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Abstract 

The development of in vitro fertilisation (IVF) and intra- cytoplasmic 

spermatozoa injection (ICSI) techniques has revolutionised treatment for couples with 

so- called male -factor infertility. However concern over the integrity of the DNA in 

spermatozoa used for ICSI has been expressed. Poor semen quality and 

morphologically abnormal spermatozoa are associated with poor embryonic 

development following IVF. Furthermore, studies have demonstrated that the 

transmission of defective DNA (e.g. adducts, gene deletions) from the spermatozoa to 

the developing embryo can occur and that this may lead to developmental failure of 

the embryo or future health risks for the child. The aims of this project were; a) to 

develop a Comet assay for the study of DNA integrity of murine spermatozoa, b) to 

use this assay to assess DNA integrity in spermatozoa from mice with known 

sub /infertility and to examine the susceptibility of these spermatozoa to heat -induced 

DNA damage, c) to identify the stages of spermatogenesis in wild type mice which are 

susceptible to heat -induced DNA damage, and d) to determine whether this damage is 

present in the mature spermatozoa developed from heat -treated germ cells. 

The single -cell gel- electrophoresis (Comet) assay was originally developed to 

study DNA damage in somatic cells and has been modified to study both endogenous 

and induced DNA damage in human ejaculated spermatozoa. DNA packaging and 

condensation in mouse spermatozoa is not identical to that in the human. The human 

spermatozoa Comet assay was therefore not suitable for use on murine spermatozoa. 

A series of modifications were made to the human spermatozoa Comet assay and a 

usable assay based on a commercially- available Comet Assay Kit (Trevigen) was 

developed for the study of murine spermatozoa. 

The motility, morphology and DNA integrity of motile spermatozoa recovered 

from the epidiymes of four transgenic lines of mice, all of which suffered from male 

infertility /subfertility, were examined. Deleted in azoospermia -like autosomal 

( Dazla)- deficient mice ( -/ -) are infertile, and males fail to produce any mature 

spermatozoa; heterozygous ( + / -) males are fertile but exhibit reduced numbers of 
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spermatozoa with high incidence of morphological abnormality. Reduced numbers of 

motile spermatozoa and increased incidence of morphological abnormalities in motile 

spermatozoa from +l- Dazla mice was observed. Compared to wild type ( + / +) mice, 

the level of DNA damage in the spermatozoa of +/- mice was significantly higher. 

Levels of DNA damage in both +1+ and +/- were increased following in vitro heat 

treatment. Similar findings were also observed in mice with excision repair cross - 

complementation gene 1 (ercc -1) genotypes ( +/- and -/ -). ERCC1 is involved in the 

nucleotide excision repair (NER) pathway and mitotic recombination process, and is 

highly expressed in the testis. Deletion of the Prion protein (PrP) or the PrP- related 

gene Doppel (PrnD) also resulted in lower numbers of motile spermatozoa with higher 

levels of DNA damage. However, following in vitro heating, levels of DNA damage 

in the motile spermatozoa from these mice did not increase. 

To investigate the effects of heat stress on DNA integrity, wild type mice 

(Dazia + / +) underwent scrotal heating (42 °C, 30 min) and were then sacrificed at 

various time points; 1, 2, 4, 6 or 24 hours (h) or 7, 14, 21, 24, 28, and 32 days (d) after 

heat stress. Testes and epididymides were removed and fixed for histological 

analysis, and motile epididymal spermatozoa were retrieved. Altered expression of 

Cirp (a heat -response protein), heat shock protein 105 (HSP105) and Bax (a pro - 

apoptotic protein), together with increased numbers of TUNEL- positive cells were 

detected in testes. Expression of Cirp, Bax and the macrophage marker CD68 were 

also altered in the epididymis. Levels of DNA damage in motile spermatozoa 

increased significantly within lh of heating, reaching a peak at 4h and then recovering 

to control levels at 7 and 14d. At 21d after heating, DNA damage increased again 

reaching a second peak at 28d and failing to recover by 32d. 

These results indicate that motile spermatozoa in the epididymis are 

susceptible to heat -induced DNA damage. Furthermore, while DNA integrity of 

spermatozoa derived from spermatids subjected to heat stress is normal, loss of DNA 

integrity in pre- meiotic germ cells caused by heat stress is not repaired as these cells 

mature, resulting in motile spermatozoa with impaired DNA integrity. These findings 
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suggest that it may be necessary for additional criteria to be taken into consideration 

when selecting spermatozoa for ICSI/IVF treatment. 
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Chapter 1 Review of the Literature 

Chapter 1 Review of the Literature 

1.1 General introduction 

The male reproductive system consists of the testis, epididymis, the excretory 

ducts (vas deferens, ampulla and ejaculatory ducts), the internal accessory organs 

(prostate, seminal vesicles, Cowper's glands) and the external genitalia (penis). 

The main focus of this literature review will be on the structure, function and 

regulation of the testis and epididymis, the impact of stress (in particular heat stress) 

on these tissues and the clinical implications of heat stress in the testis /epididymis of 

man. 

1.2 Role of the testis 

The two main functions of the testis are the synthesis and secretion of 

hormones, and the production of spermatozoa (spermatogenesis). 

The hormones produced in the testis are required for the production of 

spermatozoa and the development of secondary sexual characteristics (internal 

accessory organs and external genitalia) required for the delivery of the spermatozoa 

to the oocyte. In addition, these hormones are responsible for masculinisation and 

the development of sexual behaviour (Setchell, 1978). The endocrine role of the 

testis was first demonstrated in 1849. In an experiment using roosters, it was shown 

that castration resulted in the regression of secondary sexual characteristics. These 

effects could then be reversed by re- implantation of all or part of the testis (Berthold, 

1849). 

Spermatozoa were first observed over 300 years ago by van Loewnheck 

(1678), however, it was another 150 years before Prevost and Dumas demonstrated 

their role in fertility (Prevost, et al., 1824). Spermatozoa are responsible for the 

transmission of the male genetic information to the oocyte during reproduction. 
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1.3 Testis 

The two main compartments of the testis are the interstitial compartment and 

the tubular compartment (seminiferous tubules) (See Figures 1.1 and 1.2). 

I 

TC. 

Af 

Figure 1.1 Compartmentalisation of the testis 

Figure shows a cross section of a normal mouse testis indicating the seminiferous 
tubules (Tubular Compartment = TC) and the interstitial compartment (IC) 

1.3.1 Interstitial compartment 

The interstitial compartment of the testis is the location of steroidogenesis 

and consists of steroidogenic cells (Leydig cells), immune cells, nerves, fibroblasts, 

blood and lymph vessels, and loose connective tissue. The interstitial compartment 

comprises between 2 -6% of the total testicular volume in rodents (Weinbauer, et al., 

2001). 

Of all the components of the interstitial compartment, Leydig cells are 

considered the most important as they are the source of testicular testosterone. The 
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steroidogenic properties of Leydig cells were first observed in 1903 (Bouin, et al., 

1903), although it was another 30 years before the hormone produced was identified 

as testosterone (David, et al., 1935). During puberty, precursor mesenchymal cells 

divide and become Leydig cells. The maturation and DNA synthesis of Leydig cells 

is stimulated by follicle stimulating hormone (FSH, released from the anterior 

pituitary), and other growth factors (produced locally) (Payne, et al., 1995). 

The synthesis of testosterone by Leydig cells is stimulated by luteinising 

hormone (LH, released from the anterior pituitary) and high- affinity LH receptors are 

expressed on the surface of Leydig cells. Binding of LH to these receptors triggers 

the production of cAMP, which in turn facilitates the transport of cholesterol into the 

mitochondria of the Leydig cell where testosterone synthesis begins (Johnson, et al., 

1995). 

Within the Leydig cells, testosterone is synthesised via 2 pathways (A5; 

pregnenolone to dehydroepiandrosterone (DHA), and A4; progesterone to 

androstenedione). Intermediates of these pathways (androstenedione and DHA) are 

released into the blood and lymph in addition to testosterone (Johnson, et al., 1995). 

Furthermore, the Leydig and /or Sertoli cells may then convert testosterone to 

oestrogen via aromatase cytochrome p450 (Papadopoulos, et al., 1993;Genissel, et 

al., 2001). 

1.3.2 Seminiferous Tubules 

The seminiferous tubules are the location of the spermatogenic process and 

consist of germ cells and somatic cells (Sertoli and peritubular cells; see figure 1.2). 

The testis consists of approximately 250 -300 lobules, divided by connective 

tissue, with each lobule containing a number of highly convoluted seminiferous 

tubules (1 -3 in man; 5 in most species). Each tubule is between 30 -80cm in length. 

In man, the total length of seminiferous epithelium in the testis is calculated to be 

around 720m (Weinbauer, et al., 2001). 
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Seminiferous 
tubule fluid 

Elongated 
spermatid 

Round 
spermatid 

Pachytene 
spermatocyte 

Tight junction 

Preleptotene 
spermatocyte 

A spermatogonium 

Interstitial fluid - 
Blood vessel 

Figure 1.2 The organisation of the seminiferous epithelium 

TC 

IC 

Figure shows a Sertoli cell in association with developing germ cells in the 
seminiferous epithelium, and the cells of the interstitial compartment with which it 
has contact. 
(TC = tubular compartment, IC = interstitial compartment, L = lumen, AC = 
adluminal compartment, BC = basal Compartment, BM = basal membrane, PMC = 
peritubular myoid cell layer) 

Adapted from Sharpe, 1994. 
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1.3.2.1 Somatic cells 

Within the seminiferous epithelium there are two major types of somatic cell; 

the Sertoli cell and peritubular myoid cells. 

The Sertoli cells are columnar cells (75 -1001.im in height), located within the 

germinal epithelium of the testis. These cells are attached to the basement membrane 

and their apex reaches into the lumen of the tubule. The cytoplasm of Sertoli cells 

contains a complex cytoskeleton and a range of organelles (as in most somatic cells). 

Each Sertoli cell is found in association with a number of germ cells 

(as shown in Figure 1.1), which are dependent on that Sertoli cell for their survival 

and development. Therefore, it is the number of Sertoli cells that defines the 

testicular volume and rate of production of spermatozoa. The number of germ cells 

each Sertoli cell can support varies between species (Weinbauer, et al., 2001). 

Sertoli cells provide structural support for the developing germ cells, 

maintaining their position in the seminiferous epithelium. Though the precise 

molecular mechanisms of this process are not fully understood, it has been shown 

that Sertoli cell factors are passed to the germ cells via genii cell membrane receptors 

and endocytic processes junctional complexes (Jegou, 1993). In addition to 

supporting developing germ cells, it is the role of the Sertoli cells to recruit early 

meiotic spermatocytes from the basal to the adluminal compartment and to release 

mature spermatozoa from the epithelium (spermiation) (Russell, et al., 1993). 

The Sertoli cells form a blood- testis barrier, creating two distinct regions 

within the seminiferous tubule; the basal compartment and the adluminal 

compartment (See figure 1.2). Tight junctions connect adjacent Sertoli cells enabling 

strict regulation of the transport of substances between these two compartments. The 

blood- testis barrier may serve two important purposes; the protection of the haploid 

(and thereby antigenic) germ cells from the immune system, and the maintenance of 

the specific milieu (nutrients, fluid, ions etc.) required for spermatogenesis 

(Weinbauer, et al., 2001). 

Due to the blood- testis barrier, the germ cells (located in the adluminal 

compartment) are dependent on the Sertoli cells for their nutritional requirements 
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(sugars, lipids, amino acids, metallic elements etc). Again, the precise molecular 

mechanisms behind this process are not fully understood, however, it has been 

shown that Sertoli cells are able to extend processes containing nutrients into the 

cytoplasm of elongated spermatids. These processes are then incorporated into 

digestive vacuoles and the nutrients absorbed by the spermatids (Russell, et al., 

1993). 

In addition to the transfer of nutrients to the developing germ cells, Sertoli 

cells also secrete a wide range of substances (including proteins and water) into both 

the seminiferous (in the form of seminiferous tubule fluid; STF) and interstitial 

compartments (Richburg, et al., 1994). 

Finally, Sertoli cells have an endocytic function; the phagocytosis and 

elimination of cytoplasmic bodies discarded by the spermatozoa before spermiation, 

and the pinocytosis of fluid from the lumen (Russell, et al., 1993). 

Peritubular myoid cells are stratified around the seminiferous tubules in 

concentric layers and the number of layers is species -specific (6 in humans, 2 -4 in 

other mammals). These cells are poorly differentiated myoid cells, which contain 

actin and are capable of spontaneous contraction. The resulting peristaltic 

contractions of the seminiferous tubules are believed to facilitate the movement of 

mature spermatozoa through the tubules to the vas deferens (Weinbauer, et al., 

2001). 

1.3.2.2 Germ cells and Spermatogenesis 

Spermatogenesis is generally divided into three phases; mitotic proliferation, 

meiotic division and spermiogenesis (See Figure 1.3). The first phase, mitotic 

proliferation includes the proliferation of the spermatogonia (A, intermediate (In) and 

B spermatogonia). The second phase, meiosis, involves major changes in the DNA 

of the developing spermatocytes (preleptotenes (P), leptotenes (L), zygotenes (Z) and 

meiosis (M) spermatocytes). The final phase of spermatogenesis within the testis is 

spermiogenesis, this phase involves the differentiation of the spermatids into 
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spermatozoa. The stages and cell types involved in spermatogenesis are described in 

more detail in section 1.3.2.3. 

Mitosis Meiosis 

Spermiogenesis 

P P P P 

/ ¡ 
` 

- A I 
m in I Pl L 

I II -III IV V VI VII VIII IX X XI XII 

Stages of the cycle 

Figure 1.3 Stage diagram of spermatogenesis in the mouse, indicating the 
three phases of spermatogenesis; mitosis, meiosis and spermiogenesis 

Adapted from Russell (1990) and Sharpe (1994). 

1.3.2.2.1 Mitosis 

Pro -spermatogonial germ cells located in the basal region of the tubule (See 

Figure 1.2) enter mitosis at puberty and become self -regenerating (via mitosis) 

spermatogonial stem cells. From these stem cells, two types of A spermatogonia 

form. The first of these do not normally proliferate and will undergo mitosis only if 

the spermatogonial population is severely depleted for any reason (e.g. following 

exposure of the testis to radiation). The second enters spermatogenesis, undergoing 

further mitoses to form B spermatogonia. 
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1.3.2.2.2 Meiosis 

During the meiotic prophase, several important events occur; the 

recombination of genetic material, the reduction in chromosome number and the 

development of spermatids. 

At the final mitotic division, the B spermatogonia differentiate and give rise 

to the preleptotene spermatocytes. These cells duplicate their DNA and are then 

recruited by the Sertoli cells into the adluminal compartment where they enter a 

lengthy meiotic prophase ,(Sharpe, 1994). During this meiotic prophase, the 

morphology of the cells changes gradually by progressive differentiation. These 

morphological changes allow the recognition and classification of the different cell 

types (leptotene, zygotene and pachytene primary spermatocytes) within the meiotic 

prophase (Johnson, et al., 1995). 

In addition to morphological changes, dramatic changes occur within the 

nuclei of the cells during meiotic prophase. Chromatin condenses and becomes 

filamentous in the leptotenes and in each zygotene, homologous chromosomes 

thicken, pair -up and attach to the nuclear membrane at their extremities (forming 

loops). Within the pachytene cell, the paired chromosomes shorten and condense, 

and nuclear and cytoplasmic volume increases. The sister chromatid strands on the 

paired homologous chromosomes meet and form synaptoneal contacts, the 

chromatids break, exchange segments of their genetic material and then rejoin 

(Johnson, et al., 1995). Within the diplotene cell, the homologous chromosomes 

separate to the opposite ends of the cell along the meiotic spindle. Cytokinesis 

results in the production of two secondary spermatocytes from each diplotene, each 

containing a single set of chromosomes (two chromatids joined at the centromere) 

(Johnson, et al., 1995). The two secondary spermatocytes enter the second meiotic 

division, during which their chromatids separate and move to the opposite ends of 

the second meiotic spindle before dividing to yield a total of four early round 

spermatids (Sharpe, 1994;Johnson, et al., 1995). 
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1.3.2.2.3 Spermiogenesis 

Spermiogenesis is the process by which the spermatids differentiate into 

mature spermatozoa. This process is outlined in Figure 1.4. Spermiogenesis occurs 

in a series of sequential steps and developing spermatids are classified according to 

their step number. 

Flagellum- 

Golgi body 

- Centrioles 

_ Acrosomal layer 

Centrioles 

Figure 1.4 The process of spermiogenesis 

Adapted from Johnson (1995) 

Spermiogenesis commences with the Golgi body producing glycoprotein -rich 

granules, which come together to form the acrosomal layer. This gradually grows 

over the surface of the nucleus and a sub -acrosomal region forms between the 

acrosomal cap and the nucleus. The centrioles of the spermatid migrate to the 

opposite pole of the nucleus and form the point of origin of the spermatozoa tail and 

the neck, which connects the spermatozoa head with the tail. The nucleus and 

acrosomal cap migrate towards the cytoplasmic membrane and the spermatid begins 
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to lengthen. The condensation of the chromatin begins, the species -specific shape of 

the spe Iiatozoa head is established and the spermatozoa loses its Golgi apparatus 

and cytoplasm (Johnson, et al., 1995). 

1.3.2.3 Functional organisation of the seminiferous tubules 

Spermatogenesis is a highly organised process that has been divided into a 

number of `stages' based on histological evaluation of testicular sections (eg. 12 in 

the mouse (see figure 1.5) (Clermont, 1972), and 6 in man (Clermont, 1966)). At 

each stage of the cycle, a particular combination of germ cells is found in association 

with the Sertoli cells. For example, in the mouse, Stage I consists of A 

spermatogonia, pachytene spermatocytes, step 1 spermatids and step 13 spermatids. 

The highly conserved nature of the organisation of spermatogenesis suggests that it is 

a significantly important aspect of the process (Sharpe, 1994). 

Both the structure and function of Sertoli cells changes with each stage of 

spermatogenesis according to the germ cell types with which they are associated. The 

different cells associated with the Sertoli cells at each stage are all at different stages 

of development and therefore have different nutritional requirements. It is likely that 

each cell type controls certain aspects of Sertoli cell function in order to obtain the 

combination of nutrients it requires. 

The organisation of spermatogenesis along the seminiferous tubule (the 

spermatogenic wave) differs amongst species. In the rodent, spermatogenesis 

follows a longitudinal pattern. Serial transversal sections through rat tubules show 

that whole segments are at the same stage of the cycle and adjacent segments are 

either one stage ahead or one stage behind in the cycle (Johnson, et al., 1995). In the 

human, and some monkeys, the organisation of the spermatogenic wave is somewhat 

different. Serial transversal sections through human tubules show a number of 

different stages simultaneously. It has therefore been proposed by some 

investigators that the speiinatogenic wave in the human is organised in a helical 

pattern within the tubule (Weinbauer, et al., 2001). 
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1.4 Epididymis 

Upon completion of spermatogenesis, spermatozoa leave the testis via the 

rete testis and then the efferent ducts (ductus efferentes) and enter the epididymis 

where they are stored and undergo further maturation before release. 

1.4.1 Structure 

The efferent ducts arise from the rete testis and are a major site of fluid 

resorption, resulting in increased spermatozoa density and decreased fluid content 

within the ducts. 

The efferent ducts converge to form a single, very long and highly convoluted 

duct, which in turn forms the epididymis. The epididymis consists of four distinct 

compartments: the initial segment, the head (caput), the body (corpus) and the tail 

(cauda). A diagrammatic representation of the testis and epididymis highlighting 

these compartments is shown in Figure 1.6. 

The epithelium of the epididymis consists of five distinct cell types: principal 

cells, basal cells, clear cells, halo cells and narrow cells. Principal cells are tall, 

columnar cells found throughout the entire length of the epididymis. They are the 

most abundant cell type in the epididymis, and are believed to be involved in 

transport, secretion and the absorption of fluid and matter from the lumen. Principal 

cells also recognise antigenic products (e.g. due to spermatozoa degradation), which 

are then phagocytosed by the basal cells (Robaire, et al., 1988). 

Also found throughout the length of the epididymis are the small elongated 

basal cells which play a scavenging role in the local immune defence mechanism 

(acting as tissue -fixed macrophages) and may be involved in detoxification, and halo 

cells which act as mono- and lymphocytes. Clear cells span the epithelium of the 

epididymis and are found in all compartments except for the initial segment and are 

involved in the removal of unwanted materials from the lumen. Narrow cells are 

found in the initial segment only (Robaire, et al., 1988;Yeung, et al., 1994). 
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Ductuli eferentis 

Initial 
EPIDIDYMIS 

Segment 

TESTIS --- 
r--- Q-3 

testis-7r Rete tes c`i` 
Caput 

Seminiferous Tubule 

Corpus 

Cauda 

Proximal 

Figure 1.6 The mammalian testis and epididymis. 

Figure indicates the various compartments of the epididymis; the initial segment, the 
caput, the corpus and the cauda. 

Distal 

Vas 
Deferens 

Adapted from Robaire, 1988. 
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The lumina' compartment of the epididymis is a constantly changing 

environment containing spennatozoa and the many various substances required for 

its storage and maturation. These include ions, proteins, glycoproteins, organic 

molecules and water (Robaire, et al., 1988). 

1.4.2 Function 

The functions of the epididymis are the transportation of spermatozoa from 

the efferent ducts to the' vas deferens, the maturation of spermatozoa (i.e. 

acquirement of increased chromatin stability, fertilising ability and motility) and the 

storage and protection of mature spermatozoa. 

1.4.2.1 Transport 

The time taken for spermatozoa to travel the length of the epididymis 

(epididymal transit time) has been established by a variety of methods for a number 

of species. (See Figure 1.7) For example, the epididymal transit time of the mouse 

was determined by labelling spermatozoa with 35S- methionine and following the 

progression of the labelled spermatozoa through the epididymis. It was shown that 

an entire cohort of spermatozoa takes 7 days to travel the entire length of the 

epididymis from the initial segment to the distal cauda (Cornwall, et al., 1990). 

The transport of spermatozoa through the epididymis is driven by a 

combination of forces, including hydrostatic pressure, muscular contractions, the 

movement of epithelial cell cilia in the epididymis and the flow of fluid entering the 

epididymis from the testis (Robaire, et al., 1988). 
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Man 

Monkey 

Stallion 

Boar 

Bull 

Ram 

Rabbi t 

Rat 

Mouse 

(l 5 10 15 

Bpididpclal Transit Time (Days) 

® Caput 0 Corpus 

Cauda 

Figure 1.7 The epididymal transit time of certain mammals 

Note: For man, the darker shaded area represents the combined transit time 
for the corpus and cauda epididymis. 

Adapted from Robaire, 1988. 

1.4.2.2 Maturation 

Spermatozoa must undergo further maturation in the epididymis to become 

motile and to be able to fertilise eggs (Cooper, et al., 2000). 

Motility is acquired as the spermatozoa progress through the epididymis 

though the precise mechanisms behind the acquisition of motility by spermatozoa in 

the epididymis are unclear. It has been suggested that development of motility is 

regulated by changes in intracellular pH, cAMP and Cat +, and the action of protein 

phosphatases (Lindemann, et al, 1989;Yeung, 1995;Vijayaraghavan, et al., 

1996;Turner, et al., 1998). 
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However, spermatozoa remain immotile until released from the epididymis. 

As discussed earlier (section 1.4.2), within the epididymis Na+ concentrations are 

high and K+ concentrations are low and the motility of the spermatozoa is promoted 

by a Nat dependant increase in intracellular pH which occurs during ejaculation or in 

vitro (Cooper, et al., 2000). 

Co- ordination of the movement of the flagellum improves as the spermatozoa 

progress through the epididymis. As a result, spermatozoa from the cauda region of 

the epididymis exhibit increased velocity and straightness of swim path compared to 

spermatozoa retrieved from the caput and corpus regions (Cooper, et al., 2000). 

The spermatozoa must also acquire the ability to interact with the egg. The 

epididymal epithelium secretes proteins which interact with the spermatozoa surface 

becoming part of the membrane and /or modifying existent residues, thereby 

developing or activating sites concerned with gamete recognition and capacitation 

(Krull, et al., 1993). 

1.4.2.3 Storage and protection of spermatozoa 

Spermatozoa can be stored in the cauda epididymis for long periods of time, 

though the fertilising ability and motility of the spermatozoa do gradually decrease 

over time. The ability of the cauda epididymis to store spermatozoa for extended 

periods is due to increased oxygen availability within the cauda epididymis and the 

decreased respiration rate of spermatozoa at scrotal temperatures (Djakiew, et al., 

1986;Mieusset, et al., 1992). Furthermore, it has been suggested that the necessity to 

store spermatozoa at reduced temperature was one of the reasons for the migration of 

the male reproductive tract from the abdomen to the scrotum (Mieusset, et al., 1992). 

The epididymis protects the spermatozoa in a number of ways. The blood - 

epididymis barrier is composed of tight junctions and allows only selective entry of 

substances into the epididymal lumen while the epithelial cells of the epididymis 

ensure the rapid elimination of harmful by- products and exogenous toxic substances 

from the lumen (Robaire, et al., 1988). 
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Many proteins are secreted into the lumen of the epididymis and protect the 

spermatozoa from specific threats. For example, it has been demonstrated that a 

number of antioxidant enzymes are expressed in a region -specific manner within the 

epididymis of both rats and humans (Zini, et al., 1997;Potts, et al., 1999). Other 

specific threats to spermatozoa within the epididymis are proteolysis (due to the 

premature release of acrosome proteins) and complement- mediated cell lysis. The 

precise mechanisms in place to protect spermatozoa from these threats are yet to be 

determined, though it is believed that certain secretory proteins may be involved 

(Hinton, et al., 1995). 

1.5 Spermatozoa 

1.5.1 Structure 

The components of mature spermatozoa are the head, the flagellum (tail) and 

the neck (which connects the head and the tail) as shown in Figure 1.8. 
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-Neck 

Figure 1.8 Structure of human spermatozoa showing main regions 

1.5.1.1 Head 

The head of the spermatozoa contains the highly compacted and inactive 

DNA which will be passed on to the oocyte during fertilisation. 

The packaging of DNA in mammalian spermatozoa is very different to that of 

somatic cells. If spermatozoal DNA was packaged into nucleosomes in the same 

way as somatic cell DNA, it would require double the space available in the 

spermatozoa head. In the spermatozoa nucleus, the DNA is bound to protamines and 

then organised into linear, side -by -side arrays. This arrangement allows a much 

larger amount of DNA to be packaged into a small space (See Figure 1.9) (Ward, et 

al., 1991). 
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Chromatin Fibre 

Somatic Nucleus 

Chromatin Fibre 

Sperm Nucleus 

Figure 1.9 Comparison of the packaging of DNA in somatic versus 
spermatozoan nuclei 

Adapted from Ward (1991) 

The sequential substitution of somatic histones by testis specific histones, 

transition proteins, and finally by protamines, the condensation of the chromatin and 

the formation of disulphide bonds occurs during the transition from round to 

elongated spermatid (Hecht, et al., 1987). This process continues in the proximal 

region of the epididymis with the further condensation of the chromatin and the 

formation of further S -S cross -links between thiol groups of TSP cysteine residues 

(Calvin, et al., 1971). 

Chromatin condensation ceases and spermatozoa heads reach their final size 

in the caput epididymis. The stabilisation of chromatin occurs in the vas deferens but 

this process does not alter chromatin superstructure (Manfredi Romanini, et al., 

1986). 

It has been shown that endogenous DNA nicks and strand breaks occur in the 

DNA of developing spermatozoa cells during spermatogenesis (Sakkas, et al., 
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1995;Smith, et al., 1998). These DNA strand breaks and endogenous nicks may 

facilitate the transition of DNA from the somatic cell histone complex to the tightly 

packed protamine complex of the mature spermatozoa by relieving the torsional 

stress created during this process (Ward, et al., 1991;McPherson, et al., 1992). 

Normally these strand breaks and nicks are ligated before the completion of 

spermiogenesis (Sakkas, et al., 1995). 

The head is also composed of the acrosome and small amounts of 

cytoskeleton and cytoplasm, though not cytoplasmic organelles (Eddy, et al., 1994). 

The majority of the cytoplasm of the developing spermatid is lost via the cytoplasmic 

droplet /residual body, which is then phagocytosed by the Sertoli cell (Johnson, et al., 

1995). Figure 1.10 shows the head of a murine spermatozoa. 

Margin d 

Sau E[oraad r- 
'`. 

ty 

Figure 1.10 Diagrammatic representation of the head of the murine spermatozoa 
showing the equatorial and marginal regions of the acrosome 

The acrosome contains the many enzymes required for the penetration of the 

oocyte. The release of these enzymes may be triggered by a number of species - 

specific signals, often reactive oxygen species (Eddy, et al., 1994;de Lamirande, et 

al., 1997). 

1.5.1.2 Tail 

The main section of the spermatozoa, the tail, consists of a central axoneme, 

surrounded by outer dense fibres which form the cytoskeleton of the tail. Again, the 

tail contains little cytoplasm, however, this region of the spermatozoa is abundant 
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with mitochondria which provide the energy required for motility (Eddy, et al., 

1994). 

1.5.2 Function 

In the male reproductive tract and lower female reproductive tract, 

spermatozoa are prevented from undergoing precocious capacitation by 

decapacitation factors. During the passage of spermatozoa through the female 

reproductive tract these factors are removed and the spermatozoa are able to undergo 

capacitation. Upon reaching the ampulla of the oviduct, the spermatozoa can then 

hyperactivate, interact with the oocyte, undergo the acrosome reaction and penetrate 

the egg (Cooper, 2001). 

Spermatozoa must produce reactive oxygen species (ROS) in order to 

undergo normal hyperactivation, capacitation, zona pellucida binding and acrosome 

reaction. The enzymatic system resulting in the production of ROS in spermatozoa 

is unknown. Spermatozoal capacitation is an oxidative process which requires low 

concentrations of ROS to occur. The conditions within the female reproductive tract 

may provide these ROS or may induce their formation by the spermatozoa 

themselves. Oxidative conditions may also be required for the spermatozoa to bind 

to the zona pellucida and it has been shown that hydrogen peroxide is required for 

the acrosome reaction to take place. (de Lamirande, et al., 1997) 

1.5.3 Susceptibility to insult 

Spermatozoa are generally regarded as being less susceptible to a number of 

endogenous insults including heat and oxidative stress, radiation and cytotoxic 

agents, than somatic cells. To date, there have been few studies which have 

compared the susceptibility to insult of spermatozoa from different species. 

Haines et al studied the effects of in vitro irradiation on both human and 

murine spermatozoa (Haines, et al., 1998). Following irradiation with increasing 

levels of gamma radiation, both murine and human spermatozoa exhibited increasing 
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levels of DNA damage as measured by the neutral Comet assay. However, the high 

levels of gamma radiation required to produce measurable amounts of DNA damage 

in spermatozoa reflects the high resistance of spermatozoa to gamma radiation 

compared to somatic cells. The authors suggest that this difference may be due to 

the differences in DNA packaging and conformation in spermatozoa compared to 

somatic cells. 

Estop et al incubated murine spermatozoa in Tyrode's T6 fertilization media 

and found that this resulted in chromosome structural abnormalities and changes in 

sperm chromatin structure which could in turn lead to breaks in the spermatozoal 

DNA (Estop, et al., 1993). Similarly, Twigg et al have demonstrated that DNA 

damage can be induced during the preparation of human spermatozoa for assisted 

reproduction techniques (Twigg, et al., 1998). 

Further study is required in order to determine the comparative susceptibility 

of spermatozoa from different species before direct correlations between animal 

models and humans can be made. 

1.6 Maintenance of normal spermatogenesis /epididymal function 

1.6.1 Hormonal support 

1.6.1.1 Testis 

As discussed previously (Section 1.1.1), testosterone is produced in testicular 

Leydig cells under the control of luteinizing hormone (LH) and is essential for the 

maintenance and regulation of spermatogenesis. Testosterone may then be 

metabolized to either 5 a- dihydrotestosterone (DHT) or to 17 ß- estradiol. 

Testosterone and DHT are essential for the differentiation of the external 

genitalia and accessory sex organs. 17 ß- estradiol is required for differentiation of 

sexual dimorphic nuclei in the brain (Chan, et al., 1989) (McLachlan, 2000). 

Results from experiments using mouse models suggest that the role of 

follicle -stimulating hormone (FSH) in spermatogenesis is the regulation of Sertoli 
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cell proliferation, the synthesis of secretory proteins (including transferring) which 

are involved in the transfer of nutrients to germ cells and, ultimately, the size and 

spermatogenic capacity of the testis (Griswold, 1993;Heckert, et al., 2002). 

FSH, DHT and testosterone are also involved in the process of spermiation 

(the release of mature elongated spermatids from the testis) and disruption of this 

process via alteration of steroid levels has been proposed as a main feature of male 

steroidal contraceptives (O'Donnell, et al., 1996;McLachlan, et al., 2002). 

1.6.1.2 Epididymis 

The epididymis is dependant on testicular androgens for regulation, in 

particular DHT and 5a- androstan -3 a, 173 -diol (3 a- diol), which are both 

synthesised from testosterone in the epididymis (Robaire, et al., 1995). 

It has been known for over 60 years that testosterone is required for the 

maintenance of normal epididymal histology. Within the epididymis, androgens are 

required for the transport of ions, inositol and carnitine across the epididymal 

epithelium, the regulation of intermediary metabolism, the synthesis and secretion of 

many epididymal glycoproteins, and the regulation of enzymatic activity. In 

addition, dihydrotestosterone is required for the acquisition of fertilising potential by 

spermatozoa in the epididymis (Robaire, et al., 1988). 

Androgens are not the only hormones required by the epididymis. Estrogen 

receptors are expressed within the epididymis and estrogen is required for normal 

epididymal function, in particular fluid transport and reabsorption (as reviewed by 

(Hess, et al., 2001). Receptors for a number of other hormones and substances have 

been identified in the epididymis including aldosterone (Hinton, et al., 1985), 

prolactin (Hair, et al., 2002) and vitamins A (Porter, et al., 1985) and D (Kidroni, et 

al., 1983). 
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1.7 Stress responses in the testis /epididymis 

1.7.1 Apoptosis 

The many rounds of mitosis which occur during spermatogenesis results in 

excessive numbers of gem! cells which the Sertoli cells are unable to support 

(Sakkas, et al., 1999). These excess germ cells are removed from the testes by 

selective apoptosis (Tapanainen, et al., 1993;Blanco- Rodriguez, et al., 

1996;Yamamoto, et al., 2000). 

Apoptosis occurs throughout spermatogenesis at specific stages of the cycle; 

I, VII, VIII, XIV and XII (Blanco- Rodriguez, et al., 1996). The process of apoptosis 

is an important regulator of cell density in the testis and is regulated by a number of 

pro - survival and pro -apoptosis genes. 

1.7.1.1 Genes involved in the,regulation of apoptosis 

Bax is a promoter of apoptosis and is normally expressed in the testis of the 

mouse where it acts as a regulator of germ cell density (Beumer, et al., 

2000;Yamamoto, et al., 2000). Loss of Bax expression in the testis results in 

disordered and increased apoptosis (Knudson, et al., 1995). It has been suggested 

that Bax plays an important role in the regulation of the meiotic cycle but it is 

unclear if it is involved in the induction of apoptosis following DNA damage 

(Knudson, et al., 1995;Beumer, et al., 2000). 

The Bel family is intrinsic to the regulation of apoptosis in the testis and Bcl- 

w is highly expressed in the basal regions of the testis. The expression of Bel-w is 

highest in spermatogonia but is also observed to a lesser degree in spermatocytes, 

round spermatids, and Sertoli cells. In most tissues, Bel-w is dispensable, with loss 

of expression having no major effects. However, in the testis, loss of Bel-w 

expression leads to germ and Sertoli cell loss via apoptosis and subsequently 

infertility (Print, et al., 1998). Bcl -2 and Bcl -x, do not play a role in the regulation of 

spermatogonial apoptosis while Bc1-x1 regulates spermatogonial apoptosis following 

DNA damage (Beumer, et al., 2000). 

24 



Chapter 1 Review of the Literature 

p53 belongs to a class of genes known as `tumor suppressor genes'. When 

functioning normally, these genes act to inhibit the development and spread of 

cancer. There are two mechanisms by which p53 is thought to act. Both involve the 

activation of specific target genes. However, one mechanism leads to a temporary 

stop in cell growth, possibly allowing repair genes to be activated, while the other 

leads to the death of the affected cell. It has been demonstrated that p53 is expressed 

in the testis and is involved in the regulation of spermatogenesis (Almon, et al., 

1993). 

Cells which normally express p53, primary spermatocytes, increase their 

expression of this protein following exposure to y- irradiation (in the rat; (Sjoblom, et 

al., 1996)) and experimentally induced cryptorchidism (in the mouse; (Yin, et al., 

1998)). The increased expression of p53 may lead to the arrest of the cell cycle to 

allow DNA repair, or to apoptosis (Basu, et al., 1998;Sasagawa, et al., 2001). 

1.7.2 Antioxidant enzymes 

A number of antioxidant enzymes have been identified within the testis. 

These include superoxide dismutase (SOD), catalase, glutathione (GSH), and 

glutathione reductase (GR), S- transferase (GST) and peroxidase (GPx). ( Bauche, et 

al., 1994;Gu, et al., 1996) The expression of these enzymes in the testis is both cell - 

and region -specific; Sertoli and peritubular cells have high levels of SOD and GSH - 

dependent enzymes and GSH, pachytene spermatocytes and round spermatids, 

however, have higher levels of SOD and GSH and low levels of GSH- dependant 

enzymes. Spermatozoa have high levels of SOD, low levels of GSH- dependant 

enzymes and no GSH (Bauche, et al., 1994). 

The ability of the epididymis to protect spermatozoa from oxidative stress is 

dependent on antioxidant enzymes. The antioxidant expression in the epididymis 

was studied via the levels of antioxidant present in the semen of normozoospermic 

and vasectomised men (Potts, et al., 1999). The levels of the antioxidant enzymes 

ascorbate, urate and thiols in semen from vasectomised men were found to be 

significantly lower than in normozoospermic men indicating that the epididymis is 
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the major contributor to the antioxidants within human seminal plasma. In addition 

it was also demonstrated that these antioxidants are most likely expressed in a 

region -specific manner within the epididymis in order to provide the most efficient 

protection for the spermatozoa against oxidative stress (Potts, et al., 1999). 

Furthermore, a study of the antioxidant expression within the rat epididymis 

has determined that cellular glutathione peroxidase, secretory epididymal glutathione 

peroxidase, phospholipid hydroperoxide glutathione peroxidase, copper -zinc 

superoxide dismutase (SOD), secretory epididymal superoxide dismutase and 

catalase are all expressed in á region- specific manner within the epididymis (Zini, et 

al., 1997). 

1.8 Impact of heat stress on testicular and epididymal function 

The normal temperature of the scrotum and testis is lower than body 

temperature in most mammals, including humans (Kitayama, 1965). This lower 

temperature is required for normal spermatogenesis to occur, though the reasons for 

this are not yet understood (Setchell, 1998). Two thermoregulatory systems are 

employed to maintain a lower scrotal and testicular temperature. The scrotum itself 

has a large surface area, no subcutaneous fat and thin skin, enabling efficient heat 

loss either directly or indirectly via the evaporation of sweat (Wailes, 1976;Waites, 

1991;Candas, et al., 1993). Secondly, counter - current exchange of heat from arterial 

to venous blood occurs at the pampiniform plexus, which is located in the spermatic 

cord (Glad Sorensen, et al., 1991). This system results in the cooling of arterial blood 

before it even reaches the testis and has been shown to be a very efficient regulator 

of testicular temperature. (Mieusset, et al., 1995) 

1.8.1 Causes of raised scrotal temperature in man 

There are a number of factors (including clothing, posture, occupation, 

lifestyle and season) which may affect scrotal temperature in man, and may, in turn 

affect fertility. 
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1.8.1.1 Clothing 

It was first observed that clothing affects scrotal temperature in 1965 (Rock, 

et al., 1965). Since then, a number of studies have confirmed this observation and in 

a several studies, a link between the wearing over certain types of underwear, 

increased scrotal temperature and impaired semen parameters /fertility has been 

established (Brindley, 1982;Zorgniotti, et al., 1982). 

Bedford (1994) proposed that the insulating effects of clothing on the scrotum 

of men are equivalent to those of experimentally- induced raised scrotal temperatures 

in the rabbit (Bedford, 1994). 

1.8.1.2 Posture 

A number of studies have demonstrated that posture affects scrotal 

temperature. Lowest scrotal temperatures were observed in normal, naked men 

whilst standing. Sitting with, legs either apart or together, or lying in a supine 

position, raised scrotal temperatures significantly (Rock, et al., 1965;Brindley, 

1982;Jockenhovel, et al., 1990). It is not been established whether the increases in 

scrotal temperature observed in these different postures are pathological (i.e. likely to 

be of clinical significance) or remain within the physiological range (Mieusset, et al., 

1995). 

1.8.1.3 Occupation 

It has been shown that the fertility of men in certain occupations may be 

affected by exposure to high temperatures. In particular, studies of welders and 

ceramic workers suggest that these occupations, which involve exposure to very high 

temperatures, may play a role in the increased incidence of infertility reported by 

these workers (Figa- Talamanca, et al., 1992;Bonde, 1993). 

Occupations involving long periods in a seated position (office workers, 

professional drivers etc.) have also been implicated as causing increased scrotal 

temperatures. 
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It has been demonstrated that, in normal volunteers, scrotal temperature can 

increase by up to 2.2 °C following 2 hours of driving compared to measurements 

taken while walking. This increase in scrotal temperature was shown not to be 

associated with increase in ambient temperature within the car ( Bujan, et al., 2000). 

In a study of men attending a fertility clinic in Hungary, it was observed that 

a high proportion of these men worked as professional drivers (Sas, et al., 1979). 

Furthermore, it was found that men who had worked as drivers for extended periods 

exhibited greater numbers of abnormal spermatozoa. 

More recent studies have also demonstrated that workers in the transport and 

communications industries are more likely to exhibit reduced numbers of 

spermatozoa and reduced motility than workers in other industries (Henderson, et al., 

1986;Chia, et al., 1994). 

1.8.1.4 Lifestyle 

There is conflicting evidence as to whether or not lifestyle factors such as 

saunas, hot baths, extended periods of sleep /sitting or the use of electric blankets etc. 

have an effect on scrotal temperature and /or fertility. 

The most studied of these so- called lifestyle factors is sauna bathing One 

study, using advanced temperature measurement techniques has demonstrated that 

exposure to sauna can result in the scrotum reaching body temperature within 10 

minutes of exposure (Jockenhovel, et al., 1990). 

Studies of spermatozoa parameters following single or multiple exposures to 

sauna baths have demonstrated that this increase in scrotal temperature can lead to a 

reversible decrease in the spermatozoa number and /or movement parameters of 

healthy, fertile volunteers (Procope, 1965;Brown- Woodman, et al., 1984;Saikhun, et 

al., 1998). 

It is important to note that the factors mentioned above may not cause 

infertility in all men. It is likely that those men who do become infertile due to heat 

stress are for some reason more susceptible to this problem than others. 
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1.8.1.5 Medical conditions 

There are a number of medical conditions which have been shown to lead to 

increased scrotal temperature and /or infertility. 

Varicocele is caused by a contralateral scrotal veinous drainage abnormality 

and has been shown to be an important factor in male infertility (Mieusset, et al., 

1995). This condition results in increased testicular temperature and/or decreased 

testicular blood flow (Zorgniotti, 1980;Goldstein, et al., 1989;Lerchl, et al., 1993). 

A number of studies have concluded that infertility associated with varicocele may 

be a direct consequence of elevated testis temperature in these patients (Zorgniotti, 

1980;Mieusset, et al., 1987;Goldstein, et al., 1989;Lerchl, et al., 1993). 

The failure of the testes to descend to the scrotum (cryptorchidism) is a 

frequent and increasing pathology in childhood. It has long been established that 

untreated cryptorchidism is associated with increased testis temperature, decreased 

testis size and decreased spermatozoa output (Kitayama, 1965). 

Even following treatment by medical or surgical means, cryptorchidism may 

result in raised scrotal temperature and infertility in adult life (Mieusset, et al., 1995). 

The increase in testicular temperature associated with cryptorchidism could be either 

a concomitant or a main factor in the infertility of cryptorchid patients (Mieusset, et 

al., 1993). 

Figure 1.11 outlines the potential causes and effects of raised temperature of 

the scrotum and /or testis. 
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1.8.2 Animal models of heat stress 

Heat stress has been induced in animal models by two methods; a single 

transient exposure of the testis to heat or surgically- induced cryptorchidism. 

In rodents, a single exposure of heat stress may be administered by the 

emersion of the scrotal region, hind legs and tail of the animal in a water bath for the 

desired period of time. In a number of studies, the testes of rats have been subjected 

to temperatures in the range of 39 -43 °C for periods between 15 -30 minutes. (Galil, et 

al., 1988;Setchell, et al., 1988;Blanco- Rodriguez, et al., 1998;Lue, et al., 2000). In 

the mouse, effects of temperatures within the range 39 and 42 °C have been studied 

for periods of between 20 and 30 minutes (Jannes, et al., 1998;Nishiyama, et al., 

1998). The study of the effects of prolonged heat stress (longer than 30 minutes) is 

limited by the constraints of anaesthesia. Other studies have examined the effects of 

increased whole -body temperature and humidity on the testes and fertility of mice 

(Bellve, 1972). 

Surgically- induced cryptorchidism involves the translocation of the 

reproductive tract from the scrotum to the abdominal cavity and ligation of the 

inguinal canal, thereby exposing the testis to abdominal temperatures for extended 

periods of time. Using this procedure, it is possible to study the effects of heat stress 

on the testis or epididymis alone, or together (Glover, 1960;Jegou, et al., 1983;Yin, 

et al., 1997;Nishiyama, et al., 1998;Yin, et al., 1998). 

1.8.3 Effects of heat stress on testicular function 

Following experimental cryptorchidism in the rat, testis weight dropped 

significantly within 4 days, reaching a plateau at 2 weeks. This weight loss is due to 

the loss of germ cells and decreased fluid production by Sertoli cells. Heat -induced 

Sertoli cell dysfunction may also result in the altered function of Leydig cells 

(Leydig cell hypertrophy) (Jegou, et al., 1983). 

Significantly increased levels of apoptosis observed in stages II -III, XI, XII, 

XIII and XIV in the rat following heat stress. Cell types most susceptible to heat- 
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induced apoptosis are primary pachytene spermatocytes, primary metaphase 

spermatocytes and secondary spermatocytes, and to a lesser degree, round spermatids 

and A2 -A4 spermatogonia (Lue, et al., 1999). Al, intermediate and B 

spermatogonia appear resistant to heat -induced apoptosis (Blanco- Rodriguez, et al., 

1998). In the mouse, it has been shown that germ cell loss (via apoptosis) following 

heat stress is mediated via p53- dependant and -independent pathways (Yin, et al., 

1997;Yin, et al., 1998). 

Further studies in which cell loss has been quantified have identified 

pachytene spermatocytes and early spermatids as being susceptible to heat stress 

(Yin, et al., 1997). In addition, two critical periods in spermatogenesis (leptotene- 

pachytene and maturation division) have been identified through which cells were 

unable to progress following heating (Collins, et al., 1969;De -Vita, et al., 1990). 

Following heating, the expression of a number of genes in the testis is down 

regulated. In particular, decreased expression of oxidative stress response genes 

following heating may leave" cells more susceptible to oxidative DNA damage. 

Genes involved in DNA repair and recombination are down -regulated by heat stress, 

therefore it is possible that heated germ cells may be less capable of repairing heat - 

induced strand breaks /lesions. Other genes affected by heat stress include many 

involved in cell cycle regulation, glutathione metabolism and stress response 

(Barroso, et al., 2000;Rockett, et al., 2001). 

Heat stress results in decreased vascular resistance and increased blood flow 

in the testis of the rat. Vascular resistance in the testis is decreased significantly 

following exposure to 43 °C (Setchell, et al., 1995). 

Heat stress may affect the DNA integrity of spermatozoa in a direct or 

indirect manner. It has been shown that heat stress leads to abnormal chromatin 

packaging in spermatozoa, which may in turn cause DNA damage (Sailer, et al., 

1997). 

As discussed previously (section 1.5.1.1), DNA strand breaks occur during 

spermiogenesis to facilitate the process of chromatin condensation. The disruption 

of spermiogenesis (i.e. following heat stress) may result in the failure of the 
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spermatids to ligate these strand breaks which could persist into the mature 

spermatozoa (Manicardi, et al., 1995). 

1.8.4 Effects of heat stress on epididymal function 

The effects of raised temperature on the epididymis have been observed in a 

number of animal models and studies have shown that spermatozoa located within 

the epididymis at the time of heating are affected. 

Following heat stress, the epididymis loses its ability to store and maintain 

viable spermatozoa, resulting in the gradual and progressive accumulation of dead, 

decapitated and immotile spermatozoa (Glover, 1960;Jegou, et al., 1983;Mieusset, et 

al., 1992;Bedford, 1994). 

The cauda appears to be the region of the epididymis most affected by heat 

stress, decreasing in size, and therefore storage capacity, resulting in decreased 

numbers of viable spermatozoa in the ejaculate (Glover, 1960;Bedford, 

1978;Bedford, 1991). 

Heat stress has been shown to affect the epididymis in a number of ways. As 

discussed earlier, oxygen is required in the epididymis to successfully sustain and 

store spermatozoa and raised temperatures would reduce the amount of oxygen 

available to the epididymis, thereby decreasing its storage capacity. (Djakiew, et al., 

1986) 

The water and ion transport mechanisms of the epididymis, in particular the 

resorption of Na+ and CF and the secretion of K +, are affected by raised temperature 

resulting in altered ionic composition of the epididymal fluid (Bedford, 1991) 

The biosynthesis of secretory proteins in the epididymis is temperature 

regulated. Following heating, several characteristic proteins disappear from the 

lumen and the synthesis of proteins required for the efficient maturation and storage 

of spermatozoa is altered (Esponda, et al., 1990;Regalado, et al., 1993). 

Exposure of the epididymis to abdominal temperature alters the cellular 

composition of the epididymal epithelium. In particular, the overall number of basal 
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cells in the caput and corpus regions increases, with many of these basal cells 

exhibiting increased macrophage expression (Seiler, et al., 2000). 

In addition, the epididymal transit time in cryptepididymal rabbits decreases 

from 10 to 3 -4 days and the spermatozoa produced exhibit poor morphology and 

motility (Bedford, 1978). It has not been shown whether this occurs in other species. 

1.8.5 Effects of heat stress on fertilising ability /embryonic development 

Bellve (1979) first demonstrated that fertilization and embryonic 

development was adversely affected by the heat treatment of mice. Male and female 

mice were subjected to whole -body heat treatment (34.5 °C, 65% relative humidity 

for 24 hours). Pre- and post -implantation loss of embryos was observed in both 

treated and non -treated females mated to treated males, indicating that heat treatment 

of the male mice alone was sufficient to cause embryo loss. Spermatozoa parameters 

of heat -treated males were not measured in this study. 

More recently, a number of studies have demonstrated a direct association 

between raised scrotal temperature and fertilisation failure /poor embryonic 

development. 

It has been demonstrated that heated male rats fail to impregnate noimal 

females despite the production of adequate numbers of spermatozoa, and 

furthermore, litter sizes from females which were successfully impregnated by 

heated males were significantly reduced (Setchell, et al., 1988). 

Jannes, et al (1998) demonstrated that mild scrotal heating (42 °C for 20 

minutes) of the male mouse results in decreased fertilisation rates and embryo weight 

(Jannes, et al., 1998) and similar effects of scrotal heating have been observed in the 

ram. Scrotal insulation (resulting in temperatures 1.4 -2.2 °C above controls) of rams 

for 16 hours a day for 21 consecutive days, resulted in normal fertilisation rates but 

increased embryonic mortality in non -treated ewes (Mieusset, et al., 1992). 
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1.9 Male infertility 

In a study of publications from the period 1938 -1991 and the evaluation of 

data from nearly 15,000 men, Carlsen et al concluded that there had been a decrease 

in spermatozoa production over the 50 -year period studied (Carlsen, et al., 1992). 

More recently, this data has been re- evaluated (corrected for specimen collection 

method, abstinence time, age and percent of men with proven fertility), and the 

number of publications included in the study increased to include data from the 

period 1934 -1994. The findings of Carlsen et al were confirmed and it was 

concluded that a significant decline in the density of spermatozoa has occurred in this 

period (Swan, et al., 2000). 

A number of reports have reviewed the findings of Carlsen, Swan and others 

(Hull, et al., 1985;Auger, et al., 1995), and have concluded that further, more 

detailed and controlled prospective studies are required in order to obtain a true 

representation of the status of male fertility (Jouannet, et al., 2001;Multigner, et al., 

2002). Furthermore, following the Carlsen paper, Bromwich et al published a report 

claiming that the findings of Carlsen et al were based on the wrong form of statistical 

analysis of the data, and that the decline in spermatozoa counts observed was in fact 

due to a statistical artefact (Bromwich, et al., 1994). This debate was then continued 

in a letter to the British Medical Journal by Irvine (1994) who proposed that the 

statistical analysis methods employed by Bromwich et al were also inappropriate, 

leading to misinterpretation of their results. Irvine then goes on to discuss the results 

of a study which assessed the data on 3729 semen samples submitted by healthy 

volunteers over the period 1940 -1969. Data was grouped according to the year of the 

donors' birth and it was found that the spermatozoa concentration of the men born in 

the 1940's was significantly greater than that of the men born in the late 1960s. 

Irvine concluded that though Carlsen's statistical analysis may not have been entirely 

representative of the facts, the evidence presented for the fall in spermatozoa 

concentrations is not unconvincing (Irvine, 1994). 

A number of studies have clearly refuted the findings of Carlsen et al and 

have demonstrated no fall in semen quality. Paulsen et al studied semen volume, 
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sperm concentration, spermatozoa number per ejaculate and morphology in 510 

healthy men between 1972 and 1993. The authors concluded that there had been no 

decline in semen quality in this population of healthy men over the 21 year period 

studied (Paulsen, et al., 1996). Handelsman reviewed the existing evidence for 

falling spermatozoa counts in 2001. The author concluded that there was not 

sufficient evidence to support a general deterioration in spermatozoa counts and that 

it is highly unlikely that any deterioration in male fertility could be linked to 

exposure to environmental estrogens (Handelsman, 2001). 

In summary, it is clear that much debate exists regarding the deterioration (or 

lack of it) of male reproductive health. One of the contributing factors to this debate 

is the lack of agreement on which outcomes should be measured, which populations 

should be studied, and perhaps most importantly, how the data obtained should be 

analysed. Until agreement is reached on these issues, groups from around the world 

will continue to report conflicting findings which cannot be directly compared 

against one another. 

1.9.1 Assisted reproduction techniques (ART) 

The use of assisted reproductive techniques such as in vitro fertilisation (IVF) 

and intracytoplasmic sperm injection (ICSI) has revolutionized the treatment of 

couples with so- called male factor infertility. 

1.9.2 Selection of spermatozoa for ART 

The success of assisted reproduction techniques is dependent on the selection 

of morphologically normal and motile spermatozoa (Mansour, et al., 1995). Clinical 

data indicates that the use of poor quality spermatozoa in ART can result in reduced 

fertilisation rates, fewer blastocysts, and poor embryonic development (Ron -el, et al., 

1991;Parinaud, et al., 1993;Janny, et al., 1994;Lopes, et al., 1998). 

Loss of DNA integrity within sperm does not affect the ability of sperm to 

fertilize the oocyte following intracytoplasmic sperm injection (ICSI) (Irvine, et al., 
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2000). However, it has been shown that DNA abnormalities in spermatozoa can be 

passed to the offspring following ICSI/IVF treatment. For example, in a number of 

studies of the spermatozoa and offspring of smoking fathers, it has been 

demonstrated that smoking can cause oxidative DNA damage in the form of DNA 

adducts and strand breaks (which can in turn lead to deletions), and that this DNA 

damage can be passed from the father to the offspring (Ji, et al., 1997;Shen, et al., 

1997;Potts, et al., 1999;Zenzes, et al., 1999;Zenzes, 2000). 

With the increasing use of ICSI in the treatment of male factor infertility, the 

risk of oocytes being fertilized with genetically- impaired sperm is greatly increased. 

The DNA integrity of spermatozoa used in assisted reproduction techniques is not 

currently assessed. 

There are a number of assays available for the detection of DNA damage in 

spermatozoa (including the single cell gel electrophoresis (Comet) and terminal 

deoxynucleotidyl transferase (TdT)- mediated dUTP- nick end labelling (TUNEL) 

assays, the sperm chromatin structure assay (SCSA), 8- Hydroxydeoxyguanosine (8- 

OhdG) measurement, in situ nick translation (ISNT) and enzyme -linked 

immunosorbant assay (ELISA)) (Sailer, et al., 1995;Hughes, et al., 1999;Irvine, et 

al., 2000;Shen, et al., 2000). 

These assays have all been used with success in a number of studies of DNA 

integrity of spermatozoa from fertile and infertile men. However, these assays can 

be costly and time -consuming, and it has yet to be proven that their use in the 

selection of spermatozoa for use in ART is warranted. 
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1.10 Aims of the project 

The main objectives of the work presented in this thesis were: 

1. To develop an assay for the study of DNA damage in murine 

spermatozoa. 

2. To study DNA damage in mature, motile spermatozoa from a number 

of genetically -modified mouse models for male infertility. 

The genetically modified mouse models to be studied were: 

a. Mice deficient in a protein known to be associated with 

male infertility (dazl). 

b. Mice deficient in a DNA -repair protein known to be highly 

expressed in the testis (Ercc -1). 

c. Mice found to be infertile due to deficiency in proteins 

with -no known role in the testis /fertility (PrP and PrnD). 

3. To study the effects of in vivo heating on developing germ cells and 

mature spermatozoa with particular emphasis on: 

a. The stress response of the testis and epididymis following 

scrotal heating. 

b. The number and DNA integrity of motile spermatozoa 

located within the epididymis at the time of heating. 

c. The number and DNA integrity of motile spermatozoa 

developed from germ cells present within the testis at the 

time of heating. 
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Chapter 2 Materials and methods 

2.1 Animals and animal welfare 

All animals used in these studies were maintained and treated in accordance 

with Government guidelines as stated in the Animals Scientific Procedures Act, 

1986. 

2.1.1 Dazl mice 

Dazl is an autosomal homologue of the Y chromosome gene DAZ which has 

been implicated in infertility in the human (Yen, et al., 1996;Chang, et al., 

1999;Krausz, et al., 1999). In the mouse, the dazl protein is expressed in the 

cytoplasm of germ cells (Ruggiu, et al., 1997) and has been shown to be essential for 

the differentiation of these cells (Cooke, et al., 1996;Venables, et al., 2001). Males 

entirely lacking this protein are infertile and produce no spermatozoa while 

heterozygous males are fertile but exhibit reduced numbers of spermatozoa with high 

incidence of morphological abnormality (Ruggiu, et al., 1997). The animals used in 

this study were sexually mature male +/+ and ±1- dazl MF1 mice. The genotype of 

these mice has been described previously by Ruggiu et al (1997). 

2.1.2 Ercc -1 

Ercc -1 (excision repair cross -complementing gene 1) is a gene involved in 

the nucleotide excision repair (NER) pathway which is responsible for the 

recognition and repair of DNA damage (Wood, 1999). Within this pathway, Ercc -1 

forms a complex with xeroderma pigmentosum factor (XPF; also known as Ercc -4). 

This complex is a structure -specific endonuclease, which incises the damaged DNA 

strand at the 5' side of the lesion. Ercc -1 has also been shown to be involved in the 

process of mitotic recombination (Biggerstaff, et al., 1993). 

In Ercc -1 knockout mice, the NER pathway is lost and mitotic recombination 

is impaired. The organs most affected by the loss of Ercc -1 are the liver, kidney and 

spleen. Death occurs in Ercc -1 ( -I -) mice before the first wave of spermatogenesis is 
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complete due to liver failure. To allow studies on the role(s) of Ercc -1 in other 

organs the liver phenotype has been corrected by introduction of an Ercc -1 transgene 

under the control of a liver -specific promoter into the Ercc -1 null background 

(Selfridge, et al., 2001). 

2.1.3 Prion mice 

The animals used were sexually mature male PrP and PrnD mice. The Prion 

diseases (Scrapie, Creutzfeldt -Jakob Disease) are fatal neurodegenerative disorders 

which may be either inherited or acquired. 

Mice deficient in the Prion protein (PrP) develop ataxia and exhibit altered 

circadian rhythms (Tobler, et al., 1996) and electrophysiological disorders (Collinge, 

et al., 1994). PrP variants are expressed both in the testis and the mature 

spermatozoa of mice (Shaked, et al., 1999;Lí, et al., 2000). PrP deficient male mice 

exhibit normal testicular /epididymal function. However, there have been conflicting 

findings regarding the fertility of these mice, for example Shaked et al have reported 

that these mice are fertile (Shaked, et al., 1999) while Melton et al., have observed 

complete infertility (Melton DW, personal communication). 

The PrP- related gene doppel (PrnD) encodes a Doppel protein (Dpl), which 

is normally expressed at low levels in the brain and is highly expressed in the testis 

of the sheep, cow and mouse (Silverman, et al., 2000;Tranulis, et al., 2001). In the 

mouse, Dpl is expressed during the late stages of spermiogenesis and sperm from 

Dpl deficient (PrnD -/ -) male mice have been shown to be immotile, malformed and 

unable to fertilise eggs in vitro (Behrens, et al., 2002). 

2.1.4 Animal accommodation 

All animals were housed at University of Edinburgh Animal Facilities 

(George Square or King's Buildings) and were maintained under standard conditions 

of 12 hour (h) light/ 12 h dark cycle, in an ambient temperature of 20 -25 °C. Animals 

had access to food (Standard Mouse Diet) and water (domestic supply) ad libitum. 
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2.1.5 Animal genotyping 

2.1.5.1 Dazi mice 

Genotyping of the dazi mice was performed by Ms Joanne McVerry (MRC 

Human Reproductive Sciences Unit, Edinburgh). 

DNA was prepared from tail tips taken from mice after weaning (at 21 days). 

A small section (2mm) of tail was placed in a 500111 Eppendorf tube with 100111 

NaOH /0.2mM EDTA, and incubated at 95 °C for 20 minutes (min) before adding 

100111 40mM Tris -HC1. Tubes were then vortexed before storing at -20 °C. 

The primers used for the PCR reaction were as follows: 

dazi U660 CAGTGGCTTTTGGAAATTATCA 22 bases 
dazi U661 GCTTCCTCTTGCAAAACCAC 20 bases 
dazi U662 CCTCCTCCACCACAGTTCCA 20 bases 
dazi U663 TGATTTCAGCTTAGCATAAACAGC 24 bases 

Each PCR reaction tube contained 5111 10x PCR Gold Reaction Buffer 

(750mM Tris /HC1 (pH 9.0), 200 mM (NH4)25O4, 0.1% TWEEN -20, 15mM MgC12; 

Hybaid), 8µl dNTP mix (Hybaid), 0.61A1 U660.Ú661 primer, 0.61.11 U662.Ú663 

primer, 31.55111 H2O, 4µl MgC1, 0.25µl Ampli Tag Gold (Perkin -Elmer 

LOCATION), and 5µl DNA from tail digest. Tubes were placed in an OmniGene 

PCR machine and subjected to the following programme: 

95 °C for 10 min xl 
94 °C for 4 min xl 

94 °C for 1 min 
60 °C for 45 seconds 
72 °C for 1 min 

72 °C for 10 min xl 

x35 cycles 

The PCR product (with Orange G loading buffer; Promega, UK) was run on 

an agarose gel (2 %, TBE buffer, 90 volts) until the dye front had travelled 2.5cm. 

Results were interpreted as shown in Figure 2.1. 
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Wells 

+1+ +1- -/- 

Figure 2.1 Diagram of agarose gel showing location of bands following genotyping. 

2.1.5.2 Ercc -1 mice 

Genotyping of Ercc -1 mice was performed by Ms Carolanne MwEwan 

(Institute of Cell and Molecular Biology, University of Edinburgh). A triple PCR 

method was used to identify Ercc -1 wild -type and knock -out animals possessing the 

Ercc -1 transgene which restored liver- function in these animals, thereby increasing 

their lifespan into sexual maturity. 

The ERCC1 genotypes were identified using the following primers: 

ERCC1 gene = CCAGTGTTGAAGTTTGTGCG 20 bases 

Transgene = CGAAGGGCGAATTCTTCCCC 20 bases 

2.1.5.3 Prion mice 

Genotyping of the PrP and PrnD mice was performed by Derek Paisley 

(Institute of Cell and Molecular Biology, University of Edinburgh). A standard PCR 

reaction was performed for the identification of both genotypes (see above). 

The PrP null animals were identified using the following primers: 

PrP intron 2 = AATCGCCACCTGCATTAGGG 20 bases 

PrP exon 9 = AGCCTACCCTCTGGTAGATTGTCG 24 bases 

The PrnD null animals were identified using the following primers: 

Prnd exon 1 = GATGCTAGGAGCCTGCTCATTCC 23 bases 

PrP exon 9 = AGCCTACCCTCTGGTAGATTGTCG 24 bases 
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2.1.6 Sacrifice of animals 

Animals were killed by inhalation of CO2, followed by cervical dislocation in 

accordance with Schedule One of the Home Office Animal Act. 

2.2 Treatments 

2.2.1 Anaesthetic 

Animals were anaesthetised with an intraperitoneal injection of Hypnorm® 

(fentanyl citrate 0.315mg/m1, fluanisone 10mg/ml; Janssen, UK) and Hypnovel® 

(midazolam hydrochloride; Roche, UK). Both were diluted 1:1 with distilled water 

and the resulting dilutions mixed 1:1 to give the final anaesthetic. All animals were 

weighed and the amount of anaesthetic given was determined by body weight as 

shown in Table 2.1. 

Animal Weight (g) Volume of Anaesthetic (ml) 
<45 0.28 

45 -50 0.29 
>50 0.30 

Table 2.1 Volume of anaesthetic given to animals before testicular heating. 

2.2.2 Testicular heating method 

A circulating water bath was cleaned and filled with fresh water before each 

use and the water heated to 42 °C ( +/- 0.5 °C). Following anaesthesia, the lower part 

of the body (i.e. the hind legs, tail and scrotum) of each animal was passed through a 

hole in a polystyrene `raft' (Figure 2.1, 2.2) and the animal was secured using a piece 

of rubber band and 2 needles (Figure 2.3). The raft was placed in the water bath for 

30 min. The animals were removed from the raft, dried and returned to their cages 

which were placed on a warm mat to facilitate the recovery of the animals from the 

anaesthetic. 
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Figure 2.2 Anaesthetised mouse showing exposed scrotum 

Figure 2.3 Position of mouse on polystyrene raft 

Figure 2.4 Position of mice on polystyrene raft in water bath showing rubber bands 
and needles holding them in position 
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2.3 Methods for tissue fixation, processing and staining 

2.3.1 Tissue fixation for paraffin embedding 

Testes and epididymides were carefully removed and placed in Bouin's 

fixative (500m1 40% v/v formaldehyde, 100m1 acetic acid and 2 1 saturated picric 

acid) for 10 h and 6 h respectively and then transferred into 70% ethanol until 

embedding in paraffin wax. The tissue was orientated so that horizontal cross 

sections of the testis and longitudinally cross sections of the epididymis could be 

achieved. 

2.3.2 Tissue processing and sectioning of paraffin blocks 

Using a 17.5 h automated cycle on a Leica TP -1050 processor (Leica UK Ltd, 

Milton Keynes, UK), tissue was dehydrated through a series of graded alcohols 

before being saturated and embedded in paraffin wax. To increase the adherence of 

the tissues to the microscope slides prior to immunohistochemistry, the slides were 

dipped twice in (v /v) 3- aminopropyl triethoxysaline (TESPA, Sigma, 

Nottinghamshire, UK) made 4% (v /v) in acetone (BDH, Poole, UK), washed in 

acetone, rinsed in double distilled water and dried overnight. Paraffin sections (511m) 

were cut using a hand -operated microtome (Jung RM2035; Leica) with disposable 

blades. Sections were floated in a heated water bath (containing distilled water) at 

approximately 50 °C. The sections were transferred onto slides and dried in a 50 °C 

oven overnight before use. 

2.3.3 Haematoxylin and eosin (H &E) staining 

Harris's Haematoxylin was prepared by dissolving 50g potassium allum in 500 

ml warm distilled water and combining with 2.5g haematoxylin (BDH) previously 

dissolved in 25 ml absolute alcohol. The resulting mixture was rapidly brought to 

the boil and 1.25 g mercuric oxide (BDH) added. The solution was cooled by 

plunging the flask into a sink containing cold water and ice. 20 ml acetic acid was 

added and the stain was then filtered before use. A 1 % (w /v) Eosin Y (BDH) 

solution was prepared using distilled water to which 0.5 ml /1 acetic acid was added. 
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2.4 Immunohistochemistry 

Immunohistochemistry was used to identify and localise specific proteins 

within cells using antibodies raised against the protein under investigation. In brief, 

an enzyme -linked secondary antibody was used to amplify the signal of the primary 

antibody bound to the target antigen allowing visualisation under a microscope. 

2.4.1 Immunohistochemistry protocol for paraffin sections 

Paraffin wax was removed from sections by washing in 2 changes (5 min 

each change) of xylene (BDH). Sections were rehydrated by washes in decreasing 

concentrations of ethanol (100 %, 95 %, 75% (v /v) and finally water) and then 

incubated at room temperature for 30 min in a bath of methanol/hydrogen peroxide. 

(methanol 270 ml: H2O2 30 ml, Sigma). If antigen retrieval was required to make 

epitopes available, slides were pressure- cooked in either citrate (0.O1M, pH 6.0, 

Sigma) or glycine (0.05M, pH 3.5, Sigma) buffer for 3 min, followed by cooling for 

20 min (Norton, et al., 1994). - Slides were washed briefly in tap water then in 2 

changes of Tris Buffered Saline (TBS, Sigma; 5 min each change). Slides were 

removed individually from TBS and any excess fluid carefully removed using paper 

towels. Slides were placed in a humidity chamber containing a small amount of 

dH2O to prevent the sections from drying out during incubation. 

Sections were covered with 50 -100 µl (depending on the size of the section) 

blocking serum (16 ml TBS, 4 ml normal rabbit serum; Diagnostics Scotland, 

Carluke, UK, 1 g bovine serum albumin; Sigma) and incubated for 30 min at room 

temperature. Slides were again washed twice in TBS and then returned to the 

humidity chamber. 50 -100 µl primary antibody at optimum dilution (See relevant 

chapters for details) in blocking solution was added to each section and the humidity 

box sealed and incubated at 4 °C overnight. Negative control slides were incubated 

with either species -specific control serum or pre- immune serum. 

To visualise bound primary antibody, slides were washed in TBS as before 

and then returned to the humidity box. Biotinylated second antibody was added at 

the appropriate dilution (See relevant chapters for details) in blocking serum and the 
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slides were incubated at room temperature for 30 min. Following further washes in 

TBS, Avidin- Biotin Complex (ABC; Dako Ltd, Cambridgeshire, UK) was added to 

each section and again incubated at room temperature for 30 min. Slides were 

washed for the final time in TBS before the addition of 3,3'- diaminobenzidine 

tetrachlorideH2O2 (DAB; Dako). 

Sections were studied under a microscope until the coloured reaction product 

(brown) appeared. Over -development of the colour reaction was prevented by 

placing slides in tap water. Sections were then counter -stained by placing in Harris's 

haematoxylin for 2 -5 min, followed by acid alcohol and finally Scott's Tap water, 

rinsing between each step in tap water. Slides were dehydrated through a series of 

alcohols and cleared in xylene for 5 min before being mounted using Pertex 

mounting medium (Cell Path, Hemmel Hempstead, UK) and cover -slipped. 

2.4.2 Procedure for detection using fluorescence 

Sections were de- paraffinised and re- hydrated as previously described and 

then washed twice in phosphate buffered saline (PBS: 5 min each wash). Incubation 

with methanol /hydrogen peroxide was followed by further washes in PBS and 

antigen retrieval if required (as previously described). Again a humidity box was 

used to prevent sections from drying out during incubations. Sections were covered 

with 50 -100 pl (depending on size of section) of blocking serum (See above) and 

incubated for 1 h at room temperature. 

The blocking serum was replaced with primary antibody at the appropriate 

dilution (approximately 10x stronger than in DAB detection protocol) and the slides 

were either incubated for 2 h at room temperature or overnight at 4 °C. The slides 

were again washed in PBS before the addition of the appropriate fluorescent 

secondary antibody (1:50 in blocking serum) and incubated for 1 h at room 

temperature in a humidity box. The slides were again washed in PBS and mounted 

using Citifluor mounting solution ( Citifluor Ltd, London, UK) under glass cover 

slips. 
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2.4.3 TUNEL 

Sections were de -waxed in xylene, rehydrated through a series of alcohols to 

70% ethanol and blocked with methanol/hydrogen peroxide as in the 

immunohistochemistry method (2.4.1). Slides were washed twice (5 min each wash) 

in PBS (0.O1M, pH 7.4) and then incubated with 20 µg /ml Proteinase K (Anachem 

Ltd, Bedfordshire, UK) in buffer (0.1M Tris, 0.O1M EDTA, pH 8) for 10 min at 

room temperature. Slides were again washed with PBS and placed on an ice -cold 

tray. 

The reaction mix (30mM TRIS/HC1, pH7.2, 140mM Na Cacodylate, 1.5mM 

CoC1) containing 1411/ml terminal d- transferase (TdT; Roche), 5111/m1 digoxigenin 

(Dig; Roche) was added and sections sealed under cover slips with cow gum/hexane 

then incubated at 37 °C for 30 min. The reaction mix added to control slides (1 

control slide included in each run) did not include TdT. Following removal of the 

cover slips and further washes in PBS, sections were blocked with 20% NRS in PBS 

for 10 min at room temperature: Sheep anti -Dig IgG (1:100 in NRS/PBS) was added 

and the slides incubated at room temperature for 90 min before further washes in 

PBS. Rabbit anti -sheep IgG biotinylated (1:500 in NRS /TBS) was added for 30 min 

at room temperature before washing twice in TBS (5 min each wash). 

As in the ABC method, bound antibodies were visualised using ABC 

conjugated to HRP which was added to the slides and incubated for 30 min at room 

temperature; sections were washed twice in TBS (5 min each wash) before the 

addition of DAB. The resulting colour reaction was stopped with water. Sections 

were counterstained with Mayer's haematoxylin, dehydrated through a series of 

alcohols ending in xylene, mounted in Pertex and coverslipped. 
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2.5 Image analysis 

2.5.1 Digital photomicroscopy 

Tissue sections were examined using an Olympus Provis microscope 

(Olympus Optical, London, UK) and images captured using a digital Kodak DCS420 

camera (Eastman Kodak, Rochester, NY, USA). Captured images were stored on a 

G4 Apple Macintosh computer (Apple Computer, CA, USA) and compiled using 

Photoshop 6.0 (Adobe Systems Inc., CA, USA). 

2.5.2 Fluorescent photomicroscopy 

Tissue sections were examined using a Zeiss 510 Laser scanning confocal 

microscope (Carl Zeiss) connected to a G4 Apple Macintosh computer. Images were 

captured using LSM 510 software (Zeiss) and compiled using Photoshop 6.0. 

2.6 Methods for the preparation of spermatozoa 

2.6.1 Preparation of Biggers, Whitten and Whitingham solution 

Biggers, Whitten and Whitingham (BWW; Biggers, 1971) solution was 

prepared fresh every other day and stored at 4 °C. The solution was made to the 

following recipe; 90mM NaC1 (BDH), 4.5mM KCL (BDH), 1.6mM CaC12 (BDH), 

1.1mM KH2PO4 (BDH), 1.1mM MgSO4.7H2O (BDH), 25mM NaHCO3 (BDH), 

5.6mM glucose (Sigma), 551AM sodium pyruvate (Sigma), 0.2% sodium lactate 

(Sigma), 20000 IU penicillin/streptomycin (Calbiochem, UK), 20mM Hepes buffer 

(Gibco, Life Technologies, UK), 0.3% human albumin solution (Immuno Ltd, Kent, 

UK) and then corrected to pH 7.6. 

2.6.2 Preparation of human spermatozoa (centrifugation) 

Semen was allowed to liquefy at room temperature for 20 min and then 

diluted (1:9) with BWW before centrifugation at 500g (1900rpm) for 5 min. The 

supernatant was removed and discarded and the pellet resuspended in 7 -10m1 BWW 
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before a further centrifugation at 500g (1900rpm) for 5 min. This process was 

repeated and the pellet resuspended in a known volume of BWW. 

2.6.3 Preparation of human spermatozoa (percoll gradient) 

A percoll gradient was prepared by placing 3m1 100% Percoll (10m1 10x 

Earle's balanced salts solution (Flow labs, Irvine, UK), 90m1 Percoll (Amersham 

Pharmacia Biotech UK Ltd, Buckinghamshire, UK), 1.5ml 20% Abuminar (Armour 

Pharmaceutical Company, Eastbourne, UK), 3mg sodium pyruvate (Sigma), 0.37m1 

sodium lactate (Sigma), 200mg NaHCO3 (BDH), and lml penicillin/streptomycin 

(Gibco)), followed by 3m1 50% Percoll (100% Percoll diluted 1:1 in BWW) in a 

tube, taking care not to mix the layers. A further layer of 2m1 semen sample was 

added and the gradient centrifuged for 20 min at 1900 rpm (500g). 

The layer of seminal plasma was removed and stored as required. Using a 

Pasteur pipette, 50% quality spermatozoa was carefully removed from the 

50% /100% interface and the 100% quality spermatozoa removed from the bottom of 

the tube. The samples of spermatozoa were then diluted (in 7 -10m1 BWW) 

separately and centrifuged for 5 min at 1900rpm (500g). The supernatant was 

removed and discarded, and the spermatozoa pellets resuspended in a known volume 

of BWW. 

2.6.4 Preparation of murine spermatozoa 

Whole epididymides were carefully dissected out and placed in BWW taking 

care to avoid contamination with blood and fat. The tissue was placed in a 500µ1 

eppendorf tube, minced using a pair of fine scissors and incubated at 30 °C for 30 min 

to allow the tissue debris, dead and immotile spermatozoa to sink to the bottom of 

the tube and motile spermatozoa to `swim -up'. The buffer containing motile 

spermatozoa was carefully removed and diluted to a total volume of lml in BWW. 

2.6.5 Storage of murine spermatozoa 

Diluted spermatozoa were aliquoted (l0(411 per aliquot) and stored at -20 °C. 

Before use, aliquots were slowly defrosted at room temperature and shaken gently to 
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redistribute spermatozoa. Each aliquot was used a maximum of 2 times to prevent 

damage to the spermatozoa by repeated freeze -thawing. 

2.6.6 Study of concentration of spermatozoa 

Samples were diluted 1:10 with spermatozoa diluting fluid (SDF; 50g 

NaHCO3, 10m1 Formalin, dH2O to 1L) and l0111 diluted sample was placed into the 

chamber of an improved Neubauer haemocytometer (BDH). The number of 

spermatozoa located within 5 squares of the haemocytometer grid was carefully 

counted. If the number of spermatozoa in 5 squares was not equal to or greater than 

100, 10 or 25 squares were counted. From this value, the number of spermatozoa in 

lml was calculated using the following equation: 

Concentration = No. spermatozoa counted - (4 x No. Squares) 

Dilution Factor 

2.6.7 Study of morphology of spermatozoa (DiffQuik staining) 

For each sample to be studied, 2 microscope slides were prepared by washing 

in 100% ethanol, then water, and drying in an oven. l0µ1 sample was pipetted onto 

the first slide and the second was used to drag the sample across the slide, creating a 

smear which was then allowed to air -dry. This process was repeated a total of 3 

times in order to obtain a high concentration of spermatozoa on each slide. The 

slides were fixed in ether /alcohol fixative (70% alcohol, 30% ether) and allowed to 

air -dry. 

Each slide was dipped 10 times into Diffquick fixative and the excess solution 

removed by placing the edge of each slide onto an absorbent tissue and then wiping 

the underside. Each slide was then dipped 20 times into Diffquick I solution, drained 

of excess solution as before, dipped 20 times into Diffquick II solution, again drained 

of excess solution, and finally dipped in clean water to remove any remaining 

solution. Slides were allowed to air -dry before mounting using Pertex and a cover 

slip. 
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2.7 In vitro heating of spermatozoa 

A water bath was heated to 42 °C. An aliquot (100m1 in an Eppendorf) of each 

sample was carefully sealed, placed in a float and incubated in the water bath for 10 

min. Following heating, each aliquot was used once (for the Comet assay; see 

below) and then discarded. 

2.8 Single cell gel electrophoresis (Comet) assay 

2.8.1 Comet assay (Kit method) 

Spermatozoa samples were defrosted at room temperature and 511l each 

sample was mixed with 25111 LMA (37 °C; Trevigen). This gel /sample mix was then 

dropped onto a CometSlide (Trevigen) and covered with a clean, warm (37 °C) cover 

slip. Slides were placed horizontally in a box and incubated at 4 °C until the gels 

were set ( '-10 min). Cover slips were carefully removed and the slides submerged in 

lysis buffer (pH13.5, 0.75% SDS, Lysis buffer; 2.5M NaC1, 100mM EDTA, 10mM 

Tris, 1% sodium lauryl sarcosinate, 0.01% Triton X -100; Trevigen) for 3h at 37 °C. 

The slides were removed from the lysis buffer and placed in a horizontal gel 

electrophoresis tank. Alkaline electrophoresis buffer (3M NaOH, 1mM EDTA, 

pH12.3) was carefully added to a depth of 0.5cm above the slides and left for 20 min 

at room temperature. Current was applied at 25V, 300mA for 10 min. The slides 

were then transferred to ice -cold methanol (100 %, 5 min) then ethanol (100 %, 5 

min). The slides were then allowed to dry overnight at room temperature. 

2.8.2 Comet analysis 

The slides were stained with 5011l ethidium bromide (1:1000 in dH2O; Sigma) 

and viewed using a Zeiss Axiostar microscope (Zeiss, Germany). 

For each sample, 50 -200 cells (see later chapters for details) were analysed 

using the Komet Image Analysis system, version 4.0 (Kinetic Imaging Ltd). The 

percentage of head DNA, tail DNA and the Comet Moment was calculated for each 
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cell. Comet Moment is a measurement that takes into account both the length of the 

Comet tail and the amount of DNA present in the tail and is expressed as an arbitrary 

unit (the greater the value, the higher the level of DNA damage). 
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Chapter 3 

Development of a Comet assay for use with murine 
spermatozoa 

3.1 Introduction 

DNA damage present in spermatozoa may be passed on to the next 

generation, in the form of mutations, leading to congenital abnormalities and 

developmental problems. For example, it is known that oxidative damage and DNA 

adducts are found in the spermatozoa DNA of smokers (Shen, et al., 1997;Potts, et 

al., 1999). It has also been shown that genetic abnormalities can be passed on to the 

oocyte leading to developmental abnormalities and increased risk of childhood 

cancers in the offspring of cigarette- smoking fathers (Ji, et al., 1997;Zenzes, et al., 

1999). 

It has been demonstrated that loss of DNA integrity within spermatozoa does 

not affect the ability spermatozoa to fertilize the oocyte following intracytoplasmic 

sperm injection (ICSI) (Irvine, et al., 2000) and, with the increasing use of ICSI in 

the treatment of male factor infertility, the chances of oocytes being fertilized with 

genetically- impaired spermatozoa are greatly increased. It has been claimed that 

embryos conceived by ICSI are more at risk from pre -clinical and clinical pregnancy 

loss then those conceived by conventional IVF (Bar -Hava, et al., 1997). 

However, there is conflicting evidence regarding the risk of congenital 

abnormalities and developmental problems in children conceived via ICSI. 

Kurinczuk et al (1997) proposed that infants conceived by ICSI are twice as likely to 

have major birth defects and 50% more at risk of minor defects than naturally - 

conceived infants (Kurinczuk, et al., 1997). Bowen et al (1998) found that though 

infants conceived via ICSI were healthy, they were more at risk of developmental 

deficiencies than infants conceived either naturally or by IVF (Bowen, et al., 1998). 

However, there have been a number of studies which have found that infants 

conceived by ICSI are at no greater risk of congenital or developmental 
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abnormalities than those conceived naturally or by IVF ( Bonduelle, et al., 

1999;Sutcliffe, et al., 2001). This conflicting evidence suggests the need for further 

research into the long -term safety of ICSI. Meanwhile, it would seem prudent to 

make every effort to ensure that spermatozoa with defective DNA are not used in 

assisted reproduction techniques and that counseling is provided to individuals with 

high levels of baseline DNA damage before undergoing ICSI treatment. 

At present the genetic integrity of spermatozoa selected for use in assisted 

reproduction techniques is not assessed, though a number of methods are available 

for the study of DNA in spermatozoa. A summary of these assays, including the 

number of cells and time required, the forms of DNA damage detected and the main 

advantages and disadvantages of each assay are presented in Table 3.1. 

Generally these methods can be divided into two groups; methods which 

measure DNA abnormalities (e.g. adducts, chromatin packaging) and methods which 

measure DNA damage (e.g. nicks, fragments). 

3.1.1 Measures of DNA abnormalities 

3.1.1.1 8-Hydroxydeoxyguanosine (8-OhdG) 

8 -OhdG is an oxidative DNA adduct which is the most commonly studied 

biomarker for oxidative DNA damage. Levels of 8 -OhdG were first measured in the 

DNA of human spermatozoa by Fraga and collegues (Fraga, et al., 1991). To date, 

8 -OhdG levels in spermatozoa DNA from a number of populations (control patients, 

smokers, non -smokers, infertile patients) have been studied. 

Higher levels of 8 -OhdG are present in the spermatozoa -DNA of fertile 

compared to infertile patients (Kodama, et al., 1997;Shen, et al., 1999), and the level 

of 8 -OhdG in spermatozoa -DNA correlates with semen parameters (positive 

correlation with the number of head abnormalities, negative correlation with normal 

morphology, motility, total spermatozoa number and spermatozoa density) (Ni, et 

al., 1997;Shen, et al., 1999). 

Briefly, spermatozoa membranes are removed by incubating with DTT, 

proteinase K and SDS, the DNA is extracted with chloroform isoamyl alcohol, 
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digested with ribonuclease A and then dissolved in Tris -HCL for enzymatic DNA 

digestion with a number of enzymes including alkaline phosphatase and nuclease Pl. 

The levels of 8 -OhdG in the digested DNA from spermatozoa are then 

measured using either gas chromatography- mass -spectrometry (GC/MS) or, more 

commonly, high performance liquid chromatography (HPLC) (Shen, et al., 2000). 

3.1.1.2 Spermatozoa chromatin structure assay (SCSA) 

The SCSA assay is used to study the susceptibility of spermatozoa chromatin 

to heat- or acid -induced denaturation in vitro. Following denaturation, the ratio of 

double- to single- stranded DNA is altered. This is quantified using the 

metachromatic dye acridine orange (AO), which differentially intercalates into 

double- (fluorescing green) and single- stranded DNA (fluorescing red). This method 

was first described by Evenson in 1989 (Evenson, 1989) and has since been used in a 

number of studies of DNA integrity in mammalian spermatozoa. In particular, this 

assay has been used to assess the genetic integrity of spermatozoa in infertile patients 

(Evenson, et al., 1999), smokers (Potts, et al., 1999), and cancer patients (Fossa, et 

al., 1997;Kobayashi, et al., 2001). 

3.1.2 Measures of DNA integrity 

3.1.2.1 Enzyme- linked immunosorbent assay (ELISA) 

The ELISA assay is an immunochemical method for the quantitative 

detection of DNA damage in a population of cells and has been used to study the 

induction and repair of DNA at different cellular stages of spermatogenesis of the 

hamster (Van Loon, et al., 1991) and also in mature human spermatozoa (Hughes, et 

al., 1999). In this method, single- and double- strand breaks form initiation points for 

partial unwinding of the cellular DNA under alkaline conditions. The degree of 

unwinding is then determined by the use of a specific monoclonal antibody which 

binds to single -stranded DNA. Though this has been shown to be a highly sensitive 

and effective assay, the need for expensive, specialist equipment for quantification of 

results is a major drawback (Table 3.1). 
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Chapter 3 Development of a Comet assay for use with murine sperm 

3.1.2.2 In situ nick translation (ISNT) 

The presence of endogenous nicks in the DNA of spermatozoa was first 

studied in 1995 using in situ nick translation (Sakkas, et al., 1995). This method has 

been successfully used in both murine (Sakkas, et al., 1995) and human (Twigg, et 

al., 1998;Irvine, et al., 2000) spermatozoa. As with the majority of methods 

employed to assess DNA integrity, negative correlations between the amounts of 

DNA damage detected and semen parameters (total spermatozoa, motility, 

morphology etc) have been observed. 

A number of ISNT protocols have been developed; several have been 

modified specifically for use in spermatozoa (Sakkas, et al., 1995;Irvine, et al., 

2000). An example of one of these modified methods is as follows: in brief, 

spermatozoa are incubated with DTT before being fixed using ethanol /glacial acetic 

acid and then placed on a microscope slide and allowed to air -dry. SDS is then 

added to the slides in order to remove the spermatozoa membranes, thereby exposing 

the DNA. Endogenous biotin/avidin binding sites within the spermatozoa are 

blocked using sequential incubations in avidin and biotin. DNA polymerase is used 

to join biotin -linked 16 -dUTP to the sites of DNA nicks. The biotin can then be 

detected using detection methods such as streptavidin fluoroscein -isothiocyanate 

(FITC) or streptavidin alkaline phosphatase (Irvine, et al., 2000). 

3.1.2.3 Terminal deoxynucleotidyl transferase (TdT)- mediated dUTP- nick end 

labelling (TUNEL) assay 

The TUNEL assay is a one of many in situ end -labelling methods originally 

developed to study apoptosis. These methods involve the incorporation and 

detection of biotinylated nucleotides at the 3' -OH ends of DNA strand breaks 

(Gavrieli, et al., 1992;Wijsman, et al., 1993). As the name suggests, the 

incorporation of biotinylated nucleotides in the TUNEL assay is mediated by 

terminal deoxynucleotidyl transferase (TdT). Commercial kits are available for this 

assay. 
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3.1.2.4 Single cell gel electrophoresis (SCGE or `Comet') assay. 

In the present study, DNA damage in murine spermatozoa was to be 

determined using the Comet assay which has been shown to give highly reproducible 

results in the study of DNA damage in human spermatozoa (Hughes, et al., 

1996;Hughes, et al., 1997;McKelvey- Martin, et al., 1997;Shen, et al., 1997). 

The Comet assay has been used in a number of studies of human 

spermatozoa. These studies include the comparison of spermatozoa from fertile and 

infertile men (Hughes, et al., 1996;Irvine, et al., 2000;Shen, et al., 2000), 

spermatozoa retrieved from the epididymis and from the testis (Steele, et al., 

1999;Steele, et al., 2000), and the effects of exogenous factors (e.g. preparation and 

cryopreservation during assisted reproduction methods) (Anderson, et al., 

1997;Donnelly, et al., 2000), cancer drugs (e.g. fludarabine) (Chatterjee, et al., 2000) 

and oestrogens (Anderson, et al., 1997). 

In 1978, Rydberg and Johanson first described a method for studying DNA 

integrity in eukaryotic cells .which formed the basis for what is now known as the 

single cell gel electrophoresis assay (SCGE, or the `Comet assay') (Rydberg, et al., 

1978). This method involved embedding cells in agarose, subjecting them to mild 

alkaline conditions and then studying the ratio of green (indicating double stranded 

DNA; dsDNA) to red (indicating single stranded DNA; ssDNA) fluorescence 

following staining with acridine orange (Rydberg, et al., 1978). The method was 

later expanded to include an alkaline electrophoresis stage which caused the 

migration of DNA from the cell nucleus ( Ostling, et al., 1984). In addition to 

improving the sensitivity of the assay, Ostling et al also demonstrated the potential 

use of the assay as a genotoxicity test, using the assay in a study of the dose - 

dependant effects of gamma ray exposure on the DNA integrity of murine 

lymphomas cells (Ostling, et al., 1984). In subsequent years, the assay has been 

modified and optimised for study of many different cell types, most commonly 

lymphocytes, fibroblasts and other somatic cell types (McKelvey- Martin, et al., 

1993). 
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In the spermatozoa head, DNA is tightly packaged in association with highly 

basic proteins (protamines) rather than in the looser octamer arrangement encircling 

histones as seen in somatic cells. (Ward, et al., 1991) (See section 1.3.2.2.4). These 

differences have made it necessary to modify the Comet assay specifically for this 

cell type, most notably by the introduction of a proteinase K digestion stage to 

remove the protamines and expose the DNA for study (Hughes, et al., 1996). 

When this project was initiated, a Comet assay for murine spermatozoa was 

not available. Therefore the aim of the experiments described in this chapter was to 

devise a sensitive and reliable Comet assay protocol to allow evaluation of 

spermatozoa DNA integrity in the mouse. 

3.2 Materials and Methods 

3.2.1 Preparation of spermatozoa 

Full methods for the preparation of human and murine spermatozoa are 

described in section 2.6. 

Human spermatozoa samples were used as positive controls during the 

development of the murine Comet assay. Semen samples were obtained from 

3fertile donors and the spermatozoa prepared using either the Percoll gradient or 

centrifugation methods as described in sections 2.6.1 and 2.6.2. The samples from 3 

donors were pooled together and then divided into aliquots for storage. 

Murine spermatozoa were obtained from wild -type mice (dazi +1 +, normal 

fertility (Ruggiu, et al., 1997)). Briefly, whole epididymides were removed, cleaned 

of fatty tissue and placed in lml BWW (as previously described - section 2.6.4). 

The tissue was then minced with fine scissors and incubated at 34 °C (95% air, 5% 

CO2) for 30 min prior to careful removal of buffer containing the motile 

spermatozoa. Samples were diluted (to a final volume of 1m1) and stored in BWW at 

-20 °C until required. The samples from 3 mice were pooled together and then 

divided into aliquots for storage. 
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3.2.2 Development of a Comet Assay for murine spermatozoa 

Three approaches were taken to develop a stable and reproducible Comet 

assay for use on murine spermatozoa; firstly, the modification of an existing protocol 

used for the study of human spermatozoa, secondly, the development of a novel 

method, and finally, the modification of a commercially available Comet assay kit. 

3.2.2.1 Modification of the Human Spermatozoa Comet Assay 

A Comet assay method used for the study of human spermatozoa had been 

developed previously in our laboratory (Irvine, et al., 2000) and the initial aim of this 

work was to adapt this assay protocol for use on murine spermatozoa. The original 

method for the human spermatozoa Comet assay is described below and the 

modifications made to this method are detailed in section 3.3.1 of this chapter. 

Normal microscope slides were prepared by dipping in 1% normal melt 

agarose (NMA; Sigma), wiping off any excess and air - drying overnight. Prepared 

slides were stored in racks contained within an airtight box. Cover slips were placed 

in racks and washed with 70% ethanol, then water, and dried in an oven overnight. 

Each prepared slide was coated with 160111 0.6 % (w /v) NMA/PBS and then 

covered with a washed cover slip. This first gel layer was allowed to set by placing 

the slides on a cool tray (over ice) for -20 min before carefully removing the cover 

slips. Spermatozoa samples were adjusted to a concentration of -6.6 million/ml by 

diluting in BWW medium. 10111 (approximately 6.6 x 103 cells) of each corrected 

sample was then mixed with 751.1,1 of 0.5% low melt agarose in PBS (LMA; Sigma) 

at 37 °C and the mixture added to the slide. A new cover slip was carefully added to 

spread the agarose /spermatozoa suspension across the slide forming a second gel 

layer. The slides were again chilled on a cool tray to allow the new gel/cell layer to 

set (-5 min). 

The cover slip was removed before the addition of the third and final gel 

layer (100111 LMA/PBS, 37 °C). A fresh cover slip was added and the slides chilled 

on a cool tray (-5 min) before incubation at 4 °C for 1 h to allow the gels to set fully. 

Thereafter, the cover slips were once again removed and the slides placed in a bath 
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of chilled (4 °C) complete lysis solution (2.5M NaOH, 0.25M EDTA, 10mM Tris, 

10% DMSO, 1% Triton X, pH 10) for 1 h at 4 °C. The lysis buffer was then carefully 

drained from the slides and replaced with 0.1mg/m1 proteinase K (PK) in 

decondensation buffer (2.5M NaOH, 0.25M EDTA, 10mM Tris, 10% DMSO, pH 

7.4); the slides were then incubated in this solution overnight (16 h) at 37 °C. 

The next day, the slides were removed from the decondensation buffer and 

placed in a horizontal gel electrophoresis tank (Bio -Rad Laboratories Ltd. Hemel 

Hempstead, UK). Alkaline electrophoresis buffer (3M NaOH, 1mM EDTA, pH 

12.3) was carefully added to a depth of 0.5cm above the slides and allowed to sit 

undisturbed for 20 min at room temperature. The purpose of this alkaline stage was 

to allow the DNA to unwind and the DNA strands to separate. Current was applied 

at 300mA, 25V (0.66V /cm) for 4 min resulting in the migration of fragmented DNA 

from the cell nucleus. The slides were removed from the electrophoresis tank and 

neutralised by placing them in a coplin jar filled with 400 mM Tris (pH 7.4) buffer 

for 5 min, replacing this with fresh buffer a total of 3 times. The slides were 

transferred to a new Coplin jar filled with ethanol for 5 min, then removed, drained 

and allowed to dry overnight at room temperature. Staining with ethidium bromide 

enabled the visualisation of the DNA under the microscope. 

3.2.2.2 Development of novel Comet assay for murine spermatozoa 

Data presented by Qiu et al (1995) described a method for the preparation of 

demembranated rat spermatozoa for use in decondensation studies following 

cyclophosphamide treatment. In order to lyse the spermatozoa, they incubated the 

cells in lysis buffer (50mM Tris, 1mM EDTA, pH 7.4) containing 1% SDS for 10 

min at 21 °C. In contrast to Triton X (a non -ionic detergent which leaves the cell 

nucleus intact), which was used in the human spermatozoa Comet assay (see above), 

Qiu et al used SDS, an ionic detergent that lyses both the outer cell membrane and 

the cell nuclei, releasing the DNA. 

In addition to developing a lysis protocol, Qiu et al also reported the 

conditions required for the decondensation of rat spermatozoal DNA. Spermatozoal 

DNA is not supercoiled in the manner of somatic cell DNA but instead is packaged 
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in linear, side -by -side arrays as a result of its association with protamines. This 

protamine -DNA complex is further stabilised by the presence of intermolecular and 

intramolecular covalent disulphide bonds between the protamines (Ward, et al., 

1991). Qiu et al determined that complete decondensation of rat spermatozoal DNA 

occurred only after the reduction of the disulphide bonds between the protamine 

molecules, followed by the progressive degradation of the protamines molecules 

themselves. Their protocol involved incubation of the spermatozoa in Tris buffer 

(50mM, pH7.4) containing PK (0.lmg /ml) and dithiothreitol (DTT, 10mM) for 1 h at 

21 °C (Qiu, et al., 1995). The DTT present in the buffer specifically reduces 

disulphide bonds between proteins present within the spermatozoa nucleus which are 

normally tightly -packaged around the DNA. 

We considered that, by combining the lysis and decondensation methods 

described by Qiu et al with the alkali electrophoresis methods used in the human 

spermatozoa Comet assay, a novel Comet assay for the study of murine spermatozoa 

could be developed. The initial assay conditions tested are described in full below 

and the modifications made to this method are presented in section 3.3.2 of this 

chapter. 

As in the human spermatozoa Comet assay previously described (section 

3.2.2.1), spermatozoa were embedded in an agarose gel layer on a normal 

microscope slide. Incubation in a lysis solution (50mM Tris Buffer, 1mM EDTA, 

1% SDS, pH 10) for 10 min at 21 °C was followed by 3 washes in 50mM Tris (5 min 

each wash) and then incubation in 50mM Tris (pH7.4) containing 0.lmg/ml 

proteinase K and 10mM DTT for 1 h at 21 °C. Again slides were placed in alkaline 

electrophoresis buffer for 20 min at 21 °C before undergoing electrophoresis followed 

by dehydration. Staining with ethidium bromide enabled the visualisation of the 

DNA under the microscope. 

3.2.2.3 Modification of method supplied with a Comet assay kit 

During the course of the present study, a Comet assay kit designed for use on 

somatic cells became available from R &D Systems Europe (Abingdon, Oxon, UK). 

The advantages of this kit were that it contained pre -prepared lysis buffer and 
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specially treated CometSlidesTM, which enhanced the adherence of the LMA gel 

layer (thereby eliminating the time -consuming and often unreliable method of 

preparing base layers of agarose). The method described below is as recommended 

by the manufacturers. The modifications made to this method to improve its 

application to murine spermatozoa are presented in section 3.3.3. 

Spermatozoa samples were defrosted at room temperature and 51Al of each 

sample was mixed with 25µ1 LMA (37 °C; Trevigen). This gel /sample mix was 

dropped onto each well of a CometSlide (Trevigen) which was then placed 

horizontally in a sealed box and incubated at 4 °C until the gels were set ( -10 min) 

The slides were submerged in lysis buffer (2.5M NaC1, 100mM EDTA (pH10), 

10mM Tris, 1% sodium lauryl sarcosinate, 0.01% Triton X -100; Trevigen) for 30 

min at 4 °C. 

The slides were removed from the lysis buffer and placed in alkali buffer 

(300mM NaOH, 1mM EDTA, pH10) for 20 min at 21 °C. The slides were then 

placed in a horizontal gel electrophoresis tank and covered with alkaline 

electrophoresis buffer (300mM NaOH, 1mM EDTA, pH10). Current was applied at 

300mA, 25V for 20 min. The slides were transferred to ice -cold methanol (100 %, 5 

min) then ethanol (100 %, 5 min) and allowed to dry overnight at room temperature. 

The slides were then stained with ethidium bromide and studied under a fluorescent 

microscope. 

3.2.3 Comet analysis 

Following completion of the comet assay, slides were stained with ethidium 

bromide which intercalated into the DNA released from the spermatozoa cells. 

Generally, the cell nuclei (Comet "head ") retained the greatest proportion of DNA 

(which therefore fluoresced very brightly) compared to the fragmented DNA which 

had migrated away from the nucleus, forming the Comet "tail" (see Figure 3.1). 
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Comet tail 

Comet head 

Figure 3.1 Diagram of a comet indicating the head and tail regions 

Comet analysis was performed using the Komet Image Analysis system, 

version 4.0 (Kinetic Imaging Ltd) as discussed in section 2.8.2. Briefly, 100 -200 

cells (calculation of the number of cells required for analysis is described in section 

3.3.2) per sample were analysed. The percentage of DNA (as determined by the 

degree of fluorescence) in the comet head and tail of each cell was calculated and an 

average obtained for the population. Examples of comets showing an approximate 

range of DNA damage (% tail DNA) can be seen in Figure 3.2. 

No comet 10 -30% 50 -70% 80 -100% 

Figure 3.2 Examples of comets indicating approximate levels of DNA damage 
(% tail DNA) 

3.2.4 Requirements of the Comet assay 

The purpose of the assay was to compare the levels of DNA damage in 

spermatozoa from control animals with that of treated and /or genetically modified 

animals. Therefore the assay was optimised using spermatozoa from control animals 
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to obtain a low level of baseline DNA damage (average -15 -20% DNA in the comet 

tail) within a tight range (0 -50 %). These levels of baseline DNA damage would 

enable the measurement of much higher levels of DNA damage in spermatozoa from 

the test animals. 

3.3 Results 

3.3.1 Modification of human spermatozoa Comet assay for use on murine 

spermatozoa 

A number of assay conditions were tested using spermatozoa from the pooled 

samples of 3 mice as previously described. A summary of these conditions and the 

results obtained can be seen in Table 3.2. 

Successful lysis of the spermatozoa membrane was classified by the loss of 

the characteristic `hook' shape of the spermatozoa head and the loss of the 

spermatozoa tail. The lysis conditions used successfully on human spermatozoa 

(Trials 1 -2; Table 3.2) had no visible effects on murine spermatozoa (Figure 3.3) nor 

did initial modifications of these conditions (Trials 3 -11; Table 3.2, Figures 3.4 -3.8). 

These initial modifications included the addition of increasing concentrations (0.1- 

1mM) of DTT to the decondensation buffer while leaving the lysis stage and 

incubation times /temperatures unaltered. Murine spermatozoa cells exposed to these 

conditions retained both their shape and their tails and did not release their DNA for 

electrophoresis. Modification of the method by increasing the period of incubation 

in lysis buffer resulted in the successful lysis of the spermatozoa and, together with 

the addition of low doses of DTT (0- 0.25mM) to the PK decondensation buffer, 

comets were detected after electrophoresis (Trials 12 -16; Table 3.2, Figures 3.9 and 

3.10). 

However, the use of higher concentrations of Triton X (2 -5 %) and /or DTT 

(0.5 -1mM) did not improve the results but resulted in comets that consisted mainly 

of tail DNA with very little DNA remaining in the cell nucleus (Figures 3.11- 3.22). 

The most successful assay conditions (resulting in complete lysis with low 

levels (< 30 %) of DNA observed in the comet tail) were identified as 1% Triton X in 
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the Lysis buffer with a 2 h Lysis incubation time, followed by 10 h decondensation 

in a buffer containing 0.25mg/m1 proteinase K and 0- 0.25mM DTT. 

Table 3.2 Summary of assay conditions and results obtained during modification of 
human spermatozoa Comet assay for use on murine spermatozoa 

Trial No. 

Lysis 
Triton X Lvsis Time DTT 

Decondensation 
Proteinase K Decondensation Result Picture & (mMl (mg/ml) 

1 0 1 0 0 10 Cells Intact 

2 0 1 0 0.25 10 Cells Intact Fig 3.3 

3 0 2 0 0 10 Cells Intact 

4 0 2 0 0.25 10 Cells Intact Fig 3.4 

5 1 1 0 0.25 10 Cells Intact Fig 3.5 

6 1 1 0.1 0.25 10 Cells Intact 

7 1 1 0.15 0.25 10 Cells Intact 

8 1 1 0.2 0.25 10 Cells Intact 

9 1 1 0.25 0.25 10 Cells Intact Fig 3.6 

10 1 1 0.5 0.25 10 Cells Intact Fig 3.7 

11 1 1 1 0.25 10 Cells Intact Fig 3.8 

12 1 2 0 0.25 10 Comets Fig 3.9 

13 1 2 0.1 0.25 10 Comets 

14 1 2 0.15 0.25 10 Cornets 

15 1 2 0.2 0.25 10 Comets 

16 1 2 0.25 0.25 10 DNA damage too high* Fig 3.10 

17 1 2 0.5 0.25 10 DNA damage too high Fig 3.11 

18 1 2 1 0.25 10 DNA damage too high Fig 3.12 

19 2 1 0 0.25 10 DNA damage too high Fig 3.13 

20 2 1 0.25 0.25 10 DNA damage too high Fig 3.14 

21 2 1 0.5 0.25 10 DNA damage too high Fig 3.15 

22 2 1 1 0.25 10 DNA damage too high Fig 3.16 

23 2 2 0 0.25 10 DNA damage too high Fig 3.17 

24 2 2 0.1 0.25 10 DNA damage too high 

25 2 2 0.15 0.25 10 DNA damage too high 

26 2 2 0.2 0.25 10 DNA damage too high 

27 2 2 0.25 0.25 10 DNA damage too high Fig 3.18 

28 2 2 0.5 0.25 10 DNA damage too high Fig 3.19 

29 2 2 1 0.25 10 DNA damage too high Fig 3.20 

30 5 1 0 0.25 10 DNA damage too high Fig 3.21 

31 5 2 0 0.25 10 DNA damage too high Fig 3.22 

32 5 2.5 0 0.25 10 DNA damage too high 

*Comets assessed visually and observed to have levels of DNA damage greater than 
50% (Approx.) See Figure 3.2. 

3.3.1.1 Reproducibility of the assay 

The optimum assay conditions were tested approximately 20 times over a 3- 

month period. The assay was tested using both fresh and frozen spermatozoa with a 
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control sample present in each run (same control sample used in each run) and fresh 

buffers made up regularly. Despite strict adherence to the assay protocol, 

considerable variation was observed in the degree of lysis and/or decondensation of 

the cells on any one slide, and also between duplicate slides. The variation in comets 

produced was clearly visible under the microscope (see Figure 3.2), therefore 

analysis of the slides using the Komet Image Analysis system was deemed to be 

inappropriate. 

It was concluded that modification of the human spermatozoa Comet assay 

was unlikely to result in a reliable and reproducible assay for use on murine 

spermatozoa. 

3.3.2 Development of a novel Comet assay for study of murine spermatozoa 

The method used by Qiu et al (1995) to lyse the membranes and decondense 

the DNA of rat spermatozoa was combined with the alkaline electrophoresis method 

previously used in the human spermatozoa Comet assay to create a novel Comet 

assay method for use on murine spermatozoa. This combination of conditions 

resulted in disintegration of the spermatozoa and comets were not visible on the 

slides following electrophoresis. Staining of a number of slides at earlier points in the 

assay confirmed that the spermatozoa were present in a highly fragmented condition 

on the slides prior to electrophoresis. 

This result demonstrated that the conditions suitable for rat spermatozoa (1% 

SDS, 0.1mg /ml PK, 10mM DTT) were too harsh for murine spermatozoa. Therefore 

a number of alternative assay conditions were tested and a summary of these 

conditions and the results obtained can be seen in Table 3.3. 

A concentration of 0.6% SDS and an incubation time of 30 min was found to 

be sufficient to lyse the spermatozoa membranes, though loss of spermatozoa head 

shape was not always complete (Trial 2; Figure 3.21). Higher concentrations of SDS 

(0.9 -1.0 %) resulted in very high levels of DNA damage (Trials 5, 8 and 10; Figures 

3.22 -3.24) while lower concentrations (0.5 %) and increased incubation times (20 -30 

min) did not result in satisfactory lysis of the cell membranes (Trials 6 and 9; Figures 

3.25 -3.26) 
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Table 3.3 Summary of assay conditions and results obtained during development of 
novel Comet assay for use on murine spermatozoa 

Lysis Stage Decondensation stage 
Lysis Time PK Decondensation 

Trial No. SDS ( %) (mint DTT (mM) (mg /ml) Imi Result Picture 
1 0.5 10 5 0.1 1 Incomplete Lysis 

2 0.6 10 5 0.1 1 DNA damage too high* Fig 3.23 

3 0.7 10 5 0.1 1 DNA damage too high 

4 0.8 10 5 0.1 1 DNA damage too high 

5 0.9 10 5 0.1 1 DNA damage too high Fig 3.24 

6 0.5 20 5 0.1 1 Incomplete Lysis Fig 3.27 

7 0.75 20 5 0.1 1 DNA damage too high 

8 1 20 5 0.1 1 DNA damage too high Fig 3.25 

9 0.5 30 5 0.1 1 Incomplete Lysis Fig 3.28 

10 1 30 5 0.1 1 DNA damage too high Fig 3.26 

11 0.75 30 1 0.1 1 Incomplete Comet 

12 0.75 30 2.5 0.1 1 Incomplete Comet 

13 0.75 30 2.75 0.1 1 Incomplete Comet 

14 0.75 30 2.8 0.1 1 Comet 

15 

16 

0.75 

0.75 

30 

30 

2.9 

3.0 

0.1 

0.1 

1 

1 

Comet 

Comet 

Fig 3.29, 
3.30 

17 0.75 30 3.1 0.1 1 Comet 

18 0.75 30 3.2 0.1 1 Comet 

19 0.75 30 3.25 0.1 1 Comet 

20 0.75 30 3.3 0.1 1 Comet 

21 0.75 30 3.4 0.1 1 Comet 

22 0.75 30 3.5 0.1 1 DNA damage too high 

23 0.75 30 3.6 0.1 1 DNA damage too high 

24 0.75 30 3.7 0.1 1 DNA damage too high 

25 0.75 30 3.75 0.1 1 DNA damage too high 

26 0.75 30 3.8 0.1 1 DNA damage too high 

27 0.75 30 3.9 0.1 1 DNA damage too high 

28 0.75 30 4 0.1 1 DNA damage too high 

29 0.75 30 5 0.1 1 DNA damage too high 

30 0.75 30 5 0.1 1 DNA damage too high 

31 1.0 30 5 0.1 1 DNA damage too high 

*Comets assessed visually and observed to have levels of DNA damage greater than 
50% (Approx.) See Figure 3.2. 
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3.23 0.6% SOS, 10 Ly, 5 DTT 

3.26 1.0% SOS, 30 Ly, 5 OTT 3.27 0.5% SDS, 20 Ly, 5 DTT 

3.25 1.0% SDS, 20 Ly, 5 DTT 

3.28 0.5% SOS, 30 Ly, 5 OTT 

Figures 3.23 -3.28. Examples of comets obtained using a range of assay conditions 
x40 magnification, Ly = lysis incubation (min), DTT = DTT (mM) 

The assay conditions which appeared to result in appropriate levels of lysis 

and decondensation, consisted of an SDS concentration of 0.75 %, a lysis incubation 

time of 30 min and a DTT concentration in the range 2.8 - 3.4mM DTT. These 

assays were repeated and DNA damage in 100 cells (maximum number cells 

analysed following Comet assay of human spermatozoa) from each assay analysed 

using Kinetic Imaging software. A summary of the results obtained is presented in 

Table 3.4. 

Table 3.4. Summary of results obtained following analysis of 100 comets from 
assays using a range of DTT concentrations 

Trial DTT Average Range 
Number mM % Tail DNA % Tail DNA 

14 2.8 18.46 0.17 - 91.86 
15 2.9 14.65 0.48 - 45.14 
16 3.0 14.97 0.00 - 82.83 

18 3.2 30.11 2.09 - 82.03 

21 3.4 41.81 1.15 - 78.19 

A DTT concentration in the range of 2.8 -3.0mM was found to result in an 

average % tail DNA within the range of -15 -20 %, the low level of baseline DNA 

damage that should be expected in control spermatozoa. However, within the 

population of comets analysed, there was a considerable degree of variation in the 

levels of DNA damage measured (0.17- 91.86 %). 
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Further testing of these assay conditions was undertaken in order to improve 

technique and reproducibility. 

3.3.2.1 Cumulative cell analysis 

In order to obtain an accurate representation of the DNA damage in a 

population of cells, an appropriate number of cells must be analysed. In order to 

keep analysis time as short as possible, it is necessary to determine the minimum 

number of cells to analyse in order to obtain an accurate representation of the whole 

population. This number is calculated using cumulative cell analysis as follows; the 

comet assay was performed and 100 cells from a single slide were analysed as 

previously described. The average % tail DNA was calculated for cell 1, cell 1 +2, 

cell 1 +2 +3, and so on until a cumulative average was obtained for each number of 

cells analysed. Table 3.5 provides an example of the method of calculating the 

cumulative averages. 

Table 3.5 Example of cumulative average calculation 

Cell Number % Tail DNA Calculation Cumulative Average 

1 32 32 / 1 32.00 

2 25 (32 +25) / 2 28.50 

3 28 (32 +25 +28) / 3 28.33 

4 34 (32 +25 +28 +34) / 4 29.75 

These cumulative averages were then plotted on a graph. An example of a 

cumulative cell analysis graph is presented in Figure 3.29. The point at which the 

graph reaches a stable value is identified (as indicated on Figure 3.29). This point 

indicates the number of cells required for analysis in order to obtain an accurate 

representation of a population, i.e. analysis of 75 cells (as shown in the example 

presented in Figure 3.29) would provide the same result as analysis of 100+ cells. 
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Figure 3.29 Example of a cumulative cell analysis graph showing the approximate 
point at which the data reaches a stable value indicating number of cells required 

Cumulative cell analysis was performed for each assay using a range of DTT 

concentrations (2.8, 2.9, 3.0, 3.2 and 3.4 mM DTT). Previous studies of human 

spermatozoa analysed 50 cells per sample (Irvine, et al., 2000), therefore 100 cells 

were used for the cumulative cell analysis of the mouse assay in order to identify the 

appropriate number of cells required for accurate analysis (Figures 3.30- 3.34). 
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Figure 3.30 Cumulative analysis of 100 Figure 3.31 Cumulative analysis of 100 
comets from Trial 14 (2.8mM DTT) comets from Trial 15 (2.9mM DTT) 
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Figure 3.32 Cumulative analysis of 100 Figure 3.33 Cumulative analysis of 100 
comets from Trial 16 (3.0mM DTT) comets from Trial 18 (3.2mM DTT) 
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Figure 3.34 Cumulative analysis of 100 
comets from Trial 21 (3.4mM DTT) 

The data from analysis of 100 cells from each assay indicated that assay 

conditions with a concentration of 2.8 - 2.9mM DTT would produce a suitable range 

of DNA damage in control spermatozoa (summarised in Table 3.4). While 2.8mM 

DTT resulted in a lower average % Tail DNA, the failure of the cumulative average 

graph to reach a satisfactory plateau using less than 100 cells indicated that analysis 

of this number might not be sufficient to predict the average % DNA damage in a 

population (Figure 3.30). Assays were repeated and 200 cells analysed from each, 

the results are shown in Figures 3.35 and 3.36. 
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Figure 3.35 Cumulative analysis of 200 
comets from a repeat of Trial 14 

(2.8mM DTT) 

Figure 3.36 Cumulative analysis of 200 
comets from a repeat of Trial 15 

(2.9mM DTT) 

The results obtained indicate that although the use of 2.8mM DTT gives a 

good average and range of DNA damage in control spermatozoa, over 200 cells 

would need to be analysed in order to achieve an accurate representation of the 

population (Figure 3.35). In contrast, the use of 2.9mM DTT not only resulted in an 
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appropriate average and range of % DNA damage (0.48 -45.14 %), but that a 

representational population average was achieved at 150 cells (Figure 3.36). 

These results suggested that the optimum Comet assay conditions for the 

study of murine spermatozoa are as follows: 

0.75% SDS, 30 minutes Lysis (21 °C), 0.1mg /m1 PK and 1h decondensation 

(21 °C) 

Examples of comets obtained using these conditions are shown in Figures 

3.37 and 3.38. 

3.37 0.75% SDS, 30 L , 2.9 DTT 3.38 0.75% SDS, 30 L , 2.9 DTT 

Figures 3.37 and 3.38 Examples of comets obtained using optimum assay 
conditions (0.75% SDS, 30 minutes lysis, 0.1mg/m1 PK and 1h 

decondensation) 
3.3.2.2 Reproducibility of the assay 

Although apparently suitable assay conditions were achieved, extended use of 

this assay (over a 4 month period) identified several problems with the assay which 

prohibited its use in further studies. These problems included the sensitivity of the 

assay to changes in laboratory temperature and humidity, the use of unstable reagents 

(i.e. PK and DTT; potency changed with age and between batches) and human error. 

In addition, the tendency of the agarose gel layers (containing the spermatozoa cells) 

to detach from the slides together with the need to analyse 150 cells per slide, meant 

that a great deal of repetition was required to obtain reliable results. It was therefore 

concluded that this Comet assay protocol might not prove robust enough to produce 

the consistent results required. 
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3.3.3 Modification of a Comet assay kit for use on murine spermatozoa 

Initial trials of this kit following the protocol recommended by the 

manufacturers resulted in intact murine spermatozoa which had failed to lyse or 

decondense. In addition, it was found that agarose gels created without the use of 

coverslips (as recommended by the manufacturer) had an uneven surface and were 

difficult to study under the microscope. Therefore, a number of modifications were 

introduced, the first of which was to introduce the use of cover slips to level the gels 

as they set. The modifications made to the lysis and decondensation buffers and 

incubation times are presented in Table 3.7. 

The kit assay method did not include the use of SDS, DTT or PK, all of 

which were found to enhance results using the Comet methods discussed in the 

previous section (3.3.2). Therefore, SDS, DTT and PK were introduced at the 

appropriate stages in the concentrations determined previously (3.3.2). In addition, 

the pH of the electrophoresis buffer was increased to 12.3 and the electrophoresis 

time reduced to 10 min. Lysis at 4 °C was not successful due to the failure of SDS to 

remain in solution. Lysis of the cells was not achieved unless the incubation 

temperature was adjusted to 37 °C (Table 3.7). However, though successful lysis was 

achieved, it was found that the decondensation conditions were too harsh, resulting 

in very high baseline levels of DNA damage. It was concluded that following 

adequate lysis of the cells, the DTT and PK in the decondensation buffer had better 

access to the DNA, and rather than simply causing the DNA to unwind, actually 

caused further DNA damage. Therefore additional modifications to the assay 

decondensation conditions were undertaken; firstly concentrations of DTT and PK 

were reduced until eventually they were no longer used, the incubation time was 

reduced to 20 min and the temperature to 21 °C. Removing the PK and DTT resulted 

in cells which failed to lyse properly but were beginning to form comets. Analysis of 

these cells indicated that the average % Tail DNA was very low and that the running 

average was unsettled, failing to reach a stable value by 100 cells (See Figure 3.39). 
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Figure 3.39 Cumulative analysis of 100 comets following 30 min lysis 

It was decided that in order to achieve complete lysis of the cells it was 

necessary to increase the lysis incubation period further (60 min, 120 min, 180 min). 

A summary of the results obtained using the different lysis incubation times is 

presented in Table 3.6. 

Table 3.6 Summary of-results obtained following analysis of 100 comets from 
assays using a range of Lysis incubation periods 

Lysis Time Average Range 
(min) % Tail DNA % Tail DNA 

30 10.85 0.54 - 27.36 
60 16.06 0.96 - 44.31 

120 16.84 0.25 - 37.89 
180 16.34 0.48 - 45.14 
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Table 3.7 Summary of assay conditions and results obtained during the modification 
of a Comet assay kit for use on murine spermatozoa 

Trial 
Lysis Stage Decondensation Stage Results 

No. 

SDS Lysis Time Lysis Temp DTT Prot Decondensation Decondensation 
(%) (min) (°C) (mM) K(mg/ml) (min) (°C) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

30 

30 

30 

25 

25 

25 

25 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

60 

120 

180 

4 

21 

37 

37 

37 

37 

37 

4 

21 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

37 

0.015 

0.015 

0.015 

0.015 

0.01 

0.005 

0 

0.015 

0.015 

0.015 

0.015 

0.01 

0.005 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

60 

40 

40 

20 

20 

60 

60 

60 

30 

30 

30 

30 

60 

60 

60 

30 

30 

30 

30 

30 

30 

35 

35 

40 

40 

30 

30 

30 

30 

21 

21 

21 

21 

21 

21 

21 

21 

21 

21 

21 

21 

21 

21 

21 

37 

21 

37 

21 

37 

21 

37 

21 

37 

Cells Intact 

Cells Intact 

DNA damage 
too high 

DNA damage 
too high 

DNA damage 
too high 

DNA damage 
too high 

Cells Intact 

Cells Intact 

Cells Intact 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 
Incomplete 

Lysis 

Poor Comets 

Poor Comets 

Poor Comets 

Poor Comets 

Poor Comets 

Comets 

Comets 

Comets 

*Comets assessed visually and observed to have levels of DNA damage greater than 
50% (Approx) See Figure 3.2. 
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These results suggest that increasing lysis incubation time does not increase 

the average % DNA damage in the cells. In addition, the low level of damage after 

30 min incubation confirms the lack of lysis occurring after this short incubation 

period. 

Progressive increases in incubation times in lysis buffer resulted in improved 

comets until, after 180 min, complete lysis of the cells occurred and satisfactory 

comets were achieved. Figures 3.40 - 3.42 show the running averages of % Tail 

DNA achieved with each of these extended incubation periods. 
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Figure 3.40 Cumulative analysis of 100 Figure 3.41 Cumulative analysis of 100 

comets following 60,min Lysis comets following 120 min Lysis 
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Figure 3.42 Cumulative analysis of 100 
comets following 180 min Lysis 

These results indicated that a lysis time of 180 minutes resulted in an 

appropriate average % tail DNA of 16.35% and a range of 0.48 - 45.14 %. In 

addition, it was observed that at a count of 100 cells, the running average appeared to 

have settled, indicating that analysis of 100 cells was adequate to predict the 

population average. To confirm this finding, the assay was repeated using the same 

conditions and 200 cells were analysed each time (Figures 3.43 and 3.44). 
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Figure 3.43 Repeated cumulative analysis of 200 comets following 180 min Lysis 
(cumulative average ± standard deviation) 
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Figure 3.44 Repeated cumulative analysis of 200 comets following 180 min Lysis 
(cumulative average ± standard deviation) 

These cumulative cell analysis graphs (Figures 3.43 and 3.44), confirmed that 

analysis of 100 cells per sample was adequate to obtain a true representation of the 

population. 

3.3.3.1 Reproducibility of the assay 
The optimum assay conditions were tested for reproducibility a number of 

times over a period of time (1 -2 months). A total of 100 cells was analysed and the 

mean % tail DNA was calculated for each sample tested (n =20). A summary of the 

results obtained for these 20 samples is presented in Table 3.8. 

Table 3.8 Summary of results for optimum assay reproducibility 

Factor Value 
Mean 16.682 
Standard Error 0.133 
Standard Deviation 0.595 
Coefficient of Variation ( %) 3.569 
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In summary, these results indicate that the use of the CometKit slides, gels 

levelled using cover slips, incubation in lysis buffer (from kit) containing 1% SDS 

for 180 min (37 °C), followed by alkaline incubation for 20 min (21 °C) and then 

electrophoresis (10 min, 300mA, 25V) results in appropriate and consistent Comet 

analysis of murine spermatozoa. 

3.4 Discussion 

The Comet assay is a highly sensitive and reproducible assay commonly used 

to detect levels of DNA fragmentation in a wide range of somatic cell types 

(McKelvey- Martin, et al., 1993). The assay involves the lysis of the cell membrane 

followed by the unwinding of the DNA (most commonly under alkaline conditions) 

and then electrophoresis which draws broken DNA strands away from the cell 

nucleus, forming a characteristic `comet' image. 

In mammalian spermatozoa, DNA is packaged very differently from that of 

somatic cells. During spermiogenesis, the somatic histones are replaced by 

arginine /cysteine -rich protamines and the DNA is restructured into a highly 

organised nucleoprotamine complex (Gatewood, et al., 1987). This complex is 

further stabilised by the formation of disulphide ( -SS -) bridges during transit of the 

spermatozoa through the epididymis (Bedford, 1979;Cooper, et al., 1986). The 

arrangement of the DNA in mammalian spermatozoa is specifically designed to 

protect it from exogenous insult, therefore in order to study the integrity of the DNA 

it must first be exposed without causing further damage. The initial modification of 

the standard somatic cell Comet assay for use on human spermatozoa included the 

introduction of a proteinase K digestion step to remove the tight protamine links 

present in the spermatozoa nucleus (Hughes, et al., 1996). 

The Comet assay has been successfully used in a number of studies of DNA 

integrity in human spermatozoa. A negative relationship between semen quality and 

DNA damage has been reported by a number of laboratories (Sun, et al., 1997;Irvine, 

et al., 2000), and the increased susceptibility of spermatozoa from infertile men to 

exogenous DNA damage has been demonstrated by others (Hughes, et al., 1997). In 

comparison with other methods used for spermatozoa analysis, such as the enzyme- 
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linked immunosorbant (ELISA) and the TUNEL assays (Hughes, et al., 1999;Shen, 

et al., 2000), the Comet assay appears to be both sensitive and reliable and has the 

benefit of the ability to assess DNA integrity of individual cells and then combine 

data from many cells to assess a population (Hughes, et al., 1996). 

At the time this project started, there were no publications of a Comet assay 

used for the study of DNA integrity in murine spermatozoa. However, during the 

present study an in vitro study of the effects of radiation on the integrity of DNA in 

both human and murine spermatozoa was published by Haines et al (1998). They 

used both neutral and alkaline versions of the Comet assay to study the DNA 

integrity of human and murine spermatozoa. In both assays, slides were submerged 

in lysis buffer (2.5M NaC1, 100mM EDTA, 10mM Tris HC1; pHlO) containing 1% 

Triton and 40mM DTT for lh (21 °C) followed by a further 3h incubation (37 °C) in 

the same buffer with the addition of 0.lmg /ml proteinase K. Electrophoresis (20 min, 

10mA, 25V) was performed using either Tris- Borate EDTA (TBE) buffer (neutral 

assay), or alkali (0.05M NaOH, 1mM EDTA) buffer (alkali assay). The authors did 

not state the exact pH of the buffers used for electrophoresis. Analysis of 50 cells 

per sample was performed using the Komet 3.0 image analysis system and the results 

from the alkali Comet assay indicated an average % Tail DNA of 90.8% (± 6.4) in 

the control (untreated) spermatozoa rising to 94.3% (± 2.5) in the spermatozoa 

subjected to the greatest radiation dose (100 Gy). The high concentration of DTT 

(40mM) in the lysis buffer is the most likely cause of this very high level of baseline 

DNA damage in the control spermatozoa resulting in a very narrow upward range 

available for measuring damage in the treated spermatozoa. The results presented in 

this study suggest that the assay used was not optimised for use on murine 

spermatozoa and could not provide a true comparison between the DNA integrity of 

the control and treated spermatozoa - the DNA damage induced by the conditions of 

the assay appeared to be so high that it `masked' any damage induced by the 

radiation treatment. In addition, the analysis of 50 cells per sample may not have 

been sufficient to provide an accurate representation of the population. 

In the present study, three approaches were taken to develop an appropriate 

assay; the modification of an existing protocol used for the study of human 
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spermatozoa, the development of a novel method, and the modification of a 

commercially available Comet assay kit. 

The modification of the human assay did not result in an assay suitable for 

use on murine spermatozoa. It was found that the assay conditions tested did not 

produce satisfactory comets. Human and murine spermatozoa differ in a number of 

ways, including membrane construction and DNA packaging (Evenson, et al., 

1980;Haaf, et al., 1995). These differences may account for the failure of the human 

assay to work on murine spermatozoa. 

In 1995, a paper published by Qiu et al outlined a method used for the lysis 

and decondensation of rat spermatozoa (Qiu, et al., 1995). It was decided that due to 

the morphological similarities between rat and mouse spermatozoa, conditions which 

lysed and decondensed rat spermatozoa might be successfully used in a Comet assay 

for use on mouse spermatozoa. The main difference between the lysis method used 

with rat spermatozoa and that used with spermatozoa in the human Comet assay was 

the presence of the ionic detergent SDS instead of the non -ionic detergent Triton X 

(Hughes, et al., 1996). SDS is a powerful ionic denaturant which solubilises proteins 

by producing conformational changes in the molecules and disrupting non -covalent 

protein interactions (such as -SS- bridges). Previous studies have reported that the 

use of SDS, in addition to removing the outer membrane of rabbit spermatozoa, also 

removes the nuclear membrane surrounding the DNA (Calvin, et al., 1971). In 

addition to proteinase K, the decondensation buffer also contained DTT, a reducing 

agent which acts specifically on the -SS- bridges (Rodriguez, et al., 1985;Tateno, et 

al., 1999) and has been used in the decondensation of rabbit spermatozoa (Calvin, et 

al., 1971). 

Both SDS and DTT were tested in the lysis and decondensation buffers of a 

novel Comet assay for murine spermatozoa and an assay protocol was determined 

(0.75% SDS, 30 min Lysis (21 °C), 0.1mg/m1 PK and lh decondensation (21 °C)) 

which resulted in acceptable comets following electrophoresis. 

However, after repeated tests of this protocol, it was found that results were 

inconsistent and that the assay was very sensitive to changes in either laboratory 

temperature or humidity. Furthermore, the efficiency of both the proteinase K and 
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the DTT appeared to alter over time. A possible explanation for the changing 

effectiveness of the proteinase K is the presence of SDS in the lysis buffer. It has 

been shown that SDS enhances the effects of proteinase K (Hilz, et al., 1975), and it 

is possible that any traces of SDS remaining in the agarose gels after washing could 

have had an effect on the potency of the proteinase K in the decondensation buffer. 

In addition to the observed inconsistencies of this assay, the tendency of the 

agarose gel layers (containing the spermatozoa cells) to detach from the slides 

together with the need to analyse 150 cells per slide, resulted in the need to repeat the 

analysis of any one spermatozoa sample a number of time in order to be confident in 

the results. It was therefore decided not to continue with the use of this assay . 

The introduction of a Comet assay kit by R &D Systems presented another 

opportunity to improve the previous assay methods. This kit was originally intended 

for use on somatic cells but, following modifications based on findings during the 

modification of the human spermatozoa assay and the development of the novel 

method, an assay was developed which produced acceptable and consistent results 

when used on murine spermatozoa. The final assay method produced using the kit as 

a basis included an extended lysis incubation period (180 min at 37 °C), the use of 

SDS (0.75 %) in the lysis buffer, the removal of both proteinase K and DTT from the 

alkali decondensation stage, and an extended electrophoresis time (10 min). The 

removal of the proteinase K and DTT resulted in a more reliable assay, as these were 

the factors identified as being responsible for the inconsistencies observed in the 

novel method. 

In contrast to the previous assays, which involved a short lysis incubation and 

then a long decondensation incubation with proteinase K and DTT, the method based 

on the kit reagents involves a long lysis incubation followed by a short alkali 

decondensation incubation without the use of either proteinase K or DTT. It is 

believed that allowing the cells to lyse fully under the influence of SDS is sufficient 

to expose the DNA and enable it to unwind and decondense due to the effects of the 

alkali conditions alone. Removal of both the proteinase K and the DTT reduces the 

risk of inducing DNA damage during the assay, thereby improving the sensitivity of 
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the assay to DNA damage already present in the spermatozoa. In addition, any assay 

variability due to variation between batches of proteinase K was removed. 

Other benefits of the Comet assay kit included the use of the specially treated 

slides which reduced the both the preparation time of the slides and the risk of gel 

loss, the reduction in the time required to perform the assay and the reduced number 

(100) of cells required for accurate analysis. 

In summary, the assay developed using the Comet assay kit produced reliable 

and consistent results, and was more efficient in terms of time spent performing the 

assay and analysing the slides. The Comet assay developed from this work was then 

used for the studies of murine spermatozoa DNA integrity described in this thesis. 
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Chapter 4 

DNA integrity in motile spermatozoa from 

genetically -altered mouse models of male infertility: 

Levels of endogenous DNA damage 

and susceptibility to heat -induced DNA damage 

4.1 Introduction 

4.1.1 Mouse models for male infertility 

A number of mouse models have been developed which demonstrate various 

degrees /types of male infertility. In many cases, male infertility is described merely 

as a "side- effect" following deletion of particular genes, for example, the Ercc -1 

knockout mouse was originally developed to study the role of this gene in the repair 

of UV- induced DNA damage. After the introduction of an Ercc -1 transgene, which 

extended the lifespan of these animals beyond sexual maturity, it was discovered that 

the male animals were infertile (Selfridge, et al., 2001, Melton personal 

communication). In other cases, genes normally expressed in the testis /reproductive 

tract, or genes known to be expressed in germ cells (e.g. dazl, mHR6B), were 

deleted/altered in order to study their role in spermatogenesis /spermatozoa 

maturation (Cooke, et al., 1996;Grootegoed, et al., 1998). 

The mice studied in this chapter contained targeted ablation of genes 

encoding dazi, Ercc -1 or Prion/Prion- related proteins. 

4.1.1.1 Deleted in azoospermia (DAZ) and daz -like autosomal (DAZL) 

The Y chromosome encoded gene DAZ, and the autosomal gene DAZL have 

been implicated in human male infertility (Yen, et al., 1996;Chang, et al., 

1999;Krausz, et al., 1999). Mice do not have a daz gene on their Y chromosome 

(Cooke, et al., 1996;Reijo, et al., 1996), however, an autosomal homologue of 
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human DAZ, known as dazi, has been isolated from mouse chromosome 17 and is 

expressed in the cytoplasm of germ cells (Cooke, et al., 1996;Ruggiu, et al., 1997). 

Expression of dazi in murine germ cells is essential for the differentiation of 

these cells in both the ovary and testis (Cooke, et al., 1996;Shen, et al., 

1997;Venables, et al., 2001). It has been suggested that, due to the presence of an 

RNA binding domain, and the cytoplasmic location of the protein, dazi may play a 

role in translational control via the packaging or localisation of mRNAs (Ruggiu, et 

al., 1997). 

Dazi- deficient mice ( -/ -) are infertile, and males fail to produce any mature 

spermatozoa; heterozygous males are fertile but exhibit reduced numbers of 

spermatozoa with high incidence of morphological abnormality (Ruggiu, et al., 

1997). 

The animals used in this study were sexually mature male +/+ and +/- dazl 

mice on an MF1 genetic background. The preparation of these mice has been 

described previously by Ruggiu et al (1997). 

4.1.1.2 Excision repair cross -complementing gene 1 (Ercc -1) 

Ercc -1 is a gene involved in the nucleotide excision repair (NER) pathway 

which is responsible for the recognition and repair of DNA damage (McWhir, et al., 

1993). Within this pathway, Ercc -1 forms a complex with xeroderma pigmentosum 

factor (XPF; also known as Ercc -4). This complex is a structure -specific 

endonuclease which incises the damaged DNA strand at the 5' side of the lesion. 

Ercc -1 is also thought to be involved in the process of mitotic recombination which 

is required for the repair of DNA cross -links (Adair, et al., 2000;Sargent, et al., 

2000). 

Ercc -1- knockout mice were first described by McWhir et al in 1993. The 

authors noted that these mice exhibited disturbed (runted) growth, reduced life span 

and abnormalities of liver nuclei (McWhir, et al., 1993). These findings were then 

confirmed by Weeda et al (1997) who also described kidney, spleen and cutaneous 

deficits, as well as performing a detailed analysis of cross -link repair, cell cycle 

arrest, NER and replicative senescence in these mice. The liver and kidney 
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malfunctions in Ercc -1 knockout mice have been attributed to the prominent nuclear 

abnormalities (e.g. polyploidy) which have been observed in these organs. Ercc -1 

knockout mice exhibit several signs of premature senescence, including disturbed 

growth, reduced weight and reduced lifespan, possibly caused by an early block to 

cellular proliferation (Weeda, et al., 1997). 

In Ercc -1 knockout mice, the NER pathway is lost and mitotic recombination 

is impaired. Death normally occurs in Ercc -1- deficient mice on or around day 22, 

before the first wave of spermatogenesis is complete, and is due to liver failure. To 

allow studies on the role(s) of Ercc -1 in other organs the liver phenotype has been 

corrected by introduction of an Ercc -1 transgene under the control of a liver -specific 

promoter into the Ercc -1 null background (Selfridge, et al., 2001). 

4.1.1.3 Prion protein (PrP) and Prion protein -like protein Doppel (PrnD) 

The Prion diseases (Scrapie, Creutzfeldt -Jakob Disease) are fatal 

neurodegenerative disorders which may be either inherited or acquired. It has been 

shown that the fundamental mechanism of these genes is the altered structural 

configuration of the Prion protein (Prusiner, 1998). 

Mice deficient in the Prion protein (PrP) develop ataxia and exhibit altered 

circadian rhythms (Tobler, et al., 1996) and electrophysiological disorders (Collinge, 

et al., 1994). PrP variants are expressed both in the testis and the mature 

spermatozoa of mice (Shaked, et al., 1999;Lí, et al., 2000). It has been shown that 

spermatozoa from PrP -deficient mice are more susceptible to high copper 

concentrations than spermatozoa from control mice, suggesting a protective role for 

PrP against copper toxicity in the testis (Shaked, et al., 1999). While PrP deficient 

male mice exhibit normal testicular /epididymal function, there have been conflicting 

findings regarding the fertility of these mice, for example Shaked et al have reported 

that these mice are fertile (Shaked, et al., 1999) while Melton et al., have observed 

complete infertility (Melton DW, personal communication). 

The PrP- related gene doppel (PrnD) encodes a Doppel protein (Dpl), which 

is normally expressed at low levels in the brain. However, in PrP -deficient mice, Dpl 

is over -expressed and may provoke neurodegeneration in these animals (Moore, et 
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al., 1999). It has been speculated that Dpl may play a role in angiogenesis, in 

particular blood -brain barrier maturation in the central nervous system (Li, et al., 

2000). In addition, it has been reported that Dpl protein is highly expressed in the 

testis of the sheep, cow and mouse (Silverman, et al., 2000;Tranulis, et al., 2001). In 

the mouse, Dpl is expressed during the late stages of sperrniogenesis and 

spermatozoa from Dpl deficient (PrnD -I -) male mice have been shown to be 

immotile, malformed and unable to fertilise eggs in vitro (Behrens, et al., 2002). 

In the current investigation, spermatozoa from both PrP -I- and PrnD -I- were 

studied. 

4.1.2 Aims of this chapter 

Mouse models of infertility have generally been studied in respect of their 

ability to produce motile and fertile spermatozoa, and the numbers of live offspring 

produced either naturally or via IVF techniques. 

As previously discussed (section 3.1), DNA damage present in spermatozoa 

has been shown to result in congenital and developmental abnormalities, and 

increased risk of childhood cancers in the offspring (Ji, et al., 1997;Shen, et al., 

1997;Potts, et al., 1999;Zenzes, et al., 1999). 

The purpose of the present investigation was to study the following in several 

mouse models of infertility: 

a. Numbers of motile spermatozoa 

b. Morphology of motile spermatozoa 

c. Levels of endogenous DNA damage in motile spermatozoa 

d. Susceptibility of DNA of motile spermatozoa to exogenous insult 

Baseline levels of DNA damage in spermatozoa from these mice will be 

determined using the murine spermatozoa Comet assay. The susceptibility of the 

spermatozoa DNA to exogenous insult will also be investigated via in vitro heat 

treatment. 
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4.2 Methods 

4.2.1 Genotyping of mice 

Full methods for the genotyping of all animals used in this study are 

described in section 2.15. Briefly, tail tips were taken from each mouse and digested 

to retrieve the DNA. Using specific primers for the genes in question, PCR reactions 

were performed to determine the genotype of each mouse. 

4.2.2 Preparation of murine spermatozoa 

Full methods for the preparation of murine spermatozoa are described in 

section 2.6. The animals used in this study were from the following genotypes: dazl 

(wt and + / -), Ercc -1 (129wt. + / -, and -/ -) and Prion (129wt, Prp -I- and PrnD -I -). 

Briefly, whole epididymides were removed, cleaned of fatty tissue and placed in 1ml 

BWW. The tissue was then minced with fine scissors and incubated at 34 °C (95% 

air, 5% CO2) for 30 min prior to careful removal of buffer containing the motile 

spermatozoa. Samples were diluted (to a final volume of 1ml) and stored in BWW at 

-20 °C until required. 

4.2.3 Study of concentration of spermatozoa 

Samples were diluted 1:10 with spermatozoa diluting fluid (SDF; 50g 

NaHCO3, 10m1 Formalin, dHZO to 1L) and 10111 diluted sample was placed into the 

chamber of an improved Neubauer haemocytometer (BDH). The number of 

spermatozoa located within 5 squares of the haemocytometer grid was carefully 

counted. If the number of spermatozoa in 5 squares was not equal to or greater than 

100, 10 or 25 squares were counted. From this value, the number of spermatozoa in 

lml was calculated using the following equation: 

Concentration (millions /ml) = No Spermatozoa Counted 

(4 x No Squares) - Dilution 
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4.2.4 Study of morphology of spermatozoa (DiffQuik staining) 

For each sample to be studied, 2 microscope slides were prepared by washing 

in 100% ethanol, then water, and drying in an oven. l0111 sample was dropped onto 

the first slide and the second was used to drag the sample across the slide, creating a 

smear which was then allowed to air -dry. This process was repeated a total of 3 

times per slide in order to obtain a high concentration of spermatozoa on each slide. 

Once completely dry, each slide was dipped 10 times into Diffquick fixative 

and the excess solution removed by placing the edge of each slide onto an absorbent 

tissue and then wiping the underside. Each slide was then dipped 20 times into 

Diffquick I solution, drained of excess solution as before, dipped 20 times into 

Diffquick II solution, again drained of excess solution, and finally dipped in clean 

water to remove any remaining solution. Slides were allowed to air -dry before 

mounting using Pertex and a cover slip. 

Morphologically- noinial spermatozoa were defined as having crescent - 

shaped heads - pointing forwards, away from the mid -piece, no residual cytoplasm, 

straight mid -pieces (with no folds or bends) and straight tails (with no folds, loops or 

"lasso- like" coils). 

4.2.5 In vitro heating of spermatozoa 

A circulating water bath was heated to 42 °C. An aliquot of each sample (in 

BWW) was carefully sealed, placed in a float and incubated in the water bath for 10 

min. Following heating, each aliquot was used once (for the Comet assay; see 

below) and then discarded. 

4.2.6 Comet assay 

As discussed in Chapter 3, a commercially- available Comet assay kit was 

modified for use on murine spermatozoa. Briefly, 511l speimatozoa samples were 

added to 25111 LMA (37 °C). This gel /sample mix was then dropped onto a 

CometSlide (Trevigen) and covered with a clean, warm (37 °C) cover slip. The slides 

were incubated at 4 °C until the gels were set ( -10 min) and the cover slips were 
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carefully removed. The slides were then incubated in lysis buffer (0.75% SDS, Lysis 

buffer; 2.5M NaC1, 100mM EDTA, 10mM Tris, 1% sodium lauryl sarcosinate, 

0.01% Triton X -100) for 3h at 37 °C. 

The slides were transferred to a horizontal gel electrophoresis tank into which 

alkaline electrophoresis buffer (3M NaOH, 1mM EDTA, pH 12.3) was added to a 

depth of 0.5cm above the slides. Following a 20 min incubation at room 

temperature, current was applied at 25V, 300mA for 10 min. The slides were then 

transferred to ice -cold methanol (100 %, 5 min) then ethanol (100 %, 5 min) and 

allowed to dry overnight at room temperature. 

4.2.7 Comet analysis 

Following completion of the comet assay, slides were stained with ethidium 

bromide which intercalated into the DNA released from the spermatozoa cells. 

Comet analysis was performed using the Komet Image Analysis system (version 4.0; 

Kinetic Imaging Ltd) as discussed in section 2.8.2. Briefly, 100 -200 cells 

(calculation of the number of cells required for analysis is described in section 3.3.2) 

per sample were analysed. The percentage of DNA (as determined by the degree of 

fluorescence) in the comet head and tail of each cell was calculated and an average 

obtained for the population. 

4.2.8 Statistical Analysis 

Statistical analysis was limited due to the small size of the samples available 

for study. The results obtained for the heated animals were compared against those 

for the control animals using the Kruskal Wallis non -parametric test. However, it is 

acknowledged that the significance of this statistical test is diminished when used 

with small sample sizes (n <10). 
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4.3 Results 

4.3.1 Dad 

4.3.1.1 Spermatozoa counts 

The number of motile spermatozoa retrieved from the epididymides of each 

wt and dazi +1- mouse was calculated (Figure 4.1; black points). From these figures, 

the average number of motile spermatozoa for both genotypes was determined 

(Figure 4.1; red points). 
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Figure 4.1 Spermatozoa concentrations of dazi genotypes 
(n =3 for both genotypes, red marker = average) 

Statistical analysis revealed that the average number of motile spermatozoa 

retrieved from the epididymides of wt mice (4.6 million/ml; range = 4.2 - 4.8 

million/ml), was significantly higher (p <0.05) than the average number of motile 

spermatozoa retrieved from the epididymides of dazi +/- mice (1.71 million/ml; 

range = 1.5 - 2.1 million/ml). 
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4.3.1.2 Spermatozoa morphology 

4.2 4.3 4.4 

4.5 4.6 4.7 

Figures 4.2 - 4.7 Examples of spermatozoa morphologies from 
wt (Figures 4.2 - 4.4) and +1- (Figures 4.5 - 4.7) dazi mice 

4.3. 1.2.1 Morphologies observed in the spermatozoa of wt mice 

The majority of epididymal spermatozoa from wt mice appeared to be 

morphologically normal (i.e. having normal head shapes) with straight mid -pieces 

and tails (Figure 4.2). However, a number of spermatozoa with tail abnormalities 

were also observed. For example, Figure 4.3 shows a morphologically normal 

spermatozoa with a bend in the mid -piece of approximately 180° (arrow head) and 

Figure 4.4 shows a morphologically normal spermatozoa with a bend in the mid - 

piece of approximately 90° (arrow head) and a bend in the tail of approximately 180° 

(arrow head). As expected, amongst the motile spermatozoa population of wt mice, 

the occurrence of abnormal head morphologies was rare. The percentage of 

abnormal spermatozoa in the wt spermatozoa population is estimated to be in the 

region of 15 -20% (based on observations made during the determination of 

spermatozoal concentration - no formal calculation of percentage was made and 

therefore statistical analysis was not possible). 
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4.3.1.2.2 Morphologies observed in the spermatozoa of +/- dazl mice 

Morphologically abnormal spermatozoa were observed more frequently in 

the epididymal population in the dazi +1- mice compared to that of wt mice. These 

included examples of both head and tail abnormalities. For example, in the 

epididymal spermatozoa of +/- mice, spermatozoa heads were more often found to be 

abnormal in size and /or shape (Figures 4.5 and 4.6) compared to wt mice. Other 

abnormalities observed in the motile spermatozoa population of +/- mice included 

bends in the mid -piece or tail (as seen in the wt population), often in combination 

with the presence of retained cytoplasm (Figure 4.7, arrow head). The percentage of 

abnormal spermatozoa in the +/- spermatozoa population is estimated to be in the 

region of 50 -60% (based on observations made during the determination of 

spermatozoal concentration). 

4.3.1.3 Endogenous DNA damage 

For both wt and dazl +/- genotypes, 100 spermatozoa from each mouse (n =3) 

were analysed to determine the level of endogenous DNA damage present (See 

Figure 4.8). 

Statistical analysis revealed that the average level of DNA damage in 

motile spermatozoa retrieved from the epididymides of wt mice (19.4% Tail DNA; 

range = 14.5 -25 %) was significantly lower (p <0.05) than the average level of DNA 

damage in motile spermatozoa retrieved from the epididymides of dazi +l- mice 

(39% Tail DNA; range = 32.2 -44.4 %). 
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Figure 4.8 Levels of endogenous DNA damage in spermatozoa from dazi mice 

(n =3 for both genotypes, point = average % Tail DNA for 100 cells ± 95% 
confidence interval, bar = average % Tail DNA for 3 mice) 

4.3.1.4 DNA damage after heating 

Following 10 min in vitro heat treatment (42 °C), the level of DNA damage in 

spermatozoa from each genotype (wt and +1 -) was again determined via the Comet 

assay and the results plotted against the endogenous levels of DNA damage for 

comparison (see Figure 4.9). 
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Figure 4.9 Levels of DNA damage before and after in vitro heat treatment in motile 
spermatozoa from wt and dazi +1- mice 

(n =3 for both genotypes, point = average % Tail DNA for 100 cells ± 95% 
confidence interval, bar = average % Tail DNA for 3 mice) 

Following in vitro heat treatment, DNA damage in the spermatozoa of wt 

mice increased significantly (p <0.05) from 19.4% (endogeous level) to 28.7% 

(24.9 -31.6 %). Likewise, in the spermatozoa of +1- dazi mice, DNA damage 

increased significantly (p <0.05) following in vitro heating from 39% (endogenous 

level) to 49.6% (47.3 - 52.9 %). 

4.3.2 Ercc-1 

4.3.2.1 Spermatozoa counts 

The number of motile spermatozoa retrieved from the epididymides of each 

129wt, Ercc -1 +1- and Ercc -1 -I- mouse was calculated (Figure 4.10; black points). 

From these figures, the average number of motile spermatozoa for each genotype 

was determined (Figure 4.10; red points). 
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Figure 4.10 Motile spermatozoa concentrations of Ercc -1 Genotypes 
(n =3 for each genotype, red marker = average) 

Statistical analysis revealed that the average number of motile spermatozoa 

retrieved from the epididymides of 129wt mice (4.4 million/ml; range = 4.1 - 4.6 

million/ml) was significantly higher than the average number of motile spermatozoa 

retrieved from the epididymides of Ercc -1 +1- mice (3 million/ml; range = 2.6 - 3.4 

million/ml; p <0.05) and Ercc -1 -I- mice (0.8 million/ml; range = 0.6 - 1.2 

million/ml; p <0.05). In addition, Ercc -1 -I- mice also had significantly fewer 

(p <0.05) motile spermatozoa than Ercc -1 +1- mice. 

4.3.2.2 Spermatozoa morphology 

Examples of morphologies observed in the spermatozoa of 129wt and Ercc -1 

-/- mice are shown in Figures 4.11 - 4.16. 

4.3.2.2.1 Morphologies observed in the spermatozoa of 129wt mice. 

It was found that, as observed in wt mice (section 4.3.1.2), the majority of 

motile spermatozoa from the 129wt mice tended to be morphologically normal, with 

morphologically normal heads, straight mid -pieces and tails (Figure 4.11). However, 

as with the wt mice, 129wt mice also appeared to produce a number of 

morphologically abnormal spermatozoa. The most common examples of these 

abnormalities included 90° bends (Figure 4.12; arrowhead) and 180° bends (Figure 

4.13; arrowhead) in the mid -piece. In addition to these mid -piece and tail 
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abnormalities, examples of very small, morphologically abnormal and 

underdeveloped spermatozoa (Figure 4.13; arrow) were also found among the motile 

spermatozoa population of 129wt mice. The percentage of abnormal spermatozoa in 

the motile spermatozoa population of 129wt mice was estimated to be in the region 

of 15 -25% (based on observations made during the determination of spermatozoal 

concentration - no formal calculation of percentage was made and therefore 

statistical analysis was not possible). 

4.11 4.12 4.13 

4.14 4.15 4.16 

Figures 4.11- 4.16 Examples of spermatozoa morphologies from 
129wt (Figures 4.11 - 4.13) and Ercc-1 -I- (Figures 4.14 - 4.16) mice 

4.3.2.2.2 Morphologies observed in the spermatozoa of Ercc-1 -/- mice. 

The percentage of abnormal spermatozoa from Ercc -1 -I- mice was estimated 

to be in the region of 60 -70% (based on observations made during the determination 

of spermatozoal concentration - no formal calculation of percentage was made and 

therefore statistical analysis was not possible). The majority of abnormalities were 

found to be in the mid -pieces and tails of the spermatozoa. However, examples of 

head abnormalities were observed (Figure 4.14; arrow head). Figures 4.15 and 4.16 

both show spermatozoa with normal head morphologies but with abnormal mid - 

pieces and tails; in Figure 4.15 the tail and mid -piece have coiled up to form a `lasso' 

while Figure 4.16 shows a spermatozoon with a relatively mild (< 90 °) bend in the 
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mid -piece. In addition, Figure 4.16 also shows 2 very small, morphologically 

abnormal and underdeveloped spermatozoa (arrows) as observed within the wt 

spermatozoa population (Figure 4.13; arrow). 

4.3.2.3 Endogenous DNA damage 

For each genotype (129wt, Ercc -1 +1- and Ercc -1 -I -), 100 spermatozoa from 

each mouse (n =3) were analysed to determine the level of endogenous DNA damage 

present (See Figure 4.17). 

Statistical analysis revealed that the average level of DNA damage in motile 

spermatozoa retrieved from the epididymides of 129wt mice (average = 17.3% Tail 

DNA; range = 15.6 - 18.6 %), was significantly lower (p <0.05) than the average level 

of DNA damage in motile spermatozoa retrieved from the epididymides of +/- Ercc - 

1 mice (average = 26.2% Tail DNA; range = 22.8 - 29.2 %). The spermatozoa from - 

/- Ercc -1 mice were found to have levels of DNA damage (average = 35.9% Tail 

DNA; range = 34.6 - 37.1 %) which were significantly higher than those of both 

129wt (p <0.01) and Ercc -1 +/- (p <0.05) mice. 
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Figure 4.17 Levels of endogenous DNA damage in spermatozoa from Ercc -1 mice 

(n =3 for each genotype, point = average % Tail DNA for 100 cells ± 95% confidence 
interval, bar = average % Tail DNA for 3 mice) 
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4.3.24 DNA damage after heating 

Following 10 min in vitro heat treatment (42 °C), the level of DNA damage in 

spermatozoa from each genotype (129wt, Ercc -1 +1- and Ercc -1 -I -) was again 

determined via the Comet assay and the results plotted against the endogenous levels 

of DNA damage for comparison (see Figure 4.18). 

Following in vitro heat treatment, DNA damage in the spermatozoa of 129wt 

mice increased significantly (p <0.05) from 17.3% (endogeous level) to 23.6% (20.7 

- 27.8 %). Levels of DNA damage in the spermatozoa of Ercc -1 +7- mice also 

increased (not statistically significant) following in vitro heat treatment, from 26.2% 

(endogenous level) to 40.1% (32.9 - 53 %). Finally, levels of DNA damage in 

spermatozoa from Ercc -1 -I- mice also increased significantly (p <0.05) following in 

vitro heat treatment, from 35.9% (endogenous level) to 49.6% (44.4 - 56.4). 
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Figure 4.18 Levels of DNA damage before and after in vitro heat treatment in 

spermatozoa from 129wt, Ercc -1 +1- and Ercc-1 -I- mice 

(n =3 for each genotype, point = average % Tail DNA for 100 cells ± 95% confidence 
interval, bar = average % Tail DNA for 3 mice) 
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4.3.3 PRION 

4.3.3.1 Spermatozoa counts 

The average number of motile spermatozoa retrieved from the epididymides 

of Prion +/+ mice (1.2 million/ml; range = 1.0 - 1.3 million/ml) did not appear to 

differ from the average number of motile spermatozoa retrieved from the 

epididymides of PrP -I- mice (1.1 million/ml; range = 1.1 - 1.2 million/ml) and 

PrnD -I- mice (1.5 million/ml; range = 1.5 - 1.6 million/ml). However, due to the 

low number of mice studied (n =2), statistical analysis was not possible. See Figure 

4.19. 
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Figure 4.19 Spermatozoa concentrations of Prion Genotypes 
(n =2 for both genotypes, red marker = average) 

4.3.3.2 Spermatozoa morphology 

4.3.3.2.1 Morphologies observed in the spermatozoa of 129wt mice. 

Within the motile spermatozoa population retrieved from 129wt mice, the 

percentage of abnormal spermatozoa was estimated to be in the region of 10 -20% 

(based on observations made during the determination of spermatozoal concentration 

- no formal calculation of percentage was made and therefore statistical analysis was 

not possible). These abnormalities included bends to the mid -piece and /or tail, 
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abnormal (club- shaped) heads and spermatozoa with 2 tails. Figure 4.20 shows a 

spermatozoon with an abnormal (club- shaped) head and a bend (arrow head) in the 

mid -piece. Figure 4.21 shows a morphologically normal spermatozoa (arrow) and a 

spermatozoon with a tail coiled into a lasso shape (arrow head). Figure 4.22 shows a 

spermatozoon with a morphologically normal head which appears to have 2 tails 

originating from the same site (arrow), both of which have severe bends. 
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Figures 4.20 - 4.28 Examples of spermatozoa morphologies from 129wt (Figures 

4.20 - 4.22), PrnD -I- (Figures 4.23 - 4.25) and PrP -I- (Figures 4.26 - 4.28) mice. 

4.3.3.2.2 Morphologies observed in the spermatozoa of PrnD -/- mice. 

Compared to the 129wt mice, abnormal head morphologies were more 

common in the motile spermatozoa population retrieved from the PrnD -I- mice. In 

addition, abnormalities of the mid -piece and tail were also more common in PrnD -/- 

mice. Figure 4.23 shows a spermatozoon with a severely abnormal head and a 
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number of spermatozoa with bends of 180° in their mid -pieces, resulting in the 

spermatozoa head lying back against the mid -piece in the wrong direction. Figure 

2.24 shows 2 spermatozoa with severe bends (-180 ) in their mid -pieces and Figure 

2.25 shows a further example of a spermatozoon with an abnormal (club- shaped) 

head. Within the motile spermatozoa population retrieved from PrnD -I- mice, the 

percentage of abnormal spermatozoa was estimated to be in the region of 35 -45% 

(based on observations made during the determination of spermatozoal concentration 

- no formal calculation of percentage was made and therefore statistical analysis was 

not possible). 

4.3.3.2.3 Morphologies observed in the spermatozoa of PrP -/- mice. 

Severe ( -180 °) and/or multiple bends in the mid -pieces and tails were 

observed in the population of motile speimatozoa from PrP -I- mice studied 

(arrowheads, Figures 4.26 -4.28). In addition, head abnormalities were also common 

(arrow, Figure 4.27). Within the motile spermatozoa population retrieved from PrP - 

I- mice, the percentage of abnormal spermatozoa was estimated to be in the region of 

60 -70% (based on observations made during the determination of spermatozoal 

concentration - no formal calculation of percentage was made and therefore 

statistical analysis was not possible). 

4.3.3.3 Endogenous DNA damage 

For each genotype (129wt, PrP -I- and PrnD -I -), 100 spermatozoa from each 

mouse (n =2) were analysed to determine the level of endogenous DNA damage 

present (See Figure 4.29). 

Due to the low numbers of mice available for study (n =2), statistical analysis 

of the levels of endogenous DNA damage in the motile spermatozoa from the Prion 

genotypes was not possible. However, from the results obtained, it appeared that the 

levels of endogenous DNA damage in motile spermatozoa from both PrnD -/- 

(average = 47.4 %) and PrP -I- mice (average = 55 %) are considerable higher than 

those of wt mice (average =27.2) from the same genetic background (129wt). 
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Figure 4.29 Levels of endogenous DNA damage in motile spermatozoa retrieved 
from the epididymides of 129wt, PrnD -I- and PrP -I- mice 

(n = 2 for each genotype, point = average % Tail DNA for 100 cells ± 95% 
confidence interval, bar = average % Tail DNA for 2 mice) 

4.3.3.4 DNA damage after heating 

Following 10 min in vitro heat treatment (42 °C), the level of DNA damage in 

spermatozoa from each Prion genotype (129wt. PrP -I- and PrnD -I -) was again 

determined via the Comet assay and the results plotted against the endogenous levels 

of DNA damage for comparison (see Figure 4.30). 

Following in vitro heat treatment, DNA damage in the spermatozoa of 129wt 

mice increased from 27.2% (endogenous level) to 43% (41.3 - 44.6 %). Similarly, 

levels of DNA damage in the spermatozoa of PrnD -I- mice also increased following 

in vitro heat treatment, from 47.4% (endogenous level) to 53.7% (53.7 - 53.8 %). In 

contrast to both the 129wt mice and PrnD -I- mice, the average level of DNA 

damage in spermatozoa from PrP -I- mice did not increase following in vitro heat 

treatment, instead decreasing from 55% (endogenous level) to 52.2 %. Again, due to 

the low numbers of animals available for study, statistical analysis was not possible. 
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Figure 4.30 Levels of DNA damage before and after in vitro heat treatment, in 
motile spermatozoa retrieved from 129wt, PrnD -I- and PrP -I- mice 

(n =2 for each genotype, point = average % Tail DNA for 100 cells ± 95% confidence 
interval, bar = average % Tail DNA for 2 mice) 

4.3.4 Comparison between all mouse strains 

In order to compare the susceptibility of spermatozoa from the various mouse 

strains (dazi, Ercc -1 and Prion/Prion- related) to exogenous DNA damage, the 

percentage increase /decrease in DNA damage following in vitro heat treatment was 

calculated (see Figure 4.31). 

Motile spermatozoa from both +/+ and +/- dazi mice were susceptible to heat - 

induced DNA damage with average increases in DNA damage after heat treatment of 

47.9% and 26.7% respectively compared to endogenous levels. 

Similarly, the motile spermatozoa from all Ercc -1 genotypes ( + / +, +/- and -/ -) 

were also found to be susceptible to heat -induced DNA damage with average 

increases of 36.2 %, 52.7% and 37.9% respectively. 
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Figure 4.31 Comparison of % change in spermatozoa DNA damage following in 
vitro heating in all mouse genotypes studied 

Motile spermatozoa from +1+ Prion mice were also found to be susceptible to 

heat -induced DNA damage with an average increase in DNA damage of 58.2 %. 

Motile spermatozoa from -/- PrP and -/- PrnD mice were found to be least 

susceptible to heat -induced DNA damage of all the genotypes. Motile spermatozoa 

from -/- PrP mice were found to be slightly susceptible to heat -induced DNA damage 

with an average increase in DNA damage of 13.4 %. Unlike all other genotypes, 

levels of DNA damage in motile spermatozoa from -/- PrP mice did not increase 

following heating and in fact an average decrease in DNA damage of 5.1% was 

observed. 

The response of the spermatozoa from the different genotypes studied was 

varied and appeared to follow no particular pattern. The spermatozoa from -/- PrnD 

and -/- PrP mice appeared to be least susceptible to heat -induced DNA damage. In 

fact, the level of DNA damage in heat -treated spermatozoa was found to be lower 

than in control spermatozoa. In all other genotypes, the average levels of DNA 

damage in spermatozoa increased following in vitro heating. 
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4.4 Discussion 

A number of mouse models for male infertility have been developed by either 

modifying or deleting genes known to play specific roles within the testis or genes 

which have been associated with human infertility (Matsuk, et al., 2002). In 

addition, male infertility has been reported as a side -effect of deleting/altering genes 

previously not known to be associated with male infertility. 

The aim of this chapter was to study the motile spermatozoa retrieved from 

mice in which levels of expression of dazi, Ercc -1 and Prion proteins had been 

manipulated. This research was carried out in order to determine whether any of 

these mice would be suitable models for the study of DNA integrity of spermatozoa 

which have developed in testes with disturbances of gene expression. 

The human DAZ (Deleted in AZoospermia) gene encodes an RNA binding 

protein which is exclusively expressed in the germ cells of the testis. The DAZ gene 

has been shown to be deleted in a high proportion of azoospermic /oligozoospermic 

men, and has been proposed as possible candidate for the so- called 'azoospermia 

factor' (AZF) (Yen, et al., 1996). DAZ shares strong homology with the Drosophila 

male infertility gene boule. The boule protein has been shown to be a binding 

protein for all cell -cycle regulators, making it essential in the process of 

spermatogenesis (Eberhart, et al., 1996). A homologue of DAZ has not been 

identified on the murine Y chromosome. Instead, an autosomal DAZ -like gene (dazi) 

which shares a degree of homology with both DAZ and boule has been identified and 

has been shown to be required for normal spermatogenesis in the mouse (Cooke, et 

al., 1996;Ruggiu, et al., 1997). 

It has been shown previously that mice entirely lacking the autosomal gene 

dazi fail to produce mature spermatozoa and are therefore infertile. Heterozygote 

animals were reported to produce reduced numbers of motile spermatozoa with 

increased numbers of morphological abnormalities but remained fertile (Ruggiu, et 

al., 1997). Similar results were obtained in the current study; reduced numbers of 

motile spermatozoa and increased numbers of morphologically abnormal 
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spermatozoa were observed in the epididymal spermatozoa population of 

heterozygote animals compared to wild -types. 

In the present study, levels of endogenous DNA damage in motile epididymal 

spermatozoa from heterozygous mice were also studied and were found to be 

significantly higher than that of wild -type mice. 

There appears to be no clear explanation as to why the deletion of dazi would 

affect the DNA integrity of spermatozoa. However, taking into consideration the 

homology between dazi and boule, it is possible that dazi, like boule, may play an 

important role in cell' cycle regulation. Based on this, as yet unproven hypothesis, 

partial deletion of dazi may result in the disruption of spermatogenesis, thereby 

leading to impaired DNA integrity in the resulting spermatozoa. 

Alternatively, the deletion of dazi might have a more direct effect on the 

DNA integrity of developing germ cells. It is known that dazi plays an important 

role in RNA binding in developing germ cells within the testis (Venables, et al., 

2001). It is possible that dazi could be involved in the binding of mRNA which 

codes for proteins involved in DNA packaging and /or repair. Disruption of the DNA 

packaging and repair mechanisms within the testis would most likely result in the 

production of spermatozoa with imperfect DNA. 

Following in vitro heating, levels of DNA damage in motile spermatozoa 

from both heterozygotes and wild -type mice increased significantly. However, it 

was found that spermatozoa from wild -type mice were more susceptible to heat - 

induced DNA damage than spermatozoa from heterozygote mice. This finding 

contradicts the hypothesis that spermatozoa with higher levels of endogenous DNA 

damage would be more susceptible to further DNA damage. 

The findings of the current study suggest that the genetic integrity of 

spermatozoa of men with DAZ deletions should be tested, and appropriate 

counselling given, before proceeding with assisted reproductive techniques such as 

IVF or ICSI. Future work might also involve the study of the susceptibility of 

spermatozoa from both mouse models and patients with DAZ deletions, to other 

forms of insult, e.g. chemical /mechanical. 
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The Ercc -1 gene is involved in the nucleotide excision repair pathway which 

is known to be involved in 3 human disorders; xeroderma pigmentosum (XP), 

Cockayne's syndrome (CS) and trichothiodystrophy (Nunez, et al., 2000). Ercc -1 - 

deficient mice were first developed in order to study the role of this gene in these 

disorders. However, it has also been shown that Ercc -1 is involved in 

recombinational repair pathways (Adair, et al., 2000) and is highly expressed in the 

testis (Cheng, et al., 1999). For these reasons, spermatogenesis in Ercc -1 knockout 

mice has been studied (Melton, submitted) and the current investigation into the 

DNA integrity in spermatozoa from these animals was prompted. Ercc -1 knockout 

mice usually die around 21 days of age, before the first wave of spermatogenesis is 

completed due to liver failure (McWhir, et al., 1993). The animals used in this study 

remained viable beyond 21 days because of the introduction of an Ercc -1 transgene 

under the control of a liver -specific promoter (Selfridge, et al., 2001). Prior to the 

current study, investigators had observed that male Ercc -1 knockout mice appeared 

to be subfertile, failing to produce many offspring (Melton, personal 

communication). 

In the present study, it was found that compared to wild -type and 

heterozygote animals, Ercc -1 knockout mice produced significantly fewer motile 

spermatozoa (p <0.01). In addition, it was observed that abnormal morphologies, in 

particular abnormal spermatozoa heads, appeared to be more common amongst 

motile spermatozoa from Ercc -1 knockout mice. It has been shown that mean testis 

weight for Ercc -1 knockout mice is on average only 60% of wild -type (Selfridge, et 

al., 2001). Histological analysis has shown that the testes of Ercc -1 knockout mice 

contain fewer germ cells than those of wild -type littermates, in the knockout mice 

seminiferous tubules are generally reduced in diameter, and that there were also 

tubules completely devoid of germ cells (Hsia, et al., 2003). These reduced numbers 

of germ cells observed within the seminiferous tubules of Ercc -1 knockout mice 

would account for the reduced numbers of motile spermatozoa produced by these 

animals. 
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Levels of endogenous DNA damage within the motile spermatozoa 

population of Ercc -1 knockout mice were also found to be significantly higher than 

that of both wild -type and heterozygous mice. Following in vitro heating, levels of 

DNA damage increased in all Ercc -1 genotypes. Knockout and wild -type Ercc -1 

mice appeared to have similar susceptibility to heat -induced DNA damage, with 

similar increases in DNA damage. Ercc -1 heterozygotes appeared to be most 

susceptible to heat -induced DNA damage, with the greatest increase in mean % DNA 

damage following in vitro heating. 

As previously' discussed (section 1.1.5.1) DNA stand breaks and nicks occur 

during the process of spermatogenesis to facilitate the remodelling of DNA from the 

somatic arrangement in association with histones, to the tightly compacted 

arrangement of DNA in association with protamines observed in spermatozoa 

(Sakkas, et al., 1995). In the absence of Ercc -1, strand breaks and nicks in the DNA 

of developing germ cells in the testis could accumulate and persist to the mature 

spermatozoa. 

The reduced numbers of motile spermatozoa, together with the increased 

numbers of morphological abnormalities and increased levels of DNA damage in the 

motile spermatozoa population may in part explain the failure of these mice to 

produce expected numbers of offspring. 

The role of Prion and Prion- related proteins in the testis has not been 

determined. However, it has been shown that these proteins are highly expressed in 

the testis and it has been suggested their role in the testis might be similar to their 

role in the brain - i.e. maintaining the blood -brain/blood- testis barrier (Li, et al., 

2000). Previous investigators have noted the very poor fertility of Prion deficient 

mice (Melton DW, personal communication). In particular, male PrP- and Dpl- 

deficient mice, while demonstrating normal sexual behaviour, have both been found 

to be infertile. The fertility of the female mice with which these males were mated 

has been proven and the overall morphology of the testes of these mice appears 

normal without obvious germ cell depletion (Behrens, et al., 2002)(Melton DW, 

personal communication). 
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In the present study, all Prion genotypes tested (wild -type, PrP and PrnD- 

deficient) were found to have very few motile spermatozoa compared to the other 

mice genotypes studied. All genotypes, including wild -type, produced motile 

spermatozoa with a range of morphological abnormalities, in particular abnormalities 

of the spermatozoa head. In addition, levels of endogenous DNA damage in these 

mice were also very high in comparison with the other strains tested. Following in 

vitro heating, levels of DNA damage in motile spermatozoa from wild -type 

spermatozoa increased considerably (more than any population studied in this 

research) while motilé spermatozoa from PrP and PrnD -deficient mice appeared to 

be unresponsive to heat -treatment. 

It should be noted that though the levels of endogenous damage in these mice 

is high, the upper limit of DNA damage measured by the assay was not reached and 

therefore if the in vitro heat treatment had affected the integrity of these 

spermatozoa, it would have been detected. 

The low numbers of mice available for this study (n =2 for each genotype) 

resulted in the inability to perform statistical analysis on the results obtained. 

Therefore, in order to verify these results, future studies involving higher numbers of 

animals are necessary. 

There is no obvious reason why a lack of PrP protein would result in reduced 

numbers of spermatozoa, or a loss of DNA integrity in surviving spermatozoa. It has 

been proposed that Dpl is required for the correct development of the head and 

acrosome during spermiogenesis, a period when a great deal of DNA remodelling 

occurs (Behrens, et al., 2002). Further work on determining the roles of these 

proteins, particularly in relation to DNA packaging, repair etc., within the testis is 

required. 

The purpose of this study was to determine whether the presence of impaired 

DNA integrity in the spermatozoa of 3 mouse models for male infertility is a 

contributory factor to their infertility. 

It should be noted that limited numbers of animals were available for use in 

the current study. Furthermore, due to the subjective nature of the analysis of DNA 
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damage in the motile spermatozoa, it would have been preferable to analyse the 

results in a `blind' manner. However, the results obtained suggest that future study 

into the genetic integrity of spermatozoa from these mouse models is warranted. 

It has been shown that it is difficult to produce adequate numbers of both 

Ercc -1 and Prion mice and this would prove impractical if these mice were to be 

used in large studies requiring high numbers of subjects for statistical analysis. The 

low numbers of motile spermatozoa and high numbers of morphologically abnormal 

spermatozoa retrieved from heterozygous and knock -out dazi, Ercc -1 and Prion mice 

suggest that these mice may not be suitable models for studying levels DNA damage 

in `healthy' spermatozoa. 

However, this study has shown that the DNA of motile spermatozoa is 

susceptible to heat -induced damage. The role of heat stress in infertility has already 

been demonstrated in a number of studies. Wild -type mice produce large numbers of 

motile, morphologically normal spermatozoa and are capable of producing large 

numbers of offspring. ' Endogenous levels of DNA damage in spermatozoa from 

these mice are low but have been shown to be susceptible to heat -induced damage. It 

is proposed that wild -type mice may be a suitable model for the study of male 

infertility via heat -induced DNA damage in motile spermatozoa. 
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Chapter 5 

The effect of scrotal heating on the testis 

and spermatozoa developed from heated germ cells 

5.1 Introduction 

5.1.1 Heat stress and the testis 

In most mammals, scrotal temperature is 2 -8 °C lower than body temperature 

and this lower temperature is required for normal spermatogenesis (Harrison, et al., 

1948;Ulberg, 1958;Bishop, et al., 1960). 

The effects of raised scrotal temperature have been studied to varying degrees 

in a number of species (including man) and general observations in the rat (Lue, et 

al., 2000), mouse (Jannes, et al., 1998) and human (Mieusset, et al., 1987) include 

decreased testis weight and poor spermatozoa viability, morphology and motility. 

Animal studies have shown that raised scrotal temperature results in reduced 

testicular blood flow and altered vasomotion as observed in the rat (Setchell, et al., 

1995) and the ram (Mieusset, et al., 1992). In addition, studies in the rat have shown 

that protein synthesis by Sertoli cells and androgen production by Leydig cells can 

be adversely affected by the subjection of the testis to abdominal temperature which 

may in turn have an adverse affect on germ cell function (Jegou, et al., 1983). Direct 

effects of heating on the developing germ cells in the mouse may include altered 

DNA, RNA and protein synthesis, protein denaturation and abnormal chromatin 

packing (Hand, et al., 1979;Steinberger, 1991;Sailer, et al., 1997). 

Previous studies have determined the effects on the mouse testis of a range of 

temperatures (38 -42 °C) and exposure times (20 min - 1 hour). In an extensive study 

by De Vita et al (1990), it was shown that even exposure to mild heat stress (38 °C) 

for a short time (20 min) caused cytotoxic effects in some germ cell types and that 

these effects were increased with higher temperatures and longer exposure times 

(De -Vita, et al., 1990). 
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5.1.1.1 Clinical consequences 

In man, raised scrotal temperature may occur as a result of occupational 

exposure, lifestyle or clinical disorder, such as varicocele or cryptorchidism 

(Zorgniotti, 1980;Mieusset, et al., 1987). In particular, it has been shown that men 

with a past history of cryptorchidism or current varicocele are likely to exhibit 

scrotal temperatures above the normal range and are often sub- or infertile. It has not 

yet been clearly established whether raised scrotal temperature is the cause of 

infertility in these men or simply a concomitant symptom of these disorders. (Ali, et 

al., 1990;Mieusset, et al., 1995). 

In infertile men with elevated scrotal temperatures, an increased incidence of 

abnormalities such as tapered /elongated forms and immature spermatozoa in the 

ejaculate has been observed and a correlation between temperature and degree of 

abnormality has been inferred (Mieusset, et al., 1987;Ali, et al., 1990;Mieusset, et 

al., 1995). 

5.1.2 Aims of this chapter 

It is now common to treat couples with male - factor infertility using 

techniques such as in vitro fertilisation (IVF) and intracytoplasmic spermatozoa 

injection (ICSI). Clinical data indicates that poor spermatozoa quality (e.g. motility 

and DNA integrity) may result in reduced fertilisation rates, fewer blastocysts, and 

poor embryonic development following assisted reproduction techniques (Lopes, et 

al., 1998). At present, DNA integrity is not routinely used in the selection of 

speituatozoa for use in these techniques. 

The aim of this study was to investigate the effects of heat stress on the 

process of spermatogenesis, and to identify the cell types in the testis susceptible to 

heat stress which may then develop into DNA -damaged spermatozoa. 
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5.1.3 Experimental outcomes to be studied in this chapter 

5.1.3.1 Expression of stress markers 

In order to confirm the response of the testis to heat stress, a number of stress 

proteins were used as markers. 

Cold- inducible RNA- binding protein (Cirp) is constitutively expressed in the 

germ cells of the testis (Nishiyama, et al., 1997). Following experimental 

cryptorchidism or heat stress (42 °C), decreased expression of Cirp in the testis has 

been observed within,6h (Nishiyama, et al., 1998). Cirp protein expression was used 

to confirm that the temperature of the testis had been raised following scrotal 

heating. 

It has been demonstrated that heat shock protein (HSP) 105 is specifically 

expressed in the germ cells of the rat testis and that heat stress in vivo (via 

experimental cryptorchidism) results in the translocation of HSP105 from the 

cytoplasm to the nuclei of germ cells. The precise role of HSP105 in the testis has 

not yet been defined, however, it has been proposed that HSP105 may be involved in 

the regulation of p53 (a pro -apoptotic protein) in the testis (Wakatsuki, et al., 

1998;Ishihara, et al., 2000). 

Bax is a pro -apoptotic regulator of apoptosis and is expressed in the testis of a 

number of species, including mouse, rat and human. In vivo heat stress results in the 

altered expression of Bax in the testis of the mouse, rat and human (Penault -Llorca, 

et al., 1998;Xu, et al., 2000;Yamamoto, et al., 2000). 

For example, in the rat, scrotal heating reportedly results in the redistribution 

of Bax from a cytoplasmic to perinuclear localization in all germ cells prior to 

activation of apoptosis in these cells (Yamamoto, et al., 2000). Experimental 

cryptorchidism in the mouse also leads to altered expression of Bax and increased 

apoptosis (Xu, et al., 2000). 

In the current study, HSP 105 and Bax expression was studied in order to 

determine whether or not a stress response within the testis had been triggered 

following scrotal treatment. 
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5.1.3.2 Detection of apoptotic cells 

The presence of cells exhibiting apoptotic characteristics (i.e. DNA strand 

breaks, altered morphology) was also used as an indicator of a stress response in the 

testis caused by in vivo heat treatment. Possible apoptotic cells were identified using 

a modified Terminal UdTP nick end -labelling ( TUNEL) method. 

5.1.3.3 Study of spermatozoa 

It has been well documented that increased scrotal temperature results in the 

decreased production of motile spermatozoa in both humans and animal models 

(Brown- Woodman, et al., 1984; Figa- Talamanca, et al., 1992;Wang, et al., 1997; 

Jannes, et al., 1998; Saikhun, et al., 1998;Setchell, 1998). 

In the present study, the number of motile speiivatozoa which had developed 

from specific types of genii cells subjected to scrotal heating was calculated in order 

to determine the relative susceptibility of these cell types to raised testicular 

temperature. 

The effects of raised scrotal temperature on integrity of spermatozoa DNA 

have yet to be determined. In the current study, the DNA integrity of motile 

spermatozoa developed from germ cells exposed to raised scrotal temperatures was 

measured using the Comet assay. This assay has been used in a number of studies of 

mammalian spermatozoa (human and animal models), and has been shown to be a 

sensitive and reproducible method for the detection of DNA strand breaks in 

speratozoa (Hughes, et al., 1996;Anderson, et al., 1997;Steele, et al., 1999;Donnelly, 

et al., 2000;Irvine, et al., 2000;Shen, et al., 2000;Steele, et al., 2000). 

5.2 Materials and Methods 

5.2.1 Animals 

The animals used were sexually mature male wild -type ( + / +) dazi mice which 

were maintained under standard conditions of a 12L:12D cycle, in an ambient 

temperature of 20 -25 °C with access to food and water ad libitum. 
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5.2.2 Scrotal Heating 

Adult male mice were anaesthetised with a 1:1 mix of Hypnorm and 

Hypnovel via an i.p. injection. Following anaesthesia, the lower third (hind legs, tail 

and scrotum) of each male was passed through a hole in a polystyrene `raft' which 

was then placed in a circulating water bath for 30 min at 42 °C. Control animals 

received anaesthetic only. All animals were returned to their cages, which were 

placed on a warm mat (20 -25 °C) to maintain body temperature, until fully recovered 

from the anaesthetic. 

5.2.3 Time -points 

For each time -point studied, 3 mice underwent in vivo heat treatment and 3 

mice were used as controls. All mice were matched for age and weight. 

Animals were sacrificed at 1 hour (h), 2h, 4h, 6h, 24h, 7 days (d), 14d, 21d, 

24d, 28d, and 32d post- treatment. Each time -point was chosen to allow the study of 

the initial response of the testis to heat stress and a particular population of cells 

within the testis at the time of heating. Calculations were based on the stage 

durations of mouse spermatogenesis as defined by Oakberg (1956) and Russell 

(1990) ( Oakberg, 1956; Russell, 1990), and a 7 -day epididymal transit time as 

defined by Cornwall (1990). Table 5.1 indicates the cell types represented by the 

motile spermatozoa in the epididymis at the chosen time -points after in vivo scrotal 

heating. 

At each time -point, testes were removed and fixed in Bouins for 10h then 

transferred to 70% ethanol and processed into paraffin wax for immunohistochemical 

analysis. At the later time -points (7 -32d), epididymides were removed and placed in 

-1m1 BWW containing 20mM HEPES and 0.3% HSA. 
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Table 5.1 Cell types represented by the population of motile spermatozoa retrieved 
at the chosen time -points after scrotal heating. 

Time Point Cell Type at Time of Treatment 

1h, 2h, 4h, 6h, 24h, Mature Spermatozoa in Epididymis 

7 Days Step 11 Spermatid - Mature Spermatozoa 

14 Days Step 1 Spermatid - Step 11 Spermatid 

21 Days ' Stage IV Pachytene - Step 1 Spermatid 

24 Days Stage XII Pachytene - Stage X Pachytene 

28 Days Preleptotene - Stage III Pachytene 

32 Days A Spermatogonia - Zygotene 

5.2.4 Immunohistochemistry 

Bouins- fixed, paraffin- embedded tissues were sectioned at 5µm. Paraffin 

wax was removed from sections by washing in 2 changes of xylene (5 min each) and 

the sections were rehydrated in decreasing concentrations of ethanol (100 %. 95 %, 

75% and finally water). 

5.2.4.1 Diaininobenzidine (DAB) staining 

Endogenous peroxidase activity was blocked by incubation in H2O2 /methanol 

as previously described followed by washing twice (5 min each) in Tris- buffered 

saline (pH 7.4). Slides were pre- incubated with serum block (20% NSS, 5% BSA in 

TBS) at room temperature for 30 min before addition of the primary antibody and 

overnight incubation at 4 °C. Slides were washed twice in TBS (5 min each) before 

addition of the secondary antibody and incubation at room temperature for 30 min. 

Slides were again washed twice in TBS (5 min each). ABC conjugated to HRP 

(DAKO) was added to the slides and incubated for 30 min at room temperature and 

the slides were again washed twice in TBS before the addition of DAB. The 
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resulting colour reaction was stopped with water and the slides were counterstained 

with Mayer's Haematoxylin. 

5.2.4.2 Fluorescent staining 

Slides were washed twice in PBS (5 min each) before incubation in a bath of 

3% hydrogen peroxide (H2O2) in methanol at room temperature for 30 min. After 

further washes in PBS, slides were blocked with normal swine serum (NSS; 5% 

BSA, 10% swine serum; Diagnostics Scotland in PBS) for 1h at room temperature. 

The anti -Cirp antibody was added at a 1:2000 dilution (in NSS) for 2h at room 

temperature before washing in PBS as before. Slides were then incubated with swine 

anti -rabbit FITC (1:50 in NSS; DAKO) for 1h at room temperature. Slides were 

again washed in PBS before mounting using Permafluor (Coulter). 

5.2.4.3 Detection of apoptotic cells 

Slides were deparraffinised, rehydrated and blocked with H2O2 /methanol as 

previously described. Slides were washed in water, then PBS (5 min each) before 

digestion of the tissue with 20µg /ml Proteinase K in buffer (3.5ml 1M Tris, pH 8, 

0.7ml 0.5M EDTA, pH 8, made up to 35ml with dH2O). Slides were washed twice in 

PBS (5 min each). The reaction mix (30mM Tris/HC1, pH 7.2, 140mM Na 

Cacodylate, 1.5mM CoC1) containing 11.11/m1 Terminal d- Transferase (TdT; Roche), 

5111 /ml Digoxigenin (DIG; Roche) was added followed by cover -slips which were 

sealed with cow gum/hexane before incubation at 37 °C for 30 min. 

Following the removal of cover -slips and washes in PBS, sections were 

blocked with 20% normal rabbit serum (NRS; Diagnostics Scotland) in PBS for 10 

min at room temperature. Sheep anti -DIG IgG (1:100 in NRS/PBS) was added and 

the slides incubated at room temperature for 90 min before further washes in PBS. 

Rabbit anti -sheep IgG Biotinylated (1:500 in NRS /TBS) was added for 30 min at 

room temperature before washing twice in TBS (5 min each). As in the ABC 

method, ABC conjugated to HRP was added to the slides and incubated for 30 min at 

120 



Chapter 5 The effect of scrotal heating on the testis and developing germ cells 

room temperature and the slides were again washed twice in TBS (5 min each) 

before the addition of DAB. The resulting colour reaction was stopped with water 

before the slides were counterstained with Mayer's Haematoxylin. 

For each time -point (control and heated animals), the number of TUNEL- 

positive cells in 3 random fields were counted and the average value calculated to 

obtain an estimate of the degree of apoptosis occurring. 

5.2.5 Preparation of murine spermatozoa 

Full methods for the preparation of murine spermatozoa are described in 

section 2.6. Briefly, whole epididymides were removed, cleaned of fatty tissue and 

placed in lml BWW. The tissue was then minced with fine scissors and incubated at 

34 °C (95% air, 5% CO2) for 30 min prior to careful removal of buffer containing the 

motile spermatozoa. Samples were diluted to a final volume of 1ml in BWW and 

stored at -20 °C until required. 

In the current chapter, spetinatozoa samples from mice sacrificed at the later 

time -points (7d - 32d) were studied (representing cells within the testis at the time of 

heating). Spermatozoa samples from the earlier time -points (lh - 7d) are studied in 

Chapter 6 which will examine the effects of scrotal heating on spermatozoa present 

within the epididymis at the time of heating (See Chapter 6). 

5.2.6 Study of concentration of spermatozoa 

Samples were diluted 1:10 with SDF and 101.11 diluted sample was placed into 

the chamber of an improved Neubauer haemocytometer. The number of 

spermatozoa located within 5 squares of the haemocytometer grid was carefully 

counted. If the number of spermatozoa in 5 squares was not equal to or greater than 

100, 10 or 25 squares were counted. From this value, the number of spermatozoa in 

1ml was calculated using the following equation: 

Concentration (millions /ml) = No Spermatozoa Counted 

(4 x No Squares) ± Dilution 
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5.2.7 Comet Analysis of spermatozoa 

DNA integrity of motile speiisiatozoa from the epididymis was studied using 

a modified Comet assay (See Chapter 3). Briefly, spermatozoa samples were 

defrosted at room temperature and 5111 each sample was mixed with 25111 LMA 

(37 °C). This gel /sample mix was dropped onto a CometSlide (Trevigen) and 

covered with a clean, warm (37 °C) cover -slip. Slides were then placed horizontally 

in a box and incubated at 4 °C until the gels were set. Cover -slips were carefully 

removed and the slides submerged in lysis buffer (Trevigen) containing 0.75% SDS, 

for 3 h at 37 °C. The slides were removed from the lysis buffer and placed in a 

horizontal gel electrophoresis tank. Alkaline electrophoresis buffer (3M NaOH, 

1mM EDTA, pH 12.3) was carefully added to a depth of 0.5cm above the slides and 

left for 20 min at room temperature. Current was applied at 25V, 300mA for 10 min. 

The slides were transferred to ice -cold methanol (100 %, 5 min) then ethanol (100 %, 

5 min). The slides were allowed to dry overnight at room temperature before 

staining with 5O111 ethidium bromide (1:1000 in dH2O). For each sample, 100 cells 

were analysed using the Komet Image Analysis system. The percentage of head 

DNA, tail DNA and the Comet Moment was calculated for each cell. Comet 

Moment is a measurement that takes into account both the length of the Comet tail 

and the amount of DNA present in the tail and is expressed as an arbitrary unit (the 

greater the value, the higher the level of DNA damage). 

5.2.8 Statistical Analysis 

Statistical analysis was limited due to the small size of the samples available 

for study. The results obtained for the heated animals were compared against those 

for the control animals using the Kruskal Wallis non -parametric test. However, it is 

acknowledged that the significance of this statistical test is diminished when used 

with small sample sizes (n <10). 
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5.3 Results 

5.3.1 Immunohistochemistry 

The purpose of the immunohistochemical analysis was to confirm that the 

temperature of the testis had increased and to study the stress response of the testis 

following this increase in temperature. 

5.3.1.1 Response of the testis to heat stress 

Cirp protein was detected predominantly in the pachytene spermatocytes in the 

control testis (Figure 5.1). Following in vivo heat treatment, normal levels of Cirp 

were detected in the heated testis at the 1 and 2h time -points (Figures 5.2 -5,3). 

However, at the 4h time -point (Figure 5.4), the level of detection of Cirp protein 

decreased and did not recover (Figures 5.5 -5.7) until 7d after treatment (Figure 5.8). 

In the control testis, low levels of HSP105 expression were detected in pachytene 

spermatocytes and early spennatids (Figure 5.10). Within 1h of heat treatment, the 

levels of HSP expression detected were much higher, particularly in the early 

spermatids (Figure 5.11). The highest levels of HSP105 expression were detected 4h 

after heating with strong expression in both the pachytene and developing spermatids 

(Figure 5.12). Expression of HSP105 decreased at 6h (Figure 5.13) and at 24h 

staining was evident in a number of cells with the appearance of apoptotic cells 

(Figure 5.14). Expression of HSP105 decreased further at 24 h post heating (Figure 

5.15) and at 7 d had returned to control levels (Figure 5.16). 
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5.1 

5.5 

5.7 

5.4 

5.6 

Figures 5.1 -5.8 Cirp expression in the testis following in vivo heat treatment. 

Figures show staining for the Cirp protein in the negative control (5.1), 

the control testis (5.1) and the heated testis after 1h (5.3), 2h (5.4), 4h (5.5), 

6h (5.6), 24h (5.7) and 7d (5.8). 
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5.9 

5.11 

5.13 

,r 

5.15 , 

5.10 

5.14 

5.16 

Figures 5.9 -5.16 HSP 105 expression in the testis following in vivo heat treatment. 

Figures show staining for the HSP 105 protein in the negative control (5.9), 

the control testis (5.10) and the heated testis after 1h (5.11), 2h (5.12), 4h (5.13), 

6h (5.14), 24h (5.15) and 7d (5.16) 
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A summary of the observed levels of expression of Cirp and HSP105 in the testis 

following in vivo heat treatment is shown in Table 5.2. 

Table 5.2 Levels of expression of Cirp and HSP105 protein in the testis following 
scrotal heating. (- = low expression, +, + +, and + ++ indicate increasing levels of 

expression) 

Control lh 2h 4h 6h 24h 7d 14d 21d 24d 28d 32d 

Cirp + + + - 

Expression 

HSP105 - + ++ ++ ++ 

Expression 

5.3.1.2 Stress responses in the testis 

In the control testis, low levels of Bax expression were detected in germ cells 

(Figure 5.18). Bax expression increased within lh of heating (Figure 5.19), 

remained high at 2 and 4h (Figures 5.20 and 5.21) and then gradually returned to low 

levels of expression at 6, 24h and 7 d (Figures 5.22 -5.24) after heating. 

The number of TUNEL- positive ( +ve) cells in the control testes was 

consistently low in the animals examined (Figure 5.17). Isolated +ve cells were 

occasionally observed in tubules (Figures 5.26 -5.28). At 2, 4 and 6h after heating, 

significantly higher numbers of +ve cells were observed, often in clusters of +ve 

cells in neighbouring tubules (Figure 5.29) but with the majority of tubules 

containing few (Figure 5.31) or no (Figure 5.30) +ve cells. The highest numbers of 

+ve cells were observed at the 14d time -point (Figure 5.17). In addition to high 

numbers of +ve cells there was also evidence of cell loss in the tubules 14d after 

heating, with obvious gaps in the seminiferous tubules where germ cells had once 

been (Figures 5.32 - 5.34). After 14d, the numbers of +ve cells in the tubules 

decreased until, at 32d, control levels were reached (Figure 5.17). 
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Figure 5.17 Average number of TUNEL +ve cells counted in the testis 
following scrotal heating. (Points represent average values for individual mice, bar 

indicates average for group). 
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5.18. 5,19 

5.22 5.23 

5.24 5.25 

Figures 5.18 -5.25 Bax expression in the testis following in vivo heat treatment. 

Figures show staining for the Bax protein in the negative control (5.18), 

the control testis (5.19) and the heated testis after 1 h (5.20), 2h (5.21), 4h (5.22), 

6h (5.23), 24h (5.24) and 7d (5.25) 
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5.3.2 Number of Motile Spermatozoa 

The concentration of motile spermatozoa retrieved from the epididymis of control 

animals was in the range of 5.25 - 7.2 x 106 /ml (average 6.4 x 106/m1). The number 

of motile spermatozoa present within the epididymis of heated animals at 7 days 

post- heating had dropped to 1.68 x 106/m1 (p <0.05), recovered slightly at 14d (2.12 x 

106 /m1; p <0.05) and then remained below 1.5 x 106 /ml (p <0.05) for the duration of 

the experiment (Figure 5.35). 

Control 7d 14d 21d 

Time -Point 

24d 28d 32d 

Figure 5.35 Number of motile spermatozoa in the epididymis after scrotal heating 

5.3.3 DNA integrity of Motile Spermatozoa 

DNA damage in motile spermatozoa, as measured by the Comet assay, was 

expressed either as % DNA in Comet tail (Figure 5.36) or as Comet moment (Figure 

5.37). Compared to the controls (25.3% DNA in Comet tail), the level DNA damage 

in the motile spermatozoa of heated animals retrieved 7 and 14d after heating were 

similar to control levels (22.35% and 22.55% respectively). However, at 21d post - 

heating, the level of DNA damage within the motile spermatozoa had increased 

significantly (34.9 %; p <0.05) compared to control levels. This elevated level of 

DNA damage in motile spermatozoa was observed at each of the later time -points 

post- heating, reaching a peak at 28d (38.86 %; p <0.05). 
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Figure 5.36 Levels of DNA damage (% tail DNA) in motile spermatozoa 
following scrotal heating 

Analysis of Comet moment gave very similar results. Motile spermatozoa 

retrieved from the epididymis of heated animals at 7 and 14d post- heating had 

similar Comet Moment values (6.56 and 8.47) to motile spermatozoa retrieved from 

control animals (6.9). A significant increase in Comet Moment (15; p <0.05) was 

observed in the motile spermatozoa retrieved from heated mice at 21d post- heating 

compared to controls. At 24, 28 and 32d post- heating, Comet Moment remained 

significantly higher than controls. 
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Figure 5.37 DNA damage (Comet moment) in motile spermatozoa 
following scrotal heating 
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5.4 Discussion 

In the present study, the effects of heat stress applied to the testis on gene 

expression in the germ cells and on the DNA integrity of spermatozoa which develop 

from surviving germ cells have been studied. 

The aim of the study was to subject the testis to heat stress in order to disrupt 

spermatogenesis, but not to block it altogether. There are three main methods of 

inducing heat stress in the testis of animal models; experimental cryptorchidism (the 

translocation of the testis and /or epididymis into the abdominal cavity), a single 

transient exposure of the scrotum to heat via a water bath or whole -body exposure to 

increased temperatures for extended periods. Of these methods, the most controlled 

and easily performed in the mouse is the immersion of the scrotal region, hind legs 

and tail of the animal in a water bath at the appropriate temperature for the desired 

period of time. 

In the mouse, effects of temperatures within the range 39 and 42 °C have been 

studied for periods of between 20 and 30 minutes (Jannes, et al., 1998;Nishiyama, et 

al., 1998). The heating regime (30 min at 42 °C) used in the current study was based 

on that used by Jannes et al. They found that subjecting wild type mice to scrotal 

heating at a temperature of 42 °C for 20 min resulted in the production of poor quality 

spermatozoa, reduced embryo weight in vivo, and reduced fertilisation rates in vitro. 

Their results suggested that spermatogenesis in animals subjected to this heating 

regime would continue, but that the quality of spermatozoa produced would be sub- 

optimal -a suitable model for the study of sub -fertility. 

In the present study, immunohistochemistry was used to confirm the response 

of the testis to the mild heating regime. In control (anaesthetic only) animals, Cirp 

expression was found in most germ cells, in particular, preleptotenes, leptotenes, 

zygotenes and early pachytenes. Following heat stress, Cirp expression decreased 

within 4 hours of treatment and did not recover to control levels until 7 days after 

treatment. These findings agree with those of Nishiyama et al (1998) who first 

characterised this protein, proposed its role in the regulation and co- ordination of 
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mitosis and meiosis during spermatogenesis, and determined the effects of heat stress 

on its expression in the human and mouse testis (Nishiyama, et al., 1998). 

The expression of HSP105 in the testis was also altered following scrotal 

heating. HSP105 is known to be expressed in the germ cells of the rat testis in a 

temperature -dependant manner. It has been shown that following heat stress (via 

experimental cryptorchidism) the HSP105 protein translocates from the cytoplasm to 

the nuclei of the germ cells where it is believed to play a role in the regulation of p53 

(a pro -apoptotic protein (Wakatsuki, et al., 1998;Ishihara, et al., 2000). In the 

present study, expression of HSP105 was observed in the cytoplasm of germ cells in 

the mouse testis. Following heat treatment, the location of HSP105 within the cells 

altered, moving from the cytoplasm to the nuclei, as previously observed in the rat. 

It has been previously shown that heat stress (via experimental cryptorchidism 

and scrotal heating) results in increased apoptosis of germ cells in the testis (Yin, et 

al., 1997;Lue, et aL, 1999;Yamamoto, et al., 2000). In the present study, both the 

expression of the pro -apototic marker Bax and the number of TUNEL- positive cells 

were used to identify the apoptotic response of germ cells to the heating regime. 

Following heat stress, Bax expression was increased and some redistribution of the 

protein from the cytoplasm to the perinucleus of the germ cells was observed. In the 

testis of control animals, few apoptotic cells were identified using the TUNEL 

method. Following heat stress, increased numbers of apoptotic cells appeared within 

2 hours of treatment and the average number of apoptotic cells in the testis remained 

significantly higher than that of the control testis up to 21 days after treatment (data 

not shown). Again, these findings agree with previous studies in rodents using both 

experimental cryptorchidism and scrotal heating (Yin, et aL, 1997;Lue, et al., 

1999;Yamamoto, et al., 2000). 

The immunohistochemical analysis confirmed that the testes had been affected 

by the heating regime (altered expression of Cirp, HSP105), spermatogenesis had 

been disrupted (evidence of increased apoptosis; Bax expression, TUNEL- positive 

cells) but that germ cells were surviving and continuing through the process of 

spermatogenesis to become mature spermatozoa. 
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Based on the duration of spermatogenesis and epididymal transit time in the 

mouse, it was possible to determine the effects of heat stress on specific groups of 

developing germ cells by studying motile spermatozoa retrieved at specific time - 

points following treatment. In the present study, attention was focused on the motile 

spermatozoa developed from heat -treated germ cells. Motile spermatozoa were 

studied as these are most equivalent to the spermatozoa preferentially used for 

IVF /ICSI in the treatment of male infertility. 

The number of motile spermatozoa retrieved from the epididymis at 7d post - 

heating was significántly decreased compared to control levels and this was seen at 

each of the time -points tested post- heating. The reduced numbers of motile 

spermatozoa retrieved the epididymis at these later time -points correspond to 

reduced numbers of gelin cells within the testis following heat treatment as 

demonstrated by the increased numbers of TUNEL- positive cells observed within the 

spermatogenic tubules following heat treatment. 

The DNA integrity of motile spermatozoa was studied using a modified 

alkaline Comet assay. This assay was originally developed to study the DNA 

integrity of somatic cells and more recently has been adapted for use in spermatozoa 

(Singh, et al., 1988;Haines, et al., 1998;Irvine, et al., 2000). 

Motile spermatozoa retrieved from the epididymis at the later time -points (7d - 
32d) originated from cells located within the testis at the time of heating (Table 5.1). 

Each cohort of spermatozoa retrieved represented a 7 -day period in spermatogenesis 

(based on a 7 -day epididymal transit time). Therefore, the number of motile 

spermatozoa and level of DNA damage in each cohort of spermatozoa must be 

applied to a 7 -day period of spermatogenesis. Figure 5.38 shows a summary of the 

number of motile spermatozoa retrieved from the epididymis and the level of DNA 

damage in these motile spermatozoa developed from different cell types in the testis 

at the time of heating. 

These data suggest that, following heating, cells in the pre- meiotic stages of 

spermatogenesis develop into spermatozoa with higher levels of DNA damage than 
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other stages and that the DNA integrity in spermatozoa developed from cells 

undergoing spermiogenesis at the time of heating is comparable with that of controls. 

Previous studies in which cell loss has been quantified have identified pachytene 

spermatocytes and early spermatids as being susceptible to heat stress (Collins, et al., 

1969;De -Vita, et al., 1990). During the meiotic phase of spermatogenesis, a great 

deal of rearrangement of the DNA occurs within the nuclei of the leptotene, zygotene 

and pachytene spermatocytes (Johnson, et al., 1995). The sequential changes to the 

configuration of the chromatin within these cells makes them particularly vulnerable 

to stress during this period. 
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Figure 5.38 Summary graph showing number of motile spermatozoa (green bars) 

and levels of DNA damage (black bars) in motile spermatozoa developed from 

different cell types present in the testis at the time of heating. 

Two critical periods in spermatogenesis (leptotene -pachytene and maturation 

division) have been identified through which cells were unable to progress following 

heating (Collins, et al., 1969). These data identifies cells in the earlier (premieotic) 

stages of spermatogenesis which, though affected by heating, have progressed 
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through these critical periods in germ cell differentiation to develop into DNA - 

damaged spermatozoa. 

It is proposed that the loss of DNA integrity in mature spermatozoa resulting 

from heated germ cells may be explained in two ways; DNA damage occurs in the 

cells at the time of heating and is not repaired during spermatogenesis, or the 

physiology of the testis is disrupted by heat stress resulting in sub -optimal support 

for germ cell development which is detected as a loss of DNA integrity in mature 

spermatozoa. 

It has been shown that raised temperature can lead to oxidative stress within 

the rat testis, this in turn can trigger apoptosis (Ikeda, et al., 1999). Within the testis 

a number of cell types (in particular differentiating cell types) produce high levels of 

reactive oxygen species (ROS) which may result in oxidative damage to DNA, 

proteins and cell membranes and to combat this, the testis has developed a very 

complex antioxidant system (Bauche, et al., 1994;Fisher, et al., 1997;Aitken, 1999). 

The effects of oxidative stress on the genomic integrity of spermatozoa have been 

studied by inducing oxidative stress in the testis and in mature spermatozoa (Aitken, 

et al., 1989;Lucesoli, et al., 1995;Ikeda, et al., 1999;Wellejus, et al., 2000). Also, 

decreased expression of oxidative stress response genes following heating may leave 

cells more susceptible to oxidative DNA damage (Barroso, et al., 2000;Rockett, et 

al., 2001). 

A number of studies have shown that endogenous nicks and strand breaks 

occur in the DNA of developing spermatozoa cells during spermatogenesis. These 

DNA strand breaks and nicks may facilitate the transition of DNA from the somatic 

cell histone complex to the tightly packed protamine complex of the mature 

spermatozoa by relieving the torsional stress created during this process (Ward, et 

al., 1991;McPherson, et al., 1992). Noinially these strand breaks and nicks are 

ligated before the completion of spermiogenesis (Sakkas, et al., 1995), however, if 

spermiogenesis were disrupted (i.e. due to heat stress), residual strand breaks could 

persist into the mature spermatozoa (Manicardi, et al., 1995). 
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A number of DNA repair mechanisms are employed during spermatogenesis 

(van Loon, et al., 1993;Shen, et al., 1997;Kuraoka, et al., 2000;Richardson, et al., 

2000;Richardson, et al., 2000;Aguilar- Mahecha, et al., 2001 ;Aitken, et al., 

2001;Rockett, et al., 2001). These mechanisms are responsible for the repair of the 

DNA strand breaks known to occur unintentionally during spermatogenesis, 

particularly during meiosis, and also those nicks and breaks induced intentionally to 

facilitate DNA packaging as described above. It is known that a number of these 

mechanisms may be disrupted by exogenous insult, such as heat stress, resulting in 

the inefficient repair of DNA strand breaks and nicks of the developing germ cells. 

Following heating, the expression of a number of genes in the testis is down - 

regulated, these genes include many involved in DNA repair and recombination, cell 

cycle regulation, glutathione metabolism and stress response (Rockett, et al., 2001). 

Finally, the level of DNA damage induced by heat stress may simply overwhelm the 

repair mechanisms in the testis, and while a certain amount of DNA damage is 

repaired, some may persist into the mature spermatozoa. Any or all of these factors 

may contribute to the possibility that heated germ cells may be less capable of 

repairing heat -induced strand breaks /lesions. 

The ability of spermatozoa to remain motile and morphologically normal 

(observation made during calculation of motile spelm number), while containing 

high levels of DNA damage may have implications in the treatment of male 

infertility. It is generally accepted that spermatozoa quality is a good indicator of 

success in both IVF and ICSI. The findings of this study suggest the possibility that 

motile and morphologically normal spermatozoa may not contain intact DNA and 

therefore are not necessarily good candidates for use in IVF and ICSI. Furthermore, 

these findings suggest that DNA quality of donor spermatozoa should be taken into 

consideration before being used in these procedures. 

It should be noted that limited numbers of animals were available for use in 

the current study. Furthermore, due to the subjective nature of the analysis of DNA 

damage in the motile spermatozoa, it would have been preferable to analyse the 

results in a `blind' manner. However, the results obtained suggest the need for 
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larger, more in -depth studies to examine the effects of raised scrotal temperature on 

spermatozoal number and genetic integrity. 
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Chapter 6 

The effect of scrotal heating on the epididymis 

and mature spermatozoa 

6.1 Introduction 

6.1.1 Structure and Function of the epididymis 

The epididymis consists of four distinct compartments: the initial segment, 

the head (caput), the body (corpus) and the tail (cauda). The epithelium of the 

epididymis consists of five distinct cell types: principal cells, basal cells, clear cells, 

halo cells and narrow cells (Robaire, et al., 1988;Yeung, et al., 1994). 

The luminal compartment of the epididymis is a constantly changing 

environment containing spermatozoa and a variety of substances required for their 

storage and maturation. These include ions, proteins, glycoproteins, organic 

molecules and water (Robaire, et al., 1988). 

The functions of the epididymis are the transportation of spermatozoa from 

the efferent ducts to the vas deferens, the maturation of spermatozoa (i.e. 

acquirement of increased chromatin stability, fertilising ability and motility) and the 

storage and protection of mature spermatozoa. 

It has been demonstrated that the epididymal transit time of the mouse is 

around 7 days. This is the time it takes an entire cohort of spermatozoa to travel the 

entire length of the epididymis from the initial segment to the distal cauda (Cornwall, 

et al., 1990). During their journey through the epididymis, spelinatozoa must 

undergo further maturation in order to be able to fertilise eggs. Perhaps the most 

important maturation process to occur in the epididymis is the acquisition of motility. 

The precise mechanism of motility acquisition is unclear. However, it has been 

noted that the more time spent in the epididymis, the more coordinated the 

movement of the flagellum becomes, resulting in increased velocity and straightness 

of swim path (Cooper, et al., 2000). 
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The spermatozoa must also acquire the ability to interact with the egg. The 

epididymal epithelium secretes proteins which interact with the spermatozoa surface 

becoming part of the membrane and/or modifying existent residues, thereby 

developing or activating sites concerned with gamete recognition and capacitation 

(Kroll, et al., 1993). 

6.1.2 Storage and protection of spermatozoa 

Spermatozoa can be stored in the cauda epididymis for long periods of time 

(depending on species) although following extended periods, the fertilising ability 

and motility of the spermatozoa gradually decreases. The cauda epididymis is able to 

store spermatozoa due to the increased oxygen availability and decreased respiration 

rate of spermatozoa at scrotal temperatures (Djakiew, et al., 1986;Mieusset, et al., 

1992). The epididymis protects the spermatozoa in a number of ways. The blood - 

epididymis barrier allows only selective entry of substances into the epididymal 

lumen while the epithelial cells of the epididymis ensure the rapid elimination of 

harmful by- products and exogenous toxic substances from the lumen (Hinton, et al., 

1995). 

Certain proteins secreted in the lumen protect spermatozoa from specific 

threats, for example, proteolysis (due to the premature release of acrosome proteins) 

and complement- mediated cell lysis (Hinton, et al., 1995). 

6.1.3 Heat stress and the epididymis 

Following heat stress, the epididymis is reported to lose its ability to store and 

maintain viable spermatozoa, resulting in the gradual and progressive accumulation 

of dead, decapitated and immotile spermatozoa (Glover, 1960;Jegou, et al., 

1983;Mieusset, et al., 1992;Bedford, 1994). 
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6.1.3.1 Effects on epididymal function 

The cauda appears to be the region of the epididymis most affected by heat 

stress, decreasing in size and therefore storage capacity. The net result of these 

changes is a decrease in the number of viable spermatozoa in the ejaculate (Glover, 

1960;Bedford, 1978;Bedford, 1991). 

Raised temperature has also been shown to have a direct effect on epididymal 

function. Resulting in changes in oxygen levels, water and ion transport 

mechanisms, protein biosynthesis and secretion, and the cellular structure of the 

epididymal epithelium itself (Djakiew, et al., 1986;Esponda, et al., 1990;Bedford, 

1991;Regalado, et al., 1993;Seiler, et al., 2000). These changes result in an 

epididymal environment which is unable to efficiently maintain and store viable 

spermatozoa. 

6.1.3.2 Effects on the spermatozoa 

It reported that increasing scrotal temperature adversely affects 

the spermatozoa within the epididymis. Fertilisation rates are decreased and 

developmental failure of the foetuses occurs, resulting in significantly decreased 

litter sizes (Setchell, et al., 1988). 
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6.1.4 Aims of this chapter 

The aims of this work were to monitor the response of the epididymis to heat 

stress by the study of stress proteins, the number of motile spermatozoa and the DNA 

integrity of the motile spermatozoa in the heated epididymis. Additionally, we aimed 

to investigate whether the DNA integrity of spermatozoa within the epididymis was 

affected by heat stress, even though they are packaged in a condensed state. 

6.2 Methods 

6.2.1 Animals 

The animals used were sexually mature male wild -type MFI mice (dazi 

strain) (Ruggiu, et al., 1997) which were maintained under standard conditions of a 

12L:12D cycle, in an ambient temperature of 20 -25 °C with access to food and water 

ad libitum. 

6.2.2 Scrotal Heating 

Adult male mice were anaesthetised with a 1:1 mix of Hypnorm and 

Hypnovel via an intraperitoneal (i.p.) injection. Following anaesthesia, the lower 

third (hind legs, tail and scrotum) of each male was passed through a hole in a 

polystyrene `raft' which was then placed in a circulating water bath for 30 min at 

42 °C. Control animals received anaesthetic only. All animals were returned to their 

cages, which were placed on a warm mat (20 -25 °C) to maintain body temperature, 

until fully recovered from the anaesthetic. 

6.2.3 Time -points 

For each time -point studied, 3 mice underwent in vivo heat treatment and 3 

mice were used as controls. All mice were matched for age and weight. 
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Animals were sacrificed at 6 hours (h), 14 days (d), and 28d post- treatment. 

Each time -point was chosen to allow the study of a particular population of cells 

within the epididymis at the time of heating. Calculations were based on a 7 -day 

epididymal transit time (Cornwall, et al., 1990). 

Epididymides were removed and fixed in Bouins for 6h then transferred to 

70% ethanol and processed into paraffin wax for histological analysis. or placed in 

-1m1 BWW containing 20mM HEPES and 0.3% HSA. 

6.2.4 Immunohistochemistry 

Bouins -fixed, paraffin- embedded tissues were sectioned at 51.1m. Paraffin 

wax was removed from sections by washing in 2 changes of xylene (5 min each) and 

the sections were rehydrated in decreasing concentrations of ethanol (100 %. 95 %, 

75% and finally water). 

6.2.4.1 Haematoxylin and Eosin Staining (H &E) 

Standard H &E staining was performed. 

6.2.4.2 Stress Markers 

In order to confirm the response of the epididymis to heat stress, two stress 

proteins were used as markers. Cold- inducible RNA- binding protein (Cirp) is 

constitutively expressed in the germ cells of the testis. Following experimental 

cryptorchidism or heat stress (42 °C), decreased expression of Cirp in the testis is 

observed within 6 h (Nishiyama, et al., 1998); Chapter 5). To date, the expression of 

Cirp in the epididymis has not been studied. Bax is a pro -apoptotic regulator of 

apoptosis and it has been shown in the rat that testicular heating results in 

redistribution of Bax expression from a cytoplasmic to perinuclear localization in all 

germ cells (Yamamoto, et al., 2000). It has been shown that basal cells in the 

epididymis have the ability to behave as macrophages in response to increased 

numbers of dead/immotile spermatozoa and stress (Seiler, et al., 1998;Seiler, et al., 
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2000). Expression of the macrophage antigen CD68 was studied as an indication of 

the number of basal cells acting as macrophages in response to heat stress. 

Briefly, endogenous peroxidase activity was blocked by incubation in 

H2O2 /methanol as previously described followed by washing twice (5 min each) in 

Tris- buffered saline (pH 7.4). Slides were pre- incubated with serum block (20% 

NSS, 5% BSA in TBS) at room temperature for 30 min before addition of the 

primary antibody and overnight incubation at 4 °C. Slides were washed twice in TBS 

(5 min each) before addition of the secondary antibody and incubation at room 

temperature for 30 min. Slides were again washed twice in TBS (5 min each). ABC 

conjugated to HRP (DAKO) was added to the slides and incubated for 30 min at 

room temperature and the slides were again washed twice in TBS before the addition 

of DAB. The resulting colour reaction was stopped with water and the slides were 

counterstained with Mayer's Haematoxylin. 

6.2.5 Preparation of murine spermatozoa 

Spermatozoa samples studied in this chapter were taken from the mice 

sacrificed at the earlier time -points (1h, 2h. 4h, 6h, 24h and 7d) as described 

previously in Chapter 5. 

Full methods for the preparation of murine spermatozoa are described in 

section 2.6. Briefly, whole epididymides were removed, cleaned of fatty tissue and 

placed in lml BWW. The tissue was then minced with fine scissors and incubated at 

34 °C (95% air, 5% CO2) for 30 min prior to careful removal of buffer containing the 

motile spermatozoa. Samples were diluted to a final volume of lml in BWW and 

stored at -20 °C until required. 

6.2.6 Study of concentration of spermatozoa 

Samples were diluted 1:10 with SDF and 1041 diluted sample was placed into 

the chamber of an improved Neubauer haemocytometer. The number of 

spermatozoa located within 5 squares of the haemocytometer grid was carefully 
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counted. If the number of spermatozoa in 5 squares was not equal to or greater than 

100, 10 or 25 squares were counted. 

From this value, the number of spermatozoa in lml was calculated using the 

following equation: 

Concentration (millions /ml) = No. Spermatozoa Counted 

(4 x No Squares) _ Dilution 

6.2.7 Comet analysis of spermatozoa 

DNA integrity of motile spermatozoa from the epididymis was studied using 

a modified Comet assay. 

Spermatozoa samples were defrosted at room temperature and 5µl each 

sample was mixed with 24t1 LMA (37 °C). This gel/sample mix was dropped onto a 

CometSlide and covered with a clean, warm (37 °C) cover -slip. Slides were then 

placed horizontally in á box and incubated at 4 °C until the gels were set. Cover -slips 

were carefully removed and the slides submerged in Lysis buffer (Trevigen) 

containing 0.75% SDS, for 3 h at 37 °C. The slides were removed from the Lysis 

buffer and placed in a horizontal gel electrophoresis tank. Alkaline electrophoresis 

buffer (3M NaOH, 1mM EDTA, pH 12.3) was carefully added to a depth of 0.5cm 

above the slides and left for 20 min at room temperature. Current was applied at 

25V, 300mA for 10 min. The slides were transferred to ice -cold methanol (100 %, 5 

min) then ethanol (100 %, 5 min). The slides were allowed to dry overnight at room 

temperature before staining with 501i1 ethidium bromide (1:1000 in dH2O). For each 

sample, 100 cells were analysed using the Komet Image Analysis system. The 

percentage of head DNA, tail DNA and the Comet moment was calculated for each 

cell. Comet moment is a measurement that takes into account both the length of the 

Comet tail and the amount of DNA present in the tail and is expressed as an arbitrary 

unit (the greater the value, the higher the level of DNA damage). 

145 



Chapter 6 The effect of scrotal heating on the epididymis and mature spermatozoa 

For each time -point, 3 animals were heated and 3 animals were used as 

controls. The Mann -Whitney U test was used to compare the results from each 

heated group against the controls. 

6.2.8 Statistical Analysis 

Statistical analysis was limited due to the small size of the samples available 

for study. The results obtained for the heated animals were compared against those 

for the control animals using the Kruskal Wallis non -parametric test. However, it is 

acknowledged that the significance of this statistical test is diminished when used 

with small sample sizes (n <10). 

6.3 Results 

6.3.1 H &E Staining 

Standard H &E staining was performed to study any changes in the 

morphology of the epididymal tubules and in the density of mature spermatozoa 

present in the epididymis following scrotal heating. Figures 6.1 - 6.3 show the caput, 

corpus and cauda regions of the epididymis of a control mouse. Six hours and 14 

days after heat treatment (Figures 6.4 -6.6 and 6.7 -6.9 respectively) there appear to be 

no obvious changes to either the epididymal epithelium or the luminal compartment. 

However, 28 days after heating, it appears that the interstitial spaces between the 

tubules are increased in both the caput (Figure 6.10) and cauda (Figure 6.12) regions, 

while the density of spermatozoa in the luminal compartments of all 3 regions of the 

epididymis appears to be decreased. 
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Figures.6.1 - 6.12 H &E staining of the control and heated epididymis showing the 
morphology of the caput, corpus and cauda regions of the epididymis in the control 

(6.1 -6.3) and heat -treated mouse at 6h (6.4 -6.6), 14d (6.7 -6.9) and 28d (6.10- 1.12). 

All figures are x 20 resolution. 

indicates reduced spermatozoa density, 3C indicates increased interstitial 
space. 
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6.3.2 Immunohistochemistry 

Immunohistochemical analysis of the epididymis was performed for both 

control and heated animals (at 6 hours, 14 days and 28 days post- heating). The 

purpose of the immunohistochemical analysis was to study the response of the 

epididymis to heat stress - in particular the altered expression of the heat -responsive 

protein Cirp, the pro -apoptotic marker Bax, and the macrophage antigen CD68, and 

to determine the effects of heat stress on the density of spermatozoa within the 

epididymis. 

6.3.2.1 Cirp 

Expression of the Cirp protein was studied to determine the response of the 

epididymis to mild heat stress. The Cirp protein was detected in all regions of the 

control epididymis. In the caput region, Cirp expression was strongest towards the 

initial segment (Figure. 6.13a) with fainter staining observed in the middle and distal 

(Figure 6.13b) regions. Following heat treatment however, this pattern of staining in 

the caput was reversed, with reduced levels of Cirp expressed towards the initial 

segment (figure 6.14a) and increased expression in the lower region (Figure 6.14b) 

of the caput. 

Within the corpus region of the control epididymis (Figures 6.13c and d), 

faint expression of the Cirp protein was observed. Following heat treatment, Cirp 

protein was not detected in this region (Figures 6.14c and d). Similarly, faint 

expression of the Cirp protein was observed in the cauda region (Figure 6.13e) and 

towards the vas deferens region (Figure 6.13f) of the control epididymis. Again, 

expression of the Cirp protein in these regions (Figures 6.14e and f respectively) was 

not evident following scrotal heating. 
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Figure 6.13 Cirp expression in the control epididymis. 
Main figure is x4 resolution, figures a -f are x40 resolution. 
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Figure 6.14 Cirp expression in the heated epididymis (+ 6 h). 

Main figure is x 4 resolution, figures a -f are x40 resolution. 
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6.3.2.2 Bax 

The epithelial cells in the caput region of the epididymis in the control mouse 

did not express immunodetectable levels of Bax (Figure 6.15). Within this area of 

the epididymis, heat treatment resulted in a slight increase in Bax expression and 

faint staining for this protein was observed 6 hours after heat treatment (Figure 6.16). 

Bax expression was detected in the epithelial cells of the corpus region of the 

epididymis in the control mouse (Figure 6.17) and the intensity of staining for this 

protein was stronger within 6 hours of heat treatment (Figure 6.18). Similarly, very 

faint levels of Bax éxpression were observed in the epithelial cells of the cauda 

region of the epididymis in control mouse (Figure 6.19). Following heat treatment, 

expression of Bax in these cells was again increased (Figure 6.20). 
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Control Heated 

6019 6.20 

Figures 6.15 -6.20 Bax expression in the epididymis following in vivo heat 
treatment. 

Expression of Bax in the caput (6.15 and 6.16), corpus (6.17 and 6.18) and cauda 

(6.19 and 6.20) regions of the epididymis of control (6.15, 6.17, 6.19) and heated (+ 
6 h) animals (6.16, 6.18, 6.19). 
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6.3.2.3 CD68 

Figures 6.21 and 6.22 show that expression of CD68 was tightly regulated 

and region -specific throughout the epididymis of both the control and heat -treated 

mouse (+ 6 hours). Levels of expression within specific regions of the epididymis 

are also shown at higher magnification (x 40). 

Within the caput region of the control epididymis, CD68 expression is 

localised within the epithelial cells of a particular group of tubules in the distal caput 

(Figure 6.19a). CD68 expression is also present in the caput region of the heated 

epididymis (Figure 6.20a). The increased size of the group of tubules expressing 

CD68 may be due to differing orientation of the epididymides, or may be an 

indication that heat treatment has altered expression of CD68 within the caput region. 

Moving down towards the corpus region of the epididymis, Figure 6.19b 

shows that fewer cells are expressing CD68 in this region of the control epididymis, 

while the intense staining shown in Figure 6.20b demonstrates the increased 

expression of CD68 in this region following heat treatment. Within the upper corpus 

region of the control epididymis, very few cells exhibit CD68 expression (Figure 

6.19c) compared with the same region in the heated epididymis (Figure 6.20c). 

Epithelial cells in the mid -corpus region of both control (Figure 6.19d) and heated 

(Figure 6.20d) epididymis do not appear to express significant levels of CD68, with 

only a few cells in the heated epididymis exhibiting faint staining. CD68 expression 

was not evident in the cauda regions of either the control (Figure 6.19e) or heated 

(Figure 6.20e) epididymis. 
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Figure 6.21 CD68 expression in the control epididymis 
Main figure is x 4 resolution, figures a -e are x 40 resolution 
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Figure 6.22 CD68 expression in the heated epididymis ( +6h) 
Main figure is x 4 resolution, figures a -e are x 40 resolution 
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6.3.3 Analysis of motile spermatozoa 

6.3.3.1 Number of motile spermatozoa 

The concentration of motile spermatozoa retrieved from the epididymides of 

control animals was in the range of 5.25 - 7.2 x 106/m1 (average 6.4 x 106/m1). 

Following in vivo heat treatment, the average number of motile spermatozoa 

retrieved from the epididymides dropped to 4.9 x 106 /ml within 1 h. The average 

number of motile spermatozoa dropped again to 2.5 x 106 /m1 (p <0.05) within 2 h, 

and was lowest at 4 h post- heating with an average number of motile spermatozoa of 

1.1 x 106/m1 (p <0.05). The number of motile spermatozoa retrieved from the 

epididymis had not recovered after a period of 7d. 

Control 1 h 2 h 4 h 

Time -Point 

6h 24h 7d 

Figure 6.23 Number of motile spermatozoa retrieved from the epididymides of 
wild -type mice following in vivo heat treatment 

(n =3 for both genotypes, bar = average) 
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6.3.3.2 Levels of DNA damage in motile spermatozoa 

DNA damage in motile spermatozoa, as measured by the Comet assay, is 

expressed either as % DNA in Comet tail (Figure 6.24) or as Comet moment (Figure 

6.25). 

Compared to the controls (average = 25.3% DNA in Comet tail), DNA 

damage in the motile spermatozoa of heated animals increased significantly within 

1h of heating (average = 37.8 %; p <0.05). This elevated level of DNA damage in 

motile spermatozoa was observed over the initial 24 h period after heating, reaching 

a peak at 4h (57.8 %; p <0.05). At 7 d after treatment, the level of DNA damage in 

the motile spermatozoa had recovered to control levels (22.3 %). 
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6h 24 h 7d 

Figure 6.24 Levels of DNA damage (% tail DNA) in motile spermatozoa 
retrieved from wild -type mice following in vivo heat treatment. 

(n =3 for each time -point, point = average % Tail DNA for 100 cells, bar = average) 

Analysis of Comet moment gave very similar results (Figure 6.25). Within 1h 

of heating, average Comet moment had increased from 6.9 (control) to 15.8. Again, 

a peak was observed at 4h (27.7) with Comet moment value remaining high at 24h 

(13.8) and recovery to control levels seen at 7d (6.6). 
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Figure 6.25 Levels of DNA damage (Comet moment) in motile spermatozoa 
retrieved from wild -type mice following in vivo heat treatment. 

(n =3 for each time- point, point = average Comet moment for 100 cells, 
bar = average) 

6.4 Discussion 

The epididymis has 4 main functions; the transportation, maturation, storage 

and protection of spermatozoa. 

In most mammals, including humans, the epididymis is located within the 

scrotum which is generally maintained at several degrees C lower than body 

temperature (depending on species) (Bedford, 1978). 

The aims of the present study were to subject the epididymis to a mild heat 

stress, to determine the response of the epididymal epithelial cells to heat stress, to 

study the ability of the epididymis to maintain viable and motile spermatozoa 

following heat stress, and to study the effect of heat stress on the genetic integrity of 

motile spermatozoa within the epididymis. 

As in the testis, heat stress can be induced in the epididymis by several 

methods (see Section 5.4). In the present study, the scrotal temperature of wild -type 
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male mice was raised by immersion of the lower third of the animals in a water bath 

at 42 °C for a period of 30 minutes, the aim being to determine the effects of a mild 

heat stress on epididymal function and the integrity of spermatozoa DNA. 

The response of the epididymis to raised scrotal temperature was studied 

using a number of stress and heat response markers. 

As previously discussed, Cirp is a protein which is constitutively expressed in 

the cells of the testis and is inducible at 32 °C in mouse somatic cells in vitro 

( Nishiyama, et al., 1997). The presence of an amino -terminal consensus -sequence 

RNA- binding domain (CS -RBD; a major RNA- binding motif) suggests that the 

protein may play a role in post -transcriptional regulation of gene expression. In 

addition, Cirp has been shown to share a sequence similarity with RNA- binding 

motif gene (RBM), a gene expressed on the Y chromosome, the loss of which is 

associated with some cases of human male infertility (Nishiyama, et al., 1997). 

In the current study, immnohistochemistry has revealed for the first time that 

Cirp is expressed in the epididymis, where expression is region- specific. Following 

scrotal heating, the expression of Cirp in the epididymis was altered, with decreased 

expression in most regions and a slight increase in expression in others. Altered 

expression of Cirp indicates that scrotal heating had induced an increase in 

epididymal temperature. 

In the context of the present study, the expression of Cirp in the epididymis 

was studied as a means of confirming the alteration of the temperature within the 

epididymis following scrotal heating. The region -specific nature of Cirp expression 

in the epididymis suggests that this protein may also play a role in the storage and 

maturation of spermatozoa which should be investigated further. 

Bax is a pro -apoptotic protein which has been shown to be highly expressed 

in a number of tissues, including the epididymis (Penault -Llorca, et al., 1998). In the 

mouse, experimental cryptorchidism results in increased Bax expression and 

redistribution of the protein, leading to increased apoptosis of germ cells in the testis 

(Xu, et al., 2000;Yamamoto, et al., 2000). The effect of heat stress on the expression 

of Bax in the epididymis had not been studied previously and we observed for the 
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first time that increased levels of Bax were induced in the epithelial cells of the 

corpus and cauda regions of the epididymis following scrotal heating. 

The basal cells in the epididymal epithelium play a scavenging role in the 

local immune defence mechanism (acting as tissue -fixed macrophages) and may also 

be involved in the detoxification of the epididymal epithelium and lumen (Yeung, et 

al., 1994;Seiler, et al., 1999;Seiler, et al., 2000). The distribution of basal cells 

expressing macrophage antigen (F4/80) has been studied in the mouse (Seiler, et al., 

1999) showing region -specific expression of F4/80 +ve cells in the murine 

epididymis. It was determined that the number of cells expressing F4/80 was highest 

in the initial segment and caput regions of the epididymis. 

In the present study, basal cells with macrophage properties were identified 

using antibodies raised against CD68. In concurrence with a previous study (Seiler, 

et al., 1999), in the control mouse, basal cells in the caput region of the epididymis 

were identified as having macrophage properties, with high levels of expression of 

CD68 observed in this region. Faint expression of CD68 was also seen in the upper 

part of the corpus region. The lower corpus and caudal regions of the control 

epididymis did not exhibit CD68 expression. 

Following scrotal heating, the region of CD68 expression in the caput 

increased, though it is unclear if this is due to the orientation of the epididymides 

studied. In addition, the level of CD68 expression in the upper corpus region also 

increased, with expression of CD68 extending to basal cells lower down the corpus. 

Again, CD68 expression was absent in the lower corpus and cauda region. 

A possible explanation for these findings is that the heat stress induces more 

basal cells to behave like macrophages in order to deal with an increase in the 

number of dead /immotile cells resulting from the heat stress. This hypothesis would 

fit with the findings of Seiler et al (Seiler, et al., 1998) who observed that an increase 

in macrophage antigen expression in the developing epididymis coincided with a 

period when there are high numbers of morphologically abnormal spermatozoa 

present (Jane a, et al., 1986). 
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The immunohistochemical analysis of the epididymis following heat 

treatment confirmed that the temperature within the epididymis had been altered, and 

that in response to the raised temperature, a stress response had occurred. 

Haematoxylin and eosin staining was used to examine the density of 

spermatozoa in the tubules of the caput, corpus and cauda regions of the epididymis 

following heat treatment. The appearance of the epididymis following heating was 

similar to that of the control epididymis, with large numbers of spermatozoa present 

within the tubules. However, reduced numbers of motile spermatozoa were retrieved 

from the epididymis within lh of scrotal heating. These findings suggest that though 

the epididymis retains normal numbers of spermatozoa following scrotal heating, the 

majority of these spermatozoa lose their motility. 

Previous studies have demonstrated that increased temperature affects the 

function of the epididymis in a number of ways. Translocation of the epididymis 

into the abdominal cavity of rabbits resulted in the decreased biosynthesis of 

epididymal secretory proteins compared to control animals, indicating that the 

biosynthesis of these proteins is temperature regulated (Regalado, et al., 1993). In 

addition, the water and ion transport mechanisms of the epididymis are affected by 

raised temperature resulting in altered ionic composition of the epididymal fluid 

(Bedford, 1991). It has been proposed that the availability of oxygen in the 

epididymis is of significant importance in the maintenance and storage of maturing 

spermatozoa (Volgymayr, et al., 1967;Djakiew, et al., 1986). The solubility of 

oxygen in epididymal fluid is increased and the respiration rate of spermatozoa is 

decreased at lower (scrotal) temperatures. In combination, these factors ensure that 

there is sufficient oxygen available to sustain large numbers of spermatozoa within 

the epididymis (Djakiew, et al., 1986). 

It is possible that the increase in temperature within the epididymis reduces 

the solubility of the available oxygen and increases the metabolism of the 

spermatozoa resulting in a shortage of oxygen available to the spermatozoa within 

the epididymis, causing loss of motility and /or death of the spermatozoa. 
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The density of spermatozoa within the epididymis did not appear to change 

significantly until 14 and 28 days after heat treatment. The reduced density of 

spermatozoa observed in the epididymis at this later time -point corresponds to the 

increased levels of apoptosis (germ cell loss) in the testis following scrotal heating, 

as discussed previously in Chapter 5. 

DNA integrity in motile spermatozoa was assessed using a modified Comet 

assay (see section 3). The aim was to assess the quality of the DNA within the 

spermatozoa which had remained intact and motile following heat treatment. It was 

found that levels of DNA damage within motile spermatozoa increased within lh of 

heat treatment, reaching a peak at 4h and then recovering by 7d. A number of 

studies have shown that DNA damage can occur as a result of oxidative stress (Shen, 

et al., 1997;Aitken, et al., 1998;Twigg, et al., 1998). Oxidative stress has been 

shown to affect spermatozoa in the testis, the epididymis and in vitro, and can be 

caused by a number of factors (e.g. cancer treatments, cigarette smoke) (Hinton, et 

al., 1995;Shen, et al., 1997;Twigg et al., 1998;Pagano, et al., 2001). 

In the current study, the level of DNA damage in motile spermatozoa from 

the epididymis increased over time, reaching a peak at 4 hours. It is our hypothesis 

that increasing levels of oxidative stress in the heated epididymis may induce DNA 

damage in motile spermatozoa. 

The gradual decrease in the level of DNA damage may be explained by the 

introduction of spermatozoa into the epididymis which, at the time of heating, were 

located in the testis and therefore not exposed to the same high levels of oxidative 

stress. 

It should be noted that limited numbers of animals were available for use in 

the current study. Furthermore, due to the subjective nature of the analysis of DNA 

damage in the motile spermatozoa, it would have been preferable to analyse the 

results in a `blind' manner. However, the findings of this study suggest that future 

examination of the genetic integrity of motile spermatozoa should be undertaken. 

In the current study, the response of the epididymis to heat stress was proven 

by the increased/altered expression of the Cirp, Bax and CD68. 
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Following heat stress, the density of spermatozoa within the epididymis was 

unaffected while the proportion of these spermatozoa retaining motility was very 

low. Over time, the numbers of spermatozoa entering the epididymis from the testis 

decreased and the dead /immotile spermatozoa were phagocytosed by the basal cells 

and macrophages. Though at this time there were fewer numbers of spermatozoa in 

the epididymis, a much greater proportion of these spermatozoa had retained their 

motility. Finally, it was shown that heat stress in the epididymis resulted in 

increased levels of DNA damage in mature, motile spermatozoa. 
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Chapter 7 General Discussion 

The use of assisted reproductive techniques such as IVF and ICSI has 

revolutionized the treatment of couples with so- called male factor infertility. 

However, there is conflicting data regarding the safety of these procedures. The 

main areas of concern are reports of increased frequency of birth defects, genetic 

anomalies and developmental problems in children conceived via IVF /ICSI 

compared to those conceived normally (Wennerholm, et al., 2000;Ericson, et al., 

2001;Hansen, et al., 2002;Van Steirteghem, et al., 2002). Other reports have 

disputed these findings, stating that the increased risk of these problems following 

IVF /ICSI treatment is negligible compared to natural conception (Tarlatzis, et al., 

1999;Bonduelle, et al., 2002). 

However, clinical data indicates that poor spermatozoa quality results in 

reduced fertilisation rates, fewer blastocysts, and poor embryonic development 

(Ron_el, et aí.,1991; Parinaud, et aí.,1993; Janny, et al., 1994;Lopes, et al., 1998). 

In addition it has been shown that DNA abnormalities (adducts, deletions etc.) can be 

passed from the father to the offspring (Ji, et al., 1997;Jiang, et al., 1999;Kamischke, 

et al., 1999;Potts, et al., 1999;Cram, et al., 2000;Zenzes, 2000;Dohle, et al., 2002). 

According to previous research, the success of assisted reproduction 

techniques is dependent on the selection of morphologically normal and motile 

spermatozoa (Mansour, et al., 1995) and at the present time the DNA integrity of 

spermatozoa used in assisted reproduction techniques is not assessed. There are a 

number of assays available for the detection of DNA damage in spermatozoa 

(including the Comet and TUNEL assays) (Hughes, et al., 1997;Hughes, et al., 

1999;Donnelly, et al., 2000), however, these methods can be costly and time - 

consuming, and it has yet to be proven that the use of these protocols is warranted. 
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7.1 Aim of the work 

The main objective of the work presented for this thesis was to determine the 

levels of DNA damage present in mature, motile spermatozoa from a number of 

mouse models for male infertility. 

The models used were: 

a) Mice deficient in a protein known to be associated with male infertility 

(dazi). 

b) Mice deficient in a DNA -repair protein known to be highly expressed in 

the testis (Ercc -1). 

c) Mice found to be infertile due to deficiency in proteins with no known 

role in the testis /fertility (PrP and PrnD). 

d) Wild type mice subjected to a mild scrotal heat stress. 

In addition, use of the in vivo heat stress model enabled the study of the 

response of the testis and epididymis to heat stress, and the study of the transmission 

of DNA damage from developing germ cells to mature spermatozoa. 

7.2 DNA Damage in the spermatozoa of genetically modified mouse models 

The Comet assay is a highly sensitive and reproducible assay commonly used 

to detect levels of DNA fragmentation in a wide range of somatic cell types 

(McKelvey -Martin, et al., 1993). The assay involves the lysis of the cell membrane 

followed by the unwinding of the DNA (most commonly under alkaline conditions) 

and then electrophoresis which draws broken DNA strands away from the cell 

nucleus, forming a characteristic `comet' image. 

In mammalian sperm, DNA is packaged very differently from that of somatic 

cells (Ward, et al., 1991). The arrangement of DNA in mammalian spermatozoa is 

specifically designed to protect it from exogenous insult, therefore in order to study 

the integrity of the DNA it must first be exposed without causing further damage. 

The Comet assay has been adapted_ for use on human spermatozoa and used 
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successfully to demonstrate a positive relationship between poor semen parameters 

and the presence of DNA damage in human spermatozoa (Hughes, et al., 1997;Sun, 

et al., 1997;Irvine, et al., 2000). However, attempts to use the same method for the 

study of murine sperm were unsuccessful due to the differences in DNA packaging 

between murine and human spermatozoa. A new assay based on a commercially 

available kit was developed and used for the studies of murine spermatozoal DNA 

described in this thesis. 

The spermatozoa of three different genetically -modified mouse models of 

infertility were studied: 

1) The human gene DAZ is located on the Y chromosome within the AZF 

region and has been implicated in male infertility. To date a murine homologue of 

DAZ has not been found, however, deletion of the dazi gene in the mouse results in 

complete spermatogenic failure while heterozygote animals produce reduced 

numbers of motile spermatozoa with increased incidence of morphologically 

abnormal spermatozoa. The role of dazi in the testis is not fully understood, however, 

the homology between dazi and the Drosophila gene boule (a binding protein for all 

cell cycle regulators which is essential for spermatogenesis) suggests a role for dazi 

in cell cycle regulation (Eberhart, et al., 1996;Yen, et al., 1996). 

2) The Ercc-1 gene is involved in the nucleotide excision repair and 

recombinational repair pathways and is highly expressed in the testis (Adair, et al., 

2000;Sargent, et al., 2000;Melton DW, et al, submitted). Prior to the current study, 

investigators had observed that male Ercc-1 knockout mice appeared to be subfertile, 

failing to produce many offspring (Melton DW, personal communication). 

3) The role of Prion and Prion- related proteins in the testis has not been 

determined. However, it has been shown that these proteins are highly expressed in 

the testis and it has been suggested their role in the testis might be similar to their 

role in the brain - i.e. maintaining the blood -brain/blood- testis barrier (Collinge, et 

al., 1994;Lí, et al., 2000;Behrens, et al., 2002). Previous investigators have noted 

the very poor fertility of Prion deficient mice. In particular, both male PrP- and Dpl- 
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deficient mice, while demonstrating normal sexual behaviour, have been found to be 

infertile (Behrens, et al., 2002;Melton DW, personal communication). 

In the present study, increased numbers of morphologically abnormal 

spermatozoa, reduced numbers of motile spermatozoa and increased levels of 

endogenous DNA damage were observed in the epididymal spermatozoa retrieved 

from each of the modified mouse strains studied, compared with wild type animals. 

In vitro heating of the spermatozoa from these mice was also performed and 

it was found that, apart from the PrP and PrnD mice which had very high levels of 

endogenous damage, the DNA in the spermatozoa from these modified mouse 

models are susceptible to heat -induced DNA damage. 

Further work is required to understand the exact mechanisms by which 

deletion of these 3 different genes results in such similar phenotypes. Based on 

existing knowledge of the dazi gene, current data suggests that deletion of dazi may 

lead to disruption of spermatogenesis, in turn resulting in disordered DNA 

remodelling/repair. In a process such as spermatogenesis, in which there is a 

substantial amount of DNA remodelling and repackaging, fully functional DNA 

repair mechanisms are vital. The deletion of a DNA repair gene such as Ercc -1 could 

result in the failure to repair both intentional nicks and DNA strand breaks which are 

created during spermiogenesis, and unintentional strand breaks which might occur 

during spermatogenesis. Very little is known about the role of PrP and PrnD in the 

testis and therefore further study is required before an explanation as to the cause of 

the poor morphology, motility and DNA integrity of spermatozoa from these mice 

can be provided. 

Each of the genotypes studied exhibited increased levels of DNA damage 

within the motile spermatozoa population, which may in turn contribute to the 

reduced fertility of these genotypes. 

The low numbers of motile spermatozoa and high numbers of 

morphologically abnormal spermatozoa retrieved from heterozygous and knock -out 

Ercc -1 and Prion mice, suggest that these mice may not be suitable models for 

studying levels of DNA damage in motile spermatozoa. 
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7.3 The Effect of mild heat stress on the testis and epididymis 

In order to achieve the main aims of the project (to study levels of DNA 

damage in motile, morphologically -normal spermatozoa), the focus of the work then 

moved towards using an in vivo heated mouse model for infertility. Dazl wild -type 

mice produce large numbers of motile, morphologically normal spermatozoa and are 

capable of producing large numbers of offspring. Endogenous levels of DNA 

damage in spermatozoa from these mice are low but in the current study have been 

shown to be susceptible, to heat -induced damage. 

It was proposed that the heat -treated wild -type dazi mouse might be a suitable 

model for the study of DNA integrity in motile spermatozoa. 

Animals were subjected to scrotal heating at 42 °C for a period of 30min. 

Previous studies have shown that similar regimes cause impaired spermatozoa 

quality, reduced embryo weight in vivo, and reduced fertilisation rates in vitro 

(Bellve, 1972;Jannes, et al., 1998;Rockett, et al., 2001). It was intended that this 

heating regime would disrupt spermatogenesis, though not block it entirely, in order 

to study the mature spermatozoa which developed from the affected cells. 

Immunohistochemistry was used to confirm the response of the testis and 

epididymis to the heating regime and altered expression of temperature -regulated 

proteins Cirp and HSP105 indicated that there had been an increase in temperature 

within the testis due to scrotal heating. It was found that Cirp expression, which had 

previously been reported in the testis only (Nishiyama, et al., 1998), is also found in 

a region- specific manner within the epididymis and that expression in the epididymis 

is also altered following scrotal heating. Expression of the stress proteins Bax and 

CD68, and the increased number of TUNEL- positive cells (in the testis) indicated 

that a temperature- mediated stress response had occurred. 

The reduced numbers of motile spermatozoa retrieved and the appearance of 

the epididymis and testis following heating suggested that, following scrotal heating, 

an initial loss of motility of spermatozoa in the epididymis occurs followed by a 

reduction in the number of spermatozoa entering the epididymis from the heat - 

stressed testis. 
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Data obtained from the Comet analysis of motile spermatozoa retrieved from 

the epididymis at specific time -points following heating suggests that cells in the pre - 

meiotic stages of spermatogenesis develop into spermatozoa with higher levels of 

DNA damage than other stages and that the DNA integrity in spermatozoa developed 

from cells undergoing spermiogenesis at the time of heating is comparable with that 

of controls. 

Motile spermatozoa located in the epididymis at the time of heating also 

exhibited significantly higher levels of DNA damage than those retrieved from 

control animals. The DNA integrity of motile spermatozoa stored in the heat -treated 

epididymis deteriorated over time until, at 4 hours after treatment DNA damage had 

increased 6 -fold compared to control samples. Levels of DNA damage then 

gradually recovered until control values were reached at 7d post- heating. Figure 7.1 

shows the numbers of motile spermatozoa, and the level of DNA damage measured 

in these spermatozoa, for each of the time -points studied. 
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Figure 7.1 Numbers of motile spermatozoa and levels of DNA damage in these 
spermatozoa at each of the time -points studied. 
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Previous studies in which cell loss has been quantified have identified 

pachytene spermatocytes and early spermatids as being susceptible to heat stress 

(Collins, et al., 1969;De -Vita, et al., 1990). In addition, two critical periods in 

spermatogenesis (leptotene -pachytene and maturation division) have been identified 

through which cells were unable to progress following heating (Collins, et al., 1969). 

The current study has identified cells in the earlier (pre- meiotic) stages of 

spermatogenesis which, though affected by heating, have progressed through these 

critical periods in germ cell differentiation to develop into DNA -damaged 

spermatozoa. 

It is proposed that the loss of DNA integrity in mature spermatozoa resulting 

from heated germ cells may be explained in two ways; DNA damage occurs in the 

cells at the time of heating and is not repaired during spermatogenesis, or the 

physiology of the testis is disrupted by heat stress resulting in impaired germ cell 

function and loss of DNA integrity in mature spermatozoa. 

Increased temperature in the epididymis results in altered expression of 

secretory proteins, reduced oxygen and altered ionic composition within the 

epididymal fluid. In turn, these alterations to the local environment adversely affect 

the ability of the epididymis to store and sustain spermatozoa in a viable (alive and 

motile) state (Djakiew, et al.,1986;Bedford, et al.,1991;Regalado, et al., 1993). 

These findings suggest that these factors may also contribute to the deterioration of 

DNA integrity in the motile spermatozoa stored within the epididymis following heat 

stress. 

The ability of spermatozoa to remain motile and morphologically normal and 

yet contain high levels of DNA damage may have serious implications in the 

treatment of male infertility. It is generally accepted that spermatozoa quality is a 

good indicator of success in both IVF and ICSI. These findings suggest the 

possibility that these spermatozoa may not contain intact DNA and therefore are not 

necessarily good candidates for use in NF and ICSI, indicating that there may be a 

need for testing DNA quality in spermatozoa to be used in these procedures. 
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7.4 General conclusions 
In conclusion, the current study has demonstrated that mature spermatozoa in 

the epididymis are not protected from heat -induced DNA damage and that following 

heat stress the environment of the epididymis itself may contribute to the 

deterioration of DNA integrity of spermatozoa. Studies involving in vitro heating 

and culturing of spermatozoa and epididymides could be employed to explore this 

hypothesis further. 

Additionally, cell types within the testis which, following heat stress, develop 

into motile but DNA - damaged spermatozoa have been identified. These findings 

suggest the need for additional criteria to be taken into consideration when selecting 

spermatozoa for IVF /ICSI treatment. 
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