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ABSTRACT 

An increase in the concentration of plasma prolactin (PRL) occurs in response to 
increased daylength in seasonally breeding animals irrespective of whether they are short 
or long day breeders. In contrast to the wealth of information on the photoperiodic 
control of PRL secretion in mammals very little information is available in birds. The 
objective of this thesis is to increase understanding of the photoperiodic control of PRL 
secretion in birds. 

The critical daylength (CDL) required to induce PRL secretion in bantam cockerels reared 
on short days (8 h light/day) was between 10 and 12 h light/day. Photoperiods of more 
than 14 h of light were maximally photostimulatory. The CDL was dependent on 
photoperiodic history because in birds reared on 20 h light/day transfer to photoperiods 
of 14 h or less resulted in decreased PRL secretion. Transfer from 8 h light/day to a 
single 20 h long day and back to short days induced an increase in PRL secretion 20 to 22 
h after dawn. This increase persisted as a "carry over effect" for 4 days. Changes in 
ambient temperature or fasting up to 24 h did not affect PRL secretion. This eliminated 
the possibility that photoperiodically induced changes in PRL secretion could be 
explained by these factors. 

Prolonged exposure of intact male and female turkeys or bantams to 20 h light/day 
resulted in a depression in plasma PRL. The depression in plasma PRL appeared to be 
a direct consequence of the development of photorefractoriness and was not the result 
of a decrease in plasma gonadal steroids, due to ageing or the development of 
reproductive photorefractoriness. This was deduced from the observation that 
prolonged exposure of castrated bantam cockerels to 20, 18, 16, and 14 and not to 12 h 
photoperiods also depressed plasma prolactin indicating the development of 
photorefractoriness. A 4 h increase in photoperiod did not stimulate PRL release in 
castrates held for a prolonged period on a 16 h photoperiod but did so in castrates held 
on 12 h photoperiod. Exposure of photorefractory castrates to short days for 5 weeks 
dissipated refractoriness and restored the photoperiodic response. 

The age at which PRL photoperiodic response first appeared was determined in 
prepubertal intact male and female bantams reared on 8 h light/day. Sexual maturation 
occurred at 18 to 20 weeks of age. An increase in PRL secretion was observed after 
photostimulation in both sexes at 4, 8, 12 and 16 weeks. 

Photoinduced PRL release was showed to be mediated by avian PRL releasing hormone, 
vasoactive intestinal polypeptide, since active immunisation against this neuropeptide 
blocked the photoinduced PRL release in castrated bantams and intact adult turkey hens. 



Chapter 1 

INTRODUCTION 

1.1 General Introduction. 

Prolactin (PRL) is the most versatile of hormones produced by the anterior 

pituitary gland. Its varied actions include the regulation of lactation, gonadal function, 

parental behaviour, growth, water balance and the immune system (Nicoll, 1974; De 

Vlaming, 1979; McNeilly, 1986; Neill and Nagy, 1994 ). The internal and external 

environmental factors controlling PRL secretion to regulate this diversity of functions are 

incompletely understood (Ensor, 1975; McNeilly, 1986; Neill and Nagy, 1994). One of 

the best known environmental factors controlling PRL secretion is daylength. Thus, at 

non-tropical latitudes, seasonal increases in the concentration of plasma PRL occur in 

mammals exposed to increasing daylength, irrespective of whether the animal is a short-

day or a long-day breeder (Curlewis, 1992). Similarly, in birds breeding at temperate and 

high latitudes, the concentration of plasma PRL is increased when daylengths increase 

(e.g. rook, Lincoln et al., 1980; starling, Dawson and Goldsmith, 1982; partridge, Sharp et 

al., 1986a; ptarmigan, Stokkan et al., 1988; quail, Boswell et al., 1995). In commercial 

poultry, it is established that PRL secretion increases after photostimulation in the 

turkey (Burke and Dennison, 1980; Lea and Sharp, 1982; El Halawani, et al., 1996) but 

there is no information available for the domestic chicken. 

The overall aim of this Thesis is to increase understanding of the photoperiodic 

control of PRL secretion in the domestic chicken. 
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1.2 Discovery, cellular localisation, structure and functions of PRL. 

1. 23 Discovery of FRL. 

The first report of prolactin was by Stricker and Grueter (1928), who showed 

that injection of crude bovine pituitary extracts into pseudopregnant rabbits induced 

lactation. It is this function which resulted in the hormone being named prolactin. 

Riddle and Braucher (1931) subsequently found that bovine pituitary extracts injected 

into pigeons stimulate production of "milk" by the crop. The first evidence that PRL is 

involved with the parental behaviour was published by Riddle and colleagues who 

showed in virgin female rats and laying hens (Riddle et al., 1935, 1942) that injection of 

the hormone induced pup retrieval and broodiness respectively. PRL was the first 

pituitary hormone to be prepared to a high degree of purity (White et al., 1937; Li et al., 

1941), which greatly facilitated research on its biological activities. 

1.2.2 Cellular localisation and structure of PRL. 

PRL is produced in cells in the anterior pituitary gland called lactotropes, 

referring to their role in the control of lactation (Nicoll, 1974). Lactotropes are classified 

as acidophils, since they stain with acidic dyes, such as orange G, erythrosine and 

carmosine. Lactotropes have been identified in all vertebrates including amphibians, 

reptiles and birds where they are localised in the anterior (rostral/ cephalic) region of the 

pars distalis of the anterior pituitary (Clarke and Bern, 1980; Mikami and Yamada, 1984; 

Berghman etal., 1992). This regional distribution of lactotropes is absent or much less 

obvious in the mammalian pituitary (Clarke and Bern, 1980). 

PRL is a single-chain polypeptide with a molecular size of 22-26 kDa (Niall et 

al., 1971). It belongs to the family of hormones including growth hormone and placental 

lactogen. Chicken and turkey PRLs and most mammalian PRLs have 199 amino acids. 

Rat, mouse and hamster PRLs are an exception, having 197 amino acids (Sinha, 1995). 



Analyses of PRL amino acid sequence homology between chicken and non-avian species 

demonstrates phylogenetic relationships (Sinha, 1995). The highest homology is with 

reptiles (alligator, 92%; sea turtle, 86%) and the lowest with teleosts (e.g. salmon, 28%) 

Chicken PRL has 79% homology with porcine and equine PRLs, 69-70% with ovine and 

bovine PRL respectively and 93% homology with turkey PRL (Shimada et al., 1993; 

Sinha, 1995). Avian and mammalian PRLs have 3 intra-molecular disulphide bridges, 

while teleost PRL have only 2 disulphide bridges (Shimada et al., 1993). Prolactin exists 

in several molecular forms derived from alternative splicing of the primary PRL mRNA 

transcript or by post-translation modification. These are suggested to be responsible for 

the diverse biological actions of the hormone (Sinha, 1992). 

1.2.3 Functions of PRL. 

Unlike other pituitary hormones, PRL did not become specialised early in 

vertebrate phylogeny to regulate a single physiological process (Ben-Jonathan, 1989). Its 

wide range of functions are summarised in Table. 1.1. 

Table 1.1 Functions of PRL. 

(Data taken from De Vlaming, 1979; Kikuyama et al., 1986; El Halawani et al., 1988; 

Horseman and Buntin, 1995; Toyoda et al., 1996 ). 

Vertebrate 	 Action 

Fishes 	 Osmoregulation 

Proliferation of melanocytes 

Growth of seminal vesicles 

Proliferation of mucous cells 

Parental care (foam nesting) 

Reproductive development 



Amphibians 	 Protein anabolism (larvae) 

Tail and gill growth (larvae) 

Limb regeneration 

Structural changes accompanying water drive 

Brain growth (larvae) 

Cloacal gland development 

Spermatogenic 

Proliferation of melanocytes 

Courtship behaviour 

Osmoregulation 

Reptiles 	 Somatic growth 

Tail growth 

Skin sloughing 

Oviduct development 

Birds 	 Proliferation of crop sac mucosa 

Epidermal hyperplasia in brood patch 

Incubation behaviour 

Electrolyte balance 

Increases body weight and liver size 

Feather growth 

Development of female reproductive tract 

Anti-gonadal 

stimulates feeding 

Mammals 	 Mammary growth 

Lactation 

Pseudopregnancy 

Maternal behaviour 

Luteotropic 

Male sex accessory gland development 



Protein anabolism 

Sebaceous gland growth 

Hair growth 

Osmoregulation 

Erythropoietic 

Spermatogenic 

Uterine hypertrophy 

The many functions of PRL are reflected in the widespread distribution of PRL 

receptors in many organs including the mammary gland, ovary, uterus, placenta, testis, 

accessory sex glands, liver, kidney, pancreas, lymphatic tissue, brain and eye (Kelly et 

al., 1991). The PRL receptor has been cloned in chicken, pigeon and turkey (Tanaka et 

al., 1992; Chen and Horseman, 1994; Zhou et al., 1996) and as in mammals, is widely 

distributed in body tissues (Zhou et al., 1996). The avian PRL receptor differs from the 

mammalian PRL receptor in having two homologous repeat units in the extracellular 

domain, indicating the potential for two extracellular ligand binding sites (Tanaka et al., 

1992). 

1.2.4 Avian PRL. 

In birds, PRL secreting cells are localised primarily in the cephalic lobe of the 

anterior pituitary (Hansen and Hansen, 1977; Lopez et al., 1995). 

Avian PRL was first purified from chicken pituitary glands (Scanes et al., 

1975), with turkey PRL being isolated and purified at a later date (Burke and Papkoff, 

1980; Proudman and Corcoran, 1981; Cheng and Etches, 1981). Avian PRL was 

purified using conventional fractionation techniques, salt precipitation, ion-exchange 

chromatography, gel filtration and preparative isotachophoresis. The pigeon crop sac 

bioassay was the most widely used method to evaluate the potency of the purified PRL. 

The assay involves local injection of PRL into the crop sac of pigeons where it induces 

5 



the proliferation of the crop mucosal lining to form the 'crop milk'. The increase in crop 

sac mucosal weight and/ or thickening is directly related to the potency of the PRL 

injected (Nicoll, 1967). 

The first homologous radioimmunoassay for chicken PRL was developed by 

Scanes et al. (1976) using PRL prepared from broiler chicken pituitaries. Unfortunately 

this assay was not highly specific and was unsuitable for the measurement of PRL in 

other avian species (Lea and Sharp, 1982). An heterologous radioimmunoassay for PRL 

(McNeilly et al., 1978), using guinea pig anti-human PRL serum and radiolabelled ovine 

PRL has been successfully used for a wide range of avian species (e.g. rook, Lincoln et 

al., 1980; duck, Goldsmith and Williams, 1980; starling, Dawson and Goldsmith, 1983; 

dove, Lea et al., 1986) although it did not detect an increase in plasma PRL in incubating 

turkeys (Etches and Cheng, 1982). Homologous radioimmunoassays were subsequently 

developed for turkey PRL (Burke and Papkoff ,1980; Proudman and Opel, 1981; Etches 

and Cheng, 1982). All these assays proved to be robust and specific for turkey PRL but 

of limited value for measuring PRL in non -galliform species. The cloning of chicken PRL 

cDNA (Hanks et al., 1989a, 1989b, Watahiki et al., 1989, Kumar et al., 1989 ) made it 

possible to produce the recombinant-derived chicken PRL (Hanks et al., 1989a) which 

was used for the development of an homologous chicken PRL radioimmunoassay (Talbot 

and Sharp, 1994). This assay proved to be more specific than the original chicken PRL 

assay of Scanes et al. (1976) and is suitable for measurement of PRL in some non-

galliform species. The cloning and the determination of the nucleotide sequence of turkey 

PRL (Karatz et al., 1990; Wong et al., 1991) and the production of recombinant turkey 

PRL (Karatz et al., 1993) has also made it possible to develop a homologous 

recombinant-derived turkey PRL radioimmunoassay (Guémené etal., 1994). 
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1.3 PRL secretion and physiological state. 

1.3.1 Lactation and parental behaviour in mammals. 

The best known function of PRL in mammals is the initiation and maintenance of 

lactation. Lactogenesis, or the initiation of lactation, usually starts in the last trimester of 

the pregnancy. One of the hormones involved is PRL which is essential for milk 

production in rats, rabbits, and women, but plays a lesser role in ruminants once 

lactation is established (Tucker, 1988). PRL is involved in mammary development and 

growth, increases mammary gland phospholipid biosynthesis (Rillema et al., 1985) and 

stimulates the transcription and translation the of casein gene (Matusik and Rosen, 

1980). PRI. secretion increases within minutes of the onset of suckling and decreases 

shortly after cessation of the stimulus. Daily surges of PRL release during the first 10 

days of pregnancy in rat are involved in the maintenance of corpus luteal function and 

ensure uninterrupted progesterone production. The daily surges of PRL terminate on 

day 10 of pregnancy coinciding with increased secretion of placental lactogen, which 

takes over the role of PRL in maintaining luteal function (Kelly et al., 1976). Plasma 

PRL levels remain low during the second half of gestation but increases on the day of 

parturition (Bridges and Goldman, 1975). 

In all mammals the increase in plasma PRL at parturition plays an important role 

in the development of parental behaviour (review Numan, 1994). 

1.3.2 Incubation behaviour in birds. 

In birds, as in mammals, increased PRL secretion plays an important role in the 

expression of parental behaviour. A component of avian parental behaviour is incubation 

behaviour which is associated with increased PRL secretion (duck: Goldsmith and 

Williams, 1980; canaries: Goldsmith etal., 1984; domestic hen: Lea et al., 1981, Sharp et 

al., 1988; turkey: El Halawani et al., 1988, El Halawani and Rozenboim, 1993; doves: 
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Goldsmith et al., 1981, reviews, Lea, 1987; Goldsmith, 1983). Direct evidence that PRL 

is required for expression of incubation behaviour comes from studies on bantams, where 

active immunisation against PRL suppresses the behaviour without affecting egg 

production (March et al., 1994), while passive immunisation with antibodies to PRL 

releasing hormone, vasoactive intestinal polypeptide (VIP, Section 1.4. 1) causes the 

incubating bantams to desert their nest (Sharp et al., 1989). Similarly in turkeys, active 

immunisation against VIP prevents incubation behaviour without affecting egg 

production (El Halawani et al., 1995a) while intra-cranial infusion of PRL induces full 

incubation behaviour in laying birds (Youngren et al., 1991). In most birds the 

concentration of plasma PRL increases before the onset of full incubation behaviour, a 

notable exception being dove, where the PRL concentration increases after the onset of 

incubation behaviour (Lea, 1987). In the dove it appears that PRL helps to maintain the 

incubation behaviour but is not essential for its expression (Horseman and Buntin, 1995). 

1.3.3 Somatic growth and sexual maturation. 

A role for PRL has not been established during somatic growth or sexual 

maturation. However, in the chicken changes in concentration of plasma PRL occur 

during somatic growth suggesting functional significance. In the chicken embryo, plasma 

PRL increases after 13 days of incubation and is high before hatch (Shimada et al., 1991). 

The concentration of plasma PRL is high in newly hatched chicks, decreases as they 

become older but increases at the onset of sexual maturation (Harvey et al., 1979a; 

Sterling et al., 1984). Photoinduced sexual maturation is associated with increased 

concentrations of plasma PRL in all birds investigated (Section 1.3.4). 



1.3.4 Seasonality. 

Photoperiod is the major environmental factor controlling the seasonal pattern of 

PRL secretion at temperate latitudes in mammals and birds, with increasing daylengths 

stimulating PRL secretion and shortening days having the opposite effect (Pelletier, 

1973; Lincoln et al., 1978; Goldsmith, 1983). Continuous or non-photoperi odic seasonal 

breeders such as cattle may show marked seasonal changes in PRL concentrations which 

are controlled by the photoperiod (Schams and Reinhardt, 1974; Peters and Tucker, 

1978), although in pigs there is no photoperiodic effect on PRL secretion (Revault et al., 

1982; Dickman and Hoagland, 1983). 

In birds, photopenodically induced seasonal changes in plasma PRL have been 

described in several species including the rook (Lincoln et al., 1980), starling (Ebling et 

al., 1982, Goldsmith and Nicholls, 1984, Dawson and Goldsmith, 1984), grey partridge 

(Sharp et al., 1986a) and quail (Boswell et al., 1995). The seasonal increase in plasma 

PRL is associated with increased plasma LH and the full development of the 

reproductive organs. In many birds this stimulatory effect of long days is lost after a 

few weeks and is superseded by an inhibitory effect on the reproductive system (Section 

1.5.5). The birds are described as becoming 'absolutely photorefractory' having lost the 

ability to respond to the stimulatory effects of long days on reproductive function. The 

development of absolute reproductive photorefractoriness is characterised by regression 

of the gonads and a decrease in plasma gonadotrophins. The onset of absolute 

reproductive photorefractoriness is also associated with high concentrations of plasma 

PRL and decreasing LH. After the development of reproductive absolute 

photorefractoriness and continued exposure to long days, the concentration of plasma 

PRL decreases, exhibiting photorefractoriness for PRL secretion (e.g. rooks, Lincoln et 

al., 1980; starlings, Dawson and Goldsmith, 1983; ducks, Sharp et al., 1986b; turkeys, 

Lien and Siopes, 1989). The association between the development of absolute 



reproductive photorefractoriness and the seasonal peak in concentration of plasma PRL 

suggests a functional relationship. This view is supported by the work showing in birds, 

that administration of PRL induces gonadal regression (Opel and Proudman, 1980; 

Buntin and Tesch, 1985). However, the observation that absolute reproductive 

photorefractoriness is maintained  after the development of photorefractoriness for PRL 

secretion rules out the possibility that increased PRL secretion causes absolute 

photorefractoriness. This view is supported by the finding that intra-cerebroventricular 

injection of PRL into breeding starlings held on an 11 h photoperiod (this prevents the 

development of photorefractoriness, Section 1.5.5) depresses concentrations of plasma 

gonadotrophins but does not induce the development of reproductive 

photorefractoriness (Juss and Goldsmith, 1992). 

Some birds, including the quail (Robinson and Follett, 1982) and chicken (Sharp, 

1993) show another form of reproductive photorefractoriness termed as 'relative 

photorefractoriness'. This is the condition in which seasonal gonadal regression is 

induced by the decreasing daylengths in late summer and early autumn while the 

daylengths are still longer than those which stimulated breeding in the Spring. Birds such 

as quail which develop 'relative photorefractoriness' remain indefinitely in breeding 

condition while maintained in summer-like daylengths, and may show a further increase 

in gonadotrophin secretion if transferred to longer days (Robinson and Follett, 1982; 

Sharp, 1993). In quail the development of 'relative photorefractoriness' is not associated 

with a decrease in concentration of plasma LII or PRL (Juss, 1993). Similarly, in the 

domestic chicken, the development of relative photorefractoriness is not associated with 

a decrease in plasma LII (Sharp et al., 1992). There is no information available on 

concentration of plasma PRL in relatively photorefractory domestic chickens. 
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1. 3.5 Feeding. 

The secretion of PRL is influenced by the nutritional status (Hall et al., 1986). 

For example, concentrations of serum PRL are depressed in acutely and chronically 

starved rats (Xie, 1991). This depression is mediated through an increase in the secretion 

of hypothalamic dopamine, since pituitary glands from starved rats show no decrease in 

PRL secretion in vitro (Xie, 1991). Similarly, in female pigs, plasma PRL decreases after 

feed deprivation and increases after refeeding (Hodate et al., 1983). 

In birds, administration of PRL increases food intake and/ or body mass (e.g. 

ducks: Ensor, 1975; sparrow: Yokoyama, 1976; doves: Buntin and Tesch, 1985; quail: 

Boswell et al., 1995). For this reason it has been suggested that increased plasma PRL 

induced by photostimulation is responsible for the increased food intake and fat 

deposition shown by some birds before spring migration. However, measurements of 

plasma PRL in migratory birds suggest that PRL concentrations are not closely 

correlated with hyperphagia and fat deposition (Schwab! et al., 1988; Boswell et al., 

1995). Furthermore, studies on turkeys failed to support a role for PRL in stimulating 

food intake, since intra-cerebroventricu!ar injection of PRL in short-day birds failed to 

stimulate feeding, while peripheral injection of PRL in long day birds depressed food 

intake (Denbow, 1986). An interaction between nutritional status and the secretion of 

PRL has been reported for domestic chicken (Harvey et al., 1978). These authors found 

that plasma PRL decreased after 24 h food withdrawal in 2 week-old cockerels, however, 

food withdrawal for 72 h did not depress plasma PRL in 6 week-old cockerels. 

Similarly, in White Leghorn hens, plasma PRL has been reported to decrease after an 11 

day fast and to increase after refeeding (Millam and El Halawani, 1986). It is therefore 

possible that in the domestic chicken, day-to-day changes in concentration of plasma 

PRL may be related to time elapsed after a nocturnal fast or subsequent feeding. 
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1.3.6 Ambient temperature. 

The secretion of PRL in mammals is influenced by ambient temperature. For 

example, in cattle, rats and sheep an increase in ambient temperature is associated with 

an increase in the concentration of serum PRL (Mueller et al., 1974; Smith et al., 1977; 

Hooley et al., 1979; Schams et al., 1980). Exposure of rats to a gradually decreasing 

ambient temperature sufficient to induce mild hypothermia causes a fall in plasma PRL 

at 35 °C, which is reversed when the animal is rewarmed (Okuda et al., 1986). Changes 

in PRL secretion in response to change in ambient temperature may also depend on the 

physiological state. For example, acute exposure of non-lactating rats to an ambient 

temperature of 4 °C has no affect on plasma PRL, while exposure of lactating rats to this 

temperature causes a depression in serum PRL (Adels et al., 1986). 

Evidence that changes in ambient temperature influence concentrations of plasma 

PRL in birds is equivocal. Transfer of sexually immature cockerels from 24 0  to 45 °C for 

30 min or 60 min does not alter concentration of plasma PRL (Harvey et al., 1977). 

Drenching of cockerels with ice cold water (4 °C) for 1 h significantly increases the 

plasma PRL concentration but this effect is possibly related to stress rather then 

temperature (Harvey et al., 1977). In female turkeys, exposure to 10 °C, 24 °C or 30 °C 

does not affect the rate at which plasma PRL increases after photostimulation (El 

Halawani et al., 1984b). However, plasma PRL is higher in photostimulated turkeys 

held at 30 °C than birds held at 18 °C (El Halawani et al., 1984b). It is therefore 

uncertain whether day-to-day variations in concentrations of plasma PRL in chickens are 

related to changes in ambient temperature. 
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1.4 Regulation of PRL secretion by vasoactive intestinal polypeptide, 

dopamine and steroids. 

PRL secretion is controlled by a complex array of stimulatory and inhibitory 

neuropeptides and neurotransmitters released from the hypothalamus (Fig. 1.1) and by 

gonadal steroids. In mammals, PRL secretion is predominantly controlled by inhibitory 

hypothalamic factors. The first indication of such an inhibition was reported in rats, 

where anterior pituitary glands grafted away from the hypothalamus were shown to 

retain their luteotropic actions (Desclin, 1950). Later studies showed that disruption of 

the normal vascular connections between hypothalamus and the pituitary gland and /or 

transplantion of pituitary to a site distant from the hypothalamus or culture in vitro 

causes a dramatic increase in PRL secretion (Ben-Jonathan et al., 1989; Lamberts and 

MacLeod, 1990). 

In contrast to mammals, in birds, the hypothalamus exerts a principally 

stimulatory influence on PRL release (Fig. 1.1). Evidence for this initially came from the 

finding that the secretory activities of the lactotropes, assessed histologically, were not 

maintained in pituitary glands transplanted to body sites distant from the influence of 

the hypothalamus (chickens: Ma and Nalbandov, 1963, pigeons: Bayle, 1969; Bayle and 

Assenmacher, 1965). This was confirmed in studies showing that in vitro, avian anterior 

pituitary glands do not maintain a large output of PRL (pigeons: Tixier-Vidal and 

Gourdji, 1972; chickens : Bolton et al., 1974). However, as measured by 

radioimmunoassay, chicken pituitary glands do secrete small quantities of PRL when 

incubated in vitro (Harvey et al., 1982), suggesting minor degree of autonomous 

secretion. The first direct evidence for a stimulatory role for the hypothalamus in the 

control of PRL secretion in birds comes from the demonstration that injection of chicken 

hypothalamic extracts into chickens increases plasma PRL (Harvey et al., 1979b) and 
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Fig. 1.1 The neuropeptides and or neurotransmitters directly acting on 
prolactin secreting cells in the anterior pituitary gland of mammals 
and birds. Note that in mammals the predominant input is inhibitory 
while in birds it is stimulatory. 

GABA (gamma amino butyric acid), 
GAP (gonadotrophin associated peptide), 
TRH (thyrotropin releasing hormone), 
VIP (vasoactive intestinal polypeptide), 
PHI (peptide histidine isoleucine), 
DA (dopamine). 



incubation of chicken pituitary glands in vitro with chicken hypothalamic extracts results 

in an increase in immunoreactive PRL in the incubation medium (Hall et al., 1975). 

In more recent studies, it has been established that the principal inhibitory and 

stimulatory factors controlling PRL release in mammals and birds respectively are DA 

(Section 1.4.2) and VIP (Section 1.4.1). In both birds and mammals gonadal steroids 

modulate the action of these factors, principally at the level of the anterior pituitary. 

1.4.1 Vasoactive intestinal polypeptide (VIP). 

VIP is a 28 amino acid neuropeptide originally isolated from the porcine 

duodenum (Said and Mutt, 1970, 1972) and chicken intestine (Nilsson, 1974). It is found 

in neurons throughout the nervous system (Said, 1984), including the hypothalamus 

where it acts as a PRL releasing hormone in both mammals and birds. For example, VIP 

has been shown in vivo to stimulate PRL release in rats (Kato et al., 1978), monkeys 

(Frawley and Neill, 1981), humans (Conti et al., 1987), ring doves (Lea and Vowles 

1986), chickens (Macnamee et al., 1986) and turkeys (Opel and Proudman, 1988). 

Vasoactive intestinal polypeptide also stimulates the secretion of PRL from avian 

pituitary glands in vitro demonstrating that it stimulates PRL secretion by acting directly 

on the anterior pituitary gland rather than by stimulating the release of a PRL releasing 

factor from the hypothalamus (chicken: Macnamee et al., 1986; Talbot et al., 1991, 

turkey: Proudman and Opel, 1988; Knapp et al., 1988; El Halawani et al., 1990a; Xu et 

al., 1996). Further support for this view came from the fmding that pre-treatment of 

cultured pituitary cells with a VIP receptor antagonist significantly depresses the ability 

of VIP to stimulate PRL secretion (El Halawani et al., 1990b). 

Immunocytochemical studies in chickens, turkeys, and doves, demonstrate the 

presence of VIP- containing neuronal terminals of the hypothalamic median eminence, 

the site from which peptide is believed to be released to control PRL secretion. These 

VIP terminals originate from cell bodies located in the medio-dorsal basal hypothalamus 
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(Mauro et al., 1989; Sharp et al., 1989; Cloues et al., 1990). Further evidence that the 

basal hypothalamic VIP acts as a PRL releasing factor comes from the studies on 

incubating chickens and turkeys. A steep increase in plasma PRL at the onset of 

incubation, correlates with an increase in the amount of hypothalamic VIP (Sharp, et al., 

1989; You et al., 1995), VIP mRNA (You et al., 1995) and in the size and number of 

immunocytochemically localised VIP cell bodies in the basal hypothalamus (Sharp et al., 

1989; Mauro et al., 1989; Cloues et al., 1990). Passive immunisation of incubating 

bantams with VIP-antibodies suppresses plasma PRL and induces nest desertion (Sharp 

et al., 1989). In turkeys, active immunisation against VIP prevents the development of 

incubation behaviour and the associated increase in plasma PRL (El Halawani et al., 

1995a). Studies on turkeys show that the stimulatory action of VIP on PRL release is 

mediated by specific VIP receptors in the anterior pituitary gland, the abundance of 

which increases when the concentration of pituitary PRL is at its highest, in incubating 

hens (Rozenboim and El Halawani, 1993). Further evidence that VIP is released to 

stimulate PRL release was obtained in turkey poults hatched from eggs laid by hens 

actively immunised against VIP. The high VIP antibody titre originating from the 

maternal egg yolk in these young birds blocked PRL release in response to the 

administration of VIP or electrical stimulation of the basal hypothalamus (Rozenboim et 

al., 1996). 

The release of VIP from the median eminence is controlled, at least in part, by 

serotonergic (5-hydroxytryptamine) inputs from unidentified higher neural centres. 

Systemic administration of serotonin precursors, agonists or uptake blockers stimulate 

PRL secretion in chickens and turkeys (Rabii, et al., 1984; Hall et al., 1984c; Hargis and 

Burke, 1984; Macnamee and Sharp, 1989; El Halawani et al., 1995b). Since the anterior 

pituitary gland does not contain serotonin receptors (Macnamee and Sharp, 1989), the 

stimulatory action of serotonin on PRL release must be mediated through the release of 

VIP. This conclusion has been confirmed in turkeys in which active immunisation 
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against VIP blocks the ability of the serotonin agonist, quipazine, injected 

intraperitoneally or intra-cerebroventricularly, to stimulate PRL secretion (El Halawani et 

al., 1995b) 

1.4.2 Dopamine (DA). 

The secretion of PRL in mammals, but not in birds is predominantly under the 

inhibitory control of dopamine. However, in birds there is growing evidence for a role 

for DA in the regulation of PRL secretion. In mammals, PRL secretion is regulated by 

the tuberoinfundibular dopamine (TIDA) neuronal system, which is located in the 

arcuate and periventricular nuclei in the hypothalamus, with terminals in the median 

eminence. DA released from the terminals of the TIDA system into the hypophysial 

portal blood inhibits the secretion of PRL by the activation of specific DA receptors on 

the lactotropes of the pituitary gland (Ben-Jonathan et al., 1989, Lamberts and 

MacLeod, 1990, Neil! and Nagy, 1994). 

There is no avian equivalent of mammalian TIDA system, although the avian 

median eminence contains dopaminergic terminals from an unknown source (Sharp and 

Follett, 1968; Guglielmone and Panzica, 1984; Bailhache and Balthazart, 1993). 

However, there is evidence in birds that DA plays a minor role in the regulation of PRL 

release in birds acting at the level of both anterior pituitary gland and hypothalamus 

(review El Halawani et al., 1988). DA or the DA agonist, apomorphine, inhibits the 

stimulatory effect of hypothalamic extracts, on PRL secretion by cultured chicken 

pituitary cells. This effect is partially reversed by the DA receptor antagonists, 

pimozide (Hall and Chadwick, 1984). Similarly, the DA D 2  receptor agonist (quinpirole), 

inhibits the VIP-induced PRL secretion from the cultured turkey anterior pituitary cells 

and the production of PRL mRNA in a dose related fashion, without affecting basal PRL 

release or basal production of PRL mRNA (Xu etal., 1996). 
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At the level of the hypothalamus DA appears to exert stimulatory or inhibitory 

effects on PRL secretion, depending on dose and physiological state. In vivo, in non-

laying, but not in incubating turkey hens, intra-cerebroventricular administration of DA 

increases plasma PRL (Hargis and Burke, 1986). Similarly, in pigeons, the intra-

cerebroventricular administration of DA agonist stimulates crop sac development 

suggesting a PRL releasing effect for DA (Nistico etal., 1979). In contrast, the increase in 

PRL secretion seen after electrical stimulation of the hypothalamus in laying turkeys is 

inhibited by systemic administration of a DA agonist (El Halawani et al., 1991). Intra-

cerebroventricular DA injection studies in turkey suggests that the stimulatory and 

inhibitory effects of DA on PRL secretion depends upon dose administered. Thus 

infusion of a high dose (500 nmollmin) inhibits PRL secretion while infusion of a low 

dose (10 nmol/min) stimulates PRL secretion (Youngren et al., 1995). The stimulatory 

and inhibitory actions of DA on PRL secretion are mediated by multiple DA receptors 

(Youngren et al., 1996). Blockage of Di DA receptors by antagonists and or 

immunisation against chicken VIP blocks the stimulatory effect of intra-

cerebroventricular infusion of a low dose DA on PRL secretion (Youngren et al., 1996). 

A stimulatory effect of DA at the hypothalamic level is also suggested by the 

observation that perifusion of turkey hypothalami in vitro with DA stimulates VIP 

release (Chaiseha etal., 1995). 

In summary, studies in vitro and in vivo suggest that DA may act at the level of 

the anterior pituitary to inhibit the action of hypothalamic releasing factors and at the 

level of the hypothalamus to stimulate PRL release acting on Di DA receptors to 

modulate the release of VIP. 
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1. 4.3 Gonadal steroids. 

Gonadal steroids have direct effect on the secretion of PRL from the anterior 

pituitary gland. 

1.4.3.1 Oestrogen. 

Oestrogen plays an important role in the regulation of PRL synthesis and 

secretion depending upon the dose administered and the duration of exposure. In 

ovariectomised turkeys, systemic administration of oestradiol benzoate for several days 

stimulates PRL secretion (El Halawani et al., 1983; Saeed and El Halawani, 1986). 

Oestrogens may stimulate PRL secretion by acting directly on lactotropes or on the 

hypothalamus. 

1.4.3.1.1 Direct effects on lactotropes. In the rat, oestrogen regulates PRL 

synthesis, storage and secretion acting through specific binding sites in the anterior 

pituitary gland (Nicoll and Meites, 1962, Vician et al., 1979, Lieberman et al., 1982) and 

exerts a direct mitotic effect on lactotropes (Amara et al., 1987). The addition of 

oestradiol to cultures of anterior pituitary cells increases the amount of PRL mRNA 

(Lieberman et al., 1978), increases the transcription of the PRL gene (Maurer, 1982), and 

stimulates de novo synthesis of PRL (Wiklund et al., 1981; Lamberts and MacLeod, 

1990). In chickens, incubation of anterior pituitary from laying hens with oestradiol 

stimulates PRL secretion (Hall and Chadwick, 1978, Hall et al., 1984a) and depletes 

pituitary stores of PRL (Kono etal., 1980). 

In mammals and birds, oestrogen modifies the anterior pituitary responsiveness 

to PRL regulating factors. In rats, oestradiol administration in vivo or in vitro impairs the 

responsiveness of the lactotropes to dopamine by decreasing the number of dopamine 

receptors, while it increases in the response of PRL to TRH by increasing the number of 
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TRH receptors (Lamberts and MacLeod, 1990). In birds too, there is evidence that 

oestrogen acts on the anterior pituitary gland to modulate responsiveness to 

hypothalamic factors regulating PRL secretion. Incubation of chicken anterior pituitary 

glands with 17-13 oestradiol increases responsiveness to the PRL releasing activity of VIP 

(Macnamee et al., 1986) and increases sensitivity to inhibitory effects of DA on PRL 

release (Hall et al., 1984a). Studies on oestrogen treated ovariectomised turkeys show a 

potentiating role for oestrogen on thyrotropin releasing hormone (TRH) induced PRL 

release (Saeed and El Halawani et al., 1986). Although TRH stimulates PRL release from 

cultured rat anterior pituitary cells (Keith et al., 1986), it does not stimulate PRL release 

from cultured turkey anterior pituitary cells (Fehrer et al., 1985). It therefore appears 

that the stimulatory effects of TRH on PRL release in the turkey, and probably in other 

birds, may be mediated through the hypothalamus. 

1.4.3.1.2 Direct effects on the hypothalamus. Oestrogens modulate the release of 

hypothalamic PRL inhibiting and releasing factors in the rat (Demarest et al., 1984, 

Toney and Katzenellenbogen, 1986). Short-term exposure (3-5 days) to oestrogen 

increases the turn over and synthesis of dopamine in the tuberoinfundibular system as 

well as the dopamine concentration in the hypophysial stalk plasma. After long-term 

oestrogen exposure, dopamine release into the hypothalamic portal circulation is reduced 

(Cramer et al., 1979, Arita and Kimura, 1987). It is not known in birds, whether 

oestrogen exerts a direct effect on the hypothalamus to modulate PRL release. 

1.4.3.2 Progesterone and testosterone. 

PRL synthesis and release from primary cultures of rat, ovine, and monkey 

anterior pituitary cells is not directly influenced by progesterone (Lamberts and 

MacLeod, 1990). However, progesterone inhibits oestrogen-induced PRL synthesis in 
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cultured rat pituitary cells (Chen and Meites, 1970). In contrast, in turkey, high 

conentrations of progesterone enhance the basal release of PRL from cultured anterior 

pituitary cells (Knapp et al., 1988). Acute exposure (24h) of cultured turkey pituitary 

cells to progesterone reduces VIP- induced PRL release, while chronic exposure (96h) to 

progesterone enhances VIP induced PRL release (Knapp et al., 1988). In broad 

agreement with the these findings in vitro, injections of high doses of progesterone, in 

ovariectomised mature female turkeys increases plasma PRL (El Halawani et al., 1983) 

and enhances the magnitude of the PRL response to TRH (Saeed and El Halawani, 1986). 

Testosterone, in pharmacological doses, is also reported to modulate PRL 

synthesis at the level of the anterior pituitary gland in both mammals (MacLeod et al., 

1969) and birds (Hall and Chadwick, 1978; Kono et al., 1980). Administration of 

testosterone in vivo depresses pituitary PRL content in castrated immature cockerels, 

and decreases circulating PRL concentrations in intact immature cockerels (Kono et al., 

1980). However, incubation of chicken and or turkey pituitaries with testosterone may 

inhibit or stimulate the basal PRL secretion (Hall and Chadwick, 1978; Hall et al, 1984b; 

Knapp et al., 1988). Testosterone may also modulate the action of hypothalamic factors 

controlling PRL release. Thus, preincubation of chicken pituitaries with testosterone 

reduces the ability of hypothlamic extract to stimulate PRL release (Hall et al., 1984b). 

Similarly, in the turkey, VIP-induced PRL release from the anterior pituitary cells in 

vitro is reduced after preincubation with testosterone (Knapp et al., 1988). It therefore 

seems that in birds, progesterone and testosterone may modulate PRL release at the level 

of anterior pituitary gland in either as an inhibitory or stimulatory manner. There is no 

information on possible effects of these steroids acting at the hypothalamic level to 

control PRL secretion. 
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1.5 Photoperiodic mechanisms transducing PRL release. 

Information on mechanisms controlling photoinduced PRL release in birds is 

limited but it is possible that they share much in common with mechanisms controlling 

photoinduced gonadotrophin release (Follett etal., 1985; Follett and Pearce-Kelly, 1991; 

reviews, Follett, 1984; Sharp, 1983, 1984, 1992, 1993, 1996). The major difference is 

that the final targets for neural pathways transducing photoperiodic information are the 

GnRH-I neurons for gonadotrophin release (Perera and Follett, 1992) and neurons 

producing PRL releasing/ inhibiting factors for PRL release. A brief account is given of 

the mechanism controlling photoinduced gonadotrophin secretion on the assumption that 

it is likely to be similar for photoinduced PRL secretion. 

1.5.1 Ph otoreception. 

In birds, unlike mammals, the presence of light used for photoperiodic signalling 

is detected by extra-retinal photoreceptors rather than by the eyes (Wilson, 1991; 

review, Kuenzel, 1993). For example, in the house sparrow photoinduced gonadal 

growth is about 40 times less in experimental birds whose skulls were covered with 

Indian ink, to reduce the penetration of light into the brain, than in control birds not 

injected with Indian ink (Menaker et al., 1970). Since the eyes were present in both 

control and experimental groups the differences in gonadal growth was due to the amount 

of light passing directly through the skull to reach non-retinal photoreceptors. Extra-

retinal photoreceptors has also been demonstrated in the turkey in which, bilateral ocular 

enucleation and/ or pinealectomy has no effect on the increase in plasma LH 

concentration observed after photo stimulation (Siopes and El Halawani, 1986). Further 

evidence for extra-retinal photoreception has been reported in the American tree sparrow 

by Wilson (1991), who found that bilateral ocular enucleation together with 

pinealectomy does not affect the ability of the reproductive system to respond to 
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photoperiodic stimuli. In the same study it was shown that an epicranially-implanted 

dim green light source stimulated the reproductive activity, suggesting the presence of 

deep- brain photoreceptors. 

1.5.2 The biological clock and the pineal gland. 

The duration of the photoperiod is measured by a biological clock which, in 

mammals, is located in the suprachiasmatic nuclei (SCN) in the hypothalamus (Moore, 

1983; Turek, 1985; Rusak, 1989). Information about the presence or absence of light 

passes to the SCN via the retinohypothalamic tract (Moore, 1973). In birds, there is 

also evidence for a retinohypothalamic projection to areas in the hypothalamus which 

may be homologous with the mammalian SCN (Cassone and Moore, 1987; Norgren and 

Silver, 1989). However, there is no structure in the avian hypothalamus that has the 

well- differentiated features of the mammalian SCN (Kuenzel and van Tienhoven, 1982). 

Furthermore, there is no evidence that an avian homologue of the mammalian SCN plays 

a role in the transduction of photoperiodic information (King, 1995). In mammals, 

photoperiodic information is conveyed from the SCN through the superior cervical 

ganglion to the pineal gland (Evered and Clark, 1985). During the dark period (night), the 

SCN sends a neuronal signal to the pineal gland to increase the secretion of melatonin 

into the blood. During the light period this SCN signal is suppressed resulting in a 

decrease in pineal melatonin synthesis or release. The duration of the increase in the 

concentration of the plasma melatonin at night provides mammals with the 

photoperiodic signal which is used to control seasonal breeding (Bitmann and Karsch, 

1984). The importance of the pineal gland in the photoperiodic control of reproduction 

in mammals is illustrated by studies in hamsters (Mart and Stetson, 1980) and sheep 

(Bittman et al., 1985) showing that pinealectomy abolishes photoinduced responses in 

reproductive function. 
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The pineal gland in birds also generates a nocturnal rhythm in the concentration 

of plasma melatonrn (Liou et al., 1987; Kumar and Follett, 1993) although the circadian 

pacemaker involved is located within the pineal gland rather than in the hypothalamus 

(Kumar and Follett, 1993). Although diurnal changes in the concentration of blood 

melatonin in birds, provide a calender of photoperiodic information, they are not used to 

control the timing of seasonal reproduction. For example, in the American tree sparrow, 

pinealectomy and/ or removal of the eyes (an additional source of melatonin) has no 

effect on photoinduced gonadal growth or the subsequent development of 

photorefractoriness (Wilson, 1991). 

Observations on birds showing that the pineal gland does not play a role in 

photoinduced reproductive function do not exclude the possibility that the avian pineal 

gland might be involved in the photoperiodic control of PRL secretion. One study has 

investigated this possibility and showed that in the turkeys, pinealectomy does not 

prevent, but reduces a photoinduced increase in plasma PRL (Siopes and El Halawani, 

1989). 

1.5.3 Neuroendocrine output. 

The final photoinduced output controlling LH release, as demonstrated in the 

Japanese quail is GnRH (Perera and Follett, 1992). In the quail, the photoinduced 

increase in GnRII secretion begins 22-23 h after dawn, resulting in an associated increase 

in plasma LH. This increase in plasma LH continues for about 10 days as a "carry over 

effect" if the quail are returned to short days after one long day (Follett et al., 1977; 

Nicholls et al., 1983; Follett and Pearce-Kelly, 1991; Perera and Follett, 1992; Meddle 

and Follett, 1995). The continued secretion of LH on short days is due to the 

maintenance of increased GnRH release from the hypothalamus (Perera and Follett, 

1992). The final photoinduced output from the hypothalamus controlling PRL release 

has not been identified, but the most likely candidate is VIP (Section 1.4.1). There is no 
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information on the possibility of a 'first day' release or 'carry over effect' for 

photoinduced PRL secretion in birds. 

1.5.4 Photoperiodic time measurement. 

The measurement of photoperiodic time might be achieved using a 'hour glass' or 

a circadian rhythm. The hour glass hypothesis proposes that transfer from darkness to 

light initiates the synthesis of a biological product, the concentration of which gradually 

increases until it triggers the photoperiodic response. Evidence in support of this 

hypothesis is limited (Saunders, 1977) and most organisms use a circadian rhythm or 

rhythms to measure photoperiodic time (Saunders, 1977; Follett and Follett, 1981; 

Sharp, 1983). The circadian clock hypothesis was first proposed by Bunning (1936) 

who envisaged a circadian rhythm of photoinducibility in organisms exposed to a 

12L:12D day with a 'photo-insensitive' period during the daytime, and a 'photo-

sensitive' period during the night. The photoperiodic response is induced when 

daylength increases so that light is present during the photosensitive phase of the 

rhythm of photoinducibilty. This 'external coincidence' model of photoperiodic time 

measurement has been modified to develop a 'internal coincidence' model of 

photoperiodic time measurements, in which the presence of light during a photosensitive 

phase is not required for photoinduction (Fig. 1.2). The 'external coincidence' model for 

photoinduced reproduction is widely accepted by scientists working on avian 

reproduction. In part, this is because of the out come of a classical experiment carried out 

by Follett and colleagues (1975) in the White-crowned sparrow, in a critical test of the 

external coincidence model of photoinduced gonadotrophin secretion (Fig. 1.3). The birds 

were transferred from short days into darkness and at various times thereafter given a 

single eight-hour photoperiod. Plasma LH was measured before and after the treatment, 

and inductiveness assessed by determining whether the secretion of the hormone had 

increased. The results clearly indicated that the photoinduction of LH release only 
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Fig. 1.2 Diagram to illustrate the way circadian rhythms measure the 
daylength. In the external coincidence model a single circadian 
rhythm of photoinducibility is shown with a square wave form. The 
crest of the wave is the photoinducible phase: when this phase is coin-
cident with light, the daylength is judged as long. In the internal coin-
cidence model two circadian rhythms, again shown in a square wave 
form, are differentially entrained by a given light-dark cycle. As the 
light:dark ratio changes, the relationship between the two rhythms also 
changes. When the daylengths are stimulatory, the two rhythms are 
entrained into an inductive relationship which in this model is as-
sumed to occur when the crests of the two rhythms coincide. 
(From Sharp, 1984). 
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Fig. 1.3 A 'resonance' experiment to show that birds use their circadian 
system to measure daylength. White-crowned sparrows were kept on 
an 8 hr day and a pre-experimental blood sample was taken in the last 
light period before transfer to continuous darkness. At various times 
thereafter each bird was exposed to a single 8 hr period of light. These 
lighting treatments are shown in the upper part of the figure. A second 
blood sample was taken a few hours after the experimental light pulse. 
The graph shows the change in plasma LH concentration between the 
two samples in relation to each treatment. The data shows a daily 
periodicity in photosensitivity to the 8 hr pulse light. It is not the 
amount of light which is important in triggering gonadotrophin release 
but when it falls relative to the underlying ciradian rhythnicity within 
the the bird. (From Follett et al., 1975) 



occurred if the light period coincided with the phase of rhythm with a period close to, 

but not equal to 24 h , indicating the presence of an underlying rhythm of 

photo inducibility. 

1. 5.5 The avian photoperiodic gonadotrophin and PRL responses. 

The seasonal changes in gonadotrophin and prolactin secretion and the associated 

development of photorefractoriness (Section 1.3.4) implies that they are dependent on 

photoperiodic history. A model describing how photoperiodic history determines the 

photoinduced secretion of gonadotrophins in birds is shown in Fig. 1.4. When 

photoperiodic birds are exposed to winter-like (short) daylengths for a long period, these 

daylengths are photopenodically neutral and do not inhibit gonadotrophin releasing 

hormone (GnRH-I) neurons. The activity of GnRH-I neurons in these circumstances 

depend on the genotype allowing some avian species, including the domestic chicken 

(Sharp, 1993, 1996), to come into breeding condition very early in the year, when 

daylengths are short and non-stimulatory. There is no information on PRL secretion in 

photoperiodic birds kept for prolonged periods on short days. 

As the photoperiod increases in the Spring a 'critical' photoperiod is reached, 

resulting in the stimulation of gonadotrophin or PRL secretion. The critical daylength for 

gonadotrophin release ranges between 10-11 h in chickens (Dunn and Sharp, 1990), 11-

12 h in quail (Urbanski and Follett, 1982) and 11-13 in starlings (Dawson, 1987). 

Information on the critical daylength for PRL release is limited to the starlings, where it 

is reported to be 13-14.5 h (Ebling etal., 1982; Dawson and Goldsmith, 1983). 

As the photoperiod increases further there is a direct relationship between 

gonadotrophin release and photoperiod until a saturation daylength is reached which 

stimulates the maximum release of gonadotrophins. Photoperiods between the critical 

and saturation photoperiods are described as being 'marginally photostimulatory' 

(Sharp, 1984). In the quail, the saturation photoperiod for LH release is about 14 h 
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Fig. 1.4 A schematic representation of the photoperiodic response of 
birds. The hypothalamus contains a biological clock, depicted as the 
face of an analogue clock, which measures the passage of the 
photoperiodic time. If the photoperiod is increased, two types of input 
to the gonadotrophin hormone (GnRH) neurons are activated, one 
stimulatory (+ ye, white arrow) and the other inhibitory (-ye, black 
arrow). The stimulatory input is fully activated immediately after 
photostimulation but the inhibitory input develops more slowly. If the 
photoperiod is decreased, the stimulatory input disappears immedi-
ately leaving the inhibitory input, which dissipates gradually after 
several weeks or months of exposure to short days (indicated by bro-
ken arrows). Photoperiodically induced changes in the inputs to 
GnRH neurons result in the secretion of GnRH and the 
gonadotrophins, indicated by the thickness of the solid lines with 
arrows. Changes in gonadotrophin secretion control the development 
of the ovary (shown here) or the testes. 
(From Sharp, 1993) 



(Urbanski and Follett, 1982), while in the chicken it is about 12 h (Dunn and Sharp, 

1990). 

The increase in photoperiod above the critical photoperiod in Spring induces a 

stimulatory input to GnRH-I neurons, and presumably, to neurons containing the 

neuropeptides/ neurotransmitters which stimulate PRL release. A further increase in 

photoperiod results in the development of an additional, inhibitory, input to these two 

neuronal systems resulting in the development of photorefractoriness. In birds, such as 

quail and chicken which become relatively photorefractory for photoinduced LH release 

(Robinson and Follett, 1982; Sharp, 1993), this inhibitory input is revealed by reducing 

the photoperiod to a duration which would otherwise be photostimulatory in Spring. 

Thus, in relative photorefractory birds, gonadotrophin secretion decreases and the 

gonads regress when exposed to decreasing but long daylengths in late Summer or early 

Autumn (Robinson and Follett, 1982). 

In the only species in which relative refractoriness has been studied, the quail, 

there is no evidence for the development of relative photorefractoriness for photoinduced 

PRL. Thus transfer of relatively photorefractory quail from 20 h to marginally 

stimulatory daylength of 13 h , does not result in a decrease in the concentration of 

plasma PRL (Juss, 1993). 

A second form of photorefractoriness, absolute photorefractoriness, is induced in 

many temperate zone birds as a result of the development of long day-induced inhibitory 

inputs to the GnRH-I/ PRL stimulatory factor neurons, resulting in the depression of 

plasma gonadotrophin and PRL secretion (Section 1.3.4). This is the mechanism which 

allows birds to stop breeding in late Summer when daylengths are still long (Section 

1.3.4). In birds which become absolutely refractory, the long-day induced inhibitory 

inputs to GnRH-II PRL stimulatory factor neurons completely override the long-day 

stimulatory inputs. As a result, in contrast with relatively photorefractoiy birds, a 

further increase in photoperiod will not stimulate gonadotrophin or PRL secretion in 
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birds showing absolute photorefractoriness for these hormones. The daylengths required 

to induce the development of photorefractoriness for both LH and PRL release are longer 

than those required to induce LH or PRL secretion. Thus, transfer of birds to marginally 

stimulatory daylengths does not permit the development of reproductive 

photorefractoriness. This has been observed in quail, chickens, starlings and Willow 

ptarmigans exposed to marginally stimulatory daylengths of 13, 11, 11 and 14 

respectively (Robinson and Follett, 1982; Sharp et al., 1992; Dawson and Goldsmith, 

1983; Stokkan et al., 1992). It is unknown whether the development of absolute 

photorefractoriness for PRL secretion is inhibited in birds exposed to marginally 

stimulatory daylengths. 

When daylengths decrease below the critical photoperiod in Autumn, the 

stimulatory input to GnRH-I neurons is withdrawn immediately (Fig. 1.4). In contrast, 

the long-day induced inhibitory input dissipates slowly. The dissipation of absolute or 

relative photorefractoriness for gonadotrophin release requires 21 days in quail (Follett 

and Pearce-Kelly, 1990) and 28 days in starlings (Dawson, 1991). There is no 

information available for the time required to dissipate refractoriness for PRL release. 

Most birds do not breed in the year in which they are hatched because the 

chances of their offspring surviving is low. Birds that hatch in the early Summer 

therefore require a mechanism to prevent them from coming into breeding condition. In 

order to prevent premature breeding, the neuroendocrine system matures to become 

refractory to the stimulatory effects of long days. Photosensitivity is thus first acquired 

after exposure to the short days of winter. The age at which the neuroendocnne system 

first becomes responsive to changes in daylength differs between species but generally 

occurs during the early stages of post-hatch somatic growth (Harvey et al., 1979a; Dunn 

et al., 1990; McNaughton et al., 1992). There is no information on the ontogeny of 

development of the photorefractoriness for PRL release in juvenile birds. 
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1.6 Research Objectives. 

• To determine the effect of castration, fasting and changes in ambient temperature on 

PRL secretion. 

• To determine the influence of sex and age in the ontogeny of the PRL and LH 

photoperiodic responses. 

• To establish the critical, marginal and saturation photoperiods for PRL secretion and 

to compare them with the critical, marginal and saturation photoperiods for LH 

secretion. 

• To determine the influence of photoperiodic history on the critical photoperiod for 

plasma PRL secretion. 

• To establish whether there is a photorefractory component for photoinduced PRL 

secretion. 

• To establish whether exposure to a single long day will increase PRL secretion and 

whether this is associated with a "carry over effect". 

• To establish the patterns of PRL and LH secretion in intact male and female chickens 

during a photoinduced breeding cycle and compare them with the turkey, a species 

known to demonstrate absolute photorefractoriness for reproduction and PRL 

secretion. 

• To establish whether photoinduced PRL release is mediated by the avian PRL 

releasing hormone, vasoactive intestinal polypeptide (VIP). 

• To assess the function of photoinduced PRL secretion and make a comparison with 

the turkey. 



Chapter 2 

MATERIALS AND METHODS 

The full addresses of the suppliers of reagents and equipment are given in Annex 

1 

2.1 Animals and husbandry conditions. 

The birds used in these experiments were bantams and Spotted Nebraska and 

Slate turkeys, hatched from eggs from the Roslin Institute flocks or ISA Brown chicks 

purchased at day old (ISA Poultry Service). They were all reared in floor pens or in 

individual cages. The birds had free access to feed unless otherwise mentioned. Water 

was freely available through drinking nipples. All day-old bantam chicks were vaccinated 

against Marek's disease and received a booster after 3 weeks. At 4 weeks, all birds were 

vaccinated for Newcastle and Gumboro disease and boosted at 16 weeks of age. All the 

birds used in these experiments were kept in an ambient temperature of 20 ± 3 °C. The 

light intensity in the middle of the rooms was 250-350 lux, measured using a Megatron 

DL 3 light meter. 

2.2 Surgical castration. 

The male bantam and ISA Brown chicks (2-4 weeks old) were anaesthetised using 

"Equithesin" (Gandal, 1969), containing (per 100 ml) 4.2 g magnesium sulphate (7 H 20), 

0.96 g pentobarbitone sodium, 4.3 g chloral hydrate, 13.6 ml ethanol (70 %), 35 ml 

propylene glycol and 51.4 ml de-ionised H 20. All chemicals were obtained from 

SIGMA. The anaesthetic was injected intramuscularly in a breast muscle at a dose of 2.5 

ml/ kg body weight. Once unconscious, each bird was laid on its right side on an acrylic 

board, with its legs and wings secured to the board. The exposed left flank was then 
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swabbed with 70% alcohol, making the rib cage visible through the skin. An incision 

approximately one cm long was made through the skin with a scalpel blade, between the 

last two caudal ribs. A pair of dissection scissors (blunt ended) were then gently pushed 

through the underlying muscle and the connective tissues were parted to expose the body 

cavity beneath the ribs. The incision was held apart with a pair of toothed-screw lock 

forceps, and the intestines were held back with a small spatula. Air sacs present in the 

body cavity were burst in order to expose the testis. Using a fine pair of curved forceps 

the left testis was carefully removed without causing damage to the major blood vessels 

nearby. After removal of the testis, the toothed-screw lock forceps were removed and 

the last two caudal ribs were sutured together using sterile plain catgut (3/0, Ethicon 

Ltd). The muscles and the skin were then sutured using sterile plain catgut (3/0) and the 

wound was dusted with Aureomycin antibiotic powder (Cynamid). The bird was then 

laid on its left side and the same surgical procedures were repeated to remove the right 

testis. Once the bird recovered from the anaesthesia it was returned to its home cage. 

Less than 1 % of the birds died as a consequence of the surgical procedure. Castration 

took approximately 10 min, and the success of the surgical procedure was 90%, as 

assessed by the lack of growth of the comb and wattles. The growth of these structures 

is dependent on the presence of testicular tissue. 

2.3 Collection of plasma samples. 

Blood samples (1 ml) were withdrawn into heparinised syringes from the brachial 

wing vein and the plasma fractions were obtained by centrifugation at 250 x g, 40C for 15 

mm. They were stored at -20 °C until required for assay. 
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2.4 Hormone measurements. 

All hormone radioimmunoassays were carried out using a radioimmunoassay 

diluent containing (per 2000 ml) 

160 ml 0.5 M phosphate buffer, pH 7.5 

17.5 gNaCl 

5.84 g EDTA (disodium salt) 

2 g sodium azide (BDH) 

40 ml horse serum (GIBCO) 

The final volume was made to 2 litres with deionized water and the pH was adjusted 

with 1 M NaOH to pH 7.5. 

2.4.1 Radioimmunoassay of chicken LH 

The chicken radioimmunoassay procedure was a modification of the double 

antibody method described by Sharp et al. (1987). The preparation of the native chicken 

LH (code RI-LH-l) used for standards and radioiodination was described by Sharp et al. 

(1987). The sensitivity of the assay as measured by the ED 80  was 0.10 ng/ ml. The 

inter- and intra-assay coefficients of variation were 6 and 8% respectively. 

2.4.1.1 Preparation of radiolabelled chicken LH. 

Chicken LH was radiolabelled using chloramine T (Sharp et al., 1987). All 

reagents were dissolved in 50 mM sodium phosphate buffer, pH 7.5, unless otherwise 

specified. A small stirring bar, made from a short piece of paper clip, was added to the 

reaction vessel (1.5 ml microcentrifuge tube) containing 4.8 pg of native chicken LH in 25 

jil of 50 mM phosphate buffer. The iodination procedure was carried out with constant 

mixing using a magnetic stirrer. Thirty seven Mbq 1251[  Nal ] (IMS-30, Amersham 

International plc) in 10 p1 was added to the reaction tube and the iodination reaction was 
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started with the addition of 10 tl of freshly prepared 3.55 m?s4 chioramine T sodium salt 

(Fisons). The reaction proceeded at room temperature (17-19 0C) for 45 sec and was 

terminated with 5.26 mM sodium metabisuiphite (100 il, Fisons) and 0.6 M potassium 

iodide (100 p.1, Fisons). The reaction mixture was transferred to a PD-10 Sephadex G-25 

column (LKB-Pharmacia) pre-equilibrated with 50 mM phosphate buffer (pH 7.5) 

containing 0.2% (w/v) gelatine (column buffer). The reaction tube was rinsed with 200 

jil column buffer and added to the column. Column buffer was continuously applied 

until 25 fractions of 10 drops each had been eluted into LP4 plastic tubes (Denley -

Luckham Ltd). Radiolabelled RI-LH-1 was located, using a gamma counter, in fractions 4 

-7 with the free iodine being eluted in fractions 13- 18. The radiolabelled fractions were 

pooled and diluted in radioimmunoassay diluent at approximately 500,000 counts! 

minute! 10 p.1 and stored for up to 4 weeks at 4 0C. 

2.4.1.2 Preparation of standards. 

Lyophilised native chicken LH stored at -20 °C in aliquots of 192 p.g per tube, 

was reconstituted with 50 mM phosphate buffer (1 ml) to produce the stock standard 

(192 ig/ml). This was further diluted with 50 mM phosphate buffer (pH 7.5) to produce 

the working standard of 5 jig/ml which was used to prepare sets of 14 standards for the 

assay. These were designated as Std. 1 (5.0 ng/ml), Std. 2 (4.0 ng!ml), Std. 3 (2.5 ng/ml), 

Std. 4 (2.0 ng!ml), Std. 5 (1.0 ng!ml), Std. 6 (0.5 ng!ml), Std.7 (0.25 ng/ml), Std. 8 (0.125 

ng/mI), Std. 9(0.0625 ng/ml), Std. 10 (0.0313 ng/ml), Std. 11(0.0156 ng/ml), Std. 12 

(0.0078 ng/ml), Std. 13 (0.0039 ng!ml), Std. 14 (0.0019 ng/ml). 

2.4.1.3 Radioimmunoassay procedure. 

The radioimmunoassay procedure is summarised in Table 2.1. Plasma samples 

and standards (200 p.1 each) were dispensed into plastic LP2 tubes (Denley-Luckham) 
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with an Hamilton MicroLab-M automated dispenser (Howe and Co Ltd). They were 

mixed with anti-chicken LH primary antibody (50pJ, code: LH 3/3, diluted to 1:19000 in 

radioimmunoassay diluent) and incubated overnight at 4 0C. The radiolabelled [125  1]LH 

was added (50 p1) to all the tubes to give an approximate count of 12000 cpm and all the 

tubes were incubated overnight at 4 °C. On the third day, donkey anti-rabbit serum (50 

p.1, DARS, 1: 20 dilution, Scottish Antibody Production Unit) and normal rabbit serum 

(50 p.1, NRS, 1: 200 dilution, Scottish Antibody Production Unit) were added, mixed and 

further incubated overnight at 4 °C. On the fourth day of the assay all the tubes 

excepting the total count tubes were centrifuged (Sorvall RC-313, Dupont (UK) Ltd) at 

2000 x g for 30 min at 4 °C. Starch solution (6%, 50 p.1) was added to each tube, to 

prevent disturbance of the precipitate during aspiration and was further centrifuged for 

20 mm. The supernatant fraction was then aspirated and the pellets and total count tubes 

were counted for 60 sec on a gamma counter (1277 Gamma Master, LKB- Pharmacia) 

and the data analysed using the AzzayZap TM  programme (AzzayZap Universal Assay 

calculator; BIOSOFT). 

Table 2.1 The protocol for the radioimmunoassay of chicken LH 

Solution 	TC 	NSB 	TB 	STD 	SAM 

(Day 1) 

DIL 	NIL 	250 p.1 	200 p.! 	NIL 	NIL 

SAMPLE NIL NIL NIL NIL 200 p.1 

STANDARD NIL NIL NIL 200 p.1 NIL 

LH AB NIL NIL 50 p.! 50 p.1 50 p.1 

(Day 2) 
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PRL LABEL 50 p1 	50 p1 	50 p1 	50 p1 	50 p1 

(Day 3) 

DARS 	NIL 	50 p1 	50 p1 	50 j.tl 	50 p1 

NRS 	NIL 	50 p1 	50 p1 	50 jil 	50 p1 

(Day 4) 

CENTRIFUGATION AT 2000 x g at 4 °C for 30 mm. 

STARCH 	NIL 	50 jil 	50 p1 	50 p1 	50 p1 

CENTRIFUGATION AT 2000 x g at 4 °C for 20 mm. 

Abbreviations:TC (total counts); NSB (non specific binding); TB (total binding); 

STD (PRL standards); SAM (samples); NRS (normal rabbit serum); 

DARS (donkey anti rabbit serum); NIL (no addition made); DEL 

(radioimmunoassay diluent); LH AB (native chicken LH antibody, code 3/3) 

2.4.2 Radioimmunoassay of chicken PRL 

The radioimmunoassay procedure used for measuring PRL in avian plasma was 

modified from Talbot and Sharp (1994). The recombinant-derived chicken prolactin used 

for the standards and radioiodination was as described by Talbot and Sharp (1994). The 

sensitivity of the assay as measured by the ED 80  was 0.10 ng/ ml. The inter- and intra-

assay coefficients of variation were 9.8 and 16.5% respectively. 

2.4.2.1 Preparation of radiolabelled chicken PRL. 

The method described by Talbot and Sharp (1994) was modified by using iodo-

beads iodination reagent (Pierce and Warriner Ltd) instead of chloramine T in the 

iodination reaction. Recombinant-derived chicken PRL (5 jig in 5 p1 buffered with 0.3 M 
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phosphate buffer) was mixed with 37 Mbq [125J] 
 in 10 j.tl with a magnetic stirrer. One 

bead of lodo-bead iodination reagent, previously washed in 500 t1 0.3 M phosphate 

buffer, was then added to initiate the iodination reaction. The reaction time was 

terminated after 5 min by the addition of 800 jil column buffer made up of 0.1 M Tris 

buffer (pH 7.5) containing 0.1% (v/v) Tween 20 (SIGMA) and 0.1% (w/v) sodium azide. 

The reaction mixture was separated on a PD-10 Sephadex G-25 column (LKB-

Pharmacia), pre-equilibrated with column buffer and 20 fractions of 12 drops each were 

collected. Radiolabelled PRL located in fractions 7-10 were further chromatographed, to 

remove aggregates, on a Sephacryl HR 100 column (SIGMA) equilibrated with the same 

column buffer. The column was run at a flow rate of 1 ml/min for 1 h and 1 ml fractions 

were collected at Imin intervals. The four fractions with the highest amount of 

radioactivity usually located between fractions 3 5-39 were pooled and diluted 1: 0.5 with 

radioimmunoassay diluent and stored at -70 0C. 

2.4.2.2 Preparation of-standards. 

Recombinant-derived chicken PRL ( 5 ig in 48 tl sodium bicarbonate 

buffer) was diluted with radioimmunoassay diluent to give a working stock standard of 

500 ng!ml. The top standard (125 ng/ml) was prepared by diluting the stock standard 

(1:3) with radioimmunoassay diluent. A further series of 1:1 dilutions produced a final 

series of standards, designated Stds 14 -1, containing (125 ng/ml, 62.5 ng/ml, 31.25 nglml, 

15.63 ng/ml, 7.81 nglml, 3.91 nglml, 1.95 ng/ml, 0.98 ng!ml, 0.49 ng/ml, 0.24 ng/ml, 0.12 

ng/ml, 0.06 ng!ml, 0.03 ng/ml and 0.15 ng!ml). 

2.4.2.3 Radioimmunoassay procedure. 

The radioimmunoassay procedure for PRL (Table 2.2) was similar to that 

described for LH (2.3.1.3) except that standards and samples were in smaller volumes 
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(100 tl). The rabbit anti-recombinant-derived chicken prolactin (code 3 1/1) was used at a 

final dilution of 1:48000. 

Table 2.2 The protocol for the radioimmunoassay of chicken PRL. 

Solution TC NSB TB 	STD 	SAM 

(Day 1) 

DIL NIL 150 p1 100 j.tl NIL NIL 

SAMPLE NIL NIL NIL NIL 100 jtl 

STANDARD NIL NIL NIL 100 jii NIL 

PRL AB NIL NIL 50 p1 50 p1 50 p1 

(Day 2) 

PRL LABEL 50 p1 50 p1 50 p1 50 p1 50 p1 

(Day 3) 

DARS NIL 50 p1 50 p1 50 p1 50 p1 

NRS NIL 50 p1 50 p1 50 p1 50 p1 

(Day 4) 

CENTRIFUGATION AT 2000 x g at 4 °C for 30 mm. 

STARCH 	NIL 	50 p1 	50 p1 	50 p1 	50 p1 

CENTRIFUGATION AT 2000 x g at 4 °C for 20 mm. 

Abbreviations:TC (total counts); NSB (non specific binding); TB (total binding); 

STD (PRL standards); SAM (samples); NRS (normal rabbit serum); 
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DARS (donkey anti rabbit serum); NIL (no addition made); DEL 

(radioimmunoassay diluent); PRLAB (recombinant derived chicken PRL 

antibody, code 3 1/1 ) 

2.5 Measurement of VIP antibody titres in chicken and turkey blood. 

2.5.1 Preparation of radiolabelled chicken VIP. 

The iodination procedure for VIP was as described by Sharp et al. (1989). 

Chicken (c)VIP (5 jig, Peninsula Laboratories plc) was iodinated using chloramine T as 

previously described for LH (Section 2.4.1.1), excepting that the reaction was terminated 

after 60 sec, by the addition of 50 mM sodium metabisulphite (10 jil) and Buffer A 

(0.1% Trifluroacetic acid and 10% Acetonitrile, 50 j.il). 

The radioiodinated cVJP was purified on a gradient reverse phase high-

performance liquid chromatography (RP-HPLC) system (Water 600E, Millipore 

Corporation) with a Vydac C18 TP514 column (Hichrom). The 1251-labelled VIP was 

eluted with buffers A and B (0.1% Trifluoro acetic acid and 90% Acetonitrile) using a 

linear gradient starting with 0% Buffer B (vlv) to 60% Buffer B (vlv) over 30 min , at a 

flow rate of 1.5 ml /min. The major peak appeared after 18 mm and was collected and 

stored at 4 °C until required for assay. 

2.5.2 Assay procedure for measurement of VIP antibody in chicken and 

turkey blood. 

The assay procedure for measuring the VIP antibody is summarised in Table 2.3. 

Plasma samples (100 jil) were dispensed into plastic LP2 tubes (Denley-Luckham) using 

an automated dispenser (Hamilton MicroLab-M). They were then mixed with 125J. 

labelled VIP (100 jil, 12000 cpml tube), and incubated at 4 °C overnight. On the second 
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day, anti-chicken serum (50 j.tl, ACS, 1: 6 dilution, Scottish Antibody Production) and 

non-immune chicken serum (50 j.ii, NCS, 1: 200 dilution, Scottish Antibody Production) 

were added, mixed and further incubated overnight at 4 °C. On the third day of the assay 

all the tubes, excepting total counts tubes were centrifuged (Sorvall RC-3B) at 2000 x g 

for 30 min at 4°C. Starch solution (50 j.tl, 6%) was added to each tube and further 

centrifuged for 20 mm. The supernatant fraction was then aspirated and the pellets and 

total counts were counted for 60 sec. on a gamma counter (1277 Gamma Master, LKB- 

Pharmacia). The data were analysed with AzzayZap TM  (AzzayZap Universal Assay 

calculator, BIOSOFT) to determine the % of bound. 

Table 2.3 The protocol for measurement of the chicken VIP antibody titre. 

Solution 	TC 	NSB 	TB 

(Day 1) 

DIL 	NIL 	100 il 	NIL 

SAMPLE 	NIL 	NIL 	100 pJ 

VIP LABEL 100 .LJ 	100 .t1 	100 jil 

(Day 2) 

ACS 	NIL 	50p1 	50 g 

NCS 	NIL 	50 g 	50 p 

(Day3) 

CENTRIFUGATION AT 2000 x g at 4 °C for 30 mm. 

STARCH 	NIL 	50 i1 	50 il 

CENTRIFUGATION AT 2000 x g at 4 °C for 20 mm. 



Abbreviations: TC (total counts); NSB (non specific binding); TB (total binding); 

SAM (samples); NCS (normal chicken serum); ACS (donkey anti chicken serum); 

NIL (no addition made); DEL (radioimmunoassay diluent) 

2.6 Data presentation and analysis. 

The data were subjected to split-plot analysis of variance (Cochran and 

Cox, 1966), analysis of variance for repeated measures, analysis of variance (one-way) 

followed by Fisher's protected least squares differences (PSLD) test (Steel and Torrie, 

1982) where appropriate or a paired and unpaired Student's t-tests (two tailed). The 

results are presented as mean ± standard error of the mean (scm). The results were 

analysed with a statistical program (Super AnovalM,  Abacus Concepts Inc) using an 

Apple Macintosh computer. 
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Chapter 3 

EFFECT OF CASTRATION, CHANGES IN AMBIENT 

TEMPERATURE, AND FASTING AND REFEEDING ON 

PRL SECRETION. 

3.1 Introduction. 

The secretion of PRL is believed to be influenced by several non photoperiodic 

factors which must be taken into account when interpreting the results of the 

photoperiodic experiments described in subsequent chapters. A major factor influencing 

PRL secretion is the presence of gonadal steroids, especially oestrogen. For example, in 

the turkey, ovariectomy prevents the increase in plasma PRL normally seen at the onset 

of sexual maturation in birds reared on a constant daylength, while administration of 

oestradiol to ovariectomised turkeys increases plasma PRL (El Halawani et al., 1986). In 

the domestic chicken, studies in vitro show that incubation of pituitary glands from 

juvenile birds with oestrogen for 20 h results in an increase in base-line release of plasma 

PRL (Hall et al., 1984a) and an enhanced PRL response to vasoactive intestinal 

polypeptide (Hall and Chadwick, 1985). 

An environmental factor which might affect PRL secretion is ambient 

temperature. For example, in rats a decrease in ambient temperature sufficient to induce 

mild hypothermia (3 50C) causes a fall in plasma PRL which is reversed when the 

temperature is increased to its initial value (Okuda et al., 1986). This cold-induced 

decrease in plasma PRL is mediated by an increased activation of tuberal hypothalamic 

dopamine neurons (Okuda et al., 1986). There is no information on the effect of changes 

in ambient temperature on plasma PRL in birds. 



A further factor reported to affect PRL secretion is the withdrawal of food. For 

example, in chronically starved rats, the concentration of plasma PRL is suppressed 

(Xie, 1991). There is no information on the effect of starvation on PRL secretion in 

birds, although it is known that the administration of PRL to birds increases food intake 

(Ensor, 1975; Buntin and Tesch, 1985; Boswell et al., 1995). 

The experiments described in this chapter were undertaken to establish in 

cockerels whether the concentration of plasma PRL is modulated by 1) testicular steroids 

during sexual maturation, 2) changes in ambient temperature and 3) fasting and refeeding. 

The data were subjected to Student's t-tests (two tailed) for testing the difference 

betwen the means. 

3.2 Effect of castration on the concentration of plasma PRL during 

somatic maturation. 

Sixty four ISA Brown cockerels were reared on short days (8 h light/ day) in floor 

pens with free access to feed and water. Half the birds were castrated at 2 weeks; the 

remainder were sham-operated and retained as the control group. At 4, 8, 16 and 24 

weeks, 8 birds from each group (8 castrates and 8 intacts) were bled for the measurement 

of plasma PRL. 

The concentrations of plasma PRL in castrates and intact birds at 4 weeks were 

not significantly different; at all other ages the concentration of plasma PRL was higher 

in intact than in castrated birds (Fig. 3.1). PRL concentrations in castrated and intact 

birds at 4 weeks were significantly higher than at 8 (P<O.00l) and 16 (P<O.001) weeks. 

The concentrations of plasma PRL in 24 -and 4 -week-old intact birds were not 

significantly different. However, the concentrations of the plasma PRL in 24 -week -old 

castrated birds was lower than in 4 -week-old castrated birds (P<0.001). Plasma PRL 

concentration of the 24 -week-old intacts were similar to that of 4 -week-old birds. 

Twenty- four- week old castrated birds had a significantly higher concentrations of 
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Fig.3. 1 A comparison of concentrations of plasma PRL in intact ( ) and 
castrated ( )cockerels maintained on a 8 h photoperiod during somatic 
maturation. The cockerels were surgically castrated or sham operated at 2 weeks 
of age. The onset of sexual maturation began at about 16 weeks and the birds are 
sexually mature at 24 weeks. Different groups of birds were sampled at each age. 
Values are means ± s.e.m (n=8).*P<0.05, **p<0.005, ***P<O.00l compared 
with controls. The birds were held on short days (8L: 16D) throughout the study. 



plasma PRL than 8 -(P<0.005) or 16 -(P<0.05) week-old castrated birds. Plasma PRL 

concentrations in 8 and 16 -week-old castrated birds were not significantly different. 

3.3 Effect of change in ambient temperature on the concentration of 

plasma PRL. 

Groups of 12 castrated birds (>80 week old) were kept on a photoperiod of 12 h 

at 200C for 3 weeks in two climate chambers. The 12 h photoperiod was chosen because, 

in a previous study (Chapter 6), it was observed that in birds kept on this photoperiod 

the concentration of plasma PRL is maintained at an unchanged, moderately elevated, 

value without the development of photorefractoriness (Chapter 6, Section 6.2, 6.3). 

Hence, at this photoperiod, any stimulatory or inhibitory effect of a change in ambient 

temperature on the concentration of plasma PRL should be readily measurable. The 

ambient temperature in one of the chambers was increased to 30 0C for 2 weeks and 

returned to 20 0C, while the temperature in the other chamber was reduced to 50C for 2 

weeks and then returned to 20 0C. Blood sample was collected from each bird 

immediately before, the ambient temperatures were changed. Birds were bled on the 14 

th day of exposure to the increased or decreased ambient temperature. After return to 

the original ambient temperature (20 0C), the birds were again bled after 14 days. Blood 

samples were all taken at the same time of the day, 6 h (14.00 h) after the lights came on 

(08.00 h), to avoid any confounding effect of diurnal rhythmicity. The exposure period 

of 2 weeks to each ambient temperature was chosen to allow the birds to acclimatise 

fully, to avoid measuring PRL responses which could be due to stress associated with 

the change in temperature. 

The concentrations of plasma PRL in birds exposed to increased or decreased 

ambient temperature are shown in Fig. 3.2. There was no significant (P<z0.05) change in 
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Fig. 3.2 Effect of an a) increase or b) decrease in ambient temperature on 
plasma PRL levels in castrated bantams. The birds were transferred from 
200C to 300C or 50C for 2 weeks and back to 200C. The birds were held at 
each temperature for 2 weeks and sampled during the second week in the 
middle of the light period. The birds were held on 12L: 12D, throughout the 
study. Values with the same superscript are not significantly different. Values 
are means ± s.e.m (n=12). 
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Fig. 3.3 Concentration of plasma PRL in castrated cockerels held 
on 8 h light/ day before fasting, after 24 h fasting and after 1 hour 
refeeding. Values with the same superscript are not significantly 
different. Values are means ± s.e.m (n=8). 



the plasma PRL concentrations after an increase or decrease of ambient temperature and 

after return to 20 0C. 

3.4 Effect of a 24 - h fasting and refeeding on the concentration of 

plasma PRL. 

Eight castrated bantam cockerels (36 weeks old) kept on a short photoperiod (8 h 

light/ day) for more than 3 months were housed in individual cages with free access to 

feed and water. On the day of the experiment the birds were deprived of feed for 24 h 

but had free access to water. After a 24 h fast the birds were given free access to feed. 

Blood samples were collected just before feed deprivation, after fasting and one hour 

after refeeding. 

Plasma PRL concentrations before and after fasting and one hour after refeeding 

are shown in Fig. 3.3. There was no significant (P<0.05) effect of fasting or refeeding on 

the concentration of plasma PRL 

3.5 Discussion. 

The observation that, except at 4 week of age, the concentration of plasma PRL 

was higher in intact than in castrated bantams demonstrates that testicular hormones 

play a role in maintaining increased plasma PRL. A consistent effect of testosterone on 

PRL secretion has not been established; both inhibitory and stimulatory effects have 

been reported (Section 1.4.3.2). It is suggested that the increased concentration of 

plasma PRL in intact birds is due to aromatisation of testicular androgen to oestrogen 

since it is well established that oestrogen facilitates increased PRL secretion by a direct 

action on the anterior pituitary gland (Section 1.4.3.1.1). The blood of juvenile and adult 

cockerels has been reported to contain about 68 and 91 pgl ml oestradiol respectively 

(Liu, 1993). These concentrations of oestrogen may be sufficient to exert a stimulatory 

effect on PRL secretion at the level of the anterior pituitary. The absence of a difference 
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in concentration of plasma PRL m 4 week-old intact and castrated birds suggests that at 

this age, the testes secrete insufficient amount of oestrogen to enhance PRL secretion. 

The observation that the plasma PRL was higher at 4 weeks old, was low at 8 

and 16 weeks, and increased at 24 weeks irrespective of whether the birds were intact or 

castrated is consistent with earlier studies in male broilers (Sterling et al., 1984). In 

broilers plasma PRL is high at 3 weeks of age, falls by 9 weeks and show a progressive 

increase between 17 and 26 weeks of age (Sterling et al., 1984). The present study 

shows that castration changes the amplitude of PRL secretion and not the age-related 

changes in plasma PRL concentrations. It thus appears that the age-related changes in 

plasma PRL concentration are independent of gonadal steroids. 

The present study demonstrated that an increase or decrease in ambient 

temperature in the thermo-neutral range (Whittow, 1986) has no effect on plasma PRL 

secretion in castrated bantams. This observation is consistent with findings in female 

turkeys held for 4 weeks at 10 °C, 240C or 30°C on short days. Differences in ambient 

temperature had no effect on plasma PRL either before or after photostimulation (El 

Halawani et al., 1984b). In sexually immature cockerels (3-5 week-old), acute exposure 

to increased environmental temperature (45 °C) has not been reported to affect the 

plasma PRL. However, an acute decrease in ambient temperature (4 0C) has been reported 

to increase plasma PRL (Harvey et al., 1977). It is possible that in the latter study, the 

cold-induced change in plasma PRL was a stress-related response which was avoided in 

the present study by allowing the birds to acclimatise to the changed temperature before 

the blood samples were taken. 

The current observation on plasma PRL in fasting and refeeding bantams suggests 

that the PRL secretion is not readily affected by short-term fasting. These observations 

are consistent with findings in non-laying turkeys reared on long days, where feed and/ or 

water deprivation for 3 days had no effect on the plasma PRL levels (Zadworny et al., 

1985). In contrast, in a study on White Leghorn layers, plasma PRL decreased after 11 
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days fasting in both short and long photoperiods. The concentration of plasma PRL rose 

after refeeding in both groups (Millam and El Halawani, 1986). Similarly, a decrease in 

plasma PRL was also observed in 2 -and 6 -week old intact cockerels held on long days 

and fasted for 24 and 12 - 48 respectively (Harvey et al., 1978). It is possible that a 

similar depression on plasma PRL was not observed in the current study because 

castration and exposure to short days resulted in plasma PRL being at basal values, 

which could not be depressed further. 

In conclusion it is inferred that testicular steroids increase the plasma PRL 

concentration during somatic maturation. Chronic exposure to changes in ambient 

temperature or 24 h fasting and refeeding has no effect on plasma PRL concentrations in 

somatically mature castrated cockerels. 
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Chapter 4 

ONTOGENY OF THE PHOTOPERIODIC CONTROL OF 

PRL AND LII SECRETION. 

4.1 Introduction. 
Prolactin (PRL) secretion is stimulated by an increase in photoperiod in several 

species of birds (Section 1.3.4) but information in the developmental stage at which PRL 

secretion can first be stimulated by an increase in photoperiod is unknown. The aim of 

this study was to determine, in the bantam chicken, the posthatch age at which the 

hypothalamo-hypophysial axis first responds to an increase in daylength by an increase 

in plasma PRL and to determine whether this is correlated with the development of the 

photoinduced luteimsing hormone (LH) response (Dunn et al., 1990). 

4.2 Experimental design. 
Bantam chicks reared on a short day lighting pattern of 8 h light and 16 h 

darkness (8L: 16D) were transferred in groups of 12 (6 males and 6 females) to along day 

lighting pattern of 20L:4D at 4, 8, 12 and 16 weeks. Control groups (6 males and 6 

females) were retained on short days. Plasma PRL and LH were measured at 3- 4 day 

intervals for 36 days after photo stimulation. The birds were then sacrificed to record the 

weights of the testes, ovaries and oviducts. 

4.3 Photoinduced PRL secretion during somatic maturation. 

Males and females showed a significant increase in plasma PRL after 

photostimulation at 4, 8, 12 and 16 weeks (Fig. 4.1a). In all the groups, a significant 

increase in plasma PRL was seen after 3 days of photostimulation (males, 4 weeks 
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Fig. 4.1 Plasma PRL concentrations after transfer from 8 to 20 h light/ day at 4,8,12 
and 16 weeks in male (M) and female (F) bantams expressed as a) ng/ml and b) 
difference in plasma PRL concentration from that before photostimulation (delta 
nglml). Values are means ± s.e.m (n=6). 



P<0.001, 8 weeks P<0.05, 12 weeks P<0.005, 16 weeks P<0.01; females, 4 weeks 

P<0.05, 8 weeks P<0.001, 12 weeks P<0.005, 16 weeks P<0.001, ANOVA repeated 

measures followed by Fishers's protected least squares difference). There was no 

significant (P>0.05) difference between the sexes in the increase in plasma PRL 

concentration after photostimulation in any of the age groups. Increased concentrations 

of plasma PRL were maintained for a further period of 33 days, until the birds were 

killed (Fig. 4.1a). The exception to this was females photo stimulated at 4 weeks. In this 

group, plasma PRL decreased between 29 and 36 days to concentrations which were not 

significantly different from pre-photostimulation values (Fig. 4.1a,b). Concentrations of 

plasma PRL after 36 days of photostimulation in all groups, irrespective of age, were 

significantly higher than in non photostimulated control groups (Table 4.1). The 

concentration of plasma PRL increased in both short day control males and females of 12 

and 16 weeks of age, but the increase was less compared to photo stimulated birds of the 

same age group (Table 4.1). The mean concentration of plasma PRL after 

photostimulation was not significantly (P>0.05) different between the males in different 

age groups. However, the mean concentrations of plasma PRL in females after 

photostimulation at 4 and 8 weeks were lower than those after photostimulation at 16 

weeks (Fig. 4.1 a). The photoinduced changes in plasma PRL (delta PRL) concentrations 

were not significantly (P>0.05) different between males and females in any of the age 

groups (Fig. 4.1b). 
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Table 4. 1 The effect of transfer from 8 h to 20h light/day for 36 days 
at 4, 8, 12 and 16 weeks of age on plasma prolactin in intact male 
and female bantams. 

Plasma prolactin (ng/ml) 

Age at which photostimulated (weeks) 
4 8 12 16 

Males 
Short day controls 

Day 0 11.81±0.89 5.924- 1.38 5.83 ± 0.55 9.17 ±1.32 

Day 36 5.92 ± 1.38a 9.46±1.36 12.00±1.61a 12.47±1.79a 

Photostimulated 

Day 0 16.33 ± 2.76 6.17 ± 1.01 8.67 ± 1.26 12.24 ± 3.04 

Day 36 43.08± 10.14a 30.17±2.48d 64.17± 11.41c 40.41 ±5.89b 

Females 
Short day controls 

Day 0 10.67 ± 2.97 5.08 ± 0.27 5.17 ± 0.47 5.04 ± 0.48 

Day 36 5.08 ± 0.27 5.79 ± 0.56 8.67 ± 0.79a 12.10 ± 1.16a 

Photostimulated 

Day  9.50±0.99 6.17±0.87 8.56± 1.12 4.76±0.62 

Day 36 	 19.33 ± 4.40 	30.67 ± 4.97c 49.33 ± 7.43c 52.76 ± 13.93a 

Values are mean ± s.e.m (n=6), a=P<0.05, bP<0.01, cP<0.005 and d=P<0.001 
compared to the values within the same group before photostimulation 



4.4 Photoinduced LH secretion during somatic maturation. 

Changes in LH secretion after photostimulation during somatic development are 

shown in Fig. 4.2 and Table 4.2. An increase in plasma LII concentration was observed 

after 3 days of photostimulation in males at 4 (P<0.05), 8 (P<O.Ol) and 12 (P<0.05) 

weeks and in females at 8 (P<0.05), 12 (P<0.05) and 16 (P<0.005) weeks. Significant 

increases in LII secretion were not observed after photostimulation in females at 4 weeks 

and males at 16 weeks. After photostimulation at 4 weeks, the concentration of LH was 

higher (P<0.05) in males than in females but after photostimulation at 16 weeks, plasma 

LII increased more (P<0.01) in females than in males. A significant increase in plasma 

LH was seen in both sexes for 36 days after photostimulation at 4 and 8 weeks (Table 

4.2). Similarly, an increase in plasma LH was observed for 36 days in females, but not in 

males after photostimulation at 16 weeks (Table 4.2). After photostimulation at 12 

weeks the initial significant increases in plasma LH in the males and females were not 

maintained after 3 and 10 days respectively. The concentrations of plasma LH in short 

day control male and female groups did not change significantly during the 36 -day 

experiment (Table 4.2). 
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Table 4. 2 The effect of transfer from 8 h to 20h light/day for 36 days 
at 4, 8, 12 and 16 weeks of age on plasma 	luteinising hormone in 
intact male and female bantams. 

Plasma lutemismg hormone (ng/ml) 

Age at which photostimulated (weeks) 
4 	 8 	 12 	 16 

Males 
Short day controls 

Day 0 5.97 ± 1.84 	5.44 ± 2.01 	9.52 ± 1.41 	5.34 ± 0.87 

Day 36 5.44±2.01 	11.70±3.11 	5.89±0.43 	4.24± 1.07 

Photostimulated 

Day  2.86±0.43 	2.14±0.4 	6.10±0.97 	10.31 ± 1.81 

Day 36 4.91 ± 0.92a 	5.52 ± 0.84c 	7.38 ± 0.8 	7.18 ± 1.08 

Females 
Short day controls 

Day 0 2.15 ± 0.49 	2.98 ± 0.65 	4.27 ± 2.21 	3.01 ± 0.62 

Day 36 2.98 ± 0.65 	2.12 ± 0.36 	2.51 ± 0.29 	3.27 ± 0.74 

Photostimulated 

Day 0 1.93 ± 0.27 	1.62 ± 0.37 	3.38 ± 0.88 	3.19 ± 0.74 

Day 36 3.31 ± 0.57a 	4.64 ± 0.7a 	4.59 ± 0.47 	6.67 ± 1.64a 

Values are mean ± s.e.m (n=6), a=P<0.05 and c=P<0.005 compared to the values within 
the same group before photostimulation. 
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Fig. 4.3. The testis weights of bantam cockerels after photostimulation (ED 20L:4D) 
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Fig. 4.4. The a) ovarian and b) oviductal weights of bantam hens 
after photostimulation (ED 8L: 16D transferred to 20L:4D) for 36 
days at 4, 8, 12 and 16 weeks of age. Control birds at the same 
ages were retained on short days ( 3 81,16D) and sacrificed at 
the same times as the photostimulated birds. Values are mean ± 
sem (n=6). *p<0.05, **p<0.005, ***p<çJfl compared to non 
photostimulated control birds. 



4.5 Photoinduced changes in gonadal and oviductal weights during 

somatic maturation. 
The effects of days of photostimulation on the testicular, ovarian and oviductal 

weights in males and females at 4, 8, 12 and 16 weeks are presented in Figs. 4.3 and 4.4 

respectively. The testicular weights were significantly higher after photostimulation for 

36 days at 4 (P<0.005), 8 (P<0.005) and 12 (P<0.05) weeks than in control birds kept 

on short days. There was no signthcant clilierence m tesiicuiar welgni.s uci.wvvi' 

experimental males that were photostimulated at 16 weeks and their short day controls 

(Fig. 4.3). The increases in testicular weight expressed as a % after photostimulation at 4 

(210.32±28.1%), at 8 (620.4± 335.5%) and 12 (166.3± 36.4%) weeks were not 

significantly different. Ovarian and oviductal weights were significantly higher after 

photostimulation at 8 weeks (P<0.05 and P<0.05) and 12 weeks (P<0.001 and P<0.005) 

than in short day controls (Figs. 4.4 a, b). Although some of the birds photostimulate4 

at 16 weeks of age came into lay during the last week of photo stimulation, the mean 

weights of their ovaries and oviducts were not significantly (P>0.05) different from 

those in the short day controls which did not come into lay. Similarly, there were no 

differences between the ovarian and oviductal weights in the females photo stimulated at 

4 weeks and their short day controls (Figs. 4.4 a, b). 

4.6 Discussion. 
The increase in plasma PRL levels observed in chickens of both sexes after 

photo stimulation at 4 weeks of age indicates that the neuroendocrine pathways involved 

in photoperiodic control of PRL secretion are functional at this early age. An increased 

concentration of plasma PRL was maintained after 36 days of photostimulation with the 

exception of photo stimulated hens at 4 weeks. Harvey etal. (1979a) found that in layer 

and broiler strains of chicken maintained on long days from hatch, males had higher 
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concentrations of plasma PRL at 6, 7, 11, 12 and 15 weeks of age than females, but from 

16 to 24 weeks of age the females had a higher concentration of plasma PRL than males. 

In the present study, no sex differences were observed in the concentration of plasma 

PRL in juvenile chickens at any age before photo stimulation. Similarly, except at 4 

weeks, there were no sex differences in the photomduced increase in plasma PRL. The 

differences observed between the present study and that of Harvey et al. (1979a) might 

be due to the differences in the strains used and /or to the differences in photoperiodic 

history. Although there were no sex differences in the response to photostimulation, 

there was a sex difference in the ability to maintain the photoinduced increase in plasma 

PRL concentration in 4 -week -old birds. The inability of the 4 -week -old females to 

maintain increased plasma PRL concentrations for more than 29 days after 

photostimulation (Fig. 4.1a) could be due to the absence of a stimulatory effect of 

plasma oestrogen at the level of the anterior pituitary gland (Section 1.4.3.1.1). This view 

is supported by the observation that in 4 -week-old females, photostimulation failed to 

induce a steep increase in LH secretion and was not associated with a stimulation of 

ovarian or oviductal growth (Figs 4.2, 4.4). This suggests that in contrast with older 

females, photostimulation at 4 weeks did not induce a sufficient increase in ovarian 

oestrogen production to facilitate PRL secretion (Section 1.4.3.1). In contrast, in 4 - 

week-old males, photostimulation induced both an increase in plasma LH and testicular 

growth (Fig. 4.3) and this increase in testicular activity and associated increase in plasma 

steroids are suggested to be sufficient to maintain plasma PRL at a higher values than in 

the females at the same age. 

The reduced photoinduced LH response observed in females at 4 weeks is 

inconsistent with earlier study in female broilers (Dunn et al., 1990). In that study, it 

was shown that in 3 -week- old female broiler chickens, a significant increase in plasma 

LH level occurs after 4 days of photostimulation (8L: 16D to 20L:4D). The experiments 

of Dunn et al. (1990) suggest that the maturation of the neuroendocrine pathways 
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controlling photoinduced LH release may partly depend on the fat content of the diet. It 

could be that the nutritional status of the 4 -week- old bantam females was not adequate 

to allow the full development of the photoinduced LH response. However, no 

explanation can be offered to account for the sex difference in the photoinduced release of 

LH at 4 weeks of age. The robust response observed in the males was clearly not 

affected by nutritional status. 

The concentration of plasma LH increases progressively in cockerels reared on 

14 h light/ day between 9 and 19 weeks of age (Sharp, 1975; Sharp et al., 1977; Wilson, 

1978). The non -significant increase in the concentration of plasma LH observed in 16-

week-old cockerels after 3 days of photostimulation was probably due, in part, to an 

increase in plasma LH to near -maximal values which was independent of a change in 

photoperiod. The capacity for further increase after photostimulation may therefore 

have been reduced. The view that the 16 -week-old cockerels were approaching sexual 

maturity, and therefore had maximum plasma LH values, was confirmed by the finding 

that the testes of short day control birds killed at 16 weeks were almost fully developed 

(Fig. 4.3). The capacity of the 16 week females to respond to photostimulation by an 

increase in LH secretion might be explained by the fact the LH levels do not increase in 

female chickens reared and maintained on 14 h light/ day at the at the onset of puberty as 

much as they do in males (Sharp, 1975). This sex difference can be accounted for by 

differences in the circulating concentrations of plasma steroids (Tanabe et al., 1981; Liu, 

1993). It is therefore suggested that, in contrast with the males at 16 weeks, plasma LH 

in females is sufficiently depressed by oestrogen to allow a photoinduced release of LH 

to be readily detected. 

An increase in testicular growth after photostimulation has been observed as 

early as 1 week of age in quail (Tanaka etal., 1965) and in the present study a significant 

(P<0.005) increase in testicular weight was seen after photostimulation at 4 weeks of 

age. It therefore appears that the acquisition of photosensitivity occurs early in post- 
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hatch juvenile development in Galliforms. It is possible that when these birds hatch, the 

neural mechanisms controlling LH and PRL release are sufficiently mature to allow a full 

photoperiodic response. The present study, showing increased ovarian and oviductal 

weights after photostimulation at 4, 8 and 12 weeks is consistent with an earlier study in 

dwarf broiler chickens (Dunn etal., 1990). Photoinduced ovarian growth was correlated 

with increased oviductal growth in 8 and 12 week-old birds. This can be explained by an 

increase in oestrogen and progesterone production by the ovaries in response to the 

photoinduced increase in LH secretion. The growth of the oviduct depends on increased 

secretion of oestrogen and progesterone from the ovary (Phillips etal., 1985). 

In conclusion, the hypothalamo-hypophysial axis of the bantam hens is 

sufficiently mature at 4 weeks of age to respond to increased daylength by an increase in 

both PRL and LH secretion. However, the LH response at 4 weeks, may not be as 

robust in females as it is males. 
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Chapter 5 

PHOTOPERIODIC RESPONSE CURVES FOR PRL AND LH 

IN CASTRATED BANTAMS. 

5.1 Introduction. 

The shortest daylength required to induce a photoperiodic response is termed 

the critical daylength, while the shortest daylength required to induce the maximum 

photoperiodic response is termed the saturation daylength (Section 1.5.5). Between the 

critical and saturation daylength there is proportionality between the daylength and the 

photoperiodic response. A plot of daylength versus the photoperiodic response between 

the critical and saturation daylengths is termed a photoperiodic response curve (PRC). 

In birds, PRCs have been more commonly presented for rates of testicular or ovarian 

growth (Farner, 1964; Follett and Maung, 1978). The relationship between gonadal 

growth and daylength has been shown in quail (Follett and Maung, 1978) and chickens 

(Sharp, 1993) to reflect the relationship between an increase in daylength and increased 

luteinising hormone (LH) secretion. The critical daylength for LH release is known to be 

longer for birds reared on long days than in birds reared on short days (Robinson and 

Follett, 1982). Although it is well established in birds that prolactin (PRL) secretion is 

stimulated when daylength increases (Section 1.3.4), there is no information on the PRC 

for photoinduced PRL release in the domestic hen. 

The objective of this study is to establish in bantam cockerels, a) the critical 

daylength for birds reared on short days, b) the saturation daylength for birds reared on 

short days and c) the critical daylength for birds reared on long days, for photoinduced 

PRL and LH release. The experiments were carried out on castrated birds to avoid the 
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direct stimulatory and inhibitory effects of gonadal steroids on PRL (Section 1.4.3) and 

LH release respectively. The data in these experiments were subjected to logarithmic 

transformation to normalise the variations before subjecting to split -plot ANOVA. The 

differences between means were tested using Fisher's protected least significant 

difference test. 

5.2 Estimate of the critical and saturation daylengths for 

photoinduced PRL and LH release in birds reared on short days. 

Bantam chicks reared in floor pens on short days (8 h light/ day) from hatch 

were surgically castrated (Section 2.2) at 4 weeks, transferred to individual cages and 

maintained on short days. At 20 weeks, groups of 8 birds were transferred to one of the 

following light regimes: 9L:15D, 1OL:14D, 11L:13D, 12L:12D and 14L:1OD. Blood 

samples were collected 4 days before, on the day of transfer, and at intervals of 3-4 days 

after transfer to the test lighting pattern for a period of 36 days. Blood samples were 

taken at the same times from a control group maintained on short days (8L: 16D). 

The prolactin responses in birds reared on short days to increased photoperiods 

are shown in Fig. 5.1. Birds transferred to 9L:15D showed no significant (P>0.05) 

increase in PRL secretion. The concentrations of plasma PRL increased significantly 

(P<0.05) after 4 days by 27, 39, 89, 135 % in groups transferred to 1OL:14D, 1 IL: 13D, 

12L: 12D and 14L (Fig. 5.2). The concentration of plasma PRL did not change further in 

birds held on 1OL:.14D until after 3 weeks of photo stimulation, when it decreased to pre-

photostimulation values (Fig. 5.1). Similarly, in birds transferred to I 1L:13D, the 

concentration of plasma PRL returned to baseline values after 36 days of 

photostimulation. In birds exposed to 12L:12D and 14L:1OD plasma PRL continued to 

increase for 10 and 18 days respectively after photostimulation and thereafter remained 

high until the end of the experiment. Three PRCs are presented because they give slightly 
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different results depending on how they were calculated. The times chosen were 4 days, 

18 days, and a composite of all days after photostimulation (Fig. 5.2). Day 4 was chosen 

because it was the first sampling point at which a photoinduced increase in PRL were 

observed. Day 18 was chosen because it corresponds to the period when plasma PRL 

had reached a plateau in all groups (Fig. 5.1). A composite PRC was constructed using 

all the data to increase the power of analysis. The PRC after 4 days of photostimulation 

demonstrated a significant (P<0.05, ANOVA ) increase in plasma PRL in birds 

photostimulated with photoperiods of 10 h or more (Fig. 5.2a). The PRC taken at day 

18, when plasma PRL concentrations had reached a plateau, showed a significant 

(P<0.05, ANOVA) increase in PRL secretion in birds exposed to photoperiods of 11 h 

or more (Fig. 5.2b). The composite PRC including all data from the times after 

photostimulation showed a significant (P<0.05, ANOVA) increase in plasma PRL 

concentrations in birds transferred to photoperiods of 12 h or more (Fig. 5.2c). It 

therefore appears that the critical daylength for PRL release lies between 10 and 12 h. 

The PRCs (Fig. 5.2) suggested that the saturation daylength for plasma PRL 

was between 12 and 14 h but it was not possible to establish whether photoperiods 

greater than 14 h might exert a greater stimulatory effect on PRL release. 

Estimates of changes in plasma LH after photostimulation were confounded by 

the progressive increase in plasma LH which occurred in the short day control birds 

during the 36-day study (Fig. 5.3). 

5.3 Additional estimation of the saturation daylength for PRL 

secretion in birds reared on short days. 

The previous study suggested that the saturation daylength for plasma PRL 

release might be between 12 and 14 h (Fig. 5.2). However, those data did not 

convincingly demonstrate that daylengths greater than 14 h were equally stimulatory. 

The purpose of this experiment was to confirm the saturation daylength for 
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photomduced PRL secretion and to compare it with the saturation daylength for LH 

(Section 5.2). 

Six groups (n=8) of birds castrated at 4 weeks were reared on short days 

(8L: 16D). At 16 weeks , the groups were either retained on 8L: 16D (control) or 

transferred to 12L:12D, 14L:1OD, 16L:8D, 18L:6D and 20L:4D for 36 days. Blood 

samples were taken at 3-4 day intervals for LH and PRL measurements. 

Changes in plasma PRL after transfer to the various photoperiods are shown in 

Fig. 5.4. The control birds on 8L:16D did not show any significant (P>0.05) change in 

plasma PRL concentrations throughout the experiment with values ranging between 

4.64± 0.64 and 7.14± 1.67 ngf ml. A significant (P<0.05) increase in plasma PRL 

concentration was seen 4 days after transfer to photoperiods of 12, 14, 16, 18 and 20h. 

A further significant (P<0.05) increase in plasma PRL was observed after 7 days of 

photostimulation except for the birds transferred to 12L: 12D, where a further significant 

(P<0.05) increase was only seen after 29 days of photo stimulation. A composite PRC 

was constructed using incremental changes in PRL secretion after photo stimulation (Fig. 

5.5). This shows that photoperiods above 16h light/ day were equally photostimulatory 

(Fig. 5.5). A submaximal PRL response was observed in birds transferred to 14 h light! 

day. Consequently, the saturation photoperiod for PRL release was identified as being 

between 14 and 16 h. 

5.4 Estimation of critical daylength for PRL and LH secretion in birds 

reared on long days. 

The objective of this study was to establish whether the critical daylength for 

PRL and LH release is increased when the birds are reared on long days as has been 

observed for LH in quail (Urbanski and Follett, 1982; Robinson and Follett, 1982). 

The castrated bantams used for the study were reared on 20h light/ day from 

hatch. They were caged in individual cages with free access to feed and water. At 16 
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weeks of age, groups of 8 birds each were transferred to one of the following light 

regimes: AL: IOD, 12L: 12D, 1 IL: 13D, 8L: 16D or retained on 20L:4D. Blood samples 

were collected 2 days before, on the day of transfer, and at regular intervals of 34 days 

for a period of 19 days. 

Changes in plasma PRL concentrations in birds transferred from long days to a 

range of shorter photoperiods are shown in Fig. 5.6. The control birds exposed to 

20L:4D did not show any significant changes (P>0.05) during the 19 -day experiment. A 

significant (P<0.05) fall in plasma PRL concentration was observed in all groups 4 days 

after transfer to shorter photoperiods. Thereafter, plasma PRL in the 14h group did not 

decrease significantly whereas plasma PRL in the 12, 11 and 8 h groups continued to 

decrease (P<0.05). A composite PRC taking into account all the decremental changes in 

PRL secretion after reducing the photoperiod is presented in Fig. 5.7. This shows that 

photoperiods of 14 h or less are not as stimulatory as a 20 h photoperiod while 

photoperiods of 12 h or less are equally non-photostimulatory (Fig. 5.7). It is concluded 

that the critical daylength for PRL release in birds reared on 20 h light/ day is greater than 

14h. 

Concentrations of plasma LH in castrated birds reared and maintained on long 

day lengths showed no significant (P>0.05) change after transfer to shorter photoperiods 

for 19 days (Figs. 5.8). 

5.5 Discussion. 

In the present study, the critical daylength for plasma PRL secretion could not 

be precisely defined, being between 10 and 12 h depending on the way the PRC was 

calculated (Fig. 5.2). This is shorter than in the starling, the only other avian species 

studied. In the latter species, the critical daylength for plasma PRL was 14 -15 h 

(Goldsmith and Nicholls, 1984). The saturation daylength for photoinduced PRL release 

in the present study was between 14 and 16 h light! day (Fig. 5.5). Thus for daylengths 
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between 11 and 14 h there is a direct relationship between the concentration of plasma 

PRL and the photopenod. 

The critical daylength for plasma LH in the present study could not be defined 

accurately because LH concentrations were poorly responsive to changes in daylength in 

castrated birds. It appears that in long-term castrated cockerels the pituitary assumes a 

degree of autonomy in LII synthesis and release irrespective of the photoperiodic 

stimulus (Chapter 6). Since a PRC for LH secretion could not be constructed, 

comparison between PRCs for PRL and LH were done utilising data from previous 

studies in intact chickens. Observations on intact female dwarf broilers, intact female ISA 

Brown hens and White Leghorn hens show that the critical daylengths for LH release 

were 10.5 h, 10.5- 12.75 h and 10 h respectively (Dunn and Sharp, 1990; Sharp, 1988). 

The critical daylength for photoinduced LH release reported in castrated male quail (11-

12 h; Urbanski and Follett, 1982), male starlings (11.5 h; Ebling et al., 1982) and male 

and female starlings (11-13 h; Dawson 1987) are similar to that reported for chicken 

(Dunn and Sharp, 1990; Sharp, 1988). 

In intact female ISA Brown hens the saturation daylength for photoinduced 

plasma LH secretion lies between 12.75 and 15.25h and in intact female dwarf broiler 

chicken between 10.25 and 12.75 h (Dunn and Sharp, 1990). In castrated quail there is a 

direct relationship between the concentration of plasma LH and photoperiod between 

photoperiods of 12 and 14 h. (Urbanski and Follett, 1982). There is a direct relationship 

between the concentration of plasma LH for photoperiods between 10.25 and 12.75 h in 

the chicken (Dunn and Sharp, 1990). As a result, the slope of the PRC for photoinduced 

LII release is much steeper than that for photoinduced PRL release. The significance of 

this difference is discussed further in chapter 10 (General discussion). 

The present study shows that, as for photoinduced LH release, critical, marginal 

and saturation daylengths for photoinduced PRL release are not fixed and are dependent 

on the previous photoperiodic history. Japanese quail (castrated males) maintained on 
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23h light/ day show a decrease in plasma LH when transferred to 13 h light' day, even 

though 13 h light' day is above the critical daylength for LH release in birds maintained 

on short days. This shift in the critical daylength depends on the photopenodic history 

(Urbanski and Follett, 1982; Robinson and Follett, 1982). In the present study, such a 

shift could not be demonstrated for LH release but was seen for the photoinduced release 

of plasma PRL. The concentration of plasma PRL in birds reared on long days (20 h 

light/ day) was significantly (P<0.05) depressed after transfer to shorter photoperiods of 

14, 12, 11 or 8 h. The critical daylength for birds reared and maintained on long days 

(20L: 4D) therefore appears to be greater than 14 h , while for birds reared on short days 

(8L: 16D) it is between 10-12 h. (Fig. 5.2). 

The absence of a decrease in plasma LH in castrated bantams transferred from 

20h light' day to shorter daylength including 8 h light' day must be a consequence of 

castration. This is in contrast to the studies in castrated quail where there is a marked 

decrease in plasma LH after transfer from long to short days (Urbanski and Follett, 

1982). In long -term castrated bantams, pituitary LH secretion appears to become less 

dependent on hypothalamic control and to assume a degree of autonomy. This provides 

an explanation for the slow LH response (Fig. 5.6) or lack of LH response (Fig. 5.8) to a 

change in photoperiod. It is possible that if the 19 -day experiment involving transfer 

from long to short days (Fig. 5.8) had continued for as long as the 36 -day experiment 

involving transfer from short to long days, a decrease in photopenod might have been 

observed to have a depressive effect on the concentration of plasma LH. 
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Chapter 6 

EVIDENCE FOR THE DEVELOPMENT OF 

PHOTOREFRACTORINESS FOR PRL SECRETION. 

6.1 Introduction 
Reproductive behaviour is cyclic in most temperate zone birds. In Spring the 

avian reproductive system is stimulated by increasing daylengths, but after prolonged 

exposure to long days, the gonads regress. These photoinduced changes in the 

reproductive system are reflected in correlated changes in the concentrations of plasma 

follicle stimulating hormone (FSH) and LH. The condition in which birds become 

insensitive to photoperiods which were previously stimulatory is termed 

photorefractoriness (Section 1.3.4) and photorefractoriness is dissipated by exposure to 

short days (Section 1.5.5). The development of photorefractoriness for FSH and LH 

release is accompanied by development of photorefractoriness for PRL secretion 

(Section 1.3.4). The main difference in the development of photorefractonness for 

gonadotrophin and PRL secretion is that plasma PRL tends to increase and decrease 

more slowly than plasma LH after photostimulation and peaks at a time when plasma 

LH concentrations are falling (Section 1.3.4). Photoinduced PRL secretion and the 

subsequent development of photorefractoriness for PRL have been described in several 

wild avian species (Lincoln etal., 1980; Ebling etal., 1982; Sharp etal., 1986a) and in the 

turkey (Lea and Sharp, 1982; El Halawani etal., 1983, 1984b; Lien and Siopes, 1989) but 

no studies on recovery of photosensitivity for plasma PRL secretion have been reported. 

There is evidence for reproductive refractoriness in chickens where'it takes the form of 

relative refractoriness (Section 1.5.4). The development of this condition appears to be 

associated with a progressive fall in plasma LH but it is unknown whether it is 

associated with a decrease in PRL release. 
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The present experiments were done to establish a) whether in castrated bantams 

prolonged exposure to long days results in a depression of PRL secretion, indicative of 

the development of photorefractoriness and if so, b) whether exposure to short days 

results in the recovery of photosensitivity for PRL release. The data in these 

experiments were subjected to logarithmic transformation to normalise the variations 

before analysis using split -plot ANOVA. The differences between means were tested 

using Fisher's protected least significant difference test. Student's t-tests were used to 

compare values between groups of birds. 

6.2 Effect of transfer from short days to a range of photostimulatory 

daylengths for 148 days. 

Castrated birds were reared on short days (8 h light' day) from hatch and, at 16 

weeks, groups of 8 birds were transferred to 12, 14, 16, 18 and 20 h light! day. A control 

group was retained on 8 h light! day. Birds were housed in individual cages. Blood 

samples were collected before transfer to longer photoperiods and thereafter at regular 

intervals of 7 days for 36 days, and then every 14 days for a further 112 days. 

Transfer from short to long days induced a significant (P<0.05) increase in PRL 

secretion (Fig. 6.1a). Plasma PRL decreased progressively 36 days after transfer from 

short days to photoperiods of 14 h or more. After 148 days, with the exception of birds 

exposed to 14 h light] day, plasma PRL stabilised at low values which were significantly 

(P<0.05) higher than in short day control birds. Plasma PRL in birds exposed to 14 h 

light' day decreased to the same concentration as the short day control birds after 148 

days of photostimulation (Fig. 6.1a). Plasma PRL increased more slowly after transfer 

to 12 h light' day than after transfer to longer photoperiods. After 148 days, plasma 

PRL was higher in birds exposed to 12 h light/ day than in birds exposed to longer 

photoperiods. There was no significant (P>0.05) change in the plasma PRL in control 

birds exposed to 8 h light/ day during the experiment. 
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Plasma LII increased significantly (P<0.05) in both the short day control and 

photostimulated groups during the experiment (Fig. 6.1b). As a result, there were no 

significant (P>0.05) differences in plasma LH between the short day control and 

photostimulated groups. 

6.3 Evidence for the development of absolute photorefractoriness for 

PRL secretion in birds exposed to 16 h but not 12 h light/ day for 148 

days. 

Castrated bantams which had been reared on short days (8 h light' day) and 

transferred to 12 or 16 h light/ day for 148 days (Section 6.2) were given an additional 4 

h light! day. A control group was included which had been transferred from short days 

to 20 h light/ day for 148 days and was maintained on 20 h light! day. The birds were 

transferred to the increased photoperiods for 32 days. Blood samples were collected at 

the time of transfer and at intervals of 3-4 days thereafter. At the beginning of the 

experiment, plasma PRL was higher in birds exposed to 12 h light' day than in birds 

exposed to 16 or 20 h light! day (Fig. 6.2). 

A 4 h increase in photopenod resulted in a significant increase (P<0.05) in 

plasma PRL in birds initially exposed to 12 h light' day (Fig. 6.2), reaching a peak after 7 

days. Thereafter plasma PRL decreased progressively and, after a further 11 days, was 

not significantly (P>0.05) different from the value before the photoperiod was increased 

(day 0). After 18 days of photo stimulation, plasma PRL concentrations decreased to 

values seen in control birds exposed to 20 h light' day and in birds transferred from 16 to 

20 h light' day (Fig. 6.2). The concentration of plasma PRL did not increase in birds 

transferred from 16 to 20 h light' day (Fig. 6.2). No significant (P>0.05) change occurred 

in the concentration of plasma PRL in control birds maintained on 20 h light' day during 

the experiment. 
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6.4 Recovery of photosensitivity for photoinduced PRL secretion after 

exposure to short days. 
Castrated bantams (>45 weeks of age) which had been exposed to 20 h light/ day 

for 160 days were exposed to 8 h light/ day for 2 or 5 weeks and than transferred back to 

20 h light/ day for 8 or 5 days respectively to test for the recovery of photosensitivity 

for photomduced PRL secretion. Two groups of castrated bantams (n=6) of the same 

age, reared and maintained on 8 h light/ day were used as the control groups for the 

experiments. Blood samples were collected immediately before and after transfer from 

short days to 20 h light/ day every 2-3 days for 5- 8 days. 

The concentration of plasma PRL was significantly lower (P<0.05) in birds 

transferred from 20 h light/ day to 8 h light/ day than in the short day controls (Fig. 6.3). 

RephotostimulatiOn with 20 h light/ day significantly (P<0.05) increased the 

concentration of plasma PRL in both the experimental groups (Fig. 6.3). The 

concentration of plasma PRL in the group exposed to short days for 2 weeks increased 

to the concentrations seen in the short day controls, whereas the concentration of plasma 

PRL in the group exposed to short days for 5 weeks increased to higher values, well in 

excess of those in the short day controls (Fig. 6.3). / 

6.5 Discussion 
The pattern of increased plasma PRL concentrations observed after 

photostimulation followed by a decrease indicates an apparent development of 

photorefractoriness for PRL secretion in castrated bantams exposed to long 

photoperiods (>12 h light! day). This observation was unexpected because there is no 

evidence for the development of absolute reproductive refractoriness in chickens. 

However, Sharp (1988) showed that prolonged exposure of bantam hens to 14 h light] 

day resulted in almost complete cessation of egg production. Egg production was 
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stimulated either by transfer to 20 h light/ day or by transfer to 8 h light/ day for 5 weeks 

and back to 14 h light! day. This indicated that the bantams became relatively 

photorefractory for reproductive function. In earlier studies, photorefractoriness for PRL 

release has only been observed in species showing absolute reproductive refractoriness 

(e.g. turkeys, El Halawrn et al., 1984a; starlings, Dawson and Goldsmith, 1983; rooks 

Lincoln et al., 1980 and partridges, Sharp et al., 1986a). In contrast to this study, in 

quail, there is no fall in plasma PRL concentration after exposure to a prolonged period 

of long days (Juss, 1993). 

A feature of the mechanism involved in the development of photorefractoriness 

is that it is not readily induced if birds are photostimulated with daylengths that are close 

to the critical daylength (Nicholls et al., 1988; Sharp, 1993). For example, willow 

ptarmigan, transferred from short days (6 h light/ day) to 14 h light/ day, remained 

photosensitive with elevated plasma LH until the end of the study (20 weeks), while the 

willow ptarmigan transferred to 18 h light/ day developed photorefractoriness after 10 

weeks of photostimulation (Stokkan etal., 1982). A further example is provided by the 

study in dwarf broilers in their second egg laying cycle (Sharp, et al., 1992). Birds 

transferred from short days (3 h light/ day) to 20 h light/ day showed an early peak in egg 

production followed by a rapid decrease in egg output. In contrast, birds transferred from 

3 h light/ day to 11 h light/ day came into lay slowly, but egg production was more 

persistent than in the birds transferred to 20 h light! day. Thus after 32 weeks of 

photostimulation egg production in hens exposed to 20 h light/ day decreased to the level 

of the short day controls, while the egg output in birds on 11 h light/ day remained 

significantly greater. These data suggest that photostimulation with 11 h light/ day, 

which is close to the critical photoperiod for LH secretion in chickens (Chapter 5), is 

sufficient to stimulate reproductive function without inducing the development of 

photorefractoriness (Sharp et al., 1992). In starlings the critical photoperiod for LH 

release lies between 11 and 13 h light/ day and hence birds held on 11 h light/ day never 



become photorefractory (Dawson et al., 1985). Thus, photopenods close to the critical 

daylength induce breeding condition slowly and also prolong the breeding condition for 

an extended period. The critical daylength for plasma PRL secretion for castrated bantam 

lies between 10 and 12 h light' day (Chapter 5). The slow progressive increase in plasma 

PRL levels in the birds transferred to 12 h light/ day, and the prolonged maintenance of 

high plasma PRL secretion on this photoperiod, shows that, as for photoinduced LH 

secretion, photorefractoriness for photoinduced PRL secretion does not develop when 

the birds are exposed to a marginally stimulatory daylength. 

The increase in plasma LH in the short day castrates in the absence of 

photostimulation indicates a photopenod-independent mechanism and it appears to be 

due to the removal of the negative feedback effects of steroids on LH synthesis or release 

and an assumption of a degree of autonomy by the pituitary, as has been discussed 

previously (Chapter 5). 

The increase in plasma PRL in birds exposed to 12 h light' day, but not 16 h 

light' day (an additional 4 h photo stimulation), indicates that the birds on 12 h light/ day 

were photosensitive and those on 16 h light/ day were absolutely photorefractory. The 

increase in plasma PRL in re-photostimulated birds on 12 h light/ day was less persistent 

than in birds transferred from 8 h to 12 h light! day (Section 6.2). This indicates that the 

process leading to the development of photorefractonness is set in motion after exposure 

to 12 h light' day but is not completed. Increased photostimulation appears to accelerate 

the inhibitory effect of long days, allowing the complete development of 

photorefractoriness. These observations contrast with studies on the development of 

photorefractonness for plasma LH secretion in chickens. As far as photoinduced LH 

release is concerned, there is evidence for the development of relative but not absolute 

photorefractoriness (Sharp, 1988, 1993). It seems that the mechanism controlling the 

development of photorefractonness may differ between PRL and LH release in the 

bantam. This view is further supported by studies in intact male and female bantams in 
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which photostimulation induced an increase and a subsequent decrease in plasma PRL 

but not in plasma LH (Chapter 8). 

The rate at which photosensitivity is regained under short day lengths, as 

demonstrated by measuring the concentration of plasma LI-ID  depends on the species and 

shortness of the short days (Nicholls et al., 1988, Sharp, 1993, 1996). In the present 

study, the recovery of photosensitivity for photoinduced PRL release after exposure to 

short days was measured as the magnitude of the increase in concentration of plasma 

PRL after transfer back to long days (Fig. 6.3). It was observed in photorefractory birds 

that 2 weeks of exposure to short days resulted in a partial recovery of photosensitivity, 

with the magnitude of the photoinduced increase in plasma PRL being small. A full 

recovery of photosensitivity appeared to occur in photorefractory birds photostimulated 

after 5 weeks of exposure to short days. In these birds, the photoinduced increase in 

plasma PRL was similar to that observed after photostimulation in castrated bantams 

reared on short days (Chapter 5, Section 6.2). 

Photorefractoiy starlings regain photosensitivity for LH secretion after exposure 

to 28-3 5 short days and it is marked in castrated birds by a spontaneous increase in 

plasma LH (Dawson, 1991; Boulakoud and Goldsmith,1994). It remains to be 

established whether an increase in plasma PRL marks the recovery of photosensitivity in 

photorefractory birds transferred to short days. Exposure of castrated chickens reared on 

long days (20 h light/ day) to 19 short days (8 h light! day, Chapter 5) did not result in a 

spontaneous increase in plasma PRL. It is possible that such an increase would have 

been observed if photorefractory birds had been held on short days for a longer period. 

In conclusion it was established, in castrated bantams, that photorefractonness 

develops for photoinduced PRL secretion after prolonged exposure to photopenods 

longer than 12 h light( day. It was also established that castrated bantams become 

absolute photorefractory for PRL secretion. A marginally stimulatory photoperiod of 12 

h light/ day induces PRL secretion for a prolonged period without inducing 



photorefractoriness. Dissipation of this apparent photorefractoriness and recovery of 

photosensitivity for plasma PRL secretion was achieved after 2 to 5 weeks of exposure 

to short days. 
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Chapter 7 

PHOTOINDUCED PRL RELEASE IN RESPONSE TO A 

SINGLE LONG DAY. 

7.1 Introduction 

The photoperiodic response often seems slow because photomduced changes, 

such as gonadal growth, take weeks to complete. However, in birds, the underlying 

neuroendocrine mechanisms may respond within a few hours to a change in photoperiod. 

For example, in the Japanese quail, an increase in concentrations of plasma LH and FSH 

is observed 20-22 h after dawn of the first long day (Follett et al., 1977; Nicholls et a!, 

1983). This increase in LH concentration continues for about 10 days as a 'carry over 

effect' if quail are returned to short days after exposure to one long day (Follett et al., 

1977; Nicholls et al., 1983; Follett and Pearce-Kelly, 1991; Perera and Follett, 1992; 

Meddle and Follett, 1995). It has not been established whether photoinduced PRL 

release similarly occurs after exposure to one long day. 

The present experiment was undertaken to establish a), whether PRL secretion in 

the chicken is induced by exposure to one long day b), to determine the time after the 

'dawn' of the first long day at which PRL secretion increases and c), to determine 

whether photoinduced PRL release is associated with a 'carry over effect' after transfer 

back to short days. 

7.2 First -day photoinduced PRL release. 

The experiments were carried out on castrated cockerels (65 weeks-old) which 

had been used in other photoperiodic experiments. Before being used for this experiment, 

the birds had been held on short days (8 h light/ day) for more then 3 months to allow 
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full recovery of photosensitivity. The birds were housed in individual cages with free 

access to feed and water. Groups of 8 birds were transferred to one long day (20L: 413, 

experimental) and then returned to short days (8L: 1613), while the control group of 8 

birds were kept on short days throughout the experiment. In order to make it more 

convenient for the collection of blood samples, lights were switched on at 0100 In (dawn). 

This involved moving the time of 'dawn' back by 8 h whilst the birds were held on 8L: 

16D for 2 weeks before photostimulation. Blood samples were collected at the 'dawn' 

and then at 2 h intervals beginning 8 h later for 24 h. After return to short days, blood 

samples were taken at 34 day intervals for 21 days. Where it was necessary to take 

blood samples in the dark, the bird was taken to a darkened area outside the room in 

which it was housed and a dim light was used to locate the wing vein. 

Transfer from short days to a single 20 h photoperiod resulted in an increase 

(P<0.05) in plasma PRL beginning 20 -22 h after 'dawn' (Fig. 7.1). The concentration of 

plasma PRL increased to a peak 36 In after 'dawn', at which time it had increased 3 -fold 

(Fig. 7.1). After birds were returned to short days (8L: 16D), the concentration of 

plasma PRL remained significantly elevated (P<0.05) for 4 days (Fig. 7.2). Although 

concentration of plasma PRL remained elevated for a further 5 days (9th day after 

'dawn'), it was not statistically significant (P>0.05) from PRL values measured at 

'dawn'. The concentration of plasma PRL returned unambiguously to pre-

photostimulation values 11 days after exposure to one long day. 

7.3 Discussion. 

The experiment demonstrates that the photopenodic induction of plasma PRL 

secretion occurs about 20-22 h after 'dawn' of the single long day. Similar studies on 

photoinduced gonadotrophin secretion in intact immature male quail indicate that the 

photoperiodic induction of plasma LH and FSH also occurs 20-22 In after 'dawn' of a 

single long day (Follett etal., 1977). Studies carried out on castrated quail confirmed that 
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the photoperiodic induction of LH occurs between 18-24 h or 22-26 h after 'dawn' 

(Follett and Pearce-Kelly, 1991; Perera and Follett, 1992). Studies in vitro on 

superfused quail hypothalamic explants indicated that the photoinduced increase in LH 

secretion in the first long day was due to an increase in GnRH release (Perera and Follett, 

1992). This observation demonstrates that the mechanism responsible for photoinduced 

LH release involves brain centres above the level of the anterior pituitary gland. It is well 

established in birds that VIP is the PRL releasing hormone (Section 1.4.1). Although 

there is no direct evidence to show that VIP release is increased after exposure to one 

long day, it is probable that this is the case. This view is supported by the observation 

that active immunisation against VIP blocks photoinduced PRL release (Chapter 9). 

First -day release studies in quail indicate that the magnitude of the photoinduced 

LH response depends upon the length of the single long day. Castrated quail 

photostimulated with one 14 h photoperiod did not show a significant rise in plasma LH 

within 24 h of 'dawn', whereas plasma LH increased at this time in birds exposed to 

single 17 or 20 h photoperiods (Follett and Pearce-Kelly, 1991). The critical daylength 

for LH release in quail is between 11-12 h (Urbanski and Follett, 1982). It therefore 

appears that between this critical daylength and 17 h after 'dawn' of the first long day a 

cascade of photoinduced neuroendocrine events occurs culminating in the release of 

GnRH. The reason for the sluggishness of this neuroendocrine response is not known 

but it may reflect the time required for de novo gene transcription and protein synthesis. 

The critical daylength for photoinduced PRL secretion in the bantam is between 10-12 h 

(Section 5.2), while an increase in plasma PRL was observed between 20-22h after 

'dawn' of the first long day. This interval between the critical daylength and the increase 

in PRL release is therefore similar to that observed in the quail for the first -day-induced 

LH release. The similarities in the time courses for first -day PRL and LH release 

suggest that the neural mechanisms transducing photoperiodic information to VIP or 

GnRH neurons may be similar. The extent to which a common pathway is involved is 
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uncertain, partly because knowledge of the avian biological clock and extra-retinal 

photoreceptor is incomplete (Section 1.5). 

A common feature of the 'first day' photoperiodic responses for LH and PRL is 

the 'carry over effect', where photoinduced hormone release continues for several days 

in response to one stimulatory photoperiod (Follett et al., 1977; Nicholls et al., 1983; 

Follett and Pearce-Kelly, 1991; Perera and Follett, 1992; Meddle and Follett, 1995). 

Experiments on quail shows that the 'carry over' phenomenon is mediated, at least in 

part, by the central nervous system. Thus, surgical deafferentation of the basal 

hypothalamus 18 h after the 'dawn' of the first long day completely blocks the 

photoperiodic increase in LH secretion (Follett at al., 1977). Furthermore, GnRH is 

released in vitro from hypothalamic blocks, taken on the third short day after exposure 

to a single long day, at a higher rate than from the control hypothalami taken from non - 

photostimulated birds (Perera and Follett, 1992). It is therefore likely that the 'carry 

over' effect observed for photoinduced PRL release is also controlled at the level of the 

hypothalamus, through the release of VIP. 

In conclusion, the time-course of the 'first day release' and the 'carry over' 

phenomena observed for photoinduced PRL release in castrated bantams show 

similarities with the pattern of first day LH release in quail. 
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Chapter 8 

CHANGES IN CONCENTRATIONS OF PLASMA PRL AND 

LII IN INTACT CHICKENS AND TURKEYS OF BOTH 

SEXES DURING A PHOTOINI)UCED BREEDING CYCLE. 

8.1 Introduction. 
In chapters 4, 5 and 6 it was shown that an increase in photoperiod stimulates 

both LH and PRL secretion in intact juvenile and somatically mature castrated bantams. 

This Thesis demonstrates for the first time (Chapter 6) that photoinduced PRL secretion 

in the bantam also demonstrates the feature of photorefractoriness. This phenomenon 

was observed in castrated bantams but it is not known whether this apparent 

development of photorefractoriness for PRL release also occurs in the presence of the 

gonads, since gonadal steroids exert a direct stimulatory effect on PRL secretion (Chapter 

3). 

The present investigation was therefore undertaken to determine whether 

prolonged exposure of intact bantams and turkeys of both sexes results in the 

development of photorefractoriness for both photoinduced PRL and LH release. A 

comparison was made between bantams and turkeys because turkeys are known to 

become absolutely photorefractory (El Halawani etal., 1984a), whereas bantams become 

relatively photorefractory (Sharp, 1988). An unimproved breed of turkey was used for 

the study because it was believed that it was likely to exhibit a clearer development of 

photorefractoriness than commercial breeds. A comparison was made between males and 

females to obtain a better understanding of the relative roles of testicular and ovarian 

steroids in the control of PRL secretion. Since chickens kept on short days for a 

prolonged period come into lay (Sharp, 1993), a group of female bantams maintained on 

short days were included in the study so as to provide a better understanding of the 
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relationship between PRL secretion and photopenodically-independent and dependent 

egg production. 

8.2 Effect of prolonged exposure to long days on plasma PRL and LII 

in intact male and female bantams. 

Male (n=15) and female (n=1 1) bantam chicks were reared on a short 

photoperiod of 8 h light/ day from hatch. Experimental birds comprising 8 males and 6 

females were transferred to individual cages at 12 weeks of age and were kept on 8 h 

light/ day until 16 weeks of age. At this time they were photostimulated by transferring 

them to 20 h light' day for 105 days. Control birds comprising 7 males and 5 females 

were transferred to individual cages at 12 weeks of age and maintained on 8 h light' day 

throughout the experiment. Blood samples were collected before photo stimulation and 

at regular intervals of 2 weeks thereafter. Blood samples were taken from the short day 

control group at the same times. Egg-laying records were kept throughout the study. 

The concentration of plasma PRL in photostimulated female bantams was 

significantly higher (P<0.001, ANOVA repeated measure followed by Fishers's 

protected least squares difference) than in photo stimulated males (Fig. 8.1a). The 

concentration of plasma PRL in the females increased significantly (P<0.001) after 

photostimulation, peaked after 35 days, and remained high until 77 days post-

photo stimulation; thereafter plasma PRL began to decrease (Fig. 8.1a). At the end of the 

study, after 105 days photostimulation, the concentration of plasma PRL was lower 

(P<0.05) than the value between 3 5-77 days of photostimulation but higher (P<0.05) 

than before photostimulation, and higher than in the short day control females (Fig. 

8.1 a). 

After photostimulation, males showed the same pattern of change in plasma 

PRL concentration as seen in the photo stimulated females, but in a less pronounced 

manner. The concentration of plasma PRL increased significantly (P<0.01) after 
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photostimulation, reaching a peak at 35 days, and than decreased (P<0.01). However, at 

the end of the study, after 105 days of photostimulation, the concentration of plasma 

PRL remained significantly (P<0.05) higher than before photostimulation and higher than 

in the control short day males (Fig. 8.1a) 

Control female bantams kept on short days showed a small but significant 

(P<0.05) increase in plasma PRL 75 days after the experimental hens had been 

photostimulated, and levels remained elevated until the end of the study. Control male 

bantams kept on short days did not show any significant (P>0.05) change in plasma 

PRL concentration throughout the study (Fig. 8.1 a). 

Concentrations of plasma LH in bantams transferred to 20 h light] day at 16 

weeks, or maintained on short days, are shown in Fig. 8.1b. Photostimulated females 

had significantly (P<0.005, ANOVA repeated measures) higher concentrations of plasma 

LH than their short day controls. In contrast, there were no significant differences in LH 

concentrations between short and long day males. The concentration of plasma LH in 

photostimulated males was significantly higher (P<0.001) than in photostimulated 

females. Similarly, in the control groups kept on short days, plasma. LH concentrations 

in the males were significantly higher (P<0.001) than in the females. 

After photo stimulation, egg production was stimulated and reached a peak at 42 

days; thereafter it remained unchanged (P>0.05) until the end of the study.. Hens started 

to lay after 14 days of photostimulation and 50 % were in lay after 21 days. Control 

birds maintained on short days began to lay 28 days after the photostimulated hens and 

50 % were in lay at 22 weeks of age (Fig. 8.1c). All the photostimulated and short day 

control birds eventually came into lay. The peak of egg production in the short day 

control hens was lower than that in the photostimulated hens (Fig. 8.1c). Overall mean 

egg production (Fig. 8.1c) during the 105 day experiment was significantly higher 

(P<0.001) in the photostimulated (4.61± 0.44 eggs/ bird/ week) than the non-

photostimulated hens (1.76± 0.52 eggs/ bird! week). 
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8.3 Effect of prolonged exposure to long days on plasma PRL and LII 

in intact male and female turkeys. 
Spotted Nebraska turkeys (8 males and 8 females) were reared from hatch on 

long days (14 h light/ day) in floor pens. At 16-18 weeks of age the birds were 

transferred to two separate pens on short days (7 h light] day), each containing 4 males 

and 4 females, to dissipate juvenile refractoriness. The photoperiod was increased to 14 

h light] day when the birds were 28-30 weeks of age to induce sexual maturation. Blood 

samples were collected immediately before photostimulation and then at intervals of 2 

weeks for 189 days. Daily egg production records were maintained for each pen 

throughout the study. Plasma LH and PRL were assayed using chicken LH and chicken 

PRL radioimmunoassays (Sections 2.4.1 and 2.4.2). 

The concentrations of plasma PRL after photostimulation in females were 

significantly (j)<Z0.005, ANOVA repeated measures) higher than in the males (Fig. 8.2a). 

Plasma PRL progressively increased after photostimulation and reached peak values after 

63 days. After 100 days photo stimulation, plasma PRL concentrations began to decrease 

gradually and were not significantly (P<0.05) different from the pre-photostiinulation 

values after 161 days (Fig. 8.2a). Thereafter, reduced concentrations of plasma PRL 

were maintained until the end of the study. In males, the concentration of plasma PRL 

increased after photostimulation and reached a peak after 63 days. Thereafter, plasma 

PRL remained significantly (P<0.01) elevated for 119 days and then decreased, returning 

to pre-photostimulation values (Fig. 8.2a). 

The concentrations of plasma LH were significantly (P<0.005, ANOVA 

repeated measures) higher in the male than the female turkeys (Fig. 8.2b). In the males 

plasma LH increased to a maximum concentration (P<0.01) 21 days after 

photostimulation and remained unchanged for 49 days. Thereafter the concentration of 
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plasma LH decreased and was not significantly (P>0.05) different from the pre-

photostimulation values after 77 days of photostimulation. In the females, the 

concentration of LH increased significantly (P<0.001) after photostimulation reaching 

peak values after 49 days. Thereafter plasma LH decreased to values which were not 

significantly (P>0.05) different from those seen before photostimulation. 

Egg -laying started 14 days after photostimulation reaching a peak after 28 days 

(4.18 eggs/ bird! week). Thereafter, egg -laying decreased progressively to 1.71 eggs/ 

bird/ week at 189 days (Fig. 8.2c). 

8.4 Discussion. 

The increase in concentration of plasma PRL and subsequent decrease after 

prolonged photostimulation in intact male and female bantams and turkeys suggests the 

development of photorefractoriness for photoinduced PRL secretion. This view is 

supported by observations (Chapter 6) in castrated bantams in which the decrease in 

plasma PRL after prolonged photostimulation is more pronounced. 

The sex difference in the magnitude of photoinduced PRL secretion, observed in 

both bantams and turkeys, with females showing a greater response than males, contrasts 

with observations on juvenile intact bantams after photostimulation (Chapter 4). In 

juveniles, there was no sex difference in the magnitude of photoinduced PRL release. 

This may reflect sex differences in the rate at which ovarian steroidogenesis is induced 

after photo stimulation. The 16 -week -old female bantams in the present study came into 

lay 15 days earlier after photostimulation than the bantams of the same age used for the 

earlier study (Chapter 4). The reason for this difference is unknown. It is of interest to 

note that somatically mature bantam hens kept on short days started to lay without a 

marked increase in plasma PRL, whereas the photostimulated birds showed a 

pronounced increase in plasma PRL concentration when in lay (Fig. 8.1). This suggests 

that the increase in concentration of plasma PRL observed at the onset of photoinduced 
I 
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egg production is mainly due to a photoinduced release of VIP (Chapter 9) and that 

increased plasma ovarian steroids subsequently enhances the stimulatory action of VIP 

on PRL release (Chapter 1, Section 1.4.3). 

The onset of sexual maturation after prolonged exposure to short days is due to 

an increase in genotype-dependent, photoperiodically-independent activity of the 

GnRH-I neurons (review Sharp, 1993). A similar mechanism does not appear to apply 

to VIP neurons since plasma PRL did not increase in castrated or intact bantams after 

prolonged exposure to short days. The small increase in concentration of plasma PRL 

observed in laying bantams exposed for a prolonged period (Fig. 8.1a) to short days 

might reflect a stimulatory action of prolonged exposure to oestrogen from the fully 

developed ovary, acting directly on the anterior pituitary gland. 

As observed in bantams, there was a marked sex difference in turkeys in 

photoinduced PRL secretion with the females having a higher values than the males. The 

five -fold increase in plasma PRL concentration after photostimulation in the females 

was less than that observed in earlier studies (Etches and Cheng, 1982; Guémené and 

Williams, 1994 and El Halawam et al., 1995a). The reason for this is uncertain but it 

could be related to the fact that the early studies were carried out on commercial birds 

while the present study used an unimproved breed in which the development of 

photorefractoriness was expected to be more pronounced. 

In agreement with the earlier studies of Lien and Siopes (1989), the 

development of photorefractoriness for PRL and LH release in female turkeys was not 

associated with the cessation of egg laying (Fig. 8.2). It may be that the process of 

domestication has resulted in the ovaries of the turkeys becoming more responsive to 

low concentrations of plasma gonadotrophins. However, domestication does not appear 

to have altered the neuroendocrine mechanisms responsible for the development of 

photorefractoriness for LH and PRL secretion. It is of interest to note that in the turkey, 

the successive peaks of plasma LH and PRL induced by photo stimulation, followed by 
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the development of photorefractoriness for both hormones, shows the same pattern of 

photomduced plasma LH and PRL secretion observed in wild birds which become 

absolutely photorefractory (Chapter 1, Section 1.3.4). 

The increase in plasma LH after photostimulation in turkeys was similar to that 

reported by others (Burke and Dennison, 1980; Lea and Sharp, 1982). It is not solely 

due to an increase in LH pulse frequency but, in large measure, to an increase in non-

pulsatile LH release (Bacon and Long, 1995). The present study showed a sex difference 

in the photoinduced release of LH in both turkeys and bantams, although this difference 

was more pronounced in bantams. This is probably due to the fact that ovarian steroids 

exert a greater inhibitory effect on LH release than do testicular steroids (Liu, 1993). 

Unlike turkeys, there was no evidence in bantam hens or cockerels for a 

decrease in plasma LH after prolonged photo stimulation. This is consistent with the 

observation that in bantams, unlike turkeys, there was no evidence for the development 

of absolute photorefractoriness (Sharp, 1988). More prolonged exposure to long days 

may eventually result in decreased plasma LH and egg production although this seems to 

be due to ageing rather than to the development of relative photorefractoriness (Sharp et 

al., 1992; Dunn and Sharp, 1992). However, as in turkeys, there was evidence in intact 

bantams, particularly the males, for a photoinduced increase and subsequent decrease in 

plasma PRL concentration, indicating the development of photorefractoriness. The 

finding that the photoinduced peak in PRL secretion was not as well defined in intact 

bantams as in castrated bantams (Chapter 6) reflects the stimulatory effects of gonadal 

steroids on PRL release (Chapter 1, Section 1.4.3 and Chapter 3 ). This is particularly 

evident in hens in which the photoinduced increase in plasma PRL was 34 fold higher 

than the castrated bantams (Chapter 6). It is likely that the high concentration of plasma 

PRL in photostimulated hens reflects the potentiating effects of increased plasma 

oestrogen from the filly developed ovary, on the ability of photoinduced VIP release to 

stimulate PRL secretion. 
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In conclusion, prolonged exposure to long days results in the development of 

photorefractoriness for plasma PRL release in both sexes in the turkey and bantam. The 

photoinduced release of PRL is sex-dependent with higher values in females than in 

males. Photoinduced LH release in both chickens and turkeys is higher in males than in 

females. A photoinduced increase followed by a decrease in plasma LH was seen in male 

and female turkeys but not in bantams, indicating the development of 

photorefractoriness, although this was not associated with the cessation of egg laying. 
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Chapter 9 

HYPOTHALAMIC CONTROL OF PHOTO1NDUCED PRL 

SECRETION AND ITS FUNCTIONAL SIGNIFICANCE. 

9.1 Introduction. 
In early Chapters it was established that PRL (Chapters 4 -6) and LH (Chapter 

4) secretion in bantams is controlled by changes in daylength. Photoinduced LH 

secretion is controlled by the release of gonadotrophin releasing hormone (e.g. Perera and 

Follett, 1992) but it has not been established, in the bantam, which neuropeptide/ 

neurotransmitter controls photoinduced PRL release. The primary candidate is the avian 

prolactin releasing hormone, vasoactive intestinal polypeptide (VIP, Sharp et al., 1989; 

Mauro etal., 1989; Cloues etal., 1990; Youngren et al., 1994). Its physiological role in 

the control of PRL secretion in incubating bantams and turkeys has been demonstrated 

by showing that passive (Sharp et al., 1989) or active (El Halawani et al., 1995a) 

immunisation against VIP depresses the concentration of plasma PRL. These studies 

suggest that a physiological role for VIP in the regulation of photoinduced PRL release 

might be readily demonstrated by establishing that PRL secretion is not stimulated after 

photostimulation in birds immunised against VIP. 

The functional significance of photoinduced PRL secretion has not been 

established. Since egg -laying was initiated in short day bantams in the absence of an 

increase in plasma PRL (Chapter 8), it seems that increased plasma PRL is not necessary 

for the initiation of reproductive activity. 

It is suggested that a major function for the increase in plasma PRL after 

photostimulation in females may be to encourage incubation behaviour (Sharp, 1989). 

This view is supported by the finding that active immunisation against PRL in the 
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bantam, inhibits the development of incubation behaviour (March et al., 1994). It is 

therefore suggested that, in bantams, active immunisation against VIP, designed to block 

photoinduced PRL release, should also prevent the development of incubation behaviour. 

A further role for the photoinduced release of PRL in birds such as the turkey, 

which become absolutely photorefractory (Sharp, 1989), may be to participate in the 

development of reproductive refractoriness. This suggestion is based on the observation 

in wild birds (Chapter 1, Section 1.3.4), that photoinduced PRL secretion is greatest 

during the development of absolute photorefractoriness, when the gonads regress. It is 

therefore suggested that if active immunisation against VIP inhibits photoinduced PRL 

release, it should also affect the time course of the development of reproductive 

photorefractoriness 

In addition to its role in the control of prolactin secretion, VIP is also produced in 

the avian anterior pituitary gland where it may act in a paracrine manner to regulate the 

function of gonadotrophs (Shale, 1996) as has been demonstrated in mammals (Lasaga et 

al., 1989; Ogwuegbu et al., 1990; Hammond et al., 1993; Lafuente et al., 1995). This 

function of VIP might be determining whether plasma LH is depressed in birds actively 

immunised against VIP. 

The aim of this study was to establish the effects of active immunisation against 

vasoactive intestinal polypeptide (VIP) on, a) photoinduced PRL and LH secretion in 

castrated chickens, b) the development of broodiness in turkeys, and c) photoinduced egg 

production in turkeys. 

9.2 Preparation of immunogen and immunisation procedure. 

Two 15 -amino acid polypeptides corresponding to the C-terminal and N-

terminal sequences of chicken VIP (cVIP, Nilsson, 1975) were synthesised on a 

Biosearch 9500 peptide synthesiser (New Brunswick Scientific Ltd) using solid-phase 
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t-BOC chemistry and the reagents and conditions recommended by the suppliers of 

the instrument. The peptide sequence were RKQMA\TKKYLNSVLT-NH2 (VIPC) 

and HSDAVFTDNYSRFRK-NH2 (VIPN). They were extended at the amino 

terminus by the addition of cysteine to allow them to be conjugated through the thiol 

group of cysteine to the purified protein derivative (PPD) of tuberculin (Central 

Veterinary Laboratory). Conjugation was carried out using suiphosuccinimidyl H-

(maleimidomethyl) cyclohexane-1-carboxylate following the protocol indicated by the 

manufacturer (Pearce and Wamner Ltd). The \TIPCIVIIPN-PPD conjugates were 

prepared by N.S. Huskisson (Microchemical Faculty, Babraham Institute, Babraham. 

Cambridge, UK) 

The active immunisation procedure was based on that described by Lachmann et 

al., (1986). It was initiated with an intradermal 'priming' vaccination into the comb with 

BCG vaccine (0. lml, Evans Medical Ltd) followed after at least 4 weeks, with 

intramuscular injections of VIPC/VIPN-PPD (1:1, total conjugate, 1 mg/ bird), VIPC-

PPD (1 mg/ bird) or PPD (1 mg/ bird) emulsified in Freund's incomplete adjuvant 

(SIGMA). The VIPC-PPD and VIPC/VIPN-PPD conjugates were supplied in 

phosphate buffered saline (2 mg/ ml) and were emulsified by sonication with an equal 

volume of adjuvant. In order to make the emulsion easier to inject, it was homogenised 

by sonication with an equal volume of physiological saline containing 2% Tween 80 

(SIGMA) . The control immunogen was prepared following the same procedure, but 

substituting VIPC-PPD or VIPC/VIPN-PPD with PPD. The birds were immunised by 

injections into the breast muscle on either side of the keel bone in a total volume of 3 ml 

for a turkey and 1.5 ml for a bantam. 
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9.3 Effect of active immunisation against VIP on photoinduced PRL 

and LII secretion in castrated bantams. 

The castrated bantams (91weeks of age) in this study had been used for 

previous unrelated photoperiodic experiments. They were held in floor pens on 8 h 

light/ day for at least 12 weeks before initiation of the experiment to ensure they were 

fully photosensitive, and were vaccinated with BCG 9 weeks before transfer to 

individual cages on 8 h fight/day. The experimental (n= 6) and control (n= 6) birds were 

immunised with 1 mg VIPC/VIPN-PPD and PPD respectively, 5 and 2 weeks before 

increasing the photoperiod to 20 h light/ day. Blood samples were collected to measure 

VIP antibody titres and changes in plasma PRL and LH concentrations before and after 

photostimulation. The method used to measure VIP antibody titres is described in 

Section 2.5 

Immunisation against VIPCI\TIPNPPD generated high titres of VIP antibody in 

the blood before and after the birds were photostimulated (Fig. 9.1a). VIP antibody was 

not detected in control birds immunised with PPD (Fig. 9.1a). In birds held on short days 

there was no effect of immunisation against VIP on plasma prolactin levels (Fig. 9.1b). 

Photostimulation of control bantams immunised with PPD resulted in significant 

increases in plasma PRL (P<0.05 Fig. 9.1b) and LH (P<0.05, Fig. 9.1c). A significant 

increase in plasma LH (P<0.05), but not in plasma PRL, was observed after 

photostimulation in the birds immunised with VIPC/VIPN-PPD (Fig. 9.1b). The 

incremental change in plasma LH seen after 8 days' photostimulation in PPD - 

immunised birds (delta LH, 19.53± 3.27 ng/ ml) was not significantly different from that 

in experimental birds immunised with VIPC/VIPN-PPD (delta LH, 17.60± 2.90 ng/ ml) 

after 8 days of photostimulation (Fig. 9. ib). There were no significant differences in 

concentration of plasma LH or PRL between control and experimental birds at the 

beginning of the study, before immunisation. In birds exposed to short days, 
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immunisation against VIPCIVIPN-PPD but not PPD resulted in a significant decrease in 

plasma LH (P<0.05, one way ANOVA) but not in PRL (Fig. 9.1c). 

9.4 Effect of active immunisation against VIP on the development of 

broodiness in turkeys. 

Female Slate turkeys (28-30 weeks old) were reared in groups of five in floor 

pens on 8 h light! day. The experimental (n=9) and control (n= 10) hens were vaccinated 

with BCG 4 weeks before the first immunisation with \TIPCPPD  conjugate or PPD 

respectively. The birds were reimmumsed with VIPC-PPD and PPD every 4 weeks until 

the end of the 103 -day study. Two weeks after the second immunisation, the hens were 

photostimulated by transfer from 8 h to 16 h light/ day and provided with nest boxes 

each containing 5 hard-boiled eggs to encourage incubation behaviour. The experimental 

and control birds were kept in separate pens. Blood samples were taken to measure 

changes in plasma LH, PRL and VIP antibody titres. Egg-laying records were kept for 

each pen and the birds were observed daily for the development of incubation behaviour. 

Immunisation with VIPC-PPD resulted in a high VIP antibody titre (P<0.001) 

while the control group immunised against the carrier protein (PPD) had no antibodies 

against VIP (Fig. 9.2ã). The concentrations of plasma PRL in the PPD immunised birds 

were significantly (P<0.001, ANOVA repeated measures) higher than in the VIPC-PPD 

immunised birds (Fig. 9.2b). In the VIPC-PPD immunised birds there was a small but 

significant (P<0.001) increase in plasma PRL during the first 23 days of 

photo stimulation. Thereafter, plasma PRL concentrations were not significantly different 

from the values observed before photo stimulation. None of the 9 turkeys immunised 

with VIPC-PPD showed incubation behaviour at any stage of the experiment. 

In the PPD immunised control birds, the concentration of plasma PRL increased 

progressively after photostimulation, reaching a peak at 19 days in birds which did not 

subsequently show incubation behaviour. Five of 10 PPD-immunised birds developed 
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incubation behaviour. The first bird started incubating 28 days after photostimulation 

and the last bird began to incubate after 77 days of photostimulation. All the incubating 

birds maintained incubation behaviour until the end of the study. In these birds, the 

concentration of plasma PRL was significantly higher (P<0.005) than in non-incubating 

birds (Fig. 9.2b). 

Plasma LH concentrations in PPD -immunised birds, irrespective of whether they 

subsequently showed incubation behaviour, increased after photo stimulation, reaching a 

peak between 15 and 19 days (Fig. 9.2c). Thereafter, plasma LH decreased and after 75 

days was not significantly (P>0.05) different from the pre-photo stimulation value (Fig. 

9.2c). The concentration of plasma LH increased (P<0.05) after photostimulation in the 

VIPC-PPD-immunised turkeys, reaching a plateau after 23 days. The overall mean LH 

concentrations did not show any significant difference (P>0.05, ANOVA repeated 

measures) between the experimental and the control groups. However, after 75 days of 

photostimulation, the concentration of plasma LH in the VIPC-PPD-immunised birds 

was significantly (P<0.05) higher than in the PPD-immunised controls (Fig. 9.2c). 

The hens started to lay eggs during the first week of photostimulation and total 

egg production was not significantly (P>0.05) different between the experimental and 

control groups up to 70 days in lay (Fig. 9.3). After 77 days in lay there was a 

significant (P<0.001) drop in the total egg production in the PPD but not in the VIPC-

PPD-immunised birds (Fig. 9.3). It was not possible to identify egg production in 

individual birds because the birds were kept on floor pens with open nest boxes. 

9.5 Effect of active immunisation against VIP on photoinduced egg 

production in turkeys. 

The turkeys used in the previous experiment to determine the effect of active 

immunisation against VIP on the development of broodiness (Section 9.4) were recycled 

into a second period of egg production after being kept on 8 h light/ day for 3 months in 
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floor pens. During this period, immunisation against \T1PCPPD or PPD continued at 4 - 

weekly intervals as described in Section 9.4. The birds were then transferred to individual 

cages on 8 h light/ day in order to record individual eggs. After a week's acclimatisation, 

the photopenod was increased from 8 to 16 h light/ day to stimulate egg production. At 

this time, the turkeys were 74 -76 weeks-old. Hens which had been immunised with 

VIPC-PPD in the previous experiment were reimmunised with VIPC/VIPN-PPD at 3-

weekly intervals beginning 7 days before photostimulation. The VIPN-PPD was added 

to the immunogen in an attempt to further increase VIP antibody titre. The frequency of 

immunisation was increased to ensure VIP antibody titres were uniformally maintained 

at high values. Control hens, immunised with PPD in the previous experiment, were 

again immunised with PPD at 3-weekly intervals. Blood samples were taken to measure 

the changes in plasma LH, PRL and VIP antibody titres. The eggs laid by individual birds 

were recorded. 

Active immunisation with \TIPC/VIPN-PPD resulted in high plasma titres of 

chicken VIP antibody in the experimental group, which were maintained throughout the 

study (Fig. 9.4a). Immunisation with the control protein (PPD) did not result in the 

generation of VIP antibody (Fig. 9.4a). Photoinduced PRL secretion was completely 

blocked in birds immunised with VIPC/VIPN-PPD but not in the control group, 

immunised with PPD. In the control group, the concentration of plasma PRL increased 

significantly (P<0.005) after photostimulation, reaching peak values after 63 days, and 

thereafter decreased (Fig. 9.4b). After 126 days of photo stimulation, the concentration 

of plasma PRL in the control birds remained stable, but was significantly higher (P<0.05) 

than the values observed before photostimulation (Fig. 9.4b). The concentration of 

plasma LH in the control PPD-immunised turkeys increased significantly (P<0.01) after 

photostimulation, reaching a peak after 63 days. Thereafter plasma LH decreased and 

after 126 days of photostimulation was not significantly (P>0.05) different from values 
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observed before photostimulation (Fig. 9.4c). No significant increase in plasma LH was 

seen after photostnnulation in turkeys immunised with VIPCIVIPN-PPD. 

The egg production peaked after 49 days' photostimulation in both the groups 

and thereafter decreased progressively (Fig. 9.5). There were no significant differences 

(P<0.05, ANOVA repeated measures) in egg production between the VIPC/VIPN-PPD 

and PPD-immunised hens throughout the study (Fig. 9.5). 

9.6 Discussion. 

The absence of an increase in plasma PRL after photostimulation in the 

VIPCIVIPN-PPD -immunised bantams and turkeys, and the photoinduced increase in 

plasma PRL in the control, PPD -immunised bantams and turkeys (Figs. 9.1, 9.2, 9.4) 

demonstrate that VIP is an essential intermediary in the PRL response to an increase in 

photoperiod. The VIP neurons mediating the photopenodic response are probably 

located in the tuberal hypothalamus with projections to the median eminence (Section 

1.4.1). These VIP neurons are known to be involved in stimulating the increase in PRL in 

incubating birds, but it remains to be established whether the same neurons, or a discrete 

subset, mediate the PRL photoperiodic response. The neuronal pathways controlling 

photoinduced VIP release from the hypothalamus are not known. In ring doves, VIP 

neurons adjacent to the ventral lateral ventricle, are proposed to be encephalic 

photoreceptors because they contain opsin-like immunoreactivity (Silver et al., 1988) 

and these might represent photoresponsive VIP neurons controlling PRL release. 

However, there is no evidence that these VIP neurons project directly to the median 

eminence. 

Active immunisation against VIP depressed basal plasma LH concentration in the 

castrated bantams (Fig. 9.1c) but not in intact female turkeys. This observation is 

consistent with the finding in bantam hens that immunisation against VIP suppresses 

plasma LH and delays the onset of egg production after photostimulation (Sharp et al., 
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1993). It has been suggested that this effect of active immunisation against VIP on LH 

release may be due to the immunoneutralisation of VIP produced within the anterior 

pituitary gland (Shale, 1996). In support of this view, cells containing VIP have been 

observed in the anterior pituitary gland of bantams which envelop neighbouring 

gonadotrophs (Shale, 1996). The view that pituitary VIP acts in a paracrine manner to 

facilitate LH release is supported by the observations that incubation of turkey pituitary 

glands with porcine VIP increases LH secretion and also enhances GnRH-induced LH 

release (El Halawani et al., 1990b). Similar observations have been reported in mammals 

where the administration of anti-VIP serum to ovariectomised rats reduces plasma LH 

concentrations (Lasaga et al., 1989). Similarly in man, an infusion of VIP into the 

peripheral circulation, followed by an infusion of GnRH 30 min later, significantly 

augments the release of LH (Hammond etal., 1993). 

The depression of plasma LH observed after VIP immunisation in castrated 

bantams but not in intact female turkeys held on short days (cf. Figs 9. land 9.4c), 

probably reflects the fact that a decrease in plasma LH is easier to detect in castrated 

birds. In castrated bantams, immunisation against VIP did not prevent a photoinduced 

increase in plasma LH. This is consistent with the view that VIP produced in the 

anterior pituitary, acting in a paracrine manner, rather than photoinduced VIP release 

from the hypothalamus, plays a role in controlling LH secretion. 

Active immunisation of female turkeys against 15 -amino acid fragments of the 

chicken VIP molecule (VIPC-PPD) prevented the development of incubation behaviour 

and the associated increase in plasma PRL (turkey: El Halawam etal., 1988; El Halawani 

and Rozenboim, 1993; domestic hen: Sharp et al., 1988). This observation confirms a 

similar study done on Nicholas White turkeys using whole chicken VIP (cVIP) as 

immunogen molecule conjugated to keyhole limpet haemocyanin (KLH) which also 

prevented the development of incubation behaviour (El Halawani et al., 1995a). The 

present study demonstrates that it is not necessary to use the whole 28 -amino acid 
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sequence of VIP as an immunogen to generate antibodies capable of blocking the increase 

in PRL secretion associated with the onset of incubation behaviour 

It is of interest to note that the fall in egg production in the 10 control turkeys 

immunised with PPD occurred several weeks after 5 of the birds had become broody 

(Fig. 9.3). It seems that in these birds, the initial expression of broody behaviour was 

not associated with the cessation of egg laying. This phenomenon has been reported in 

an earlier study in Large White turkeys (Lea and Sharp, 1982). The decrease in egg 

production in the PPD-immunised control hens may have been due to a combination of 

persistent broodiness and to the development of photorefractoriness. The development 

of photorefractoriness is suggested by the decrease in plasma LH observed in PPD-

immunised birds, irrespective of whether they become broody after 75 days of 

photostimulation (Fig. 9.2c). The observation that plasma LH did not decrease at this 

time in the VIP-immunised birds (Fig. 9.2c) may explain why egg laying was more 

persistent in these birds than in the PPD immunised controls. It appears that VIP 

immunisation may have inhibited the development of photorefractoriness in those birds. 

However, this conclusion was not supported in the follow-up study in which the same 

turkeys were immunised against VIP and recycled in a second breeding cycle, while held 

in cages to discourage the development of broodiness (Fig. 9.5). 

In turkeys immunised with VIPC-PPD and held in floor pens, a small but 

significant increase in plasma PRL was observed after photostimulation (Fig. 9.2b). It is 

possible that the immunisation with the 15 -amino acid at the carboxy-terminal of the 

VIP molecule and /or frequency of immunisation was not adequate to keep the VIP 

antibody titre high enough to suppress entirely the photoinduced increase in plasma PRL 

concentration. This is supported by the second immunisation study on the same 

turkeys, which were immunised using the entire amino acid sequence in the VIP molecule 

(VIPCIVIPN-PPD) at an increased frequency. This immunisation procedure resulted in 

an unchanging high titre of VIP antibody (Fig. 9.4a) which blocked completely the 
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photoinduced increase in plasma PRL, presumably by immunoneutralising photoinduced 

VIP release. 

In conclusion, photoinduced plasma PRL secretion is mediated through VIP 

secretion in both bantams and turkeys. VIP may also act in a paracrine manner to 

regulate basal plasma LH secretion in chickens. The development of broodiness in 

turkeys was prevented by immunisation against a 15 amino acid sequence at the C-

terminal of cVIP sequence and this increased egg production. Immunisation against VIP 

did not affect the development of photorefractoriness in female turkeys as measured by 

decreased egg production. 
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Chapter 10 

GENERAL DISCUSSION 

The overall aim of the Thesis was to increase understanding of the photoperiodic 

control of prolactin secretion, and its functional significance in the chicken. At the onset 

of this work, it was known that PRL secretion is controlled by changes in photoperiod in 

several species, although no information was available for the domestic chicken (Section 

1.3.4). It was also known that gonadal steroids, particularly oestrogen, exert a 

stimulatory effect on PRL secretion (Section 1.4.3.1). This was confirmed in domestic 

cockerels held on short days (Section 3.2). The presence of testes after 4 weeks of age 

resulted in higher concentrations of plasma PRL than in castrated birds. It appears that 

in birds older than 4 weeks, testicular development, which occurs on short days, results 

in a sufficient increase in concentrations of testicular steroids to stimulate PRL secretion. 

However, this effect of testicular steroids is small compared with the effect of increased 

photoperiod (Chapters 4, 5 6). In females, which become sexually mature on short days, 

the presence of high concentrations of oestrogen results in only a modest increase in 

plasma PRL (Chapter 8). These observations are consistent with the findings in vitro 

(Hall et al., 1984a) showing that the direct stimulatory effects of oestrogen on PRL 

release from the anterior pituitary are modest compared with the combined action of 

oestrogen and hypothalamic extract/ PRL releasing hormone. It therefore appears that 

the major component of the stimulatory action of oestrogen on PRL release is via a 

synergism with PRL releasing factor, which is assumed to be released in increased 

amounts after photostimulation. The observation that the increase in plasma PRL in 

somatically mature males was less than in somatically mature females (Chapter 8 ) 

further supports the view that increased plasma oestrogen rather than an increase in 

91 



other gonadal steroids (Section 1.4.3) is the primary steroidal factor enhancing the effects 

of PRL releasing factor on PRL release. 

The observation that the changes in ambient temperature and fasting for one day 

had no effects on the concentration of plasma PRL (Chapter 3) rules out the possibility 

that changes in plasma PRL reported in this Thesis can be accounted for by either of 

these environmental factors. 

In view of the stimulatory effects of gonadal steroids on photoinduced PRL 

secretion, castrated cockerels were used to investigate the PRL photoperiodic response 

to avoid confounding the stimulatory effects of increase in photoperiod and of increase in 

plasma gonadal steroids. It was anticipated when this Thesis was being planned, that use 

of castrated birds would facilitate comparison with photoinduced changes in plasma LH 

secretion. In other birds, such as quail and white-crowned sparrow, castration amplifies 

the effects of changes in photoperiod on LH secretion, making it easier to interpret LH 

photoperiodic responses (Urbanski and Follett, 1982; Mattocks et al., 1976), 

Unfortunately, in the bantam, long-term castration results in a partial loss of 

hypothalamic control of LH secretion (Chapter 5) which made it difficult to use changes 

in plasma LH as precise indicators of the changes in photoinduced GnRH release. 

The neuroendocrine pathways controlling photoinduced PRL and LH secretion 

were observed to be functional at 4 weeks of age in both sexes. The observation on the 

age at which the neuroendocrine pathways controlling photoinduced gonadotrophin 

release became mature confirms earlier findings in female broilers (Dunn et al., 1990). 

Although it has not been established when the photopenodic responses for PRL and LH 

release first develop, the presence of photoperiodic responses for both hormones during 

early posthatch somatic growth suggests that a common maturational mechanism might 

be involved. This could involve the maturation of neural pathways from the extra-retinal 

photoreceptor or maturation of neural outputs from the biological clock to (3nRHJ PRL 

releasing factor neurons (Sections 1.5.1, 1.5.2). The juvenile maturation of the 
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reproductive photoperiodic response is suggested to be central to the development of 

juvenile reproductive refractoriness. This is the mechanism which prevents unimproved 

breeds of chicken, exposed to natural lighting from coming into breeding condition in the 

year in which they are hatched (review, Sharp, 1992). The significance of the juvenile 

development of a photoperiodic response for PRL release is uncertain. However, since 

plasma PRL concentrations were very low in somatically mature castrated cockerels 

reared on 20 h light! day (Chapter 5), it is likely that juvenile photorefractoriness also 

develops for photoinduced PRL release. The functional significance of this is uncertain 

since, as demonstrated in intact bantams reared and maintained on short days (Section 

8.2), the onset of sexual maturation does not depend on an increase in concentration of 

plasma PRL. 

The critical daylength for PRL secretion, between 10-12 h, was difficult to define 

precisely because the incremental changes in photoinduced PRL secretion at the lower 

end of the photopenodic response curve were small (Chapter 5, Fig. 10.1). A direct 

comparison with the critical daylength for LH release was impossible because of the 

poor photoperiodic LH response in castrated bantams (Chapter 5). However, the 

reported critical daylength is between 10-12.75 h in intact female domestic chickens 

(Sharp, 1988; Dunn and Sharp, 1990). It is therefore concluded that the critical 

daylengths for PRL and LH secretion are similar. 

The saturation daylength for photoinduced PRL release, between 14 -16 h was 

unambiguously greater than the 10.25 -12.75 h observed for LH (Dunn and Sharp, 1990). 

It is therefore concluded that the most important difference between the photoperiodic 

responses for PRL and LH release is in the slopes of the photoperiodic response curves. 

The slope of the photoperiodic response curve for LH is much steeper than that for PRL 

(Fig. 10.1). 

A major consequence of the difference in slopes of the photoperiodic response 

curves is most likely to be seen in birds exposed to natural changes in daylength. As 
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Photoperiod. 

Fig 10.1 An interpretation of the photoperiodic response curves for plasma prolactin 
(PRL) and luteinising hormone (LH) release in castrated cockerels transferred from 
a short non-photostimulatory (8 h light/ day) to range of fixed longer photoperiods. 
(Based on data from Chapter 5) 



daylength increases in Spring the concentration of plasma LH would be expected to reach 

maximum values much more rapidly than concentrations of plasma PRL. This sequence 

of photoinduced changes in concentrations of plasma LH and PRL has been observed in 

several avian species exposed to natural changes in daylength (Section 1.3.4). 

Unfortunately there are no observations on domestic chickens exposed to natural changes 

in daylength. However, the observations in the castrated bantams on the difference in 

the slopes of the photopenodic response curve for LH and PRL secretion provides an 

explanation, in other birds exposed to increasing spring-like daylengths, for the rapid 

increase in plasma LH followed by slow increase in plasma PRL (Section 1.3.4). 

In birds which develop relative reproductive photorefractoriness such as the quail 

(Urbanski and Follett, 1982; Robinson and Follett, 1982) and chicken (Sharp, 1993), the 

long-day induced inhibitory input to GnRH-I neurons (Section 1.5) partially counteracts 

the long-day stimulatory input. As a result there is an apparent upward shift in the 

critical daylength required for gonadotrophin release (Urbanski and Follett, 1982; 

Robinson and Follett, 1982, Sharp, 1984). Evidence has been presented in the domestic 

hen for an increase in the critical daylength for LH release as a consequence of the 

development of relative refractoriness (Sharp, 1993). In Chapter 5, it was demonstrated 

that the critical daylength for photoinduced PRL release is also increased from 10-12 h to 

>14 h light/ day as a consequence of prolonged exposure to 20 h light! day. These 

observations suggests that in the chicken, prolonged exposure to long days results in the 

development of photorefractoriness for PRL secretion. This observation contrasts with 

findings in quail, where a decrease in daylength from 20 h light' day to marginally 

stimulatory 13 h light/ day does not result in a decrease in PRL secretion (Juss, 1993). 

This further supports the view (Section 1.3.4) that in quail, unlike the chicken 

photorefractoriness does not develop for photoinduced PRL release. 

An unexpected finding in this Thesis was that in castrated bantams exposed to 

photopenods of 14 h or more, a photoinduced increase in PRL secretion is followed by a 
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photoinduced decrease (Chapter 5). This sequence of events is characteristic of the 

development of 'absolute' photorefractoriness. However, this form of 'absolute' 

photorefractoriness differs from that seen for photomduced LH release (Follett, 1984; 

Nicholls eta!, 1988). Even when PRL concentrations are very low, they still tend to be 

higher than in short day controls (Chapter 5). In birds showing absolute reproductive 

photorefractoriness, the concentration of plasma LH is not depressed further after 

transfer from long to short daylengths (Dawson, 1991; Boulakoud and Goldsmith, 1994). 

In other respects, however the expression of 'absolute' photorefractoriness for PRL 

release in bantams is similar to that observed for 'absolute' photorefractoriness for LH 

release (Nicholls et al., 1988). The development of 'absolute' reproductive 

photorefractoriness is characterised by the inability of a further increase in daylength to 

stimulate LH release. This characteristic was also a feature of absolute 

photorefractoriness for PRL release in castrated bantams exposed for a prolonged period 

to 16 h light! day (Chapter 6). In these birds an increase in photopenod to 20 h light/ 

day failed to stimulate PRL release. 

A further feature of 'absolute' reproductive photorefractoriness is that it does 

not develop in birds transferred from short days to photoperiods close to the critical 

daylength (Section 1.3.4). This was also a feature of development of photorefractoriness 

for PRL release. Birds transferred from short days to a marginally stimulatory 12 h 

photoperiod showed no tendency for plasma PRL concentration to decrease after 

prolonged exposure to this photoperiod (Chapter 6). Evidence that birds exposed to 12 

h light/ day for prolonged periods remain photosensitive was obtained by demonstrating 

an increase in plasma PRL after such birds were transferred to 16 h light' day (Chapter 

6). 

The final test for the development of photorefractonness for PRL release was to 

demonstrate, as predicted by the model for avian photoperiodic response (Section 1.5.4), 

that exposure to short days leads to the recovery of photosensitivity. As shown in 
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Chapter 6, exposure of long day castrated bantams with low concentrations of plasma 

PRL to short days for 5 weeks resulted in a full recovery of photosensitivity for PRL 

release. 

The neural pathways controlling the photoinduced release of LH in the quail are 

fully activated after exposure to one long day (Follett et al., 1977) and mediate 

photoinduced release of GnRH-I (Perera and Follett, 1992). The neural pathways 

concerned may include a group of neurons in the tubero-infundibular hypothalamus, 

shown using c-fos imrnunocytochemistry to be activated after exposure to a single long 

day (Meddle and Follett, 1995). An interesting feature of the 'first day' release of LH is 

that it is initiated 22-23 h after 'dawn' which is 11-12 h longer than the critical daylength 

for LH release. In Chapter 7, it was demonstrated that a 'first day' release also occurs 

for photoinduced PRL secretion and that this follows a temporal pattern which is similar 

to that observed for 'first day' LH release in quail. The 11-12 h lag between the critical 

daylength for an increase in PRL or LH release after exposure to one long day implies 

that the mechanisms controlling the release of both hormones may be similar. The 

induction of LH secretion in quail in response to one long day is associated with a 'carry 

over effect' of increased LH secretion after transfer back to short days. In castrated 

bantams, a similar phenomenon was also observed for PRL secretion (Chapter 7). The 

similarities between the time courses for the 'carry over effect' for LH release in quails 

and PRL release in bantams again implies that mechanisms controlling photoinduced PRL 

and LH release may be similar. 

The development of a form of absolute refractoriness in castrated bantams for 

photoinduced PRL release prompted experiments to determine whether the same 

phenomenon occurs in intact birds (Chapter 8). The presence of ovarian or testicular 

steroids amplifies the initial photoinduced PRL response, particularly in females. 

However, in both males and females there was evidence that prolonged exposure to long 

days resulted in a decrease in plasma PRL indicative of an underlying trend towards the 



development of photorefractoriness for PRL release. The presence of gonadal steroids, 

particularly from the fully-developed ovary, tended to obscure this long-term reduction 

in the concentration of plasma PRL. In a parallel study in male and female turkeys, the 

photoinduced pattern of increased PRL release followed by the development of 

photorefractoriness for plasma PRL was more evident than in intact bantams. However, 

in both turkeys and bantams, the development of photorefractoriness for PRL release 

was not associated with reproductive refractoriness as it is in many wild birds (Lincoln et 

al., 1980; Dawson and Goldsmith, 1982; Sharp et al., 1986a Stokkan et al., 1988). Of 

particular interest was the observation that, in the intact turkeys, the development of 

photorefractoriness for PRL release was preceded by the development of 

photorefractoriness for LH release as observed in many wild birds (Section 1.3.4, 

Nicholls et al., 1988). In contrast, in the intact bantams, there was no evidence for the 

development of photorefractoriness for LH release. This may be reflection of the fact 

that bantams develop 'relative' but not 'absolute' reproductive photorefractoriness 

(Sharp, 1988), while some breeds of turkeys develop 'absolute' photorefractoriness 

(Lien and Siopes, 1989). Unlike the development of 'absolute' refractoriness, the 

development of 'relative' refractoriness has not been reported to be associated with a 

depression in plasma LH (Robinson and Follett, 1982, Lien and Siopes, 1989). 

The observation that immunisation against VIP blocked photoinduced PRL 

secretion in castrated bantams demonstrated that VIP release is controlled by changes in 

photoperiod and that it transduces the PRL photoperiodic response (Chapter 9). 

The physiological significance of photoinduced PRL secretion was investigated 

by actively immunising turkey hens against VIP. This treatment suppressed 

photoinduced PRL release and, as observed by El Halawani et al. (1995a), inhibited the 

development of broodiness. It has been suggested for wild birds such as the starling that 

increased PRL secretion after photostimulation may be involved in the initiation but not 

the maintenance of reproductive refractoriness (Section 1.3.4). Unfortunately, in the 
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'unimproved' breed of turkey used in the present studies, the low concentrations of LH 

observed after prolonged exposure to long days, indicative of the development of 

reproductive photorefractoriness, were sufficient to maintain fill ovarian function. It 

was therefore not possible to determine whether the peak in PRL secretion observed 63 

days after photostimulation plays any role in the regulation of reproductive function. 
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