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ABSTRACT. 

Cryptosporidium parvum is an obligate intracellular protozoan 
which infects the gastrointestinal tract of a wide range of 
mammalian species. It is a common cause of diarrhoeal illness in 
humans and neonatal ruminants. 	Despite the medical and 
veterinary importance of C. parvum studies of this organism at 
the genetic level have begun only recently. This is due to the 
lack of interest shown in the parasite until it was recognised 
as a cause of human and animal disease, 	and also to the 
difficulty in producing sufficient parasite material in order to 
carry out such studies. 

The aim of this study was to identify, 	by screening a DNA 
library with anti-C. 	parvum antisera, genes or gene fragments 
encoding antigens of C. 	parvum. A C. parvum Xgtll expression 
library was constructed using EcoRI-digested genomic DNA 
prepared from in vitro-excysted oocysts. 	Screening the library 
resulted in the isolation of two immunopositive clones. 	?CPR1, 
recognised by rat serum raised against excysted C. 	parvum 
oocysts, and &CPS10, recognised by serum from a gnotobiotic lamb 
experimentally infected with C. 	parvum. 	The DNA inserts from 
these clones (CPR1 and CPS1O respectively) were subcloned into 
the pMS plasmid expression vectors, and the recombinant peptides 
expressed by the resulting subclones analysed by Western 
blotting. 

Subclones containing CPS1O expressed a peptide which was 
recognised by some, 	but not all, 	lambs infected with C. 
parvum. 	When CPR1 was subcloned into pMS1S, the resulting 
subclone expressed a 200kDa -galactosidase fusion protein. This 
fusion protein was partially purifIed and used to raise 
polyclonal antiserum in a rabbit. 	Western blotting indicated 
that this serum recognised a 190kDa peptide constituent of the 
C. parvum oocyst wall. 

The CPR1 DNA fragment was sequenced in both directions and found 
to consist of 2359 nucleotides, 2358 of which form a continuous 
open reading frame. 	The DNA sequence has a relatively low G+C 
content (39.1%) and there is a corresponding bias towards the 
use of codons ending in A or T (82.1%) within this open reading 
frame. 

The deduced peptide sequence has an unusual amino acid 
composition, 	with high proportions of cysteine, 	proline, 
glutamine and histidine. 	The cysteine residues are found in 
three distinct cysteine-rich regions, 	which contain repeat 
units based on conserved cysteine residues. 	The corresponding 
cysteine residues in the native C. 	parvum 190kDa peptide are 
likely to participate in disulphide cross-linking which may be 
of structural importance in the oocyst wall. 
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CHAPTER 1. INTRODUCTION. 

.1 Crypiosporidium parvum. 

Cryptosporidiurn parvum is a protozoan parasite which infects the 

gastrointestinal epithelium of a variety of mammalian species. 

It was first described infecting the small intestine of 

laboratory mice (Tyzzer 1912). 

Little interest was shown in the parasite in the 50 or so years 

following its discovery, 	as it was not considered to be of 

medical or veterinary importance. 	The first human cases of 

cryptosporidiosis were reported in 1976 (Meisel et al 1976, Nime 

et al 1976) , and more recently C. parvum has been recognised as 

a cause of severe life-threatening diarrhoeal illness in 

immunocompromised patients, 	especially those with the Acquired 

Immune Deficiency Syndrome (AIDS) . 	In addition, 	it is now 

recognised as a frequent cause of diarrhoea in immunocompetent 

people. 

Veterinary interest in Cryptosporidium was initiated in 1976 

when it was first reported in association with bovine diarrhoea 

(Panciera et al 1976) . Since then, C. parvum has been reported 

infecting a wide range of mammals, 	and is recognised as an 

important cause of diarrhoea in neonatal ruminants. 



1 .2 Taxonomy of Cryptosporidium. 

The taxonomic classification of the genus Cryptosporidium is 

shown in table 1 . 1. 

The classification of species within the genus Cryptosporidium 

has been the subject of some debate and the question is still 

not resolved. 	Tyzzer (1907) first described Cryptosporidium in 

the gastric glands of mice and suggested the name 

Cryptosporidium muris, 	but did not describe characteristics to 

establish a new genus until 1910. 	In 1912 he described the 

morphology and lifecycle of a second species, 	Cryptosporidium 

parvum, 	which he observed in the small intestine of laboratory 

mice. 	The latter species differed from C. 	muris in that it 

localized in the small intestine of the murine host, whereas C. 

muris reproducibly colonized the stomach; 	it also produced 

smaller oocysts (Tyzzer 1912). 

Slavin (1955) described mortality and morbidity associated with 

Cryptosporidium infection in turkeys. 	He described a parasite 

indistinguishable from C. parvum but named the species infecting 

turkeys Cryptosporidium meleagridis. 	Between 1968 and 1981 

Cryptosporidium was reported infecting various species of fish, 

birds, reptiles and mammals (Fayer & Ungar 1986), and each 

isolate was named on the assumption that each host species was 

infected with a separate species of Cryptosporidium. This was 

subsequently found not to be the case. Tzipori et al (1980) 

successfully infected lambs, pigs, rats, mice and guinea-pigs 
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Table 1.1 Taxonomic classification of Cryptosporidium. 
From Fayer & Ungar (1986). 

Taxon 
	

Name 
	

Biological characteristics 

Phylum Apicomplexa Obligate intracellular 
parasites;invasive forms with 
apical complex 

Class Sporozoasida Locomotion of invasive forms by 
body flexion, gliding or undulation 

Subclass Coccidiasina Lifecycle with merogony, 
gametogony, and sporogony 

Order Eucoccidionda Merogony present; parasitizes 
vertebrate hosts 

Suborder Eimeriorina Male and female gametes develop 
independently 

Family Ciyptosporidiidae Homoxenous; developmental 
stages just under the host cell 
membrane; oocyst without 
sporocysts and with four 
sporozoites; microgametes without 
flagella 

Genus Cryptosporidium With the characteristics of the 
family (single genus family) 
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with a Cryptosporidium isolate from calves. 	They also infected 

mice with isolates from lambs and humans, 	and on the basis of 

these findings, 	proposed that Cryptosporidium be considered a 

single species genus. 	Levine (1984) reviewed the taxonomy of 

Cryptosporidium. 	He considered four species to be valid, 

Cryptosporidium crotali, 	infecting reptiles, 	Cryptosporidium 

nasorum infecting fish, 	C. meleagridis infecting birds and C. 

muris infecting mammals. 	He considered C. 	parvum to be a 

synonym of C. 	muris. 	This classification is now also 

considered invalid. 	The original description of C. 	crotali 

based on the findings of cysts in the faeces of a snake, 	was 

probably a description of sporocysts of Sarcocystis sp. (Current 

et al 1986) . In addition, Upton and Current (1985) showed that 

there were two distinct species of Cryptosporidium infecting 

calves, 	i.e C. 	parvum and C. muris, thus confirming Tyzzer's 

original findings. 

Evidence also suggests that there are at least two species of 

Cryptosporidium infecting birds. 	Although C. 	meleagridis is 

morphologically indistinguishable from C. 	parvum, cross 

transmission experiments have shown that Cryptosporidium 

isolated from birds can be transmitted to other bird species, 

but not to mammals (Fayer & Ungar 1986). This suggests that C. 

parvum and C. rneleagridis are distinct species. Another species 

infecting birds was described by Current et al (1986) . This 

parasite, named Cryptosporidium baiieyi, was isolated from the 

bursa of Fabricius of naturally infected chickens. The authors 

considered C. baileyi to be a separate species because it 



5 

differed from C. 	meleagridis in oocyst morphology and site of 

infection. Oocysts of C. 	baiieyi are larger than those of C. 

meleagridis, and experimental infections with C. baileyi in 

turkeys resulted in only mild infections confined to the bursa 

of Fabricius, whereas Slavin (1955) reported heavy infections in 

the lower third of the small intestine of turkeys infected with 

C. meleagridis. 

Clearly there is a need for further information on the species 

of Cryptosporidium infecting the various vertebrate classes. C. 

parvum is the species which causes human cryptosporidiosis, and 

is the most common species found infecting other mammals. 

Consequently it is the most studied species of Cryptosporidium 

and is the subject of the present study. Further discussion of 

Cryptosporidium and cryptosporidiosis in this thesis will relate 

primarily to C. parvum. 

1.3 Life cycle and ultrastructure of Cryptosporidium parvum. 

The life cycle of Cryptosporidium parvum is shown 

diagrammatically in Fig. 1.1 

Much of the life cycle of Cryptosporidium was first described by 

Tyzzer (1910, 	1912). Since then many of his observations have 

been confirmed, and further details of the life cycle have been 

described with the aid of ultrastructural studies. 	Oocysts of 

Cryptosporidium parvum are spherical to ovoid, 	4-5im in 



Fig 1.1 Life cycle of Crypiosporidium parvum. 

a) Sporulated, thick walled oocyst in faeces. b) Excystation in the intestine. c) Free 
sporozoite in the small intestine prior to penetration of an enterocyte. d) Mature type I 
meront with 6 or 8 merozoites. e) Recycling of type I merozoites to produce additional 
type I meronts. f) 1)'pe H meront with 4 merozoites that develop into the sexual stages. 
g) Microgamont, with approximately 16 microgametes. h) Free microgamete that 
fertilizes macrogamete (i) to form a zygote (j). Most of the zygotes (about 80%) form 
thick-walled oocysts that sporulate within the parasitophorous vacuole (k) before being 
passed out in the faeces. The remainder form thin-walled oocysts that excyst within the 
same host resulting in autoinfection. 

II 

DO 
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diameter, 	and passed in the faeces fully sporulated and 

infective. When ingested the oocysts are stimulated to excyst by 

the action of trypsin and bile salts (Current & Haynes 1984). 

Just prior to excystation the sporozoites show rapid tumbling 

movements within the oocyst. Excystation results in the release 

of four sporozoites which move over the surface of the gut 

epithelium by flexing and gliding movements. 	As a sporozoite 

approaches a host cell, 	a thin host derived cytoplasmic 

extension, bounded by host membrane appears around the anterior 

of the parasite. 	This eventually extends to surround the 

sporozoite, 	forming a parasitophorous vacuole (Lumb et al 

1988a) . 	Vacuolation at the anterior end of sporozoites and 

merozoites during invasion has been observed (Lumb et al 1988a, 

Vetterling et al 1971), suggesting emptying of rhoptries and/or 

micronemes, 	as occurs during invasion of host cells by other 

apicomplexa (Perkins 1992). 

All intracellular stages of C. 	parvurn occupy a position in the 

host cell confined to the microvillous border, 	this has been 

described as intracellular but extracytoplasmic (Goebel & 

Braendler 1982, 	Pearson & Logan 1983). 	After invasion, 	the 

elongate sporozoite transforms into a spherical trophozoite. At 

the region of attachment the inner membranes of host origin, and 

the plasma membrane of the parasite, fuse and undergo extensive 

folding to form the so-called feeder organelle (Marcial & Madara 

1986). During formation of the feeder organelle the trophozoite 

undergoes nuclear division and becomes a meront. 	Two further 

divisions, 	accompanied by cytoplasmic budding and infolding of 
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the parasite membrane, 	result in the formation of eight 

merozoites which are attached to a small residual body (Bird & 

Smith 1980, 	Vetterling et al 1971). 	Rupture of the mature 

meront releases the eight merozoites which are very similar to 

sporozoites. Current and Reese (1986) distinguished sporozoites 

from merozoites by the former containing amylopectin granules 

near the centre of the cell and the latter having a centrally 

placed nucleus, 	though Bird and Smith (1980) considered the 

merozoite nucleus to be at the posterior of the cell. 	Some 

workers (Snodgrass et al 1984, Bird & Smith 1980) thought there 

was only one type of meront, 	which when mature contained eight 

merozoites. 	However, it is now widely accepted that there are 

two types 	i.e. 	type I meronts, 	which appear first in the 

lifecycle and contain eight merozoites when mature, and type II 

meronts, 	which contain only four. 	The former produce type I 

merozoites, 	which may develop into either type I or type II 

meronts, 	whereas type II meronts produce type II merozoites 

which go on to develop into gamonts. Evidence for this includes 

the continued presence of type I meronts over an eight day post 

infection period in enterocytes of mice, 	and the observation 

that type I meronts were always more numerous than type II 

meronts (Current & Long 1983). 

Macrogamonts have a large nucleus, cytoplasm containing clearly 

defined rough endoplasmic reticulum, 	amylopectin granules near 

the parasite's base, 	wall-forming bodies, 	and a large lipid 

containing vacuole (Bird & Smith 1980, Goebel & Braendler 1982). 

As the macrogamont matures, the wall-forming bodies become more 
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numerous in the peripheral cytoplasm, 	and two types, which 

subsequently form the two layers of the oocyst wall, can be 

distinguished by electron density (Current & Reese 1986) 

Microgamonts look very similar to macrogamonts until nuclear 

division begins. Microgametogenesis produces 16 microgametes by 

budding from a large residual body. 	Mature microgametes are 

wedge shaped, with a tapered posterior and expanded anterior 

end. The nucleus is situated posteriorly, 	and cytoplasmic 

microtubules run parallel to the long axis (Goebel & Brandler 

1982). Microgametes released into the gut lumen have been 

reported to attach, 	by their anterior end, only to host cells 

containing a mature macrogamete, suggesting the involvement of 

specific receptors (Current & Reese 1986) . Fertilization occurs 

by microgamete penetration of the macrogamete. 

Following fertilization, oocyst formation begins. The oocyst 

wall consists of two layers limited by three membranes. It is 

believed to be formed by fusion of the wall-forming bodies with 

these membranes, and emptying of their contents between the 

membranes (Current & Reese 1986). 	Sporulation then occurs, 

forming four sporozoites. 	The method by which oocysts are 

released from the parasitophorous vacuole is not known, however, 

it may simply occur by degradation of the host cell after it has 

been shed into the lumen. 	Two types of oocyst have been 

described which differ in the thickness of their walls (Current 

& Reese 1986); 	thin-walled oocysts which readily excyst within 

the same host causing autoinfection, and thick-walled oocysts 
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which pass out in the faeces, thus completing the lifecycle. 

The pre-patent period in experimental infections in calves, 

lambs and mice, and in cell culture is 3-4 days (Blewett 1988b, 

Angus et al 1982, 	Current & Long 1983, Current & Haynes 1984, 

Current & Reese 1986) . 	This short pre-patent period, plus the 

potential for auto-infection by recycling of type I meronts and 

thin-walled oocysts contributes to the very high reproductive 

potential of the parasite. 	In one study lambs which were fed 

approximately 5-10 oocysts per day, 	each shed to the order of 

1010 oocysts during a 20 day period (S. 	E. 	Wright, 	Moredun 

Research Institute, personal communication) 

1.4 Clinical features and pathology of cryptosporidiosis. 

The most common clinical feature of cryptosporidiosis in both 

humans and animals is diarrhoea. Other symptoms reported in both 

immunocompetent and immunocompromised persons include abdominal 

pain, weight loss, nausea, vomiting, mild fever and headache 

(Crawford & Vermund 1988) . 	In most immunocompetent patients, 

diarrhoeal illness due to cryptosporidial infection lasts from 

three to 12 days. 	The illness usually resolves spontaneously, 

without intervention, 	though occasionally fluid replacement 

therapy is required, 	and in a few cases diarrhoea lasts more 

than two weeks (Current & Garcia 1991). 	Malnutrition may 

contribute to increased severity of cryptosporidial infection 

(Smith & van den Ende 1986, 	Bogaerts et al 1984), 	and 
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cryptosporidiosis is thought to be an important contributor to 

morbidity and mortality due to diarrhoeal illness in developing 

countries (Current & Garcia 1991). 

Cryptosporidiosis in immunocompromised patients is typically 

more severe and prolonged than in the immunocompetent, 	and in 

cases where the cause of immunosuppression cannot be removed, 

may be a major factor leading to the death of the patient. 	In 

severly immunocompromised patients, for example those with AIDS, 

fluid loss is often excessive, 	three to six litres per day 

being not uncommon (Current & Garcia 1991). 	In addition, 

infection is not limited to the ileum, as is the case with most 

infections in immunocompetent persons, but may spread thoughout 

the gastrointestinal tract. In addition, infection of the gall 

bladder, 	pancreatic duct and the respiratory tract has been 

reported in a small proportion of immunocompromised patients 

with cryptosporidiosis (Fayer & Ungar 1986) . 	In patients with 

immune deficiencies the length and severity of cryptosporidiosis 

is dependent on the ability to reverse immunosuppression. 

Patients with reversible immunosuppression include those on 

immunosuppressive therapy for cancer or transplants, 

malnourished individuals, and those with concurrent viral 

infections such as measles, 	and cytomegalovirus (DeMol et al 

1984, Weinstein et al 1981). Despite the wide host range of C. 

parvum, clinical cryptosporidiosis in animals is primarily a 

problem in neonatal ruminants. 	It has been reported causing 

diarrhoeal illness in lambs (Tzipori et al 1981, Snodgrass et al 

1984), 	bovine calves (Tzipori et al 1983, Heine et al 1984b), 
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red deer calves (Elewett 1988) and goat kids (Tzipori et al 

1 982a) . 	The clinical features of cryptosporidiosis in these 

animals include diarrhoea, inappetence, depression, weight loss 

and dehydration. Morbidity and mortality are very variable, and 

may be dependent on other factors such as cold weather and 

concurrent infections (Angus 1989). 

The mechanisms by which C. parvum infection causes diarrhoea are 

incompletely understood. In both immunocompetent and 

immunocompromised humans with cryptosporidiosis, 	blunting and 

fusion of villi, 	and infiltration of the lamina propria with 

inflammatory cells have been reported (Crawford & Vermund 1988). 

The resulting decrease in surface area may contribute to 

malabsorption resulting in diarrhoea. 	The occurrence of a 

secretory "cholera-like" diarrhoea in immune deficient patients 

with cryptosporidiosis suggests a toxin mediated hypersecretion 

into the gut. 	However, 	such a toxin has not been identified 

(Current & Garcia 1991). 

Intestinal lesions associated with cryptosporidiosis have been 

described in lambs (Angus et al 1982, 	Snodgrass et al 1984, 

Tzipori et al 1981), 	calves (Heine et al 1984b, Tzipori et al 

1983) and piglets (Argenzio et al 1990, Tzipori et al 1982b) . In 

all these reports the ileum was most heavily infected, 	and 

showed the greatest extent of histological changes, 	while the 

colon and jejunum were sometimes affected. 	Microscopical 

examination revealed stunting and fusion of villi and 

infiltration of the lamina propria with inflammatory cells. 
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Decreased lactase activity was reported in calves (Tzipori et al 

1983), 	lambs (Tzipori et al 1981) and piglets (Tzipori et al 

1982), and reduced glucose-dependent absorption of sodium and 

water was reported in piglets (Argenzio et al 1990). 	The 

reduced absorptive surface area resulting from villous changes, 

and the decreased activity of membrane bound enzymes both 

probably contribute to malabsorption and diarrhoea associated 

with the infection. 

1.5 Epidemiology of cryptosporidiosis. 

Various reviews have summarized the results of epidemiological 

surveys of cryptosporidiosis in humans (Fayer & Ungar 1986, 

Crawford & Vermund 1988, Tzipori 1988, Current & Garcia 1991). 

These authors are in agreement that human cryptosporidiosis has 

a worldwide distribution, 	is more common in children than in 

adults (highest prevalence is reported in children under two 

years old) , and that it is more prevalent in developing 

countries than in industrialized countries. The most recent of 

these reviews (Current & Garcia 1991) found that in 

industrialized countries e.g. 	North America and Europe, 

prevalence varied from 1-3%, 	and in underdeveloped countries 

values varied from 5% in parts of Asia, to 10% in some African 

countries, Serological studies also indicate that 

cryptosporidiosis is more common in underdeveloped countries. 

Seroprevalence rates reported in Europe and North America range 

from 25-35% whereas studies of seroprevalence in several South 
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American countries found that 64% of the population was 

seropositive (Current & Garcia 1991). 

C. 	parvum has been reported in variety of mammalian species 

other than humans. 	However, 	the literature indicates that 

clinical cryptosporidiosis is most commonly a problem in 

neonatal ruminants, 	especially lambs and bovine calves. 

Consequently, more information is available on the infection in 

these species, than in other mammalian species. Reports of herd 

outbreaks and surveys indicate that bovine cryptosporidiosis has 

a worldwide distribution (Fayer & Ungar 1986). 	In surveys of 

calf diarrhoea in the UK and in Holland, 	Cryptosporidium was 

second only to rotavirus as the most commonly detected 

enteropathogen (Reynolds et al 1986, 	De Visser et al 1987) 

Cryptosporidiosis has been reported in lambs in Australia, 

Scotland, Germany and North America (Fayer & Ungar 1986) . It has 

been suggested that cryptosporidiosis in lambs is less common 

and more sporadic than in calves (Angus 1989). In both lambs and 

calves, 	cryptosporidiosis appears to be age-related, 	with 

animals less than three weeks old most commonly infected. 

Transmission of cryptosporidiosis is via the oocyst which is 

passed fully sporulated and infective in the faeces of the host. 

Sources of human infection include zoonotic transmission. Calves 

have been implicated as a source of human infection (Reese et al 

1982, 	Anderson 1982), and in North Wales a study has noted an 

association between human cryptosporidiosis and contact with 

sheep (Casemore 1990) . 	The occurrence of urban infections and 
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transmission within families and at daycare centres provides 

evidence of person to person transmission (Casemore 1990) 

Outbreaks of human cryptosporidiosis attributed to contaminated 

water supplies have been reported in Sheffield, Oxfordshire, 

Ayrshire, 	New Mexico and Georgia (Current & Garcia 1991). 

Possible sources of water contamination include the use of human 

faeces as fertilizer, 	contamination of water courses with raw 

sewage, and excretion of large numbers of oocysts by animals on 

pasture. 	Following rainfall, 	oocysts may enter water courses 

and find their way into drinking water supplies. 	The higher 

rates of infection in underdeveloped countries compared with 

industrialized countries is probably due to poor sanitation, 

resulting in the contamination of drinking water with human and 

animal faeces. 

Bovine and ovine infections are primarily transmitted from one 

calf/lamb to another (Henriksen 1989, Angus 1990). Overcrowding 

and poor hygiene increase the risk of clinical infection in 

bovines (Henriksen 1989) . 	Since adult ruminants seem not to be 

susceptible to C. 	parvum infection, the question arises as to 

how cryptosporidiosis is transmitted from one year to the next. 

Evidence suggests that C. parvum oocysts are killed by freezing 

(Sherwood et al 1982), 	so environmental contamination with 

oocysts from the previous year seems unlikely to be a source of 

infection for neonatal ruminants. 	Since C. parvum is not host 

specific, potential sources of infection include infected cats, 

dogs and wild rodents. 	In one study, 	30% of 115 wild mice 

trapped at calving and calf rearing sites were infected with 
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Cryptosporidium (Klesius et al 1986) . Another possible source of 

infection for neonatal ruminants is the excretion of small 

numbers of oocysts by adult ruminants with low grade 

asymptomatic infections. This has been reported for both cattle 

(Mann et al 1987) and sheep (Papadopoulou et al 1989), though it 

is not known how common such infections are. 

1.6 Treatment and control of cryptosporidiosis. 

Many drugs have been tested against crytosporidiosis, 	but with 

little success. 	Fayër et al (1990b) list 94 therapeutic and 

preventive agents which have been tested for efficacy against 

cryptosporidiosis in humans or animals. 	Of these, 	few have 

shown any efficacy. 	Anecdotal success has been claimed for 

diloxanide furoate, 	furazolidone, 	quinine plus clindamycin, 

amprolium and interleukin-2. 	However, 	the value of such 

anecdotal reports is doubtful, 	especially where success is 

claimed in treating cryptosporidiosis in AIDS patients, in whom 

symptoms and oocyst shedding are known to wax and wane 

periodically, and in some cases to resolve spontaneously (Fayer 

& Ungar 1986). 

Conflicting results have been reported for the macrolide 

antibiotic spiramycin. Two studies, which attempted treatment of 

cryptosporidial diarrhoea in immunocompromised patients with 

spiramycin, both claimed partial success (Moskovitz et al 1988, 

Portnoy et al 1984). 	By contrast, 	another study of 
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cryptosporidial diarrhoea in infants found that patients treated 

with spiramycin showed no improvement compared with those 

receiving a placebo (Wittenberg et al 1989). 	Spiramycin trials 

in animals indicate that this drug may have its effect in 

reducing the level of C. 	parvuin infection indirectly, 	by 

causing vacuolation of enterocytes (Angus et al 1989) . 	More 

recently, a related drug, azithromycin, showed promising results 

when 	tested 	against 	cryptosporidiosis 	in 

dexamethasone-immunosuppressed rats (Rehg 1991a). 	Prophylactic 

administration of the drug prevented infection. 	In addition, 

when given therapeutically to rats with an established 

infection, 	all signs of the disease disappeared after 9 days. 

However, 	the infection recurred after treatment was stopped, 

indicating that residual infection persists, but is undetected. 

Of 15 anti-coccidials tested against cryptosporidiosis in mice, 

none prevented infection, 	but five reduced the numbers of 

oocysts shed (Angus et al 1984). The most effective of these 

(arprinocid) , 	was 	ineffective 	in 	mice 	when given 

therapeutically, and failed to control cryptosporidiosis in 

lambs. 

Several independent studies have reported promising results with 

halofuginone lactate. Natural infection with Cryptosporidi urn was 

successfully cured in 147 of 150 calves after 5-6 days of 

treatment (Villacorta et al 1991). 	Following withdrawal of the 

drug, animals which had received lower doses began to re-excrete 

oocysts. Halofuginone lactate was also found to be effective in 
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inhibit development of C. parvurn in cell culture (McDonald et al 

1990). A recent evaluation of the anti-cryptosporidial efficacy 

of 23 sulphonamides concluded that five were effective in 

reducing the severity of infection and should be investigated 

further (Rehg 1991b). 

Because of the lack of an effective drug for therapy or 

prophylaxis against cryptosporidiosis, a considerable amount of 

interest has been shown in the possibility of immunotherapy 

against the disease. 	Attempts to treat cryptosporidiosis by 

passive transfer of immune colostrum have given mixed results. 

Treatment of three immunocompromised patients with hyperimmune 

bovine colostrum led to clinical cure in two, 	and clinical and 

parasitologic cure in the third (Tzipori et al 1987). Remission 

of cryptosporidiosis in a child with agammaglobulinaemia 

following treatment with hyperimmune bovine colostrum has also 

been reported (Tzipori et al 1986). By contrast, another study 

which attempted treatment of three immunocompromised patients 

with immune bovine colostrum was unsuccessful (Saxon & Weinstein 

1987). The ability of bovine dialyzable leucocyte extract (DLE) 

to protect against cryptosporidiosis in AIDS patients was tested 

in a double blind trial (McMeeking et al 1990) . 	Six of seven 

patients given immune DLE gained weight and had less diarrhoea, 

but only one of seven receiving control DLE showed any clinical 

improvement. 

Since there is currently no effective prophylactic or 
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therapeutic agent against cryptosporidiosis, control depends on 

reducing the risk of exposure to infective oocysts. 

Cryptosporidiosis in farm animals can be controlled by 

management strategies and disinfection. For example, by movement 

of stock into clean areas prior to parturition, since it is only 

young 	animals 	that 	are 	susceptible 	to 	clinical 

cryptosporidiosis. 

Human cryptosporidiosis can be controlled by the use of 

disinfection procedures to reduce the risk of tranmission in 

domestic and hopital situations. 

Blewett (1989a) tested 35 disinfectants for activity against C. 

parvum oocysts. Only three showed clear-cut efficacy at 22°C. 

Others affected oocysts to a greater or lesser extent if used at 

higher temperatures, 	excessive concentrations or for very long 

exposure periods. These latter chemicals would not therefore be 

of use in routine disinfection procedures. 	Of the three 

chemicals which were effective at 22°C, 	Exspor, 	a chlorine 

dioxide based disinfectant, 	was inhibited by protein, 	so its 

use may be limited. 	It was concluded that the other two, 	10 

volume H202, and oocide (Antec International) , are suitable for 

domestic and agricultural use, respectively. 	The latter is 

applied in two stages, 	first a solution containing an ammonia 

source, a wetting agent, 	and a biocide, 	followed by an 

activator which initiates release of ammonia. 

Cryptospori di urn infections transmitted by contaminated water 
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supplies could be prevented by improved water treatment 

procedures. Current procedures including filtration and 

chlorination are not 100% effective (Smith 1990). Experiments 

have shown that exposure to UV light, or to high concentations 

of ozone (Peeters et al 1989, 	Casemore 1990) are lethal to 

oocysts. However, there are practical and financial problems 

associated with the use of such methods to treat large volumes 

of water. 

Further investigation into the survival of oocysts under various 

environmental conditions, such as in water supplies, on pasture, 

and in slurry and other farm waste, may provide useful 

information on the epidemiology and transmission of 

cryptosporidiosis, which in turn may have important implications 

for future control strategies. 

1.7 Immunology of Cryptosporidiurn parvum infection. 

Results from surveys and experimental infections in laboratory 

animals suggest that cryptosporidiosis is age dependent (Fayer & 

Ungar 1986, 	Sherwood et al 1982). 	This age resistance is not 

entirely exposure related, 	since adult specific-pathogen-free 

mice are refractory to infection with C. 	parvurn, 	whereas 

neonates are susceptible. 	In ruminants where infections are 

reported in adult animals, 	they are typically low grade and 

asymptomatic. 	However, experimental infections in calves show 

that both age and previous exposure affect their susceptibility 
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to cryptosporidiosis (Harp et al 1990). Age dependence in human 

cryptosporidiosis is less marked. Surveys show that infection is 

more common in children (Current & Garcia 1991, 	Fayer & Ungar 

1986), 	but this may be exposure dependent, since clinical 

cryptosporidiosis has been reported in both immunocompetent and 

immunocompromised humans of all ages. 

It seems likely that both non-specific and acquired immunity are 

involved in resistance to cryptosporidiosis. Various aspects of 

immunity to cryptosporidiosis have been studied using animal 

models in attempts to elucidate the mechanisms of protection 

against cryptosporidiosis. 

1.7.1 Humoral immune responses to cryptosporidiosis. 

Humoral responses to Cryptosporidium infection have been 

described in normal and immuno-compromised humans, 	and in a 

number of other mammalian species (Casemore 1987, 	Ungar et al 

1986, Campbell & Current 1983, 	Mead et al 1988b, Hill 1989, 

1990,Harp et al 1990, 	Whitmire & Harp 1991, Gardner et al 

1991). However, the role of antibody in protection against 

cryptosporidiosis remains unclear. 

Ungar et al (1986) measured Cryptosporidium specific IgG and 1gM 

in irtununocompromised and immunocompetent humans infected with 

Cryptospori di urn. 	A specific 	serum antibody response to 

Cryptosporidium was present in AIDS patients, 	as well as in 

immunocompetent persons. Similar observations were reported by 
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Campbell and Current (1983), 	who found high Cryptosporidium 

specific antibody titres both in irumunocompetent subjects who 

had recovered from cryptosporidiosis, and in AIDS patients with 

persistent infections; suggesting that an antibody response is 

not sufficient to clear the infection. These workers also found 

that 	two subjects 	with normal T cell function and 

hypogamma-globulinaemia had persistent cryptosporidiosis, 	and 

concluded that both humoral and cell-mediated immunity are 

necessary for recovery from cryptosporidiosis. 

Absence of a role for antibody in protection against 

Cryptosporidiurn infection in mice is suggested by the work of 

Taghi-Kilani et al (1990). 	B cell depleted (anti-it-treated) 

neonatal BALB/c mice did not differ from age matched controls in 

onset, peak or duration of cryptosporidiosis. Additionally, 

adult anti-IA-treated mice could not be infected with ten times 

the usual dose for infecting neonates, implying that the age 

related resistance to cryptosporidiosis is also independent of 

antibody. 

Similarly, 	there is little evidence for a protective role for 

specific antibody in Cryptosporicliurn infection in ruminants. 

Harp et al (1990) looked at the effects of age and previous 

exposure on susceptibility of calves to cryptosporidiosis. They 

found that calves raised in isolation remained susceptible to 

infection up to three months of age, 	whereas animals which had 

been previously infected were resistant to reinfection. 	In 

calves infected at one week or one month of age, 	there was no 
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significant increase in Cryptosporidium specific antibody titre 

following challenge exposure. 	Despite this lack of a secondary 

antibody response, the calves were resistant to reinfection. 

However, all of these studies have looked at serum antibody. It 

may be more appropriate to look at secretory antibody present in 

the gut lumen, since this may be effective against extracellular 

stages of the parasite. 	Hill (1989) demonstrated C. 	parvum 

specific antibody in faeces and gut mucus, 	as well as in serum 

of experimentally infected, 	colostrum deprived lambs. IgA was 

the only isotype detected in faeces and gut mucus, and a rising 

titre of faecal IgA coincided with a decline in oocyst shedding. 

Hill suggested that secretory IgA may play an important role in 

recovery from cryptosporidiosis by agglutinating sporozoites and 

merozoites, 	and/or blocking receptor sites, 	and therefore 

preventing them from infecting host cells. 

The role of passively transferred immunity to cryptosporidiosis 

via colostral antibody has been investigated by many workers. 

Epidemiological studies on cryptosporidiosis in infants in 

Guatemala (Cruz et al 1988), 	Costa Rica (Mata et aJ. 1984) and 

Liberia (Hojilyng et al 1986) indicated that breast-fed infants 

were less likely to suffer from cryptosporidiosis than non 

breast-fed infants in the same populations. 	However, 	the 

possibility that increased prevalence of cryptosporidiosis in 

non breast-fed infants could be due to exposure to contaminated 

water and/or feeding utensils, 	rather than to a lack of breast 

milk, 	cannot be excluded. 	Attempts have been made to treat 

persistent cryptosporidiosis in immunocompromised humans using 
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hyperimmune bovine colostrum, 	but the results have not been 

consistent (Ungar et al 1990b, 	Tzipori et al 1986, 1987, Saxon 

& Weinstein 1987) 

Passively transferred immunity to cryptosporidiosis has also 

been investigated in experimental infections in animals. 

Neonatal mice suckling dams that had recovered from 

cryptosporidiosis, 	or dams whose Cryptosporidium specific 

antibody level had been artificially raised by boosting with 

Cryptospori di urn oocysts, 	were 	equally 	susceptible 	to 

cryptosporidiosis, 	compared with mice suckling naive dams 

(Arrowood et al 1989, 	Moon et al 1988) . 	Attempts to protect 

calves from Cryptosporidiurn infection using hyperiminune 

colostrum have been more successful. Fayer et al (1989a) found 

that Cryptosporidiurn infected calves fed colostrum from cows 

that were hyperimmunized against Cryptospori di urn had less 

diarrhoea, 	and shed less oocysts, 	than infected calves fed 

normal colostrum. They demonstrated high levels of 

Cryptosporidiurn specific IgG, 1gM and IgA in the colostrum. The 

same colostrum also partially protected neonatal BALB/c mice 

against cryptosporidiosis, 	and neutralized the infectivity of 

sporozoites for neonatal mice in vitro (Fayer et al 1989b). 

These results implied that high levels of Cryptosporidiurn 

specific antibody in colostrum could partially protect against 

cryptosporidiosis. However, it is possible that the 

anti-parasitic activity may have been mediated by colostral 

factors other than antibody, such as cytokines or cells. Fayer 

et al (1990a) tested the ability of Cryptosporidiurn-specific 
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antibody purified from bovine colostrum, 	to protect neonatal 

mice against cryptosporidiosis. 	Mice treated with whole 

colostral whey or purified immunoglobulins had significantly 

reduced infection scores when compared with untreated mice. 

These results showed that colostral antibody alone could 

partially protect mice against cryptosporidiosis. 	In order to 

find out which antigens of the extracellular stages of the 

parasite are recognised by protective antibodies, 	several 

workers have carried out similar experiments using monoclonal 

antibodies (Mabs) instead of colostrum. 	Perryman et al (1990) 

showed that neonatal mice treated with Mabs which recognised 

sporozoite surface antigens were partially protected against 

oral challenge with Cryptosporidium oocysts. 	In addition, 

sporozoites treated with these Mabs in vitro lost their 

infectivity for neonatal mice. 	Subsequently, 	Bjorneby et al 

(1990) demonstrated that these Mabs also neutralized the 

infectivity of merozoites. 	In a similar study, Arrowood et al 

(1989) found that following infection with Cryptosporidium 

oocysts, 	neonatal mice treated with a mixture of Mabs 

recognising sporozoite surface antigens had significantly lower 

infection scores than control mice. 

1.7.2 Cell-mediated responses to cryptosporidiosis. 

The importance of T cells in resistance to, 	and recovery from, 

cryptosporidial infection is indicated by the fact that humans 

with T cell deficiencies have longer and more severe infections 

than those with normal T cell function (Crawford & Vermund 
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1988). 	Infections of this nature also occur in experimentally 

infected athymic rats and mice (Gardner et al 1991, Heine et al 

1984a, 	Ungar et al 1990a), 	and in mice with experimentally 

induced T cell deficiencies (Ungar et al 1990a, Rehg et al 1987, 

Brasseur et al 1988) . 	Chronically infected athymic mice clear 

the infection within a week of reconstitution with lymphoid 

cells from normal histocompatible mice which have recovered from 

Cryptosporidium infection (Ungar et al 1990a). In order to find 

out which T cell subset was involved in recovery from 

cryptosporidiosis, 	Ungar et al (1990a, 1991) investigated the 

effects of treatment with anti-CD4 and anti-CD8 Mabs on the 

susceptibility of mice to cryptosporidiosis. 	Neonatal mice 

treated with an anti-CD4 Mab developed persistent infections 

with diarrhoea and weight loss, 	similar to those observed in 

athymic mice. 	Anti-CD8 treated mice recovered at the same rate 

as untreated mice (Ungar et al 1990a). These results indicated 

that CD4+, 	but not CD8+, T cells are important in recovery of 

neonatal mice from cryptosporidiosis. 	However, 	further 

experiments indicated that CD4+ were not the onlylymphocytesubset 

involved in protection against cryptosporidiosis. Adult anti-CD4 

treated mice were much more resistant to cryptosporidiosis than 

their neonatal counterparts, 	developing chronic infections 

characterized by sparse oocyst shedding and no clinical symptoms 

(Ungar et al 1990a, 1 991) . 	This contrasts with adult athymic 

mice, in which severe infections with weight loss and diarrhoea 

occur. 	This suggests that some other lymphocyte subset, 	which is 

CD4- and absent in athymic mice, 	is important in preventing 

establishment of severe cryptosporidiosis, 	but is insufficient 
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to resolve a chronic infection. 

A role for interferon-rny (IFN-y) in controlling the severity of 

Cryptosporidium infection was indicated in experiments in which 

mice were treated with an anti-IFN-y Mab (Ungar et al 1991). 

Treated mice shed significantly more oocysts for a longer period 

of time than untreated mice, 	but the infection resolved 

spontaneously after about two weeks. 	When anti-IFN-y, 	and 

anti-CD4 treatment was combined, adult mice developed prolonged 

severe infections comparable to those seen in athymic mice. 	It 

would appear that both CD4+ T cells and IFN-y play separate 

roles in protection against cryptosporidiosis, 	with the former 

controlling duration, 	and the latter controlling severity of 

infection (Ungar et al 1991). 	Harp and Moon (1991) used W/Wv 

(mast-cell deficient) mice to examine the role of mast cells in 

immunity to cryptosporidiosis. 	Normal mice and W/Wv mice 

infected at one week old showed no differences in susceptibility 

to, or recovery from Cryptosporidiura infection, and both groups 

were resistant to reinfection. 	Adult W/Wv mice were more 

susceptible to primary infection than normal age matched 

controls, 	but both groups recovered at a similar rate. The 

authors concluded that recovery from, 	and subsequent immunity 

to cryptosporidiosis is independent of mast cells in neonatal 

mice, but the age resistance of adult mice to cryptosporidiosis 

may be partially dependent on mast cells, 	or other cell types 

affected by the W locus. 

The emerging picture of immunity to cryptosporidiosis is one in 
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which several different immune mechanisms are involved, 	both 

specific and non-specific. 	It would appear that if one 

particular immune mechanism is inactivated, the infection can be 

controlled by other means. But in cases where the immune system 

is severely compromised, such that multiple effector mechanisms 

are affected, 	the infection may become prolonged and 

life-threatening. 

1.8 Studies of Cryptosporidium parvum antigens. 

Antigens of Cryptosporidium parvurn that are recognised by sera 

from infected animals and humans have been investigated by many 

workers using immunoblotting techniques. 	While there is 

considerable variation between antigen profiles recognised by 

different sera, 	several workers have found consistent 

recognition of certain antigen bands with comparable molecular 

weights (mws). 

Recognition of a 23kDa antigen of sporulated oocysts by serum 

antibody from 93% of infected humans was reported by Ungar and 

Nash (1986) . 	Hill et al (1990) found that a 23kDa antigen of 

excysted oocysts was consistently recognised by serum and faecal 

IgA from experimentally infected lambs, and Lumb et al (1988a) 

reported that a 23kDa oocyst antigen was also recognised by nine 

of ten humans, 	and all of four goats infected with 

Cryptosporidium. 	Subsequently, 	Lumb et al (1989) showed that 

serum raised to this 23kDa antigen also recognised 
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Cryptosporidiurn antigens with mws of 37, 49, 58, 68, 120, 140, 

and 160kDa. They also used this serum in iminunoelectron 

microscopy experiments to localize the 23kDa antigen to the 

sporozoite and merozoite surface. Mead et al (1988b) found that 

a 20kDa antigen of purified sporozoites was recognised by all 

sera in a study of infected humans, horses and calves. They 

concluded that this was the same as the 23kDa antigen described 

by Ungar and Nash (1986) . 	In another study Arrowood et al 

(1989) showed that Mabs recognising a 20kDa antigen on the 

surface of sporozoites also bound to the surface of merozoites. 

Whitmire and Harp (1990) also described recognition of a 20kDa 

antigen by infected calves, 	and believed it to be the same 

antigen as the 20 and 23kDa antigens described by the 

aforementioned authors. However, in another study which looked 

at the antigens recognised by hyperimmune bovine colostral 

antibodies, 	Tilley et al (1990a) described recognition of two 

separate antigen bands, one with mw of 23kDa, and another with 

mw of 20-21 .5kDa. 	These authors suggest that other workers are 

confusing at least two separate antigen bands. 	In support of 

this, Tilley et al (1990b) described two separate proteins of C. 

parvum sporozoites which are labelled by 125  1 surface labelling, 

one with mw 18-2OkDa, 	the other with mw 23kDa. They also 

demonstrated that the 18-20kDa protein bound a lectin specific 

for -D-galactose, 	whereas the 23kDa peptide did not bind any 

of the lectins tested. 

In addition to the 20 and 23kDa immunodominant antigens, another 

surface antigen present on both sporozoites and merozoites has 



30 

been described by Tilley et al (1991). A Mab recognising a 15kDa 

antigen on Western blots of C. 	parvum sporozoites bound to the 

surface of both sporozoites and merozoites. 	Competition assays 

indicated that N-acetyl-glucosamine, 	and to a lesser extent 

N-acetylgalactosamine were important constituents of the epitope 

bound by this Mab. 	The authors believe this 15kDa glycoprotein 

to be the same molecule as both a 14.5-16.5kDa antigen 

recognised by bovine colostral antibodies (Tilley et al 1990a), 

and a 12-17kDa antigen recognised by serum antibody and faecal 

IgA from infected lambs (Hill et al 1990) . However, caution must 

be exercised when comparing antigens described in different 

studies, as bands with similar mws can be confused, as seems to 

have occurred in the case of the 20 and 23kDa antigens. 	Other 

low mw antigens described include an llkDa band recognised by 

infected calves (Whitmire & Harp 1990), 	and a 9-10kDa band 

recognised by IgA from hyperimmune bovine colostrum (Tilley et 

al 1990a) . 	Again, one could speculate as to whether these are 

the same molecule, 	but without further characterization one 

cannot draw any firm conclusions. 	When comparing results from 

different studies it may be worth considering how the animal has 

been exposed to Cryptosporidium antigens, 	as different routes 

of inoculation may result in recognition of different antigens. 

The literature indicates that considerably more antigen bands 

are recognised by animals which have been inoculated 

parenterally with oocyst or sporozoite preparations, 	than by 

animals which have been infected naturally, 	or by oral 

inoculation with oocysts (Hill 1989, Hill et al 1990, Whitmire 

& Harp 1991, 	Luft et a? 1987) . Additionally, work by Luft et 
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al (1987) indicates that the relative antigenicities of 

carbohydrate and protein epitopes of CrypLosporidium antigens 

may be dependent on the route of inoculation. 

Evidence for the presence of a non-protein antigen on the 

surface of sporozoites and merozoites of C. parvum is put 

forward by Riggs et al (1989). A Mab which binds to the surface 

of merozoites and sporozoites also recognises a sporozoite 

antigen which migrates in the dye front during SDS-PAGE. 	This 

antigen is not labelled with 
125  or [35S]-methionine, 	and is 

resistant to digestion with proteinase K, 	indicating a 

non-protein composition. 	In addition, it is eluted in the void 

volume of a Bio Gel column with an exclusion limit of 500kDa, 

indicating a very large molecule. Other surface antigens common 

to merozoites and sporozoites include proteins with mws of 98, 

55 and 28kDa, 	all of which are recognised by a single Mab 

(Riggs et al 1989). 	Other workers have described Mabs which 

exhibit polar reactivity in iminunofluorescence experiments. 	A 

Mab which binds to the anterior of sporozoites also recognises 

several bands ranging from 25-200kDa on Western blots (Arrowood 

et al 1989). In another study Bonnin et al (1991) described two 

Mabs, 	both of which bound to the micronemes of sporozoites and 

merozoites. 	These Mabs bound to a series of bands with mws 

between 40 and 210kDa. 	Several of these bands were recognised 

by both Mabs, 	others were recognised by only one. 	Periodate 

treatment of blots prior to incubation with Mabs prevented 

binding of one of the Mabs, 	indicating that it recognised a 

carbohydrate epitope. 



32 

The importance of carbohydrate moieties in iinmunogenicity of 

high mw Cryptosporidium antigens was also indicated in a study 

by Luft et al (1987). 	These workers found that recognition of 

several sporulated oocyst antigens with mws ranging from 72- 

>100kDa, 	by mice inoculated with Cryptosporidium oocysts, was 

considerably reduced by pretreatment of the sporulated oocysts 

with mixed glycosidases. 

1 .9 Cryptosporidium parvum isolate variation. 

Several studies aimed at identifying antigenic differences 

between C. parvum isolates have been carried out. 

Using a panel of 16 anti-C. parvum Mabs, McDonald et al (1991) 

demonstrated that each of five C. 	parvum isolates showed a 

unique pattern of reactivity. 	Nina et al (1992) subsequently 

examined the antigenic profiles exhibited by diffferent C. 

parvum isolates by immunoblotting using monoclonal and 

polyclonal antibodies raised against the parasite. The presence 

or absence of certain bands appeared to be correlated with the 

host of origin, 	suggesting the existence of strains associated 

with particular host species. 	In a similar study Nichols et al 

(1991) used an anti-C. 	parvum Mab to probe Western blots of 

different C. 	parvum isolates from humans, 	lambs and calves. 

Each isolate gave one of four banding patterns. One pattern was 

unique to the lamb isolates, each calf isolate gave one of the 
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three remaining patterns, 	and two of these patterns were 

also exhibited by the human isolates. 

Another method which has been used to investigate possible 

differences between C. parvum isolates, is restriction fragment 

length polymorphism analysis. 	Southern blots of EcoRI digested 

C. 	parvum DNA probed with pv47-2 (a probe containing repeated 

sequences (Longmire et al 1990)) revealed that DNA from three 

bovine isolates each gave an identical banding pattern, 	which 

was different to the patterns given by DNA from three human 

isolates (Ortega et al 1991). Furthermore, a 4.3kb fragment was 

present in each of the human isolates which was absent in each 

of the bovine isolates. One of the bovine isolates was passaged 

twice through calves, 	after which its restriction profile was 

unchanged. 	However, 	it would perhaps have been more 

interesting to passage one of the human isolates and re-examine 

its restriction profile. 

Further investigation into possible differences between C. 

parvum isolates is required. 	Successive passage and mixed 

infection studies would be of particular interest in order to 

determine whether 'strain characteristics' are stable, 	and to 

find out whether cross fertilization occurs between 'strains'. 

1.10 Genetic studies of C. parvum. 

Little is known of the molecular biology of Crypeosporidium. 
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Studies of the organism at the molecular level have begun only 

recently, 	due, in part, 	to the lack of interest in 

Cryptosporidium before it was recognised as an important cause 

of diarrhoea in both humans and other animals. 	Another factor 

may be the difficulty in obtaining sufficient quantities of the 

parasite to carry out molecular studies. 

The first published work on the molecular biology of 

Cryptosporidium involved field inversion gel electrophoretic 

separation of chromosome-sized DNA from two species of 

Cryptosporidium (Mead et al 1 988a) . 	Electrophoresis of C. 

baileyi gave six chromosomal bands, with apparent sizes ranging 

from 1,400kb to over 3,300kb. Electrophoresis of five C. parvum 

isolates each gave five chromosomal bands, 	with sizes falling 

in the same range as observed for C. baileyi. However, only two 

of the five bands coincided with bands of C. 	baileyi; 

conversely, 	there were no differences in migration patterns 

observed between the five isolates of C. parvum. A more recent 

study (Kim et al 1992), 	also employing gel electrophoresis of 

chromosomal DNA, confirmed the presence of five discrete 

chromosomal bands of C. 	parvum. 	However, 	these authors 

estimated the sizes of the bands at between 900 and 1400kb. 

Adding together the sizes of the observed bands, 	gives an 

approximate estimate of the size of the C. 	parvum genome at 

around 5.7Mb. 	However, 	the relative intensity of ethidium 

bromide staining of individual bands indicated that some may 

contain multiple chromosomes of nearly identical sizes. 	The 

above estimate is therefore likely to be an underestimate of the 
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true size of the C. 	parvum genome. Despite this, 	it seems 

likely that the genome of C. parvum is small in comparison with 

closely related Apicomplexa. 	For example, 	the genome of 

Plasmodium Lalciparum is approximately 20Mb (Goman et al 1982), 

and those of Eimeria tenella and Toxoplasma gondii have been 

estimated at 70Mb (Clarke et al 1987) and 97 Mb (Cornelissen et 

al 1984), respectively. 

Johnson et al (1990) used ribosomal RNA sequence comparison to 

investigate the phylogenetic relationship of Crptosporidium to 

other Apicomplexa. 	They concluded that Cryptosporidium was not 

especially closely related to the other members of the 

Apicomplexa used in the study (Plasmodium berghei, 	Sarcocystis 

gigantea, and Toxoplasma gondii), but of these, it was closest 

to P. 	berghei. 	This contradicts the widely accepted 

classification of Cryptosporidium which places it in the 

suborder eimeriorina, 	together with Eimeria, 	Sarcocystis and 

Toxoplasma. 	This classification is supported by a phylogenetic 

analysis based on ultrastructural observations (Barta 1989), 

which provided evidence that Cryptosporidium is more closely 

related to Eimeria and Sarcocystis than to Plasmodium. 

The overall G+C content of the C. parvum genome is unknown, but 

available sequence data indicate that it is likely to be 

relatively low. 	For example, 	the coding sequence of a C. 

parvum actin gene contains 38% G+C (Kim et al 1992) , 	with only 

28% G+C in the third codon position. In addition, 702bp of DNA 

flanking this gene contain only 27% G-4-C. 	Other C. 	parvum DNA 
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sequence data also point to a low G+C content for the C. parvum 

genome. 	This includes 2.3kb of DNA sequenced as part of a 

project to identify suitable sequences for diagnosis of 

Cryptosporidiosis by PCR, 	which contained 35% G+C (Laxer et al 

1 991) . Another group sequenced inserts from random clones picked 

from a C. parvum XZAP library (Dykstra et al 1991). They found 

that the average G+C content of the sequences was 32.6%. 

Several studies carried out since 1988 have identified 

protein-encoding DNA sequences of C. 	parvum. 	A C. parvum 

actin gene was isolated using a heterologous cDNA probe (Nelson 

et al 1991, 	Kim et al 1992), and the C. parvum gene encoding 

thymidylate synthase-dihydrofolate reductase was isolated using 

conserved sequences to amplify the gene by PCR (Gooze et al 

1991). In addition, 	C. parvum antigen-encoding DNA sequences 

have been isolated by screening expression with anti-C. parvum 

antiserum (Dykstra et al 1991, Petersen et al 1992) 

1.11 Aims of the present study. 

A great deal of interest in Cryptosporidium has been shown by 

the medical and veterinary professions since it was recognised 

as a cause of diarrhoeal illness in both humans and animals. 

Over the last ten years numerous papers have been published on 

various aspects of Cryptosporidium and cryptosporidiosis, 

including work on epidemiology, 	immunology, 	clinical and 

pathological observations, ultrastructure and chemotherapy. 
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However, 	our knowledge of the genetics of Cryptosporidium is 

still very poor. 	In October 1988, 	when the present study was 

initiated, 	the only published work on the genetics of the 

parasite was an investigation into the size and number of 

chromosomes of two species of Cryptosporidium (Mead et al 1988a, 

section 1.10). 

The aim of the present study was to identify, 	by screening C. 

parvum DNA libraries with anti-C. 	parvum antisera, genes, or 

gene fragments encoding antigens of the parasite. This approach 

would enable characterization of C. 	parvum proteins and their 

amino acid sequences. In addition, isolation and expression of 

C. 	parvum antigen-encoding genes may facilitate the study of 

immunity to cryptosporidiosis, and may ultimately contribute to 

the development of immunological control strategies against 

cryptosporidiosis, such as passive transfer of immunity. 

Identification and sequencing of protein-encoding genes of C. 

parvum could also provide information on aspects of the parasite 

genome such as G+C content and codon usage. 	Such information 

may be of use in subsequent molecular studies of C. parvum. In 

addition, identification of C. 	parvum DNA sequences may be of 

use in developing DNA-based methods for detection and typing of 

the organism, 	which could be used in epidemiological 

investigations. 
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CHAPTER 2. MATERIALS AND METHODS. 

2.1 Frequently used solutions. 

TE: 	 10mM Tris, 1mM EDTA; adjusted to pH 8.0 with HC1. 

TBS: 	50mM Tris, 150mM NaCl; adjusted to pH 8.0 with 

HC1. 

TEST: 	TES containing 0.5% (v/v) Tween-20. 

20x SSC: 	3M NaCl, 0.3M sodium citrate; adjusted to pH 7.0 

with NaOH. 

SM: 	 50mM Tris, 100mM NaCl, 10mM MgSO4, 0.1% (w/v) 

gelatin; adjusted to pH 7.5 with HC1. 

RNase A: 	10mg m1 1 . Heated to 1000C for 15 mm, cooled to 

room temperature and stored in aliquots at -20°C. 

Phenol: 	Equilibrated with 1M Tris-HC1 pH 8.0, then with 

0.1M Tris-HC1 pH 8.0. 8-Hydroxyquinoline added to 

0.1% (w/v) and aliquots stored at -20°C. 

Chloroform: Chloroform and isoamyl alcohol mixed in a ratio 

of 24:1 (v:v); stored in a dark bottle at room 

temperature. 

TEG: 	25mM Tris-HC1 pH 8.0, 10mM EDTA, 50mM glucose. 

HBSS: 	0.406mM MgSO4, 0.491mM MgCl2, 1 .26mM CaCl2, 137mM 

NaCl, 5.37mM KC1, 1 .07mM Na2HPC4, 0.441mM KH2PO4, 

0.002% (w/v) phenol red. 

PBS: 	137mM NaCl, 26.8mM KC1, 8.10mM Na2HPO4, 1.47mM 

RH2  PO4 
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2.2 Growth media. 

The quantities of all media components are given in grams per 

litre final volume of medium, 	except in cases where final 

concentrations of components are stated. 

L-broth: 	lOg Difco Bacto tryptone, 5g Difco yeast 

extract, 5g NaCl. 

L-agar: 	as for L-broth, but including 15g Difco agar. 

L-agarose: 	as for L-broth, but including 15g BDH agarose 15. 

L-top agar: 	as for L-broth, but including 7.5g Difco agar. 

L-top agarose: as for L-broth, but including 7.5g BDH agarose 

15. 

Minimal agar: 6g Na2HPO4, 3g KH2PO4, lg NH4Cl, 0.5g NaCl, 

15g agar, 1mM MgSO4, 0.1mM CaCl2, 1mM 

thiamine-HC1, 0.2% (w/v) glucose. 

Ampicillin: 	When required, media were supplemented with 

50g ml 	ampicillin, (final concentration) 
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2.3 Escherichia coli strains. 

Escherichia coil strains used in this study are listed in table 

2.1 

2.4 cloning Vectors. 

The cloning vectors used in this study are listed in table 2.2. 

2.5 Antisera. 

The antisera used in this study, and methods used to raise them 

are detailed in tables 2.3-2.5. 

N.B. All Home Office licensed animal procedures described in 

this thesis were carried out by Mr S. E. Wright. 

2.6 Parasitological techniques. 

2.6.1 Maintenance of C. parvum. 

The isolate used in this study was obtained from red deer 

calves, 	and was associated with severe diarrhoea (Blewett, 

1988). 	This isolate has been maintained by 3-6 monthly passage 

in male lambs or bovine calves, calves or lambs, 5-10 days old, 



Table 2.1 Escherichia co/i strains. 

Strain 	Genotype 
	

Reference 
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JM1O9 

NM522 

Y1089 

Y1090 

Yanrnsch-Perron eta! (1985) recAl supE44end4l hsdRl7gyrA96 
re/Al thi t(lac-proAB) F'[traD36 
proAB+ IacI 

q
lacZ /M15] 

sup1 thi L1(lac-proAB)hsd5 F' [proAB+ 
lacl lacZ LM151 

araD 139 A(lac)U]69 A(Ion) rpsL 
hfiA 150[chr :Tnl O(tet9] (pMC9) 

araD139 A(lac)U]69 A(Ion) 
rpsL supF trpC22 : :Tn 10 (tel') 
(pMC9) 

Gough& Murray (1983) 

Young & Davis (1983b) 

Young & Davis (1983b) 



Table 2.2 Cloning vectors. 

Vector 
	

Reference 

gt11 	 Young & Davis (1983a) 

pMS 	 Scherf eta! (1990) 

pBR322 	 Bolivar et a! (1977) 

Bluescript SK+ 	 Short eta! (1988) 
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Table 2.3 Antisera. 

Antiserum 
	

Source 

Rat anti-C. parvum antiserum * MRI 

Serum from gnotobiotic lambs infected with MRI 
C. parvum 

Mouse anti- 3 -galactosidase serum Sigma 

Rabbit anti-P786 antiserum MRI 

Anti-rat HRPO conjugate Dako 

Anti-sheep HRPO conjugate *m  MRI 

Anti-rabbit HRPO conjugate Dako 

Anti-mouse alkaline phosphatase conjugate Sigma 

* See table 2.4 
** See table 2.5 

See section 4.3 
""Preparation of this antiserum is detailed in Hill (1989) 

43 
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Table 2.4 Protocol used to raise anti-C. parvum antiserum in Wistar rats. 

Age (days) 	Inoculum 
	 Route of inoculation 

5 	 lO600cysts 

16 	 106  oocysts 

38 	 106 excysted oocysts* 

45 	 106 excysted oocysts 

52 	 106 excysted oocysts* 

oral 

oral 

intramuscular (2 sites) 

subcutaneous (2 sites) 

intramuscular (2 sites) 

60 	 The rats were anaesthetised with halothane (May & Baker) and 
exsanguinated by cardiac puncture. Blood samples were pooled 
and serum prepared from them stored at -20°C. 

*Oocysts  were excysted in vitro, resuspended and freeze-thawed twice 
in lOOj.tl of water. The volume was then brought to 500j.il with PBS. 



Table 2.5 Gnotobiotic lamb serum. 

45 

Blood samples taken at (age) Lamb 	Inoculum 

96 

108 

146 	 106 oocysts inoculated 
orally at 10 days of age 

150 

151 

152 

64 

66 

68 

69 

74 	 Approximately 50 oocysts per 
day given orally with feed, from 

76 	 0 to 22 days of age. 

81 

84 

89 

10 days and 26 days, except 
lamb 96 from which samples 
were taken at 10 and 21 days. 

22 days 
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were infected with 10 or 10  oocysts, respectively. At the same 

time each animal was fitted with a harness and detachable faecal 

bag to allow collection of total daily faecal output. 

Microscopical examination of faecal samples was carried out 

daily, using a haemocytometer. 	For this purpose faeces were 

diluted in 0.16% (w/v) malachite green containing 1% (w/v) 

sodium dodecyl sulphate (SDS) and samples found to contain more 

than 10  oocysts ml 	were kept for subsequent extraction of 

oocysts. 

2.6.2 Purification of C. parvum oocysts. 

Oocysts were extracted and purified from faeces by sedimentation 

and differential centrifugation. 	An aqueous dilution of faeces 

(5-20%) was acidified with 2% (v/v) sulphuric acid to a final pH 

of 5-6, which caused most of the faecal solids to flocculate and 

sediment. The fluid phase was decanted and centrifuged at 3000g 

to pellet solids including oocysts. The pellet was then 

resuspended in a small volume of water and washed in tap water 

by repeatedly centrifuging at 500g and retaining the pellet 

until the supernatant was clear. 	After the final wash the 

oocysts were suspended in 1% (w/v) SDS for an hour at room 

temperature, then washed by resuspending in tap water and 

repeatedly centrifuging at 500g until the supernatant was clear. 

Purified oocysts were stored in water at 4°C. 
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2.6.3 In vitro excystation of C. parvum oocysts. 

The required number of oocysts were sedimented by 

centrifugation, 	and resuspended in HBSS containing % (w/v) 

trypsin (from beef pancreas, 	EDH chemicals), 	adjusted to pH 

2.5-3 with HC1. 	The mixture was incubated at 37°C for an hour. 

Subsequently, 	the oocysts were pelleted by centrifugation at 

500g then resuspended in HESS containing 0.05% (w/v) sodium 

deoxycholate (BDH) and 0.2% (w/v) sodium hydrogen carbonate, pH 

8.0-8.4. 	This mixture was incubated at 370C for 30 min after 

which a small drop of the mixture was placed on a microscope 

slide. A coverslip was placed on top and the sample examined by 

phase contrast microscopy using a X40 objective lens. 	The 

numbers of intact oocysts, 	oocyst shells and sporozoites in 

several fields of view were counted (until the sum exceeded 

250), and from this the excystation percentage and sporozoite 

ratio were calculated, i.e. 

Excystation = 	 No. of shells 	 x 100 
percentage 	No. of intact oocysts + No. of shells 

Sporozoite ratio = No. of sporozoites 
No. of shells 

Typical values for freshly prepared oocysts were >90% 

excystation, and >2.5 for the sporozoite ratio. 
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2.6.4 Separation of C. parvum sporozoites and oocyst shells. 

The required number of oocysts were excysted in vitro and after 

the second incubation the excystation mixture was resuspended in 

lml of PBS. This was then layered onto the top of two identical 

llml Percoll (Pharmacia) gradients. 	The continuous gradients 

contained from 15 to 50% or 15 to 90% (v/v) of percoll diluted 

in 0.85% (w/v) NaCl (separations carried out using both these 

concentration gradients were found to be satisfactory) . 	The 

gradients were centrifuged at 1000g for 20 min. 	After 

centrifugation approximately 0.5ml fractions were taken, 

starting from the bottom of each tube. This was done using a lml 

syringe, to which was attached a three way valve. One outlet was 

attached to a long metal probe which was inserted into the tube 

containing the gradient. 	To the other outlet was attached a 

piece of tubing through which each fraction was emptied into an 

eppendorf tube. 	A small drop from each fraction was examined 

using phase contrast microscopy to find out which fractions 

contained sporozoites, and which contained oocyst shells. 

Appropriate fractions were pooled, diluted with four volumes of 

PBS, and the contents pelleted by centrifugation at 1000g for 5 

mm. 	Samples to be subsequently analysed by SDS-PAGE were 

resuspended in SDS-PAGE sample buffer and boiled for 5 mm 

before being stored at -20°C. 
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2.6.5 Preparation of Sarcocystis spp. cystozoites. 

Sheeps hearts, 	obtained from culled ewes, were trimmed of fat 

and veins, 	cut into pieces and washed well to remove as much 

blood as possible. The pieces were then minced using a household 

meat mincer and incubated for 2 hr at 370C in 0.85% (w/v) NaCl, 

0.26% (w/v) pepsin A, 	and 0.7% (v/v) HCl with constant 

stirring. 	The mixture was strained through a sieve and the 

liquid centrifuged at 1000g for 10 mm. 	The supernatent was 

discarded and the pellets resuspended in 30% (v/v) Percoll, 

0.85% (w/v) NaCl. This was then centrifuged at 1000g for 10 mm 

and the pellet containing Sarcocystis spp. 	cystozoites 

resuspended in 0.85% (w/v) NaCl. 

2.7 Bacteriological techniques. 

2.7.1 Growth and maintenance of E. coil. 

Bacteria were grown on solid and liquid media using standard 

techniques as described by Maniatis et al (1982). 	Where 

appropriate, medium was supplemented with ampicillin, IPTG and 

X-gal. 	E. 	coil strains/clones were maintained using standard 

techniques as detailed by Maniatis et a1 (1982). 	Short term 

maintenance (2-3 weeks) was accomplished on the surface of agar 

media plates stored at 4°C. 	Long term storage was at -70°C in 

medium containing 15% (v/v) glycerol. 



2.7.2 Preparation of competent cells. 

Competent bacterial cells were prepared by either of two 

methods. 

Fresh competent cells were prepared by the calcium chloride 

procedure described in Maniatis et al (1982), 	based on the 

original method of Mandel and Higa (1970) 

An overnight culture of E. coil JM109 or NM522 was diluted 1:50 

in fresh L-broth and grown to an 0D600  of 0.5. The cells were 

then cooled on ice for 15 min before being harvested by 

centrifugation at 3000g for 10 min and resuspended in 0.5 

volumes of cold (4°C) , sterile 50mM CaCl2. The cells were then 

left on ice for 30 min then pelleted as before and resuspended 

in 0.075 volumes of cold sterile 50mM CaCl2. The cells were left 

on ice for at least 1 hr before being used. Competent cells 

prepared in this way were kept for a maximum of 2 days. 

Competent cells were also prepared and stored at -70°C for 

future use (Chung et al 1989). 

An overnight culture was diluted 1:50 in L-broth and grown to an 

0D600  of 0.3-0.4. 	Cells were cooled on ice for 15 min and then 

harvested at 3000g for 10 mm. Next, they were resuspended in 

0.1 volumes of ice cold L-broth containing 10% (w/v) PEG 

(molecular weight approximately 8000), 	5% (v/v) DMSO and 25mM 
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MgCl2. Cells were dispensed into 200m1 aliquots and stored at 

-70°C for future use. 

2.7.3 Preparation of phage plating cells. 

A single colony of Y1090 was picked into lOml of L-broth 

containing 50mg ml 1  of ampicillin, and 0.4% (w/v) maltose, and 

grown overnight with shaking at 370C. 	lml of the overnight 

culture was added to 50m1 of fresh medium of the same 

composition and incubated at 37°C with shaking until the cells 

had grown to an 0D600  of 0.5. The culture was then cooled on ice 

and the cells harvested by centrifugation at 3000g for 10 mm. 

Subsequently, 	the cells were resuspended in 15m1 of ice cold 

sterile 10mM MgSO4, 	and were then ready for infection with 

phage. 

2.8 Phage techniques. 

2.8.1 In vitro packaging of phage DNA. 

Phage DNA was packaged into phage heads using commercially 

avialable packaging extracts (Amersham). Extracts A and B were 

thawed on ice. Immediately after thawing, 10i1 of extract A and 

15m1 of extract B were each added to the DNA to be packaged. The 

contents of the tube were gently mixed, then incubated at 20°C 

for 2 hr. 	The volume was then made up to 0.5ml, lOmi of 

chloroform was added and the phage stock stored at 4°C. 
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2.8.2 Plating lgtll. 

10-100ml of an appropriate dilution of bacteriophage stock were 

added to 100m1 of 11090 plating cells, 	and the cells then 

incubated at 37°C for 15 mm. 4m1 of liquid top agar at 45°C 

containing 50m1 ml ampicillin were then added to the cells and 

the mixture poured onto the surface of a dry L-agar plate 

containing 50mg ml 1  ampicillin. 	The top agar was allowed to 

set, after which the plates were incubated at 43°C overnight. 

2.8.3 Picking plaques. 

Individual plaques were cored out of agar using sterile pasteur 

pipettes and each added to eppendorf tubes containing 0.5ml of 

SM buffer and a drop of chloroform. The tubes were then stored 

at 4°C. Single plaques contained approximately 106_107  pfu. 

2.8.4 Plate lysates. 

Approximately 10 pfu (5-50ml) from a single plaque suspension 

were used to infect fresh 11090 plating cells and plated out as 

described in section 2.8.2. After incubation overnight at 43°C 

confluent lysis had occurred and the phage were eluted in 3m1 of 

SM buffer by gentle shaking for 2 hr at room temperature. 

Bacterial debris were then removed by centrifugation at 8000g 

for 10 mm. 	The lysate was then stored over chloroform at 4°C, 

or used to prepare phage DNA as described in section 2.9.6. 
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2.8.5 Preparation of lgtll lysogens. 

A single colony of E. coli Y1089 was picked into lOml of L-broth 

containing 50mg ml 1  ampicillin and 0.4% (w/v) maltose and grown 

overnight at 37°C with shaking. lml of the overnight culture was 

added to 50ml of fresh medium of the same composition, 	and 

incubated at 370C with shaking until the cells had grown to an 

OD 600  of 0.5. 	
1M MgCl2  was then added to the cell culture to 

give a final concentration of 10mM, 	and cells were dispensed 

into 100tl aliquots on ice. 	A lOOml aliquot was infected with 

10-50ml of a dilution of the appropriate phage stock, containing 

approximately 10 pfu, and incubated at 32°C for 20 mm. After 

incubation, the cells were plated on L-agar plates containing 

50tg ml 1  ampicillin, 	at a density of approximately 250 per 

90mm plate, 	and incubated at 32°C overnight. 20 colonies were 

picked from each plate and spotted onto each of two L-agar 

plates containing 50tg m1 1  ampicillin. One plate was incubated 

at 32°C and one at 43°C. 	Lysogens were identified by their 

ability to grow at 32°C but not at 43°C. 

2.9 DNA techniques. 

2.9.1 Preparation of C. parvum DNA. 

C. 	parvum oocysts were excysted in vitro and then the 

excystation mixture was washed by centrifuging at 500g for 5 mm 

and resuspending the pellet in PBS. 	The mixture was then 

recentrifuged, and the sporozoites lysed by resuspending in 50mM 
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Tris-HC1 pH 8.0, 50mM EDTA, 1% (w/v) SDS. Proteinase 1< was added 

to a final concentration of 100tg m1 1  and the mixture incubated 

at 50°C for 3 hr. Following incubation, the lysate was extracted 

with phenol, 	phenol:chloroform 1:1 (v:v) then with chloroform, 

and the nucleic acids precipitated with ethanol and redissolved 

in TE. 	RNase A was then added to a final concentration of 50tg 

ml and the solution incubated at 37°C for 1 hr. 	Finally, the 

solution was re-extracted with phenol, 	phenol:chloroform, and 

chloroform, and the nucleic acids precipitated with ethanol. The 

pellet was redissolved in TE and stored at -20°C. 

2.9.2 Preparation of Toxoplasma gondii and Sarcocystis spp. DNA. 

Extraction of DNA from T. gondli tachyzoites (provided by Mr S. 

E. Wright, Moredun Research Institute) and Sarcocystis spp. 

cystozoites was carried out as described for C. parvum 

sporozoites. 

2.9.3 Preparation of E. coil genomic DNA. 

A 10 ml overnight culture of E. 	coil JM109 was harvested by 

centrifuging at 3000g for 10 mm. The cells were resuspended in 

2ml of TEG and lysed by the addition of 150tl of a freshly 

prepared solution of lysozyme (7mg ml) and 400tl of 10% (w/v) 

SDS. The mixture was incubated at 370C for 1 hr, then extracted 

twice with an equal volume of phenol:chloroform 1:1 (v:v) . 	The 

nucleic acids were precipitated by the addition of 0.1 volumes 

of 3M CH3COONa, and 2.2 volumes of ethanol, spooled, washed with 
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70% ethanol and dissolved in lOOpi of TE. 	RNase was added to a 

final concentration of 50tl ml 1  and the solution incubated at 

370C for 1 hr. 	Finally, 	the solution was re-extracted with 

phenol:chloroform 1:1 (v:v), 	re-precipitated with ethanol and 

redissolved in TE. 

2.9.4 Small scale preparation of plasmid DNA. 

Double stranded plasmid DNA was prepared from lOml overnight 

cultures grown under antibiotic selection by the method 

described in Maniatis et al (1982), based on the original method 

of Eirnboim and Doly (1979). 

1.5ml of the culture was pelleted by centrifugation in a 

microcentrifuge and the cells resuspended in 100tl TEG (25mM 

Tris-HC1 pH 8.0, 10mM EDTA, 50mM glucose) . 2001tl of a freshly 

prepared solution of 0.2M NaOH, 1% (w/v) SDS was then added and 

the contents of the tube mixed by inverting several times. 

Genomic DNA, cellular debris and protein were then precipitated 

by the addition of lSOpi of a solution containing 3M potassium 

and 5M acetate pH 4.8. These debris were pelleted by 

centrifugation at 10,000g for 5 min and the supernatant 

containing the supercoiled plasmid DNA was extracted with 

phenol:chloroform (1:1) and then precipitated by the addition of 

imi of ethanol. The DNA was redissolved in 50tl of TE containing 

20tg m1 1  RNase A. 
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2.9.5 Large scale preparation of plasmid DNA. 

A single bacterial colony was inoculated into 5ml of L-broth 

containing 50tg m1 1  ampicillin, 	and grown with shaking 

overnight at 37°C. 	Subsequently, 	500m1 of L-broth containing 

50tg m1 1  ampicillin were inoculated with the 5m1 overnight 

culture and grown overnight with shaking at 37°C. 	Bacterial 

cells were harvested by centrifugation at 4000g for 10 min at 

4°C. 	Cells from 250m1 of culture were resuspended in 20ml TEG 

and lysed by the addition of 2m1 of a freshly prepared solution 

of lysozyme (10mg ml) followed by 40m1 of a freshly prepared 

solution of 0.2M NaOH, 1% (w/v) SDS. The mixture was incubated 

on ice for 10 min and then chromosomal DNA, 	high molecular 

weight RNA and protein/membrane/SDS complexes were precipitated 

by the addition of 20m1 of a solution containing 3M potassium 

and SM acetate pH 4.8. 	The precipitate was pelleted by 

centrifugation at 22000g for 20 min at 4°C, and the supernatant 

recovered. 	Plasmid DNA was subsequently precipitated by the 

addition of 0.6 volumes of propan-2-ol and pelleted by 

centrifugation at 15,000g for 15 min at room temperature. 	The 

pellet was then washed with 70% (v/v) ethanol and redissolved in 

8m1 of TE. To every ml of this solution was added exactly lg of 

caesium chloride. 0.8m1 of ethidium bromide solution (10mg ml- 1 ) 

was then added for every lOmi of the DNA/caesium chloride 

solution, 	resulting in a final density of 1.55g ml 1  . 	This 

solution was centrifuged at 3000g at room temperature to remove 

protein and cellular debris. 	The supernatant was then 
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transferred into Beckman 11quickseal" tubes and centrifuged to 

equilibrium at 165,000g in a Beckman Ti70 rotor for 48 hr at 

20°C. After centrifugation, two bands located near the centre of 

the gradient were visible in ordinary light. 	The upper band, 

consisting of chromosomal DNA and nicked plasmid DNA, 	was 

collected first to prevent contamination of the lower band, 

using an 18-gauge hypodermic needle. The lower band, containing 

closed circular plasmid DNA, was then collected in the same way. 

Ethidium bromide was removed from the plasmid DNA solution by 

extracting with water-saturated butan-1-ol, 	then the DNA was 

precipitated by the addition of 2 volumes of water and 6 volumes 

of ethanol. 

2.9.6 Preparation of phage DNA. 

An aliquot of bacteriophage suspension (approx 10 	pfu) was 

plated on 85mm plates with E. 	coli Y1090, 	and incubated 

overnight resulting in confluent lysis of the bacterial lawn. 

Bacteriophage particles were eluted in 4m1 of SM, and bacterial 

debris removed by centrifugation at 8000g for 10 min at 4°C. 

Bacterial nucleic acids were removed by incubation with RNase A 

and DNase I, 	both at 1g ml-1
, 	for 30 min at 37°C. The 

bacteriophage particles were then precipitated by the addition 

of 20% (w/v) PEG, 2M NaCl in SM, followed by incubation on ice 

for 1 hr. 	The precipitated phage particles were pelleted by 

centrifugation at 10,000g for 20 min at 4°C and then resuspended 

in 0.5m1 of SM. 	After this the bacteriophage particles were 

lysed by the addition of 5t1 of 10% (wlv) SDS and 51 of 0.5M 
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EDTA and subsequent incubation at 68°C for 15 mm. The solution 

was then purified by extraction with phenol, phenol:chloroform 

1:1 (v:v), then chloroform, 	and the bacteriophage DNA 

precipitated by the addition of an equal volume of propan-2-ol. 

Precipitated phage DNA was pelleted by centrifugation at 10,000g 

and washed with 70% (v/v) ethanol before being dissolved in 50t1 

of TE containing 20g m1 1  RNase A. 

2.9.7 Restriction enzyme digestion. 

Restriction enzyme digestion was routinely carried out in a 

volume of 10-20il. 	Each reaction was buffered with one of four 

buffers (table 2.6), 	which was added to the reaction at a lOx 

concentration. 	Restriction enzyme was added to a final 

concentration of approximately lOunits tg 1  DNA and the reaction 

volume made up with sterile distilled water. 	The mixture was 

then incubated at the appropriate temperature for 90 mm. 

2.9.8 Ligation of DNA. 

Ligation reactions were prepared by mixing the appropriate 

amounts of vector DNA, insert DNA and lOx concentrated ligation 

buffer (750mM Tris-HC1 pH 7.8, 200mM MgCl 21  10mM spermidine, 

0.1% (w/v)BSA, 200mM dithiothreitol (DTT), 	10mM AT?). The 

reaction volume was made up with sterile distilled water and 1-3 

units of T4 ligase was added. Reactions were carried out in a 

volume of 10-20.t1 and incubated at room temperature for 2 hr, or 

at 16°C for 16-20 hr. 



Table 2.6 Restriction enzyme buffers. 

Buffer 	Final concentration 
	 Restriction enzymes 

1 	100mM Tris-HCL, p117.5; 50mM NaCl; EcoRI, EcoRV, PstI. 
6mM MgC12 ; 0.01% (w/v) BSA PvuI, XbaI 

20mM Tris-HC1, pH7.5; 50mM NaCl; BglII, Hindlil, Sphl 
2 	6mMMgC12 ;0.01%(w/v)BSA, 10mM 

2-mercaptoethanol 

33mM Tris-CH3COO, pH 7.9; Am!, KpnI, Sad, 
3 	66mM CH3COOK; lOmM(CH3COO)2 Mg; Smal 

0.0 1% (w/v) BSA; 10mM 
2-mercaptoethanol 

4 	10mM Tris-HC1, pH8.0; 150mM NaCl; BamHI 
6mM MgC12 ; 0.0 1% (wlv) BSA; 10mM 
2-mercaptoethanol 
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2.9.9 Dephosphorylation of DNA. 

The terminal 5' phosphates were removed from DNA by treatment 

with calf intestinal phosphatase (CIP). To the DNA was added 5il 

of lOx CIP buffer (0.5M Tris-HC1 pH 9.0, 10mM MgC121  1mM ZnC12 , 

10mM spermidine), and water to 48i1. 0.01 unit of CIP was then 

added and the reaction incubated at 37°C for 30 mm. After this, 

a second aliquot of 0.01 unit CIP was added and the incubation 

continued for a further 30 mm. 	40t1 of water, 10t1 of STE 

buffer (100mM Tris-HC1 pH 8.0, 1M NaCl, 10mM EDTA) and 5i1 of 

10% (w/v) SDS was then added and the reaction heated to 68°C for 

15 min in order to inactivate the CI?. The reaction mixture was 

then extracted twice with phenol:chloroform 1:1 (v:v) and twice 

with chloroform, and the DNA precipitated with ethanol. 

2.9.10 Blunt ending DNA molecules with T4 polymerase. 

To the DNA to be blunt ended ws added 2t1 of lOx T4 polymerase 

buffer (0.33M Tris-CH3COO pH 8.0, 	0.66M CH3COOK, 	0.1M 

(CH 3COO) 2Mg, 	5mM DTT, 1mg m1 1  BSA) and the volume made up to 

19il with sterile distilled water. 1tl(1 unit) of T4 polymerase 

was then added and the reaction incubated at 37°C for 5 min to 

allow the 31-5' exonuclease acivity to remove 3' overhangs. 

After this incubation 2l of a 2mM solution of the appropriate 

dNTP (2mM dGTP for DNA molecules with KpnI and SphI ends) was 

added and the reaction incubated at 37°C for a further 10 mm 

resulting in an equilibrium between the 31-5' exonuclease 
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activity and the 51 -3' polymerase activity and producing a blunt 

ended molecule. 

2.9.11 Transformation of competent E. coli. 

Up to 50tg of plasmid DNA was added to each 200tl aliquot of 

competent cells on ice. The DNA and cells were then incubated on 

ice for 30 min and subsequently heat-shocked at 42°C for 90 sec 

before being returned to ice for a further 5 mm. lml of L-broth 

was then added, 	and the cells incubated at 37°C for 1 hr to 

allow expression of antibiotic resistance. 100 and 200tl 

aliquots were then spread on L-agar plates containing 50tg m1 1  

ampicillin and incubated at 37°C overnight. 

2.9.12 Agarose gel electrophoresis of DNA. 

Nucleic acid grade "ultrapure" agarose was dissolved in TAE 

buffer (40mM tris-acetate, 2mM EDTA, pH 7.5-7.8), and ethidium 

bromide was added to the agarose solution to a final 

concentration of 0.5tg ml 1  before pouring the gel. 	0.2 volume 

of DNA loading buffer (0.25% (w/v) bromophenol blue, 0.25% (w/v) 

xylene cyanol, 15% (w/v) Ficoll Type 400; Pharmacia) was added 

to DNA samples before loading, and gels were electrophoresed in 

TAE buffer at 1-4 volts cm 1  until the required resolution was 

achieved. 	Hindill restricted bacteriophage ? DNA, 	or 1kb 

ladder markers (ERL) were co-electrophoresed to provide 

molecular weight standards. 	DNA fragments were visualised by 

fluorescence of bound ethidium bromide in UV light of 302nm 
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wavelength. 

2.9.13 Southern transfer of DNA to nylon filters. 

Transfer of DNA from agarose gels to nylon filters was carried 

out using the method of Smith and Summers (1980). 

The gel was incubated in 0.25M HC1 for 15 min then rinsed in 

distilled water and incubated in denaturing solution (1M NaOH, 

1.5M NaCl) for 30 mm. Next, the gel was placed in neutralizing 

solution (1M CH3COONH4, 	0.02M NaOH) for 1 hr. 	Transfer to 

"Hybond N" nylon membrane (Amersham) was carried out by placing 

the membrane, previously soaked in neutralizing solution, on top 

of the gel, 	followed by three sheets of Whatman 3MM filter 

paper, also soaked in neutralizing solution. 	Finally, 	a 3cm 

stack of paper towels and a weight were placed on top of the 

filter paper. 	Transfer was allowed to proceed for 12-24 hours 

and the DNA was then fixed to the membrane by UV irradiation, 

(0.4Joules cm- 2 

2.9.14 Polyacrylamide gel electrophoresis of DNA. 

Polyacrylamide gel electrophoresis (PAGE) of DNA was based on 

the method of Herring et al (1982). 

7.5% polyacrylamide gels were prepared by mixing appropriate 

volumes of 30% acrylamide stock solution (29.2% (w/v) 

acrylamide, 	0.8% (w/v) bisacrylamide), 	5x Loening 'E' buffer 
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(180mM tris 7-9, 150mM NaH2PO4, 5mM EDTA), and distilled water. 

TEMED and ammonium persulphate were added to the gel mix to give 

final concentrations of 0.1% (v/v), 	and 0.1% (w/v) 

respectively, immediately before the gel was poured. Gels were 

cast and run in the "mini protean" gel system (Biorad) at 200 

volts (constant voltage setting) 

2.9.15 Silver staining DNA in polyacrylamide gels. 

Nucleic acid fragments were stained using a modification of the 

silver-staining technique described by Herring et al (1982). 

Following electrophoresis, the gel was fixed by soaking in a 

solution containing 10% (v/v) ethanol and 0.5% (v/v) ethanoic 

acid. The gel was then stained in 11.2mM silver nitrate for 10 

mm. After a quick wash in distilled water, the bands were 

developed by soaking the gel in 0.75M NaOH containing 0.25% 

(v/v) formaldehyde for 2-3 minutes. When the bands had developed 

to the desired intensity, 	the developing solution was removed 

and the reaction stopped by washing the gel in 75mM Na2CO3. 

2.9.16 Recovery of DNA from agarose gels. 

DNA fragments were recovered from agarose gel by the technique 

of Vogeistein and Gillespie (1979) using the commercially 

available "Gene Clean" kit (Stratech Scientific Ltd). 

Briefly, 	an agarose gel slice containing the required DNA 
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fragment was excised from the gel. 	To the gel slice was added 

three volumes of 3M Nal and the mixture incubated at 500C to 

melt the agarose. 	"Glass milk" was then mixed with this 

solution and the mixture was left at room temperature for 5 mm 

to allow the DNA to bind to the glass. The DNA-glass matrix was 

pelleted and washed three times with "NEW wash" and the DNA was 

then eluted in 10tl of sterile distilled water at 50°C for 5 

mm. 

2.9.17 Preparation of digoxigenin-labelled DNA probes. 

Probe DNA was labelled with digoxigenin using the commercially 

available "DNA labelling and detection kit, non-radioactive" 

(Eoehringer Mannheim). 

Purified DNA was labelled by random-primed incorporation of 

digoxigenin-labelled deoxyuridine-triphosphate according to the 

manufacturer's instructions, as follows. The DNA was denatured 

by boiling for 10 mm, 	then incubated with 2t1 random 

hexanucleotide mix, 2il dNTP labelling mix and 2 units of Kienow 

enzyme in a total volume of 20t1 for 2-6 hr at 37°C. 	Random 

hexanucleotide mix contained 62.5 A260  units m1 1  of random 

hexanucleotides in a solution of 0.5M Tris-HC1 pH 7.2, 	0.1M 

MgC12, 1mM DTE, 2mg m1 1  BSA. The dNTP labelling mix contained 

dAT?, dGTP and dCTP each at 1mM, plus 0.65mM dTTP, and 0.35mM 

digoxigenin labelled dUTP. 
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2.9.18 Preparation of radiolabelled DNA probes. 

DNA to be radiolabelled was denatured by boiling for 10 mm. To 

the DNA was then added 3il of a solution of dGTP, dCTP and dTTP 

each at 0.5mM, 	2l of random hexanucleotide mix (Boehringer 

Mannheim), 	2t1(2Ci) of [32P]dATP and 1tl(2units) of Kienow 

enzyme. The reaction volume was made up to 20i1 with sterile 

distilled water and the reaction incubated at 37°C for 2-6 hr. 

2.9.19 Hybridization of digoxigenin-labelled DNA probes and 

detection of bound probe DNA. 

Hybridizations were carried out as described in the protocol 

supplied with the DNA labelling kit. 

Filters were prehybridized by incubating with hybridization 

solution (5x SSC, 	5% (w/v) "blocking reagent", 	0.1% (w/v) 

N-lauroylsarcosine, 	sodium salt, 	0.02% (w/v) SDS, 50% (v/v) 

formainide) for 1 hr at 42°C. This solution was then removed and 

replaced with 2-4m1 of fresh hybridization solution containing 

the freshly denatured probe DNA. 	Hybridization was at 42°C for 

16-20 hr. 	Filters were then washed twice for 15 min at room 

temperature with 2x SSC, 0.1% (w/v) SDS, followed by two further 

washes for 15 min with 0.1x SSC, 0.1% (w/v) SDS at 68°C. 

Immunological detection of bound probe DNA was carried out 

according to the manufacturers' instructions with minor 
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modifications, as follows. Filters were washed in TBS (1 mm), 

then incubated in TBS containing 0.5% (w/v) "blocking reagent" 

for 30 mm. 	The filters were then washed again before being 

incubated in antibody-conjugate diluted 1:5000 (v:v) in TBS, for 

1 hr. Unbound antibody-conjugate was removed by washing twice 

for 15 min in TBS. 	The filters were then equilibrated in 100mM 

Tris-I-IC1, pH 9.5, 	100mM NaCl, 50mM MgCl 2'  before adding the 

colour solution and leaving in the dark until the colour had 

developed to the required intensity. 	(Colour solution was 

prepared by adding 45tl "NBT solution" (75mg ml 1  nitroblue 

tetrazolium in 70% (v/v) dimethylformamide) and 33pi 

"X-phosphate solution" (50mg ml 	5-bromo-4-chloro-3-indolyl 

phosphate (Q-toluidine salt) in dimethylformamide) to 10 ml of 

100mM Tris-HC1, 	pH 9.5, 100mM NaCl, 5mM MgCl 2) . The reaction 

was stopped by washing in TE, then the filters were air dried. 

2.9.20 Hybridization of radiolabelled DNA probes and detection 

of bound probe DNA. 

Southern blots were prehybridized for lhr at 42°C in a solution 

of 5x Denhardt's solution (0.1% (w/v) of each of ficoll, 

polyvinylpyrrolidone and BSA), 	2x SSC, 	0.1mg m1 1  freshly 

denatured salmon sperm DNA, 0.5% (w/v) SDS, and with or without 

50% formamide. 	Before hybridization the probe was denatured by 

boiling for 10 min then the probe was added to 2-4ml of the 

prehybridization solution and this was added to the Southern 

blot and incubated at 42°C for 16-20 hr. 	After hybridization, 

filters were washed twice in 2x SSC, 	0.5% SDS, 	and with or 
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without 50% formamide, 	for 30 min at 42°C. 	This was then 

repeated, but this time without formamide. Finally, filters were 

washed in 2x SSC for 30 min at 42°C. 	Hybridized probe was 

detected by exposure of the filter to medical X-ray film for at 

least 16 hr at -70°C, 	followed by developing and fixing of the 

film in CDL8 developer and CF40 fixer (Photosol). 

2.9.21 Di-deoxy chain termination sequencing of DNA. 

All sequencing reactions were carried out using the commercially 

available T7 sequencing kit (Pharmacia). The kit provided all 

components required to carry out DNA sequencing reactions by the 

di-deoxy chain termination method (Sanger et al 1977) except 

1 35S1 dATP, which was obtained from Amersharn. Preparation of 

double stranded plasmid template DNA was carried out using the 

methods described in sections 2.9.4 and 2.9.5, all subsequent 

steps were carried out according to the manufacturer's 

instructions. Approximately 1tg of plasmid DNA was denatured by 

adding NaOH to a final concentration of 0.4M and incubating at 

room temperature for 10 mm. The DNA was then precipitated by 

the addition of 0.7 volumes of water, 0.3 volumes of 3M CH3COONa 

and 6 volumes of ethanol. 	Precipated DNA was washed with 70% 

(v/v) ethanol and redissolved in 10 tl of distilled water. 2il 

of annealing buffer (a buffered solution containing MgCl  and 

DTT), and 2tl of primer (1.6mM) were added to the DNA, mixed and 

incubated at 37°C for 20 min to allow primer to anneal to the 

template DNA. The annealed template and primer were left at room 

temperature for at least 10 min before proceeding to the 
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labelling and termination reactions. 	An "enzyme premix" was 

prepared by mixing 11 of distilled water, 3il  of "labelling mix 

A" (dCTP, dGTP and dTTP in solution), 1tl (1tC±) of [ 35S] dATP, 

and 2t1 of T7 polymerase (diluted to 1.5units tl 	in "enzyme 

dilution" buffer (a buffered solution containing BSA and DTT)) 

for each template to be sequenced. 	6t1 of enzyme premix was 

added to the annealed template and primer and incubated at room 

temperature for 5 min during which time newly synthesized DNA 

was labelled by incorporation of radiolabelled dATP. 	Chain 

termination was effected by adding 4tl from this reaction to 

each of four tubes containing 2.5tl of G, 	A, T and C mix 

respectively (each mix contained dGTIP, 	dATP, dTTP and dCTP, 

additionally the G mix contained ddGTP, the A mix ddATP, the T 

mix ddTTP and the C mix ddCTP) and incubating at 37°C for 5 mm. 

5il of "stop solution" (deionised formamide solution containing 

EDTA, xylene cyanol and bromophenol blue) was added to each tube 

and the tubes stored at -20°C. 

6% acrylamide gel solution was prepared by mixing 210g urea, 

72.5m1 40% acrylamide stock solution (38% (w/v) acrylamide, 2% 

(w/v) bis-acrylamide) and 50m1 10x TBE (1M Tris, 0,865M boric 

acid, 20mM EDTA) and bringing the volume to SOOml with distilled 

water. Sequencing gels were prepared by adding lml of 10% (w/v) 

ammonium persulphate and 50t1 TEMED to lOOmi of 6% gel solution 

immediately before pouring the gel mix into the assembled glass 

plates. Gels were electrophoresed using the S2 (ERL) or STS-45 

(151) apparatus, at 50W or 70W constant power setting, 

respectively. The gels were pre-run for 30 min before loading 



freshly denatured samples (heated to 80°C for 10 mm). Further 

samples were loaded when the bromophenol blue in the previous 

samples had migrated off the end of the gel, and gels were run 

for a maximum of 7 hr. 

After electrophoresis, gels were fixed by soaking for 15 min in 

10% (v/v) methanol, 	10% (v/v) ethanoic acid. Gels were then 

transferred to Whatman 3MM filter paper and dried on a gel 

drier. 

Detection of [35S]-labelled nucleic acids in sequencing gels was 

carried out by exposure of gels to medical X-ray film (Fuji) in 

autoradiography cassettes. Dried gels were placed in the 

cassette in direct contact with the film, and left overnight at 

room temperature. X-ray film was developed and fixed as for 

Southern blot autoradiographs (section 2.9.20) 

2.10 Protein and immunological techniques. 

2.10.1 Immunoscreening of Xgtll recombinants. 

Y1090 plating cells were infected with ?gt11 recombinants and 

plated at the required density as described in section 2.8.2. 

Plates were incubated at 43°C until plaques were just visible 

(3-3.5 hr). Expression of recombinant peptides was then induced 

by overlaying each plate with an 82mm nitrocellulose filter 

(Schleicher and Schuell) which had been previously soaked in 

10mM IPTG. 	The plates were then moved to a 37°C incubator and 
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left for a further 3.5 hr. Filters were removed from the plates 

and rinsed in TBS and then blocked by incubating overnight in 

TBS containing 10% (v/v) pig serum and 0.02% (w/v) NaN3. 	After 

blocking, 	the filters were washed (3x 10 mm) in TEST and then 

incubated with primary antibody for 90 mm. Filters were then 

washed in TEST before being incubated in horseradish peroxidase 

(HRPO) -conjugated secondary antibody for 90 mm. 	The filters 

were washed again in TEST before adding freshly prepared 

substrate solution (0.2mg ml 	diaminobenzidine dissolved in 

TES, 	to which 0.5l ml 	30% (w/v) H 2  0  2  had been added). When 

the colour had developed to the required intensity, the 

substrate was washed off with distilled water and the filters 

air-dried. 	Dried filters and original plates were aligned to 

identify and pick positive plaques. 

2.10.2 Preparation of induced cell lysates. 

Crude cell lysates for SDS-PAGE were prepared from induced 

cultures of ?gt11 lysogens and pMS plasmid clones using a method 

based on that described by Carroll and Laughon (1984). 

Lysogens: overnight cultures of the lysogens were diluted 1:100 

in L-broth containing 50tg ml 1  ampicillin and grown for 2 hr at 

300C with shaking. 	IPTG was added to the cultures to a final 

concentration of 1mM to induce expression from the lac promotor, 

and the cultures were moved to a 45°C water bath for 15 mm. The 

cultures were then placed at 37°C and grown for a further 1-2 hr 

before harvesting the cells by centrifuging at 10,000g for 1 mm 
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and lysing in 200tl SDS-PAGE sample buffer per 1 .5m1 of culture. 

Samples were stored at -20°C before being fractionated by 

electrophoresis on a 7.5% (w/v) SDS-polyacrylamide gel. 

pMS clones: growth and induction of expression from the lac 

promoter by pMS clones was as described for Xgtll lysogens, 

except that growth was at 37°C, not 30°C, and cells were not 

heated to 45°C. 

2.10.3 SDS-polyacrylamide gel electrophoresis. 

Discontinuous SDS-PAGE was carried out using a method based on 

that of Laemmli (1970) 

7.5 or 10% (w/v) resolving gels were prepared by combining 

appropriate volumes of 4x resolving gel buffer (1.5M Tris-HC1, 

pH 8.8) , 30% acrylamide stock solution (29.2% (w/v) acrylarnide, 

0.8% (w/v) bis-acrylamide) and 10% (w/v) SDS (final 

concentration 0.1%). 	Ammonium persulphate and TEMED were added 

to give final concentrations of 0.05% (w/v) and 0.05% (v/v), 

respectively, 	immediately before casting the gel. 	4% (w/v) 

stacking gels were prepared in the same way, 	except that 4x 

stacking gel buffer (0.5M Tris-HC1, pH 6.8) was substituted for 

4x resolving gel buffer, 	and TEMED was added to a final 

concentration of 0.1% (v/v). Samples to be analysed by SDS-PAGE 

were mixed with at least 4 volumes of SDS-PAGE sample buffer 

(0.125M tris-HC1 pH 6.8, 	5% (v/v) -mercaptoethanol, 10% (v/v) 

glycerol, 	2% (w/v) SDS, 0.05% (w/v) , 0.05% (w/v) bromophenol 
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blue, 	0.05% (w/v) xylene cyanol) , 	and boiled for 5 ruin 

immediately before loading the gel. 	Biorad mw markers or Sigma 

prestained mw markers were co-electorphoresed to provide mw 

standards. 	Gels were run using Tris-glycine-SDS running buffer 

(25mM Tris, 	192mM glycine, 	0.1% (w/v) SDS) in the 

"mini-protean" gel system (Biorad) at a constant voltage setting 

of 200 volts. 

Gels were stained by gentle agitation in 30% (v/v) methanol, 10% 

(v/v) ethanoic acid containing 0.1% (w/v) Coomassie brilliant 

blue R150. 	Gels were destained in several changes of 10% (v/v) 

methanol, 	10% (v/v) ethanoic acid, 	until background staining 

was reduced to the desired intensity. 

2.10.4 Western blotting. 

Proteins were transferred from polyacrylamide gels to 

"immobilon" PVDF (polyvinylidene difluoride) transfer membrane 

(Millipore) using a method based on that of Towbin et ad. (1979). 

Gels to be blotted were first soaked in blot transfer buffer 

(25mM Tris, 	192mm glycine) for 15 ruin to remove excess SDS. A 

sandwich was then assembled with the following successive 

layers: 	a porous fibre pad, 	two sheets of Whatman 3MM filter 

paper, the polyacrylamide gel, the transfer membrane, two sheets 

of Whatman 3MM filter paper and finally another porous pad. All 

components were prewetted with transfer buffer. The sandwich was 

then placed in the "mini-protean trans-blot cell" (Biorad) and 
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the tank filled with transfer buffer cooled to 4°C. Transfer was 

carried out at a constant voltage setting of 100 volts for 1 hr. 

Staining with Ponceau S was carried out to check that the 

proteins had transferred, and to locate the positions of tracks 

so that the membrane could be cut into strips for incubation in 

different antisera. 	The membrane was placed in a solution of 

0.2% (w/v) Ponceau 5, 	3% (v/v) trichloroacetic acid, 3% (v/v) 

sulphosalicylic acid for 5 mm, 	after which the membrane was 

stained a uniform pink. 	The staining solution was then removed 

and the membrane rinsed in TES until the background had faded 

sufficiently to see the protein bands. The membrane was then cut 

into the required strips and the remaining Ponceau S removed by 

washing in several changes of TEST. 

2.10.5 Irnniunodetection of proteins on Western blots. 

All steps were carried out at room temperature with mild 

agitation. 	The transfer membrane was rinsed in TBS and then 

blocked in TBS containing 10% (v/v) pig serum and 0.02% (w/v) 

NaN3 . After blocking, the membrane was washed (3x 10 minutes) in 

TBST and then incubated with the primary antibody diluted in TBS 

for 90 mm. 	The membrane was washed again in TBST before being 

incubated in the secondary antibody for 90 mm. 	Finally, 	the 

membrane was washed again in TBST before adding freshly prepared 

solution of the appropriate substrate. For alkaline phosphatase 

conjugated antibodies, 	the substrate solution was prepared by 

adding 66il of 5% (w/v) nitroblue tetrazolium in 70% (v/v) 

dimethyl formamide (DMF), and 33tl of 5% (w/v) 
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5-bromo-4-chloro-3-indOlyl-phosphate (-toluidine salt) in DMF 

to lOmi of 100mM Tris-HC1, 	pH 9.5, 	100mM NaCl, 	5mM MgC12. 

For HRPO conjugated antibodies, 	the substrate solution was 

prepared by adding 2mg diaminobenzidine and 5t1 of 30% (w/v) 

H 2  0  2 
 to lUrid of TBS. 

When the colour had developed to the required intensity the 

substrate solution was removed and the membrane washed with 

water (HRPO conjugates), 	or 20mM EDTA (alkaline phosphatase 

conjugates) and then air dried. 



75 

CHAPTER 3. ISOLATION AND EXPRESSION OF TWO CRYPTOSPORIDIUM 

PAR VUM GENE FRAGMENTS. 

3.1 Introduction and preliminary considerations. 

The aim of this project was to identify and characterize antigen 

encoding genes of C. 	parvum. 	The approach taken was to 

construct an expression library of C. parvum DNA in the widely 

used expression vector Xgtll, 	and to identify 

antigen-expressing clones by screening with anti-C. 	parvum 

antisera. 	This same approach has been used to identify 

antigen-encoding genes of several other parasites (Clarke et aJ. 

1987, 	Donelson et al 1988, Vogel et al 1988, lams et al 1990). 

The vector Xgtll is derived from bacteriophage X (Young & Davis 

1 983a) . 	Foreign DNA is inserted into a unique Ec0RI site 

situated 53bp upstream from the lac Z termination codon. 

Peptides encoded by insert DNA may be expressed as fusion 

proteins with -galactosidase. 	Expression of recombinant 

proteins, 	which may be deleterious to the host cell, 	is 

controlled by growth in E. 	coli strains (Y1090, 	Y1089) which 

express large amounts of the lac repressor. When required, the 

repressor is inactivated with IPTG, 	allowing expression of the 

recombinant protein. 	Another important feature of E. 	coli 

strains Y1090 and Y1089 is that they are deficient in the ion 

protease. 	This reduces the likelihood of breakdown of foreign 

proteins. 	Expression libraries in Xgtll can be prepared from 

genomic DNA or from complementary DNA (cDNA), which is obtained 

by reverse transcription of messenger RNA (mENA) . 	There are 
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advantages and drawbacks associated with each of these 

approaches. 	For example, 	an expression library prepared from 

genomic DNA will contain non-coding, as well as coding DNA. This 

may be a problem when working with large genomes which contain a 

high proportion of non-coding DNA, 	such as higher eukaryotes. 

More clones may have to be screened in order to find the clone 

of interest. 	Another disadvantage is the possibility of coding 

sequences being interrupted by introns, and therefore not being 

expressed. 	Complementary DNA libraries have the advantage of 

only containing coding sequences. However, they only contain the 

sequences of those genes which are being transcribed at the time 

of rnRNA extraction. 	Apicomplexans have complex lifecycles and 

many of their antigens are stage-specific (Kemp et al 1987). 

Therefore a cDNA library prepared from a particular lifecycle 

stage will only express a proportion of the antigen-encoding 

genes present in the genome. The only stage of C. parvum which 

could be prepared in sufficient quantities for nucleic acid 

extraction was the sporulated oocyst stage. 	Sporozoites could 

then be obtained by in vitro excystation of the oocysts. It was 

therefore decided to construct an expression library from C. 

parvum genomic DNA. The genome of C. parvum is relatively small 

(see section 1.10), 	and published gene sequences of other 

Protozoa suggest that introns are not as common in this group as 

in multicellular organisms. 	Therefore the drawbacks of genomic 

DNA libraries discussed above are not likely to be a problem in 

the case of C. 	parvum. Ideally, fragments of genomic DNA used 

to make an expression library should be generated in a 

completely random manner, such as by mechanical shearing, or by 



77 

sonication. 	Another method that is often used, 	though is not 

strictly random, 	is partial digestion using a restriction 

enzyme with a 4bp recognition site. 	These methods attempt to 

ensure that every gene has a chance of being cloned, 	and that 

all six possible reading frames are likely to be represented. 

However, 	each of these methods requires relatively large 

amounts of DNA, and since C. parvum DNA was in short supply, an 

alternative method of generating fragments for cloning into 

Xgtll was used. 	Restriction digests of C. parvurn DNA revealed 

that EcoRI digestion resulted in a distribution of fragments, 

the majority of which fall in the size range 0-9kb (Fig 3.1). 

The Xgt11 expression vector can accept inserts of up to 7.2kb 

(Huynh et al 1985), though clones with inserts as large as 11kb 

have been identified (K. Stevenson, Moredun Research Institute, 

pers. 	comm.). 	Use of EcoRI-digested C. 	parvum genomic DNA 

would therefore result in the possibility of the majority of the 

genome being cloned. 	Another advantage of using EcoRI-digested 

DNA is that further manipulation of the DNA is unnecessary in 

order to clone the fragments into the EcoRI site of Xgtl 1 . 	It 

was therefore decided to prepare a Xgtll expression library from 

EcoRI-digested C. parvum genomic DNA. 

Following identification of antigen-expressing clones by 

immunoscreening, the DNA inserts and the recombinant proteins 

expressed by these clones were characterized by gel 

electrophoresis and Western blotting. 
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Fig 3.1 Restriction digests of C. parvum genomic DNA. 

Genomic DNA from C. parvum was digested with BamHI (B), EcoRI (B) and Hindlil 
(H) and electrophoresed through a 0.8% agarose gel. 
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3.2 Construction of Xgtll expression library. 

5x109  C. parvum oocysts were first excysted in vitro. 

Subsequently, 	DNA was extracted from the sporozoites by 

incubation with proteinase K and SDS, 	followed by further 

purification by phenol extraction and ethanol precipitation 

(section 2.9.1). 	The amount of DNA obtained was estimated at 

approximately 40tg by examination of electrophoresed DNA stained 

with ethidium bromide. C. parvum DNA was digested with EcoRI and 

electrophoresed through a 0.8% agarose gel. DNA fragments up to 

approximately 8kb in size were then excised and recovered from 

the gel using the ugeneclean h procedure. 	Aliquots of this DNA 

were ligated with EcoRI digested, 	dephosphorylated Xgtll arms 

(Aniersham) in two separate ligation reactions (1 and 2). 	These 

reactions each contained 1ig of )cgtll DNA, and were carried out 

in a final volume of i0l. In addition, reaction 1 contained 

40ng of C. 	parvum DNA, and reaction 2, 80ng. After ligation, 

each reaction was packaged in vitro, 	then serial dilutions of 

the packaged phage were plated with E. 	coii Y1090 in order to 

calculate the recombinant titre. 	The top agar was supplemented 

with colour selection reagents (1mM IPTG, 	and 0.02% X-gal) in 

order to distinguish recombinant (colourless) from 

non-recombinant (blue) plaques. The results of the titration are 

shown in table 3.1. 

From the figures in table 3.1 it was calculated that packaged 

DNA 	from ligation 	1 	contained approximately 1.4 x 10 4 

recombinant clones, 	and ligation 2 contained approximately 2.4 

X 105  recombinants. 



Table 3.1 Bacteriophage titration. 

Plate 	Ligation 	 Dilution 	 No. of plaques 
factor 	 blue 	colourless 

1 	1 (40ng DNA) 103  6 43 

2 iø 3 2 

3 	 I'  i05  0 1 

4 iO 3 39 

5 iO4  1 1 

6 	 " 10 0 0 

7 	2(80 ng DNA) iø 28 325 

8 	 of iø 9 34 

9 	 of 10 0 2 

10 10 50 550 

11 10 3 74 

12 	 " 
5 

10 0 7 

The volume of each ligation reaction was made up to 0.5ml with SM before preparing 
the serial dilutions. Two sets of serial dilutions were made per ligation, and 5p.l from 
one of the dilutions was used per plate. 
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3.3 Identification of immunopositive Xgt11 clones. 

The antisera used to identify antigen-expressing clones were 

obtained from two sources. Anti-C. parvum antiserum was raised 

in a litter of rats by oral infection with oocysts, followed by 

parenteral inoculation with excysted oocysts (Table 2.4). 

Antiserum raised in this way recognises a wide range of oocyst 

and sporozoite antigens (Hill 1989) . 	This was an important 

consideration, since, due to limitations imposed by a short 

supply of C. 	parvum DNA, 	it was almost certain that not all 

antigen-encoding genes of C. parvum would be represented in the 

library (section 3.1). 	In addition to the rat antiserum, sera 

from gnotobiotic lambs which were experimentally infected with 

C. parvum were also available. Serum from one of these lambs 

(151, table 2.5) was also used to screen recombinants in the 

hope that one or more antigens that were recognised by the host 

during infection could be identified. 

Phage from ligation 2 were plated at a density of approximately 

S x 10 plaques per 80mm plate, 	and plaques were screened with 

rat anti-C. parvum antiserum. Three immunopositive clones were 

identified, denoted ?CPR1, 1CPR4.1 and XCPR4.2 The plaques were 

picked, replated and confirmed by rescreening, and this process 

repeated until each clone was purified. 	After screening, 	the 

amplified library was eluted in SM and stored over chloroform. 

The new titre was found to be approximately 2.5 x 108  pf u/mi 
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with 90% recombinants. 	Approximately 10 	plaques from this 

amplified library were screened with serum from a gnotobiotic 

lamb experimentally infected with C. 	parvum (lamb 151 table 

2.5) . One immunopositive clone (XCPS1O) was identified using 

this serum. The positive plaque was picked, 	rescreened, 	and 

the clone purified as before. 

3.4 Characterization of immunopositive ?gt11 clones. 

3.4.1 Demonstration of inserts in immunopositive Xgtll clones. 

Recombinant phage DNA was prepared from each of clones XCPR1, 

XCPR4.1, XCPR4.2 and XCPS10. The DNA was digested i) with EcoRI, 

and ii) simultaneously with KpnI and Sad (Figs 3.2 and 3.3). 

EcoRI digestion of DNA from each of clones XCPR1, XCPR4.1 and 

XCPR4.2 released a fragment of approximately 2.4kb. Digestion 

with KpnI and SacI generated an identica banding pattern to 

that obtained by digestion of ?.gt11, except that the 2.08kb band 

was missing. This was explained by the presence of the 2.4kb 

insert in the EcoRI site within this 2.08kb fragment, which 

resulted in the enlarged fragment (now approximately 4.48) 

co-migrating with the 4.43kb band of Xgtll (Fig 3.2). These 

results therefore indicated that clones XCPR1, 	XCPR4.1 and 

XCPR4.2 each contained an insert of approximately 2.4kb (denoted 

CPR1, CPR4.1 and CPR4.2 respectively). 

EcoRI digestion of DNA from clone XCPS10 released a fragment of 
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Fig 3.2 Insert analysis of clones ?CPR1, ?CPR4.1 and ACPR4.2. 

a b c d e f 	h 

Track 	 DNA 	 Restriction enzymes 

a 	 .gt11 KpnJJSacI 

b 	 XCPR1 KpnI/SacI 

c 	 ACPR4. 1 KpnIJSacI 

d 	 CPR4.2 KpnI/SacI 

e 	 Xgul KpiillSacl 

f 	 ?CPR1 EcoRI 

g 	 XCPR4. 1 EcoRl 

h 	 ACPR4.2 EcoRI 



Fig 3.3 Insert analysis of clone XCPS1O. 

a b c 

9. 
6 
A' 

2 
2( 

Track 	 DNA 	 Restriction enzymes 

a 	 Agtll 	 KpnIISacI 

b 	 XCPS1O 	 KpnJJSacI 

XCPS1O 	 EcoRI 
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approximately 3.5kb. Kpnh/SacI digestion resulted in the 

generation of a fragment of approximately 5.6kb in place of the 

2.08kb fragment produced by KpnI/SacI digestion of Xgt11 DNA 

(Fig 3.3). These results therefore indicated that ?CPS10 

contained an insert of approximately 3.5kb (CPS0) 

3.4.2 Identification of recombinant peptides expressed by Xgtll 

lysogens. 

Clones XCPR1, XCPR4.1, 	XCPR4.2, XCPS1O and a non-recombinant 

Xgt11 clone were lysogenized in E. coli 	Y1089. Crude cell 

lysates were then prepared from induced cultures of each of 

these lysogens, and aliquots of the lysates analysed by Western 

blotting (Figs 3.4 and 3.5) . Lysogens XCPR1, XCPR4.1 and XCPR4.2 

each expressed peptides which appeared on Western blots as a 

ladder-like series of bands with mws ranging from 116kDa to 

approximately 180kDa. These bands were recognised both by rat 

anti-C. parvum antiserum, 	and by mouse anti--galactosidase 

serum (Fig 3.4) . 	Since the 3-galactosidase fusion protein 

occurred as a series of bands, and not as a single band, it was 

concluded that these probably represented breakdown products of 

the full length fusion protein whose mw was unknown. If the 

entire 2.4kb insert consisted of a continuous open reading frame 

which was being fully expressed, then the mw of the full length 

protein would be estimated to be around 200kDa. This estimate 

allows 116kDa for the 3-galactosidase portion of the protein, 

and assumes that each amino acid has a mw of 0.1kDa, and that no 



Fig 3.4 Western blot analysis of lysogens XCPRI, XCPR4.1 and ACPR4.2. 

Induced lysates prepared from lysogens X.CPR1 (1), XCPR4.1 (4.1) and XCPR4.2 (4.2) 
were electrophoresed through a 7.5% polyacrylamide gel and Western blotted. Blots 
were probed with rat anti-C. parvum antiserum (b) or mouse anti-1-galactosidase 
serum (a). 	Lysates prepared from a Agtll lysogen (gtll) and E. coil Y1089 
(Y1089) were also Western blotted. 

YI089 gtII I 41 42 
a 

180- 

116- 

84- 

49- 

180- 

116- 

84- 

49— 

•• 	 . 
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Fig 3.5 Western blot analysis of lysogen XCPSIO. 

I 23456 

II..I..- - 
- 	 .•4, < 

:r r- 	 -180 

-116 

-84 
-58 

485 

I. 	

I 

Track 	 Lysate 	 Antiserum 

1 	 Y1089 	 Mouse anti-f-ga1actosidase 

2 	 A.gtll lysogen 	 of 

3 	 A.CPS101ysogen 	 of 

4 	 Y1089 	 C. parvum infected lamb (15 1) 

5 	 Xgtl1lysogen 

6 	 ?CPS101ysogen 



post translational modification occurs. 

Lysogen ACPS1O was grown for only 1 hr following induction, 

instead of the routine 2 hr induction carried out for all other 

lysogens. 	This was because induction of this clone for longer 

than 1 hr resulted in lysis of the cells. 	This indicated that 

the recombinant peptide expressed by this clone had a 

deleterious effect on the E. 	coil host cells. Western blotting 

of cell)ysates from lysogen XCPS1O revealed two bands with mws 

around 55kDa that were recognised by the gnotobiotic lamb serum, 

but not by mouse anti-3--galactosidase serum (Fig 3.5) . There are 

three simple explanations as to why peptides encoded by inserts 

in Xgtll could occur as free proteins instead of as fusions with 

3-galactosidase. Firstly, if an insert contains a gene, or gene 

fragment, together with its own promoter, and if the promoter is 

capable of forming an initiation complex with E. 	coil RNA 

polymerase, 	then the foreign gene may be transcribed 

independently of the lac Z gene in Xgtll. 	Secondly, the lac Z 

gene of Xgtll and the insert may be transcribed as a single 

unit, but if the ORF encoded on the insert DNA begins downstream 

of the 5' end of the insert, 	or is out of frame with the 

3-galactosidase ORF, 	then ft-galactosidase and the recombinant 

protein may be translated separately, 	but from the same mRNA. 

Thirdly, 	the recombinant peptide may be expressed as a 

3-galactosidase fusion protein, 	but the foreign protein may be 

cleaved off after translation. 	However, in all of these cases 

one would have expected 3-galactosidase to be expressed as well 

as the foreign protein, and this does not appear to have been 



the case following induction of the XCPS10 lysogen. 	It is 

possible that a mutation may have occurred in the lac Z gene of 

this clone. 

3.4.3 Demonstration that clones XCPR1, XCPR4.1 and XCPR4.2 all 

contain identical inserts. 

Since clones XCPRL XCPR4.1 and XCPR4.2 all contained inserts of 

the same size 	and, in addition, all expressed i-galactosidase 

fusion proteins with the same mws, it seemed very likely that 

they all contained the same insert. In order to find out whether 

this was the case, 	the insert from each of these clones was 

isolated by EcoRI digestion, electrophoresis, excision from the 

gel and "genecleaning". Each isolated fragment was then digested 

separately with RsaI and AluI. 	The digestion products were 

electrophoresed through a polyacrylamide gel which was then 

silver stained. The inserts from all three clones gave identical 

banding patterns for each restriction enzyme (Fig 3.6), 

confirming that clones ?CPR1, 	XCPR4.1 and XCPR4.2 did indeed 

contain identical inserts. From this point onwards, therefore, 

further work was carried out only on clones XCPR1 and XCPS1O. 

3.5 Characterization of the recombinant peptides expressed by 

plasmid subclones. 

The next step in characterization of these antigen-expressing 

clones was to subclone their inserts into the pMS plasmid 
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Fig 3.6 AluI and RsaI restriction profiles of CPR1, CPR4.1 and CPR4.2. 

123456 

-_-.__- 

I.-  

Track 	 DNA 	Restriction enzyme 

1 CPR1 Alul 

2 CPR4.1 Alul 

3 CPR4.2 Alul 

4 CPR1 Rsa[ 

5 CPR4.1 RsaI 

6 CPR4.2 RsaI 



Fig 3.7 pMS plasmid cloning vectors. 
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Sma I 
BamHI 

pMS1SAGA GAA TFC 
EcoRI 

I 
pMS2S AGG AAT TCT 
pMS3SAGAATF CTA 

Pst I 
Bgl II 
Hind III 
Kpn I 

Kpn I 
Xho I 

Multiple cloning site. 

5' 	XhoI KpnI 	 KpnI 
CAA AAA CTC GAG GTA CCG ATC GAA GGA CGT ACG GTA CCA 

Ile Glu Gly Arg 
Factor Xa site 

Hin III 	Bgl II Pst I 	pMS1S A GAA TTC 	Bam}ll 
AGC TTA CAG ATC TGC AG pMS2S G AAT TCT GGA TCC 

pMS3SAATF_CTA 

stop region 	 Smal 	 3' 
AGT AAT TAA TAG ATA ATA GCC CGG GCT TCC AAA TCG AGT 
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expression vectors (Fig 3.7). These are a set of three plasmids 

(pMS1S, pMS2S and pMS3S) which are derived from pMSgtll (Scherf 

et al 1990) and are identical except for a small region in their 

multiple cloning sites. Each has a unique EcoRI site, situated 

approximately 50bp downstream from the 3' end of the lac 2 gene, 

that is in a different reading frame in each of the three 

plasmids. The EcoRI site in pMS1S is in frame with that in 

Xgtll. There were three main reasons for using the pMS plasmids 

for sub-cloning. Firstly, foreign proteins are often more stable 

in E. coil when fused with the complete -galactosidase protein, 

than when fused with the shortened molecule lacking the 18 

carboxy-terminal residues as occurs in Xgtll. It was hoped that 

cloning the OPEl insert in pMS would allow the full length 

protein to be identified. 	Secondly, 	it is often possible to 

obtain larger quantities of recombinant fusion proteins when 

expressed from plasmid vectors than from Xgtll, since expression 

can be carried on for a longer period of time than with 

lysogens. This may be important at a later stage of the work 

since larger quantities of recombinant protein may be required 

to raise antisera. Thirdly, cloning 	CPS10 into each of the 

three reading frames could have facilitated expression of its 

encoded peptide as a 3-galactosidase fusion. 

3.5.1 Sub-cloning CPR1 and CPS1O in pMS. 

Before sub-cloning CPR1 and CPS10 it was desirable to identify 

one or more restriction sites within the inserts to allow their 



Fig 3.8a Restriction analysis of CPR1. 

abcd e f 

Track 
	

I IN 
	

Restriction enzymes 

a 	 Agtll BamHI 

b 	 A.CPR1 BamHI 

C 	 ?gt11 BglII 

ci 	 XCPRI BglII 

e 	 )Lgtll Hindlil 

f 	 XCPR1 HindlIl 

The EcoRI site in ?gt1 1 is situated on a 20.44kb BamHI fragment. Cleavage at this site 
would produce fragments of 14.07 and 6.37kb. The banding pattern resulting from 
BamHI restriction of XCPRI DNA (track b) suggested that the CPR1 contained a 
BamHI site. There was no evidence of sites for BglII or HindIII in CPR1 (tracks d 
and f). 
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Fig 3.8b Restriction analysis of CPR1. 
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Track 	DNA 	Restriction enzymes 	Size of 'extra' band (kb) 

a 	xgtil BamHI/Kpnl 	 - 

b 	XCPR1 Bam}ll/KpnI 	 2.88 

c 	Xgtll BamHI/SacI 	 - 

d 	XCPR1 BamHI/SacI 	 1.58 

The BamHI/Kpn I and BamHLISac I digests indicated that the BarnHI site in CPR 1 was situated 
approximately 1.86kb from its 3' end and 0.52kb from its 5' end respectively. i.e. 
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orientation to be determined following sub-cloning. Restriction 

digest analysis (Fig 3.8a, 3.8b) revealed that CPR1 had a BamHI 

site approximately 0.5kb downstream from its 5' end. 	CPS10 was 

found to contain three BamHI sites, 	one approximately 200bp 

downstream from its 5' end, 	and one approximately 100bp 

upstream from its 3' end. 	The third Barnl-II site cleaved the 

remainder of the insert between the aforementioned BamHI sites, 

into two fragments of approximately 2.5 and 0.7kb (Fig 3.9a, 

3.9b) 

Insert DNA for sub-cloning was prepared by digesting XCPR1 and 

XCPS1O DNA with EcoRI, electrophoresing through a 0.8% agarose 

gel and recovering the inserts using the "geneclean' procedure. 

E. coli clones harbouring plasmids pMS1S, pMS2S and pMS3S were 

obtained from Professor J. 	G. 	Scaife, 	King's Buildings, 

Edinburgh University. Large scale plasmid DNA preparations were 

carried out to obtain sufficient of each vector DNA for 

subcloning. 	The vector DNA was digested with EcoRI, 	and 

dephosphorylated using calf intestinal phosphatase. 	The CPR1 

and CPS10 fragments were ligated with each of the three pMS 

plasmids. Ligations were carried out in a total volume of 10tl, 

and following transformation of competent E. 	coli NM522 cells, 

transformants were identified by growth on L-agar supplemented 

with 50tg m1 1  ampicillin. 	Plasmid DNA was prepared from these 

	

transformants following overnight growth in lOml cultures. 	The 

plasmid DNA was then digested with BamHI in order to identify 

clones containing inserts in the correct orientation. 	The CPR1 



Fig 3.9a Restriction analysis of CPS 10. 
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Track DNA Restriction enzymes 

a ?gt11 BamHI 

b XCPS1O BamHI 

c Agtll Hindill 

d ACPS10 Hindu 

e A.gtll PvuJ 

f A.CPS1O pj 

g gt11 XbaI 

h XCPS1O xtal 

The presence of an extra band of approximately 2.5kb produced by BamHI restriction of XCPSIO 
DNA (track b) indicates that there are likely to be at least two BamHI sites in CPS 10. Further 
restriction digests were carried out to ascertain the positions of BamHI sites in CPS 10 (Fig 3.9b). 



Fig 3.9b Restriction analysis of CPS1O. 
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Track DNA Restriction enzymes 	Sizes of 'extra' bands (kb) 

a ?gt11 BamHI/KpnI 	 - 

b ?.CPS1O BamHI/KpnI 	 2.5, 0.7, 1.12 

c 2gt1 1 Bam}1I/SacI 	 - 

d XCPSIO BamHI/SacI 	 2.5, 0.7, 1.26 

The BamHI/KpnI and BamHI/SacI digests indicated that there were BamHI sites in 
CPSIO approximately lOObp from its 3' end and 200bp from its 5' end respectively. An 
additional BamHI site cuts the remaining 3.3kb into fragments of approximately 2.5kb 
and 0.7kb. i.e. 
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insert was successfully cloned into each of pMS1S, 	pMS2S and 

pMS3S, and clones containing the insert in the same orientation 

as that in ?gt11 were used for expression and analysis of the 

fusion protein. 

BamHI digests of the sub-clones containing CPS1O showed that 

part of the insert had been deleted in all of the clones 

examined. 	In each case the deletion had occurred in the 2.5kb 

BamHI fragment reducing it to approximately 1.9kb. 	This may 

have been due to recombination between the CPS1O DNA and E. coil 

NM522 DNA, since unlike many E. coil strains used for cloning, 

NM522 is not recombination deficient. Support for this view is 

given by subsequent cloning work carried out at Moredun Research 

Institute, 	by Z. 	Jurisic (visiting worker from Belgrade) 

During this work the CPS10 insert was ligated into the plasmid 

vector Bluescript SK+ and the recombinant plasmid was 

successfully transformed into E. 	coil JM109, without loss or 

rearrangement of DNA. 	Unlike strain NM522, JM109 contains the 

RecAl mutation. 

Table 3.2 shows the plasmid sub-clones used for SDS-PAGE Western 

blot analysis. 

3.5.2 Western blot analysis of recombinant peptides expressed by 

pMS sub-clones. 

Western blotting of lysates prepared from induced cultures of 



Table 3.2 pMS plasmid subclones. 

Plasmid 	 Vector 	 Insert 	Orientation of 
insert 

pCPR1/1S 	 pMS1S 	 CPR1 	 + 

pCPR1/2S 	 pMS2S 	 CPR1 	 + 

pCPR1/3S 	 pMS3S 	 CPR1 	 + 

pCPS1O/1S 	 pMS1S 	 CPS10" 	 + 

pCPS1O/2S 	 pMS2S 	 CPSiO' 	 + 

pCPS1O/3S 	 pMS3S 	 CPS1O" 	 + 

pCPS10/1S2 	 pMS1S 	 CPSiOd 	 - 

+ same orientation as that in ?gt1 1, with respect to lac Z 
- opposte orientation to that in A.gtll 
CPS1O denotes CPS10 with a deletion in the 2.5kb BarnHI fragment as 
described in section 3.5.1 
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Fig 3.10 Western blot analysis of pCPR1/1S. 

Lysates prepared from induced cultures of pCPR1/l S (2) and a clone harbouring 
pMS1S (1), were electrophoresed through a 7.5% polyacrylamide gel and Western 
blotted. Blots were probed with mouse anti--galactosidase antiserum (A) or rat 
anti-C. parvurn antiserum (B). 
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clones pCPR1/1S, pCPR1/2S and pCPR1/3S showed that a 

f3-galactosidase fusion protein recognised by rat anti-C. parvum 

antisera was expressed by clone pCPR1/1S (Fig 3.10). This fusion 

protein appeared as a series of bands with mws ranging from 

approximately 116 to 200kDa. Plasmids pCPR1/2S and pCPR1/3S both 

failed to express the fusion protein, indicating that the CPR1 

insert is likely to contain an ORF which is in frame with the 

EcoRI site in both Xgtll and pMS1S. A mw of 200kDa for the full 

length fusion protein indicates that the entire CPR1 insert is 

likely to consist of a single ORF. 

Peptides recognised by serum from lamb 151 were expressed by 

each of clones pCPS10/1S, 	pCPS1O/2S and pCPS10/3S. 	A band at 

approximately 80-9OkDa and two bands between 48.5 and 58kDa were 

present on Western blots of induced lysates prepared from each 

of these clones (Fig 3.11). 	Bands recognised by the 

anti-3-galactosidase serum with apparent mws of 80-9OkDa and 

116kDa were also present. However, it seemed unlikely that the 

80-9OkDa band recognised by the lamb serum was the same band as 

that recognised by the anti--galactosidase serum since a clone 

harbouring the pMS1S plasmid also produced a peptide of 80-90kDa 

recognised by the anti--galactosidase serum. 	It therefore 

appeared that the recombinant peptide encoded by CPS10 existed 

in the cell as a free protein and not as a 3-galactosidase 

fusion, in each of clones pCPS10/1S, pCPS1O/2S and pCPS10/3S. 

A lysate prepared from clone pCPS10/1S2  was Western blotted to 

find out whether the recombinant peptide recognised by the lamb 



Fig 3.11 Western blot analysis of pCPS1O/1 S, pCPS1O/2S and pCPS1O/3S. 

Lysates prepared from induced cultures of pCPS1O/1S, pCPS1O/2S and pCPSIO/3S 
(tracks labelled is, 2s and 3s respectively), and a clone harbouring pMS1S (c) were 
electrophoresed through a 7.5% polyacrylainide gel and Western blotted. Blots were 
probed with serum from a gnotobiotic lamb (151) infected with C. parvum (left panel) 
or mouse anti--galactosidase serum (right panel). 
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serum was still expressed when the insert was in the opposite 

orientation with respect to the lac 2 gene. This was not the 

case. 	This indicated that the DNA encoding the recombinant 

peptide was not transcribed from its own promoter since this 

would not have been affected by its orientation with respect to 

the lac 2 gene. The DNA encoding the recombinant peptide seemed 

likely to be transcribed as a single unit with the lac Z gene. 

This was supported by the observation that uninduced cultures of 

clones pCPS10/1S, 	pCIPS10/2S and pCPS10/3S appeared to express 

less 3-galactosidase and less recombinant protein than induced 

cultures grown for the same period of time (Fig 3.12). 

In addition Western blots were carried out to determine whether 

the recombinant peptide expressed by pCPR1/1S was recognised by 

the serum from lamb 151, and whether the peptide expressed by 

pCPS1O/1S was recognised by the rat serum. In both cases no 

cross reaction was demonstrated (not shown) 

3.5.3 Recognition of the CPS1O recombinant peptide by a panel of 

sera from lambs infected with C. parvum. 

The recognition of C. 	parvum antigens by serum from infected 

animals appears to be rather variable ( section 1.8) . In view of 

this, 	it was of interest to find out which of a panel of 16 

sera from C. 	parvum-infected lambs recognised the CPS1O 

recombinant protein on Western blots of pCPS10/1S lysates. 	Six 

of the sera were taken from gnotobiotic lambs which had each 



Fig 3.12 Effect of induction on expression of recombinant peptide 
by pCPS1O/1S, pCPS1O/2S and pCPS1O/3S. 

Lysates prepared from induced (I) and uninduced (U) cultures of pCPS 10/is (is), 
pCPS1O/2S (2s) and pCPS1O/3S (3s) and a clone harbouring pMS1S (c), were 
electrophoresed through a 7.5% polyacrylamide gel and Western blotted. Blots were 
probed with mouse anti--ga1actosidase antiserum (top) or serum from a gnotobiotic 
lamb (15 1) infected with C. parvum (bottom). 
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received a single oral dose of 106  oocysts at 10 days of age. 

Serum samples were taken on day 16 post infection, 	with the 

exception of that from lamb 96 which was taken on day 11 post 

infection, 	when the animal died. 	The remaining 10 sera were 

from gnotobiotic lambs, 	each of which received a trickle 

infection of approximately 50 oocysts per day for a period of 22 

days. 	Each of these lambs became infected and exhibited a 

similar oocyst shedding pattern to that observed for donor lambs 

(Hill 1989), 	which are routinely infected with 1o6  purified 

oocysts, 	except that the duration of the prepatent period 

increased from 3 days to 5-7 days in these 10 lambs (S. 	E. 

Wright, Moredun Research Institute, unpublished). 

Figs 3.13 and 3.14 show that the recognition of C. parvum oocyst 

antigens by these antisera shows a considerable degree of 

variation. 	In particular, 	the sera from the 10 lambs given a 

trickle infection recognised more antigen bands than the sera 

from the lambs infected with a single dose of 10  oocysts. 

There was also a considerable degree of variation in the 

antigens recognised by different individuals within this group 

of 10 lambs. 	Of the six lambs infected with a single dose of 

10  oocysts, 	more antigens were recognised by serum from lamb 

151 (lane j) than by any of the other five lambs. 	This was the 

serum originally used to identify clone XCPS10. 

The results obtained when these these sera were used to probe 

Western blots of lysates prepared both from clone pCPS1 0/iS and 

a clone harbouring pMS1S as a control, 	are shown in Figs 3.15 
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Fig 3.13 Recognition of C. parvum oocyst antigens by serum from 
infected lambs I. 

3x106  excysted C. parvum oocysts were electrophoresed through a 10% 
polyactylamide gel, Western blotted, and strips probed with serum from gnotobiotic 
lambs infected with C. parvum. 
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e 74 

f 76 
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h 83 

i 84 
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Each lamb received a trickle infection of 
approximately 50 oocysts per day from 0-22 days of 
age. Serum samples were from day 22. 



Facing page. Lysates prepared from induced cultures of a clone harbouring pMS1S (top) and 
pCPS 10/iS (bottom) were electrophoresed through a 7.5% polyacrylamide gel, Western blotted, 
and strips probed with serum from gnotobiotic lambs infected with C. parvurn. 

Track 	Lamb 

a 	64 

b 	66 	 N.B This is the same serum used to 
probe a blot of excysted C. parvum 

c 	68 	 oocysts (Fig 3.13). 

d 	69 

e 	74 

f 	76 

g 	81 

h 	83 

84 

j 	89 
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Fig 3.15 Recognition of the recombinant peptide expressed by pCPS 10/1S 
by serum from lambs infected with C. parvum I. 
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Facing page. Lysates prepared from induced cultures of a clone harbouring pMS IS (top) and 
pCPS 10/iS (bottom) were electrophoresed through a 7.5% polyacrylamide gel, Western blotted, 
and strips probed with serum from gnotobiotic lambs infected with C. parvum. 

Track 	Lb 	Serum sample 
(day post infection) 

a 	96 0 

b 	96 11 

c 	108 0 

d 	108 16 

e 	146 0 

f 	146 16 

g 	150 0 

h 	150 16 

i 	151 0 

j 	151 16 

k 	152 0 

1 	152 16 

N.B. Serum used to probe tracks b, d, f, 
h, j and 1 is the same as that used to 
probe a blot of excysted C. parvum 
oocysts (Fig 3.14). 



Fig 3.16 Recognition of the recombinant peptide expressed by pCPS1O/1S 
by serum from lambs infected with C. parvum II. 
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and 3.16. 	Of the sera from the six lambs infected with 106  

oocysts, 	only serum from lamb 151 (lane j) recognised the 

peptide encoded by CPS10. 	This is evident from the fact that 

this antiserum was the only one which detected extra bands in 

the pCPS10/1S lysate that were not present in the pMS1S lysate 

(Fig 3.16). It seems likely that the protein encoded by CPS10 

corresponds to one of the bands recognised by serum from lamb 

151, 	but not by the other sera in this group (Fig 3.14), since 

in addition to being the only serum from this group to recognise 

the recombinant protein expressed by clone pCPS10/1S, 	it also 

recognised more C. 	parvum antigen bands than sera from the 

other five lambs in this group. 	Of the sera from the lambs 

which experienced a trickle infection with C. 	parvurn, all 10 

recognised the peptide encoded by cpsio, as is evident from Fig 

3.15. 	This shows that all 10 sera recognised a band of 

approximately 97kDa on a Western blot of the pCPS10/1S lysate 

which was not recognised on the Western blot of the control 

(pMS1S) lysate (Fig 3.15). 
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CHAPTER 4. FURTHER CHARACTERIZATION OF CPR1 AND ITS ENCODED 

PEPTIDE. 

4.1 Introduction. 

From here onwards it was decided to characterize further only 

CPR1 and its encoded peptide. Due to limitations of time it was 

not possible to continue work also on CPS10. 

For further characterization of the peptide encoded by CPR1, it 

was necessary to prepare antiserum that was specific for the 

fusion protein. Polyclonal serum was raised in a rabbit and this 

was used on Western blots to identify the corresponding C. 

parvum antigen. 

Further characterization of CPR1 involved Southern blotting to 

demonstrate i) that it is indeed derived from C. parvum DNA, and 

ii) it occurs as a single copy in the genome. Preliminary 

Southern blotting experiments also indicated that CPR1 did not 

hybridize with genomic DNA from Toxoplasma gondil or Sarcocystis 

spp., indicating that the CPR1 sequence is not homologous with 

sequences from these parasites. 

4.2 partial purification of the CPR1 fusion protein. 

Recombinant proteins expressed in E. coli often accumulate as 

insoluble inclusion bodies (Marston 1986). 	Using cell lysis 

techniques it is therefore often possible to solubilize the 
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majority of the cell components, 	and recover the insoluble 

fusion protein inclusion bodies by centrifugation. The cells may 

be lysed using enzymes such as lysozyme, 	in conjunction with 

detergents such as deoxycholate. Alternatively, the cells may be 

broken by mechanical means, for example by using a French press 

or a homogenizer, 	or by sonication. 	The following method, 

adapted from Marston (1987), 	was used to carry out partial 

purification of the fusion protein expressed by pCPR1/1S. 

A lOOmi culture of an clone CPR1/1S clone was grown overnight in 

L-broth supplemented with 5Otg/ml ampicillin and 0.1mM IPTG. The 

cells were harvested by centrifugation at 6000rpm(4300g) for 15 

min at 4°C and subsequently resuspended in 15m1 of ice cold 

lysis buffer (50mM Tris-HC1 pH 8.0, 100mM NaCl, 1mM EDTA). To 

this was added 50tl of 100mM phenylmethylsuiphonyl fluoride and 

0.75m1 of a freshly prepared solution of lysozyme (10mg ml). 

After mixing well the suspension was left on ice for 20 min with 

occasional swirling. 	Following addition of 30mg of sodium 

deoxycholate, 	the mixture was incubated at 37°C for 10 mm, 

during which time it became very viscous. Next, 300tl of DNase 

I (1mg m1) was added, 	and incubation at 37°C continued for a 

further 30 mm, 	after which the mixture was no longer viscous. 

This cell lysate was then centrifuged at successively higher 

speeds to determine the optimum conditions for recovery of the 

fusion protein. 	The cell lysate was centrifuged at 1000rpm 

(120g) , 	2500rpm (750g) , 	5000rpm (3000g) and finally at 

10,000rpm (12,000g). 	The pellet from each centrifugation step 

was resuspended in 2.5ml of lysis buffer, 200tl of which were 
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added to 800tl of SDS-PAGE lysis buffer, 	as was 200tl of the 

final supernatant. Subsequently, 	10tl aliquots from each of 

these samples were analysed by SDS-PAGE (Fig 4.1). 

From Fig 4.1 it can be seen that the pellets recovered after 

centrifugation at different speeds did not appear to differ in 

the proportions of different proteins present, only in the total 

amount of protein; i.e. it was not possible to use differential 

centrifugation to pellet the insoluble fusion protein, 

whilst leaving other cell debris in suspension. 	In each track 

there was a distinct band with mw of approximately 200kDa, with 

a ladder-like series of bands with mws between 116 and 200kDa. 

This seemed to confirm the indication of the results in Chapter 

3 that the full length fusion protein was approximately 200kDa 

and that bands between 116 and 200kDa were its breakdown 

products. It is evident from the track containing a sample from 

the final supernatant that a large proportion of E. 	coli 

proteins were solubilized, 	including a proportion of the 

3-galactosidase. However, none of the full length 200kDa fusion 

protein appeared to have been solubilized. 

Further purification of the CPR1 fusion protein was attempted, 

by washing the pellet with solutions of Triton X-100, SDS, and 

urea. These attempts were unsuccessful. However, washing in 8M 

urea did result in a considerable degree of solubilization of 

the 200kDa fusion protein. 
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Fig 4.1 Partial purification of fusion protein expressed by pCPR1/1 S. 

An overnight induced culture of pCPR1/1S was harvested by centrifugation, and cells 
lysed with lysozyme and deoxycholate. The lysate was centrifuged at successively 
higher speeds and samples from each pellet and the final supernatant analysed by 
SDS-PAGE. Tracks labelled 1K, 2.5K, 5K and 10K contain samples taken from the 
pellet after centrifugation at 1000, 2500, 5000 and 10000 rpm respectively. The track 
labelled S contains a sample from the final supernatant. 
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4.3 Preparation of fusion protein-specific antiserum. 

Polyclonal rabbit serum was raised against the fusion protein by 

injection of polyacrylamide gel slices containing the fusion 

protein. 	Partially purified fusion protein was prepared as 

described in section 4.2, 	except that instead of a series of 

spins at different speeds, 	the insoluble fusion protein was 

sedimented by centrifugation at 5000rpm for 20 min at 4°C. 	The 

pellet was washed in 5m1 of lysis buffer, recentrifuged, and the 

pellet resuspended once again in Sml of lysis buffer. 	200!tl of 

this suspension was mixed with 800il of SDS-PAGE sample buffer, 

then boiled for 5 mm, 	and 100pi was then loaded into each of 

two 6cm x 0.75mm block wells in 7.5% SDS polyacrylamide gels. 

After electrophoresis, 	a thin strip of gel was cut from the 

sides of each gel and stained with Coomassie blue to locate the 

position of the fusion protein. 	A horizontal strip of gel 

approximately 3mm wide containing the 200kDa fusion protein was 

then cut from each gel. 	The two strips were cut into small 

pieces and homogenized with lml of PBS and lml of Freund's 

complete adjuvant. 	This preparation was then injected 

subcutaneously into a rabbit, 	at four separate dorsal sites on 

day 0. 	At 30 days the above procedure was repeated, but using 

only one polyacrylamide gel, 	and the gel containing the fusion 

protein was homogenized with 0.25ml of PBS and 0.5ml of Freund's 

incomplete adjuvant. 	This homogenate was injected into the 

rabbit at two dorsal sites. 	Finally, 	this same procedure was 

repeated on day 85. 	Blood samples were taken from the rabbit's 

ear vein on days 0, 	10, 	and 42. 	On day 104 the rabbit was 
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anaesthetized with Halothane (May and Baker) and blood taken by 

cardiac puncture. 

(N.B. All Home Office licensed animal procedures were carried 

out by Mr S. E. Wright). 

Before use, serum prepared from the rabbit blood was diluted by 

a factor of 10 with 50% (v/v) pig serum in PBS. 	Antibodies 

recognising 3-galactosidase and other E. coii proteins were then 

absorbed out by adding 100l of a lysate prepared from an 

induced culture of E. coil NM522 harbouring pMS1S, to each 6m1 

of diluted serum. The serum/lysate mixture was incubated at room 

temperature for one hour, 	and debris then pelleted by 

centrifugation at 10,000g. 	The E. 	coil pMS1S/lysate used for 

preabsorption was prepared in the same way as the partially 

purified fusion protein used for inoculation of the rabbit. 

Fig 4.2 shows a Western blot of partially purified CPR1 fusion 

protein probed with prebleed serum and with serum taken at 42 

days post inoculation. 	This blot shows that both the prebleed 

serum and the serum taken at 42 days faintly recognised an E. 

coil protein of low raw. In addition, the serum taken at 42 days 

strongly recognised the 200kDa fusion protein and its breakdown 

products. However, it did not recognise a band at 116kDa, 

indicating that antibodies recognising 3-galactosidase had been 

effectively absorbed out. 
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Fig 4.2 Western blot showing recognition of the CPR1 fusion protein by 
polyclonal antiserum raised in a rabbit. 

A partially purified lysate prepared from clone pCPR1/1S (section 4.3) was 
electrophoresed through a 7.5% polyacrylamide gel, Western blotted and strips probed 
with serum from a rabbit. Serum samples were taken before inoculation with the fusion 
protein (A) and 42 days post-inoculation (B). Serum dilutions are indicated below the 
blot. 
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4.4 Identification of the C. parvum antigen encoded by CPR. 

The polyclonal rabbit serum raised against the 200kDa fusion 

protein was then used to probe a Western blot of excysted C. 

parvum oocysts (Fig 4.3) . 	There was no recognition of any C. 

parvum antigen bands by the prebleed serum, but the serum taken 

at 42 days strongly recognised a band with mw of approximately 

190kDa. There was also faint recognition of several bands of 

lower mw. It is possible that these may be breakdown products of 

the 190kDa protein, or alternatively they may be proteins which 

share common epitopes. 

To find out whether the 190kDa antigen recognised by the rabbit 

serum was a constituent of the sporozoites or of the oocyst 

wall, 	Western blotting experiments were carried out using 

samples which were enriched for sporozoites or oocyst shells. 

These samples were prepared by centrifugation of in 

vitro-excysted oocysts on a Percoll gradient (section 2.6.4). 

Fig 4.4 shows photographs taken of a) the excystation mixture 

prior to centrifugation on the Percoll gradient, 	b) pooled 

fractions containing oocyst shells and c) pooled fractions 

containing sporozoites. It can be seen that a substantial degree 

of separation was achieved. However a few unexcysted oocysts can 

be seen in the sporozoite sample. 

Samples of oocyst shells and sporozoites were analysed by 



119 

Fig 4.3 Identification of the C. parvum antigen encoded by CPR1. 

3x1d5  C. parvum oocysts were excysted in vitro, electrophoresed through a 7.5% 
polyacrylamide gel, Western blotted and strips probed with polyclonal rabbit serum 
raised against the fusion protein expressed by pCPR 1/iS (section 4.3). Tracks labelled 
A were probed with serum taken from the rabbit prior to inoculation with the fusion 
protein. Tracks labelled B were probed with serum taken at 42 days post-inoculation. 
Serum dilutions are indicated below the blot. 
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Fig 4.4 Separation of C. parvum oocyst shells and sporozoites by Percoll 
density gradient centrifugation. 

Samples which were enriched for sporozoites or oocyst shells were prepared by 
excysting C. parvum oocysts in vitro (a), followed by centrifugation on a Percoll 
density gradient (section 2.6.4). 0.5m1 fractions were collected, and appropriate 
fractions pooled in order to obtain a sporozoite enriched sample (b) and an oocyst shell 
enriched sample (c). 



Fig 4.4 continued. 
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SDS-PAGE and Western blotting. 	Fig 4.5a shows a polyacrylamide 

gel stained with Coomassie blue, 	containing samples of oocyst 

shells and sporozoites. 	In the track containing oocyst shells, 

only four bands were visible, with mws of approximately 190, 85, 

55 and 30kDa. 	By contrast, 	the sporozoite track contained 

numerous bands with mws up to >200kDa. 	Identical samples were 

Western blotted and probed with the rabbit serum (Fig 4.5b). No 

bands in either track were recognised by the prebleed serum. 

Rabbit serum taken after inoculation with the fusion protein 

recognised the 190kDa band in the oocyst track. 	There was also 

faint recognition of the other bands in the oocyst shell track, 

though this is not visible in Fig 4.5b. There was also faint 

recognition of a band of approximately 190kDa in the sporozoite 

track. 	This may have been due to incomplete separation of 

sporozoites and oocysts, 	since a few intact oocysts were 

visible in the sporozoite sample (Fig 4.4) . 	These results 

indicate therefore,that the C. 	parvum antigen encoded by CPR1 

is likely to be a constituent of the oocyst wall. 

4.5 Confirmation that CPR1 is derived from C. parvum. 

Since the DNA used to make the C. parvum DNA library was derived 

from oocysts which had been prepared from sheep faeces, it is 

possible that it could contain DNA sequences other than from C. 

parvum; the most likely contaminants being DNA from sheep or E. 

coli. On the basis of the Western blotting experiments, it 

seemed highly improbable that CPR1 represented a sequence of 

sheep or E. coli DNA. Nevertheless, a Southern blot was carried 
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Fig 4.5 Western blot of C. parvum sporozoite and oocyst shell enriched samples. 

Sporozoite and oocyst shell enriched samples, which were prepared by Percoll density 
gradient centrifugation of excysted C. parvurn oocysts (section 2.6.4, fig4.4) were 
electrophoresed through a 7.5% polyacrylaniide gel and stained with Coornassie blue (a). 
Duplicate samples were Western blotted (b)and probed with polyclonal rabbit serum raised 
against the fusion protein expressed by pCPRI/1 S (left panel), or serum from the same rabbit 
prior to inoculation with the fusion protein (right panel). 
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out to confirm that CPR1 was from C. parvum and not from sheep 

or E. coli. 

Sheep DNA (obtained from H. Wright, Moredun Research Institute), 

E. 	coli DNA from strain JM109 and C. 	parvum DNA were each 

digested with EcoRI, electrophoresed through a 0.8% agarose gel 

and Southern blotted. 	For use as a probe the CPR1 insert was 

first subcloned into pBR322. 	CPR1 derived from pCPR1/1S could 

not be used, in view of the possible risk of contamination with 

pMS DNA containing lac sequences that would hybridize with E. 

coli DNA. 	Therefore, 	plasmid DNA prepared from a pBR322/CPR1 

clone was restricted with EcoRI and electrophoresed through a 

0.8% agarose gel. 	The CPR1 band was recovered by the 

"geneclean" procedure, 	then labelled with digoxigenin and used 

to probe the Southern blot (Fig 4.6) . The CPR1 probe hybridized 

to a single band in the track containing C. 	parvum DNA; there 

was no hybridization to sheep or E. 	coli DNA. 	This result 

provided strong evidence that CPR1 does indeed represent a DNA 

sequence of C. parvum. 

4.6 CPR1 is single copy in the genome. 

Digoxigenin-labelled CPR1 DNA was also used to probe a Southern 

blot of C. 	parvum DNA digested with different restriction 

enzymes. Fig 4.7 shows that CPR1 hybridized to a single Hindill 

fragment, and to two BamHI fragments of C. parvum DNA. This is 

as would be expected if CPR1 is present as a single copy in the 

genome, since it contains one BamHI site, but no HindIII sites. 
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Fig 4.6 Southern blot showing hybridization of CPR1 to C. parvum DNA, 
but not to sheep or E. coli DNA. 

Samples of genomic DNA from sheep (S), E. coli (E) and C. parvum (C) were digested 
with EcoPJ, electrophoresed through a 0.8% agarose gel and Southern blotted. The blot 
was probed with digoxigenin labelled CPR1 DNA. 

SEC 
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Fig 4.7 Southern blot indicating that CPR1 is present as a single copy in 
the C. parvum genome. 

Genomic DNA from C. parvum was digested with HindIll (H), EcoRI (E) and BamHI 
(B), electrophoresed through a 0.8% aganse gel and Southern blotted. The blot was 
probed with digoxigenin labelled CPR1 DNA. 
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4.7 CPR1 does not hybridize with T. gondii or Sarcocystis DNA. 

CPR1 appears to be part of a gene encoding a C. 	parvum oocyst 

wall protein (section 4.4) . It would be of interest to determine 

whether related Coccidia contain DNA sequences which are 

homologous with CPR1, and whether such sequences are expressed, 

producing proteins which are homologous with the protein encoded 

by CPR1. 	The only Coccidia which could be obtained with ease 

were T. gondii and Sarcocystis spp. 	DNA prepared from each of 

these parasites was digested with EcoRI and electrophoresed 

together with EcoRI-digested C. 	parvum DNA. The Southern blot 

prepared from this gel was then probed with [32P]-labelled CPR1 

DNA. 	Hybridization was carried out at 42°C in the presence of 

50% (v/v) formamide. 	It can be seen from Fig 4.8 that the CPR1 

probe hybridized to an EcoRI fragment of approximately 2.4kb in 

the track containing C. 	parvum DNA, 	but there was no 

hybridization with DNA from T. gondii or Sarcocystis. The same 

blot was subsequently reprobed with radiolabelled CPR1 in the 

absence of formamide, 	and with no formamide in the washing 

solutions. Hybridization and washing under these less stringent 

conditions would allow homologous sequences with a higher 

percentage of mismatching to form duplexes, since a lack of 

formamide increases the T 	(melting temperature) of DNA 

duplexes. 
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The following equation gives an approximation of the melting 

temperature of DNA duplexes (Meinkoth & Wahl 1984). 

TM = 81.50C+16.6log10[Na]+0.41 (%G+C)_0.61(%formamide)-500/L 

(L=length of hybrid in base pairs, for the probe used in the 

above experiments L is likely to be between lOObp and 2300bp) 

However, 	there was still no hybridization of the CPR1 probe 

with DNA from T. gondii or Sarcocystis. 

(N.D. Experiments described in section 4.7. Preparation of the 

probe, Southern blotting and hybridization were carried out by 

Miss P. Daigleish, Moredun Research Institute.) 
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Fig 4.8 Southern blot showing hybridization of CPR1 to C. parvum DNA, 
but not to T gondii or Sarcocystis spp DNA. 

Samples of genomic DNA from C. parvum (C), T gondii (T) and Sarcocystis spp. (S) 
were digested with EcoRI, electrophoresed through a 0.8% agarose gel and Southern 
blotted. The blot was probed with PIP]-labelled CPR  DNA. 
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CHAPTER 5. DNA SEQUENCING, 	AND DNA AND PROTEIN SEQUENCE 

ANALYSIS. 

5.1 Introduction. 

In order to sequence the entire CPR1 insert, which was estimated 

to be approximately 2.4kb in length, it was decided to subclone 

it into the phagemid vector Bluescript SK+ (Stratagene) 

Following restriction mapping, 	it was possible to construct a 

series of clones in which various parts of the insert had been 

deleted. 	This allowed sequencing of the entire insert in both 

directions using M13 universal and reverse primers, and in 

addition, 	four specially designed oligonucleotide primers. 

Extensive database searches and sequence analysis were then 

carried out on the DNA sequence and its deduced amino acid 

sequence. 

5.2 Construction of deletion subclones and DNA sequencing. 

CPR1 DNA for sub-cloning was obtained by EcoRI digestion of 

plasmid DNA from clone pCPR1/1S, followed by electrophoresis, 

excision of the 2.4kb CPR1 band and recovery of the DNA using 

the "geneclean" procedure. 	An aliquot of this was then ligated 

with EcoRI digested, dephosphorylated Bluescript SK+ DNA. 

Following transformation of competent JM109 cells, clones were 

selected which contained the recombinant plasmid with CPR1 in 

each of the two possible orientations. Clone pBSCPR1 1 , with CPR1 

in the same orientation, with respect to the lac Z gene, as in 
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XCPR1, and pBSCPR12  with CPR1 in the opposite orientation. The 

orientations were verified by restriction digests with EcoRI and 

BamHI, since CPR1 contains a .BamHI restriction site 

approximately 0.5kb from its 5' end (section 3.5.1). Further 

restriction digests showed that the CPR1 insert also contained 

recognition sites for Smal and PstI. The approximate positions 

of these restriction sites in CPR1 are shown in Fig 5.1. Since 

Bluescript SK+ contains unique sites for each of BamHI, Smal and 

PstI in its multiple cloning site, it was possible to construct 

clones in which specific parts of the insert had been deleted. 

This was achieved by restriction of plasmid DNA from clones 

pBSCPR1 1  and pBSCPR12  with the required enzyme, followed by 

religation and transformation. 	Deletion subclones denoted 

pBSBO.5, pBSB1.9, pBSSO.9, 	pBSS1.5 and pBSP1.5 are shown in 

diagrammatic form in Figs 5.2 and 5.3. 

During sequencing, 	recognition sites for Ec0RV and SphI were 

identified; these were situated at 280 and 1476 nucleotides from 

the 5' end of CPR1, 	respectively. 	Restriction digests showed 

that the SphI site was unique, but that there was an additional 

Ec0RV site at approximately 1 .7kb from the 5' end of CPR1. 

Deletion subclones pBSEO.3, 	pBSSEO.8, 	and pBSBEO.2 were 

constructed by restriction of plasmid DNA from clones pBSCPR1 1  

pBSS1.5 and pBSBO.5 respectively, 	followed by religation and 

transformation. These clones are shown in Fig 5.4. 

Since Bluescript SK+ does not contain a SphI site in its 

multiple cloning site, 	it was necessary to use a slightly 
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Fig 5.1 Approximate positions of restriction sites in CPR1. 
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Fig 5.2 Bluescript SK+ subclones used for sequencing I. 

Plasmids pBSB1.9 and pBSS1.5 were constructed by restriction and 
religation of pBSCPR1. 

Plasmid pBSCPR1' 
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Fig 5.3 Bluescript SK+ subclones used for sequencing II. 

Plasmids pBSP1.5, pBSSO.9 and pBSBO.5 were constructed by restriction 
and religation of pBSCPR12  
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Fig 5.4 Bluescript SK+ subelones used for sequencing III. 

Plasmids pBSEO.3, pBSSO.8 and pBSBEO.2 were constructed by restriction and 
religation of pBSCPR1 pBSS1.5 and pBSBO.5 respectively. 
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different method in order to make use of this recognition site 

in constructing a deletion subclone. This was achieved by first 

digesting clone pBSCPR1 1  with SphI and KpnI simultaneously. This 

resulted in excision of a fragment from the 5' end of CPR1 

through to nucleotide 1476, 	plus approximately SObp of the 

Bluescript SK+ MCS. 	The resulting linearized plasmid, with 

uncomplementary KpnI and SphI sticky ends was then blunt ended 

using T4 DNA polymerase. Religation, followed by transformation, 

produced clone pBSSpO.9, 	containing a fragment of CPR1 

extending from nucleotide 1476, to its 31end. 	Construction of 

this clone is shown diagrammatically in Fig 5.5. 

Using the abovementioned subclones, 	and M13 universal and 

reverse primers, it was possible to sequence most of CPR1 in 

both directions. In order to fill in the gaps, four specially 

designed oligonucleotide primers were also used, the sequences 

of which are shown in table 5.1. Using these primers it was 

possible to complete sequencing CPR1 in both directions. The 

sequence data obtained from each sub-clone, 	and the primers 

used, are given in table 5.2. 

5.3 Composition of CPR1 and its encoded peptide (P786) 

CPR1 was found to consist of 2359 nucleotides, 2358 of which 

encode an ORF in which the EcoRI site is in frame with that in 

gt11 and pMS1S. The DNA sequence of CPR1 and the deduced amino 

acid sequence of this ORF (P786) are shown in Fig 5.6. The DNA 

sequence has a relatively low G+C content (39.1%) and there is a 
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Fig 5.5 Construction of plasmid pBSSpO.9. 

- 
—r 0 E OC 

	

E 	a 	U  CL u_c,, 	en 	CO 	LLj 
Plasmid pBSCPR12  

II 
0 	 —r 	 C 
0 	 0. 

Digestedwith 	 ______________________________________________________  
KpnI and SphI 	 3' 	 5' 

GCATG 	 C 
C5, 	 3,CATGG 

0 
C) 
it, 



138 

Table 5.1 Oligonucleotide primers used for sequencing. 

Primer 	Sequence 5' to 3' 

266 GAGCCTCTFTATGATGTF 

267 CACCTGATGUAAAGCAC 

594 TGGACGGGAACAGAAAC 

595 CTGTCCTGTfGGATCAAG 

Ml 3U GTAAAACGACGGCCAGT 

Ml 3R AACAGCTATGACCATG 

CPR1 nucleotides 1178-1196 rc 

CPR1 nucleotides 1019-1036 

CPR1 nucleotides 1981-1998 rc 

CPR1 nucleotides 1803-1820 

M13 universal primer 

M13 reverse primer 

rc denotes reverse complement. 
CPR  oligonucleotide primers were obtained from Oswell DNA 
Service, Edinburgh University.  
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Table 5.2 CPR1 sequence obtained from each subclone and primer 
combination. 

Plasmid Primer Sequence Direction 

pBSCPR1' M13U 1-309 Forward 

pBSBEO.2 M13R 278-555 Forward 

pBSB1.9 M13U 552-910 Forward 

pBSS1.5 M13U 840-1182 Forward 

pBSCPR1'  267 1069-1491 Forward 

pBSSpO.9 M13R 1476-1890 Forward 

pBSCPR1'  595 1841-2359 Forward 

pBSEO.3 M13R 1-283 Reverse 

pBSBO.5 M13U 267-555 Reverse 

pBSSO.9 M13U 512-840 Reverse 

pBSCPR1' 266 833-1155 Reverse 

pBSP1.5 M13U 1082-1484 Reverse 

pBSSEO.8 M13R 1303-1598 Reverse 

pBSCPR1' 594 1588-1955 Reverse 

pBSCPR1'  M13R 1841-2359 Reverse 
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Fig 5.6 DNA sequence of CPR1 and its deduced amino acid sequence (P786). 

1 gaattcgaatgcccaccaggtacaattttaaaagatgatCaatgtcaatcgatagaaaga 
E F E C P P G T I L K D D Q C Q S I ER 

61 gttgatacaatttgtccaccagggtttgtagataatggCgaagattgtgtccaattttct 
VDT IC P PG FVDNC ED C V Q F S 

121 	gcaccagagaaaatttgcccccaaggattttc tctttccggaaaacaatgtgttaaaaca 
AP E 	IC P Q G F S LS G K Q C V K T 

181 gaatctgctccaagattaacagaatgcccacCaggtaCaaCCttggaaaataacagttgt 
ES A P R L T E C P P G T T L E N N SC 

241 atttcatatgaactagaagatgccatttgtcCaCCtggatatCtCgaCaatggatcagac 
I S Y E L E D A I C P P G Y L D N G SD 

301 tgtgttcagttttctcaaccagaaaaggagtgtCCaaCaggttttgtattaattggaaaa 
C V Q F S Q P E K E C P T G F V L I 0K 

361 caatgtacccaaactactcaagctccaccaCaaCCagagtgtCCtCCaggtacaaacctg 
Q C T Q T T Q A P P Q P E C P P G T N L 

421 gtaaatggacaatgccaaaaagttgaaaggataaatatggtatgtCCaaCtggttttatt 
V N G Q C Q K V ER I N M V C P T G F I 

481 gataatggtacaaattgtgcttctttctcCgCaCCaaaCagagaatgCCCaCCtggatat 
D N G T N C A S F S A P N R E C P P G Y 

541 acactttctggatcccaatgcgagcaaataaaagaagCaCCtCCtgtttCagaatgtcca 
T L S G S Q C E Q I K E A P P V S E C P 

601 	ccaggatataaac ttcaaggaaatcaatgtactgcactaaaaatgatcgatgCtatCtgC 
P G Y K L Q G N Q C T A L K M I D A I C 

661 ccagatggatttttaccaaatggagacgattgtatccaattttCtCCtgCttCaaCtgta 
P D G F L P N G D D C I Q F S P A S T V 

721 	tgtcc tac tggattcactctacaaaatcaacagtgtgttcaaacaaCtaCCtCaCCaaaa 
C P T G F T L Q N Q Q C V Q T T T S P  

781 acaccagaatgtcctccaggttctgcgttggatggagaCtCgtgCaCaagaCttgttCcC 
T PEG P PG S A L D G D S C T R L V P 

841 	ggggctcttcaatacgtttgtcc tgttggtactagagagggggacgtttgcgtagagaga 
G A L Q Y V C P V G T R E G D V C V E R 

901 	tcgattagttcgcc tgttttggaatgcccacctggttattcattggaaacaggtaaaCaa 
S 	S S P V L E C P P G Y S L E T G K Q 

961 	tgtgttagaagaagccaatatgac tgttcagtaacaacttatgttacagagtgtaaaaca 
C V R R S Q Y D C S V T T Y V T E C KT 

1021 cctgatgttaaagcactaagaagattagcagctgCaaaagaaaCatCaaCagtttatgaa 
P D V K A L R R L A A A K E T S T V Y E 

1081 acatctgagatacaaaatccaggacatcatcatggtCattCtCatgggCattCaCattCa 
TS E I Q N P G H H H G H S H G H S H S 

1141 caagttataccaattcaaacccagaatatacatacaCaaCatCataaagaggCtCCaagg 
Q V I P I Q T Q N I H T Q H H K E A P R 

1201 ccaatttgtgaagatgttccaaaaattaccccaaaaaCttgtaCaaaagCtgattCtgtC 
PIG E D V P K I T P K T C T K A D S  

1261 ccagctgtgcctatttgcgagaacaatgctgaac ttgtaggaaaagaatgtgtattaaca 
P A V P IC E N N A E L V G K E C V LT 

1321 aattactacccattagaagcaatttgtcaagatggaaCaagatCaaaagagtgtgc taag 
N Y Y P L E A I C Q D G T R S K E C A K 

1381 tttgtaaaaac tccacctactttaaaatgtccgccaggttCtgtagatgtaggatCtCaa 
F V K T P P T L K C P PG S V D V G S  

1441 tgtcaagttaacaaatattcaccatatgatc ttgcatgccctgcaggatatgcattggtt 
CQVNKYSPYDLACPACYALV 



Fig 5.6 continued. 

1501 ggagacaaatgcgc taccacaagagaaaaagtttgcccgaatgaaagttgccaaagagtt 
G D K C A T T R E K V C P N E S C Q R V 

1561 gtaactgcgcctgtttctttaacttgtccccc tggatatcaccaaatagatgaagttatg 
V T A P V S L T C P P G Y H Q I D E V M 

1621 aatatttctgctcatccacaccacagacacttagctggggttcaatctacttctcaaaag 
NI SAHPHHRHLACVQSTSQK 

1681 ggatattctcatggacataaatatactcctgtaatttctcagccaccacaaccagttcca 
G Y S H G H K Y T P V I S Q P P Q P V P 

1741 gttgttgctcctattcagcaaatgaaatgcatccatgcagaccatgCtCCatataatCtt 
V V A P I Q Q M K C I H A D H A P Y N L 

1801 atctgtcctgttggatcaagacttgtagcggataaatgtgttacatattCggataaaata 
IC P V G S R L V A D K C V T Y S D 	I 

1861 tgtccaaatggtaattgcgagcgtatatataatgagcctgctgaattagtatgccC tcca 
C PNCNC E R I Y N E P A E L V C PP 

1921 ggattctcatcatctaaaccaattcagccaataagccattctcatattaaccatcCaaat 
G F S S S K P I Q P I S H S H I N H P N 

1981 gtttctgttcccgtccaaccaeaaactattaaccaaccacaagtaattcaacaaagacaa 
V S V P V Q P Q T I N Q P Q V I Q Q R Q 

2041 gtaaattatcagccacaagtaattcatcaaacacaggaaattttaacaac ttatccaac t 
V N Y Q P Q V I H Q T Q E I L T T Y P T 

2101 ccagtttaccaaaccggcacaatttatcaaggacatcatcatcatcatcatcatcatcac 
P V Y Q T G T I Y Q G H H H H H H H H H 

2161 agaaatctagcttcccctgagtgcattaagacaatttcagtaccttatattttaaaatgc 
RN LAS P EC I KT I S V P 	I L K C 

2221 gaatctccatttattttagatggcgacaaatgtatcgaaaaaacagaaaaaatttgtcta 
ES P Fl L D G D K C I E K T E K I CL 

2281 caaggtgactgcagaaaacaagtcgtcgttccaccaactctttcatgtccacaaggttac 
Q G D C R K Q V V V P P T L S C P Q C Y 

2341 agaaatgccaacggaattc 2359 
R N A N G I 

141 
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corresponding bias towards the use of A or T in the third codon 

position within this ORF (Table 5.3); 	17.9% of bases in the 

third codon position are G or C, compared with 53.1% and 46.3% 

in the first and second postions respectively. 

The deduced amino acid sequence (P786) has an unusual amino acid 

composition in comparison with the amino acid proportions 

averaged over the entire National Biomedical Research Foundation 

(NBRF) protein sequence database (figures are for NBRF protein 

sequence database version 32.0 and were obtained by S. 	J. 

McQuay, 	Biocomputing Research Unit, University of Edinburgh). 

In particular, 	57 (7.3%) of the 786 residues are cysteine, 

compared with 1.9% for the NBRF database as a whole. 	There are 

also unusually high proportions of proline (11.1% compared with 

5.2%), 	glutamine (7.4% compared with 4.1%) and histidine (4.1% 

compared with 2.3%) . The distribution of cysteine and histidine 

residues within the sequence is also noteworthy. 	Cysteine 

residues are present in four distinct cysteine-containing 

regions which span residues 1-338, 	403-529, 	590-638 and 

728-786. 	All but two of the 32 histidine residues are found 

outwith these cysteine-containing regions. 

5.4 Arrangement of repeat units in P786. 

Dotmatrix analysis (Maizel & Lenk 1981) was carried out using 

GCG.COMPARE and GCG.DOTPLCT. 	(The prefix 'GCG.' indicates 

programs which form part of the GCG (Genetics Computer Group) 

sequence analysis software package (Devereux et al 1984), which 



Table 5.3 Codon usage by CPR1. 

10 UUU Phe 23 UCU Ser 21 UAU Tyr 36 UGU Cys 
4 UUC Phe 4 UCC Ser 5 UAC Tyr 21 UGC Cys 
14 UUA Leu 17 UCA Ser 0 UAA 0 VGA 
5 UUG Leu 5 UCG Ser 0 UAG 0 UGG Trp 

10 CUU Leu 24 CCU Pro 27 CAU His 1 CGU Arg 
1 CUC Leu 4 CCC Pro 5 CAC His 0 CGC Arg 
6 CUA Leu 57 CCA Pro 50 CAA Gin 0 CGA Arg 
1 CUG Leu 2 CCG Pro 8 CAG Gin 0 CGG Arg 

29 AUU lie 21 ACU Thr 24 AAU Asn 3 AGU Ser 
6 AUC lie 7 ACC Thr 8 AAC Asn 2 AGC Ser 
10 AUA lie 30 ACA Thr 35 AAA Lys 19 AGA Arg 
4 AUG Met 0 ACG Thr 4 AAG Lys 2 AGG Arg 

33 GUU Val 19 GCU Ala 21 GAU Asp 15 GGU Giy 
5 GUC Val 2 GCC Ala 10 GAC Asp 3 GGC Giy 
20 GUA Val 12 GCA Ala 31 GAA Giu 27 GGA Giy 
1 GUG Val 3 GCG Ala 14 GAG Glu 5 GGG Gly 

143 
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is available on the SEQNET molecular biology computer facility). 

When applied to protein sequences the GCG.COMPARE program uses a 

symbol comparison table which is based on an empirical study of 

related proteins (Dayhoff et al 1978). Different scoring tables 

are based on different accepted point mutation (PAM) values. PAM 

is a measure of divergent evolution, 1 PAM = 1 substitution per 

100 aligned residues. (GCC.COMPARE uses the scoring table based 

on 250 PAMS). 

Dotmatrix analysis of P786 indicates that the sequence is 

distinctly repetitive. The dotplot in Fig 5.7 shows that there 

is a strongly repetitive region within the first 

cysteine-containing region, indicated by the diagonal lines in 

the top left hand corner of the dotplot. 	A further repeating 

element in the C-terminal half of the sequence is indicated by 

the diagonal lines in the bottom right hand corner. Examination 

of the amino acid sequence reveals that the repeat regions are 

each based on conserved cysteine residues. 	Of the 32 cysteines 

in the N-terminal cysteine-containing region (residues 1-338), 

the first 26 are arrayed in 13 consecutive copies of a repeat 

unit consisting of the motif CPXG (7X) C, followed by either 9 

or 11 residues. The first 12 of these repeats are arranged as a 

series of four higher order repeats, 	each of 65 amino acids. 

Optimal alignment of these four 65-amino acid repeats shows 

that, as well as complete conservation of the cysteine residues, 

16 of the remaining 59 amino acids are also conserved in all 

four repeats. Of these conserved residues the asparagine-glycine 

sequence may be of particular interest. Under acidic conditions 



Fig 5.7 Dot matrix analysis of P786. 

The P786 sequence was compared with itself using a window of 50 and a stringency of 
32. The solid diagonal line represents the line of identity where each 50 residue 
segment is compared with itself. The dotted lines represent internal repeats which are 
discussed in the text. 
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this dipeptide can be converted to an imide structure, which may 

be hydrolysed under alkaline conditions, 	resulting in the 

formation of a 3-aspartyl peptide bond (Aswad & Johnson 1987). 

The additional repeating element, clearly visible on the dotplot 

(Fig 5.7), consists of three non-contiguous repeats, each of 53 

amino acids. In common with the 65-amino acid repeats described 

above, 	these three repeats show complete conservation of the 

positions of the cysteine residues between them. 	Each of the 

53-amino acid repeats falls within one of the three remaining 

cysteine-containing regions. 

Fig 5.8 shows a diagrammatic representation of the arrangement 

of repeat units in P786, 	plus alignments of the 53- and 

65-amino acid repeats described above. 

5.5 Database searching. 

In order to find out whether CPR1 or its encoded peptide (P786) 

was homologous with any sequences in DNA and protein sequence 

databases, extensive database searching was carried out using 

software and databases available on the SEQNET molecular biology 

computer facility, based at the SERC Daresbury Laboratory, 

Warrington, UK. 

5.5.1 DNA sequence database searching. 

CPR1 was compared with the EMBL DNA sequence database using the 



Fig 5.8 Diagrammatic representation of P786, and optimal alignments of repeats. 

The diagram shows the relative positions of the repeats and the histidine-containing regions in P786. a9  and a indicate the repeat units CPXG (7X) C (9X), 
and CPXG (7X) C (1 lx), respectively. Alignments of repeats A and B are shown, and their locations indicatel on the diagram. The solid vertical bars indicate 
the locations of histidine residues. 

A 	A 	A 	A 
	

B 	 B 	 B 

a9  a9 all  a9  a9  a11  a9  a9 all  a9  a9 all  a9  

3-67 E C PP G T I L K D DO C OS I ER V D T IC PP G F V D N GE D C V OF S APE K I C P0 GE S L S G K 0 CV KT ES APR L T 
68 -13 2 E C P P G IT L E N N SC I S Y E L E 0 A I C P PG Y LONG S DC V 0 F SO P E K E C PT G F V L I G K OCT OTTO A P P0 P 

133 -19 7 E C P PG TN L  N GO C 0 K V ER I N MV C PT G F I ON G TN C AS F SAP N RE C P PG Y T L S G SOC E 0 I K E A P P VS 
198 -26 2 E C P P G Y K LOG N OCTAL KM I 0 A I C P D G F L P N G D DC I 0 F S PAST V C PT G FT L ON 00 C V OTT T S P K T P 

B 	 ____ 
481 -515 CO V N KY S P Y D LA C P AG Y A L V GD K CAT T RE K V C P N ES C OR V V TAP VS LI C P PG Y 
590-642 C I H A OH A P Y N L I C P V G S R L V AD K C VI Y S D K I C P N G N C E R I Y N E PA EL V C P PG F 
728-780 C 1 K T I S V P Y I L K C E S P F IL D GD K C I E K T E K I C LOGO C R K 0 V V V P PT L SC P0 G Y 
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FASTA DNA and protein sequence database searching program 

(Pearson & Lipman 1988). This program is an improved version of 

FASTP (Lipman & Pearson 1985), which runs a modification of the 

original algorithm described by Wilbur and Lipman (1983). 

The ten highest scoring alignments obtained by comparing CPR1 

with the EMBL DNA sequence database involved between 30 and 

198bp of CPR1 aligned with database sequences with between 55 

and 94% identity. 	There was a strong negative correlation 

between the length of the alignment and the percentage identity, 

as might be expected. 	Nine of these alignments included the 

region of CPR1 encoding the run of nine histidine residues or 

its reverse complement. 	Similarites between DNA sequences 

encoding such heavily biased amino acid sequences do not 

necessarily indicate evolutionary relationships between the DNA 

sequences, 	nor a similar function for the encoded proteins. 

None of the database DNA sequences with which alignments were 

identified by the DNA database search was considered to be 

homologous with CPR1, i.e. share a common ancestor. 

With DNA sequences which are known to be coding for proteins, it 

is more appropriate to search for sequence similarites at the 

protein level. Homologous protein sequences are likely to be 

more conserved than the genes that encode them since selection 

acting at the protein level may conserve the amino acid 

sequence, whilst silent mutations, 	or mutations resulting in 

conservative substitutions, may result in more substantial 

changes in the DNA sequence. 	Differences in G+C content and 
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codon usage between different species may cause substantial 

divergence at the DNA level between homologous genes, while 

maintaining relatively similar amino acid sequences. 

Nevertheless, even in the case of protein-encoding DNA 

sequences, it is advisable to do at least one DNA database 

search, 	since a homologous gene could have been sequenced and 

submitted to a database, 	without the submitter realising that 

it encoded a protein. 

5.5.2 Protein sequence database searching. 

Protein sequence database searching was carried out using the 

'PROSRCH' protein sequence database searching program (Coulson 

et al 1987), 	which is run at the Biocomputing Research Unit, 

University of Edinburgh. 	This program uses the best local 

similarity algorithm of Smith and Waterman (1981) and aims to 

find out whether any part of the query sequence is similar to 

any part of any sequence in the database. 	The search program 

collects alignments between the query sequence and database 

sequences, 	and sorts them into score order. 	Scores are 

calculated using the scoring system of Dayhoff et al (1978), 

which has different scoring tables for different PAM values (see 

page 144). 

P786 was compared with the OWL protein sequence database using 

the PROSRCH program. 	The OWL protein sequence database is a 

composite database made by merging all the other protein 

sequence databases, plus some translated DNA sequences from the 
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GENBANK DNA sequence database. Searches were run using 100 and 

250 PAM tables. 	In addition to comparing the entire P786 

sequence with the database, 	the searches were repeated with 

shorter segments of the amino acid sequence. This was done to 

remove the histidine-rich regions of P786 from the search as 

these were always involved in the highest scoring alignments and 

could have masked interesting alignments with other regions of 

the sequence. 

When the OWL protein sequence database was searched using the 

entire P786 sequence as a query, the highest scoring alignments 

involved the histidine-rich regions of P786 and histidine-rich 

proteins such as those found in Plasmodium spp. Such alignments 

between similarly biased sequences are riot readily informative 

as they often do not indicate a related function (McQuay 1991). 

Database searching with segments of P786 minus the 

histidine-rich regions identified alignments between residues 

285 and 315 of P786, and other proteins with a high proportion 

of glutamine such as wheat gliadin and certain homeotic 

proteins. Again the relevance of such alignments is unclear. In 

addition, proteins with a high proportion of cysteine, or having 

a similar spacing of cysteine residues to that seen in P786 were 

also evident among the alignments identified. These proteins 

included human thrombospondin, 	human von Willebrand factor, 

thrombomodulin (human, 	bovine, 	mouse, 	rabbit) , Plasmodium 

falciparum merozoite surface antigen, 	tumour necrosis factor 

(TNF) receptor precursor and low density lipoprotein (LDL) 

receptor precursor. 	However, 	none of the database sequences 
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which were identified using the PROSRCH database searching 

program was considered to be homologous to P786. 

(N.B. Database searches using P786 as a query to search the NBRF 

protein sequence database were also carried out by S. J. McQuay, 

Biocomputing Research Unit, 	University of Edinburgh. 	These 

searches did not reveal any sequences of interest which were not 

identified by the OWL database searches.) 

5.5.3 Profile analysis. 

Another method which was used to search for protein sequences 

with similarities to P786, 	is profile analysis (Gribskov et al 

1990). 	This is a sequence comparison method for finding arid 

aligning distantly related proteins. Again, it uses the symbol 

comparison tables of Dayhoff et al (1978), and in addition, an 

optimal alignment of a group of similar protein sequences. 

Construction of the 'Profile' involves first aligning the 

sequences, 	then representing all the information in the 

multiple alignment as a table of position-specific symbol 

comparison values and gap weights. Every possible residue has a 

value in each row of the profile. 	The comparison of a residue 

to any row of the profile gives a specific value, 	or 'profile 

comparison value'. The best alignments of a sequence to a 

profile are found by aligning the sequence with the profile, 

such that the sum of the profile comparison values minus the sum 

of the gap weights is maximal. The position-specific gap weights 

penalize gaps more heavily in conserved regions than in more 
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variable regions. 

It was decided to use profile analysis to search protein 

sequence databases for sequences which may be homologous or 

analogous to repeats found in P786. 	searching with a profile 

ensures that all the information in each of the aligned protein 

sequences is represented. 	This is not the case when searching 

with a consensus sequence. 	Another advantage is that the 

position-specific comparison values and gap weights ensure that 

database sequences which are similar to the more conserved 

regions of the profile score more highly than those which are 

similar to the more variable regions. Profiles were constructed 

using the two sets of repeats (A and B) shown in Fig 5.8. Each 

of these profiles was used to search the NBRF protein sequence 

database using GCG.PROFILESEARCH. 

The 10 highest scoring alignments identified by searching with 

the profile constructed from repeats A included:- two finger 

proteins (human) ; mouse complement factor H-related proteins A2, 

B1 and Cl; a scorpion neurotoxin; Thermus aquaUcus ferredoxin; 

gene nrdC protein and thioredoxin from phage T4; 	and a 

hypothetical mitochondrion protein from Paramecium tetraurelia. 

These alignments had scores between 11.89 and 15.53, and had 

between 6 and 10 identities with the profile consensus sequence. 

The 10 highest scoring alignments identified by searching with 

the profile constructed using repeats B included:- six finger 

proteins (five human, 	one mouse) ; 	Streptomyces griseus 
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ferredoxin; rat trypstatin; a fowlpox virus protein; and mouse 

developmental control protein Krox-9. 	These alignments scored 

between 11.50 and 14.13, and had between 4 and 7 identities with 

the profile consensus sequence. 

None of the above mentioned proteins identified by profile 

analysis was considered to be homologous with P786. 

5.5.4 Identification of proteins sequences containing the CPXG 

(7X) C motif. 

The P786 amino acid sequence contains 16 copies of the CPXG (7X) 

C motif. Twelve of these are found in repeats 'A', and a further 

three in repeats 'B' (Fig 5.8) . 	The frequency of occurrence of 

this motif, and its presence in repeat units, may indicate that 

it plays some important structural or functional role. 	If this 

is the case, 	identification of other proteins with many copies 

of the same motif may give some indication of its possible 

significance. 

GCG.FINDPATTERNS was used to search the NBRF protein sequence 

database for proteins containing CPXG (7X) C. Only five 

proteins had more than one copy of the motif. These were:- leech 

antistasin, human von Willebrand factor and human low density 

lipoprotein receptor-related protein (each with two copies); 

midge balbiani ring 3 protein and human fibrillin (each with 

three copies) 
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Perhaps the most interesting of these is human fibrillin. 

Although the CPXG (7X) C motif is present only three times, 

there are nine copies of CPXG (9X) C, 	and one of CPXG (8X) C. 

These occur in larger repeat units, 	which contain many 

cysteine residues whose positions are highly conserved. In this 

respect the arrangement of repeats in human fibrillin is similar 

to that seen in P786. Further investigation into the structure 

of these two proteins, and identification of other proteins with 

many copies of CPXG (7-9X) C may reveal some structural or 

functional importance for this motif. 
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CHAPTER 6. DISCUSSION. 

6.1 Introduction. 

Up until 1988, 	when the present study commenced, there was no 

published work on the molecular biology or genetics of 

Cryptosporidium. This reflected a lack of interest in the 

parasite until the mid 70's, when it was recognised as a cause 

of diarrhoea in both humans and animals. In addition, technical 

difficulties with producing sufficient parasite material for 

perparation of DNA probably also hindered progress in this 

field. 

The aim of this project was to identify genes encoding antigens 

of C. parvum. Other studies have isolated C. parvum 

protein-encoding genes by screening genomic DNA libraries with 

heterologous DNA probes. 	For example, 	Kim et al (1992), 

identified a C. 	parvum actin gene by screening with chicken 

-actin cDNA, and Nelson et al (1991), identified C. 	parvum 

tubulin genes by screening with oligonucleotide probes 

corresponding to conserved a and P tubulin sequences. 	C. 

parvum genes encoding thymidylate synthase-dihydrofolate 

reductase, 	and topoisomerase have been identified by PCR using 

conserved oligonucleotide primers, 	followed by hybridization 

(Gooze et al 1991,   Dykstra et al 1991) 

Anti-CryptospOri di urn antiserum has also been used by other 

workers to identify C. parvum antigen-encoding genes (Dykstra et 
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al 1991, Petersen et al 1992). The latter study was particularly 

aimed at identifying apical complex and pellicle antigens of the 

sporozoite and/or merozoite, 	which may be targets for 

neutralizing antibody. Five clones expressing such antigens were 

isolated, and are being further characterized. 

The present study used anti-C. parvum antiserum to isolate two 

clones which express C. parvum antigens. The DNA insert from one 

of these clones (CPR1), 	and its expressed peptide (P786) have 

been characterized in some detail, and the entire DNA sequence 

of the insert has been obtained. Work presented in this thesis 

indicates that this DNA fragment represents part of a gene 

encoding a 190kDa oocyst wall protein of C. parvum. The deduced 

amino acid sequence encoded by this gene fragment has an unusual 

composition, with high proportions of cysteine, proline, 

histidine and glutamine. 	The sequence is also markedly 

repetitive, 	with repeat units based on conserved cysteine 

residues. 

6.2 Oocyst wall proteins of C. parvum. 

The Cryptosporidium oocyst wall consists of two layers which are 

formed by the fusion of wall forming bodies with three membranes 

(Current & Reese 1986). Ultrastructural studies of oocyst wall 

formation in other coccidia indicate that a similar process 

occurs in Eimeria spp. 	(Wang 1982), Sarcocystis spp. 

(Vetterling et al 1973) and Toxoplasma gondil (Ferguson et al 

1975). Like other coccidia, the oocyst stage of C. parvum is 
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highly resistant to adverse conditions, including exposure to 

many commonly used disinfectants 	(Blewett 	1 989b) . 	This 

resistance is due to the protection afforded by the oocyst wall, 

since once released from the oocyst the sporozoites are easily 

destroyed. 

Little is known of the biochemical composition of coccidial 

oocyst walls. 	Different workers have come to different 

conclusions about their composition. Strout et al (1963) 

concluded that lipid accounts for one third of the coccidial 

oocyst wall, while Landers (1960) concluded that the wall 

consisted mainly of polysaccharide and protein. 

Birefringence studies were carried out by Monne and Honnig 

(1954) in an attempt to determine the composition of the oocyst 

walls of several species of Eimeria and Isospora. They concluded 

that the coccidial oocyst wall consisted of two layers, with the 

inner layer (endocyst) consisting of a lipid-protein matrix, and 

the outer layer (ectocyst) of quinone-tanned protein. 

Ryley (1980) reported the presence of an outer ectocyst, 	which 

was removed by treatment with sodium hypochlorite, and comprised 

approximately 20% of the dry weight of the oocyst wall. Analysis 

of the inner layer (endocyst) indicated that it contained 

approximately 70% protein, 	30% lipid and 1.5% carbohydrate. 

However, 	the presence of an outer sodium hypochiorite soluble 

layer is in doubt. 	Stotish et al (1978) , 	using electron 

microscopy, observed no differences between E. tenella oocysts 



158 

treated with 5% sodium hypochiorite, 	and those which had not 

been exposed to the chemical. They suggested that the so-called 

ectocyst, 	referred to by Monne and Honnig (1954) and Ryley 

(1980) was actually debris from inadequate purification, 	as 

first suggested by Nyberg and Knapp (1970). Stotish et al (1978) 

also analysed the composition of E. 	tenella oocysts. 	Their 

results indicated that the wall consisted of 67% protein, 	14% 

lipid and 19% carbohydrate. 	They put forward a model of the 

oocyst wall which consisted of an outer lOnm thick layer of 

lipid, 	and an inner 90nm thick layer consisting of disulphide- 

linked glycoprotein. 

Work by Jolley et al (1976, 1979) also indicated that the oocyst 

walls of E. tenella and E. steidae contained many disulphide 

bonds, and in addition, 	that reduction of these bonds to 

suiphydryl groups occured during the excystation process. If the 

oocyst wall of 	C. parvum has a similar structure to those of 

Eimeria species then the protein corresponding to P786 may form 

part of a disulphide-linked inner glycoprotein layer. 	P786 

contains many cysteine residues. These residues may participate 

in disulphide bonding and have a role in maintaining the 

integrity of the oocyst wall, as is believed to be the case in 

Eimeria species (Jolley et aJ. 1976, 1979). 

Two previous studies have looked at the protein constituents of 

the C. 	parvum oocyst wall by SDS-PAGE analysis of oocysts, 

following surface labelling of the oocysts with 125i (Lumb et al 

1988a, 	Tilley et al 1990b). 	The former study identified 6-10 
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1251 labelled bands, 	while the latter identified 17. 

Differences between oocyst wall bands identified in these 

studies, 	and in the present study may be due in part to the 

effects of trypsin and deoxycholate on oocyst wall proteins 

during in vitro-excystation. 	None of the bands identified by 

1251 surface labelling had a mw of 190kDa, which could indicate 

that the C. 	parvum protein corresponding to P786 was not 

actually exposed on the surface of the oocyst wall. 	Lumb et al 

(1988a) also carried out SDS-PAGE analysis of oocyst shells 

which had been separated from sporozoites following in 

vitro-excystation. 	21 bands were observed on Coomassie blue 

stained gels, 	one of which had a mw of 190kDa, 	and therefore 

might be the same protein as the 190kDa antigen corresponding to 

P786. 	Differences in other bands observed may have resulted 

from differences in the method of extraction of the oocysts from 

faeces. 	In our laboratory, routine oocyst extraction involves 

exposure of the oocysts to dilute sulphuric acid (0.02%) and SDS 

(1%). 	It is also possible that there are isolate-specific 

differences in oocyst wall proteins. 	Thus, Lumb et al (1988a) 

found that of 10 125I labelled oocyst surface proteins of C. 

parvum, 	four were not present in all of the isolates studied. 

Searching of the DNA and protein sequence databases did not 

identify any sequences which were considered to be homologous to 

CPR1 or its encoded peptide P786. This is perhaps as might have 

been expected, since there are no gene or protein sequences of 

oocyst wall proteins of enteric coccidia in these databases. It 

would be of interest to determine whether P786 or its DNA 
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sequence has homologues in related species of coccidia. One 

might expect some of the oocyst wall proteins of the coccidia to 

be conserved, since the oocyst walls of all species have at 

least one important function in common, i.e. protection of the 

oocyst contents, and furthermore, all have to withstand similar 

environmental conditions. 

The Southern blotting experiments described in Chapter 5 

attempted to find out whether T. gonclil or Sarcocystis spp. 

contained DNA sequences which were homologous with CPR1. No 

hybridization of CPR1 to the genomic DNA of T. 	gondii or 

Sarcocystis spp. was detected, 	even when hybridization and 

washing was carried out at low stringency which would have 

allowed hybrids to form between sequences containing up to 

approximately 35% mismatching. It would have been of interest to 

repeat this experiment using genomic DNA from Eimeria spp. 

Immunoblotting experiments suggest that C. parvum oocysts share 

common antigens with several Eimeria species of sheep 

(Ortega-Mora et al 1992). 

6.3 G+C content and codon usage in C. parvum. 

There is considerable variation in the genomic G+C contents of 

different unicellular organisms, and it is thought that this is 

due to a species-specific mutation pressure which has a 

directionality toward higher or lower G+C content (Sueoka 1988). 

The observation that organisms with higher or lower values of 

genomic G+C content have more extreme values of G+C content at 
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the third codon position (Muto & Osawa 1987, 	Sharp & Devine 

1989, 	Saul & Battistutta 1988) can be explained in terms of 

directional mutation pressure. Thus, since most mutations in the 

third codon position do not result in a change in the amino acid 

encoded, 	directional mutation in favour of a high or low G+C 

content, 	results in a bias towards the use of codons ending in 

G and C, or A and T respectively. 

Values for the G+C content of various C. 	parvum DNA sequences, 

including data from the present work, 	are shown in table 6.1. 

The relatively low G+C contents of these DNA sequences (ranging 

from 27.2% to 39.1%), plus the relatively lower G+C contents at 

the third codon position of coding regions (17.9% versus 39.1% 

(this study), and 28.5% versus 38.5% (Kim et al (1992)) are 

consistent with a model of the C. 	parvum genome in which 

directional mutation pressure tends towards decreased G+C 

content, 	resulting in a bias towards the use of codons ending 

in A or T. 

Directional mutation pressure is not, however, the only factor 

affecting synonymous codon usage. Translational selection, i.e. 

selection for codons corresponding to the most abundant and/or 

efficiently translated tRNAs, 	also influences coclon usage 

(Ikemura 1985). Codon usage patterns in a given organism appear 

to result from a balance between translational selection and 

mutation pressure, 	with highly expressed genes being more 

influenced by translational selection, 	and low or moderately 

expressed genes reflecting the influence of directional mutation 



Table 6.1 Percentage G+C contents of various C. parvum DNA 
sequences. 

DNA sequence 	 Reference 	 % G+C 

CPR1 	 This work 	 39.1 

CPR1 (3rd codon 	 This work 	 17.9 
position) 

Actin gene (protein 	 Kim et a! (1991) 	 38.5 
coding region) 

Actin gene (flanking 	 Kim et a! (1991) 	 27.2 
regions) 

Actin gene (3rd 	 Kim et a! (1991) 	 28.5 
codon position) 

Sequence used 	 Laxer et a! (1991) 	 35 
for PCR study 

Clones picked at 	 Dykstra et a! (1991) 	 32.6 
random from C. parvurn 
DNA library 
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pressure (Sharp & Devine 1989, 	Bulmer 1988, 	Sharp & Li 1986, 

Shields & Sharp 1987) 

Examination of codon usage by the C. parvum actin gene and by 

CPR1 (Table 6.2) can give us some indication of the codon usage 

patterns in C. parvum. As already stated above, codon usage in 

both these genes shows an overall bias towards the use of codons 

ending in A or T. 	However, there are additional biases in the 

codon usage by the actin gene, 	that are not evident in codon 

usage by CPR1, 	and these are probably the result of 

translational selection. Evidence of translational selection in 

the actin gene includes i) preferential use of codons ending in 

C and G to encode phenylalanine and lysine respectively; ii) the 

use of GGT to encode 26 of 30 glycine residues, 	the remaining 

four being encoded by GGA (3) and GGC (1); iii) the preferential 

use of ATC rather than ATA (9:1) to encode the 10 isoleucine 

residues that are not encoded by ATT (16). 	On the basis of the 

data in table 6.2, 	possible optimal codons for C. 	parvurn 

appear to be TTC (phenylalanine) , 	AAG (lysine) and GGT 

(glycine). 	However, additional sequence data will be required 

to confirm these and to identify optimal codons for the other 

amino acids. 

It is not surprising that the actin gene appears to be subject 

to translational selection, 	since it is likely to be highly 

expressed. We do not know whether the protein encoded by CPR1 is 

highly expressed. As an oocyst wall protein it is only likely to 

be expressed by the macrogamete and/or the developing zygote 



Table 6.2 Codon usage by CPR1 and by the C. parvum actin gene. 

Codon usage by the C. parvun actin gene (bold) is shown alongside codon usage by 
CPR1. 

3 10 UUU Phe 13 23 UCU Ser 10 21 UAU Tyr 4 36 UGU Cys 
9 4 UUC Phe 1 4 UCC Ser 5 5 UAC Tyr 2 21 UGC Cys 
13 14 UUA Leu 5 17 UCA Ser 1 0 UAA 0 0 UGA 
7 5 UUG Leu 1 5 UCG Ser 0 0 UAG 4 0 UGG Trp 

2 10 CUU Leu 4 24 CCU Pro 6 27 CAU His 7 1 CGU Arg 
3 1 CUC Leu 0 4 CCC Pro 3 5 CAC His 1 0 CGC Arg 
3 6 CUA Leu 16 57 CCA Pro 9 50 CAA Gin 0 0 CGA Arg 
0 1 CUG Leu 0 2 CCG Pro 1 8 CAG Gin 0 0 CGG Arg 

16 29 AUU lie 12 21 ACU Thr 6 24 AAU Asn 3 3 AGU Ser 
9 6 AUC lie 2 7 ACC Thr 2 8 AAC Asn 1 2 AGC Ser 
1 10 AUA lie 13 30 ACA Thr 8 35 AAA Lys 10 19 AGA Arg 

10 4 AUG Met 0 0 ACG Thr 14 4 AAG Lys 2 2 AGG Arg 

15 33 GUU Val 12 19 GCU Ala 14 21 GAU Asp 26 15 GGU Gly 
3 5 GUC Val 2 2 GCC Ala 6 10 GAC Asp 1 3 GGC Gly 
10 20 GUA Val 6 12 GCA Ala 24 31 GAA Glu 3 27 GGA Gly 
0 1 GUG Val 0 3 GCG Ala 10 14 GAG Giu 0 5 GGG Gly 
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during oocyst formation. 	As a result the influence of 

translational selection on codon usage by this gene will be 

limited to these stages of the parasite lifecycle. 

6.4 P786 and parasite repeat antigens. 

Perhaps the most striking feature of the peptide sequence 

encoded by CPR1 is the presence of amino acid repeats. It is of 

interest therefore to consider the many amino acid repeats found 

in proteins of other protozoan parasites and their possible 

functions. 

Proteins with repetitive amino acid sequences appear to be very 

common among protozoan parasite antigens, 	especially those of 

Plasmodium (Schofield 1991, 	Kemp 1987) . 	Such repeats can be 

found in proteins from different developmental stages, and with 

different functions. For example, Plasmodium antigens containing 

amino acid repeats include the soluble S-antigens released 

during schizogony (Cowman et al 1985), sporozoite and merozoite 

surface antigens (McCutchan et al 1985, Dame et al 1984, Holder 

et al 1985), erythrocyte surface antigens (Favaloro et al 1986, 

Triglia et al 1987), rhoptry antigens (Keen et al 1990)and even 

a phylogenetically conserved heat shock protein (Yang et ad. 

1987). 	Amino acid repeats have also been found in antigens of 

other protozoan parasites including Leishmania (Wallis & 

McMaster 1987), Trypanosoma cruzi (Hoft et ad. 1989, Ibanez et ad. 

1988) and Eimeria acervulina (Jenkins 1988). 	The repeat 
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structures differ in size, 	number, 	and composition among 

different proteins, and in addition, 	allelic variants of a 

protein may show different repeats within otherwise conserved 

amino acid sequences; 	this occurs in the Plasmodium cynornolg-i 

CS protein (Galinski et al 1987) and in the Plasmodium 

falciparum S-antigen (Saint et al 1987). 

Despite the great variation in repeat units, the observation 

that a number of common features are shared by most of these 

repeat regions has prompted attempts to formulate a universal 

theory to explain their occurrence. 

The first feature in common is of course repetitiveness. 

Secondly, 	there is a marked bias in amino acid composition of 

the repeat regions. Amino acids represented by A, D, E, C, N, P, 

Q, 	S and V are relatively common in repeat units. 	Those 

represented by C, 	F, I, L, M, W, and Y are rarely present 

(Schofield 1991). 	The third feature is the immunodominarice of 

the repeat regions. 	Natural antibody responses to the CS 

protein, S-antigens, ring-infected erythrocyte surface antigen 

(RESA) and falciparum interspersed repeat antigen (FIRA) are 

directed predominantly against the repeat regions (Zavala et al 

1985, Anders et al 1986, Cowman et al 1984). 

It has been suggested that the repeat units may act as ligands 

for host structures such as red blood cells, 	hepactocytes and 

other host cells (Godson et al 1983, 	Nussenzweig & Nussenzweig 

1989). 	Repeated binding units would presumably allow high 
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aviditiy interaction between parasite and host cell receptor. 

This hypothesis does not, however, explain some of the features 

of these repeat regions. For example, why should the amino acid 

composition of the repeats be biased towards certain amino 

acids? Furthermore, 	and perhaps more importantly, 	why do 

allelic variants of a protein possess completely different 

repeat structures? 	If such repeats were involved in 

receptor-ligand interaction we would expect their amino acid 

sequences to be constrained by selection acting on the protein 

sequence. 

Another theory which attempts to explain the presence of repeats 

is that they function as an immune evasion mechanism. As already 

mentioned above, 	the repeat regions of Plasmodium antigens are 

highly immunodominant. In addition, antibodies recognising the 

repeat regions of Plasmodium antigens are extensively cross 

reactive, both with other repeats within the same antigen, and 

with repeats found in other proteins (Anders 1986). It has been 

proposed that the existence of such a network of cross-reacting 

epitopes induces proliferation of a higher than normal 

proportion 	of 	somatic 	mutants, 	resulting 	in 

hypergammaglobulinaemia, 	and inhibiting affinity maturation of 

the immune response to protective epitopes (Anders 1986) 

Another way in which repeat epitopes may participate in immune 

evasion has been put forward by Schofield (1991). 	He suggests 

that repeat epitopes within an antigen crosslink antibody on the 

surface of B cells, 	resulting in T-independent activation of 

B cells. A T-independent response is generally considered to be 
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inferior to a T-dependent response, 	usually lacking in class 

switching and affinity maturation, 	and having poor T and 

B cell memory (Roitt et al 1985). 

Another feature of certain repeat antigens of Plasmodium, which 

appears to support the theory of immune evasion, 	is their 

unusual genetics and evolutionary history. 	Evidence suggests 

that the evolution and maintenance of the repeats in the 

circumsporozoite protein must be through a mechanism acting at 

the DNA level, which eliminates or spreads mutations, with the 

result that the repeats either remain conserved or evolve in 

large jumps (Galinski et al 1987) . Existence of such a mechanism 

explains why in some cases, 	circumsporozoite protein repeats 

from different strains are more conserved at the DNA than at the 

protein level. Additional support for the view that repeats are 

maintained at the DNA level comes from a study of Plasmodium 

falciparurn S-antigens (Saint et al 	1987). 	S-antigens are 

secreted into the parasitophorous vacuole, and are released into 

the plasma on shizont rupture. 	There is a large degree of 

serological diversity among S-antigens of different strains of 

P. falciparum. One source of this diversity appears to be a 

variation in the reading frame. It has been demonstrated that 

two serologically distinct S-antigens expressed by different P. 

faloiparum strains result from translation of almost identical 

DNA sequences, but in different reading frames (Saint et al 

1987). So again, 	as with the circumsporozoite protein, the 

repeats are maintained at the DNA level. These observations are 

consistent with a mechanism of immune evasion in which the 



repeat structures divert the immune response as a result of 

their immunodominance, cross reaction, 	and ability to act as 

B cell epitopes. In this context, the actual amino acid sequence 

of the repeats seems to be unimportant, provided that it has 

these properties. 

However, the view that all parasite antigen repeats can be 

explained in terms of an immune evasion strategy is perhaps 

rather too simplistic. 	Ridley (1991) points out that many 

Plasmodium genes have been isolated by screening DNA expression 

libraries with sera from immune individuals. This approach has 

led to the selective identification of genes encoding proteins 

with immunodominant epitopes, 	many of which contain repetitive 

regions. He suggests that although some repeat antigens may 

protect the parasite from immune attack, they may also have a 

variety of functions which are not yet appreciated. For example, 

interaction with macromolecules such as cytoskeletal proteins 

and receptor molecules. 	In support of this view, a repeat 

epitope protein has been identified in Trypanosoma brucei 

rhodesiense, that is believed to have a specific cytoskeletal 

function (Duncan et al 1991). Such repeat epitopes are unlikely 

to serve as an immune evasion mechanism in African trypanosomes, 

since these parasites have evolved a mechanism of antigenic 

variation which is extremely successful in evading the host 

immune response. 

It seems unlikely that the repeats in P786 participate in immune 

evasion. They do not share several of the characteristics which 
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are common to parasite antigen repeats that appear to be 

involved in immune evasion. For example, while the P786 repeat 

units contain certain residues whose positions are completely 

(cysteine) or highly (proline, 	glycine, 	leucine) conserved, 

other intervening residues are much more variable. Repeat units 

in other parasite repeat antigens tend to consist of many tandem 

copies of more or less identical repeats. 	Secondly, 	P786 

contains a high proportion of cysteine residues which are 

particularly concentrated in the repetitive regions. 	By 

contrast, 	repeats thought to be involved in immune evasion 

rarely contain cysteine residues (Schofield 1991, 	Kemp et al 

1 987) . Finally, the P786--galactosidase fusion protein was not 

recognised by serum from any of 16 lambs which had been infected 

per os with C. parvum oocysts, whereas parasite repeat antigens 

which appear to be involved in immune evasion elicit high levels 

of antibody in infected individuals (Schofield 1991, 	Anders 

1986). 	As a component of the oocyst wall, the native 190kDa C. 

parvum antigen corresponding to P786 is probably not well 

presented to the immune system during infection, 	since the 

oocyst stage is not invasive. 

6.5 Cysteine-rich repeats and P786. 

Cysteine-rich repeats have been identified in several plasma 

proteins, including thrombospondin (Lawler & Hynes 1986), von 

Willebrand factor (Verweij et al 1986) and many components of 

the complement system (Reid & Day 1989). They have also been 

demonstrated in the extracellular domains of a number of cell 
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surface proteins, such as nerve growth factor (NGF) receptor 

(Johnson et al 1986), 	epidermal growth factor (EGF) receptor 

(Ulirich et al 1984) and low density lipoprotein (LDL) receptor 

(Yamamoto et al 1984), and in human fibrillin, a glycoprotein 

component of connective tissue (Maslen et al 1991).  

The common feature of all these proteins appears to be the 

extracellular location of the cysteine-rich domains. 	Being 

highly reactive, cysteine residues readily form disulphide bonds 

in the oxidizing conditions of the extracellular environment 

(Muskal et al 1990). Such bonds may be important in maintaining 

the structure of the protein. 	Indeed, 	several of the 

above-mentioned proteins are known to adopt a structure which is 

stabilized by disulphide bonding. 	For example, 	human von 

Willebrand factor forms multimers which are linked by disulphide 

bonds (Verweij et al 1986). 	Furthermore, the binding sites of 

LDL receptor and NGF receptor both contain disulphide-bonded 

cysteine residues which are essential for maintaining the 

structure of these sites (Yamamoto et al 1984, Yan & Chao 1991). 

The mature C. 	parvum protein corresponding to P786 may consist 

of structurally repeated regions stabilized by the presence of 

many disulphide bonds. 	In support of this, 	it has been found 

that a spore coat protein of the slime mould Dictyostelium 

discoideum contains EGF-like repeats in which the positions of 

the cysteine residues are highly conserved (Widdowson et al 

1 990) . 	These residues are highly disulphide-crosslinked in the 

mature spore coat. 	The spore coat of D. 	discoideum can be 
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considered analogous to the oocyst wall of C. parvum, since each 

forms the outer covering of an environmentally resistant 

dispersal stage of the organism. 	The presence of proteins 

containing repeats based on conserved cysteine residues in both 

of these structures indicates that the cysteine residues are 

likely to perform a similar function in both cases. 	Further 

investigation into the structure of the protein components of 

the C. 	parvum oocyst wall may reveal important information 

regarding the ability of the oocyst to withstand exposure to 

environmental conditions and its resistance to many chemical 

disinfectants. 

6.6 concluding remarks. 

This study has identified two antigen-encoding gene fragments of 

C. 	parvum. One of these, cPsiO, encodes an antigen which is 

recognised by serum from some, but not all, lambs infected with 

C. parvum. Due to limitations of time, extensive 

characterization of csiO and its encoded peptide was not 

carried out. 	Possible future work on this gene fragment would 

involve identifying the location of the encoded native protein 

in the parasite, by Western blotting and immunofluoresence. If 

the antigen was found to be located on the sporozoite surface, 

or in the apical complex, it would be of particular interest to 

determine whether antibodies raised against this antigen were 

protective. 	Antibodies recognising sporozoite and merozoite 

surface antigens of C. 	parvum have been found to reduce 

infection in both in vivo and in vitro assays (sections 1.7 and 
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WI, 

The other gene fragment, CPR1, encodes part of a 190kDa oocyst 

wall protein. 	Sequencing of this gene fragment revealed that 

the encoded peptide sequence is markedly repetitive, 	with 

repeat units based on conserved cysteine residues. It is likely 

that 	the 	cysteine 	residues 	participate 	in 

disulphide-crosslinking, 	which may be of structural importance 

in the oocyst wall. 	The presence of disuphide-crosslinking in 

the 190kDa C. parvum could be demonstrated by comparing Western 

blots of oocyst shell samples which have been electrophoresed 

with and without 3-mercaptoethanol in the sample buffer. 	In 

addition, 	further work on CPR1 would include isolation of the 

rest of the gene by screening DNA libraries with CPR1 as a 

hybridization probe. 

Preliminary Southern blotting experiments (section 4.7) 

indicated that CPR1 did not hybridize with DNA from T. 	gondii 

or Sarcocystis spp. 	An extension of this work would involve 

carrying out similar experiments using DNA from Eimeria species 

and from different species of Cryptosporidium to determine 

whether these contain sequences which are homologous to CPR1 

Part of the CPR1 DNA sequence may prove to be a suitable target 

for use in a PCR detection technique for C. 	parvum. 	Using 

primers 267 and 594 (table 5.1), 	a 980bp DNA fragment was 

amplified from pBSCPR1 1  DNA, 	and from C. 	parvum genomic DNA 

(N. C. Lally & G. 	D. 	Baird unpublished). 	Further 



174 

experiments would be required to determine the sensitivity and 

specificity of amplification, 	and to evaluate the suitability 

of such a technique as a detection method for C. parvum. 
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A Cryptosporidium parvum )gtl I expression library was constructed using EcoRl-digested genomic DNA extracted from 
in vitro-excysted oocysts. Screening of this library with rat anti-C'rvpto.sporidium antiserum led to the isolation of a clone 
containing a 2359-bp EcoRI fragment. When this fragment was ligated into the EcoRl site of plasmid vector pMSIS, the 
resulting clone expressed a 200-kDa fl-galactosidase fusion protein. Western blot analysis using serum raised against this 
fusion protein indicated that the EcoRI fragment represented part of a gene encoding a 190-kDa oocyst wall protein of C. 
parvum. Sequencing of the fragment revealed a continuous open reading frame encoding 786 amino acids. The DNA sequence 
is relatively low in G + C (39.1%), and the third codon position contains only 17.9% G + C. The deduced peptide sequence has 
unusually high proportions of cysteine, proline, glutamine and histidine. Another striking feature of the amino acid sequence 
is the presence of distinctly repetitive regions based on conserved cysteine residues. 

Key words: Crvptosporidium parvum; Gene cloning; Oocyst wall protein; Cysteine-rich repeat 

Introduction 

Cryptosporidium parvum (Apicomplexa: 
Cryptosporidiidae) is an obligate intracellular 
parasitic protozoan which infects the gastro-
intestinal tract of a wide range of mammalian 
species, including man [1]. Despite the medical 
and veterinary importance of C. parvum, 
studies of this organism at the genetic level 
have only begun in recent years. The earliest 
published work on the molecular biology of 
Cryptosporidium involved field inversion gel 
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propyl-f3-o-thiogalactopyranoside; NBRF, National Biomedi-
cal Research Foundation: ORF, open reading frame. 

electrophoresis of chromosome-sized DNA of 
two species of Cryptosporidium [2]. C. parvum 
appeared to contain live chromosomes ranging 
in size from 1400 kb to over 3300 kb. The 
phylogenetic relationship of Cryptosporidium 
to a range of taxonomic groups has also been 
investigated using small subunit ribosomal 
RNA sequence data [3]. Other recent genetic 
studies have identified, by hybridization with 
heterologous DNA probes, C. parvum genes 
encoding actin [4], topoisomerase [5] and 
dihydrofolate reductase-thymidylate synthase 
[6]. In addition, anti-Cryptosporidium antiser-
um has been used to identify C. parvum 
antigen-encoding genes [5]. 

The present communication describes the 
use of anti-Cryptosporidium antiserum to 
isolate a 2359-bp gene fragment from C. 
parvum that encodes approximately half of a 
190-kDa oocyst wall protein. The encoded 
amino acid sequence is markedly repetitive and 
contains a high proportion of cysteine. 
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Materials and Methods 

Parasites. An isolate of C. parvuni, originally 
recovered from red deer calves [7], was 
maintained by passage in 5-day-old lambs or 
bovine calves. Oocysts were extracted from 
faeces as described by Hill et al. [8]. 

Construction and screening of 2gtl 1 expression 
library. Excystation was carried out by 
incubating oocysts for 1 h at 37°C in I% (w 
v) trypsin in HBSS (0.41 mM MgSO4/0.49 mM 
MgC12/1.26 mM CaC12/137 mM NaCl/5.37 
mM KC1/1.07 mM Na2HPO4/0.44 mM 
KH2PO4/0.002% (w/v) phenol red) adjusted 
to pH 2.5-3.0 with HC1, followed by centrifu-
gation at 500 x g, resuspension in 0.05% (w/v) 
sodium deoxycholate, 0.2% (w/v) sodium 
hydrogen carbonate in I-IBSS, pH 8-8.4, and 
incubation at 37°C for 30 mm. After centrifu-
gation, genomic DNA was extracted from the 
sporozoites by lysis in 50 mM Tris-HC1, pH 
8.0/50 mM EDTA, 1% (w/v) SDS, and 
digestion with proteinase K (100 jig ml'), at 
50°C for 3 h followed by phenol/chloroform 
extraction and ethanol precipitation. Purified 
genomic DNA was digested with EcoRI and 
then ligated into dephosphorylated )Lgtl 1 arms. 
After in vitro packaging, the recombinant 
phage were plated with Escherichia co/i 
Y1090 and screened with rat anti-
Cryptosporidiuni antiserum by standard proce-
dures [9]. 

Sub-cloning and purification of the fusion 
protein. The 2359-bp EcoRI fragment 
(CPR1) was excised from purified recombi-
nant phage DNA and sub-cloned into the 
EcoRI site of plasmids pMSIS, pMS2S and 
pMS3S, forming recombinant plasmids 
pCPR1/IS, pCPR1/2S and pCPR1/3S, respec-
tively. The pMS plasmids were constructed by 
M. Schreiber (Institut fur Genetik, Cologne) 
and are derivatives of pMSgtll [10]. Each of 
pMSIS, 2S and 3S contains a unique EcoRI 
site approximately 50 bp downstream from the 
3' end of the lacZ gene. In pMS2S and pMS3S 
the EcoRI site is shifted by one and two 
nucleotides respectively, with respect to its 

position in pMS1S, allowing cloning of any 
DNA fragment into each of the three reading 
frames. In addition each of the pMS plasmids 
contains a transcription termination region 9-
22 bp downstream from the EcoRI site. 
Induction of expression with isopropyl-f3-D-
thiogalactopyranoside (IPTG), and prepara-
tion of crude cell lysates for SDS-PAGE 
analysis, were carried out in E. co/i strain 
NM 522 by the method of Carroll and Laugh-
on [11]. 

Preparation of partially-purified fusion 
protein expressed from recombinant plasmid 
pCPR1/1S was carried out by the method of 
Marston [12]. Briefly, overnight cultures which 
had been induced with IPTG, were pelleted by 
centrifugation, then lysed by incubation with 
0.5mg mL' lysozyme and 2 m mV' sodium 
deoxycholate. The mixture was then centri-
fuged at 3000 x g to pellet the inclusion 
bodies. 

Antisera. Rat anti- Cryptosporidium antiser-
um was raised by oral inoculation of each of 
a litter of rats with 106  C. parvum oocysts at 5 
and at 16 days of age. In addition, the rats 
were inoculated with 106  in vitro-excysted, 
freeze-thawed (3 x) C. parvum oocysts at 38 
and 52 days by intramuscular injection, and at 
45 days by subcutaneous injection. The rats 
were exsanguinated at 60 days and their sera 
pooled. Polyclonal antiserum was raised 
against the fusion protein expressed from 
plasmid pCPR1/1S. To achieve this, the 
partially-purified fusion protein was electro-
phoresed through a 7.5% (w/v) polyacrylamide 
gel and the region containing the fusion 
protein excised, homogenised in Freund's 
complete adjuvant and inoculated subcuta-
neously into a rabbit. The same procedure, 
but substituting Freund's incomplete for 
Freund's complete adjuvant, was repeated on 
days 30 and 85. Before use the serum was 
diluted 1:10 and preabsorbed with a lysate 
prepared from a clone of E. co/i NM522 
harbouring pMS1S. This effectively removed 
antibodies recognising fl-galactosidase and 
other E. co/i proteins. Mouse anti-f3-galactosi-
dase antiserum was obtained from Sigma. 
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SDS-PAGE and Western blotting. Proteins 
were separated by SDS-PAGE under reducing 
conditions [13], transferred electrophoretically 
to polyvinylidene difluoride membranes (Tm-
mobilon, Millipore) and then incubated with 
the required antibody probe. Binding of 
primary antibody was detected by incubation 
in anti-mouse immunoglobulin conjugated to 
alkaline phosphatase (Sigma), or anti-rabbit or 
anti-rat immunoglobulins conjugated to horse-
radish peroxidase (Dako), followed by colour 
development in the appropriate substrate 
solution. 

Southern blotting. Genomic DNA was digest-
ed with EcoR!, electrophoresed through a 
0.8% (w/v) agarose gel and transferred to 
Hybond-N hybridisation membrane (Amer-
sham). The blot was then probed with DNA 
labelled by random-primed incorporation of 
digoxigenin-labelled dUTP. The final wash 
was performed in 0.1 x SSC (15 mM NaCl/ 
1.5 mM sodium citrate, pH 7.0) at 65°C. 

Density gradient separation of sporozoites and 
oocyst shells. Following in vitro-excystation 
and washing with PBS (137 mM NaCl/26.8 
mM KC1/8.1 mM Na4HPO4/1.47 mM 
KH2PO4), sporozoites, oocyst shells and 
unexcysted oocysts were separated by centri-
fugation (1000 x g, 20 mm) on 10 ml 15-50% 
(v/v) Percoll (Pharmacia) gradients. Fractions 
(0.5 ml) were collected and examined by phase 
contrast microscopy. Appropriate fractions 
were pooled, diluted with PBS, and pelleted 
by centrifugation at 1000 x g. 

DNA sequencing. The CPR1 insert was 
subcloned into Bluescript SK + (Stratagene) 
and DNA from this recombinant phagemid 
was restricted and religated to form additional 
recombinant clones containing deletions of the 
CPR1 insert. Dideoxy chain-termination DNA 
sequencing [14] was then performed on double 
stranded template DNA using M13 universal 
and reverse primers and T7 polymerase. 
Additional oligonucleotide primers were de-
signed to sequence the entire CPR1 insert. 

Protein sequence analysis. Most of the se-
quence analysis was carried out using the 
SEQNET molecular biology computer facility 
based at the SERC Daresbury Laboratory, 
Warrington, UK. Programs in the Genetics 
Computer Group (GCG) sequence analysis 
software package [15] were used to calculate 
dot-matrix analyses, to search for short defined 
peptides and for profile analysis [16]. 

An exhaustive search of the entire National 
Biomedical Research Foundation (NBRF) 
protein sequence database, version 32.0 
(40 298 proteins, 11 831134 residues), was 
carried out using the derived protein sequence 
(P786) as a query for the 'prosrch' protein 
sequence database searching program [17] 
implemented on the computing facilities in 
the Biocomputing Research Unit, University 
of Edinburgh. 

Results 

Isolation of the CPR] gene fragment and 
characterisation of its encoded peptide. Screen-
ing of 2 X. 105 recombinant phage with rat 
anti- Cryptosporidium antiserum led to the 
isolation of three immunoreactive clones, each 
containing an identical insert of approximately 
2.4 kb (designated CPR1). Following induc-
tion with IPTG, plasmid pCPR1/1S, contain-
ing CPR1, expressed a /3-galactosidase fusion 
protein of approximately 200 kDa, recognised 
by the anti-Cryptosporidiuni antiserum (Fig. 1). 
Plasmids pCPR1/2S and pCPR1/3S both failed 
to express the fusion protein, indicating that 
the CPR1 insert was likely to contain an open 
reading frame (ORF) which was in frame with 
the EcoRI site in both )Lgtll and pMS1S. Since 
/3-galactosidase accounts for 116 kDa of the 
fusion protein, this result indicated that the 
entire CPR 1 insert was likely to consist of a 
single open reading frame. 

Polyclonal rabbit serum raised against the 
recombinant fusion protein strongly recog-
nised a 190-kDa protein on a Western blot of 
proteins from excysted C. parvum oocysts (Fig. 
2). To determine whether this 190-kDa protein 
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Fig. 1. Identification of the recombinant fusion protein 
expressed by pCPRI/IS. Induced lysates prepared from 
clones harbouring plasmids pMSIS (I) and pCPRI/IS (2) 
were fractionated on a 7.5% SDS-PAGE gel and Western 
blots probed with mouse anti-13-galactosidase serum (A) or 
rat anti-Cri'ptosporidiurn antiserum (B). Positions and sizes 

of molecular weight markers are indicated. 

was a constituent of the sporozoites or of the 
oocyst wall, immunoblotting experiments were 
carried out using samples enriched for either 
sporozoites or oocyst shells. When analysed by 
SDS-PAGE, only four bands were visible in 
the samples enriched for oocyst shells, with 
apparent sizes of 190, 85, 55 and 30 kDa (Fig. 
3A). By contrast, the sporozoite enriched 
samples contained numerous bands (Fig. 3A). 
When a Western blot of the same samples was 
probed with the fusion protein-specific anti-
serum, strong reactivity with the 190-kDa band 
in the oocyst shell track was observed. There 
was also some indication of reactivity within 
the sporozoite track (Fig. 3B). These results 
suggest that the CPR1 gene fragment encodes 
a peptide constituent of the oocyst wall. The 
presence of a reacting band in the sporozoite 
track may have been due to incomplete 
separation of sporozoites and oocysts, since a 
few intact oocysts were visible in the spo-
rozoite-enriched sample (not shown). 

200 400 800 

Fig. 2. Recognition of a 190-kDa C. parvurn antigen by 
antiserum raised against the fusion protein expressed by 
pCPRI/IS. Proteins extracted from in vitro-excysted C. 
parvum oocysts were fractionated on a 7.5% SDS-PAGE 
gel and Western blotted. Strips were probed either with 
polyclonal rabbit antiserum raised against the fusion 
protein expressed by pCPRI/lS (B), or with serum from 
the same rabbit prior to inoculation with the fusion protein 
(A). Positions of molecular weight markers are indicated 
on the left. Serum dilutions are indicated below the blot. 

Characterisation and sequencing of the CPR] 
insert. To eliminate the possibility that the 
CPR1 insert was derived from sheep or E. coli 
DNA, purified CPR  insert DNA was labelled 
with digoxigenin and used to probe a Southern 
blot of EcoRI-digested genomic DNA from C. 
parvum sheep and E. coli. The probe hybri-
dized to a single 2.4-kb fragment of C. parvum 
DNA, but no hybridization was detected to 
sheep or E. coli DNA (not shown). Sequencing 
of CPR1 revealed that it consisted of 2359 bp. 
All six possible reading frames were examined 
for ORFs. As expected, considering the experi-
mental results, one reading frame contained a 
continuous ORF in which the EcoRI site was 
in frame with that in pMS1S and .gtl1. The 
other reading frames each contained between 5 
and 19 stop codons. The CPRI DNA sequence 
and the deduced amino acid sequence of the 
ORF (P786) are shown in Fig. 4. 
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Fig. 3. SDS-PAGE and Western blot analysis of samples enriched for oocyst shells or sporozoites. (A) Proteins extracted 
from samples enriched for sporozoites (sp) or oocyst shells (sh) were fractionated on a 7.50/,, SDS-PAGE gel and stained with 
Coomassie blue. (B) Duplicate samples were Western-blotted and probed with rabbit serum raised against the fusion protein 
expressed by pCPR I/IS (left panel) or serum taken from the same rabbit prior to inoculation with the fusion protein (right 

panel). 

Protein sequence analysis. The P786 deduced 
amino acid sequence has an unusual amino 
acid composition in comparison with the 
amino acid proportions averaged over the 
entire NBRF protein sequence database. In 
particular, 57 (7.3%) of the 786 residues are 
cysteines, compared with 1.9% for the NBRF 
database as a whole. There are also unusually 
high proportions of proline (11 .1 % compared 
with 5.2% in NBRF), glutarnine (7.4% 
compared with 4.1%) and histidine (4.1% 
compared with 2.3%). It is also noteworthy 
that the cysteine and histidine residues are not 
evenly distributed throughout the sequence, 
which can be further described as consisting of 
alternating cysteine-present/histidine-absent 
and cysteine-absent/histidine-present regions. 

Dot matrix analysis indicates that the amino 
acid sequence is distinctly repetitive (Fig. 5). In 
particular, there is a strongly repetitive region 
within the first cysteine-rich domain spanning 
residues 1-338 of the available sequence, 
indicated by the diagonal lines in the top left  

corner of the dot plot. A further repeating 
element in the C-terminal half of the sequence 
is indicated by the diagonal lines in the bottom 
right-hand corner. 

The repeated regions in the P786 sequence 
are each based on conserved cysteine residues. 
In the N-terminal cysteine-containing region 
(residues 1-338), the first 26 cysteines are 
arrayed in 13 consecutive copies of a repeat 
unit which consists of the motif CPXG (7X) C, 
followed by either 9 or 11 residues (denoted a9  
and a11 , respectively, in Fig. 6). The first 12 of 
these repeats are arranged as a series of four 
higher order repeats, each of 65 amino acids 
(labelled A in Fig. 6). After the 13th copy of 
the motif, the remaining 6 cysteines in this 
region follow on as a fainter echo of the 
original motif, i.e., CPXG (6X) C (1 1X) CPXG 
(8X) C (7X) C (8X) C. The four higher order 
repeats show complete conservation of the 
cysteine residues, and in addition 16 of the 
remaining 59 amino acids are conserved (Fig. 
6). Of these conserved residues, the asparagine- 
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addition, glutamine-rich and cysteine-rich 
proteins were reported, although such align-
ments between similarly biased sequences are 
not readily informative as they often do not 
indicate a related function [20]. Further use of 
programs available in the GCG package and at 
the Biocomputing Research Unit, University 
of Edinburgh, identified protein sequences 
containing the (CPXG) 7X C motif. These 
database sequences included several with more 
than one copy of the motif: i.e., midge balbiani 
ring 3 protein, human fibrillin, human von 
Willebrand factor, leech antistasin and human 
low density lipoprotein receptor-related pro-
tein. 

Discussion 

C. parvum oocyst wall proteins. The finding 
of only four visible bands following SDS-
PAGE of oocyst shells is at odds with results 
from other studies. Two studies which utilized 
1251-labelling of untreated, intact oocysts, 
followed by SDS-PAGE of the extracted 
proteins, identified 17 [21] and 6-10 [22] 
oocyst surface proteins, respectively. Differ-
ences between these and the present study may 
be due to the effects of trypsin and deoxycho-
late on oocyst wall proteins during in vitro 
excystation. However, one of these studies [22] 
also examined oocyst wall proteins following 
in vitro excystation and separation on a 
density gradient. In this study, 7 major bands 
were identified, one of 190 kDa, which might 
correspond to the 190-kDa protein identified 
in the present work. Another difference 
between these earlier studies and the present 
work is in the method of extraction of oocysts 
from the faeces. In our laboratory, routine 
oocyst extraction involves exposure of the 
oocysts to dilute sulphuric acid and 1 % (w/v) 
SDS. Other groups have used different extrac-
tion procedures. It is also possible that there 
are isolate-specific differences in oocyst wall 
proteins. Thus, Lumb et al. [22] found that of 
10 '251-labelled surface proteins of C. parvum 
oocysts, four were not present in all of the 
isolates studied. Differences in the antigenic 

composition of sporozoites of different C. 
parvum isolates have also been demonstrated 
using a panel of monoclonal antibodies [23]. 
Failure to identify proteins which are homo-
logous to P786, following exhaustive database 
searching, suggests that P786 represents part of 
a protein which has been hitherto unrecog-
nised. Molecular studies of other coccidia, such 
as Eimeria and Toxoplasma, have been con-
cerned with genes encoding antigens of the 
motile stages [24-27]. There are no genes 
encoding oocyst wall proteins of gastrointest-
inal coccidia in current sequence databases, 
and an extension of the present work would 
therefore be to determine whether such 
proteins are conserved among different cocci-
dial genera. 

Codon usage and G + C content in C. par-
vum. The CPRI DNA sequence has a 
relatively low G+C content (39.1%). The 
G+C content of the first second and third 
codon positions (53.1%, 46.3% and 17.9%, 
respectively) of the CPR  ORF, and inspection 
of the codon usage data (not shown) confirms 
that this low G + C content is not due to biased 
amino acid composition, but rather to prefer-
ential use of G+C-poor codons at synon-
ymous sites. This adds to other evidence that 
the C. parvum genome as a whole is low in 
G + C content, which consists of a similar 
codon usage bias in the C. parvum actin gene 
[4], comparison of restriction digests using 
enzymes with G + C-poor and G + C-rich 
recognition sites [4] and available sequence 
data [3,4,5,28]. 

P786 and parasite repeat antigens. A striking 
feature of P786 is the presence of highly 
conserved repeats. Proteins with repetitive 
domains appear to be very common in 
protozoan parasite antigens [29], particularly 
in Plasmodium [30], and it has been suggested 
that such domains have evolved as a mechan-
ism of immune evasion [29,31]. However, the 
repeats found in P786 appear to be different 
from these other parasite antigen repeats in 
several respects. Firstly, while the P786 repeat 
units contain certain residues whose positions 
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are completely (cysteine) or highly (proline, 
glycine, leucine) conserved, other intervening 
residues are much more variable. Repeat units 
in other parasite repeat antigens consist of 
many tandem copies of more or less identical 
repeats. Secondly, P786 contains a high 
proportion of cysteine. By contrast, repeats 
thought to be involved in immune evasion 
rarely contain cysteine residues [29]. Thirdly, 
the P786-fl-galactosidase fusion protein was 
not recognised by serum from any of 16 lambs 
which had been infected per os with C. parl'urn 
oocysts (unpublished), whereas parasite repeat 
antigens which appear to be involved in 
immune evasion elicit the production of high 
levels of antibody in infected individuals 
[29,31]. As a component of the oocyst wall, 
the native 190-kDa C. parvurn protein corre-
sponding to P786 is probably not well 
presented to the immune system, since the 
oocyst stage is not invasive. Such considera-
tions would therefore appear to rule out the 
involvement of this protein in any immune 
evasion mechanism. 

Occurrence and fi,nction of cj'steine-rich re-
peals. Cysteine-rich repeats have been identi-
fied in several plasma proteins, including 
thrombospondin [32], von Willebrand factor 
[33] and many components of the complement 
system [34]. They have also been demonstrated 
in the extracellular domains of a number of cell 
surface proteins, such as nerve growth factor 
receptor [35], epidermal growth factor receptor 
[36] and low density lipoprotein receptor [37], 
and in human fibrillin, a glycoprotein compo-
nent of connective tissue [38]. The common 
feature of all these proteins appears to be the 
extracellular location of the cysteine-rich 
domains, which may have a role in stabilising 
protein structure through disulphide bonds. 
Indeed, several of the above mentioned 
proteins are known to adopt structures which 
are stabilised by disulphide bonding [33,37,39]. 
The mature C. parvurn protein corresponding 
to P786 may consist of structurally repeated 
regions stabilised by the presence of many 
disulphide bonds. In support of this, it has 
been found that a spore coat protein of the 
slime mould Diclyost el/urn discoideurn contains 

epidermal growth factor-like repeats in which 
the positions of the cysteine residues are highly 
conserved [40]. These residues are highly 
disulphide-cross-linked in the mature spore 
coat. The spore coat of D. discoideurn can be 
considered analogous to the oocyst wall of C. 
parvurn, since each forms the outer covering of 
an environmentally resistant dispersal stage of 
the organism. The presence of proteins con-
taining repeats based on conserved cysteine 
residues in both of these structures indicates 
that the cysteine residues are likely to perform 
a similar function in both cases. 
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