were licensed

by the original lexicon. This system has a strong bearing on ours, and we implement a

statistical extension of it as a baseline. Both the paper and the learner will be discussed

further in chapter 3.

2.2.6 Analysis

From this body of work we can abstract several recurring principles. First, context,

in its various forms, has a powerful contribution to make to word learning. Whether

one looks at bare words in a large context window, or well-defined features based on

position or dependency, there is information to be gained from contexts. The trick is

getting that information to translate to a useful classification of the target words. For

CCG, it entails mapping the location and type of surrounding constituents directly to

the form of the category type. The learning step is the most widely varied and the most

unexplored. The use in related work of vector-clustering and pair matching with EM,

LSA, and so on, represents a trend of applying well-proven machine learning methods

to hard-earned data, a sound plan in theory, but we contend that more can be done to

explore learning methods that are specific to language.

Additionally, we see a common thread in deciding what amount of supervised lin-

guistic guidance is appropriate. Several of the systems discussed above were provided

with small, highly accurate lists of stopwords: where Brent used closed-class words,

Zettlemoyer and Collins extended that to include proper nouns and question words.

Grenager and Manning peeked at the gold standard to apply labels to their learned

classes, and Cucerzan and Yarowsky used the output from the supervised phase to

constrain the form of the unsupervised. Both Widdows and Lin slotted their learned

words into a pre-existing taxonomy. They all show that parametric linguistic infor-

mation is enormously beneficial to the final output of the system, giving it form that

would otherwise be very difficult for a completely unsupervised system to learn. This
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suggests that we should be investing more effort into ensuring that our small amount

of hard-won linguistic information is highly reliable, then bootstrapping the rest of the

grammar from unlabelled data.

Since Brent, as computational power increases and lexical resources become both

deeper and wider, the sources of lexical information used to learn words and gram-

mars has increased in both complexity and creativity. What began with surface forms

quickly evolved into using morphological information, then a parser, then a range of

semantic, ontological, and contextual features, the complexity of which require large-

scale computational resources that we are only now able to access. The future of word

learning will take the best parts of these and use them in combination with the best

machine learning techniques of the day, in order to learn a grammar more quickly and

more precisely than any of these individual methods.

The word-learning system introduced by this thesis is rooted firmly in the syntac-

tic tradition, using a parser to enrich the information in unlabelled surface forms, and

also to build a partial chart to enable the use of structural contextual information. The

result is a semi-supervised word learning system for acquiring syntactic categories for

unknown words in several applications along a spectrum from lexicon induction and

bootstrapping to domain adaptation of a wide-coverage parser. Where Cucerzan and

Yarowsky [2000] extoll the virtues of minimal supervision, we embrace maximal su-

pervision, insofar as we use as much of the power of the labelled data as possible, while

incorporating anything that can be reliably learned from unlabelled data. In addition,

learning a specific class of words (like verbs) is a very different task to learning the

categories of all kinds of words. A successful lexicon learner should be able to handle

all possible categories in the language, and should be able to invent new categories

when its inventory is insufficient to describe rare behaviours.

2.3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) [Steedman 2000] is a fully lexicalised de-

scendent of Categorial Grammar (CG) [Bar-Hillel 1953] that is especially powerful in

expressing long-distance dependencies. It stands apart from other theories in that it

pairs lexical constituents with category names that express their structural role within

the derivation. CCG is the formalism of choice for a number of parsing efforts. The

most widely used is the C&C parser of Clark and Curran [2003; 2006; 2007], which

employs a log-linear model as well as a supertagger [Bangalore and Joshi 1999] to
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report state-of-the-art results with field-leading efficiency.

Hockenmaier [2003]’s StatCCG parser is not as fast, but has the benefit of be-

ing largely modular, as well as generative. Both are trained on CCGbank [Hock-

enmaier and Steedman 2007], a semi-automatically translated CCG version of the

Penn Treebank. OpenCCG [White and Baldridge 2003] and the statistical exten-

sion StatOpenCCG [Christodoulopoulos 2008] are available to the public and very

adaptable, though they are not commonly used in state-of-the art applications. Also

competitive in the field is Doran and Srinivas [1997], who trained their CCG parser

on a small XTAG corpus and achieved state-of-the-art results with the use of a su-

pertagger. CCG grammars are being constructed for a number of other languages as

well, including Turkish [Cakici 2005; Bozsahin 2002], German [Hockenmaier 2006],

Thai [Jaruskulchai 1998], and Japanese [Otani and Steedman 2007].

2.3.1 Categories

The category is the central unit of linguistic information in CCG. Unlike in other lex-

icalised formalisms, where the names of the categories are used as a shortcut or a

lookup for a word’s behaviour, in CCG the category names themselves encode the

word’s relationships to the other constituents in the sentence.

Atomic categories are the building blocks of the lexicon. We will treat them as

having a valency of 0, since they have only a result, and no arguments. Any symbol

could be used for an atomic category, but the canonical set in CCGbank is limited to S,

N, NP, PP, con j, and a number of types reserved for punctuation. Any of these may

be modified with a range of bracketed type options, such as the atomic category below,

which has a type of [dcl], indicating a declarative sentence.

An atomic category: S[dcl]

A complex category: (S[dcl]︸ ︷︷ ︸
Result

\ NP︸︷︷︸
Arg 2

)/(S[to]\NP)︸ ︷︷ ︸
Arg 1

Complex categories are created by joining atomic categories with a slash to the right

or left. The complex category above has a result of S, and two arguments, one of which

is itself complex. This category has a valency of 2, since it is composed of a result and

two arguments. For the purposes of this thesis, we number the arguments from right

to left, indicating their depth, which is related to the proximity of the constituents

they combine with. Arg 1 above, appearing after a rightward slash, is considered a
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Forward Application A/B B → A (>)

Backward Application B A\B → A (<)

Forward Composition A/C C/B → A/B (> B)

Backward Composition C\B A\C → A\B (< B)

Forward Crossed Composition A/C C\B → A\B (> Bx)

Backward Crossed Composition C/B A\C → A/B (< Bx)

Forward Substitution (A/C)/B C/B → A/B (> S)

Backward Substitution C\B (A\C)\B → A\B (< S)

Type-raising X → T/(T\X) (> T )

Figure 2.1: Inventory of CCG combinators.

rightward argument, and Arg 2 leftward. In this thesis, and in CCGbank, parentheses

are always used to avoid confusion1. We will refer to both the result and argument

parts of a category type as categorial elements. The upper limit on valency is generally

accepted as 4, but in practice we find that some rare categories exceed this limit. An

insightful reanalysis of the annotation of the treebank may be able to reformulate the

lexicon to satisfy this valency restriction.

2.3.2 Combinators

Combinators are CCG’s standard mechanism for combining constituents to produce a

result, and are one type of rule used in CCG parsing. Figure 2.1 shows the standard

inventory of CCG combinators in CCGbank. The first four combinators (application

and composition) dominate the treebank. The next four (crossed composition and sub-

stitution) are less common. The type-raising rule is used in a limited set of cases, and

we have to be careful that it is not over-applied [Hockenmaier 2003]. In this thesis we

ignore the more sophisticated multi-modal extension to CCG by Baldridge and Krui-

jff [2003], which limits overgeneration by restricting the use of certain rules to only

appropriate situations, but only because the parsers we are working with do not sup-

port them. The word-learning systems described herein would benefit from modality

restrictions on the use of many of the combinators, so as to avoid spurious inferences.

Type-raising is the only unary rule specified by classical CCG, but it is used in

very limited circumstances. In fact, subject type-raising, the most common use of

1CCG specifies a left-to-right reading, so S\NP/NP is read as (S\NP)/NP and not S\(NP/NP)



2.4. Parsing with CCG 23

this rule [Steedman 1991], accounts for only 2% of all unary rule instances present in

CCGbank2. Theory dictates that the only two components of a CCG grammar are the

lexicon and the combinators, but in practice, we need a number of non-combinatory

rules, or transformations, to encode the practical grammar of a natural language. This

means that CCG may conflate grammar induction with lexicon induction on paper,

but in reality there is a lot more to be learned in order to produce a competent parser

capable of all the intricacies of natural language.

2.3.3 Derivations

A derivation applies combinators to categories and yields an interpretation for a sen-

tence. Figure 2.2 gives an example CCG derivation for a simple sentence. Each token

in the sentence is first underscored with a category type. Combination is signified by

a horizontal line indicating the scope of the rule, and labelled with the rule type used.

The result category is written under the line.

The final rule used in this derivation is the non-combinatory convention of attaching

a full stop to the end of a complete sentence, labeled as (M) to denote a model rule,

one that is not motivated by any of the standard CCG combinators, but made available

to the parser through the lexicalised rules that are integrated with the parsing model.

The canonical formal description of CCG would suggest that the full stop be given

the category S\S, but the treatment of individual lexical entries and their behaviour

concerning model rules is the choice of the individual parser, and can be much freer

than prescribed formal linguistic theory, in order to cope with the vagaries of the corpus

and the annotation scheme used.

2.4 Parsing with CCG

There are three major CCG parsers available to the public: the generative StatCCG,

the discriminative C&C parser, and the mostly-for-educational-purposes OpenCCG. In

this thesis we utilise the resources of StatCCG and its lexical source material CCGbank

for training and evaluation, and StatOpenCCG, a statistical version of OpenCCG, for

the learning phase. This section specifies the extent and nature of these resources.

2Figure estimated from 2486 instances of NP → S/(S\NP) and 132809 unary transformations in

total, from derivations in CCGbank §02-21.
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That is a spicy meatball .

NP (S[dcl]\NP)/NP NP[nb]/N N/N N .
>

N
>

NP[nb]
>

S[dcl]\NP
<

S[dcl]
M

S[dcl]

Figure 2.2: A sample CCG derivation.

2.4.1 StatCCG and CCGbank

StatCCG [Hockenmaier 2003] is a generative parser trained on CCGbank [Hocken-

maier and Steedman 2007], a CCG translation of the Penn Treebank. It parses POS-

tagged input files that have one sentence per line. In its optimum configuration, it

achieves an F-score of 93% over dependencies on §00 when trained on §02-21. CCG-

bank is delivered in a machine-readable format annotated with POS, category, and

dependency information specifying a full CCG parse tree.

2.4.1.1 Lexicon

Figure 2.3 shows a snippet of the StatCCG lexicon, reflecting the structure of the files.

The lexicon is generative, representing the probability of each word (W) given its cat-

egory (C): P(W |C). As such, the probabilities do not sum to 1 over all words, for

example, the word framing, but rather over all words within a category C, represent-

ing, for example, the word types that have the categories N and ((S[ng]\NP)/PP)/NP.

This property of the generative model leads to a bias for rare category types to be cho-

sen, which is not a problem when the parser is being used to create a derivation for

a sentence, but does manifest when we are using that parser to generate and weight

category types for unseen items, which are more likely to be open-class words.

StatCCG’s generalisation mechanism is a word frequency threshold, which dictates

how often a word type must be seen in the training corpus to justify its inclusion in the

lexicon. If the word is seen N or more times, it enters the lexicon paired with all the

categories it has been seen with. If it has not been seen a sufficient number of times,

it is replaced by its POS tag in every instance, and the distribution over categories for

the POS tag calculated accordingly. The POS entry is then consulted when an OOL
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W C P(W |C)

frame N 3.39291946178603e-05

frame (S[b]\NP)/NP 0.000153456610143482

framed S[pss]\NP 0.000286204922724671

framed (S[pss]\NP)/PP 0.000425170068027211

framed (S[pt]\NP)/NP 0.000425531914893617

framers N 9.69405560510295e-06

frames N 1.45410834076544e-05

framework N 4.84702780255148e-06

Framework N 4.84702780255148e-06

framing N 4.84702780255148e-06

framing ((S[ng]\NP)/PP)/NP 0.00141843971631206

Framingham (N/N)/(N/N) 0.000171526586620926

Figure 2.3: A snippet of the StatCCG lexicon, trained on CCGbank §02-21.
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Figure 2.4: Zipfian Rank v. Frequency distribution of W |C pairs in CCGbank.
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word is seen at test time. Setting this word frequency threshold determines the level

of generality of the lexicon by dictating how much of the training data will be turned

over to POS-entries, and by extension, how often POS-backoff will be relied upon.

Figure 2.4 shows the expected Zipfian distribution of word/category pairs in §02-

21 of CCGbank. It indicates that the majority of lexical items are seen fewer than ten

times in the corpus. This means that the problem of the long tail applies not only to

completely unseen items, but also to rarely seen items, which may be folded into the

POS model depending on the word frequency threshold.

2.4.1.2 Model

In theory, all that a CCG grammar consists of is a lexicon that maps words to categories

and a set of combinators. Statistical parsers also require some model with which to

rank the parses they generate. In practice, however, Hockenmaier and Steedman [2002]

have found it necessary to model a large number of transformations, both unary and

binary, that are found in the treebank, but are not strictly covered by either the lexicon

or the combinators. They have also implemented special treatment for coordination

and punctuation. In addition to the lexical model of P(W |C), StatCCG contains a

word-word head dependency model with which the probabilities of derivations are

calculated. The components of the StatCCG head-dependency model are:

Expansion probability P(exp|C), exp ∈ le f t,right,unary, lea f

Head probability P(H|C,exp)

Non-head probability P(D|C,exp,H)

Lexical probability P(w|C,exp = lea f )

2.4.1.3 Rules

In theory a CCG grammar needs only the standard combinators listed in figure 2.1, but

in practise the grammar of StatCCG is made of a set of lexicalised transformation rules.

There are 200 distinct lexical rules present in CCGbank, the overwhelming majority

of which are unary rules, most of which are used only a handful of times. These are

derived from all the rule instantiations in the Penn Treebank. The rules are not encoded

separately in StatCCG, but are in StatOpenCCG, so we can examine them singly. Since
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NP → NP/(NP\NP)

NP → ((S\NP)/(S[ad j]\NP))\(((S\NP)/(S[ad j]\NP))/NP)

NP → ((S\NP)/(S[b]\NP))\(((S\NP)/(S[b]\NP))/NP)

NP → (S\NP)\((S\NP)/NP)

NP → ((S\NP)/(S\NP))\(((S\NP)/(S\NP))/NP)

NP → (S/(S[b]\NP))\((S/(S[b]\NP))/NP)

NP → S/(S/NP)

NP → S/(S\NP)

NP → S\(S/NP)

NP → (S/(S[pss]\NP))\((S/(S[pss]\NP))/NP)

NP → (S/(S[to]\NP))\((S/(S[to]\NP))/NP)

Figure 2.5: Inventory of unary rules in CCGbank that expand from NP.

there is no probability associated with each combinator3, they are often over-applied

in the parsing step, especially by StatOpenCCG.

Figure 2.5 lists a subset of the unary rules present in CCGbank. While some seem

necessary, like NP→ NP/(NP\NP), which is used for NP modification, others may

arise from annotation errors or vagaries of the translation to CCG. These rare or erro-

neous rules incur no penalty for their use, since the parsing model does not take the

probability of the rule into account, and so they are a potential source of overgeneration

error, especially when parsing corpora of a different domain.

Coordination is treated with a special ternary operation that is internal to the parser,

and triggered by the category type con j. Figure 2.6 shows the distribution of the cate-

gory con j. Any constituent can be coordinated, and take on an additional type [con j],

even if it already has a type. This gives rise to category types in internal parse nodes

like S[em][con j] or (S\NP)\(S\NP)[con j].

While all special symbols are treated like lexical items, with a full CCG category

that encodes their function (for example $ : N/N[num]), the punctuation symbols re-

ceive special treatment. Figure 2.7 shows the special punctuation categories. All end-

punctuation symbols are given the category (.), or the full stop. Sentence-internal

punctuation has three possible category labels: {: ; ,}. These punctuation categories

are in rare cases given erroneously to other word types; figure 2.8 is just one indica-

3Both parsers get their expansion probabilities from the head-dependency model, which represents

the input and output categories, but not the specific model rule or combinator used to combine them.
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W C p(W |C)

and con j 0.785969261279127

or con j 0.119286068418443

but con j 0.0772930094199306

than con j 0.00282597917699554

nor con j 0.00188398611799703

plus con j 0.0014873574615766

of con j 0.00118988596926128

as con j 0.0060485870104115

AND con j 0.000644521566683193

if con j 0.000545364402578086

yet con j 0.000347050074367873

And con j 0.00029747149231532

both con j 0.000198314328210213

’n’ con j 0.000198314328210213

so con j 0.000198314328210213

But con j 0.00014873574615766

& con j 0.00014873574615766

either con j 0.00014873574615766

not con j 0.00014873574615766

only con j 0.00014873574615766

vs. con j 0.00014873574615766

just con j 9.91571641051066e-05

minus con j 9.91571641051066e-05

with con j 9.91571641051066e-05

andor con j 4.95785820525533e-05

et con j 4.95785820525533e-05

’N con j 4.95785820525533e-05

neither con j 4.95785820525533e-05

Or con j 4.95785820525533e-05

then con j 4.95785820525533e-05

v. con j 4.95785820525533e-05

versus con j 4.95785820525533e-05

Figure 2.6: Conjunction category distribution in CCGbank.
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W C p(W |C)

! . 0.0015796178343949

’ : 0.00161812297734628

? . 0.00998726114649682

- : 0.0226537216828479

: : 0.273462783171521

. . 0.988433121019108

, , 0.999917208262615

; ; 1

... : 0.10302049622438

– : 0.598705501618123

-RRB- : 0.000539374325782093

Figure 2.7: Specialised punctuation categories in CCGbank.

W C p(W |C)

, , 0.999917208262615

2 , 2.06979343461523e-05

an , 2.06979343461523e-05

section , 2.06979343461523e-05

underwriters , 2.06979343461523e-05

Figure 2.8: Distribution of the comma category in CCGbank, including lexicon errors.
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tion of the scale of tiny errors in CCGbank, the correction of which represents fruitful

future work.

2.4.1.4 Backoff

Part-of-speech backoff is the general method used for dealing with unseen words and

accounts for a large degree of the success of StatCCG. When StatCCG is presented

with an OOL word, it simply backs off to the lexicon entry for its part-of-speech in-

stead. This of course requires that the input data is POS-tagged, which is a potential

source of error. Also, there is often a much wider scope of category ambiguity im-

parted by the POS-entry than the lexical entry. This makes the parsing process longer

and more vulnerable to misparses.

The way the model is constructed, a file of common words must be provided to the

parser at training time. The current best threshold, as described by Hockenmaier and

Steedman [2007] is 30. This means that any word type that has occurred 30 or more

times in the training sentences will have its word/category pair entered in the lexicon.

Any word that is rarer than that threshold will have its POS/category pair entered in-

stead. This is a clever trick that means the model contains separate information about

common words and rare words. It is beneficial in theory because common words tend

to be the irregular ones and rare words the regular, after Brighton et al. [2005], so their

distributions will naturally be disparate. However, its downside is that much of the

probability mass that could be used for known words is taken up by the POS-backoff

entries.

Throughout this thesis we use different configurations for the frequency threshold.

We endeavour to use the most appropriate value depending on the size of the training

corpus. While 30 may be optimal for a parser trained on 40,000 sentences, when we

add a lot more sentences to that, the parameter should rise, and when we use smaller

training sets, it should fall.

2.4.1.5 Evaluation

Two forms of evaluation are relevant to our experiments, depending on the availability

of annotation on the test set: head dependencies and category labels. StatCCG output

is canonically evaluated on dependencies [Clark et al. 2002]. Hockenmaier makes

the case that this is the fairest way to compare parses produced by CCG with those

of other grammar formalisms, owing to the differences in the format of CCG being



2.4. Parsing with CCG 31

incompatible with the standard evaluation mechanisms. However, for comparing one

CCG lexicon to another, it is easier and more theoretically sound to use the category

assignments at leaf nodes. This follows from the notion that assigning categories to

the string of words is the hardest part of CCG parsing, and forming the rest of the

tree is straightforward, as it follows the normal form principle [Hockenmaier 2003].

Throughout this thesis this metric will be referred to as Category Match Accuracy.

Precision =
t p

t p+ f p
(2.1)

Recall =
t p

t p+ f n
(2.2)

F1 =
2PR

(P+R)
(2.3)

We calculate precision (2.1) as the number of true positives over the sum of true

and false positives. Recall (2.2) is true positives over the sum of true positives and

false negatives. F-score (2.3) is the harmonic mean of the two, equally weighted.

We employ this standard method for calculating recall, even though Hockenmaier’s

slightly nonstandard calculation yields higher reported figures. Where Hockenmaier

divides over the number of dependencies in the reference set that are comparable to

the test set, we divide over the total number of dependencies in the reference set. In

order to ensure commensurability when comparing our system to a StatCCG baseline,

we have run the StatCCG parser ourselves and calculated precision and recall figures

according to this scheme, rather than reporting published figures.

2.4.2 StatOpenCCG

StatOpenCCG [Christodoulopoulos 2008] is a statistical extension of OpenCCG [White

and Baldridge 2003]. It employs the same model as StatCCG, with a few exceptions.

We use it in place of StatCCG in the learning phase of the experiments in this thesis

because it has a number of extra parameters that allow it to produce partial parses, run

with POS backoff disabled, and accept lexicons independent of the model.

We train StatOpenCCG on the same CCGbank-style derivation files as StatCCG.

It employs the same head-dependency model and calculates parse probabilities in the

same manner. Coordination is treated somewhat differently, as two binary levels of

combination rather than a single special ternary rule.

StatOpenCCG is used only in the training phases of the experiments herein. It is



32 Chapter 2. Background

not quite as good as StatCCG in parsing §00, but the several advantages offered by the

expanded options make it ideal for the situations in which it is used.

2.4.3 The C&C Parser

In contrast to the two generative CCG parsers mentioned above, the C&C parser [Clark

and Curran 2003] is a lexicalised discriminative parser which is trained on CCGbank

and equipped with a supertagger, making it the fastest CCG parser to date. They report

labelled dependency results of 86.6% precision and 86.3% recall, with category match

accuracy of 93.6. In addition, the C&C parser has been used in several state-of-the-

art training and domain-adaptation experiments. Clark and Curran [2006] show that

training the parser on just sequences of categories, as suggested by Hwa [1999], rather

than full trees, only results in a 1.3-point decrease in F-score. They note that

...the significant amount of syntactic information in CCG lexical categories
allows us to infer attachment information in many cases. [Clark and Cur-
ran 2006]

The C&C parser was not used in this thesis, due to its discriminative model and the

relative inaccessibility of the elements of the code. However, its speed and accuracy

must be taken into account when evaluating our results, and future work would do well

to re-implement our work in discriminative terms.

2.5 Room for Improvement

Out-of-Lexicon (OOL) words contribute to a specific number of errors for the parser,

although it is difficult to exclusively assign blame amongst the many sources of error.

Various parsers attribute between 15% and 89% or all parse errors to OOL words,

depending on their domain and formalism, cf. Szolovits [2003]; Yona and Wintner

[2008]; Fouvry [2003]. We attempt to calculate the amount of error caused by OOL

words by checking the categories in the output parses against the correct categories

Figure 2.9 is a unit square representing all of the tokens in §00, broken down hor-

izontally by category match accuracy and vertically by whether the token is in the

lexicon. For the standard configuration of StatCCG tested on §00, 42062 of 45422

(92.52%) tokens are correctly labelled. These are represented by the green blocks on

the left of the unit square. The remaining 3360 of 45422 (7.48%) tokens have cat-

egories that are wrongly assigned. These are represented in red on the right of the
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IL

OOL

Figure 2.9: Unit square showing composition of category match errors for the StatCCG

parser on §00. Green boxes are correct category matches, red boxes incorrect. The

darker of each colour represents in-lexicon items (IL) and the lighter out-of-lexicon

(OOL).

unit square. While for correct matches, 7336 of 42062 (17.44%) are OOL, for the

categories assigned incorrectly, 683 of 3360 (20.33%) are OOL in the baseline lexi-

con. It is consistent with intuition that OOL items make up a greater proportion of the

incorrect matches than the correct ones.

It also means that OOL words are directly responsible for at least 20% of all cate-

gory match errors in the standard configuration of StatCCG, and indirectly responsible

for a further set of errors that derive from those wrong assignments. In some cases,

the token could be tagged incorrectly, but still result in the correct dependency struc-

ture, either by transforming the erroneous category within the tree using unary rules,

or deriving the correct unlabelled dependencies.

This is not to say that these are the only errors that are a direct result of missing en-

tries: a missing lexical entry may also cause the parser to make bad decisions about the

surrounding context. Just as well, certain sets of non-matches may be better described

as partial or good-enough matches. For example, there is a high degree of redundancy

in the prepositional categories of CCGbank, PP/NP and (NP\NP)/NP. This is one

of the reasons why Hockenmaier and Steedman [2007] calls for evaluation on depen-

dencies, following Carroll et al. [1998] considering it the fairest way to compare CCG
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parses against other formalisms and treebanks.4 It is not entirely accurate to say that

these two categories do not match each other, since, with the help of type-changing

rules, they end up encoding the same dependency structure. It is a credit to the backoff

model of StatCCG that 85% of the pairs in §00 that are absent from the lexicon are

nonetheless retrieved accurately. Though the error rate for this best configuration is

low, and OOL words account for only 20% of it, the absent lexical entries affect 25%

of the sentences, leaving considerable scope for improvement.

2.6 Discussion

This chapter has summarised the related work from word learning to deep lexical ac-

quisition. It has defined the terms in use throughout this thesis, and specified the gram-

mar formalism and parsing tradition in which the word learning task is undertaken. It

has also established that that the scope for success is a 20% reduction in error over a

very high baseline parsing system. The next two chapters will set out the word learn-

ing systems under investigation: first, the two competitive baseline systems, then the

chart-based system that is the novel contribution of this thesis.

4Of the 52 lower-case words that occur with the prepositional category PP/NP, 50 also occur with

(NP\NP)/NP and ((S\NP)\(S\NP))/NP. The only exceptions are given, which occurs as the verbal

modifier, and worth, which is PP/NP only. This kind of lexical redundancy seems to call for leniency

in evaluation.
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Baseline Learning Systems

3.1 Introduction

This chapter fully describes the algorithm and implementation of two baseline word-

learning systems. The first learns by brute force, hypothesising all possible categories

for an unknown word and allowing the parser to choose the most likely parse, inspired

by the work of Watkinson and Manandhar [1999a]. The second uses a small inventory

of rules to construct a missing category based on context, an extension to the work of

Yao et al. [2009a].

For the purposes of this thesis, we are interested in the circumstances where a sen-

tence of length N is composed of one out-of-lexicon (OOL) word and N-1 in-lexicon

(IL) words. This decision is motivated by the phenomena described by Zhang et al.

[2005], who set out the parameters of lexicon acquisition and the concomitant prob-

lems of evaluation.

The challenges presented by this learning setting are as such: First, it is possible

(and quite probable) that the existing lexicon is insufficient to cover exactly the right

category types for all of the in-lexicon words. Second, limiting the learning oppor-

tunities to only these N-1 cases means only learning from a subset of the sentences

in an unlabelled corpus. We must skip over any sentence that contains two unknown

words, for example, because it is likely that the category for one depends on the other,

so the search space is squared. Zhang et al. [2005] observes the difficulty of adjacent

unknown words “potentially allowing almost any constituent to be constructed.”

Third, the set of OOL words does not cover the entire set of words we need to

learn: we are also searching for additional categories for IL words. It is much harder

to determine whether a word/category pair is missing from the lexicon because it is

35
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erroneous, or because it is correct but rare.

We restrict the learning setting to only those sentences of length N for which N-1 of

the word tokens are present in the existing lexicon, and only one unknown (OOL) word

is present. That word is then treated as the target. Brent effected a similar approach, in

that he considered one word at a time within its particular frame. Here, we it would be

possible to expand the number of learning opportunities by intelligently splitting the

sentential contexts into smaller ones, for example, clauses delimited by semicolons,

but that adds another processing step and another source of error. Future work may

improve upon the N-1 learning setting by implementing this.

The two word-learning systems described in this chapter operate in this N-1 learn-

ing setting, and so provide a comparable baseline with which to compare our novel

learning algorithm, which is described in chapter 4.

3.2 Brute Force Word Learning

The first baseline system is the Brute Force (BF) strategy of word learning, which tries

all possible categories and allows the parser to choose the highest probability word-

category pair by deriving the most likely parse. This system is inspired by the lexical

acquisition system of Watkinson and Manandar, which we describe below.

3.2.1 Watkinson and Manandar

One of the early lexical acquisition systems using Categorial Grammar (CG) was that

of Watkinson and Manandhar [1999a;b; 2000; 2001a;b]. This system attempted to si-

multaneously learn a CG lexicon and annotate unlabelled text with parse derivations.

Using a stripped-down parser that only utilised the forward- and backward-application

rules, they iteratively learned the lexicon from the feedback from online parsing. The

system decided which parse was best based on the lexicon, and then decided which ad-

ditions to the lexicon to make based on principles of compression. After each change,

the system reexamined the parses for previous sentences and updated them to reflect

the new lexicon.

They report fully convergent results on two toy corpora, but the parsing accuracy

of the system trained on natural language data was far below the state of the art. They

did present some encouraging findings, however. Primarily they show that Catego-

rial Grammar is a promising setting for artificial language acquisition, because the
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structure conflates learning the lexicon and learning the grammar into the same task

[Watkinson and Manandhar 1999a]. They also showed that seeding the lexicon with

examples of lexical items (closed-class words in their case), rather than just a list of

possible categories, increased its chances of converging. It is the focus on annotation

that keeps it from being successfully applicable to natural language data.

Watkinson’s algorithm has two major flaws. First, the manner of guessing all pos-

sible categories, and especially all possible categories for all the words in a sentence,

suffers from complexity issues. Second, the algorithm is incapable of learning new

category types, which may go unnoticed when the seed is as rich as CCGbank, but

severely limits its usefulness as a tool for developing CCG lexicons in previously un-

derserved languages.

3.2.2 Brute Force Algorithm

We implement a generalised version of Watkinson and Manandhar’s mechanism for

determining the category γ of a single OOL word in a sentence where the rest of the

words C1...CN are in the lexicon:

γ = argmax
γ

Parse(C1...Cn,γ) (3.1)

This is equivalent to backing off to the set of all known categories, or replacing

the OOL word with the universal POS entry (*); the learner returns the category that

maximises the probability of the completed parse tree. We ignore the optimisation and

compression steps of the original system, which were shown to increase precision over

the course of the learning phase, because they are independent of the contextual word

assignment task and could be implemented over any similar sentence-level word learn-

ing mechanism. We are interested in comparing the systems over individual sentences.

The BF strategy is almost identical to POS-backoff (see §2.5.1.4), in that the parser

is allowed to choose the category that maximises the parse from a list of candidates;

essentially it backs off to a single ur-part-of-speech (*). However, if we assume that

the target word is unknown, and as such our lexical knowledge is incomplete, it may

also follow that our POS knowledge is incomplete. So while this algorithm is more

permissive than POS-backoff, it has the freedom to introduce new information to the

parser, rather than reinforcing the biases in the original training data. It also allows

for instances where POS information is unavailable or incomplete, using it at runtime

when necessary, but entertaining new ideas in the training phase.
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3.2.3 Worked Examples

In the following worked examples, X represents the OOL target word. Any examples

of the BF algorithm must take into account a particular parser and lexical model. The

model used here is only for illustration purposes. Probabilities have been aggressively

rounded to make the examples readable.

(12)

The X saw her

NP/N : 0.084 N : 1/|C| ((S[dcl]\NP)/(S[b]\NP))/NP : 0.500 NP[nb]/N : 0.055

NP : 1/|C| (S[dcl]\NP)/NP : 0.044 NP : 0.024

... S/(S\NP) : 0.021

Example (12) shows the problem of learning the word cat in a simple declarative

context. When presented with this sentence, BF first looks up each token in the lexicon

and assigns it a set of possible categories. Each category comes associated with a

probability expressing P(W |C). The unknown word X is the dummy entry and is

assigned every known category with uniform probability (∀C : P(X|C) = 1/|C|). The

parser finds the highest-probability path through these tokens, parsing the sentence as

S[dcl]. In this case, BF assigns the highest probability to a parse that uses the N entry

for X, which is the correct category.

(13)

The cat X her

NP/N : 0.084 N : 0.01890 N : 1/|C| NP[nb]/N : 0.055

NP : 0.002 NP : 1/|C| NP : 0.024

S/(S\NP) : 0.002 ... S/(S\NP) : 0.021

Recovery of a verbal category is more complex, since there are more verbal op-

tions available in the set of known categories. In (13) BF finds highest-probability path

through her:-NP to return the transitive category X:-(S[dcl]\NP)/NP. More complex

verbal categories rank lower because they do not combine as readily with the surround-

ing nominal constituents to make a complete sentence.

(14)

The cat X her ride

NP/N : 0.084 N : 0.019 N : 1/|C| NP[nb]/N : 0.055 (S[b]\NP)/PP : 0.500

NP : 0.002 NP : 1/|C| NP : 0.024 S[b]\NP : 0.031

S/(S\NP) : 0.002 ... S/(S\NP) : 0.021 N : 0.006

NP : 0.0005

S/(S\NP) : 0.0005

The most interesting case is one in which the context is truly ambiguous: in exam-

ple (14), the words her and ride could form two valid high-probability interpretations:
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either as a single constituent with the category NP, or as two constituents NP and

S[b]\NP. The learner must rely solely on probability from the parsing model to choose

the correct parse, and therefore the category for the target word.

3.2.4 Limitations

The BF word learning method has several shortcomings. Its search space is large, since

it entertains all categorial possibilities for the target word, and so its runtime tends to

be long. Importantly, it is limited to only those category types it already knows, so in

cases where a very limited training corpus is available, it cannot learn all the types in

the language. As such, it is subject to the bias of the initial lexicon, and therefore in

danger of exaggerating any small errors or imbalances in the model because it cannot

create new structures.

3.3 Rule Based Word Learning

The second baseline for word learning is a Rule Based system that applies a defined

set of operations over a string of categories to determine the category of the unknown

word. It addresses the closed-category-set problem of BF by creating category types

on the fly, and is based on the work of Yao et al., described below.

3.3.1 Yao et. al

Yao et al. [2009a;b] developed a learning system based on handwritten translation rules

for deducing the category (X) of a single unknown word in a sentence consisting of a

sequence of partially parsed constituents (A..N).

Their system was designed to investigate Pullum and Scholz [2007]’s argument

against Poverty of the Stimulus, showing that there is much more information in the

training set than most researchers see. When the process of learning the lexicon in-

cludes typing each entry according to the relations it participates in, larger patterns

like auxiliary word order fall out of it naturally. As such, it was based on a small

inventory of inference rules that eliminated ambiguity in the ordering of arguments.

In addition they limited their learner to CG-compatible parse structures and their con-

stituent strings to length 4. Their argument is that only this minimal bias is needed to

learn syntactic structures, including the fronting of polar interrogative auxiliaries and
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auxiliary word order (should > have > been), from a training set that did not explicitly

contain full evidence for them.

In addition, they imposed a Simple Category Preference (SCP) on the output of the

learner: if two or more categories are produced at the same level of complexity, the

category with the lowest valency is returned. This bias was appropriate for their level

of experimentation, as it eliminated spurious categories, but to be compatible with a

full natural-language learning setting, our extension implementation will need a more

sophisticated method of ranking output categories.

Another insightful step they used was to generate the possible categories using the

full rule set, but then filter them for parses that can be produced entirely using the

application rules. This gives the system full generative capability, but limits the size

of its lexicon to only the simplest solution. Granted, it will miss those cases where

rules besides application are necessary to produce a whole parse, but their artificial

data set did not include any of those. It is a clever way of trading off a small amount of

coverage for a larger amount of precision. Effectively, they are choosing to only learn

from sentences that are fully parseable with application only.

Yao et al. present their findings on a toy grammar only, and outline the challenges

to executing the same algorithm on natural language data. They use no statistics, so the

system is vulnerable to noise. They label all Ns and NPs using an automatic prepro-

cessing step, which they contend is psychologically plausible, but results in a shallow

initial learning curve for natural language settings, since most sentences contain too

many OOL words. Their three levels of rules (in figure 3.1) are not sufficient to cover

a whole English grammar, but they have shown it to be adequate to capture a consid-

erable subset with good precision. They also restrict their rules so that S/S and S\S
are never learned. This will not be much of a help in learning sentential modifiers, but

does eliminate the more frequent problem of substrings combining to S prematurely.

They are using a partial chart as a learning setting, so some constituents have already

been combined, and are opaque with regards to internal structure.

3.3.1.1 Algorithm

Yao et al. [2009b] present a list of handwritten inference rules, reproduced here as

figure 3.1. Although their system used the full set of CCG combinators to generate

learned categories, it employed a post-processing step to filter spurious categories by

checking whether the category participated in a CG-only derivation (using application

rules only). This final step goes a long way towards limiting the error introduced by
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Level 0 inference rules:
B/A X → B ⇒ X = A i f A 6= S

X B\A → B ⇒ X = A i f A 6= S
Level 1 inference rules:

A X → B ⇒ X = B\A i f A 6= S

X A → B ⇒ X = B/A i f A 6= S
Level 2 inference rules:

X A B → C ⇒ X = (C/B)/A

A B X → C ⇒ X = (C\A)\B
A X B → C ⇒ X = (C\A)/B

Level 3 inference rules:
X A B C → D ⇒ X = ((D/C)/B)/A

A B C X → D ⇒ X = ((D\A)\B)\C
A X B C → D ⇒ X = ((D\A)/C)/B

A B X C → D ⇒ X = ((D\A)\B)/C

Figure 3.1: Inference rules from Yao et al. [2009b].

the inference process, but ensures that the process will not scale up to handle the full

range of category types, some of which are only used with composition rules.

For example, one of the Level 3 inference rules specifies the order of the arguments

in the deduced category:

A X B C→ D⇒ X = ((D\A)/C)/B

Without this inductive bias the learner would have to deal with the ambiguity of

the options ((D/C)/B)\A and ((D/C)\A)/B at minimum.

3.3.1.2 Shortcomings

The central problem with Yao et al.’s algorithm, which they acknowledge, is their

right-combining rule preference. As stated in figure 3.1, the second- and third-level

rules have only one result, which is the one that derives from recursively applying only

the level 1 rules, rather than both the level 0 and 1 rules as stated in the paper. This

shortcoming is conflated with the right-combining rule, as illustrated by the figures

3.2, 3.3, and 3.4 below.

Under the established inference rules, ‘X ’s doll slept’ is of type (1) below, and

therefore subject to rule 3.1 If we expand the view to allow complex categories of the

kind acknowledged in the level 0 rules, we can see that this sentence is more accurately
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Peter slept with Mary

NP S\NP X NP → S

S\NP X NP → S\NP 1.1

X NP → (S\NP)\(S\NP) 1.1

X → ((S\NP)\(S\NP))/NP 1.2

Figure 3.2: ‘Peter slept X Mary’ is derivable.

Sally ’s doll slept

X (NP/N)\NP N S\NP → S

X (NP/N)\NP N → NP 0.2*

X (NP/N)\NP → NP/N 1.2

X → NP 0.2*

Figure 3.3: ‘X ’s doll slept’ is not derivable because rule 0.2 is left-combining.

of form (2). And in such a case, X =C.
X A B C → D (1)

X (A/B)\C B D\A → D (2)

Yao et al. have enumerated a small number of elegant rules for learning unknown

words in a restricted language, but by restricting the derivations to only the right-

combining ones, they have made a whole set of derivations impossible. This is not a

problem for their experimental space, but to deal with natural language on the scale

with which we are concerned, we must implement the algorithm as described by their

diagram only. The way to do this is to only specify the level 0 and 1 rules, and re-

cursively apply these rules to larger contexts, not limiting the constituent sequence by

length, and not enumerating those as higher-level rules. This modification was obvious

to the original experimenters [Yao et al. 2009b], and in a footnote, they plan to relax

the right-combining restriction and allow S/S and S\S as future work.

The main problem with Yao’s original algorithm is that it does not scale to the

full complexity of parsing options afforded by a natural-language model. Once the

complexity restriction and CG output-filters are removed, the Simple Category Pref-

erence is no longer a reasonable assumption. For almost any sentence we can find an

arrangement of constituents that allow for an NP interpretation of the missing word.

Therefore in order to make this approach scalable, we must implement a statistical

model to calculate the relative probabilities of each of the interpretations.
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Sally ’s doll slept

X (NP/N)\NP N S\NP → S

X (NP/N)\NP N → S/(S\NP) 1.2

X (NP/N)\NP → (S/(S\NP))/N 1.2

X → ((S/(S\NP))/N)/NP 1.2

Figure 3.4: Right-combining derivation of ‘X ’s doll slept’.

The right-combining preference, which in small language-acquisition applications

is seen as a useful inductive bias, does not scale well to practical natural language

applications. Rather, it limits the productivity of an otherwise competent learning

method. In addition, the recursive rules only encode the functionality of the application

rules. A full model would include composition at the least. There are also the unary

transformations and non-combinator rules as found in CCGbank.

Rather than implement all of these as extensions on Yao’s rules (since much of

the elegance of the original has now been lost) we propose a separate algorithm that

addresses each of these challenges in a complete solution.

3.3.2 Rule Based Algorithm

The RB learner operates similarly to the BF learner, in that it starts with a lookup of all

known words in the sentence. It begins by treating the shortest constituent sequence

available and moves onto longer sequences upon failure.

We extend the work of Yao et al. [2009a;b] to create a generalised word-learner

that is capable of deducing the CCG category of an unknown word from context. Our

contributions are: 1) adding full recursion to the algorithm, 2) removing the com-

plexity restriction on learning contexts, 3) implementing the learner on top of a full

statistical CCG parser framework, 4) removing the CG filter on completed parses and

5) modifying the return-simplest-category heuristic to a probability-ranked list of can-

didate categories. These improvements have been partially anticipated by the original

authors:

Using statistical patterns in the input language, it may also be possible
to relax some of the assumptions presented here. [The system’s limita-
tions] mark one direction in future work: developing the algorithm fur-
ther to make use of statistical learning methods, and evaluating it on real
data. [Yao et al. 2009a]
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DERIVE([C1...Cn],β,γ)

if β = /0

then return (γ)

else if C1 =Cn = X

then

{
γ = γ+β;

DERIVE(X , /0,γ)

else


DERIVE([C2...Cn],β\C1,γ) if C1 /∈ S,X

DERIVE([C1...Cn−1],β/Cn,γ) if Cn /∈ S,X

DERIVE([C2...Cn],A,γ) if β≡ B and C1 ≡ B/A and C1 /∈ S,X

DERIVE([C1...Cn−1],A,γ) if β≡ B and Cn ≡ B\A and Cn /∈ S,X

Figure 3.5: RB algorithm generalised from Yao et al. [2009a], where [C1...Cn] is a se-

quence of categories, one of which is X , β is a result category, and γ is the (initially

empty) target category set.

Their rules were effective for their learning setting, but for the purposes of this

thesis we have implemented a generalised version of the recursive algorithm for use

in wide-coverage parsing. This algorithm is outlined in figure 3.5. It takes a sequence

of categorial constituents, all known except one (X), and builds a candidate set of

categories (γ) for the unknown word by recursively applying Yao’s Level 0 and Level

1 inference rules.

To accommodate all the parse options open to a natural-language-scale lexicon, the

recursive algorithm is run over the full set of partial parses, beginning with the short-

est sequence. This algorithm begins by covering the whole sentence with sequence

[C1...Cn]. Each level of recursion acts on a sequence shorter by exactly one constituent.

It exits when there is only one constituent left, which must be the target word. Where

the original learner uses a heuristic to select the best solution, the generalised RB sys-

tem returns the set of category of the lowest valency. This setting could be relaxed to

create a system that is more competitive in terms of precision, but much slower. The

various methods of using and evaluating this answer set are discussed in subsequent

chapters.

It is important to note that the rule-based method has high coverage because it

always produces a category for any situation you give it, except in the case where a

sequence of length ≤ 4 cannot be found. This preference for recall over precision is at
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P R F T(m)

N|NP 33.68 33.68 33.68 -

Original 16.42 16.42 16.42 14

Generalised 39.01 37.20 38.08 15

Table 3.1: Precision and recall over category matches in MG1, comparing Yao’s original

algorithm to our generalised RB algorithm against a baseline of guessing N or NP. The

final two columns report Correct/Attempted.

odds with the goal of this thesis, and as such, it represents a low baseline.

3.3.3 Evaluating the Generalised RB Algorithm

To compare Yao’s original algorithm to our generalised version, we run both over the

words in volume 1 of the McGuffey corpus (MG1), which is explained in full in chapter

6. A full third of the lexical entries in the corpus are N or NP, and we use this as our

comparative baseline for this experiment. Table 3.1 lists precision, recall and F-score

figures results for the original and generalised RB systems, as well as the time they

take to process the 546 sentences in the corpus. It shows that the generalised algorithm

achieves double the F-score of the original, while retaining its speed.

Table 3.2 breaks down the results by the category type of the correct word labels,

for the most common types. First, it shows that in practice our generalised RB system

increases the number of correct labels assigned correctly, while decreasing the number

of labels attempted. This translates to the gain in F-score shown in table 3.1. In addi-

tion, the generalised learner also shows improvement in several categories for which

the original reported zeroes, which tend to be more complex categories that would

have been filtered out by the simple-category preference, or blocked entirely by the the

right-combining preference. This shows that our efforts to generalise the word learner

of Yao et al. have produced a word-learning system that has enough expressive power

to beat an naive baseline, and so serves as a reasonable comparator for our novel word

learning system introduced in the next chapter.

Even though this system is being used as a baseline comparator for the Chart Infer-

ence word-learning system, the rule-based approach is not itself a dead end. Further

work could extend the RB algorithm to address most of its remaining shortcomings,

with the potential for an expressive and reliable CCG word-learner that is faster than

chart-based learners.
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Frequency C Original Generalised

828 NP 102/225 181/211

708 N 78/196 137/191

578 NP[nb]/N 0/170 82/165

397 PP/NP 2/107 68/103

314 N/N 8/85 38/82

113 (S[dcl]\NP)/(S[b]\NP) 0/28 18/28

107 (S\NP)\(S\NP) 0/13 0/11

105 (S[dcl]\NP)/NP 0/26 20/25

90 (S[b]\NP)/NP 0/30 20/28

72 (S\S)/NP 0/1 1/3

71 (S[to]\NP)/(S[b]\NP) 0/15 9/15

Table 3.2: Category accuracy comparison between Yao’s original algorithm and our

generalised version, for the top 11 most frequent category types in MG1.

3.4 Comparing the Baseline Learning Systems

We compare the BF algorithm to our generalised RB algorithm, with respect to their

ability to learn a 40-item toy lexicon, which is explained in full in chapter 5. The

only functional difference between the two algorithms in this learning setting, since

they are both statistical and using the same model, is in their ability to generate new

category types. Both learners begin with a seed lexicon that consists of only the NPs

entries of the target lexicon. This setting is motivated jointly by Yao et al. [2009b]

and Watkinson and Manandhar [1999a]: they both cite NPs as the low-hanging fruit

of lexicon acquisition, making them the logical starting point for a seed lexicon. The

test sentences are randomly generated from a simple PCFG over the lexicon, and are

always presented to the learners in the same order. For this experiment we sort the

corpus by sentence length.

Figure 3.6 shows the learning curves of the two methods as they traverse the train-

ing sentences, in terms of similarity of the learned lexicon to the target lexicon 1. The

BF method performs poorly, as it is incapable of learning category types absent from

the seed lexicon and therefore only acquires erroneous NP entries. This is an inherent

property of the algorithm, since the search space only includes known types. As such,

1See equation 5.1.
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Figure 3.6: Learning curves comparing the generalised rule-based learner (RB) to Brute

Force (BF), using a seed lexicon of only NP entries.

NP is the only option available, so the maximum achievable cosine is 0.64, represent-

ing six correct lexical items out of 40.

The rule-based learner achieves a cosine similarity to the target lexicon of 0.99 after

only 458 sentences. The two major dips in the graph correspond to the first sighting

of longer sentences in the training corpus. Sentences 1-25 are of length 2, and as such

contain only NPs and S\NPs. The first of the three-word sentences, 26 and 27, are the

first introduction of transitive verbs and determiners, respectively. In both cases the

learner deduces the correct category, but since it only has one word of that type so far,

the lexical probability P(W |C) = 1.

The second dip is caused by the beginning of the four-word sentences. It is the

first time the learner encounters adjectives and ditransitive verbs, and it also assigns

them the correct categories. After it has seen enough instances of different words, the

similarity recovers, and then increases smoothly to convergence.

This highlights a bias in using cosine similarity to evaluate lexicon quality: the

learner is better off having no entries for a category than just one. This does not

necessarily reflect the lexicon quality when it comes to applying it to a parsing task.

As such, we only use the cosine-similarity metric to evaluate the convergence of toy
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lexicons to a known target. Real language data, apart from not having a gold-standard

lexicon for evaluation, needs a more complex measure of lexicon quality that takes into

account the effectiveness when used to parse real sentences.

This comparison of the two baseline methods shows that the ability to invent new

category types is integral to success in cases where the seed lexicon does not contain

at least one instance of all categories needed to parse the corpus. As this is the case

in many of the learning tasks we wish to attempt, the ideal learner needs this ability

to outperform the BF baseline, and needs a sophisticated method for ranking possible

solutions, including intermediate ones, to outperform the RB baseline.

3.5 Discussion

Four baseline methods are used for comparison in this thesis. The simplest of these is

the N|NP baseline, where all words are assigned N|NP and either category is marked

as correct. The second is Part-of-Speech backoff, where the target word is assigned

the category type that is most likely for that part of speech. This metric can be af-

fected by whether the POS tags have been assigned automatically or hand-labelled.

The next baseline method in order of complexity is Brute Force, based on Watkinson

and Manandhar, allowing the parser to choose whichever category type maximises the

probability of the whole parse. Finally, we compare our system to the Rule Based

learner, a probabilistic extension of Yao et al., which applies an ordered set of rules

to determine the category type of the target word. It is important to note that the two

baselines learning systems BF and RB are not restricted to using the correct parse, and

as such are subject to parse errors and vagaries of the lexicon and model, meaning that

the highest-probability category for the target does not necessarily participate in the

correct parse, since the correct parse is treated as unknown.

Extant erroneous lexical entries also cause problems for learning new lexical en-

tries, because they tend to interfere in the parsing process due to their relative prob-

abilities being higher than those of more common categories. It is vital to note that

∑
C

P(W |C) 6= 1. The type of generative model we are concerned with operates over

lexical probabilities of the word given the category, which means that the total proba-

bility mass for each category is shared by all words of that category. Whether a word

has more than one category is not reflected in the lexical probabilities. Any process

that has to choose a category out of several candidates will prefer the one with the

most absolute probability mass, not the one that is most common. This often results in
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erroneous categories participating in ambiguous parses.

These word-learning methods will be used as baseline against which to compare the

performance of our more sophisticated learner, described in the next chapter. We seek

to improve on those weaknesses which we have identified in each method, but some

problems are integral to the domain of word-learning and will challenge all learners

irrespective of their form.





Chapter 4

Chart Inference

4.1 Introduction

The major contribution of this thesis is the word-learning algorithm we call Chart

Inference (CI). It employs a two-stage chart parsing process to derive the category

of an unknown word based on the surrounding constituents. This chapter explains the

algorithm in full, as well as details of its implementation with the StatCCG parser.

4.2 Motivation

In our quest to answer Brent’s challenge in the context of wide-coverage parsing, we

need an algorithm that is able to handle sources of error and scale to contemporary

parsing tasks. Both Watkinson’s and Yao’s experiments were fully convergent over a

toy dataset, but did not scale to realistic corpora. Watkinson attempted to learn from

the LLL corpus [Kazakov et al. 1998], but attributed the failure to the small amount of

training data relative to the test corpus, and the naive initial category set. Yao’s method

was only ever designed as a proof-of-concept to show how much of the language can

be learned from partial evidence, and was not meant to be run in earnest in a real-

world learning setting. For one, Yao’s rules do not cover the full set of partial parse

conditions. Moreover, they do not allow for partial parses to be reanalysed within the

learning framework.

To that end, we have developed a learning algorithm that is capable of operating

within the N-1 learning setting adopted by the two baseline systems, that is able to

invent new category types, and that is able to take advantage of the full generality of

CCG. This chapter shows that CI performs as well as the previous two systems on a toy

51
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corpus, and the subsequent chapters explore how it scales to natural language domains.

Both Watkinson’s and Yao’s systems are targeted to incremental learning, treating

one sentence at a time and updating the lexicon before starting on the next. They ignore

sentences that are not immediately informative and come back to them later. However,

in order for the system to perform competitively in natural language applications, it has

to perform well on every sentence it parses, returning either a high-quality parse or no

parse. This translates to high precision, at the expense of recall. A method’s precision

will be a good predictor of its performance on real language data, and its efficiency

will be a good predictor of scalability.

4.3 Related Work

The work most closely related to Chart Inference, seen as a two-stage parsing process

employing both bottom-up and top-down steps over a partial chart, is the unglamorous

task of error repair. The field was discussed in brief in Chapter 2, but two older systems

are particularly relevant to our work.

Mellish [1989] established a two-stage bidirectional chart parser for diagnosing

errors in input text. His system relied heavily on heuristic rules, and the only evaluation

he did was on number of cycles needed for each type of error, and number of solutions

produced. It was designed for use in producing parses where the original parser failed,

dealing with omissions, insertions, and misspelled/unknown words. The only method

used to rank the possible solutions was heuristic scores.

Kato [1994] implemented a revised system that used a generalised top-down parser,

rather than a chart, and was able to get the number of cycles to decrease. In both

cases the evaluation was only on a toy corpus, and neither Mellish nor Kato evaluated

on whether the systems diagnosed the errors correctly, or whether the solution they

offered was accurate. They also had to deal with cases where the error was ambiguous,

for example, where an inserted word could be interpreted as a misspelling. Min and

Wilson [1998a;b] went further, implementing an integrated bidirectional chart parsing

system with “lexical, syntactic, surface case, and semantic processing.”

Our statistical implementation of CI could be considered a modern extension of

Mellish’s work. Where he uses the two-stage parsing process to complete malformed

parses, we use it to diagnose unknown lexical items. In addition, we scale the process

to a full grammar and parser, and to modern lexical corpora which he left as future

work.
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4.4 Algorithm

The CI algorithm is best contextualised in the tradition of chart parsing. The formalism-

independent CKY algorithm [Kasami 1965; Younger 1967; Cocke 1969] is expressed

in figure 4.1; its central principle is that when two sisters are known, their mother can

be produced by consulting the rules of the grammar, building a parse from the bot-

tom up 1. The formulation we give here is non-standard, but designed to conform to

a human-readable chart and make intuitive sense in both directions, with the terminal

cells at [i][i].

for i = 1 to n:

chart[i][i] = set of terminals expanding to w_i

for k = 2 to n:

for j = k-1 to 1: -- decrementing

for i = j to k-1:

for all A -> B C in G,

such that there is a B in chart[i][j] and a C in chart[k][i+1],

if there is no A in chart[k][j], insert A into chart[k][j]

Figure 4.1: Bottom-up CKY algorithm with generative model G, adapted from Hocken-

maier [2003], where i is the start position, j is the end position and k is the split.

chart[n][0] = set of preterminals (root)

for k = n to 2: -- decrementing

for j = 1 to k-1:

for i = k-1 to j: -- decrementing

for all A -> B C in G,

such that there is an A in chart[k][j],

if there is no B in chart[i][j], insert B into chart[i][j]

if there is no C in chart[k][i+1], insert C into chart[k][i+1]

Figure 4.2: Top-down chart parsing algorithm with generative model G, where i is the

start position, j is the end position and k is the split.

1All of the algorithms given here are expressed in terms of a binary grammar, but can be generalised

to a non-binary grammar formalism.
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chart[n][0] = set of preterminals (root)

for a = 1 to n:

for b = 1 to i:

chart[a][b] may be either a set of (pre)terminals or the empty set

for k = n to 2: -- decrementing

for j = 1 to k-1:

for i = k-1 to j: -- decrementing

for all A -> B C in G,

such that there is an A in chart[k][j] and a B in chart[i][j]:

if there is no C in chart[k][i+1], insert C into chart[k][i+1]

for all A -> B C in G,

such that there is an A in chart[k][j] and a C in chart[k][i+1]:

if there is no B in chart[i][j], insert B into chart[i][j]

Figure 4.3: Top-down Chart Inference algorithm with generative model G, where j is the

start position, k is the end position and i is the split.

The top-down chart parsing process is in a sense the opposite of CKY. Given the

result, both daughters are produced using the model. It is shown in figure 4.2.

Chart Inference combines elements of both bottom-up and top-down chart parsing.

First, a partial parse is produced from the bottom up, as far as possible given that one

terminal is unknown. This is expressed in the second through fourth lines of figure 4.3.

The second half operates from the top down, filling in daughters where possible, and

expressed starting at the fifth line of figure 4.3.

The learning step begins by presenting the parser with any sentence that contains

all in-lexicon words but one. The parser produces a partial bottom-up parse chart using

the statistical parse model, which contains a seed lexicon, a set of CCG combinators,

and an additional set of unary and binary rules learned from the training corpus. The

learner takes this partial chart and fills the top right cell with a distribution for the result

category based on the end punctuation, which is thereafter ignored2.

Using this partial chart that contains at least one entry for every terminal cell (ex-

cept the one OOL target cell) and at least one entry for the result, the learner steps

through the partially populated chart from the top. For the top-down process, the stan-

2For simple corpora, only S is required, but natural language corpora necessitate a distribution over

all result types, including noun phrases and fragments.
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CCG Combinator Inverse Combinator
A/B B → A (>) 1 X B → A ⇒ A/B if v(B) ≤ 1

2 A/B X → A ⇒ B

B A\B → A (<) 3 X A\B → A ⇒ B

4 B X → A ⇒ A\B if v(B) ≤ 1

A/C C/B → A/B (> B) 5 X C/B → A/B ⇒ A/C

6 A/C X → A/B ⇒ C/B

C\B A\C → A\B (< B) 7 X A\C → A\B ⇒ C\B
8 C\B X → A\B ⇒ A\C

Figure 4.4: Derivation of inverse combinators.

dard combinators have to be reformulated to take an argument and a result as inputs,

rather than two arguments as in the standard bottom-up case. In addition, the learner

has access to the non-combinator rules from the parse model, which have been simi-

larly inverted for top-down use. The inverse combinators and model rules are discussed

in the next section. This process continues until the target cell has been filled, and the

ranked set of categories is returned. We provide worked examples below in 4.5.

4.4.1 Inverse Combinators

In order for CI to access the generative model from both directions, we must per-

form a small amount of reinterpretation of the grammar and model. The bottom-up

model is drawn intact from the underlying parser. The top-down model calculations

are straightforward; we simply use the same rules. However, it is useful to translate

the CCG combinators into their top-down formulations, which give the solution for the

missing daughter X when the other sister and the result are specified.

Figure 4.4 sets out the inventory of inverse combinators used in the top-down learn-

ing step. Each standard binary CCG combinator motivates two inverse combinators:

one for each possible missing item, denoted by X. In the two permissive instances

where the sister category’s form is the unrestricted B, we limit the sister’s valency (v)

to 1, in order to keep the learner from generating spurious categories that could result

from these two rules being over-applied.

These inverse combinators lead to some ambiguity, as any category of the form

A/B is also of the form A. As such, any time rule 5 is used, rule 1 could also be used,

so we order the rules such that inverse composition is attempted first, and then inverse
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application as a last resort. In addition, the probabilities calculated with respect to the

model should sift bad rules to the bottom.

In addition to the combinators, the algorithm has access to all the binary and unary

rules in the model, read off the model in the inverse direction. This means that type-

raising rules and useful unary rules can be used to generate an inference, but they are

not generalised, as that would result in overgeneration. As such, only those unary rules

that have been instantiated can be accessed by the learner. To prevent overgeneration,

a condition is placed on two of the inverse application rules (1 and 4 in figure 4.4).

In those cases, the known daughter must be a simple category type (with valency less

than or equal to 1) in order for the inference to go ahead. Without this restriction, these

rules are too permissive, allowing any result/daughter combination to yield a possibly

unjustified category.

The full extent of the category model at present is a restriction against returning

the punctuation category (.) as the highest ranking category at the terminal node. The

learner is currently (and may always be) incapable of identifying missing conj cate-

gories. This is because it is only capable of doing unary and binary relations, and

coordination is treated as ternary by the StatCCG and StatOpenCCG parsers. neg is

only possible because the model rules are used along with the combinators. A more

developed theory of category well-formedness would benefit the generation algorithm,

either as a filter on the end of the production process, or as a set of guidelines that

influence the generation online.

4.4.2 Statistical Model

The probability that the target has a given category is calculated as the greater of the

right- or left-headed derivations, according to figure 4.5. This is derived directly from

the head-driven statistics of StatCCG discussed in chapter 2, and the figures are taken

directly from the trained StatOpenCCG model without adjustment. At training time,

the StatOpenCCG parser creates a head-dependency model from the training corpus,

in which we can look up the values for the expansion probabilities.

Unary rules are calculated as P(result)∗P(exp= un|result)∗P(C|exp= un,result),

which is the product of the probability of the result category, the probability of that re-

sult having a unary expansion, and the probability of the category C expanding from

the result. This operation is executed on every cell upon the first visit. Where a value is

unavailable, it backs off to a pre-specified value (default 0.0001). The system requires
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P(target =C|R,S) = max

{
P(HeadRight|R)
P(HeadLe f t|R)

}

P(HeadRight|R) =



P[outside](R)∗
P[inside](S)∗

P(exp = le f t|R)∗
P(C|R,exp = le f t)∗

P(S|R,exp = le f t,C)



P(HeadLe f t|R) =



P[outside](R)∗
P[inside](S)∗

P(exp = right|R)∗
P(S|R,exp = right)∗

P(C|R,exp = right,S)


Figure 4.5: Charted head-dependency probability calculation of a category C, derived

from one Result category (R) and one Sister category (S).

a pruning parameter that limits each cell to the top N most probable categories. For

most of the experiments in this thesis, we set the pruning threshold to 10, to limit the

search space and complexity3.

4.5 Worked Examples

In this section we work through all the steps of CI on sample sentences to show its

strengths and weaknesses. Three charts are presented in the subsequent pages. They

represent formalised grammars, with only the interesting lexical items included, for

reasons of brevity. Full parsers would result in much fuller charts, where here we have

only included as many lexical entries in a cell as are interesting for our purposes, and

represented the remainder as ellipses. In each chart, the X represents the unknown

word. The first action is the filling of the top-right cell [N,1]. In this case we have

abridged the end punctuation model and assumed P(S[dcl]|.) = 1.

Next, the terminal cells are filled by looking up the words in the lexical model.

3Separate testing on natural language corpora has shown the average rank of correct tags in the

category set to be 1.4.
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Then all possible non-terminals are filled using the bottom-up parser, which calculates

the probabilities as well. These cells are represented with grey shading, signifying that

they are impermeable to the top-down parser. These entries are then only used as inputs

to the reverse combinators. An extension to this process would allow new entries to be

added to the shaded cells, in order to recover partial parses that were unavailable to the

parser4. This, however, would mean entertaining new categories for known words as

well as longer spans, which should be undertaken with caution and a good sense of the

quality of the existing parsing model.

Table 4.1 illustrates how CI works through the sentence The cat saw her . We

assume for this example that cat is the OOL word, and that the correct category is N.

For clarity and space, only a small selection of the possible categories are displayed

in the chart. Three terminal cells are filled by the bottom-up parsing process; they

are shaded grey. Two of the known words are lexically ambiguous: saw has entries

in the lexicon as both a transitive and a control verb. her includes the determiner and

noun phrase senses, as well as the type-raised subject category S/(S\NP). Cell (4,3)

covering saw her is filled by the bottom-up parser as well, entertaining four possible

categorial types.

The top-down phase begins by filling the root cell (4,1). Here we show only the

canonical declarative form S[dcl], as this example has been simplified for illustrative

purposes. The CI algorithm begins with k = 4, j = 1, k = 3, using the result cell (4,1)

and the terminal cell (4,4) to fill the non-terminal (3,1). Two entries are produced for

that cell: S[dcl]/NP is generated from using inverse combinator (1) on the noun phrase

sense of her: X NP→ S[dcl]⇒ S[dcl]/NP, and S[dcl]\NP results from the inverted

model rule X S/(S\NP)→ S[dcl]⇒ S[dcl]\NP.

Next, when the split (i) is decremented, the same result cell (4,1) is treated with

(4,3) to fill (2,1). A number of entries are generated, the most probable of which are

shown. NP is generated from the most probable entry in (4,3) using inverse combinator

3: XS[dcl]\NP→ S[dcl]⇒ NP. NP[nb] is from a model rule, and N is a product of

a unary rule on NP. The third step deals with the two sister cells (1,1) and (4,2), this

time with the right sister as the gap. Inverse combinator 4 is the relevant one, yielding

NP/N X→ S[dcl]⇒ S[dcl]\(NP/N). Having exhausted i, j is now incremented and

the whole process begins again with (4,2) as the result cell.

The remainder of the white cells are derived from the top down, until cell (2,2) is

filled. The solution is presented as a ranked list of possible categories for the target

4Some investigation was made in this direction, but parse times became prohibitive.
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word, the most probable of which, N, is correct. The statistical capability of CI makes

it robust to ambiguity. In this example the highest-ranking lexical category for her

is NP[nb]/N, but the next highest category NP is preferred in the derivation of the

highest-ranking category for the unknown word X.

Table 4.2 works through the same sentence, but now the target word is saw, which

has the transitive category (S[dcl]\NP)/NP. In this case the Noun/Determiner ambigu-

ity is also present, and lacks corroborating evidence from the verb, since it is unknown.

So the erroneous category (S[dcl]\NP)/NP[nb]/N is possible, but CI produces the cor-

rect category as the highest ranked one, due to the influence of the non-lexical portion

of the model that favours verbal categories with nominals, rather than determiners, as

arguments.

Table 4.3 deals with the more complex sentence The cat saw her ride . In this

case, the categories for her, ride, and her ride, corresponding to cells (4,4), (5,4), and

(5,5) are truly ambiguous. As such, the learner relies entirely on the judgements of

the model, which can be swayed by the nature of the training corpus. In this case,

the highest-probability interpretation yields the target category as the plain transitive

(S[dcl]\NP)/NP, rather than the control verb ((S[dcl]\NP)/(S[b]\NP))/NP, which

manifests as third in the ranked list, although the NP sense of her ride does not rank in

the top four categories in (5,4).

4.6 Discussion

The Chart Inference algorithm is the novel contribution of this thesis: it creates cat-

egory types by applying inverted CCG combinators and model transformations top-

down on a partial chart.

There are several major differences between our learner and the baseline methods.

First, we are using a full parser, complete with all the combinatory rules. Second, we

make no attempt to constrain the lexicon according to any principles of compression.

We are depending on the model to give us fairly dependable lexical entries, and for the

erroneous ones to have probabilities low enough to keep them out of the top-ranking

parses. In addition, we are not keeping track of parses or refiguring them based on

subsequently learned lexical entries.

BF has been shown to be effective over a toy corpus, but does not scale as well to

natural language corpora. It has access to all the category types yet seen in the lan-

guage, but is also stressed with a large search space. The RB system was not designed
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to handle large-scale language problems, but has the advantage over BF that it can in-

vent new category types. CI can invent new category types, and it can operate over a

larger number of instances than the RB system. It also has the benefit of being proba-

bilistic and using the available labelled data in the form of a model from a supervised

baseline parser to guide the search and rank results.

In the remaining chapters, we will investigate the efficacy of CI in addressing sev-

eral word-learning tasks of increasing complexity.





Chapter 5

Convergence: A Toy Corpus

5.1 Introduction

The first half of this thesis has introduced Chart Inference as a novel method of deduc-

ing the CCG categories of unknown words in a sentential context. It has also described

two baseline systems with which to compare it. In the remainder of the thesis, the three

systems will be compared in the context of a range of practical tasks, beginning with a

straightforward constructed corpus, and increasing in complexity with each successive

chapter.

In each of these experiments we will define the corpora in use (including the seed

lexicon, the training set, and the test corpus), the parameters under which CI is being

employed, the evaluation method that best suits the task, and the relevant baseline

against which to compare the results.

Our first avenue of inquiry is to evaluate the performance of CI and the two baseline

systems over a manageable, artificial corpus. This chapter begins with the specification

of the grammar and lexicon of the Toy Corpus, then employs it in an experiment with

three initial seed settings. The first setting shows that all three learning algorithms are

capable of converging on the target lexicon if provided with a sufficient seed, and the

remaining two show that CI outperforms the baseline systems when initialised with

smaller seed lexicons.

The small corpus allows for an online learning setting, where the initial seed lex-

icon is extended with each successive sentence, and the lexicon dynamically recalcu-

lated. We are able to examine the lexicon at any point, and can measure its similarity

to the target lexicon to track improvement over time.

65
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5.2 Corpus

To facilitate direct comparison the three learning methods, we use the Corpus 1 evalua-

tion setting from Watkinson and Manandhar [1999a], which consists of a target lexicon

and a uniformly-weighted PCFG language model used to randomly generate 1000 sen-

tences1. In order to simply the learning task, we have standardised all tokens to lower

case. The target lexicon, doubling as a unigram language model, has a uniform distri-

bution. It contains 40 word-category pairs, including the full stop (S\S), which was not

in Watkinson’s experiment, and one example of noun-verb ambiguity (saw) that was.

The sentence-final punctuation has the standard category given by CCGbank, rather

than S\S, but that is immaterial because it is stripped from the CI learning process

after it is used to determine the sentential result type (in this case, always S[dcl). Fig-

ure 5.1 specifies the target lexicon in full and figure 5.2 shows the uniformly weighted

PCFG model from which the training sentences (figure 5.3) are generated.

We specify three initial seed lexicons that present a range of challenges to the

learner; they are shown in figure 5.4. Seed A is the most permissive setting; it contains

one example of each of the category types present in the target lexicon. The lexical

probability p(W |C) for each entry is set to 1.0. Seed B is identical to Seed A, except

that it lacks all mention of the ditransitive category type ((S[dcl]\NP)/NP)/NP. Seed

C is the most challenging; it contains perfect knowledge of the determiners of the target

lexicon and their lexical probabilities, as well as one noun to make learning possible2.

The corpus resources are summarised below, a practice that will be duplicated for all

subsequent experiments:

SEED Each of the three in figure 5.4.

TRAIN 1000 sentences automatically generated from target lexicon in figure 5.1 and

PCFG in figure 5.2, a snippet of which is shown in figure 5.3.

TEST 40-item CCG target lexicon and model in figure 5.1.

1The full corpus was not included in any of Watkinson’s papers, but its properties were outlined to

such an extent that it was straightforward to recreate, though the reconstruction may differ slightly from

the original in the distribution of category types.
2There are no sentences in the training corpus that consist of a determiner and just one other token.



5.2. Corpus 67

Word Category p(W |C) Word Category p(W |C)

john NP 0.166 gave ((S[dcl]\NP)/NP)/NP 0.2

mary NP 0.166 called ((S[dcl]\NP)/NP)/NP 0.2

jim NP 0.166 sent ((S[dcl]\NP)/NP)/NP 0.2

ellen NP 0.166 threw ((S[dcl]\NP)/NP)/NP 0.2

steve NP 0.166 branded ((S[dcl]\NP)/NP)/NP 0.2

anne NP 0.166 a NP/N 0.33

boy N 0.11 some NP/N 0.33

girl N 0.11 the NP/N 0.33

dog N 0.11 smaller N/N 0.166

fish N 0.11 big N/N 0.166

desk N 0.11 bigger N/N 0.166

elephant N 0.11 hungry N/N 0.166

statue N 0.11 ugly N/N 0.166

computer N 0.11 small N/N 0.166

saw N 0.11 kissed (S[dcl]\NP)/NP 0.166

ran S[dcl]\NP 0.25 saw (S[dcl]\NP)/NP 0.166

walked S[dcl]\NP 0.25 kicked (S[dcl]\NP)/NP 0.166

coughed S[dcl]\NP 0.25 admired (S[dcl]\NP)/NP 0.166

blinked S[dcl]\NP 0.25 punished (S[dcl]\NP)/NP 0.166

. . 1.0 timed (S[dcl]\NP)/NP 0.166

Figure 5.1: Toy Corpus target lexicon.

S → NP VP VP → Vbar

Vbar → IV Vbar → TV NP

Vbar → DV NP NP NP → PN

NP → Nbar Nbar → Det N

N → Adj N

Figure 5.2: CFG for generating the toy corpus.
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1. anne admired a elephant .

2. a fish branded john ellen .

3. a small desk kissed a statue .

4. mary admired a fish .

5. john admired steve .

6. steve punished some girl .

7. the computer saw a boy .

8. some statue threw some saw anne .

9. a boy punished anne .

10. jim timed mary .

Figure 5.3: First ten sentences of the auto-generated toy corpus.

Seed A john|NP 1.0

One word of each category type boy|N 1.0

|A|= 8 ran|S[dcl]\NP 1.0

cos(A,T ) = 0.55 timed|(S[dcl]\NP)/NP 1.0

gave|((S[dcl]\NP)/NP)/NP 1.0

the|NP/N 1.0

small|N/N 1.0

.|. 1.0

Seed B john|NP 1.0

One word of every type except ditransitive boy|N 1.0

|B|= 7 ran|S[dcl]\NP 1.0

cos(B,T ) = 0.54 timed|(S[dcl]\NP)/NP 1.0

the|NP/N 1.0

small|N/N 1.0

.|. 1.0

Seed C the|NP/N 0.33

Full set of determiners and one noun some|NP/N 0.33

|C|= 5 a|NP/N 0.33

cos(C,T ) = 0.61 boy|N 1.0

.|. 1.0

Figure 5.4: Seed lexicons A, B, and C, subsets of the toy corpus.
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Condition 1: Learning a new word:

If a sentence S of length N contains exactly N−1 known words:

Learn(S,W )

Find the highest-probability parse PS

Update the lexicon with the word/category pairs from PS

Condition 2: Learning a new category for a known word:

If a sentence S of length N contains exactly N known words

AND the parser cannot find a valid parse:

For each word W1...WN in S:

Learn(S,Wi)

Find the highest-probability parse PWi

Find the highest-probability parse PS in PW1...WN

Update the lexicon with the word/category pairs from PS

Figure 5.5: Learning setting for handling ambiguity, used in this chapter only.

5.3 Methods

Each learner [CI, BF, RB], is run in an iterative learning setting that recalculates the

lexicon after every sentence seen. The setting is capable of learning multiple types for

each word, since when it encounters a sentence for which no parse is possible, despite

having each of the component words in the lexicon, it reconsiders each word in turn

for the word/category pair that yields the highest-probability parse. Each learner plugs

in seamlessly to this framework, which makes each capable of handling the ambiguity

of the word ’saw’ in the target lexicon. In addition to the new target word/category

pair, all the lexical items used in the highest-probability parse are incremented in the

lexicon, enabling the probability model to improve at each time step, and to keep

adjusting lexical probabilities after all the word/category pairs have been learned.

The learning setting, specified in figure 5.5, handles one sentence at a time, decid-

ing based on the number of known words in the sentence whether to use Condition 1 or

2, or skip it entirely. In Condition 1, it constructs a temporary hypothesis lexicon that

contains all entries of the original lexicon, plus one entry each that pairs the OOL word

with every category generated by the learner. Where the learner specifies a probability

(CI only), these are integrated into the hypothesis lexical mode, but otherwise the prob-
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abilities are considered uniform with respect to the word type. The parser then uses

this temporary lexicon to parse the sentence. The highest-probability parse is broken

down into its lexical entries and each of these is incremented in the working lexicon,

including the new entry, for which the prior count would have been 0.

The second learning condition addresses cases of known words with unknown cat-

egories. It executes the same process as above, but once for each of the N words in

the sentence, treating each in turn as the OOL item. This time, the highest-probability

parse over the whole set is used to update the lexical counts. This method of addressing

lexical ambiguity can be appended to any of the following algorithms, but is intractable

for long sentences. Condition 2 is used only for the toy corpus in this chapter, where

the search space over short sentences allows for new categories to be learned for known

words.

The training corpus is traversed only once, not returning to skipped sentences, but

the small size of the target lexicon means that in practice 300 sentences are sufficient

for learning. We run all the learning methods over 1000 training sentences just to be

safe. We use the StatOpenCCG parser is used for the bottom-up learning phases and

the RASP tools [Briscoe et al. 2006] for preparing the input. The training sentences

have been randomly generated before training time, and are always presented to the

learners in the same order.

5.3.1 Baselines

The two learning systems described in chapter 3 provide a comparison for CI. The rele-

vant baseline figures with which to compare our convergence experiments are Watkin-

son et al’s reported findings that their method yields 100% parse accuracy when trained

on a corpus of 500 automatically generated sentences. Since their learner is based on

storing and reparsing each sentence as the lexicon expands, and ours passes over sen-

tences that are not parseable at the moment, the number of sentences needed for lexical

convergence is less relevant than the shape of the resultant learning curve. Watkinson

and Manandhar [1999a] showed their system to be fully convergent (cosine similar-

ity between the seed lexicon (~S) and the target lexicon (~T ) above 0.99), whenever the

seed lexicon contained at least one instance of each of the category types in the target

lexicon, but here we test it with a variety of seed settings.
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~x ~y

John|NP 0.5 John|NP 1.0

Mary|NP 0.5

Mary|(S[dcl]\NP)/NP 0.5

kissed|(S[dcl]\NP)/NP 0.5 kissed|(S[dcl]\NP)/NP 0.25

admired|(S[dcl]\NP)/NP 0.5 admired|(S[dcl]\NP)/NP 0.25

~x ·~y = (0.5∗1.0)+(0.5∗0)+(0∗0.5)+(0.5∗0.25)+(0.5∗0.25) = 0.75

|~x|=
√

0.52 +0.52 +0.52 +0.52 = 1

|~y|=
√

1.02 +0.52 +0.252 +0.252 = 1.17

cos(~x,~y) = 0.75/(1∗1.17) = 0.64

Figure 5.6: Sample calculation of cosine similarity between a target lexicon ~x and

learned lexicon~y.

5.3.2 Evaluation

Watkinson and Manandhar [1999a] provides an evaluation metric that directly com-

pares a seed or learned lexicon to a fixed target. Both lexicons to be compared are

first sorted, then treated as feature vectors. Each word/category pair is interpreted as a

dimension, and the associated probability a distance in that dimension. Entries in the

target lexicon that are missing from the learned lexicon are treated as zeros, entries in

the learned lexicon that are missing from the target lexicon likewise.

The degree of similarity between the two feature vectors is measured as the cosine

of the angle between them. Equation 5.1 is the formula for calculating the cosine

between two vectors [Manning and Schütze 1999]. An example calculation for two

short lexicons is given in figure 5.6. For the purposes of this experiment, convergence

is determined to have been reached when the cosine between the learned and target

lexicons is greater than 0.99.

cos(~x,~y) =
~x ·~y
|~x||~y|

=
∑

n
i=1 xiyi√

∑
n
i=1 x2

i

√
∑

n
i=1 y2

i

(5.1)

The cosine method of comparing lexicons is only useful when the lexicons are

fairly small, and there are not too many zeros in either direction. It gives a single

score to an entire lexicon, which enables us to track the quality of a lexicon over time,
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and evaluate different learned lexicons against each other. Cosine similarity is only a

measure of lexicon matching, and not of usefulness in parsing, so a separate parsing

evaluation is also performed.

For this chapter we also report lexical accuracy, which is strictly the number of

word/category pairs in the learned lexicon that are correct, divided by the total num-

ber of learned lexical entries. This does not take into account the lexical probabili-

ties. In the normal cases where the target lexicon is unknown, this calculation must

be performed manually or with reference to existing linguistic resources, but in this

case where the full toy lexicon is specified, lexical accuracy is simply the number of

word/category pairs from the target lexicon that are present in the learned lexicon. Ex-

amining a lexicon’s similarity to the target as well as its lexical accuracy allows for a

full comparison of our three learning systems.

5.4 Results

When run over the toy corpus starting with Seed A, all three learners converge to the

target lexicon in an identical sigmoid learning curve, as shown in figure 5.7. Because

each learner sees the same 1000 sentences in the same order, the curves are identical.

If the experiments had been run several times with the order of the corpus randomised,

then averaged, the curves would be distinguishable.

In this case, all the necessary category types are known and the learners start from

a position of having quite a large lexicon from which to expand. The lexical inventory

goes from the original eight to the target 40 in 300 sentences, and achieves a cosine of

.99 at sentence 388. There is a small initial plateau, since the learners have to skip the

first ten sentences because they do not offer an N-1 learning opportunity. The curve

is fairly stable, with only small decreases corresponding to discrepancies in the lexical

probability model rather than incorrect word/category pairs.

This behaviour is what we expect, given Watkinson’s description of lexical con-

vergence. It also shows that in the simplest case, the CI, RB, and BF algorithms are

equivalent.

When primed with Seed B, both the RB and CI algorithms again converge to the

target lexicon in an identical manner. Figure 5.8 shows the learning curve for the three

methods when the seed lexicon contains no mention of the ditransitive category type

((S\NP)/NP)/NP. Both RB and CI converge identically as expected, but BF, the

lower curve, cannot learn any category types that are not attested in the seed, so it
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Figure 5.7: Learning curve for all three methods with Seed A. All methods converge

within 1000 sentences with identical behaviour.

plateaus at 95% similarity.

The similarity between the two cosine curves in figure 5.8 is again due to the same

sentences being seen in the same order, but now we can justify using this methodology,

rather than averaging over multiple runs. The two curves are identical up to sentence

59, where CI and RB experience a decline and BF continues upward. This corresponds

to the first encounter with a ditransitive (jim called john mary .). The two more flexible

methods are able to learn this new category type, and show the dip associated with a

1.0 probability of a correct singleton, reflecting a shortcoming of the cosine similar-

ity metric rather than of the learned lexicon. At the same crucial point, BF ignores

this sentence since it cannot find a valid parse, and continues without the ditransitive,

learning all the rest of the category types in a corresponding, but shallower, curve. CI

and RB reach convergence at sentence 389, needing only one more sentence than with

Seed A. BF levels off at 0.95, never having access to the ditransitive category.

When the seed is reduced to only three determiners and a noun, CI can still learn

the complete lexicon, despite some initial missteps and a steeper curve. However, the

other two methods have catastrophic failures (figure 5.9). BF never gets going, since

it can only correctly learn the remaining nouns. RB is partially successful, peaking
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Figure 5.8: Learning curve for all three methods with Seed B. CI and RB converge

identically, while BF differs.
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Figure 5.9: Learning curve for all three methods with Seed C.
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Seed BF RB CI

A 40/40 (100%) 40/40 (100%) 40/40 (100%)

B 35/40 (88%) 40/40 (100%) 40/40 (100%)

C 9/28 (32%) 40/44 (91%) 40/40 (100%)

Table 5.1: Lexical accuracy for the three learning methods, given three seeds.

at 80% similarity, but is thwarted by a bad decision around sentence 200 that quickly

compounds to diverge from the target lexicon, ending up with higher coverage in the

form of more lexical entries, but lower precision, as the final similarity plateaus at the

same level as the original seed.

Only CI achieves full lexical convergence, but at sentence 334, 54 sentences fewer

than needed for Seed A. It also has a longer initial plateau, as it has to reject more

sentences before it can find one with N-1 known words. When it does begin to learn,

the curve is steeper, showing that it is the quality of the seed, not just its size, that

shapes the learning curve. A smaller seed is also sensitive to decreases in cosine as

new words are learned, even when they are learned correctly. The two major dips in

the CI curve in figure 5.9 correspond to two new lexical entries being learned correctly,

but with hitherto unknown category types. As such, they have probabilities of 1.0,

which negatively affects the cosine similarity measure until other words of that type

are learned and the probabilities come into line with the target model.

5.5 Analysis

In the analysis we examine the characteristic errors of the systems that fail to converge.

In all cases of convergence, the learners attain the exact lexicon inventory as the target,

as well as a close approximation of the lexical probabilities. When they fail, however,

it is for two reasons: first, words of unknown categories are impossible to learn (BF

only), and second, because they are forced to choose the best category that forms a

parse, they wrongly assign known categories to new words. When dealing with seed

B, both the CI and RB methods yield a perfect 40-item lexical inventory. BF, however,

comes up with only 35. This is because it fails to divine any category for those five

ditransitive verbs in the corpus. This is failure of the first type only, and occurs because

no known category for those 5 words produces a parse at all, so each sentence in which

they occur is simply skipped.
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When faced with seed C, however, errors of the second type occur. The BF learner

yields 28 lexical entries from the 1000 training sentences. Knowing only two cate-

gory types, it has access only to two-word (plus punctuation) sentences. Upon seeing

the sentence ‘The boy ran .’ and having the first two words in the seed lexicon, the

learner is forced to choose some category for ran, and since the learner-internal parser

is more complex than the naive PCFG used to generate the sentence, it finds the high-

est probability parse NP/N N N. Once it has access to this erroneous entry (and the

corresponding ones for every intransitive verb), it can start to make compounded er-

rors. In fact, the BF lexicon after sentence 1000 contains 28 entries, consisting of three

determiners, five nouns and the end punctuation, which are correct, four intransitive

verbs wrongly labeled N, six NPs wrongly labeled as determiners, four nouns wrongly

labeled as end punctuation, and five other assorted errors. These are summarised in the

confusion matrix in table 5.2.

Learned

Ta
rg

et

NP/N N .

NP/N 3 - -

N 1 5 4

NP 6 - -

N/N 1 1 -

S[dcl]\NP 2 4 -

(S[dcl]\NP)/NP - - -

((S[dcl]\NP)/NP)/NP - - -

. - - 1

Table 5.2: Confusion matrix for BF with seed C.

The RB learner yields 44 lexical items from seed C: the 40 correct ones, and four

additional spurious entries:

small|N/((S[dcl]\NP)/NP) 1.0

some|NP/((S[dcl]\NP)/NP) 1.0

threw|(NP/(NP/N))\NP 1.0

threw|(NP/(NP/((S[dcl]\NP)/NP)))\NP 1.0

These arise from the ambiguity of the word saw. Once two entries for saw are

known, it opens the way for a misparse. CI deals with this because it has a full sta-
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tistical model and chooses the highest-probability parse, but RB prefers the simplest

parse, and so it is open to this type of error. When it encounters the ambiguity problem

with saw, it erroneously decides to give a spurious category type to another word in

the sentence. This opens the lexicon up to compounded errors in the same way as BF

above. The fact that these spurious category types have only been seen with one word

type skews the cosine measurement and leads us to believe that the learned lexicon is

worse than it is. While it has learned 40/44 entries correctly, Figure 5.9 implies that it

has done worse than BF. This points out a weakness in using cosine similarity to assess

lexicon quality. As such, we will dispense with it in the coming chapters and focus on

measures more directly related to lexicon coverage and parsing performance.

5.6 Discussion

This experiment has shown that both Chart Inference and the Rule Based learner con-

form to an expected learning curve over a toy corpus in the same way as predicted

by Watkinson’s Brute Force method. However, the differences in the methods emerge

when the initial seed lexicon is varied. Both BF and RB are forced to come up with

a best guess in more situations than it is advisable. CI has the flexibility to fail to

return an answer for sentences that do not contain enough information for an informa-

tive guess. The BF learner performs as expected; it converges on the target lexicon

when all the necessary category types are available to it. It has no recourse, however,

when some category types are unknown; it cannot hope to learn the entire lexicon, and

makes incorrect inferences as a result. The RB learner can invent new category types,

but it lacks a full statistical model and therefore has difficulty distinguishing between

valid parses. CI is the most robust of the three, achieving lexical convergence where

the others fail. It is capable both of learning new category types and of applying the

full strength of the statistical parsing model and the expressiveness of CCG.

Real natural language experiments are projected to have lower results because

model errors and missing categories will occur in the bottom-up partial parsing step.

The next chapter will address the problem of natural language data.





Chapter 6

Coverage: The McGuffey Corpus

6.1 Introduction

This chapter is the first foray into testing our word learners on a true natural-language

corpus. We focus on a small subset of English, as represented by a novel corpus of

children’s books, developed and annotated specifically for this thesis. We move away

from the online learning setting of the previous chapter, and instead define an offline

learning task, in which precision and recall can be measured across the whole test

corpus.

The first experiment in this chapter sets the learners the task of recovering the

correct category for each word in the corpus in isolation, while having access to the full

statistical lexicon for the context words. The second moves on to the more complex

task of learning completely unknown words in unseen contexts, given an imperfect

seed lexicon, a task very similar to the intended use for CI. We conclude with a very

controlled experiment exploring the capacity of the BF, RB, and CI learners to discover

OOL category types.

6.2 Corpus

Because we seek to test our learner in an environment that is a small but valid subset

of English, and that requires CCG category annotation and gold-standard parse trees,

we have created a new corpus expressly for this purpose. Using a children’s book

as a source text affords the appropriate lexicon size. Since it is a whole book, rather

than a collection of unrelated sentences, it ensures that the lexical inventory is low,

but each lexical item has been seen multiple times. As such, the McGuffey corpus is

79
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Corpus MG1 CCGbank

Sentences 546 39604

Tokens 6024 929552

Types 749 44210

Category Types 196 1286

Lexical Entries 1153 74669

Tokens / Sentence 11.03 23.47

Cat Types / Word Type 1.54 1.69

Word Types / Cat Type 5.88 58.06

Table 6.1: Composition of McGuffey Volume 1 (MG1) vs. CCGbank §02-21.

a small natural language corpus, with possible future applications for modelling child

language acquisition.

The source for this corpus is William Holmes McGuffey’s Eclectic Readers [McGuf-

fey 1836; 1837], first published in 1836 and subsequently much revised1. The readers

comprise six progressive volumes, designed specifically to teach children to read and

write. Much of the content is designed for what, at the time, was considered the moral

education of children, including selections from the Bible, stories about being kind to

animals, and admonitions of obedience and politeness. Volume 1 contains mostly short

sentences, starting with ‘the cat is on the mat’ and getting gradually more complex until

Volume 6, which contains selections from Dickens, Longfellow, and Coleridge, among

others. Owing to the historical context of their production, many passages would be

considered racist or offensive in modern usage. No effort has been made to update the

content; may the user be warned. The corpus contains only the prose portion of the

readers. Introductions, word lists, exercises, and instructions have been removed. A

small portion of the first reader is poetry, but as it is nonstandard in language and use

of line breaks, it is not included in this version of the corpus. Subsequent releases may

have the poetry restored.

For this thesis we have undertaken to annotate Volumes 1 and 2; the former as a

development set and the latter an evaluation set. Volume 1 of the McGuffey corpus

(MG1) consists of 546 sentences that have been manually annotated with CCG cate-

1The raw text of William Holmes McGuffey’s Eclectic Reader is available as an e-book from Project

Gutenberg at http://www.gutenberg.org/ebooks/14640. The annotated corpus is available for download

at http://homepages.inf.ed.ac.uk/s0672485/mcguffey.html.
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gories, automatically parsed, and then corrected. MG1’s sentences vary in length from

2-34, with a mean sentence length of 10.57, and a median of 8. Table 6.1 compares

some relevant statistics of the MG1 corpus with those of CCGbank. The biggest dif-

ference between them, apart from size, is the lexical inventory, as represented by the

number of word types per category type. The lexical complexity, or category types per

word type, is very similar. This indicates that conclusions drawn from the very small

McGuffey corpus are likely to scale to the state-of-the-art CCGbank corpus.

Volume 2 (MG2) comprises 801 sentences, annotated in the same manner as Vol-

ume 1, though not as reliably. The McGuffey corpus serves as a gentle testbed for

development purposes. It is mainly composed of simple declarative sentences, but also

touches on questions, quotations, passives, and other complex constructions. As it was

designed as a tool to help children learn to read, the rate of introduction of new items

is slower than newswire corpora.

The annotation of the McGuffey Corpus is not entirely compatible with that of

CCGbank, as it was originally undertaken as a study of the treatment of punctuation in

CCG. For example, commas, quotation marks and negative particles have different cat-

egory types than CCGbank’s, and adjectival predicates (S[adj]\NP) are conflated with

standard noun modifiers (N/N). As such, the McGuffey Corpus will not be directly

helpful in building a better CCGbank, but it is a very useful as a small and internally

consistent development corpus.

Figure 6.1 shows the first five sentences of MG1 in their raw machine-readable

form. They are in CCGbank format. Each node of the tree is labelled either as a leaf

(L) or non-terminal (T). Leaf nodes are annotated with their CCG category and Penn

Treebank part of speech2. Non-terminals have a CCG category type and two numbers

designating headedness and number of daughters.

6.3 Empirically Setting Learning Parameters

In this section we set the unary rule inventory and filter settings specific to the McGuf-

fey corpus. We use these parameter settings for the experiments in this chapter, and

they inform the choices made in subsequent experiments. Because we are now operat-

ing in a natural language setting, we must set some parameters to limit the complexity

of the problem.

2Where it looks like information is duplicated within the leaf nodes, this is only to make the format

compatible with the StatCCG parser.



82 Chapter 6. Coverage: The McGuffey Corpus

ID=mg1.1 PARSER=GOLD NUMPARSE=1

(<T NP[nb] 0 2> (<T NP[nb] 0 2> (<L NP[nb]/N DET DET The NP[nb]/N>) (<L N

NN NN dog N>) ) (<L . . . . .>) )

ID=mg1.2 PARSER=GOLD NUMPARSE=1

(<T S[dcl] 0 2> (<T S[dcl] 1 2> (<T NP[nb] 0 2> (<L NP[nb]/N DET DET The

NP[nb]/N>) (<L N NN NN dog N>) ) (<L S[dcl]\NP VBD VBD ran S[dcl]\NP>) )

(<L . . . . .>) )

ID=mg1.3 PARSER=GOLD NUMPARSE=1

(<T NP[nb] 0 2> (<T NP[nb] 0 2> (<L NP[nb]/N DET DET The NP[nb]/N>) (<L N

NN NN cat N>) ) (<L . . . . .>) )

ID=mg1.4 PARSER=GOLD NUMPARSE=1

(<T NP[nb] 0 2> (<T NP[nb] 0 2> (<L NP[nb]/N DET DET The NP[nb]/N>) (<L N

NN NN mat N>) ) (<L . . . . .>) )

ID=mg1.5 PARSER=GOLD NUMPARSE=1

(<T S[q] 0 2> (<T S[q] 0 2> (<T S[q]/PP 0 2> (<L (S[q]/PP)/NP VBZ VBZ Is

(S[q]/PP)/NP>) (<T NP[nb] 0 2> (<L NP[nb]/N DET DET the NP[nb]/N>) (<L N

NN NN cat N>) ) ) (<T PP 0 2> (<L PP/NP IN IN on PP/NP>) (<T NP[nb] 0 2>

(<L NP[nb]/N DET DET the NP[nb]/N>) (<L N NN NN mat N>) ) ) ) (<L . . .

? .>) )

Figure 6.1: Corpus snippet showing the first five sentences of MG1.
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Restriction sents words UP UR LP LR T (m)

len ≤ 8 289 1517 85.96 80.69 68.12 63.94 11

len ≤ 9 327 1857 82.95 75.18 64.88 58.80 18

len ≤ 10 354 2106 81.13 71.65 63.87 56.41 25

-[,;:and] 257 1525 85.10 76.07 71.31 63.74 39

-[,;:and], len ≤ 10 235 1250 87.52 80.8 73.74 68.08 11

Table 6.2: Performance and head-dependency results for CI over MG1, comparing

parameters of sentence length and complexity, with a minimal rule set.

The problem with unary rules in StatCCG is that the model has access to all the

rules, regardless of frequency. That isn’t a problem for the parser in Hockenmaier’s

original configuration, since it only parses using rules that are instantiated in the model.

However, since we are using the same rules with no model restrictions and treating all

unary rules as equal, the rare rules become overrepresented and make the search space

unnecessarily large, increasing both processing time and overgeneration. To fix this,

one option is to remove all the extraneous rules from the parser. In this condition, it

is important to note that the same model is used for bottom-up and top-down parsing.

Another option is to remove those rules from the top-down model only; doing so would

necessitate keeping two separate models for the learner to use.

We performed a limited parameter evaluation experiment to attempt to establish

how reducing the set of unary rules affects the performance and time elapsed for learn-

ing each word in context in MG1. Three different rule configurations were created

by hand and tested for their effect on unlabelled precision and recall (UP and UR),

labelled precision and recall (LP and LR) and time (T). To decide which rule set is

optimal, we must weigh precision against efficiency.

In the course of this experiment, it became clear that the majority of the time is

being spent on a small number of sentences. When we examine these sentences, we

find that they are long and complex. We therefore expand our search space to include

a second parameter, and attempt to examine the effect of putting length or complexity

restrictions on the sentences that the learner tries to learn from.

Internal punctuation and coordination are the two phenomena that most easily es-

timate the complexity of a sentence. The length of a sentence is correlated with the

number of commas it contains. Any other restriction on complexity, like disqualifying

the word that, because it sometimes introduces relative clauses, would result in a bias
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Restriction sents words UP UR LP LR T (m)

len ≤ 8 289 1517 90.22 85.76 69.83 66.38 16

len ≤ 9 327 1857 88.31 81.37 67.33 62.04 29

len ≤ 10 354 2106 86.41 77.92 66.30 59.78 49

-[,;:and] 257 1525 93.83 85.77 76.83 70.23 249

-[,;:and], len ≤ 10 235 1250 94.48 88.96 77.15 72.64 17

Table 6.3: Performance and head-dependency results for CI over MG1, comparing

parameters of sentence length and complexity, with a small rule set.

Restriction sents words UP UR LP LR T (m)

len ≤ 8 289 1517 89.90 85.63 69.62 66.32 18

len ≤ 9 327 1857 88.74 81.91 68.03 62.79 35

len ≤ 10 354 2106 87.5 79.11 66.65 60.26 57

-[,;:and] 257 1525 96.71 88.72 78.70 72.20 315

-[,;:and], len ≤ 10 235 1250 96.44 91.12 78.49 74.16 26

Table 6.4: Performance and head-dependency results for CI over MG1, comparing

parameters of sentence length and complexity, with a full rule set.

against learning the category types that are the target of this exercise. For that reason,

we limit the restrictions to a list of stopwords: [ , ; : and ], the presence of any of which

cause the sentence to be skipped.

We ran the full parameter space and evaluated against the head-dependencies in

MG1, as shown in figures 6.2, 6.3 and 6.4. The first trend that is apparent is that

limiting the rule set lowers performance considerably. We can see that access to rare

rules allows higher precision in the rare cases when those rules are necessary to form

a complete parse, shown by the higher precision and recall scores in table 6.4, but in

most cases this increase the search space and results in longer run times. Limiting

the complexity without using a length restriction yields superior accuracy, but causes

runtimes to explode, especially with larger rule sets. However, when both restrictions

are in place, we see the best performance with reasonable efficiency, without the need

to place artificial constraints on the set of unary rules.

Table 6.4 shows that the best configuration is the full rule set, restricted to sentences

of length 10 and containing no internal punctuation or coordination. It yields the opti-

mum combination of high precision and recall, within a reasonable space of time. We
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Sentence # Token # Context Target

1 1 X dog . The:=NP[nb]/N

1 2 The X . dog:=N

2 3 X cat . The:=NP[nb]/N

2 4 The X . cat:=N
...

...

546 6024 ... to jump to the X . stone:=N

Table 6.5: The coverage experiments attempt to recover each token of the test set in

turn; P and R are calculated over token matches.

will use this configuration throughout the rest of the paper, unless stated otherwise.

6.4 A Natural Language Experiment

In the first natural language learning task we investigate how well CI performs at re-

covering a wide range of category types in complex settings.

6.4.1 Methods

In the first experiment we traverse the MG1 corpus in one pass, attempting to learn

each word token in turn and comparing the learned category set to the gold standard

annotation. Because we know that the lexicon contains all the necessary entries to

correctly parse all the sentences, this equates to an assessment of the lexical coverage

power of the learning algorithm.

Each word token is tested in isolation, so we report precision and recall over all

words in the test set, as compared to the gold-standard labels. There are 546 sentences

in MG1, and 6024 tokens, so performance is measured out of a total of 6024 matches.

This is summarised in table 6.5.

Figure 6.2 outlines the process of producing new parsed sentences out of raw text.

The process begins like the previous experiment, but then the category set generated

by the learner is passed back to the parser, so it can incorporate this new information

into its lexicon and produce a full parse. The Hypothesis lexicon is cleared after every

sentence.
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Parser

Raw 
sentence

Parsed 
sentence

Partial 
Parse

Category 
Set

Hypothesis
lexicon

Original
lexicon

Learner

Figure 6.2: Learning framework for coverage experiments in chapter 7.

6.4.1.1 Parameter Settings

The experimental setting for this experiment is one stage less than the convergence

experiments in the previous chapter. The parser is trained on MG1, and then tested

on the same corpus, treating one word at a time as unknown as in table 6.5. There is

not a separate training and test phase, and the lexicon is never changed. We test each

sentence afresh in isolation from the rest, to evaluate the efficacy of CI on the sentence

level.

SEED Gold standard MG1 lexicon, with target word blacked out.

TEST Gold standard MG1 CCG category labels.

6.4.1.2 Baseline

We continue using the BF and RB learners for comparison, and employ a naive POS

baseline, generated by simply tagging each target word with the category that is most

frequently associated with its POS tag. No context is taken into account. The POS tags

have been incorporated into the parsing model. All POS tags used are gold standard

labelled by hand; automatic tagging is projected to yield slightly worse results.

6.4.1.3 Evaluation

We report precision, recall, and F-score figures against the gold-standard category la-

bels for each word token in the corpus, referred to subsequently as category match

scores. This differs from standard parse evaluation, as the internal structure of the
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Best Guess In Category Set

P R F P R F Time (m)

POS 63.71 63.71 63.71 * * * 1

BF 80.65 69.36 74.58 * * * 1825

RB 39.77 37.92 38.82 68.46 65.28 66.83 12

CI 78.63 74.16 76.33 97.03 91.52 94.20 22

Table 6.6: Category match results for the three systems on the McGuffey corpus, train-

ing and testing on MG1, compared to a naive POS baseline. Best Guess evaluates

over the single highest-scoring result, In Category Set over the whole list of possible

categories returned. POS and BF contain (*) for the latter because they always return

the full set of possible categories.

parse is not taken into account. Where appropriate, learner speed is also reported in

terms of time needed to traverse the test set.

6.4.2 Results

Table 6.6 compares the category match accuracy across the three systems, as well as the

baseline that chose the most probable category for the target word’s POS. Two tasks are

scored: Best Guess, where we evaluate the single highest-scoring category against the

gold-standard tag, and In Category Set, where we check to see if the gold tag is present

somewhere in the category set returned by the learner. The POS and BF methods

get perfect scores in the latter by definition, since their category sets consist of all

known categories, and all categories seen with the target word’s POS tag, respectively.

However, these figures are left out of table 6.6 so as not to mislead the reader.

BF gets a respectable F-score in the Best Guess task, easily outdoing the POS

baseline, but takes 30 hours to do so under our computing configuration3, since it is

searching over all possible categories. RB is markedly worse in performance, but also

remarkably fast. CI combines the merits of both BF and RB, yielding a higher F-score

than BF and a processing time similar to RB.

On the In Category Set task, we allow for the presence of the correct category type

in the Top Ten list to constitute success. This yields a dramatic increase in F-scores

for both the RB and CI learners. RB’s performance is nearly doubled, but it is still

33GHz dual core Intel Xeon with 8GB RAM
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P R F

Top 1 78.63 74.16 76.33

Top 2 85.92 81.04 83.41

Top 3 91.18 86.00 88.51

Top 5 95.42 90.00 92.63

Top 10 97.03 91.52 94.20

Table 6.7: Rank evaluation of category sets returned by CI on MG1, when the parameter

of category set size is adjusted from 1 to 10.
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Figure 6.3: F-score of CI over category matches on MG1 as category set size is in-

creased.

outperformed by CI, which reaches 97% precision and 92% recall. The original goal

of focusing on precision over recall is reflected here.

Of all the methods, CI is the only one that returns a proper ranked category set.

Where the correct category is present in the set, the average rank is 1.4. An F-score of

76.33 is achieved by just picking the top ranking category, but that goes up quickly if

we allow the answer to be drawn further down the list. The default size for a returned

category set is 10. Table 6.7 shows how precision, recall and F-score for the CI learner

are affected by widening the net. Figure 6.3 shows that the F-score grows quickly at

first, then asymptotically as the allowed set size reaches the default 10.

While the rule-based system is quick, it performs poorly on both precision and
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recall. Its poor performance in the Best Guess task is due to the fact that it uses no

statistics to choose the best category set or parse, opting instead to return the sim-

plest category, that is, the one (or more) with the lowest valency. Here we have been

generous, allowing any correct category of the lowest valency to count as a success.

CI outperforms the baseline methods on a natural language corpus. It is robust and

does not depend on knowing all the categories ahead of time, or on having four or

fewer discernible constituents. For the BF learner to compete, it would have to have

access to a much faster parser. For the RB learner to stand up to either of these, it

would need to employ a more robust system of ranking candidate categories, which

would make it slower.

6.4.3 Analysis

In this section we examine the output for CI in depth, to investigate whether there

are any systematic failures in the algorithm that would prevent it from performing

adequately on more complex natural-language tasks. Table 6.8 breaks down the results

by category type, reporting the number of times the type was correctly matched, versus

the number of times it was returned as a guess. The table is sorted by the “Guessed”

column, showing that the most common types tend to have the high precision values.

Table 6.8: By-category precision for CI over the McGuffey corpus.

Category Correct Guessed Precision

NP 175 208 0.84

N 170 190 0.89

NP[nb]/N 130 166 0.78

PP/NP 75 102 0.74

N/N 63 81 0.78

(S[dcl]\NP)/(S[b]\NP) 27 27 1.0

(S[b]\NP)/NP 22 27 0.81

S[q]/S[b] 22 27 0.81

(S[dcl]\NP)/NP 21 25 0.84

(S[dcl]\NP)/PP 17 24 0.71

(S[dcl]\NP)/(N/N) 22 23 0.96

S/S 14 16 0.875

(S[to]\NP)/(S[b]\NP) 13 15 0.87

. . .
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Table 6.8: (continued)

Category Correct Guessed Precision

(S[dcl]\NP)/(S[pt]\NP) 13 14 0.93

(S[b]\NP)/PP 12 13 0.92

S[b]\NP 7 11 0.64

neg 5 11 0.45

(S\NP)\(S\NP) 1 11 0.09

S[dcl]\NP 8 10 0.8

(S[iq]/(S[dcl]/(N/N)))/(N/N) 9 9 1.0

(S[pt]\NP)/NP 8 8 1.0

(S\NP)/(S\NP) 3 7 0.43

S[ f rg]/NP 0 7 0

(N/N)/(N/N) 1 6 0.17

(S[dcl]\NP)/(S[ng]\NP) 5 5 1.0

((S[dcl]\NP)/PP)/NP 5 5 1.0

(S[b]\NP)/S[dcl] 4 5 0.8

(S[b]\NP)/(S[to]\NP) 4 4 1.0

(S[pt]\NP)/PP 4 4 1.0

(NP[nb]/N)\NP 3 4 0.75

S[inv]/S[b] 1 4 0.25

S[imp]/NP 0 4 0

S[q]/S[pt] 3 3 1.0

(S[iq]/(S[dcl]/NP))/NP 3 3 1.0

(S[dcl]\NP)/(PP/NP) 3 3 1.0

(S[b]\NP)/(N/N) 3 3 1.0

(S[b]\NP)/(PP/NP) 3 3 1.0

((S[b]\NP)/(S[b]\NP))/NP 3 3 1.0

((S[dcl]\NP)/NP)/NP 3 3 1.0

(S[imp]/(S[b]\NP))/NP 2 3 0.67

((S[b]\NP)/PP)/NP 1 3 0.33

S[wq]/(S[inv]/NP) 1 3 0.33

PP/PP 0 3 0

S[tag]/NP 0 3 0

S[wq]/(S[dcl]\NP) 2 2 1.0

. . .
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Table 6.8: (continued)

Category Correct Guessed Precision

S\S 2 2 1.0

S[imp]/S[iq] 2 2 1.0

(S[q]/NP)/NP 2 2 1.0

(S[q]/PP)/NP 2 2 1.0

(S[dcl]\NP)/(S[to]\NP) 2 2 1.0

(S[b]\NP)/S[iq] 2 2 1.0

((S[pt]\NP)/PP)/NP 2 2 1.0

((S[b]\NP)/(PP/NP))/NP 1 2 0.5

NP/NP 1 2 0.5

(N/N)/PP 1 2 0.5

S[iq]/S[dcl] 1 2 0.5

((S\NP)\(S\NP))/S[dcl] 0 2 0

S[iq]/(S[dcl]/NP) 0 2 0

S[iq]/NP 0 2 0

S[ng]\NP 0 2 0

S[wq]/(S[inv]/PP) 1 1 1.0

S[pt]\NP 1 1 1.0

S[inv]/NP 1 1 1.0

S[imp]/PP 1 1 1.0

S[imp]/S[imp] 1 1 1.0

PP/S[dcl] 1 1 1.0

(S[q]/(N/N))/NP 1 1 1.0

(S[pt]\NP)/(S[ng]\NP) 1 1 1.0

(S[imp]/(S[to]\NP))/NP 1 1 1.0

(S[inv]/NP)/NP 1 1 1.0

(S[dcl]\NP)/S[iq] 1 1 1.0

(PP/PP)/(N/N) 1 1 1.0

((S[b]\NP)/(S[to]\NP))/NP 1 1 1.0

((S[b]\NP)/PP)/PP 1 1 1.0

((S[dcl]\NP)/(PP/NP))/NP 1 1 1.0

((S[dcl]\NP)/(S[b]\NP))/NP 1 1 1.0

((S\NP)\(S\NP))\NP 1 1 1.0

. . .
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Table 6.8: (continued)

Category Correct Guessed Precision

((S[ng]\NP)/PP)/NP 1 1 1.0

((S[b]\NP)/NP)/(PP/NP) 0 1 0

((S[b]\NP)/PP)/(N/N) 0 1 0

((S[b]\NP)/NP)/(PP/NP) 0 1 0

((S[b]\NP)/PP)/(N/N) 0 1 0

((S[dcl]\NP)/(S[to]\NP))/(N/N) 0 1 0

((S[dcl]\NP)/PP)/PP 0 1 0

((S[ng]\NP)/NP)/(PP/NP) 0 1 0

((S[pt]\NP)/NP)/(PP/NP) 0 1 0

((S\NP)\(S\NP))/((S\NP)\(S\NP)) 0 1 0

((S\NP)\(S\NP))/PP 0 1 0

(S[b]\NP)/S[b] 0 1 0

(S[ng]\NP)/NP 0 1 0

(S[ng]\NP)/PP 0 1 0

(S[q]/S[iq])/NP 0 1 0

(S[to]\NP)/((S[b]\NP)/NP) 0 1 0

(S\S)/(S\S) 0 1 0

(S\S)/NP 0 1 0

(S\S)\NP 0 1 0

NP/PP 0 1 0

NP\NP 0 1 0

S[ f rg] 0 1 0

S[ f rg]/(N/N) 0 1 0

S[imp] 0 1 0

S[imp]/S[b] 0 1 0

For the 102 category types attempted, 32 are never tagged correctly by CI. Most of

these are only attempted once, so we don’t have enough evidence to attribute the blame

to the learner or to the sentence. For any category type that was attempted more than

once and never with success, we examine all the instances by hand. Analysis shows

that all of these errors are attributable to the model, and do not represent flaws in the

learning algorithm itself.
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We classify the errors into four types below. It is important to note that in all of

these cases, the returned category is the one assigned the highest probability by the

learner, and that the correct category is present lower down in the category set4.

6.4.3.1 Sentence Type Errors

The most common type of error has the structure of the category correct, but chooses

the wrong sentential type for the result.

Sentence Gold Standard Best Guess

1 O Ben ! (x5) S[ f rg]/NP S[iq]/NP

2 O mother ! (x2) S[ f rg]/NP NP[nb]/N

3 See Rab ! S[imp]/NP S[iq]/NP

4 See Ann ! S[imp]/NP S[iq]/NP

5 What a bright June day ! S[iq]/NP S[imp]/NP

6 Oh ! Thank you . S[tag]/NP S[ f rg]/NP

7 Thank you very much . S[tag]/NP (S\S)/NP

In (1), which occurs five times in the error set with different NPs, the learner is cor-

rect in deducing that the target takes an NP to the right, but chooses to treat the whole

sentence as an indirect question, rather than a sentence fragment. On the whole, this

is unlikely to cause problems, since exclamations of this type could be analysed in

several ways. A similar process is at work in (2), where O is deemed a determiner,

since that pattern is common in the corpus and there is no evidence to contradict it. (3)

and (4) are problems, since parsing a sentence as an indirect question rather than an

imperative would have negative effects were these parses to be used in certain types

of systems. (5) is the same behaviour in reverse. (6) and (7) are interpreted as a frag-

ment and a sentential modifier, respectively, rather than tag question, which causes no

serious concern.

6.4.3.2 Argument/Adjunct Confusion

The second type of error sees adjuncts interpreted as arguments.

4With a few exceptions, which will be discussed in second half of the error analysis.
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Sentence Gold Standard Best Guess

1 See the eggs in the nest ! S[imp]/NP (S[imp]/PP)/NP

2 See the duck on the pond ! S[imp]/NP (S[imp]/PP)/NP

3 Sweet little birds were singing all around

her .

S[ng]\NP (S[ng]\NP)/PP

4 What a big room for such a small school ! S[iq]/NP (S[imp]/PP)/NP

In these four cases, the result type and one argument are correct, but there is an ad-

ditional prepositional argument that is canonically an adjunct. (4) is arguably correct,

and possibly a better analysis than the gold-standard annotation.

6.4.3.3 Modifier Errors

The learner has to make decisions about modifier attachment based on the model. In

four cases it chose incorrectly.

Sentence Gold Standard Best Guess

1 Sweet little birds were singing all
around her .

PP/PP (S\NP)\(S\NP)

2 Look down into this bush . PP/PP S\S
3 She wears glasses when she

reads .

((S\NP)\(S\NP))/S[dcl] (NP\NP)/S[dcl]

4 No one could get them while Rab

was there .

((S\NP)\(S\NP))/S[dcl] (NP\NP)/S[dcl]

(1) attaches to the verb phrase to the left, rather than the prepositional phrase to the

right. The same is true for (2), which chooses to attach to the S[imp] to the left. (3)

and (4) exhibit similar behaviour, getting the direction of the attachment right, but the

scope wrong. They are erroneously analysed as relative pronouns, which is a more

common occurrence in the model than the correct adverbial analysis.

6.4.3.4 Remaining Errors

The remaining five errors are either combinations of the previous kinds, or ambiguous

analyses.
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Sentence Gold Standard Best Guess

1 Ca n’t you get back to the hen ? PP/PP NP

2 Ben White is driving . S[ng]\NP PP

3 Is that what all this noise is about ? S[iq]/(S[dcl]/NP) NP

4 I know what we can do . S[iq]/(S[dcl]/NP) S[iq]/S[dcl]

5 Do n’t you ? S[tag]/NP (S[q]/NP)/NP

(1) plays on the ambiguity of get, which can subcategorise for either an NP or a PP to

the right. In this case the former is chosen, leading to an analysis of the modifier as an

NP, as in ‘Can’t you get food to the hen?’ The model is similarly at work in (2), where

the predicate is a progressive verb, but the model prefers prepositional predicates, as

in ‘Ben White is around’. Linguistically, there is a case for (3), where what is tech-

nically a noun, but the indirect question category must be used to resolve the correct

long-distance dependencies. The learner has chosen the category that ignores the NP

extraction, as in ‘I know how we can do (it).’ (4) is similar. It is only slightly wrong, in

that the argument should leave an NP unresolved in order to allow what as the object

of do. (5) is a combination of a sentence type error and argument/adjunct confusion. It

interprets the whole parse as a S[q]/NP, as in ‘Have n’t you (any friends)?’.

6.4.3.5 Not-in-set Errors

The CI implementation returns a category set of size ≤ 10 for every target word, con-

sisting of categories and associated probabilities, as derived according to the previous

chapter. In most cases the correct category is somewhere in that category set, but in

41 cases it is missing. These are the most dangerous class of errors, because the re-

gardless of the method used for creating a lexicon out of CI-derived categories, these

types of errors will always result in erroneous lexical entries. Fortunately, it is not very

common.

Figure 6.4 lists the words for which CI produces not-in-set errors (bold) in their

sentential contexts. There are 41 not-in-set errors in total, involving only 25 sentences.

This points to the fact that certain difficult or particularly ambiguous sentences result

in multiple errors.

The last example is indicative of the whole set, a casualty of pruning. Only five

categories are returned in the category set, out of a possible ten, which means that the

correct category is not learned and pruned: it is never learned. In order for the correct

category to be learned, the chart must have the entry S[dcl]\NP in cell (1,4) (was of
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1. What shall we do ? said Fanny to John .

2. Shall we hunt for eggs in the barn ?

3. I will take you back .

4. How safe the little chick feels now !

5. Do n’t you ?

6. Brave old dog !

7. What do you think of Ponto ?

8. The sky is as blue as it can be .

9. Is that what all this noise is about ?

10. Then we will all join to pay for it .

11. Oh ! thank you .

12. Sweet little birds were singing all around her .

13. What do you ask for a ticket on your train ?

14. About what time will you get back ?

15. At half past eight .

16. Do you see the children at play ?

17. He is always so polite .

18. Poor rat !

19. Do you see what it is made of ?

20. What do you think is in it now ?

21. How hard she must work to feed them all .

22. Thank you very much .

23. There ! cried Frank .

24. You do n’t try at all .

25. It was of no use to try .

Figure 6.4: The 41 not-in-set errors (bold) occur in only 25 sentences.
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no use), which it does. Then it must put (S\NP)\(S\NP) in cell (5,6), which it does,

using one of the non-combinatory model rules. The next step would be to apply the

unary transformation (S\NP)\(S\NP)→ (S[to]\NP). However, the probability that

results from this is too low to make it past the n=10 pruning threshold for that cell, and

the learner misses the opportunity to learn the correct category. The solution to this

problem would be to raise the pruning threshold for chart cells.

Instead of interpreting these problems as a deficiency in the learner, it is possible

that we could attribute them to the corpus annotation. It would be very interesting to

use the learner iteratively with annotation, alternating an automated learning step with

a human correction step to achieve a grammar that is optimally learnable. A similarly

logical extension would be to examine multiple sentences with the same missing item

at a time, along the lines of Fouvry [2003], which is touched on in chapter 8 of this

thesis.

6.4.4 Discussion

This section has introduced the McGuffey corpus as a testbed for word learning. In

this initial investigation of Chart Inference as a natural-language learning mechanism,

we have shown that it outperforms both the very accurate but very slow BF method,

and the quick and dirty RB method. Testing on the training data has allowed us to

make a detailed analysis of the types of errors and the circumstances that cause them.

Analysis of the errors has shown that they are caused by vagaries of the corpus and the

model, and that there are no systematic deficiencies in CI as a learning algorithm. We

have shown an F-score of 76.33 for returning the single highest-probability category,

and established that the correct category is more likely to be in the returned category

set as the beam is increased from 5 through 10. On the strength of this analysis, we

will use a beam of 10 for pruning the search space in subsequent experiments.

6.5 A Second Natural Language Experiment

The second experiment is a realistic environment for word learning: the parser is ini-

tially trained on MG1, then tested on MG2. We aim to recover as many word-category

pairs as possible from the N-1 sentences of MG2 and evaluate the learned categories

against the gold standard labels. We can then perform a meaningful error analysis on

the results, showing how the three word learning methods compare in actual practice,
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in a realistic setting. Since we are not guaranteed to have access to all the necessary

word/category pairs in the seed lexicon, the precision and recall values for this second

experiment should be lower than the first.

6.5.1 Corpus

To complement the MG1 seed corpus, we introduce MG2, which contains 801 sen-

tences and is annotated in the same way as MG1. As it is constructed from the second

volume of McGuffey’s reader, the material is more complex and the sentences are

longer.

SEED Gold standard MG1lexicon.

TEST Gold standard MG2 with CCG category labels.

6.5.2 Methods

To test the limits of the learners on truly OOL words, we again train on MG1, but test

instead on MG2. This learning setting allows us to return to the N-1 condition of the

previous chapter, in that the target words we are trying to learn are truly OOL, and the

information we have about the surrounding words might be incomplete. The remainder

of the experimental setup is identical to the previous section.

6.5.3 Results

Table 6.9 shows the category match results of the three systems on MG25. Out of

its 801 sentences in MG2, only 107 satisfy the N-1 condition, and of those only 32

present targets for the learners, being between 2 and 10 tokens long, containing no

internal punctuation or coordination. Recall is calculated out of 32 possible targets. If

the 31 unique word types from these sentences were successfully added to the lexicon,

95 N-1 sentences would be available for learning on a second pass, only 12 of which

pass the length and complexity requirements.

BF is perfect at producing a category set that contains the correct tag, since the

target categories for MG1 are all present in MG2. It fares worse, however, when

5Precision, recall, and F-score for the BF method on the In Set task is 100% by definition, since all

possible categories are tried, but this is not a useful comparison
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Best Guess In Category Set

P R F P R F

BF 50.00 28.13 36.00 * * *

RB 16.13 15.63 15.87 29.03 28.13 28.57

CI 61.90 40.63 49.06 76.19 50.00 60.38

Table 6.9: Category match results for the three systems on the McGuffey corpus, train-

ing on MG1 and testing on MG2.

In Category Set Best Guess

count P R F P R F

N 11 71.43 45.45 55.55 57.14 36.36 44.44

N/N 6 75.00 50.00 60.00 75.00 50.00 60.00

NP 5 1 60.00 75.00 1 60.00 75.00

S[dcl]\NP 2 50.00 50.00 50.00 50.00 50.00 50.00

(S\NP)\(S\NP) 2 1 1 1 50.00 50.00 50.00

(S/S)/NP 2 0 0 0 0 0 0

S[b]\NP 1 1 1 1 1 1 1

S[iq]/S[dcl] 1 1 1 1 0 0 0

S/S 1 0 0 0 0 0 0

(S[dcl]\NP)/(S[to]\NP) 1 0 0 0 0 0 0

Table 6.10: CI performance on MG2 by category type.

comparing the best guesses, yielding an F-score of only 36%. RB fares poorly on both

tasks, achieving F-scores of only 16% and 29%.

CI does not perform as well as in the first experiment with complete information,

but easily outperforms RB, and exceeds BF in all areas. Its precision scores are again

higher than its recall. CI is clearly the best method in the Best Guess task, with nearly

62% precision, for an F-score of nearly 50%.

We look further into the CI results in table 6.10, where we see that CI is best at

learning the most common categories, such as N and N/N, but less successful at some

of the more complex ones, such as S[iq]/S[dcl] and (S[dcl]\NP)/(S[to]\NP). It is

noteworthy that for several of the category types, CI performed the same on the In

Category Set and Best Guess tasks. These figures will be investigated further in the

error analysis in the next section.
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6.5.4 Analysis

In this section we will examine the 32 individual target sentences in detail. In ta-

ble 6.11, each target sentence is shown with the correct category tag for the OOL

word, and the treatment of the problem by each of the three learners. For each learner,

we specify whether any answer has returned (Guessed), whether the correct answer is

somewhere in the returned category set (Present), and whether the correct answer is

the highest-ranked returned category (Best). The breakdown quickly shows that RB’s

recall problem is due to its low threshold for returning an answer; it attempts to provide

output for sentences the other two methods wisely skip.

CI correctly assigns thirteen targets in the Best setting. Of these, seven are N or

NP, two are intransitive verbs, three are adjectives and one an adverb. These tend to

be the categories on which all methods perform well.

For eleven targets the CI learner returns no answer. This is because the parser

cannot find any rules to make the given categories into a cohesive tree. In most cases

this is due to a known word missing a category. Sentence 5 (Suddenly she went away.)

is indicative of this type of error: away is in the MG1 lexicon as an adverb, but there

is no entry for went (either intransitive or subcategorising for an adverb) that allows

combination. As such, the insufficient coverage of the seed lexicon is at fault.

CI succeeded at Present but failed at Best in only three instances (as opposed to

BF’s ten.) These are listed in table 6.12. The first sentence shows the classic N v. NP

confusion. For the other two, CI chooses to return a category type that is statistically

more likely, but actually a valid interpretation of the target word given the context.

Given the context ‘I do not know X she is so silly’, the learner chooses the category

S[comp]/S[dcl], which would be correct if the target word had been that. Similarly,

but further removed, ‘So he ran X as fast as he could .’ would justify NP if the target

had been Java. Some contexts are merely ambiguous when viewed in isolation. In-

corporating information about morphology and capitalisation, as well as interpolating

the interpretations of one word over multiple sentences would go some way towards

mitigating these ranking errors.

For five sentences for which CI returned an answer, the correct category was not

present in the returned category set. This is the problem area, since we generally

assume that the correct answer will be somewhere in the set. First consider the sentence

‘He had a little sister about two years old.’ The parser does not know the X years old

construction, and tries to parse it as a flat series of adjectives, rather than a nested one.
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Sentence Gold Standard Best Guess

James White has two dogs . N NP

I do not know why she is so silly . S[iq]/S[dcl] S[comp]/S[dcl]

So he ran off as fast as he could . (S\NP)\(S\NP) NP

Table 6.12: Three cases where CI fails at Best but succeeds at Present.

‘How we both laughed !’ yields (S\NP)\(S\NP) because of complex entries for How

that are prevalent in the dialog-heavy corpus. ‘After that we had a picnic dinner in the

woods.’ is returned as (S[dcl]\NP)/S[comp], because higher frequency uses of that

push the correct tag past the pruning threshold. ‘Then he set it afloat as he had the

others.’ poses a hard sentence to parse. It contains a high level of ambiguity and room

for presuming that the seed lexicon contains the necessary items, when in fact it does

not. This causes the learner to yield a spurious category: (NP\S[pt])\NP. For ‘Then

he told her all his trouble.’ the most likely category is S[dcl]\NP. The correct N does

not appear in the category set because the seed lexicon does not have access to the

correct ditransitive interpretation of told.

6.5.5 Discussion

This section has shown that CI is capable of learning new lexical items in a natural

language setting. Though the number of new word/category pairs learned is low, CI

has proven the most effective method for acquiring them, yielding 21 new lexical items

with 62% precision. It has the greatest success recovering the most common category

types N and N/N. The two types of errors that pose problems for more complex

tasks are the ranking problem, where the correct category is in the category set, but

not given the highest probability, and the out-of-set problem, where the parser does not

have access to the correct lexical entries for the context words, and is forced to interpret

arguments incorrectly or piece together a spurious OOL category out of incongruous

pieces. The former can only be addressed by starting with a better model, and the

latter, with a better lexicon.

6.6 The special case of bet

As a supplement to the evaluation above, we use one last experiment to measure a

phenomenon that did not occur in either of the above experiments on the McGuffey
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corpus: generation of unknown category types.

Steedman identifies bet as one of the few verbs with a valency of 4 [Steedman

2000]. It is OOL for the McGuffey corpus, so we run the sentences in the first column

of table 6.13 through each of the learning methods and trace the process they use

to decide on a solution. Given that this valency is rare, we have limited the inverse

application rule to produce categories of valency 3 or lower. For this experiment we

temporarily lift this restriction.

The second column of table 6.13 lists the gold-standard correct category type for

bet in that particular context. The next three columns list the Best Guess returned by

each of the three learners. Incorrect category types are marked with a *, and nearly

correct, or plausible, categories are marked with a ?.

The BF learner only manages to return answers for half of the sentences, but gets

three out of the four correct. The non-answers are produced when no available category

type (from MG1) is capable of producing a well-formed parse.

In the RB condition, NP is found for every sentence. The edge selector always uses

length = 3. Because the chart can find a way to parse everything after the target word

into a single constituent, it does. Only for the first two sentences does it find the correct

category lower in the category set, and this is because those sentences are genuinely

three constituents long.

CI performs better than either of the baseline systems. For all the test sentences,

the correct category is somewhere in the returned category set. In the first three cases

as well as the fifth, the best guess that CI produces matches the answer. The sixth

and eighth contexts (?) are correct except for some confusion between N and NP.

The fourth (*) has the rightward constituents correct, but has the result wrong. This is

due to the learner deciding that the whole sentence is most likely to be an NP, which

is common in the training corpus. The seventh (*) has the wrong subcategorisation

frame, choosing to interpret ’two cents you can’ like ’two cents you gave me’, using a

unary rule to transform the S[dcl] to NP\NP.

6.7 Discussion

This chapter has shown in three experiments that CI exceeds the RB and BF baselines

in terms of lexical coverage, and more importantly, that it does not suffer from any

systematic deficiencies that prevent it from covering the full complexity of a natural

English corpus. The first experiment showed CI to exceed the baseline learners in



104 Chapter 6. Coverage: The McGuffey Corpus

Sentence
C

orrect
C

I
B

F
R

B

Ibetyou
ran

.
(S
[dcl]\N

P
)/S

[dcl]
(S
[dcl]\N

P
)/S

[dcl]
*(S

/S
)\N

P
*N

P

Ibetthatyou
ran

.
(S
[dcl]\N

P
)/S

[com
p]

(S
[dcl]\N

P
)/S

[com
p]

(S
[dcl]\N

P
)/S

[com
p]

*N
P

Ibethim
you

ran
.

((S
[dcl]\N

P
)/S

[dcl])/N
P

((S
[dcl]\N

P
)/S

[dcl])/N
P

((S
[dcl]\N

P
)/S

[dcl])/N
P

*N
P

Ibethim
thatyou

ran
.

((S
[dcl]\N

P
)/S

[com
p])/N

P
*(N

P
[nb]/S

[com
p])/N

P
none

*N
P

Ibettw
o

cents
you

ran
.

((S
[dcl]\N

P
)/S

[dcl])/N
P

((S
[dcl]\N

P
)/S

[dcl])/N
P

((S
[dcl]\N

P
)/S

[dcl])/N
P

*N
P

Ibettw
o

cents
thatyou

ran
.

((S
[dcl]\N

P
)/S

[com
p])/N

P
?((S

[dcl]\N
P
)/S

[com
p
])/N

none
*N

P

Ibethim
tw

o
cents

you
ran

.
(((S

[dcl]\N
P
)/S

[dcl])/N
P
)/N

P
*
((S

[dcl]\N
P
)/N

P
)/N

P
none

*N
P

Ibethim
tw

o
cents

thatyou
ran

.
(((S

[dcl]\N
P
)/S

[com
p
])/N

P
)/N

P
?(((S

[dcl]\N
P
)/S

[com
p])/N

)/N
P

none
*N

P

Table
6.13:

Learned
categories

forallcontexts
ofbet.

The
categories

in
the

lastthree
colum

ns
are

the
bestguess

given
by

each
system

.



6.7. Discussion 105

coverage while remaining competitive on speed. It also showed that the average rank

of the correct category in the returned category set is 1.4, allowing future experiments

to set this parameter accordingly.

The second experiment extended the learning task to a more traditional setting,

where the lexicon did not necessarily contain all the items necessary for parsing the

test sentences. CI still outperformed both BF and RB, though the F-scores were lower

than in the first experiment. It showed that limiting the learning setting to prioritise

precision has a marked effect on recall, indicating that a much larger corpus will be

needed to meaningfully measure its ability to actually improve upon an existing lexi-

con.

Finally, an analysis of the treatment of the high-valency word bet proved that CI is

able to learn completely novel category types, though its ability to choose the correct

category is directly influenced by the accuracy of the parsing model provided.





Chapter 7

Lexicon Recovery: CCGbank

7.1 Introduction

To test whether Chart Inference presents a tractable solution for increasing the scope of

a parser with no new labelled data, we run a series of experiments using CCGbank as

our seed, training, and test corpora. Because we have gold standard category labels and

head-dependency information for the sentences, we can measure performance over all

stages of the system. This experiment examines whether CI produces a better lexicon,

and therefore a better parser, than self-training over the same data. In addition, we

compare CI’s performance to an oracle setting, to tease out the finer details of the

impact of CI over a finite training corpus.

7.2 Related Work

In the context of parsing, self-training (ST) is the process of using a trained parser

to produce new parses with which the next generation of parser can be trained. There

have been mixed results for parser coverage and domain adaptation over the years: Mc-

Closky et al. [2006] and Reichart and Rappoport [2007] showed improvement, where

Steedman et al. [2003a] and Charniak [1997] did not.

McClosky et al. [2006; 2008] investigated the vagaries of ST using a generative

parser in combination with a discriminative reranker. Their battery of tests determine

the gains from ST to be additive and attributed to a combination of circumstances:

First, that ST increases the amount of evidence for additional possible dependencies

between pairs of known words (biheads), and second, that it influences the reranker

more than it does the parser, by giving more evidence for non-generative features.

107
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They also concluded that more evidence in general slightly helps to reduce search er-

rors. Overall, this investigation showed that when the seed is small, ST really helps

by learning new words, but when the seed is large, biheads are more important, be-

cause the rare words are dealt with by other processes in the parser and reranker. The

McClosky et al. [2006] experiments indicate that it is effective in some cases, but fails

in others. They attribute this behaviour to a confluence of circumstances particular to

their learning setting, which has the benefit of a discriminative re-ranker, both in the

parsing case and in the learning case [McClosky et al. 2008].

Reichart and Rappoport [2007] investigate how ST contributes to domain adapta-

tion in four experimental settings: using in-domain or out-of-domain data for the initial

training and ST steps. They aim to improve a generative PCFG parser (Collins Model

2), focusing on reducing the cost of producing the labelled data needed to result in

target F-scores (75-80%). Using a small seed (0-2000 annotated sentences), they show

that ST can yield improvement in F-score and coverage in all four of their experimen-

tal settings. Their major claim is that using ST in the case where both data sets are

in-domain means you only need to start with half the number of labelled sentences to

achieve the same F-score. They also found that a single pass over the all of data is

more effective than incremental processing over subsets (a claim echoed by Steedman

et al. [2003b]), and that 3000 sentences of unlabelled training data is insufficient for

producing a wide-coverage parser.

7.3 Corpus

For this experiment we use the CCGbank corpus [Hockenmaier 2003], which was

semi-automatically translated from the Penn Treebank [Marcus et al. 1993]. CCG-

bank is split into 24 sections, of which §02-21 are traditionally used for training, 00

for development, and 23 for evaluation. We use CCGbank §02-21, containing 39604

sentences, as the seed corpus. The original parser is trained with these gold-standard

parse trees, which have been semiautomatically generated as described in chapter 2.

We report evaluation on §00 and 23, which contain 1913 and 2407 sentences, respec-

tively.

CCGbank’s semi-automatic provenance means that it contains many of the same

annotation quirks and errors of the original Penn Treebank, and some further quirks

introduced by the translation process. We understand that Hockenmaier attempted to

keep these to a minimum, but nevertheless, there are some structures in the corpus that
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Section S W tokens W types C types W |C pairs

02-21 39604 929522 44210 1286 74669

00 1913 45422 7878 394 11282

23 2407 55371 8392 - -

Table 7.1: Distributional analysis of the CCGbank corpus over sentences (S), words

(W) and categories (C).

02-21 00 23

Seed: 1000

Train: 34604 Test: 1913 Test: 2407

Seed: 2000

Seed: 3000

Seed: 4000

Seed: 5000

Figure 7.1: Division of the CCGbank corpus into training and test segments for the

lexicon recovery experiments, with sentence counts.

are nonstandard.

Table 7.1 summarises the contents of CCGbank. We do not report the number of

unique category types or lexical items for §23, because it is closed and Hockenmaier

[2003] does not supply the relevant data files for it.

Figure 7.1 illustrates how the CCGbank corpus is broken down into Seed, Train,

and Test sections. We run five settings to compare how the seed size affects the quality

of learned sentences, and the resultant quality of the parsed test set. The Train and Test

sets remain the same throughout the experiment. This formulation is non-standard, but

designed to test the effect of changing the number of seed sentences on the quality of

the learning step. At each Seed setting, both the parser and the lexicon are trained on

only the seed section of CCGbank, and the remainder of the corpus is left closed for

use in the training set. A more standard experiment may randomly select N random

sentences to serve as the Seed set, and the rest as the Training set, but this allows us to

make direct comparisons over consistent subsets of data.

SEED Five seeds from 1000-5000 sentences from the beginning of CCGbank §02-21.

TRAIN 34604 sentences from the end of CCGbank §02-21.

TEST CCGbank §00 and 23.
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As the seed size increases from 1000 to 5000 sentences, so does the number of

learning opportunities. We expect the F-score over dependencies on test sets 00 and 23

to be greatest in the 5000 condition.

7.4 Methods

Five separate experiments are run in isolation, each starting with a seed size between

1000 and 5000 sentences. First, a parser is trained on only those sentences of the seed.

In the learning step we use CI to obtain a weighted list of possible lexical entries for the

target word, then add those into the working lexicon and return the highest-probability

parse from the StatOpenCCG parser. We then add all these new parsed sentences to the

training set and, at the final evaluation step, we retrain StatCCG with the expanded set

of sentences and parse §00 and §23 using only the original parsing mechanism. These

final parses are evaluated against the gold-standard dependency information provided

by Hockenmaier and Steedman [2007]. The ST baseline is calculated in the same way,

running the seed-trained parser rather than CI over the 34604 training sentences and

integrating the new parses to retrain before the final test phase.

One major issue to contend with when adding to an existing lexicon and model is

how to incorporate the new items, which are likely of inferior quality, with the known

items, which in our case are not quite gold-standard, but at least high-quality. In this

case we generate new parsed sentences and then concatenate them with the training

data, as in ST, but there is a great deal of further investigation to be done on how best to

extend a lexicon and model on the fly, which would enable much faster, online learning.

It may be possible to incorporate more sophisticated weighting in the statistical model,

regarding lexical items gleaned from labelled and unlabelled sentences [Nigam et al.

1999; Deoskar 2008; Deoskar et al. 2011]. We leave this as future work, and discuss

further ramifications of this issue in chapter 9.

7.4.1 Parameter Settings

The timeout is set to 200000ms, and the category set beam to 10, returning an answer

set of up to ten categories for each target word to the parser. The StatCCG word

frequency threshold is set to 5 for all phases of the experiment, so a token must be seen

at least 5 times for its categories to be included in the lexical model, as opposed to the

POS model.
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7.4.2 Baselines

We compare CI to self-training by substituting a normal parsing run for the CI step,

and include three other benchmarks: the parser trained on seed lexicon with no learning

(lower bound), the parser trained on all Seed+34604 sentences (upper bound) and the

Oracle, which is constructed by keeping a list of all the sentences CI attempts, and

putting their gold-standard trees into retraining, rather than the CI-produced trees. The

Oracle figures represent an upper bound given CI’s low recall. They are what we could

expect if CI were perfect at producing parse trees, and the difference between Oracle

and CI gives some indication of the quality of the parses CI produces.

We anticipate the ST baseline will be high because the training and test corpora

share a domain, following Reichart and Rappoport [2007], but the interesting area

is between ST, which is cheap to run, and the Upper Bound, which is impossible to

achieve without labelled data. The experiment examines whether CI is an effective

way of improving upon ST without the use of any additional resources.

7.4.3 Evaluation

We evaluate against the gold-standard dependency annotation of CCGbank, both the

development set §00 and the closed test set §23 [Clark and Curran 2003; Rimell and

Clark 2008b; Rimell et al. 2009]. Unlabelled and Labelled dependencies are available

for both sections, from which we can calculate precision, recall, and F-score.

7.5 Results

The results of this experiment show that CI is more effective than ST in improving

the performance of a baseline parser. Furthermore, increasing the number of sentences

used to train the seed lexicon from 1000 to 5000 yields real improvement in F-score,

which improves with the size of the seed.

Table 7.2 reports precision, recall and F-score over labelled and unlabelled depen-

dencies for §00. All three metrics strictly improve as the seed size is increased, as

we would expect. Unlabelled scores are consistently higher than labelled, due to the

increased complexity of the labelled task.

The upward trend is echoed in table 7.3, where we can see the seed lexicon getting

bigger in terms of both tokens (|Lto|) and types (|Lty|), and the opportunities for learn-

ing in the N-1 setting increasing as a result. The number of new training sentences
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Seed UP UR UF LP LR LF

1000 83.37 71.80 77.15 72.33 62.29 66.94

2000 84.00 75.09 79.29 73.58 65.78 69.46

3000 85.27 76.94 80.89 75.50 68.12 71.62

4000 85.70 79.14 82.29 76.40 70.55 73.36

5000 86.14 81.37 83.69 76.89 72.63 74.70

Table 7.2: Labelled and Unlabelled Precision, Recall, and F-score of CI over depen-

dencies as a function of seed size, for test section §00.

Seed |Lty| |Lto| N-1 sents #CI #ST

1000 893 7406 3657 812 32448

2000 1635 12089 5875 1311 32940

3000 2185 15537 7462 1516 33390

4000 2643 18672 8271 1494 33606

5000 3137 21560 8935 1523 33717

Table 7.3: Corpus statistics as a function of seed size, including number of types |Lty|
and tokens |Lto| in the seed lexicon, number of N-1 learning opportunities out of a

possible 34604, and training sentences parsed by CI and ST.



7.6. Analysis 113

UF LF UF LF

Seed (Baseline) 83.45 74.62 83.63 75.36

ST 82.26 72.94 82.66 74.39

CI 83.69 74.70 83.66 75.25

Oracle 83.74 74.93 83.87 75.53

Upper Bound 89.38 82.32 89.01 82.38

Table 7.4: Labelled and Unlabelled F-score over dependencies in §00 and 23, starting

with 5000 seed sentences.

added by CI and ST are markedly different, although they do increase with the seed

size. ST yields twenty to forty times more new sentences than CI: the former is able to

handle most of the sentences in the training set, while the latter is limited to only those

N-1 sentences for which CI produces a parse.

Table 7.4 shows labelled and unlabelled F-score for the setting that performed best.

ST effects a decrease in parsing performance with respect to the baseline setting using

just the 5000 sentences to train the seed lexicon. CI, however, shows a numerical

improvement on both metrics over §00 and UF over §23, though the difference is not

statistically significant. LF on §23 is lower than the baseline, but not so low as ST.

The CI F-scores are approaching the Oracle, but are still some way off from the Upper

Bound, showing that there is still more to be learned by increasing the recall, so as to

include more sentences in the retraining phase.

Figure 7.2 tracks the change in labelled F-score over §00 as the size of the seed is

increased. When the initial lexicon is small, CI and ST degrade performance against

the Seed. As the lexicon is made stronger, the gap between Seed and CI narrows, so

that CI just outperforms the Seed at 5000 sentences. In contrast, the gap between Seed

and ST stays relatively constant. A similar relationship is shown for §23 in FIgure 7.3,

though all the curves are closer together. The one difference, however, is that ST

outperforms CI for low amounts of seed sentences, but the relationship reverses for the

larger seeds.

7.6 Analysis

The central result of this chapter is CI’s relationship to the Oracle, since this indicates

how well the learner is performing in terms of its parse accuracy, a proxy for error rate.
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Figure 7.4: Difference in labelled and unlabelled F-score between CI and Oracle as

seed size increases, over dependencies in both §00 and 23.

The Upper Bound is very high, since it assumes that all of the training sentences can

be handled by the learner, while the Oracle shows that restricting the number of learn-

ing opportunities greatly mitigates the potential effect of CI on the resultant lexicon.

Remember that a large number of sentences are rejected by CI because they contain

more than one unknown word, or are unparseable due to the large search space.

The CI and Oracle results are very close, showing that this implementation of CI

is near 100% precision when it comes to parsing unseen sentences. As the number of

seed sentences increases, the gap between CI and Oracle decreases, showing that the

parsing accuracy is improved with a larger seed.

Figure 7.4 shows the difference between CI and Oracle for Labelled and Unla-

belled F-score over both §00 and §23. Note that the values on the y-axis represent the

difference between the CI and Oracle values, rather than real F-score. While the extent

of all four gaps decrease as more seed sentences are made available, §23 UF and LF

do so more consistently. §00 begins with a smaller gap than §23, but does not decrease



116 Chapter 7. Lexicon Recovery: CCGbank

D
iff

er
en

ce
fr

om
O

ra
cl

e

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000  2000  3000  4000  5000

D
iff

er
en

ce
 in

 F
-s

co
re

Seed Size

LP00
LR00

Figure 7.5: Difference in labelled precision and recall between CI and Oracle over de-

pendencies in §00.

as smoothly: UF experiences a rise from 2000 to 3000, and LF from 1000 to 2000 and

3000 to 4000. This shows that increasing the number of seed sentences has more of an

effect on §23, while §00 is affected more erratically.

Figures 7.5 and 7.6 examine this behaviour in finer detail, comparing the gap in LP

and LR between CI and Oracle as the seed size is increased. The recall curves in the

two figures are very similar, while the precision seems to be the cause of the difference.

7.7 Discussion

In this chapter we have compared Chart Inference (CI) to self-training (ST) in the task

of recovering as much lexical information as possible from the unlabelled sentences

of CCGbank. Our results show that the self-trained parser performs worse than the

baseline in all cases. While ST yields more retraining sentences than CI, as reflected in

the last two columns of table 7.3, the latter extends the coverage of the baseline parser

without affecting its precision to the extent that ST does. This highlights the problem

of bad data. When the seed corpus is large, any new parses added take some of the

probability away from the lexical pairs we consider gold. Because the parser itself is
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Figure 7.6: Difference in labelled precision and recall between CI and Oracle over de-

pendencies in §23.

not very good, we cannot trust what we learn from applying it.

There are two ways of explaining this behaviour. The first blames the sheer number

of additional parses for the downfall of ST. Because CI simply returns fewer sentences,

it disrupts the probabilities in the seed parser least. The second is that CI is only learn-

ing from the most dependable of sentences, as determined empirically in the preceding

chapter. ST is free to make more mistakes per sentence. It is probably a combination

of these effects that leads to the performance differences we see in table 7.4.

In addition to showing that CI is better than plain ST, we consider it a valuable

result to have confirmed the intuition that smaller seeds are less reliable, both as a

basis for ST and for CI. In the next experiment, we examine how CI fares when the

baseline parser is very good.





Chapter 8

Domain Adaptation: The TREC QA

Corpus

8.1 Introduction

The task of domain adaptation for parsing questions is both interesting and useful, and

Chart Inference could be one tool in a strategy for solving it. In this chapter we attempt

to recover the lexical items in the TREC QA corpus that are missing from CCGbank.

The seed lexicon is large and contains all the category types necessary for parsing most

declarative sentences, but question words are rare and have not been attested with all

the necessary category types for a Question Answering corpus.

The structure of this task boils down to the discovery of only a small number of

OOL word/category pairs, and the learner has access to a relatively large number of

short sentences that contain the target words. It is also a contemporary real-world

learning task that is interesting outwith the field of parsing.

8.2 Related Work

Clark et al. [2004] identified the problem with using news data to train a parser for

a question answering task as the lack of lexical support for question words. Some

lexical types were missing entirely. The lexicon for CCGbank §02-21 contains 12 WH-

question types, notably lacking some important ones. Clark et al. note the absence of

one category in particular: (S[wq]/(S[dcl]\NP))/N, the category needed for What in

the sentence What President became Chief Justice after his presidency?

They attempt to adapt the discriminative C&C parser [Clark and Curran 2007] to

119
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the QA domain by retraining on 500 hand-labelled question sentences, then automat-

ically parsing and hand-correcting an additional 671. The entire set was then used

in conjunction with CCGbank §02-21 to train a final parsing model. Their per-word

accuracy rose from a 68.5% baseline to 94.6% for the newly trained model.

In this experiment, we examine how close we can get to those results by using CI

to learn WH-question words from the unlabelled question corpus. If successful, this

would eliminate the human-annotation step for domain adaptation.

8.3 Corpora

We trained the initial parser on the full CCGbank training set, consisting of 39603

sentences1. It is important to note that this training corpus, even though it is considered

to be of very high quality, contains only 93 questions in total, so it is not surprising

that it is missing some whole category types for question words. It also reinforces the

fact that this is a domain-adaptation task.

The learning corpus contains 1328 questions from the TREC training set. We use

the same test set as Rimell and Clark [2008b], which consists of 488 unique question

sentences, each starting with What, When, How, Who or Where. Table 8.1 sets out the

distribution of question types in the test corpus. The third column marks whether the

necessary category type is represented in the Seed lexicon.

SEED StatCCG lexicon and parsing model trained on CCGbank §02-21, with fre-

quency threshold 5.

TRAIN 1328 questions from the TREC corpus, unlabelled.

TEST 488 unique held-out questions.

8.4 Methods

For this experiment, we trained the parser on CCGbank §02-21 with a word frequency

threshold of 52. It produces partial parse charts in the cases where all words in the sen-

tence are in-lexicon, except for the WH-word target, for which the learner attempts
1In order to train the full model, we needed to remove sentence 7713 from the CCGbank training set.

Somehow this sentence was making the rule creator in StatOpenCCG crash, but the issue is believed to

have been addressed in subsequent versions of the parser.
2StatCCG requires a parameter to trade off between training the lexicon and the POS-backoff.
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to return a category motivated by that context. We run the learner on the TREC

Question-Answering corpus [Rimell and Clark 2008b], aiming to learn from the set

of 149 sentences that contain the word/category pair What:=(S[wq]/(S[dcl]\NP))/N.

The WH-questions are annotated with CCG categories, but not full trees, and have no

dependency information. We therefore only evaluate the output with regard to individ-

ual categories matching the gold standard.

Only two out of the five categories needed to parse What-questions are paired with

the word What in the CCGbank seed lexicon:

Object question category S[wq]/(S[q]/NP) – What is a verb?

Subject question category S[wq]/(S[dcl]\NP) – What has 18 legs and catches flies?

The main focus of this experiment is on the missing subject WH-element extrac-

tion (SWHE) category (S[wq]/(S[dcl]\NP))/N, of which there are 51 in the test set.

This particular category was chosen as a point of investigation because it is OOL in

CCGbank yet is common enough to meaningfully evaluate.

Subject WH-element extraction category (SWHE) (S[wq]/(S[dcl]\NP))/N – What

kind of man eats the last cupcake?

8.4.1 Parameter Settings

Because we know that every sentence in the learning corpus is a Wh-question, we

change the parameters slightly. We replace the end-punctuation distribution derived

from the training corpus with a single value: P(S[wq]|?) = 1. This is an artificial

environment, but the change means that the top ten returned categories are completely

different. We also change the rules file. Since the CCGbank-trained rules file contains

200 rules, we reduce these to a more manageable set of just the 8 combinators, plus

unary rules for N → NP and PP→ ad juncts. The version currently running uses the

27-rule mid set. We keep the unknown rule backoff at 0.00001, since this is comparable

to expected values in the baseline StatCCG model.

The parser is initialised by training on the 39,604 sentences of CCGbank §02-21. It

produces partial parse charts in the cases where all words in the sentence are in-lexicon,

except for the WH-word target, for which the learner attempts to return a category

motivated by that context. Since the target WH-words are technically in-lexicon, we

force the learner to treat them as unknown by replacing them with a dummy variable

in the training corpus.
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Baseline Self-trained

P R F P R F ∆F

Who (31) 48.15 41.94 44.83 48.15 41.94 44.83 0

What (356) 57.02 54.78 55.87 68.91 66.01 67.43 11.56

When (41) 58.54 58.54 58.54 46.34 46.34 46.34 -12.20

Where (19) 68.42 68.42 68.42 68.42 68.42 68.42 0

Which (8) 71.43 62.50 66.67 71.43 62.50 66.67 0

How (33) 16.13 15.15 15.63 19.35 18.19 18.75 3.12

Total (488) 54.60 52.25 53.40 62.45 59.63 61.01 7.61

Table 8.2: Category Match performance on question test corpus by baseline parser,

trained on CCGbank §02-21 with word frequency threshold 30, and the same parser

self-trained on the QA corpus, for WH-words only. Difference in F-score is shown in the

final column.

8.4.2 Baselines

We compare the CI-retrained parser to two baselines: the original performance by

the CCGbank-trained parser alone (the seed) and self-training (ST), as described in

chapter 3. We follow the recommendation of McClosky et al. [2008] that the best

performance is achieved when all the training sentences are parsed at once, rather

than incrementally. The domain-adaptation work of Reichart and Rappoport [2007]

previously discussed is also directly relevant, as they showed ST to be effective in the

case where the original training data was out-of-domain with respect to the test set,

and the ST data in-domain.

Table 8.2 gives a detailed description of the baseline performance, and what can be

achieved through ST on the 1328 TREC questions. We show category match accuracy

over the question words only, with baseline F-scores ranging from 15 to almost 70%,

depending on the word. In total, the baseline §02-21 StatCCG parser achieves just

over 50% for precision, recall, and F-score over the 488 question words of the corpus.

The low recall numbers are down to the parser not being able to handle many of the

sentences due to an insufficient lexicon. This problem is magnified when the POS-

backoff mechanism is disabled, causing recall to fall to only 13.11%.

When we use ST to improve upon the baseline parser, the change in F-score (re-

ported in the final column of table 8.2) is telling. For three of the question words there

is no effect, but we see improvement for What and How. However, the performance
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on When suffers almost as much, resulting in a total change in F-score of only 7.61%,

which is nonetheless significant. The finer-grained results tell a clearer story, which is

that ST is both powerful and destructive. It is only the relative volume of the question

words that result in a positive effect overall.

8.4.3 Evaluation

We evaluate the success of CI in bootstrapping Wh-question categories from the out-

of-domain corpus in two ways. First, we compare the CI output to the gold standard

categories labelled in Rimell and Clark [2008a]. Second, we add the parsed questions

into the training set, then retrain and finally retest the parser.

We can report precision, recall, and F-score over category matches in the test set.

Dependency information is not included in the CCG annotation of the TREC corpus.

A fine-grained analysis is also available, where matches over a subset of categories are

reported, separating the performance on all words in the test sentence from that on the

set of all WH-question words, any particular WH-question word in turn, or a specific

target word/category pair.

8.5 Results

CI produces a parse for 26 of the 149 questions. It only gets the correct what-category

for four of these.

Table 8.3 shows the change in F-score throughout this experiment. BL is the

baseline condition, where the accuracy is predictably high over all the words in the

sentence, but lower when we examine the question words only. It is most telling

that the baseline F-score over words that should be tagged with the SWHE category

((S[wq]/(S[dcl]\NP))/N) is extremely low. In fact, that seven percent represents only

a handful of instances of Which, and none of What. Applying CI to the problem re-

sults in statistically significant increases in all metrics, but the biggest gain is in the last.

When we first apply CI, then self-train over the full training corpus, we further increase

all metrics, and again the largest gain is over the target category type specifically, as

shown in the last column of table 8.33.

3We also ran the experiment using ST only, which performed better than CI alone, but only over a

different set consisting entirely of seen categories. We do not report those figures here because they are

not commensurable with the CI results.
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All Words POS=WHQ Word=What Cat=SWHE

BL 84.31 53.40 55.87 7.84

ST 87.47 61.01 67.43 7.84

CI 86.59 56.19 60.83 52.94

CI+ST 87.03 59.54 65.42 58.82

Table 8.3: F-score over category matches in the QA test corpus for the baseline parser,

ST, CI, and a combination of CI+ST. The last three columns each represent a different

subset of word types. The most improvement is shown in the last, which considers only

the subject WH-element extraction categories.

The results in table 8.3 can be more clearly interpreted when viewed in conjunc-

tion with table 8.4, which shows the differences in the impact on the lexicon between

baseline (BL), Chart Inference (CI), and the combined method of CI and ST (CI+ST)4.

CI leaves the initial distribution unchanged while adding seven more category types.

One of these is the category we are interested in: (S[wq]/(S[dcl]\NP))/N, which is

previously associated with Which in the baseline lexicon. The other six are spuri-

ous categories, but they are invented categories and have low counts. Combining the

learning mechanisms by running first CI, and then ST, has the effect of introducing

the category we need, and then elevating the counts. The probability for S[wq] is ele-

vated as well, as a result of misparses, but the whole process results in better category

matches over the test set that we saw in table 8.3.

It is now clear that the ST condition results in probabilities for the What-categories

to be elevated. This directly effects performance when parsing What-questions, since

now these categories will be preferred by the generative model over other non-wq cat-

egories that do not apply to the QA test corpus. This explains why overall performance

increases in the ST condition, but performance on our specific SWHE category does

not.

When we use the methods in combination, we not only get the benefit from CI of

adding previously unknown categories, we also get a probability boost from ST in two

of the categories. This adjusted model can now clearly outperform CI in all metrics,

and ST in the SWHE case. The remainder of ST’s advantage we can only attribute

to luck, since the improved probabilities are the result of incorrect parses. We must

assume in this case that it is the sheer amount of exposure to WH-questions that causes

4What has 31 categories in total in the baseline lexicon; here we show only the [wq] types.
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ST to succeed. This is confirmed by the lack of similar model differences in the CI+ST

case: since the learner does not have the opportunity to make these bad (but useful)

decisions, it cannot benefit from them.

This shows us that it’s not enough just to change the lexicon of the StatCCG parser.

We have to change the model parameters as well, and since that is just like retraining,

and we have a full parse of the sentence already, we just concatenate the newly parsed

sentences with the initial seed corpus and retrain. It is also relevant to note that three of

the category types are justifiable, though rare, uses of the word What. These are marked

(R) in table 8.4. It means that six of the What-categories in the Baseline lexicon are in

effect correct. Of the seven categories added by CI, one is the target SWHE category,

and one ((S[wq]/S[inv])/N) is a plausible interpretation of the same function within

the bounds of the baseline CCGbank lexicon. It will be discussed in further detail in

the test sentence analysis.

8.6 Analysis

We separately analyse the parses produced by CI at the training phase and those pro-

duced by the retrained parser at the test phase.

8.6.1 Training Parses

Of the 149 subject WH-element extraction questions, 30 contain enough known lexical

items to afford learning opportunities. Only four of these correctly assign the SWHE

category to the target What. Here we examine the errors incurred by the learner.

The 26 “incorrect” sentences use one of six categories for What. Table 8.5 shows

the distribution of category errors and an example of each. First, eight questions

lead to a category very similar to our SWHE target, but missing the extracted NP:

(S[wq]/S[dcl])/N. In every case, this is due to the rightmost constituent being re-

solved as a complete declarative sentence. In three instances the incorrect lexical

item is:=S[dcl]/(S[pss]\NP) is to blame, once has:=S[dcl]/(S[pt]\NP), and twice

’s:=NP[nb]/N.

The lexical item ’s:=NP[nb]/N is linguistically unmotivated and could therefore

be considered a bad lexical entry. It arises from two distinct sentences in CCG-

bank: yesterday ’s edition and next year ’s Lower House Elections. In both cases the

correct category should have been (NP[nb]/N)\NP, but these two errors contribute
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overmuch to the lexicon, causing too tempting a path for the learner, since the deter-

miner category is so probable in most situations. Likewise, is:=S[dcl]/(S[pss]\NP)

and has:=S[dcl]/(S[pt]\NP) are motivated by a single sentence each in CCGbank: ...

250 times as much as is contained in ... and ... longer than has been the case ...

respectively.

The next eight errors miss the declarative sentence constituent completely, choos-

ing instead to parse it as a relative clause or other modifier for the extracted N. These

errors caused by the verb of the sentence being interpreted as an adjective five times

(have, produced, made, designed, created), and as a noun once (makes). This am-

biguity is central to linguistics and difficult to rectify. For example, made:=N/N is in

CCGbank four times: either in the phrase domestically made N or newly made N. Here

it is the annotation scheme that is deficient. Precisely the same motivation leads the

learner down the wrong path to (S[wq]/N)/N three times.

The next most common error is linguistically motivated. Rather than interpret the

embedded sentence as declarative, the parser uses has:=S[inv]/NP three times to inter-

pret it instead as an inverted sentence. In essence, it cannot see the difference between

What companies have them? and What choice have they? when the NPs differ in case,

but lack the distinction within the existing CCGbank structure. A relatively simple

extension to the annotation of the treebank would obviate this problem. Two of the

remaining errors are due to rare categories for is and has being preferred over the more

common correct ones, and behave similarly to the S[inv]/NP condition.

One sentence was labelled with (S[wq]/PP)/N, in an example that clearly shows

the downside to using a generative model. The parser has preferred rare categories for

common words: the:=(S[ad j]\NP)/N and of :=PP/(S[ad j]\NP), causing the whole

sentence to be parsed consistently, and with high generative probability, though incor-

rect. Fortunately, the EM parse trainer is smart enough not to include this entry into

the lexicon, since it is rare and inconsistent with the rest of the model.

These errors show us how sensitive the learner is to mistakes in the seed lexicon.

A more useful experiment would include using a seed lexicon derived from CCGbank

more strictly.5 A smaller and more accurate lexicon would reduce the incidence and

5As is, StatCCG trains its parser using a frequency threshold over word types, but not word/category

types. This has the detrimental effect of allowing mistakes to intrude unduly on the model, but moving

to a word:category threshold would increase the number known words with missing categories, which

are much harder to recover from. In essence, it is easier to recover from seeing too much than seeing

too little.
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C BL CI+ST

(S[wq]/(S[dcl]\NP))/N 0 26

*S/S 7 1

*(S/S)/NP 1 0

*S[wq] 2 0

*(S[wq]/PP)/N 2 0

*S[wq]/(S[ad j]\NP) 5 0

*(S[wq]/(S[dcl]/NP))/N 1 0

*S[wq]/(S[dcl]/NP) 11 1

*S[wq]/(S[dcl]\NP) 9 0

*(S[wq]/(S[q]/NP))/N 5 0

*(S[wq]/S[dcl])/N 0 9

?(S[wq]/S[inv])/N 0 3

*(S[wq]/((S[dcl]\NP[expl])/NP))/N 0 2

No category returned 8 9

Table 8.6: Fine-grained category attribution showing how baseline sentences are re-

analysed by the CI+ST parser.

severity of these mistakes. Additionally, we could try to make the learner more robust

in the face of these errors, but that would take further engineering, and the mistakes

that first caused the problem would still be in the lexicon to cause problems in later

stages of the parsing pipeline.

8.6.2 Test Parses

Of the 51 test questions that use What:=(S[wq]/(S[dcl]\NP))/N, the retrained parser

returns a parse for 42 of them, 26 of which are correct. Table 8.6 shows the difference

in errors between the baseline and best case CI+ST over the 51 extraction test sen-

tences. In addition to making fewer errors, the CI+ST condition makes better errors:

the last three category types in table 8.6 have the N constituent correct, which means

that the parses maintain at least one correct dependency relation, even if they do not

recover the extraction of the sentential object.

Of the previously known categories, the ST step overwhelmingly prefers three cat-

egories: one subject extraction category S[wq]/(S[dcl]\NP) and two object extraction

S[wq]/(S[q]/NP) and (S[wq]/(S[q]/NP))/N. The remaining categories have been pre-
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viously classified in table 8.4 as either rare (R), spurious (*), or plausible (?). Rare

categories, like S[wq] are used for specialised cases (the sentence What?) which occur

in PTB, but not in the QA corpus. Spurious categories, like (S[wq]/PP)/N exist in

the baseline parser, arising from errors in either the original PTB, or the translation to

CCGbank. S[wq]/S[q] is only used where S[wq]/(S[q]/NP) is meant, but fails to cap-

ture the extraction. S[wq]/(S[dcl]/NP) is a misinterpretation of sentences requiring

(S[wq]/(S[dcl]\NP))/N, but without capturing the extracted N.

Five spurious categories are also introduced by the CI learning step. (S[wq]/S[dcl])/N

and (S[wq]/((S[dcl]\NP[expl])/NP))/N are spurious forms of (S[wq]/(S[dcl]\NP))/N

that arise when the constituent directly right of the target is misparsed; the former

misses the extraction and the latter adds an extra dummy subject. S[wq]/N occurs

when the main verb of the sentence is treated as a participle, forming a complex nom-

inal argument. (S[wq]/N)/N and (S[wq]/(S[dcl]/(S[pt]\NP)))/N are caused by simi-

lar verbal ambiguity.

The classification of (S[wq]/S[inv])/N as a plausible category is linguistically mo-

tivated. Rather than interpret the embedded sentence as declarative, the parser uses

has:=S[inv]/NP to interpret it instead as an inverted sentence, because of CCGbank’s

case insensitivity as previously discussed. As such, it duplicates the work of the tar-

get (S[wq]/(S[dcl]\NP))/N, because the constituents S[dcl]\NP and S[inv] are often

synonymous in practice, and result in the same dependency structure.

As seen in table 8.4, the distinction between rare and spurious categories cannot

be made on frequency alone, but the best categories are the ones with the highest

frequency. Plausible categories can be considered spurious for the sake of parsing,

but are linguistically interesting, and if they are frequent enough, that is possibly an

indication that the structure of the lexicon or the grammar is non-optimal.

8.7 Discussion

This chapter has assessed Chart Inference in a domain adaptation task, attempting to

recover lexical items that are known to be missing from the baseline lexicon. There

are two goals of this task: achieving the correct category inventory, and calculating

reasonable model probabilities over that inventory. CI aids in the former and ST in the

latter. When a system uses both, we see combined effects.

Analysis has shown that CI has mixed success with constructing category types

for question words. This is undoubtedly due to the parser being trained on CCGbank,
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which contains only 93 question sentences. Because the model trained from this data is

overwhelmingly prepared for non-question structures, it is not surprising that decisions

it makes in unfamiliar genres are often erroneous.

However, we have shown that CI can overcome the deficiencies in both the lexicon

and the model to learn new category types for question words. When used in con-

junction with ST, CI presents a valuable framework for domain adaptation in the case

where whole category types are missing from the lexicon. Equipped to invent cate-

gory types based on surrounding context, CI is capable of finding the necessary lexical

items, but it is encumbered with restrictions on the number and complexity of training

sentences it is capable of learning from. ST remedies this by propping up the learning

process with volume. Sheer exposure, whether with correct parses or not, does in this

case aid in adapting the baseline lexicon to a question corpus.

By using CI in combination with ST over a small, specialised corpus, we have

achieved three points improvement in F-score over category matches in the TREC QA

test corpus, from a baseline of 84.31% to 87.03% in the combined condition. This is

motivated by a dramatic increase in the performance over one rare category type, from

7.84% in the baseline to 58.82%. CI introduces new lexical entries for the known word

What, and then ST uses the expanded lexicon over the same corpus to adjust the model

probabilities, yielding a ten-point improvement in F-score for that single word.

The fact that CI is capable of constructing new category types from context makes

it a potentially valuable tool in tackling the long tail of the lexicon. It is important in

particular for CCG, since the category inventory is so large and varied that the number

of unique unseen category types is likely to be large as well. The next chapter makes

a start in improving the coverage of the StatCCG parser by automatically discovering

OOL lexical items.



Chapter 9

Wide-coverage Lexicon Extension:

Gigaword

9.1 Introduction

Up to this point, the thesis has explored the elements of lexicon learning both in gen-

eral, and within the scope of the CI algorithm, varying the corpus size, composition of

the seed lexicon, and learning parameters. However, the true test of the system is on

large-scale data. There are several major obstacles to this task, as we have shown in

the previous chapters: First, the frequency threshold must be set to allow the optimum

number of correct entries into the lexicon. Second, if the seed lexicon is very large, it

is difficult to measure any appreciable impact on parse quality, which is why we also

evaluate on lexicon quality. That leads into the third obstacle, which is that the recall

of CI is very low, necessitating a very large set of learning data to have any impact on

precision at all.

This chapter investigates the efficacy of CI as a method f or extending the coverage

of the existing StatCCG lexicon trained on CCGbank by producing additional training

parses from the unlabelled English Gigaword corpus [Graff and Cieri 2003]. In this

experiment we target the specific set of words in §00 that are OOL in §02-21, ignoring

numbers. We mine Gigaword for learning opportunities for these words in particular, to

estimate how much unlabelled text we would need to look at to cover all word-category

pairs in §00.

Given that §00 and 23 are the standard evaluation corpora, we expect success to

look like a very small change in parsing behaviour over these sets, accompanied by an

increase in the size of the lexicon. When we examine the new word/category pairs that

133
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have been added by the learning process, we should see mostly correct entries, where

the incorrect entries have very low probability as compared to other words of the same

category.

9.2 Corpora

The corpora for this experiment represent the state-of-the-art in labelled and unlabelled

data. CCGbank §02-21 is used for the original training set, which dictates the seed

lexicon. We also use §00 and 23 as an in-domain test set, which is made possible by

the presence of gold-standard lexical labels and full parse trees. Gigaword is the source

of raw training sentences. However, the speed of the implementation limits us to using

just a portion of the whole corpus at present. Table refgigsizes compares the size and

complexity of the resources used in this experiment: although the number of sentences

differs widely, the average complexity of the sentences are roughly comparable.

For running on the Gigaword corpus we use the same restrictions as indicated by

the previous experiments: sentences of length between 3 and 10, containing no inter-

nal punctuation or coordination [ , ; : and ] as established in chapter 6. In addition,

we restrict the learning environment further to adapt to the NYT structure by ignor-

ing any short sentence (<5 words) beginning with the word By. This is because these

“sentences” are most often bylines, and learning the names from them would take a

disproportionate amount of processing time and most likely result in incorrect cate-

gories being learned, because the result is not S. When we restrict the sentence length

these bylines are overrepresented in the learning data.

The input sentences are annotated with the POS tags provided by Gigaword. They

are not used by the CI algorithm, but are incorporated into the output parse trees to be

compatible with the original StatCCG training corpus.

The baseline parser is trained on CCGbank §02-21, with a frequency threshold of 5.

The list of missing words is generated by examining §00 for any word type not listed

in the baseline lexicon. There are 2409 such word types, representing 3321 distinct

tokens. Missing items occur 1.38 times on average. There are 45422 total tokens in

§00 of CCGbank, 11282 word-category pairs, and 7878 individual word types. Only 65

different category types are represented in the Missing set. The most common missing

categories are listed in table 9.2, dominated by N and N/N, which constitute 41% and

36% of the types, respectively. This is expected, as they are the most populous open

classes. The other 23% cover the remaining 63 category types, including many verbal
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CCGbank §02-21 Gigaword NYT §10-14 CCGbank §00 + 23

(Seed) (Train) (Test)

Sentences 39604 10,677,224 4320

Words/Sentence 23.47 22.41 23.33

Table 9.1: Size and complexity comparison of the corpora in the Gigaword experiments.

Rank Freq C Rank Freq C

1 1040 N 11 18 (S[dcl]\NP)/PP

2 915 N/N 12 17 (S[ad j]\NP)/PP

3 58 (S[dcl]\NP)/NP 12 17 (N/N)/(N/N)

4 55 S[ad j]\NP 13 16 (NP\NP)/(NP\NP)

5 52 (S[ng]\NP)/NP 14 14 (S\NP)\(S\NP)

5 52 (S[b]\NP)/NP 14 14 S[b]\NP

7 43 S[pss]\NP 16 12 (S\NP)/(S\NP)

8 33 NP\NP 16 12 ((S[ng]\NP)/PP)/NP

9 22 S[dcl]\NP 18 11 (S[ng]\NP)/PP

10 19 S[ng]\NP 20 10 (S[pss]\NP)/PP

Table 9.2: Top 20 most frequent category types from w/c pairs in §00 that are missing

from §02-21.

types, for which CCG makes a finer-grained distinction than the other open classes.

The training corpus we use for this experiment is a subset of Gigaword: §10-14 of

the New York Times corpus, which have been automatically POS-tagged, and contain

around two million sentences each, for a total of nearly 10 million sentences. The

word and sentence breakdown of the five sections is outlined in figure 9.3. In addition

to restricting the number of sentences shown to the learner, CI also rejects the majority

of the sentences because they do not contain enough in-lexicon words.

The test corpus consists of §00 and 23 of CCGbank, for which we have gold stan-

dard dependency and category data. We conduct the error analysis on §00 only, and

leave §23 closed to represent coverage on unseen data.

SEED CCGbank §02-21.

TRAIN Gigaword §NYT 10-14.

TEST CCGbank §00 and 23.
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Section Sentences Words

nyt10 2,117,736 47,882,337

nyt11 2,094,226 47,905,885

nyt12 2,139,542 47,860,591

nyt13 2,153,149 47,847,010

nyt14 2,172,571 47,827,489

total 10,677,224 239,323,312

Table 9.3: Gigaword corpus statistics.

9.3 Methods

The baseline parser is trained on §02-21, as in the previous experiment. Then the

learner is run over a subset of Gigaword, only attending to sentences that afford learn-

ing opportunities for the tokens in the list of the 2409 OOL types. We target only these

types in order to drive development towards a measurable improvement over §00, given

that the learner is slow. Of course, we expect the system to learn other correct category

types for these tokens, as well as influencing the model at retraining time to introduce

previously discounted word/category pairs present in the baseline corpus.

The threshold problem from chapter 8 still stands: for a word to become accepted

into the retrained lexicon, it must have been seen five times. Some of the words in the

Missing list have been seen in §02-21, but not enough times to reach the threshold. For

some words, a single additional instance will be enough to tip it from the POS set into

the lexical training set. Others would have to be seen up to five times in the CI output

before they are learned in the retraining phase. Considering the number of times each

OOL word occurs in §02-21 (a third are never seen at all), the minimum number of

CI-output sentences to get all the OOL words above the threshold and into the lexicon

is 9390.

Even when we know what words to look for, the task of lexicon extension is still a

very difficult one. It is unreasonable to expect, even if all the unlabelled sentences are

parsed perfectly, that we would see a significant difference in the final parse results,

given StatCCG’s double hurdles of the word-frequency threshold and the EM lexicon

trainer. With so well-trained a baseline lexicon, the reasonable thing to look for is an

increase in the size of the lexicon, coupled with no significant decrease in the parse

results over the evaluation corpora. Coverage over the long tail is hard to detect when

measuring over a small corpus. Therefore we rely on an error analysis of the results as
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the main contribution of this chapter.

9.3.1 Parameter Settings

The word frequency threshold is set to 5, which is not the optimal configuration for

StatCCG1, but allows for a good balance of missing words and a low bar to lexicon

change. Sentences must be between three and ten tokens long, containing no commas

or conjunctions.

The learner produces a ranked category set of up to 5 for each target word. These

are added into the hypothesis lexicon with their probabilities and a full parse is pro-

duced. The category that is ultimately chosen is the one that produces the highest-

probability parse, not necessarily the one ranked the highest in the learner’s set. This

can be seen as a reranking step. The learner is prohibited from using the end-punctuation

category type (.). The only sentences considered are the ones containing exactly one

word from the OOL list, while the rest of the words have at least one lexical entry in

the StatCCG lexicon with a word frequency threshold of 5.

We only allow the learner to attempt sentences for which exactly one word is OOL.

The learning parameters further limit the usable sentences by length, stopwords and

target words. Runtime issues such as memory capacity, timeouts, and parse failures

also cause many sentences to be rejected. After taking all of these restrictions into ac-

count, CI only produces parses for around 1000 sentences of our 10 million-setentence

section of Gigaword, which will be discussed in the learner results in §9.6.1.

9.3.2 Baselines

As a baseline for this experiment, we use the existing POS backoff system internal to

StatCCG. This is already a very high score to try to beat, but it is accompanied by

a lexical error analysis. We set the word frequency threshold to 5 in the baseline to

provide a fair comparison for the trained conditions. We also have the gold-standard

dependency and category information for §00 and 23 for comparison, though this is

not considered a baseline. For lexical analysis, we compare learned lexical items to a

baseline strategy of labelling all new words N or NP.

It is important to note here the difference between POS-backoff and self-training

as learning strategies, since they are conflated in several phases of our experiments.

1Hockenmaier’s best advice calls for the threshold set at 30.
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POS-backoff is an online strategy for resolving the roles of OOL items at parse time,

while both CI and ST enable the parser to feed decisions about OOL items back into

the training corpus, thereby influencing future decisions. Whenever we use the original

parser to produce new training material, it is essentially self-training, but we make the

distinction between doing so while employing only the built-in backoff mechanisms of

the original parser (ST) and intervening with our own category-finding algorithm (CI).

9.3.3 Evaluation

Several forms of evaluation are necessary to assess the behaviour of CI across multiple

phases of learning. First we evaluate on whether the correct categories were learned

for the target words, both as tokens in the individual training sentences, and as types

in the retrained lexicon. The gold standard is the given category type in §00. In cases

where a word occurs twice, we accept either of the category types given, and we also

count these as two separate lexical items for the learner to recover.

Second, we examine the lexicon that results from retraining on the learned sen-

tences. Each new entry is evaluated by hand for accuracy, as well as participation in

the final parse output.

Third, we evaluate the retrained parser on §00, measuring the change in head de-

pendency recovery and category matches, over the set of all sentences, the set of sen-

tences containing OOL words, and finally the set of OOL tokens itself.

9.4 The Lexicon

First we report results and analysis of the lexicon resulting from CI learning. This

can be thought of as running the training phase of the experiment, then stopping to

inspect the learned lexical items before proceeding to use them to parse the test set.

In practice, we run the whole experiment first, then inspect each phase, so as not to

unfairly manipulate the results. Evaluation of the learned lexicon provides insight into

the linguistic soundness and internal consistency of the learning system.

9.4.1 Lexicon Results

The size of the lexicon has risen from 38054 in the baseline case to 38197 after retrain-

ing on the learned sentences, resulting in a net change of 143. 121 lexical entries and
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All Sents -Q

N|NP 51/99 (51.51%) 34/52 (65.38%)

CI 103/121 (85.12%) 82/86 (95.35%)

Table 9.4: Manually evaluated lexical accuracy of CI vs. N|NP baseline, i.e. whether

or not the learned lexical items are valid, without reference to the contexts that moti-

vated them. Results are reported for the full output (All Sents) and the condition where

sentences ending in a question mark were removed from the training set (-Q).

24 POS entries have resulted from the CI learning step, and two POS entries have been

obsoleted by learning: PDT:=(S/S)/(S/S) and VBD:=S[ad j]\NP.

The 121 new lexical entries were examined by hand for plausibility and it was

determined that 103 were valid and 18 were spurious. The learning step has increased

the size of the lexicon by 0.4%, with 85% accuracy. We compare this to the N|NP

baseline in table 9.4. The N|NP baseline is calculated by assuming any lexical entry

found by CI as correct if either if it is assigned either N or NP. We count each word

type only once, irrespective of how many different category types CI has learned for

it, so the original 121 entries are reduced to 99. We see that the accuracy for lexical

entries rises from 51.51% for the baseline to 85.12% for CI. This shows that, even

though N and NP are the most common categories for an OOL item, CI is a much

better method for word learning.

We also report figures for a condition resulting from the insights of the error analy-

sis. The -Q column shows the results for the same experiment when sentences ending

in a question mark are filtered out of the training corpus. This reduces the number of

lexical entries to 86, and the number of unique word types to 52. This causes the lexical

accuracy of N|NP to rise to 65.38%, since the reduced set has a higher concentration

of nominal types, but at the same time the lexical accuracy CI -Q achieves 95.35%.

The evaluation of the lexical items produced by retraining the parser over the CI-

produced sentences was performed manually. First, the 24 new POS entries are listed

in table 9.5. Of the 24 new POS entries, only four were deemed reasonable. Most

were obviously spurious. POS information is ignored by CI, as can be seen here:

nominal and adjectival POS types have been given verbal categories, and POS subtypes

(VBG) are not limited to their appropriate categorial types ([ng]). In future work, POS

information should be taken into account.
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*JJ: PP/NP *NNP: (N/N)\S[wq] *NN: S

*JJ: S[dcl]\S[dcl] NNP: NP/(NP\NP) *NN: S[dcl]\NP

*JJ: S[to]\NP NNP: NP[thr] *NN: S[dcl]\S[dcl]

*VB: PP/NP *NNP: (S[b]\NP)/N *NN: S[dcl]\S[q]
VB: S[dcl]\NP *NNP: S[dcl]\NP *NN: S[ng]

*VB: S[dcl]\S[to] *NNP: S[dcl]\S[wq] NNS: NP

*VBG: S[dcl]/N *NNS: S

*VBG: S[wq]/PP *NNS: (S[dcl]/NP)/S[inv]

*VBZ: (S[dcl]\S[wq])/N *NNS: S[pt]\NP

Table 9.5: The 24 new POS entries introduced by CI over Gigaword.

Add:= (S[b]\NP)/NP converts:= N

adventure:= N converts:= ((S[dcl]\NP)/PP)/NP

Ames:= N converts:= (((S[dcl]\NP)/PP)/PP)/NP

Ames:= N/N *counterattack:= S[dcl]\S[q]
batter:= N cream:= N

batter:= (S[b]\NP)/NP cream:= N/N

battling:= N/N curse:= N

battling:= (S[ng]\NP)/NP Directed:= N/N

battling:= (S[ng]\NP)/PP dish:= N

blind:= N/N dish:= (S[b]\NP)/NP

blind:= S[ad j]\NP *entertain:= (S[dcl]\S[dcl])/NP

Broader:= N/N entries:= N

Brunswick := N/N *entries:= NP\NP

*Brunswick:= (N/N)/(N/N) Fifteen:= NP (N)

Carroll:= N flashes:= N

Carroll:= N/N flashes:= S[dcl]\NP

Cemetery:= N flashes:= (S[dcl]\NP)/NP

Cemetery:= N/N Got:= S[pss]\NP

cheaply:= (S\NP)\(S\NP) Got:= (S[pt]\NP)/NP

cheese:= N *Hampton:= S[dcl]\NP

cheese:= N/N Harper:= N

. . .

Table 9.6: The 121 new lexical entries introduced by CI over Gigaword.
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chocolate (N):= N/N Harper := N/N

*Clemens:= (S[dcl]\NP)/PP hid:= (S[dcl]\NP)/PP (/NP)

clowns:= N Houghton := N (N/N)

*combinations:= (N/S[inv])\S[wq] ideology:= N

companions:= N Illustrated:= N

composer:= N Illustrated:= N\N
contemplate:= (S[b]\NP)/NP Israelis:= N

contemplate:= (S[b]\NP)/(S[ng]\NP) Jenkins:= N

contemplate:= (S[dcl]\NP)/NP Kaplan:= N

convenient:= S[ad j]\NP Kids:= N

convenient:= (S[ad j]\NP)/PP Less:= N/N

Less:= (S[ad j]\NP)/(S[ad j]\NP) quitting:= S[ng]\NP

lively:= N/N refrain:= N

Meet:= (S[b]\NP)/NP refrain:= S[b]\NP

Meet:= (S[dcl]\NP)/NP refrain:= (S[b]\NP)/PP

*Mercer:= S[dcl]\S[q] reminds:= ((S[dcl]\NP)/PP)/NP

mixture:= N reminds:= ((S[dcl]\NP)/S[dcl])/NP

musician:= N rookie:= N

Music:= N rookie:= N/N

Music:= N/N *SAT:= (S[dcl]\S[dcl])/NP

Newsweek:= NP sauce:= N

*Newsweek:= (S[dcl]\S[wq])/N Schlesinger:= N

nuts:= N *Send:= NP

*obsessed:= (S[dcl]\S[wq])/PP sings:= S[dcl]\NP

offense:= N sings:= (S[dcl]\NP)/NP

Palestinians:= N Song:= N

pastry:= N/N *Song:= NP\NP

ponder:= (S[b]\NP)/NP Talk:= N

ponder:= (S[dcl]\NP)/(S[ng]\NP) Talk:= N/N

Portland:= N *Test := S[ad j]\NP

*Portland:= (N/N)/(N/N) THAT:= NP ((NP\NP)/(S[dcl]\NP))

Portland:= NP\NP Top:= N/N

. . .

Table 9.6: The 121 new lexical entries introduced by CI over Gigaword.
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prosecuting:= (S[ng]\NP)/NP *Top:= S[ad j]/S[ad j]

Q.:= N/N Wallace:= N

qualified:= N/N wandering:= S[ng]\NP

qualified:= S[ad j]\NP *Winning:= NP[nb]/N

qualified:= (S[dcl]\NP)/PP *Winning:= S[wq]/PP

Quite:= N/N Yukon:= N

Quite:= NP/NP Yukon:= N/N

Quite:= (S/S)/(S/S)

Table 9.6: The 121 new lexical entries introduced by CI over Gigaword, continued.

Table 9.6 lists the new lexical entries, marking the incorrect ones with a *. One

common pattern within the learned lexical items is that nominal and adjectival forms

are often paired. This is quite a frequent behavioural alternation, but is more general-

isable with a unary rule N → N/N. It is related to the fact that these two categories

are also the most frequent in the set. The most impressive result is that multiple verbal

patterns have been learned for verb forms, such as ponder and reminds. Even Noun-

Verb ambiguity has come through, as in refrain, which is learned as the nominal type

NP, and two verbal types S[b]\NP, and (S[b]\NP)/PP.

Table 9.7 lists all of the lexical entries from the §00 OOL set that the CI retraining

process adds to the lexicon. In the broad case, 30 of the lexical entries pertain to words

that are OOL in §00. Nine of these are exact matches for the gold standard w/c pairs in

§00, giving a match rate of 30%, and a further seven are valid w/c pairs, so the overall

lexical accuracy over the target set is 53%.

When the question filter is applied, only 10 of the target words are found, but

at a 50% success rate for matching the target category as well. A further four are

valid categories for OOL words, though not a match to their gold standard senses.

Removing questions from the learning set reduces the yield by two thirds, but increases

the success rate from 53% to 90%.

The remaining 93 learned lexical items result from other words in the sentence.

This can be observed in such sentences as ‘Swan Song for Hampton?’ where Hampton

is OOL, but Song appears in the new lexicon as well. Song occurs four times in §02-21:

3 times as N and once as NP\NP. This one new instance tips the word type over the

frequency threshold and causes both of those categories to appear as lexical entries for

Song.
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W §00 Gold C Learned C -Q C

blind N/N
N/N N/N

?S[ad j]\NP ?S[ad j]\NP

Brunswick N
?N/N ?N/N

*(N/N)/(N/N) *(N/N)/(N/N)

chocolate N/N N/N N/N

Clemens N *(S[dcl]\NP)/PP -

combinations N *(N/S[inv])\S[wq] -

convenient S[ad j]\NP
S[ad j]\NP S[ad j]\NP

?(S[ad j]\NP)/PP ?(S[ad j]\NP)/PP

counterattack N *S[dcl]\S[q] -

curse N N -

entertain (S[b]\NP)/NP *(S[dcl]\S[dcl])/NP -

Fifteen N ?NP -

Hampton N *S[dcl]\NP -

hid (S[dcl]\NP)/NP (S[dcl]\NP)/PP -

Houghton N/N ?N ?N

Mercer N/N *S[dcl]\S[q] -

Newsweek
N ?NP -

N/N *(S[dcl]\S[wq])/N -

obsessed (S[ad j]\NP)/PP *(S[dcl]\S[wq])/PP -

offense N N -

prosecuting (S[ng]\NP)/NP (S[ng]\NP)/NP (S[ng]\NP)/NP

quitting S[ng]\NP S[ng]\NP -

SAT N *(S[dcl]\S[dcl])/NP -

sauce N N N

Send (S[b]\NP)/NP *NP -

Test N *S[ad j]\NP -

THAT (NP\NP)/(S[dcl]\NP) ?NP -

Winning (S[ng]\NP)/NP
*NP[nb]/N -

*S[wq]/PP -

match 9 5

* 14 1

? 7 4

total 30 10

Table 9.7: Comparison of OOL items learned by CI against the gold-standard labels

from §00.
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Total Correct Incorrect C

38 38 0 N

23 23 0 N/N

6 5 1 S[dcl]\NP

6 6 0 (S[b]\NP)/NP

5 4 1 NP

4 4 0 (S[dcl]\NP)/NP

4 3 1 S[ad j]\NP

3 1 2 S[dcl]\S[q]
3 2 1 (S[dcl]\NP)/PP

3 1 2 NP\NP

2 1 1 S[wq]/PP

2 2 0 (S[ng]\NP)/NP

2 2 0 S[ng]\NP

2 1 1 (S[dcl]\S[wq])/N

2 0 2 (S[dcl]\S[dcl])/NP

2 2 0 S[dcl]\S[dcl]

2 2 0 ((S[dcl]\NP)/PP)/NP

2 2 0 S

2 2 0 PP/NP

2 0 2 (N/N)/(N/N)

... ... ... ...

Table 9.8: Distribution of category types from the lexical items learned by CI over Giga-

word; table shows only types that occur more than once.
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In order to be included in the lexicon as a lexical entry (as opposed to POS entries)

the word-category pair must reach the frequency threshold of 5. These 5+ are consti-

tuted partially by gold-standard sentences from the original CCGbank training data,

and partially by new labelled data gleaned from the learning process.

9.4.2 Lexicon Analysis

We now undertake a manual analysis of the origins of all the erroneous lexical items

introduced to the lexicon by the CI learning and retraining process. There are three

major sources of error: mistakes in the gold-standard annotation of the training cor-

pus, incorrect resolution of the target word as the head of the sentence, and lexical

ambiguity of common structural words. Several cases suffer from more than one of

these causes.

9.4.2.1 Gold standard errors

Sentence Gold Standard Best Guess

1 the New Brunswick , N.J. company (N/N)/(N/N) (N/N)/(N/N)

2 The books 1,500 entries include ... NP\NP NP\NP

3 The Portland , Ore. , thrift said... (N/N)/(N/N) (N/N)/(N/N)

4 The 1981 novel Wedding Song ... NP\NP NP\NP

The first four errors are attributable to vagaries of the gold standard annotation

for §02-21. In the chart above, the Gold Standard category is identical to the Best

Guess category. These arise because of the manner in which the frequency cutoff

is implemented. As was discussed in previous chapters, a word type must occur N

times to justify lexical entries; under this number the data points count toward the POS

entries. So when a word type occurs four times in the gold standard corpus, and CI

introduces a fifth, the lexicon now considers lexical entries for all the categories that

word type has been seen with. At the same time, those four word-category pairs are

removed from the POS data. Errors 1-4 are indirectly caused by CI learning, but are

ultimately the fault of the annotated data. (This phenomenon is exaggerated when we

work with low word-frequency threshold values.)
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9.4.2.2 Gap realised as head

Sentence Gold Standard Best Guess

5 Roger Clemens to the Rangers . NP (S[dcl]\NP)/PP

6 How many combinations are left? N (N/S[inv])\S[wq]

7 Swan Song for Hampton ? NP S[dcl]\NP

8 Is it rookie Mercer ? NP S[dcl]\S[q]
9 Why has [CA] become obsessed with [NP]? (S[ad j]\NP)/PP (S[dcl]\S[wq])/PP

10 Winning at all costs ? S[ng]\NP S[wq]/PP

The most common set of errors can be characterised by the OOL target word being

interpreted as the head of the sentence. The surrounding constituents are correct, but

they are resolved as the arguments of the OOL category, the result being the sentence

type motivated by the end punctuation.

9.4.2.3 Gap realised as head, combined with misparses of common words

Sentence Gold Standard Best Guess

11 Is there a counterattack ? N S[dcl]\S[q]
12 Where were the Newsweek editors ? NP (S[dcl]\S[wq])/N

13 Where are the SAT scores? NP (S[dcl]\S[dcl])/NP

A third set of errors arises when the OOL word is resolved as the head of the

sentences, but the other constituents are misattributed. This genuinely constitutes a

separate type of error, as misinterpreting the OOL word as the head is a weakness of

the learner, while the constituent errors are the fault of the baseline lexicon. In each of

these three sentences, the determiner is given then category NP. It enables the learner

to interpret the neighbouring constituents as full S types which the OOL word takes

as arguments, rather than the correct nominal categories that are dependents of the

determiner.

9.4.2.4 Remaining Errors

Sentence Gold Standard Best Guess

14 Where else can [N] entertain clients ? (S[b]\NP)/NP (S[dcl]\S[dcl])/NP

15 Send in the clowns ? (S[imp]/(PP/NP))/NP NP

16 Will This Be on the Test ? N S[ad j]\NP

17 Top each side with chopped greens . (S[imp]/NP)/PP S[ad j]/S[ad j]

18 Winning national championships? (S[ng]\NP)/NP NP[nb]/N
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Will This Be on the Test

(S[q]/(S[b]\NP))/NP NP (S[b]\NP)/(S[adj]\NP) (NP\NP)/NP NP S[adj]\NP
> >

S[q]/(S[b]\NP) NP\NP
<B

S[ad j]\NP
>

(S[b]\NP)
>

S[q]

Of the 18 deemed to be erroneous, four are the fault of the CCGbank corpus, and 14

of the remaining 16 are found in sentences ending with a question mark. This indicates

that question sentences are a major contributor to error in the learning process. Of 1080

newly parsed sentences, 73 contain question marks, or nearly 7%. By contrast, the

evaluation set of §00 contains only 1% (18/1918) questions. This disparity indicates

that our chosen training set is not representative of our test set, and by filtering out

question sentences, we could eliminate a source of error and bring our corpora into

line at the same time.

This error analysis shows us that a majority of errors arise from the variety and am-

biguity of sentence types in Gigaword. If we had some dependable way to determine

which strings of the corpus were S[dcl], then these errors would be fewer. However,

knowing the sentence type is made difficult by not knowing all the words of the sen-

tence, so a post-processing step may be preferable, including only those lexical items

that arise from sentences of whose result types we can be reasonably confident.

9.4.3 Responding to Lexical Errors

This lexical error analysis has shown that the two major contributors to error are new

POS entries, and categories arising from question-sentences. We retrain the parser on

the CI output, retroactively removing either the POS entries from the learned lexicon,

or the question sentences from the training data. Removing the 73 question sentences

from the CI training data results in only 86 new lexical entries, as opposed to 121, but

of these, only four are erroneous, listed in table 9.9. This raises the lexical accuracy

score from 85% to 95.3%.

Of the 59 entries lost, 24 are accounted for by POS entries, and the remaining

35 are lexical, consisting of 16 erroneous entries and 19 good ones. Removing the

questions does away with all the bad POS entries. This is because new POS entries are
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W C Error Type

1 *Brunswick (N/N)/(N/N) Gold standard

2 *entries NP\NP Gold standard

3 *Portland (N/N)/(N/N) Gold Standard

4 *Top S[ad j]/S[ad j] Lexical ambiguity

Table 9.9: Erroneous categories remaining after -Q question filter is applied.

created when new w|c pairs are introduced, but aren’t seen a sufficient number of times

to meet the word-frequency threshold. They have to be truly rare for this to happen,

and therefore more likely to be erroneous.

Filtering out the question sentences had the effect of eliminating all 24 of the new

POS entries. The increase in F-score is accounted for by the increase in lexical category

accuracy.

9.5 The Parser

In this section we examine the derivations in §00 yielded by the parser, before and after

retraining on CI-learned sentences. First we present the precision and recall figures

over dependencies, as compared to the gold standard parses. The analysis covers the

characteristic errors and traces their origins to either the learned Gigaword sentences

or the original training sentences. Parse results are the preferred method of evaluation

in many standard lexicon-learning tasks, but here we treat them as a rigorous, but

secondary, step in a deeper evaluation scheme.

9.5.1 Parser Results

Following on from the fine-grained analysis of the lexical results, we examine the

parser’s performance on category-match accuracy, defined as assigning a word its cor-

rect category as provided by the gold-standard corpus, without regard to the other

words or structure in the sentence. These are shown for both test sections §00 and §23

in Tables 9.10 and 9.11 respectively.

Five lexical settings are compared in tables 9.10 and 9.11: the first row is the

original StatCCG lexicon, trained on §00-21. It provides a very high baseline over

both test sections. For comparison, we show the parser’s performance with the POS-

backoff disabled in the second row. This yields a higher precision figure, but much
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All Words Target Set

P R F P R F

BL 91.75 98.49 95.00 92.50 1 96.10

BL -BO 92.59 18.92 31.42 - - -

CI 91.60 98.19 94.78 91.42 1 95.52

CI -POS 91.61 98.19 94.79 91.48 1 95.55

CI -Q 91.75 98.49 95.00 92.40 1 96.05

Table 9.10: Category match performance over §00 for the baseline parser (BL) and the

same with its POS-backoff mechanism disabled (BL-BO), compared to CI either with

POS entries prohibited (CI-POS) or question sentences removed from training (CI-Q).

All Words Target Set

P R F P R F

BL 91.81 97.58 94.61 90.52 1 95.02

BL -BO 93.08 24.01 38.17 - - -

CI 91.80 97.47 94.55 89.00 1 94.18

CI -POS 91.81 97.47 94.55 89.00 1 94.18

CI -Q 91.81 97.58 94.61 90.52 1 95.02

Table 9.11: Category match performance over §23 for the baseline parser (BL) and the

same with its POS-backoff mechanism disabled (BL-BO), plain CI and the same either

with POS entries prohibited (CI-POS) or question sentences removed from training (CI-

Q).
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00 23

UP UR UF UP UR UF

BL 89.79 89.11 89.45 89.87 88.18 89.02

CI -POS 89.65 88.74 89.19 89.86 88.06 88.95

CI -Q 89.77 89.12 89.44 89.85 88.16 89.00

Table 9.12: Unlabelled dependency recovery results for §00 and 23 after mining Giga-

word for target words, as compared to the baseline before using Gigaword (BL).

00 23

LP LR LF LP LR LF

BL 82.71 82.09 82.40 83.17 81.60 82.38

CI -POS 82.53 81.69 82.11 83.18 81.50 82.33

CI -Q 82.69 82.09 82.39 83.15 81.59 82.36

Table 9.13: Labelled dependency results for §00 and 23 after mining Gigaword for target

words, as compared to the baseline before using Gigaword (BL).

lower recall over all words, since the parser no longer has any mechanism for dealing

with OOL words. Likewise, it scores 0 over our target set of OOL items, since it can

attempt none of them.

The third row shows the results for the CI-retrained parser, which includes all 121

new entries discussed in the previous section. CI causes a slight drop in category

match accuracy across the table, though the effect is more pronounced for the Target

Set. Removing the 24 POS entries from the lexicon (CI -POS) has a small positive

effect, while removing the questions (CI -Q) yields complete restoration of the F-score

to baseline levels in all cases but one: §00’s target set F-score still incurs a net loss of

0.05.

Even though category match figures are more informative from a lexical perspec-

tive, we also report standard head-dependency results for comparison. Table 9.12

shows the parsing performance of the retrained lexicon on §00, which it was tuned

for, and §23, which it was not tuned for2. The former should show what impact the

mining experiment has had on the lexicon as a whole. The latter should help us to

2A dependency analysis over the Target Set as in 9.10 and 9.11 may show more improvement, but

the problem of teasing out just those dependencies that are relevant to those tokens is complex, though

has potential for future development
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00 23

UP UR UF UP UR UF

BL 79.45 80.37 79.91 80.07 80.90 80.48

Long CI -POS 78.90 80.31 79.60 79.95 80.68 80.31

CI -Q 79.29 80.51 79.90 80.04 80.93 80.48

BL 90.76 89.91 90.33 90.78 88.83 89.79

Short CI -POS 90.66 89.51 90.08 90.79 88.72 89.74

CI -Q 90.75 89.90 90.32 90.77 88.82 89.78

Table 9.14: Unlabelled long-range and short-range dependency results.

00 23

LP LR LF LP LR LF

BL 66.97 67.75 67.36 68.77 69.56 69.16

Long CI -POS 66.53 67.69 67.10 68.75 69.46 69.10

CI -Q 66.84 67.90 67.37 68.76 69.61 69.18

BL 84.18 83.40 83.79 84.51 82.69 83.59

Short CI -POS 84.04 82.98 83.51 84.52 82.59 83.54

CI -Q 84.17 83.39 83.78 84.50 82.67 83.57

Table 9.15: Labelled long-range and short-range dependency results.

discern the level of overgeneralisation incurred by mining for specific words. §23 is

closed, and we do not know ahead of time how many of the OOL words in the Missing

List it contains.

Because CI skips most sentences, there is a danger that the training data do not

accurately reflect the test set, and that adding new short sentences with OOL words

may improve short-range dependencies at the expense of long-range ones. There is

a possibility that flooding the training data with short sentences will overfit, and as

a result it will degrade performance on long sentences, since longer sentences tend

to contain more long-range dependencies. However, Tables 9.14 and 9.15 show that

long-range and short-range dependencies are equally affected by the addition of new

training sentences, and learning from only short sentences does not damage the results.

As expected, the size of the lexicon has increased, while the parsing performance

has not changed significantly. An analysis of the final lexicon has shown that 85%

of the added lexical entries are plausible. This is an acceptable figure because the
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Figure 9.1: Comparison of labelled precision and recall for CI over dependencies in §00

and §23, as training sentences are added.

best-performing formulation of the StatCCG parser contains many erroneous lexical

entries, but still yields state-of-the-art results. We rely on the robustness of the parser

to smooth out small errors in the lexicon.

Figure 9.1 shows how precision and recall over dependencies are affected by the

addition of the new training sentences. Each point in the series represents a training

traversal of a whole NYT section. Performance stays relatively stable over the course

of the learning process, for both §00 and 23.

Figures 9.2 and 9.3 compare long-range to non-long-range dependency perfor-

mance on §00. Both values are quite stable as new sentences are added. This assuages

the concern that imposing a length filter on sentences would bias the parser toward

short-range dependencies to the detriment of long-range ones.

Figures 9.4 and 9.5 make the same comparison for §23.

9.5.2 Parser Analysis

In this section we examine the differences in parses between the baseline and CI-Q

for §00 of CCGbank. Of the 1913 sentences of §00 only 102 sentences differ. Of

these, only 20 have discrepancies in category assignments; the remaining 82 have only
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structural differences.

Analysis of these 20 sentences yields 28 unrelated “incidents”: interrelated struc-

tures where an independence assumption cannot be made. They involve 49 word to-

kens. These discrepancies are listed in table 9.16 and continued in 9.17. A manual

review of the word/category pairs reveals that the Baseline sentences contain 19 starred

items, and the CI-Q sentences 25, for a net loss of 6. This helps to explain the 0.05

difference in F-score on category matches above. In some cases the baseline or CI-

Q categories were deemed equivalent to the gold standard, and in one case the gold

standard itself was deemed to be in error.

9.6 The Learner

In this section we examine the new Gigaword parses produced by the learner. By

tracing the CI-motivated errors that led to the parse errors in the previous section, we

can typify the learning strategies that result in the best possible learning.

Of the ten million sentences in our subset of Gigaword, the learner only produces

parses for 1107. Most sentences are timed out. We estimate that any sentence complex

enough to time out will be likely to yield a worse result than less complex sentences,

so we are happy to let them go for precision reasons, even though they take up much

of the run time. In addition, not every category set yields a parsed sentence. Since we

are using the hypothesis parser to produce a full derivation for every attempted sen-

tence, sometimes this fails and the time used to produce the solution can be considered

wasted.

9.6.1 Learner Results

1107 new parsed sentences were produced, after filtering for questions; we take a

10% sample and review them manually. This sample of 100 sentences includes only

82 unique parses. Table 9.18 shows the whole-parse precision for the 12 different

sentence types produced by the learner. It shows that the sentence type we think of

as most common (S[dcl]) is underrepresented by the learner. This is motivated by the

end punctuation model, which allows a variety of sentence results, weighted by their

representation in the training corpus. As we see here, S[dcl] should be given more

probability mass at the expense of the others. This also suggests that a post-facto filter

that only allows S[dcl] parses into the retraining corpus may be productive.
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R Count Correct

S[dcl] 39 10

S[b] 15 0

S 7 0

S[ad j] 5 0

(S/S)/(S/S) 4 1

NP[nb] 3 0

S[ng] 3 0

S[pt] 2 0

N 1 0

N/N 1 0

PP 1 0

(S[b]\NP)\(S[b]\NP) 1 0

Total 82 11(13.4%)

Table 9.18: Whole-parse precision of 10% sample of CI parses, by sentence result type

(R).

Of the 361 individual word tokens in these 82 sentences, 113 were manually de-

termined to be errors, resulting in 69% category accuracy over the Gigaword sample.

This is lower than the category match results on CCGbank, which may be due to the

different domain of the sentences. On average, there were 1.38 errors per sentence over

all sentences, and 1.59 errors per error-containing sentence, which shows that there is

a tendency for one bad category in a derivation to lead to another. The most common

errors included determiners and prepositions. Eleven determiners, all with POS-tag

DT, were given an incorrect category, as were six prepositions, all with POS-tag IN.

Prepositions were loosely graded; any prepositional category that afforded the correct

attachment was deemed correct3.

9.6.2 Learner Analysis

Below we examine some of the most characteristic errors in detail. The sentences ‘Two

color slides .’ and ‘Three color slides .’ occur a total of 16 times in the sample, due

to their high frequency as a journalistic device in Gigaword4. However, they are frag-

3Prepositional categories are defined as PP, (S\NP)\(S\NP), NP\NP, S\S and S/S.
4Four more sentences in the Gigaword sample occur twice.
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Corpus Sentences Added |lex| Items Added

baseline - 38054 -

nyt10 167 38064 10

nyt11 144 38087 23

nyt12 178 38106 19

nyt13 256 38125 19

nyt14 262 38138 13

All 1007 38138 84

Table 9.19: Number of labelled sentences and lexical items added as more sections of

Gigaword are added to the training set.

ments, and therefore easy traps for CI to get itself into. In this case, slides is the OOL

word, and CI has determined that it is an intransitive verb. This is not a catastrophic

error, because slides occurs as an intransitive in other contexts. Unfortunately, it has

also decided that it is a bare verb ([b]), rather than a declarative ([dcl]). The adjectival

form of color is present in the baseline lexicon, so it is available to the learner, but

unused.

(15) * Two|Three color slides

N/N N S[b]\NP
>

N
M

NP
<

S[b]

(16) Two|Three color slides

N[num] N N
M M

N/N N/N
>

N
>

N

The second type of common error is the sentence-modifier error. In the sentence

below, They shoot has been realised as a sentence, using the valid but inappropriate

intransitive sense of shoot. The OOL word arrows is at the edge of the sentence, and

CI exploits this position to assign it the category that turns its sentential neighbour into

a declarative sentence.
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(17) * They shoot arrows

NP S[b]\NP S[dcl]\S[b]
<

S[b]
<

S[dcl]
(18) They shoot arrows

NP (S[dcl]\NP)/NP NP
>

S[dcl]\NP
<

S[dcl]

Attachment errors are also rife: here, Tuscany is the OOL word, and, while it gets

the nominal role correct, it erroneously includes the adjunct PP as an argument.

(19) * Take Tuscany as an example

(S[b]\NP)/NP NP/PP PP/NP NP[nb]/N N
>

NP[nb]
>

PP
>

NP
>

S[b]\NP
(20) Take Tuscany as an example

S[imp]/NP NP PP/NP NP[nb]/N N
> >

S[imp] NP[nb]
>

PP
M

S\S
<

S[imp]

The most linguistically interesting, and typical, sentence is ‘Varying cover charges.’

Here, each word is a homonym, having a number of different entries in the lexicon:

cover has four and charges ten, listed in figure 9.20. Recovery of the OOL word

Varying is therefore fraught with ambiguity, and the learner relies on the probabilities

to choose among all the options. In this case, NP wins, making a neat, but incorrect,

transitive sentence.

(21) * Varying cover charges

NP (S[b]\NP)/NP N
>

S[b]\NP
<

S[b]
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(22) * Varying cover charges

N/N N (S[dcl]\NP)/NP
>

N
M

NP
<

S[dcl]\NP

(23) * Varying cover charges

N/N N/N N/S[dcl]
>B

N/N
>B

N/S[dcl]

(24) Varying cover charges

N/N N/N N
>

N/N
<

N
M

NP

(22) and (23) would yield the correct category for the OOL word, even though

the parse is incorrect. The intransitive sense for charges is missing from baseline

lexicon, but the intransitive sense yields a non-sentential result of S[dcl]\NP, which

is a lower probability. The two highest-probability categories for charges, N/S[dcl]5

and N/[em]6 yield low-probability sentential results, and so are dispreferred. (24) is

the correct parse, to which the learner has access, but skips over in favour of the higher

marginal likelihood of (21).

Analysis shows that S[dcl] types are most reliable, and other result types are over-

represented. Determiners and prepositions are misparsed more often than anticipated.

This suggests that a more curated lexicon would lead to better CI parses, since it

would not allow these kinds of errors to occur. The same old generative bias is at

work. Certain sentences occur identically or near-identically in the corpus, and are

therefore overrepresented. This is also taking up time and resources from more inter-

esting/informative sentences.

51 instance of w/c pair charges:=N/S[dcl] occurring in CCGbank “ ...plead guilty ... to charges it

illegally steered company money to politicians ...”; 31 other lexical entries share this category.
613 instances of w/c pair charges:=N/S[em] in CCGbank, e.g. “ ... fighting charges that it bribed

Jamaican officials ...”
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W C P(W |C)

cover (S[b]\NP)/NP 0.004296785084017494

cover (S[dcl]\NP)/NP 1.8685767673621924E-4

cover N 1.93881112102059E-5

cover N/N 6.557033073674824E-6

charges N/S[dcl] 0.018518518518518517

charges N/S[em] 0.017793594306049824

charges ((S[dcl]\NP)/NP)/NP 0.005509641873278237

charges (S[dcl]\NP)/S[em] 0.002190100744634253

charges ((S[dcl]\NP)/PP)/NP 0.001854140914709518

charges (S[dcl]\S[dcl])\NP 0.0011013215859030838

charges N 6.83430920159758E-4

charges (S[dcl]\S[dcl])/NP 6.46830530401035E-4

charges (S[dcl]\NP)/S[dcl] 3.5733428622476324E-4

charges (S[dcl]\NP)/NP 1.2457178449081283E-4

Table 9.20: Entries for cover and charges in the baseline lexicon.

9.7 Discussion

In this experiment, we have tested the performance of CI in recovering the 2543 word-

category pairs in §00 of CCGbank that are not covered by the baseline lexicon. The

result is that 86, or 3.4% of the target set, are recovered. An in-depth analysis of all

the stages of lexical discovery shows that the 86 learned lexical items represent an

improvement over the seed lexicon. However, we find that this small lexical improve-

ments are not reflected in the parser. Zhang et al. [2005; 2007] noted this as well,

finding that lexical evaluation does not strongly correlate with parsing performance.

He suggests weighting lexical F-scores more in favour of recall, as it is a better indica-

tor of parsing ability than is precision.

Removing questions from the training corpus is an effective strategy for increas-

ing the precision of the learner. This is due to the baseline CCGbank corpus having

inadequate support for questions, as discussed in chapter 8, which is driven by the

low frequency of questions in the NYT sections of the Penn Treebank. For different

combinations of corpora, there might be a different set of sentence types that are un-

derserved, so future users of CI should take care to evaluate any domain issues when

setting their parameters.
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The final step is to estimate how many Gigaword sentences would need to be put

to the learner in order for all 2543 lexical items to be learned. This experiment shows

that only 1107 sentences out of the available 10 million were capable of contributing

to word learning, or about 200 sentences for each section of the NYT. We project

that running CI over all 23 available sections of the NYT would yield just over 4600

learnable sentences. Since the NYT section, representing 48,000,000 sentences, is only

half of the Gigaword corpus, we estimate that the whole set would make available only

around 9000 useful sentences.

At a rate of 86 new words for every 1007 sentences, given the current speed of the

implementation and its timeout settings, we project that these 9000 sentences would

result in about 769 new lexical entries, which comes nowhere near to the 2543 needed

to handle §00. This estimate does not take into account the acceleration of learning

that occurs once the word frequency threshold is passed, or the deceleration that re-

sults as we go further into the long tail, but we expect these two elements to balance

each other out in the long run. With improved implementational efficiency and more,

possibly parallel, computing power, this task could be achieved over time, but should

not necessarily be attempted. While we have made the recovery of a set of known

word-category pairs the goal of this experiment, it does not directly translate to the

real-world task of lexical acquisition for the improvement of parser coverage.

The generative model seeks to maximise the probability over the derivation. Using

the P(word|category) means that, all other things being equal, the maximised choice is

the rarer entry. If the choice is between a common category (whose probability mass is

spread among a large number of word types), and a rare category (where this word has

a large proportion of the probability mass), the latter will be preferred. This is simply

a property of generative parsing, and the framework under which normal parsing takes

place is suitably robust to this. However, when using these lexical rules to identify

OOL words, the system is vulnerable to this false economy. Lexical smoothing in the

vein of [Deoskar 2009] is a potential avenue for future work.

The lexical approach to this problem is to use a stricter method of adding items to

the lexicon. StatCCG’s method is to raise the word frequency threshold, but that still

allows singleton pairs to enter the lexicon. Another option would be to keep track of

the counts as well as the probabilities of each lexical entry, then use these numbers as

an additional metric, or element in the maximisation equation.

Inasmuch as lexical bias is a weakness of generative parsing, it is also a weakness

of the CI algorithm. The same weakness plagues POS backoff, BF, and any method of
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word learning that takes advantage of generative lexical probabilities.

Given more time, the experiment would benefit from further filtering the learner

to ignore questions, weighting the bias to S[dcl] more heavily (which must be done

artificially), and pruning the lexicon to only those w/c pairs that are stable and useful.

This brings up the same paradox has been discussed previously: rare categories will

be found in rare contexts, and one rare category leads to another. POS information is

required by the parser, so keeping that information away from the learner makes the

learning problem simpler to implement, but unnecessarily data-poor. A hybrid model

that takes both POS and structure into account, in the vein of Auli and Lopez [2011];

Koo et al. [2010], would be ideal. Ideally, a more efficient implementation of the

parser will be made available for future use. We also expect that the new version of

StatOpenCCG will have solved the timeout issue, which caused the parser to spend too

long failing on certain sentences despite a timeout parameter.

In conclusion, Chart Inference succeeds in widening lexical coverage over the

StatCCG seed lexicon when allowed to learn new lexical items from the Gigaword

corpus. In addition to learning more valid entries than spurious ones, the parsing re-

sults as compared to the baseline are no worse, and the error analysis shows interesting

linguistic phenomena that will help to influence future incarnations of CI. The applica-

tion of filters and restrictive parameters are instrumental in weeding out sentences that

are likely to be problematic. Similarly, it is vital that the learning corpus accurately

reflect the test sentences, as is shown when questions are filtered out from the learning

set.



Chapter 10

Conclusion and Future Work

10.1 Summary

This thesis has presented a semi-supervised word learning system that employs a chart

to generate CCG category types for unknown words. The first two chapters are turned

over to background and review of previous work. The remainder of the work is in-

volved in the testing of CI in word-learning tasks of increasing complexity.

Chapter 3 describes two baseline systems, Brute Force (BF) and Rule Based (RB),

and sets out the extensions to them that we have achieved in the implementation. Chap-

ter 4 introduces Chart Inference (CI), as a faster and more accurate solution to the same

word-learning problem. Chapter 5 shows that CI and RB converge in the same way as

established by BF, at the same time indicting that the size of a seed is not as important

as its quality, and that cosine similarity over a P(w|c) lexical model is not sufficient for

evaluating the quality of a lexicon.

Chapter 6 introduces the McGuffey corpus as a CCG resource for testing language

learning systems. It shows that CI outperforms BF and RB on practical natural lan-

guage tasks. Analysis also shows that CI, as an algorithm, is capable of covering all

natural categorial types, and does not suffer from any systematic deficiencies, in con-

trast to the BR and RB baselines. The McGuffey corpus will be made available as a

CCG resource for research into language acquisition, both human and artificial. Its

compatibility with CCGbank and its increasing order of linguistic complexity make it

a potentially valuable corpus for learning systems.

Chapter 7 tested CI in a larger-scale setting, in the task of recovering as many

lexical items as possible from the CCGbank corpus, given various sizes of seed corpus.

CI was shown to be superior to a self-training (ST) baseline that uses the parser’s built-

165
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in POS backoff mechanism to deal with unknown words, in that it produces fewer,

higher-quality parses over the same data.

Chapter 8 is a domain-adaptation task, attempting to learn missing types for question-

word categories, from which we draw the conclusion that CI succeeds in finding new

category types, but that it is too slow and restrictive to make a large impact on the lexi-

cal model. Using CI in combination with ST provides the best results, an improvement

of 50% in precision over the target set of SWHE questions.

Chapter 9 undertakes the most arduous learning task, and shows that CI can play

a role in discovering OOL lexical items, but also that the initial conditions heavily

influence the items learned, and that the model is subject to vagaries of the implemen-

tation. We report results of 121 new lexical items learned with 85% accuracy, rising to

95% accuracy for 86 new items when we remove question sentences from the training

corpus. The extended lexicon does not afford an appreciable change in F-score over

dependencies when used to parse the test set, highlighting the difficulty in evaluating

lexicon quality at a parser level. We also execute a power analysis that suggests that a

word learner would need orders of magnitude more unlabelled training data to cover

all the missing words from §00.

10.2 Contributions

The central novel contributions of this thesis are threefold: the statistical extension to

Yao’s rule-based learner, the creation of the McGuffey corpus, and the development

of Chart Inference (CI) as a solution to the word-learning challenge introduced by

Brent. This thesis introduces a new method for discovering CCG category types for

out-of-lexicon words. Chart Inference (CI) takes advantage of a pre-trained model and

expands the lexicon using unlabelled text. It is capable of generating new category

types, and is therefore more appropriate than backoff via Part-of-Speech for learning

new lexical items.

CI is particularly useful for boosting a treebank with rare constructions, and we

have shown that it does not produce the catastrophic results to which ST is prone. It

is a powerful method for combining the efficient language model gained from labelled

data with the variety and abundance of unlabelled data to broaden the coverage of an

existing lexicon. In terms of real-world NLP tasks, CI has shown promise in the fields

of lexicon acquisition starting with a small amount of linguistic knowledge (chapter

5), adapting existing wide-coverage lexicons to new syntactic domains (chapter 8),
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and extending the coverage of treebank-trained parser with no additional labelled data

(chapter 9.)

10.3 Future Work

This thesis represents the first efforts to implement CI and deploy it in natural language

tasks, but in order to compete with the state-of-the-art, more work will be necessary.

Efficiency

The next logical step is to apply CI to a truly large-scale learning problem. There

are problems of parsing efficiency and pruning to overcome in order to make this

undertaking time-efficient, but this thesis shows that CI is capable of finding good-

quality lexical items that are otherwise missing from a very good treebank. If the

implementation were sped up, more data could be processed in less time. We have

experienced problems with the StatOpenCCG timeout mechanism. An updated ver-

sion of StatOpenCCG has been released since the completion of this thesis, and has

the potential to introduce improvements across the learning pipeline.

Power

Our CI implementation does not cover the full generative power of CCG, because it

only uses application and composition. However, the crossed composition and substi-

tution combinators are much rarer, and most of their behaviour is encoded in the model

rules, to which CI has full access. Therefore, our system has the best of both worlds,

since it cannot over-apply these rare rules, but can still take advantage of the truly

justified ones. Potential future projects would extend CI to cover the remaining com-

binators, as well as the multi-modal CCG extensions, and test whether they improve

the algorithm.

Chart revision

We have not yet fully investigated the reinterpretation power of CI over the partial

chart. Initial investigation showed no increase in precision when we allowed reanalysis

of filled cells, but processing time rose considerably. In light of this, all experiments
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were run with filled cells locked, meaning that any cell that was filled by the bottom-up

partial parsing process cannot also accept new entries from the top-down CI process.

This decision was also motivated by the incommensurability of the bottom-up and

top-down probability calculations. We expect that for languages with fewer available

resources, and therefore smaller seed lexicons, it may be profitable to allow reanalysis

of filled cells, so that CI might have a chance to recover from malformed constituents.

Known Words

This thesis addresses the OOL problem, but only in the case of completely unseen

words. It can find both known and unknown categories for unknown words, but the

problem of how to find additional categories for known words remains. This is a

problem faced by all systems attempting to extend the coverage of a lexicon [Deoskar

2009], and is extremely difficult. It is related to the problem of when to stop learning,

and we skirt the issue by compiling the learned sentences into the second-level training

data. It is a problem for ST, too, and in many domains other than lexicon acquisition.

The ideal method for discovering gaps in an existing lexicon is elusive, and there-

fore a rich area for further work. The method used in chapter 5 was to reparse every

sentence for which a parse was impossible, taking each word in turn as an unknown.

This approach could be extended to sentences for which a parse is possible, and used to

determine whether any of the learned sentences produce a higher-probability parse than

the original. However, in its limited formulation it was found to be too time-consuming

to be applied to a large-scale natural language task. We address this problem partially

in the QA domain adaptation experiments in chapter 8, but the difference is that we

know which words we have incomplete information for, and go out to mine the avail-

able data to boost our knowledge of them. In this sense, it is reasonable to use CI (or

any number of semi-supervised methods) to learn more about known words, but the

problem of determining for which words unseen categories exist, remains.

Languages

A pertinent avenue of future investigation is to implement Chart Inference for a lan-

guage other than English. Some preliminary work has been done with Thai, and the

integration was relatively simple. One only needs a parser that is capable of report-

ing partial parses, and a method for interpreting parser output and formatting data for

input. A flexible lexical model is also necessary, but the learning could be done in a
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single pass, as in chapters 6-9, or incrementally, as in chapter 5. The latter would be a

better choice if starting with a very small lexicon.

Grammars

Although CI was developed for use with CCG, we anticipate that it could be adapted to

work for various grammar formalisms. Since it employs two methods for generating

cells in the chart (inverse combinators and model rules), it could be easily modified

to use model rules only, and as such, use the rules of any model. The chart and the

algorithm would be the same; only the representation would differ. However, this

would be an incomplete method for learning a grammar from a very small seed, since

most other grammar formalisms have distinct lexical and rule components. CCG’s

particular strength in this respect is that the universal combinators allow for constituent

combinations that have not been attested in the training set. DLA for HPSG is more

complex than our tasks, since the architecture of CCG conflates learning the rules of a

language with learning the lexicon.

Morphology

Morphology is a rich and informative area of inquiry, and we foresee CI being in-

tegrated with a morphological model, most simply with the POS tags that must be

attached to the learning corpus for StatCCG compatibility, or with a suffix analyser.

Suffix information may not be available in all cases, but the input from a POS tagger

would help to limit the set of categories CI would consider. At the same time, it would

be a barrier to innovation, because the POS tagger would presumably be trained on the

same corpus as the initial parser, which we know to be insufficient. A fruitful integra-

tion of morphology into the word learning mechanism would take this into account.

10.4 Applications

There are two areas of application in which CI has the potential to excel. The first is

in semi-automatically discovering a grammar for a resource-poor language for which

a small, precise seed lexicon is manually created: CI could serve as a tool for lexi-

cographers creating new CCG corpora and parsers. Some work has been done in this

direction, using CI to iteratively build a lexicon for Thai. CI could be a useful part of a

lexicon acquisition effort that makes efficient use of a human speaker’s time to create
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a seed and check the output parses, in combination with computational power to find

the generalisable patterns in the language. The challenges to this task include creating

a high-quality seed, and ensuring that the atomic categories cover the needs of the lan-

guage, as well as focusing the training sentences to build up the lexicon incrementally,

in the style of the McGuffey corpus.

The second application is in extending lexicons, and thereby providing more la-

belled data, for state-of-the-art parsers, to increase their coverage from raw text when

labelled resources are exhausted. The latter task garners more attention from the sci-

entific community, in particular because it is so difficult: as we have seen in chapter 9,

local improvements to the lexicon do not immediately lead to appreciable increases in

F-score. However, the preliminary work of this thesis into the field of lexicon extension

shows that Chart Inference has the potential to contribute to the solution.
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