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Abstract
Visually guided navigation represents a long standing goal in robotics. Insights may

be drawn from various insect species for which visual information has been shown

sufficient for navigation in complex environments, however the generality of visual

homing abilities across insect species remains unclear. Furthermore various models

have been proposed as strategies employed by navigating insects yet comparative

studies across models and species are lacking. This work addresses these questions

in two insect species not previously studied: the field cricket Gryllus bimaculatus

for which almost no navigational data is available; and the European desert ant

Cataglyphis velox, a relation of the African desert ant Cataglyphis bicolor which has

become a model species for insect navigation studies.

The ability of crickets to return to a hidden target using surrounding visual cues

was tested using an analogue of the Morris water-maze, a standard paradigm for

spatial memory testing in rodents. Crickets learned to re-locate the hidden target

using the provided visual cues, with the best performance recorded when a natural

image was provided as stimulus rather than clearly identifiable landmarks.

The role of vision in navigation was also observed for desert ants within their

natural habitat. Foraging ants formed individual, idiosyncratic, visually guided routes

through their cluttered surroundings as has been reported in other ant species in-

habiting similar environments. In the absence of other cues ants recalled their route

even when displaced along their path indicating that ants recall previously visited

places rather than a sequence of manoeuvres.

Image databases were collected within the environments experienced by the in-

sects using custom panoramic cameras that approximated the insect eye view of the

world. Six biologically plausible visual homing models were implemented and their

performance assessed across experimental conditions.

The models were first assessed on their ability to replicate the relative perfor-

mance across the various visual surrounds in which crickets were tested. That is,

best performance was sought with the natural scene, followed by blank walls and

then the distinct landmarks. Only two models were able to reproduce the pattern

of results observed in crickets: pixel-wise image difference with RunDown and the

centre of mass average landmark vector.

The efficacy of models was then assessed across locations in the ant habitat.

A 3D world was generated from the captured images providing noise free and high

spatial resolution images as model input. Best performance was found for optic flow
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and image difference based models. However in many locations the centre of mass

average landmark vector failed to provide reliable guidance. This work shows that

two previously unstudied insect species can navigate using surrounding visual cues

alone. Moreover six biologically plausible models of visual navigation were assessed

in the same environments as the insects and only an image difference based model

succeeded in all experimental conditions.
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Chapter 1

Introduction

Many insects construct nests, hives or burrows that provide shelter from the cli-

mate and protection from predators. Foragers are tasked with venturing from these

havens and exploring their local habitat in search of food. This time spent in open

terrain can be extremely costly for individuals as they are exposed to predatory and

environmental dangers. Many insect species have evolved efficient search strate-

gies to limit the time spent seeking food resources (for a review see (Bell, 1990)).

Yet this exploration phase represents only the first stage of the forager’s journey: af-

ter locating food the animal must return with its bounty to the safety of the nest as

quickly as possible.

The same task must also be addressed in a variety of robot applications. For

example domestic robots must relocate their charging station after completion of

their circuitous cleaning routine. Or when deployed in the aftermath of a disaster,

search and rescue robots must return to the command or medical centre after lo-

cating trapped or wounded persons.

In both cases, when homing commences the agent (insect forager or robot) is

armed with a multitude of sensory data amassed whilst travelling to its current lo-

cation. Insects have been shown to integrate this multi-modal sensory stream to

generate an estimate of the location of the nest relative to the current location (dis-

cussed in detail in chapter 2). However, where strategies are reliant upon idiothetic

cues, such as distance measurement by step counting, cumulative errors increas-

ingly corrupt the homing signal. Many insects instead navigate predominantly by

visual means, which offers a more robust (allothetic) signal and can provide long-

lasting guidance once learned.

Diurnal insects sample their visual environment through a pair of apposition
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2 Chapter 1. Introduction

compound eyes (Land, 1997; Land and Nilsson, 2002). Thus evolution has con-

verged upon a dominant sensory modality and sensor design sufficient for insects to

robustly navigate their complex worlds. Such findings raise the following questions:

1. Are visual navigation abilities conserved across diurnal insects?

2. If so, do all insects navigate by a general visual homing mechanism?

It should be noted that a number of models have been proposed as candidate

algorithms employed by insects, yet compelling evidence for the use of one or other

scheme by insects has not been forthcoming.

This thesis addresses these issues directly through a combined behavioural and

modelling study performed in two insect species: the field cricket Gryllus bimacu-

latus and the desert ant Cataglyphis velox. The remainder of this chapter presents

the methodological procedure followed throughout this study, the reasoning behind

the choice of model systems, the key contributions that result from this work, and

finally the structure of the remaining thesis.

1.1 Methodology

1.1.1 Insects as Model Systems

The repertoire of complex behaviours expressed by insects has fascinated scientists

for centuries. Such behaviours include nest building, mate finding, courtship, pre-

dation and predator avoidance, and communication. The inspiration behind this

work however is motivated by the incredible journeys insects complete in search of

food, mates and shelter (see figure 1.1). These navigational feats are made all the

more impressive when one considers that the insect brain contains less than one

million neurons (note that the human brain is estimated to contain between 10 and

100 billion neurons).

Thus in insects we find an ideal synthesis of demonstrable complex behaviours

that are of interest to biologists and engineers, and a limited nervous system that of-

fers a more tractable medium for the study of these complex behaviours than that of

higher order animals. Furthermore, contrary to intuition, recent evidence suggests

that reduced neural density does not result in a proportional limit on the complexity

of tasks solved by insects (Chittka and Niven, 2009). Rather that increased brain size
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(a)

(b)

Figure 1.1: Insect Navigators. (a) Desert ants inhabiting featureless salt-pans of northern

Africa search for food morsels under the baking midday sun (black line). After locating food

they are able to return to their nest by the direct path. Figure from Wehner (2010) (b)

Monarch butterflies perform annual cross-continental migrations often over thousands of

miles. Figure from Krieger and Kahler (2007).
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may simply offer further refinement of sensory input and increased memory capac-

ity . In such a circumstance, developing an understanding of the neural processes

mediating behaviour in these parsimonious brains may unravel the fundamental

mechanisms necessary for complex behaviour. This in turn may inform studies into

the functioning of higher order animals including humans.

In this thesis two insect species are studied: the field cricket Gryllus bimaculatus

and the desert ant Cataglyphis velox. The following sections discuss the specific

factors leading to use of these species in this work.

1.1.1.1 The Field Cricket Gryllus bimaculatus

Gryllus bimaculatus is found across tropical and subtropical regions of Africa and

the Mediterranean basin. They are solitary, burrow dwelling animals probably most

noted for their robust phonotaxis behaviour; the ability to home to a sound source

in order to locate a mate. The abundant availability of animals and ease of housing

means that crickets are ideally suited to laboratory studies. As such they have be-

come a popular organism for neuroethological and biorobotic studies into a variety

of behaviours from phonotaxis (Huber et al., 1989; Schildberger, 1988; Webb, 1995),

to multi-modal cue integration (Webb and Harrison, 2000; Payne et al., 2010), and

predator avoidance (Camhi, 1980; Chapman, 2001).

In contrast relatively little is known of the visual navigation abilities of the cricket.

One remarkable study revealed that the presence of surrounding visual cues aids

male crickets to steer a course back to shore after leaping into a pond to avoid a

predator (Beugnon, 1986). However, it is not clear from this work that crickets are

not using a simpler strategy such as beacon aiming, or associated orientation cues.

While little is known of the role vision plays in cricket navigation, the structure

and function of the cricket visual system has been described in detail by (Labhart

et al., 1984) and is shown to be anatomically similar to ants and bees.

In summary Gryllus bimaculatus presents an opportunity to ask whether visual

homing abilities are conserved across insect species by targeted experimentation in

an organism whose visual sensing is similar to expert navigators but for which little,

if any, homing data exists.
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1.1.1.2 The Desert Ant Cataglyphis velox

Cataglyphis velox are thermophilic central place foragers that scavenge for arthro-

pod corpses during the hottest hours of the day. These exploratory paths can extend

over one hundred metres in length, yet when a food morsel is located the forager

will reliably relocate to the inconspicuous nest (the mechanisms underlying this be-

haviour are discussed in detail on chapter 2). The surface temperature during these

foraging trips typically ranges between 40◦ and 70◦. Thus the use of pheromone

trails is not possible as any substance deposited on the desert surface evaporate al-

most instantly. Consequently individual foragers must possess the full suite of tools

required for navigation, and can therefore be treated as fully autonomous agents.

The searing temperatures to which foragers are exposed results in life threat-

ening stresses on the ant body. This has led to a number of physical adaptations

to alleviate some of the stress induced during foraging excursions (Cerda and Re-

tana, 2000). Cataglyphid foragers possess extremely long legs compared to other ant

species. The initial benefit is obvious in that the body mass of the forager is raised

from the desert surface. Moreover, longer legs enable foragers to move very quickly,

limiting the time spent on the desert surface. Indeed, they have been termed the

"‘race horses of the insect world"’ (Wehner, 2008). In addition to increased leg

length, the overall body size of foragers is markedly larger than that of workers con-

fined to the nest. It has been suggested that the distinction in body size to caste can

be attributed to larger bodies offering more heat tolerance. Given that the desert ant

has evolved several physical adaptations to limit the stresses induced in the extreme

heat, it seems reasonable to suggest that the ant may have also evolved efficient, if

not optimal, navigational strategies.

Desert ants rank amongst the most fascinating and well studied of the insect

navigators. However most studies to date have taken place in northern Africa or

Australia, in Cataglyphid and Melophorus genera respectively. Cataglyphis velox are

indigenous to the shrub-like habitat of southern Spain. This environment is visually

similar to that of central Australian ant Melophorus bagoti, and offers an opportu-

nity for a novel comparative study: do distinct insect species exploiting a similar

ecological niche navigate by similar methods?

The choice to study ants in the field rather than in the laboratory was driven by

two factors. Firstly, desert ant colonies are particularly difficult to maintain in the

laboratory. Or more specifically, it is prohibitively hard to keep the proportion of
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brood to workers high enough such that the foragers are motivated to feed consis-

tently (personal experience, and personal communication with Markus Knaden).

When studying desert ants in the field in the spring and summer, strong nests can

be sought and selected for use providing large numbers of subjects motivated to

feed, and usually a corresponding increased data yield. It should be noted however

that such studies are thus constrained by seasonal and environmental factors. The

second factor influencing the choice to perform field studies in desert ants was the

opportunity to sample the ant habitat as viewed by the insects. To the best of the

authors knowledge no image database sampled within the ant habitat and from a

camera simulating the ant-eye existed prior to this work.

1.1.2 The Role of Modelling in Insect Navigation

Webb and Consi (2001) define biorobotics as a "multidisciplinary field that encom-

passes the dual uses of biorobots as tools for studying animal behaviour and as

testbeds for the study and evaluation of biological algorithms for potential appli-

cation to engineering."

It is the former definition that is the primary aim of this thesis. Indeed, the field

of insect navigation has long benefited from complementary behavioural and mod-

elling studies. For example, the classic snapshot model was developed in a com-

puter simulation specifically to replicate honey bee search patterns observed in

landmark manipulation studies (Cartwright and Collett, 1983).

Model instantiation requires that hypotheses be formalised, and where possible

quantified, allowing the model to implemented as a computer simulation or on a

physical robot. This process is not only essential but can provide vital feedback to

biologists about crucial knowledge gaps (within both the target organism and the

proposed hypothesis), which can inspire further experimentation.

Yet the major benefit of biorobotic studies comes through closing the sensory-

motor loop. Insects are not passive observers of their environment but actively in-

fluence their sensory input through their own movement. It is difficult, if not im-

possible, to accurately predict a priori the sensory stimuli that an insect will expe-

rience as it engages its environment. However by building biorobots it is possible

to embed models within a system capable of moving and thus interacting with its

environment in a manner similar to the target organism. Note that embedding the

robot system within the animal habitat can in itself provide inspiration to modellers.
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For example (Zeil et al., 2003) used a gantry robot with a panoramic camera attach-

ment to sample the natural visual environment in which insects navigate. Further

analysis of the image data revealed that insects could home using a simple pixel

matching algorithm without any need for complex feature extraction (discussed in

detail in Chapter 2.1).

1.1.3 Constraints

Webb (2001) defines a series of dimensions along which biorobotics models can be

characterised, and by which they can be constrained. That is, by addressing where

biorobotic models reside on certain dimensions, authors can place their model in

context of other studies and inform the reader of the conclusions that should be

drawn from their results. For example, ant colony optimisation theory applied to

communication takes inspiration from biology but insights drawn from such work

are unlikely to inform myrmecologists. These dimensions are discussed in the fol-

lowing sections with specific relation to the modelling performed in this study.

1.1.3.1 Biological relevance

The modelling work undertaken in this thesis is intended to have high biological

relevance. Only biologically plausible models are considered and their performance

is assessed by their ability to replicate the behavioural data when exposed to similar

experimental paradigms rather than absolute performance.

Constraining computational and sensory capabilities to the limited resources

of the insect compels modellers to seek the simplest mechanism by which the be-

haviour can be produced. Indeed, recent studies show that insects tested in simi-

lar laboratory paradigms as mammals can produce similar data. For example, rats

trained to locate an inconspicuous exit found in one corner of a rectangular arena

will regularly confuse the correct location with the geometrically opposing corner

(Cheng, 1986). Errors persist even when disambiguating visual cues are provided

which has led to the proposal of a geometric module in the mammalian brain which

competes with spatial learning systems. Wystrach and Beugnon (2009) showed that

ants placed at the centre of a rectangular arena will display the same rotational er-

rors. Furthermore, earlier modelling, constrained to be biologically plausible in in-

sects, has shown the behavioural data can be explained by a simple homing mech-

anism rather than a more involved geometric module (Stürzl et al., 2008).
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1.1.3.2 Match

As the overarching aim of this thesis is to investigate the mechanisms by which in-

sects navigate, matching the biological data is sought throughout by assessment of

model performance by direct comparison to real biological data. That is, models

are exposed to the same experimental manipulations as the animals and the rela-

tive performance in each condition reported rather than absolute performance per

se. Moreover, care is also taken to match the experimental procedure. For exam-

ple, models and insect data are reported given the same numbers of trials, model

homing trials are started from the same locations from which animals started, etc.

1.1.3.3 Accuracy

The modelling undertaken in this thesis only aims to accurately replicate the insect

visual sensing abilities. The structure and function of the insect compound eye is

well understood (see Land (1997) and Land and Nilsson (2002), chapters 7 and 8

for reviews) and the cameras used in this work seek to accurately replicate this view

of the world. Furthermore, image pre-processing parameters are derived from the

biological data.

1.1.3.4 Medium

Where possible, models are supplied with sensory input sampled from the same

environment in which animals are tested. Sensory input sampled from simulated

worlds risks the introduction of biases and assumptions which may, or may not be

present in the real world. Thus, in both modelling studies image databases are gath-

ered within the same environment in which the insect data was recorded.

Whilst image databases sampled at discrete locations in the environment, the

sensory-motor coupling can be considered the same as that if models were imple-

mented on a real robot: movement within the image database is driven by model

output which in turn affects the resulting sensory input. Image databases were

chosen as the medium rather than implementation of a fully autonomous robot for

practical reasons. To not bias performance in favour of any particular model various

image processing parameters are optimised across models. Such computational ex-

plorations are completely unfeasible and unsuitable for implementation on a robot

platform.
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Furthermore, an assumption of all the current visual homing models is that im-

ages are correctly alligned with the stored reference image. This assumption would

be violated by an unconstrained autonomous robot. It should be noted that various

authors have offered solutions to this problem but is outwith the scope of this study.

1.1.3.5 Abstraction

The image database methodology outlined above offers significant advantages over

a robot implementation in terms of off-line processing and model testing capabil-

ities. However, the movement of agents within the databases approximates a grid

world solution and therefore all motor systems relevant to insect locomotion move-

ment have been abstracted from this work. Moreover, the stepped path that models

tread towards the target location cannot be compared directly to the route traversed

by freely moving insects.

Moreover, image databases should offer idealised visual sensing. That is, with-

out the need to correct for yaw, pitch and roll, that the animal must compensate

for.

1.1.3.6 Level

All models discussed in the thesis are implemented at the algorithmic level. Thus,

the work presented cannot claim to offer insights into the exact neural processes

governing visual homing in insects or indeed offer any hint as to the location of

such functionality in the insect brain. However, such an approach offers insights

into the information that insects derive from their visual surroundings, and how

they manipulate this data for guidance.

1.1.3.7 Generality

In this study we ask explicitly if any of the current suite of biologically plausible

models visual homing can generalise across the visual homing behaviours of dif-

ferent insect species. It should be noted that model parameters (both at the image

pre-processing stage and within the model processes) are intentionally optimised

rather than predefined. This may elicit differing solutions, and where appropriate

such results shall be highlighted and discussed.
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1.2 Thesis Outline

The following thesis is divided into five main chapters:

Chapter 2 surveys the growing evidence for a general mechanism of visual guid-

ance across insect species. This is presented as an insect navigational tool-kit with

discussion of the sensory and neural mechanisms underlying behaviour. Studies

involving crickets and ants are given precedence as they are the species used in this

work, however where appropriate reference is made to works in other species.

In chapter 3 a novel laboratory paradigm is outlined in which the visual homing

ability of the field crickets is assessed.

In chapter 4 a suite of biologically plausible visual homing models are assessed

in the same visual conditions in which crickets were trained. Models are ranked not

on their absolute performance but rather their ability to replicate the performance

of the crickets.

Chapter 5 describes a field study in which the natural foraging patterns of the

European ant Cataglyphis velox were observed.

Chapter 6 compliments this field study by assessing the efficacy of the same

suite of visual homing models but within the natural habitat of the ant.

Chapter 7 concludes the thesis by bringing together the various results presented,

highlights their implications, and closes with a discussion of future research possi-

bilities facilitated by this work.



Chapter 2

Literature Review

2.1 Introduction

Increasing evidence suggests that despite navigating through vastly different envi-

ronments whilst using diverse methods of locomotion and sensing, different insects

make use of similar environmental cues for guidance. Moreover, central place for-

aging insects process and combine these cues in similar ways resulting in compa-

rable navigational behaviours. Taken together, this repertoire of behaviours can be

thought of as a navigational tool-kit. Wehner (2008) proposed such a tool-kit for

the desert ant which is here extended to a general navigational tool-kit for insects

(figure 2.1).

It should be noted that we do not consider long distance navigational feats ob-

served in insects such as migration, or any swarm based strategies such as trail fol-

lowing. Instead this work focuses on the ability of individual animals to navigate

their local environment. This generally serves one of two purposes: to return an an-

imal to the safety of the nest after foraging and to guide the animal to a previously

visited feeding site.

The study of insect navigation has been active for more than a century gener-

ating a vast literature. As this work investigates the homing behaviours of ants and

crickets this literature review shall focus primarily on studies involving these in-

sects. Nevertheless, care is taken to highlight examples where similar behaviours

have been observed in other species. In this review the various navigational strate-

gies shown in figure 2.1 shall be briefly discussed, but the focus for the remainder

will be on visual homing strategies.

The ability of insects to navigate their complex habitats despite their limited

11
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Independent Navigational Strategies

Route Following

- Desert ant, wood ant,
  honey bee.

Search

- Desert ant, desert Isopod, wood ant, 
  Honey bee, cockroach.

Visual Homing

- Desert ant, wood ant 
  honey bee.

Path Integration

- Desert ant, wood ant, fruit fly, 
  honey bee, cricket, beetle.

Sensory Input

Odor

- Desert ant, wood ant, fruit fly, 
  honey bee, cockroach.

Proprioception

- Desert ant, wood ant.

Motor OutputVision

Visual Panorama

- Desert ant, wood ant, fruit fly, 
  honey bee, cockroach.

Celestial Compass

- Desert ant, locust, fruit fly, 
  honey bee, cricket, dung beetle.

Optic Flow

- Desert ant, moth, honey bee.

Cue
Integration

Figure 2.1: Insect Navigational Toolkit. The sensory input block shows the most commonly used sensory cues that generalise across insects

with a list of the species for which they have been observed. The independent navigational strategies block shows the distinct guidance strategies

employed by insects exposed through natural observation and experimental manipulation. Competing output from the distinct strategies are then

integrated leading to the common navigational behaviours observed in central place foraging insects.
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neural hardware and low resolution visual system has drawn interest from com-

puter science and engineering as well as biological fields. The second section of this

literature review introduces a series of biologically plausible models of visual hom-

ing that shall later be tested in the same conditions as insect data is recorded. The

homing scheme underlying each model is described in detail and previous model

testing discussed, particularly where model performance has been compared to be-

havioural data.

2.2 Insect Navigation

2.2.1 Systematic Search

The rudimentary navigational behaviour displayed by insects is the systematic search;

a strategy called upon when the all other guidance systems fail, or more succinctly

when an animal is lost. Search is clearly distinguished by the characteristic loop-

ing path centred where the animal believes the target (nest or feeder) to be lo-

cated (Wehner and Srinivasan, 1981). The specific search pattern displayed differs

according to the insect species: desert ant (Cataglyphis fortis), desert isopod and

cockroach fit a probability density function (Müller and Wehner (1994); Hoffmann

(1983); Durier and Rivault (1999) respectively); desert ant (Melophorus bagoti) fol-

lows a composite Brownian walk (Narendra et al., 2008); ant (Temnothorax albipen-

nis) fits a super diffusive pattern (Franks et al., 2010); and honey bee (Apis meliphora

) performs a systematic search before switching to a Lévy flight (Reynolds et al.,

2007). Despite the variety of exploratory patterns, the presence of the search be-

haviour as a "‘navigational safety net"’ appears fundamental across insects.

The search is not a rigidly pre-programmed routine but instead an adaptive

strategy. Desert ants have been shown to adapt the spread of the search in rela-

tion to the length of the homing trip (Merkle and Wehner, 2010) and familiarity of

surrounding visual cues (Merkle and Wehner, 2009). Additionally honey bees have

been shown to switch from a systematic search to a Lévy flight if the nest is not lo-

cated quickly (Reynolds et al., 2007).

The adaptive nature of the search provides a powerful tool for inferring an an-

imal’s confidence in its navigational system and remains an active research field.

However as the search is always submissive to other guidance strategies and the fo-

cus of this study is on visual navigation, the systematic search shall not be discussed
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further in this review.

2.2.2 Path Integration

Insects maintain a virtual life-line (known as the home vector) linking the animal’s

current position with the nest throughout every foraging journey. When food is en-

countered the home vector is engaged and guides the animal home by the direct

path. This strategy of navigation is known as path integration and has been ob-

served in numerous insect species: desert ant ((Pièron, 1904) as cited by (Collett

and Collett, 2002)); honey bee (Von Frisch, 1967); cricket (Beugnon and Campan,

1989); fruit fly (Neuser et al., 2008); beetle (Rasa, 1990)); woodlouse (Hoffmann,

1978). The path integrator remains active throughout the homeward journey al-

lowing for enforced diversions from the "‘bee-line"’ before homing recommences

along the updated direct path (Wehner, 2003).

Vector navigation is not limited to guiding an insect home but can be inverted

to guide insects to previously visited feeding sites as shown in desert ants by Collett

et al. (1999). This recycling of the information content of the home vector is demon-

strated by the waggle dance of honeybees. Returning foragers that have found a

profitable feeding site pass on the direction and distance of the food site to nest

mates through a series of waggles and runs (Von Frisch, 1967; Dyer, 2002).

In visually barren environments path integration has been shown sufficient for

accurate navigation (for reviews see Wehner and Srinivasan (2003), Collett and Col-

lett (2000)). Less is known about this form of navigation in crickets. Beugnon and

Campan (1989) showed field crickets to use path integration when returning to their

burrow, although data was only sampled for foraging distances up to 1m. Crickets

were also shown to use celestial cues to swim by the direct path back to the shore

after a predator-avoidance leap into a lake (Beugnon, 1986).

Path integration requires two sources of information: a compass heading and a

measure of distance travelled. By continuously integrating these two streams of in-

formation insects maintain an accurate home vector. The pattern of polarised light

and solar gradient expressed in the celestial hemisphere provides insects with an al-

lothetic compass cue defining the direction of travel (desert ant (Vowles, 1950; Lab-

hart, 1986); honeybee (Wehner and Strasser, 1985); fruit fly (Wolf et al., 1980); cricket

(Brunner and Labhart, 1987); desert locust (Eggers and Gewecke, 1993)). Odometric

information is generated through a combination of idiothetic (step-counting) and
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allothetic (optic flow) cues in walking insects (desert ant (Wittlinger and Wolf, 2010);

ladybird (Zanker and Collett, 1985); fruit fly (Götz and Wenking, 1973)), whereas fly-

ing insects rely on allothetic cues alone (honey bee (Esch and Burns, 1996; Srini-

vasan et al., 1996), moth (Kennedy and Marsh, 1974)).

As path integration is an iterative process it is prone to corruption by cumula-

tive errors (Merkle et al., 2006). Ants compensate for such errors by extending the

spread of their systematic search in proportion to the length of foraging journey

and hence cumulative error (Merkle et al., 2006; Merkle and Wehner, 2010). Fur-

thermore Müller and Wehner (1988) report a systematic error in the home vector of

ants biasing the direct homeward path towards the area covered on the ant’s out-

ward journey. The benefit of crossing the outward path is clear in that the animal

may recall the familiar terrain and then pinpoint its nest using visual means.

Path integration is always dominant to search. However when in conflict with

familiar visual cues the home vector is not expressed with visual homing strategies

proving dominant (Andel and Wehner, 2004; Kohler and Wehner, 2005; Narendra,

2007b; Bregy et al., 2008). Despite the output of the path integrator being sup-

pressed in such environments, insects continue to compute their home vector through-

out their foraging excursions. In situations where visual cues fail entirely the home

vector can be expressed to provide an alternative guidance strategy. It should be

noted that the visual surroundings influence the extent to which the home vector

is expressed. Narendra (2007a) displaced desert ants from their natural foraging

ground to a new location in the habitat such that visual cues were unfamiliar to the

foragers. Yet, in the same study removal of all visual cues through the use of chan-

nels during both learning and testing induced ants to run off their entire home vec-

tor. More extreme instances of this behaviour are observed in wood (Fukushi, 2001)

and tropical ants (Beugnon et al., 2005) that both remain faithful to their home vec-

tor for less than 40cm after a displacement to an unfamiliar location before search

is engaged.

2.2.3 Visual Homing

Most insects inhabit environments rich in visual information rather than the bar-

ren landscapes in which path integration is so vital. Prominent visual features are

largely stable for insects that forage at consistent times of the day over the course

of their short lives. That is, one would not expect local vegetation to change drasti-
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cally over the short life span of an individual forager (desert ants have a foraging life

expectancy of one week (Ziegler and Wehner, 1997)).

The simplest use of visual information observed in insects is beacon aiming,

where prominent visual features act as attractors. This strategy can guide animals

over large distances to familiar locales and can be used to pin-point the nest en-

trance if marked by a conspicuous visual landmark (for reviews see (Collett and

Rees, 1997; Collett and Collett, 2002)).

A far more impressive and robust use of visual information is observed in a be-

haviour known as visual homing. Using information present in the surrounding

visual panorama numerous insect species can pin-point inconspicuous nesting (or

feeding) sites (desert ant (Wehner and Räber, 1979); wood ant (Durier et al., 2003);

honeybee ((Anderson, 1977) who also cites an earlier study by (Lauer and Lindauer,

1971)); hoverfly (Collett and Land, 1975); cockroach (Mizunami et al., 1993, 1998b);

wasp (Tinbergen and Kruyt, 1938)). This form of navigation is sufficient for guid-

ance even in the absence of the other navigational mechanisms.

2.2.3.1 Homing Using Visual Snapshots

Visual homing has traditionally been studied through landmark manipulation ex-

periments (Tinbergen and Kruyt, 1938; Anderson, 1977; Cartwright and Collett, 1982).

Wehner et al. (1996) used this methodology to expose the homing strategies of desert

ants (Cataglyphis bicolor) when returning to their nest. Ants were trained to shuttle

to and from a feeding site with three large black cylinders placed in a triangular ar-

rangement around the nest (see figure 2.2). Post learning ants that had returned to

the nest and thus expired their home vector were captured and transferred to a test

site configured in one of three arrangements;

1. Landmarks of the same size and position as in training.

2. Landmarks of the same size but placed at double the distance as in training.

3. Landmarks of double the size and placed at double the distance as in training.

In tests (1) and (3) ants searched consistently at the centre of the test site where

the landmarks edges subtended the same retinal position as experienced during

training (see figure 2.2 (b)). In test (2) however, a more diffuse search patten was

evident as the retinal position of all landmarks could not be completely matched to

that experienced in training at any one position.
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(a)

(b)

Figure 2.2: Visual homing in desert ants. (a) Virtual reconstruction of training site in

which C. fortis ants foraged naturally whilst three landmarks surrounded their nest. (b)

Search distributions of ants captured on return to the nest and released at a test site in one

of three conditions: (A) Landmarks as in the training situation. (B) Landmarks of identical

size but twice as distant. (C) Landmarks twice the size and distance. Figures from Wehner

et al. (1996)



18 Chapter 2. Literature Review

Similar experimentation has been carried out in the Australian desert ant Melopho-

rus bagoti (Narendra et al., 2007). When tested in the landmark manipulation tests

(1) and (3) ants searched repeatedly at the same location as in the former study.

However during test (2) it is reported that ants searched close to individual land-

marks where the closest landmark subtended the retinal position and size as in

training.

The contrasting results observed may be a consequence of slight differences

in the data recording procedure. Wehner et al. (1996) recorded for five minutes

whereas Narendra et al. (2007) recorded the ant search patterns for only two min-

utes. It seems possible that in the former study desert ants may have initially at-

tempted to match the retinal position of frontally fixated landmarks. Indeed, Åkesson

and Wehner (2002) showed that C. fortis ants (as in Wehner et al. (1996)) initially

focus their search where they first encounter a visual match with their nest-based

memory. Only after this initial bout of searching do they move to allign other cues

such as celestial orientation. It may also be possible that ants entered a more gen-

eral searching behaviour given a longer search period. More data analysis may be

required to verify if the search patterns of the species are indeed distinct, with spe-

cific regard to the early search patterns of Cataglyphis.

Visual homing is not limited to nest locating but can be generalised to guide

insects to other important locations in their habitat. A similar experiment to those

outlined above was undertaken in wood ants by Durier et al. (2003) who surrounded

an inconspicuous feeder with a similar array of landmarks in an otherwise bar-

ren environment. After a training period the feeder was removed and wood ants

searched consistently at the feeder location as indicated by the landmarks. Thus re-

producing the behaviour observed in desert ants when returning to their nest in test

(1) above. Additional manipulations of the landmark array showed ants to centre

their search at the location where the retinal position (and thus size) of the promi-

nent landmarks most closely matched that as experienced in training.

Similar behaviours have also been observed in other central place foraging in-

sect species including bees (Anderson, 1977; Cartwright and Collett, 1982, 1983),

and wasps (Tinbergen and Kruyt, 1938; Zeil, 1993). To date however little is known

about the visual homing ability of crickets. In a field study, Beugnon and Campan

(1989) displaced crickets from their burrow to various locations in their habitat and

observed their paths after release. Crickets were unable to return to the burrow ex-

cept at distances less than 20cm from where the burrow entrance may have been
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visible. There is some evidence that crickets use visual landmarks to stabilise their

swimming direction after a predator-avoidance leap into a lake (Beugnon, 1986).

However in this study the landmark cue was a large black cardboard screen. Such

cues are known to act as attractors to insects and the observed paths may be ex-

plained by this simpler strategy. More recently juvenile bush crickets have been

shown able to learn the orientation of their nest in a maze scenario using visual

cues (Hale and Bailey, 2004). While these studies indicate a role for visual cues in

cricket navigation there is as yet no clear evidence of visual homing as described in

other insect species.

2.2.3.2 Information Content of Snapshots

Landmark manipulation studies have shown that insects store a two-dimensional

"‘snapshot"’ of the visual scene as viewed from the target location. When homing

the insect moves to align the current view of the world with the stored snapshot.

Experimenters have sought to reveal the visual features encoded in the snapshot

memory and thus key to the visual homing procedure. In order to frame these stud-

ies correctly it is first necessary to understand what insects perceive from their vi-

sual environments.

Most diurnal insects sense their visual surroundings through a pair of fixed ap-

position compound eyes and a number of simpler eyes known as ocelli. The ocelli

are simple camera-like intensity detectors found on the dorsal area of the insect

head. The ocelli have large fields of view, a fast sample rate and have been found

to play a role in various behaviours including light level detection, flight control,

and even navigation (for a review see Mizunami (1995)). However the majority of

visual input is perceived by the apposition compound eyes. Each eye is comprised

of an array of facets complete with its own lens, cornea and photosensitive rhab-

dom. Each facet samples light from a relatively large acceptance angle (typically

between 1◦ and 7◦ depending on species and eye region) providing insects with a

very low resolution view of the world. The facets abut one another in a hexagonal

layer that is warped into two convex eye structures that protrude laterally from the

insect head. Insects therefore perceive the entire upper hemisphere centred on the

head of the animal.

Recent studies have shown that the skyline vector generated by the contrast be-

tween sky and terrain provides sufficient and necessary information for guidance

in both wood and desert ants ((Fourcassié, 1991; Fukushi, 2001) and (Graham and
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Cheng, 2009a,b) respectively). Wood ants maintain homing precision when all but

the most prominent skyline peaks are removed. Desert ants in contrast require that

larger portions of the skyline panorama are visible for accurate homing. Intrigu-

ingly Graham and Cheng (2009a) have also shown that desert ants derive orienta-

tion cues directly from the panoramic skyline. These directional cues have been

shown to dominate celestial compass cues when the competing modes of informa-

tion are put in conflict. Evidence for the use of the skyline panorama as a directional

cue has also been shown for the honey bee (Towne and Moscrip, 2008).

The physiology of the facets in the compound eye offers indirect support to the

theory that the panoramic skyline is the dominant visual cue used for homing. Indi-

vidual facets in the desert ant Cataglyphis bicolor possess two photo-receptors types

sensitive to either green or ultra violet light wavelengths (Mote and Wehner, 1980;

Labhart, 1986). Sensitivity to green light is maximal in ventral parts of the eye and

minimal in more dorsal areas. The opposite is true for UV sensitivity which is maxi-

mal in the dorsal regions and decreases through to the ventral areas. Thus in facets

sampling from lateral visual space where the majority of skyline cues exist, both UV

and green sensitivity are present. Möller (2002) demonstrated that the visible sky-

line can be robustly extracted using such a UV-green opponent channel. Similar UV

and green sensitivity has also been reported in the honey bee (Menzel and Blakers,

1976).

Whilst the panoramic skyline provides a salient and robust cue in many envi-

ronments, many insects successfully navigate through visually dense environments

such as forests where there is no obvious UV/green skyline cue. Moreover insects

can learn to home to target locations under laboratory conditions in the absence of

such skyline information.

Wood ants and honeybees perform similarly in similar landmark manipulation

conducted in the laboratory to the field studies outlined above ((Durier et al., 2003)

and (Cartwright and Collett, 1983) respectively). In such laboratory conditions ants

have been shown to encode the desired retinal positions of the vertical edges of

prominent local landmarks (Judd and Collett, 1998) and therefore implicitly remem-

ber the angular width of prominent landmarks (Harris et al., 2007). Ants are thus

thought to home by fixating and approaching prominent goal based landmarks un-

til the retinal position of the landmark edges matches those in the corresponding

snapshot memory (Judd and Collett, 1998; Nicholson et al., 1999). When there are

numerous prominent landmarks, ants fixate and approach each landmark for a
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small period. Thus when ants approach landmarks their paths are sinusoidal at the

local level but direct to the goal site when viewed across the entire approach (Durier

et al., 2003).

Although the approach wood ants make to a target is dominated by frontally

fixated visual features, care is also taken to correctly align peripheral landmarks

(Durier et al., 2003) and other contextual information (Graham et al., 2004). Such

contextual information is sourced from over 120◦ of the ants peripheral field of vi-

sion (Durier et al., 2003). Interestingly, in the absence or relocation of the prominent

landmark, contextual cues are sufficient to guide the ant to the snapshot location

(Graham et al., 2003).

2.2.3.3 Mechanisms Supporting Snapshot Learning

It is thought foraging insects aid the learning of important locations through stereo-

typical learning flights or walks. Bees and wasps leaving the nest for the first time

will fly in arcs of increasing radius while fixating the nest location (bees (von Frisch

and Lindauer, 1954; Dyer and Gould, 1983; Lehrer, 1993; de Ibarra et al., 2009);

wasps (Tinbergen, 1932; Zeil, 1993)). Ants cannot move obliquely and instead per-

form looping exploration runs around the nest interspersed with pauses and slow

on the spot rotations at various locations (Wehner et al., 2004). Müller and Wehner

(2010) recently observed the Namibian desert ant Ocymyrmex robustior to initiate

new learning walks following any alteration of the visual panorama by the experi-

menter. The authors report that foragers fixate their nest site directly during such

pauses. Wood ants will also fixate the exact feeder location during nest-based learn-

ing walks (Judd and Collett, 1998) but intriguingly fixate conspicuous landmarks

during feeder-based learning walks (Nicholson et al., 1999). It remainss unclear if

this represents a completely different strategy.

Despite variation in their exact structure, the use of a stereotypical learning pro-

cedures when leaving a location of importance for the first time seems common

across central place foragers. It is thought this provides foragers with an opportu-

nity to store the salient and robust cues visible close to the goal that are later used

for homing. Baddeley et al. (2009) recently showed that the learning flights of bum-

blebees are not structured to optimally extract information about the distance of

prominent landmarks around the nest. An alternative hypothesis is that the learn-

ing walks provide insects with opportunities to store multiple visual snapshots at

various locations around the nest. Conclusive evidence supporting either hypothe-
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sis is yet to be presented.

2.2.4 Visually Guided Routes

Many insects develop visually guided routes allowing fast, reliable and safe passage

to and from profitable feeding sites (desert ant (Wehner et al., 1983; Collett et al.,

1992); wood ant (Rosengren, 1971; Graham et al., 2003); ponerine ant (Fresneau,

1985); tropical ant (Macquart et al., 2005); bees (Janzen, 1971); wasps (Baerends,

1947) as cited by (Collett et al., 1992)). Even in species that normally traverse pheromone

labelled routes, foragers learn the visual cues present along their routes. Moreover

when the visual and pheromone cues are placed in conflict visual cues are shown to

be dominant (Klotz, 1987; Harrison et al., 1989). Ants store visual route memories

in long-term memory lasting the entire lifetime of the forager (Ziegler and Wehner,

1997). Indeed it has been shown that wood ants recall their visually guided routes

after even over-wintering (Rosengren, 1971; Fourcassié, 1991).

2.2.4.1 Idiosyncrasy of Routes

Desert ants in both Africa and Australia have been shown to establish fixed routes to

profitable feeders when visual cues are available ((Wehner et al., 1996) and (Wehner,

2003) respectively). A detailed account of route fidelity and its reliance on visual

cues was recently described by Kohler and Wehner (2005) for the central Australian

desert ant Melophorus bagoti. Foraging ants were allowed to scavenge without in-

terference and locate an experimentally placed feeding site in their natural habitat

of grass scrub. Foragers developed individual, idiosyncratic routes by which they

travelled repeatedly to and from the feeding site. That is, every forager developed a

route by which it travelled to the feeder and a second distinct route by which it re-

turned to the nest. An example of the repeated outward and inward routes followed

by an individual ant is shown in figure 2.3.

Analysis of the routes showed that the outbound and inbound routes of an indi-

vidual ant are statistically independent. Furthermore, the routes of individual for-

agers are statistically independent of the routes of other foragers travelling to and

from the same feeding site. That is, each ant develops its own unique path leading

to and from profitable food sources.
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Figure 2.3: Idiosyncratic Routes of desert ants (M. bagoti). Ants were allowed to

forage without aid and locate a hidden feeder in their natural habitat populated by grass

tussocks. The subsequent 5 paths of the ant to and from the feeding site were recorded

and the path densities plotted (left: outward paths, right: inward paths with outward paths

shown as grey shadow for comparison). The feeder location is marked by F, the nest as N,

and the grass tussocks through which the ants must weave as grey polygons. (Figure from

(Wehner, 2003)).
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2.2.4.2 Mechanisms of Route Guidance

Kohler and Wehner (2005) showed that visual route memories can be completely

decoupled from the global path integrator. After formation of idiosyncratic routes

as outlined above ants were subjected to a series of displacements trials. Ants were

either displaced from the nest where they should have expired their home vector

and thus termed zero vector ants. Or from the feeder where they would have access

to a complete home vector and hence termed full vector ants. The three displace-

ments trials undertaken were:

1. Zero vector ants returned to the feeder.

2. Zero vector ants displaced halfway along their inward route.

3. Full vector ants displaced halfway along their inward route.

If visual route memories are coupled to a particular global path integrator read-

ing then the routes should not be recalled after displacement. In contrast ants re-

turned to the nest via the previously observed route in all cases (see figure 2.4).

Successful route recall is however reliant on motivational context. Wehner et al.

(2006) forced M. bagoti foragers to travel to and from an experimental feeder through

distinct regions of their natural habitat. As in previous studies individual ants learned

idiosyncratic outward and inward routes but the experimental manipulation en-

sured that visual surroundings on both legs was markedly different. Homing ants

were then displaced from a location halfway along their inward path to a location

halfway along their outward route. Instead of recalling and following the outward

route, ants followed the home vector orientation. When displaced just prior to

entering the nest to the same location systematic search was engaged. These be-

haviours mimic those of an ant displaced to a completely novel visual setting indi-

cating that ants did not recognise their route at all.

Although not expressed when familiar visual cues are present the path integra-

tor remains active throughout route following excursions and is engaged when vi-

sual navigation fails. Kohler and Wehner (2005) displaced ants from the feeder to

unfamiliar locations in their environments and reported that they immediately set

off in the heading as indicated by the home vector rather than towards the nest or

the learned route. Wehner et al. (2006) also reports that ants displaced from halfway

along their inward path to a location in their outward path engage and followed

their remaining home vector.
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(a) Zero Vector to Feeder (b) Zero Vector to Halfway. (c) Full Vector to Halfway.

Figure 2.4: Decoupling visual route memories from the global path integ rator in

desert ant M. bagoti. The observed repeatable homeward route of a single foraging ant

is shown in grey. (a) Paths of the ant when captured after a homing trip at the nest and

released at the feeder site are shown in orange. (b) Paths of the ant when captured at the

nest and released approximately halfway along its idiosyncratic route are shown in red. (c)

Paths of the ant when captured at the feeder and released approximately halfway along its

idiosyncratic path are shown in red. (Figures adapted from Kohler and Wehner (2005))
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Ants have been shown capable of learning multiple routes leading back to the

nest. Sommer et al. (2008) forced M. bagoti foragers to return from a regular feeding

through one region of their habitat after their first eight visits to a feeder by placing a

channel leading ants from the feeder to a specific region of the habitat. The channel

was then moved forcing animals to return to the nest through a different region of

the habitat. Ants formed distinct routes through the distinct regions. Moreover the

memories of each route were retained in long term memory rather than being over-

written by newly acquired memories. Animals displaced back to the original route

region were able to recall and traverse their earlier routes. Moreover the authors re-

port that some ants were able to store three distinct routes leading foragers back to

the nest.

2.2.4.3 Constituent Components of Route Guidance

The use of routes to navigate cluttered environments is a common strategy em-

ployed by numerous insect species (Rosengren, 1971; Collett et al., 1992; Wehner

et al., 1996; Kohler and Wehner, 2005). The recall of a previously traversed route has

been shown dependent on visual input and motivational state of the animal. How-

ever as yet little is known about the underlying guidance mechanisms leading the

insect along their learned paths.

Conspicuous landmarks are known to act as beacons which can guide insects

over large distances. Additionally, distal visual features are also known to provide

stable cues over large distances guiding foragers to the vicinity of a target location.

Once within the general area of the target visual homing provides a means for accu-

rate relocation of even largely inconspicuous locations.

In the studies discussed previously the target location represented the final des-

tination of the forager; either a feeding site or the nest. However for continuation

of a route, encountering a previously visited location may trigger an associated nav-

igational cue. Indeed desert ants have been shown to learn associations between

local vectors and a visual scene as shown in figure 2.5. Moreover when the global

home vector is placed in conflict with the local vector through experimental ma-

nipulation the local vector is found dominant (Collett et al., 1998). Control trials

(data not shown here) ruled out the association of motor commands confirming a

reliance on celestial compass cues. Similar associations of local vectors to visual

scenes have been found in other species of desert ant and also honey bees (desert

ant: M. bagoti (Legge et al., 2010); honey bee (Srinivasan et al., 1997)). Furthermore
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Collett and Collett (2009) have shown that local vectors can be utilised for guidance

on outward as well as when homeward journeys suggesting the common use of this

strategy.

Tropical and wood ants which cannot rely on celestial compass cues have been

shown to associate motor commands with a visual stimulus (tropical ant (Macquart

et al., 2005); wood ant (Lent et al., 2009)). Indeed in the later study idiothetic mo-

tor input was sufficient for route maintenance when visual cues were temporarily

removed.

Combining visual place memories with local guidance cues in a successive man-

ner has been hypothesised as the route strategy employed by many insects.

"‘... they (desert ants) can associate familiar landmark scenes with

local vectors (Collett et al., 1998) and motor commands (Collett et al.,

2001; Bisch-Knaden and Wehner, 2001), which enable them to proceed

directly from one place to the visual catchment area of the next. In this

way, they can follow fixed routes by learning landmarks distributed along

the “visual corridors” defined by these routes."’ (Wehner, 2003)

Note that route navigation in ants can be explained using strictly procedural

mechanisms (Knaden et al., 2006) and does not require that insects build a metric

map of their habitat. The argument of whether ants could translate their procedural

memories into such a metric map has been freshly opened by Müller and Wehner

(2010) and Graham et al. (2010). However, as conclusive evidence that insects link

procedural memories into a global representation is yet lacking, this work assumes

that insects utilise the more parsimonious procedural methodology.

2.2.5 Summary of Insect Navigation

Various insect species utilise common cues for navigation through similar mecha-

nisms generating comparative navigational behaviours.

When no terrestrial cues are present insects navigate via path integration. Com-

pass information is provided by either a celestial compass or proprioception, and

optic flow and proprioception provide odometry readings. Integrating both data

readings provides the forager with a home vector at all times linking its current po-

sition to the nest. However, the procedural nature of the process renders path inte-

gration susceptible to cumulative errors.

Insects therefore rely upon terrestrial cues when available. Visual homing pro-

vides a means of locating even the most hidden of nest entrances using the visual



28 Chapter 2. Literature Review

Figure 2.5: Navigating by local vectors (C. fortis). (A) Ants were allowed to forage over

8m of open terrain before following a 8m trench west to a feeder. Thus to return to the nest

the ants must travel south from the trench exit. Ants were captured at either the feeder or

nest and released at a test site with a similar channel (B and C respectively). In both test

conditions ants generally head south from the trench exit for the first 2m. For full vector ants

they then start to bias their approach using the global path integrator whereas zero-vector

ants initiate search behaviours. (Figure adapted from Collett et al. (1998)).
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panorama. The exact mechanism and cues utilised by insects during visual homing

remains open to question.

Visual cues are also dominant in the common routes following behaviour of in-

sects navigating cluttered environments. Routes are generally considered to consist

of associations of visual memories with local navigational cues such as motor com-

mands or vectors. By chaining such associations, insects are thought to navigate via

a series of procedural instructions and not through a geometric mapping of their

habitat.

2.3 Modelling Insect Visual Navigation

The robustness of the navigational behaviours of insects has drawn interest from

researchers in engineering as well as biological fields. This has led to various mod-

els being proposed to explain the different navigational strategies outlined in the

previous section (for example for path integration see Mittelstaedt and Mittelstaedt

(1973); Müller and Wehner (1988); Wittmann and Schwegler (1995); Hartmann and

Wehner (1995); Vickerstaff and Paolo (2005); Merkle et al. (2006); Haferlach et al.

(2007). As the emphasis of this study is on visual modes of navigation other be-

havioural capabilities are not discussed further. Instead the following section pro-

vides a brief overview of the background of visual homing models before a compre-

hensive review of the models implemented in this work.

In their seminal paper Cartwright and Collett (1983) proposed a visual homing

algorithm capable of reproducing the search behaviour of bees observed in land-

mark manipulation studies. This model has since became known as the snapshot

model. The algorithm first stores the panoramic image as viewed at the nest lo-

cation i.e. the snapshot. When homing the model moves to reduce the mismatch

in angular position and size of corresponding landmarks in the current world view

with those in the snapshot.

The snapshot model provides a conceptually simple model that reproduces the

behaviour of bees and ants in many of the landmark manipulation studies outlined

previously. The snapshot model has been superseded by more robust and biologi-

cally plausible variants (see section 2.3.1), however the iterative matching of current

world view to a goal-based snapshot remains the de facto algorithm for visual hom-

ing models.
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2.3.1 Visual Homing Models

The various visual homing models proposed as possible strategies employed by in-

sects can be broadly split into two classes: feature-based models and view-based

models. Feature-based models, for example the snapshot model of Cartwright and

Collett (1983), extract features from the visual surround such as angular size and

bearing of prominent landmarks. Comparison of the features extracted at the home

location with the corresponding features extracted from an image taken at a dis-

placed location allows a homing vector to be calculated. View-based models, by

contrast, use comparison of the raw images as seen from the home and the dis-

placed location. For example, Zeil et al. (2003) show that the pixel-wise root mean

square (RMS) difference between a panoramic reference image and image viewed

from a displaced location increases monotonically with distance. Homing can then

be achieved through some form of gradient descent where either agent movements

allow the home direction to be inferred (Zeil et al., 2003) or where simulated agent

movements allow a home vector to be estimated (Franz et al., 1998; Binding and

Labrosse, 2006; Möller and Vardy, 2006; Möller et al., 2007).

As the explicit aim of this study is to investigate the visual piloting strategies em-

ployed by insects, only visual homing models that can be considered “biologically

plausible” are considered. A criterion for the selection of such models was outlined

by Vardy (2005):

1. As the insect brain has limited neural capacity, models must not be so com-

putationally complex that no convincing argument can be made for their im-

plementation in the neural hardware of an insect.

2. As the retinotopic mapping is maintained throughout sensory pathways from

the insect eye through the optic lobes then all calculations required by the

model must be theoretically possible using local retinotopic calculations rather

than global searches in the image space.

Applying the above criterion, the following five models were selected for use in

this study:

1. Average Landmark Vector Model.

2. Centre-of-Mass Average Landmark Vector Model.

3. Differential Optic Flow Models:
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(a) First Order

(b) Second Order

4. Image Difference Fuctions.

It should be noted that the Average Landmark Vector Model is the only feature-

based model to adhere to the biological plausibility constraints. This is due to the

need of feature-based models to solve the correspondence problem; which feature

in the snapshot image corresponds to which feature in the current view. Solving

the correspondence problem requires a global search across the entire image to be

robust and thus violates criteria 2.

Additionally no models that require the agent to internally simulate all possible

movements prior to home vector computation (e.g. image warping (Franz et al.,

1998)) are considered either as they are unlikely to be computed by the insect brain

and thus violate criteria 1.

For each model a description of the specific algorithm is provided with a discus-

sion of any comparative data to that of insects.

2.3.2 Average Landmark Vector Model

The Average Landmark Vector (ALV) model is a derivative of the classic snapshot

model (Cartwright and Collett, 1983) offering an extremely parsimonious system

which also bypasses the correspondence problem (Lambrinos et al., 2000). Rather

than storing the complete two dimensional image at the home location only the

average landmark vector is computed and stored. The average landmark vector is

computed by firstly reducing the input image to a one dimensional black and white

strip. Various thresholding methods can be implemented to increase robustness

of the image conversion process and shall be discussed in more detail in later sec-

tions. Unit vectors are then drawn towards each of the vertical edges present in the

1D strip. Taking the mean of the vectors across the entire image provides the home

location average landmark vector (ALVH). When the agent is moved to a distant

location (C) the current average landmark vector (ALVC) is calculated in the same

manner. The home vector can then be calculated through a simple vector subtrac-

tion (h =ALVC−ALVH) as shown in figure 2.6.

The ALV model has been shown to home successfully in simulated environments

consisting of distinct landmarks within an infinite horizon background (Lambrinos
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+
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Figure 2.6: Average-Landmark-Vector Model. Aerial view of theoretical homing area.

Black cylindrical landmarks as used in the behavioural homing studies described previously

are shown as filled circles. The home location is marked by H and the current position by

C. The ring surrounding each of the locations shows the 1-D input image as sampled from

that location. The (ALVH) is calculated at the home location H by taking the mean of the

unit vectors projected to each visible edge in the snapshot image (red arrow). The (ALVC)

is also generated at the current location C in the same manner (blue arrow). Through a

simple vector (h =ALVC−ALVH) subtraction the home vector is calculated (green arrow).
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et al., 2000). Homing has also been successfully achieved on a mobile robot in a

university lobby (Möller et al., 2001). The parsimony of the ALV model has allowed a

completely analogue implementation to be realised on a mobile robot base (Möller,

1999). Inside a small arena marked with black card on an otherwise white back-

ground the analogue system was successfully able to relocate a previously visited

target location.

Lambrinos et al. (2000) implemented and tested variants of the classic snapshot

model on a mobile robot in the same desert habitat in Africa where landmark ma-

nipulation experiments were conducted in Cataglyphid ants. Modified versions of

the snapshot model were shown to return successfully to the home location after a

displacement. It should be noted however that models were never assessed under

landmark manipulations as experienced by animals. Moreover the ALV model was

not explicitly tested on the robot as the authors claim its similarity to the snapshot

model and use of the same image cues would produce the same results.

2.3.3 Centre-of-Mass Average Landmark Vector Model

The Centre-of-Mass Average Landmark Vector (COMALV) Model (Hafner, 2001) as

its name suggests is conceptually similar to the ALV model. Vectors are again de-

rived at both the home and current locations and the home vector calculated by

the same vector subtraction. However rather than using identified edges to calcu-

late these vectors, the COMALV model stores the vector projecting to the "‘centre of

mass"’ in each image:

COMALV=
∑
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cos (θ)

s i n (θ)












(2.1)

where I(θ) is the image intensity value at the bearing indicated by θ in the one-

dimensional input image.

The input image is again reduced to a one dimensional vector through a vertical

averaging of grayscale values. Use of the grayscale input directly bypasses the image

thresholding required by the ALV model.

The COMALV Model was originally derived through the use of a learning proce-

dure on an artificial neural network, but in this work we only consider the math-

ematical derivation described by the above equations. The COMALV model has

performed successfully in homing trials in simulation and also on a mobile robot
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within an office environment (Hafner, 2001). An equivilant COMALV Model was also

shown to generate long-range homing cues (up to 2m) when tested in a simulation

of the habitat in which ant routes were recorded (Basten and Mallot, 2010). Further-

more the algorithm is computationally cheap and bypasses both correspondence

and feature extraction issues. The model however required re-tuning of parameters

to home successfully in differing image databases (Vardy, 2005).

2.3.4 Differential Optic Flow Models

Building upon the finding that successful block-matching models of visual hom-

ing are dependent upon low frequency rather than high frequency components of

images, Vardy and Möller (2005) derived two homing models based on classic differ-

ential optic flow techniques. The differential models perform only local searches for

image correspondences and therefore fulfill biological plausibility constraints failed

by block-matching methods.

The First Order (FO) model rests on the assumption that pixel intensities are

maintained across images such that:

H(x ,y )=C(x+u ,y +v ) (2.2)

where H is the intensity of the pixel at image position (x ,y ) in the home image

and C is the intensity of the same pixel at its new location in the current image given

by summing the previous pixel location with the translation vector (u ,v ) caused by

agent movement.

The Second Order (SO) model assumes that intensity gradients rather than pixel

intensities are maintained across images such that:

Hx (x ,y )=Cx (x+u ,y +v ) (2.3)

Hy (x ,y )=Cy (x+u ,y +v ) (2.4)

where Hx and Hy are the partial derivatives of the pixel intensity at image posi-

tion (x ,y ) in the home image and Cx and Cy are the partial derivatives of the inten-

sity of the same pixel at its new location in the current image given by summing the

previous pixel location with the translation vector (u ,v ) caused by agent movement.

Differential models seek to calculate the translation vector (u ,v ) of each pixel

by calculating the intensity gradients (FO model), or the second derivative of the
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intensity gradient (SO model), surrounding the pixel in question. This allows the

translation vector orientation to be calculated locally, which is then converted into

a home vector through an approximate vector mapping technique. That is, knowl-

edge of the robot hardware allows the translation vector existing in image space to

be transformed into a home vector in robot space. As differential models derive

home vectors at all pixels in the image, the overall home vector is computed by tak-

ing the mean of all home vectors across pixel locations.

Differential methods have classically been applied to optic flow problems where

pixel translation is small between successive images. In such cases intensity gra-

dients are robust ensuring good translation vector calculation across pixels. The

success of these models in homing tasks is therefore somewhat counter-intuitive as

the scale of agent translation between image captures causes large pixel translations

between home and current image. Such image shifts are shown to have catastrophic

effects on the accuracy of the translation vector calculations. However, Vardy (2005)

demonstrated that incorrect home vectors are uncorrelated and therefore when av-

eraged they generally cancel each other out. Moreover in the focus of expansion

(the portion of the image that the robot is heading directly towards) and contrac-

tion (the portion of the image that the robot is receding from) in the image, pixel

movement remains small. Thus in these regions of the image the small image trans-

lation assumption is valid, resulting in blocks of accurate translation vectors. These

correct and correlated home vectors dominate when averaged across pixel locations

(known as the democracy effect) producing an accurate overall home vector.

Although the procedure outlined above may sound computationally complex,

differential optic flow models remain biologically plausible. The majority of the

model calculations are local and are ideally suited to parallel computation as could

be performed retinotopically by insects. The differential visual homing models have

been shown to home successfully within a number of indoor image databases such

as an office environment, and a university hall-way (Vardy and Möller, 2005). How-

ever to the best of this authors knowledge neither variant of optic flow model has

been tested in environments where the homing behaviour of insects is known.

2.3.5 Image Difference Function Model

The image difference function (IDF) model of visual homing has its roots in the find-

ing that the pixel-wise intensity difference between aligned images taken from dif-
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(a) (b)

Figure 2.7: RMS Image Difference Function in outdoor environment. Images taken

using panoramic camera mounted on a robot gantry. (a) Images were sampled at 10cm

intervals in 1m cube as indicated by the white dots. (b) The RMS difference between

the central image and the remaining images sampled in the plain are shown as an image

difference function. (Figures adapted from (Zeil et al., 2003))

ferent locations tends to increase smoothly and monotonically with distance (Zeil

et al., 2003). Plotting the difference between images across locations therefore re-

veals a sloped surface where the minimum corresponds to the home location (see

figure 2.7).

By sampling the image differences at a number of locations in the environment

(by either simulated or actual agent movement), simple gradient descent (or ascent)

algorithms can utilise the difference slope to return to the home.

Gradient descent models have been shown capable of homing in natural out-

door scenes (Zeil et al., 2003; Stürzl and Zeil, 2007), in indoor environments using

image databases (Zampoglou et al., 2006), (Vardy, 2005), and also on a mobile robot

in a laboratory environment (Zampoglou et al., 2006).

Recently gradient descent models were shown able to reproduce the data ob-

served in ants when trained to home via a single corner of rectangular arena. In

the recent laboratory study, ants were found to regularly confuse directly opposite

corners of an unmarked rectangular arena (Wystrach and Beugnon, 2009). Note

that the arena corners housed exit tubes leading the ant back to its nest. When cor-

ners were labelled with prominent visual cues entry into the wrong exit tube ceased

however it should be noted that ants still confused the corners initially. Stürzl et al.
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(2008) have demonstrated that the data observed can be reproduced using the im-

age difference function model.

2.3.6 Survey of Homing Models in a Virtual Ant Habitat

Basten and Mallot (2010) recently assessed the performance of two biologically plau-

sible visual homing models within a virtual reality simulation. The 3D world in

which the models were tested was a replica of the habitat in which Kohler and

Wehner (2005) recorded idiosyncratic routes of M. bagoti. As Kohler and Wehner

(2005) only presented an aerial mapping of the ant habitat the virtual world con-

sisted of green coloured grass tussocks (all 25cm tall) in all locations outlined as

landmarks in the original mapping. The remainder of the world consisted of flat

regions of open ground, and a blue sky background augmented with solar lighting

cues. Model testing was performed off-line using an image database with images

sampled every 10cm across virtual world using an variable resolution ant eye model

approximated for M. bagoti.

The study assessed the homing ability of models when provided with two dis-

tinct visual cues from the environment. In the first case models were provided with

grayscale panoramic images such that intensity was the salient cue. Alternatively,

models were provided with only the skyline cue using a blue/green opponent chan-

nel mechanism as outlined by Möller (2002). The skyline cue therefore is more pasi-

monious as it is represented by a 1-dimensional vector indicating terrain elevation

at all azimuthal angles.

The first model assessed was termed an "‘adapted ALV model"’ by the authors

but is equivalent to the COMALV model outlined previously. The second model im-

plemented was an IDF model. The authors chose an uncentred correlation coeffi-

cient as their metric and therefore used a gradient ascent scheme for homing.

Both models were assessed on the extent of the area from which an agent could

successfully return to a target location. This region is commonly known as the

catchment area. Target locations comprised 86 sites along a real ant route as recorded

by Kohler and Wehner (2005). The COMALV model produced the largest catchment

areas of approximately 1m2 and 2m2 when supplied with intensity and skyline in-

put cues respectively. The IDF model could only produce mean catchment areas

of approximately 0.6m2 and 0.5m2 when supplied with intensity and skyline input

respectively.
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2.3.7 Modelling Visually Guided Routes

To date there have been few attempts to create biologically plausible route following

models.

Vardy (2006) developed a novel route learning procedure that proved successful

when tested in a simulated art gallery. Snapshots memories were chained together

by local vectors resulting in a spare topological map of the route. When homing

the model expired 80% of the local vector before switching to visual homing by

matched-filter descent in IDF.

Smith et al. (2007) developed an extremely parsimonious route guidance system

based on the ALV Model. When exploring the environment new snapshots were

generated every time the number of identifiable landmarks in the panoramic image

changed. When homing the model used the ALV Model to home to each snapshot

memory in the defined sequence that they were stored. The model was tested on

a robot gantry in an indoor environment interspersed with black cylinders. Testing

showed that the model enhanced robustness of the ALV Model specifically with re-

gards to aliasing. Furthermore, some simple routes were traversed in the artificial

environment.

Both models however require route memories to be recalled in sequence which

does not reflect the insect data. As discussed in section 2.2.4.2 ants displaced along

their route can recognise the familiar terrain and follow the route home. The sparse

model proposed by Vardy (2006) is particularly susceptible as the visual memories

are spaced widely apart and linked with local vectors. This leaves large regions of

route that would appear unfamiliar when compared to any of the route memories. It

should be noted that neither author claims that their model is an accurate account

of how insects navigate, but instead focus on the ability to extend visual homing

capabilities to more realistic tasks. With this in mind neither model is compared to

insect data in a quantitative manner. Indeed there is no model of route following in

the current literature that the author is aware of that has been tested in situations

where route following has been observed in animals.

2.3.8 Summary of Insect Visual Navigation Models

A number of models of visual homing have been proposed that adhere to the snap-

shot methodology but function through distinct mechanisms and using different

visual cues. One class of model extracts specific features from the environment
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and by moving to decrease the discrepancy of the feature locations between current

view and snapshot can return home. Whilst conceptually simple, correct matching

of features between images (the correspondence problem) requires a global search

in the image space and thus rules many models biologically implausible. The ALV

Model represents the only feature-based model that fulfills the biologically plausi-

ble constraints defined by Vardy (2005).

View-based methods do not extract features and instead use look for image dis-

crepancy at the pixel level or use the entire image directly. Four view based models

successfully adhere to the biological constraints including an intensity summing

model, two optic flow based methods and a gradient descent on image difference

algorithm.

Only the ALV and IDF models have been tested in real world environments where

the homing ability of insects is known. An equivalent model of the COMALV and

an IDF were also recently tested within a simulated environment where ant routes

were tested. All of the above models successfully returned to the target location in

the specific test.

2.4 Summary

Insects navigate their complex habitats with amazing accuracy despite their small

brains and low resolution vision. Such feats are achieved using a suite of distinct

navigational strategies combined in what has been termed the "‘navigational tool-

kit"’. The complimentary strategies making up the tool-kit include systematic search,

path integration and visual homing. Other strategies such as trail following may also

be employed but are known to be dominated by vision based techniques. By some

cue integration procedure, that is not yet fully understood, insects are equipped

with a robust guidance system sufficient for piloting vastly different habitats; from

the barren desert salt pans of northern Africa to the deep undergrowth in the tropi-

cal forests of South America. Moreover, growing evidence suggests that various in-

sects utlilise common sensory cues and techniques to guide them through their spe-

cific ecological niche leading towards a common underlying guidance system; that

is, a "‘general navigational tool-kit"’.

The prevalent strategy by which insects pin-point often inconspicuous locations

in their habitat is visual homing. Visual homing is sufficient for guidance when

other strategies including path integration are absent and is dominant when these
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strategies are present. Visual homing requires that insects store information about

the world viewed from the location to which they later wish to return. To relocate

the target animals move as to increase the match between their current view of the

world and the stored memory of the target location. Landmark manipulation stud-

ies have shown that insects seek to retinotopically allign relatively unprocessed vi-

sual features directly rather than matching other features of the environment such

as the distance to prominent landmarks.

Visual homing allows foragers to pin-point journey start and end-points with

precision using local visual cues. However, many insects forage over large distances.

For such foragers visual cues sampled at a single location are unlikely to be stable

over a sufficient range to provide guidance over the insect entire journey. A com-

mon strategy for insects navigating such distances is the development of visually

guided routes. Experimental manipulation has shown that ants associate local vec-

tors and motor commands with visual scenes sampled along their repeated paths.

Such findings have led to the hypothesis that routes may be the product of a series of

visual memories stored along the paths traversed by foragers. Visual homing similar

to that outlined above could guide insects to visual waypoints where an associated

vector or motor command would be triggered leading towards the next visual mem-

ory.

It should be noted that such a strategy does not require the construction of a

geometric map of the environment inhabited by the insect, and is therefore likely to

be a more parsimonious use of memory and computation resources limited by the

small brain of insects.

A series of models have been developed, both in simulation and on real robots

with the explicit aim of reproducing visual homing behaviours given the constraints

imposed on insects by their sensory and nervous systems. These models adhere to

the snapshot matching algorithm whereby they move as to mimimise the discrep-

ancy between the current view of the world and that of a memory of the target lo-

cation. However, models vary in the information from the visual surround that is

extracted, stored and manipulated to generate the motor commands.

Models can be broadly split into two classes: feature-based and view-based.

Feature-based models extract features of the visual surround at both the target and

current locations. When homing the disparity of features in image space allows a

home vector to be generated in robot space. Feature-based models can be compu-

tationally cheap as they only store the location of features in the goal image. How-
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ever, they generally require a global search in image space to locate corresponding

features which is thought to be biologically implausible in insects. View-based mod-

els do not extract any features from the visual scene and instead use the entire image

directly. This class of model often requires that the entire image be stored in mem-

ory increasing the memory load. However image comparison is generally resolved

in a parallel computation across pixel locations which is well-suited to early visual

processing neuropils of insects. It should be noted that the view-based models also

differ in terms of the visual input that is compared at the pixel level for example local

optic flow fields versus image intensity. Furthermore the differing homing schemes

employed by the models can produce distinct homing performance.

The remaining chapters of this thesis seek to address two key hypothesis raised

in this literature review:

• Are visual homing capabilities conserved across diurnal insects indicating a

general navigational ability across species?

• If so, is there a method of visual homing that can account for such behaviours

across insect species?

To address the first hypothesis two behavioural studies are undertaken in insect

species for which little or no visual navigation data exists. Chapter 3 assesses the

visual homing ability of the field cricket Gryllus bimaculatus in an assay commonly

used to test for place memory in mammals. And chapter 5 presents a field study

in which the route forming behaviour of the European ant Cataglyphis velox is as-

sessed. Where possible direct comparison is made to data already published for

other insect species, specifically those occupying in similar ecological niches.

Both behavioural studies are designed with model verification in mind. In the

laboratory study homing performance of crickets is assessed with various visual sur-

rounds that are well suited to particular homing models such as distinct artificial

landmarks favoured by feature-based models and a natural scene suited to view-

based models. Chapter 4 presents a modelling study were all biologically plausible

models of visual homing are tested in the same paradigm as the animals. To the best

of the authors knowledge this is the first time that all of the biologically plausible

models of insect visual homing have been tested and compared directly to insects

homing data.

If routes are constructed by chaining together visual memories, then the same

models should provide robust guidance cues in the ant habitat. In chapter 6 an
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image database is collected within the same environment that the natural routes

of ants were observed. To the best of the authors knowledge this is also the first

large scale image database collected in the ant habitat. Models are again assessed

for their efficacy and robustness in guiding insects through this more natural sur-

rounding.

Studies of this type are very timely. The natural homing behaviours of insects

are well documented for an array of species. Moreover, experimental manipulation

studies have revealed some of the general mechanisms underpinning navigation.

However, for proposed models of insect navigation to be properly verified, testing

must be carried out using the same sensory input as experienced by animals. In-

deed it is not entirely clear what information is available in the natural world viewed

by the insect. Recently leaders in the field of insect navigation have encouraged

such studies, and it this thesis adopts the same ethos:

"‘a crucial task, though not easy to accomplish, would be to get more de-
tailed information about the visual inputs actually experienced and ac-
quired by the insects as they negotiate their ways through their foraging
grounds, at best starting with the time at which the animals commence
foraging. Reconstructing the optic flow experienced by the insect as it
moves through its environment - either by computer simulations (after
having recorded the 3D structure of the surrounding landscape) or, bet-
ter yet, by moving a camera along the insect’s path - would be a first step
in analysing what navigationally relevant information the insect might
extract from the visual scenes"’ Wehner (2008)

"‘In order to understand the intimate relationship between vision and
behaviour, an effort needs to be made to reconstruct vision from the
view-point of behaving animals in their natural environment. The fu-
ture of visual neuroscience thus lies in going natural;"’ Zeil et al. (2008)



Chapter 3

Visual Homing in the Field Cricket

Note that data presented in this chapter also appears in Wessnitzer et al. (2008).

3.1 Introduction

Mizunami et al. (1993, 1998b) devised a test for place memory in the cockroach

Periplaneta americana based on the classic water maze paradigm used for rodents

(Morris, 1981). The animal is placed in an unpleasant environment (for rats, a pool

of water; for cockroaches, a heated metal arena) and is thus motivated to move un-

til it locates a safe position (an underwater platform; or a cool spot, respectively).

Several lines of evidence are used to argue that the animal locates the (invisible)

safe position using surrounding visual landmarks (outside the pool or on the sides

of the arena), i.e. that it has formed a ‘place memory’. The animal is able to relo-

cate the target location from novel starting points in subsequent trials, and searches

preferentially in that location on trials when the platform (or cool spot) is removed.

Animals are less successful in learning the task when no visual cues are provided.

Moreover, when the visual cues are rotated, the animal will search in the vicinity of

the ‘fictive’ target indicated by those cues.

Scotto-Lomassese et al. (2003) report that they attempted to test the ability of

the house cricket Acheta domesticus using the Mizunami et al. approach (which has

been dubbed the Tennessee Williams paradigm) but found that “the first motiva-

tion of crickets was to escape from the closed arena”. It should also be noted that

the data presented by Mizunami et al. (1998b) is suggestive rather than conclusive:

due to substantial variability in behaviour, no statistical significance of the apparent

improvement in locating the target over ten trials is reported, and searching in the

43
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Figure 3.1: Female field cricket of the species Gryllus bimaculatus

fictive location after cue rotation is reported only for two individuals. However the

main point of their report is the demonstration that ablation of the mushroom body

neuropils in the cockroach significantly affects performance on this task, but does

not change performance when the target itself is visible.

In this chapter the ability of the field cricket Gryllus bimaculatus to learn and

subsequently relocate an invisible target position using surrounding visual cues is

assessed using the same "‘Tennessee Williams"’ paradigm. Specifically, the follow-

ing research questions are posed:

• Can field crickets learn to relocate a hidden target using surrounding visual

cues alone?

• If so, is performance better when supplied with distinct visual cues or a more

cluttered visual panorama?

3.2 Methodology

3.2.1 Animals

Adult female Gryllus bimaculatus crickets (figure 3.1) were isolated after their fi-

nal moult and maintained individually in small plastic cages under a 12/12 hour

light/dark cycle. The animals were kept at 21±1 degrees and were fed water and

dog food.

3.2.2 General Procedure

Crickets are placed in a circular arena with a metal floor on top of a water tank. The

water tank maintains a temperature of about 50 ◦C which in turn heats the metal

floor surface of the arena, and to some extent, the surrounding the metal wall. A sin-

gle circular cool spot on the arena floor is created by continuously circulating cool
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water through a separate, insulated compartment of the water tank (Figure 3.2a.).

This target is visually and texturally indistinguishable from the surrounding area.

Trials are initiated by placing the cricket at a random location in the arena. The

animal is then allowed to move and explore the arena freely. The trial ends if the

cricket finds and remains at the cool spot for 30 seconds. Trials lasting longer than

5 minutes without the cricket finding the target are halted to prevent heat-shock to

the animal. In such cases the individual cricket is placed on the cool spot by the

experimenter. By covering the cricket with a glass it is forced to remain on the cool

spot for 30 seconds. Crickets are rested for two minutes between trials in an opaque

beaker. Between trials, the arena is wiped clean to remove any olfactory cues left by

the animal.

3.2.3 Experiments

3.2.3.1 30cm Arena

The first experiment aimed to replicate, using crickets, the tests performed on cock-

roaches by Mizunami et al. (Mizunami et al., 1998b). The arena diameter was 30cm

and the target cool spot diameter approximately 6cm. Animals were tested under

three conditions:

1. With the visible target (a metal plate of distinct colour compared to the hot-

plate surface). No other visual cues were provided.

2. With an invisible target and artificial visual cues mounted on the arena the

walls. The artificial cues were a black T shape, black and white horizontal

stripes and black and white vertical stripes as shown in figure 3.2a.

3. With an invisible target and no visual cues provided.

In all conditions, the arena was covered by a white canopy to reduce the possi-

bility of the animals using external visual cues, such as laboratory furniture or light-

ing. In each condition, each cricket was tested on ten successive trials, and the time

taken to locate the cool spot recorded.

3.2.3.2 40cm Arena

In the second experiment the arena diameter was increased to 40cm, thus approx-

imately doubling the ratio of arena to target area, reducing the likelihood that the
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Figure 3.2: Place memory experimental setup. (a) The hot water tank heats the arena

floor and lower regions of the arena wall to approximately 50◦C. A cool spot is maintained

at a moderate temperature by a cold water pump. External cues are removed by a canopy

and crickets are tracked by an overhead webcam. (b) For the rotation trials, the wall of the

arena is rotated by 180◦, changing the position of the visual cues, and creating a fictive

target location relative to those cues.
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Figure 3.3: Natural scene stimulus. The natural scene wallpaper was wrapped around

the inside of the arena wall providing the cricket with a more noisy and cluttered visual

reference.

cricket could find the cool spot using some random search strategy. The target was

always invisible, and crickets were tested in one of four visual cue conditions:

1. With 3 simple black and white shapes on the arena wall as in experiment 1

condition 2.

2. With a more natural scene stimulus provided as shown in figure 3.3.

3. With no visual cues provided i.e. with blank arena walls.

4. With all visual stimulus removed by testing in the dark. (control)

For each of these conditions the original white canopy was replaced by a dark

canopy to try to further reduce any external visual stimuli. As for the experiments

within the 30cm arena, there were ten learning trials, for each condition.

After the tenth trial crickets were also tested with the arena wall, and thus the

visual cues for the first two conditions, rotated (c.f., figure 3.2b). During this test

the cool spot was removed and thus the entire hotplate surface evenly heated. If the

animal was using the provided visual cues to determine the target location, this ma-

nipulation should create a fictive target location, relative to the cues. If the crickets

are not using these cues, the fictive position should be no more attractive than the

original target position or any other random point in the arena at a similar distance

from the walls.

3.2.4 Data Analysis

An overhead web-camera (Logitech) was used to record the behaviour of the an-

imals directly on the computer at 5 frames per second. For the dark control ex-

periments the infrared filter on the camera was removed. Cricket positions were
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extracted from the video recordings with customised tracking software developed

by Rosano and Webb (2007). The data is then further analysed with scripts written

in or provided by MATLAB. We extracted the following measures from the captured

data: time to reach certain areas in the arena, path length, velocity, time spent in

vicinity of the wall. Non-parametric pair-wise comparisons are made to establish

significant differences between conditions and trials.

3.3 Results

3.3.1 30cm Arena

The time taken to locate the cool spot over the ten trials for each condition are

shown in figure 3.4a as a series of box plots. The mean times taken to locate the

cool spot for the three conditions plotted against trial numbers are also shown in

figure 3.4b.

It is apparent that the time taken to locate the target decreases over the first five

trials. Comparing trial one and trial ten showed a significant improvement in all

conditions (Wilcoxon signed rank test: visible target p=0.06; no cues p<0.005; arti-

ficial cues p<0.001). While this suggests that crickets are indeed learning to locate

the cool spot, the similarity of behaviour with and without cues suggests either that

the ‘no cues’ condition does in fact contain some cues, such as visual cues above

the arena walls caused by shadows on the canopy from the structure supporting the

camera; or that the insect is using some strategy other than visual memory to locate

the target more quickly on successive trials.

A closer examination of the recorded paths on individual crickets provided some

insight (see figure 3.5). It should be noted that the tracks of the animal shown are a

good representation of the general behaviour of the crickets across conditions. The

first thing to note is that the cricket approaches the target position from a variety

of directions. This rules out the use of some stereotyped motor response associated

with a particular location in the arena to locate the cool spot. Most crickets on be-

ing introduced to the arena did show a strong tendency to run towards and along

the walls, presumably trying to escape the arena. These wall-following bouts would

often recur in later trials, even after the animal had several times previously moved

directly to the target (and even when the target was visible). It is therefore possi-

ble that the observed improvement in homing times could be explained by crick-



3.3. Results 49

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

T
im

e 
to

 lo
ca

te
 c

oo
l s

po
t (

se
co

nd
s)

Trial

Visible target, n=6

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Trial

No cues, n=9

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Trial

Artificial cues, n=12

(a)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Trial

T
im

e 
to

 lo
ca

te
 c

oo
l s

po
t (

se
co

nd
s)

Mean times for 30cm arena

 

 
visible target
no cues
artificial cues

(b)

Figure 3.4: 30cm Arena Results. (a) Box-plots of time taken to find the cool spot over

10 trials with a with a visible target (left), no visual cues (middle), or artificial visual cues

mounted on the arena wall (right). (b) Comparison of mean times to locate the cool spot for

the three conditions over the ten learning trials.
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trial1 trial2 trial3

trial4 trial5 trial6

trial7 trial8 trial9

Figure 3.5: Paths of an individual cricket during learning trials. Paths from first nine

trials for one cricket within the artificial visual cues condition. The cross marks the start of

the path and the small circle the hidden target location.

ets merely learning to resist wall-following. Figure 3.6 plots the percentage of time

spent wall-following for the trials with artificial visual cues, and also the residual

durations of the tracks excluding the wall-following. Note that wall following was

defined as the time spent by the cricket within 4cm of the arena walls. After correc-

tion of the homing times by removal of wall following some variability is removed

but the learning trend over successive trials remains. Thus it does not appear that

increased performance can be explained simply by the animal reducing the time

spent wall-following, i.e., wall-following explains some of the pattern but not the

overall trend towards faster times. We also note that the faster time to locate the

target is not simply due to faster movement by the animal, as the average velocity

tended to decrease over the 10 trials.

There was also some evidence that crickets found the visual cues themselves at-

tractive (initial use of a solid black square target had to be abandoned as this proved
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Figure 3.6: Influence of wall-following and average velocity on performance. Data

taken from crickets subjected to the artificial visual cues condition (n=12). (left) The per-

centage of time during the learning trials spent wall following; (middle) The residual of times

to locate the target after exclusion of the time spent wall following; (right) The mean and

standard deviation of the crickets’ velocity against trial numbers (the green line represents

the median).
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strongly attractive). However, on at least some trials with visual cues, the cricket

would stop at some point in the arena, fixate each of the visual cues and then move

quite directly to the target location, suggesting that visual memory of the relation of

distant cues to the target could be employed. Moreover, on other trials, both with

and without cues, it was observed that some crickets would circle the walls but make

repeated deviations away from them, which was also a moderately successful strat-

egy for encountering the target. In the 30cm arena the chance of finding the target

once away from the wall is quite high.

Trials conducted within the 30cm arena showed that crickets increase their hom-

ing performance over ten learning trials. However, the performance under the var-

ious test conditions was similar. Whilst some qualitative analysis suggests that vi-

sual cues were being used, and other strategies such as increasing average speed

or decreasing wall-following tendency have been ruled out, it cannot be concluded

without question that crickets are homing by visual means. With this in mind, the

experimental setup was altered to aid disambiguation of the strategy in use.

3.3.2 40cm Arena

Using an increased arena diameter of 40cm the ratio of open arena to cool spot area

was approximately doubled. Learning performance was compared in the four con-

ditions outlined previously: with artificial cues; with a natural scene; with no cues;

and in the dark. Crickets showed improved performance when comparing trials 1

and 10 in all conditions except for the dark control condition (Wilcoxon signed rank

test: for artificial cues p<0.01, no cues p<0.01, natural scene p=0.06, dark p>0.4)),

see boxplots in figure 3.7a. For the artificial cues there seemed to be a sharp im-

provement on the second trial but no further improvement; performance from trials

4-10 is slightly worse than it was in the 30cm arena (comparing the average times

across these trials, 84s vs. 61s, Wilcoxon rank sum test: p<0.05). Comparing the

means for the three conditions in the 40cm arena (figure 3.7b) it is clear that the

improvement is greatest for the ‘natural scene’ condition, but also, perhaps surpris-

ingly, that the artificial cues on the walls produce worse results than ‘no cues’ (com-

paring averages across trials 4-10 using Wilcoxon rank sum test, natural vs. artificial

cues, 33s vs. 84s, p<0.001, natural vs. no cues, 33s vs. 55s, p<0.05, artificial vs. no

cues, 84s vs 55s, p<0.05). All three conditions are significantly different from the

control dark condition (average 172s).
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Figure 3.7: 40cm arena results. Time taken to find the hidden cool spot over 10 trials in

the 40cm arena (a) from left to right, with artificial visual cues on the arena wall, no cues,

a natural scene on the arena wall, control experiment in the dark; (b) comparison of mean

times for all conditions.
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Figure 3.8: Rotation trials in 40cm arena. For artificial cues and the natural scene the

fictive position of the cool spot indicated by the rotated cues or panorama is approached

more quickly than the original location, or a random position. For ‘no cues on arena wall’

the original position is approached more quickly than the fictive or random locations. In the

control experiment, no spot, original, fictive or random, is approached significantly faster.

Figure 3.8 shows the results for the rotation tests with artificial, natural, no cues

on the arena, and in the dark. The time from the beginning of the trial until the

cricket’s track crosses the original location of the cool spot, the fictive location in-

dicated by the cues or panorama, or a random location of an equal size and equal

distance from the walls is shown in the boxplots. Each location is defined as a 2cm

radius circle. For natural cues, the time to reach the fictive location is significantly

faster than the time to reach the original location or a random position (sign test,

original vs. fictive p=0.0386). For artificial cues, the same pattern was observed

but the results were of marginal significance (original vs. fictive p=0.11). For ‘no

cues’ crickets seem to reach the original location more quickly suggesting that they

may be able to use other information (that has not been rotated) than the wall cues

for locating the hidden target location. For the control condition, crickets show no

preference and no attraction to any of the test locations.
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3.3.3 Post Analysis

The unexpected observation of significantly improved performance in the “no cues“

condition suggests that visual cues other than those explicitly provided were present

in the experimental set-up. This hypothesis is also supported by results from the ro-

tation test in which crickets trained in the blank walls condition return to the origi-

nal cool spot location preferentially.

To test for such cues images were sampled within the arena provided config-

ured as in the blank walls trials. Firstly a webcam was placed at the centre of the

arena and pointed towards the arena ceiling. The recorded image is shown in fig-

ure 3.9 (a) clearly showing the lighting imbalance in the overhead canopy caused

by the overhead lamps. The grey-scale rotational intensity variation in the canopy

is plotted in figure 3.9 (b). To assess the presence of lighting cues at lower levels a

panoramic camera was placed at the arena centre. This allowed the light intensity

levels across the entire arena wall to be sampled in one image. The recorded image,

and azimuthal grey-scale variance are shown in figure 3.9 (c) and (d) respectively.

It is clear that the experimental paradigm did not completely remove all external

visual cues with light intensity gradients present in both the ceiling and the arena

walls. Such cues may have provided subtle but sufficient rotational information to

guide crickets trained in the "‘no cues"’ condition.

3.4 Conclusions

The posed research questions investigated in this chapter are answered directly:

• Can field crickets learn to relocate a hidden target using surrounding visual

cues alone?

The results presented demonstrate that the field cricket Gryllus bimaculatus is

capable of using surrounding visual cues to relocate a hidden target position, in an

arbitrary task setting. This is suggested by the observed performance improvement

over trials, and the ability to relocate the cool spot from different starting positions,

but is most strongly supported by the results of the rotation trials. In these trials,

only the visual cues on the arena walls were changed, controlling for all other possi-

ble sensory cues that might potentially have contributed to the observed learning,

and a corresponding change in the crickets preferred location was observed. Hence,

memory of the surrounding visual cues is sufficient for homing in this task.
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(a) (b)

(c) (d)

Figure 3.9: Post Analysis of external visual cues. (a) Image of the arena ceiling taken

using a standard webcam from the centre of the arena floor. (b) Grey-scale intensity against

azimuth is plotted depicting the rotational intensity gradient present in the arena canopy.

(c) Image of the blank arena wall taken using a panoramic camera. The field of view of

the includes the the entire 360◦ azimuthal range and extends in elevation to just below the

arena wall top. (d) Grey-scale intensity against azimuth is showing a single peaked intensity

grain intensity are caused by the camera mounts.
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• If so, is performance better when supplied with distinct visual cues or a more

cluttered visual panorama?

Within the smaller (30cm diameter) arena the performance of cricket in the var-

ious test conditions could not be distinguished. However, by increasing the arena

diameter to 40cm the ratio of arena to cool spot area was doubled and the perfor-

mance gap between conditions increased. Best performance was observed when a

natural scene was supplied as visual stimulus followed by no cues and finally dis-

tinct landmarks. Analysis of the experimental paradigm revealed residual visual

cues which may have been used by crickets in the no cues paradigm. This is indi-

rectly supported by the fact that crickets trained in the "‘no cues"’ condition return

to the original cool spot location after rotation of the arena wall. No improvement

was observed when crickets were trained in the dark indicating that visual input was

necessary for successful homing.

3.5 Discussion

The findings presented in this chapter clearly demonstrate that female crickets are

able to relocate a target location using surrounding visual cues in an arbitrary task

setting. This result corresponds to results reported in cockroaches assessed in a

similar experimental paradigm (Mizunami et al., 1998b),. Furthermore, in a recent

study Ofstad et al. (2010) replicated the place learning findings reported here in the

fruit fly Drosophila melanogaster. The particular experimental set-up used an array

of LEDs to provide visual input and an adverse arena floor made up of heated tiles.

Fruit flies learned to relocate the cool spot when both the target location itself and

the corresponding visual cues were rotated in synchrony.

In the Mizunami et al. (1998b) study in cockroaches, they found that an abla-

tion of the Mushroom Bodies neuropils significantly affects performance with the

surrounding visual cues, but does not change performance when the target itself

is visible. A large body of evidence supports a role for learning and memory of the

Mushroom Bodies (e.g. summarized in Heisenberg (2003)). However, Ofstad et al.

(2010) investigated the role of the Central Complex in homing using the Drosophila

genetic toolkit and found that specific regions of the central complex were crucial

to performance.

The Tennessee Williams paradigm may help in elucidating the strategies of the
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visual homing behaviour of insects and in determining the involvement of the Mush-

room Bodies and Central Complex in visual homing. This paradigm may allow for

the unique possibility to investigate the neural basis of visual homing in insects by

recording from neurons in freely moving animals (e.g. Mizunami et al. (1998a)).



Chapter 4

Modelling Visual Homing in the Field

Cricket

Note that data presented in this chapter also appears in Mangan and Webb (2009).

4.1 Introduction

It has been shown that crickets can learn to return to a target location in experi-

ments analogous to the Morris water-maze used to assess place memory in mam-

mals (Morris et al., 1982). Insects are placed in a hostile environment (a hotplate

maintained above 40◦C) from which they would seek an escape. An invisible cool

spot, maintained at a moderate temperature represented the only refuge. Over suc-

cessive trials the time taken by the insects to re-locate the cool spot decreased sig-

nificantly. Removal of all visual cues (trials performed in the dark) resulted in no

improvement in re-location times, and the search is affected by rotation of the vi-

sual surroundings.

If insects are using a feature-based technique to return to locations of impor-

tance then it might be expected that performance would be best when distinct land-

marks, easily segmented from the background, are presented. In contrast, a view-

based algorithm will perform more successfully when a complex scene is presented,

as it uses information from each pixel directly. In the hotplate experiments de-

scribed in chapter 3, crickets were tested with both distinct landmarks and a nat-

ural scene stimulus. Learning was observed in both cases but the natural scene

elicited greater improvement in homing times and more consistent learning. Figure

4.1 shows box plots of time taken to locate the cool spot by crickets during the final

59
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four out of ten learning trials, when their homing times had stabilised. It is clear

that crickets locate the cool spot fastest in the Natural Scene surround followed by

Blank Walls (previously described as "‘no cues"’), Distinct Landmarks and then the

Dark Control. Statistical comparisons (Table 4.1) show that the Natural Scene sur-

round elicits significantly better results than all other paradigms, and performance

in the Dark Control is significantly worse than all conditions providing any visual

stimulus.

Surprisingly, results in the Blank Walls surround and Distinct Landmarks are

not significantly different, but as discussed previously (see section 3.3.3 ) the Blank

Walls environment did not eliminate all visual cues, as a combination of shadows in

the canopy and light gradients across the arena wall remained. It may also be noted

that as the Natural Scene was provided by a poster wrapped around the arena wall,

no natural depth information is provided. Observations from other insects would

suggest that homing might be even better with a truly 3-D environment. However,

the poster offers a much more natural stimulus than the classic landmarks as it con-

tains many spatial frequencies, contrasts, and contours.

The data presented in the cricket behavioural study offers an unprecedented

opportunity for model validation. To the best of the authors knowledge the ALV

and IDF models are the only schemes included in this work to have been tested

in a similar task setting to homing insects. An equivilant ALV model was shown to

successfully return to a snapshot taken at the centre of an array of large, black and

therefore easily identifiable landmarks (Lambrinos et al., 2000). Unfortunately the

authors did not present data after landmark manipulations. The IDF model has re-

cently been shown to account for the homing errors observed in ants when released

at the centre of an angular arena (Stürzl et al., 2008). All models presented have

been shown to successfully home in office surroundings, or natural habitats, and

in some cases even continue to perform well under dynamic changes in lighting

and scenery. However, in such cases there is no direct comparison to insect perfor-

mance and thus models cannot be validated as possible strategies employed by the

animals.

In this chapter all biologically plausible models outlined in section 2.3.1, and

therefore both view-based and feature-based model types, are implemented and

tested in the same visual environments that were presented to the crickets. Thus

the specific research question investigated in this chapter can be summarised as

the following:
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• Can any of the biologically plausible models of insect visual homing proposed

to date (including both view-based and feature-based model types) reproduce

the pattern of performance shown in figure 4.1 and table 4.1 when tested in the

same suite of visual conditions as the animal?

4.2 Methodology

4.2.1 Image Databases

Three image databases were collected from within the cricket experimental arena

on a 2cm*2cm grid using a Khepera II mobile robot mounted with a custom built

wireless panoramic camera turret (see figure 4.2). Images were collected with the

arena configured as for the cricket trials giving three sets of 208 images: Natural

Scene (NS), Distinct Landmarks (DL), and Blank Walls (BW). All images were cap-

tured with the camera in the same orientation. Similar image databases have been

used to model the homing behaviour of rats in a rectangular arena (Stürzl et al.,

2008). It is worth noting that the Blank Walls database images are not uniform, as

might be expected. Instead, imbalances in the arena lighting cause a clear inten-

sity gradient to form on the arena walls culminating in a bright region (not visible

the naked eye) located NNW of the cool spot position. This seems to have been

sufficient for homing in the cricket, and as we shall demonstrate, also suffices for

homing in some of the tested models.

4.2.2 Homing process

Visual homing models, as described in the literature, frequently differ not only in

how the home vector is determined but also in how it is used to generate motion.

Here consistency is maintained across the implementations so that only the relative

efficacy of each model’s method of determining the home direction will contribute

to the results. A block diagram of the homing process for one time step is shown in

figure 4.3.

Visual Input is received from the image database in the form of an unprocessed

image (Figure 4.2 (c), (d), and (e)) as would be supplied by a robot positioned at

the corresponding grid position. The Cricket Eye Model then unwraps and unwarps

a ring corresponding to 20◦ above and below the image horizon. Note that as the
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Figure 4.1: Cricket homing times. Box plots showing times taken to locate the cool

spot for crickets across trials 7-10 (i.e. after learning) in the different visual surroundings

(n=12). Boxes show lines at the lower quartile, median, and upper quartile values. Whiskers

indicate the most extreme values within 1.5 times the interquartile range from the ends of

the box. Outliers are shown as + signs. Testing within the Natural Scene (NS) produces

fastest homing times, followed by Blank Walls (BW), Distinct Landmarks (DL) and the Dark

Control (DC) respectively.

NS BW DL DC

NS X <0.01 <0.01 <0.01

BW <0.01 X 0.54 <0.01

DL <0.01 0.54 X <0.01

DC <0.01 <0.01 <0.01 X

Table 4.1: Cricket homing times statistical analysis. P-values calculated using

Wilcoxon rank-sum test when comparing homing times across trials 7 - 10 within the four

experimental paradigms.
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( a )

( b )

( d )

( c )

( e )

Figure 4.2: Image databases used to simulate insect movement. (a) Khepera II robot base with custom wireless panoramic camera turret used

to record image database. (b) Cricket arena diagram showing 2cm*2cm grid where images were sampled. The cool spot perimeter is shown by the

inner circle and the home position used in the modelling study is located at grid location (16,12). (c), (d) and (e) Sample images from the DL, BW,

and NS image-sets respectively at the home location. Below is shown the images’ unwrapped at 1◦ resolution to the maximum image size of +/- 20◦

around the horizon prior to smoothing, and also the same sample images post smoothing.
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camera turret is mounted above the robot base unit and with the mirror located

above the camera to prevent image interference from cables, the image horizon is

approximately 10cm above the arena floor. Images are initially unwrapped at 1◦ res-

olution in both azimuth and elevation. A precise estimate for the visual acuity of

the ventral areas of the cricket species Gryllus bimaculatus eye could not be found,

but interommitidial angles of 1◦ have been observed in the dorsal rim area (Labhart

et al., 2001). Note that the models are also tested with lower resolutions (see Sec-

tion 4.2.5). Images are then blurred using a first order Butterworth filter where the

cut-off frequency is defined using the acceptance angle of 6◦ as observed in Gryl-

lus campestris (Labhart et al., 1984). The Cricket Eye Model images sampled at the

home positions within each of the test environments are shown in figure 4.2 under

the corresponding original images.

Grid position 16,12 was chosen as the home location and images taken at this

location in the various environments act as the reference images during homing.

The specific Homing Model under test is then used to calculate the home vector

at the current location. The Motor Output then selects the cardinal direction most

closely matching the home vector and updates the agent position to the nearest grid

location in the defined direction. As described below, different levels of noise can

be added to the home vector direction after it has been calculated and before the

movement is determined. A similar motor output routine has been used to simulate

the paths of homing rats in a virtual image database (Cheung et al., 2008). Note

however that the Run Down model (section 4.3.4.2) is an exception as it does not

calculate an explicit home vector but instead moves first and then evaluates, on the

basis of image difference, whether to continue in the same direction or randomly

try a new direction. If the agent attempts to move to a location outwith the image-

database (equivalent to the cricket encountering the arena wall) then the agent is

forced to move to the closest available location to the right. This procedure keeps

the agent within the image-database and simulates a simple wall following response

when the wall is encountered.

The process described above iterates until either the home location is found or

the path-length exceeds 300 steps. This stop condition was selected as cricket tri-

als were ended after 300 seconds if the cool spot had not been located. The ability

of the homing models to replicate the cricket behaviour is assessed by recording

the homing path lengths produced within each of the three environments. We then

compare directly the path lengths produced by each model with the homing times
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Visual Input
Cricket

Eye Model

Homing

Model
Motor Output

Figure 4.3: Homing Procedure used for all modelling trials. Visual input for the

current location is passed through an eye model defined for the cricket as shown previously.

The model in use then compares this current world view with the snapshot image and

generates a home vector. The model then moves to the grid location closest to the home

vector. All processing steps are kept consistent throughout except the method used to

determine the homing direction.

of crickets in the same environments. Homing trials are initiated from the same 48

positions (and where appropriate, orientations) from which cricket trials were ini-

tiated. It should be noted that as cricket start locations were chosen at random in

the behavioural study this leads to somewhat different start positions and orienta-

tions within each environment. The start locations and orientations used within

each environment are shown in figure 4.4. We also calculate the home vector from

every grid position so as to visualise the overall effectiveness of the homing method.

Home vector plots are shown with the average angular error (AAE) which is calcu-

lated by taking the mean error between home vector calculated at each location and

the known ideal home vector and provides a simple measure of model accuracy.

4.2.3 Control trials

In the original experiments a completely dark arena acted as the control. This would

produce a uniformly black image set, making any visual homing process ineffective.

To generate comparable control data for the simulation, random search paths were

generated from the same 48 start positions as crickets tested in the Dark Control

(see figure 4.4). At each time step the agent moves randomly in one of the four pos-

sible directions with equal probability, until either the home is encountered or the

path-length exceeds 300 steps. This process produces path lengths with compara-

ble median (289) and upper and lower quartiles (300 and 125) as the observed path

durations of crickets in the dark (median 258, quartiles 300 and 79).
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(a) DC start locations
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(b) DL start locations
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(c) BW start locations

0 4 8 12 16 20 24 28 32 36

0

4

8

12

16

20

24

28

32

36

(cm)

(c
m

)

(d) NS start locations

Figure 4.4: Start positions from which crickets and model trials are initiated. The

start positions and approximate heading direction of the crickets as in the final four trials

are shown by the blue arrows. This gives 48 start positions and orientations for each test

environment from which trials are also initiated in all subsequent model testing.
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4.2.4 Models of Visual Homing

As the explicit aim of this study is to investigate the strategies employed by crickets

when returning to the cool spot, only visual homing models that can be consid-

ered “biologically plausible” are implemented. A criterion for the selection of such

models was outlined by Vardy (2005): as was outlined in section 2.3.1. Applying the

above criterion, the following six models were selected for use in this study:

1. Average Landmark Vector Model.

2. Centre-of-Mass Average Landmark Vector Model.

3. Differential Optic Flow Models:

(a) First Order

(b) Second Order

4. Image Difference Function Models using:

(a) GradDescent

(b) RunDown

It should be noted that the Average Landmark Vector Model is the only feature-

based model to adhere to the biological plausibility constraints. All other models

are view-based. For each model the results for the optimised model after parameter

tuning are presented followed by a brief discussion of why the homing behaviour

succeeds or fails in the different environments.

4.2.5 Parameter Tuning

In their original forms, the different visual homing models implemented in this

study utilise various further pre-processing steps such as image smoothing, or us-

ing only a certain area of the image, to improve performance. Rather than make

any assumptions about such image processing in crickets, which might bias the re-

sults towards one or other homing model, an optimisation procedure is used to tune

the pre-processing parameters individually for each model. That is, optimisation is

done by exhaustively searching through all possible parameter combinations and

determining which parameters (if any) produce the same performance trend across

the different visual environments as we observed for the crickets. Parameters are

optimised according to two successive criteria:
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1. Median path-lengths in all visual environments must statistically outperform

the Dark Control.

2. Median path-lengths in the Natural Scene environment must statistically out-

perform homing within both the Distinct Landmarks and Blank Walls envi-

ronments.

Statistical comparison of the homing performance is performed using the Wilcoxon

rank-sum test. For each model, the outcome from the parameter setting that pro-

duces the closest match of medians and interquartile differences to the cricket data

will be presented in the results, and the pattern of parameter settings that pass or

fail the criteria discussed.

This search through parameter space also allows an analysis of the relative ro-

bustness of the the different models. More specifically the effect on performance

of changing the various parameters is assessed for all models. The free parameters

optimised by the models are:

Image Smoothing: In many studies, visual homing is performed on images that

have been highly low-pass filtered; a processing step easily performed in neu-

ral hardware. Vardy (2005) outlines a Gaussian low-pass filtering scheme where

images are convolved with the kernel:

G=[ 0.005 0.061 0.242 0.383 0.242 0.061 0.005 ] (4.1)

in the x and then the y direction. It is shown that successive applications of

this filter is comparable to convolving with a single larger Gaussian. Thus

smoothing the cricket eye images using Gaussians of various sizes is achieved

by optimising for 0, 1, 3 or 5 applications of this Gaussian Filter.

Down-sampling rate: As the cricket eye model unwraps the raw image at a reso-

lution of 1◦, down-sampling can be thought of as resetting the visual acuity

to 1◦, 2◦, or 4◦. This is achieved by sampling every 1, 2 or 4 pixels both hori-

zontally and vertically from those images supplied by the cricket eye model.

It is worth noting that these values are closely matched to the visual acuity

of Gryllus campestris (1◦), the honeybee eye Apis meliphora (1.7◦), and desert

ant Cataglyphis bicolor (4◦) (Land, 1997). Although it should also be noted that
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the acceptance angle of the honeybee and ant eye are 2.6◦ and 3◦ degrees re-

spectively compared with the cricket eye acceptance angle of 6◦ which would

result in less initial smoothing.

Image area used: Each model also optimises for the portion of the input image

used to calculate the home vector. The input image from the Cricket Eye

Model consists of +/- 20◦ of elevation around the horizon sampled at 1◦ az-

imuth giving a maximum image size of 360*41 pixels. Each model then selects

whether to use:

1. 10◦ above the horizon.

2. 10◦ below the horizon.

3. Horizon pixels only

4. +/- 5◦ around the horizon.

5. +/- 10◦ around the horizon.

6. +/- 20◦ around the horizon.

Note the optic flow models cannot use the horizon pixels only as this does not

allow vertical image gradients to be calculated.

Addition of noise to home vectors: The addition of noise to the homing signal aids

certain models that otherwise become trapped in deterministic loops in the

grid leading to high failure rates despite good general approximation of the

home direction. At each homing iteration, noise is generated through the ad-

dition of an offset to the derived home vector. The offset is randomly selected

from a circular normal distribution with a mean of zero and variable standard

deviation. Models optimise for the noise standard deviation (noise SD) which

ranges from 0 (no noise) to 90◦ in increments of 10◦. The maximum noise SD

setting of 90◦ results in a 62% chance that additional noise corrupts the home

vector by more than 90◦, resulting in movement in a random orientation with

respect to the generated home vector.

Image Type: Some models can operate with black and white, rather than greyscale,

images. The COMALV and IDF models are optimised for either image type,

where black and white images are generated by thresholding the output of
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DC DL BW NS

DC X <0.01 0.12 <0.01

DL <0.01 X <0.01 <0.01

BW 0.12 <0.01 X <0.01

NS <0.01 <0.01 <0.01 X

Table 4.2: ALV statistical analysis. P-values calculated for comparisons between path-

lengths in the various image databases using the ALV model. Note the significant difference

of NS and control is in the wrong direction (NS worse than control).

the cricket eye model at the median greyscale value. The ALV model inher-

ently converts images to black and white to define landmarks and thus only

optimises for greyscale images. The differential optic flow models can only

operate on greyscale images.

4.3 Results

4.3.1 Average Landmark Vector Model

Figure 4.5 shows the homing path lengths produced by the ALV model in the various

image databases, and the home vectors generated in each environment. Table 4.2

shows the p-values of the statistical comparisons of homing path lengths.

It is clear that the ALV Model does not reproduce the same performance trend as

observed in crickets. Indeed no parameter setting produced shorter path lengths

in all visual environments when compared to the control; the first performance

criterion. This failure is caused by inaccurate home vector generation within the

Natural Scene due to the difficulty in consistently defining edges within such an

environment. It should be noted that the simple edge detection techniques em-

ployed by Lambrinos et al. (2000) were found inadequate for homing within the

cricket surrounds, specifically within the Natural Scene. Therefore, the more robust

edge detection procedure implemented by Möller et al. (2001) to achieve success-

ful homing in the university lobby was adopted but resulted in similar failures. The

slightly improved path lengths produced within Blank Walls are attributable to the

background intensity gradient outlined previously which the ALV Model defines as

a single landmark that is generally detected across arena positions allowing some-
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(a) Path-length data.
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(b) DL home vectors. (AAE=12◦)
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(c) BW home vectors. (AAE=58◦)
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(d) NS home vectors. (AAE=93◦)

Figure 4.5: ALV model results. (a) ALV Model path lengths within the three image

databases and control condition. Optimal parameter settings: downsampling rate = 1,

No. of Gaussians=1, image region used = horizon pixels only, and noise SD=10◦ using

greyscale images. Boxes show lines at the lower quartile, median, and upper quartile val-

ues. Whiskers indicate the most extreme values within 1.5 times the interquartile range

from the ends of the box. Outliers are shown as + signs. (b), (c), (d) Home vectors gen-

erated using the optimal parameter settings in the DL, BW and NS surrounds respectively.

Note that the single bar at 300 for the NS results indicates that all homing trials save outliers

reached the stop condition.
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Edges identified Mean edges identified Variance in edges identified

in home image across image locations across image locations

DL 6 5.9320 0.8897

BW 2 1.9612 0.3922

NS 4 4.4951 1.8401

Table 4.3: Edge detection robustness of the ALV model. Comparison of the number

of edges identified in the home image compared to the mean and standard deviation found

at all subsequent image positions in each environment.

what accurate home vector generation. In contrast, within the distinct landmarks

surround, where edges are easily identified, home vectors are accurate from most

regions of the arena, resulting in short path lengths.

Table 4.3 shows the mean number of edges detected across image positions

within each of the image databases compared with the number of edges found in

the home image of those image-sets. Within the Natural Scene the high degree

of variance in detected edges catastrophically affects correct home-vector calcu-

lation. Despite a higher degree of edge detection accuracy within Blank Walls, the

small number of detectable edges also results in inaccurate home vector calcula-

tion when edges are incorrectly defined. Furthermore, the reduced intensity range

within Blank Walls images renders the model susceptible to noise and makes accu-

rate ALV computation difficult resulting in a high Average Angular Error. In contrast,

within Distinct Landmarks six edges are detected in the home image. The larger

number of distinguished edges in this environment increases the robustness of the

ALV when edges are incorrectly identified, or missed, resulting in the improved per-

formance displayed. It may be possible to improve the performance of the ALV

Model in the Natural Scene using a more sophisticated feature extraction algorithm.

However as homing is close to optimal in Distinct Landmarks it seems unlikely that

any such enhancement would produce statistically superior homing in the Natural

Scene surround, as is observed in crickets.

4.3.2 Centre-of-Mass Average Landmark Vector Model

Figure 4.6 shows the homing path lengths produced by the COMALV model in the

various image databases, and the home vectors generated in each environment. Ta-
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DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X 0.28 <0.01

BW <0.01 0.28 X 0.01

NS <0.01 <0.01 0.01 X

Table 4.4: COMALV statistical analysis. P-values calculated for comparisons between

path-lengths in the various image databases using the COMALV model.

ble 4.4 shows the p-values of the statistical comparisons of homing path lengths.

Parameter optimisation of the COMALV model found 80 parameter combina-

tions that pass both performance criteria and thus match the performance trend of

the cricket data. These settings include every possible smoothing and acuity variant

at least once indicating a robustness to these pre-processing procedures. In con-

trast, the only successful image region is +/-20◦ around the horizon, and the image

type is restricted to black and white images. All parameter settings require some

level of noise for successful homing.

The selection of only the maximum image region setting is due the interaction

of the landmarks and the background intensity gradient within the Distinct Land-

marks surround. COMALVs obtained within both Blank Walls and Natural Scene

generally orient towards an attractor in the environment when sampled across im-

age locations. For example within Blank Walls, COMALVs are oriented towards the

peak of the background intensity gradient outlined previously. An attractor is neces-

sary such that when the home COMALV is subtracted from the current COMALV an

appropriate angular offset is present resulting in correct home vector computation.

However within Distinct Landmarks, for smaller image region settings, no such at-

tractor exists as the T shaped landmark and background intensity peak coincide.

This flattens the intensity gradient and removes the presence of a prominent CO-

MALV. However, when +/-20◦ images are presented, the proportion of blank arena

wall to landmarks is increased, introducing a prominent attractor to which COMA-

LVs orient and resulting in the improved homing observed.

It was found that the use of greyscale images had a catastrophic effect in the

Blank Walls environment. This failure is caused by a subset of home vectors lo-

cated near the home position which are inverted with respect to the true home di-

rection across many parameter settings. Thus agents homing from certain arena
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(a) Path-length data.
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(b) DL home vectors. (AAE=38◦)
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(c) BW home vectors. (AAE=32◦)
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(d) NS home vectors. (AAE=14◦)

Figure 4.6: COMALV model results. (a) COMALV Model path lengths within the three

image databases and control condition. Optimal parameter settings: downsampling rate =

2, No. of Gaussians=0, image region used = +/- 20◦ around the horizon, noise SD=80◦,

using black and white images. Boxes show lines at the lower quartile, median, and upper

quartile values. Whiskers indicate the most extreme values within 1.5 times the interquar-

tile range from the ends of the box. Outliers are shown as + signs. (b), (c), (d) Home

vectors generated using the optimal parameter settings in the DL, BW and NS surrounds

respectively.
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areas would be deflected from the home position. The incorrect home vector di-

rection was a result of the magnitude of the current COMALVs at these locations

exceeding that of home COMALV; often only by a small amount but this is sufficient

to produce a small but incorrectly oriented home vector. This problem is partially

circumvented when sufficient noise is added such that agents near the home would

sometimes reach it instead of being deflected. However the addition of such high

noise levels degraded performance in the Distinct Landmarks surround to chance

levels. No parameter combination using greyscale images could be found where

path lengths within both Distinct Landmarks and Blank Walls are statistically supe-

rior to the control.

The impact of these anomalous home vectors within the Blank Walls surround is

probably magnified by the use of an image-database rather than a fully autonomous

robot study where images would be generated repeatedly across trials. There are

also a number of simple modifications to the COMALV Model that may help over-

come such deficiencies such as defining a minimum threshold between magnitudes

that should be reached before home vectors are computed, weighing trust in home

vector relative to magnitude, image normalisation prior to COMALV calculation, or

the use of a momentum component that would push agents past erroneous home

vectors. However none of these model extensions were implemented in this study,

given that the use of blank and white images was sufficient to produce cricket-like

results.

4.3.3 Differential Optic Flow Models

4.3.3.1 First Order Differential Model

Figure 4.7 shows the homing path lengths produced by the FO model in the various

image databases, and the home vectors generated in each environment. Table 4.5

shows the p-values of the statistical comparisons of homing path lengths.

Parameter optimisation of the FO Model found no parameter settings that passed

the first performance criterion where improved path-lengths are sought in all visual

environments when compared with the control. Despite performing excellently

within both Natural Scene and Distinct Landmarks, the FO Model fails to generate

accurate home vectors within Blank Walls, where it never outperforms the control.

This is because the lack of significant intensity variations within the Blank Walls en-

vironment does not allow a sufficient number of correct pixel-wise home-vectors
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DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X <0.01 <0.01

BW <0.01 <0.01 X <0.01

NS <0.01 <0.01 <0.01 X

Table 4.5: First Order Differential model statistical analysis. P-values calculated for

comparisons between path-lengths in the various image databases using the FO model.

Note the significant difference of BW and control is in the wrong direction (BW worse than

control).

to be calculated such that when pixel-wise home vectors are averaged, the correct

home vector prevails.

4.3.3.2 Second Order Differential Model

Figure 4.8 shows the homing path lengths produced by the SO model in the various

image databases, and the home vectors generated in each environment. Table 4.6

shows the p-values of the statistical comparisons of homing paths.

Parameter tuning of the SO Model found five parameter settings that passed

both performance criteria. These are comprised of two distinct settings buoyed by

the addition of large noise terms. The first setting applies one Gaussian filter, to

maximally sampled+/- 20◦ images with noise SD=70◦, 80◦, and 90◦. The second set-

ting applies no smoothing to+/- 20◦ images downsampled at 2◦ with noise SD=70◦

and 80◦. The SO Model was tuned for only greyscale image type as explained in the

methods.

As with the FO Model, homing within Blank Walls rarely outperforms the control

when using the SO Model. This is again due to the absence of robust intensity gra-

dients required by differential optic flow models to accurately compute home vec-

tors. The increased accuracy of the home vectors generated by the SO Model within

Blank Walls may have been expected as some image gradients are likely to be main-

tained even where individual pixel intensities are not. The use of minimal levels

of downsampling and image smoothing increases the robustness of such gradients

where they exist. Moreover, the use of the largest image region increases the influ-

ence of correct and correlated home vectors where they can be generated. How-
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Figure 4.7: First Order Differential model results. (a) FO Model path lengths within the

three image databases and control condition. Optimal parameter settings: downsampling

rate = 2, No. of Gaussians=1, image region used = +/-10◦ around the horizon, and noise

SD=90◦ using greyscale images. Boxes show lines at the lower quartile, median, and

upper quartile values. Whiskers indicate the most extreme values within 1.5 times the

interquartile range from the ends of the box. Outliers are shown as + signs. (b), (c),

(d) Home vectors generated using the optimal parameter settings in the DL, BW and NS

surrounds respectively.
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DC DL BW NS

DC X <0.01 0.01 <0.01

DL <0.01 X <0.01 <0.01

BW 0.01 <0.01 X <0.01

NS <0.01 <0.01 <0.01 X

Table 4.6: Second Order Differential model statistical analysis. P-values calculated

for comparisons between path-lengths in the various image databases using the SO model.

ever, despite this improvement the resultant path-lengths still fail to out-perform

the control without the addition of a substantial noise term.

4.3.4 Image Difference Function Models

Figure 4.9 shows the image difference functions calculated within the various im-

age databases using the RMS metric. It is clear that image difference functions are

present in the cricket arena visual conditions and the following sections present the

performance of two gradient descent algorithms previously used to home on similar

difference manifolds.

4.3.4.1 GradDescent Homing Method

Figure 4.10 shows the homing path lengths produced by the GradDescent algorithm

in the various image-sets, and the home vectors generated in each environment.

Table 4.7 shows the p-values of the statistical comparisons of homing paths.

Parameter tuning of the GradDescent method found six parameter settings that

passed both performance criteria. The image region used is limited to+/-20◦ around

the horizon, and the downsampling rate to 2 or 4. However the model seems robust

to smoothing with all settings except no smoothing being used. The image type

used is fixed as black and white. All six parameter settings require a small amount

of additive noise (max noise SD=30◦, µ=16.67◦, σ=8.16◦ across the parameter set).

When greyscale images are used homing paths within Blank Walls fail to statisti-

cally outperform the control. This failure is caused by the image difference function

generated within Blank Walls (Figure 4.9(b)) which appears noisy and littered with

local minima. The rugged nature of the image difference function is likely due to

the high degree of similarity in the BW greyscale images coupled with some noise
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Figure 4.8: Second Order Differential model results. (a) SO Model path lengths within

the three image databases and control condition. Optimal parameter settings: downsam-

pling rate = 1, No. of Gaussians=1 and image region used = +/- 20◦ around the horizon, and

noise SD=80◦ using greyscale images. Boxes show lines at the lower quartile, median, and

upper quartile values. Whiskers indicate the most extreme values within 1.5 times the in-

terquartile range from the ends of the box. Outliers are shown as + signs. (b), (c), (d) Home

vectors generated using the optimal parameter settings in the DL, BW and NS surrounds

respectively.
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Figure 4.9: RMS image difference functions (IDF) within the three image data-

bases. Note that the parameter settings are constant for both image types used: Number

of Gaussians=0, downsampling rate=1, image regions=+/- 20◦ around the horizon. (a), (c)

and (e) IDFs generated using greyscale images in the DL, BW and NS surrounds respec-

tively. (b), (d) and (f) IDFs generated using black and white images in the DL, BW and NS

surrounds respectively.
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DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X 0.3 <0.01

BW <0.01 0.3 X 0.03

NS <0.01 <0.01 0.03 X

Table 4.7: GradDescent model statistical analysis. P-values calculated for compar-

isons between path-lengths in the various image databases using the GradDescent model.

possibly introduced by the wireless camera. This makes successful and repeatable

homing almost impossible using greyscale images regardless of other parameter

settings. Conversion of the input images to black and white removes a dimension-

ality of the data producing smoothed image difference functions across image-sets,

but with particularly profound effect on the Blank Walls image difference function

(Figure 4.9(e)). The use of black and white images in preference to greyscale, im-

proves homing across image-sets to the extent that statistically separating the per-

formance between paths generated within the Natural Scene and those generated

within the other surrounds becomes the main cause of model failure. The use of the

largest image type in conjunction with downsampling increases the proportion of

blank arena wall in comparison to landmarks and thus degrades the image differ-

ence function in Distinct Landmarks, without overly affecting the image difference

function in Natural Scene. With the further addition of noise statistical separation

can be achieved, at the expense of a much higher variance in the Distinct Land-

marks paths than was found in the cricket data.

4.3.4.2 RunDown Homing Method

The path-lengths, and statistical comparisons for the RunDown algorithm are shown

in figure 4.11 and table 4.8 respectively. Optimisation of parameters for the Run-

Down algorithm found six parameter settings successfully passing the performance

criteria. The RunDown method seems robust to most parameter settings with all

possible smoothing, downsampling and image regions (excluding horizon pixels

only) being used. However, as with the GradDescent method, if greyscale images

are used, path-lengths in Blank Walls are never significantly better than the con-

trol. With black and white images, many parameter settings pass the first criteria
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Figure 4.10: GradDescent model results. (a) Path lengths within the three image

databases and control condition. Optimal parameter settings: acuity = 4◦, No. of Gaus-

sians=1, image region=+/- 20◦ around the horizon, noise SD=10◦ and using black and

white image type. Boxes show lines at the lower quartile, median, and upper quartile val-

ues. Whiskers indicate the most extreme values within 1.5 times the interquartile range from

the ends of the box. Outliers are shown as + signs. (b), (c), (d) Home vectors generated

using the optimal parameter settings in the DL, BW and NS surrounds respectively.
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Figure 4.11: RunDown results. Box plots showing path-lengths obtained using the Run-

Down model within the three image databases and control condition. Optimal parameter

settings: downsampling rate = 1, No. of Gaussians=3 and image region used = +/-20◦

around the horizon using black and white images. Boxes show lines at the lower quar-

tile, median, and upper quartile values. Boxes show lines at the lower quartile, median,

and upper quartile values. Whiskers indicate the most extreme values within 1.5 times the

interquartile range from the ends of the box. Outliers are shown as + signs.

of significantly shorter paths in all visual surrounds than the control, but although

most combinations also show the trend of shorter paths for Natural Scene, this is

not statistically significant except for the six settings mentioned.

4.4 Conclusions

Six biologically plausible models of visual homing have been implemented and tested

using image data-sets taken directly from the visual environments in which cricket

experiments were conducted. Each model was assessed for its ability to replicate the

performance trends observed for crickets homing with different visual surrounds.

That is: that homing was better with any visual surround than in the Dark Control

and that homing was better with a Natural Scene than with Distinct Landmarks and

Blank Walls. Homing paths were initiated from the same start-points, and where ap-
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DC DL BW NS

DC X <0.01 <0.01 <0.01

DL <0.01 X 0.02 <0.01

BW <0.01 0.02 X <0.01

NS <0.01 <0.01 <0.01 X

Table 4.8: RunDown model statistical analysis. P-values calculated for comparisons

between path-lengths in the various image databases using RunDown Model.

Homing Total parameter All visual surrounds NS outperforms

model permutations tested outperform control DL and BW

ALV 720 0 0

COMALV 1440 102 80

FO 600 0 0

SO 600 5 5

GradDescent 1440 426 6

RunDown 144 41 6

Table 4.9: Summary of the model parameter tuning results. The total parameter

permutations are shown for each model. The values in the subsequent columns indicate

the number of parameter permutations that successfully passed the performance indicated

by the column title.

propriate start directions, as the crickets. Additionally, across the model implemen-

tations, aspects of visual pre-processing and movement control were either held

constant or optimised for each model by an exhaustive parameter search.

Table 4.9 summarises the results of the parameter search, indicating the number

of possible parameter permutations (which, as explained in the methods, could vary

for different models) and the number of permutations that met the performance

criteria for each model.

It is therefore possible to answer the posed research question directly:

• Can any of the biologically plausible models of insect visual homing proposed

to date (including both view-based and feature-based model types) reproduce

the pattern of performance shown in figure 4.1 and table 4.1 when tested in the

same suite of visual conditions as the animal?
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The Average Landmark Vector and First Order Differential models were found

to be incapable of reproducing the performance trends of crickets. The Average

Landmark Vector model was unable to home in the Natural Scene, and always pro-

duced the best homing with Distinct Landmarks. Similar results might be expected

for any feature-based homing algorithm that relies on reliable extraction of land-

mark features. The First Order Differential model in contrast homes well within

both the Distinct Landmarks and Natural Scene but performance within the Blank

Walls surround is statistically worse than the control condition. This can be ex-

plained by the fact that the useful homing information for this model is contained

largely in the focus of expansion and contraction. In the Blank Walls environment,

the foci generally coincide with regions of bare arena wall where intensity values are

broadly similar and thus correspondences are difficult to accurately assess. The Av-

erage Landmark Vector and First Order Differential models are therefore dismissed

as homing strategies employed by crickets.

The increased robustness of image gradients compared with absolute pixel in-

tensities within the Blank Walls surround enabled the Second Order Differential

Model to produce some parameter combinations that passed the performance cri-

teria. However this is dependent on large levels of additive noise which are not

only required to improve homing within Blank Walls but also to increase the per-

formance gap between the Natural Scene and Distinct Landmarks. As a result, even

with the optimal parameter settings, which minimised for both the difference in

medians and inter-quartile range between cricket and model data, the median and

variance generated within Blank Walls are substantially greater than the cricket hom-

ing times when tested in the same environment. Moreover unlike the cricket data,

performance was significantly worse in Blank Walls than for Distinct Landmarks.

Thus this algorithm does not match the cricket data as well as some others.

Gradient descent based models of visual homing were found capable of repro-

ducing the performance trend of crickets. However the noisy image difference func-

tion produced within the Blank Walls surround when greyscale images were used

prevented statistical improvement on the control condition. Through the use of

black and white images rather than greyscale the image difference functions are

smoothed such that homing is successful in all environments. Indeed this smooth-

ing makes performance within Natural Scene and the other tests environments dif-

ficult to statistically separate. The GradDescent homing method successfully achieved

statistical significance between Natural Scene and both Distinct Landmarks and
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Blank Walls by downsampling the image at the maximum rate, which reduced the

robustness of the image difference function within Distinct Landmarks, in combi-

nation with a small noise term. However, even with the optimal parameter choice,

this produces much higher variance in path lengths in Distinct Landmarks than ob-

served for crickets. Given that this method also requires the sampling of image dif-

ferences in all cardinal directions before moving in the home direction, it seems less

plausible than the simple RunDown method.

The RunDown method could successfully reproduce the right pattern of sta-

tistical differences across the visual environments and also provided a reasonable

match to the observed median and spread in the cricket data. The COMALV Model

also accurately reproduced the performance of crickets. The performance criterion

was reached for 6 out of 144 possible parameter combinations for RunDown and for

80 out of 1440 possibilities for COMALV. For both methods, the performance crite-

ria were only met when black and white images were used as input. This reduction

in information dimensionality reduces the effects of noise in the Blank Walls envi-

ronment. Both models were successful for all possible levels of image smoothing

and image resolution suggesting they may be robust for different insect eye models,

such as bee or ant. COMALV required some noise to prevent it from being trapped in

loops; RunDown is an inherently noisy procedure. The COMALV algorithm worked

only with the largest image type (+/-20◦ around the horizon), whereas RunDown

was also successful with more restricted fields of view, excepting when only horizon

pixels were used.

From these results it can be concluded that the ‘place memory’ observed in the

cricket experiments of chapter 3 can be explained by visual homing (rather than

requiring more explicit spatial representations); and that simple calculation of ei-

ther the image ‘centre of mass’ or the image difference is not only sufficient, but

produces results closer to those observed for the cricket than more complex algo-

rithms requiring feature extraction or optic flow calculation. In passing it is worth

noting that the initially unexpected cricket homing in the Blank Walls environment

is accounted for by these models without including the canopy area in the images;

the very slight light gradient that existed across the arena was sufficient for homing.

This may be important for eliminating unintended cues in any visual orientation

experiments on insects. Additionally the finding that crickets home faster when

the visual surround is a noisy natural scene in comparison to easily identified land-

marks (as used in many previous homing experiments) may be used to guide the
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design of future homing experiments in insects.

4.5 Discussion

Both successful methods are computationally cheap. The COMALV method is also

cheap in requiring only one vector, rather than a home image, to be stored: although

parallel retinotopic processing in the insect brain may mean image storage is also

relatively cheap. The reliance of the COMALV Model on the entire image region

suggests a possible experimental design to separate the COMALV and RunDown

models. If the field of the view of the insect could be limited, either through eye

capping or physical barriers, and its impact on the homing ability of insects ob-

served, then the likelihood that the COMALV Model is the homing strategy in use

could be inferred. Such screening experiments have sought to infer the portion of

the visual scene used by homing wood ants (Fukushi, 2001) and desert ants (Graham

and Cheng, 2009b), and may offer a modelling environment able to distinguish the

homing models.

Analysis of the homing paths may also offer clues to the homing mechanism

guiding crickets. As gradient descent models require a local sampling to infer the

home direction it may be possible to analyse for stop and search patterns in hom-

ing paths. As mentioned previously, this type of behaviour was not obvious in the

cricket study. Alternatively if the crickets are using an active move and sample pol-

icy as in RunDown then it would be expected for the home path to arc towards the

home location rather than being direct. This is in contrast to the COMALV which

should generate accurate and direct home vectors from many locations.

Similar databases of panoramic images have been used to investigate the rota-

tional errors observed in rats trained to locate a corner in a rectangular arena (Stürzl

et al., 2008). As in this study, image difference functions were shown to exist in the

test environment. Use of a simple gradient descent technique was sufficient to re-

produce the animal behaviour indicating a role for view-based homing rather than a

dedicated geometric module. Furthermore, the behavioural results have been repli-

cated in ants (Wystrach and Beugnon, 2009), which offers further evidence for the

use of a gradient descent based homing in insects. Unfortunately, other models

of homing were not also investigated in the above modelling study and therefore

cannot be dismissed at this time. Such testing of different models in various exper-

imental situations where model output can be directly compared to biological data
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may allow further insights into the exact strategy used by insects and other animals.

One limitation of all biologically plausible homing models described here is that

the orientation of the image at the current location must be the same as that of the

home image. Many authors address this restriction by assuming the insect or agent

has a compass to provide rotation information. However within the cricket arena

no compass cues (magnetic or polarised) are available. Another possible solution

is presented through image difference functions where it has been shown that the

image difference between images increases smoothly and monotonically with ro-

tation as well translation (Zeil et al., 2003). Thus to align the current image with

one stored previously the agent must rotate the current image, either physically or

mentally, until the minimum image difference is found. While this technique has

been used successfully in modelling studies it seems unlikely that an insect could

perform such image rotations mentally and there is no clear evidence from the be-

havioural data of crickets rotating to align images.

A possible solution to the alignment problem, where compass information is

not available, is that insects may store multiple images at the home location, while

oriented in different directions. Thus when the insect is performing a subsequent

homing run, the home memory most closely matching the current world view would

be used as a reference for calculating the current image difference or home vector.

In this way locations of importance, which are visited repeatedly would have multi-

ple, strongly re-inforced memories and could be approached from many directions

without the need for a compass at all. This type of gradual learning of a location may

account for the learning curve observed in the cricket behavioural experiments in

chapter 3 and will be the subject of further study.



Chapter 5

Visually Guided Routes of the European

ant Cataglyphis velox

5.1 Introduction

Desert ants inhabiting cluttered environments develop and maintain idiosyncratic

routes to and from a regular feeding site (Melophorus bagoti: Wehner (2003); Kohler

and Wehner (2005); Wehner et al. (2006), Cataglyphis bicolor: Wehner et al. (1996)).

The routes traversed are unique to individuals despite all ant paths converging on

common start and end points. Furthermore the path of individual ants when trav-

elling to the feeding site is distinct to the route of the same ant when returning to

the nest.

Kohler and Wehner (2005) demonstrated that visual cues are sufficient for route

following as ants successfully recalled and traversed their learned routes when con-

textual path integration cues were either removed completely or out of synchrony

with those normally experienced. It should be noted that the authors also showed

that ants maintain a global home vector during route following which is expressed

when the ant is visually lost (usually following a displacement). Wood ants that ini-

tially learn routes by trail following strategies also learn the visual cues along their

paths. Moreover the visual cues become dominant to pheromones when placed in

conflict (Klotz, 1987; Harrison et al., 1989).

In this chapter the route following behaviour of the European ant Cataglyphis

velox is assessed. Similarly to their African cousins velox are large, theromophilic,

central place, solitary foragers. They are located in the southern Iberian pennin-

sula where the climate is hot and their environment semi-arid. The navigational

89
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capabilities and strategies of C. velox are to date unknown, however as they fill the

same ecological niche as their Australian and African counterparts, then similar be-

haviours may be expected.

The specific research aims of this study can be summarised as:

• Do Cataglyphis velox foragers navigate to and from a regular feeding site by

idiosyncratic routes? If so,

– Are visual cues the primary and dominant mode of route guidance?

– Are rudimentary guidance mechanisms, such as path integration and sys-

tematic search, maintained and utilised when visual cues fail?

Previous behavioural studies in other desert ant species have addressed many, if

not all of the above points directly. Therefore, it is vital to ascertain if behaviours and

strategies are generalised across species sharing an ecological niche. Furthermore,

the real world data shall directly influence subsequent modelling work.

5.2 Methodology

5.2.1 Animals

Cataglyphis velox are thermophilic central place foragering ants that scavenge for

arthropod corpses during the hottest period of the day (Cerda and Retana, 2000;

Cerda, 2001). This thermophilic behaviour was confirmed by recording foraging ac-

tivity of the experimental colony over a four day period (13th-16th July, 2009). The

surface temperature was monitored throughout using a HOBO data logger. To dis-

tinguish foraging activity from nest-based activity only ant paths extending further

than 1m from the nest qualified as foraging. Activity was monitored from 10am

until 7pm each day and the accumulated foraging activity binned into 30 minute

windows. Figure 5.2 confirms that Cataglyphis velox are most active when soil tem-

peratures peak. This is in common with other desert ant species who forage when

other less heat tolerant arthropods have retreated underground.

The morphology of Cataglyphid foragers indigenous to the Mediterranean basin

(including C. velox) are characterised by their "‘long legs, slender alitrunks and high

running speeds"’ (Wehner, 2008). These attributes are shared with ecologically equiv-

alent ants in southern Africa (Ocymyrmex velox) and to a lesser degree those in cen-

tral Australia (Melophorus bagoti). It should be noted that this comparison is by no
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Figure 5.1: Forager of the ant species Gryllus bimaculatus departing from its in-

conspicuous nest entrance. Image courtesy of Fernando Amor.

means exhaustive and other species not listed may also possess similar morpholo-

gies. However the comparison is intended to highlight evidence of parallel evolution

in different desert ant species.

5.2.2 Field Site

The field study was conducted outside the village of Torrequinto near Seville, Spain

(37◦ 19’ 34"’ N, 5◦ 54’ 14"’ W) between 7th May and 16th July, 2009. The nest was lo-

cated in a flat area surrounded by randomly dispersed grass tussocks. Larger land-

marks such as trees and buildings were situated over 30m away and thus could not

be viewed by the ants. Figure 5.3 (a) shows a distant view of the field site demon-

strating the absence of large visual landmarks close to the nest site. Furthermore

any distant cues such as trees were occluded from ants by the grass tussocks as

shown by panoramic images sampled close to the nest (see figure 6.3).

A 10m*10m area surrounding the nest was partitioned into a 1m*1m grid using

metal markers pushed into the soil. The use of metal markers allowed the grid to

be easily viewed by the experimenter without introducing any visual features that

the ants may have used for guidance. The grid and landmark distribution were then

mapped onto squared paper which was used for recording routes. Figure 5.3 (b)

shows a closer view of the specific area that was mapped.

5.2.3 Natural Routes Recording

A feeder was installed approximately 7.5m from the ant nest and sunk into the earth

to hide it from view until ants were very close. Crushed biscuit and honey water
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Figure 5.2: Thermophilic behaviour of Cataglyphis velox. Foraging activity of experi-

mental nest averaged over a four day period. Activity is shown against both time of day and

soil temperature.

(a) Distant view of field site. (b) Local view field site.

Figure 5.3: Field Site. Experimental field site located near Seville, Spain showing the

maze of grass tussocks that foraging ants must navigate to locate the hidden feeder.
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acted as bait and ants were allowed to forage and discover the feeder without aid.

Ants returning from the feeder were captured at the nest entrance and marked on

the gaster with coloured paint. The four subsequent journeys of the marked ant to

and from the feeder were then recorded without interference. These recordings of

naturally occurring routes allow assessment of whether the ants followed repeat-

able, distinct routes to and from the feeding site.

It should be noted that ants were not captured at the feeder unless selected for

observation and instead allowed to shuttle back and forth freely. Thus it cannot be

concluded from the data presented how many journeys individuals may have been

made to the feeder prior to recording.

5.2.4 Displacement Experiments

After completion of four undisturbed round trips ants were subjected to a succes-

sion of displacement trials as in Kohler and Wehner (2005). Ants were either cap-

tured at the nest or at the feeder prior to displacement. When captured at the feeder

ants should have access to a complete home vector built up whilst traveling to the

feeder and are thus termed full vector (FV). Conversely ants captured at the nest

will have expended the home vector during the inward journey and are thus termed

zero vector (ZV).

The first series of trials displaced ants to locations along their observed routes:

1. Zero Vector to Feeder (ZV to F)

2. Zero Vector to Half-Way (ZV to HW)

3. Full Vector to Half-Way (FV to HW)

These On-Route trials test whether the visual route memories can be recalled

both in the absence of a global path integrator reading and also in the presence

of an inappropriate home vector reading. If an ant follows a set path repeatedly

then indexing visual memories using the global home vector could disambiguate

closely matched visual scenes and also allow prediction of what visual scene should

be currently viewed. The ZV to F trial returns ants from the nest to the feeder and

therefore puts the home vector in direct conflict with the visual surround. That is,

the visual memory expectation as cued by the home vector is that at the nest but the

actual visual input corresponds to a feeder-based memory. By assessing whether
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the ant can recall its previously observed inward route the interdependence of route

memory recall on the global home vector can be inferred.

Displacing ants along their routes follows directly as a variant of the ZV to F trial

as visual input and home vector output are again put in conflict. In the ZV to HW

and FV to HW trials ants are displaced to a position halfway along their normal in-

ward route from either the nest, or the feeder, respectively. It should be noted that as

ants form independent routes, the location of the halfway point was specific to each

ant. Figure 5.4 (b) illustrates the displacement procedure for the On-route trials.

Ants were also tested in a series of Off-Route trials:

1. Full Vector to Offset 1 (FV to O1)

2. Full Vector to Offset 2 (FV to O2)

3. Zero Vector to Offset 1 (ZV to O1)

4. Zero Vector to Offset 2 (ZV to O2)

In the Off-Route trials ants were displaced from either the feeder or nest, to two

unfamiliar locations offset from their established inward route. FV ants should re-

tain their global home vector when released, providing a guidance cue that should

be expressed within the unfamiliar visual surround. In contrast ZV ants should have

no navigational back-up system to guide them upon release as they will have ex-

pired the home vector on the homeward path. Ants are known to display systematic

search patterns in the absence of other guidance cues characterised by concentric

rings of increasing radius (Wehner and Srinivasan, 1981). Kohler and Wehner (2005)

reported such search behaviours in displaced zero vector ants. After encountering

the route however, ants immediately recognised the previously experienced loca-

tion and followed their usual path back to the nest. Figure 5.4 (c) illustrates the

displacement procedure for the Off-Route trials.

The On-Route trials were always performed prior to the Off-Route trials to avoid

possible interference of new route memories gained by ants traveling in the novel

areas offset from the observed routes. Within each series of experiments the trials

were ordered randomly.

5.2.5 Additional Natural Routes Data

To perform a FV trial an ant must complete one undisturbed outward route prior to

capture and displacement. Additionally ZV trials require a complete outward and
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(a) On-Route Displacements. (b) Off-Route Displacements.

Figure 5.4: Displacement trials experimental procedure. The overhead mapping

of the ant habitat is shown with the nest marked N and the feeder F. After 4 undisturbed

journeys ants were subjected to a series of displacement trials. (a) Ants were transferred

from the nest (zero-vector) back to the feeder (1) and also to a halfway point on their normal

inward route (2). Ants were also taken from the feeder (full-vector) and released at the same

halfway point (3). (b) Two displacement locations were chosen for Off-Route displacements

each approximately 1.5m towards the nest by the direct path and then approximately 1.5m

perpendicular to the direct path. Again ants were transferred from the nest (4 and 6) or

from the feeder (3 and 5). Note that a grass tussock co-incided with the ideal location for

displacement 2 and therefore it is slightly further from the direct path than 1.5m. It is also

worth noting that both Off-Route release points are found amongst substantial vegetation

reducing the likelihood that visual cues could guide ants in the immediate vicinity.



96 Chapter 5. Visually Guided Routes of the European ant Cataglyphis velox

inward route to be completed. These control routes were recorded and added to

the natural route data-set.

Furthermore ant recordings did not cease on completion of the displacement

trials. Instead individuals were tracked for as long as possible with the longest du-

ration being four days. Not only did this increase the number of undisturbed routes

observed but offered an opportunity to conduct repeat displacement trials. The

repeat trials conducted were chosen at random for each individual. It should be

noted that no ants were subjected to more than two instances of any displacement

trial and in no cases did any ant repeat all seven displacement trials.

5.2.6 Data Analysis

5.2.6.1 Route Similarity

To assess whether ants repeatedly follow set paths through their environment, and

moreover to determine if these paths are distinct from those traversed by other ants,

a route similarity metric is defined. The similarity metric is the area between indi-

vidual routes and a median route calculated from all observed paths of a single ant.

Thus a median route is generated for both the outward and inward routes of every

ant. Note that the median route is calculated rather than the mean route such that

where ants have traversed a landmark on both sides the most commonly passed

side will prevail rather than a route segment passing through the centre of the land-

mark. The median route calculated for the outward paths of one ant is shown in

figure 5.5(a) overlaid on the recorded natural foraging routes.

It follows that the area between the median route and the individual routes from

which it was calculated should be small if a consistent route is followed (see figure

5.5 (b)). Conversely if ants do not adhere to consistent paths then larger area mea-

sures will prevail. The area metric also allows comparison of the routes followed by

different ants. If multiple ants follow similar paths then the resultant areas metrics

will be low however if distinct routes are traversed then larger area measures should

be generated (see figure 5.5 (c)). The areas between all observed routes and medians

are computed to assess whether ants follow idiosyncratic routes distinct from one

another. Note that the the Wilcoxon Rank-Sum non-parametric test is used when

comparing groups.

The same metric is also used to assess whether ants recall and traverse their

routes in the displacement trials. When returned to the feeder the area between
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(a) Median route. (b) Similar route. (c) Dissimilar route.

Figure 5.5: Route similarity. (a) The median outward route (black) calculated from the

observed outward paths of one foraging ant (orange). (b) The shaded region shows the

area between the median route and a later route of the same ant. The ant clearly follows

the same path generating a low area reading of 0.35m2. (c) The shaded region shows the

area between the same median route and a path of another ant. The routes are clearly

distinct producing of much larger area value of 5.58m2.
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the resultant path and the previously defined median route is measured. When dis-

placed to a location along the route a partial area measure is used whereby only the

area between release point and the nest is computed. This partial area measure is

also used in the Off-Route displacement trials such that once an ant encounters its

learned route it can be assessed whether it then recalls and follows the same path to

the nest.

5.2.6.2 Displacement Trials

The displacement trials are intended to assess whether in the absence of familiar

visual cues ants engage and follow their home vector orientation, or when visual

and path integration cues are removed a systematic search is initiated. To assess the

general path orientation after release the locations where paths intercept a series of

concentric rings (radius 50cm, 100cm and 150cm) centred on the release point are

extracted from the recorded paths. Figure 5.6 shows examples of the ring intercept

data for ants released at both test sites.

Projecting from the release point to the ring intercepts allows a series of path ori-

entation angles to be computed for each trial. The absolute angular error between

the path orientation angles and projected home vector and direct nest orientation

is then calculated providing an indication of fidelity to the home vector path or di-

rect path to the nest. Statistical comparison between the zero-vector and full-vector

groups is performed using the Wilcoxon Rank Sum test. Note that data for Off-Route

trials is pooled from both release sites giving 19 data-points for the full-vector trials

and 18 data-points for the zero-vector trials.

5.2.6.3 Route Corridors

To help visualise the variability in datasets a route corridor is defined for the out-

ward and inward routes of every ant. To generate the previously outlined median

routes the 50th percentile was computed across routes at a series of control across

defining each path. These median control points are then splined together to gen-

erate the median route. The first route corridor is similarly defined by the 25th and

75th percentile measured at the same control points. This forms a tightly bound

region around the median route and is therefore known as the inner route corridor.

Additionally, an outer corridor is defined using the minimum datum still within 1.5

times the inter-quartile range (IQR) of the lower quartile, and the maximum datum
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(a) FV to O2. (b) FV to O1.

Figure 5.6: Extraction of general path orientation in displacement trials. The con-

centric rings (radius 50cm, 100cm and 150cm) are shown by the dashed lines. The direct

path to the nest is shown by the dashed mauve line and the projected home vector from

the release point by the dashed red line. The locations where the route first intercepts each

ring is shown by a solid circle.
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still within 1.5 times IQR of the upper quartile. These values are commonly used

to show the variability of data in box-plots. Routes corridors are shown for the off-

set trials shown in figure 5.6 with the inner corridor shown in cyan and the outer

corridor in dark blue.

Route corridors are also used to detect where displaced ants encounter their

routes in analysis of the displacement trials. When the path of a displaced ant meets

the outer route corridor the ant is assumed to have located its route and the area

metric from that position to the nest calculated. If this metric falls within the area of

the outer corridor (the whisker values on the boxplot) then it can be assumed that

the ant has recalled and followed the route. Areas values larger than the whisker

value indicates that the new path has larger variability than the observed paths and

that the ant has not recovered its learned route.

5.2.6.4 Route Data Preprocessing

During the displacement trials some ants would dash at the moment of release in a

random direction causing a deviation from the learned route (see figure 5.7). This

seemed to be some form of reflexive escape behaviour. On most occasions the ant

would stop with 0.5m from the release point, rotate and return to traverse its learned

route back to the nest. For the analysis below the anomalous dash segments have

been removed from the data by hand, and the area metric calculated from the point

at which the ant recovers the route.

5.3 Results

5.3.1 Route Fidelity in Cataglyphis velox

Undisturbed routes were recorded for twelve ants. Seven ants developed a single

repeatable route by which they travelled from the nest to the feeder, and also a single

repeatable yet distinct route by which they travelled from the feeder to the nest (see

figure 5.8 (a)). This data matches findings in other desert ant species inhabiting

similar environments.

The remaining ants were observed to form multiple distinct routes on either the

outward or inward leg of their journey. Three ants developed dual routes leading

to the feeder, and two ants developed dual routes leading back to the nest (see fig-

ure 5.8 (b) and (c) respectively). It should be noted that all ants showing multiple
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(a) Route corridors.

Figure 5.7: Dash anomaly. After release some ants dashed from the release site in

a random direction often leading them away from the route. After this short lasting burst

ants would stop, rotate and generally recover the previously traversed route. Shown in an

example of this dash behaviour observed in after released during a ZV to HW trial. The

portion of the path defined as dash behaviour (prior to the red star) is removed from the

analysis of route recovery and fidelity.
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(a) Single distinct routes. (b) Multiple outward routes. (c) Multiple inward routes.

Figure 5.8: Idiosyncratic routes of Cataglyphis velox. (a) The recorded routes an ant

forming single idiosyncratic routes to and from the feeder. Outward routes are shown in

orange and inward routes are shown in cyan. (b) Recorded paths of an ant following dual

outward routes. The most followed route is shown in orange and the less followed route is

shown in red. (c) Recorded paths of an ant following dual inward routes. The most followed

route is shown in cyan and the less followed route is shown in blue.

routes traversed the inverse journey by a single repeatable route. Experimental ma-

nipulations have shown that desert ants can learn multiple routes (Sommer et al.,

2008) but to the best of the authors knowledge this is the first recording of naturally

occurring multiple routes.

The partitioning of some routes data-sets into distinct sub-sets decreased sam-

ple size in some cases to the extent that they were too small to be included in the

statistical analysis (less than 5 samples unsuitable for statistical tests). Table 5.1

shows the total number of routes recorded for each ant and where appropriate the

break down into sub-routes.

Where possible every route combination is compared for statistical indepen-

dence; that is for every ant its outward route(s) and inward route(s) are compared

with the outward and inward routes of all other ants. 619 of 624 (>99%) route com-
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Ant Outward Routes Inward Routes

1 17 14

2 9 5

3 11 8

4 19 (14 Left, 5 Right) 14

5 14 10

6 17 11 (8 Left, 3 Right)

7 8 (5 Left, 3 Right) 7

8 12 9 (6 Left, 3 Right)

9 12 11

10 11 9

11 17 13

12 17 (9 Left, 8 Right) 13

Table 5.1: Breakdown of routes data recorded for each ant. The routes scored out

are those ommited from the statistical analysis due to low sample size.

parisons returned p-values < 0.02 indicating that routes are statistically distinct.

Thus, in the vast majority of cases the routes followed by indvidual foragers to and

from the feeder are independent of the paths taken by other ants travelling to and

from the same locations. Furthermore, the outward and inward routes of individual

ants are shown to be distinct in all cases. The independence of routes confirms that

pheremone trails are not in use and furthermore closely matches route following

behaviours of other ant species found in similar habitats.

5.3.2 On-Route Displacement Trials

5.3.2.1 Zero Vector to Feeder Trial

Twelve ants completed the ZV to F trial at least once giving a total sample size of

fifteen. Thirteen of fifteen trials (87%) produced metric scores within the whisker

boundaries computed for the natural routes. A typical ant path after displacement

is shown in figure 5.9 (a).

In one case the large metric score is caused by a small loop in the path of the

ant (see figure 5.9 (b)). However the area metric score remains small at 0.47m2 and

marginally out-width the defined boundary. Visual inspection of the path confirms
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(a) Typical ZV to F trial. (b) ZV to F anomaly. (c) ZV to F outlier.

Figure 5.9: Results of the ZV to F trials. The black line indicates the path of the ant

during the trial. (a) Example of ant following learned route home after displacement. (b)

Route of ant whose area metric score is slightly out width the whisker boundary caused by

the loop at the start of the trial. Note that this graphic has two route corridors as this ant

displayed multiple route following behaviour. (c) Route of the single ant which did not follow

the learned route home.

that the learned route was indeed maintained. Thus, in 14 of 15 trials (93%) ants

successfully recalled and traversed the learned route back to the nest despite having

run off their home vector.

The path followed in the remaining trial is shown in figure 5.9 (c). It is clear that

the normal route is not followed, confirmed by a large area metric score of 2.43m2.

When released the ant immediately dashed from the feeder taking it away from the

normal route. The ant was observed to move slowly and rotate on the spot repeat-

edly whilst in the early portion of the path; behaviours generally expressed when

foragers are lost. However, as the ant approached more familiar terrain close to its

learned route an increase in speed was observed. It is clear that the learned route

was then recognised and traversed to the nest.
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(a) Typical ZV to HW trial. (b) Dash and loop. (c) Ant following novel path.

Figure 5.10: Results of the ZV to HW trials. (a) Example of ant that re-called the previ-

ously observed route immediately and followed it to the nest. (b) Path of an ant that dashed

randomly after release before recovering route. (c) Remaining anomalous ZV to HW trial

result.

5.3.2.2 Zero Vector to Halfway Trial

Eleven ants were subjected to at least one instance of the ZV to HW trial giving a total

sample size of fourteen. Twelve of fourteen trials (86%) produced area metric scores

within the whisker boundaries defined by the natural foraging paths. An example of

such a trial is shown in figure 5.10 (a).

The remaining two trials (figure 5.10 (b) and (c)) occurred in the same ant. The

first trial appears to roughly follow the previous route although is corrupted by a

large loop which causes the metric score to be large. However visual inspection

shows that the ant returns to the path and maintains the learned route to the nest.

In the second case the ant appears to follow a completely novel path back to

the nest. However this ant had developed an alternate route leading to the nest,

and instead returned to the nest via that path. Section 5.3.4.2 provides an in-depth

analysis of the routes developed by this particular forager.
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(a) Typical FV to HW trial (b) Ant crossing route 1. (c) Ant crossing route 2.

Figure 5.11: Results of the FV to HW trials. (a) Example of an ant that successfully

recalled the route which it then followed to the nest. (b) and (c) Examples of dash on

release leading the ant from one route to another after which the route was recovered and

followed to the nest.

5.3.2.3 Full Vector to Halfway Trial

Eleven ants were subjected to at least one instance of the FV to HW trial giving a total

sample size of thirteen. Eleven of thirteen trials (85%) generated area metrics within

the whisker boundary indicating that the oberseved route successfully traversed. An

example of successful route recall is shown in figure 5.11 (a).

The two remaining cases occurred in an individual ant and are shown in figure

5.11 (b) and (c). The ant clearly moves from the route on which it was released to the

other inward route it had developed. This route is then recalled and traversed to the

nest in both cases, although in the second case the route is shadowed somewhat.

Thus it is shown that C. velox foragers can recall and the maintain their learned

route at an arbitrary location despite the visual surround and global path integrator

being completely out of context with that normally experienced. These results are

in line with similar experiments conducted in other ant species in similar habitats.
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5.3.3 Off-Route Displacement Trials

5.3.3.1 Data Preprocessing

In 23 of the 37 Off-Route displacement trials, ants encountered their previously

learned inward route. At the moment of route encounter the current global home

vector value would be vastly different from that expressed at the same location dur-

ing normal route following. It should also be noted that during the Off-Route trials

individuals encountered their learned routes across a continuum of locations as op-

posed to the single locations in the On-Route trials. This presents an opportunity to

extend the analysis of the interdependence of the global path integrator with visual

route memory.

Successful route recall is assessed using the same area metric initiated from the

point at which the ant path first crossed the outer route corridor. It should be noted

that only route encounters which occurred further than 1m from the nest were con-

sidered in this analysis to ensure that ants were recalling their route rather than

nest-based cues.

In 15 of the 23 cases of route encounter the area metric score fell within the

whisker boundary defined by the natural foraging routes. In a further four cases the

area metric score was slightly larger than the defined whisker boundary. This was

generally caused by a slight shadowing of the learned route as shown for an example

case in figure 5.12 (a). Thus in 19 of 23 cases (83%) ants recalled and traversed their

learned inward route when encountered regardless of the location of encounter and

the home vector value.

The recall of familiar locations regardless of the path integrator context comple-

ments the previous analysis the On-Route trials. However the Off-Route displace-

ment trials are intended to assess whether ants engage other navigational strategies

when familiar visual cues are absent. Thus the paths of ants that encountered and

recalled their learned route following an Off-Route displacement are segmented

into two sections: non route following and route following. Only the path segments

belonging to the non route following class (i.e. that prior to route encounter) are

used during the following sections.

A number of trials were also omitted entirely from the subsequent analysis due

to repeat trial effects. Figure 5.13 (a) shows one FV to O2 trial where the ant follows

the approximate home vector heading before swerving to locate the nest. This was

the first Off-Route trial performed by the ant and the resultant path is what would be
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(a) Successful route recall. (b) Multiple passes prior to route recall.

Figure 5.12: Route recall following Off-Route Displacements. (a) Example of ant

for which the area metric score was marginally larger than during normal foraging. Visual

inspection clearly shows that the learned route was recalled and traversed to the nest. (b)

Example of ant that did not recall its learned route until the sixth encounter.
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(a) First FV to O2 trial. (b) Later ZV to O2 trial.

Figure 5.13: Repeat trial effects. Paths recorded for a single ant subjected to FV to O2,

ZV to O2 and a repeat ZV to O2 trials showing the formation of a new route after the first

displacement.

expected given previous studies; where the visual cues fail the ant is guided by the

home vector. When later zero-vector displacements were performed the ant did not

engage a systematic search instead following an identical path as in the earlier trial

(see figure 5.13 (b)). It should be noted that this data suggests that ants are capable

of learning routes from a single trial.

A total of eight trials are omitted from the statistical tests; two due to dropping

biscuit and six due to new route formation. Table 5.2 shows the total Off-Route trials

attempted, the number of trials compromised, and the remaining trials included in

the statistical analysis. It should be noted that as the Off-Route trials were always

performed after the On-Route trials factors such as predation, forager mortality and
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Trial ZV to O1 FV to O1 ZV to O2 FV to O2

Trials attempted 13 12 9 11

Trials compromised 1 1 3 3

Remaining trials 12 11 6 8

Table 5.2: Ants subjected to various displacement trials.

even bad weather contributed to a reduced n-number in the Off-Route group.

5.3.3.2 Full Vector Off-Route Displacements

Ants were displaced from the feeder to two locations offset from the direct path be-

tween nest and feeder. Previous studies have shown that when full vector ants are

displaced to visually unfamiliar locations movement is guided by the path integra-

tion system. Figure 5.14 (a) and (b) shows the truncated paths of all ants subjected

to full vector trials. It is clear that from both release points ants move in the gen-

eral home vector direction. This is confirmed by small angular error between ant

paths and the projected home vector as shown in table 5.3. Unfortunately due to

the proximity of the offset locations to the direct nest-feeder path, the angle be-

tween projected home vector and the true nest direction is only 17◦. Thus the paths

of ants are statistically indistinguishable when measured against these two vector

projections. A weak statistical separation is found showing the paths are closer to

the home vector than the actual nest orientation by combining the data for both

release points (p=0.09 for the 150cm ring). Figure 5.14 (c) displays the projection to

the median intercept point for each of the concentric rings indicating the paths of

ants directed between the home vector and true nest orientations.

Despite the difficulty in statistically separating the path orientations after dis-

placement ants are shown to move in a consistent and directed direction on re-

lease. This direction is shown to correspond well with the direction that would be

indicated by the home vector. If guidance cues are available from the environment

then this directed movement should also be present in zero vector ants displaced to

the same locations.
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(a) FV to O2. (b) FV to O1.

(c) Projections to median ring intercepts.

Figure 5.14: Full-Vector Trials. (a) and (b) show the paths of all ants after displaced

to the predefined offset locations. (c) Projections to the median intercept points from the

offset point for all displacement trials. The projected home vector from each offset location

is shown by the dashed cyan line and the direct path from each offset to the nest by the

dashed mauve line in all figures.
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Trial n Concentric Ring Home Vector True Nest Vector

10 50cm 13◦ 20◦

FV to O1 10 100cm 3◦ 11◦

9 150cm 13◦ 21◦

8 50cm 23◦ 34◦

FV to O2 8 100cm 23◦ 17◦

8 150cm 19◦ 12◦

12 50cm 46◦ 58◦

ZV to O1 9 100cm 39◦ 41◦

7 150cm 32◦ 34◦

6 50cm 8◦ 16◦

ZV to O2 6 100cm 19◦ 3◦

6 150cm 13◦ 18◦

Table 5.3: Median angular errors for Off-Route trials.

5.3.3.3 Zero Vector Off-Route Displacements

The paths of all ants displaced from the nest to the offset locations are shown in

figure 5.15 (a) and (b). The paths of zero vector ants are more circuitous than those

observed in the full vector trials. Correspondingly the computed angular errors be-

tween the ant paths and the projected home vector and actual nest vector are larger

than those for the full vector ants (see table 5.3). Figure 5.15 (c) plots the projected

median ring intercept locations showing less fidelity to both the true nest direction

and home vector orientation than the full vector paths.

There does however appear to be a bias towards the central area leading many

ants to their learned inward route, and ultimately to the nest and safety. This is par-

ticularly prominent in the O1 trials as highlighted by the series of route encounters

shown in 5.15(b). A similar bias in search was also reported by Kohler and Wehner

(2005) when zero vector ants were displaced; they suggested ants were using long

range visual cues to direct their search. The test site used in our study had no promi-

nent landmarks such as trees visible to the ants which could have provided rough

guidance cues. Ants were transported to the release point within a sealed container

so no path-integration cues should have been present. It is possible that ants may

have been able to recover the route by homing to local visual cues associated with
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the route. Alternatively, some ants may have been guided by previous memories

gathered on unseen journeys (see section 5.3.4.2).

5.3.4 Additional Analysis

Previous sections have presented the analysis required by the predefined research

questions with particular emphasis in showing that Cataglyphis velox ants display

similar foraging behaviours to other ants found in similar habitats and climates.

However, the field study also revealed a number of novel findings that are reported

in the subsequent sections.

5.3.4.1 The Role of Insect Heading on Route Recognition

Wehner et al. (2006) have shown that motivational state may govern the specific

route memories that can be recalled; homing ants only recognise their inward route,

completely ignoring their familiar outward path. Correspondingly in no circum-

stance did any homing ants (those with biscuit) recall and traverse their outward

path to the feeder. Recall of the outward path only occurred in one forager that

dropped its biscuit crumb when released after displacement. Upon release the for-

ager initiated a systematic search before encountering its learned outward route

which it traversed to the feeder, collected a new crumb and then returned to the

nest via the normal inward path.

In the Off-Route trials outlined 15 of the 23 homing ants that encountered their

learned inward route immediately recalled and traversed the learned path to the

nest. In the remaining cases, ants either continued a classic search pattern, or in

some cases moved towards the general nest area along a path distinct from the ob-

served route. All foragers in this group were motivated to locate the nest and there-

fore others factors must also influence successful route recall.

Inspection of the route encounter data suggests a role for the current ant head-

ing when the route is encountered. To test this hypothesis, the ant heading (ap-

proximated from the current direction of movement) is calculated for every entry of

an ant into its route corridor. The headings are then categorised into those that re-

sult in successful route recall and those that do not. The difference between the ant

heading at route corridor entry and the ideal heading i.e. the heading of the median

route at the corresponding location provides the metric.

The Off-Route displacements provide 26 route encounters resulting in success-
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(a) ZV to O2. (b) ZV to O1.

(c) Projections to median ring intercepts.

Figure 5.15: Zero-Vector Trials. (a) and (b) show the paths of all ants after displaced

to the predefined offset locations. (c) Projections to the median intercept points from the

offset point for all displacement trials. The projected home vector from each offset location

is shown by the dashed cyan line and the direct path from each offset to the nest by the

dashed mauve line in all figures.
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Figure 5.16: Heading error influence on route recall. Box-plots showing the heading

error data calculated when the ant encounters its previously followed route separated for

cases that resulted in a successful route recall and those that did not. Boxes show lines at

the lower quartile, median, and upper quartile values. Whiskers indicate the most extreme

values within 1.5 times the interquartile range from the ends of the box. Outliers are shown

as + signs.

ful recall and 9 encounters for which the route was not recognised. For each cat-

egory the heading errors (the difference between the ant heading at the moment

of route encounter and the median route) are defined and the resultant boxplots

shown in figure 5.16.

The ants that did not recognise their routes clearly approached the route at an

increased angle than those ants that recalled their route (successful recall, median

error=28◦; unsuccessful recall, median error=110◦). The difference between head-

ing errors is also shown to be significant (p<0.01) when the groups are compared

using the Wilcoxon Rank-Sum test. We also note the maximum error resulting in

successful recall was 74◦.

Thus, it seems that memory recall may indeed be mediated by context as sug-

gested by Wehner et al. (2006), but that correct allignment is required for robust

identification of place.

5.3.4.2 C. velox Continuously Learn Novel Paths

As shown throughout the previous analysis, C. velox ants are capable of learning

more than one route to and from the feeder location. In most cases the develop-
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ment of such routes was not observed. However for one particular ant the gradual

formation of an alternate route was fully recorded. Whilst traveling to the feeder by

its normal outward route the ant encountered an insect corpse, which it gathered

and returned to the nest by a direct (and thus novel) path. The ant could only carry

part of the bounty on this journey and thus returned to collect the remnants of the

same insect corpse, which was again transported to the nest by the novel path. Fig-

ure 5.17 (a) shows the normal route followed by the ant to the experimental feeder

and (b) shows the two journeys to and from the novel prey site.

On a later outward journey the same ant again encountered prey whilst follow-

ing its outward path. After collecting the prey the ant again returned to the nest by

extending the novel path rather than using the established feeder to nest route (see

figure 5.17 (c)). It is worth noting that the ant showed an expectation of prey on the

subsequent outward path when arriving at the location where prey was previously

plundered , identified by a series of search loops (see figure 5.17 (d)). On finding no

prey the ant followed the remainder of the established route to the feeder.

A number of complete foraging excursions to the experimental feeder via the

established routes were recorded prior to the ant encountering a third natural prey

at P3 (see figure 5.17 (e)). As for the first prey the ant required two trips to gather all

the available food. As shown in our data the ant followed the normal outward route

to the all prey sites but returned by an alternate inward route.

It is worth noting that when returning from the experimental feeder the ant al-

ways used its previously established inward route. However, attention is drawn to

the ZV to O1 trial of this ant as shown in figure 5.17 (f). The ant performed a classic

spiral around the release point before arriving close to the prey site visited recently.

The path of the ant then clearly follows the established alternative route to the nest.

Furthermore, the previously anomalous data for the ZV to HW trial (see figure 5.10

(c)) can now be explained by the ant following the alternate route to the nest.

5.4 Conclusions

The primary aim of this study of Cataglyphis velox was to assess whether an ant

species that inhabits similar environments to desert ants found in Australia and

Africa navigates by similar means.

• Do Cataglyphis velox foragers navigate to and from a regular feeding site by



5.4. Conclusions 117

(a) Natural Routes of Ant. (b) Prey 1 routes (c) Prey 2 route.

(d) Next Outward path. (e) Prey 3 routes. (f) ZV to O1 trial

Figure 5.17: The learning of a novel route by an ant. (a) The natural routes of the

ant (dual outward routes: orange and red; inward: cyan). (b) The routes of the ant to the

first naturally occurring prey. (c) The routes to the second prey site. (d) The subsequent

outward route showing loops where the last prey was discovered. (e) Routes to third prey

site. (f) ZV to O1 trial where the ants returns to the nest via the alternate inward route.



118 Chapter 5. Visually Guided Routes of the European ant Cataglyphis velox

idiosyncratic routes?

It has been demonstrated that Cataglyphis velox foragers learn and maintain id-

iosyncratic routes when traveling to and from a profitable feeding site. The outward

and inward routes of individual ants are shown to be statistically distinct, and routes

are unique to each individual. These routes are maintained throughout the life of

the ant; route data was collected over successive days with the longest period being

four days. The independence of routes despite travelling to and from the same lo-

cations further confirms that pheromones are not being used. These results are in

line with previous studies in other desert ant species.

However, in contrast with previous observational studies some C. velox foragers

formed multiple routes leading to, or from the feeding site. Memories of both routes

are stored concurrently allowing either route to be recalled when appropriate. In-

deed ants are shown to constantly update their route memory particularly when

travelling through unfamiliar terrain for the first time. It should be noted that the

ability of other ant species to learn and later recall multiple routes has been shown

through experimental manipulation (Sommer et al., 2008) but this is the first demon-

stration of the use of multiple routes in a natural context.

• – Are visual cues the primary and dominant mode of route guidance?

To assess whether vision is the dominant route guidance cue ants were displaced

to various locations along their route where the path integrator output was out of

synchrony with that experienced during normal foraging. This had no influence on

the ability of ants to recall and traverse their learned routes back to the nest indicat-

ing that visual cues are sufficient for route following. Furthermore, ants displaced to

locations offset from their normal path were shown to recall their routes regardless

of location of the route encounter or the home vector reading.

It should be noted that some ants did not recognise their route on the first en-

counter. Successful recognition of the learned path is shown to be highly dependent

on the heading of the ant when the route is encountered. Indeed the largest head-

ing error affording route recall was 74◦; larger heading errors resulting in the route

being ignored.

• – Are rudimentary guidance mechanisms, such as path integration and sys-

tematic search, maintained and utilised when visual cues fail?
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Ants were displaced to novel locations in their habitat where the visual sur-

rounding was unfamiliar. In similar circumstances other route following ant species

are known to engage back-up navigational strategies. When displaced from the

feeder ants should have access to a home vector generated during their journey

to the feeding site. After displacement to both offset locations ants travelled in

approximately the heading indicated by the home vector. Unfortunately the pre-

defined displacement locations were not large enough to produce a large angular

difference between the orientation as indicated by the home vector and the orien-

tation towards the nest. Thus, the paths of full vector ants with reference to these

two orientations cannot not be statistically distinguished.

Ants displaced from the nest in contrast will have expired the home vector on the

inward leg of their foraging trip. Correspondingly after displacement the zero vec-

tor ant paths were less directed, and in some cases displayed looping paths normally

expressed during systematic search. The analysis shows a larger spread of data how-

ever with a bias towards the central foraging area through which all learned routes

passed. A similar bias in systematic search was observed in Melophorus bagoti when

displaced to novel location. Kohler and Wehner (2005) suggest that the bias may

have been caused by long-range contextual cues such as trees, however no such

cues were present in the current field site. It seems possible that ants may have

been able to perform some form of visual homing to local route memories which

would have guided them towards the route rather than directly towards the nest.

A second possibility comes from evidence of ants quickly learning novel routes

in their environment. This is particularly well documented in one ant that devel-

oped an alternate inward route, completely distinct from the route it would take

when returning from the experimental feeder. Post-analysis of the displacement

data of this particular forager shows that in two cases the ant recovered the alternate

inward route rather than the main route from the feeding site. Had this route devel-

opment not been witnessed then the data for both trials may have been mistakenly

interpreted. It is plausible that other ants may have developed similar alternative

route memories either during previous foraging trips or even when performing nest

cleaning activities which lead the ants small distances from the nest. It is with this

finding in mind that caution is used when drawing conclusions from the Off-Route

displacement trials. As ants were not followed for their entire foraging lives it cannot

be guaranteed that foragers have not learned alternate routes to the nest. To ensure

no contamination by previously established memories ants would either have to
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(a) Systematic search. (b) 100% home vector. (c) 50% home vector.

Figure 5.18: Examples of ants displaying common behaviours when displaced to

novel locations. (a) Zero vector ant displaying the classic concentric loop pattern associ-

ated with the systematic search. (b) Full vector ant that completes almost 100% of its home

vector before recovering the nest. (c) Full vector ant that completes only approximately 50%

of its home vector before returning towards the release area prior to recovering its learned

route.
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be followed for their entire foraging life or displaced to a completely novel location

where no visual cues could have been experienced before.

It should be noted however that individual Off-Route trials produced paths as

reported in other studies. In figure 5.18 (a) a zero vector ant performs the classic

looping search pattern charactering a systematic search (Müller and Wehner, 1994)

until its path approaches the route leading to the nest. Correspondingly, figure 5.18

(b) shows a full vector ant following the home vector as best it can whilst weav-

ing through the grass tussocks. In this case the ant expires almost the full vector

before approaching the nest directly. Recent studies (Narendra, 2007b) report that

when visual cues are unfamiliar ants appear to lose confidence in their home vector.

Thus they only express around 50% of the home vector before enagaging a search as

demonstrated by the ant path in figure 5.18 (c).

5.5 Discussion

The data presented clearly demonstrates that the European desert ant Cataglyphis

velox adopts a similar foraging strategy to other ant species sharing the same eco-

logical niche in other continents. Visually guided routes offer a robust form of navi-

gation over large distances where cumulative errors erode the accuracy of the global

home vector.

Visual input is shown sufficient for route following in Cataglyphis velox even

when in conflict with path integration cues. Whilst the data presented cannot be

conclusively interpreted, there is at least qualitative evidence that the path integra-

tor remains active and guides foragers when visual cues fail. These results closely

correlate with findings in the Australian ant Melophorus bagoti which inhabits a very

similar environment, and hints towards a common strategy of navigation.

Schwarz and Cheng (2010) recently compared the visual learning performance

of the African desert ant C. fortis which is generally found in barren open desert

(Dillier and Wehner, 2004) to the Australian ant M. bagoti inhabiting shrub sur-

round (Muser et al., 2005). Significant differences in performance were observed

with C. fortis being outperformed by M. bagoti throughout. The authors hypothe-

sise that this may be the result of an evolutionary bias towards visual learning in the

M. bagoti ant that inhabits a visually cluttered environment whereas C. fortis exist-

ing in featureless regions may have optimised for path integration. C. velox offers an

interesting middle ground for such studies, being evolutionary closer to C. fortis but
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ecologically closer to M. bagoti. It may prove that the various species indeed share a

common strategy and the results of Schwarz and Cheng (2010) are an indicative of

an habitat specific fine tuning of cue integration. More comparative studies across

species are required to resolve the subtleties of the various results observed in dif-

ferent species.



Chapter 6

Efficacy of Visual Homing Models in

Natural Ant Habitat

6.1 Introduction

The time spent in the habitat of Cataglyphis velox offered a unique opportunity to

sample the visual environment in which routes are formed. Such image databases

sampled in natural environment through which insects pilot have become an in-

creasingly powerful tool with which to study navigational behaviours. For example

Zeil et al. (2003) used panoramic camera mounted on a gantry robot to sample an

image database in a clearing near some woods. They were then able to show that

a simple pixelwise difference measure increased with distance from the reference

location and thus agents (model or animal) could home by simply following the er-

ror gradient. The realisation of this novel homing strategy was made possible by

viewing the world from the insect perspective and analysing the data present in the

visual surroundings.

More recently, individual panoramic images sampled under various experimen-

tal manipulations, in which insects were also observed, have allowed a systematic

analysis of the visual cues necessary and sufficient for accurate homing to occur

(Towne and Moscrip, 2008; Graham and Cheng, 2009b,a).

To the best of the authors knowledge no image database exists that maps the

entire region in which ant routes are observed. However, it should be noted that

a recent study (Basten and Mallot, 2010) tested two models of visual homing in a

3D simulation of the habitat in which routes of Melophorus bagoti were recorded

(Kohler and Wehner, 2005). Unfortunately the authors only had the overhead map-

123
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ping of the ant habitat to guide their simulated habitat design. Thus all grass tussock

are set to a common height of 25cm with some local noise to produce an irregular

finish.

Basten and Mallot (2010) focus their analysis on the efficacy of two models of vi-

sual homing when when supplied with two distinct forms of visual input: an inten-

sity image (as utilised in this work), and a 1-D vector encoding the panoramic sky-

line. The two models implemented were an IDF model and an adapted ALV model,

which in essence is equivalent to the COMALV model of this work. The study op-

timised for the largest area surrounding an arbitrary goal location over which the

model could provide accurate guidance cues. When supplied with intensity im-

ages ranges of approximately 1m2 and 0.6m2 were achieved for the adapted-ALV

and IDF models respectively. Instead, when supplied with the skyline as stimulus

model ranges of approximately 2m2 and 0.5m2 respectively were observed.

The 86 reference locations from which models were tested coincide with the

recorded positions of a single ant travelling through along its repeated route. Thus,

the efficacy of the models, and visual stimulus were only assessed relative to one

ant and also in a limited region of the habitat. Indeed, there is no direct comparison

between the modelling outcomes and observed desert ant routes.

In this chapter a modelling study is conducted using the principles outlined in

chapter 4. An image database is presented that was collected within the same habi-

tat in which ant routes were observed. The suite of biological models tested in the

hot-plate paradigm are then tested within the ant habitat. Modelling using the raw

images as input proved problematic and therefore a simulated ant habitat is con-

structed, allowing the models to be assessed with ideal visual input. That is, free

from noise due to sun-glare, camera tilt, clouds, and sampled at high spatial resolu-

tion.

Specifically, the following research questions are posed:

• Can any of the biologically plausible models of visual homing provide robust

guidance in the ant habitat?

• If so, can a single visual memory provide guidance over the entirety of the ob-

served routes - or are multiple memories required?
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Figure 6.1: Custom panoramic camera used to capture the image database in ant

habitat. Shown is the battery powered wireless camera above the polished ball-bearing

acting as a mirror. The camera and base are linked by the acrylic tube which also pro-

tects the mirror from contaminants. The legs provided mechanical support and allowed the

camera to be manually levelled in the uneven terrain.

6.2 Methodology

6.2.1 Image Database

An image database was collected using the custom panoramic camera system shown

in figure 6.1. The camera is mounted above the mirror such that the image horizon

closely matches that of an ant (ant head 1-2mm above surface, camera horizon ap-

proximately 15mm above surface). Images were sampled at 50cm intervals within

the 10m*10m test area in which ants were observed. This produced an image data-

base of 424 images as shown in figure 6.2. It should be noted all images are captured

with the camera at a constant orientation.

Images are unwrapped using the OCamCalib Toolbox for MATLAB (Rufli et al.,

2008; Scaramuzza et al., 2006a,b) and an example panoramic image sampled from

the ant habitat is shown in figure 6.3 (a).

Initial model testing was conducted using the real world panoramic images as
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(a)

Figure 6.2: Image sampling within ant habitat. Locations where images are sampled

are indicated by red stars and locations where images were not able to be sampled due to

dense vegatation are indicated by yellow stars.
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visual input. However no model produced reliable home vectors for any combina-

tion of parameters. A variety of factors may have influenced the failure including

sun glare, dynamic light changes, cloud contamination, camera tilt and orienta-

tion offsets. Considerable effort was invested to correct for these possible sources

of error. Sun glare was removed by manually identifying patches of glare in images

and filling with RGB values sampled from surrounding pixels. Tilt was identified

in images by fitting a sinusoid to the visible horizon and images realligned accord-

ingly. Furthermore, offset in camera orientations was compensated for by allowing

models to optimise across a series of rotational displacements. Regardless of these

amendments homing performance remained poor for all models.

Further image preprocessing may have improved results, however the search

space of possible solutions rendered such an approach infeasible for this work. Ad-

ditionally it remains possible that the 50cm spacing between images was larger than

the catchment area of models even when supplied with reliable guidance cues. In-

stead a simulated ant habitat was created allowing models to be supplied ideal vi-

sual input sampled at high spatial resolution.

6.2.2 Simulated Ant Habitat

A simulated ant habitat is created using information derived from both the panoramic

image database and the overhead map of the ant environment. Every grass tussock

visible in all panoramic images is mapped to a corresponding tussock outlined in

the top-down map of the ant area. The angle of elevation to the peak of each tus-

sock was recorded in every panoramic image that it appears. The top-down map

then provides an estimate of distance from the image capture point to each tussock

allowing computation of every tussock height by simple trigonometry. Combining

the height data of tussocks with the top-down map provides sufficient information

to construct a 3-dimensional model of the entire 10m*10m ant world.

Panoramic images are then generated through a simple ray-tracing procedure.

From the defined agent location, rays are projected through 0◦ to 45◦ degrees verti-

cally and 0◦ to 360◦ horizontally at 1◦ resolution maintaining consistency with the

unwrapping resolution of real world images. Note that the height at which images

were created was held constant at 1cm above the surface. Rays are traced in space

until either a tussock or the world boundary is encountered and the pixel value set

to green or blue respectively.
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(a) Real world image.

(b) Artificial world image

(c) Real world image passed to the models after image processing.

(d) Artificial world image passed to the models after image processing.

Figure 6.3: Panoramic images sampled at the same location in both real and sim-

ulated ant habitats. (a) and (b) shows the unprocessed images generated in the real and

simulated ant habitats. (c) and (d) present the same images after being passed through the

ant eye model. Note that the grass tussocks in the artificial world generally appear larger

as their heights were defined by the peak height visible in the real images.
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The images generated in the simulated habitat provide the simplest possible in-

put for models free from all noise and error sources thought to affect the real-world

images. Furthermore, images can be sampled at virtually infinite spatial resolution

in the simulated world. These factors allows normative testing of visual homing

models with highly controlled visual input. Testing of this form also provides an

upper limit of model performance possibly providing insight into the reasons for

model failure using real images.

Figure 6.3 shows examples of the images produced at the same location in both

the real and simulated ant habitats.

6.2.3 Models of Visual Homing

All biologically plausible visual homing models outlined and tested in chapter 4 are

included in this study:

1. Average Landmark Vector (ALV).

2. Centre-of-mass Average Landmark Vector (COMALV).

3. First Order Optic Flow (FO).

4. Second Order Optic Flow (SO).

5. Image Difference Function (IDF).

6.2.4 Parameter Tuning

As in chapter 4 visual homing models are allowed to optimise across a number of

parameters such that there is no bias towards any particular model.

Image area used: Due to the panoramic images being generated with the image

horizon close to the ground the image regions optimised for are altered to:

1. Horizon pixels only (0◦).

2. 5◦ above the horizon.

3. 10◦ above the horizon.

4. 20◦ above the horizon.

5. 30◦ above the horizon.
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6. Full image (0◦ to 45◦).

Down-sampling rate: Visual input is suppled from the image data-base as a panoramic

image at 1◦ resolution rising from the horizon at 0◦ to an elevation of 45◦. Note

that interommatidial angle of Cataglyphis bicolor is smallest at the horizon at

around 4◦ (Land, 1997), thus the native image resolution far exceeds the res-

olution of the ant eye. However, to maintain consistency with earlier work

models are again optimised for 1◦, 2◦ and 4◦ image resolution.

Image Smoothing: Images are again blurred using a first order Butterworth filter

with a cut-off frequency of 3◦ as observed in Cataglyphis bicolor (Labhart,

1986). Models are again allowed to optimise the amount of further image

smoothing through 0, 1, 3 or 5 applications of the Gaussian filter.

Image Type: Models also optimise for either greyscale images or black and white

using the thresholding technique described previously.

6.2.5 Model Metrics

6.2.5.1 Catchment Area

In this study model performance is assessed using the catchment area (CA) size as

metric. The CA is defined as the continuous area surrounding the target location

from which an agent could successfully home. More specifically the CA is calculated

by first computing home vectors at all image locations in the defined vicinity - a

10cm grid extending+/- 1.5m from the target in both x and y is used. Note this range

was chosen as it is extends further than the maximum catchment area observed by

Basten and Mallot (2010). Homing trials are then initiated at all locations and path

traced until either the home location is reached or a time limit is reached. The CA is

then computed using a region growing algorithm.

CAs are measured at sixty pre-selected target locations as shown in figure 6.4.

The sixty locations are intentionally distant from grass tussocks as proximal land-

marks are known to influence the performance of some models. Furthermore, all

target locations are more than 2m from the world boundary to mitigate boundary

effects present in the simulated habitat.
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6.2.5.2 Number of Visual Memories Required For Routes

A second metric is also defined to quantify the number of visual memories required

for models to replicate the routes observed in ants. That is, for each model the num-

ber of reference images necessary to traverse the median routes of all ants (both

outward and inward) is assessed. Thus, models that generate small CAs, or fail com-

pletely in specific habitat conditions will require a larger memory set than models

that are robust across the environment.

All routes are traced from nest to feeder, and the goal of the model is to require

as few memories as possible to traverse the path. To trace the path an initial route

memory is defined. Ideally this would have been situated at the nest entrance,

however many ants entered the nest via the adjacent grass tussock. Travelling in-

side designated landmarks causes problems for the simulation and therefore the

first memory on each route is pre-defined as 25cm from the nest. The model be-

ing investigated then computes the CA surrounding the first route memory, and

draws its boundary. The algorithm then traces the ant path until the CA boundary

is breached: the location at which the current visual memories no longer provides

reliable guidance cues. The algorithm then stores the panoramic scene at this lo-

cation as a new visual memory, the surrounding CA is computed, and the ant path

traced until the new CA is breached. This procedure is repeated until the feeder is

reached. The result is a list of memory locations necessary for each model to tra-

verse the paths of every ant.

It should be noted that in some regions of the simulation certain models fail

to generate any accurate guidance cues, and thus the CA falls to zero. In such cir-

cumstances (when no CA can be generated meaning that the route cannot be tra-

versed by the means outlined above), the algorithm jumps 5cm along the ant path

and a new memory is stored. This procedure penalises models that fail completely

by increasing the memory requirements, but also prevents the algorithm becoming

locked in loops.

6.3 Results

The general effectiveness of the various homing models within the simulated ant

habitat was assessed by optimising CA sizes from sixty target locations and assessing

the number of memories required to navigate a route. Figure 6.5 (a) and (b) show
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Figure 6.4: 60 homing target locations. Each model is tested on its ability to home to

the 60 locations shown from test areas spreading +/- 1.5m in both x and y. Target locations

were chosen randomly from the 424 image locations on the 50cm grid from which real

images were sampled.
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boxplots of the optimal CA sizes calculated across the sixty test locations and the

number of route memories required to reconstruct the paths recorded in real ants.

6.3.1 ALV Model

The optimal parameter settings found for the ALV model were: image resolution of

1◦; 1 application of the Gaussian filter; image region 20◦ above the horizon; using

greyscale images.

It is clear that ALV Model generates small CAs across target locations, and corre-

spondingly requires a relatively large number of visual memories to reconstruct the

ant routes. The median CA size for the ALV Model across test locations was 0.17m2

which was the smallest of all models with statistical significance (p<0.01 for all com-

parisons). The second model metric revealed that the median number of memories

required to trace the ant routes was 59.

The poor performance of the ALV model in the simulated, as in the hot-plate

paradigm, is due to the difficulty in reliably extracting edges. The simulated visual

input may have in some cases made edge extraction tougher. For example, as all

grass tussocks are coloured solid green in the simulated world then visually seg-

menting overlapping landmarks may be harder than in the real-world images where

different landmarks may appear visually distinct. However it should also be noted

that the vertical edges, which the ALV model seeks to extract, are exaggerated in the

simulation.

The small CAs generated by the ALV model leads to the large number of visual

memories needed to reconstruct the observed routes of ants. Figure 6.6 (a) shows

the visual memories needed to reproduce one ant route. It is clear that there are

large portions of the ant habitat in which the model completely fails. This is indi-

cated by the red dots that indicate where insufficient guidance cues were available

such that the route could be traced.

Given that the simulated ant habitat offers the simplest possible representation

of the world in which to navigate it seems unlikely that the ALV performance would

be significantly improved using real images. The ALV model is therefore unlikely to

be a strategy employed by foraging ants.
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Figure 6.5: Optimal performance of visual homing model in ant habitat. (a)

Box-plots showing the Catchment Area sizes generated across the 60 test locations us-

ing the optimal parameter settings for each model. Medians: ALV=0.17m2, FO=2.05m2,

SO=1.37m2, IDF=0.71m2, COMALV=0.63m2. (b) Box-plots showing the number of visual

memories required to reproduce the routes recorded with foraging C. velox (n=14). Me-

dians: ALV=59, FO=20, SO=19, IDF=28, COMALV=66. Boxes show lines at the lower

quartile, median, and upper quartile values. Whiskers indicate the most extreme values

within 1.5 times the interquartile range from the ends of the box. Outliers are shown as +

signs.
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(a) ALV - 61 memories (b) COMALV - 67 memories.

(c) FO - 20 memories (d) SO - 23 memories. (e) IDF - 28 memories.

Figure 6.6: Number of visual memories required by the various models to traverse

the example route. The black line shows the median route of an ant observed in the

field study. The blue dots show where visual memories are stored and the red dots show

locations where the model fails to generate any useful homing cues.
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6.3.2 COMALV Model

The optimal parameter settings found for the COMALV model were: image resolu-

tion of 2◦; 1 application of the Gaussian filter; image region 30◦ above the horizon;

and using greyscale images. Performance of the model appears robust to changes

in image type, resolution and smoothing. CA sizes decrease however when the im-

age region used is small (horizon only and 10◦ above the horizon), where the input

would likely be saturated with landmarks in all directions.

Given the good performance of the COMALV model in chapter 4 it is surpris-

ing that it produces the second smallest CAs across test conditions, indeed failing

completely at various sites (median CA 0.63m2). The reason for the failure is that

in some regions of the ant habitat the COMALV generated at the target location is

negligible. This occurs at locations in the simulated habitat where landmarks on all

sides appear similar. For example, in the case where only only two landmarks are

visible which are identical in size but located at opposite sides of the agent. When

the COMALV at this location is computed the influence of each landmark will be

cancelled by the other and therefore the overall vector will have a negliable mag-

nitude. The effect is that in the vector subtraction step required to generate home

vectors (h =ALVC−ALVH), the influence of the (ALVH) is negligible. This is the same

problem reported for the COMALV model within the Blank Walls surround in chap-

ter 4.

It should be noted however, that in some locations the COMALV performs very

well leading to the large variance in CA size (see figure 6.5). The COMALV is statis-

tically outperformed by both optic flow models (p<0.01) however the performance

of the COMALV model and the IDF model cannot be statically distinguished using

the CA size criteria (p=0.12).

The model performance drops significantly when tested using the second per-

formance metric. The median number of visual memories required to reconstruct

the ant routes is 66 - marginally larger than that required by the ALV Model (p=0.09).

This result is due to the complete failure of the model in large regions of the simu-

lated ant habitat for the reason outlined above.

6.3.3 Image Difference Model

The optimal parameter settings found for the IDF model were: image resolution

of 4◦; 5 application of the Gaussian filter; image region 45◦ above the horizon; and
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using greyscale images. Performance of the IDF Model is however robust to changes

of all parameters barring the image region. Performance drops when image regions

10◦ above the horizon and horizon pixels alone are used. This is likely due to the

visual input being saturated by uniform landmarks in these regions which prevents

error gradient formation.

The IDF is statistically outperformed by the optic flow based models (p<0.01)

when comparing CA sizes. It does however produce CA sizes that are marginally

larger than the COMALV (median CA=0.71m2). Attention is drawn to the robustness

of the model: there are few test locations in which performance fails altogether. Cor-

respondingly the IDF model requires far fewer visual memories than the COMALV

model to recreate the ant routes (median memories 28). In this test the model out-

performs the COMALV model with statistical significance (p<0.01).

6.3.4 Optic Flow Based Models

Both optic flow based models generate large CAs (median CA: First Order 2.05m2;

Second Order 1.37m2) and correspondingly required the fewest visual memories

to reconstruct the ant routes (median CA: First Order 20; Second Order 19). The

First Order Model produced significantly larger CAs (p<0.01), however performance

could not be separated in the route generating test (p=0.83).

The optimal parameter settings computed for the First Order Model are: im-

age resolution of 1◦; 5 application of the Gaussian filter; image region 20◦ above the

horizon; and using greyscale images. And for the Second Order Model: image reso-

lution of 2◦; 5 application of the Gaussian filter; image region 20◦ above the horizon;

and using greyscale images. Both models are robust to changes in image resolution,

and to most image regions conditions although performance drops using only 10◦

above the horizon images. This is likely due to the reasons outlined above for the

other models.

The optic flow based models are highly sensitive to image smoothing with sig-

nificant improvement in performance with every application of the Gaussian filter.

The smoothing effect of the Gaussian filters on the simple binary images (blue and

green) introduces and extends intensity gradients across the visual input. This in

turn increases the robustness of translation vector accuracy in the foci of expansion

and contraction which are crucial to accurate home vector generation. It should

be noted that similarly smooth and continuous image gradients are unlikely to be
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present in the natural images.

6.4 Conclusions

This chapter assessed the efficacy of five biologically plausible models of visual hom-

ing. Models were initially supplied with unwrapped real-world images directly as

visual input however, a combination of image corruption and large inter-image

spacing rendered all models ineffectual. Instead a 3-D simulation of the ant habi-

tat based on the captured images was created allowing models to be supplied with

noise-free visual input images at high spatial resolution. The five biologically plausi-

ble models of visual homing implemented in chapter 3 were then tested for efficacy

using this ideal input.

All models were assessed on their ability to generate catchment areas surround-

ing sixty hand picked target locations. That is, the area surrounding the target loca-

tion from which an agent could return to the reference position. Models were free

to optimise over various parameters including smoothing, image type and regions,

and resolution. The magnitude, and variance of CA sizes over the sixty test locations

offers a good measure of the efficacy of models.

The results presented allow the specific research questions posed in the Intro-

duction to be answered directly.

• Can any of the biologically plausible models of visual homing provide robust

guidance in the ant habitat?

It is clear that both optic flow and IDF Models of visual homing could provide in-

sects with robust guidance in the ant habitat. While the COMALV Model generates

accurate guidance in some regions of the habitat, it also fails completely in others.

Due to the high environmental pressures facing foraging desert ants it seems un-

likely that insects would utilise a homing stratgey with such variance. However, it

should be noted that in a similar work Basten and Mallot (2010) did not report the

same level of variance and therefore further investigation, possibly through perfor-

mance testing in both simulated habitats, is required before firm conclusions can be

drawn. The ALV Model fails to generate robust guidance cues across the ant habitat

and therefore is very unlikely to be the strategy employed by ants.

In this work the optic flow based models generated accurate homing signals over

the largest range. Although it should be noted that this performance range is likely
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to decrease as real world visual input is provided, as the smooth image gradients on

which these models are so reliant are unlikely to be maintained. At this juncture the

range of insect homing is unknown and therefore it is not possible to state which

model is more likely to be used by insects. Indeed, empirical experimentation to

quantify the CA range and also shape could be a powerful paradigm against which

to assess models.

• If so, can a single visual memory provide guidance over the entirety of the ob-

served routes - or are multiple memories required?

The Catchment Areas generated in the first test condition demonstrate that none

of the models can provide guidance over a sufficient range such that a single visual

memory could guide an ant over its entire route. Thus models were subjected to a

second test condition that sought to quantify the number of visual memories that

would be required for the various models to home from the feeder to the nest.

Despite producing large CAs in some regions of the ant habitat, in others the

COMALV failed completely. This resulted in the COMALV model requiring the most

visual memories to retrace the ant routes (median memories required: 66). Sim-

ilarly, the ALV model also performed poorly with a median of 59 visual memories

required to re-trace the ant paths.

In contrast the three remaining models required a consistently small number of

visual memories across routes (median memory requirements: 20 for FO, 19 for SO

and 28 for IDF). The variance in required route memories was also tightly bounded

for each of these models showing a robustness in performance across the ant habi-

tat.

6.5 Discussion

This study describes the performance of the most biologically plausible visual hom-

ing models in a simulated ant habitat. It should be noted that the simulated world

was based not only on a mapping of the environment but on an image database col-

lected within the natural habitat. Thus, the height and width of the grass tussocks

that populate the desert ant habitat are true to that which the animals observed.

Moreover when the simplistic blue and green images are converted to greyscale, the

simulated visual input corresponds well to the real images. It should also be noted

that the various models not only differ in how they compute a homing signal but
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also in what information they extract and process from their visual surroundings.

Therefore the data presented can be considered at one level an analysis of the pres-

ence and robustness of differing visual cues visible to the insect.

Most interesting amongst the results is the CAs derived for the COMALV and

IDF models which are similar in magnitude to that described by Basten and Mal-

lot (2010). However, this study reports large levels of variance in the performance

of the COMALV model in specific regions of the habitat which is not found in the

other study. At this time it is unclear whether this is due to slight model differences

(Basten et al did not explicitly implement the COMALV model), or a feature of either

simulation.

(Basten and Mallot, 2010) also assessed the range of both a IDF model and an

equivalent COMALV model when provided with a one dimensional vector repre-

senting the panoramic skyline. Performance of the IDF did not improve whereas

the COMALV model range increased to approximately 2m2 to match that of the op-

tic flow models in this work. The desert ant compound eye is known to be well

suited extracting the location where terrestrial cues give way to sky (Möller, 2002).

A number of studies have shown that the skyline is the dominant cue driving visual

homing in ants (Fukushi, 2001; Graham and Cheng, 2009a) but the exact encoding

of the information remains unclear. Further experimentation, with tight controls on

the visual information available to the homing insect is needed to tease out the ex-

act information encoding at play. Validation of behavioural results using simulated

habitats such as those in Basten and Mallot (2010) and in this work, where visual

input can be artificially amended, may prove invaluable to this effort.
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Conclusions and Discussion

The motivation for this thesis was to investigate the visual navigation strategies em-

ployed by insects. In chapter 2 a review of the current literature was presented from

which two timely research questions were developed:

• Are visual homing capabilities conserved across diurnal insects indicating a

general navigational ability across species?

• If so, is there a single method of visual homing that can account for such be-

haviours?

The remainder of this chapter presents an analysis of the success of this study

in answering these questions. Specifically, the key contributions of this thesis are

summarised before a discussion of how the results presented fit within the context

of current research. Moreover, future research avenues that can build upon this

thesis shall be outlined.

7.1 Key Contributions

• In chapter 3 the homing ability of the field cricket Gryllus bimaculatus was

assessed in an experimental paradigm analogous to the Morris water-maze

(Morris et al., 1982). It was shown that crickets successfully learned the lo-

cation of a hidden cool-spot using surrounding visual cues. Performance was

best when a natural scene stimulus was supplied, followed by blank walls, and

finally distinct landmarks. No learning was observed in the dark control. To

the best of the authors knowledge this is the first conclusive proof that crickets

are capable of visual homing.

141
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• Chapter 4 presented a biorobotic study aiming to verify if any biologically

plausible model of visual homing could account for the cricket data when

tested in the same experimental conditions. To the best of the authors knowl-

edge this is the first study in which the foremost models of visual homing have

been ranked with respect to their ability to replicate real insect data.

Of the five models implemented only the COMALV and IDF Models replicated

the performance trend observed in crickets. Feature-based and optic flow

based models failed to match the cricket performance when provided with

either the natural image, or blank arena walls stimulus respectively.

• Chapter 5 presents a field study investigation into the natural foraging be-

haviour of the European desert ant species Cataglyphis velox. This is the first

recording of the navigational strategies employed by this species. Foragers

were shown to learn idiosyncratic routes by which they travel to and from a

regular feeding site. These paths are distinct from the routes of other ants de-

spite their journeys having identical start and end points. Moreover, visual

cues are shown sufficient for route recall and guidance. Thus, it is shown that

visual navigational strategies are closely matched to those reported in geo-

graphically distant desert ant species that exploit a similar ecological niche

(for example Melophorus bagoti in Australia).

• Chapter 5 also shows the development of multiple distinct routes by individ-

ual Cataglyphis velox foragers. These route memories are stored concurrently

allowing ants to switch between routes when appropriate. The data presented

also suggests that these novel routes are learned after only one instance. While

desert ants have been shown capable of learning multiple routes through ex-

perimental manipulation (Sommer et al., 2008), this is the first report of their

natural occurance.

• Chapter 6 presents an analysis of the efficacy of the same biologically plau-

sible models of visual homing implemented in chapter 3, in the natural ant

habitat. None of the models generated sufficiently large catchment areas that

an ant could navigate their route using a single visual memory. Models were

instead ranked on the number of visual memories required to reproduce the

routes observed in the field study. The COMALV Model failed to generate ac-

curate homing cues in extended regions of the ant habitat, and thus scored
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second last of all models. In contrast the IDF Model showed robust perfor-

mance across locations and required a low number of visual memories to re-

construct the routes observed in ants. Thus the IDF model is the only model

to offer robust cues in the ant habitat as well as replicating the cricket data.

7.2 Discussion and Future Work

7.2.1 Hot-plate Paradigm

The hot-plate paradigm has proven a powerful tool for the study of visual homing

capabilities in a series of insect species including cockroaches (Mizunami et al.,

1998b), crickets, and more recently fruit flies (Foucaud et al., 2010; Ofstad et al.,

2010). Recent enhancements of the experimental apparatus have included the use

of heating tiles to heat the arena floor, and in the case of Ofstad et al. (2010) pro-

vision of visual stimuli via a matrix of LEDs. These augmentations open up novel

experimental possibilities, for example by coupling insect movement to dynamic

changes in the visual stimulus.

In chapter 3 two models of visual homing were shown to reproduce the perfor-

mance trend of crickets given various static stimulus: COMALV and IDF models.

The COMALV model relies upon robust intensity vectors to generate accurate hom-

ing signals, whereas the IDF model compares raw pixel values directly. It is there-

fore feasible that a carefully selected visual stimulus could be created more suited to

each model type. Differing results in one or other condition would add significant

support to the case for its use in homing insects.

A similar model-driven adaptation of the paradigm could occur through the

introduction of physical landmarks as stimulus. In the case where azimuthal in-

tensity values balance, a robust COMALV cannot be generated and thus the CO-

MALV model fails (see chapter 6). An intensity balanced visual environment could

be easily produced using identical landmarks spaced 180◦ apart with a blank back-

ground. Indeed, it may be possible to replicate landmark manipulation studies per-

formed in ants (Wehner et al., 1996; Graham et al., 2003; Narendra et al., 2007) and

bees (Cartwright and Collett, 1983) offering further insights into the generality of

visual homing strategies across insects. Moreover, physical landmarks provide in-

sects with a more realistic environment containing motion parallax cues absent in

the current paradigm.
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A final research avenue could explore the neural firing patterns in freely mov-

ing insects within the hot-plate paradigm. Neural recording in cockroaches was

demonstrated by Mizunami et al. (1998a). Studies of this kind would allow for the

investigation of the information pathways and specific neuropils crucial to visual

homing. Such efforts would be complementary to any genetic studies that are pos-

sible in smaller insects such as fruit flies in which direct neural recording in freely

moving animals would be impractical.

7.2.2 Multiple Visual Memories

All visual homing models implemented in this work rest on the assumption that the

current visual scene is alligned with the visual memory stored at the target location.

This premise holds in many cases as various insect species infer their orientation

from allothetic cues such as polarised light from the Sun. Knowledge of the angu-

lar offset between the animal’s current orientation and the orientation at which the

reference image was sampled provides sufficient information for correction: either

through internal image manipulation or adjustment of the animal’s current head-

ing.

When homing in the hot-plate paradigm crickets did not have access to any ex-

ternal compass cues; magnetic or celestial. (Zeil et al., 2003) demonstrated that

an IDF also exists in the rotational dimension with pixelwise errors decreasing as

the angular match between current and reference image decreases. Such a process

would require the animal to rotate to allign images yet such behaviour was not evi-

dent across crickets. Thus, without extension the current models cannot completely

account for the homing performance of the animals.

One could hypothesise that crickets store multiple visual memories at various

orientations when at the target location. When homing the insect would then select

the visual memory most closely matching its current visual input to act as the refer-

ence image. Autoassociative networks (e.g. Hopfield Net (Hopfield, 1982)) provide

one possible framework by which multiple memories could be stored, and later re-

trieved. Such networks can retrieve complete memories from partial information,

and thus may be able to recall the appropriate reference memory even when the

displaced from the goal location.

It is worth noting that the results from chapter 6 indicate that ants require mul-

tiple visual memories to navigate along their routes. It may be possible that the
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a similar network to that outlined above could store the chain of visual memories

making up a route.

7.2.3 Integrating Multiple Navigational Cues

In chapter 5 Catahlyphis velox were shown to navigate predominantly through vi-

sual and path integration strategies in common with other species of desert ant.

This study and others (Kohler and Wehner, 2005) have also shown that when the

global home vector and visual cues placed are out of context, desert ant species

tested in cluttered environments adopt the route as indicated by the visual sur-

roundings. In contrast, desert ants tested in featureless terrain will ignore land-

marks indicating the nest position until their home vector nears completion (Wehner

et al., 1996).

Furthermore, visual cues are known to influence the extent to which the home

vector is followed. Narendra (2007a) showed that ants trained and tested within

a channel, thus without influence of external visual cues, will complete their full

home vector path before engaging a search in a test channel. Yet, when the test

is conducted in open terrain, where the visual surround does not match that as in

training, ants consistently expire only 50% of their home vector before initiating

search. The mechanism by which these redundant navigational cues are integrated

remains undefined.

Cheng et al. (2007) have recently discussed multi-sensory cue integration in an-

imal navigation within a Bayesian context. The question is therefore raised as to

whether ants combine their visual and path integration cues using an optimal strat-

egy. That is, do ants predict the nest position by weighting the different sensory

cues relative to their variance. Encouragingly, studies in both honeybees (Chittka

and Geiger, 1995) and desert ants (Merkle and Wehner, 2010) provide data that fits

within such a framework.

In a controlled experiment it should be possible to measure the accuracy of

homing when ants have access to only one of their navigational cues, and con-

trast this with the accuracy when both cues are present. A similar procedure has

been followed to assess optimal cue integration in humans (Nardini et al., 2008).

The variance of the homing cues can then be increased systematically, for example

by overhead light diffusers to scramble polarised light, and the resultant change in

homing accuracy recorded. The behaviour of the insects should be markedly dif-
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ferent if they are utilising a mixture model or a Bayesian strategy, which could be

confirmed through a modelling study.

It should be noted that Bayesian methods have achieved great success when ap-

plied to robot navigation problems (Thrun et al., 2005, 2007). If ants are shown to

combine sensory cues in Bayesian fashion then the overlap between insect navi-

gation and robot applications will only increase. To give a specific example, ants

relocated from the nest to feeder (section 5.3.2.2) resolve their location without the

aid of self-generated motion cues as during normal foraging. This situation is con-

ceptually identical to the classic "kidnapped robot" problem in robotics which has

been addressed by Bayesian methods (Durrant-Whyte et al., 2003).

7.2.4 Navigating The Ant Habitat

Chapter 6 reported on the performance of the various visual homing models within

a simulated ant habitat. This is somewhat contrary to the stated aim of this work: to

assess models using real-world visual stimuli as experienced by insects. However,

as all models failed to generate robust guidance cues when supplied with real image

data simulated visual input offered a highly controlled stimulus with which to test

models.

The model catchment areas range from approximately 0.17m2 to 2.05m2, indi-

cating that even if supplied with noise-free input many models could not have gen-

erated accurate homing signals in the image database. Yet, the impact that other

error sources such as camera tilt, cloud contamination, and dynamic lighting would

have on models remains unknown.

Animals are known to actively compensate for error sources. For example many

species of bird actively compensate for motion blur by co-ordinating head and body

movements (Necker, 2007). Insects also engage strategies that reduce homing error

likelihood. For example the learning walks of foraging are characterised by the in-

dividual stopping, and rotating to face the nest directly (Müller and Wehner, 2010),

or most conspicuous nest-based landmark (Nicholson et al., 1999). Thus when the

ant is later returning to the nest, possibly guided by path integration, they shall en-

counter a familiar and correctly alligned visual scene which can offer precise guid-

ance in the final stages of their journey.

Such behaviours offer insights into the homing strategies employed by insects

as some mechanisms will be more robust to some error sources than others. The
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simulated ant habitat provides an tool with which to address these issues in an con-

trolled manner. By adding real-world inspired noise to the visual and motor sys-

tems in a systematic manner and then analysing the impact on performance it may

be possible to infer the likelihood that individual models are sufficiently robust to

offer guidance in real world conditions. Furthermore, it should be possible to de-

fine novel strategies that mitigate, or at least reduce, the influence of these errors.

Comparing the strategies required by various models could in turn inspire empiri-

cal studies in insects seeking to identify if insects engage similar behaviours or not.

Indeed, it may then also be possible to design future experimental design by ma-

nipulating the habitat in which the models are tested.

7.3 Closing Remarks

This work was motivated by the confounding ability of the humble insect to navigate

complex habitats over large distances and with great accuracy. This amazement is

only compounded when considering the meager neural resources at the disposal

of these animals. Yet it is this meeting of complex behaviour with simple nervous

system that offers so much promise to the investigation of control and cognition,

and inspired this author to complete this work.

The behavioural studies undertaken have reported on the visual homing abili-

ties of two insect species for which little was previously known. In both cases, the

experimental design was explicitly driven by current modelling theory, and corre-

spondingly models were assessed on their ability to replicate the animal data. Im-

plementation and testing of models in this comparative methodology has been cru-

cial to the results reported and conclusions drawn from this work. Indeed, with in-

creasing computer power, continued miniaturisation of electronics, and improved

batteries, biorobotics will likely play an increasingly prominent role in the neu-

roethological investigation in the future.

It is hoped that the conclusions of this study act to validate this biorobotic method-

ology and lay the foundations upon which future work can be built.





Bibliography

Andel, D. and Wehner, R. (2004). Path integration in desert ants, Cataglyphis: how

to make a homing ant run away from home. Proceedings of the Royal Society B:

Biological Sciences, 271(1547):1485–1489.

Anderson, A. (1977). A model for landmark learning in the honey-bee. Journal

of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral

Physiology, 114(3):335–355.

Baddeley, B., Philippides, A., Graham, P., de Ibarra, N. H., Collett, T., and Husbands,

P. (2009). What can be learnt from analysing insect orientation flights using prob-

abilistic SLAM? Biological Cybernetics, 101(3):169–182.

Baerends, G. (1947). Fortpflanzungsverhalten und Orientierung der Grabwespe

Ammophila campestris Jur. Ponsen and Looijen.

Basten, K. and Mallot, H. A. (2010). Simulated visual homing in desert ant natural

environments: efficiency of skyline cues. Biological Cybernetics, 102(5):413–425.

Bell, W. (1990). Searching behavior patterns in insects. Annual Review of

Entomology, 35(1):447–467.

Beugnon, G. (1986). Learned orientation in landward swimming in the cricket

Pteronemobius Lineolatus. Behavioural Processes, 12(3):215 – 226.

Beugnon, G. and Campan, R. (1989). Homing in the field cricket, Gryllus campestris.

Journal of Insect Behavior, 2:187–198.

Beugnon, G., Lachaud, J., and Chagne, P. (2005). Use of long-term stored vec-

tor information in the neotropical ant Gigantiops destructor. Journal of insect

behavior, 18(3):415–432.

149



150 Bibliography

Binding, D. and Labrosse, F. (2006). Visual local navigation using warped panoramic

images. In Proceedings of Towards Autonomous Robotic Systems, pages 19–26.

Bisch-Knaden, S. and Wehner, R. (2001). Egocentric information helps desert

ants to navigate around familiar obstacles. Journal of Experimental Biology,

204(24):4177–4184.

Bregy, P., Sommer, S., and Wehner, R. (2008). Nest-mark orientation versus vector

navigation in desert ants. Journal of Experimental Biology, 211(Pt 12):1868.

Brunner, D. and Labhart, T. (1987). Behavioural evidence for polarization vision in

crickets. Physiological Entomology, 12:1–10.

Camhi, J. (1980). The escape system of the cockroach. Scientific American,

243(6):158–172.

Cartwright, B. and Collett, T. (1982). How honey bees use landmarks to guide their

return to a food source. Nature, 295:560–564.

Cartwright, B. and Collett, T. S. (1983). Landmark learning in bees. Journal of

Comparative Physiology, A 151:521–543.

Cerda, X. (2001). Behavioural and physiological traits to thermal stress tolerance in

two spanish desert ants. Etologia, 9:15–27.

Cerda, X. and Retana, J. (2000). Alternative strategies by thermophilic ants to cope

with extreme heat: individual versus colony level traits. OIKOS, 89:155–163.

Chapman, T. (2001). Morphological and neural modelling of the orthopteran escape

response. PhD thesis, University of Stirling.

Cheng, K. (1986). A purely geometric module in the rat’s spatial representation.

Cognition, 23:149–178.

Cheng, K., Shettleworth, S., Huttenlocher, J., and Rieser, J. (2007). Bayesian integra-

tion of spatial information. Psychological Bulletin, 133(4):625.

Cheung, A., Stürzl, W., Zeil, J., and Cheng, K. (2008). The information content of

panoramic images ii: view-based navigation in nonrectangular experimental are-

nas. Journal of Experimental Psychology. Animal Behavior Processes, 34(1):15–30.



Bibliography 151

Chittka, L. and Geiger, K. (1995). Honeybee Long-distance Orientation in a Con-

trolled Environment. Ethology, 99(1-2):117–126.

Chittka, L. and Niven, J. (2009). Are bigger brains better? Current Biology,

19(21):995–1008.

Collett, M. and Collett, T. (2000). How do insects use path integration for their navi-

gation? Biological Cybernetics, 83(3):245–259.

Collett, M. and Collett, T. (2009). The learning and maintenance of local vectors in

desert ant navigation. Journal of Experimental Biology, 212(Pt 7):895.

Collett, M., Collett, T., Bisch, S., and Wehner, R. (1998). Local and global vectors in

desert ant navigation. Nature, Volume 394, Issue 6690:269–272.

Collett, M., Collett, T., and Wehner, R. (1999). Calibration of vector navigation in

desert ants. Current Biology, 9(18):1031–1034.

Collett, T. and Collett, M. (2002). Memory use in insect visual navigation. Nature

Reviews Neuroscience, 3(7):542–552.

Collett, T., Collett, M., and Wehner, R. (2001). The guidance of desert ants by ex-

tended landmarks. Journal of Experimental Biology, 204(Pt 9):1635–1639.

Collett, T., Dillmann, E., Giger, A., and Wehner, R. (1992). Visual landmarks

and route following in desert ants. Journal of Comparative Physiology A:

Neuroethology, Sensory, Neural, and Behavioral Physiology, 170:435–442.

Collett, T. and Land, M. (1975). Visual spatial memory in a hoverfly. Journal

of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral

Physiology, 100(1):59–84.

Collett, T. and Rees, J. (1997). View-based navigation in Hymenoptera: mul-

tiple strategies of landmark guidance in the approach to a feeder. Journal

of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral

Physiology, 181(1):47–58.

de Ibarra, N., Philippides, A., Riabinina, O., and Collett, T. (2009). Preferred viewing

directions of bumblebees (Bombus terrestris L.) when learning and approaching

their nest site. The Journal of experimental biology, 212(Pt 20):3193.



152 Bibliography

Dillier, F. and Wehner, R. (2004). Spatio-temporal patterns of colony distribution

in monodomous and polydomous species of North African desert ants, genus-

Cataglyphis. Insectes Sociaux, 51(2):186–196.

Durier, V., Graham, P., and Collett, T. (2003). Snapshot memories and landmark

guidance in wood ants. Current Biology, 13(Issue 18):1614–1618.

Durier, V. and Rivault, C. (1999). Path integration in cockroach larvae, Blattella ger-

manica (L.)(insect: Dictyoptera): Direction and distance estimation. Learning &

behavior, 27(1):108–118.

Durrant-Whyte, H., Majumder, S., Thrun, S., de Battista, M., and Scheding, S. (2003).

A bayesian algorithm for simultaneous localisation and map building. Robotics

Research, pages 49–60.

Dyer, F. (2002). The biology of the dance language. Annual Review of Entomology,

47(1):917–949.

Dyer, F. and Gould, J. (1983). Honey bee navigation. American Scientist, 71:587–597.

Eggers, A. and Gewecke, M. (1993). The dorsal rim area of the compound eye and

polarization vision in the desert locust (Schistocerca gregaria). Sensory systems

of arthropods, pages 101–109.

Esch, H. and Burns, J. (1996). Distance estimation by foraging honeybees. Journal

of Experimental Biology, 199:155–162.

Foucaud, J., Burns, J., Mery, F., and Zars, T. (2010). Use of Spatial Information and

Search Strategies in a Water Maze Analog in Drosophila melanogaster. PLoS ONE,

5(12):347–374.

Fourcassié, V. (1991). Landmark orientation in natural situations in the red wood ant

Formica lugubris Zett.(Hymenoptera Formicidae). Ethology Ecology & Evolution,

3(2):89–99.

Franks, N., Richardson, T., Keir, S., Inge, S., Bartumeus, F., and Sendova-Franks,

A. (2010). Ant search strategies after interrupted tandem runs. Journal of

Experimental Biology, 213(Pt 10):1697.



Bibliography 153

Franz, M., Schölkopf, B., Mallot, H., and Bülthoff, H. (1998). Where did I take

that snapshot? Scene-based homing by image matching. Biological Cybernetics,

79:191–202.

Fresneau, D. (1985). Individual Foraging and Path Fidelity in a Ponerine Ant.

Insectes Sociaux, 32(2):109–116.

Fukushi, T. (2001). Homing in wood ants, Formica japonica: use of the skyline

panorama. Journal of Experimental Biology, 204:2063–2072.

Graham, P. and Cheng, K. (2009a). Ants use the panoramic skyline as a visual cue

during navigation. Current Biology, 19(20):935–937.

Graham, P. and Cheng, K. (2009b). Which portion of the natural panorama

is used for view-based navigation in the Australian desert ant? Journal of

Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral

Physiology, 195(7):681–689.

Graham, P., Durier, V., and Collett, T. (2004). The binding and recall of snap-

shot memories in wood ants (Formica rufa L.). Journal of Experimental Biology,

207:393–398.

Graham, P., Fauria, K., and Collett, T. (2003). The influence of beacon-aiming on the

routes of wood ants. Journal of Experimental Biology, 206:535–541.

Graham, P., Philippides, A., and Baddeley, B. (2010). Animal Cognition: Multi-modal

Interactions in Ant Learning. Current Biology, 20(15):R639–R640.

Götz, K. and Wenking, H. (1973). Visual control of locomotion in the walking fruit-

fly Drosophila. Journal of Comparative Physiology A: Neuroethology, Sensory,

Neural, and Behavioral Physiology, 85(3):235–266.

Haferlach, T., Wessnitzer, J., Mangan, M., and Webb, B. (2007). Evolving a neural

model of insect path integration. Adaptive Behavior, 15:273–287.

Hafner, V. (2001). Adaptive Homing - Robotic Exploration Tours. Adaptive

Behaviour, 9:131–141.

Hale, R. and Bailey, W. (2004). Homing behaviour of juvenile Australian raspy crick-

ets (Orthoptera: Gryllacrididae). Physiological Entomology, 29:426–435.



154 Bibliography

Harris, R., Graham, P., and Collett, T. (2007). Visual Cues for the Retrieval of Land-

mark Memories by Navigating Wood Ants. Current Biology, 17:93–102.

Harrison, J., Fewell, J., Stiller, T., and Breed, M. (1989). Effects of experience on use

of orientation cues in the giant tropical ant. Animal behaviour, 37(5):869–871.

Hartmann, G. and Wehner, R. (1995). The ant’s path integration system: a neural

architecture. Biological Cybernetics, 73:483–497.

Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature

Reviews Neuroscience, 4:266–275.

Hoffmann, G. (1978). Experimentelle und theoretische analyse eines adaptiven

Orientierungsverhaltens: dieoptimale’Suche der Wustenassel Hemilepistus

reaumuri, Audouin und Savigny (Crustacea, Isopoda, Oniscoidea) nach ihrer

Hohle. PhD thesis, Regensburg.

Hoffmann, G. (1983). The random elements in the systematic search behaviour of

the desert isopod Hemilepistus reaumuri. Behavioral Ecology and Sociobiology,

13:81–92.

Hopfield, J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences of the

United States of America, 79(8):2554.

Huber, F., Moore, T., and Loher, W. (1989). Cricket behavior and neurobiology. Cor-

nell University Press.

Janzen, D. (1971). Euglossine bees as long-distance pollinators of tropical plants.

Science, 171(3967):203.

Judd, S. and Collett, T. (1998). Multiple stored views and landmark guidance in ants.

Nature, 392:710–714.

Kennedy, J. and Marsh, D. (1974). Pheromone-regulated anemotaxis in flying moths.

Science (New York, NY), 184(140):999–1001.

Åkesson, S. and Wehner, R. (2002). Visual navigation in desert ants cataglyphis fortis:

are snapshots coupled to a celestial system of reference? Journal of Experimental

Biology, 205:1971–1978.



Bibliography 155

Klotz, J. (1987). Topographic orientation in two species of ants (Hymenoptera:

Formicidae). Insectes Sociaux, 34(4):236–251.

Knaden, M., Lange, C., and Wehner, R. (2006). The importance of procedural knowl-

edge in desert-ant navigation. Current Biology, 16(21):R916–R917.

Kohler, M. and Wehner, R. (2005). Idiosyncratic route-based memories in desert

ants, Melophorus bagoti: How do they interact with path-integration vectors?

Neurobiology of Learning and Memory, 83((1)):1–12.

Krieger, L. and Kahler, K. (2007). Tagging System Aims To Map Monarch’ Flight.

Mercury News.

Labhart, T. (1986). The electrophysiology of photoreceptors in different eye re-

gions of the desert ant, Cataglyphis bicolor. Journal of Comparative Physiology A:

Neuroethology, Sensory, Neural, and Behavioral Physiology, 158(1):1–7.

Labhart, T., Hodel, B., and Valenzuela, I. (1984). The physiology of the cricket’s com-

pound eye with particular reference to the anatomically specialized dorsal rim

area. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and

Behavioral Physiology, 155(3):289–296.

Labhart, T., Petzold, J., and Helbling, H. (2001). Spatial integration of polarization-

sensitive interneurons of crickets: a survey of evidence, mechanisms and bene-

fits. Journal of Experimental Biology, 204:2423–2430.

Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A mo-

bile robot employing insect strategies for navigation. Robotics and Autonomous

Systems, 30:39–64.

Land, M. (1997). Visual Acuity in Insects. Annual Review of Entomology, 42:147–177.

Land, M. and Nilsson, D. (2002). Animal eyes. Oxford University Press, USA.

Lauer, J. and Lindauer, M. (1971). Genetisch fixierte Lerndispositionen bei der

Honigbiene. Abhandlungen der Akademie der Wissenschaften und der Literatur

Mainz, 1:1–87.

Legge, E., Spetch, M., and Cheng, K. (2010). Not using the obvious: desert ants,

Melophorus bagoti, learn local vectors but not beacons in an arena. Animal

Cognition, 13:849–860.



156 Bibliography

Lehrer, M. (1993). Why do bees turn back and look? Journal of Comparative

Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,

172(5):549–563.

Lent, D., Graham, P., and Collett, T. (2009). A Motor Component to the Memories of

Habitual Foraging Routes in Wood Ants? Current Biology, 19(2):115–121.

Macquart, D., Garnier, L., Combe, M., and Beugnon, G. (2005). Ant navigation en

route to the goal: signature routes facilitate way-finding of Gigantiops destruc-

tor. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and

Behavioral Physiology, 192:221–234.

Mangan, M. and Webb, B. (2009). Modelling place memory in crickets. Biological

cybernetics, 101(4):307–323.

Menzel, R. and Blakers, M. (1976). Colour receptors in the bee eye - morphology

and spectral sensitivity. Journal of Comparative Physiology A: Neuroethology,

Sensory, Neural, and Behavioral Physiology, 108(1):11–13.

Merkle, T., Knaden, M., and Wehner, R. (2006). Uncertainty about nest position

influences systematic search strategies in desert ants. Journal of Experimental

Biology, 209(Pt 18):3545–3549.

Merkle, T. and Wehner, R. (2009). How flexible is the systematic search behaviour of

desert ants? Animal Behaviour, 77(5):1051–1056.

Merkle, T. and Wehner, R. (2010). Desert ants use foraging distance to adapt the nest

search to the uncertainty of the path integrator. Behavioral Ecology, 21(2):349.

Mittelstaedt, H. and Mittelstaedt, M. (1973). Mechanismen der Orientierung ohne

richtende Aussenreize. Fortschr. Zool, 21:46–58.

Mizunami, M. (1995). Information Processing in the Insect Ocellar System: Com-

parative Approaches to the Evolution of Visual Processing and Neural Circuitsa.

Advances in Insect Physiology, 25:151–152.

Mizunami, M., Okada, R., Li, Y., and Strausfeld, N. (1998a). Mushroom bodies of the

cockroach: activity and identities of neurons recorded in freely moving animals.

The Journal of Comparative Neurology, 402:501–519.



Bibliography 157

Mizunami, M., Weibrecht, J. M., and Strausfeld, N. J. (1993). A new role for the in-

sect mushroom bodies: place memory and motor control. In Proceedings of the

workshop on "Locomotion Control in Legged Invertebrates" on Biological neural

networks in invertebrate neuroethology and robotics, pages 199–225, San Diego,

CA, USA. Academic Press Professional, Inc.

Mizunami, M., Weibrecht, J. M., and Strausfeld, N. J. (1998b). Mushroom bodies of

the cockroach: their participation in place memory. The Journal of Comparative

Neurology, 402(4):520–537.

Müller, M. and Wehner, R. (1988). Path Integration in Desert Ants, Cataglyphis fortis.

Proceedings of the National Academy of Sciences of the United States of America,

85(14):5287–5290.

Müller, M. and Wehner, R. (1994). The hidden spiral: systematic search and path

integration in desert ants, Cataglyphis fortis. Journal of Comparative Physiology

A, 175:525–530.

Müller, M. and Wehner, R. (2010). Path Integration Provides a Scaffold for Landmark

Learning in Desert Ants. Current Biology, 20:1368–1371.

Möller, R. (1999). Visual homing in analog hardware. International Journal of Neural

Systems, 9(5):383–390.

Möller, R. (2002). Insects could exploit UV-green contrast for landmark navigation.

Journal of Theoretical Biology, 214(4):619–631.

Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., and Wehner, R. (2001).

Insect Strategies of Visual Homing in Mobile Robots, chapter 3, pages 37–66.

AAAI Press / The MIT Press.

Möller, R. and Vardy, A. (2006). Local visual homing matched-filter descent in image

distances. Biological Cybernetics, 95:413–430.

Möller, R., Vardy, A., Kreft, S., and Ruwisch, S. (2007). Visual homing in environ-

ments with anisotropic landmark distribution. Autonomous Robots, 23(1):231–

245.

Morris, R. G., Garrud, P., Rawlins, J. N., and O’Keefe, J. (1982). Place navigation

impaired in rats with hippocampal lesions. Nature, 297(5868):681–683.



158 Bibliography

Morris, R. G. M. (1981). Spatial localization does not require the presence of local

cues. Learning and Motivation, 12(2):239–260.

Mote, M. and Wehner, R. (1980). Functional characteristics of photoreceptors in

the compound eye and ocellus of the desert ant, Cataglyphis bicolor. Journal

of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral

Physiology, 137(1):63–71.

Muser, B., Sommer, S., Wolf, H., and Wehner, R. (2005). Foraging ecology of the ther-

mophilic Australian desert ant,Melophorus bagoti. Australian Journal of Zoology,

53(5):301–311.

Nardini, M., Jones, P., Bedford, R., and Braddick, O. (2008). Development of cue

integration in human navigation. Current biology, 18(9):689–693.

Narendra, A. (2007a). Homing strategies of the Australian desert ant Melophorus

bagoti i. proportional path-integration takes the ant half-way home. Journal of

Experimental Biology, 210:1798–1803.

Narendra, A. (2007b). Homing strategies of the Australian desert ant Melophorus

bagoti ii. interaction of the path integrator with visual cue information. Journal

of Experimental Biology, 210:1804–1812.

Narendra, A., Cheng, K., Sulikowski, D., and Wehner, R. (2008). Search strate-

gies of ants in landmark-rich habitats. Journal of Comparative Physiology A,

194(11):929–938.

Narendra, A., Cheng, K., and Wehner, R. (2007). Acquiring, retaining and integrat-

ing memories of the outbound distance in the Australian desert ant Melophorus

bagoti. Journal of Experimental Biology, 210(Pt 4):570–577.

Necker, R. (2007). Head-bobbing of walking birds. Journal of Comparative

Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,

193(12):1177–1183.

Neuser, K., Triphan, T., Mronz, M., Poeck, B., and Strauss, R. (2008). Analysis of a

spatial orientation memory in Drosophila. Nature, 453(7199):1244–1247.

Nicholson, D., Judd, S., Cartwright, B., and Collett, T. (1999). Learning walks and

landmark guidance in wood ants (Formica rufa). Journal of Experimental Biology,

202(Issue 13):1831–1838.



Bibliography 159

Ofstad, T., Zuker, C., , and Reiser, M. (2010). Visual place learning in Drosophila. In

9th International Congress of Neuroethology.

Payne, M., Hedwig, B., and Webb, B. (2010). Multimodal Predictive Control in Crick-

ets. From Animals to Animats 11, pages 167–177.

Pièron, H. (1904). Du rôle du sens musculaire dans l’orientation de quelques es-

pèces de fourmis. title translation: On the role of idiothetic cues in the orientation

behaviour of various species of ants. Bull Inst Gen Psychol, 4:168–186.

Rasa, O. (1990). Evidence for subsociality and division of labor in a desert

tenebrionid beetle Parastizopus armaticeps peringuey. Naturwissenschaften,

77(12):591–592.

Reynolds, A., Smith, A., Menzel, R., Greggers, U., Reynolds, D., and Riley, J.

(2007). Displaced honey bees perform optimal scale-free search flights. Ecology,

88:1955–1961.

Rosano, H. and Webb, B. (2007). A dynamic model of thoracic differentiation for the

control of turning in the stick insect. Biological Cybernetics, 97(3):229–246.

Rosengren, R. (1971). Route fidelity, visual memory and recruitment behaviour in

foraging wood ants of the genus Formica (Hymenoptera, Formicidae). Acta Zool.

Fenn., 133:1–106.

Rufli, M., Scaramuzza, D., and Siegwart, R. (2008). Automatic Detection of Checker-

boards on Blurred and Distorted Images. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2008).

Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006a). A Flexible Technique for

Accurate Omnidirectional Camera Calibration and Structure from Motion. In

Proceedings of IEEE International Conference of Vision Systems (ICVS’06).

Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006b). A Toolbox for Easy Calibrat-

ing Omnidirectional Cameras. In Proceedings to IEEE International Conference

on Intelligent Robots and Systems (IROS 2006).

Schildberger, K. (1988). Behavioural and neuronal methods of cricket phonotaxis.

Experientia, 44:408–415.



160 Bibliography

Schwarz, S. and Cheng, K. (2010). Visual associative learning in two desert ant

species. Behavioral Ecology and Sociobiology, pages 1–9. 10.1007/s00265-010-

1016-y.

Scotto-Lomassese, S., Strambi, C., Strambi, A., Aouane, A., Augier, R., Rougon, G.,

and Cayre, M. (2003). Suppression of adult neurogenesis impairs olfactory learn-

ing and memory in an adult insect. The Journal of Neuroscience, 23(28):9289–

9296.

Smith, L., Philippides, A., Graham, P., Baddeley, B., and Husbands, P. (2007). Linked

Local Navigation for Visual Route Guidance. Adaptive Behavior, 15(3):257–271.

Sommer, S., von Beeren, C., and Wehner, R. (2008). Multiroute memories in desert

ants. Proceedings of the National Academy of Sciences of the United States of

America, 105:317–322.

Srinivasan, M., Zhang, S., and Bidwell, N. (1997). Visually mediated odometry in

honeybees. Journal of Experimental Biology, 200:2513–2522.

Srinivasan, M., Zhang, S., Lehrer, M., and Collett, T. (1996). Honeybee navigation

en route to the goal: visual flight control and odometry. Journal of Experimental

Biology, 199:237–244.

Stürzl, W., Cheung, A., Cheng, K., and Zeil, J. (2008). The information content of

panoramic images I: The rotational errors and the similarity of views in rectan-

gular experimental arenas. Journal of Experimental Psychology. Animal Behavior

Processes, 34(1):1–14.

Stürzl, W. and Zeil, J. (2007). Depth, contrast and view-based homing in outdoor

scenes. Biological Cybernetics, 96(5):519 – 531.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics (intelligent robotics

and autonomous agents). The MIT Press.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong,

P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt,

V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C.,

Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Et-

tinger, S., Kaehler, A., Nefian, A., and Mahoney, P. (2007). The 2005 DARPA Grand



Bibliography 161

Challenge, volume 36/2007 of Springer Tracts in Advanced Robotics, chapter

Stanley: The Robot That Won the DARPA Grand Challenge, pages 1–43. Springer

Berlin /Heidelberg.

Tinbergen, N. (1932). Über die Orientierung des Bienenwolfes (Philanthus triangu-

lum Fabr.). Z. Vergal. Physiol., 21:699–716.

Tinbergen, N. and Kruyt, W. (1938). Über die Orientierung des Bienenwolfes

(Philanthus triangulum Fabr.) III. Die Bevorzugung bestimmter Wegmarken. Z.

Vergal. Physiol., 25(3):292–334.

Towne, W. F. and Moscrip, H. (2008). The connection between landscapes and the

solar ephemeris in honeybees. Journal of Experimental Biology, 211:3729–3736.

Vardy, A. (2005). Biologically Plausible Methods for Robot Visual Homing. PhD the-

sis, Ottawa-Carleton Institute for Computer Science.

Vardy, A. (2006). Long-range visual homing. In In: Proceedings of IEEE International

Conf. on Robotics and Biomimetics, ROBIO’06, pages 220–226.

Vardy, A. and Möller, R. (2005). Biologically plausible visual homing methods based

on optical flow techniques. Connection Science, Special Issue: Navigation, 17:47–

90.

Vickerstaff, R. J. and Paolo, E. A. D. (2005). Evolving neural models of path integra-

tion. Journal of Experimental Biology, 208(Pt 17):3349–3366.

Von Frisch, K. (1967). The dance language and orientation of bees. Belknap Press of

Harvard University Press.

von Frisch, K. and Lindauer, M. (1954). Himmel und Erde in Konkurrenz bei der

Orientierung der Bienen. Naturwissenschaften, 41(11):245–253.

Vowles, D. (1950). Sensitivity of ants to polarized light. Nature, 165:282–283.

Webb, B. (1995). Using robots to model animals: a cricket test. Robotics and

Autonomous Systems, 16(2-4):117–134.

Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral

and Brain Sciences, 24(6):1033–50; discussion 1050–94.

Webb, B. and Consi, T. R. (2001). Biorobotics: Methods and applications. MIT Press.



162 Bibliography

Webb, B. and Harrison, R. (2000). Integrating sensorimotor systems in a robot model

of cricket behavior. Sensor fusion and Decentralised Control in Robotic Systems

III, pages 6–8.

Wehner, R. (2003). Desert ant navigation: how miniature brains solve complex

tasks. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and

Behavioral Physiology, 189(8):579–588.

Wehner, R. (2008). The architecture of the desert ant’s navigational toolkit (Hy-

menoptera: Formicidae). Myrmecological News, 12:85–96.

Wehner, R. (2010). Zurich - neuroscience center zurich - research groups - sen-

sory systems - wehner. http://www.neuroscience.ethz.ch/research/sensory-

systems/wehner.

Wehner, R., Boyer, M., Loertscher, F., Sommer, S., and Menzi, U. (2006). Ant naviga-

tion: one-way routes rather than maps. Current Biology, 16(1):75–79.

Wehner, R., Harkness, R., and Schmid-Hempel, P. (1983). Foraging strategies in

individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). G.

Fischer, Stuttgart; New York.

Wehner, R., Meier, C., and Zollikofer, C. (2004). The ontogeny of foraging behaviour

in desert ants, Cataglyphis bicolor. Ecological Entomology, 29(2):240–250.

Wehner, R., Michel, B., and Antonsen, P. (1996). Visual navigation in insects: cou-

pling of egocentric and geocentric information. Journal of Experimental Biology,

199(Pt 1):129–40.

Wehner, R. and Räber, F. (1979). Visual spatial memory in desert ants, Cataglyphis

bicolor (Hymenoptera: Formicidae). Cellular and Molecular Life Sciences,

35(12):1569–1571.

Wehner, R. and Srinivasan, M. (1981). Searching behaviour of desert ants, genus

Cataglyphis (Formicidae, Hymenoptera). Journal of Comparative Physiology A:

Neuroethology, Sensory, Neural, and Behavioral Physiology, 142:315–338.

Wehner, R. and Srinivasan, M. (2003). Path integration in insects.

In The Neurobiology of Spatial Behaviour. Oxford University Press.



Bibliography 163

Wehner, R. and Strasser, S. (1985). The POL area of the honey bee’s eye: behavioural

evidence. Physiological Entomology, 10(3):337–349.

Wessnitzer, J., Mangan, M., and Webb, B. (2008). Place memory in crickets.

Proceedings of the Royal Society B: Biological Sciences, 275:915–921.

Wittlinger, M. and Wolf, H. (2010). Distance estimation in desert ants, cataglyphis

fortis: the optic flow factor. In 9th International Congress of Neuroethology.

Wittmann, T. and Schwegler, H. (1995). Path integration - a network model.

Biological Cybernetics, 73(6):569–575.

Wolf, R., Gebhardt, B., Gademann, R., and Heisenberg, M. (1980). Polar-

ization sensitivity of course control inDrosophila melanogaster. Journal of

Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral

Physiology, 139(3):177–191.

Wystrach, A. and Beugnon, G. (2009). Ants learn geometry and features. Current

Biology, 19:61–66.

Zampoglou, M., Szenher, M., and Webb, B. (2006). Adaptation of controllers for

image-based homing. Adaptive Behaviour, 14(4):381–399.

Zanker, J. and Collett, T. (1985). The optomotor system on the ground: on

the absence of visual control of speed in walking ladybirds. Journal of

Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral

Physiology, 156(3):395–402.

Zeil, J. (1993). Orientation flights of solitary wasps (Cerceris; Sphecidae; Hy-

menoptera). Journal of Comparative Physiology A: Neuroethology, Sensory,

Neural, and Behavioral Physiology, 172(2):207–222.

Zeil, J., Boeddeker, N., and Hemmi, J. (2008). Vision and the organization of be-

haviour. Current Biology, 18(8):320–323.

Zeil, J., Hofmann, M., and Chahl, J. (2003). Catchment areas of panoramic snapshots

in outdoor scenes. Optical Society of America Journal, 20:450–469.

Ziegler, P. and Wehner, R. (1997). Time-courses of memory decay in vector-

based and landmark-based systems of navigation in desert ants, Cataglyphis for-



164 Bibliography

tis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and

Behavioral Physiology, 181(1):13–20.


