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ABSTRACT 

In this thesis we study functions of generators of uniformly 

bounded semigroups of operators on a Hubert space, Z. 

A recent paper of V.V.Peller considers polynomials in an 

operator T whose iterates {T} 
n?_ 0 

form a uniformly bounded discrete 

semigroup. Upper bounds for the norm of a polynomial in T are 

obtained and both a representation of the Besov space B 1  in B(Z) 
OD,

and a von-Neumann-type inequality follow. 

After studying Feller's methods and results, we use a similar 

approach to study polynomials in two commuting power-bounded 

operators and obtain comparable norm estimates. 	These results 

require a characterisation of Hankel operators on H2(T2), the Hardy 

space of functions on the two-dimensional torus. We show that the 

class of such Hankel operators is isometrically isomorphic to the 

dual of a quotient of Banach spaces of operator-valued functions, 

and we investigate conditions for a generalisation of Nehari's 

Theorem. 

Finally, in Chapter 5 we show that analogues of Feller's 

results hold for functions of the infinitesimal generator of a 

uniformly bounded, strongly continuous semigroup of operators. This 

requires a characterisation of the dual space of the injective 

tensor product L1()®L1(ff) using conditional expectation 

operators, and an identification of the class of Hankel-type 

integral operator kernels with a subspace of the dual of H1  (R). 
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The aim of this thesis is to find upper bounds for the norms of 

functions of operators on Hubert spaces. We are interested in the 

functions of generators of uniformly bounded semigroups of 

operators, and we show that the results and the methods for studying 

functions of discrete semigroups have analogous counterparts in the 

continuous semigroup case. This particular objective is motivated 

by the recent results of V.V.Peller, producing norm estimates for 

functions of the generator of a discrete sigroup of operators. 

The methods employed throughout the thesis reflect the mixture 

of rnatricial, Banach space theory and the theory of function spaces, 

these elements being connected by harmonic analysis in general and a 

theorem of Nehari in particular. Consequently, our intermediate 

results, such as those concerning Hankel-type 4-dimensional arrays 

and integral operators, may be considered independently of the 

results for functions of semigroups of operators. 

In Chapter 1 we present preliminary results in the theory of 

tensor products, Schur multipliers and Hankel operators. Although 

these results are well-known, we give proofs wherever the method of 

proof is to be generalised later. 

The results of von-Neumann [vN] and Sz-Nagy [N2],  for 

contractions and power-bounded invertibles respectively, are 

described in Chapter 2 when we consider the motivation for Peller's 

work. We give a full account of the results for power-bounded 

operators [P1],  hoping to make this ccplex paper understandable and 

to prepare the reader for the sequences of results in Chapters 4 and 

5. 

A result of Pndo [an] provides a von-Neumann-type inequality 
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for polynomials of pairs of commuting contractions on a Hubert 

space, so it is natural to consider polynomials of commuting power-

bounded operators. The results of [P1] have obvious analogues in 

this case and we show that the operator norm of such operators are 

bounded above by an expression growing logarithmically in the 

degree of the polynomial. 

The principle difficulty in obtaining this expression is the 

current absence of a Nehari-type result for Hankel operators on the 

Hardy space HZ(T2)  of functions on the two-dirrnsional torus. Thus, 

in the form of Chapter 3, we devote a substantial part of the thesis 

to developing the characterisation of such operators necessary for 

the application of Peller's methods to polynomials of commuting 

power-bounded operators. Using Page's characterisation of vectorial 

Hankel operators ([PA])  and by proving the identification 

(apparently known to Sarason, [SA]) between a space of 

trace-class-valued functions, H1(&) and a quotient of an 	space 

of bounded operator-valued functions, we show that the class of 

Hankel operators on H2(T2) is isometrically isomorphic to the dual 

of a quotient of H1(91). Although this result does not answer the 

question of whether an analogue of Nehari's Theorem exists for 

Hankel operators on H2(T2), we are able to give some new information 

about the relationship between the class of Hankel operators on 

H2(T2) and certain tensor products of H1  spaces. 

In Chapter 4 we use the principle results of the previous 

chapter to obtain our required upper bound on the norm of a 

polynomial of two commuting power-bounded operators. 

Finally, in Chapter 5 we show that analogous results hold for 

functions of A, the infinitesimal generator of a uniformly bounded, 

strongly continuous, one-parameter semigroup of operators. 	The 
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transition from functions on the finite measure spaces T and T2  to 

those functions defined on R causes more technical difficulty than 

encountered in previous chapters. 	For example, in 5.3 we use 

conditional expectation operators to obtain a suitable description 

of the dual of the injective tensor product L1(ll)®L1(ll), and in 

5.4 we show that this dual space is iscxnorphic to the Banach space 

of pointwise multipliers of integral operator kernels. Whilst a 

characterisation of the Hankel-type kernels of integral operators is 

known ([WI]), we give a description of such kernels in terms of 

linear functionals on H1() and use this result to estimate the norm 

of f(A) in terms of the norm of f in a space of functions on L. 

Using techniques similar to those in Chapters 4 and 5, we conclude 

the thesis by showing that for a Schwartz class function, f, with 

Fourier transform supported on [1/N,N] for some N ;-,. 2, 

II f(A) II --. const. logN II f IIcD• 

viii 



Chapter 1 Introduction. 

In this chapter we shall establish some basic notation and 

definitions, and introduce three themes from the theory of Banach 

spaces which will be encountered throughout the thesis. The results 

are mostly well-known and we shall omit proofs whenever appropriate 

references are available. 

Section 1.1 Preliminary Definitions. 

Throughout the thesis we shall denote by Z, an arbitrary, 

complex, separable, infinite-dimensional Hilbert space. The norm on 

is denoted by II . II and the inner product by ( •,. ). If Xis a 

linear space with norm II . 11 then B(X) is the algebra of bounded 

linear operators on X. If Y is also a linear space, with norm 

11 • U then B(X;Y) is the normed linear space of bounded operators 

from X into Y. In the special case that Y = C, B(X;Y) is the Banach 

space of bounded linear functionals on X which we denote by X. If 

x E X and f E X we shall frequently write the value f(x) of f at x 

as a pair < x,f > * or simply < x,f >. 
x, x 

Furthermore, we shall use the standard notation for the sets of 

reals (IR), non-negative reals (R), ccrnplex numbers (C), integers 

(7Z), non-negative integers (Z) and natural numbers (ti). The open 

unit disc {z E (U : Izi < 11 is denoted by ID and its boundary, the 

unit circle in (U, is denoted by T. Finally, for each n E Z, the 

set {O , 1,.. . ,n} will be denoted by Z, 
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The Lebesgue and Hardy Spaces. 

If (Q,4,p) is a a-finite measure space and if 1 -e. p :!~. co then 

LP(04,p) (or sirrly L(0)) will denote the well-known Lebesgue 

space of (equivalence classes of i-a.e. equal) p-integrable, 

1i-measurable cauplex-valued functions on 0 with the norm II f Ii 
p = 

l/p 

[ J' 	f() 1 dIl(G)) 	. 	For the case of p = co, LCo(0,,p) will 

denote the Banach space of (equivalence classes of p-a.e. equal) 

ji-essential ly bounded measurable cauplex-valued functions on 0 with 

the norm II f U = ess 	E 0 }. Furthermore, in the 
sup 

special case that 0 is a subset of Z with the usual counting measure 

then LP(Q) (1 :!~ p < co) is the sequence space 

l(Q) = 	
nCQ 

:cx, I P <co } 
nES 

Much of our work is concerned with functions on the unit circle 

T. We denote by m the normalised Lebesgue measure on T. Then for f 

E L(T) (1 :5. p :5. co), 1 is the Fourier transform of f ([CON,I.5.8]) 

and the Hardy space H(T) is the subset of LP(T) consisting of those 

f € 11(T) with (n) = 0 for all n < 0. Note also that we shall use 

?(T) to denote the subset of LCo(T) consisting of those f e L'  (T) 

with (n) = 0 for all n :!; 0. 

The Hubert space HT) is of particular interest, and it 

will be assumed throughout that H2(T) contains the orthonormal basis 

where for each n E Z and e'° E T, 

iS 	inS e(e ) = e 

Note however that in Chapter 5, where confusion is unlikely, we use 

e to denote the function 

en (x) = e 1X 

on U. Then {e} 	(respectively {e}€+) is an orthonormal basis 



for the Hubert space L2() (respectively, H2(I)). 

Occasionally we shall work with H (D), the Hardy space of 

analytic functions on I) for which the function fr(e'°) = f(re'°) on 

T is in L(T) for every 0 < r < land sup II f,. II < co . HP (D) is 
O<r<1 

norrned by II f II = sup II Er II . Moreover, if f € HP (D) then the 
O<r<1 

non-tangential limits of f 

f(eie ) = urn f(z) 
z-e10 

exist for a. e. e 0 € T and define a p-integrable function on T. 

This correspondence allows us to identify H(U) with H(T) ([HO]). 

We shall frequently use the well-known characterisation of 

HP 	
p * 

the duals of H spaces. 	Indeed, for 1 ~ p < , H (T) is 

isometrically isomorphic to the quotient L q()/H(T) where 

+ 	= 1. The corresponding pairing, for f € HP (T) and g € 

is 

<f,g + H(T) > 
= j2n f (e'e)g(e'e) 	 (*) 

When f or g is a polynanial we have 

< f,g + H( ) 
> = 

ft 

In particular, we note that H(T)* is isometrically 

iscinorphic to L(T)/H(T) with respect to (*) when f € H1 (T), g € 

L(T) and q = oD . To avoid confusion we make the following notation 

formally. 

1.1.1 Notation. We shall denote by EMOA the Bariach space of 

analytic functions on D with power series 4(z) = 	$(n)z- such that 

$(n) = (-n) for some f € L(T) and all n € Z, norxned by 

11 41 11 
BMOA 

= inf 	$1 £ II 
OD 
: f € L(T), (-n) = 3(n) for all n € 

3 



Then BMOA is iscqnetrically iscxrrphic to the dual of H1(1D) 

with respect to the pairing 

< f1  > = 
limff(rei6)re_) 	(0) 0   

when f € H1  (E)) and E BMA, and 

< f4 > = 
	

(n)3(n) 

when f,45 are polynomials on I). 

The continuous functions on a Hausdorff space, X, will be 

denoted by C(X). We are uainly interested in C(T) which, regarded 

as a norrrd linear subspace of O(T), is connected with the predual 

of H'(T). Thus we denote by A(T) the subspace of I(T) given by 

A 
0 
(T) = 	f 	f € C(T), f(e) = urnie  (z) for some analytic 

z-*e 

function 'f on I) with (0) = 0 

Then A(T) is a closed subspace of C(T) and the dual space of the 

quotient C(T)/A(T) is isciretrically iscirrphic to H1(T) by the 

natural pairing. For the corresponding functions on I) we shall use 

the following notation for the predual of H1(D). 

1.1.2 Notation. We shall denote by VMOA the Banach space of 

analytic functions on I) with power series V(z) Z(n)z such that 

(n) = (-n) for same f € C(T) and all n € Z, normed by 

U V "VMOA 
= inf { U f U 

CD 
: f € C(T), (-n) = j(n) for all n E 

It is important to note that the use of the notation BMOA 

and VMOA is for convenience only and does not imply that our results 

use either the famous identification between the dual of real-valued 

H1(T) and the Banach space of real-valued functions of bounded rrean 

oscillation on T or its corollaries. 
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Section 1.2 Tensor Product Spaces. 

Let X and Y be Banach spaces with norms II 11 and II 

respectively. If x E X and y € Y then we regard the tensor product 

* 
,y as a bilinear functional on X*xY* . For f € X , g € Y* we have 

(xy)(f,g) = < x,f >< y,g >. 

The collection of all finite suns of tensors is denoted by Xi2Y, 

the algebraic tensor product of X,Y. There are many possible norn 

for the linear space XøY and of those possible, the following two 

norrm will be used extensively. 

1.2.1 Definition, a) The injective tensor norm II a II of cx € XøY 

is the norm of cx as a bilinear functional on fxY*. If cx = 	XkøYk 

forscITez€X, YkY (0--~k:5n) andn€Z then 

ii cx 	= sup 	f z 
< Xk1f >< Yk 1g > 	: i f 11 	, II g 11 

 

The injective tensor product of X and Y is the cctiletion of XØY 

with respect to II • II and is denoted by XY. 

b) The projective tensor norm II a II of a € XY is given by 

H a JJ = inf 

I  

: 

;  "x
11 
 

y II 	: a = 	xøy for same Xk E X, 

Yk €Y (0~k:5n), n€Z 

The projective tensor product of X,Y is the carletion of )CØY with 

respect to It . II and is denoted by XY. 

Rrk. We note that any cx € XøY may be written as an infinite sus, 

0( = z XkOyk (Xk € X, y€ Y, kO) and that 

kkO 
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II a JI = inf 
{ k

T. 
2:0

II 	II II y II 	: a = 	XkØYk for sane Xk € x1 

k~O 	

} 

kO 	y € Y (k~ 0). 

For further details we refer the reader to [ED, pp 232-235]. 

Tensor Products of Sequence Spaces. 

If n k 1 and 1 ~ p,q ~ aD then any tensor a in l(Z")®l(Z') 

can be 	regarded as a 2n-dimensional 	array 	of 	scalars. More 

precisely, we define for each k E Z4 	the n-dimensional array e 	by 

e () = 	, where ó k,1 
is the (generalised) Kronecker delta 

k 	k,I  

function 

(1 : k=i€Z 
45 	= 

0 : otherwise. 

Each co-ordinate functional e*() = x(.) for x € l(Z"), is in 

lP(Z u)* so we put 

cx 	cx(e *,e *) 	(k,i€ Z ). 

When a € lP(Z+fl)lCl(Z+fl) then we put 

** 
a 
k , 1 

= limncz(e 
k 
,e 

1 ) 
-- 	 - - 

for sane Cauchy sequence {a,J;-~' converging to a in 
1P(+fl)1(+fl) 

	

When p € 	 we can express p as an infinite sum 

X®7 with x € l(Z) and y € 1(+n) (for j 2: 0). We then put 

j?--O 

= 	x(k)y3() 	(i1€ Z) 

j~O 

The series converges absolutely for each jJ. € Z and uniquely 

defines a 2n-dimensional array associated with P. 

6 



1.2.2 Notation. 	a) 	If n k 1 and N ;-,- 0 then whenever P = 

is a 2n-dimensional array of scalars, we will denote 

by pp the following truncated array 

	

k 

 k,1 	
Pk,l

,1€ZN  
(p') 

0 	: otherwise. 

b) For n ze- 1 we will denote by V2  the collection of all 2n-

dimensional arrays, fi, for which 

SU 	(n) 
00 	< x. 

N;*_O 
II PH 0 'i(Z'')® 1 ( 	) 

For 0 € V2  this supretum is denoted by II 
n n 

It is clear that V2  is a linear space over CE and that II II 2 
n 	 V 

n 

is a norm on V2 . Moreover, it is easy to show that V2  is complete 

with respect to II II• 	We shall need the following 

characterisation of [11(Z')l1 (Z)]*. 

1.2.3 Theorem If P € V2  then the pairing 

< a,ft > = 
	

a 
i1i pi,

(*) 

defines a bounded linear functional on ll(Z)øl(Z+Tt). 	With 

respect to this pairing, V2  is iscinetrically iscirpbic to the dual 

of 11(Z")®l1(Z). 

The proof of 1.2.3 will require the following description of 

the dual of the finite-dimensional space l (Z'1' ) l ( n ) 

1.2.4 Lama. If € l(Z)®l(Z) then the pairing (*) of 1.2.3 

defines a continuous linear functional on 11(Z)øl1(Z). 	With 

respect to this pairing, 	 is iscrnetrically isaiv,rphic 
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to [ll(Z)®1(Z)]*. 

Proof. The pairing a, -'> < (x,P > is well-defined and bilinear. 

Moreover, if 	=xkoyk for some Xk, Yk c l (Z) (kO, 1,. . . ,m) and 

if a € 11(Z)el1(Z) then 

< a,P > = z z 
I 	 cx 	Xk(±)Yk(1) I 

k=O 

~ II a tI 	II X II 	II Yk II 
OD 

k=0 

Thus, j< a,P >1 ~ II a II II 0 II 

Conversely, if F € [ll(Z)øll(Z)]* and ,i € Z, we put p(ii) 

F(eøe). 	Then Fa = < a, > for every a € 11(Z)el1(Z). 

Finally, 

H a ll 	sup 
{ 	

a1 xWY(i)I : x,y € l(z),fl x II H y II ~
OD 	OD 

= sup
t 

I < 	x,y(z), H x II II y II     

~ 	

OD 	OD 

sup {i <a, >1 : 	€ l(z1  (in ),  

It now follows that H (3 II :5 II F II. 

Proof of 1.2.3. 	Suppose that (3 € l(Z )®l(Z) and that (3 = 

(i®Pk for some Ok,Tk € 1(Z+') (0 :!~ k :g m) with 	ii q liii Vk HOD  

<II (3 Q + c . Then if a € 11(Z)l1(Z") 
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1< a(3 >1 = i 	I 	: ..c1k(J1pk (.J.) I 

k=O i,jEZ
+ 

~ 	II a II 	II Ok Il OD II Vk II OD 

	

< II a II 	[0 13 	+ e]. 

Since this holds for any c > 0 we have 

	

1< x,(3 > -< II cx II 	II 13 II. 

Now if 0 € V and if cx € 11(Z)l1(Z) 

	

< a,fi >1 = urn I 	a 3  P 
i,j€z 

1,(n) = urn f< U,N (3 >1 
N9O 

	

:5 urn II a II 	II p
. 

I.' 

-5 II a II II (3 II 2. 
0 

Also, if F 
€ [1 1(z)iu1(z4n)]* we put 

(3 = ( F(eOe) 

so that whenever a € 

= < a,fi >. 

Moreover, for N > 0, we have P N p € l(z )ol°(Z') and 

It P14 	 II 
pfl)(3 

11i(Z)1 

(n) = SUP { I < 	PN (3 > 	: cx 
€ 11 	)®l 1(Z) and II cx It® ~ i} 

(by 1.2.4) 

= sup fIFxt 	a € 11(Z)®l1(Z) and II cx 
11; ~

11 

sup IlFal : a c 11(Z)l1 (Z) and II cx II ---; i} 

So (3 € V with 11 0 112 -5 11 F 11 and the proof is ccirlete. 



The result known as 'Grothendieck's Inequality' or 'the 

fundamental theorem of the metric theory of tensor products' ([G]) 

is of great importance to the study of Banach space geometry and is 

used extensively in this thesis. It has many different formulations 

and is stated here in the form given by Lindenstrauss and 

Pelczyiski, [12, Theorem 2.11. 

1.2.5 Theorem. There exists a constant, K0, such that if a E 

11(Z)l1(Z) has finitely nny non-zero entries and if 

{x(n) } nEZ +, {y(n) } nEZ 
+ are bounded sequences in C, then 

L 
a 	(x(i),y(j)) 	KG fl 	

I  
a 	

sup 
II x(n) II 	+ II (n) Il 

The following factorisation theorem is a well-known corollary of 

1.2.5 and will be used in the sequel. 

1.2.6 Corollary. Let T be a bounded linear operator from 1
co 

 (Z
+ 
 ) 

into 11(Z). Then there exists bounded linear operators 

A : 12(Z') —* 11(Z') and B : l(Z) —p 12(Z') such that 

TABandflAtt IIBH---;K0  UTII. 

Proof. [P1, Corollary 4.4, p  421. 

Tensor Product Duals. 

Finally, we note the general theorerm characterising the dual 

spaces of the injective and projective tensor products of Banach 

spaces X and Y. For the injective tensor product XøY we consider 

the closed unit balls U , U of X, Y with respect to the weak*_ 
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topologies on 	[CON,V.1.1]. By AlaDglu's Theorem ([CON, V.3)) 

are ccxract so a tensor a € KeY can be considered as a 

continuous function on the cc*act Hausdorff space U x U. This 

iscinetric enbedding of XY into C(U* x U) suggests, correctly, 

that the bounded linear functionals on XY can be represented by 

integration against Borel measures on 	x U. 

The following theorem is due to Grothendieck and appears in 

[W, p  2311. 

1.2.7 Theorem. If p is a regular Borel measure on U x U with 

variation norm II then define FM  on simple tensors X®Y in KeY by 

F(y) = 	S 
< x1x  >< yy > dp(x*,y*). 

Ux* X 

Then FM  extends to a continuous linear functional on XY with 

norm 1pl. Moreover, every F € (KeY)
*  has F = FM  for sane regular 

Borel measure ,i on U x U with IuI = II F U. 

Secondly, we have the following characterisation of (X®Y)*. 

1.2.8 Theorem. If F E B(X;f) then define a linear functional fF 

on simple tensors my € KeY by 

fF(x®y) = < y,Fx >. 

Then fF extends to a continuous linear functional on Y. Moreover, 

the napping of F to fF  is an isometric iscnorphism of B(X;Y*) onto 

Proof. [BD, p 234]. 
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Section 1.3 Hankel Operators on H2  (T). 

As we shall see in Chapter 2, the boundedness of Hankel 

operators on H2(T) plays a key role in Peller's method for 

estimating the norm of polyncinials of a power-bounded operator. 

Consequently, wuch of this thesis is concerned with the boundedness 

of certain Hankel operators. In this section we briefly describe 

the well-known results concerning the boundedness of Hankel 

operators on H2(T). 

1.3.1 Definition. A bounded operator T on H2(T) is a Hankel 

operator (with respect to the orthonormal basis {e 
n nEZ 

+) +) if there 

exists a sequence of scalars {a 
n nEZ 	 n m 	m+n 
} + such that (Te ,e ) = a 	for 

all m,n € 

Remarks. 1. Our definition ensures that T € B(H2(T)) is a Hankel 

operator if and only if its matrix (with respect to {e 
n nEZ } +) has 

Hankel form. 

It is easy to check that T is a Hankel operator if and only if T 

'intertwines' the unilateral shift S on H2(T) and its adjoint 

S*T = TS. We use this approach in our definition of vectorial 

Hankel operators in Section 3.2. 

It is clear that if {a 
n nEZ } + is a sequence arising from a Hankel 

operator T then {a 
n nEZ } + is square-sumble and is therefore the 

sequence of Fourier Coefficients of sara H2(T) function. 	The 

connection between sequences associated with Hankel operators and 

functions on the unit circle in C is made explicit by the 

fundamental theorem of Nehari. We shall prove Nehari 's theorem 

using a lifting theorem of Sz-Nagy and Foias. 

12 



1.3.2 Notation. a) If 4) E L(T), we denote by M the multi-

plication operator on L2(T) defined at f € L2(T) by Mf = 4)f. 

We denote by J the 'flip' operator on L2(T) defined at f € L2(T) 

by (Jf)(e'5) = f(e 19) (e'°€ T). 

For g € L2 (T) we denote by g € L2(T) the function g'(e'e) = 

-is 	is 
g(e ) (e €T). 

Let P denote the orthogonal projection of L2(T) onto H2 (T). 

Remark. If 4) € L(T) then P31412(T)  is a Hankel operator on H2(T) 

with norm less than or equal to II 4) H. Indeed, the matrix of N 

(with respect to {e 
n nEZ } ) is the Laurent matrix {3(i-j)} i,j • 	; the EZ 

matrix of the operator J14 is {4)(-i-j)} 1,jEZ 
and thus the operator 

PJMI 2 (1r) has matrix {(-i-j)} i,j +. 
H 

1.3.3 Definition. Let T be a contraction on X. Then a minimal 

isometric (respectively unitary) dilation for T is an isc*netry 

(respectively, unitary) V on a Hubert space X such that 

C is a closed subspace of X with orthogonal projection 

91  :X — Z 

rPI X  = T n for each n a 0 

and iii) V is minimal in the sense that the smallest reducing 

subspace for V containing C is X. 

It is well-known that every contraction T on Z has a minimal 

isometric (respectively, unitary) dilation on sate Hilbert space X 

([Ni]). This dilation is unique in the sense that if V' is another 

minimal isometric (respectively, unitary) dilation on V say, then 

13 



there exists a unitary b napping X onto X' such that V1  = WO and 

(h) = h for all h € Z. It is also known, by a theorem of Sz-Nagy 

and Foias that an operator that intertwines two contractions can be 

lifted to an operator of the same norm which intertwines the minimal 

unitary dilations of these contractions. The theorem is as follows. 

1.3.4 Theorem. Let Tj,T2  be contractions on Hilbert spaces 

with minimal unitary dilations U1,U2  on X1,X2 respectively. If X € 

B(Z2; 1) satisfies T1X = XT2  then there exists Y € B(X2;X1) such 

that U1Y = 2 	II Y II = II X H and X' =Z2 
for all n E Z where 

91  is the orthogonal projection of X2  onto C2 . 

Proof. [NF, Theorem 2.3, p  661. 

Using this theorem it is straightforward to prove Nehari's 

theorem. 

1.3.5 Theorem. ([NE]). Let T € B(H2(T)). Then T is a Hankel 

operator if and only if T = PJ14#1112(T) for sane (p € L(T). In this 

case (p  may be chosen such that II (p 11 OD 
= II T II 

Proof. The fact that pj4I 
11 

2 (T) 
is a Hankel operator for any 4) € 

1  

L(T) has been discussed above. If we suppose that T € B(H2(T)) is 

a Hankel operator, then T must satisfy ST = TS where S is the 

unilateral shift on 112(T). The minimal unitary dilation of S is the 

bilateral shift, U on L2(T). 	Thus, by 1.34 there exists an 

operator V on L2(T) such that UV = VU , PV' IH2(T) = T' for all n € 

Z and H V II = 11 T II. 

14 



Now UJ = JU so U(JV) = JtJV = (JV)U and .JV commutes with U. 

It follows that JV = }4 for sane 4) € L(T) and thus that 
111h,1 = 11 V ii = Ii JV II = Ii M#  II = II 4 11 (0 . 

Finally, we note that 

T = PSJI 
H 2(T) = PJMI 2(T)' 

as required. 

Remarks. 1. Nehari's theorem tells us that if {a +j} 	
+ is the 

matrix associated with some Hankel operator on H2(T) then cx,, = 3(-n) 

for sane 4) € L(T) and all n € 7Z. 

2. Although the function 4)  is not uniquely determined by the Hankel 

operator, it is easy to see that p is determined up to the addition 

of any ip € ?(T). The norm condition in 1.3.5 ensures that 

II PJ14 	2(1) II (112(T)) 	II 4) + IF 11 CO 

and it follows that the nap 4) + ?(T)-> PJMI2(T) is an isometric 

isanorphism of I?(T)/H(T) onto the class of Hankel operators in 

B(H2(T)). 

By 	the 	latter remark and the 	usual identification 	of 

L(T)/If(T) with H1(T) [1JR, p  112] we have the following. 

1.3.6 Corollary. i) The class of Hankel operators on H2(T) forms 

a Banach space isometrically iscxnorphic to the dual of HI(T). 
(0 

ii) 	If T is a Hankel operator on H 
2 
(T) and 4) € L (T) is the 

(non-unique) function given by Theorem 1.3.6 then for all f,g € 

H2  (T) 

(Tf,g)=<fgt,4)+H(0>1 	(0 	(0 
0 H (T),L 	OD  
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Proof. (i) is clear from the previous remarks. For (ii) we suppose 

that T = PJ1412(T) for some 0 E L(T) and that f,g are polynomials. 

Then 

(Tf,g) = (3}1f,g) 

= Z +  
(4f)(-n)(n) 

nEZ 

= z
~(-n-m)!(m) J (n) 

nkO mkO 

kkO 1kD 

= 	
3(-mfg(l) 

1 ;*-0 

= < fgt q +> -1
0 	H (T),L(T)/H0 (T) 

The result now follows by approximating functions in H2(T) by 

sequences of polynomials. 

Remark. There are other known methods of proving Nehari's theorem. 

Nehari's original proof is complicated, reducing the problem first 

to Hankel matrices with finitely-many non-zero entries. A more 

recent proof, published in [PAR] and described in [Pc2] shows that 

the matrix {a 
'+3 I,J€z 

} 	+ can be enlarged step by step to the Laurent 

matrix {a } 	without increasing the norm of the associated 
'+3 

operator on H2(T). Finally, we note that it is possible to deduce 

Nehari's theorem by first proving that every Hankel operator on 

H2(T) defines a unique bounded linear functional on H1(T) ([PC3]). 
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Section 1.4 Schur Multipliers. 

In this section we shall define the notion of Schur multiplier 

matrices and we shall show, using a theorem of Bennett that the 

Banach space of all Schur multipliers of matrices of bounded 

operators on H2(T) is isomorphic to the Bariach space V2  of 1.2.2. 

This result is used in [P11 to relate the V2  norm of a Hankel matrix 

+ to a multiplier norm of the function 0. Moreover, in 
1, jE? 

Chapters 4 and 5 we shall consider analogous results for Schur 

multipliers of arrays representing bounded operators on H2(T2) and 

for pointwise multipliers of kernels of bounded integral operators 

on H2(IR). 

1.4.1 Definitions, 	a) 	If A and B are matrices of scalars 

(A = {a } 	+ , B 	(b } 	+ then the Schur product A® B 

	

,j 	 1,3 ja 

is the matrix (a b } 	+ 1,J 1,3 

A matrix M is a Schur multiplier of B(H2(T)) if whenever A is 

the 	representing matrix (with respect to {e n nEl 
} +) of a bounded 

operator on H2(T), the Schur product M®A is also the representing 

matrix of sane bounded operator on H2(T). 

When N is a Schur multiplier on B(H2(T)) the map A '--> M®A is 

(by the Closed Graph Theorem, [CON, 111.12.6]) bounded with respect 

to the operator norm on B(H2(T)). 	The multiplier norm 

H N II 
M(B(H (T))) 

2 	is defined to be the norm of the map A -> M(JA. 

1.4.2 Leta, . Let {ft 	} 	be a matrix of positive reals such 

	

N 	
1,3 

that lim 	exists, then 
N-)0) 

i=O 



N 	 N 

lim' 
L 

urn 
i,m 	iirnII Pi I N 	

(*) 
N-3m 	m-x 	 N9 

i=0 	 i=0 

Proof. Denote the right-hand side of (*) by K. Then for each N k 

o. T, 	:!~ K. For any fixed N ;_> 0, if rn z N we have 

N 

z 
9
i'm < L. 	i,m 

i=0 	1=0 

and so, 

limo 	lirn 	
~ K. 

m--)M 	 M-)OD  
i=0 

The result now follows since N was arbitrary. 

1.4.3 Theorem. Let M be a matrix of scalars, {rn } 	+. Then 
i,j i,jE 

the following are equivalent. 

M€V2 

M is a Schur multiplier on B(H2(T)) 

and iii) M = AB for s 	bounded operators 

A :12(Z) -+ l(Z) and B : 11(z) .- 12(717). 

Moreover, when (i), (ii) and (iii) hold 

II N 11(B(112(T))) ~ 
II M 11 

V 
2 :5-- KG inf CII All II B II : 14= AB) 
I 

	

KG K II M II 	z 
M(B(H (T))) 

for sane constant K independent of N. 

Proof. (i) 	(ii). Suppose that N is the matrix {f(i)g(j)} 	+ 

associated with the tensor fog € 1(717)®l(Z). Then it is easy to 

show that for any A € B(H2(T)) 

M®A = (diag f) A (diag g) 

where (diag f) 	= f(i)6 	, (diag g) 	= g(i)6, for all i,j € 
1,3  

+ 
71 . Thus, 
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II M (J) 	11 B(H (7)) 

:r. 11 CT)) II diag f II 	2 	II A 
"8 

2 	II diaggll 	2 
(H (T)) 	 B(H (T)) 

	

=llflI 	hAll 	2 
Go 	B(H (T)) II g 

= II 

 

fog Ili II A 11B(H2(T)) 

Similarly when M is the matrix associated with the tensor product cx 

€ l(Z')®l(Z) we have 

U M ® A 'I B(H 2(T)) ~ II a Ili II A hl8(H2(T)) 

So if M € V2 and N ;-,- 0, P 1 M is a Schur multiplier with 
'1 

	

II PNI 	11MCB(R2(T))) --. II PM 

Moreover, if A E B(H 2(T)) with representing matrix {a } 	+ and 
i,j i,jEZ 

if f € H2 (T) i o.. 

II (M®A)f ii: 
= 	I 	m13a(i)I2 

i;--0 jkO 
N 	DA 

= lim ' 	Im. a 
N4 	

1,3 1,3 

i=O 	j=O 

N 	N 

~ 1 iV I'm a 	, • 2 

N4 L4 L_ i i i i 
i=O j=O 

= urn II (PNM®A)f 112 
2 

N4 

~ II M 1122 II A 112 	2 	II f ii 
V 
I 	

R(H (T)) 	2 

and so M is a Schur multiplier with II H II 	2 	~ II H II 2. 

	

M(B(H CT))) 	V 
I 

4 (iii). [BEN1. Thm 6.4, p 6191. 

4 (i). Suppose that H = AB and that B : 11(7[f) 

A : l'() —p l2(Z) are bounded operators. Let A denote the ith 

row of A (i € Z) and let B denote the jth colunn of B Ci € 
3 

Then for each i,j E Z, m 	= (A,B). Thus for any N ;t 0 and any 
1,J 	 1 	3 

1 € 11(z)l1(Z4) 
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1< -i,PNM >1 = Iz 	Ii' j (pNM)i' jI 

j , j?-to 
N 

='Z 7 H 

	

i,j 	i,jI 

i , j=O 

= 	7i,j 
(A1B)I. 

i, j=o 

Now by 1.2.5, 

< 	P M > II A II 	II B II 1 	y, 1 ~ KG II 7 Il® O~1~n 	i 	2 0:51-'5n 	j 2 

But it is easy to see that the co1xrns of any matrix which 

defines a bounded map from 11(Z) to 12(Z') are in 12(Z) with norms  

uniformly bounded by the norm of the map. Since B and A* map 11 (Z) 

into 12(7*) we have, by 1.2.4 

II PNM II 	--< KG II A It II B It 

and hence, 

II M 112 .5 KG II A II II B II. 
1 
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Chapter 2 Functions of a Power-Bounded Operator. 

Much of this thesis is motivated by the norm estirrtes for 

polynomials of power-bounded operators presented in [P1, pp 341-

3531. In this chapter we describe the motivation for studying 

power-bounded operators and give a full account of Feller's results. 

The results in Sections 2.2 and 2.3, with their proofs, illustrate 

the methods which will be used extensively in Chapters 4 and 5. 

Finally, in 2.4 we consider the functional calculii arising from 

these norm estites and describe Bennett's solution to one of the 

questions posed in [P1]. 

Section 2.1 Motivation. 

2.1.1 Definition. Let X be a Banach space and let T € B(X). 

We say that T is power-bounded if there exists a constant 

c such that II T" H _-~ c for every n € N. 

If T is invertible then we say that T is a power-bounded 

invertible if there exists a constant c such that H T" II :i~ c for 

every n € Z. 

We note the following result, known as von-Netiinn's inequality. 

2.1.2 Theorem. If T is a contraction on C and (J) is an analytic 

polynanial then 

H q(T) 11B(Z) 	II 'p It• 
	 (*) 

Proof. See [vN] for the original proof or [NF,p 32] for Sz-Nagy's 

proof using the minimal unitary dilation of T. 
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Considering this result as an inequality for contraction 

operators on some L2(O,,ji), we may look for an extension to 

contraction operators on L(Q,,p) for 1 :g p * 2. The analogue of 

(*c) cannot hold for all contractions on L(O,,p) (1 -s p # 2) since 

it is known ([F]) that this would imply that L(Q4,ii) is isaiorphic 

to a Hilbert space. 

However, we see that for a polynomial q(e °) = We i no 

ii J, lI, is equal to the norm of the operator given by convolution 

with the sequence f3(n)
l n€Z 

on l2(Z).For p 1 we denote by N(3) 

the norm of convolution with 3 on l(Z) and we ask whether 

II O(T) 0R(L') 
:!~ N(4) 	 (**) 

for every contraction T on L'(Q,,p) and every analytic polynomial, 

4. For p * 2 the answer is unknown but it has been shown that (**) 

holds for certain classes of contractions on 	 ([C1, Timi 

1.5],(P2]). 

For power-bounded invertibles on subspaces of L'(Q,,p) (p > 1) 

we can use the general transference result ([Cx, The 2.4], [BG, Thm 

1.2]) to prove the following. 

2.1.3. Theorem. Let T be a power-bounded invertible operator on a 

closed subspace 5 of L'(Q,,p) (1 < p < o) with II T' II ~ c for all n 

E Z. Then for any trigonometric polynomial 4 we have 

II 	(T) II ( P) ~ c2 N.?(3). 

Proof. [c,(2.1), p 52] or [BG, The 4.21. 

When p = 2 we obtain the following corollary. 
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2.1.4 Corollary. Let T be a power-bounded invertible on Z with 

II T' II :5 c for all n € Z. Then for any trigoncutric polynomial 4> 

we have 

II j(T) 11 	_-~ C2 II 0 1100 

Alternatively, 2.1.4 can be deduced frcrn a well-known theorem 

of Sz-Nagy. 

2.1.5 Theorem. [N2]. If T is a power-bounded invertible operator 

on C with II T' II ;r. c for all n E Z then T is similar to a unitary 

operator U on Z. Indeed, T = PUP-" for scrm invertible P with 

II 	P II , II P 	II :5 C 

Proof. (Sketch). We use a Banach limit, LIN on l(Z). ([CON, Thm 

7.1, p 85]). The functional LI}4 is positive, translation invariant 

and has norm one. 

Let T be as in the hypothesis of the theorem and define a 

bounded sesquilinear form 1D on Z x Z by 

(x,y) = L114 {( Th1x1TT>Y)} 
€ 

Then for x E Z, 

II X II 	= II TTx IIe ~ C2 II T'x II 

= c2(T'x,Tx) 

for all n E 1, so b(x,x) k 
1 11 x II . It follows that there exists 

a positive invertible A € B() with (x,y) = (Ax,y) for all x,y € C. 

The result then follows with U = A112 T 1/2 

Proof of Corollary 2.1.4. By writing a power-bounded invertible T 

as T = PUP we have for any trigonietric polynanial 4> 
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II (T) II = II t(puP 1) ii 

= Ii P(U)P 	II 

~ 	II P II II P 1 II II 4(U) II 

~ 	c2 0 45 (U) II 

But II (u) II = sup { 	() 	: x in the spectrum of u } 
= sup 	O(X) 	: X€T} 

= II 4. II 	, as required. 

Turning our attention to the power-bounded operator T on L we 

seek a bound on the norm of an analytic polynomial in T. A glance 

at the proofs of 2.1.3 and 2.1.5 indicates that the methods used 

there require T to be invertible. Firstly the transterence method 

requires the map n - T" to be a bounded representation of a group 

rather than a snigroup and secondly, in the proof of 2.1.5 T must 

be invertible if we are to show (by (***)) that p(x,x) ;_- 2 11 x II 

and thus that A is invertible. 

Moreover a counterexanple in [FOG] shows that the natural 

analogue of 2.1.5 does not hold for power-bounded operators. An 

account of Foguel's counterexanle appears in [H] so we restrict the 

details here to those necessary for a cctrarison with the analogous 

example of a continuous snigroup ([PAC]) described in 5.1. 

2.1.6 Exarrle. [FOG], [H]. The operator 

T - I S Q 
S 

on Z e Z where S is the unilateral shift and Q is the projection 

onto the subspace spanned by { x : j € Z1.} is power-bounded and 
33 

is NOT similar to a contraction. 
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Proof. We have 

n-i 

e" Z (S)' QS' 

fo 	Sn 	
J 

for all n z 1. We prove that fl(5*)TQ5i II ~ 1 for all n k 1 

so that H T' H :~ 2 for all n ;,-- 1. 

n 	 II 

Note that 	(SR) 1 QSt = (S*)hl 	S1 QS 
i 

i=o 	 i=o 

And for 0 ~ i ~ n and m z 0, 

if m+i = 3 for sane i € Z 

S'QS'x, = 
0 	otherwise 

Now if m+i = 33 and m+i' = 33 for sme 0 :5 i < i' ---~ n and j < j' 

we have 

n*i, > 2.3i = 2m + 2i 

Hence m + 2i < i' :~ n and so (8)fl x, +21 = 0. 	It follows that, 

because of the sparsity of the powers of 3, 	 there can 

be at most one value of i between 0 and n for which (S*)nSLQSlXm is 

non-zero. 	When there is one such value of i, we have 

	

(S)'QS1 x, = x,,121 and otherwise 	 = 0 . Hence 

1=0 	 1=0 

II Z 	
1 QS1 II 	as required. 

To show that T is not similar to a contraction we use the following 

lenma. 
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2.1.7 Lemi. [FOG]. For a € B(Z) let Z(A) denote the set of x € 

Z for which A'x —* 0 weakly as n —+ cD. If A is a contraction then 

Z (A) = z(A*).  

If A € B(Z) is similar to a contraction C with A = PCP for same  

invertible p on H then we can show that 

Z(A) n Z(A*) = P [z (C) n Z 

= {0} 	by 2.1.7 

But we can show that (x0 ,0) € Z(T) n Z(T)'L as follows. Firstly 

(x0,0) € Z(T) because T(x010) = (0,0). Secondly, if (f,g) € 

we have 

((x0,0),(f,g)) = lim [(XiX23J+i ),(f,g)) 

2.3 j+1 
j+1—i 	 j+1 

= lim 	(5*)2.3 	
QS'XO  , S 3 	xoJ i (fi ) 

1=0 

j+1 
= Urn 	'r23 	(0,x0 ) , (f,g) 

j+1 
= urn 	(0,x0 ) , (T*)23 	(f,g)) 

=0. 

Hence (x010) € Z(T) and the proof of 2.1.6 is ccxrlete. 
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Section 2.2 An Estimate for fl p(T) I. 

Throughout the rest of this chapter T will denote a fixed 

power-bounded operator on Z with II T' II -.,; c for all n € Z. Also, p 

will be a fixed polynomial in e, p(e °) = 	(n)e °  . We will 

nO 

produce upper bounds for the operator norm of p(T) = 

The first important step is to associate the polynomial p with 

an element c of the discrete tensor product 11  (Z4 )l1  (Z4) . We do 

this by choosing x € 11(Z')l1  (Z) for which the diagonals of the 

matrix Cuij } 	+ sun to the coefficients 	(n) of p. (Note that 

we define 	(n) = 0 for n > N ). 	This method, with the power- 

boundedness of T, allows us to use Crothendieck's inequality to 

estimate It p(T) II. 

2.2.1 Theorem. 	[P1, Thu 3.1]. 	Let cc = {c(,j};>-0 E 

11(Z)®l1(Z') be a finitely non-zero matrix such that z a.. = (n) 

i+j=n 

for each n € Z'. Then li p(T) II --e* K0c211 cx tI. 
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Proof., For x,y € R 	(p(T)x,y) =Z p(n)(T"x,y) 

nkO 

= 	(I: cx)(T'xY) 

nk0 i+j=n 

=Z 	cx 	(T' X, (T*)Jy). 
i,j 

i, jkO 

But {T' x} ikO 
and { (T )J }.ko  

are bounded sequences in z so we can 

apply Grothendieck's inequality (1.2.5) to give 

I (p(T)x,y) :5 K H cx lI 	sup Ii T'x 11 z 	sup II (T*)Jy 11 z 
i;_,O 	 j;_-O 

:5 	c2 ii cx 	ii x il 	II y iI 

and the proof is complete. 

We note that the choice of such a for a polynanial p is not 

unique. Thus we shall use the following notation. 

2.2.2 Notation. a) Let E denote the subspace of 11(Z')®l1(Z) 

consisting of those matrices {cx1j} 1,J€Z
+ with finitely many 

non-zero terrris and with V 	= 0 for each n € Z'. Let E denote 
L 	'i 
i+jn 

the closure of E in 11(Z)l1(Z'). 

b) When c! is an analytic function on I) with power series 

q(z) = Z ~(n)z-, 
n0 

we denote by F# the Hankel matrix {3(i+j)) 

2.2.3 Corollary. Let a be as in 2.2.1. Then 

ii p(T) 	KG 
C2 11 a-f EF (I1(Z+)®11(Z/E. 

Proof. By 2.2.1, Ii p(T) II :g K. c2Il a + a' lIi, for any cx' € E. The 
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result follows from the definition of the quotient norm. 

Remark. Since the equivalence class a + EF is uniquely determined 

by p we will henceforth refer to It p II(11®11)/E 	, meaning of 

course, II a + EF 111(Z+)l1(Z+) where a satisfies the conditions of 

2.2.1. 

The fact that the operator T is the generator of a bounded 

sernigroup { T n I 
nEZ 

of operators on Z is essential for the proof of 

2.2.1. 	Having so used the power-boundedriess of T, the remaining 

results in this chapter concern bounds on H p 11(1 1 1)/ E • Our 

first expression for U p II (11®11)/E 
is given by the action of 

linear functionals on (l1(Z')øl1(Z'))/E. 

2.2.4 LemEa. 	[P1, Cor.3.2]. 	The norm of the polynomial p, 

considered as an elent of (11(Z)el'(Z))/E is given by 

II p II( 
1®11)/E 	

sup {iZi(n)~(n) 2v ~ 1 

Proof. 	By 1. 2.3 the dual of l'(Z)l'(Z') is isometrically 

isomorphic to V so the result will follow when we show that the 

annihilator of E in V2 1 
consists of the Hankel matrices in V2 1. 

Suppose that a € E and that is an analytic function on D such that 

F € V2 . then since {Ujj}. is finitely non-zero we have 
I 	

< a,r> = 	a1 ,3 (i+j) 	(by 1.2.3) 

i, j~-'O 

= 	
(n) 

nk0 i+j=n 

= 0 	since cx€E. 
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Conversely, suppose that (3 = { fi 	} •+ € V2 satisfies 
1,j 	1,3 	 1 

< cx,(3 > = 0 wherever a € E. Then V Z a 	(3. 	= 0 for every a 
L__ 	3  
nkO i+j=n 

E E. If 45. 	denotes the Kroncker delta function (45 	= 1, when 

	

1,3 	 1,3 

j=j and is zero otherwise ) then we consider 

a 
 = f

45 	45 	- 	45 
i,k J,1 	i,k-1 	j,1+1 J. € 

for sane k > 0, 1 k 0. Since a € E we have 

<u,(3>(3 	- (3 k,1 	k-I,1+I 

and since k,l are arbitrary it follows that there exists a sequence 

{ (3(n) } na 
+ such that 

k,l
p(k + 1) for all k,l k 0. Thus, 	= 

where 4)(z) = 	p(n)z". 

nk0 

Finally, if a € l'(z)l1(Z) satisfies the hypothesis of 2.2.1 

then 

ti p II 	i 	I 	- = II a + E II 	i 

H r H = sup {i < cxr, > 	: 	2 ~ 1 
} 

= 	sup {i 	a 	3(i+j) 	ii r 
4 V 

II 
2 I 

i ,j;-*O 
N 

o ~1 = sup {i Zj(n)3(n) 	: r H 2 
} 

n=O 

as required. 

2.2.5 Definitions. 

 If 	f and g are analytic functions on I) with power series 

(n) Z 	, Z a (n)z respectively then we define the convolution 

n,--O 	n2W 

f*g to be the analytic function on I) with power series 

nZO 

Let X be a Banach space of analytic functions on I). Then an 

analytic function p on I) is a multiplier. of X if the map which sends 
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h to 4)*h is a bounded linear operator on X. 

c) We denote the linear space of all multipliers of X by M(X) and 

define the multiplier norm, II 4) 
11M(X) of 4) 

€ M(X) to be the operator 

norm of convolution with 4) on X. 

The following necessary condition on a function 4) for Fto be in 

V2 is due to Graham Bennett. This is a key result for the 

estimation of II p(T) II because it relates the matrix norm H H v 2 
of 

i 

the Hankel matrix Fto a (multiplier) norm of the function 0. It 

will shortly enable us to find a bound for II p(T) II in terms of the 

norm of p in a Banach space of functions rather than a matrix norm 

associated with the sequence {j(n)j nEz 
+ . Note how the proof of 

2.2.6 relies on Nehari's theorem. 

2.2.6 Lam. [BEN1, p 6321, [P1, Lenta 3.31. If 4) is an analytic 

function on D such that F€ V2 then 4) is a multiplier of H1(D) with 

114)11 	i~III'112 
M(II ) 	 V 

I 

Proof. Suppose that F 
41 

€ V. By 1.4.3 Fis a Schur multiplier on 

B(H2(T)) with H r,IIM(R(H2)) 	I',II 

	

We show first that 4) € M(BMOA(D)). 	So let ip € BMOA(D). 

Recall that 1QA(D) can be identified with Hl(T)* so that by the 

Corollary to Nehari's theorem (1.3.6) F is the matrix of a Hankel 

operator on H2(T) with norm equal to 11 V 
'tBMOA 

Hoover, 

or 	II 	2 	iI F 
B(H ) 	

F II 	2 
B(H 

2 or ii 	2 	11 IF 

	

0 H(B(H )) 	B(H)  

OF 	112 	IliplI 
V 	 BMOA 

I 
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So çb*cip € BMOA(D) (by 1.3.6 again) and 

II 4*1 II 	~ Ill' II 2 II 1) II 

	

BMOA 	 V 	BMOA 
1 

as required. 

Finally, if h € H1(D) is a polynomial then 4,*h is a polynomial 

II *h U = sup jiZ4)(n)h(n)j(n) 	: 1
P  

BMOA(D),II tp II 	
15
i} 

BMOA 

n20 

	

= su {i < h,4,*ip > 	: 	€ BMOA(I)),II v ii 	~ i } BMOA 

~HhH III' 11 

The result now follows since the polynctnials are dense in H1(D). 

It follows immediately from 2.2.4 and 2.2.6 that we have the 

following bound on U p 11 (0®1')/E—  

2.2.7 	Corollary. 	[P1, Cor. 3.4). The norm II p 11 (
11;11)/E— of 

the polynomial p considered as an element of (l1(Z)l'(Z))/ET is 

bounded above by 

sup {I(n)3(n)I :4, € M(H1), II 4, Hi ~ 

Section 2.3 Further Estimates for II p(T) II. 

In this section we construct three further bounds on the norm 

H p II(11®11)/E 	of the polynomial p. 	We consider first the 

construction of the Banach space X*Y for Banach spaces X,Y of 

analytic functions on D. We give conditions for the dual of X*Y to 

be isometrically isaTorphic to M(Y). It then follows from 2.2.7 
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that II p II (10 i'
1 )/E 
i 	- is daninated by H 	

VMOA*H 

	

P II 	i 	Secondly we 

define the Besov space B: 1(D) and show that the "Projective 

convolution" norm II ti 
VMOA* 

-' 

H 
i is daninated by the Besov norm 

0 0 
II 	II 	Lastly, by a simple estiffate of II p II 	we deduce that 

when N ~t 2 is the degree of p we have U p(T) II ~ Kc2logN U p II for 

same constant K independent of p and T. 

2.3.1 Definition. Let X,Y be Banach spaces of analytic functions 

on I). We define the convolution X*Y of X and Y to consist of all 

finite s.Z!E of convolutions f*g (N ?-- 0, f,, € X and g € Y for 

n=O 

o :!~ n ~ N). The projective convolution norm H . II is defined on 

X*Y by 

inf 
{ 	

II f ILII g, fly 	=Zf,,*% for sane N ;-,- 0, 

niO 

f€ X and g€Y (0 n:5 N) 

The projective convolution of X and Y is the cc*ipletion of X*Y with 

respect to II II; and is denoted by X*Y. 

Remarks. - 

Recall that an el nt of the projective tensor product XoY can 

be written as an absolutely convergent infinite sun of siffple 

tensors. Similarly we can show that an element x of XY can be 

written as an infinite sun f*g with 

n;'-'O 

11 f IIII a,, Il', < II cx II 	+ C 	say. 

nZ:O 

Moreover, if for each n € Z the functional f -> (n) (f 
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analytic on I)) is continuous on X and Y with I 1(n) I :~ c1li f 11x and 

(n) I ~ c 1 g il for all f € X, g E Y, n E Z then the projective 

convolution XY is indeed a Bariach space of functions. 

If cx = f*g € XY for SaM fk € X, gk € Y (k k 0) with 

kO 

Z11 fk li x ii gk Ily <II a * 

then we put ( for n € Z1 ) 

3(n) = 	k(fl)(fl) and 	(z) 
= 	3 (n)z for z € 0. 

kkO 	 nO 

I fk(n)k(n)z I ~ 	C2 H fk lix c211 gk 
11Y lZin 

nO k;-"O 	 n~-'O k~-0 

~ C1 C2 	(II a ii; + c) IzI 
nkO 

so that 	(z)
= 	[ 	

fk(n)k(n)]z 

n~O k~O 

=Z Z f(n)g(n) Zn 

kk-O nkO 

=Z(fk*gk)(Z) for all z € D. 

k;-"O 

3. 	In fact XY is just a quotient space of the projective tensor 

product YLY. Let Z be the closure in XY of the subspace consisting 

of tensors cx = 	f®g1, for which 	f*g, = 0 . Then it is easy 

n=0 	 n=O 

to show that XY is iscmetrically iscxnorphic to (XY)/Z. 
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2.3.2 Lemma. Suppose that X and Y are Banach spaces of analytic 

functions on D which contain the linear space T of polynomials on I). 

Suppose that 91 is dense in Y and that for any g = 	(n)z' € , 

u g 11Y = sup {JZ !(n)9-(n)j : f = 	 E X, and II f lix 

Suppose that the functions (z) = Zn on I) satisfy ii 	li x ~ 1 and 

that for n E Z and f € X, 1 1 (n) I --,; c II f Ii x for all f E X. Then 

(y)* is iscmtrically iscxiorphic to M(Y). 

Proof. Let 4) € M(Y). Define a linear functional 4) on W1, by 

4) 
) = k=O k 	n;-"'O 

whenever fk € X and gk € Y for each 0 :5. n :!~ N. 	Since 
Zf

k*gk= 0 if 

and only if 
z 

ik(n)~i(n) = 0 for each n k 0 it follows that 4) 	0 

if and only if 4' = 0. 	Moreover, if cx = f*g € X*96  

I 	) 	I (n) (4)*g)(n) 

kkO nk0 

Ii f 	lix 	II 	4'*gk 	11 

kko 

~ 	II 	(P 	II M(y) Ii fk 	li x 	II 	9k 	II. 

k=O 

Since this holds for any such representation of a we have 

I 4'() I --s II 'P IIU(Y) II U II; 

It is easy to check that the density of 91 in Y ensures that X*91  

is dense in X*Y. Thus 4) extends to a linear functional on X*Y with 
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norm dctninated by ii 4) IIM(Y) 

Conversely we suppose that F € (x.Y)*. For each r1 we have 

€ Y and 

fi e1, liv = sup {i 	(m) 	: 	II f lix --'; 1 } 
= sup {If(n) 	llfil--51} 

c1 	by hypothesis. 

So e*e € X*Y and we can put 

(n) = F (*) 

and 	(z) =F(n)z' for z € D. 

n~-'O 

Now if f € X and g € T has degree N, 

F(f*g) = F[ 
z 
	 I 

= 

n=O 

so that when g € 11 has degree N, 

ii *g BY = sup {iZ !(n)j(n)'P(n)j : ii f Ox 	i } nO 

= sup {i F(f*g) 	II f 11 	
11 

:~ ii F 	II g ll 

Finally, when g € Y we find a sequence gk € 91 such that 

II 	g-gk Ii,- 0 . Then { V*9k } kkO 
is a Cauchy sequence in Y 

converging to some h € Y. It is clear fran the hypotheses that the 

nap ip -> j(n) is a norm one linear functional on Y for each n € 
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Hence 

f(n) = urn (*g(n) 
n-3m 

= urn 	(n) k(n) 

= (n)(n) 	for each n € 

and we have h = Ng. 

Thus 	€ M(Y), 	II 	U 	~ II 
11(Y) 	

F II 
(X* Y) 

* 	and the proof is 

cauplete. 

Since X = VMOA(D) and Y = H1 (ID) satisfy the conditions of 

2.3.2, we have (VMOA * Hl)* isc*ietrically isciorphic to M(H1) 

with 

<ip*h, > = Z j(n)~(n)~(n) 

nkO 

when V(z) = 	j(n)z' € VMOA(I)), q(z) = 	(n)z" € M(H1) and 

nO 

h(z) = 	i(n)z" € H1(D) is a polynctnial. 

2.3.3 Corollary. [P1, Thn. 3.5]. The norm II p II(1111)/E_ of the 

polyncznial p considered as an element of (l1(Zl1(z4))/E 

satisfies 

II p 1I( 1Ø 1)/ - ~ It 	U 
E 	 VMOA*H 

Proof. When p = ipsch for sane polynanials p € VMOA(I)) and h € H1(I)) 

we have for any 4 € M(H1) 

	

(n)3(n) = < ip*h. 	>. 

nzO 
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The result now follows frcai 2.2.7 and 2.3.2. 

We will now show that the norm of the polynanial p as an 

element of VMOA*H1 imst be less than or equal to the norm of p in 

the Besov space B 1. 

2.3.4 Definition. For each N k 0 we define a polynomial WN on I) 

by 

-1 n 	(s: 	
, 2N+1 ) 

21 ~ n -< 

--, ~ n -,eb 
2N+1 

We define W0(z) = 1 + z for z € I. The Banach space 130 (D) 

consists of analytic functions f on I) for which 

ii f II 	= 	II W*f O HcD ( E ) < 	. OD 

n~:O 

Remarks,  

1. 	For N > 0 and n € Z4 the value of 4H(n) is shown by the graph 

W. (n)" 

I xl~~ 
01 	I 
0 N-I N 	 N+I 

2 	2 	 2 

We note that for H € fl and n € Z+ 
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0 N 
2 

1 

W, (n) = 
2"-n 

N=0 

0 

O:5n-~; 2 

2TM 2M1 

Graphically, the values of Z t N(n) are given by 

N=0 

14+1 	 n 
2 

Thus for f € B If the sum W*f converges in IF(ID)  to f and 
Z- 
n'e- 

II f II ~-- II £ 110 

The condition VII W*f II < aD for f to be in B0 	is an 
- 

n?-'0 

assessment of the convergence of the deccinposition z W*f of f with 

n?-'0 

respect to { W,, }. The B0 norm is exactly the 11(Z) norm of 

the sequence { II Wsf II } 	. Further Besov spaces B8 	(for s € 
( nEZ 	 p,q 

1 and for 0 p,q € R1 ) may be defined by considering the 1(+) 

norm of the sequence z' II W*f II,, 
InEZ+ 

For the rrctivation, definitions and properties of the Banach 

spaces B8 we refer the reader to [T]. 
p, q 

If KN denotes the Fejer Kernel 
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KN (e'°) 	 e1° 

j=-N  

(for N>O and e'° €T) then 

N-I 

W (e'°) - 	 e + — 1 e 3.2 	° 1 K 	(e 'e) 
N 	 [  2N 	2 	 J 2N-1 

, jO 

for e'° € T. This is clear when we consider the coefficients of W, 

e 	and —1 e 	K 
2N 2N-1 	2 32N-1 2N-1 

N-I 	 2 N-I 	
2 N 
	

3.2 N-I -2 
2 N+1 

By adding the coefficients of e K 	we obtain the coefficients of 
2N 2N.1 

W,.. 	Moreover, 	since II 	iç II I 	= 	1 for each N > 0 it follows that 

II 	WN 	II 	:r. . 	 for all N > 0. Note also that II W0 II 	~ 	II 	W0 	112 	= 

3 
2 

4. 	For N > 0 we put QN = + WN + WN+1. 	The coefficients of Qm 

(for N > 1) are shown by 

2 
N-2 	2 N-I 	

2 
N 

3.2 
N-I 	2 N+1 	 2 N+2 

and the coefficients of Qi are shown by 

1 

0 	 4 	 8 	 n 

Thus, for N ?-- 1, QH W 1 on the support of WN and so *W,, = WN. 
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2.3.5 Lema. If f € B0 (1)) then f E VMO*H1 with 
(0, 1 

II ffl-~II f 11° 
* 	2 	(0,1 

Proof. Let f € B0 (D) Then 

f=f*W = t*W0 *W0 +f*W* 

	

n?--O 	 nkI 

For each nkO, 	f*W€H(D)cVMOA(F) 

with II f*W, II 	~ 
VM0A(I) 	

II f II . Also, Q., € H1 (D) with 

IIQ.b ll~flW II +ilWll +11W ii--';!. 

	

I 	n-I I 	n I 	n+I 	2 

Hence, 

II f*W0 
'1VJIOA 	

W0 II 	+ 	
II f*W,., 

"VPIOA'1 	
II 	~ 

• ::i: 	f*WII(0 

n~1 	
1 	2 

nk0 

- 	

ii f 0° 
2 	(Dl' 

as required. 

- I 	 II p 2.3.6 	Corollary. II p II 	
® 

I 	11, 

Proof. Imnediate from 2.3.3 and 2.3.5. 

Rerk. It is known ( for example in [BJ1, p 632]) that if 4) € 

M(H1) and if 4),. (0 < r < 1) denotes the function 4)(ree) on T then 

sup (1-r) II 4" II 	< OD 
r I 

0<r<I 

This condition is equivalent to 

sup IIW*4)Il 	<(0, 
it 

n?-'0 

([ST, p 151]). Thus, 4) € B0 Moreover, the inclusion i of M(H1) 

into B 1 is continuous. For suppose that {#n}~O is a sequence in 
OD,

M(H1) tending to zero and that 4) € B 1 	has 	II 	4)-4' 	111(0 0 as n —4 

Then H W1 

OD 
A

oD * 	(4)-4),) 	II —* 0 as n —* oD for each N ;>- 0. So 4)(m) = 

urn 	,(m) 	= 	0 for every rn k 0, and we conclude that 4) = 	0. 	It 
n9(0 
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follows ([CON,III.12.7]) that the graph of i is closed and thus by 

the Closed Graph Theorem ([CON 111.12. 6)) that i is continuous. 

Now if s € I, 1 p 	and 1 ~ q < a we have (B8 )* = B 
p,q 	p ,q 

where + _, = 1 and +& 
=1 

([S-Tp(71]). Thus, with s = O,p = oD 

and q = 1 we have (B ) = B
0 

. We conclude that there exists a 
OD 	 I OD 

constant K> 0 such that any multiplier q on H1(ID) defines a bounded 

linear functional on B0 with norm not greater than K II 4 II i 14(0 ) 

Using this fact we could deduce 2.3.6 ( with K in place of 	) 

directly from 2.2.5 without the use of the projective convolution 

space VMOI*H1. 

Finally, for the polynanial p we have a simple estimate of 

2.3.7 Lemma. If the degree of p is N k 2 we have 

ii p 11 	~ 9 (log N)II p II
co,

() 

Proof. For any N ~ 2 we can choose m such that 2m 1 	N --~ 

Then 

II W* P II 
CD 	Z= 	

II W* p II 

n~-'0 	 n=0 

~ (M+1) 	II p 
2 	CD 

But M-1 ~ log2N so we have 

M+1 -'S 0092N) + 2 

= 1092 4N 

log4N 
- 13i —2 

~ 



Hence, 	 ii p 110 	_5
9 	(log N)II p II 

	

OD 	MF 2 	 OD 

~ 9 (log N)II p IICO 

2.3.8 Corollary. [P1, Cor. 3.9]. There exists a constant K z< 

K0 fli., independent of p and T such that if p has degree N ,-- 2 then 

II 	p(T) II _< K C2 (log N)Il p II OD . 	
(*) 

Proof. Irmediate from 2.2.3, 2.3.6 and 2.3.7. 

Remark. We note that the term c2 in (*) also appears in the bounds 

on the norm of polyncrnials in a power-bounded invertible (2.1.3). 

It is possible to estimate the norm of p in V}'K)A*H1 directly 

rather than use the Besov space B° . Since this method will be 
CO, 1 

used in Chapter 4 we will establish the following notation. 

2.3.9 Notation. For N k 0 we denote by h the polyncinial 

h. (z) = E z on I) and by DN the Dirichiet Kernel DN(z) 
= E z 

n 

on D. 

We note that when N k 0 is even, 

N(Z) = zNI'2D ,(z) 

and therefore that II hN II = " 	. The numbers II DN II are 

the Lebesgue constants and are known to satisfy 

logN:!;II N 1 ~..(log N)+d 

for some constant d > 0 and all N € N ([Z, p 67]). 

Thus, if p has degree N we write 

p = p * b, € VMOA * H1. 
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We can clearly assume N to be even, so that 

II p Ii 	= 	II p 11
VMOA 

ii h, il 

~ 	ii p ii
CD 
	D1 2Ii 

:!~ 	d' (log N)ii p II OD 

for sane constant d', independent of p. It now follows from 2.2.3 

and 2.3.3 that 

ii p(T) II _5 KG c2 d' (log N)Ii p II 

Remark. The advantage of showing first that ii p ii ( i 1)/ 	is 

dcsitinated by the Besov norm Ii p ii: of p will becane clear in the 

next section when we consider the functional calculii arising fran 

the bounds anti p(T) II. 

Section 2.4 Functional Cal cul ii for Power-Bounded Operators. 

We have shown in Sections 2.2 and 2.3 that if T is a 

power-bounded operator of Z we can find constants K1 , K2 and K such 

that when p is a polynomial 

ii p(T) ii :!~ K1 ii p II(1® 
11)/E ~ 

K2 	p 	
VMOA*H1 ~ KG ii 

In this section we shall see that, as spaces of functions, the 

Banach spaces (11 l1)/E, VMOA*H1 and B° are algebras and that in 

each case multiplication is continuous with respect to the Banach 

space norm. 	Consequently the map p "-> p(T) extends to 

representation of these algebras on B(). 

2.4.1 Definition. Suppose that A is an Banach space of functions 

on a subset 0 of C such that pointwise multiplication is a closed 

continuous operation on A and A contains the polynanials. Then an 
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A-functional calculus for an operator T on Z is a norm continuous 

algebra hczriorphism n of A into B() such that i(z) = T" for each 

n k 0. 

To consider (11()l1(Z))/E as an algebra we will use 

Peller's equivalent description of (11(Z')®11(Z))/E as a Banach 

space of analytic functions on I). 

2.4.2 Definition. Let Z be the Banach space of analytic functions 

(z) =Z 3(n) z' on I) for which there exists a € 11(Z)011(Z) with 

n~-'O 

Va 	= 3(n) for every n 2: 0. We define, for € 
L_ 'J 

i +j=n 

114) II 	= inf { Ii a II 	: a € 11(Z)el1(Z) has 

za = 3(n) for every n z o.} 
i+j=n 

The question of whether Z is closed under pointwise 

multiplication is posed in [P1] and an affirmative solution is 

outlined in the review of [P1] by Grahame Bennett. 

2.4.3 Theorem. 	[B2]. 	Pointwise multiplication is a closed 

continuous operation on Z. 

Proof. Let f,g be polynomials : f(z) = 	1(m)z' ; g(z) = Z a(n)z- 
M=O 	 n=O 

for z € I) and define (m) = 0 and (n) = 0 form > M and n > N. 

Throughout the proof all sequences are indexed by Z. 

Let a,P € 11®11 satisfy z 

	

a13 = (m) and 
z 

P 	= (n) for 

i+j=rn 	 i+j=n 

all m,n € Z. For each m,n € Z put
m,n 	

w(n) and we define 
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Now we shall estiTrate II 1 II 
1 ® i'1 

. Note that 

for d ;-* 0 

Z1fl 	
= Z Z 	ij k,1 

m+n=d m+n=d i+j=m k+1=n 

cx 
k,1 

i+j+k+ 1=d 

Z cxP
L i,j k,1. 

m+n=d i+k=m j+1=n 

Let x,y E 1 . Then 

x(m) y(n) = 	 a i,j 0 	

] 
x(m) y(n) 

1-I 
m+n=d 	 m,n~O i+k=m j+1=n 

by (*) 

M 	n 

= Z 	Z 
	

L 
a 
i,j m-i,n-j 

x(m) y(n) 

mn~_'O i=O j=O 

The sin has only finitely rrny non-zero terrm so 

ZIm, n 
x(m) y(n) =

Z 	Z 	Z 
 a1. 

m-i,n-j 
x(m) y(n) 

m+nkO 	 i,j2!:O mZi 	n~:j 

a j 

[

(m,n) x(i) 

i,jk- 	m , O 	n; ~_'O 

Let co be the usual Banach space of sequences convergent to 

zero. Then we may define a bounded operator 0(p) fran c0 into 11 by 

(0(p)x)(m) = 	p m,n 
x(n) (for all x € co, m € z). The conjugate 

n;-*O 

irap 
(p)* is a bounded linear operator from l to 11 with norm II 

0(p)* U 
OD 

equal to II P li 	and (0(P)*x)(m) =P n,m 
x(n) for all x € 

n2:O 

OD 
l, m € Z. Using the factorisation theorem (1.2.6) we may write 

= PQ where Q € B(1,12) with norm II Q 11 OD, 21 P € B(12 111) with 

(*) 

(**) 
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norm Ii P II 	and 
2,1 

II 	
()* H 
	P 112 1 	OD, 2 	

11(X) 

Thus if S denotes the backward shift on 	we have (by (**)) 

I 	1fl x(m) y(n) 	=i,j 
< BS j x 	S*i 	> 1 1,1 X) 

m,n;>-Q 	 i,jkO 

= I V 	( QS* x, e?' y ) 2 
L '3 	 1 

1, j?--o 

where ? € B( l, 12) is the conjugate of P. 

But {QS*i x} JkO 
is a bounded sequence in the Hubert space 12 with 

II QS* 	x 112 ~ II Q II(X)2 II x 11(X) 

for all j k 0. Similarly {P*S*iy}. 	is a bounded sequence in 12 
I 

with 

II PSy 112 _.~ II 	III 2,1 
 II y 11(X) 

Hence by Grothendieck's inequality (1.2.5) 

I Z1fl 	x(m) y(n) 	K0 II a lI 	II Q 11(X) 2 11 
y II

OD 
 II P 112 1 II 	11(X) 

m+nkO 
~ K II cx II 	II O() Il2 H x IIOD  II y Ilco 

= 	K 	II cx Il 	II 	II) 	II x Ilco H y II 
OD 

Since this holds for any x,y € l° we have 

II 1 ll 	:!~ K II a II ) II 	lI 

Finally we note that since matrices with finitely many non-zero 

entries are dense in 1111 the polyncinials form a dense linear 

subspace of Z. Thus if f,g € Z we have fg € Z and 

II fg lI 	_.~ K II f Il 	II g II 

2.4.4 Corollary. Let T be a power-bounded operator on 2. The nap 

p .--> p(T) on polyncinials extends to an s-functional calculus for T. 

Feller has shown in [P1] that similar results hold for the 
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spaces V}40A*H1  and B 1. The resulting functional calculii for a 
OD,

power-bounded operator T justify the estimation of II p(T) II in tern 

of both II p II -  1 and II p 110 	in 2.3. We give statements of 
VMOA*H - 

these results here and refer the reader to [P1] for the proofs. 

2.4.5 Theorem. 	[P1, Lma 3.6]. 	Pointwise multiplication is 

suhmiltiplicative on VMO*&. 

2.4.6 Corollary. [P1, Corollary 3.7].  Let T be a power-bounded 

operator on C. 	Then the nap p '.-s'> p(T) extends to a 

VMO*H1-functional calculus for T. 

Similar results for B:  are more straightforward. 

2.4.7 Leirrra. [P1, p352]. Pointwise multiplication is a closed 

continuous operation me 

2.4.8 	Corollary. [Fl, Thin 3.8].  Let T be a power-bounded 

operator 	on 	X. Then the map p 	-> p(T) extends 	to 	a 

B°  -functional calculus for T. 
, 1 
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Chapter 3 Hankel Operators on H2 (T2 ). 

In this chapter we develop the theory of Hankel operators on 

the Hardy space H2(T2) so that Peller's methods for estimating the 

norm of a polynctnial in a power-bounded operator can be applied (in 

Chapter 4) to polynomials in two ccmnuting power-bounded operators. 

The Hankel operators on H2(T2) are, however of independent 

interest and our progress towards a Nehari-type theorem 

characterising these operators is a continuation of the work of Page 

([PA]) and Power ([PC1]). 

Section 3.1 Introduction. 

We start the chapter with some notation and definitions. 

3.1.1 Notation. a) We denote by T2 the cc*iact topological group 

{(e °,ei*) : O~ 04 ~ 2n} with (Haar) measure given by ffdm(0)dm(-P) 

for E the product of two measurable subsets of T. For each m,n E Z, 

e 	is the function on T2 given by e (eiO,e ) = e m0+1 
m,n 	 m,n 

For 1 _--~ p :5 cD, f € L'(T2) and m,n € Z we denote by (m,n) the 

(m,n)-Fourier coefficient of f 

2 27V 

(m,n) 	f j' f(e'°,e) e i(mO+n) dm(0)dm(4) 

For 1 ~ p :!; cD we denote by H'(T2 ) the closed subspace of L(T2 ) 

consisting of those f € LP (T2 ) for which (m,n) = 0 when m < 0 or n 

< 0. 

Rnarks. 1. The set {e } 	forrne a cculete orthonormal basis 
m,n m,n€Z 

for L2(T2) and H2(T2) is the closed linear span of {e } 	+ 
m, n m, nEZ 



2. 	If T € B(L2  (T2)) then for each k, 1 ,m,n € Z we put 

T 	=(Te ,e ). 

	

k,1,m,n 	m,n 	k,1 

Then the array {T 	} 	represents T in the sense that 
k,1,m,n Ic,i,m,n€Z 

for any f € L2(T2) and m,n € Z 

	

(Tf)(k,1) = 	T
L. 	

(m,n) 
k,1,m,n 

m, nEZ 

3.1.2 Definitions, a) A bounded operator T on H2(T2 ) is a Hankel 

operator if the array representing T satisfies 

(Te 
m,n 	k,1 

,e 	) = k+m,1+n 
(k,1,m,n € Z) 

for some matrix of scalars {fi i,j } 	+ 

b) If q is an analytic function on 1)2  with power series 4(z1 ,z2 ) = 

3(m,n) Zn  z 	then (p has the Bounded Hankel Property if the 

m, nZ-10 

array {3(k+m,l+n)} k, I , m, nEZ 
+ is the representing array of some 

Hankel operator T on H2  (T2). In this case we say that qb € BHP and 

we norm the linear space BHP by II 	II 	= II T II 	2 2 
BHP 	 8(H (T )) 

Motivation. 

The theorem of Nehari (1.3.5) characterising Hankel operators 

on H'T) shows that the Banach space of analytic functions on D 

whose coefficients give rise to bounded Hankel operators is 

isometrically isomorphic to L(T)/H< (T). 	Since L(T)/H(T) is 

isometrically isomorphic of the dual of H1(T) we obtain a norm 

preserving correspondence between the analytic functions on I) giving 

Hankel operators and the continuous linear functionals on H1  (T). 

This link between Hankel operators and linear functionals is 

exploited in the proof of 2.2.6 to show that the Hankel matrix F 0 is 

a Schur multiplier only when 4)  is a multiplier of H1(E)). 

The following conjecture is the H2(T2) version of Nehari's 
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theorem, and remains undecided. 

3.1.3 Conjecture. Let 0 be an analytic function on ID   with power 

series 4)(z,z) = 	(m, n) z' z'. 	Then 4) € BHP if and only if 

M, n;-*0 

there exists ip E L 2 (T ) such that 

3(m,n) = 

for all m,n € i'. In this case there exists such a ip with II ip ll OD = 

114)11 
BHP 

As with Nehari's theorem, the sufficiency part is easy. 

Briefly, if 3 denotes the flip operator 

-ie -i 
(JF)(e'°,e) = f (e 	,e 

(f € L2 (T2), e 91e' € T) on L2  (T'), if P is the orthogonal 

projection of L2 (T2 ) onto H2 (T2 ) and if M is multiplication by 

sane p € L(T2 ) on L2 (T2 ) then the operator 

T=PJMI 2 r H (y2) 

is a Hankel operator with 

(Tern  fliek 	) = V(-k-m,-1-n) and II T II 	II ip II. 

A corollary of 3.1.3 would be that BHP is isometrically 

iscznorphic to L (T 2 
)/H

1 2 
CT 

).1. , where H1 2 (T )_L  is the annihilator of 

H1(T2 ) in L(T2 )( the dual of L1(T2 )). Clearly, we would then have 

BHP iscinetrically iscivrphic to H(T2)*. 

However, in the absence of a proof of the conjecture we shall 

show instead that BHP is isanetrical ly isomorphic to the dual of 

H1(&)/H1(B) where 91  is the trace-class of operators on H2 (T);B is 

the pre-annihilator in & of the class of Hankel operators on H2  (T) 

and H1(B), H1() are the H'-spaces of B-valued and &'-valued 

functions on T, respectively. 

• 
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We will need some preliminary definitions for the study of 

vector and operator valued functions. 

3.1.4 Definitions, a) Let 4, be a B()-valued function on T. 

Then 4' is weak operator (wo) measurable if the function e' —> 

(4,(e'9)x,y) is measurable for every x,y € Z. 

b) Let X be a Banach space and let f be an X-valued function on T. 

Then f is 

a measurable simple function if there exists disjoint 

measurable subsets of T, A 1 2 ,A , 	 .. .A N and 
N 

x ,x ,...x € X such that f = 
z

x X 
1 2 	N 	 nA, 

n= 1 

weakly measurable if the function e'° '--> <f(eiO),y> 

is measurable for every y E X 

and iii) strongly measurable if there exists a sequence 

{f} nkO 
of measurable simple X-valued functions on T 

such that 

limO f(e) - f(ei9) 11 = 0 for a. e. e'° € T. 

c) Let X be a Banach space and let £ be an X-valued strongly 

measurable function on T. If there exists a sequence {f} 	of 
n~O 

measurable simple X-valued functions on T such that 

lim 	11 f(e°) - fn(ei O ) 11 dm() = 0 

then we say that f is Bochner integrable and we define the Bochner 

integral of f over T by ff (e e)dm(e) = 	
f2lf. 000 o  

Remarks.- 1. Pettis' Measurability Theorem ([DU, p 42]) states that 

a Banach space-valued function which is weakly measurable and has 

essentially separable range is necessarily strongly measurable. 
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Thus, every weakly measurable i-valued function is strongly 

measurable so henceforth we will refer to such functions as 

measurable functions. 

2. If f is strongly measurable and 
fo 

11 f(e'°) lidm(0) < oD  then f 

is Bochner integrable with 

	

f 2R 
f(e'°) dm(0) 

li 	f 

2R 
11 	

~
f(e°) Ildm(0) 

3.1.5 Notation. 	a) 	The Banach space L(B()) consists of 

(equivalence classes of ) wo-measurable essentially bounded 

B(t)-valued functions on T norid by the essential suprnun norm 

ess 
ii p 110) =sup {11 4)(e'°) 

1B(Z) 
: e'° € T} 

If 4 € L(B(e)) then the Fourier series for 4) : 

	

	3(n)eh19 has 

na 

coefficients 3(n) € B(t) defined by 

(3(n)x,y) = 
: e'

°(4)(e'9)x,y) dm(0) 

(for x,y € Z, fl E Z). 

The subspace }ID(B(Z)) of L(B()) consists of those $ € 
0 	 w 	 w 

with 3(n) = 0 for each n --r, 0. 

For 1 -.~; p ~ oD and a Banach space X, let L"(T;X) denote the 

Banach space of (equivalence classes of) strongly measurable 

X-valued functions on T for which 

(f 
27C 	- 	 i11P 

ii f ii = ij' ii f(e'9) lip dm(0) I 
P 	 x 	j 

If f € L(T;X) then the Fourier series for f, 

	

	n)e'° has  

nEZ 

coefficients (n) € X defined by 

(n) = 
JO 
 

e uiIf(e ) dm(0) 

for all n € Z. (The Bochner integral exists since f € L(T;X) 
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ensures that Sll f(e) 11 : 	 ). 

f) 	For 1 --c; p :!~ m , H'(T;X) is the closed subspace of L"(T;X) 

consisting of those f € L'(T;X) with (n) = 0 for all n < 0. 

Remerks. 1. For further details on the X-valued L' spaces we refer 

the reader to [DU]. 

2. We note that L2 (T;Z) is a Hubert space with inner product 

J

211
( f (e'e)g(e'e)) dm(e) 

(f,g € L2(T;Z)). Also, for any g € L2(T;Z) 

z 
1(n)e' ° converges absolutely in II 	112 to f ; 

nEZ 

II f II: 	z II 1 (n) Ii 

nEZ 

and iii) 	 = 

z 
(1(n),-g(n)) z 

nEZ 

3. If 4) € L:(B(z)) then the wo-measurability of 4 ensures that for 

each x € Z the function eie 	> 4)(ee)x is a measurable Z-valued 
271 

function. Since 
so 

11 4) (e'°)x lt dm(0) 	Ii OD Ii x 11 the integral 

fa 
q (ele)x dm(0) exists as an Z-valued Bochner integral. 

Section 3.2 Vectorial Hankel Operators. 

We recall frctn 1.3 that an operator T € B(H2(T)) is a Hankel 

operator if and only if T intertwines the unilateral shift S and its 

* adjoint S* S T = TS. We use this property as our definition of a 

vectorial Hankel operator on H2(T;z). 
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3.2.1 Definition, a) Define a unilateral shift S(of infinite 

multiplicity) on H2(T;) by 

(S1f)(eis 	iOf iS 
) = e f(e ) 

for f E H2(T;t), e'5 E T. 

b) The corresponding bilateral shift is denoted by U where U E 

B(L2(T;)) and 

(Uf)(eLO) = e 10 f(e is) 

for all f € L2 (T;Z) and e'° € T. 

3.2.2 Definition. Let T E B(L2(T;)). Then T is a vectorial 

Hankel operator if S*T = TS1. 

Remarks. Recall that an operator A on H2 (T) has a representing 

matrix of scalars {A 
1,j 

}i,jkO 	 1,3 
which satisfies A 	= (Ae 

j i 
,e ) for 

i,j c Z'and (Af)(m) = 	A
m, 

1(n) for m € Z' and f € H2(T). 

mkQ 

Likewise an operator T on H2(T;) has a representing matrix of 

bounded linear operators on t, (T ) 	+ 	Specifically, we 
1,3 

define each T 	by the formula 
i, j 

(T 	xlY)2(T) = (T(e(.)x, e(.)y))H2(T) 

for x,y € Z and i,j € Z. Then for each f € H2(T;t) and m € Z the 

sum  T(n) converges strongly in Z to (Tf)(m). 
m,n 

n;-~,O 

As we would hope, the condition S'T = TS on T € B(H2(T;Z)) is 

equivalent to the representing matrix of T being of the form 

for some sequence of operators {T}+ on H2(T;Z). 

The main result of this section is Page's theorem 

characterising vectorial Harikel operators on H2(T;Z). The proof 

follows that of Nehari's theorem given in 1.3 , using the lifting 
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theorem (1.3.4) and a characterisation of the ccmtutant of a 

bilateral shift on L2(T;t). We give a full proof of the latter, 

requiring the following preliminary result. 

3.2.3 La, . Let 0 be a bounded sesquilinear map of Zxt into 

L(T). Then there exists 'P € L(B(Z)) such that 

tt'(x,y) = ('P(• )x,y) 	for x,y € Z, 

and 	 II'PIl = 1H111 

Proof. Let 0 be a countable dense ccrrlex rational subspace of X. 

For each x,y € 	let (P 	be a representative of the equivalence 
x,y 

class (x,y). We shall construct a set of full measure in T such 

that for e ie in this set the values 4  () are sesquilinear in 
x,y 

x,y (on ix!i). 

By Lebesgue's Differentiation Theorem ([RD, pp  102-103]), when 

x,y € 

urn! j4 	(ei(0+t) cIn(t) 
c- 	0 

c 	x,y 

exists and is equal to 0 	Ce'9 ) for a. e. e'°  € T. 	Thus we obtain 
x, y 

sets E 	c T with m(T\E 	) = 0 such that (*) exists and equals 
x.,y x,y 

Ct, 	(e'°)fore'9 €E,x,y€. Now put En 	E 	. 
x,y€ 	x,y 

Then 
x,y 	 x,y 

is measurable, 	m(T\E) = 	0 	and moreover 	(*) 	exists 	and equals 

4 	(e'9) for e'°  € E , x,y € 	. For such e'°,x,y put 
x,y 

S(x,y) 
C 

e+t)) dm(t) x,y(e 
= .ie= 

Jiml f  it 	e+t)) drn(t) 
E40 C o 

x,y 

Since 4D is bounded and sesquilinear we clearly have, for each 

€ E, a bounded sesquilinear nap S 	on 2)x) with norm not 

greater than H 0 II. We shall now derive fran S 
•1 . 9 

(e'°  € E) an 
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operator 'P(e'°) on X . 

Fix e ° €E. For each x€ 

f(eiO,x)(y) = S (y) 	 (y € 
01 

defines a bounded linear functional f(e'°,x) on 0 with ft f(e'°,x) II 

~ II 	liii x III. We extend each f(e'91x) to (e19,x) on Z with the 

same norm. 	By the Riesz Representation Theorem there exists 

je 	 10 	 je 
g(e ,x) € Z such that f(e ,x)(y) = (y,g(e ,x)) (y € Z,x € 

and II g(e10,x) II = II (e'9,x) 	 ii x II. The nap sending x 

€ C to g(e'°,x) is a bounded linear nap of into Z which we extend 

by continuity to an operator 11!(e10) on t with II P(e") II ~ II 0 II. 

For x,y € , 	(?(e'°)x,y) = (g(e'°,x),y) 

je = ((e ,x),y) 

= S(x,y) 0 ie 

(e °). x,y 

We repeat for each e'° € E and put 'Y(e'0) = 0 when e'° € T\E so 

that 'Y : T - B() and 

('P(.) x,y) = cli(x,y) 

for every x,y € 0. 

To show that (**) holds for any x,y € Z we approximate x,y € 

by sequences {x}+ 	in 0 and note that 

II 	('F(• )x,y) - 	(x,y) II 
OD 

~ 	II ('I'(. )x,y) - ('}'(. )x,y) II OD 

+ II ('(. )x,y) - (fl ( . )x,, ,y) Ilco 

+ II ('F(. )x,y) - (cZ(x,y) IL 
OD 

+ ft Vx.,y) - (x,y) II OD 

Each of the four terms tends to zero as n —+ aD. For example, 

II 	('I( )x,y) - ('P(. )x,y ft OD = ft (I'( )x,y-y 	II OD 

~ U 	
B(Z)

11 
 

x Jl 	ii y-y li 

:S ii 	ii ii x li 	Ii y-y li 	- 0 asn— 
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and 	II 	(x,y) - (x,y) II = II 	(x - x,y) II OD 

II 1 liii X" -x II 	II y II— 0 as n— 

thus ('P(.)x,y) = (x,y) as required. 

Finally, using (**) we see that each 'Y is weak-operator 

measurable and that II Y II 
OD 

= 11(1)11. 

3.2.4 Definition. Let 	: T -, B() be a wo-measurable function. 

then for any f € L2() the -valued function M  is defined a.e. by 

(Mf)(eie) = (e'°)f (e ). 

The following result is apparently well-known (eg.[PA, p 534]). 

3.2.5 Lrna. a) M is a bounded operator on L2(T;) if and only 

if c1 € L(B(e)). In this case II M II = II 	II 
W 	 4 	 OD 

b) The camiutant of U is: c1 € 
I 	fM40 	 w 

Proof. 	Suppose that M is a bounded operator on 

Consider for fixed x,y € ie multiplication by (()(x,y)) on L2(T). 

For f,g € L2 (T) 

f2l 
((0 e )x,y)f(e)g(e ) (°) 

0 

= ' 	
((e )(f(e e)x),g(ebe)y) dm(9) 

= I (M,(f()x), g(.)y) 

:!~ II 11 II II f II 	II x llz II g 112 II y lI 

So multiplication by ((.)x,y) is a bounded operator on L2(T) with 

norm not greater than II 14 II II x II 	H y II. 	It follows that 
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((.)(x,y)) is essentially bounded on  with Ii (F(.)(x,y)) 11 O
D 

iiM ii ii X 	II y 11 

Thus we may find for each x,y in a countable dense subset 21 of 

z a set E 	c T with M(T\E ) = 0 and 
x,y 	 x,y 

I((e'°)x,y) 	M ii Ii x 11 	' z 	 (**) 

for every e19 € E 	- Putting E = n E 	we get a measurable 
x,y 

x, y€.t) 

subset E of T such that M(T\E) = 0 and (**) true for every x.y € 21 

and every e'° € E. Since 0 is dense in z we conclude that 

II 	cZ(ee) 
" B (Z) 	ii M Ii 

when e19 € E and hence that 	is 

essentially bounded with ii ob H ::~ II M II
OD 	0 

Conversely, suppose that € L(B(Z)). We show that for f € 

L2(T;z) 

i) ((. )f( ),y) is a measurable function on T for each y € C 

112 
and ii) s:" b(e'°)f(e'°) ii: d 

	
OD 	2 

	

m(0) ~ II 	Ii 	ii f 

For 	(i) we choose a sequence {f} 
nCZ 

+ of measurable simple 

Z-valued functions such that ii f(e'9 ) - f(e'°) 11z 	0 a. e. Then 

for each y € Z the functions (4(. )f,(. ) ,y) are measurable and 

converge pointwise a.e. to the function ('(.)f(.),y). 

Since (ii) is trivial we conclude that H is a bounded operator 

on L2 (T;z) with norm dczninated by ii 0 lI OD . 

( 	Suppose that S € B(L2 (T;z)) ccimutes with U. For x € z denote 

by c the function on T defined by c(e'°) = x for e ° € T. Let f 

be a trigonometric polyncmial f(eie) = 
z 

1(n) e"°. Then 
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S(f()x) 	S [ 
	

(n)xen] 

	

= 	(n)U'S(c) 

since S ccmnutes with U , and so for a.e. e 
ie 

 E T 
I 

	

S(f()x)(e °) = 	(n)[ifS(cx)](e) 

=(n)e inO S(c)(e'°) 

= f(e)S(cx)(eiO). 

Now fix x,y E 1C and put 

'P 	(e'9) = (S(c)(e ),y) 
x, y 

For any trigonctnetric polyncsnial f and any g E L2(T) 

(S(f(.)x),g()y) =1 	 dm(0) 

= 	

27t 
(S(c)(e ),y)f/eie  )g,e ) dm(0) 

0 

= (M' f,g) where W 	denotes multiplication 

by 'P 	onL2(T). 
x, y 

Since S is bounded we have 

I (14' 	f ') I 	II S II II f ii 	II x II 	II g I 	ii y II I 	 2 	 2 
x  y 

It follows by a standard argument using a.e. convergence that 

is bounded on L2  (T) with norm dcrninated by II S II II x II II y II 
x l  y 

Thus 'P 	is essentially bounded with II 'P 	II -5 11 S II II x II II y Il 
x,y 	 x,y) 
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We apply 3.2.3 to the sesquilinear form x,y > V 
XI Y 

to get q' 

E L(B(Z)) with ('t()x,y) = '1! 	for all x,y E Z and II 	II ~ II S II 
W 	 x,y 	 OD 

Now if f € L2(T;C) is a trigonaretric polyncmial, f(e'9) = 

i nO for sane (n) E Z (-N :~ n :!~ N) then Sf = 	U'S(c- z 	). 

	

1 	f(n) 
-N 	 -N 

So if g is also a trigonanetric polynanial in L2(), g(e°) = 
M 

) g(m)e
imO  with g(m) € C (-N ~ in --. N) then 

-H 
N 	 H 

(Sf,g) = ( 	fS(c'- n ) 

	

(
), 	 g 1 

S(c- 
(m)

)) 
f  

-N 	 -M 

NM 
= 	 (tf

1 f
S(c- 

(n) 
), U 

I 
S(c-

g(m) 
)) 

-N -M 

Z
NM 

2,r 

iO 	imO 
= 	 I 	S(c- 

(n) 
e '° ( 	 )(e ),e 	(m) ) dm(e) J o 

-N -M 
NM 

Z
271 

fo 
e1_m)e 	 je 

= 	 C 	S(c 
1(n) 

)(e), 	(m) ) dm(0)m(0) 

-N -M 

NM 271 
= 	 I ehi_m)e ( (e'9 )f(n), (m) ) dm(0) 

J o 
-N -M 

27t 

(e i 	

I 

	

N 	
mO1 I 

o 	
(n)e 	

J , 	

(m)eim]) drn(e) 
= J 

-N 

= ( Mf,g ) 

Since the trigonanetric polynomials are dense in L2 (T;Z) we conclude 

that S = H a 
Conversely, that any H cami.ites with U is shown by 

	

a 	 I 
s 

(MU1)(f)(e'°) = X(e
iO 

) (e19 f (eje 
)) 

je 	ie 
=e 

iO 
4(e )f(e ) 

= (U,Mf)(e'°) 

(for f € L2(T;e), 1 € L:(B()) and a.e. e'° € T). 



3.2.6 Definition, a) The 'flip' operator J on L2(T;f) is defined 

at f € L2(T;) by (Jf)(e'9) = f(e'0) (e' € T) 

b) The orthogonal projection of L2(T;t) onto H2(T;Z) is denoted by 

P. 

Renark. If t € L(B()) and T = PJM2 	then T is a vectorial 
W 	 • H (T;Z) 

Hankel operator on H2(T;Z) . To see this we can examine the 

(m,n)-th entry of the representing matrix of operators for T 

For x,y € C , m,n 

(T(e,()x),e,()y) = (JM(e(.)x),e,(.)y) 

= 
-

m
.

O 	-10imO
e 	(e)x,e 	y) dm(0)

f2l 

o 

27 

= J 
e"°  ((e'9)x,y) dm(0) 

0 

2t 

= I 
e"''" °  ((e'°)x,y) dm(0) 

0 

= ((-m-n)x,y) 

Thus the (m,n)-th entry is 6(-m,-n) and so the matrix has Hankel 

form. 

3.2.7 Theorem. [PA, Thm 5, p  534] . Let T € B(H2(T;f)). Then T 

is a vectorial Hankel operator if and only if T = PJI4I112 	for (T )   

sc*t 	€ L(B(C)). In this case we can choose with II t' II = II T II. 
W 

Proof. 	Note that the minimal unitary dilation of S1  is the 

bilateral shift U . Now if T intertwines S and S then by the 
1 	 1 	1 

Nagy-Foias lifting theorem (1.3.4) there exists an operator V on 

L2(T;Z) such that UV = VU , II V II = II T II and T = PVI112 (T 	-it 

follows that JV cctmutes with U and so by 3.2.5(b), JV = 	for 
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sane F € L 
OD  (B(f)). Thus H 1' II = II M II = H JV It = H V II = II T II and 
W 	 (X) 	a 

T = PJM I H2(T a 	;) 

It is clear from the remarks above that the theorem is 

equivalent to the following result. 

3.2.8 Corollary. 	Let T € B(H2(T;C)) have representing matrix 

{TIJ} 	+ . Then T is a vectorial Hankel operator if and only if 
1 , J EZ 

there exists 4 € L(B(2t)) with TM,, = (-m--n) for each m,n € 

In this case .1 may be chosen with 11  11 
OD 

= H T Ii. 

Remark. Since the operator PJM2 	( € L(B(Z))) depends only a H (T;  X) 

on the coefficients (-m) (ME Z) of 1D we see that every vectorial 

Hankel operator on H2(T;) is associated with a unique equivalence 

class 	+ ?(B()) in L (B())/ItD(B(t)). The norm condition of 
0 	 w 	 0 

3.2.7 ensures that this correspondence is an isometric iscmrphism 

of the class of vectorial Hankel operators onto L (B(t))/H (B(C)). 
W 	 0 

Section 3.3 The Predual of L(B(C))/H°(B(e)). 
W 	 0 

In this section we show that the Banach space L(B(C))/H(B(C)) 
W 	 0 

is the dual of an H1space of operator valued functions on T. Using 

the results of the previous section we can then identify the class 

of vectorial Hankel operators on H2(T;) with the dual of an H1  

space. 

We have recently found that a theorem equivalent to our 

principle result (3.3.9) concerning the predual of L(B()) appears 

in [SA].  The following representation theorem (3.3.1) was proved 

independently of Sarason's work and gives an alternative method of 
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finding the predual of L(B()). Further details on the equivalence 

between 3.3.9 and Sarason's result appear in the remarks following 

3.3.9. 

3.3.1 Theorem. 	Let F : L1(T) —* B(Z) be a bounded linear 

operator. Then there exists: unique '?FE L(B()) such that 

(Fh)x = f"h(e e )'?F(e'e)x dm(0) 

whenever h € L1  (T) and x € Z. Moreover, II 44 IIOD  = H F II and the map 

R : B(L1;B(e)) —, L'°(B()) defined at f € B(L1 ;B(Z)) by R (F) = TF 
I 	 w 	 I 

is an iscznetric iscmrphism. 

The proof of 3.3.1 requires the following simple lemia. 

3.3.2 Lama. Let f be a measurable C-valued Bochner integrable 

function on T. Then for x € Z 

f
2n

j'

27t
(f(e'°),x) dm(0) 	( 	f(e

je 
 ) dm(0),x ) 

0 	
o 

Proof. Either by approxinating f by a sequence of measurable simple 

it-valued functions or by applying a general result of Hille ([HI,p 

44],[IJ,Thn 6,p 47])  to the linear functional F 	(y,x) on Z. 

Proof of 3.3.1. 	For each x,y € f we define a bounded linear 

functional (x,y) on L1(T) by 

= ((Fh)x,y) 	(h € L1(T)) 

Then 	H 	cI(x,y) 	II 	-< II 	F 	II II 	x 11 II 	y II 	and we identify this 

functional with an element of L(T), also denoted by 	(x,y). 

The nap 0 : (x,y) -> (x,y) is a sesquilinear nap of ZxZ into 
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L'(T), bounded by II F U. We apply 3.2.3 to get 'PF € L(B(z)) with 

(FF(.)x,y) = (x,y) for all x,y € Z and 

ii 	FFil 
CD 

::r. Ii F ii 
	

(*) 

Since OF is wo-measurable it follows that if h € L1(T) and x € Z the 

function h(•)!F(•)x is nasurable and that 1 h( 9)(19) dm(0) :  
exists as an Z-valued Bochner integral with norm daiuinated by 

ii 	h ll 
1 

Ii F Ii II x ii 

Now by 3.3.2, for y E Z we have 

( je
)PF(e )x drn(0),y) 	f 

2n 
h(e )(PF(e'°)x,y) drn(0) I' 	h(e 

J o 

f
2' 

= 	
h(e )c(x,y)(e'9 ) dm(0) 

0 

= ((Fh)x,y). 

So 	h(e °)'FF(e)x dm(0) = (Fh)x. Moreover, since U (Fh)x ii 

II 	TF II
OD 
 U h U 	II X 11 	we have U F U ::5 U I'Fli 

CD 
and by (*), Ii F II = 

Ii P,il 

To see that 'FF is unique we note that for each n € Z and x,y € 

z 

((Fe)x,y) 
= 	

e e (YF (e e)x,y) dm(e) 

= (F(-n)x,y). 

So Fe = 'I'F (-n), which determines TF uniquely. 

Lastly we note that any 'P € L°(B(z)) clearly defines a bounded 

linear operator F, fran L1 (T) to B(z) by 

27 
(F h)x = I 	h(e

je )'P(e °)x dm(0) 
* 	J o 

for h€L1(T),x€Z. Then 'PR(F) and UFlI:!~Il'Pll. Thus R 1* 	$ 

is an isaretric iscmDrphism. 
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3.3.3 Definition. The trace class of operators on X consists of 

those T € B() for which Z I (T ,(p,.1)J < co for every orthonorrral 

nkO 

set 	
nEZ 

in Z. We denote the trace class by 9 and for T € 

define the trace of T by tr(T) = 	(Tx., x.) where 	
nEZ 

is any 

nO 

orthonornal basis of Z. For T€ B() we denote by ITI the positive 

operator (T*T)l'2  and for T € 	we define II T II = tr(ITI). 

Remark. The von-Neuinn-Schatten p-classes of operators " (1 p 

<co) determined by the norms  

H T II = tr(ITI')1 

form a sequence of Banach spaces of compact operators, originally 

investigated by von-Neumann and Schatten in 1948 ([vNS]).  For the 

proof that tr(T) is independent of the choice of orthonornal basis 

(when T E t !) and that H H is a norm on & making it a Banach 

space, and for the rich theory of gP  classes which follows we refer 

the reader to [RI]. 

We note however two results that will be of particular use in 

the sequel. 

3.3.4 Notation. For x,y E 	, let xøy € B) be defined by 

(xØy)(z) = (z,y)x (z  

3.3.S Theorem. i) Let T € B(Z). If SE & then ST  Cl and 

Itr(ST) 	T 11 	II S II . Moreover the nap fT(S) = tr(ST) on 

is a continuous linear functional with norm II T H. The nap T 

---> f1  is an isometric isc*irphism of B() onto (& )*• 

ii) The class of finite rank operators on C forms a dense 

subspace of &. Moreover, if S € & there exist 	E Z (n € Z1) 



such that S = 	X,Yn in t arid II S 	= 	II xII II YnII 

n?--O 	 n?-'O 

Proof. i) See [RI, Thu 2.1.6 p 81, Lenrra 2.3.3 p 87 and Thm 2.3.12 

P 99:1. 

ii) See [RI, p 851. 

3.3.6 Corollary. The Banach space B(L1(T);B(Z)) is isanetrically 

isanorphic to the dual of L1(T)k'. The map R2 : B(L1(T);B()) —* 

(Ll(T))* defined at F E B(L1(T);B(Z)) by 

R(F)[z h,®Sn] =
z 

tr(Sj(h1)) 

O 	 O 

(for h E L1(T), S, € &, 0 -,r. n :!~ N, N z 0) is an isczTtric 

iscrrcrphism. 

Proof. 	By 1.2.8 (Ll(T)l)* is isc*itrically iscinorphic to 

B(Ll(T);(&)*), which is isaTletrically isarcrphic to B(L1(T);B(f)) 

by 3.3.5(i). In the notation of 1.2.8 we have R2(F)[Zko %I = 

fF [ z h®S 
] 

for all F € B(L1 (T);B(Z)), Fi E L1 (T), S € & (0 :5 n 

~ N), N k 0, so it is clear that R is the corresponding iscxnetric 

isc*orphism. 

We will require the following general result for the projective 

tensor product of L1(T) with a Banach space, X. 

3.3.7 Theorem. Let X be a Banach space. Define an operator J 

frcin L1(T)®X into L1(T;X) on simple tensors by J(fox) = f(.)x (f € 
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L1  (T), x € X). Then J extends to an isanetric iscinorphism of 

L1(T)eX onto L1(T;X). 

Proof. [flu, p  2281. 

3.3.8 Corollary. There is a unique isometric isomorphism R of 

Ll(T;l)* onto (Ll(T)?,)*  such that when 4' € L(T;t)*, f E L1(T) 

and S € 91 

R() (f®S) = 

Proof. Apply 3.3.7 with X = & and then put R = J for the result. 

We now combine results 3.3.1, 3.3.6 and 3.3.8 to give the 

following characterisation of L (B(C)). 

3.3.9 Corollary. 	The map R = R 1  R R 1  is an isanetric 

isanorphism of L (B()) onto Ll(T,&)*. Moreover, if f € L1(T1and 

cI € L (B()) then 

R()f = I' tr (f (e 10 )(e10)) dm(0). 
J o  

Proof. The map R is clearly an isaitric isanorphism of L (B(t)) 

onto L' (T;91)*. Let h € L' (T), S € & and € LC (B(Z)). Then 

(R;1  R R 14)(h(.)S) = (R2  R-10)(1-AS) 

= tr(S(R 1 )(h)) 

= 	(S(R 10)(h)x,x) 

nkO 

fh(e"
D)O(e"D)x,,

27C 
	drn(0), S' x,, ) 	(*) 

o  
n;I-O 
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= 	
1271 

z 	
(h(e 	e)x,,S*x) drn(0) 

(by 3.3.2). 

But if f(e e) = 	(h(e O)S(e ),) 

then fN 	((h(.)S1 (. )x , x,) pointwise a • e on T and 

nZO 

IfN(e °)I --~ Zj(h(e'9)%(e"')x,4)j 
nZO 

s 
= 	Ih(e 

i 
)i 	I (91(ebe)xn,xn)I 

nkO 

::r.Ih(eis )I II 91(e3O)1I 

is 
~ 	I''( 	)I II S II 

I 
II 0 II 

So by Dctninated Convergence and (*) 

(R 
3 	2 
' R R 1 )(h(.)S) = 

	
Z(h(e"))SO(e'9)x,,,x.) dm(0) 
n~:O 

= f:tr (h(e
°)SI'(e °) dm(0). 

Now fix f € L'(T;) and t. € L (B(C)). We approximate f by a 

sequence {f} na + of measurable sirrle c-valued functions such that 

II f(ei9)_fn(ei9) II --,O asn --+cD for a.e. e'5 € T. 	By the wo- 

measurability of 	we see that for each x € Z the function 

(f(.)di(.)x,x) is measurable. Since (f(.)(I(•)x,x) —4 (f()(.)x,x) 

pointwise a.e on T, (f(. )(- )x,x) is measurable. Thus, tr(f(- )(.)) 

=Z(f ( . )0( . )x.,x.) is measurable. 

n2t'O 

Since finite sums of tensors are dense in L'(T) 1 and the nap 

J of 3.3.7 is an iscinetric iscirrphism, we can find h E L(T) and 

S,1 E 	(n ~ 0) such that 

M. 



z1-41(.)S.-4 f 
in L1 (T;91) as N -4 (0. Then 

N 

f 
2n tr (f(e)(e'9)) dm(0) 

- 

f 2071 tr1 [hn(eb6)Sn](eie)] din(0) 

27 

~ j i tr[ I f(e ) - 	
h(e)S 	 dm(0) 

0 n=0 

N 
27( i.. 

II f(e
e 

i - h(e'°)S1. H 1 H (e'°) 11 OD dm(0) 
f 

o 
n.0 

N 

~ II f - 
	
h,, 	S,, 11L1(T; F.1) II 	11(0 

n0 

—* 0 as N —, (1) 

Hence, 

(R 1 	R R 1 )(f) = lim(R 1 R 	 h(. )Sn] 

n=o 

I 

	

= urn $ 
27C 

tr I 	hn(e19)Sn]4(e10)] dm(0) 
N-4(0 0 	

n=O 

2fl 
= 

JO 
tr (f(e je )(F(e'°)) j(Ø) 

as required. 

Remarks. 1. As noted at the start of this section a theorem  

equivalent to 3.3.9 is known. It is stated without proof in [SA, 

p 197] that when 
l(;g)* denotes the Banach space of wo-measurable 

&-valued functions f on T for which 

* 	
= 	

II f(ee) II dm(0) < (0(0 

then L (T; ) is isaTetrically iscxnorphic to L (B(t)) by the 
W 	 w 

formula given in 3.3.9. Since 9 is separable we have by a theorem  



of Dunford ([HI,  Tha 3.3.1(2), p 38]) that every wo-measurable 

&-valued function is strongly measurable and thus that Ll(T; )* = 

L1(T; 1). Hence Sarason's result is equivalent to 3.3.9. 

2. 	If X is a Banach space then we may ask whether L1 (T;X)*  is 

isometrically iscmrphic to L(T;X*)  by the natural identification. 

Working as we have done above we find that this is equivalent to the 

question of whether every bounded linear operator F fran L1  (T) to X 

can be represented by an X*_valued  Bochner integral 

Fh = f2%(e'G)g(e'9) j(Ø) 0  

for sane g € I?(T;X*). That is, whether B(L;)*)  is isometrically 

isomorphic in a natural way to L (T ; X*). 

In fact the solution is given by considering the continuous 

X*_valued vector measures of bounded variation on T. We say that a 

Banach space Y has the Radon-Nikodiym Property (with respect to the 

measure space (T,dm)) if a (generalised) Radon-Nikodyrn Theorem holds 

for Y 

"Every continuous vector measure of bounded variation G : T - 

Y can be represented as 

G(E) 
= J 

g(e'°) dm(0) 

for some g € L1(T,X) and every measurable subset E of T.". 

Indeed, we find [DU, p  63] that every T € B(L1;X) is 

representable (ie. Tf = fg for sane g € L(T;X)) if and only if X 

has the Radon-Nikodym Property. 	Equivalently, B(L1;X) is 

isometrically isomorphic in a natural way to L(T;X) if and only if 

X has the Radon-Nikodj'm Property, and again, equivalently [DU, p 

981, L'(T;X) is iscntrically isarcrphic in a natural way to 

L(T;X*) if and only if X has the Radon-Nikodym Property. 

Note that L°(T;B(e)) is the Banach space of essentially bounded 
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strongly measurable functions g : T -* B(C) where we mean "strongly 

measurable" in the sense that g can be approximated by a sequence of 

measurable sinle B()-valued functions. This contrasts with what 

we might call a strong-operator measurable function g for which 

g(. )x is a measurable Z-valued function for each x € Z. By Pettis' 

Measurability Theorem a B(Z)-valued function is strong-operator 

measurable if and only if it is weak-operator measurable. 

Although every strongly measurable g € L(T;B(C)) will define a 

bounded linear operator F. frcii L1(T) to B() by F9f = 

f(eiO)g(e ) dm(9), the space L(T;B(t)) is too smell to ensure 

that every bounded F : L1  (T) -p B(e) can be represented in this way. 

Consistent with this is the observation that B(C) does not have the 

Radon-Nikodym Property. If a Banach space has the Radon-Nikodym 

Property then so must any of its closed subspaces . But the Banach 

space c of sequences convergent to zero does not have the 

Radon-Nikodym Property ([DU, p 60]), whilst we can identify c with 

the closed subspace of B(c) consisting of operators with matrices of 

the form {a S. } 	+ ({a} € c ). 
1 1,j IpjCZ 	 o 

Thus the dual of L1  (T ;) is not L(T ;B(Z)) but the larger 

space L(B(f)) of weak-operator measurable functions. 

Having found the predual of I(B(C)) we shall find the predual 

of its quotient L(B(Z))/H(B(Z)). 
W 	 0 

3.3.10 Lma. The image of ?(B(e)) under the map R of 3.3.9 is 

the annihilator H1(T; 1) of H1(T; 1) in 
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Proof. Since the polynctials 	em(.)Sm (Sm € t for 0 :!~ m -,; H) 

form a dense subspace of H1(T; 1) we will consider only the action 

of linear functionals at e11(. )S for S €11 and m E 

If 0 € L(B()) then by equation (ic) in the proof of 3.3.9 we 

have for s € tf and m € 

()(e()S) = 	fo 
eim9((ei9)xS*4) dm(e) 

n2:O 

((_m)xn,5*x,). 

n~O 

Thus, if 0 € H°(B(Z)) then 6(-m) = 0 for all m € Z and therefore 

()(em( )S) = 0 for all m € 	Conversely, if (1(e.(• )s) = 0 for 

all m E Z and S € t then by (**), using S = X® XE 91 (k,l € Z) 

we obtain 

((-m)x,x) = 0 for all k,l,m€ Z'. 

Hence (-m) = 0 for m € Z and b € 

3.3.11 Corollary. 	The Banach space L(B(e))/f'(B(C)) is 
W 	 0 

isometrically isonrphic to 

Proof. By 3.3.10 and the standard identification of the dual of a 

subspace of a Banach space. 

The application of 3.3.11 to the class of vectorial Hankel 

operators on H2(T;) is the following corollary. 

3.3.12 Corollary The class of vectorial Hankel operators on 

H2(T;t) is isctitrically isaiorphic to Hl(T;&)*. 	If T is a 

vectorial Hankel operator on H2(T;Z) with representing matrix of 

VAI 



operators {T}+ and if h € H1(T; 1) is a polynaiuial 

h=Ze,, () 	(S. 

then 

<h,T> = z tr(ST). 

n=O 

Proof. That the class of vectorial Hankel operators on H2(T;Z) is 

isctrically isctorphic to Hl(T;)*  follows imiediately frc*ii 

3.3.11 and the rest 	after 3.2.8. Let T be a vectorial Hankel 

operator on H2 (T, 1) and let 0 € L (B(e)) be a function given by 

3.2.8 satisfying (-n) = T for each n .- 0. Then if h = Ze,,(. )S,, 

is a polyncaidal in H1(T;91), by working as in the proof of 3.3.10 we 

have 

<h,T> = ()(h) 

=Z Z  ((-n)x,S ,cn ) 

n=O mk0 

=Z tr(S(-n)) 

=Z tr(ST), as required. 

To end the section we consider the relationship between 

H1(T)® 1  and H1(T; 1). Although we know that L1(T) 1  is iscriorphic 

to L1(T; 1) we find that the subtle difference between the H1(T)®& 

and L1(T)ø 1  norms prohibits the identification of H1(T)ø 1  with 

H1(T; 1). 
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11 
3.3.13 Corollary. 	Let ciL 

® (H1®g1) denote the closure of 

H1(T)0 1 in L1(T)®91. 	men clL11(H1®t1) is iscutrically 

iscxrrphic to 

Proof. 	We show that the iscitry 3 of Theorem 3.3.7 naps 

c1L1®(H1ø1) onto H1(T;). Firstly, if a = 	f®.% € H1(T)® 1 

with f E H1(T), Sn 
€ 	

(0 --; n -< N ) then Ja 	f(•)s € 

H1(T;g1) so J(H1(T)®91) c H1(T;91). 	Since J is continuous and 

H1(T; 1) is a closed subspace of L1(T;g1) we have 

c 
N 

Secondly, if g is a polynomial in H1(T;), say g = Ze.(. )S. 

n=O 

(S. E 1) then g 

= 1Ze,,(&S,,] € J(H1®&). 	As in the classical theory, 
n=O 

convolution of fGL'(T;X) with Fej6r's kernels gives a sequence of trigonometric polynomials 

converging to f in L'(TX). [KAT. 2.3,2.5 p11/12]. Thus, the polynomials are dense in 

H'(1). Since J is an isometry it follows that J maps clLoe(flVel onto H'çJ';t5. 

Remarks. 1. If cx = 	f®:3 € H1 (T)® 	for se f € H1 (T), S. € 

& (0 :r. n ::~'. N) then there are two natural projective tensor nor=  

for a. 

We denote by II • II the (T)& norm 

IIfl 	= inf I 	II U U SnIl : a = 	feSn for se f € H1 (T) 

	

n0 	 n=O 

and by II 	II®2 the L1(T)®& norm 

II a 1102 = inf{ 	II fII111 Sn111 : a = 	f®Sn for sane f €  

	

n0 	 n0 	 S€ 9 ,NO 
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Clearly, II a 11®2 ::~-. Ii a 

2. Using Lerrra 3.3.5 we can identify t and ZiZ by the isanetry T 

defined by 

T 	Xk®Yk 

J =

XkOYk 

k?-'O 	k?-'O 

when {Xk}+, {y}+ are sequences in z with 

ii Xk z A Hz < 

k2:O 

This allows us to prove results for H1(T)®z®z and L1(T)®tZ in place 

of H1(T)® 1 and L1(T)&. 

3.3.14 Lina. Let i : H1 (T) -., L' (T) be the inclusion of H1 (T) 

into L1(T) and let 10 denote the identity operator on 9 
, Is(S) = S 

for all S E t. Then the map i®10 defined at a sin- le tensor beS of 

H1(T)ø by 

(iI0)(hS) = hgS 

extends to a continuous injection of H1(T)& into O(T)k'. 

Proof. It is clear that i®10 extends linearly to a continuous nap 

of H1 (T)® 1 into L' (T)®&. If a 6 H1 (T) 1 then there exists b,., € 

H1 (T) and S € 91 (n 2: 0) such that a = 	 and 

n~-'O 

II I 11 111 Sn Il 	< co so that i®10 extends by continuity to 

n;'-'O 

W(T)k'  with (i®Io)[ 	 = 	h,®S € 

	

n2:D 	nkD 

We nust prove that i010 is injective. To do this we denote by 

X 	the finite dimensional subspace of Z spanned by {x0,x1 .....x} 

(n 1) and by p,, the orthogonal projection of z onto X. We put 

P. = ®p,, on 	so that 

[
Z (PkOWk = 	Pn (4 )øPn (lPk) 

kk0 	 kk0 
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for all 
T, 

 OkMPk € Z®Z and n z 1. Then P,.ft E X®X,, for all n z 1 

kZ0 

and p € 

It is easy to check that each P,., is a norm 1 projection of ZiZ 

onto X,X,., and that for each p E ®2C, II P1.fi — fi II 	— 0 as n — 	. 

Thus, if cx E 

II (II1®P,)cx — cx llg,, —i 0 

as n —•+ aD. 

Let 1., denote the identity operator on XP4XT,  (n ;,-- 1). Then 

since X,X,, is finite-dimensional, i®I,, is an injection of 

H1  (T)XjX into L1  (T)X,ãX,.1. 

The result now follows since the diagram 

H'(T)®Z® 	 iØ10 

I®Pfl  

41 	 I 

i®In 	 ) 

is cc*nnutative for each n ;,-- 1. Indeed, if cx € H1(T)ødQC is such 

that (i®10)(u) = 0 then (i®Ifl)(IIHI®Pfl)(cx) = 0 for all n ;,-- 1. Thus, 

since 101,,, 15 injective, (IIHIQPfl)(a) = 0 for all n ;,-. 1 and 

consequntly, a = 0 by (*). 

3.3.15 Theorem. The projective tensor product H1(T)®91  is NOT 

closed in L1(T)0. 

Proof. The following exarple of a sequence in H'(T)o91  which is 

bounded in II 1102 but unbounded in II 	Ili, was crmunicated to n 

by Sten Kaisjer. 

(*) 
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Let Yo € z have II y0 II = 1 and define 	H1 (T)®z®z - a: On 

simple tensors by 

z Fi(2")(x,x)(y,y0). 

kkO 

Then, 

P(hY) I = 	I I(2 k) 	() I 
k;-*G 

	

1/2 	 1/2 

[
I &(2 k) I21 	

[ 	

I (x,x) 1 2] 

k~0 	 k~O 

1/2 

= 	
h() 12] 	x li 	ii y li 

kO 

By Paley's Inequality ([DtJR, p 104]) there exists a constant c such 
1/2 

that whenever f € 	(T), 	( k ) 2 	 c II f 111 	Hence, 

k~O 

I 	P('Y) 	:g c II h li 1 Ii x 11 	II 

If we extend p linearly to H1(T)®z we obtain a 

II 	ll 1-continuous linear functional which we may then extend to a 

continuous # on 

Now let Y0 be the 1-dimensional subspace of Z generated by y0 . 

Clearly, if 0 € L1(T)®zY0 then II p li- 	
:5 

II p II 
L i-®t 

- 

Y0 
and so 

L1(T)®2t®YO is a subspace of L1(T)®Z2Z. Also, ZøY. is isometrically 

iscrphic to z and the set {xk®yo} 
kkO 

is a ccaiçlete orthonorrral 

basis for the Hilbert space Z®Y0 . 

We now define the required sequence by 

an 

= 	

e®x®yQ 	(n 

k=1 

 

Then for each n 1, an E H1(T)®Z®Y0 and nreover, 
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II a, 1102 :~ I a, llH1(T)00Yo 

II Ja, 11L1C0YO) 	by 3.3.7 

n 

= II 	. ek C- )(Xk®Yo) 11 L'I (®y) 
k=l 

n 
21 

= 	 .1
2k0(®y0) 

II 
0Yo 

dmf (0) o 
k=1 

211 	
1/2 f 

1] 	
dm(0) 

k=1 

~ 

Yet 

—* CO as n —4 co. 

Hence {a} 
n~-,1 	 0 

is bounded in II - II-2 
but unbounded in II 	II- and the 

01 

proof is cc*rlete. 

Remark. We conclude frcm Lrna 3.3.14 and Theorem 3.3.15 that 

H'(T);Cl is iscxretrically imbedded onto a strict subspace of 

H1 (T;191) 

3.3.16 Corollary. The dual space of H1(T;) is isc*itrically 

isanorphic to the Banach space of II 
. 11;

2 -continuouslinear 

functionals on 
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Proof. Irrrrdiately fran 3.3.14. 

Remark. 	The functional 0 constructed in the proof of 3.3.15 

demonstrates that not every II O 1-continuous linear functional on 

H1(T)® 	is II . Ili,,-continuous. 	It follows that Hl(T;&)*  is 

embedded as a proper subspace of (H1  (T) ) . 

Section 3.4 Hankel Operators on H2  (T2). 

We shall show in this section how the results concerning 

vectorial Hankel operators on H2(T;Z) can be translated and extended 

to give descriptions of the Hankel operators on H2(T2). We deduce 

the main theorem of this chapter which identifies the class of 

Hankel operators on H2(T2) with the dual of a quotient of H1(T;) 

and we give conditions under which it could be proved that this dual 

space is iscmetrically isarorphic to L 
2 (T )/H' 

 (T (T ) 
L.  

Recall definition 3.1.2(a) that an operator T € B(H2(T2 )) is 

Hankel if its representing array 	
k1EZ 

has Hankel 

form : 	 for scme matrix of scalars 

Again we can give an equivalent definition in terTm of unilateral 

shifts. 

3.4.1 Notation. We denote by s 
1 2 
,s the unilateral shifts on 

H1(T2) defined at f € H2(T2) by (sf)(eiO  ,ei$  ) = e10  f(eiO  ,ei  ) and 

je 
(sf)(e10  ,ej  ) = e f(e'01e') for (e ,ei  ) € T2 . 

Remark. It is easy to check that T € B(H2(T2 )) is a Hankel operator 

if and only if T intertwines with both s,s and s ,s : s * T Ts 

and s * T = Ts. However, an attçt at proving conjecture 3.1.3 by 
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the rrthod used for 3.2.7 fails because we do not have the required 

lifting theorem. 	It is known that if A1, A are commuting 

iscqnetries on Z and T € B(f) ccmtiutes with A 
1 	2 

and A then T cannot 

necessarily be lifted to an operator V of the sane norm as T which 

carmutes with the minimal unitary dilations of A 1  ,A 2 
. It is not 

known whether the theorem holds for pairs of doubly ccxruuting 

iscztries, ie. isciitries AA with A A = A A and A e= AA 
12 	12 	21 	12 	21 

In particular, it is not known whether an operator which cciirnutes 

with s,s can necessarily be lifted to an operator of the sarre norm 

on L2 (T2 ) which ccirinutes with the corresponding bilateral shifts 

u 
1 	2 
,u . 	For theorems concerning the dilation of families of 

ccwnuting contractions/isairtrieS see [NFl, pp  22,23] and for a 

discussion of the above lifting theorem and probl 	see [PCU, pp 

50-52]. 

3.4.2 Notation. 	We denote by 'I' the isc*itric iscxrphism of 

H2 (T2 ) onto H2 (H2 (T)) defined at f € H2 (T2 ) by (i'f)(e'°)(e') = 

i 	i f(e",  e ) for e", e € T. 

3.4.3 Lemia. 	Let T € B(H2 (H2 (T))). 	Then the following are 

equivalent 

T = PHW* for sone Hankel operator H € B(H2 (T2 )) 

T intertwines with S,Sand S 	on 1?(H2 (T)) where 

(Sf)(e) = eLf(e 
ie  ) and (S f)(e e)(e ) = e'f(e'°)(e') for f € 

H (H 22(T)) and e',e' € T 

The representing rrtrix of operators for T is of the form 

{T m+n m,n€Z } 	+ for sane sequence of Hankel operators {T,,)nEZ + on H2 (T). 
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Proof. (a) - (b). Clearly S = 'F s ? and S = 'F S2 W. Now it T 

= 'FH? for sane Hankel H on H2(T) then S*T = 	 = 

'p (sH)? = 'p (Hs 
)p* = (l1IW*) ('Ps?) = TS. Similarly S*T = TS and 

holds. 

Conversely, if S*T = TS then s
*(F*PF) = ('F**y)('F*rpp) = 

= 'P* (TS  )ip = ('P*IIF)(p*s'F) = (F*hlF)s . Similarly s(F*TT) = ('P*IPP)s  

and we conclude that (F*TT) is a Hankel operator H, say, on H2(T2). 

Thus T = IIff* as required. 

(a) s (c). Put H = FPF. Suppose that T is represented by 

the matrix of operators {T} 	+ and that H is represented by ,j 1, 3€Z 

the array {13 	} 	+ . Then 
k,l,m,n k,1,m,n€Z 

(T e,e)=(Te(.)e,e(.)e)=(He ,e )=fi 
m,k n I 	m 	n k 	1 	m,n k,1 	k,l,m,n 

for all k,l,m,n E 
4• Thus (a) holds 4=o 13 	= 13 	for 

k,l,m,n 	k+m,1+n 

some matrix {13 	I<=*+ 	((T e ,e ) depends only on k4m,l+n <=*
i,j ,jEZ 	 m,k n 1 

holds. 

Using 3.4.3 we can apply the theorem of Page (Cor. 3.2.8) to 

Hankel operators on H2(T2). 

3.4.4 Theorem. Let T € B(H2(T2 )). Then T is a Hankel operator if 

and only if there exists si € L(B(H2  (T))) such that 6(-j) is a 

Hankel operator for each j € Z and 

(Te, e 	) = (6(-k-m)e ,e ) 
m,n k,l 	 n 1 

for all k,l,m,n, € Z4 . In this case we may choose 0 with II 0 U 
OD 

Remarks. 1. Theorem 3.4.4 shows that there is a norm preserving 

correspondence between the class of Hankel operators on H2(T2) and 

the subspace of L(B(H2(T)))/}t°(B(H2(T))) consisting of those 0 + 
W 	 0 

82 



H(B(H2(T))) where (-j) is Hankel for each j € Z4. As shown in 

[PcU, pp 57,58], if there exists a constant K such that for any 

suchl we could find t' E L'(B(H2(T))) such that II c1'fl ~ KU 4 II 
W 	 OD 	 OD 

(t' E 

1?(B(H2(T))) and V (j) Hankel for every j € Z then Conjecture 3.1.3 

holds. 

Let X denote the closed subspace of B(L1(T);B(H2(T))) consisting 

of those F € B(L1(T);B(H2(T))) for which H1 (T) c Ker F. 	Fran 

Theorem 3.3.1 (with X = H2(T)) we see that the subspace 

2 	

+ H(B(H2(T))) : (_j) is Hankel for  € z} 

L of 	(B(H (T)))/I(B(H (T))) is isc*itrically lscmx)rphlc to the 
W 	 0 

subspace 

( F + X : F E B(L1(T);B(H2(T))), F is Hankel-valued on H1(T)} 

of B(L1(T);B(H2(T)))/X. 	Suppose that 1D € L(B(H2(T))) has (-j) 

Hankel for j € Z and that F € B(L1(T);B(H2(T))) is the operator 

with R1F =41 . 	Then finding ' € 1°(B(H2(T))) with '- € 

I(B(H2(T))), (j) Hankel for every j € Z and II V II 	Ku 	II is 
0 	 OD 	 OD 

equivalent to finding F' € B(L1(T);B(H2(T))) with F' - F € X, F' 

Hankel-valued on L1 (T) and II Fl :r. KU FU. 

If there exists a bounded projection n of B(H2(T)) onto the 

class of Hankel operators on H2(T) then for any F € B(L1(T); 

B(H2(T))) we have icF - F E X, nF Hankel-valued on L1(T) and II itF II :!~ 

II i II U F H. Thus, the existence of such a projection ensures that 

Conjecture 3.1.3 holds. This is a slight inrovement on the result 

([pc1, p 58]) that Conjecture 3.1.3 holds if there exists a 

projection of B(H2(T)) onto the class of Hankel operators on H2(T) 

which is continuous with respect to the weak operator topology on 

B(H2(T)). Unfortunately, the question of the existence of such a 
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projection (weak operator continuous or otherwise) remains unsolved. 

3.4.5 Notation. a) Throughout the rest of the chapter & will 

denote the trace class of operators on H2(T). 

b) We will denote by B the pre-annihilator in & of the class of 

Hankel operators on H2(T) 

B = ( S E & ; tr(ST) = 0 for every Hankel operator T E B(H2(T))}. 

3.4.6 Lem a. Let S€ &. Then S€ Bif and only if V(Se 
3  ,e ) L 	' 

I + j =n 

for every fl E Z. 

Proof. 	By 3.3.5(u) there exist sequences {fk}+ ,{g}+ in 

H2  (T) such that II S - 	(fg ) II 	0 as N 	.oD  and Z11 fk 11 211 9k 11 2  
k=O 	 k;->o 

= ft S ft . Note that for each i,j E Z, (Se ,e) = Z((fk6gk)e 
I 	 3 	 3 1 

k;->O 

= 	(e,g)(f,e) = 

k?-'O 	 k;-"O 

Also, if T is a Hankel operator on H2  (T) there exists by 1. 34 4' 

€ L°(T) such that (Tf,g) = <fg, 0 + H(T)> ico 	for all 
0 	H 	(T),LOO  (T)/H (T) 

0 

f,g E I12(T). Note that it is easy to show that tr((fg)T) = (Tf,g) 

for all f,g € H 2(T). 

Now tr(ST) = tr((fg)T) 

kk0 

= 	(Tfk ,gk) 

k0 

= Z<fkg , 4) + If(T)> 

kk0 

= 	fg ,4) + 

kk0 

84 



since z fkgtk converges in H1(T). 

kkO 

Thus, tr(ST) = 0 for all Hankel T on H2(T) if and only if 

fkq~k = 0 in H1(T). But for n € 

k;-"O 

[

fg] (n) = 

k~O 	 k;->O 

= 
Z Z 
 

fji)g(j) 

kkO i+j=n 

= 	
fk(')k(j) 

i+j=n kkO 

= V (Se,e) 
L 	3' 
i+j=n 

So tr (ST) = 0 for all Hankel T on H2(T) if and only if V (Se J 
,e) 

L 	' 
i+j=n 

= 0 for all n E Z. 

3.4.7 Theorem. The class of Hankel operators on H2(T2) is 

iscxtrically isanorphic to the dual of H1(T;91)/H1(T;B). If T is a 

Hankel operator on H2(T2) and ci' € L(B(H2(T))) is an operator-valued 

function as in Theorem 3.4.4, and if h € H1(T), f,g € H2(T) then 

<h(•)(fg) + H1(T;B) , T> 
= J h(eiø)((e18)f,g) ckn(0). 

Proof. By Lma 3.4.3 we may identify the class of Hankel operators 

on H2(T2) with the subspace of the class of vectorial Hankel 

operators on H2(T;H2(T)) consisting of those S with a representing 

matrix of Hankel operators IS 
'+3 

}1,J€z + . 	We show that the 

isometric isctrcrphism of 3.3.12 napping the class of vectorial 
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Hankel operators on H2(T;H2(T)) onto Hl(T;&)*  maps the subspace 

onto the annihilator of H1(T;B) in H(T;)*.  The result then 

follows frcxn the standard identification of the dual of a quotient 

space. 

Suppose that S is a vectorial Hankel operator on H2(T;H2(T)) 

with a representing matrix of Hankel operators {S } 	+ . Then 
N 	

i+j i,jEZ 

if h = z ej, is a polynctnial in H1(T;B) 

<h, S> = 	tr(ST) = 0 

It follows that S annihilates H1(T;B). 

Conversely, any vectorial Hankel operator S on H2(T;H2(T)) 

which annihilates H1(T;B) must have tr(ST) = <e,.(•)T,S> = 0 for 

every n € Z and every T € B. Thus S, € B for every n € Z1. But 

the class of Hankel operators on H2(T) is weak*_closed and is 

therefore equal to B. Thus 	, is Hankel for all n € 	as 

required. 

Finally, for h E H1(T), f,g € H2(T) and a Hankel operator T € 

B(H2(T2), if 4' € L(B(H2(T))) is as in Theorem 3.4.4 we have 

<h(.)(fg) + H1(T;B),T> = R()(h(.)(fg)) 

=f 
2w 
	 dm(0) by 3.3.9 

=f 
 2,r 
	tr(()(e'°)) dm(0). 

But for each e 19 € T, tr((føg)((eie 
	19 )) = ((e )f,g) so 

<h(.)(fg) + H1(T;B),T> = f2"h(e"D)(0(e"')f,g)  

We now show that an expression for the action of T on an 

element h(-)(6g) + H1(T;B) of H1(T;t 1)/H1(T;B) is useful because 
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finite sums of elrents of this form constitute a dense linear 

subspace of 

3.4.8 Løm. If p is a polyncmial of degree N in H1(T; 1) then 

there exist f,,% € H2 (T) for 0 --, n :!r. N such that 

p + H1 (T;B) = 
z 

e,(-)(f.~g.) + H1 (T;B). 

n=O 

Proof. Suppose that p = 	 for sane (n) € t? for 0 :!~ n ~ 

N. For each 0 ---~ n --~ N we may find sequences 	
kkO

in 

H2 (T) such that (n) 	 and 

k?-'O 

II (n) II 
= 	

II f,,,k 112 II 	"2 

Fix n ~ N. 	Then 	II f, 	g1, Il 	~ 	II f 	112 11 	II < OD 

kO 

SO Z 	 g converges in H1 (T) to an H1 (T) function which we 

k?-'O 

factorise as fg for some f0,g E H2(T). We show that (n) - nOgn 

€ B. Let T be a Hankel operator on H2 (T). Then 

	

tr(p(n)T) = 	tr((f , gfl, )T) 

kZO 

= 
z 

(Tfn,kign,k), 

k2:O 

By 1.3.6 there exists '$ € r?(T) such that for all f,g E H2(T) 

1 < 	(Tf,g) = <f 9t4 + I1(T) > 
H (T),L T/H

OD 
(T) 

Thus 
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tr (j(n)T) = 	 4' + H(T)> 
z
k?-0 

=
4' + Jf(T)> 

z 
O 

= <fgt q + 

= (Tf,g) 

= tr((fg)T). 

Hence tr((n) - (f Ogn n- )T) = 0, as required. 

Since this holds for each 0 :~ n :!~ N we obtain f,g,, € H2(T) for 

0 :~ n ~ N such that 

z en(- )(fn6gn - (n)) € H1(T;B) 

and therefore p + H1(T;B) = 	 + H1(T;B). 

To end the section we note that Theorem 3.4.7 may be rephrased 

in terms of functions in BHP. 

3.4.9 Corollary. 	Let 4' be an analytic function on 1 
)2 with 

power-series 4'(z,z) = 	4'(m,n)zmz'. Then 4' 	1P if and only 

m, n~-,O 

if there exists f € [Hl(T; )/Hl(T;B)]* with 

j 
e 

1 ) 
+ H1(T;B)) = (j,l+n) 

n  

for all j,l ,n k 0. In this case II f II = II 4' 

Section 3.5 The Symbol of a Hankel Operator on H2 (T2). 

To complete this chapter we shall show in this section how a 

symbol of a Hankel operator on H2(T2) defines a bounded linear 

functional on H1(T; 1)/H1(T;B). Our motivation is the fact that 
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when j'  c L 
OD  (T) is a symbol of some Hankel operator S on H2(T), the 

action of S as a linear functional on H1  (T) may be written 

explicitly in terms of the symbol 4) 

< h,S > = f 
27C 

 h(e'e),P(e"') : 	
(*) 

(h € H1  (T)). 	Having shown in 3.4.7 that the class of Hankel 

operators on H2(T2 ) is isometrically iscmorphic to the dual of 

H1(T; 1)/H1(T;B) we shall show how a H2(T2) Hankel operator acts on 

H1(T;91)/H1(T;B) via an expression analogous to (*). 

We note first that if T is a Hankel operator on H2(T2) with 

representing array 

( 

k+m,1+n } 
k 1,m,nEZ + then by considering Te00  we 

see that the matrix 	k,ICZis square surrniable. Thus, the 

series V 	e 	is the Fourier series of a function in 
L 	Ic,1 —Ic,—) 

Ic, 1;1—'0 

H2(T2) = ( T : f E H2(T2 )}. 

3.5.1 Definition. Let p € L1(T2). We say that fi is a symbol of 

the Hankel operator H on H2(T2 ) if for each k,l,rn,n, € i' 

(He,e  
m,n Ic,! 

The remark preceding the definition ensures that every Hankel 

operator on H2(T2) has a symbol, so suppose that H is a fixed Hankel 

operator on H2(T2) with a symbol, (3. For 0 < r, s < 1 we will 

denote by p 	the continuous function on T2  defined at (e e"') by 
r, S 

P (e'°,e') =T  (m,n)rIff1s1f1eimee. 
r, S 

Using Theorem 3.4.4 we find 4 € L(B(H2  (T))) such that (- j) is a 

Hankel operator for each j k 0, II Op  H = II H II and ((_j)e,e1 ) 

p(-j,-1-n) for each j,l,n k 0. Then by Theorem 3.3.1 we may find a 

bounded linear operator F : L1(T) - B(H2(T) such that, for h € 

L1(T) and f E H2(T) 
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(Fh)(f) 	f:h(eb0)(e1e)f drn(0). 

We will prove the following result. 

3.5.2 Theorem. If h E L1(T) and f,g € H2(T) 

27 

((Fh)f,g) = iimj' 
J 

27( 

0 	(e
je ,ej )h(eiø )f(ei• )gt(e1 ) dm(0)dm((p). 

F S 
r,s91 0 0 

The proof of 3.5.2 is divided into three lemmas. Note that 

each P 
r S 

belongs to L(T2) and so defines a bounded multiplication 

operator on L2(T2). We may thus construct Hankel operators H 	on 

H2(T2) in the usual way and deduce from Theorem 3.4.4 the existence 

of (non-unique) 
r,s € 

L(B(H2(T))) with 

(3 	(-j)e,e ) = 	(-j,-1-n) r,s 	n 1 	r,s 

for each j,l,n 	0. 	The first lemma uses the original 	to 

construct such '1' 
F, B 

3.5.3 Lrma. Let P E L1(T2) and Os € L(B(H2(T))) be as above. 

Then for each 0 < r, s < 1 there exists 	
2 

€ L (B(H (T))) such 
F, 8 

that for each j,l,n ;>- 0 

(6 	(-j)e ,e 1 ) = 	
(-j,-I-n) 

r,B 	n 	r,s 

Proof. Let P, denote the Poisson Kernel 
2 1-r 

rW/ 
- 1-2rcosO+r2 

(for 0 < r < 1 and 0 ::5. 0 ~ 2n). Then for each 0 < r < 1, 0 :9 0 :5 2it 

and f € H2 (T), the function 

elt 	> Pr(0_t)(eit)f 

is a weakly-measurable H2 (T)-valued function on T and thus has 

separable range. We may therefore define (Pr* ) (ei9) € B(H2 (T)) 



for e'°c T by 

27 
je 

(Pr*'I'8)(e 	= r Pr(e_t)4(e1t)f drn(t). 
J o 

Then Pr*( 	€ 1(B(H2 (T))) With II P,.*t 	II ) :!~ II Pr II 1 II Ojs II OD = 

II 4 I
CD 
l. 

For each n € 1, 0 < r < 1 and f,g € H2(T) 

((Pr*4) -(n)f,g) 	
f2l 

e- inG ((PI0,)(e"9)f,g) dm(0) 

= f 0 	
e- i[ f 0 P,(O-t)(P,,(eit)f CM(t)i1 dm(e) 

= 
fo 

meifb[ j
o 

Pr(e_t)(a(e1t)fig)n(t)] dm(0) 

by 3.3.2 

= 

J27([j2R 

	

::nt)Pr(o_t) 	
o)]ent(P(e1t)fig)dm(t) 

by Fubini' s Theorem 

= 

So, 

Now for f € H2(T) we define Pr*f in the usual way by 

(Pr*f)(e'°) Spr 0_tf eit dm(t). 0  

Then Pr*f € H2 (T) with II P,*f 112 :5 II f 112 and 

(Pr*f)(fl) = r nj (n) 

for each 0 < r < 1, n ?-- 0. 

We define 4 	: T —* B(H2(T)) by 

= 

(e'° E T, f € H2(T)). 	Then each 4p is wo-iiasurable and 

II 	 112 ::5 II q lI OD II f 112 
for each e'° € T, f € H2(T). 

Moreover, if j,l,n ;-> 0 and 0 < r,s < 1 

91 



( 	(-j)e n  ,e ) -  	(e
ie  )e fl  ,e I)  dm(0) r,s 	1 	f2ne"'(4, F,8  

= 
f

2n 
e' (P. (P, *(p (eiO)(P *e )],e ) dm(0) 

= fePr*)(e 
0) 

9*e),(P8*e)) dm(0) 0   

= S'((Pr*4)p)(j)e,e) 	by (**) 

= s'r(3(-j)e,e) 	by (*) 

= S''r(-j,-1-n) 

as required. 

Now for each of the 4) 	in 3.5.3 (0 < r,s < 1) we define F € 

	

r,s 	 r,s 

B(L1(T);B(H2(T))) by 
27t 

	

(Fh)(f) 
= J 	

h(e'°)4) 	(e'°)f dm(0) 

(h € L1(T), f € H2(T)). 

The second 1tma shows that at each h € L1  (T), F h converges 
r,s 

to Fh in the weak operator topology on B(H2(T)) as r,s - 1 frcm 

below. 

3.5.4 Lemm. If F 	(0 < r,s < 1) and F are as above and if h € 
r, 8 

L'(T) and f,g € H2(T) then 

((F 
r, s 

h)f,g) —+ ((Fh)f,g) 

as r, s —, 1 frczn below. 

Proof. Fran the definition of F 	and F and fran lm 3.3.2 if 
r, 8 

is clear that for each h € L1(T), f,g € }!2(T) and 0 < r,s < 1 

((Fh)f,g) = < h,(4(.)f,g) > i CD 
L ,L 

and 
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((F 	h)f,g) = < h,(4 	()f,g) > i CD 
r,s 	 r,s 	 L ,L 

Let h € L1(T) and let f,g € H2(T). Then for 0 < r,s < 1 

< h,(q r, s 
(.)f,g) > - < h,(4(•)f,g) > 

< h, P*(cI(.)(Ps*f),Ps*g) > - < h,(p(.)f,g) > 

= < h, p*(q(.)(Ps*f),Ps*g) > - < h,P*((P(.)f,g) > 

+ < h,Pr*(P(.')f,g) > - < h,(4(•)f,g) > 

For the latter two tern, we see that for any c > 0 there exists 0 < 

r0 < 1 such that for all r0 :5 r < 1 

I < h,Pr*((.')f,g) > - <h,(8()f,g) > I < E. 

For the first two terms we have 

< h, P*(tj(.)(Ps*f),Ps*g) > - < h,Pr*(t(.)t,g) > I 

~ II h II II P*(()(Ps*f),Ps*g) - Pr*(4(')f,g) IIcD 

~ 	II h ll II ((.)(p5*f),P5*g) - OP's (.)f,g) II OD 

~ II h II [ii ((. )(P5*f—f),P8*g) II OD  + II (019 	
)f,(P8*g—g)) Il] 

II h Il 	[ii 4l,3IIOD
II (P8*f-f) 112 II P5*g) 112 

+ 	II q 	Il OD II f 112 II P8*g-g 112 
} 

-, 0 as s --) 1 from below, uniformly in r. 

Thus, 

	

i < hi (4 8 (•)f) > - < h,(q(.)f,g) > 	—.* 0 

as s,r —4 1 from below and the result follows. 

Lastly, we give an expression for the action of F r,s on L1(T). 

3.5.5 Lema. Let F 	(0 < r,s < 1) and 	be as above. Then r g 	 r,s  

for h € L1(T) and f,g € H2(T) 
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211 

 ((Fh)f,g) = s 

2R 
f 
: 	

(ei0,e)h(e)f(e)g(e1) 	
1- e -) 

Proof. Since h,f and g can be approximated by polyncanials, we need 

only to establish the formula for h = e 
j 	1 
, f = e and g = e for some 

j E Z, l,n € Z. In this case we have 

21 

((F 	e)e ,e ) = f eiJ0 	1 
(4 	(eiO)e ,e ) din(0) 

r s j 1 n 	 r s 	 n 
0 

= (3r,S 	1 n 
(-j)e ,e ) 

= p r, s 
(-j,-I-n) 	by 3.5.3 

27t 21( 
J (e je  ,e )e' °e''e 	dm(0)dm() = 	(-j, -1-n). 

fo 	0 	
r a 	 r,s 

as required. 

Proof of 3.5.2. Fix h € L1(T) and f,g € H2(T). By lmas 3.5.3, 

3.5.4 there exists a family {F} 	of bounded linear 
r.s O<r,s<1 

operators fran L1(T) to B(H2(T))such that 

((Fh)f,g) = urn (F r  f,g) , a 
r, s41 

fRfRp

lim 

	

,8(ei0,e )h(e18)f 	)gt(e) dm(0)dm(4) 
r s9l 0  

by 3.5.5 

Our principal result now follows easily. 

3.5.6 Corollary. Let H be a Hankel operator on H2(T2) with symbol 

P. let p 	be as defined above, let h € H1(T) and let f,g € H2(T). 
r, a 

Then the action of H as a linear functional on the elTent 

h(-)(6g) + H1(T;B) of H1(T; 1)/H1(T;B) is given by 
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< h()(fg) + H1(T;B), H > 

I 
urn 

S 

27C 21t 
(e ° = 	 p 	,e )h(eiO' 1f(e ) 	t 1 )g e / &n(0)clm(4)). 1\ 

r s 
r, s41 0 	0 

Proof. Immediately fran Theorem 3.4.7 and 3.5.2. 

Finally, to cc*nplete our study of Hankel operators on H2(T2) we 

shall note the relationships between the Banach spaces H1(T 2
)*, Egip 

and (H(T)Hl(T))*. 

H1(T 	is continuously ethedded in BHP. 

Any bounded linear functional F on H1(T 2 ) may be represented by 

sane 45F € L(T2 ) with II OF U
OD 
 = II F If. 	We can form a Hankel 

operator f ran 4) in the usual way : H = PJ'141 HL' (T2) 
where M is 

multiplication by 4) on L2(T2), J' is the 'flip' operator on 

(J1f)(ee,eP) = f(e'°,e'), and P is the orthogonal projection of 

L2(T2) onto H2(T2). 	Then H has representing array 

m ,n€Z 
+2, so the analytic function OF with power-series 

(-j)(z1 1z2 )- is in BHP with II OF II 
BHP 	

II 
OD 
= II F II. The nap 

o::~i 

F 	> ct is then a well-defined contraction fran Hl(T2)* into BHP. 

BHP is continuously aTbedded in (Hl(T)H(T))*. 

Suppose that 4) € BHP. 	Then the Hankel operator with 

representing array {q(j + j)} 
1-J€z

+2 has (by 3.4.4) an associated 

(non-unique) function 	€ 0(B(H2(T))) with ff 0 II 
OD 

= II 4) 11 
BHP 

and 

6(-n) Hankel for each n k 0. The corresponding operator F : L1(T) 

- B(H2(T)) (as in 3.3.1) is Hankel-valued on H1(T) so the 
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restriction F' to H1 (T) may be regarded ( via Nehari 's Theorem) as a 

bounded linear operator from H1(T) into Hl(T)*. But B(Hl(T);H(T)*) 

is isometrically isomorphic to (H(T)HI(T))*, so F' defines a 

continuous linear functional f on H1(T)®H1(T) with 

II f II = II F' 11 B(H1 ; H1*) 	O B(L1 ; B(H2

OD 

)) 

= II (I) II 

= 	
"BR? 

It is easy to show that H1(72) is isometrically isctnorphic to 

H1(T;H'(T)). By arguing as in 3.3.13 we can show that for any 

Banach space X, H1(T;X) is isometrically iscuorphic to the closure 

of H1(T)øX in L'(T)®X. Thus, H1(T2) is isometrically iscmorphic to 

the closure of H'(T)®H1(T) in L1(T)H'(T). 

Now let II 	Il 	denote the H'(T)eH1(T) norm on H'(T)®H1(T) and 

let II 	1I2 denote the L'(T)®H1(T) norm on H1(T)®H1(T). Then, using 

c-* to denote a continuous embedding, we have frcztt 1. and 2. that 

(H1(T)®H1(T),II 	II) 	BHP C-, (H1(T)®H1(T),1I 

We do not know whether BHP is iscsicrphic to either 

(H1(T)®H1(T),II 
. 	

Il® ) 	or (H1(T)®H1(T),II 	. 	Il) but we can show 

that 

(H1(T)®H1(T),II II) is 	strictly contained 	in 

(H1(T)øH1(T),1I IH). 	To achieve this we shall amend the example 

in 	3.3.15 	to produce a II - II 1-continuous 	linear 	functional 	on 

H'(T)®H'(T) which is NOT II Il 2-continuous. 

Define a functional P at a simple element hg of H1 (T)®If (T) by 

p(fog) 
= z 

~(2 k )g(2 k) 

k~-'O 



	

1/2 	 1/2 

	

lP(g)I [ I(2k)I2] 	[ lg(2k)l2] 

k;->O 	 k;>-O 

:!~. c211 h 11 	II g II 

by Paley's Inequality ([1JR],p 104) for sane constant c, independent 

of hg. 

Clearly fi extends linearly to a II 	II 1 -continuous linear 

functional on H1 (T)H1 (T). 

Define 	an 	T eee 	(for n e1). 

Then p(cx) = 	- 	 as n —* oD whilst 
z 

i 

II a, 1I®2 = 
	z 

[ e(•)e 	hIL1(T;fth(T)) 
k=1 

n 
27 2k je 

= s 	
iZ e 	e UHI (T) 

0 
k=1 

n 

:r. j2njj Z 1 
2kie 

	

e 	e 
H-_ (T)o 	 2 

k=1 
n 1 \112 

=[2J 

~ nlr6 	for each n ;*_ 1. 

Hence, g is not II %2 -continuous, as required. 

97 



Chapter 4 Norm Estimates for Polynomials in Two Ccwnuting 

Power Bounded Operators. 

In this chapter we will effploy the methods of Chapter 2 and the 

main results of Chapter 3 to produce upper bounds on the norm of 

p(S,T) when p is a polynomial and S,T are ccmnuting power-bounded 

operators on Z. 

Throughout the chapter S,T are fixed power-bounded operators 

and c,d are constants such that II S' II _.~ c and II T' II ::~ d for every 

n ;_t 0. We regard the commuting pair (S,T) as the generator of a 

uniformly bounded snigroup {SmT'} 
m, nEZ 

+ and the map (m,n) -'> 

as a bounded representation of the sigroup Z'2. 

We show that, using the characterisation of Hankel operators on 

H2(T2) given in Chapter 3, Feller's methods can be extended to 

consider functions of (S,T). Indeed our principle result is that 

there exists a constant K such that for any polynomial p(e'°,e') of 

degree N ;,-- 2 

H p(S,T) II ~ K c2d2 (logN)2 II p HOD 2 L (T2) 

Section 4.1 A First Estimate of H p(S,T) II. 

4.1.1 Notation. For k = (k,k) E z'2 and I = (ii) € 	we 

write k 	when k :5 j and k :5 j . If z 	(z 'z € (t2 then z 

z 	z k2 € U and (S,T).!. = SIC1 rp2 € B(e). 

Now let p be a fixed polynomial in (e'91e) 

p(e'8,e) 

O:! r-kSN 

for sane N = (Ni ,N) € 	 Let N denote the degree of p, 

namely max (N,N). 
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We will need the following (presumably known) application of 

Grothentheck' s Inequality. 

4.1.2 	Ltrra. Suppose that a = (a 	)" 	+2 € 11(Z'2)®11(Z'2) 
i, 

has cx 	= 0 whenever ± A H or 	N . Let {x } +2 ,{y } icz
+2 be 

1,3 	 i 	 1 

matrices with entries in Z such that U x 
l e 

II 	:!~ a and II y II 	b for 

each i€Z+2  . Then 

V a. . (x ,y 	KG II a II 

i, JEZ 

Proof. Suppose that H (M 1M2) and N = (N,N2 ). We can rearrange 

the array a to give a matrix 	with 	 = 
p(M2+1)+q,r(N2+1)+s 

cx 	 for every 0 :r. (p, q) ::~ M and 0 ::5 (r, s) :!~ N . We put 

0when i>M(M+1)+M orj>N(N+1)+N 
12 	 2 	 12 	 2 

Then 	l'(Z')l1(7Z) and if 4P,v E 

Za 	(i)p(i) I 
i , j;>-O 

= 	I L 	p(M2+1)+q,r(N  2
+1)+s 

q(p(M+1)+q)p(r(N2+1)+s) I 
p,q, r, s~'O 

= I Z a (p, q) ,(r,$) 
(p(M+1)+q)ip(r(N2+1)+s) I 

O::~ ( p, q) 

O!~(r, s) 

By considering the suprium over all (p,ip with II 4 II OD , II tp II OD 

1 we see that 

IlaII1+1+~IIall1+2v1Z+2 ) . 
1 (1 )®1 (7Z ) 	1 (Z )®1 ( 
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If 	{x 
i iEl 	 1 
} +2 and {y } 

iEZ +2 
are matrices with entries in X we 

can rearrange similarly to give sequences {k } , { } 	with 
nn~O nnkO 

= x and 	 = y 	for every 0 ~ (p,q) and 
p(m2+1)+q 	(p,q) 	r(N2+1)+s 	(r,$) 

0:~-. (r,$). Thus 

V cx• (x, 
1 
y) 
3 

jCZ
+2 

I Z
a 	 (x 

,(r,$) 	(p,q) 	(r,$) 

p, q, r, sO 

= I Da (3
11J I

; 
3 
.) 

j , j;->O 

sup 
1, 

sup 
~ KG II 	i~0 	 j;->O 

by Grothendieck's Inequality, 1.2.5 

::~ K0 II a II 	ab 

Note that we can find a tensor a E 11(Z 2 )®11(Z 2 ) with an array 

(a 	} 	+2 of finitely many non-zero entries such that 
i,j 

	

Va =(ç) 
	

(*) 
L 'J 

i+j=k 

for all k € 	We can now use the power-boundedness of S,T and 

the fact that they carmute to prove a result analogous to 2.2.1. 

4.1.3 Theorem. If p is related to a E 11(Z 2)®11(Z 2) by (*) then 

II p(S,T) II :!~K0 c2 d2 II a II 
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Proof. For any x,y € 

I (p(S,T)x,y) = i 	cx 	((S,T) ,y) 

O::~k:!~N i+j=Ic 

= 	a 	((S,T)! x,(S*,?) 	) I 
1 ,J 

i , j~_1O 
- - - 

	 (since S,T ccnmute) 

~ KG II cx II 	C2 d2 H x11II y 11 Z 

by 4.1.2 since S,T are power-bounded by c,d. 

The tensor a is not uniquely determined by the polynciriial p so 

we will associate p with an equivalence class of tensors. 

4.1.4 Notation. 	We denote by E 2 the linear subspace of 

11( 2)l1(Z42 ) consisting of those a € 11(Z' 2)l1(Z 2) with array 

{a i 	+2 having finitely many non-zero entries and satisfying 
,j 

+ 2 2
) 	a. 	= 0 for every n € Z 

L_ 	''3 
i+j=n 

We denote the closure of E 2 in 11(Z 2)l1(Z'2) by 

By arguing as in 2.2.3 we obtain the following corollary. 

4.1.5 Corollary. If p is related to a € 11(z 2)l1(Z 2) by (*) 

then 

2 	2 	
+ E 2 II 1 (Z 2 + Dp(S,T)II~KGc d Dcx Z+2 

))/ E 
(2) 

(1 	)®1
1 

 

By 1.2. 3 	the dual of 11(Z 2)®l1(Z 2) is isometrically 
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iscnorphic to V2 with respect to the pairing <a,> = V a 	p i 2 	 i,j 	,j 
o:!~i, j 

(a € 11(l+2)l1(l+2), pE v2 ). Moreover, it is clear that the 

annihilator of E 2 in V2 consists of those arrays in V2 that are of 
2 	 2 

Hankel form 

= 	{( + 	j€Z+2 E V : {P(i)}+2 

is a rratrix of scalars 

4.1.6 Notation. If 4) is an analytic function on u2 with power 

series 

then we denote by r 2 the Hankel -type array defined by 
ip 

= 3(i+ j) 	(i,i€ 142) 

Note that when 	a 	= p(n) for all n E i 
2 and when F (2) 

L4 !'.! 
i +j=n 

€ v2 
2 

(2) > = T j(n)~(n). 

nEz 

Moreover, since 

ll a + E 2 H = sup ( I < a, > 	: p E E (2)-i- ,II p ii 2 V 
2 

we obtain the following inequality. 

4.1.7 Corollary. 

II p(S,T) II :r. KG c2d2 sup 
	

: II 	~ 1 

nEZ 
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Section 4.2 Further Estimates of II p(S,T) II. 

In this section we use results from chapter 3 to show how the 

quantity 

sup II (n)3(n) 	: II 	2 ~ 1 } - - 

	 s V 
2 

O~n~N 

is related to a projective tensor product norm associated with the 

polynomial, p. As a corollary we deduce a bound on II p(S,T) II in 

terns of II p Il 
OD 

and the degree of p. 

We start by extending the notion of Schur multiplication from 

matrices to arrays indexed by i,j E 

	

4.2.1 Definitions, a) If A = (a } 	+2 and B = (b } 	+2 
1, 3€z 	 1,3 

are 4-dimensional arrays of scalars then the Schur product A® B of 

A,B is formed by pointwise multiplication of the entries 

A®B = {a 	b. } 	+2. 
1, 	1, 	, j€Z 

An array A = (a } 	+2 is a Schur multiplier on B(H2(T2)) if 
1,3 i,3ETZ 

whenever T = {t } i,jcz+ 
is the representing array (with respect 

1,3 

to {e} 
MCZ 

+2 ) of a bounded linear operator on H2(T2) the Schur 

product A®T is also the representing array of same bounded linear 

operator on H2(T2). 

If A is a Schur multiplier on B(H2(T2)) then the multiplier norm 

II A IIM(B(H2(T))) of A is the operator norm of Schur multiplication 

by A on (representing arrays of operators in ) B(H2 (T2 )). 

4.2.2 Latna. If M € V2 then M is a Schur multiplier on B(H2(T2)) 

with multiplier norm dominated by II M II 2 V2 
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Proof. 	If x € l CD (Z 2) then we denote by diag x the array 

{x(M)6 } 	+. If x,y € lw(Z+2) it is easy to show that when 
m,n m,nEZ 

= x®y and A is the representing array of a bounded operator on H2(T2) 

= (diag x) A (diag y). 

As in the proof of 1.4.3 we extend to finite sums of tensors of 

the form 
=40y, (Xk,yk 

E l(Z 2), 0 ~ k ~ n ). Then, 

II 	®A II = II 
	
(diag Xk ) A (diag y ) II 

n 

~ II A 11B(H2(T2)) 	
= 

II xLHOD II 	11CO  

k=O 

Hence, if M E V2 and N > 0, P 2 M is a Schur multiplier on B(H2(T2)) 

with 

II 	P' 2 M II 	2 	2 	
P (2) 	II Co +2 	CO + 

	

))) 	N 	1 (Z )ø1 Cl 
2) 

N 	M(B(H (T 

	

~ II H II 2 	by definition. 
V 2 

Moreover, if h € H2(T2) is a polyncnial and A = {a 
1,J

}. 	+2 is the 

representing array of a bounded linear operator on H2(T2) 

	

II (M®A)h II: = 	+2
I Z 
 

M1 	a13 h(i) I 2 

= urn 	 lim 	M 	a 	f11 12 

	

m-XO 	 -- -- 

	

O~!~(n,n) 	 m) 

Then, by two applications of 1.4.2 

	

II (M®A)h 112 ~ urn 	 I 	H 	a 	i(i) 12 
' J_ !' J_ - 

	

0::~i:5(nn) 	01~j:g(n,n) 

urn ii ((PH) ®A)h II 

	

2 	,2 

	

~ II H II 2 II A Ii 	2 
T2n 0 h "2 

	

V 	B(H ( 
2 

104 



Since the polynomials form a dense subspace of H2(T2) it follows 

that H M®A 11B(112(T2)) 	M 11v2 II A 11B(H2(T2)) and hence that M € 
2 

M(B(H2(T2))) with II M 0 	2 2 	~ H M II 2 
M(B(H (T ))) 	v 

2 

We will use 4.2.2 to prove the appropriate analogue of 2.2.6. 

Recall (3.1.2) that BHP is the Banach space of analytic functions ip 

on u2 for which the Hankel array r 	is the representing array of a 

bounded linear operator on H2(T2). We must now define a Banach 

space of multipliers on BHP. 

4.2.3 Definitions, a) An analytic function 0 on ID 
2 with power 

series p(z,z) = Z (m,n)zz is a multiplier on BHP if for every 

m, n?-- O 

ip € BHP (with power series ip(z,z) = 	,(m,n)zmz ) the series 

m, n?-'O 

(m,n)(m,n)zz is the power series of a BHP function, denoted 

m, n;,-'O 

by 0 * ip. 

If p is a multiplier on BHP then the multiplier norm, H 

is the operator norm of the map ip '> 4) * ip on BHP. 

The normad linear space of all multipliers on BHP with the norm 

II 	. II 
M(BHP) 

is denoted by M(BHP). 

4.2.4 Lrra. If 4) is an analytic function on D2 such that r 2 € 

v2 then 4) is a multiplier on BHP with II 4) 11 	11 r 	II 2 
2 	 M(BHP) 0 V 2 

Proof. Suppose that F 	€ V2 arid lp E BliP. Then, by 4.2.2, F 	is 

a Schur multiplier on B(H2(T2)) and, by definition, i2) is the 
Vt 

representing array (with respect to {e m m€7L } +2 ) of a bounded Hankel 
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operator on H2 (T2). 

Thus, F 	= i' 2 ® r 2 is the representing array of a 

bounded Hankel operator on H2(T2) with norm dominated by 

ii 	 Hence 4) * € BHP and 

_-~ ii r 2 ii 2 II V 11 
BHP • V 2 	

BHP 

as required. 

Remark. To complete the analogy with 2.2.6 we should define the 

notion of a multiplier on H1(1)/H1(B) and further deduce that any 

multiplier on BHP is a multiplier on its predual H1(1)/H1(B). 

However, since it is not clear how to define multipliers on 

H1(1)/H1(B) (and since H1(1)/H1(B) itself has no obvious predual) 

it is preferable to work with the multipliers on BHP. Thus we state 

the following corollary. 

4.2.5 Corollary. 

II 	p(S,T) H 	l c2 d2 sup I 	 : II 	"M(BHP) -
.< 

Proof. By 4.1.7 and 4.2.4. 

The identification of BlIP with a dual space (by Corollary 

3.4.9) allows each multiplier of BHP to be considered as a linear 

functional on a projective tensor product space. 

4.2.6 Theorem. Let 4) be a multiplier on BHP. Then there exists a 

linear functional 4) on [H'(&)/H1(B)3 	BlIP with II 4) II :9 11 0 '1 M(BHP) 
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and 

([h + H1(B)] (9 p) = < h + H1(B),4) * W > H1(&)/H(B),BHP 	
(*) 

for all h E H1(), p € BHP. 

Proof. Let 0 denote the dense subspace of H1() consisting of the 

F. 1-valued analytic polyncinials. Let 25 + H1(B) denote the subspace 

{ p + H(B) : p € i } of H1(91)/H1(B). Clearly + H1(B) is dense in 

H1 (& )/& (B). 

Now let 0 be a multiplier on BHP. We define 'I' on a simple 

tensor [p + H1(B)] ® ip (p € 0, ip € BHP) by 

ct([ p + H1(B)] ® p) = < p + H1(B), 4) * lj) > H1()/H(B),BHP 

Now extend 0 linearly to [i + H1(B)] ® BHP by setting 

[ n=O 	 n=O 

+H1(B)] ®q] =([ N +H1(B)]ø) 

(p€,ip€BHP, O:sn:!~N) 

To show that 0 is well-defined we will require the following. 

Claim. If h € H1(T), 	€ H2(T) and 1p E BHP (for 0 _e. n ~ N) are 

such that 

a 	 (.)(fg) + H' (B) ® 	= 0 

then 

N 

E 
& (i)(f G~njia,j) = 0 

for each i,j ;>- 0. 

Proof of Claim. Note that u = 0 if and only if c(F,G) = 0 for all F 

€ (Hl(&)/Hl(B))* and G € (BHP)*. Fix i,j k 0. 	Then the function 
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e 	on T2  is in BHP and therefore defines a functional on 
1,3 

H1()/H1(B). Indeed by 3.5.6 

< h,(.)(fg) + H1(B), e 	> = 1i (i)(f 91•)(j) 
n 	n n 

Moreover, since e(.)(e, e ) + H1(B) is inH1(&)/H'(B) we have 

an element [e (.)(e e) + H1(B)]' in its double dual, BHP*.  For 'p 

€ BHP and i,j € 

[e(.)(ee ) + H'(B)]' > 	* 
3 	0 	 BHP, BHP 

= <e (.)(e 	e ) + H1(B),ip > i i 	1 

	

1 	 j 	0 	 H ( )/H (B),BHP 

= 

by 3.4.9. 

Hence, 

Z  & (i)(f 	 j) 

= 	< h,, 	(f 	+ H1(B), e 	> 

<ip n' [ 	e 
1 	 3 
(.)(e 	

0 
e ) + H1(B)]'> 

= cx (e 	,[e (.)(e 6 e ) + 
1,3 	1 	 3 	0 

=0 

and the claim is proved. 

We now show that4D is well-defined. Suppose that p € 25 and 1p € 

	

BHP are such that 	[ p + H1  (B)] ® Vn  = 0. By 3.4.8 we may choose 

€ H(T) (m = 0,1,... ,M) such that 

Nn 

p 	+ H1  (B) = Ze.(•)(f, 	) + H1  (B). 
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Then, 

T, [ p,, + H1(B)] 0 lPn] 

= ;< 	
em (•)(fn,m 	g) +H1(B),4) * ip> 

= Z Z Z 
	

(j)(fn.m 
gt)(j)3(i,j)(j,j) 

n=O m=O i,jkO 

=3(i, j) 
 

i,j;>-O 	n=O m=O 

= 0 by the above claim. 

We now show that 4) is continuous with respect to the 

[H1(9')/H1(B)]®BHP norm on ( + H1(B)]®BHP. For p € and V, € BHP 

(0 ::~ n :!~ N) 

I ( z 	
Pn +H1(B)]0fl) 

~ Z I <  p + H' (B), *ip,, > I 

N 

"M(BHP) 
Z 11 Pn + H1 (B) IIH1 MI) /H1(8)II Wfl "BHP 

n=O 

as required. 

Since () + H1(B)]®EHP is dense in [H1(91)/H1(B)]®BHP we extend 4) 

by continuity to a functional 4) on [H1(1)/H1(B)]eBHP with II 4) II 

'1 M(BHP) 

Finally, if h € H1(1) and ip € BHP we approximate h by a 

sequence {p} n2-'O 
in 2s satisfying II h-p,, II H i MI) 

—p 0 as n —i OD. 
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([h + H1(B)] ® ip) = urn (X)([p + H1(B)] 0 ip) 

= li.rn < p + H1(B), 4) * ip > 

= < h +  

4.2.7 Corollary. If there exists h E H1(T),f,g € H2(T) and ip € BHP 

such that 

(m,n) = 

for all rn,n ;>- 0, then 

II 	p(S,T) II 	KGc2d2 II h II. II f 112 II g 112 U V 11 BHP 

Proof. If we can find such h,f,g,and ip then for any multiplier on 

BHP, 4) and its associated functional cZ 

N1, N2 

I 	(m,n)3(m,n) I 
m, n=O 

m, nkO 

= 	([h(.)(fg) + H1(B)] (& ) 	by 4.2.6 

:!~ 	II 4) II M( BHP)  lI[h(.)(fg) 
+ 	 e ip II 

= 	11 4' 
"MIBHP 	

11 h(.)(fg) + H1(B)IIH1(1)/R1(B)II 1p 11 BHP 

4' 
1'M(BHP) 

II h II 	II f 112 U g 11 2 11 1p 
 11 BHP 

The result now follows fran 4.2.5. 

4.2.8 Corollary. There exists a constant K such that for any 

pol yncmial 

p= : 

	
(*) 

0:!~n-5(N1,N2) 
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with N1 ,N2 k 2 and for any camiuting pair of power-bounded operators 

S,T with II sn II _.I~ c and II T" II ~ d for all n ;>_ 0 we have 

II p(S,T) U _< K c2d2 logN1 logN2 II p IILco(T2) 

Proof. As in 2.3.7 we denote by hN the polyncmial h(z) = 
z 

z on U 

(N k 0) and note that for N k 2 II ht, U1 _< d' logN for sane constant 

d' independent of N. 

Let p be as in (*) and factorise h 
= fgt for sane f ,g c H2(ID) 

with II bN 
2 	1 	 2 

II 	= II £ II 	II g1• U 
2 

. 	Then 

(m, n) = 

for all rn,n k 0. 

Let P be the projection of L2(T2) onto H2(T2), let 3 be the 

operator on L2(T2) defined at h € L2(T2) by (Jh)-(m,n) = 1i(-m,-n) and 

let Mjp denote multiplication by Jp on L2(T2). Then PJMJPIH2(T2) is 

a Hankel operator on H2(T2) with representing array ((i + fl} 	+2 
1 , jEEZ 

Thus, p € BHP with II p II 
BHP =11 PJM1p1 H2(T2) II13(H2(T2)) :!~ II JP II() = 

II p II cG 

Hence, by 4.2.7 

II p(S,T) II :5 K c2d2 II 
hN 1 1 	2 

II 	II f II 	II g 112 U p 11 BHP 

~ 
KG C2 d2 d'(logN1 )d'(logN2 ) II p II 

OD 

= K c 2d
2 (109N1)009N2)11 p lI 

OD 

when KK(d')2 
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Chapter 5 Functions of a Bounded Continuous Snigroup of Operators. 

We have seen how power-bounded operators generate bounded 

discrete snigroups of operators on Z and nreover we have produced 

norm estirrates for polynials in such generators. In this chapter 

we consider the generator of a bounded, strongly continuous, one 

parameter siuigroup of operators and we show that similar norm 

estirrates can be found for a certain class of functions of this 

generator. The methods used are similar to those of chapters 2 and 

4. They require characterisations of the dual of L1()®L1(I 4), 

(5.3.10) and of the class of bounded integral operators with 

Hankel-type kernel, K(x+y), (5.4.13). 

We start with some basic definitions frcn the theory of 

snigroups. 

Section 5.1 Definitions and Motivation. 

5.1.1 Definition. A C0-snigroup 91 on Z is a family of bounded 

operators {T(t) : t € i} satisfying 

T(s)T(t) = T(s+t) for all s,t € 

T(0) = I 

and iii) T(t)x is a continuous Z-valued function of t for each x € C. 

5.1.2 Definition. A C0-snigroup fl1 on 7 is bounded if there 

exists a constant c k 1 such that II T(t) II _-~ c for all t € H. A 

bounded C0-snigroup fl1 is contractive if II T(t) II _-~ 1 for all t € 

5.1.3 	Definition. 	Let 	ffi be a 	C0-snigroup 	on 	z. The 

infinitessimal generator A of fl1 is a linear operator defined at x € 
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Zby 

Ax = -i urn T(t)x-x  t 
t40 

whenever this limit exists. 

Remarks. 

Many authors prefer to use "uniformly bounded" instead of 

"bounded" in 5.1.2. 

The factor -i in (*) is unconventional. 	We choose this 

definition so that a C0-semigroup may be expressed as {e' tA : t € R*) 

rather than the usual (etA : t € i}. The motivation for this choice 

is the use of the Fourier rather than the Laplace transform later in 

the chapter. 

A simple adaptation of the well-known Hille-Yosida-Phillips 

Generation Theorem ([GOLD, p 201,[DS1, pp 624,626]) describes the 

generators of bounded semigroups. 

5.1.4 Theorem. A linear operator A on C is the generator of a 

bounded C0-semigroup fl1 on Z if and only if 
i) A is closed and densely defined on C 

and ii) there exists c ;-> 1 such that for all X > 0 the 

operator -i-A is invertible and II (-iX-A)II 	2 for all 

n k 0. 

In this case we have II T(t) H ~ c for all t € 	and T(t) = ei tA 

in the sense that 

T(t)x = lirn 	x 
1140 

where x€C and Ah = -i T(h)h__ 	B(t) for each h> 0. 

(*) 
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ReTark 	The generator of a C0-senigroup 17 = {T(t) : t € R4} 

is a bounded operator when and only when ffi is uniformly 

continuous. That is, T(t) is continuous on t, with respect to the 

norm topology on B(Z). ([DS1. p 621]). 

Packel "S Counterexample. 

In chapter 2 we noted that a counterexample by Foguel showed 

that not every power-bounded operator on Z is similar to a 

contraction. 	Before proceeding with our norm estimates for 

functions of the generator of a bounded C0-senigroup it is 

important to note that not every such generator is similar to the 

generator of sane contractive C0-stdgroup. 	Indeed, a counter- 

example by E.W . Packel ensures that this is the case ([PAC]). The 

construction of the required C0-siiigroup and the method of showing 

that its generator is not similar to the generator of a contractive 

C0  -seni group closely follows Foguel's ideas and Halmos' 

interpretation. 

Section 5.2 A Bound on II f(A) ii. 

Throughout the rest of this chapter we suppose that A is the 

infinitesimal generator of a bounded C0-senigroup rp on C. Let C k 

1 denote a uniform bound on II T(t) H (t.,-O). Lebesgue measure on Rn  
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(n ~_- 1) will be denoted by p. 

Let f € L1(B) and let 1 denote its Fourier transform. If i is 

integrable the inversion formula gives 

f(t)1 j 
r - f ist. = 

- 	

(s)e *(s) 

for a. e. t € R. We use this as our motivation for the definition of 

f(A). 

5.2.1 Definition. If f € L1 (U) is such that the support of 	, 

suppf is a cctract subset of I then we define f(A) € B(2) by 

f(A)x = 	r 1 (s)eisA(x) dp(s) 

(x E 

Note that the integral (*) exists as a Bochner integral since 

the strong continuity of the send-group fl1 implies the weak 

measurability of the function t -.> T(t)x (x € C) and 

OD 

JO 11 
	(s)e18A(x) II dg(s) --r. 

: : 

x 	li 

To find our first bound on U f(A) II we will use the tensor 

product spaces L1(I)®L1(I) and L1()®L1(I). 	By 3.3.7, the 

projective tensor product L1 (U )L1 (It) is isometrically isctnorphi.c 

to L1(;L1(R)) which is in turn isometrically isclTcrphic to 

L1(IxI). 

5.2.2 Notation. Let 0 € L1(I)øL1(t). We denote the image of 

under the isaitric iscmorphism of L1(I)®L1(l) onto L1(xI) by . 

(*) 
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Note that when =f, ® g c L1()®L1() (f,g € L1(), 0 

:~-. n :!~ N) we have 

(s,t) =
T. 
 f(s)g(t) 

for a.e. s,t € 	and the injective tensor norm of P is given by 

OD OD 

ii p ii = sup 
{ 	

J J 	
(s,t)(s)(t) dp(s) djj(t) 	: 	€ L(),l 

0 0 II 4 II ill ip II  

Using these facts we prove the following version of Grothentheck's 

Inequality. 

5.2.3 Theorem. Let p € L1(N)®L1(B) and let F,G be essentially 

bounded measurable -valued functions on g. Then 

OD OD 

I J f 	
(s,t)(F(s),G(t)) dp(s) dp(t) 	KG II ft II 	II F H II G II OD 

where KG denotes Grothendieck's constant. 

Proof. We first consider the case when P € L1(P)®L1(I). Suppose 

that F,G are simple measurable a-valued functions 

Fx.X. 	G = Z Y.X1 . 

i=1 	 j=1 

for san-e collections of disjoint measurable subsets of 	, {a}" 
1 i=1 

and {t }m , and sane x, y € Z (0 --~ i n, 0 	m). Then 
JJ=1 	 1 	J 

OD OD 

I 	f
o 

(s,t)(F(s),G(t)) dp(s) dj(t) I 

= Z 	[s J 	
(s,t) dp(s) dp(t)l (xi,y i 

i=1 j=1 	1: c1J 

(*) 
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Put a f 

	

j' (s,t)dp(s)dp(t) for each 1 ~ i :!~ n and 1 	j ::r. rn. 

Ti (T 

Then for any scalars s 	
J 
(0 -< i ~ n, 0 ~ j ~ 	

1 
rn) with ls.I, 	J 

~ 1 
1  

for all 0 ::~ i ~ n, 0 :!~ j :!~ in we have 

OD OD 

st 	= ifo J (s, t) 	sX(s)][ 	t 	(t)1dp(s)dp(t)I 
L_ 	

i=1 	 j=1 i,j 
n 	 In 

~ II P II I II 	S ii 	t x 	II icJ1 (0 	jTj (0 

i=1 	 j=1 

< II p iI 

Hence by Grothendieck's inequality (1.2.5) 

I 	x(x,y) I ~ KG II 	II 
1~i~n SUP II x 1 SUP 

~m 0 y.II 

i=1 j=1 

and frcm

OD OD 

(*) 

I $ f-(s,t)(F(s),G(t)) dp(s) di(t) 	KG II 	lI II F II II G 

Now suppose that F € L(IR;C). By the strong measurability of 

F there exists a sequence of measurable simple functions (F } n n;-,'O 

which converges pointwise a.e. to F. We can adapt each F n to get a 

sequence {F' ) 	which further satisfies n nkO 

II F' 11 :g II F II 	for all n k 0. 
n OD 	 (0 

N 
To do this we suppose that F 

' 
= 	xx for sane N > 0, x € Z for 

1. 
i =0 

0 :!~ i N and some collection of disjoint measurable subsets of I, 

{}N 
. We define for each 0 --~, i :!; N 

1 i=0 
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x 
1 

Y. 
= x 	ess

i 	sup II F(s) 11 
sca 

Ii XlIx 	i 

ess 
ii x 	F(s) 11 

otherwise 

and put F' = 	 . Then ii F'lI 	II F il and it is easy to 
n 	z 	 n 	 00 

show that ii y, - F(s) 	 F(s) 	for each 0 --. i :!~ N and 

a.e. s€ a1. It follows that II F'(s) - F(s) ii 	F (s) - F(s) U n 	 z 

for a.e. S E l and therefore that F' —4 F pointwise a.e. on 

Suppose also that C € L (I + ;z) and that {G') 	is a sequence 
n n;'-0 

of measurable simple Z-valued functions convergent pointwise a.e. to 

G with H G' II 	C II for each n ;-* 0. 	Then by dcininated 
n 	C) 	 (0 

convergence 

OD OD 

f f 	(s,t)(F(s),G(t)) di(s) dp(t)
CD CD 

I 

umj $ f 	(s,t)(F'(s),G'(t)) do(s) 	(t) p4(0 0 0 

~ 1 im KG II fi H Ii F' II II C' Ii 	since F' , C' are all simple 
n (0 fl (0 	 n 	n 

n4(0 

~ KG II 	Il 	II F 11(0 II 0 110D 

Finally, suppose that P € L1(I)eL1(I 4 ) and 0 * F,G € 

For any c > 0 we may choose ' E L1(I)®L1(R) such that 

	

liP -'ll 	
< 	 C 

KG iI F 11 CD 11(0 
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OD OD 

f f0 	
s,t)s),G(t)) dp(s) di(t) 

~ 	$ 	
f 

0 
( (s,t) - '(s,t))(F(s),G(t)) dp(s) dp(t) 

CD CD 

+ f $ 	' (s,t)(F(s),G(t)) dp(s) dp(t) I 

-~ 	ii F 11 OD II G II CD II 0 - 	' U 1 + K, II P'% II F ll 	II G 11(0 

-' + KG II 	' - 	 + 	II 	II F 11(0 II G 11(X) = II F II 	II G II 	II p - p'iI ® (0 	0) 

< [ 	+ £ J + K0 II P II 	II F 110) II G II OD 

and the result follows. 

We can now use 5.2.3 and the method of [P1, Thn 3.13 to produce 

a bound on II f(A) II. 

5.2.4 Theorn. Let f € H1(t) be such that supp i c [O,N] for sane  

N > 0. Suppose that p € L1(E1)®L1() satisfies 

(t) 
= So 	(s,t-s) dp(s) 	 (*) 

for a. e. t € I. Then 

II f(A) II ~ 	K0 c2 II 

Proof. For each x,y € t 

N 
(f(A)x,y) = 

--- $ 	(t)(T(t)x,y) dp(t) 

= 	rN lj 	(s,ts) dp(s)] (T(t)x,y) 	(t) 
( J00 

N- 
= f

N 	
(s,r)(T(sr)x,y) dp(s) dp(r) 

(oo 
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OD 

 = 
--- J $ 

CO P,(s,r)(T(r)x, T(s)*y) dpi(s) d1i(r). 
/oo 

Hence by 5.2.2, since T(r)x and T(s)y are bounded measurable 

z-valued functions of r,s respectively, 

(f(A)x,y) 	KG U fi il's 
SUP 

11 
 T(r)x ii 	

SUP II T(s)*y H 
f®r;-,, O 

~ 1 ic ii 
p 1 
	C2

11X11
U y iI 

and the proof is complete. 

Note that the condition (*) in 5.2.4 is easily satisfied since 

we may take 

(s+t) 
/ 
- 	 s+t 

for s,t € I, s+t 0 0. In this case 

f
t 	 t(t) (s,t-s) dp(s) 

= $ -'(y t)— 
o 	 0 

= 1 (t) 	for all t € 

and S 
00 

f

OD 

I 	(s,t) I dp(s) i(t) = f 
OD 
[ $ I 	(s,s-t) I 	(s)) 	(t) 

= 
f 

OD f', 	diJ(s)] d1j(t) 

= 5 
OD 	

(t) 	dp(t) 

< D. 

Moreover, since (*) in 5.2.4 may be satisfied by different 's 

with different norms, we make the following definition. 

5.2.5 Notation. 	Let E denote the subspace of 

consisting of those a € L1(R)®L1(P) for which f t (s,t-s) dp(s) = 
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0 for a.e. t € 

Clearly, if p E L1(I)®L1(l) satisfies (*) in 5.2.4 then so 

does p + a for any a € E. Thus if E denotes the closure of E in 

L1(I)®L1(I) we have the following corollary immediately. 

5.2.6 Corollary. If f and P 
f 
are as in 5.2.4 then 

II f(A) ii ~ 
__I_ ic0 c2 II 3 + E II 

	

f 	(L1(I)®L1(ll))/E 

Section 5.3 The Dual of L1 (I )L1 (It). 

For P E L1(P)®L1(R') and the subspace E of L1(R)®L'(R) 

defined in 5.2.5 we note that 

II 	+E fl(L1I)øL1Cj)/E = sup { 	: F 
II F II ~ 1 }. 

In this section we show that (L'(I+)®Ll(I))* is isometrically 

iscnorphic to a subspace of L(xI) and we identify the 

annihilator of E with those functions in this subspace which for 

almost every t € 	are almost everywhere constant on the diagonal 

from (0,t) to (t,0). Thus when f E L1() has supp i c [0,N] for 

some N > 0 and p satisfies the condition (*) of 5.2.4 we obtain the 

equality 

II fi+E 11 L1+L1wn/E_ = sup { f f(t)h(t) di(t) 	: 	E 

II 	 ~ 

where i(s,t) = h(s+t) for all s,t € 

This important step allows us to show that the operator norm of 

f(A) is bounded by an expression involving the integral of 1 against 

functions in a known subspace of O(R). 
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The characterisation of (Ll(ll )Ll(I))* forms the greatest 

part of this section and is of independent interest. The only known 

characterisation (1.2.7) does not shed light on the problem of 

describing II P +E II in terms of the function f. 

Our strategy for characterising the dual of L1(I)øL1(R) is to 

use conditional expectation operators on an element g of L(IxI) 

to produce a sequence of finite-dimensional matrices. We show that 

if the norms of these matrices in l(Z)®l(Z4) have a uniform bound 

then g defines a bounded linear functional on L1()®L1(U) with 

norm equal to the supriun of the projective tensor non of these 

matrices. 

5.3.1 Notation. a) For N E Z and i € 	we denote by I the N 

I dyadic interval I i - 
i+]. 
- 

L 2N 	2N ) - 

If N E Z and if M € Z is such that M2  € Z then we denote by 

M 
91 	the a-algebra of subsets of [O,M) generated by { 

1i 1N2 -1 

	

N,M 	 H i=O 

If N € Z we denote by Y the a-algebra of subsets of J 

generated by { i'}+ 

For 1 _--~ p :!~ m and 0 < N < eD we denote by L' the Banach space 
N 

L ([0 ,N), 5 N'
11 
 ) and by 1 the Banach space 1 (Z). 

If (X,,v) is a measure space we define L(X,,v)® pt L(X4,v) 

to be the linear space of (t-a.e.-equivalence classes of ) functions 

g 	€ 	L()X,4x,xL') for which there exists M ;-,, 0 and 4P 
k 

P 1P € 

0(X4,z..) (0 ::~ k :!; M) such that 

g(s,t) = 	k(s)k(t) 	for a.e. s,t € 
	

(*) 

k=O 

For g € L (X,á,v)® pt L (X,,v) we put 
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II g II 
Pt 

= mt { 	: M 	0, 
k'k € 

L(X,,v) 

- 	 (0 --. k ~ M) satisfy (*) 

g) 	Let L(X,,L)® pt 
0(X,s4,) denote the cci'npletion of 

L(X,,v)® L(X,,v) with respect to the norm II 	II- 
pt 	 0 

Pt 

5.3.2 Lem, 	For each N > 0, (L1 0 L )* is isometrically 

isc*irphic to L e L with respect to the pairing 
N pt N 

< 

a,g 
> =j' f ~(S'Og(s't) dp(s) dp(t) 

when aELoL and gELo L 
N N 	 NptN 

Proof. Fix N > 0 and let m = N2 
N_1. If f € LP for some p ;-> 1 then 

f must be a.e.-constant on I' for each 0 mc, i ::~ m. The sequence 

{f I' determined by 
1 i=O 

f(s) = 2"f 	for a.e. s € f and each 0 ::r~, i :r. m 
1 	 N 

is in 1P and this construction gives an isometric isomorphism of L 

onto l which we will denote by T 
M 	 p 

Let S = TOT, the corresponding isometric isomorphism of 

L10L1 onto 11011. Then for a € L10L1 and 0 	i,j --. m we have 

	

N N 	mm 	 N N 

(Ba). 	= 22N (s,t) for a.e. (s,t) E I x Ii 

	

IL 	 N 	N 

By Lma 1.2.4, (11 ® 11)* is isometrically isciirphic to 1c0 1 

with respect to the pairing < a,p > = 	a
' J ''3 

when a = 

1, j=O 

{a 	€ 11;11 and 	= { 	} 	E ll 	It follows that 
i,j i,j=O 	m m 	 i,j i,j=O 	m 

(Ll®Ll)* is iscmetrically iscirphic to L'°0 LcO with respect to the 
N N 	 NptN 

pairing < cx,g > = < Sac, Tg > when a € L10L1 and g € L°0 L. N N 	 NptN 

Moreover, 
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f' f%(s,t)g(s,t) dp(s) d1i(t) 

= $. 	s. 
i,j=O 1 	I 4 

=: 

 

f 	f 
i 	i 

i,j=O I 	I 

= < Scx, Tg > 

= < cx,g > 

and the Lemma is proved. 

(s,t)g(s,t) dp(s) dp(t) 

22N(Scx) 	(Tg). 	dp(s) dp(t) 
1,J 	1,J 

5.3.3 Definition. 	Let (X,4,t.') be a measure space. 	A 

decomposition of (X,4,&') is a sequence {i4 j j€z } 	of sub-a-algebras of £4 

i)4 
j 
c4 

J+1 
for each j€Z; 

if E € 

	

	4 and v(E) < oD then either 
j€z J 

(E) = 0 or v(X\E) = 0 

U 4 generates 4 
jEZ 3 

and 	iv) if n € Z, F € 4 and j(F) < co then there exists a countable 

family {U} 	in 4 such that F c U U and v(U) < co for 
J J;>-- 1 	fl 	 j?'1 	 J 

each j ;>— 1. 

The definition of conditional expectation operators is based on 

the following lemma. 

5.3.4 Leura. Let 1 :g p ~ co and let {4 j j€Z } 	be a deccsiposition of 

a measure space (X 4 ,i.). Then for any f € 	(x ,4 ,i.') and any n € Z 

there is an essentially, unique, locally integrable function g that 

is 4-measurable, vanishes off a a-finite set and satisfies 
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$ gn dvj' f dv 

Q 

for every set !Q of finite measure in 4.,. 

Proof. [Ex3, p 77:1. 

5.3.5 Definition. If (X4,v),{4}nCz  and f are as in 5.3.4 then 

the function g is the conditional expectation of f given 4.,. The 

operator F,.,, rrapping f to g,.,, defined on L'(X4,v) for each 1 	p 

< aD is called the conditional expectation operator relative to 4.,. 

We note the essential features of conditional expectation 

operators necessary for their use in this section. 

5.3.6 Lenna. For each n€Z and 1:r.P< oD 

F, is a contractive, positive linear operator on L(X,,v) ; 

EMEI.,f = Lf whenever m :!~ n and f E 

if f € LP(X,4,v) then Ef = f 

if f € L1(X4,v) and g E L'(X4,v) n L(X4,v) 

then 	$ (E,.,f)g dv = $ f(Eg) dv 

= J (Ef)(Eg) dv 

and e) if f € ri(X,á,v) then F,.f —* f in IY(X,,v) as n —, cD. 

Proof. [EG, pp 78,841. 

We now define a particular sequence of conditional expectation 

operators on LP (D +k ) for 1 --. p < oD and k € N. 
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5.3.7 	Definition. For k E tI, 1 :!~ p < co, f € L)(I4k) and N € Z we 

define E(k)f at .x E 
+k by 

(E'f)(.) = 2 kN 	

$ 	f(y) dp(y) 
k ij 
III 
j=1 N 

Ic 	ij 
when x€ III for sane i,i .....i ~O. 

j=IN 	 1 2 	Ic 

Thus, the value of EUf at x 
E 1ik is given by the average of 

f over the dyadic "cube" containing the point x. It is clear that 

{,} 	is a decomposition of ( +k
IR

,n, u 
) 

and that if N € Z, 

1 ~ p < co and f € L(I) then E k )f is the conditional expectation 
Ic 	

N 

off given fl 
j=1 N 

Note that when f E Lco(Io), (**) defines an element Ef of 

Lco(ll) with II E'' f II 	II f II 	. 	In this case, the sequence 
N 	OD 	 OD 

{Ef};-> does not necessarily converge uniformly to f as N - co, 

but when g E 

J' (Ef)gdU f f(Eg) 
dp 

and it follows that Ef converges to f in the weak 
*-topology on 

Lco . 

5.3.8 Notation. For k,N > 0 we denote by P 	the operator on 

LP(i) (1 :5 p ~ co) given by 
Ic 

f(x) 	x 
€ j 1 
11 [0,N) 
= 

	

(p(k)f)(x) 

= { 0 	: otherwise 

(x€ 1+k)• 

The properties stated in Lma 5.3.6 hold for PE 	on 

L' (U) (1 ~ p < co) except (c) which applies only to f € 
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L 	,N), jn 9;( 	 1N N 
,]. We may regard the operator P 	as 

a contractive linear mapping of L(D) onto LP 	Moreover, 

P 2 E 2 maps L(IxI) onto L'® L . Thus, in the spirit of 1.2.2 
N N 	 NptN 

we will use the following notation. 

5.3.9 Notation. Let r 2 denote the linear space of essentially 

bounded measurable functions g on Ix for which 

II g 	2 = 
sup II P 2 E 2 g II 	< c° 

Pt 

	

Clearly, r 2 is a Banach space with the norm II 	II2 and we now 

show that it is a dual space. 

5.3.10 Theorem. The dual space of the injective tensor product 

L1(I)®L1(I) is isanetrically isc*norphic to V2. The pairing is 

defined for a € L1(k)øL1(R4) and g € V2 by 
OD OD 

< cx,g > 
= j' f ~

(smg(sm dp(st) 

Proof. Suppose first that g E L(R )® Pt 
L'(U) and that 

L(I) (0 ::r. k :r. m) are such that 
in 

g(s,t) = 	k(5k(t) 	 (*) 

for a.e. s,t € J. Then for any a E 

OD 00 

<a,g > 
= 
f f ~(S't)[ 
	

kk] d1i(s,t) 

k=O 
M 

J 

OD 

$ 

OD 

a (s,t) k(k(t) dp(s) dp(t) 

k=O 	 by Fubini's Theorem 
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Thus, 

< x,g >1 --~ II cx II 	II 0 
k11( 

Il 1PIIc) 

and since this holds for any {4,}, {Wk} satisfying (*) for a.e. s,t 

€ 	we have 

< cx,g > :5. It cx II 	II g 
®pt 

Now if g € r2, since 	—* in L1(IxI) as N —*aD, 

CD OD 

< cx,g > = J j' 	(s,t)g(s,t) dp(s,t) 

OD CD 
(2) (2) = 	limJ' l' 	P N E 

N 	
a)(s,t)g(s,t) dp(s,t) 

J  
N-XD 0 0 

CD 

= urn r I' 	 dp(s,t) 
N-)(X)OO 	

N 	N 

= urn < cx, P 2 E 2 g >. 
N N 

N4 

So, since P 2 E 2 g € rf(i)® L(I) 
N N 	 pt 

1< a,g> 	urn It cx II 	II P 2 E 2 g Il 
N4M 	 pt 

II cx II 	II g II2 

Since L1 (R )®L1 (it) is a subspace of L1 (i )®L1 (It) it follows 

that (Ll(I)Ll())* is a subspace of (Ll(I4)L1(k+))* and 

therefore is a subspace of L(IxI). So given F € 

there exists a unique g € L°(P'x1) such that 

OD 00 

Fa 
= 	j' 	

dp(s,t) 

for every cx € L1(U)®L1(U). 

We show that g € r2 with II g II2 	F II. For each N k 0 we 

have 

11 
p(2)g II 
	:5; Ii P 2 E 2 g II OD 	OD 

N N 	 N N 	L ® L 
pt 	 N pt  
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and by 5.3.2 

II P 2 E 2 g 
M

OD 
	

CO 
L ® 
N pt N 

OD 

:5; sup {ijCO 

f ~(slt) 
(P( 2 )E (2 )g)(s,t)dp(s,t)j : a € L1®L1, ii a 	~ 

SUP 
f

OD CD 

f ~(s,t)g(s,t)dM(s,t)j : a € LeL, II a Il  

(2)"
a 

- since  (2) E 	-a 
N N 

= sup 

{ 	

F(a) : a E L11®L1, 11 a 	:5 i. 
I 

Hence, II g 11
72 :!~ II F II , as required. 

We can now describe the annihilator of E in (LlLl())* in 

terms of LCO(I +xO ) functions. 

5.3.11 If g € LCO(lxIt) is such that 

OD 

 $ 
OD 

f 	(s,t)g(s,t) d1i(s,t) = 0 	 (*) 

for all a E E then there exists h € r?(i 4) such that for a.e. t € 

and a. e. 0 :r. s ::~ t 

g(s,t-s) = h(t). 

Proof. Suppose that g € LCO(IxI) is real-valued and satisfies (*) 

whenever a € E is real-valued. For t > 0 put 

Ag t) = 	f,g(s,t-S) dp(s). 

Fix N € IN and define 
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g(s,t) - A9(s+t) 	: 	0 ::!; s+t ~ N 

N 	 0 	 : s+t>N 

Then 	€ L(Ix) and is real-valued. Also, 

ft aN(S,t s)di( ) = ft 
g(s,t-s) dp(s) - $i(t) dji(s) 

= ftg(s,t-s) dp(s) - jtg(s,t-s) dp(s) 

= 0 for all t > 0. 

Hence, 

CD OD 

o = f 

: 	

(s,t)g(s,t) dp(s,t) 

= f:10 
(sFt_s)(st-s) 

= 

f N ft( 
g(s,t-s) - Ag (t)] [g(sit 	 Ag s) - A9 (t) + 	(t)] dp(s,t) 

f
N 

ft( g(s,t-s) - Ag (t)] dp(s,t) + 

f
N 
: f '( g(s,t-s) 

- Ag(t)) A9 (t) 

=

fN 

jt( g(s,t-s) - A9 (t)] dp(s,t) + 0 

and we conclude that g(s,t-s) = A9(t) for a.e. t _-~ N and a.e. s :!~ t. 

Since this holds for each N € N, the proof is complete in the 

real-valued case. 

Finally, if ccrnplex-valued g satisfies (*) for all a E E then 

we apply the above proof to the real and imaginary parts of g. 

5.3.12 Notation. For h E L(J) we denote by 7 the essentially 

bounded measurable function on I 4 xR' defined by yh(s,t) = h(s+t). 
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5.3.13 Corollary. 	The annihilator of E in (Ll(I)L'(I))* is 

isanetrically isamrphic to { y € 	: h € L(fl) ). 

Proof. Irmthately fran 5.3.10 and 5.3.11. 

To ccnplete the section we have the following bound on II f(A) II. 

5.3.14 Corollary. If f € L1(R) has supp 1 c [0,N] for sane N > 0 

then 

II f(A) 	 c2su4,$"(t)h(t) d,i(t)I : h E L(),II 1 11r2 ~ 

Proof. Fran 5.2.6 we deduce that 

II f(A) II ~ 	KG c2sup(IF 	: F € 	n(Ll()Ll(I))*, It F II ::g 1 

for any 	E L1(I)®L1(I) satisfying (*) of 5.2.4. Now by 5.3.10 

we have 

OD OD 

II f(A) II ~ -i- KG c2sup{Ij' j(s1t)g(st) dp(s,t) : g € EnT2, 
0 0 	 1Ig11y2:911 

But by 5.3.13 any g € ELnT2 is of the form g =h for sane h € 

L(I) and 

OD OD 

J f #1(S't)1 
(s,t) dp(s,t) 

OD 

= J f° (s,t)1 (s,t) dp(s) dp(t) by Fubini's theorem 

= fN: 
J 	(s,ts)h(t) dp(s) dp(t) 

= 

fN 

(t)h(t) dp(t) since fi satisfies (*) of 5.2.4. 

Hence, 
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II f(A) II ~ --- KGc2su4I$ f(t)h(t) dp(t)I : h € L(I), II 11'P2 :!~ 
11 

as required. 

Section 5.4 Integral Operators on H2 (0). 

This section concerns bounded integral operators on H2(I) and 

in particular, those integral operators with a Hankel-type kernel 1 

(where h is a measurable function on Ic). The kernel of a bounded 

integral operator on H2(I) is analogous to the matrix associated 

with a bounded operator on H2 (T). So, motivated by this analogy we 

make the following definition. 

5.4.1 Definition. Let k be a measurable ccxrlex-valued function 

on Uxl*. If for every f € 

OD 

i) j' Ik(x,y)(y)I dp(y) < oD for a.e. x € 

OD OD 

and 	ii) f
o 

If k(x,y)(y)I2d,i(x) < 
CD 

then we define the integral operator T  associated with the kernel k 

at f € H2 (R) by 

(Tf) -(x) = 
OD 

I' k(x,y)f(y) d1j(y) (for x € I) 
J o 

Since the Fourier transform f —> f maps H2 (J) onto L2(I) and 

(ii) is satisfied for every f € H2(I) we have defined a linear 

operator from H2(I) into H2(I). Moreover, T is a closed operator 

([HS, p 15]) and it follows by the Closed Graph Theorem that T is 

bounded. 
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5.4.2 Definitions, 	a) 	A measurable function 	 is a 

bounded kernel if it is the kernel of a bounded integral operator. 

We denote the linear space of all bounded kernels by BK and for k € 

BK we set H k II 	= II T II 	2 
BK 	k B(H (ft)) 

b) A kernel k is of Harikel-type if there is a measurable function 

h on 	such that k = 1 a.e. We denote by BIlK the linear space of 

measurable functions h on I for which y € BK and for h € BIlK we 

set II h 
"BHK 

= H 
h'BK 

There are no known necessary and sufficient conditions for a 

measurable function k on I + xI
+  to be the kernel of a bounded 

integral operator and there is no Nehari-type result giving a simple 

characterisation of BIlK. We do not attempt such a theorem here but 

show instead that BHK is isometrically isomorphic to a subspace of 

Hl(R)* and use this result 	in 	section 	5.5. Characterisation 

questions in the theory of integral operators such as "when is a 

bounded operator unitarily equivalent to an integral operator ?" and 

"when is a bounded operator an integral operator ?" are discussed in 

[HS]. The answer to the second is known but does not appear in 

[HS]. The following theorem is a special case of those proved by 

Buhvalov ([BU], 1974), Schep ([SCR], 1977) and Lessner ([LE], 1978). 

5.4.3 Theorem. Let T € B(H2(R)). Then T = T for some k € BK if 

and only if, for any sequence fg} nEZ  + in H(I) satisfying 

(i) 11gII2 *0asn—D 

and (ii) I aj z< I 	I for se g € H2(I), 

we have (Tg)(x) —+ 0 as n —+ oD for a.e. x € I. 

An account of Schep's proof is given by Zaanen in his review of 
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[HSI. ([ZA]). 

The notion of Schur multipliers of matrices of bounded 

operators on H2(T) has an obvious analogy in the theory of integral 

operators. 

5.4.4 Definitions, a) Let g € L(IxJ). We say that g is a 

multiplier on BK if pointwise multiplication by g is a bounded 

linear operator on BK. The linear space of all multipliers on BK is 

denoted by M(BK) and for g € M(BK) we define II g 11 M(BK)to 
 be the 

operator norm of multiplication by g on BK. 

b) 	Similarly, h € L(J) is a multiplier on BHK if pointwise 

multiplication by h is a bounded operator on BHK. The linear space 

of all bounded multipliers on BHK is denoted by M(BHK) and for h E 

M(BHK) we define II h II M(BHK) to be the operator norm of 

multiplication by h on BHK. 

We shall show that if g € V2, the dual of L1(P)®L1(U), then g 

is a multiplier on BK. The proof of this result requires the 

following lemna which shows that if k is a bounded kernel there is a 

sequence of measurable subsets of finite measure of IxR', 

increasing to a set of full measure, such that k is integrable on 

each subset in this sequence. This lemna is a special case of Lemna 

7.4 in [HS] and its proof is a clarification of that given in [HS]. 

5.4.5 Lemna. Let k € BK. There exists an increasing sequence 

{X,j nI 
 of measurable subsets of 	satisfying 

i)p(X)<cofor each n;,--1 

ii) (\ U NO = 0 
n;-* 1 
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and iii) $ 	I k(x,y) I dp(x,y) < CD for every n,m ~ 1. 

XX[O, m] 

Proof. We show first that if Z c I has 1j(Z) < aD then for any £ > 0 

there is a subset Z' of Z such that v(Z\Z') < £ and 

$ 	I k(x,y) I dp(x,y) < oD for every rn k 1. 

Z' X[O,m) 

Since Y, 
[O,m] 	

2 E L (R+)  and k E BK we have 

$ 	I k(x,y) 	d(y) < oD for a.e. x€ O. 

We define for each m,n k 1 

Zm,n 
= { 

x  Z : 	k(x,y) I dp(y) < n 
}. 

Then for each m k 1, (Z 
m,n n;-,'l

} 	is an increasing sequence of 

measurable subsets on Z with p(Z\ U Zmn) = 0. By choosing a 
n 1 

sequence of integers (n,j 
mk I 

such that 

ji(Z\Z 
m, n, 

) < C/f 

for every m, and putting 

z' = 	z m, n 
mk I 

we have 

J 	k(x,y) I dp(y) < n. 

for every xEZ' and every mz1. 

To cciipl ete the proof we define a sequence of nasurabl e 

subsets 	as follows. Let Z c [0,1] be such that t([0,1]\Z) 

< 1 and $ 	k(x,y) I dp(x,y) < CD for every m 	Let Z c 

Z 1XLO,m] 

[0,2]\Z be such that 1i([O, 2]\(Z1uZ2 )) < . and j' 	k(x,y) I dp(x,y) 

Z 2X[O,m] 

< CD for every m a 1. 	Let Z c [0,3]\(Z1uZ2) be such that 
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i([0,3]\(Z uZ uZ )) < ! and $ I k(x,y) I di(x,y) < aD for every 
123 	3 

2 3 X[O,m] 

m?t1. 
n-I 

This process gives a sequence {Z } 	with Z c [O,N]\ U Z 
nn~-"1 	n 	 k 

k=1 

p([o,N]\ U Z) < .1 and f I k (x, y) di(x,y) < oD for every m,n zz 1. 
k=1 

2 X[O,m] 
n 

Moreover, i(I\ U Z ) 	urn p([O,n]\ U Z ) 
k~i k 	n-XD 	 k~i k 

~Tim p([O,nJ\U z) 
k=1 

The result now follows by defining, for each n k 1, X 
= 	k k=l 

5.4.6 Theorem. If g € y2 then g € M(BK) with II g II 
M(BK) ~ 

II g II2 

Proof. Note first that for g E L(xI), k € BK and f € H2(R), 

f 
OD 

j g(s,t)k(s,t)i(t)j d1i(t) :9 H g 11 OD f °Ik(sit)(t)I di(t) < cD for 

a.e. S € 

Now suppose that g is a simple element of L(I)® pt. 
O(R), say 

g(s,t) = (s)ip(t) for some ,ip € L(k) and a.e. s,t € I. 	We 

denote by I and L the Laurent operators on H2(P) defined at f € 

H2(I) by (Lf) 	and (Lf) = 

Ifk€BK and f,h€H2() then 

OD 

fo [J g(s,t)k(s,t)(t) dp(t) 

J 

s(s) dp(s) 

= r   [r k(s,t)()(t) dP(t)] ()(s) dp(s) 

= I (Tk L Ot 
f),(Lh) ]. 
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Thus, 

I(T gk f,h)I 
= l(T L f, th)l 

::~ U T U U L II II f II 	II L II II h II 
k 	 2 	 2 

= 	II k 11 B 11 tP 
 "co 11 

 
4> 11 

OD 
U f 11 

2 
II h U. 

Similarly when g(s,t) = 	4>(s)ip(t) for some 4>r 
lip 

r 	
LCo(R+) 

(0 :!~ r ::~ n) we have 

	

I (Tgkflh) 	U k II BK [ 	4>rUco U110D) 	f112 II h 
112. 

whenever k € BX and f, h € H2 (I'). It follows that g E BK with 

'I g 	
"BK 	

II g II 	II k II
BK 

. 
Pt 

Now suppose that g € 7 so that for each N > 0 we have 

€ LCO(I )ø LCo(I ) with 
N N 	 Pt 

p(2)(2)g 	

pt ~ 
ii g hIT2 < Co. 

Let k € BK and let {X } 
n~1 

be a sequence of subsets of I given by 
n  

Lenna 5.4.5. Then we define 

01 
= { 

f c H2(ll) : 	is bounded, supp 1 c [O,m] for sure m > 0 
} 

and 

= { 

E E H2(I) : is bounded, supp 1 c X for sormn c 14 
} 

Let f € D and h € T 
2 
. 	We denote by , the function (s,t) —> 

1  

k(s,t)(t)h(s). Then for scxre n E 14 and m > 0 

$ 
I 4(s,t) 	dp(s,t) 

= J 	
b(s,t) I dp(s,t) 

I + 	
+ xI 	 XXEO,m) 

	

ii 	If:iI 
~ $ 	k(s,t) d11(St)

sup 	sup 

10,M]' l 
XXE 0, ml 

< Co. 
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Hence € L1(HxU) and by 5.3.6 (e), P 2 E 2  - 	in L1  x (I) 

as N —3 oo. Moreover, since g E LtIxl) the integrals 

$ I 

g(5,t)(P2)E2)(s,t) dp(s,t) 

K 
.rs+ 

XI 
+ 

and 

	

	
$ I 

g(s,tYD(s,t)dp(s,t) 

I xI 

are finite and 

1 
+' g(s,t)(P(2)(2)(s,t) dp(s,t) - 

I A 

+ I 	fg(s,t)0(s,t)jdp(s,t) 

xI 

as N - (. 

The Parseval property of conditional expectation operators 

(5.3.6(d)) gives 

J' 	g(s,t)(P 2 E 2 4)(s,t) d1i(s,t) 
+ + 

IR xR 

( 2 	2 ),t)(s,t) dp(s,t) 

I xI 

+ 

 

= S 	
[(P(22 g)(s,t)4(s,t) dji(t) dp(s) 

+ $+ 	 by Fubini's theorem, 

= (T )Ef , h ). 

Also, 

5 	(s,t) dp(s,t) = 5 	5 (D(s,t) clp(t) 	dp(s) 

Ø 	+ 	 by Fubini's theorem 

= 	(T gk  f,h). 

Thus, by (*), as N - , 

(T (2) (2) k 	
, h ) —p (T f,h). 

E g gk 
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And since for every N > 0 

g II 	II k II 	II f II 	II h II I(T 2 E g 2k f 	
h )I 	N -N 	 BK 	2 	2 PH Pt 

H g II2 II k "BK 	"2 U h "2 

we have 

(T 	f ,h) 	::g 11 g II 2 U k II 	II f U 	II h II 
gk 	 V 	BK 	2 	2 

Finally, because U X is a set of full measure in I, the sets 
n 1 

and 21 are dense on H2 (J). By approximating f E H2 () by a 

sequence in 21 and approximating h € H2(I) by a sequence in 0 we 

obtain (**) for any f,h € H2(I). We conclude that gk € BK with 

11 gk 
11BK 	

II g II2 II k 
"BK 

To carlete the description of multipliers on BK we show that, 

as in the discrete case (1.4.3) the converse is true. 

5.4.7 Theorem. There exists a constant d > 0 such that if g € 

}4(BK) then g € V2 with U g II2 :5 d 11 	g 

Proof. 	Let g € 14(BK), let N > 0 and put m N2 N-1. 	Recall fran 

5.3.1 	that 	for i 	k 	0, I' 	
= [ so that P 2 E 2 g is 

_ 	

, 

constant on each square I'xI 	(i,j E Z) and is zero on I'xI when 

i > m or j > m. We may choose a sequence {}+ with 	€ i for 

each i € Z 	and 	(P
2)

H( E 2 g)(s,t)
12  for every 

(s,t) € IiXIj and every i,j € z9 . 

We show first that the matrix 

= {( 
(2) (2) 
N EN g 

i j jii€Z 

is a Schur multiplier on B(l 2(Z+))  with 

ligN il 	2 + ~UgII 
M(B(1 (Z ))) 	 M(BK) 
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Let S = (S 
i,j 
} 	+ be the matrix of a bounded operator on l2(Z) 

(with respect to the usual orthonorinal basis). Then we form its 

inflation on 	by defining 

(s,t) = S 
1, J 

when (s,t) € IxI (i,j € Z4 ). Similarly for a vector x € 12(z) we 

define 3 on 	by 

when s € I' (i € Z4). Then 	€ L2(P) with H 	H 
= 
	11 x II2 

Also, if f € H2(U) then the sequence 

fN = '(E2)(. ) 
1 

is in 12(z) with II f 112 :!~ 
2N/211 f 

Now if f,g € H2(I) have compactly supported Fourier transforms  

we find that for the integral operator, T- 
S 

(Tf,g) = _2N(5f,g ) 

and so 

	

(T.f ,g) 	:5 2-2N11 S II 	2 
(1 (Z)) II f, 11 	II g 	"2 S 	 B 

	

S II 	2 	+ 	II f II 	II g 112 1)) 	2 13(1 

Thus, 	€ BK with II 	II 	
~2-IRW 11 S II 	2 + 

BK 	 13(1 (Z )) 

A calculation using the Parseval property of conditional 

expectation operators shows that when x,y € 12(Z') are finitely 

non-zero sequences 
M 

	

g(i,j)S 	x(j)y(i) = 22'4(T(PN ),(PN')) 
1,3 

i, j=O 

and therefore 

M 

	

I :ii: 
g(i,j)S 	x(i)y(j) 

i, j=O 
22N II g II 	II • 	II 	II 3 	II 	II 	' 11 2 M(BK) 	BK 	2 
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2 	1 g II 	2II 	II 	2 
	2 t4,'2 	 -N/2 	

, 
M(BK) 	 B(1 (Z+ )  ) 	 2 	 2 

11 	II xli 	Il y ll = ii g 
0M(BK) 	

11
B(1 (Z+)  ) 	2 	2 

Hence, 

II 9N Ii 	2 
	

:r. 11 g 
"M(HK) 	

(*) 
M(B(1 (Z+ )  )) 

as required. 

The proof now follows that of Theorem 1.4.3. 	Any Schur 

multiplier A on B(l2(Z)) factors through 12(Z) ([B1. Thm 6.4]). 

That is, there exists B € B(l2;l) and C € B(11;12) such that A = BC 

and II B11 II C11 :!~ d' II All 
(B ( 

2(Z))) (d' independent of A). 	It 

follows that such A defines a bounded linear functional on 

11(4)l1(7) since for any a € 11(4)®11(4) 

M 

f< a,A >1 = 	V' cx • A 
L_  

i, j =0 

= I 
i, j=0 

sup 	 sup 
:5, KG Ii 	li 	iEZ 	II 

B 	
2 iEZ 	

II C 	112 i,. 	
C
. 

~ KG II a lI 	II B II II C II 

~ Kd'lI a ll 	II A 11M(B(12(Z))) 

Thus we have, by 1.2.4, that A € l(4)®l(4) with 

II A Ii 	::5. KGd'll A llN(B(12(Z+))) 

Applying this to the matrix gN and putting d = KGd' gives 

II P 2 Eg 11 OD- 	co 	d II g 
Pt 

~ d Ii g HM(BK) 	by (*). 

But N was chosen arbitrarily so g € r 2 with II g II2 :!~ d 11 g 

We now return to the main theme, the annihilator of the 

subspace ET of L1(I)®L1(I). Recall that Corollary 5.3.13 stated 

that the annihilator of ET is isctrically isarph±c to the 
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subspace of V2 consisting of Hankel-type functions I 
. 

5.4.8 Corollary. If h is a measurable function on I such that i 

€ V2 then h € M(BHK) with II h II
1h II2 M(BHK) 

	

Proof. 	If 
1h € 

r2 then by theorem 5.4.6, 	7 € M(BK) with 

multiplier norm less than or equal to its r2 norm. Thus if p € BM 

we have 

11 ho 
"BHK 

=11 
hO 

11 
BK

(by definition) 

11 	
h 	

11 
BK 

~,Iy 	II 	Ui 	II h M(BK) 	BK 

' 
h "V 

11 	
"BK 

= 	
h 

hI2 11 4b 

	

"BIlK 	
(by definition). 

The application of 5.4.8 to functions of the infinitesimal 

generator of a bounded C -snigroup is the following. 

5.4.9 Corollary. Let f E H1() have supp 1 c [O,N] for same  

N>O. Then 

II f(A) ii 	icc2sup I11(t)h(t) dp(t)I 	II h 11 M(BHK)
/271 	 0  

Proof. By Corollary 5.3.14, if f is as in the hypothesis 

	

II 	f(A) II --~ 	KGc2sup 
{1N 	

dp(t)I : II 	11 V2 ~ 	

} 

The result now follows from Corollary 5.4.8. 

To carlete this section we show that BHK is isometrically 

isc*ixrphic to a subspace of Hl(I)*. The idea for the proof arises 
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frcm the alternative proof of Nehari's theorem given in [PCq2, 

p 431]. We can show that when S is a bounded Hankel operator on 

H2 (T) and when f ,g E H2 (T) are such that fgt E H2(T) we have 

(Sf,g) = (S1,fgt) 

(where 1 is the function that is constantly 1 on T). Thus for h 

H1(T)nH2(T), with Riesz factorisation h 
= fgt 

I(S1,h)I = 

II S II II f 112 II g 112 

= II S II II h Il 

and the trap h 	> (S1,h) is a bounded linear functional on 

H1 (T)nH2 (T). By extending this functional to H1(T) and using the 

identification of H1(T) with L'(T)/?(T) we find a (non-unique) 4' 

L(T) such that for f,g € H2(T) with fgt € H1(T)nH2(T) 

(Sf,g) 
= f 4'(ele)(fgt)(ebo) j(°) 

When fat is a polyncrnial we have 

(Sf,g) = Z ~(n)(fgt)-(n). 

In the context of integral operators on H2(R) we would like to 

show that when k € BHK and f,g are in si-n dense subspace of H2() 

(Tf,g) 
= J 

k(u)(fgt)(u) dp(u) 

where gt(x) = g(-x) for all x € I. 

Then the map h 
> f 

k(u)i(u) dp(u) is a bounded linear functional 

on same dense subspace of H1(E). Since I has infinite measure, the 

function that is constantly 1 on I is not in H2(I) and the 

arguments for the existence of the above integrals are more 

delicate. However, we can show first that for & > 0 and for x € 

the integrals of I1k(X1 )I over [n5 ,(n+1)5] form a square-surrirable 

sequence, with 12-norm bounded by some constant independent of x. 
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5.4.10 Lem. If k E BHK and 6 > 0 then there exists a constant 

H such that 
6 

f(n+l)8 

Ik(x+y)I di(y)]

2 
M 
6 

n;-*1 

for every x € 

Proof. Let k € BHK. and & > 0. We show first that 

(n+1)6 	
2 

Jn8 

ik(x+y)ldp(y) 00. 

n;->1 

Note that, since k E BHK we have, for every f € H2(R) 

f 
OD 
ik(x+y)!(y)l djj(y) < OD (*) 

for a.e x € ll. We can choose suitable f € H2(P) and x € I to show 

that 

 

f (n+l)l 

 
Ik(y)I dp(y) la I < oD  for any {a } € l2(Z) and 

z
nZ 

(n+)6 
1 	4 

conclude that 
2 

Zj[
(n+1)6 
f 	

I jk(Y)l dii(Y)] 	< c. 

Indeed, if Ca } € 12(Z4.) we choose f € H2(fl) such that 
n 

n En6,(n+1)6) 

nk1 

and we can choose 0 < x < 6/4 such that (*) holds. But 

f 
OD 
ik(x+y)!(Y)l d1i(y) = f 

OD 
lk(y)!(y-x)l i(y) 

(n+1)6+x 

=i  S 	Ik(y)IIcxI 
n6 +x x 

n~ 1 

[ 
S 	Ik(Y)l 
(n+1)6 

nk1  

(n+ 1)8 
Hence, 	[5 	I 	

di(Y)] IaI < 	and (xc*) holds. 

Ek1 	4 
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Similarly, when we choose any {cx 
n } 

E 12(z) and choose f € 

H2(I) such that 

f = 	X8 (n+1)6) 
n~1 

there must exist 0 < x < 5/4 such that 

CD 

f I k(x+ 8. +y)(y) I dp(y) < cD . 

Then 

f I k(x+ . +y)(y) 	dp(y) 
= f:1 k(. .+y)(y-x) 	dp(y) 

n8+x 

=i $ 	 Ik(+y)I IcxI 
+x 

n~ I 

n6 

f 	
Ik(y)l d,i(y)lI I 

(n--)6 	 J 
n 

nki 	4 

and we conclude that 

Thus, 

[ 
2 

(n +1)6 

l'(Y)l dp(y)I n~1 	

< 

But for each n ~ 1 

(n+1)6 (n+—)& 	 (n+1)ö 

Ik(Y)I dp(y) 
~ J 	

I(Y)l dp(y) 
+ 1 	1 

k(y) d1.L(y) 

n6 	 (n-)o 

so, 

(n+1)8 	
2 ( (n+!)6 	 2 

1n8 	

lk(y)I 	 ~ 2 	J 	
2 

k(y) 

n 	 n~1'¼ () ~1  

(n+1)6 

+ 2 	
lf(n 	

Ik(y)l znk1 	4 

< OD by (**) and (***). 
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Finally, we put 

(n+1)6 

M' = 	 lk(y)I i') 

n~ I 

and choose any x€I. Write x=m5+cfor sane m€Z and 01;C< 

. Then for each n >> 1 

[n6+x,(n+1)5+x] = E(n+rn)+c , (n+rni-1)&fc] 

c [(n+m),(n+rn+2)61 

= 

SO, 

2 
(n+1 ) 6 

i [sn 	
Ik(x+y)I *(Y)] 

nk1 

(n+1)6+x 

=IIf 	
Ik(y)I 	

2 

nö+x 
n;>_1 

Ik(y)I dp(y)I + ~ 

	

[,(n+m+1)8 

(n+m)6 
n ~; 1 2 

(n+m+2)6 

f(n+m+l)6 I k 	dY)I] 

~ 4W 
6 

Putting M = 44' completes the proof. 

We will use 5.4.10 to show that for "well-behaved" f,g E H2(I) 

the inner product (Tf,gt) depends only on the product fg. Indeed, 

when f€H2(R) has suppfc [&,cs) for some  >0 and has f(x)  

for some constant c ;-> 0 and all x > 0 , and when g E H2(I) has 

L1(1) we can deduce from 5.4.10 that 

$ 5 I k(x+y)f(y)g(x) I dp(y)dp(x) < 
	

(*) 

Then the existence of the double integral 

R 

f k(x+y)!(Y)-g(x)+ 	di(x,y) 
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enables us to show that (Tf,gt) 
= J k(u)(fg(u) dp(u). 

Note that k E BHK satisfies (*) for every f,g € H2(R) if and only if 

k is an absolutely bounded kernel in the sense that Iki € BHK 

5.4.11 Liam . Let k € BHK and suppose that f  € H(I) are such 

that 

supp f c 	for same & > 0 

there exists c > 0 such that f(x) ~ 2 for all x > 0 x 

and iii) € 

Then 

(Tf,gt) 
= $ 	k(u)(fg)(u) dp(u). 

Proof. We have 

J $ I k(x+y)f(y)g(x) I dp(y)di(x) 

IR R 

(n+ 1)6 

= $ 
[ 	n6 	

k(x+y)(y)I 	t(x)Id,1(x) 
n~1 

(n+1)6 

~ 

+ 
[$ 	Ik(x+y)I 2 d(Y))I(x)IdP(x). 

ff 

n2:1 
n8 

(n+1)6 

	

But the sequence 	Ik(x+y)I1(y)
)n~1 

is square-su1nTble so by 
n6  

Cauchy-Schwartz and 5.4.10 

J J I k(x+y)f(y)g(x) I dp(y)di(x) 

R' 

	

1/2 	 1/2 
( (n+1)6 	 (y)] 2] 	1 	2 

~ S 
[ 	

Ik(x+y)I dP(Y)j 
J 	I n2ó2j 	I(x)I dji(x) 

n~1 	 nk1 

( 	2 	
1/2 

141/2 I 	C 	
cipm 

6 	Lo2fl2 ] 	
I I(x)I 

n~1 
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where H is as in 5.4.10. Finally, the assumption that g € 

ensures that 

$ S I k(x+y)(y)g(x) I clp(y)dp(x) < 

R 

and consequently that 

~1' +1 k(x+y)(y)g(x) dp(x,y) < 

ff xR 

Recall that g(x) = g(- for all x € k so that (gt x) 	 )'(x) = (x) 

for all x € 	Thus, by Fubini' s Theorem and 

(Tf,gt) = ((T f),(gt)) 

= i (Is 	k(x+y)(y) 	 dp(x) 

I + 

f k(x+
+ y)f(y)g(x) dp(x,y). 

I xI 

The measurable transforntion u = x+y , v = y now gives 

(T f ,gt) 
=f k(u)!(v)-g(u-v) 

 
+ 	dp(u,v) 

R A 

= 5 k(u) (5 (v)(u-v) d1i(v) J 
dp(u) 

by Fubini 'S Theorem 

k(u)(*)(u) dp(u) 

= I k(u)(fg)'(u) dp(u) as required. 

To complete the proof that BHK is isometrically isc*nDrphic to a 

subspace of Hl(I)* we will require the following notation. 

5.4.12 Notation. 	a) We denote by Y the Schwartz class of 

infinitely differentiable functions f : R - sE for which 

sup XCR (1 
+ IXI)mI(f)(x)I < Co 

for alllbi,ri€ i'. ([BL, p 131]). 

(**) 
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B) For t > 0, Pt will denote the Poisson Kernel on R given by 

P(x) = K 	t 	, 
2 	

where K is chosen (independently of r) such that 
+ X  

$ 
P, (t) di (t) = 1 

IR 

Let f be the analytic extension to the upper half-plane of 

sane I € H(I) (1 :g p :~ c) and let a = {a} na + be the zeros of f 
n;'-'O 

with a # I for all n € Z'. Then we denote by B, the Blaschke 

product on the upper half-plane, 

B.(z) = .E.2 ff Ia+1I 
Z+]. n a+1 Z-an  

[rxJR, p 1911. 

For f € H2() and 45 > 0 we denote by f8 the H2(I) function 

defined at x € 	
jôx 

I by f6 (x) = e f ( x). 

5.4.13 Theorem. The Banach space BM is isometrically iscinrphic 

to a subspace of HI (Ui)
* 
 

Before the proof of 5.4.13 we give a sketch of its underlying 

strategy. We will show first that when h € H'(I)nY, the canonical 

factorisation of h = fg for same f,g € H2(I) with II f 11 2 = U g 11 2 = 

II h 11 1/2 must have f,g € H1(R). Since 	are then bounded we can 

show that for t,& > 0 P*f6 and P*g satisfy the conditions 

(i),(ii) and (iii) of 5.4.11. Thus by 5.4.11, when k € BHK 

M (Pt* f8 (Pt *9) 
t 	f 

= 	
k(u)[(P*f6)(P*g)](u) d1i(u). 

Then since (P*f8)(P*g) = P*f6g and since P*f6 —i f and P*g - g 

as t,6 —* 0 we obtain 

(Tf,g) = lim 
J 

k(u)(P*f6g)(u) d1i(u) 	 (*) 
t,6-90 

The right-hand side of (*) depends only on the product fg = h so we 
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can take this expression as our definition of a linear functional Fk 

at h € H1(U)nY. Then (*) ensures that II F II ::~ II k H 
BHK 

on the 

dense subspace H1(I)n3 of H' (R) so we extend Fk to Pk on H1 (R) with 

II 	Pk II ~ II k 
11BHK 	

Finally we show that II k 
1 1BHI( :

5 II F, II and the 

proof is cciplete. 

Proof of 5.4.13. Let k E BHK and let h € H1 (I )nY. Assuming that h 

is not identically zero we let cx = {a) n~_' I 
denote the zeros of 1I, 

the analytic extension of h to the upper half-plane. 	Then the 

function i/B, has an analytic square root (i/)112 and by setting 3 

= R(h/)"2 and 	= (h/)1/2 we obtain the factorisation h =fg 

with ±,g € H2(R) and II f 112 = II g 112 = II h 11f 2. ([HO]). Moreover, 

since I(x)I = 1 for a.e. x € R we have 

if(x)l = g(x) 	ih(x)i112 
	

(**) 

for a.e. x € R. But h € i' ensures that ihi"2 = 0(1/x2) as lxi - 

and consequently that j' ih(x)i"2 dp(x) < co. Thus, by (**) we see 

that f,g € H1(R). 

We claim that for each t,15 > 0 

5UPP [(P*f8)] c 

(P*f6)' = 0(1/x) 

and iii) (P*g) € 

Part (i) is due to the fact that 

(P*f6)(x) = e_t 	(x-5) 	 (***) 

for x € I'. For part (ii) we note that f € H1(I) in-plies that 1 is 

bounded and hence by (sc**) that I (Pt*f6)(x) 	H L 11 OD t - 

= 0(1/x). 

Part (iii) follows similarly since g € H1(1) ensures that 

150 



$ 	(P*g)(x) I d1i(x) 
= $ let(x) I d1i(x) 

II 	II $ 
etX dp(x) 

< OD . 

Hence by 5.4.11, for each t,ó > 0 

= $ k(u)[(P*f6)(P*9)](u) d1i(u). 

k' 

Now for ô > 0 let 18 and denote the analytic extensions to 

the upper half-plane of f6 and g respectively. Then for t > 0 and x 

€ k (P*f6)(x) = 	(x+it) and (P,*g)(x) = (x+it) 

so that 

[(P*f8)(P*g)I(x) = 6(x+it)(x+it) 

= (6 )(x+it) 

= (P*(f6g))(x). 

Thus, since P*f - f in H2(k) as t,6 - 0 and since P*g -+ g in 

H2(k) as t - 0, we have 

(f,g-,) = urn (T(P*f),(P*g)) 
t, 6-30 

= lirn J k(u)[P*(f6g)](u)dp(u). 
t,640 

Now for any h € H1(k)nY with factorisation h = fg for same f,g 

€ H(R) we define 

Fkh = urn $ k(u)(P*(f6g))(U) dp(u). 
t,8-30 

Since the integral is independent of the choice of factorisation we 

see that F,, is a linear functional on H1(k)nY and moreover that 

IF,,hI = I (T k f,g 
•1- 
)I 

~ II k II 	II f II 	II g II 
814K 	 2 	 2 

By choosing f,g with H f 11 2 =11 g 112 = II h 11 
1/2 we have 

I F,,hI 	II k II BHK II h II 

and hence II F,, II 	k "814K 
on H1()nY. 
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Since 5° is dense in L2(R') and the Fourier transform maps .5° 

onto itself ([ZE, 7.3]) we know by considering the inverse Fourier 

transform on L2(ff) that YnH2(I) is dense in H2(I). Thus if h E 

H1(I) we can factorise h = tg (f,g € H2()) and approximate f,g by 

sequences {f,,) ncZ+ , {g, }nCZ + in H2 (I )nJ. The sequence { f,.g,., } nEZ + 
is 

then in H1()nY and converges to h in H1(I). Hence, H1(I)n3' is 

dense in H1(I) and we may continuously extend Fk to Pi on H1(I) with 

II Pk II 	II Fk II ~ II k 
"BHK 

To show that II Pk II = II k "BHK 
we note that whenever f,g € 

H2(I)nJ, the product fg E H1(I)nY and so 

= F(fgt) 

H Fk II II fg1• H1 

II 	F, II H f 11 2 11 
 

g 11 2 

Thus, IIkII 
BH K 

-<UFfl=II Pk H,asrequired. 

Section 5.5 A Final Estimate of II f(A) H a) . 

To ccxrlete this chapter we will find a final upper bound on 

the norm of the operator f(A) for a generator of a uniformly bounded 

C-sTiigroup, A and for f in a class of infinitely differentiable 

functions on R. Indeed, we will show that for a Schwartz class 

function f whose Fourier transform is ccirpactly supported away frcm 

zero in I, the operator norm of f(A) is bounded by the product of a 

constant (depending only on the generator A), a logarithmic term and 

the suprernum norm of f on I. 	As in the discrete case, the 

logarithmic term depends on the support of f. 

Throughout the section we will use the notation of 5.4.12 for 

the Scwartz class of functions, .5°, the Poisson Kernels {P} 0 and 
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the functions f6 for ó > 0. We will also require the following. 

5.5.1 Notation. We will denote by X the image in H
1 (P)* of BHK 

under the isometric iscrirphism of 5.4.13. 

We will define, in a distributional sense, the convolution of 

an H2 (I) function with a linear functional in X and consequently a 

norrid linear space of multipliers on X. Using these definitions we 

can show that a cciactly supported multiplier on BIlK is the Fourier 

transform of sane multiplier on X having equal multiplier norm. 

This allows us to replace the estimate of II f(A) II involving 

multipliers on BIlK (5.4.9) by one involving multipliers on X. 

Following Peller's method as described in Chapter 2 we define a 

projective convolution space H1(R)*X and show that any multiplier g 

on X naturally defines a linear functional (D. on H1(I)®X with norm 

less than or equal to its multiplier norm. Finally, using the Besov 

space B° (ll), we show that any f € 3 with supp 1 s [1/N,N] for same 

N > 1 can be considered as an element of H1(1)*X and that there 

exists constants c1 , c2 such that for any such f we have 

II f lI :!~ c1c2 logN II f 11,w - 

Consequently, when f € 51 has supp f c [1/N,N] for same N > 1 and 

when g is a multiplier on X with norm less than or equal to 1, 

dp(t) 	= I(), 
	

II f II 	
::~ 
c1c2 logN II f II 

OD 

1/N 

and the final bound on II f(A) II follows. 

5.5.2 Definitions, a) Suppose that g € H2 (R) and F € Hl(I)*. If 

there exists a constant d such that )F(g*h) :!~ d II h II for all h € 

H1(U)n5° then we define g*F at h € H1(U)nY by (g*F)(h) = F(g*h). 
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Since g*F is continuous on H1 (R)nY we will also denote by g*F its 

norm-preserving extension to H1  (U). 

Let g c H2(I). If, for each F E X, g*F exists and is in X 

then g is a multiplier on X. 

The linear space of all multipliers on X is denoted by M(X) 

and is norined by 

11 g 
"M(x) 	

sup { II g*F IIft1()* : F E X, II F U 

Remarks 1. Note that in 5.5.2(a) the convolution g*h of g E H2(I) 

with h € H1 (I)nY exists since h € H2(I). 

2. By the Closed Graph Theorem ([CON, 111.12.6]), if g*F € X 

for all F € X then convolution with g is a continuous operator on X 

and the norm U g II 
M(X) 

is finite. 

5.5.3 Lrna. Let h € L(I) have supp h c [0,N] for sane N > 1. 

Then h € M(BHK) if and only if h = g for sane g € M(X) and in this 

case II h II 	= II g II 
M(BBK) 	M(X) 

Proof. Suppose first that h € M(BHK). Since h € L2(), it is 

clear that h = a for sane g € H2(I). Now if 4 € H1 (I)n9' then 4 € 

H2(U) and so for any t,ô > 0, P* € H2(0) and P*p6*g € H1 (R). 

Moreover, 

(P*)h = 

= (P*46*g) 	 (*) 

= (P*(*g)6 ). 

Let k € BHK. 	Let P1,Fhk denote the images of k and hk 

respectively, under the isometric iscinorphism of 5.4.13. Then for 

any 4 € H'(I)n.9', since g € H2(l) we have g*4 E 3' and 
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By (*), 

= urn $ 
t,8-*O + 

= urn $ 
t,640 

k(u)(P*(g*4))6)(u) dji(u) 

k(u) (P*4 ) (u)h(u) di(u) 

= Fhk('P). 

Hence, by 5.4.13, 

= IFhk(4)I 

~ II h II 	II k II 	0 'P11 
M(BHK) 	flHK 

Thus we see that g*Fk exists and equals Fhk and consequently that g 

€ M(X) with II g II 	= II h II 
M(X) 	 M(BHK) 

Now suppose that h = g for sane g E 14(X). We must show that 

a- 
for all k € BHK, hK isAbounded Hankel Kernel. 

Let k € BHK. By 5.4.5 there exists an increasing sequence 

{Xj 
n2t 1 

of measurable subsets of U 1 satisfying 

p(x) < oD for each n ;,-- 1; 

(\ U x) = 0 
nk I 

and iii) $ 	Ik(x,y)I dp(x,y) < eD for every n,m k1. 

x, xC4017 

Now if f1 € H2 (I)riY has 1i bounded and supp 	c [0,m] for same  

m k 1, and if f2 € H2 (R)nY has 12 bounded and supp f2 s X,, for sane 

n k 1, then by working as in the proof of 5.4.6 we have 

1 	k(x+y)fi(y)f2(x)I d1i(x,y) < 

R xl 

Similarly if t,6 > 0 

1 Ik+ t*(f1 )6 )(y)(P*f2)(x) di(x,y) < 

i 

Since g € L (IR
+ 

) it then follows that for t,5 > 0 

1 	 d1i(x,y) :!~ OD 

R xP 

and 
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f l~(x+y)k(x+y)(P,*(f,)a)-(y)(Pt*g)-(x)I d1i(x,y) < CD . 

U xfl 

But (P*(f1)8) and (P*f2) converge pointwise a.e. to f1 and f2 

respectively as t,ö - 0, so by dcntinated convergence 

J g(x+y)k(x+y) (Pt* 1 )6 )()(P*g)(x) (Wx,y) < + 
R x 

) f 	(x+y)k(x+y) 1(y) 2(x) dp(x,y) 	as t,S - 0. 

l xI 

Hence we have 

j' $ (x-Fy)k(x+y)(y)f2(x) dp(y) dp(x) 

IRI 

+ (x+y)k(x+y) 1(y) 2(x) dp(x,y) 

I x 

by (**c) and Fubini' s Theorem. 

	

= lim 	J' 	(x+y)k(x+y)(Pt*(fi)6)(y)(Pt*f2)(x) c3p(x,y) 

4xI 

	

= lim 	j 	(u)k(u)(P*(f1)6)(v)(P*f2)(u-v) dp(u,v) 

t,640 + -+ 
uc Xoc 	 by the transfortion u = x+y, v = y 

	

lim 	j' 	(u)k(u)[(Pt*(fi)8)*(Pt*f2)](u) di(u) 
t,890 

	

= urn 	$ 	(u)k(u)[(Pt*(fi)6)(Pt*f2)](u) dp(u). 
t,840 

But for each t,& > 0 

= P*((f1)f2) 

= P*(f1f2)6. 

Thus, 

.1 S (x+y)k(x+y)f1(y)f2(x) d1i(y) dp(x) 

= urn 	J' 	(u)k(u)(P*(f1f2)8)(u) d1i(u) 
t,840 
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= urn 	
J 

k(u)(P*(f1f2)8*g)(u) di(u) 
t ' 6-.)0 

= 	(g*(f 1f2)) 	by the definition of Pk 

= (9*)(f1f2). 

Hence, 

I f f (x+y)k(x+y)f1(y)f2(x) dp(y) d,.z(x)I 

~ II g II 	II k II BHK II f  II 2 II f2 U 
2 14(X)  

and since arbitrary f1' ,f2' 	€ 	H2 (N) can be approximated by such 

f1,f2 we conclude that gk € BHK with II gk "BilK -< 	11 	g 	"14(X) 	U k 

We now have the following upper bound on II f (A) U. 

5.5.4 Corollary. Let f € H1(I) have supp 1 c [O,N] for sane N > 0. 

Then 

U 	f(A) II 	KG c2sup { 	
J

N 
(t)(t) d(t) 	:11 g "14(x) 

~ 	} 

Proof. We have frc*n 5.4.9 

II f(A) 	KGc2SUP1(t)h(t) di(t) 	: II h "M(BHK) ~ 
1 

1° 

Since we only need to consider the suprenun over h € M(MM) with 

II h 
"M(BHK) ::~ 

1 and supp h c [0,N] for sane N > 0, the result 

follows fran 5.5.3. 

The next estimate of II f(A) II will require the following 

'projective conviution' space of linear functionals on H1(I). 
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5.5.5 Definition. We define the linear space H1(I)*X to consist 

of all finite sums of convolutions F =1*F where h E H1 (R) and 

FEX(M€Z, -m:~n::r.m). 

For such F we define the projective norm 

II F 	= iflf - 
z 	
{° 	

II II F Hi 	
F =* 	

in H1 (R)* 

nm 	
nm 

k € H(I), FN E X 

We denote by H1(U)sX, the ccsiipletion of H1(I)*X with respect to the 

norm It • tI 

Remarks. 1. For h,h' c H'(I) and F E X we have h*h' € H1(R) with 

II h*h' H 	::~ II h 11 	II h' II , so that I F(h*h' 	F II H h 11 II h' H 1. 

Thus, h*F E HI (ll)* as required. 

2. 	It is easy to check that II 	
11  

is a well-defined norm on 

H1(I)*X. 

5.5.6 Lama. Let g € M(X). Define 0. on a simple element h*F of 

H1(R)*X by 

b9 (h*F) = (g*F)(h). 

and 
Oflt fl *F 

€ H(U)xX by 
nm  

[ nm " = 	

ci  

Then 	is continuous with respect to II IIj and extends to a linear 

functional 	on H1(IR)*cX with II Fg II( l(p)®x)R :5'. II g 
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Proof. For h E H1(P) and F € X 

I 9(1F)I = f(g*F)(h) 

~ 	II g*F 11H1() II 	h 	II 

~ 	II g 	
t1M(X) 	

II 	F 	II1()* 	II 	h 	III. 

Then by the definition of $1 	II it is clear that 4 	is continuous 

on H1(I)*X with II 	09 	II g We must check that 1D. is 

well-defined. 	Note first that if 	
kCZ

is a sequence in H2(I) 

converging in II . II 	to 	g then for any h € H2(I), g*h -+ g*h in 

H1 (R) as k - 	c. Now suppose that h € H'(I)r,Y and F € X (-m ~ n ~ 

m) are such that h*F = 0 € H2(I)*X. 	Then by definition of 

z F,,(h*k) = 0 

for each h E H1 (I)nY. 

Now 

hn*Fn] = 	F(g*h) 

= Urn 	F(g*hfl
k-KD z 

 

where g (k € Z) is the kth partial sum 
z 

g(j)ej. Moreover, for 

each k € Z, gk € H1(I)nY, so E Ffl(g*hfl) = 0 by (*). Hence, 

(Dg[ z bn*Fn] = 0 

as required. 

(*) 
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Finally, we extend 0. by continuity to give the required . 

To produce the final bound on II f(A) II we will show that if f € 

.5° with supp i c [O,N] for sane N > 0 then f may be considered as an 

element of H1(D)*X with II f II- bounded above by c1  logN II t U for 
CD 

same constant c1 , independent of f. As an intermediate stage we 

will show that such f must be in the Besov space B0 For the 

background, motivation and full definition of the scale B8  () 
p, q 

-p,q -< oD, s € I) we refer the reader to [T, pp  38,46 

p 238]. Here we follow the more succinct definitions given in [BL, 

pp 135,146]. 

5.5.7 Lemia. There exists 4' € 3' satisfying 

supp 4 = [!,2] 

4' > 0 on (.1,2) 
OD 

and 	iii) 	4'(x/2 k) = 1 for every x > 0. 

Proof. Let f be any Schwartz class function satisfying (i) and 
OD 

(ii). Then if F(x) = Z (p(x/2 
k)  for x > 0, we have, for each x > 0 

F(x) = f(x/2k) + f(x/2k_l) > 0 

for sane k € Z. 

Put 4' = f/F. Then 4' € .5° and satisfies (i) and (ii). Moreover, 

for x > 0, 
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OD 
OD 

(x/2 k) = 

	

f(x/2k) 
OD 

k= - 	f(x/2 ') 

OD 

Z f (x/2 k  - 

and so (iii) holds. 

5.5.8 Notation. a) For f € L(I), let R(f) denote the restriction 

to H1(R) of the linear functional on L1(I) whose value at g E L1(I) 

is given by f g(x)f(-x) dp(x). 

b) For each n € Z we denote by ip,, the unique Schwartz class 

function satisfying 

= (x/2) for all x > 0. 

5.5.9 Definition. The (homogeneous) Besov space B0  (R) consists 

of those f € .9' for which supp f € I and 

II f*t6 h a, < 0D. 

nEZ 

We define a norm on B° (I) by 
OD I 

hi f 11 	= 	iI f*cp ha,
OD 

 

nCZ 

We note that B°  (I') is a Banach space with respect to II hI 

and that for f € B° (IR) 	f*Vn  converges in L(I) to f

nCZ 
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5.5.10 Lrma. Let f E Y have supp i c [!,N] for sane N > 1. Then 

f € 	B° (R) with II f II: 	:5. c1 logN II f II 
OD 

for sane constant c1 

independent of f. 

Proof. Since supp 	ç [2fl 1 , 2 + ] for all fl E Z, we have f*p 	0 

whenever II > logn + 1. 

Note that, for each n E 1 and x > 0, ip(x) = 2'\p0(2x) so that 

II ip II . = 2'$ V0(2x) dx 

= II 1j)  

Thus, if we put rn = (log2N)+1, 

II 
f*p IIc 	Z II 

n=-m 	

fscip tI 

nEZ 

 
Z 11 f IIOD 

II 

n=-m 

	U1 

= 	(2rn+].) II f II 
OD II 1Po II 

:!~ c1 logN U f II OD 

for sane constant c1 . 

5.5.11 Lni. If f € EP OR) then R(f) € H1(R)*X with 
OD 

II R(f 	c2 II 

for sane constant c2 independent of f. 

Further, if f also satisfies supp 1 c [,N) for some N > 1 then 

R(f) € H1(R)*X. 

Proof. Firstly, for each n € 1, we put 

Pn-i + 	+ lPn+i. 

Then V,, = ip*Q,., for every n € 1 and II Q., Il ::~ 3 II 
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Now let f E B0  (Ia) so that 

= 	
f*ip,.,  

nEZ 	nEZ 

= Z Q"*(f*,P"). 

nEZ 

For each n E 1 and h E H1(R) 

< h,R(*(f*p)) > = 	
h(t)(Q*(f*w))(-t) dg(t) 

= S 
fh(t)Q,,(s)(f*v.)(-t-s) di(s) d1j(t) 

= 5 	
h(t)Q(s)(f*p)(-t-s) d1i(s,t) 

RXR 	 by Fubini' s Theorem. 

By the transforToation of u=t and vs+t, 

< h,R(Q*(f*ip)) > 	5 
h(u)Q(v-u)(f*cip)(-v) d1i(u,v) 

xll 

= I' 5 
h(u)Q(v-u)(f*ip)(-v) dp(v) clp(u) 

by Fubini's Theorem 

= 	
(h*Q)(v)(f*ip)(-v) d1i(v) 

= < b*Q,R(f*ip) > 

= < h,Q*R(f*ip) > 

Hence, 

R(*(f*p)) = Q.b*cR(f*lpfl ) 

and we have fran (*) that 

Rf = 	R(Q*(f*p)) 	 (**) 

nCZ 

=Z Q.*R(f*V.). 
nEz 

Now since f*ip € H1(I)W(I) and has compactly supported 
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Fourier transform, its Fourier transform must be in BHK. Indeed we 

claim the following. 

Claim. (f*ip) € BHK and the image of (f*p) under the iscinetric 

iscinorphism of BHK onto X is R( f*p,1 ). 

Proof of Claim. Let g1 € H2(I). Then for every x € 

j i(f*V,,)-(x+y)9-,(y) I dp(y) 

n+1 

~ $ 	ll(f*) 	II 	Ii()I dp(y) 

::~ II f*p,., Il 
(3.2n_1)1'2 II g1 II 

2 

< CD. 

Moreover, if we also have g2 E Ht(I) then 

J' J' 
(f*cip(x+y)gj(y)g2(x) dji(y) d1i(x) 

2n+1 2n+1 

~ ll(f*p)ll $ 	,J' I1(y)2(X) I dj(y)dp(x) 

II 	f*ip,. Il 1 
(2n+1) II g1 112 II g2 112 

and we conclude that (f*ip) € BHK with 

II 	
"BHK 	

II f*p1., 111(2n+1). 

Now 	let F(f)) denote the image of (f *V,,) 	under the 

isometric iscxrorphism of 5.4.13. Then if h E H1 (I)riY has supp & c 

[2n_1 2n+11 

F()(h) 
= 	

$ (f*) (x)(P*b5) x) dp(x) ,  

= urn $ (f*p)(-x)(P*h)(x) di(x) 
t ' 840 

= lim < P*h6,R(f*ip) > 
t ,840 

= < h,R(f*cip1.) > 
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because P*h6 —* h in H1(). Thus, 	= R(f*ip) and the claim 

is proved. 

It follows from the claim and (**) that R(f) E H1(I)*X with 

II R(f) II 	:!~ 
E 	

Qr, II j II R(f*p) IH1(U) 
nEZ 

~ 3 II q0 II, z  II f*p1, II 

nEZ 

=3IIII 	IIfII° 

	

I 	OD,i 

Finally, if we further suppose that supp 1 c [-!,N] for sane 

N > 1 then by putting m = log2N + 1 we have 

=
z f *V. 

n=-in 

(f*cp) 

M 

and so R(f) = 	Q., *R(f*p,) € H1(IR)*X. 

n= -m 

5.5.12 Theorem. There exists a constant k > 0 such that whenever 

1,N) fors f€Y has supp fc [N cxneN>]-, 

II f(A) II ~ k c2KG logN H f II. 

Proof. Let f € .9' have supp i c [,N] for sane N > 1. Recall from 

5.5.4 that 

II f(A) I ~ 	Ic2sup f I fN
: 
i(t)g(t) dp(t) 	: II g 	~ 1 } 

By 5.5.10 f € B0 	with II f 11' :r. cl 1 ogN II f II 
OD 

and then by 

5.5.11, R(f) € H'(I)*X with It R(f) IJ- 	c2c1(logN) ii f H OD . 	Indeed, 

since supp i c [I.,N] we have R(f) =Q *R(f*ip) € H1(R)*X where 

165 



m = 1og2N + 1. 

Now let g E M(X) and let 	€ (Hl(0)sX)* be the linear 

functional defined in 5.5.6. Then 

IN (t)(t) d(t) 
= 

fN[ 

nm 	
t) 	t)](t) d(t) 

J o 

m fN 
d.z(t) 

n=-m  

=Z f (f 	 M Op  

n=-m IR 

g*Q,R(fxp) > 

n=-m  

Z < Q,g*R(f*ip) > 

= Z ~~ 	,R(f*p)) 

n=-m  

=9[ z 
Q*(f*P)] 

= 9(R(f)). 

Thus when gEM(X) has II g II () ;r.lwehave 

I 	 II & till R(f) II- 

II g M(X) 
It R(f) il 

~ II R(f) lI- 
* 

~ c2 c1 (logN) II f II OD 

and so by 5.5.4 

II f(A) 	K0 c2c2c1(logN) Ii f It 
OD 

Putting k = -i-- c2c1 ccmletes the proof. 
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