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Abstract

It is possible to build complex programs by repeated combination of pairs of simpler

programs. However, naive combination often produces programs that are far too inefficient.
We would like to have a system that would produce the optimal combination of two

programs, and also work with minimal supervision by the user. In this thesis we make a

significant step towards such an ideal, with the presentation of an interactive system based
on program transformation complemented with knowledge of the program development.

No single method is known that will combine all programs efficiently and so a variety of
different combination methods must be used. However, to get good results it is necessary

that the methods have access to knowledge about the program structure. To provide this

knowledge we have decided to require that the initial programs be constructed in a spe¬

cialised editor which embodies knowledge of certain standard Prolog practices (techniques)
to aid the program construction, but more importantly can record pertinent parts of the

program development into a structure called the program history. This program history
contains the initial control flow (skeleton) and the techniques that the user applied in the
construction of the program. Hence it carries knowledge about the program that would
otherwise be very difficult to extract from just the program itself.

The first contribution of this thesis is to recognise that knowledge contained in the program

history can be used in program transformation, reducing the need for user interaction. The
interactive composition system presented can automatically take major decisions, such as

the selection of which subgoal should be unfolded or the laws to be applied in order to

get a more efficient combined program. Furthermore, a component of our system called
the selection procedure can decide automatically which is the most suitable combination
method by analysing the characteristics of the initial pair of programs as given by their

program histories. Approaches that do not use the program history suffer from the problem
that it is not always practical to extract the required information about the structure of
the program.
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Our second contribution is to provide a range of new methods which exploit the program

history in order to produce more efficient programs, and to deal with a wider range of
combination problems. The new methods not only combine programs with the same control

flow, but can also deal with some cases in which the control flows are different. All of these
methods are completely automatic with the exception of our "mutant" method in which
the combined clause needs to be approved by the user.

The third contribution is to present relevant properties in our composition system. These

properties fall into the following three groups: (i) properties which hold after applying each
combination method, (ii) properties about the type of program which is obtained after
the combination, (iii) properties of the join specification which defines the characteristics
of the combined program.
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1

Introduction

Program combination can be used to promote the reuse of standard programs more effi¬

ciently by allowing complex programs to be built by repeated combination of them. The

motivation for this thesis arose from the idea of having an automatic system which assists

programmers in the task of combining programs whilst requiring little user interaction.

There have been previous attempts in this direction and these are described below. How¬

ever, these solutions have generally required considerable interaction from a user with a

good understanding of the particular program transformation process being applied. In
this thesis we present an approach to the combination of Prolog programs that requires
little user interaction.

Our work has been influenced by previous work on the composition problem (mainly based
on program transformation techniques) and techniques editing systems (tools which help
in program construction). From the program transformation viewpoint the combination

problem can be seen as a novel application of transformation rather than their orthodox
use in program synthesis. A system for transforming programs expressed as recursion

equations is given in [Burstall & Darlington 77], but its use requires intervention of a

human with a good understanding of program transformation methods. In procedural

languages, there are ways [Horwitz et al. 88] to merge programs derived from an initial

generic template, however, this approach is restricted to a limited class of programs. In

1



1. INTRODUCTION 2

[Tamaki & Sato 83, Tamaki & Sato 84], an unfold/fold based transformation system was

given, but requires user intervention and is restricted to programs with the same flow
of control. In [Lakhotia & Sterling 87, Sterling & Lakhotia 88] methods were given for

combining Prolog programs with the same basic flow of control (meta-interpreters) but
these also require user intervention. The method of [Fuchs &; Fromherz 91] employs basic
schemata (supplied by an expert) to combine list-processing programs. The method is very

efficient, however it can present the user with a difficult choice between possible output

schemata. The method in [Proietti & Pettorossi 92] combines logic programs with the
same flow of control using basic fold/unfold transformations, but relies on user-guidance
and its efficiency depends on the decisions made by the user.

We have also been influenced by ideas of some editing systems which allows user to build

Prolog programs by means of a sequence of refinements to the initial program specifica¬
tion. There are several editors which automatically implement this program construction

methodology (see Chapter 3). We found which of these editors can provide the high-level

description required by our combination system.

Existing combination systems typically require direction by an informed user and are very

restricted in the kinds of programs that could successfully be combined.

Given these problems we started out with two basic ideas as to how the situation could be

improved.

• If high-level description about the programs were available then we expected to be
able to combine a wider range of programs, and also do it more efficiently and produce
better output programs.

• Such high-level description was potentially available from Prolog techniques editors

(tools for developing programs), by modifying them so as to record the history of the

program development (which we call the program history). The advantage of using
the program history is that it would give information about the program that would
otherwise be difficult to re-extract from the finished program.
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To investigate these ideas we took Sterling's notion of initial control flows1, extended it
with additional classes and developed it into a program classification scheme.

We then designed combination methods that were typically only to be used for particular
classes. We found that this had the advantage that the method could then make the most

of the choices necessary in the combination process (choices that the user would otherwise
have to make), and also work efficiently for its intended class of programs. The methods
were able to do this using the knowledge contained in the program history. Furthermore,

the program history itself could be used to classify the program and so select the correct

method.

The final system we discuss in this thesis was obtained from the initial system described

above by making two main improvements: We refined the classification system and also

developed and included new methods that were tailored to make effective use of the pro¬

gram history, (whilst also ensuring that we could still use the program history to select
the correct method).

In some cases, when the user had underspecified the requirements of the combined program,

the classification of programs (using the high-level description in the program history)
implicitly allowed the method to make an informed estimate of what the users likely
intentions were, see the example presented later in Section 6.6.1. The methods were

also able to combine programs with different flows of control, and for a common class
of programs with arithmetic operations the system can deduce which arithmetic laws can

be applied in order to get a more optimal combined program. More detailed description
of these methods can be found in Section 7.1 and Section 6.10.

Thus, our idealised program construction system shown in Figure 1.1 consists of a Pro¬

log techniques editor and a composition system. The main modules of the system are

represented in squares, the rounded squares are data and the lines denote input/output
information. Descriptions of each component of the program construction are as follows:

1This basis for the classification scheme was not chosen randomly, but was based on our studies in
which we found that knowledge of the flow of control was important in guiding the combination process.
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The techniques editor has not been built because such systems already exist [Robertson 91,
Bowles 93], and could easily be modified to record the choices that the user makes when

building a program. In these editors, such choices include selecting the initial control flow

(skeleton) and the techniques (standard Prolog practices). These choices are stored in
the program history, which therefore contains a high-level description of the program that
is close to the way that an expert might think about the program (simply because the
editors are designed to use methods that experts might use themselves, but allow users to

use them easily).

The composition system allows users to construct more complex programs by combining

simpler programs which have been built by means of a techniques editor as described
above. A component of this system is the selection procedure which automatically selects
a combination method according to the program histories of the simpler programs. The
selected method then controls the application of transformation rules (taken from a li¬

brary), making its decisions according to the information it finds in the program history.
We have designed the methods so that when they meet an underspecified combination,
then they will tend to do transformations that preserve the spirit of the program histo¬
ries (and hence their functionalities) rather than the simplest logical alternative based on

unfold/fold operations.

In this way the composition system produces as output the combined program and a new

history for the combined program. These can be stored and used as input for further
combinations.

The main characteristics of our composition system are:

• The system decides the combining method by analysing the pair of programs to be
combined (using the program history).

• The user does not need to take major decisions in the composition system such as

which clauses need to be unfolded or folded (i.e. the user does not need to know
about program transformation).
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Figure 1.1: A Program Construction Environment

Also we discuss some properties concerning the combination problem. These properties

guarantee the soundness of the composition process. We define three different groups of

properties which need to be guaranteed.

The first group of properties discuss the equivalence of programs for each of our methods

highlighting when the method does not preserve the equivalence (with respect to the join

specification if we regard it simply as a Prolog program) but the program is correct accord¬

ing with the intentions of the user. We define a method for each class of program. Each
method implemented in the composition system can be seen as a sequence of transforma¬
tion operations. These methods are implemented based on: unfolding, folding, laws which
are valid in an arithmetic domain and meta-folding (which is a modified version of the
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fold operation which uses knowledge from the program history). Our composition system
uses only these transformation operations and so it is possible to guarantee the soundness
of the combined program obtained by each of our combining methods under constraints
assumed by each method.

The properties in the second group are called extension properties. The relation extension
has the following properties:anti-reflexivity, anti-symmetry and transitivity. These are used

in the selection of the combining method.

The third group defines properties (called composition properties) that will be useful at
the user level when he defines the join specification, for instance commutativity.

1.1 Layout of the Thesis

The layout of the remaining chapters of this thesis is as follows:

Chapter 2 gives a set of definitions used in the different approaches of editing systems with
the last part of the chapter presenting the definitions from the program transformation
field.

Chapter 3 gives an overview of related work in editing systems which were important in
the development of this thesis because they introduce the foundational notions of program
schemata and techniques. The main work covered is that of editors based on the program

schemata notion such as those of Bundy, Gegg-Harrison, Barker-Plummer and Deville and

finally editors based on the skeleton notion such as Kirschenbaum, Robertson and Bowles.

Chapter 4 provides a description of the composition problem in procedural, functional and

logic languages. The functional and logic approaches are based on program transformation.
Therefore these approaches were useful in the implementation of our composition system

which relies on transformation operations and knowledge about the program.

Chapter 5 presents a hierarchy of standard patterns of flow of control which will be used
for classifying programs and for the program history. It also describes our set of com-
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bining methods and a module called the selection procedure which automatically selects a

combination method from our set of methods. This selection is performed by taking into
consideration features of the initial programs as described on the program history. Such
features include flow of control plus techniques information.

Chapter 6 presents a set of methods for combining programs with the same flow of control.

Chapter 7 gives a set of methods for combining programs with different flows of control.

Chapter 8 describes the composition system and its interactive use at each stage of the

composition process.

Chapter 9 gives some properties of our composition system. It includes three groups

of properties: correctness properties which hold after applying each composition method;

properties for the type of program which is obtained at each stage of the combining process

and properties for the definition of the join specification.

Chapter 10 summarises our achievements, states current restrictions, gives areas for further

study, and presents the contributions of this thesis.

1.2 Conclusions

The basic results of this investigation were:

• Classification of programs in terms of control flows and techniques was a useful
classification in that it allowed us to develop program synthesis methods for each class

in turn that were far more powerful, and required less user direction, that was possible
for programs in general. This is not so surprising, after all, such classifications arose

out of experts trying to reason about Prolog programs, and they would try to find
useful reasoning methods.

• Storing the program development history is useful. It acts as a set of "meta-
information" to the code. In this case this meta-information contained the infor-
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mation necessary to classify the program, and hence select the correct combination
method. This meta-information could also be used by the combination methods to

further reduce the need for user interaction. In particular, the meta-information
could be used to infer the user's intentions in requesting the program combination,
and so deal with cases of underspecification. So the use of the program history was

a powerful way to render program combination more effective.



2

Basic Definitions

In this section we define the terminology which will be used throughout this thesis. The

first part provides the definitions which will be used in the description of the techniques

editing systems and the second part of this chapter includes the terminology used in the
field of program transformation.

2.1 Terminology used in Editing Systems

A program, schema formalises the control structure of programs independently of the do¬
mains involved in the computations [Courcelle 90]. A schema is the abstract representation
of a class of programs i.e. it represents a family of similar programs. A schema is obtained
from the generalisation of programs, and programs can be obtained from a schema by in¬

stantiating its parameters (specialisation). In order to build a program for an application
then the user will need to find an instance of a schema that is similar to the application

[Partsch &; Steinbruggen 83]. Gegg-Harrison presented a set of Prolog schemata as the
basic constructs for structured Prolog recursive list processing [Gegg-Harrison 89]. An ex¬

ample of Gegg-Harrison's schemata is the schema_A, shown below, which processes a list
until the empty list is reached.

9



2. BASIC DEFINITIONS 10

schema_A( [ ] ,<C &1 >).
schema_A([/T|T], <C &2 >)

< pre_pred( < &3 >, H,< &4 > ), >
schema_A(T, <C &5 » )
<, post_pred(< &6 >, H, < &7 > ) >.

In the schema, optional arguments and subgoals are denoted by enclosing them within

angle brackets and an arbitrary number of arguments is denoted by enclosing them with
double angle brackets. Therefore any number of arguments can be replaced in the schema
variables 41,..., &7 while the terms pre_pred( <C 43 >>, H, <C 44 !>) and

post_pred( <C 46 ^>,H, 47 ^>) may be instantiated to a null element or to any subgoal.

For example we can obtain the program reverse/2 by applying the substitutions

{reverse/schema_A, L/41, L/42, M/45, M/46, L/47} and instantiating pre_pred to

null element and post_pred to append. This resulting program is normally known as

'naive reverse' because it is quite inefficient. A set of schemata for list processing are

described in Appendix A.

reverse([],L]).
reverse( [H|T] ,L) reversed,M) , enqueue(M,H,L).

enqueue ( [] , E, [E] ) .

enqueue([H|Tl],E,[H|T2]) enqueue(Tl,E,T2).

Skeletons are basic control flow constructs [Kirschenbaum et al. 89]. There is a clear dif¬
ference between a program schema defined above and a skeleton. A skeleton only provides
control and does not contain arbitrary numbers of arguments, as in the schema. A skeleton
is restricted to one argument which is used to recurse up or down the data structure. In
this thesis we will consider skeletons as a special type of program schema.

An example of a skeleton is to traverse a list, where a list is deconstructed by removing head
elements until the empty list is reached. The definition of this skeleton is shown below.
The predicate name used in the notation is a meta-symbol which can be instantiated to

any predicate name and each test ci for i £ {1,..., n} can be instantiated to any predicate
name. This skeleton allows for the general case when the elements of the list need to be

distinguished in 'n' different ways.
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traverse_n([H|T]) cl(H), traverse_n(T).
traverse_n([HIT]) c2(H), traverse_n(T).

traverse_n([H|T]) cn(H), traverse_n(T).
traverse_n([]).

Techniques are defined as programming practices which involve computing arguments and

carrying contexts [Sterling & Kirschenbaum 91]. An example of a technique is count which

always adds one to the value returned from the recursive call. This technique as defined
below can only be applied if the data structure which is traversed by the skeleton is a list.

The effect of this technique when it is applied to the traverse_n skeleton is to add an extra

argument (in the skeleton) for computing the number of elements of a list plus an extra

arithmetic subgoal in the body of each recursive clause to relate the computation from
the body with the final result in the head of the clause. Techniques behave differently for
different skeletons, for instance counting the number of elements of a list requires adding
a different subgoal (in the body of a clause) compared with counting the number of nodes
in a binary tree. A description of a set of techniques is given in Appendix D.

traverse_n_count[H|T],N) cl(H), traverse_n_count(T,Nl), N is Nl+1.
traverse_n_count([H|T],N) c2(H), traverse_n_count(T,Nl), K is Nl+1.

traverse_n_count([HIT],N) cn(H), traverse_n_count(T,Nl), N is Ni+1.
traverse_n_count([],0).

An enhancement is a program derived from a skeleton by consistently applying the fol¬

lowing modifications: adding arguments, adding goals and adding clauses by means of

techniques. Sterling and Lakhotia classify enhancements as being of three types: modula¬

tions, extensions or mutations [Sterling & Lakhotia 88],

1. Modulation. Modulation can be briefly described as follows: when developing a

program we often need to change only one part of a program. In order to change
that part of the program a distinction must be made between it and the rest of the

program. This distinction is made by creating a new procedure from that section of
code. The inverse process of taking a procedure and incorporating it directly into
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the code is referred to as making the procedure inline. The two processes of creating
a new procedure from an existing section of code or conversely making a procedure
inline are collectively referred to as modulation.

A program A is a modulant program of B and vice-versa, if they can be derived from
one another by a sequence of unfold and abstract transformations (data abstraction).
For instance, the program shown below can be abstracted to form a new procedure.

ancestor(Ancestor.Descendant) parent(Ancestor.Descendant).
ancestor(Ancestor.Descendant) parent(Ancestor,Person),

ancestor(Person,Descendant).
parent(luis.david).
parent(sonia.mario).

The program ancestor/2 succeeds if the first argument (Ancestor) is an ancestor

of the second argument (Descendant).

The abstraction process replaces a sequence of subgoals that occur one or more times
in the bodies of the clauses (ie. parent) of a given program with a new predicate

(parent_rel), and adds a clause whose head is the new predicate and whose body
is the appropriate sequence of subgoals.

ancestor(Ancestor,Descendant) parent_rel(Ancestor,Descendant).
parent_rel(Ancestor,Descendant) parent(Ancestor.Descendant).
parent_rel(Ancestor.Descendant) parent(Ancestor,Person),

parent_rel(Person,Descendant).

If we then unfold (see page 16 for details) the definition of parent_rel/2 in clause
number 1, we get back to the initial definition of ancestor shown above.

2. Extension. Extensions are the result of applying techniques to skeletons. An exten¬

sion is a special type of enhancement restricted to adding computations which do
not affect the control flow of the skeleton. A program £ is an extension of program

V if £ is created by introducing extra computation around the control flow provided

by V. The type of operations which can be performed are:

• Renaming the predicate.
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• Adding arguments.

• Reordering the arguments.

• Adding some extra subgoals to the bodies of the clauses which do not change
the control flow. (This is guaranteed as the subgoals are added only using those

techniques which do not change the flow of control).

In this thesis we are considering extensions in which no reordering of the argument
used for traversing the data structure is allowed (i.e. the argument used for traversing
the data structure always will be in the first position). The reason for this restriction
is that we have recorded in our program history information related the data structure
used in each program and we have assumed that the data structure is always in the
first position.

A formal definition of extension is given in Chapter 9. An example extension could be
to apply the technique add_carrier to the traverse skeleton which is defined below,
where the technique add_carrier adds some argument through all clauses in the
recursive subgoals (also defined in Appendix D).

3. Mutation. A procedure 1Z is a mutant of procedure 7^ if 72. is derived from V by

performing the following operations:

• adding one or more clauses which process conditions not checked by the initial

program. This new clause should not change the structure of the skeleton (ie.
the base case cannot be changed drastically). The new clause should have one

data structure pattern that is already defined on the program. In this way

the interpretation of the original skeleton is preserved but allows additional
behaviour.

traverse([XI Xs])
c_l(X), traverse(Xs).

traverse([X|Xs])
C_2(X), traverse(Xs) . add.carrier

traverse([XIXs],A)
c_l(X), traversers,A).

traverse([XIXs],A)
c_2(X), traverse(Xs,A).

traverse([]). traverse([],A).
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• adding subgoals which change the control flow and may conditionally terminate
a clause.

For example, a mutation can be produced by adding an extra clause to the piece of
code max/3 shown below. This extra clause is called a mutant clause.

max(A,B,A) A > B.
max(A,B,B) A < B.

The extra clause added to program max/3 checks the maximum when A is equal B.
The resulting piece of code is a mutant of the program shown above.

max(A,B,A) A > B.
max(A,B,B) A = B.
max(A,B,B) A < B.

The stepwise enhancement methodology suggests the idea of developing a program by first

finding the suitable basic control flow ('skeleton'). Once the skeleton has been determined,
extra computations are included by applying appropriate techniques to produce an exten¬

sion [Kirschenbaum et al. 89]. Then extensions can be combined to produce the desired

program. The extensions can be regarded as another skeleton, permitting us to repeat the

process until the final program has been completed.

2.2 Terminology used in Program Transformation

The composition process can be defined as the merging of two programs to form a new

program which should have the capabilities of each original program [Berzins 86].

A definite program clause is a clause of the form A Bi,..., Bn which contains precisely
one atomic formula (A) in its consequent. A is called the head and B\,..., Bn are called
the body of the program clause [Lloyd 87].

A definite program is a finite set of definite program clauses [Lloyd 87].

A join specification is a high level description in which we define the characteristics of a
new program that can be generated using two other programs. In the join specification
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we define the number of parameters in the new procedure, data input vector of variables
from each program, and output vector of variables. Note that this join specification is
not a Prolog program. So it is valid to define properties relating the new program such
as input/output vector of variables. These input/output variables allow information to be
carried between each of the programs to be combined.

A join specification is defined as follows:

Let T be defined as T <= P,Q where P and Q are predicates that will be joined; they are

called join operands and T is the join target (the resulting join procedure). An example
of the join specification is shown as follows:

append_len(Ll,L2,L3,N) <= append(LI,L2,L3), len(L3,N).

where the join target is append_len(Ll ,L2,L3,N), the first join operand is

append(Ll,L2,L3) and the second join operand is len(L3,N).

In this thesis we distinguish between a user specification and join specification. A user

specification is the formal definition of the program that the user wants to build whereas
a join specification is the actual specification which is used by the composition system for

combining programs. The user specification can have two operands plus extra subgoals
and can be defined as T <= P,Q,Fi,...,Fn where P and Q are join operands, T is the

join target and Fi,..., Fn are subgoals which use the output results from predicate P and

Q for performing new computations. An example of a user specification is defined below.

average(L,Av) •£= sum(L,Sum).count(L,Count), \+ Count=0, Av is Sum/Count.

In the above user specification average(L,Av) is the join target, sum(L,Sum) is the first

operand, count(L,Count) is the second operand, F\ = \f- Count=0 and F2 = Av is
Sum/Count.

The meaning of the program P (denoted by M(P)) is defined as the set goals which can

be proved by using the axioms defined in program P i.e. the meaning of the program P
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can be defined as follows: M(P) = {G | G is a ground goal such that G is provable in P}
[Tamaki & Sato 83, Tamaki & Sato 84].

2.2.1 Transformation Operations

The operation goal merge produces from a program P a new program P' in which the
identical subgoals are replaced by a single occurrence [Tamaki & Sato 84].

P> = (P-{C})U{C"j

where C is a clause in P whose body contains more than one syntactically identical

subgoal (exactly the same variables), and C' is the result of merging these occurrences

[Tamaki & Sato 84].

The unfolding operation replaces a call A in the body of a clause with the body of another

clause whose head is unifiable with A [Bossi et al. 90]. The unfolding operation can be
defined as follows: let P be a program and C a clause in P of the form A <— Qi,B,Q2
where A and B are atomic formulae and Qi and Q2 are conjunctions of literals. Let

Hi «— Ri,..., Hn <— Rn be those clauses in P whose heads Hi unify with B with the

mgu's 0i,...,6n (the most general unifiers). Unfolding B on C we obtain the clauses

{A *— Qi, Ri, Q2)0i, ..., {A <— QiRn, Q2)0n• By replacing C by these clauses we transform
the program P into a new program [Fuchs & Fromherz 91].

For example, we may want to calculate the length of two lists using predicate append/3
and predicate len/2 defined below. The predicate append/3 concatenates two lists and
the predicate len/2 computes the length of a list.

P=C1,C2,C3,C4

Ci : append(□ ,Y,Y).
C2 : append([H|T],Y,[H|Z]) append(T,Y,Z).
C3 : len([],0).
C4 : len([H|T],Len) len(T,Laux), Len is Laux+1.
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The new predicate append_len/3 can be defined using the following join specification:

C5 : append_len(X,Y,N) «t= append(X,Y,Z), len(Z,N).

The call append/3 in the body of clause Cs can be unfolded using the clauses C\ and C2,

leading to the following clauses C% and C7 as listed below.

C6 : append_len([],Y,N) len(Y,N).
C7 : append_len([H|T],Y,N) append(T,Y,Z), len( [HIZ],N).

This process can be continued by unfolding len in clause Cj to produce Cg.

Cs : append_len([H|T],Y,N) append(T,Y,Z), len(Z,Len), N is Len+1.

Note that the unfolding process can be continued by unfolding len in clause Cg■ However,

the purpose of this example is only to illustrate how the unfold and fold operation works,
and so we have not presented all the stages for obtaining the program append_len/3.

The folding operation replaces goals Gs in the body of a clause with the head of another

clause whose body is unifiable with Gs [Bossi et al. 90]. The folding operation can be
defined as the inverse operation of the unfolding operation as described in Burstall's work

[Burstall & Darlington 77].

The folding operation is defined as follows: let P be a program and D is a set of join

specifications. Let C be a clause in P of the form A <— P, Q9, R where P, Q and R are

conjunctions of literals and 6 is a substitution. Let C\ be a clause of the form H <— Q in
D which is not a instance of C. Folding C using C\ generates the clause C2 of the form
A <— P, HO, R provided that unfolding C2 on HO with respect to D gives C\ C\ is the only
clause in D whose head unifies with Q0 and 0 maps variables which appear in Q, but not

in H into distinct variables which do not occur in C2. Replacing C by C2 transforms P

into a new program [Fuchs & Fromherz 91].

From the previous example the body of Cs can be folded by using Cs. Therefore we obtain

Cg, which is defined as follows:
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C9 : append_len([H|T],Y,N) append_Xen(T,Y,Len), N is Len + 1.

We shall see in Section 6.10 that arithmetic rules provide useful transformations in the

process of simplifying expressions in the domain of real numbers and natural numbers.
These rules are, for instance, identity element for addition, identity element for multiply,

commutativity and associativity in real or natural numbers. The set of transformation
rules defined in our system is shown as follows. In these rules A,B,C are any real or

natural numbers.

A * 0 = 0 0*0 = 0

0 + 0 = 0

0 + A = A

A + 0 = A

0 * A = 0

1 * A = A

A * 1 = A

1*1 = 1

The commutativity and associativity rules are defined as follows:
A + B = B + A

A + (B + C) = {A + B) + C



3

Computer-aided Construction of
Logic Programs

In this chapter we describe several editing systems and try to determine which is the most

suitable techniques editor for providing us with the information that we require for our com¬

position system. We have divided the editors into two classes: editors based on the notion

of skeletons and techniques and editors based on the idea of program schemata. Figure 3.1
shows the classification of editors. In this Figure we have classified the editors into those
based on techniques and skeletons (Kirschenbaum, Robertson and Bowles). On the other
hand we have the editors based on program schemata (Bundy's editor, editors based on

Gegg-Harrison schemata and on Barker-Plummer's cliche and also Deville's methodology
which transforms each specification into a logic description (see Section 3.1.4)).

The common objective of each approach described in this chapter is to provide tools which

help programmers in Prolog programming. These approaches are closely related to our

work, because together they provide a general framework related to program schemata
and also they help us in the identification of the kind of techniques editor that we require

to be connected with our composition system.

Information about flow of control is widely used in the analysis and manipulation of logic

programs. Recently, Fuchs shows that program schemata (which encode information about
the flow of control and programming techniques) can be used successfully during the trans-

19
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Editors

based on program
schemata

based on skeletons
and techniques

Bundy's editor

Gegg-Hanison's schemata

Barker-Plummer's cliches

Deville's work

Kirschenbaum

Robertson's editor

Bowie's editor

Figure 3.1: Classification of Editors

formation of a program [Fuchs & Fromherz 91]. Other work which shows how useful the
information of the flow of control can be is a Prolog debugger implemented at Edinburgh

University [Duncan 92]. This debugger enhances explanations of program behaviour by

knowing information about the skeleton used in its construction.

The desired techniques editor should allow the user to build a program by using general
flows of control which can be tailored to the wishes of the user. The main characteristics

which are required from the techniques editor are:

• Information about the flow of control. This information relating to the flow of control
used in the program should direct the combining process. Our combination approach,
based on program history, takes advantage of the fact that each skeleton defines a

different class of programs. Each program constructed by using a skeleton inherits
the features of the skeleton. So by knowing which skeleton was used in the program

the composition system can start taking decisions about the most suitable combining
method for the pair of programs. However, note that the selection is not determined
in a unique way by only using the flow of control.

• The information about techniques. This information is considered for optimisation
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reasons. If the system can know which set of techniques were used in the program

and also the flow of control then it can decide to apply a combining method which

produce a more efficient combined program.

• Termination and well definedness of the program. Termination and well-definedness
is required in order to guarantee that the combined program, which is the result of the
transformation of an initial pair of programs, is well defined and will terminate. This

property needs to be satisfied, otherwise ill-formed predicates might be combined.

3.1 Editors Based on Program Schemata

In this chapter we first present the editors based on program schemata, and then present

the editors based on the notion of skeleton and techniques.

The different proposals for building programs based on the notion of program schemata do
not provide the information that the combination system needs because they do not make
a clear separation between the flow of control (skeletons) and the data flow (techniques).
On the other hand the editors based on skeletons and techniques are more suitable for

our approach to the combination problem. These approaches make a distinction between
which is flow of control and data flow.

3.1.1 Bundy's Editor

A study of principal bugs in a Prolog environment [Brna et al. 87] has shown that they
arise frequently in the creation of recursive procedures. From this fact arose the idea to

develop an editor which assists programmers to write programs by combining the partial
solutions provided by:

• Structure editors, to ensure that the user writes syntactically correct programs.

• Cross referencers, which alert the user to calls to undefined procedures.
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• Procedure stores, which allow reuse of old procedures.

• Formal methods, which ensure only correct programs are written.

Bundy describes an implementation of an editor which ensures not only the correctness of
the syntax of the procedures but also the correct use of recursion. In this context correct

means that the recursive procedure is guaranteed to terminate and to be well defined.

By well defined Bundy means that the procedures are not under-defined or over-defined

[Bundy 88, Bundy et al. 91]. The definitions of under-defined and over-defined will be

presented later in this section. The editor was designed with the purpose of forcing well
definedness and termination of procedures because non-terminating procedures and under
or over-defined procedures are a major source of Prolog bugs. Also, the recursion editor

provides guidelines in the production of new procedures by allowing the user to use existing

procedures or procedure schemata.

The definition of over and under-defined is presented as follows:

• An over-defined procedure consists of an inconsistent set of definitions. One example
of an over-defined procedure is the greatest common divisor of two integers X and Y

denoted as gcd(X,Y). This is defined as follows:

- gcd(X, X) = X
- gcd(X,Y)=gcd(X-Y,Y)

For example when X = 2 we obtain from the first definition of gcd that

gcd(2,2) = 2 and by using the second definition we get that gcd(2,2)= gcd(0,2).
Therefore this definition of gcd is over-defined because it provides two results for the
same combination of inputs.

• A procedure is under-defined if a legal combination of inputs/outputs has not been
considered in its definition. For instance, if we redefine gcd/2 as shown below. The
new definition of gcd/2 has the property of under-definedness for the case X = Y.
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X > Y then gcd(X, Y) = gcd(X — Y, Y)

X<Y then gcd(X,Y) = gcd(Y,X)

The recursion editor is not capable of defining all terminating and well-defined procedures.

The basic design of the editor limits it to procedures that can be shown to terminate by

induction on the recursive structure of their arguments. A predicate is defined by structural

induction: induction because it is defined recursively, structural because it is controlled

by the structure of its argument rather than by numeric values. Non-terminating and
over-defined procedures are guaranteed not to be generated by the recursion editor.

The user is presented with a basic schema or previously generated predicate and a menu of

editing commands. The user uses these commands to edit the schema or the old predicate
into the new predicate. Each time a command is selected and executed the schema will
be altered in a way that continues to guarantee its termination and well-definedness. The
recursion editor provides two basic schemata: non-recursive and recursive.

The non-recursive schema is defined as follows:

a($) ^ P($)

where a is the procedure being defined and /3 is a previous defined predicate. $ is a

parameter and ^ is an equivalence relation.

For the recursive schema the schema for primitive recursion described in Peter's book

[Peter 81] was used but was generalised to deal with data structures found in programming.
The primitive recursive schema is defined as follows:

/.(!>, 4) - *(4)
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where:
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• n is the recursive procedure being defined;

• v and £ are the procedures it is being defined in terms of:

• 0 is the recursion variable;

• $ is the parameter;

• b and jj are the constructor functions;

• is the constructor parameter;

• ^ is the equivalence relation.

This schema incorporates the following generalisations to work in Peter's book.

• The data structure of natural numbers has been generalised to one in which the base

constructor is b rather than 0 and the step constructor or recursive constructor is jj
rather than successor(s). This recursive schema jj has two arguments: 0 is the stan¬
dard recursion variable and $ is an additional parameter to represent constructors

such as [\H|0] that take non-recursive arguments. also needs to be a parameter of

(■

• The relation = has been generalised to any equivalence relation and is represented

by the symbol ^ .

The editor described by Bundy can be used for building recursive and non-recursive

Prolog procedures. This is done in two steps. Firstly pure logic definitions are

built using the editing commands and, secondly, these are compiled into Prolog.
For example consider the definition of remove_occurrences/3. This predicate re¬

moves all appearances of a specific item X from the head of a list, for example
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remove_occurrences(l, [1,1,1,1,5,8,10] , [5,8,10] ) where the first argument is the
item that will be removed and the third argument is the remainder of the list without all
the initial occurrences of the first argument. This example will be used in section 3.2.1.

The first stage is to start with the primitive recursive schema.

/.(b,*) ^ i/($)

/.(IK*,©),*) ^ «*,©,*,/.(©,*))

The second stage is to instantiate the primitive recursive schema with the following sub¬
stitutions: {remove-occurrences / //, [] / b, [_|_] / jj, H / "If, T/0, X / $ }

we then obtain:

remove-Occurrences([],X) ^ v(X)

remove-occurrences([H\T],X) ?=* £(H,T,X,remove-Occurrences(T,X))

removejocurrences needs three arguments, so the user should select the command add re¬

cursion argument. This command adds two new definitions for the new argument. There¬
fore after the use of the command we obtain:

remove.ocurrences([], X, b') ^ Vb(X)

remove.ocurrences([], X, 0')) ^ va(X, 0',remove.ocurrences([], X, 0')
remove-ocurrences([H\T], X, b') ^ £b(H, T, X, remove-Ocurrences(T, X, b'))
remove-ocurrences([H\T], X, 0')) ^

(s(H, T, X, 0', remove-ocurrences(T, X, 0'))? removejocurrences([H\T], X, 0'),
remove-Ocurrences(T, X, 0'))

Renaming the parameters

{ 0 / b', [-I-] / H / T / 0', } and { Ys / b'} for the third case,

we get the following definition:
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remove-ocurrences([], X, []) ^ Vb(X)
remove-ocurrences([], X, [H\T]) ^ us(X, H, T, remove-ocurrences([], X, T))
remove-ocurrences([H\T],X,Ys) ?=* 6(tf, T, X, remove.ocurrences(T, X, Fs))
remove.ocurrences([H\T], X, [-£f|T]) t=*

£S{H, T, X, H, T, remove-ocurrences(T, X, [H\T]), removejocurrences([H\T], X, T),
removejocurrences{T, X, T))

By removing arguments in the position indicated in the recursive schema, renaming and

inserting a new procedure in the body of the procedure which has been defined we get the

following definition:

remove.ocurrences([],X,[]) ?=* true

remove-Ocurrences([],X,[H\T]) ^ false

remove^ocurrences([H\T], X,Ys) r=± X = H,remove-ocurrences(T, X,Ys)

remove-Ocurrences([H\T],X, [H\T]) t=± X ^ H

Reordering the arguments, we have:

remove-ocurrences(X, [], []) t=* true.

remove-ocurrences(X,[],[H\T]) ^ false.

remove.ocurrences(X,[H\T],Ys) ^ X = H,remove-ocurrences(X,T,Ys)
remove-Ocurrences(X,[H\T],[H\T]) ^ 1 / f/

In short, this editor provides two schemata for construction of recursive and non-recursive

programs. This editor cannot supply information about which skeleton (control flow) and
techniques were used in the construction of the program because it does not distinguish
between flow of control and techniques during the program development. The use of this
editor requires considerable expertise on the part of the user; for instance in deciding which

parts in the schema need to be removed, where to insert a function, etc.
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In conclusion we can say that our composition system requires more than the informa¬

tion that this editor can provide as program history. However, this editor guarantees

termination and well definedness of the initial pair of programs, which is another required
characteristic in our composition system.

3.1.2 Gegg-Harrison's Schemata

Gegg-Harrison attempts to provide the novice programmer with a set of standard program

schemata for the construction of Prolog programs in the list processing domain. He defines
a language and groups together a set of programs that share common syntactic features
into a single schema. Such classes of programs exemplify general programming techniques.
For example, the method of recursively processing all elements of a list called schema_A

(defined in Chapter 2) is a programming technique. Note that in Sterling's terminology
schema.A is not a programming technique.

In his classification Gegg-Harrison defines fourteen basic high level schemata that cap¬

ture the majority of recursive list processing Prolog programs [Gegg-Harrison 91]. The
definition of this set of schemata is given in Appendix A. An example of a recursive list

processing problem is to move a specified element from one place to another place in a

list. Gegg-Harrison also suggests that it could be possible to incorporate this hierarchical
notion into a Prolog tutoring system which is currently under development. A set of ex¬

amples in which we use these schemata for the construction of a program is also shown in

Appendix A.

We believe that an editor based on Gegg-Harrison's schemata cannot be used in our en¬

vironment because, like Bundy's editor, there is no separation between control flow and

techniques.
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3.1.3 Barker-Plummer's System

28

Barker-Plummer defines a tool which allows programmers to define procedures by analogy
with existing generalised procedures called cliches [Barker-Plummer 90]. This generalised

procedure is a high level definition that includes control flow and arguments. The method
of programming using cliches allows programmers to write commonly occurring program

forms just once, but to reuse them in a variety of ways as they are needed in the program.

The instantiation of meta-symbols in a cliche varies from one use of the cliche to another.
The following piece of code has been taken from [Barker-Plummer 90] as an example of
a cliche. It traverses a list checking when the elements of the list meet the condition

defined in predicate Q/n. This example is written using the cliche language proposed by
Barker-P lummer.

$P/n universal($Q/n).
$P([],&Aux).
$P([HIT],&Aux) $q(H,&Aux), $P(T,&Aux).
$end_cliche$

The first line of the cliche definition is called the header. The header records the name of

the cliche. The name universal indicates the name of the main procedure has been defined,

where n is the arity of the predicate. Symbols prefixed by $ are cliche parameters. These
names can be instantiated to any predicate name. The cliche terminator is denoted by
$end_cliche$. An application of this cliche would be to define the predicate all_primes/1
which succeeds if the argument is a list of terms satisfying the prime/1 predicate. This

procedure is obtained by instantiating $Q to the prime/1 and $P to all_prime/l.

By writing the following instruction

all_primes/l universal(prime/1).

the system will generate the following program by performing the suitable instantiations
in the universal cliche.

all_primes([]).
all_primes([K|T]) prime(H), all_primes(T).
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The predicate prime/1 succeeds when its argument is a prime.

This approach taken by Barker-Plumer avoids having to rewrite similar procedures. For

example, if we wish to write a procedure which determines whether all members of a list

are even numbers, then we would write basically the same procedure as for all_primes/l
but with all_even instead of all_primes and replace the predicate prime/1 with even/1.

In short, Barker-Plummer describes a tool which allows the construction of Prolog pro¬

grams by instantiating existing generalised programs called cliches. These cliches are

similar to Gegg-Harrison's schemata, but written in a different notation. This approach
cannot provide a record of which skeleton and techniques were applied in the construction

of the program. The reason is that the control flow and techniques applied in the program

are indistinguishable.

3.1.4 Deville's Methodology

Deville presents a general schema for constructing logic programs [Deville 90] based on

induction over the structure of the data objects manipulated by the program. In this

methodology the development of a program is decomposed into several steps. The first

stage is the elaboration of a specification of the problem. The second stage is the con¬

struction of a logic description in pure logic from the specification, independent of any

programming language, and finally the third step deals with the derivation of a Prolog

program from the logic description.

In the elaboration of a specification, no particular programming language is imposed; the

specification of the problem is an informal description of a relation. At this stage the type

information provided is the directionality (uses) for which the program has to be correct,
and any side-effects are also specified. The second stage is the construction of what is called
a logic description from the specification of the problem. A logic description is a formula
in first order logic. This stage is also independent of the chosen programming language.
The logic descriptions can be transformed using fold/unfold transformations. Finally the
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last stage is the derivation of a logic program. This process starts with the translation

of the logic description into program clauses. At this stage an abstract interpretation or

data flow analysis (using type information and directionality) needs to be carried out to
determine the order of literals and clauses. An independent termination proof also should

be carried out. We consider the main phases of Deville's method in more detail below.

The Elaboration of a Specification

The information that is needed in this description is: type information, directionalities

(uses) for which the program has to be correct and, if a side-effect needs to be specified, it
will also be described in an extra part of the specification. For example, let us consider the

predicate del(X,L,Rest) which removes the first occurrence of X from the list L, giving the
list Rest. The elaboration for constructing of the predicate del/3 is shown in Figure 3.2.

In the specification, type information is explicitly stated in a relational and non-recursive
form. The conditions for the use of the predicate del/3 are described in the part called

directionality. They specify the allowed forms of actual parameters before the execution
of the procedure (input) and the form of the parameters after execution is also defined

(output).

Construction of the Logic Description

The general form of a logic description is described below. This is a closed well-formed
formula.

(\/X1VX2...VXn)(p(X1,X2,...,Xn) «=* Def)

with n > 0, Def is a formula and the symbol 4=> is a equivalence relation.

By convention the quantification VX; will be implicit. In the formula Def, free variables
(different from Xf) are allowed, and they are assumed to be existentially quantified.

The previous definition can be rewritten as follows:
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procedure del(X,L,Rest)

Type: X: term
L.Rest: list

Relation
X is ail element of L and Rest is the remainder of L without the

first occurrence of X in L.

Directionality
input(ground,ground,ground) output(ground.ground,ground)
input (ground,ground,no_ground) output(ground,ground,ground)

Figure 3.2: Specification of the predicate del/3

p{Xx,X2,...,Xn) <=> Ci&Fr
V C2 & F-2

V Cn & Fn

where Fx and Ci are formulae. All the free variables over the C; and F{ not appearing in

p(x) are existentially quantified over the definition part (right-hand side of the equivalence)
of the logic description. Each C\ & jF) deals with one of the various cases of the induction
parameter. Therefore each Ci will determine a possible case of the induction parameter,
while the corresponding F{ will verify that the relation holds in this particular case.

Following with the example del/3 described in Figure 3.2, the logic description is con¬

structed in several stages:

1. Choice of an induction parameter: Let L be the induction parameter.

2. Choice of a well-founded relation: h < /2 if only if h is a proper suffix of /2.
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3. Structural forms of an induction parameter (L) are given in C\ and C2.

• Cx: L=0

• C2: L=[H | T]

4. Construction of the structural cases

• For L = [] it is not possible to have the list Rest, which is the list L without

the first occurrence of X. Therefore F1 is false.

• For L = [H\T] there are two possibilities depending on whether or not H — X.

— For H = X then Rest = T because T is the list L without the first occur¬

rence of X.

— For H ^ X then Rest must be of the form [H\Temp] where Temp is the
list T without the first occurrence of X.

We obtain F2:

(H = X & Rest = T V H + Xk del(X, T, Temp) k Rest = [H\Temp])

According to the well-founded relation T < L when L is any ground list since T is a

proper suffix of L. Finally the constructed logic description is shown below.

del(X, L, Rest) <==>■
L = [] k false

V L = [H\T] k (H = X k Rest = T
VH / X k del(X, T, Temp) k Rest = [H\Temp})

where the variables H,T and Temp are existentially quantified on the right hand side of
this description.

Generation of the Logic Program

A logic program can be derived from the logic description. The logic description is firstly
translated into program clauses. For our example, the resulting clauses are:
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del(X, L, Rest) L = [H\T], H = X, Rest = T.
del(X, L, Rest) L = [if|T], Rest = [H\Temp], del(X,T,Temp), not(H = X).

The previous Prolog procedure can then be transformed into a more efficient version where

the parameter values that appear on the right-hand side have been substituted into the

left-hand side.

del{X,[X\T],T).
del(X, [H\T], [H\Temp]) del(X,T,Temp), not(H = X).

This is a proposed methodology for the synthesis of programs which works using a single
schema. Therefore it cannot provide the program history information that we require
in our composition system. In order to get this specific information an extraction of the

components (skeleton and the set of techniques) of the program is required.

3.2 Editors based on Skeletons and Techniques

In this section we present three approaches for building Prolog programs based in
the idea of skeleton and techniques as defined originally by Kirschenbaum et. al

[Kirschenbaum et al. 89]. Kirschenbaum et al. describe a methodology for building Prolog

programs using a skeleton and applying a sequence of techniques. This proposal makes a

separation between the flow of control and data flow. Therefore valuable information about
features of the program can be obtained from an editor which records pertinent parts of the

program development, for example, the initial control flow (skeleton) and the techniques
that the user applied in the construction of the program. The structural knowledge about
the program (obtained from an editor of this kind) might be difficult to extract from just
the program itself. Usually this knowledge is discarded, but in this thesis we illustrate that
in fact it can be very useful, or even vital, to retain it.

By using an editor of this kind the user starts the program construction process firstly by
finding the skeleton (perhaps from a menu of standard skeletons). At this stage the tech¬
niques editor might record the control flow which was selected. Secondly, the user chooses
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a technique which can be easily recorded. The composition system also uses information
about how the initial subgoals in the skeleton were transformed. So for each clause in our

skeleton, the techniques editor needs to record the transformed subgoals (predicate name

and variable names). In the case where a new clause is added to the initial flow of control,
this might be recorded in the list of mutant clauses in the program history. Also, this

techniques editor must be provided with a set of editing commands to allow flexibility in
the addition of new clauses or subgoals in programs already constructed, the renaming of

predicate names and variables, and the reordering of arguments.

Robertson's work is an implementation of an editor based on the notion of skeletons and

techniques as defined by Kirschenbaum et al. and finally Bowie's editor also is an editor

based on the notion of skeleton and techniques with slightly different notion of techniques.
We will conclude that an editor based on skeletons and techniques could provide the infor¬
mation that the composition system requires such as information about the flow of control

and the data flow. Currently, none of the two Edinburgh implemented versions of the

techniques editor [Robertson 91, Bowles 93] provide us with the knowledge required for
our composition system. However, an extended version of the techniques editor imple¬
mented by Robertson could be used to provide the required knowledge about the program.

3.2.1 Kirschenbaum et al.'s Approach

Kirschenbaum et al. [Kirschenbaum et al. 89] present the idea of stepwise enhancement
as a methodology to be used during program development to produce Prolog structured

programs. This method consists of developing a program by finding the suitable basic
control flow (skeleton). Once the skeleton has been determined, extra computations are

included by applying appropriate techniques to produce an extension. Separate extensions
can be combined to produce the desired program. The extensions can be regarded as

another skeleton permitting us to repeat the process until the final program has been
developed.

Sterling et al. [Kirschenbaum et al. 89, Sterling k Kirschenbaum 91] attempted to iden-
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tify and classify skeletons and they found that slight changes in the specification of the

program, such as changing the base case, leads in general to different skeletons. They
claimed that this volatile nature of skeletons makes it difficult for programmers to build

programs by using program schemata (in which skeleton and techniques are indistinguish¬

able). So, they said that a better approach is to have programmers decide the control flow

(skeleton) for their application and then using standard techniques, enhance the skeleton.

The most simple examples of skeletons which process lists are traverse, search,

short_traverse. The first skeleton traverses the entire list always. The second will either

traverse the entire list or stop when a condition is met and the third skeleton traverses the

list until what is being searched for has been found, and fails otherwise. In Appendix C
there is a set of skeletons defined in Kirschenbaum et al. [Kirschenbaum et al. 89]. This
list does not mean to be complete but shows three important categories for building Prolog

programs such as meta-interpreters, parsers and skeletons used for manipulating recursive
data structures.

Also Brnaet.al. [Brna et al. 91] have collected a set of programming cliches from textbooks
and by interviewing Prolog experts and they called them programming techniques. However
Kirschenbaum et al. differ in this classification because they consider these cliches of flow
of control as skeletons.

The following example is taken from [Kirschenbaum et al. 89]. Suppose we want to obtain
statistics such as the mode (most common element) and mean (arithmetic mean) of a list
of numbers during just one pass through the list. The mean can be computed knowing the
sum and the number of elements in the list which can be easily found using any method of

traversal. To simplify the example, we will assume that the input list is sorted. This means

the list can be easily broken down into sublists, with all elements in a given sublist being
equal, and no sublists having any elements in common. Finding the mode is then just a
matter of finding the sublist with maximum length. Furthermore, we can efficiently find
the sum of all elements by summing the contributions for each sublist. The contribution
from a sublist is just its length (which we already need for the mode calculation anyway)
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multiplied by an element of the sublist.

To build the program, we firstly prepare the basic_skeleton which will traverse the list be

effectively breaking it into the sublists. We then specialise this code in three distinct ways

to calculate each of the mode, sum (sum of all elements), and len (number of elements) in
the list. Finally we will combine the three resulting programs into a single program.

In order to prepare the basic skeleton we will build two intermediate skeletons: re-

movejoccurrences/3 and removeJen/4 which are described as follows:

The code remove_occurrences removes a block of occurrences from the head of a list within

a sequence. For instance, after executing remove_occurrences(l, [1,1,1,1,2,3,4] ,X)
X will be instantiated to X=[2,3,4]. Note that the predicate remove_occurrences/3 only
removes a block of occurrences from the head of the list, otherwise the list is unchanged.

The procedure remove_occurrences/3 can be constructed by using the short ..traverse

skeleton which will either traverse the entire list or stop when a condition is met (see

Appendix C).

short_traverse(X,[]).
short_traverse(X,[X|Xs])

short_traverse(X,Xs).
short_traverse(X,[Y|Xs])

\+ X= Y.

Finally, we can get the definition of remove_occurrences/3 by applying the build tech¬
nique and by renaming the predicate. The build technique adds an extra argument to
the defining predicate and adds an extra computation in the body to relate the object
constructed from the body to the final object in the head of the clause.

remove_occurrences(X,[],[]).
remove_occurrences(X,[XlXs],Ys)

remove_occurrences(X,Xs,Ys).
remove_occurrences(X,[YIXs],[YIXs]) :-

\+ X=Y.

Now recall that in order to calculate the mode we needed the length of the sublists, hence
we extend skeleton remove_occurrences using the technique count to produce remove_len.
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The predicate remove_len/4 removes a given block of occurrences of an item, X, from the
head of a list; returning the remainder of the list and the number of times X was found

in the list. That is, the definition of remove_len/4 is obtained by applying the technique
count to the extension remove_occurrences

count (remove_occurrences) =

remove_len(X, [],[],<>).
remove_len(X,[X|Xs],Ys,N)

remove_len(X,Xs,Ys,N1),
N is Ml + 1.

remove_len(X,[Y|Xs],[YlXs],0)
\+ X=Y.

The above piece of code for remove_len/4 will now be inserted into a skeleton in such a

way that we process the list in chunks (i.e. in terms of the sublists discussed earlier). This

gives

basic_skeleton([]).
basic_skeleton([XIXs] )

remove_len(X,[XlXs],Ys,N),
basic_skeleton(Ys).

Given the above basic_skeletonfor traversing the list, we now extend it in three different

ways and then as a last step we will combine these to get the final program.

The mode is obtained by keeping track of which sublist had the maximum length. This
can be done by applying the technique, calculate, to the basic_skeleton. (Recall that the
calculate technique adds an extra argument in the skeleton and an extra arithmetic subgoal
to the body of each recursive clause to relate the calculation from the body to the final
result in the head of the clause, see also Appendix D.)

mode = calculate(basic_skeleton)

mode([],0,Mode) .

mode([X|Xs].Multiplicity,Mode)
remove_len(X,[X|Xs],Ys,N),
mode(Ys,Nultiplicityl,Model),
max(Multiplicityl,Model,N,X,Multiplicity,Mode).

max(X,A,Y,B,X,A) X >= Y.
max(X,A,Y,B,Y,B) X < Y.
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For example, given the query: mode([l,1,1,1,2,2,3,4],Multiplicity,Mode), Mode is instanti¬
ated to 1.

The sum of the elements of the list is obtained by adding the values of elements of the
sublist Ys (the remainder of the list) plus the number obtained by multiplying N*X, where
N is the number of times that X occurs in the list and X is the value of the element X.

These results are calculated by the extension summ. The extension summ is obtained by

applying the technique calculate to the basic_skeleton.

The definition of the extension summ is:

summ = calculate(basic_skeleton)

suitun( [] ,0).
summ([X|Xs], Sum)

remove_len(X,[X|Xs],Ys,N),
summ(Ys,Suml),
Sura is Suml + N*X.

The length of the list is obtained by calculating the length of the sublist Ys (the remainder
of the list) plus the number of times that X was removed from the list. This is done by the
extension len which is obtained by applying the technique calculate, to the basic_skeleton.

len = calculate(basic_skeleton)

len([] ,0).
len([XIXs].Length)

remove_len(X,[X|Xs],Ys,N),
len(Ys.Lengthl),
Length is Lengthl + N.

These three extensions: mode, summ and len are independent of each other but share the
same common basic_skeleton. This means that it is indeed possible to combine them and

get the final program mode_summ_len/5 which calculates the mode, the sum of the elements
of the list and the length of the list:
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mode_summ_lexi([] ,0,_Mode,0,0).
mode_sunun_len([X|Xs].Multiplicity,Mode,Sum.Length)

remove_len(X,[X|Xs],Ys,N),
mode_summ_len(Ys,N1.Model.Suml.Lengthl),
max(Nl.Model,M.X,Multiplicity,Mode),
Sum is Suml + N*X,
Length is Lengthl + N.

This approach is suitable for our methodology for combining programs based on the pro¬

gram history. In Kirschenbaum et al.'s approach there is a clear separation between control
flow and techniques and these appear explicitly as editing operations. Then, information
about how the program was constructed can be recorded in our program history using an

editor based on the notion of skeletons and techniques.

An editor based on this approach requires the selection of the control flow and a set of

techniques for developing the program. This is not an easy task for Prolog beginners.
In Bundy's approach we do not have this problem because the editor only provides two

schemata (recursive and non-recursive schema). However, Bundy's approach requires a

higher level of sophistication in controlling how these are used.

3.2.2 Robertson's Techniques Editor

Besides the editor by Bundy, the Edinburgh group has also been working in programming

techniques trying to show how techniques can be useful for Prolog programming environ¬
ments and in teaching Prolog programming skills. In this and the following section we only

present the work related to the techniques editors. However in [Bowles et al. 94] there is a

complete description of the work has been done to apply Prolog programming techniques
to various stages of program development such as: in automatic analysis of the programs,

in a Prolog tracer and in program transformation.

Robertson implemented a simple Prolog techniques editor with the purpose of helping
novice programmers in initial programming tasks. The editor is based on the notion of
skeletons and techniques described in [Kirschenbaum et al. 89]. The difference between
the operation of Kirschenbaum's idea and Robertson's techniques editor is that in the
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first system programs are constructed by applying techniques independently to a skeleton,

obtaining several program components and finally merging these components together to
obtain the final program. The second system works by maintaining a partial program, to
which each technique/elaboration is applied to produce a linear sequence of development.
Both approaches work under the supposition that the application of the technique does
not affect the control flow of the skeleton.

This system suggests some possible instantiations of variables (in elaborations) for each
clause. For some simple predicates it is also possible to use the system in 'auto' mode, in
which the system completes the valid conditions of the predicates without user interaction.
This characteristic is not offered by the other editors presented in this thesis.

This editor is a simple prototype which is based on Kirschenbaum et al.'s approach to

techniques and skeletons. It can provide the information required in the program history.

This prototype must be extended in order to allow the programmer to apply editing com¬

mands such as include new clauses in the program, add new subgoals in the program, etc.

It could also be adapted to record the program history.

3.2.3 Bowles' Editor

The editor, named Ted, was implemented by Bowles and is also targeted at novices. Ted

helps novices to learn Prolog by providing convenient patterns with which to construct

programs, and allows the process of combining these patterns and learning in what cir¬
cumstances they are appropriate [Bowles 93]. This editor uses a different approach to

techniques to that of Kirschenbaum et al. In Bowles' approach techniques, for example,
are local to clauses rather than applying across whole predicates. Ted provides a syntax
editor consisting of a point-and-click interface supplemented with a set of edit operations
which allow a technique to be applied to a clause. Both these editors (Robertson's and
Bowles' editors) allow techniques to be included into programs in a simple way. In Robert¬
son's editor, techniques are considered as software components which can be incorporated
into a general control flow defined by skeletons, and therefore apply across whole predicate
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definitions, whilst in Ted techniques are viewed at a clause level.

This editor, as with Robertson's editor, could to be extended in order to record the infor¬

mation of the program history, although the clause-level manipulations used by Ted would
make this a little more difficult than with Robertson's editor.

3.3 Conclusions

Through this chapter we present approaches based on program schemata and editors based

on the notion of skeletons and techniques. The first group does not provide the kind of

information that the composition system requires such as flow of control and data flow.

The second group of editors (based on the notion of skeleton and techniques) makes clear

separation between the flow of control and the data flow. So, provided that users can use

the editing operations of these systems, no extra work needs to be performed to obtain the

program history.

The Edinburgh group have implemented two different editors in this style. One of them

(implemented by Robertson) is a version which embodies the idea of skeletons and tech¬
niques defined by Kirschenbaum et al. The other editor, also implemented at Edinburgh
University, called Ted uses a slightly different definition of techniques than the definition

given by Kirschenbaum et al. Either of these editors could both provide the information
that our composition system requires although the clause-level manipulation used by Ted
would require more re-adaptation than with Robertson's editor.



4

The Composition Problem

This chapter presents related work on the composition problem. Firstly, we present sev¬

eral approaches to the composition problem in procedural languages. Secondly, we show
transformation systems for functional languages based on the standard transformation op¬

erations such as unfold/fold operations and, finally, the last part of this chapter gives a

description of the composition problem in logic programming languages.

Figure 4.1 shows the solutions to the composition problem for different paradigms of pro¬

gramming languages.

Much work has been done on combining a pair of programs with exactly the same flow
of control in different paradigms of programming languages such as procedural, functional
and logic programming languages. However none of them is sophisticated enough to allow

major decisions in the combination process to be taken automatically by the system.

The features that we would like to provide in our combining system are as follows:

• Reduce user interaction, ie. the main decisions should rely on the system and not the
user. For example, the selection of the order in which the transformation operations
need to be applied should be decided by the system.

• Offer the system to people without any specialist knowledge in program transforma¬
tion.

42
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Figure 4.1: Composition Problem Solutions

• Allow the transformation of realistically sized Prolog programs.

• Allow the combination of programs with either the same or different flow of control.

4.1 Composition in Procedural Languages

The development of a large system of software involves many people doing extensions and
modifications to the system that need to be co-ordinated to ensure correctness. Therefore
an automatic method for merging two versions of a program that guarantees correctness of
the result becomes important in software development. There have been several attempts
at producing tools which help in the integration of programs. In environments like Unix
we have tools such as source control code systems(SCCS) which support features of merges



4. THE COMPOSITION PROBLEM 44

of independent updates to a program. An SCCS system automatically merges a number
of updates to a source text, treated as an uninterpreted text string, and the conflicts are

reported where there is overlap of modified substrings.

Berzins characterises the semantics of the merged program in terms of the semantics of the

original programs, and gives several rules for constructing a semantically correct merged

program [Berzins 86]. He examines the problem of combining independent updates to a

program in the context of applicative programs. An applicative program consists of a set

of recursive function definitions and an expression to be evaluated. Function definitions

have the form name (parameters)=expression. The expression to be evaluated can be a

constant, a variable, a function application or a conditional expression. Berzins limits his

approach to program extensions and does not include program modification. A program

extension extends the domain of the partial function without altering any of the initially
defined values, while a modification redefines values that were defined initially. In Berzins'

approach a program that results from merging two programs A and B preserves the be¬
haviour of both. A and B cannot be merged if they conflict at any points where both are

defined.

The result of merging two programs is a set containing a definition for each function

appearing in either of the programs where functions are matched by name. If a function
appears in one of the programs but not in the other, it will appear in the merged program

unchanged. If the same function appears in both programs, but with a different number
of arguments, a syntax error should be reported. Otherwise, the formal parameters of
one function are renamed if necessary to make the formal parameters of both definitions

coincide, and the expressions in the bodies of the two definitions are merged in order to
produce the body of the function in the merged program. However the paper does not
describe in detail how the bodies are merged.

We avoided Berzins approach, due to the fact that it is restricted to combining programs

with the same number of arguments. Consequently it does not provide the flexibility that
our composition system requires, which is essential in order to allow the user to construct
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more complex programs.

Horwitz et al.'s approach is more similar to our work because they merge programs by

integrating extensions (variants) of an initial template [Horwitz et al. 88]. Their approach
is restricted to a limited class of programs. The types of programs which can be merged are

those which contain expressions containing only variables and constants, and in which the

only statements used in the programs are assignment statements, conditional statements

and while-loops. They present an algorithm integrate that takes as input three programs

A, B and a program Base, where A and B are the two variants of Base. The output for
the algorithm integrate is the new program M which integrates A and B with respect to

Base, unless it is detected that the changes made to Base to produce A and B interfere.

For program integration, program dependence graphs (PDG's) are used because it is
claimed that this representation captures only relevant orderings of statements within
control structures and because program dependence graphs are a suitable representation
for program slicing [Horwitz et al. 88]. A slice of a PDG with respect to variable x is a

graph containing all vertices on which x has a transitive flow or control dependence (i.e. all
the vertices that can reach x via flow or control edges) [Horwitz et al. 88]. Further details
are defined in Appendix I.

To illustrate, we will consider the program main defined below, which sums integers from
1 to 10 and leaves the result in the variable sum. The program dependence graph cor¬

responding to this example (see Figure 4.2) was designed with the following convention:
the boldface arrows represent control dependence edges; dashed arrows represent def-order
dependence edges; solid arrows represent loop-independent flow dependence edges; solid
arrows with a perpendicular mark represent loop-carried flow dependence edges.

The program which computes the main is shown as follows:

sum := 0;
x:= 1;
while x < 11 do

sum := sum + x;

x := x + 1

od
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Figure 4.2: An example program

In Figure 4.2 the program main has two variables x and sum, so for each variable we have

an initial state node and a final use node. There are several edges represented. All the

edges labelled true are those edges which are not subordinate to any control predicate.
There is a control dependence edge from a distinguished vertex from which the control flow
starts called the ENTRY to each of the nodes which are not subordinate to any predicate.
For instance, we have edges from ENTRY to sum:=0, from ENTRY to x:=l, from ENTRY to

while x<ll, from while x<ll to sum:=sum+x and finally from while x<ll to x:=x+l.

This graph also has def-order dependence edges from vertex sum: =0 to sum: =sum+x because
both vertices are defining the same variable and for the same reason we have a def-order

dependence edge from x:=l to x:=x+l.

There are loop-independent flow dependence edges from vertex sum:=0 to sum:=sum+x;

from sum:=0 to f inalUse(sum); from x: = l to finalUse(x); from x: = l to sum:=sum+x,

from x=l to sum:=sum+x and from sum:=sum+x to f inalUse(sum). There is an edge from
the definition of the variable to every place in which the same variable is used.

Finally in the graph we have loop-carried flow dependence edges from x:=x+l to while
x<ll and in the vertex sum:=sum+x and vertex x:=x+l. These are both enclosed in a loop.
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Figure 4.3: The program dependence graph for variant A

We now consider two variants of the main program. In variant A, two statements have been

added to the original program to compute the product of numbers from 1 to 10. The set

Da,Base contains three extra vertices (ie. the assignment vertices labelled prod : = 1 and

prod := prod*x and f inalUse(prod)). The program dependence graph corresponding
to this variant A is in Figure 4.3, which is similar to the previous graph the difference

being that this graph includes the new instructions in the program Variant A.

Variant A

prod := 1;
sura := 0;
x := 1;
while x < 11 do

prod := prod * x;
sum := sum + x;

x := x + 1

od

In variant B one statement has been added to compute the mean of the 10 integers.

The program dependence for Ds,Ba«e contains two more vertices than the program base:
the assignment vertex labelled mean := sum/10 and the f inalUse(mean). The program

dependence graph corresponding to this variant B is in Figure 4.4.
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Figure 4.4: The program dependence graph for variant B

Variant B

sum := 0;
x := 1;
while x < 11 do

sum := sum + x;

x := x + 1

od

mean := sum/10

The two programs variant A and variant B represent extensions of the original program
that computes the sum of 10 integers. We now show how to merge the program depen¬
dence graphs of two variants (extensions) so that the differences between the behaviour of

program Base and its variants are preserved.

Two programs enhanced from a program Base are merged by merging their program de¬

pendence graphs. The merge process is done using the changed behaviour in program A
that is characterised by the slice Ga/Da,Base (which captures the computation threads of
A that differ from those in Base) and slice Gb/Ds,Base (see Figure 4.5 and 4.6). Therefore
the merged graph Gm shown in Figure 4.8 should be formed from the elements of Ga that
contain the changed behaviour of A, the elements of Gb (that characterise the changed
behaviour of B) and the elements from Gsase that characterise the common unchanged
behaviour (Base program).
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Figure 4.5: The slice GA/DA,Base

Figure 4.6: The slice GB/DB,Base

Gm = (Ga/Da,Base ) U (Gb/db,Base) U (Gbase /(Da ,Base G DB,Base))

where the slice Ga/Da,Base is the changed behaviour in A, the slice Gb/Ds,Baae char¬
acterises the changed behaviour in B and the slice GBa.se/(Da,Base H Ds}Base) represents
the behaviour that is preserved in both A and B. This program slice is shown in Fig¬
ure 4.7. The union of slices from Figure 4.5, Figure 4.6 and Figure 4.7 gives the program

dependence graph Gm-

Program slicing is used in the algorithm integrate to determine the changes in the behaviour
of each variant with respect to the Base program. Programs A and B interfere if a merged

program dependence graph, Gm (that can be created using the algorithm integrate) cannot
show the changed behaviour of the two variants A and B. This may happen if it is possible
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Figure 4.7: The slice which represents the behaviour that is preserved in both A and B

that Gm will not preserve the differences in behaviour of A or B with respect to Base, or

because the union of two feasible PDG's is not a feasible PDG.

The last stage of the integration method is to produce the merged program from the merged

program dependence graph. Given a program dependence graph Gm (see Figure 4.8)
that was created by merging non-interfering variants A and B, the procedure defined
with this purpose (called reconstitute program) must decide if Gm is feasible, and will
then produce the corresponding program. The operation reconstitute-program creates a

program corresponding to the program dependence graph Gm by ordering all vertices,
otherwise it discovers that Gm is infeasible. Gm is infeasible if the vertices in a subtree

rooted at v cannot be ordered.

Merged program

prod := 1;
sum := 0;
x := 1;
while x < 11 do

prod := prod * x;
sum := sum + x;

x := x + 1

od

mean := sum/10
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Figure 4.8: The graph Gm

Horwitz et al.'s proposal combines programs efficiently if they have been derived from an

initial generic template. However this approach is very restrictive. Only programs which
can be merged are those which contain expressions containing only variables and con¬

stants, and in which the only statements used in the programs are assignment statements,
conditional statements and while-loops. It needs to be extended to handle other program¬

ming language constructs, such procedure and function calls, break statements and I/O
statements.

Another approach to the composition problem in procedural languages is the use of the

theory of flowcharts. This approach was developed by Elgot [Elgot 70]. He defined a

graphical approach which consists of the combination of atomic flowcharts such as if-then-

else, statements, etc. He describes the composition of two schemata using the standard
definition of composition of two functions.

The following example taken from [Elgot 70] shows the composition of two program

schemata using flowcharts (see figure 4.9). In the figure program P was constructed
using the schema if-then-else in which b is a boolean expression and A is T or F and A is
the other.
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Let ft : X —► X x {r,F} be a function satisfying the following definition:

ft(x) = (x,b(x))

where T is true and F is false. This function represents the if-then-else flowchart. This

function ft will be used in the combination of program P and program Q.

In the same figure (figure 4.9), the program Q is constructed by using statement schemata
r and s. These schemata can be represented as functions such as r, s : X —► X where X

is any set. We use the function ©, called OR-exclusive,

(r®s):Xx {T,F} —> X

and defined by

(r © s)(x, T) = r(x) or (r (B s)(x, F) = s(x)

where x 6 X. That is, it selects the first or second function according as to whether the
second argument is true or false.

The composition of program P and program Q can be represented as a function 7 defined
as follows:

7(0;) = (r © s) 0 ft(x) = (r © s)(/?(a;))

This function is the composition of two functions: OR exclusive denoted by (r © s) and
function ft where the symbol o denotes the combination operator. Then the combined

program is formed from the composition of the functions ft (representing if-then-else) and
OR exclusive (statements r and s). The graphical representation of this combined program
using flowcharts is shown in figure 4.9.

In short, Elgot presents a flowchart approach in which simpler programs are constructed by
interconnecting atomic parts such as if-then-else statements by associating each program
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^exitCF^
-*■ ^exk^T^

Program Q

begin A

begin A

Figure 4.9: Composition of Program Schemas in Procedural Language
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as a function. He claimed that more complex programs can be obtained by composing the
functions in the usual way.

In our opinion this approach is restricted to combining very simple program flowcharts
and so does not go very far. In particular, it is unlikely that users would want to com¬

bine flowcharts such as the one presented above. Besides being very restricted, it is also

impractical because the function which performs the flowchart combination needs to be

defined by the user, and this becomes much more complex after each performance of the
combination process.

4.2 Transformation Systems for Functional Lan¬
guages

Burstall, Darlington, Sato, Lakhotia and Sterling and other researchers in the field have

found that program transformation is useful as a methodology for program development.
A wide range of programming systems make use of program transformation as part of their

operation. Program transformation has been used to improve the efficiency of a program

automatically. A second use of transformations is in program synthesis: the generation of

programs from a specification of the problem. Finally, a third use is in program adaptation:

adaptation of a program written in one language to a related language with different

primitives [Partsch & Steinbruggen 83, Rich & Walters 86].

Burstall and Darlington developed a system for the transformation of programs written in
a functional language based on recursive equations. They define transformation rules: def¬
inition, instantiation, unfolding, folding, abstraction and laws of primitives (associativity,

commutativity). These rules preserve partial correctness, that is that the new equation may
not terminate in some cases when the original equations did [Burstall &; Darlington 77].

The method used by Burstall and Darlington [Burstall & Darlington 77] consists of the
repeated application ofmanipulations to recursion equations to produce modified recursion
equations. The idea is to start with a very simple and hopefully correct program, then to
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transform it into a more efficient one by altering the recursion. The system works by using

unfolding/folding rules, and proposes folding operations that the user accepts or rejects,

asking for an alternative. The user must supply equation definitions, and also provide,

translation rules according to the data structures of the programs. For example, the

associativity rule can be applied to relations such as addition over numbers, concatenation

over lists and union over sets. Another requirement of the user is to give explicit reduction

rules. Examples of programs that have been tested on Burstall and Darlington's system

are: algorithms for computing Fibonacci numbers and cartesian products.

For example, consider the program f which traverses a binary tree and computes the sum of

its tips (which are the values assigned to the leaves), and g which computes their product.
The task is to build a program which computes both of them at once. We assume a tree is
either a tip or a tree consisting of two trees (tree and tip are the constructor functions).

[1] f(tip(x)) 4= x given
[2] f(tree(x,y)) 4= f(x) + f(y) given
[3] g(tip(x)) 4= x given
[4] g(tree(x, y)) 4= g(x) * g(y) given
[5] h(x) 4= < f(x),g(x) > given
[6] h(tip(x)) 4= < f(tip(x)),g(tip(x)) > instantiation

4=<x,x> unfolding 1,3
[7] h(tree(x,y)) 4= < f(tree(x,y)),g(tree(x,y))> instantiation

4= < f(x) + f{y),g(x)*g\y) > unfolding 2,4
4= < u + v,w * t >
where < u,w,v,t > = < f(x),g(x), f(y),g(y) > abstraction
4= < u + v,w * t >
where « u, v >, < w, t » = < h(x), h(y) > folding with 5

Equations 1 and 2 define program f and, similarly, the equations 3 and 4 define program

g. Definition number 5 is the join specification. Equation number 6 is obtained by instan¬
tiation of the join specification. The right hand side in number 6 is arrived at by applying
the unfold operation to 5 using the definitions 1 and 3. Equation number 7 is obtained
by instantiation of the join specification in 5. The equivalence of the right hand side of
equation number 7 is the result of the application of the unfold operation using equations
2 and 4 and, finally, the last equivalence of the right hand side of equation 7 is obtained
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by applying the fold operation using 5.

The main characteristic of Burstall and Darlington's system is that it requires a consider¬
able amount of user guidance in the transformation of the program as the size of programs
increase. The order in which the transformation operations are performed is vital in the

transformation of the program. A wrong selection order might produce a non-efficient
combined program. In conclusion we can say that the user needs to make numerous de¬

cisions, so he needs to have a good knowledge of the transformation process in order to
make the right choices.

The ZAP system developed by Feather in [Feather 78] is based on the Burstall and Dar¬

lington system. The system was designed with the purpose of supporting large-program
transformation. The principle of the system is the fold/unfold method as in the Burstall

and Darlington system and the input target language is the same as the previous Burstall

and Darlington system, NPL. The difference between ZAP and Burstall and Darlington's

system is that in this system the user can write meta-programs to be applied to NPL

programs, and therefore to direct the transformation of these programs at this high level.

ZAP also can be seen as a system which only verifies the expected answer (i.e. it can be
used as a checker). However the most interesting characteristic is that the user can define
approximately the answer that he requires and the system will fill in all the details of the
answer. The way in which this is achieved is to include in the pattern $$ symbols which
the system will match to portions of expressions. In the example defined using ZAP's

commands, we gave to the system the following pattern:

$$ (A,B,C,D,N,f(A,B,C,D,N))

indicating that we expect an answer containing a call to f(A,B,C,D,N); expressions
involving A,B,C,D and N formed with functions +, * and sub; constructors such as

successor (succ) and constants such as 0. See the dialogue with ZAP system shown later
in this section.

The user must provide rewrite rules and auxiliary function definitions. In the case that a
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user wants to make a transformation, the ZAP language allows the user to define context

rules and definitions which are to be available. ZAP also allows the user to specify the

goal of the transformation as a schematic pattern telling the general form of the recursive
definition required.

To give an idea to the reader how the dialogue with ZAP is performed, consider the ex¬

ample that computes the scalar product of two vectors. The process of definition using

the commands of the ZAP system is presented below, where comments are represented

in square parentheses. The function sub allows access to components of vectors (i.e.

(X sub succ N) * (Y sub succ N) is the same as x[N + 1] * y[N + 1]), and succ is
the constructor function successor.

START

DEF [give here NPL definitions for f and dot (functions used for computing the
scalar product of two vectors]

dot(X,Y,0) 4= 0

dot(X, Y, succ N) 4= dot(X, Y,N) + X sub succ N *Y sub succ N

f{A,B,C,D,N) <= dot(A,B,N) + dot(C,D,N)

END

CONTEXT

UNFOLD f dot [declare that f and dot are to be used in

unfolding operation]

USING + * sub f [state which functions are permitted in the

transformed equations]

LEMMAS ASSOCIATIVE + [declare + to be associative]

LEMMAS IDENTITY + 0 [declare 0 to be identity for + operation]
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TRANSFORM [After creating context redefine f]

GOAL f(A,B,C,D,0) [expressions following GOAL will be the

left-hand sides of the new equation f]

GOAL f(A,B,C,D,succ N) $$ (A,B,C,D,N,f(A,B,C,D,N))

END

DELETE f(A,B,C,D,N)

END [to end the transform block]

STOP [to exit from the system]

In the first stage we define the functions f and dot in NPL. The system will try to transform
the left-hand sides provided in GOAL, then f(A,B,C,D, 0) expands to 0 (by unfolding
and applying reductions) which is a constant. The equation f(A, B, C, D, 0) 4= 0 has thus
been found.

f(A, B, C, D, succ N) unfolds to

dot(A, B, N) + (A sub succ N) * (B sub succ N) + dot(C, D, N) + (C sub succ N) *
(D sub succ N)

Because the last definition contains the function dot, it is not acceptable as the answer

(this is defined in the instruction USING), so the system asks for a pattern which in this
case should be the following pattern:

f{A,B,C,D,N) + (A sub succ N) * (B sub succ N) + (C sub succ N) * (Dsub succ N)

A pattern is the right hand side of the equation. This is defined by the user and is defined

according to what the user expects as an answer. This definition requires knowledge about
the transformation process, and this knowledge needs to be provided for each specific

example. After this pattern is presented to the system, the system will check that this
unfolded expression is equal to the unfolded left-hand side. Because that is the case, the
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new equation formed by this as right-hand is added.

The ZAP's dialogue requires a good understanding of how to transform the programs.

Even when ZAP has less user interaction than the NPL transformation system developed

by Burstall and Darlington it still requires knowledge about program transformation to be

supplied by the user. For this system the user is required to give the following information:

• A list of equations which define the programs to be transformed, and any auxiliary
definition required for the transformation process.

• A list of lemmas to be used as rewrite rules (written in equation notation) and
definitions of the function properties such as associativity, commutativity, etc.

• A list of all the properly instantiated left hand sides of the equations on which the

user wants the system to work.

4.3 Composition in Logic Programming Languages

In this section we describe several approaches to the combination problem in logic pro¬

gramming languages: Lakhotia and Sterling's approach based in standard transformation

operations, Proietti and Pettorossi's algorithm based in Tamaki and Sato's definitions for

unfold/fold [Tamaki k Sato 84] (for further details on Tamaki and Sato's work see Ap¬

pendix E) and Fuchs and Fromherz's approach based in transforming program schemata.

1. Lakhotia and Sterling created several methods for combining Prolog programs. Their
earlier work was to develop the join 1-1 method [Lakhotia k Sterling 87]. This al¬

gorithm composes programs by performing clausal join of corresponding clauses.
Clausal join does not compose subgoals that have local variables in their arguments.
The join 1-1 method only combines programs with the same flow of control.

Also Lakhotia and Sterling describe in [Lakhotia k Sterling 87] another method
called the procedural join which combines all the possible pairs of clauses. This
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method does not impose any restrictions like the previous one. Again, this method

only combines programs with the same flow of control.

Later Sterling and Kirschenbaum describe an algorithm which does not have the
limitation of clausal join [Sterling & Kirschenbaum 91]. The problem is solved by

using extension relationships which must be provided by the user. However, providing
these extension relationships require a good understanding of a skeleton classification.
In particular, the user needs to compare the flows of control between the skeleton

and each of the programs to be combined, identify if one program is derived from
a particular skeleton and then be able to match the inherited components (between
skeleton and program). Furthermore, given two arbitary programs it may generally
not be possible to determine if there is a relation of extension between them.

The basic operation in their algorithm is the composing of pairs of clauses. This oper¬

ation is restricted to combine only corresponding clauses. The composition algorithm

composes the heads of clauses and their bodies with respect to a join specification.
As the previous join 1-1 method, this method only combines programs with the same

flow of control which are extensions of the same skeleton.

In Chapter 6 we show how we have reimplemented the join 1-1 method and the

procedural join. These methods are suitable for combining some classes of programs
in our classification schema.

2. The Proietti and Pettorossi's algorithm is based on unfolding, folding and addition
of new join specifications [Proietti & Pettorossi 92]. The main characteristic of the
algorithm is that it eliminates unnecessary variables. This algorithm requires three
actions which need to be defined by the user: the introduction of a set of join

specifications for the folding step, selection of the calls in the body of the clauses for
unfolding stages and choice of arithmetic laws to be applied.

For example consider the programs get_odd/2 and count/2. The program

get_odd/2 extracts odd numbers from a list, and count/2 counts the number of
elements in a list.
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3:

4: count(C],0)
5: count([H|T], Count)

count(T,Cl),
Count is Cl+1.

get_odd( [] , []).
get_odd([HlT], [H|0])

odd(H),
get_odd(T, 0).

get_odd([H|T], 0)
even(H),
get_odd(T, 0).

A new program count_odd/2, which extracts the odd numbers and computes the

length of the list at the same time, is generated by using the join specification defined
as follows:

6: count_odd(L, C) get_odd(L, 0s), count(0s, C).

Firstly, we apply the unfold operation to the definition of get_odd/2 in count_odd/2:

7: count_odd( [], C)
count([], C).

8: count_odd([H|T], C) :-
odd(H),
get_odd(T, 0s),
count([HI 0s], C).

9: count_odd([H|T], C) :~

even(H),
get_odd(T, 0s),
count(0s, C).

After unfolding the call count/2 in clause 7 by using clause 4 we obtain the following
clause:

10: count_odd([], 0).

By folding clause 9 using clause 6 we get the clause shown below. At this stage no

new join specification is required:

11: count_odd([H|T],C) :-
even(H),
count_odd(T,C).

A new join specification newl/3 must be introduced by the system in order to con¬

tinue transforming the program. The new join specification is shown as follows:
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D: newl(H,T,C) odd(H), get_odd(T, Os), count([HIOs], C) .
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Clause 8 is folded by using the new join specification newl/3 giving the following
clause:

8f: count_odd([HIT], C) newl(H,T,C).

Unfolding the call count/2 in clause D, we obtain the following clauses:

£>i: newl(H,T,C) odd(H), get_odd(T, Os), count(0s, CI), C is Cl+i.

The selection of which subgoal is unfolded in the new join specification (clause D)
requires user interaction. In order to do this task the user needs to have some

knowledge of program transformation. In clause D the user has two options: to

unfold the call get_odds/2 or count/2. The wrong selection of which subgoal need
to be unfolded could cause the generation of inefficient combined program.

The fold operation is applied in clause D\, obtaining the following clause:

D2: newl(H,T,C) odd(H), count_odd(T,Cl), C is Cl+1.

At this stage the resulting program consists of clauses 10, 11, 8f and D2.

A final simplification step is done by unfolding transient predicates, like newl/3.

Unfolding newl/3 in clause 8f give us the following clause:

Z?3: count_odd([H|T],C) odd(H), count_odd(T,Cl), C is Cl+1.

Finally, the resulting combined program is formed by clauses 10, 11 and D$.

This method produces efficient combined programs but requires user interaction at

important stages of the composition process, such as to choose which call in the new

join specification D is unfolded. This algorithm is not making use of any information
concerning the control flow of the program or techniques used in it.
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3. Another approach to the composition problem is the work developed by Fuchs and
Fromherz [Fuchs & Fromherz 91]. The combination of programs is done by trans¬

forming input program schemata into output schemata. Each transformation schema

represents one transformation strategy, for instance a sequence of unfold and fold op¬

erations. This process is performed in three stages: abstraction of the programs to a

program schemata, selection of a transformation schema with this schema as input
and a suitable schema as output, and finally specialization of the output schema to the
transformed program. User interaction is required during the selection stage, which

requires that the user concentrates on the form of the input and output programs.

• Abstraction. For each program Pi we find a program schema Si which abstractly
describes Pi. This abstraction produces a set of substitutions 0,- for schema

variables, and the literals A,- are abstracted to the abstract literals Gi.

• Selection. A transformation schema transforms the set of abstract terms

{5i/Gi,..., Sn/Gn} into an abstract term S/G. However, if there are several
transformation schema which have {Si/G\,..., Sn/Gn} as input then we need
to select the transformation schema which generates the desired output program
schema S, together with an abstract literal G.

• Specialization. We apply the substitution 0 = 0i,... 0n to S/G in order to get
the transformed program P = S9 and the transformed literal A — GO.

For example, consider the predicate sum/2 which computes the sum of the elements
of a list and the predicate count/2 which computes the number of elements in a list.
These programs are shown as follows:

sum( [] ,0).
sum([H|T],Sum)

sum(T,Sumi),
Sum is Sum! + H.

count ( [] ,0) .

count([HIT],C)
count(T,CI),
C is CI + 1.
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These two programs can be abstracted to one schema of the Gegg-Harrison schemata,
defined in Chapter 2. This particular programs match with the schema_A. This
abstraction process is performed automatically by Fuch's system. Let schema 5i
be the schema for the program sum/2 and S2 the schema associated with count/2.

These two schemata and the abstract literals Gl and G2 are shown as follows:

G\ : Schema_Al(L,&gl)

51 :

Schema_Ai([],&11).
Schema_Al([HI|T1],&12)

processll,
Schema_Al(Tl,&14),
processl2.

G2 : Schema.A2(L,&g2)

52 :

Schema_A2([], &21).
Schema_A2([H2|T2],&22)

process21,
Schema_A2(T2,&24),
process22.

Note that the literals A\ and A2 (which are the operands in the join specification) are
abstracted to the literals G\ and G2. For this our working example, A\ is defined as

sum(X, S) and A2 as count (X,C). After performing the matching by using schema_A,

Gi is instantiated to Schema.A1 (L,&gl) and G2 to Schema.A2(L,&g2).

As a second stage, called selection, the user chooses the output schema S for the
combined program. This selection implies that the user knows in advance the form
of the combined program. This stage might not be easy for users in general.

For our working example let us assume that the user choose the following output
schema:
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G : Schema_Al'_'Schema_A2(L,&gl,&g2).

S :

Schema_Al'_'Schema_A2( □ ,&11,&21).
Schema_Al'_'Schema_A2([HI|T1],&11,&21)

processll,
process2i,
Scheraa_Al,,Schema_A2(Tl,&14,&24),
processl2,
process22.

This output schema encodes a sequence of transformation that is automatically per¬

formed to the schemata devised in the first stage of this process. So, in order to
obtain the combined program, the system needs to derive S/G from Sl/Gl and
S2/G2. This is performed by applying the following set of operations: one definition,
two unfolding steps and a folding step which is encoded on the chosen ouput schema.

The system will produce the following program:

sum_count_al([],0,0).
sura_count_al([H|T],Sum,Count) :-

sum_count_al(T,Suml,CI),
Sum is Suml + H,
Count is CI * 1.

Fuchs's approach produces efficient combined Prolog programs, but requires user

interaction in the selection stage at which the user must select for a given input
schemata one output schema.

4.4 Conclusions

Through this chapter we present several approaches to the combination problem. Firstly
we introduce the approaches taken for procedural languages. None of them provides the
flexibility that we would like to have in our composition system. They are quite restricted
in terms of the kind of programs that can be combined (same flow of control) and also
restricted to programs which only contain assignment statements, conditional statements,
and while-loops. Secondly, we present functional approaches to the combination problem
which require a lot of direction from the user in terms of the sequence of the transformation
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operations to be applied to a specific program and, finally, we show several approaches to
the combination problem in logic programming languages. Again, none of them provide
all the features that we would like to have in our composition system.

The transformation system developed by Burstall and Darlington requires knowledge about

program transformation. User interaction is required to direct the transformation of the

program. This guidance is at a very low level; the user needs to define which equations

need to be unfolded or folded. The ZAP system tries solve this problem, but also requires

user interaction in the definition of how to transform the program when the user is defining
the problem in the language provided for this task (see dialogue shown in section 4.2). This
definition is prepared in a more abstract way than in the previous system. However, it

requires knowledge about program transformation.

Lakhotia and Sterling define two combination methods which are based on the standard
transformation operations as defined by Tamaki and Sato [Tamaki &; Sato 84] and one

method based on the similarity notion between programs and the skeleton from which

they are derived. These methods work for a restricted classes of program (same flow of

control) but it also requires user intervention.

Proietti and Pettorossi propose a combination method for logic programs with the same

flow of control, using basic fold/unfold transformations; this approach relies largely on the
participation of the user and its efficiency depends on the decisions the user makes.

Fuchs' approach reduces user interaction in terms of deciding the sequence of transforma¬
tions, but the user still needs to choose the output schema.

As a final conclusion we can say that we did not find a method general enough to handle
the combination of every possible pair of programs in an efficient manner.
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Classification of Programs and
Automatic Selection

The problem of combining programs efficiently can be made more tractable by taking into
consideration the characteristics of the programs to be combined. In this chapter we firstly
describe a classification of Prolog programs according to their structural features. These
classes are characterised by standard patterns of flow of control. Secondly, we describe
how the program history is obtained from the techniques editor. Thirdly, we define our

set of combining methods and finally we define the automatic selection of the combining
methods.

5.1 Classification of Prolog Programs

Chapter 4 describes several approaches to the composition problem for procedural lan¬

guages (e.g. Berzins and Horwitz) and also for logic programming languages (e.g. Proietti
and Pettorossi, Lakhotia and Sterling and Fuchs and Fromherz). These approaches are re¬

stricted to a specific class of programs that can be combined. Our solution to this problem
was, firstly, to divide the set of programs that we can write in Prolog into classes according
to stipulated structural features present in the original skeleton (from which the program

was constructed) and secondly to implement a combining method which works efficiently
for each class of programs defined in our hierarchy (see Figure 5.1).

67
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Each class is associated with a skeleton. The skeletons used in our classification were

devised by Lakhotia and Sterling [Lakhotia k Sterling 87]. Our classification of programs
makes use of the skeletons: traverse, short_traverse, search, meta-interpreter and counter,

which are described in [Lakhotia k Sterling 87] which are also defined in Appendix C.
This list of skeletons is not complete and might be extended in order to cover more classes

of programs but with this current set of skeletons it is possible to write many of the Prolog

programs commonly found in textbooks. Each of these skeletons defines a different class

of programs as shown in Figure 5.1. The important point is that each program generated
from a skeleton inherits the flow of control of that skeleton. Therefore, (as far as flow of
control is concerned) it is sufficient to obtain information about the program from just the

features of the skeleton.

Note that our classification given in Figure 5.1 is an adapted version of the Lakhotia and

Sterling skeleton classification [Lakhotia k Sterling 87]. Lakhotia and Sterling proposed to

classify skeleton in 3 categories: meta-interpreters, parsers and manipulation of recursive
data structures. We start with this classification and we define mutations of these classes.

After this we define features that each class of program holds and then we use these features
for automatic selection of the combination method.

Our classification contains five classes of program with the same flow of control as is given

by the skeleton and also has five classes with a different flow of control. These programs

with altered flow of control are called mutants. Mutant programs are created by adding
to the original skeleton subgoals which change the flow of control or by adding clauses to
the definition of the skeleton. The addition of the new clauses in a program are required
to preserve the structure of the initial flow of control of the program extending this with
additional behaviours. The clauses which can be added are thus restricted by the following

conditions.

The base case (in the skeleton) states how to traverse the data structure and identifies each
skeleton as unique. It has the restriction that it cannot be changed to a different base case

with different pattern of data structure. The reason for this restriction is that if we alter
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the flow of control of the initial skeleton in its main structure, then the resulting mutant

might not belong to the same class as the starting program. For example, by changing the
base case of a meta-interpreter program we might not arrive at a well defined mutant of

meta-interpreter.

It is not possible to alter existing recursive clauses. So the user can only add new recursive
clauses which operate over the same data structure as the original program (although with
different tests).

In Figure 5.1 the classification by skeleton is done on the left-hand subtree and a cor¬

responding mutant category for each skeleton class is shown on the right-hand subtree.

Currently in our combination system, a given program is classified as belonging to a class

by using the program history. It might also be feasible to extract the components of
the program (skeleton and techniques) for a restricted set of programs by using program

analysis [Bental 92].

The classes defined in the traversal family are defined, in our knowledge base of skeletons,

only for the case when the data structure is a list or a tree. However we could also deal
with different data structures by defining new classes and including them in the traversal

family.

Program

i '
Initial Control

1

1
Altered Control

I
ill i

Traversal Meta-Interpreters Counters Mutant
Family Traversal Family

1 1

1
Mutant

Meta-Interpreters

1
Mutant
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ill 1 1
Traverse Short-Traverse Search Mutant Mutant

Traverse Short-Traverse

1
Mutant
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Figure 5.1: Classification of Prolog Programs

Our combining system provides us with a set of methods which can be used for combining
programs in the same class or programs belonging to different classes. However there exist
classes of programs which cannot be combined into a single recursive program. These are

described in Section 6.5.
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5.1.1 Classification of pairs of Programs

In order to assign a method for combining each pair of programs, we first classify the

pairs of programs that will be combined into two groups: programs with the same flow
of control and programs with a different flow of control. Programs with the same flow of

control are those which are enhancements of the same skeleton. Programs with a differ¬
ent flow of control may have originated from the same skeleton but at some stage of the

development extra clauses were added to at least one of the programs. Alternatively they

could be programs built using different skeletons: for instance, one program constructed

using the traverse skeleton and the other using the short ..traverse skeleton. The classifi¬
cation of pairs of programs is shown in figure 5.2. This classification consists of pairs of

programs belonging to Traverse-restricted, Traverse-general, Meta-counter, Non-restricted
and Different-flow. We made a distinction between programs belonging to the Traverse-

restricted and Traverse-general. This was done in order to determine precisely the programs
in which the traversing of the data structure can be synchronised (Traversal-restricted).
Further details are described in Section 6.6.2.

• Pairs of type Traverse-restricted are programs which derive from the same skeleton

(except the meta-interpreters or counter skeleton), both have the same number of
clauses; both programs (taken clause by clause) have the trivial condition (ie., logi¬
cally equivalent to true) or in both clauses the test should be identical. Each test
determines a possible case of the induction parameter. A test can be an arithmetic
expression or a boolean expression. Also these programs traverse just one data struc¬
ture of a given type (for instance lists or trees). Finally the pattern used to compose

or decompose the data structure should be the same in each program.

• Pairs of type Traverse-general are programs which derive from the same skeleton
(except the meta-interpreters or counter skeleton), both have the same number of
clauses; where each program has a different test (different to the trivial condition)
and each program can traverse a different data structure of the same type. The
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Type Traverse-general j~ Traversal family

Type Meta-counter | Meta-interpreters
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tiav-search
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Figure 5.2: Classification of pairs of Prolog programs

pattern used to compose or decompose the data structure should be the same in

each program.

Figure 5.3 shows schematically the characteristics which programs classified as type

Traverse-restricted or Traverse-general hold.

• Pairs of type Meta-counter are programs which are either constructed using the

meta-interpreter or counter skeleton. Both have the same number of clauses; both

programs (taken clause by clause) have the trivial condition or in both clauses the
test should be identical. Also these programs traverse just one data structure of
a given type (for instance lists or trees). Finally the pattern used to compose or

decompose the data structure should be the same in each program (see Figure 5.4).

• Pairs of type Different-flow are programs which have slightly modified their flow
of control with respect to the skeleton from which they are derived. They have
different number of clauses; both programs (taken clause by clause) have the trivial
condition or in both clauses the test should be identical. Each program in the pair
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— Same skeleton (except the meta-interpreter or counter skeleton)

Same number of clauses

Type Traverse-restricted — Same test or the trivial test

— Same data structure of a given type

— Same pattern for traversing the data structure

— Same skeleton (except the meta-interpreter or counter skeleton)

Same number of clauses

Type Traverse-general Different test

— Each program can traverse a different data structure of the same type

Same pattern for traversing the data structure

Figure 5.3: Properties of Type Traverse-restricted and Traverse-general

traverses just one data structure of a given type (for instance lists or trees). Finally
the pattern used to compose or decompose the data structure should be the same

in each program (see Figure 5.4). In this type are grouped mutants of the traversal
family, meta-interpreter mutant, counter mutant, pair trav-strav, pair trav-search
and pair strav-search.

— The trav-strav pairs of programs are those where one is constructed using the
traverse skeleton and the other is built using the short_traverse skeleton. Both
can have different number of clauses; each program in the pair has a different
test (different to the trivial condition) and each program can traverse a different
data structure of a same type. The pattern used to compose or decompose the
data structure should be the same in each program.

— The trav-search pairs of programs are those where one is constructed using the
traverse skeleton and the other is built using the search skeleton. This pair
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— Meta-interpreter or counter skeleton used in the program

— Same number of clauses
Meta-counter

— Same test or the trivial test

— Same data structure of a given type

— Same pattern for traversing the data structure

— Slightly modified flow of control with respect to skeleton

Different number of clauses
Different-flow

Same test or the trivial test

Same data structure of a given type

Same pattern for traversing the data structure

Figure 5.4: Properties of Type Meta-counter and Different-flow

holds the characterists of the pair trav-strav.

— The strav-search pairs of programs are those where one is constructed using the
short .traverse skeleton and the other is built using the search skeleton. In a

similar fashion this pair holds the characteristics given for pair trav-strav.

• Pairs of type Non-restricted are those programs which can be derived from the same

skeleton or from different skeleton, both have the same or different number of clauses;
both programs (taken clause by clause) can have zero or different tests. Also these
programs traverse one or more data structures of a given type or different type.
Finally the pattern used to compose or decompose the data structure can be the
same or different in each program.

Figure 5.5 shows schematically the set of properties of the type Non-restricted.
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— Same or different skeleton used in the program

— Same or different number of clauses
Type Non-restricted

— no tests or different tests

— Same or different data structure of a given type or different type

— Same or different pattern for traversing the data structure

Figure 5.5: Properties of Type Non-restricted

5.2 Program History

The message of our composition system is that when meta-information is attached to code
in a machine readable format then this meta-information can be very useful for automatic

program writers; provided that the meta-information includes knowledge of standard tech¬

niques (developed by experts as an efficient controllable way to write programs).

A program history may be thought of as "meta-information" on the code. The composition
system can read this meta-information and use it to guide the combination. This meta-
information is used to infer the user's intentions in requesting the program combination,
and so deal with cases of underspecification. So the use of program history is a powerful

way to render program combination more effective. Our example on page 104 shows how
the meta-information can be used to infer likely user intentions. The system can guess

that users might wanted to synchronise the data structure by using the program history
(i.e. if the pair of programs are classified as belonging to type Traverse-restricted then
synchronisation of the data structure can be performed). This is one way to infer the
user's intentions. Note that this might not be easily performed in approaches which only
use standard transformation techniques for combining programs.

Also the machine readable high level meta-information contains the information necessary
to classify the program by the classification defined in section 5.1, and hence select the
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correct combination method. Our classification of programs relies on the skeleton used in

the construction of the program. The information recorded in the program history can be
obtained during the construction of the program by using the techniques editor.

In the following example we show how the program history could be obtained from the

techniques editor. As mentioned on page 39, Robertson's editor provides menus allowing
the user to select a skeleton and a set of techniques for the construction of his program. At
this stage we can record key stages in the program development. Some of the information

can be obtained straightforwardly. Examples of easily obtained information are: the name

of program, the type of program (by looking in our classification of programs), the arity of
the program (number of arguments), the name of the skeleton and the number of clauses.

However, it is more complicated to obtain other information such as how the subgoals
in the body of the skeleton were transformed into the program (in order to obtain this

information, we would compare each clause in our skeleton against each corresponding
clause in the program). To be specific, suppose that the user wants to build the program

sum/2. Let us assume that he choses the traverse skeleton from the menu offered in the

techniques editor. This skeleton is:

traverse ([] ).
traverse([H|T]) :-

traverse(T).

By renaming the predicate and applying the sum technique, which sums the value of an
argument, we obtain the following program.

sum( [] ,0) .

sum([H|T],Sum) :-

sum(T,Sl),
Sum is SI + H.

At this stage we need to record the set of techniques that were used in the construction of
the program.

Once we have the program, we also need to record how the subgoals in the skeleton were
transformed. This is done by comparing each clause in the skeleton with its corresponding
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clause in the program. For this particular example we have that the body of the first clause
is equal to true and is (trivially) transformed into the subgoal true. In the second clause
we have that traverse(T) has been enhanced to give sum(T,Sl). Also, we record that

this program has the same flow of control as the skeleton used in its construction.

In a similar fashion we can obtain the features of the program prod/2.

prod( [] ,1) .

prodC[HIT],Prod)
prod(T,Prodi),
Prod is Prodi * H .

Furthermore the program history for the combined program (shown below) can be derived
from the histories associated with each program that went into the combination and by

using user interaction.

sum_prod([],0,1) .

sum_prod( [A|B],C,D)
sum_prod(B,E,F),
C is E + A,
D is F * A.

For our example, knowing both the history for sum/2 and for prod/2 allows us to derive
the program history for the combined program sum_prod/3. In particular, the combined
history contains the type, which is determined in accordance with the type associated to

sum/2 and prod/2 (see rules defined in section 5.2.1), the skeleton which is determined by
analysing which skeletons are used in program sum/2 and prod/2, and the techniques used
in sum_prod/3 are basically the list of techniques used in both programs. On a clause by
clause basis we can also find how the subgoals in the skeleton were transformed for the
program sum_prod. Finally, the name of the combined program is obtained from the join
specification given by the user; and by user interaction we get the number of clauses, the
arity and the number of tests.

The program history is defined using the relations his_prog/9 defined as follows:
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his-prog(P, T, A, S, N, TsT, Tec, NM,M).

where P is the name of the program, T is the type of the program (one of the types in our

classification), A is the arity, S is the name of the skeleton, N is the number of clauses

for the program, TsT is the number of tests (each of these tests determine one recursive

case), Tec indicates which techniques were used in the program, NM is a list containing
the set of non-mutant clauses and M is a list containing the set of mutant clauses.

The NM argument is a list recording, for each clause, how the subgoals in the skeleton
were transformed and also the set of tests for each clause. This means that the argument

NM contains the structural differences between the program and the skeleton used in the
the program.

In a similar fashion the list of mutant clauses M is recorded in the program history.

Knowledge of the relation between the subgoals in the program and the subgoals in the
skeleton is obtained through the key points which are defined in the program history. A

key point takes a subgoal (G{) in a clause of the skeleton and finds the corresponding
transformed subgoal in a program P, which is an extension of the same skeleton. The
subgoal can be found in two ways: as an enhancement (more arguments, different name),
or as the same subgoal (same name, same number of arguments).

For instance, consider the following set of relations recorded in the program history con¬

cerning to the programs sum/2 and prod/2 defined above.

his_prog(sum,type_traverse,2.traverse,2,0, sum_technique,
[[1,true,true,no_test],[2,trav(H),sum(T,Si)]],nil).

his_prog(prod,type_traverse,2,traverse,2,0,no,
[[1,(true,true),no_test],[2,trav(H),prod(T,Pl)]],nil).

The meanings of each of the nine arguments in the history are as follows:

1. says the name of the programs (i.e. sum/2 and prod/2),
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2. states that both programs belong to the traverse type,

3. says that both programs have arity 2,

4. indicates that both were constructed using the traverse skeleton,

5. states that both have 2 clauses,

6. indicates that both programs were constructed without using any test,

7. indicates that the technique sum was applied to the program sum/2 so the seventh

argument is sum_technique and for the program prod/2, neither the sum nor count

technique was used, so the argument is no,

8. states how the initial subgoals in the skeleton were transformed in each program,

9. shows the list of mutant clauses. This list has as an argument the empty list (nil)
because none of these programs is a mutant of the traverse skeleton.

For each program in our composition system, its program history is recorded as the re¬

lation his_prog/9. Also, the new knowledge concerning the generated combined program

is automatically stored by the system for future stages in the combination process. The
new history is obtained from the characteristics of the initial pair of programs (which are

recorded in their program histories) and also by user interaction. For instance, the type
for the combined program sum_prod/3 is derived from the fact that both programs (sum/2
and prod/2) have type_traverse. Then the combined program sum_/3 is type_traverse (see
the set of type criteria rules defined in Section 5.2.1).

The program history for the program sum_prod/3 is as follows:

his_prog(sum_prod ,type_traverse ,3, traverse,2,0, sum_technique,
Cfl,(true,true),no_test],[2,trav(H),sum_prod(T,Sumi,P1)]]), nil).

In summary we can say that addition of "meta-information" to the code in the form here
of the program history can be used very effectively to guide the combination process. In
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this way the output can be achieved with less need for user direction and is more likely to
conform to the user intentions (as we demonstrate later). There is also the possibility that
if the process still needs user guidance then the system can use the program history to

ask questions of the user in the language of skeletons and techniques rather than low level

questions about how to transform the program such as which subgoals can be unfolded,
etc. However this type of dialogue demands research outside the scope of this thesis.

5.2.1 Type criteria

The assignment of the type for the combined program is performed using rules similar to
the examples given below. This assignation for the combined program is guaranteed by
the properties defined in our set of properties in Chapter 9. The notation which was used
in the following set of rules is as follows: (A, A) where the first argument in the pair is the
type of program Pi and the second argument is the type of program P2.

1. (A, A) —> A

2. (A, B) —* B where neither A or B are of type mutant.

• (traverse, search) —■> search

• {traverse, short-traverse) —* short-traverse

• {short-traverse, search) —> search

3. {A,mutanta) —► mutanta

4. {mutanta, A) —> mutanta

5.3 The Set of the Combination Methods

Our approach to the composition problem was to create a method for combining each class
described in Section 5.1. Another way in which the problem can be addressed is to create
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a single method which embodies the characteristics of each of our methods, for example
a single method using unfolding, meta-folding, arithmetic rules and knowledge about the

program. However given our identification of key classes of programs, we felt more natural
to build the system in a "classification and combine" style, although it might possible to

integrate into a single, all encompassing algorithm at later stage. We address this as future

research in Chapter 10.

In chapters 6 and 7 we compare the performance of different combination methods on

each pair of programs which can be derived from the classes devised in Section 5.1. Some

methods give better results on particular classes of programs and under certain constraints.
Factors taken into consideration in deciding whether or not a combined program is efficient

include the number of times that the program needs to scan the data structures, and the

compactness of the combined program. For discussion of how we rank the methods for

efficiency see Section 6.3.

The description of our set of methods is presented in the order of complexity of each
method. The applicability of each of our methods relies on the following general restric¬
tions:

• The pair of programs to be combined is written using pure Prolog (i.e. no side-
effecting predicates or cuts).

• The initial pair of programs must have been created using a techniques editor which
is capable of producing the necessary history information.

• Programs created using skeletons in which a new flow of control can be passed as an

argument are not handled in our current implementation.

5.3.0.1 Methods for Combining Programs with the Same Flow of Control

The first group is divided again into two cases: the methods which use the join specification
shown in CASE A and the methods which use the join specification presented in CASE B.
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• CASE A. T(Ip,Iq,0p,0q) 4= P(IP,0p),Q(IQ,0q).

• CASE B. T(IP, Iq,0t) <= P(Ip, 0P), Q(Iq, Oq), F(Op, Oq, Ot)-
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where Ip,Iq are vectors of distinct input variables,

where 0p,0q, ot are vectors of distinct output variables.

where F is a predicate that produces as output the vector Oj using the values obtained
in procedure P and in procedure Q.

Note that in our join specification or user specification (both defined in Chapter 2), the
programs are called in a conjunctive form (only using and) for the following two reasons:

1). programs are mostly written with and, 2). and is commutative (if there is not depen¬
dence between variables, i.e. if a variable is instantiated later, it cannot be moved around

and placed before). So, subgoals can be moved around in order to obtain an efficient

program.

If programs are called in a disjunctive form (in the join specification) the system will be

required to perform a lot of transformations using De Morgan's laws in order to apply
the folding operation, (i.e. if in the body of the clause we have both and and or it is
much harder to move terms together to allow subgoals be folded). The use of the program

history is still valid for the case when the join specification is defined as follows:

T(Ip,Iq,Op,Oq) <= P(IP,0P)-, Q(Iq,0Q).

However, the efficiency of the combined program is reduced drastically by allowing or in
the join specification because after De Morgan's laws are applied the bodies of some clauses
are drastically increased by adding all the possibles combinations of terms which are con¬

junctions of disjunctions. Therefore through this thesis we only consider join specifications
using and between its operands. For further details see example defined in Appendix G.

However, we are limited to conjunctive join specifications: disjunctive ones can always be
converted to a number of conjunctive ones. e.g.
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T(Ip, Iq, Op,Oq) <=P(Ip,Op); Q(Iq,Oq) = T(fp,rQ,0p,0Q) <= P(Ip,Op)
T(Ip, Iq,Op, Oq) <= Q(Iq,Oq)

CASE A

The set of methods for combining programs by using the join specification of CASE A are

shown below.

1. the synchronization method,

2. the join 1-1 method,

3. the procedural-join method and

4. the meta-composition method

5. the DS method

CASE B

In case B we have two methods, one of which is called particular and the other the general
method. The particular method is an extension to Burstall's work, which was developed
for functional languages. The general method is an extension to procedural join developed

by Lakhotia and Sterling [Lakhotia & Sterling 87]. Note that, for purposes of clarity, we
have separated the methods into two independent sets A and B. The set of methods in
A operate only over a pair of programs, whilst the set of methods in B also exploit the
predicate F (which appears after the operands of the join specification) in order to obtain
further optimisations.

5.3.0.2 Method for Combining Programs with Different Flow of Control

The mutant method is used in the combination of programs belonging to the same class
but with slightly different flows of control. This method is one of the contributions of this
work, and can be applied because we have access to the program history. An example of
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the use of this method appears on page 161. In this example count/2 is created using the
traverse skeleton formed by two clauses and program get_odd/2 is a mutant of the same

skeleton.

The traverse-short_traverse method (Trav-Strav) combines programs created by using the
traverse and short_traverse skeletons. These programs are combined using procedural

join because both skeletons have the following restrictions: the only difference between

the skeletons traverse and short_traverse is the base case; the base case for the traverse

skeleton ensures that the entire list will always be processed and in short ..traverse the

execution will either traverse the entire list or stop when a condition has been met.

The traverse-search method (Trav-Search) combines programs created using the traverse

and search skeleton. These kinds of programs also can be combined using the procedural

join method.

The short_traverse-search (Strav-Search) is the same case as the traverse-search above.

Figure 5.6 and Figure 5.7 summarise the set of methods for combining the two types of

program (same and different flow of control). The importance of classifying programs into
the classes defined in Section 5.1 and restricting the transformations over each method
are of particular importance because we can combine programs efficiently by applying the
most efficient method for each class.

Note that Join 1-1 and Procedural join were developed by Lakhotia and Sterling and
we have re-implemented them using the notion of program history. Our re-implemented
versions of those methods still make use the unfold and fold transformation, but now, by

using the program history, it is possible to check that the arguments intended to provide
the flow of control are compatible in the combination and to perform the synchronisation
of the data structures. All the other methods in this thesis were developed by us in order
to widen the range of programs that can be combined.

Some methods in our composition system enforce synchronised traversal of a shared data
structure. This is a way to kill unwanted solutions due to unwanted backtracking (without
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Same Flow of Control

i 1 1
Case A Case B
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Synchronization Join 1-1 Procedural Join Meta-Composition DS Particular General

Figure 5.6: Methods for Combining Prolog Programs with the Same Flow of Control

Different Flow of Control

I I I I
Mutants Trav-Strav Trav-Search Strav-Search

Figure 5.7: Methods for Combining Programs with Different Flow of Control

having to resort to cuts). In fact to exclude the unwanted solutions can be difficult (if not
impossible) to achieve by defining a join specification as a Prolog program and applying
the unfold/fold operations to it. A full description of each method is given in the next two
chapters.

5.4 Automatic Selection of the Combining Method

This section describes work that we have done on the automatic selection of the combining

method. We have designed and implemented an algorithm called the selection procedure,
which decides which method can be used in the combination of a pair of programs. In our

approach, the knowledge about the program history plays a major role in this selection.
The automatic selection is of particular importance to the user level, since the user does
not need to worry about deciding which is the best method by performing program analysis
on the pair of programs.

The selection stage requires information concerning the skeletons and techniques which
were used in the construction of both of the programs. This information is taken from
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the program history. Therefore the main decisions rely on the program history and do
not require user interaction. The questions required to be answered by the user are only
the name and arity of the top level predicates which will be combined, and the definition

of the join specification. In the definition of the join specification the user needs to be

aware of the dependency between input/output vectors of variables from the programs

to be combined (see Chapter 9). The only exception to this rule is our mutant method

which is semi-automatic. This method allows the combination of several families of mutant

programs. For this method the offered combined clause can be accepted/rejected by the
user. The join specification gives an indication of a user's intentions. However the user

must take the final decision to ensure that the proposed mutant combined clause matches

with his intentions. Nevertheless'the proposed combined clause is correct according to the

join specification. If the combined clause suggested by the system is rejected then the

responsibility lies with the user to provide an alternative.

The features taken into consideration in selecting the combination method are:

1. the skeleton employed. The skeleton used in the program must be any of the skeletons
defined in our knowledge base of skeletons.

2. the number of clauses in each program. If the programs do not have the same number
of clauses, then the selected combination method must combine adequately the extra
clauses.

3. the tests. If corresponding clauses of the programs differ in one or more tests, then
the combination method must consider exceptions for each of these tests.

4. the data structure used in the program. More efficient combination can be achieved
by getting rid of spurious (repeated) variables — this is only possible if it is known
what data structure those variables stand for.

5. the pattern used to recurse up or down the data structure. The removal of spurious
variables with the same data structure is only possible if they have the same pattern
of recursion.
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6. the techniques applied to build the program, for instance if the technique sum or

count were used in the program. By using this parameter a more efficient combined

program can be obtained.

The features 1 to 5 give information concerning to the flow of control which is used in the

program and the feature 6 gives data information (provided by techniques). In Chapter 6
and Chapter 7 we will describe a set of methods which takes advantage of the techniques

knowledge for getting a more optimised combined program.

The system classifies a given pair of programs by whether it belongs to type Traverse-

restricted, type Traverse-general, type Meta-counter, Non-restricted or Different-flow (if
the pair belongs to some category defined for programs with different flow of control).
Once the system identifies the type of the pair of programs by using information recorded
in the program history, then the system finds information regarding the techniques used
in each program (also contained in the program history) and finally selects the combining
method. This selection is performed using the set of rules defined below. These rules use

the features (1-6) defined above.

The set of rules used in the selection are given below. Note that these are not the actual
rules used in our system, which need to access the formal program history. These are

English paraphrases of the actual definitions.

RULE 1:
if

both programs are not required to be derived from the same skeleton,
both are not required to have the same number of clauses,
both programs are allowed to have zero or different tests,
the pattern used to construct/deconstruct the data structure is not required to be the
same in each program and
there is a dependence between variables (the input for program Q is the
output of program P)

then
the method is: synchronization.
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RULE 2:

if

both programs are derived from the same skeleton (traverse, short .traverse or

search skeleton),
both have the same number of clauses,

both programs are allowed to have zero or the same tests,

both traverse the same data structure and

the pattern used to construct/deconstruct the data structure must be the
same in each program

then

the method is: join 1-1.

RULE 3:

if

both programs are derived from the same skeleton (traverse, short .traverse or

search skeleton),
both have the same number of clauses,

both programs are allowed to have different tests,
both traverse data structures of a given type and
the pattern used to construct/deconstruct the data structure must be the
same in each program

then

the method is: procedural join.
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RULE 4:

if

both programs are derived from the same skeleton (traverse, short_traverse or

search skeleton),
both have the same number of clauses,
both are allowed to have zero or different tests,

both traverse data structures of a given type,

the pattern used to construct/deconstruct the data structure must be the
same in each program and
both programs were constructed using the count or sum technique

then

the method is: particular.

RULE 5:

if

both programs are derived from the same skeleton (traverse, short ..traverse or

search skeleton),
both have the same number of clauses,

both are allowed to have different tests,

both traverse data structures of a given type,

the pattern used to construct /deconstruct the data structure must be the
same in each program and

Only one programs was constructed using the count or sum technique
then

the method is: general.
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RULE 6:

if

both programs are derived from the meta-interpreter or count skeleton,
both have the same number of clauses,
both programs are allowed to have zero or the same tests,

both traverse data structures of a given type,

the pattern used to construct/deconstruct the data structure must be the

same in each program

then

the method is: meta-composition.

RULE 7:

if

both programs are derived from the same skeleton (traverse, short_traverse
search skeleton),
both have the same number of clauses,

both are allowed to have different tests,

one of the programs works over a different data structure than the other
program and
the pattern used to construct/deconstruct each data structure must be the
same in each program

then

the method is: DS.
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RULE 8:

if

both programs are mutants of the same class or

one of them is mutant (same class)
each program is allowed to have different number of clauses,
both programs must have the same test for the corresponding clauses,
both traverse data structures of a given type and
the pattern used to construct/deconstruct the data structure must be the

same in each program

then

the method is: mutant method

RULE 9:

if

one program is constructed by using the traverse skeleton and
the other is built by using the short_traverse skeleton
both have the same number of clauses,

both programs are allowed to have different tests,
both traverse data structures of a given type and
the pattern used to construct/deconstruct the data structure must be the
same in each program

then

the method is: procedural join
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RULE 10:

if

one program is constructed by using the traverse skeleton and

the other is built by using the search skeleton

both have the same number of clauses,
both programs are allowed to have different tests,
both traverse data structures of a given type and

the pattern used to construct/deconstruct the data structure must be the
same in each program

then

the method is: procedural join

RULE 11:

if

one program is constructed by using the short_traverse skeleton and
the other is built by using the search skeleton
both have the same number of clauses,

both programs are allowed to have different tests,
both traverse data structures of a given type and

the pattern used to construct/deconstruct the data structure must be the
same in each program

then

the method is: procedural join
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A decision tree containing our selection rules is shown in Figure 5.8, Figure 5.9 and Fig¬
ure 5.10. Note that we have divided it into in 3 figures for reasons of clarity.

Both programs are derived
from the same skeleton

of clauses

Both have zero or

the same test (clause by clause) -©

Both traverse same

data structure using
the same pattern^

ye*/

There is dependence
between variables

Both can have different
tests

Both have different
data structureusingsame pattern

| Synchronization
Both are derived
from meta-interpreter skeleton

| meta-composition join 1-1

Both traverse same

data structure using
the same pattern

1 Synchronization
yes.

There is dependence [7 7■
, \ ,, Synchronizationbetween variables 1—*■

yes

[Synchronization j Both are working in an
arithmetic domain

yes,

Both are constructed

using count or sum technique
Procedural join

particular general

Figure 5.8: A Decision Tree based on Features of Programs



5. CLASSIFICATION OF PROGRAMS AND AUTOMATIC SELECTION 93

Figure 5.9: Decision Tree based on Features of Programs (Part A)

One program is mutant in
the same class

Both must have the same test

for the corresponding clauses

Both traverse same

data structure using
the same pattern

yes

There is dependence
between variables

I Synchronization |

| Synchronization [ | mutant

Both are allowed to have different
test in corresponding clauses

Figure 5.10: Decision Tree based on Features of Programs (Part B)

5.5 Conclusions

The contributions of this chapter are twofold. Firstly, that the classification in terms of
control flows and techniques was useful in that it allowed us to develop methods for each
class separately. These methods were far more powerful, and required less user direction,
than was possible for methods designed to work with all programs. Secondly, that knowl-
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edge about the program can be used to automatically select the composition method. Such
automatic selection is of particular importance at the user level.



6

Methods for the Same Flow of
Control

This chapter presents the set of methods for combining programs with the same flow of
control implemented in our composition system. We also discuss the performance of each

of the combining methods by analysing their behaviour for each pair of programs which
can be derived from our hierarchy of program classes.

6.1 General Conditions

In order to apply the methods, various conditions must hold. However join 1-1, proce¬

dural join, meta-composition, particular and general method assume that the following
conditions are always satisfied.

• both have the same number of clauses,

• the pattern used to construct/deconstruct the data structure should be the same in
each program

• both traverse the same type of data structure.

Besides these we might have (in some cases) extra conditions (denoted by <j>i)

95
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6.2 Computational Cost for the Combined Program

If the programs being combined have the following properties:

• The programs share a common abstraction of flow of control determined by the
skeleton used in their construction (Si).

• For the two specializations of 5, called i\ and i2 (extensions), each specialization

computes different values over the same data structure.

Then we can get greater efficiency by transforming them into a single fully recursive pro¬

gram. The reason being that if we run the initial pair we will twice incur the cost of
traversal. That is, the final cost of running the pair of programs separately is twice the
cost of traversal plus the costs of each computed value in each program, as follows:

n m

2ct(St) + J2 /'(* i) + /*(*2)
»=1 j=1

where,

ct(Si) is the cost of execution of the flow of control (the cost associated with recursing up

or down the data structure)

is the cost associated with the computing a value in the specialization i\.

ft(i2) is the cost of computing a value in the specialization i2.

On the other hand the cost associated with the combined program is defined below.

n m

<*(&) +£/'('•>)+E/to)
i=1 j=1

In the combined program the final cost is that of recursing just once down the data struc¬

ture, along with the cost of each computed value in each program.
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6.3 Efficiency Estimation
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The possible answers after applying a method are defined below. The answers include an

estimate of the efficiency of the combined program. However, it is generally difficult to

give objectives measures of efficiency which are always applicable to classes of programs.

Hence, the measures used in each table are relative comparisons based on what we believe
to be typical cases. The real measure of the expected efficiency of the combined program

would depend on many other factors, such as the distribution of the data used in the query,

and details of the compiler/interpreter.

In making our estimate of the efficiency the main factor we take into account is the amount

of duplication of effort made in the program. For example, the program should minimise
the number of times a data structure is traversed, or tests are applied.

Another factor is the compactness of the combined program: we prefer to generate more

compact code, because a large number of clauses can adversely affect efficiency (due to

excess memory requirements), also if there are a large number of clauses per predicate then
the time to select the appropriate one can be increased. It is not uncommon for a lower

efficiency ranking to arise because the combined program requires the auxiliary use of the

original programs, thus increasing the overall number of clauses in the combined program.

These are not always the best guides to efficiency but at least provide useful landmarks.

Thus, the metrics which appear in our tables are defined as follows:

"blank" Whenever there is no entry in the table then we mean that the pair of programs
cannot be combined reliably

a "Correct and efficient." This means that the combined program will not only be

correct but will also be fully recursive, hence the program will not needlessly duplicate
the traversal of the data structure.

(3 "Correct but inefficient." The combined program is correct but not fully recursive,
because it still contains the original programs. The inefficiency arises because the
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presence of the original programs means the combined program is much larger than
for the a case. Also, there can be some duplication of effort when traversing data
structures.

7 "Correct but very inefficient." Means that we totally rely on the original programs.
Each program does its own traversal of the data structure thus always duplicating

Note that in practise we would expect the difference between the a and /3 cases to be much

smaller than between the /? and 7 cases.

The tables presented in each combining method show the performance of the method

(subject to certain extra applicability conditions). The entries in each table (showing the
performance of each method) are defined in terms of the type of program P\ (row) and
the type of the program Pi (column). Also the columns and rows are labelled using the
notation defined in Figure 6.1:

effort.

6.4 Notation

Skeleton

t

st

traverse

short-traverse
search
counter

meta-interpreters
mutant of the traverse

mutant of the short-traverse

s

ctr

meta

mut — t

mut — st

mut — s

mut — ctr

mutant of the search
mutant of the counter

mut — meta mutant of the meta-interpreter

Figure 6.1: Table Notation
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6.5 The Synchronization Method
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The synchronization method allows the combination of all the pairs of programs using
the most primitive form of combination, which is simply to add them as subgoals in the
definition of the combined predicate. If the combined predicate is named T then we have:

T(fP, Iq, 0p, 0Q) :- P(fp, Op), Q(Iq, 0q).

Note that in this case our join specification corresponds directly to a Prolog program.

This method does not impose any restriction on the class to which each of the programs

must belong. The combined program obtained using this method is not a full recursive

program in the sense that it simply "sticks the programs end-to-end" rather than merging
them within a recursive definition. This method is very general but is useful only for
the combination of programs which cannot be combined using any of the other methods.
However there are special cases of programs which we are combining by using this method.
For example, programs P and Q in which the input for program Q is the complete output
of program P and hence P must finish execution before Q begins. The combined predicate
T is shown as follows:

T(Ip,6p,6q) :- P(fp,0p),Q(dp,0Q).

where the input vectors of variables are Ip and Iq and, similarly; Op and Oq are the
output vectors of variables. We classify this as a "very inefficient" form of combination
because each of the programs P and Q must be executed separately, and so we are very

likely to duplicate the effort involved in scanning the data structures.

For instance consider the case when our initial programs are the meta-interpreters

solve/2 and interpret/1 which are constructed by using the skeleton solve/1 defined
in [Sterling &: Shapiro 86]. The meta-interpreter solve/2 proves that Goal is true with
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respect to the program being interpreted and the meta-interpreter interpret/1 explains
the proof for the same Goal defined on Page 129. Note that this example corresponds to
the (meta,meta) entry in the table 6.1.

A new program how/2 which solves a goal (query) and interprets at the same time is

required by using the join specification defined as follows:

how(Goal,Proof) <= solve(Goal,Proof), interpret(Proof).

The code for solve/2 is shown below and the code for the meta-interpreter interpret/1
is defined on page 129.

solve(true,true).
solve((A,B),(ProofA.ProofB))

solve(A,ProofA), solve(B.ProofB).
solve(A,(A Proof))

clause(A.B), solve(B,Proof).

In this example we have the case that there is a dependence between vectors of variables

in program solve/2 and interpret/1. The program interpret/1 needs to have the

complete proof tree for a given goal in order to explain how it was proved. Therefore, this

pair of programs cannot be combined (in our composition system) into a single program

how/2. They are combined by using the synchronization method which does not produce
a full recursive program.

The table 6.1 shows the performance of the synchronization method (see section 6.3 for an

explanation of the term 7).

The synchronization method does not impose any of the restrictions defined in Section 6.1.
This means that both programs do not need to have the same number of clauses, the

pattern used to construct/deconstruct the data structure does not need to be the same

in each program, and also both programs do not need to traverse the same type of data
structure. The set of programs which can be combined are those which our system classify
as type Non-restricted defined in Chapter 5.
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Synchronization (M\)
P1/P2 t st s ctr meta mut-t mut-st mut-s mut-ctr mut-meta

t 7 7 7 7 7 7 7 7 7 7
st 7 7 7 7 7 7 7 7 7 7
s 7 7 7 7 7 7 7 7 7 7
tr 7 7 7 7 7 7 7 7 7 7

meta 7 7 7 7 7 7 7 7 7 7
mut-t 7 7 7 7 7 7 7 7 7 7
mut-st 7 7 7 7 7 7 7 7 7 7
mut-s 7 7 7 7 7 7 7 7 7 7
mut-tr 7 7 7 7 7 7 7 7 7 7

mut-meta 7 7 7 7 7 7 7 7 7 7

Table 6.1: Table for the Synchronization Method

As we discussed above, this method is very general but gives an inefficient combined

program. Consequently, none of the entries in the table are blank, however they all get
only a 7, meaning that the combined program is correct but very inefficient. This problem
of inefficiency forces us to look for better methods which can generate a more efficient
combined program for some of the entries in the table.

6.6 The Join 1-1 Method

Join 1-1 was developed by Lakhotia et al. [Lakhotia & Sterling 87]. We have re-

implemented it for combining Prolog programs belonging to type Traverse-restricted (de¬
fined in Chapter 5). The join 1-1 of program P and Q is the set of clauses obtained by
combining all pairs of corresponding clauses of the two programs with respect to a join
specification.

Since the skeletons of P and Q are identical (clause by clause) join 1-1 allows the combi¬
nation the ith clause from program P with the ith clause from program Q. This restriction
in the join operation has the advantage that the programs generated by join 1-1 are free
of redundant clauses, because this method only allows joined clauses which operate on the
same instance of the data structure in the induction parameter.
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The join 1-1 method is performed by doing unfolding and folding operations in correspond¬

ing clauses as was defined by Tamaki and Sato [Tamaki & Sato 84] but in a restricted way

directed by the program histories. This method enforces the same traversal of the data
structure for each clause (i.e. traverse the same element on the data structure), so only
a subset of answers obtainable by using join 1-1 might be characterised. However, this

narrowing of results is often precisely what users require when merging two programs over

a shared flow of control (as we demonstrate in Section 6.6.1).

The algorithm for the join 1-1 is defined below. The notation used is as follows: Pi^ead is
the head of the clause P,-, Pi,body is the body of clause Pi, and mgu means the most general
unifier.
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Join 1-1 Algorithm

1. Define the join specification T defined as:

T <= P,Q

Note that this join specification is not a Prolog program.
2. Take a pair of clauses Pi and Q{.
3. Create a template written as Prolog clause by using the information provided

in the join specification:

T :— P, Q

4. Unfold the calls P and Q in T,- with respect to Pi and Qf.

• if P and Pithead unify with a substitution dp.
• and Q and Qi,head unify with a substitution 9q.

Then replace P in T; with Pi,body, Q with Qi,body and apply the mgu &p9q to
the clause produced. Then
T% • Pi,body, Qi,body9p9Q
In the case that Pi,body is a conjunction of n subgoals Pi,g0ai\, ■ Pi,goain with
n > 0 and Qi,b0dy is a conjunction of m subgoals Qi,goali, •••, Qi,goaim with m > 0
then the result of unfolding is the clause:
T{ : [Pi,goal\i •••■> Pi,goaln)i(Qi,goal\i •••iQi,goalm)9p9Q
In other words the unfolding operation takes the body of the clause T and
expands it using the body definitions of the clauses with heads which unify
with P and Q.

5. Apply the fold operation if there exists a pair of subgoals Pitgoaip and Qi,g0air in
the body of the clause T; such that (Pt)fl00/p, Qi,goalr) and (P, Q) unify with some
mgu 9
Then replace the two subgoals Pi,goaip and Qiigoair with T,-.

6. Repeat this process for all clauses in procedure P and procedure Q.
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6.6.1 Example 1
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This example shows what we can do by using the knowledge about the program rather
than using only the standard transformation operations. This method preserves the spirit
of the program histories (and hence their functionalities) rather than the simplest logical
alternative (which we would get with simple application of fold and unfold). We believe
this is more likely to match user intentions (although we would expect the user to confirm

this). Note that this example corresponds to the (s,s) entry in the table 6.2.

Let us now proceed to the example. Suppose we have two predicates:

pos(List.Element,Pos): path(List,Element,Path):
finds Element in the List finds Element in the List with path Path
with position Pos (meaning sequence of elements up to and
(counting from the head of including the Element),
the list).

pos([XI_],X,1). path([X|_],X, [X]).
pos([_lT3,X,N) path([H|T],X,[H|R])

pos(T,X,NP), path(T,X,R).
N is NP+i.

Now suppose that the user requests that we combine these two programs. Most transfor¬
mation systems will take the join specification to be the Prolog program

p_pathl(L,X,P,LP)
pos(L,X,P),
path(L,X,LP).

and then convert this to the logically equivalent program

p_pathl([XI_],X,1,[X3).
p_pathl([X|T],X,1,[XIR] ) : -

path(T,X,R).
p_pathl([XIT],X,N,[X] )

pos(T,X,NP),
N is NP+1.

p_pathl([HIT],X,N,[HIR])
p_pathl(T,X,NP,R),
N is NP+1.

In this case, if we give the query p_pathl( [a,b,a,b] ,b,P,Path) then Prolog will give
four answers
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P = 2 P = 4 P = 2 p = 4

Path = [a,b] Path = [a,b,a,b] Path = [a,b,a,b] Path = [a,b]

In our opinion, this would usually not correspond to the users intentions. Instead, it seems
more likely that the user would want to combine the functionalities of the programs to get

p_path2 (List,Element, Pos,Path):
finds Element in the List with position Pos, and path
Path.

in which case the last two solutions would be unwanted, because they correspond to finding
different copies of the same element in the list and returning the path for one but the

position for the other. Systems that rely only on the join specification written in the

Prolog form have no way to know that the user wanted exactly to find the position and

path for the same Element. That is, we want to synchronise the list search performed in

pos/3 and path/3. There is no way to express this requirement directly in Prolog using

only the given predicates.

However, our system does not rely on the Prolog form of the join specification, but effec¬

tively has an extended join specification which we can write as

p_path2(L,X,P,LP) <=
pos(L,X,P),
path(L,X,LP).

where the underlined arguments provide flows of control which we want to synchronise.
Since we assume knowledge of the history of development of the program we can check
which arguments were intended to provide the flow of control and assess whether they will
be compatible in combination. In this case it will observe (from the program history) that
both programs have the same flow of control, called "search"1, and only differ in that one
has a count technique added, and the other an accumulator technique. We assume that the
user would also like the flow of control of the output to be "search" and would simply like
to have both the count and accumulator techniques added. This gives the output program

1So-named because its function is to search for a particular element
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p_path2([XI_] ,X,1,[X]).
p_path2( [H IT] ,X,N, [H | R] )

p_path2(T,X,NP,R),
N is NP+1.

which will indeed only return the first two (desired) solutions and not the last two undesired
solutions.

Let us look at this in a bit more detail. The flow of control for both pos/3 and path/3 is
a form of list search, which can be described as:

search([H|_] ,H)
tl(H).

search([H|T],X):-
t2(H),
search(T,X).

where tl/1 and t2/l are tests. The corresponding simplified versions of the program

histories for the programs pos/3 and path/3 are

his_prog(pos,3,search, [[1,(true,true),no_test],[2,(search(T,X),pos(T,X,NP)),no_test]],
count).

his_prog(path,3,search, [[1,(true,true),no_test],[2,(search(T,X),path(T,X,R)),no_test]] ,

accumulator).

As reminder to the reader we will describe each of the arguments in this simplified version
of the program history. Note that we have deleted 4 arguments in these simplied versions of
the program history. However a full description of the components recorded in the program

history are described in Chapter 5. The first argument is the name of the program; the
second is the arity; the third is the name of the initial control flow used in the construction
of the program; the fourth argument is a list recording, for each clause, how the subgoals
in the initial control flow were transformed; and the fifth is the technique used to extend
the initial flow of control.

The program histories thus say that both programs were built starting from "search", that
the test literals were trivially true, but that the techniques used were different. In this

case, the composition system then selects the join 1-1 method that makes the combination
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by combining only corresponding clauses, rather than combining all pairs of clauses, thus

achieving the desired synchronisation in the unpacking of the lists.

6.6.2 Example 2

As contrast to the previous example, we now consider a case where combination using

join 1-1 gives the same set of final results as combination performing all the possible
combinations of clauses (i.e. performing the full cartesian product). The notation used is
as follows: Pi,head is the head of the clause Pi, Pi,body is the body of clause Pi, mgu means

the most general unifier and substitutions are represented as {ti/Xi} where each Xi is a

variable and f,- is a term.

Let us consider the predicate sum/2 which computes the sum of the elements of a list and
the predicate count/2 which computes the number of elements of a list. This example

corresponds to the (t,t) entry in the table 6.2.

Pi : sum( □ ,0).
Pi : sum([H|T].Sum) sum(T,Suml),

Sum is Suml + H.

Qi : count( [] ,0).
Qi : count([HIT],C) count(T.Cl),

C is CI + 1.

The application of join 1-1 on the two procedures sum/2 and count/2 with respect to the
join specification shown below will be described as follows:

sum count(List.Sum.Count) sum(List,Sum), count(List,Count).

The process consists of taking clause 1 from program sum/2 and clause 1 from program

count/2 and to create the template T\ P,Q. By unfolding P and Q using Pi and
Qi, Pi unifies with P using the substitution Op = {[]/List, 0/Sum} and Qi unifies
with Q with the substitution 6q — {[]/List, 0/Count} by replacing Qi,body — true and
Q\,body = "true in Tx, we have the following clause:
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sum_count([],0,0) true, true.
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By making reductions on the previous clause we get the first combined clause which is

shown as follows:

Combined clause 1: sum_count( □ ,0,0).

Secondly, we take clause 2 from program sum/2 and clause 2 from program count/2 and
create a template of the join specification i.e. creating T2 P, Q. After unfolding P and

Q in T<i with respect to P2 and Q2 we get the clause that appears below. P2 unifies with

P with the substitution Op = {[H|T]/List, Sum/Sum} and Q2 unifies with Q by using the
substitution Oq = {[H|T]/List, Count/Count} therefore by replacing

P2,body — sum(T,Suml) ,Sum is Suml + Hand

Q2,body— count(T,CI), Count is CI + 1 in

T2 we get the following clause:

Combined clause 2:

sum_count([H|T],Sum,Count)
sum(T,Suml),
Sum is Suml + H,
count(T,CI),
Count is CI + 1.

By folding combined clause 2 with respect to the join specification sum_count/3, then
adding the combined clause 1, we obtain the final program shown below. This composed
program is much more efficient because it traverses the list only once to compute both
results instead of traversing the list twice to get the same results.

sum_count([],0,0).
sum_count([HIT],Sum,Count)

sum_count(T,Suml,C1),
Sum is Suml + H,
Count is CI + 1.
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6.6.3 Restrictions

This method is a limited method for combining programs. It works efficiently for pairs
of programs which do not have tests in recursive clauses or when the test is the same in

both predicates. If these conditions are not met we can generate an incomplete combined

program such as the example shown below, in which we have applied the join 1-1 method

in the combination of the programs sum_odds/2 and sum_fives/2 defined on page 113.

Recall that a method which works for this is the procedural join method, described on

page 111). For this particular example the program sum_odds/2 has a test odd(N) and
the program sum_fives/2 has the test five(N). We have two conditions, so we need to

consider the set of possible combinations which are shown as follows:

• case 1: odd(X) and five(X),

• case 2: odd(X) and not(five(X)),

• case 3: not(odd(X)) and five(X),

• case 4: not(odd(X)) and not(five(X))

The incorrect program sum_of/3 generated using the join 1-1 method is shown below.
This incorrect program is obtained because the combination is only performed by tak¬
ing corresponding clauses and in our example these corresponding clauses test different
conditions.

sum_of([],0,0).
sum_of([XIR],SO,SF)

odd(X),
five(X),
sum_o:f (R,S1,S2),
SO is SI + X,
SF is S2 + X.

sum_of([XIR],SO,SF)
\+ odd(X),
\+ live(X),
sum_oi(R,S0,SF).
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Join 1-1 (M2)
P1/P2 t st s ctr meta

t <f>i,a
st (j>i ,a
s <f>i,a
ctr

meta

Table 6.2: Table for the Join 1-1 Method

The problem described above is solved using the procedural join method described in

Section 6.7. This method considers all the possible combinations of the clauses (not only
corresponding clauses).

The table 6.2 shows the performance of the join 1-1 method (see section 6.3 for an ex¬

planation of the terms a and f3). Note that this table is smaller than the one for the

synchronization method. The reason is we ignore all the mutant entries because this
method is not suitable for mutants. The same convention is used in the tables for the

procedural join, meta-composition, DS, particular and general method.

The condition </h states that both programs belong to type Traverse-restricted. This means

that both predicates (taken clause by clause) have zero tests or if both predicates have a

test then the test is the same. In this method also we require that the programs have their
clauses in the same order. The combined program does not contain redundant clauses.

If we look at the pattern of the entries in the table 6.2 we can see that this method only
combines programs which are extensions of the same skeleton. In particular two programs

constructed using either the counter or meta-interpreter skeleton are combined correctly
but less efficiently than the other pairs which can be combined using this method (see
Section 6.8).
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6.7 The Procedural Join Method
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The procedural-join (developed by Lakhotia and Sterling [Lakhotia & Sterling 87]) is a

development of the previous method. For completeness, in our composition system, we re-

implemented the procedural join method. The procedural join method is performed by a

sequence of unfolding and folding operations taking into consideration the form of induction

parameter for the combination of clauses from each program [Lakhotia & Sterling 87]. This
method is used in the combination of programs belonging to type Traverse-general (defined
in Chapter 5). The clauses in each program do not need to be in the same order as the
order given by the skeleton.

Procedural join composes a new program from two given programs by firstly combining
the first clause of program P with each of the clauses in program Q (taken one by one);

secondly taking clause two of program P with each of the clauses in program Q; and so on.

This method does not enforce the synchronization in the traversing of the data structure

for each clause. Therefore all the answers can be obtainable in the combined program.

The notation used in the algorithm for procedural join is as follows: P,- is the ith clause from

program P and similarly Qj is the jth clause of program Q. The algorithm for procedural
join is defined as follows:
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Procedural Join Algorithm

1. Define the join specification T <= P,Q.
2. Take a pair of clauses Pi and Qj.
3. Create a template Tk-

Tk P, Q

4. Unfold P and Q in Tk with respect to Pi and Qj.
5. Apply the fold operation if there exists a pair of subgoals in the body of the

clause Tk which can be folded.
6. Repeat this process for all clauses in procedure P and procedure Q.

Procedural join is analogous to the join operation in relational algebra where the 0-join of

two relations 7Z and S are those tuples in the cartesian product of R and S [Ullman 86].

In some examples after applying procedural join without restriction in the definition of the
data structure on which they operate, we get programs with clauses containing subgoals
that fail at all times. These clauses do not contribute to the meaning of the generated

program and thus are redundant and they need to be eliminated from the program by the
user.

6.7.1 Assumptions for the Application of the Algorithm

1. The extensions have a similar structure because they are derived from the same

skeleton.

2. The extensions operate on the same type of data structure (eg. lists, trees, etc).

3. The order of the clauses from each program do not need to be same (ie. the corre¬

sponding clauses do not be in the same order for applying this method).

4. The program was constructed only using techniques which do not change the flow of
control. The kind of techniques used are these which adds computation around the
flow of control, provided by the skeleton, preserving the structure of the skeleton.
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5. The values that the programs compute do not depend upon each other, they depend

only on the input data.

6.7.2 Example

The example program sum_odds/2 computes the sum of the odd numbers in a list and the

program sum_f ives/2 computes the sum of all the number fives that appear in a list. The
definitions of these two programs are given below. Note that this example corresponds to

the (t,t) entry in the table 6.3.

sum_odds([],0).
sum_odds([XIR],S0)

odd(X),
sum_odds(R,Sl),
SO is SI + X.

sum_odds([XIR],S0)
\+ odd(X),
sura_odds(R,S0).

sum_fives( □ ,0).
sum_fives([X|R],SF)

iive(X),
sum_fives(R,S2),
SF is S2 + X.

sum_fives([X|R],SF)
\+ five(X),
sum_fives(R,SF).

The join specification used for combining the two programs sum_odds/2 and sum_f ives/2
is shown below:

sum_of(L.SumOdds.SumFives) ■£= sum_odds(L,SumOdds), sum_fives(L.SumFives) .

The algorithm can be described as follows:

Step 1: taking clause 1 from program sum_odds/2 and clause 1 from program sum_f ives/2
we can create the template T\ :— P, Q. Unfolding P and Q with respect to Pi and Q\. P\
unifies with P by using the substitution

Op = { []/L, 0/Sum0dds} and Qx unifies with Q by using the substitution
Oq = { [] /L, 0/SumFives}. Replacing Pi,body which in this case unifies with true and
Qi,body which unifies with true in Ti, we obtain the following clause:

sum_of([],0,0) true, true.
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which is equivalent to the following clause:
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sum_of([],0,0).

Step 2: taking clause 1 in program sum_odds/2 and clause 2 in program sura_fives/2
we find that L unifies with [] for clause 1 and L unifies with [X|R] for clause 2 so it is not

possible to create a template of the join specification and the process continues taking

another pair of clauses, this time clause 1 from program sum_odds/2 and clause 3 from

program sum_f ives/2 in a similar way to that described for clause PI and Q2.

Step 3: taking clause 2 from program sum_odds/2 and clause 1 from program sum_f ives/2
we find that these clauses have a different form of structural induction parameter. There¬

fore we have the same case as in step 2.

Step 4: taking clause 2 from program sum_odds/2 and clause 2 from program sum_f ives/2
we can create an instance of the join specification (i.e. P2 : — P,Q)- Unfolding
P and Q in P2 with respect to P2 and Q2, P2 unifies with P by using the substi¬
tution Op — {[X|R]/L, S0/Sum0dds} and Q2 unifies with Q by using the substitution

0q = {[X|R]/L, SF/SumFives}.

Therefore by replacing:

P2,body= odd(X), sum_odds(R,Sl) , SO is SI + X and

Q2,body~ five(X), sum_f ives(R,S2), SF is S2+X in

P2= sum_of ( [X |R] ,Sum,Prod) we have the following clause:

sum_of([X|R],S0,SF)
odd(X),
sum_odds(R,Sl),
SO is Si + X,
five(X),
sum_iives(R,S2) ,

SF is S2 + X.

The body of the clause defined above (after applying the unfolding operation) can be folded
to obtain the following clause:
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sum_of([XIR],SO,SF)
odd(X),
five(X),
sura.ol(R,S1,S2),
SO is SI + X,
SF is S2 + X.

Step 5: taking clause 2 from program sum_odds/2 and clause 3 from program sum_f ives/2
we can create an instance of the join specification T3 : — P, Q. Unfolding P and Q
in T3 with respect to P2 and Q3, give us the case that P2 unifies with P under the

substitution Op = {[X|R]/L, SO/SumOdds} and Q3 unifies with Q under the substitution

Oq = {[X|R]/L, SF/SumFives}.

Therefore by replacing:

Pi,body= odd(X) , sum_odds(R,Sl) , SO is SI + X and

Qz,body = \t" five(X) , sum_f ives(R,SF) in T2 we obtain the following clause:

sum_of([XIR],S0,SF)
odd(X),
sum_odds(R,Sl),
SO is SI + X,
\+ live(X),
sum_iives(R,SF).

The body of the clause defined above (after applying the unfolding operation) can

be folded to give two instances: sum_odds(R,Sl) with sum_fives(R,SF) obtaining

sum.of (R,S1,SF). The combined clause is shown below.

sura_of([XIR],SO,SF)
odd(X),
\+ iive(X),
sum_of(R,S1,SF),
SO is SI + X.

Step 6: taking the case of clause 3 from program sum_odds/2 and clause 1 from pro¬

gram sum_f ives/2 we find that these clauses have a different form of structural induction
parameter and therefore cannot be combined.

Step 7: taking clause 3 from program sum_odds/2 and clause 2 from program sum_f ives/2
we can create an instance of the join specification T4 P,Q. Unfolding P and Q in T4 with
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respect to P3 arid Q2, P3 unifies with P with the substitution Op = {[X|R]/L, SO/SumOdds}
and Q2 unifies with Q by using the substitution Oq = {[X|R]/L,SF/SumFives}.

Therefore by replacing:

P^body — V" odd(X) , sum_odds(R,SO) and

Q2,body= f ive(X) , sum_f ives(R,S2), SF is S2 + X in T4 we get the following clause:

sum_of([XIR],SO,SF)
\+ odd(X),
sum_odds(R,SO),
five(X),
sum_fives(R,S2),
SF is S2 + X.

The body of the clause defined above can be folded and the combined clause is shown

below.

sum_of([XIR], SO,SF)
\+ odd(X) ,
five(X),
sum_of(R,S0,S2),
SF is S2 + X.

Step 8: taking clause 3 from program sum_odds/2 and clause 3 from program sum_f ives/2
we can create an instance of the join specification T5 P, Q. Unfolding P and Q in T5 with

respect to P3 and Q3, P3 unifies with P with the substitution Op = {[X|R]/L, SO/SumOdds}
and Q3 unifies with Q by using substitution Oq — {[X|R]/L,SF/SumFives}.

Therefore by replacing:

P$,body — \b odd(X) , sum_odds(R,SO) and

Qz,body = \l- f ive(X) , sum_f ives(R,SF) in

T5 we have the following clause:

sum_oi([XIR],S0,SF)
\+ odd(X),
sum_odds(R,SO),
\+ iive(X),
sum_iives(R,SF).



6. METHODS FOR THE SAME FLOW OF CONTROL 117

The body of the clause defined above can be folded and the combined clause is shown

below.

sum_of([XIR],SO,SF)
\+ odd(X),
\+ five(X),
sum_of(R.SO.SF).

The resulting combined program is as follows:

Ti : sum_of([],0,0).
r2 : sum_of([XIR],SO,SF)

odd(X),
five(X),
sum_of(R,S1,S2),
SO is SI + X,
SF is S2 + X.

T3 : sum_of([XIR],S0,SF)
odd(X),
\+ five(X),
sum.of(R,S1,SF),
SO is SI + X.

sum_oi([XIR],SO,SF)
\+ odd(X),
five(X),
sum_of(R,S0,S2),
SF is S2 + X.

sum_of([XIR],S0,SF)
\+ odd(X),
\+ five(X),
sum_of(R,S0,SF).

This method as we show on page 104 might generate unwanted solutions. Also the pro¬

cedural join method does not handle the problem of when calls to be fold do not have

syntactically identical input variables as the definition of the join specification. So, we

implement the meta-composition method which is described in next section. This method
handles the problem of local variables, it does not produce redundant clauses. The disad¬

vantage is that it can only be used with programs which are enhancements of the same flow
of control. However, this meta-composition method can be used for combining efficiently

programs belonging to the meta-interpreters class or programs belonging to the counter

T4 :

T5 :
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Procedural join (M3)
P1/P2 t st s ctr meta

t fa,a fa, ft fa, ft
st fa, ft fa, a fa, ft
s fa, ft fa, ft fa, a
ctr fa, ft
meta fa, ft

Table 6.3: Table for the Procedural Join Method

class. It can also be used for programs which are constructed using the data abstraction

technique.

The table 6.3 summarises the performance of the procedural join method (see section 6.3
for an explanation of the terms a and ft).

The condition fa means that both programs (taken clause by clause) have one or more

different tests, but no order of the clauses in both programs is required.

The combined program could have unwanted solutions (see example in section 6.6.1). This
method covers six more entries in the table 6.3: the pairs (st,t), (t,st), (s,t), (t,s), (st,s)
and (s,st) which were not covered by the previous method (join 1-1). However, we still
get a inefficient combined program for the pairs (ctr,ctr) and (meta,meta). This problem

inspires the meta-composition method which deals with this special class of programs.

The off-diagonal entries have different flow of control and hence are studied in more detail
in Chapter 7, e.g. for an example of the (s,t) entry see page 178.

6.8 The Meta-Composition Method

This method generalises Lakhotia and Sterling's algorithm named procedural join
[Lakhotia & Sterling 87] by relaxing the constraint that the two recursive calls to be folded
must have syntactically identical input variables. This is necessary, for example, when the
value being recursed is computed by a call to a user-defined predicate (see the first and
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second example in this section). This method can be used for combining pairs of differ¬
ent classes of programs such as meta-interpreters, programs constructed using the counter

skeleton or all the classes already covered by the join 1-1. Also this method can be used

for any class of program cited above which is constructed by using data abstraction. Data
abstraction generalises the specific data structures or built-in predicated replacing them
with more abstract predicates (see the third example in this section).

Note that this method will enforce the same traversal of the data structure for each clause

as join 1-1, and so will give a subset of answers as described in Section 6.6. Commonly
this enforcing of synchronised traversal of a shared data structure is what is desired and

the naive (fold-unfold) join is not really what the programmer wants. This is a way to kill

spurious solutions due to unwanted backtracking (without having to resort to cuts).

The main characteristic of programs which belong to the meta-interpreters class and pro¬

grams constructed by using the counter skeleton is that they use local variables to recurse

over the data structure. Local variables are variables which occur in the body of a clause

but not in its head. These two classes cannot be combined efficiently by using join 1-1

even when both programs are extensions of the same skeleton. The reason for this is that
the join 1-1 method cannot deal with local variables which are not controlled in the join

specification. So even when candidate subgoals to be folded appear, they might not be
folded because they do not match to an instance of the join specification.

The meta-composition method allows optimisation over local variables with certain restric¬
tions. In general, it is not safe to make the assumption that new local variables introduced
in the body of a clause can always be unified. However there are circumstances where we

can unify new local variables confidently. For example, in the following piece of code the
local variables X and Y are introduced in the same environment (same clause) hence they
can be unified.

predicate(A.X)

predicate(A.Y).
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Also, it is safe to unify variables which are used for traversing the same data structure. In

this thesis, variables which are used for traversing the same data structure are said to be

variables having the same functionality.

The main assumption for the meta-composition method is that it is restricted to combining
corresponding clauses from each program. Hence, we can be sure that the candidate

subgoals to be folded are used for traversing the same instance of the data structure, and
so the variables can be safely unified.

The algorithm for meta-composition based on key points is shown below. In this algorithm
we use the concept of key points defined in Chapter 5. A key point gives the structural
differences between a program and the skeleton from which is derived the program.

Meta-composition Algorithm

1. Define the join specification T ■$= P,Q.
2. Take a pair of clauses Pi and Q{.
3. Create a template T{.

Ti P,Q

4. Unfold P and Q in Ti with respect to Pi and Qi.
5. Apply the meta-fold operation if there exists a pair of subgoals in the body of

the clause T,- which can be folded. This is performed by using key points which
are defined in the program history.

6. Repeat this process for each pair of clauses from program P and program Q.

In the meta-composition method we are only using a section of the program history infor¬
mation. The valuable information required from the program history is how the subgoals
that appear in the skeleton were transformed into the program (i. e. key points defined
in Chapter 5). Also by using the program history, it can be determined if a second join
specification can be used for further optimisation. This fact is deduced from the program

history. For example, if we have recorded that the program is created using the meta-
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interpreter called modulant skeleton of meta-interpreter (defined in Appendix C) then
the system infers that the clause number 2 in the program calls in its body an auxiliary

predicate which can be used for further optimisation using a second join specification.

Our implementation of the meta-composition algorithm is based on unfolding and meta-

folding transformations. This meta-folding operation is different to the folding operation
used in procedural join and join 1-1. The meta-folding operation verifies, before folding,
whether the subgoals (from program P and from program Q) that are candidates for

joining are enhancements of the same subgoal in the skeleton. These candidate subgoals
are determined by the use of key points at each stage of the composition process.

The meta-composition method is a suitable method for combining meta-interpreters but it
is not restricted to that class of programs. This method can be used for combining programs
which are extensions of the same skeleton with the same number of clauses. Therefore we

can use the meta-composition method for combining all programs which can be combined

using join 1-1. The converse is not true, programs that belong to meta-interpreters or

the counter class cannot be efficiently combined using join 1-1. This is because the join
1-1 method performs a sequence of transformations consisting of unfolding, folding and
then the merge operation, whilst the meta-composition method performs unfolding, meta-

folding and the merge operation.

In short, the meta-composition method uses knowledge about the development of the

program, providing information about the subgoals that appear in the skeleton and how
they were transformed in each program. This information controls the folding operation
and, by using this information, reduction in the numbers of local variables can be performed
as shown in the following example.

6.8.1 Example 1

In the following example we combine the meta-interpreter new_fuzzy/3 which returns
the associated certainty factor and explanation for a query and the meta-interpreter
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fuzzydepth/3 which attempts to compute the certainty factor for a query but is lim¬
ited by the depth to which it can recurse. These two meta-interpreters are shown below.
Note that this example corresponds to the (meta,meta) entry in the table 6.4.

PI: new_fuzzy(A,B,fact(A,B))
fact(A,B).

P2: new_fuzzy(not(D),B,not(D,B,F))
new_luzzy(D,E,F),
B is 1 - E.

P3: new_fuzzy(A,B,rule(A,B,G)):-
rule(A,D,E),
new_fuzzy(D,F,G),
B is E * F.

Q1: fuzzydepth(A,B,C)
iact(A.C).

Q2: fuzzydepth(not(E),B,C):
fuzzydepth(E,B,F),
C is 1 - F.

Q3: luzzydepth(A,B,C)
B > 0,
D is B - 1,
rule(A,E,F),
fuzzydepth.(E,D,G),
C is F * G.

P4: new_iuzzy((D & E),B,conj(G,I,B))
new_luzzy(D,F,G),
new_iuzzy(E,H,I),
min(F,H,B).

P5: new_fuzzy((D or E),B,disj(G,I,B)):
new_fuzzy(D,F,G),
new_iuzzy(E,H,I),
max(F,H,B).

Q4: luzzydepth((D & E),B,C) :

fuzzydepth(D,B,F),
fuzzydepth(E,B,G),
min(F,G,C).

Q5: fuzzydepth((D or E),B,C)
iuzzydepth(D,B,F),
fuzzydepth(E,B,G),
max(F,G,C).

Additionally, we need the following definitions for min/3 and max/3 defined below.

max(A,B,A) A > B.
max(A,B,B) A =< B.

min(A,B,A) A < B.
min(A,B,B) B =< A.

The twometa-interpreters new_fuzzy/3 and fuzzydepth/3 defined above will be combined
using the join specification shown below.

new fuzzvdepth(Goal.Cf.Exp,Depth) <=
new fuzzvCGoal.Cf.Exp),
iuzzvdepth(Goal.Depth,Cf).



6. METHODS FOR THE SAME FLOW OF CONTROL 123

where the underlined arguments provide flows of control which we want to synchronise.
Since we assume knowledge of the history of development of the program we can check
which arguments were intended to provide the flow of control and assess whether they will
be compatible in combination.

The corresponding simplified versions of the program histories for the programs

new_fuzzy/3 and fuzzydepth/3 are

his_prog(new_fuzzy,3,meta-interpreter, [[1, (true .fact (A, B) ) ,no_test] ,

[2, (clause(A.B).true)),(solve(B),new_fuzzy(D,E,F)),no_test] ,

[3, (clause(A.B),rule(A,D,E)),(solve(B),new_fuzzy(D,F,G)),no_test],
[4, (solve(A),new_fuzzy(D,F,G)),(solve(B),new_fuzzy(E,H,I)),no_test],
[5, (solve(A) , new_fuzzy (D, F,G)), (solve(B) ,new_fuzzy(E,H,I)) ,no_test]] ,compute_cf).

his_prog(fuzzydepth,3,meta-interpreter, [[1, (true.fact(A.C)) ,no_test] ,

[2, (clause(A.B).true),(solve(B),fuzzydepth(E,B,F)),no_test] ,
[3, (clause(A.B),rule(A,E,F)),(solve(B),fuzzydepth(E,D,G)),B >0]
[4, (solve(A),fuzzydepth(D,B,F)),(solve(B),fuzzydepth(E,B,G)),no_test],
[5,(solve(A), fuzzydepth(D.B.F)),(solve(B),fuzzydepth(E,B,G)),no_test]] ,
compute_cf).

Note that for reasons of clarity we have deleted 4 arguments in the previous simplied
versions of the program histories. For each history, the first argument is the name of the

program; the second is the arity; the third is the name of the initial control flow used in
the construction of the program; the fourth argument is a list recording, for each clause,
how the subgoals in the initial control flow were transformed; and the fifth is the technique
used to extend the initial flow of control.

The program histories thus say that both programs were built using the "meta-interpreter"
skeleton, that both programs have the same number of clauses and both traverse the same

data structure. By applying the meta-composition method that makes the combination

by combining only corresponding clauses, rather than combining all pairs of clauses, we
achieve the desired synchronisation in the unpacking of the data structure.
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In this case it will observe (from the program history) that both programs have the same

flow of control, called "meta-interpreter"2, and they were constructed using the same

techniques. We assume that the user would also like the flow of control of the output

to be "meta-interpreter" and would simply like to have the compute_cf technique (which
computes certainty factor) added. The definition of this technique is in Appendix D.

Let us look at this in a bit more detail. The flow of control for both new_fuzzy/3 and

fuzzydepth/3 is a variation of meta-interpreter skeleton, which can be described as:

solve(true).
solve(A)

clause(A.B),
solve(B).

solve((A,B))
solve(A),
solve(B).

The stages of the composition process can be described as follows:

Step 1: taking the first clause of program new_fuzzy/3 and the first clause of program

fuzzydepth/3 we obtain the clause shown below.

new_fuzzydepth(A,B,fact(A(B),_Depth)
new_fuzzy(A,B,fact(A,B)),
fuzzydepth(A,Depth,B).

Then by unfolding the call new_fuzzy/3 and fuzzydepth/3 in the previous clause we get
the following clause:

Ti : new_fuzzydepth(A,B,fact(A,B),_Depth)
fact(A,B),
fact(A,B).

We obtain the combined clause T\ by applying the merge operation which removes the

syntactically identical subgoals.

Tj : new_fuzzydepth(A,B,fact(A,B),_Depth)
fact(A,B).

2So-named because its function is to allow us to create rneta-interpreters
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Step 2: using the second clause of program new_fuzzy/3 and the second clause of program

fuzzydepth/3 and by unfolding their definition in T2 we thus get the clause shown below.

T2 : new_fuzzydepth(not(E),B,not(E,B,G).Depth)
new_iuzzy(E,F,G),
B is 1 - F,
fuzzydepth(E,Depth,Fl),
B is 1 - Fl.

In this clause the subgoals new_fuzzy(E,F,G) and fuzzydepth(E,Depth,Fl) cannot be

replaced by a single subgoal new_fuzzydepth(E,F,G,Depth) in the normal way by using
the join specification. The variable F needs to be unified to Fl. This can be done in

two ways: one is by program analysis, the other is by using the histories of the programs

provided by the techniques editor. We took the second approach because we already have
the program history. This approach involves the use of extra information which is kept in
the history of the program development. This history of the program provides knowledge
about how the initial skeleton is transformed in the development of the program. By using
this information it is possible to fold the subgoals which are derived from the appropriate

subgoal in the initial skeleton.

The information contained in the eighth argument (fourth here) of the program history
informs us that the subgoals new_fuzzy(E,F,G) and fuzzydepth(E,Depth,Fl) are en¬

hancements of the same subgoal in the skeleton solve (B). This argument is a list record¬

ing, for each clause, how the subgoals in the initial control flow were transformed. This
information enables us to infer, without having to perform any program analysis, which
variables are used for computing exactly the same value (ie. they have the same function¬

ality, for instance to decompose the data structure) and hence can be bound together. The
binding of these local variables allows the folding of the subgoals new_fuzzy(E,F,G) and
fuzzydepth(E,Depth,Fl). The optimised combined clause shown as follows:

T2 : new_fuzzydepth(not(E),B,not(E,B,G).Depth)
new_fuzzydepth(E,F,G,Depth),
B is 1 - F.

Proietti and Pettorossi proposed an algorithm based on unfolding, folding and addition of
new join specifications [Proietti & Pettorossi 92]. The main characteristic of the algorithm
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is that it eliminates unnecessary variables which occur in the body of the clause and they
do not occur in the head of the clause (ie. they are local variables). This algorithm
requires three actions which need to be defined for the user: the introduction of a set of

join specifications for the folding step, selection of the calls in the body of the clauses for

unfolding stages and choice of arithmetic laws to be applied.

However Proietti and Pettorossi's algorithm cannot be applied to the meta-interpreter

class. The reason is that no further subgoal can be unfolded (i.e. no more redundant vari¬
ables can be eliminated). So no more optimisation can be performed using this approach
based on the standard unfolding and folding operations. However our solution based in

program, history handles the problem of removing unnecessary duplicated variables by de¬

tecting whether they are used for deconstructing or building the data structure (by means

of the program history) and also reduces user interaction.

Step 3: we take the third clause of each program and by unfolding their definition in T3
we get the clause shown below.

T3: new_fuzzydepth(A,B,rule(A,B,H).Depth)
rule(A.E.F),
new_fuzzy(E,G,H),
B is F * G,
Depth > 0,
D1 is Depth - 1,
rule(A,El,F1),
fuzzydepth(El,D1,G1),
B is F1 * Gl.

By performing the binding of local variables El to E and Gl to G we obtain the following
clause:

T3 : new_fuzzydepth(A,B,rule(A,B,H).Depth)
rule(A.E.F),
Depth > 0,
D1 is Depth - 1,
new_fuzzydepth(E,G,H,Dl),
B is F * G.

Step 4: we take the fourth clause from each program and by unfolding the following clause
is obtained.
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T4 : new_fuzzydepth((D fc E),B,conj(H,J,B).Depth)
new_fuzzy(D,G,H),
new_fuzzy(E,I,J),
min(G.I.B),
fuzzydepth(D,Depth,Fl),
fuzzydepth(E,Depth,Gl) ,

min(Fl,Gl,B).

In this clause we need to infer that the variable G can be unified to Fl and that the

variable I can be unified to Gl. This cannot easily be obtained by performing program

analysis of the subgoals which involve the variables G,F1,I and Gl. For example we can

take the subgoals min(G,I,B) and min(Fl,Gl,B) and hypothetical substitutions such as

G=.2, I=.3 and Fl=.2 and Gl=.5. The variable I cannot be unified with Gl even when

the variable G can be unified with Fl. However the program history informs us that the

subgoals new_fuzzy(D,G,H) and fuzzydeph(D,Depth,Fl) are enhancements of the same

subgoal in the skeleton and also the variable G and Fl have the same functionality as is

defined in the join specification (to compute the certainty factor) and can be unified.

In a similar fashion new_fuzzy(E,I, J) and fuzzydepth(E,Depth,Gl) are enhancements
of the same subgoal in the skeleton solve. This information and the information about the
use of each variable (functionality) allows us to determine that the variables G and Fl can
be unified and that the variable I and Gl can be unified. Therefore the previous clause can

be optimised by means of the meta-folding operation which determines which variables can

be safely unified. By applying the meta-folding operation we obtain the combined clause
t4.

T4 : new_fuzzydepth((D & E),B,conj(H,J,B).Depth)
new_fuzzydepth(D,G,H,Depth),
new_fuzzydepth(E,I,J,Depth),
min(G,I,B).

Similarly the clause t5 can be obtained. This clause is shown as follows:

T5 : new_fuzzydepth((D or E),B,disj(H,J,B).Depth)
new_fuzzydepth(D,G,H,Depth),
new_fuzzydepth(E,I,J,Depth),
max(G,I,B).



6. METHODS FOR THE SAME FLOW OF CONTROL 128

The complete program new_fuzzydepth/4 is shown as follows:

Ti: new_fuzzydepth. (A,B,fact(A,B),_Depth)
fact(A.B).

T2 : new_fuzzydepth(not(E),B,not(E,B,G).Depth)
new_:fuzzydepth(E,F,G,Depth),
B is 1 - F.

T3 : new_fuzzydepth(A,B,rule(A,B,H),Depth)
rule(A.E.F),
Depth > 0,
D1 is Depth - 1,
new_iuzzydepth(E,G,H,D1),
B is F * G.

T4 : new_fuzzydepth((D & E).B.conj(H,J.B).Depth)
new_fuzzydepth(D,G,H,Depth),
new_fuzzydepth(E,I,J,Depth),
min(G,I,B).

T5 : new_fuzzydepth((D or E).B.disj(H,J.B).Depth)
new_fuzzydepth(D,G,H,Depth),
new_fuzzydepth(E,I,J,Depth),
max(G,I,B).

In general, the combined program will return just a subset of the values that would be

obtained from the join specification if we were to regard it simply as a Prolog program.

However, in our opinion, the combined program is almost certainly what the programmer

actually desired. Hence we prefer to regard the join specification as a high-level description
that implicitly contains more constraints than the naive Prolog equivalent.

For example, Appendix F contains the behaviour of the "naively combined meta-

interpreters" obtained by regarding the specification as just Prolog. In this case we need
to take the full cartesian product. Not only is the result different from what we believe
the programmer would have intended, but it is also very inefficient because of the many

extra clauses.

Thus, after comparing our combined program generated using our meta-composition
method with a program generated by transformations of the specification considered purely
as a Prolog program, we find that our combined program is both closer to the user's pre¬

sumed intentions and also more efficient.



6. METHODS FOR THE SAME FLOW OF CONTROL 129

In fact, using only the original two programs, it would be difficult (if not impossible) to
write a join specification just in Prolog that would exclude the unwanted extra solution

obtained from the naive join specification.

Potentially this gives a big advantage over the standard program transformation methods
which can only be given the input Prolog specification, and so would have difficulty recov¬

ering the suggestion (available from the skeletons) that quite possibly only the subset of
solutions are needed in which both programs traverse the Goal in the same fashion.

The naive Prolog specification failed because it did not enforce the same traversal in both

clauses, and hence the depth limit Depth was not forced to correspond to the explanation

Exp provided.

In the following example we show the case where the value being recursed over is itself

computed by a call to a user-defined predicate. This is another case in which the meta-

composition method can safely unify local variables.

6.8.2 Example 2

In this example our initial programs are the meta-interpreters interpret/1 (taken from

[Sterling & Shapiro 86]) and count/2, which are constructed by using the skeleton solve/1

(depicted in Appendix C). The program interpret/1 which explains a proof tree created
for a goal (query) and count/2 counts the number of rules needed for proving this goal.
Note this example also corresponds to the (meta,meta) entry in the table 6.4.

interpret((Proof1.Proof2)):-
interpret(Proof 1),
interpret(Proof2).

interpret(Proof):-
fact(Proof,Fact),
write([Fact,' is a fact in the database']).
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interpret(Proof): -
rule(Proof,Head,Body,Proof1),
write([Head,' is proved using rule']),
display_rule(rule(Head,Body)),
interpret(Proof 1).

count((A,B),C)
count(A,CA),
count(B,CB)
C is CA + CB.

count(A,1)
fact(A,_R).

count(A,C)
rule(A,_Head,_Body,B),
count(B,CB),
C is CB + 1.

Additionally, we need the following definitions for fact/2 and rule/4:

fact((Fact :- true),Fact).

rule((Goal Proof),Goal,Body,Proof)
Proof \== true, extract_body(Proof.Body).

We consider the meta-interpreter interpret/1 as being comprised of clauses P\,Pi and

P3 and count/2 by clauses Qi, Q2 and Q3. In both programs the clauses are in the same

order.

A new program int_count/2 (comprised for clauses Tj, T<i and T3), which explains a proof
tree and simultaneously counts the number of rules in the proof, is generated by using the

following join specification:

int count (Proof. C ) <S=

interpret(Proof). count(Proof,C).

The process consists of taking clause 1 from program interpret/1 and clause 1 from

program count/2, and creating an instance of the join specification (i.e., T\ P,Q).
After unfolding interpret (Proof) and count (Proof ,C) with respect to Pi and Q\, we
obtain the following clause:

Ti : int_count((Proof1,Proof2),C)
interpret(Proof 1), interpret(Proof2) ,

count(Proof1,CP1) , count(Proof2,CP2),
C is CP1+CP2.
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Applying the folding operation we get the following clause:
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Ti : int_count((Proof1,Proof2),C)
int_count(Proof1,CP1), int_count(Proof2,CP2),
C is CPi+CP2.

Taking clause 2 from each program and applying the unfolding operation we obtain the
clause shown below:

Ti : int_count(Proof,1)
fact(Proof,Facti),
nl, write([Factl,' is a fact in the data base']),
fact(Proof,Fact2).

The histories of the programs provided by the techniques editor inform us that subgoals

fact(Proof,Factl) and fact (Proof ,Fact2) are enhancements of the same subgoal in
the skeleton solve which is a variant of the skeleton solve defined in Appendix C. This

information enables us to infer, without having to perform any program analysis, which

variables have the same functionality and hence can be bound together. In this case, we

are able to determine that variable Fact2 can be unified to Factl and we get a more

optimised clause T2:

T2 : int_count(Proof,1)
fact(Proof,Factl),
nl, write([Factl,' is a fact in the data base']).

Finally, taking clause 3 from each program and applying the unfolding operation, we get
to clause T3:

Tz : int_count(Proof,C)
rule(Proof,Headl,Body1,Proof1) ,
nl, write([Headl,' is proved using the rule']),
display_rule(rule(Headl,Bodyi)),
interpret(Proof1),
rule(Proof,Head2,Body2,Proof2) ,

count(Proof2,CB),
C is CB+1.

This clause can be optimised by means of the meta-folding operation. This operation deter¬
mines that the variables Proof 1 and Proof 2 can be unified by knowing that these variables
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have the same functionality, i.e., they are used recursively to deconstruct the data struc¬

ture required by each program. The binding {Proof l/Proof2} of local variables allows the
folding of the subgoals rule(Proof,Headl,Bodyl,Proof1) and count (Proof2,CB) and

the removal of the second rule/4 subgoal. The optimised combined clause T3 is as follows:

I3 : int_count(Proof,C)
rule(Proof,Headl,Bodyl,Proofl) ,

nl, write([Headl,' is proved using the rule']),
display_rule(rule(Headl,Body1)),
int_count(Proof1,CB),
C is CB+1.

It could be argued that another way to find out that Headl, Bodyl and Proof 1 can be

unified to Head2, Body2 and Proof2 respectively, is by doing an analysis of each program

to be combined and performing mode and type analysis in rule/4 and display_rule/l.
In more sophisticated meta-interpreters this analysis can be complex and computationally

expensive, whereas in our approach, all the required information is already available.

The resulting combined program using the extra knowledge is shown below. This program
has better computational behaviour (traverses the proof a single time) than the combined

program generated using standard unfold/fold transformation operations:

int_count((Proofl,Proof2),C)
int_count(Proofl,CA), int_count(Proof2,CB),
C is CA+CB.

int_count(Proof,1)
fact(Proof,Factl),
nl, write([Factl,' is a fact in the data base']).

int_count(Proof,C)
rule(Proof,Headl.Bodyl.Proof1),
nl, write([Headl,' is proved using the rule']),
display_rule(rule(Headl,Bodyl)),
int_count(Proof1,CB),
C is CB+1.

Let consider us the query:

solve(place_in_oven(dishl,middle) ,P) , int_count(P,C) using the following rules.
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place_in_oven(Dish,top)
pastry(Dish), size(Dish,small).

place_in_oven(Dish,middle)
pastry(Dish), size(Dish.big).

place_in_oven(Dish,moddle)
main_maeal(Dish).

place_in_oven(Dish,low)
slow_cooker(Dish).

pastry(Dish) type(Dish.cake).
pastry(Dish) type(Dish,bread).

main_meal(Dish) type(Dish.meat).

show_cooker(Dish) type(Dish,milk_pudding).

type(dishl.bread).
size(dishl,small).
size(dishl.big).
pastry(dishl).

The answer to the query solve(place_in_oven(dishl .middle) ,P) gives:

P=place_in_oven(dishl,middle) :-(pastry(dishl):-(type(dishl.bread) :-true)) ,

(size(dishl,big)true)

The answer to the query int_count(P,C) with P instantiated to the proof obtained by

program solve/2 is as follows:

[place_in_oven(dishl.middle), is proved using the rule]
IF pastry(dishl),size(dishl,big)
[THEN , place_in_oven(dishl.middle)]

[pastry(dishl), is proved using the rule]
IF type(dishl.bread)
[THEN , pastry(dishl)]

[type(dishi.bread), is a fact in the data base]
[size(dishl,big), is a fact in the data base]

Also the variable C is unified to 4.

6.8.3 Example 3

The following example uses the technique of data abstraction. This example shows how
the meta-composition method can be used when all the variables in the head of the clause
are free variables.
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Consider the program collect_per/2 which builds a list of people whose salary is greater
than 10000. In this program, we have used data abstraction to remove references to

specific data structures or built-in predicates and have replaced these with more abstract

predicates. Note that this example also corresponds to the (meta,meta) entry in the
table 6.4.

collect_per(L_per,Data_St):-
base_case(L_per),
assign_base_case(Data_St) .

collect_per(L_per,Data_St)
head_tail(L_per,Person,RestGroup),
test_l(Person,Salary),
test_2(Salary,10000),
build(Person,CollectRest,Data_St),
collect_per(RestGroup,CollectRest).

collect_per(L_per,Collect)
head_tail(L_per,Person,RestGroup),
test_l(Person,Salary),
test_3(Salary,10000),
collect_per(RestGroup,Collect).

collect_per(L_per,Collect)
head_tail(L_per,Group,RestGroups),
collect_per(Group,Collectl),
collect_per(RestGroups,Collect2),
append(Collectl,Collect2,Collect).

The program count/2 counts how many employees earn a salary greater than 10000.

count ([] ,0).
count(LP,C)

head_tail(LP,Per,Rest_Group),
test_l(Per,S),
test_2(S,10000) ,

count (Rest_Group,C),
C is CI + 1.

count(LP,C)
head_tail(LP,Per,Rest_Group),
test_l(Per,S),
test_3(S,10000),
count(Rest_Group,C).

count(LP,C)
head_tail(LP,Group,Rest_Groups),
count(Group,CI),
count(Rest_Groups,C2),
C is CI + C2.

Additionally, we need the following definitions for test_l/2, test_2, test_3,

head_tail/3, assign_base_case/l and build/3. This is the place in which we make
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use of the data abstraction technique with the aim of allowing future revisions to the data
structure can be performed easily.

test_l(person(_,_,S),S).
test_2(S,N) S>N.
test_3(S,N) S<N.

head_tail([H|T],H,T).

base_case([]).

assign_base_case([]).

build(Elem,Tail,Data_Str)
Data_Str=[Elem|Tail].

The corresponding simplified versions of the program histories for the programs

collect_per/3 and count/2 are

his_prog(collect_per,2,meta-interpreter,
[Cl, (true,[base_case(L_per),assign_base_case(Data_St)]),no_test],
[2,(clause(A,B),head_tail(L_per.Person.RestGroup)),
(solve(B) ,collect_per(RestGroup,CollectRest)), [test_l(Person,Salary),
test_2(Salary,10000)]],
[3, (clause(A,B),head_tail(L_per,Person,RestGroup)),
(solve(B),collect_per(RestGroup,Collect)), [test_l(Person,Salary),
test_3(Salary 10000)]] ,

[4,(solve(A),collect_per(Group,Collect1)),
(solve(B),collect_per(RestGroups,Collect2))]], build_list_technique).

his_prog(count,2,meta-interpreter, [[1,(true,true),no_test],
[2,(clause(A.B),head_tail(LP,Per,Rest_Group)),
(solve(B),count(Rest_Group,C)), [test_l(Per,S), test_2(S,10000)]],
[3, (clause(A,B),head_tail(LP,Group,Rest_Group)),
(solve(B).count(Rest_Group,C)), [test_l(Person,S), test_3(S,10000)]],
[4, (solve(A),count(Group,Cl)),(solve(B).count(Rest_Groups,C2))]],count.technique).

Note that the same convention for the program histories, used in the previous examples is
used here as well (4 arguments have been deleted). For each history, the first argument is
the name of the program; the second is the arity; the third is the name of the initial control
flow used in the construction of the program; the fourth argument is a list recording, for
each clause, how the subgoals in the initial control flow were transformed; and the fifth is
the technique used to extend the initial flow of control.
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The program histories thus say that both programs were built using the "rneta-interpreter"
skeleton, that both programs have the same number of clauses and both traverse the same

data structure.

The join specification used for producing a new program, collect_count/3, is shown as

follows:

collect_count(Listl.List2.Count) <=

collect_per(Listl.List2),
count(List1.Count)

Taking clause 1 from each program, creating an instance of the join specification and

applying the unfolding operation we obtain the clause shown below:

Ti : collect_count([],[],0).

Taking clause 2 from each program, creating an instance of the join specification and

applying the unfolding operation we obtain:

T? : collect_count(L_per,Data_St,C)
head_tail(L_per,Person,RestGroup),
test_l(Person,Salary),
test_2(Salary,10000),
build(Person,CollectRest,Data_St),
collect_per(RestGroup,CollectRest),
head_tail(L_per,Per,Rest_group),
test_l(Per,S),
test_2(S,10000),
count(Rest_group,C1),
C is CI + 1.

After applying the meta-folding operation it is possible to unify the variables RestGroup to
Rest .group obtaining the folded clause shown below (see fourth argument clause number
2 in the program history for each of the programs). The program history informs us that
the variables RestGroup and Rest.group (local variables) are used for deconstructing the
same instance of the data structure of corresponding clauses. So they can be safely unified.
This also can be performed by inspecting the definition of head_tail/3 which is used for
the same input L.per in the subgoal 1 and subgoal 6. Therefore the variable Person can be
unified to the variable Per and in a similar fashion the variable RestGroup to Rest.group.
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T2 : collect_count(L_per,Data_St,C)
head_tail(L_per,Person,RestGroup),
test_l(Person,Salary),
test_2(Salary,10000),
build(Person,CollectRest,Data_St),
collect_count(RestGroup,CollectRest,C1),
test_l(Person,S),
test_2(S,10000),
C is CI + 1.

By removing the syntactically identical subgoals (ie. test_l/2 and test_2/2).

T2 : collect_count(L_per,Data_St,C)
head_tail(L_per,Person,RestGroup),
test_l(Person,Salary),
test_2(Salary,10000),
build(Person,CollectRest,Data_St),
collect_count(RestGroup,CollectRest,CI) ,

C is CI + 1.

Similarly T3 can be obtained:

T3 : collect_count(L_per,Collect,C)
head_tail(L_per,Person,RestGroup),
test_l(Person,Salary),
test_3(Salary,10000),
collect_per(RestGroup,Collect),
head_tail(L_per,Per,Rest_Group),
test_l(Per,_),
test_3(S,10000),
count(Rest_Group,C).

By applying the meta-folding operation we obtain the following clause:

T3 : collect_count(L_per.Collect,C)
head_tail(L_per,Person,RestGroup),
test_l(Person,Salary),
test_3(Salary,10000),
collect_count(RestGroup,Collect,C).

In a similar fashion T4 can be obtained. By creating an instance of a join specification and

by applying the unfolding operation we obtain the following clause:
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T4: collect_count(L_per,Collect,C)
head_tail(L_per,Groups,RestGroups),
collect_per(Groups,Collectl),
collect_per(RestGroups,Collect2),
append(Collectl,Collect2,Collect),
head_tail(L_per,Gpos,Rest_Groups),
count(Gpos,CI),
count(Rest_Groups,C2),
C is CI + C2.

Applying the meta-folding operation produces the following clause: unifying Groups to

Gpos and RestGroups to Rest_Groups.

T4 : collect_count(L_per.Collect,C)
head_tail(L_per,Group,RestGroups),
collect_count(Group,Collectl,C1),
collect_count(RestGroups,Collect2,C2),
append(Collect1,Collect2,Collect),
C is CI + C2.

A query for the program int_count/3 is given as follows:

collect_count([person(maria,_,100000),person(wamb,_,200),
person(elena,_,200000)],Collect,C)

The answer to the query gives:

Collect=[person(maria,_,100000),person(elena,_,200000)] and C=2.

This section has shown three examples which gave a different perspective on how this
method can be used in the combination of programs.

The restrictions for the meta-composition method are as follows:

• programs must be derived from a skeleton that is either "meta-interpreter" or

"count". Note that we do not include the set of skeletons defined in the traver¬

sal family in this restriction because they can be combined using join 1-1,

• the method only combines programs with the same number of clauses,

• both programs must traverse the same data structure,
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Meta-composition (M4)
Pi/A t st s ctr meta

t

st <j>! ,a
s </>i,a
ctr a

meta a

Table 6.4: Table for the Meta-composition Method

• both programs must use the same pattern to construct/deconstruct the data struc¬

ture determining flow of control,

• the meta-folding operation will only attempt to unify local variables which are in
the same environment, which are used for traversing the same instance of the data
structure.

The table 6.4 shows the performance of this method for each pair of programs (see sec¬

tion 6.3 for an explanation of the term a).

The condition (f>\ means that both programs belong to type Traverse-restricted (defined
in Chapter 5). The resulting combined program is an efficient program for the counters
and meta-interpreter classes. However the meta-composition can be used for combining
other entries in the table under restriction (f>\. Note that the entries (t,t), (st,st) and (s,s)
were already covered using the join 1-1 method. So the meta-composition method is more
complex than strictly necessary for these.

6.9 The DS Method

The class of programs that we are considering to be combined using the DS method are

those programs which operate over different data structures in some of their recursive
cases. For example, consider the predicate sum/2 which computes the sum of the elements
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of a list or the sum of the elements of a binary tree. The second program len/2 computes
the length of a list. These programs are defined as follows:

Pi : sum([],0).
Pi : sum([H|T],Sum)

sum(T,Suml),
Sum is Suml + H.

Pi : sum(tip(X),X).
P4 : sum(tree(R,L),Sum

sum(L,Lsum),
sum(R.Rsum),
Sum is Lsum + Rsum.

Q1 : len([],0).
Qi : len[HlT],Len)

len(T,Ll),
Leu is Li + i.

Note that this example corresponds to the (t,t) entry in the table 6.5.

The programs sum/2 and len/2 are combined by using a join specification defined as

follows:

sum_len(List,Sum,Len) <=

sum(List,Sum),
len(List,Len).

Both programs operate over the same type of data structure, a list, and both programs are

extensions of the same skeleton traverse, defined in Appendix C. The combined program

sum_len/3 can be obtained by applying the procedural join method defined earlier. The
method works by combining the parts of each program which operate over the same data
structure. In the example, these are the parts which traverse a list. Note that this method

requires that the unification of the data structure be explicit on the head of each clause
in order to produce groups. The reason for this is that analysis of the clauses would be
difficult, in general because of data abstraction. The algorithm is described as follows:
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DS Algorithm

1. Find the clauses which work over the same type of data structure and produce
groups.

2. Combine clauses with the same data structure (i.e. in the same group).
3. Produce a new program which is formed by the combined clauses in each group.

The composed program obtained by applying the DS method is shown as follows:

sum_len([],0,0).
sum_len([H|T],Sum,Len)

sum_len(T,Sl,L1),
Sum is SI + H,
Len is LI + 1.

sum(tip(X),X).
sum(tree(R,L),Sum)

sum(L,Lsum),
sum(R,Rsum),
Sum is Lsum + Rsum.

new_program(List,tree(X,Y),S,L,S_node)
sum_len(List,S,L),
sum(tree(X,Y),S_node).

The previous method can be seen as a variant of the procedural join method (defined in
Section 6.7). The first stage is the selection of clauses which can be combined and then
they are combined using the same sequence of transformations used on the procedural join
method.

The table 6.5 shows the performance of the DS method (see section 6.3 for an explanation
of the terms a and /?).

The condition (f>3 means one of the program works over a different data structure than the
other but does not put a restriction on the number of tests in the bodies of clauses.

An important subclass of programs which perform arithmetic operations in real/integer
domains are those constructed using the sum or count technique. These appear frequently
in Prolog text books ([O'Keefe 90, Bratko 86, Sterling & Shapiro 86]). The combination
of these can be optimised using the particular method defined below.
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DS (M5)
P1/P2 t st s ctr meta

t fa, a fa, P fa,P
st fa,P fa, a fa,P
s fa,P fa,P fa, a
ctr

meta

Table 6.5: Table for the DS Method

6.10 The Particular Method

The particular method is a method which combines programs defined in the same algebraic
domain. This method copes with a special but common class of programs which involve

arithmetic operations after the combined programs. The join specification is defined as:

T 4= P,Q, F\... Fn where Fx to Fn are subgoals which perform computations in the same

algebraic domain as P and Q. A more detailed join specification is shown as follows:

T(IP, IQ, OT) <= P(IP, OP), Q(IQ, OQ), F(0"P, OQ, OT)

The restriction for applying this method is that both of the programs P and Q should
be constructed by using the count or sum technique. This imposes a restriction on the
predicate F. This subgoal F needs to perform computations of the same type as the new

subgoals added by means of the technique count or sum.

This method combines programs belonging to the type Traverse-general defined in Chap¬
ter 5. Besides this restriction we also require that both programs need to be constructed

using technique sum or count or other calculate techniques. (Actually, the current im¬
plementation is restricted to just the count and sum techniques, but this could be easily
extended by adding more rewrite rules whenever needed.)

This method works by performing the following sequence of transformation operations:
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unfolding; application of laws such as commutativity or associativity which are valid in

each algebraic domain; and finally folding (see Chapter 2). This method was implemented

by creating a catalogue of transformation schemata tagged with conditions under which
it is possible for the transformation to be performed. Each schema is represented in the

system as a rewrite rule. We define these rewrite rules containing three components: the
first component of the rule is the join specification, the second is the input schema, the

third component is the transformed schema. The sequence of goals after the symbol
are the conditions under which the schema can be transformed. For example, the first

schema shown in Rule 1 is suitable when both of the programs to be combined perform

computations which involve the addition operation.

In Rule 1 defined below we have that Head_Df is the head of the clause, Opl is the first

operand in the join specification, 0p2 is the second operand in the join specification and
the subgoal S is TT +RR is the extra subgoal which uses the partial results obtained from
the execution of the predicate Opl and 0p2. The subgoals (G is F+Cl), (I is H+C2) and

(E is G+l) can be replaced by the expression (E is S + (CI + C2)).

Rule 1:

rule((Head_Df 0pi,0p2,S is TT+R.R),
(Opl.G is F+Cl, 0p2,I is H+C2, E is G+I),
(Head_Df 0pl,0p2, S is (F+H), E is S + (CI + C2)))

functor(Opi,NFl,AFl),
functor(0p2,NF2,AF2), (NF1=NF2 ; NF1 \ = NF2).

The second schema represented as Rule 2 is applicable when the third operand, in the join

specification, involves the multiply operation. In a similar fashion Head_Df is the head of
the clause (as before). Opl and 0p2 are the operands in the join specification.
S is TT * RR is the extra subgoal which uses the partial results obtained after the exe¬

cution of the predicate Opl and 0p2. The subgoals (G is F*Cl), (I is H*C2) and
(E is G*I) can be replaced by the expression (E is S + (CI * C2)).
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RULE 2:
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rule((Head_Df (0pl,0p2,S is TT*RR),
(Opl,G is F*C1, 0p2,I is H*C2, E is G*I),
(Head_Dl 0pi,0p2, S is (F*H), E is S * (CI * C2)))

functor(Opl,NFl,AFl),
functor(0p2,NF2,AF2), (NF1=NF2 ; NF1 \ = NF2).

6.10.1 Algorithm

The algorithm for the particular uses transformation schemata for getting further opti¬

misation in the combined program. The particular method exploits the set of subgoals
which appear after the operands of the join specification (F\... Fn) in order to get a more

optimised program.
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Particular Algorithm

1. Create an instance Tk of the join specification (T <= P,Q,F).
2. Unfold P and Q in Tk with respect to Pi and Qj with the result of unfolding

being the clause:
Tk • (Pi,goalie •••) Pi,goaln)i (Qj,goallt •••■> Qjtgoalm)@R@B i F\, . . . , Fn.

3. The clause from step 2 can be rewritten as shown below. This is done in
order to separate the set of subgoals which cannot be folded from the set of
subgoals that can be folded. This reordering of subgoals is performed taking into
consideration the dependence between variables (i.e. if a variable is instantiated
later, it cannot be moved around and placed before). Note that in Tk the set of
subgoals which do not need to be folded (added by ith clause from program P)
appears before Pi,g0aii • In a similar fashion the set of subgoals which do not need
to be folded, added by the ith clause from program Q, appears before Qjigoaii-

Tk : (Pi,goal! > • • • t Pi,goali+1 > • • • > Pi,goaln)i Pi,goali>
j,goall i • ■ • Qj,goali+11 • • • j Qj,goalm) j Qj,goali i P.11 • • • i Fn •

4. Transform the previous schema into the schema shown below (Tk) which is the
result of applying laws (commutativity, associativity, etc) over the sequence of
subgoals which are not going to be folded and Ft,..., Fn.
Tk : Pi,goaliQj,goali^ 1

5. Apply the folding operation if there exists a pair of subgoals Pi,goaii, Qj,g0aii
and a set of subgoals Fi,...,Fn in the body of the clause Tk such that
(Pi,goaii, Qj,goaii, Fu..., Fn) and (P,Q,F) unify with some mgu 9
Then replace the subgoals Pi}g0aii, Qj,goaii and F\,...,Fn with Tk.

6. Repeat this process for all the clauses in program P and program Q.

The restriction of the algorithm described above is that both of the programs need to be
created by using the count or sum techniques. However this could be generalised to other
types of arithmetic operations such as union and intersection which are commutative and
associative.

In the next section we have an example of a combined program which computes the length
of two lists at the same time. The programs can also be combined using the general method
but an optimised version is obtained using the particular method.
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6.10.2 Example

146

For example, consider the problem of the construction of the combined program len_two/3
which computes the length of two lists and produces the total length using the following
definition of the predicate len/2.

len( [] ,0).
len([_H|T], Len)

len(T.Lenax),
Len is Lenax + 1.

Note that this example corresponds to the (t,t) entry in the table 6.6.

The information that program len/2 was constructed using the count technique can be
inferred from the seventh argument of the program history. This argument keeps a record
of which techniques were used during the construction of the program.

The join specification used for producing the programs len_two/3 is as follows:

len_two(Ll,L2, Len) <=
len(Li,Leni),
len(L2,Len2),
Len is Lenl + Len2.

This join specification uses more than a single argument for flow of control but both

belonging to the same type of data structure.

The process of combination using the particular method can be described as follows:

Step 1: taking clause 1 from program len/2 and clause 1 from program len/2 we can

create an instance of the join specification T\ :— P,Q,F\. By unfolding P and Q with

respect to P\ and Q\. we obtain:

len_two([],[],Len) true, true, Len is 0+0.

Figure 6.2 shows a summary of the combining process described above, i.e. the resulting
combined clause number 1 for program P (denoted as [P,l]) with first clause of program
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Q (denoted as [Q,l]). In this diagram, the sequence of triangles gives the succession of
transformations to the body of the combined clause. Below the first triangle we have the
unfolded clauses [P, 1] and [Q,l]. Below the second triangle we have the unified values for
the variables and finally we get a value for the variable Len after applying arithmetic and

logical reductions. These reductions are encoded in the transformation schema.

IenJwo
I

len.two ([],[], Len)

len([],Lenl), len (|],Len2), Len is Lenl + Len2

len([],0 ), len ([], 0), Len is 0 + 0

true, true, Len is 0

Len is 0

Figure 6.2: Clause 1 in the new program len_two/3

Step 2: we take clause 2 from program len/2 and clause 1 from program len/2 and create

an instance of the join specification T2 P, Q, F\. Unfolding P and Q with respect to P2

and Qi we get the clause that is shown below.

len_two([],[_H2IT2],Len)
true,
len(T2,Lenx),
Len2 is Lenx +1,
Len is 0+Len2.

A transformation schema is used at this stage in order to simplify the body of the previous
clause. The transformation schema takes the expressions Len is 0+Len2 and Len2 is

Lenx+1 and produces an equivalent expression. Returning to the unfolded clause and

replacing the two goals

{ Len2 is Lenx+1, Len is 0+Len2 } with the final expression { Len is Lenx+1 } we

get the clause:
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len_two([],[_H2|T2],Len)
true,
len(T2,Lenx),
Len is Lenx+1.

This transformation process is performed using a transformation schema such as are defined

on page 143. This transformation schema are rewrite rules which are used in order to

achieve more efficiency in the combined program.

Performing boolean reductions (using rewrite rules) on the previous clause we obtain the

following clause:

The Figure 6.3 in similar fashion shows a summary of the previous stages. In this figure we

have combined clause number one of program P ([P,l]) with the second clause of program

Q ([Q,2]). Below the first triangle we have the instance of the join specification for clauses

[P, 1], [Q,2] and F\ denoted as T2. At the next stage we have the unfolded clauses [P,l]
and [Q,2]. Below the third triangle we have the transformed clause T2 after applying
arithmetic rules and finally below the fourth triangle we have the definition of T2 after

applying boolean rules. Because it is not possible to apply any further optimisation, this
definition of T2 will be the second clause for the combined program.

len_two([],[_H2|T2],Len)
len(T2,Lenx),
Len is Lenx+1.

lenJwo

len_two ([],[/f2|T2], Len)

len([],Lenl), len ([LT2|T2],Len2), Len is Lent + Len2

true, len (T2, Lenx), Len2 is Lenx + 1, Len is 0 + Len2

true, len (T2, Lenx), Len is Lenx + 1

len (T2, Lenx), Len is Lenx + 1

Figure 6.3: Clause 2 in the new program len_two/3

Step 3: in the same way we have the third combined clause which is:
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len_two([_H1|T1], □ ,Len)
len(Tl,Lenx),
Len is Lenx+1.

Figure 6.4 shows the combined clause [P,2] with [Q,l] according to the instance of the

join specification T3 shown below the first triangle. The combination process is the same

as was described for the clause T2.

lenJwo
I

len.two ([//i|Ti],[] Len)

len ([Lfi|Ti],Lenl), len([],Len2), Len is Lent + Len2

len (Tj, Lenx), Lenl is Lenx + 1, true, Len is Lenl + 0

len (Tj, Lenx), true, Len is Lenx + 1

len (Ti, Lenx), Len is Lenx + 1

Figure 6.4: Clause 3 in the new program len_two/3

Step 4: we take clause 2 from program P and clause 2 from program Q and create an

instance of the join specification Tj P,Q,F\. Unfolding P and Q with respect to P2
and Q2 we obtain the clause that is shown below.

T4 :len_two([_Hl|Tl],[_H2|T2],Len)
len(Tl.Lenxl),
Lenl is Lenxl+1,
len(T2,Lenx2),
Len2 is Lenx2+1,
Len is Lenl+Len2.

Clause Tj matches with the transformation schema used when the technique count was

applied (on both programs). This transformation schema is shown below.

Opl(Tl,F), G is F + CI, Op2(T2, H), I is II + C2, E is G + I then

the program can be transformed to

Opl(Tl,F), Op2(T2, H), S is F + H, E is S + (CI + C2)
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were T1, G, F, Cl,T2, /, H, C2, E and S are local variables; Op 1 and Op2 are the operands
in the join specification. The local variable S is a new variable which replaces all the local
variables used in the predicates Opl and Op2 (i.e. F and H) from the expression E is G+I.

The approach used is straightforward, we apply a sequence of rewrite rules to arithmetic

expressions. Then these are converted in a form in which the fold operation can be applied.
The sequence of rewrites for clause T4 are defined below. Note that the rewrites used

currently in our system are limited but might be extended (although we do not have proof
of generality).

The transformation process starts by grouping subgoals which are computing arithmetic

expressions. This reordering preserves the dependence between variables. Then given the

following subgoals:

(Len is Lenl+Len2) and (Lenl is Lenxl+l) and (Len2 is Lenx2+l).

we obtain that Len is Lenxl+l + Lenx2+1. After using associativity and commutativity
laws we get the expression: Len is (Lenxl+Lenx2) + (1+1).

This expression can be rewritten as follows:

Len is (Lenxl+Lenx2)+2

Introducing a new variable Lenax, and equating it to (Lenxl+Lenx2) we obtain the follow¬
ing expression:

Len is Lenax+2

The axiom that our transformation schema uses is defined as follows: Vni,n2 3n3 such as

n3 = n\ + n2 where ni,n2 and n3 are integers/reals.

Therefore the clause T4 can be rewritten as:

len_two( [_H1IT1],[_H2|T2],Len)
len(Tl.Lenxl),
len(T2,Lenx2),
Lenax is Lenxl+Lenx2,
Len is Lenax+2.
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Note that all the previous transformation stages described above for transforming T4 are

encoded in the rewrite rule. This transformation process can be safely applied to local
variables which are performing the same kind of computations on integer or real numbers.
Note that this only can be done because in both programs either the technique count or sum

was applied. For example, if one of the programs was constructed using the sum technique
and the other program using the multiply technique (which adds subgoals involving the

multiply operation) then we cannot make any further reduction of variables, using our

current set of rewrite rules, and no more optimisation can be done.

Applying the folding operation to the previous clause we obtain the combined clause.

len_two([_H1|T1],[_H2|T2],Len)
len_two(Tl,T2,Lenax),
Leri is Lenax+2.

Figure 6.5 shows a summary of the stages described earlier for combining the second
clause from each program. The instance of the join specification T4 using [P,2], [Q,2] and
F\ appears under the first triangle. Again, below the second triangle we have the unfolded
clause [P,2] with [Q,2]. The equation described under the third triangle is the resulted T4
after the transformation schema was applied. Finally, below that the fourth triangle we

have the resulting clause after the folding process is carried out by the particular method.
len-two

I
len-two ([HxlTxUHifc] Len)

ten ([/fi|7i],Lenl), len([U2|T2],Len2), Len is Lenl+Len2

len (Ti, Lenxl), Lenl is Lenxl + 1, len (T2, Lenx2), Len2 is Lenx2 + 1, Len is Lent -f Len2

len (Ti, Lenxl), len (T2, Lenx2), Lenax is Lenxl + Lenax2, Len is Lenax+2

len-two (TltT2, Lenax), Len is Lenax + 2

Figure 6.5: Clause 4 in the new program len_two/3

The listing of the whole program is shown as follows:
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Tx : len_two( [] , [] ,0).
T2 : len_two([],[_H2|T2],Len)

len(T2,Lenx),
Leu is Lenx+1.

T3 : len_two([_H1IT1],[],Len)
len(Tl.Lenx),
Len is Lenx+1.

T4 : len_two([_H11Tl],[_H21T2],Len)
len_two(Tl,T2,Lenax),
Len is Lenax+2.

The main characteristic of the program len_two/3 generated by using the 'particular'
method is that this program cannot be generated by any of Sterling et. al.'s methods. The
reason is that we are taking advantage of the fact that we have information about which

techniques were used in the construction of the programs, so we can apply arithmetic laws
which are valid for specific domains (integer/real numbers), obtaining a more optimised
combined program than len_two/3 generated by using the 'general' method (see page 155).

Let consider us the query len_two( [1,2,3] , [4,5,6,7] ,X). The answer to the query gives
X=7.

The restrictions for the particular method are as follows:

1. programs are derived from the traverse, short_traverse or search skeleton,

2. both have the same number of clauses,

3. both programs have zero or different tests,

4. both traverse the same type of data structure,

5. both programs were constructed either using the count or sum technique. Therefore
the transformation process based on arithmetic properties (described above) can be

safely applied to local variables because these variables are performing computations
on integer or real numbers.

The restrictions 1-4 given above are inherited from the type Traversal-general to which
the pairs of programs should belong in order to be combined with this method. The
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Particular (M6)
P1/P2 t st s ctr meta

t (j>4, a j>4,P p4 ,P
st <t>4,P <f>4, a <t>4 ,P
s j>4,P <t>4,P p4,a
ctr

meta

Table 6.6: Table for the Particular Method

restriction 5 is required for further optimisation. These restrictions can be inferred from

the program history so no user interaction is required in the particular method. In Burstall
and Darlington's system all the transformation rules and arithmetic laws which are valid

during the transformation need to be provided by the user.

The table 6.6 shows the performance of the particular method (see section 6.3 for an

explanation of the terms a and /?).

The condition <f>4 means that both programs (taken clause by clause) have zero or different
tests and that both program were constructed either using the sum or count technique.

This method is very efficient for programs which perform this particular class of arithmetic

computations. We next consider an extension of the particular method which, although

producing slightly less elegant combined programs, places fewer restrictions on the type of
program which it can combine. This inspires the general method shown in next section.

6.11 The General Method

The General method automatically builds programs that have a user specification formed
from two operands plus extra subgoals without any restriction on the form of the subgoals
Fi (like in the particular method). We make a distinction in this case between the join
specification and the user specification (see definition on page 15). The join specification
works over two operands, as in the previous methods, but the user specification can be
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formed from two operands plus extra subgoals. This user specification can be defined as

T <= P,Q, Fx,..., Fn where P and Q are join operands, T is the join target and Fi,...,Fn
are subgoals which use the output results from predicate P and Q for performing new

computations.

In this thesis we distinguish between a user specification and join specification. A user

specification is the formal definition of the program that the user wants to build and a

join specification is the actual specification which is used by the composition system for

combining the programs.

The General method works by selecting two operands from the user specification in which
it is possible to perform the composition process. The second stage is to combine these two

operands by using a join specification. In the current implementation the two predicates
that will be the two operands for the join specification are given as the first and second

operands of the user specification.

The general method uses the following user specification:

T(Ip, Iq,Ot) 4= P{Ip,6p),Q{Iq,0q),F(6p,0q,0t).

where the restriction on F in the particular method does not apply. This method works

by combining program P and program Q to produce a combined program P-Q and finally
builds the combined program T which is as follows:

T(Ip,Iq,Ot) ■- P-Q(Ip,Op,Iq,Oq),P(Op,Oq,Ot).

6.11.1 Algorithm

The algorithm shown below is an extension of procedural join but can easily be added to
other methods. The justification for the implementation of this method arises from the
fact that sometimes the user needs to combine two programs as a first stage of the software
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development process and as a second stage just needs to add extra computations using the
values computed in the first stage. This method gives this facility automatically.

General Algorithm

1. Definition of a user specification defined as:

T <S= 71,72

where each 7,• is a call.
2. The system chooses two operands in the user specification. In this case 71 and

72-
3. Select a join specification. In this stage, if the system has a join specification

for combining 71 and 72 it will offer this to the user. Otherwise the system
provides an interactive interface for defining the new join specification.

4. Apply the most appropriate method to pair of programs to be combined.

6.11.2 Example

For example, we may want to build len_two/3 using the user specification defined below.
In this user specification, the user describes the intended program that he wants to build.
The join specification should be automatically formed by taking two operands from the
user specification. In this particular example the join specification (formed using the first
two positions in the user specification) will be len_len/4 which is defined later in the text.
Note that this example corresponds to the (t,t) entry in the table 6.7.

len_two(Listl,List2,Len) <=
len(Listl,Lenl),
len(List2,Len2),
Len is Lenl + Len2.

The algorithm takes len/2 as the first operand and as the second operand. As a first stage
in the combining process the composition system creates the program len_len/4 by using
the following join specification:

len_len(Listl,List2,Lenl,Len2)
len(Listl,Lenl),
len(List2,Len2).
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The combined program len/4 is obtained by using the procedural join method,

program is shown as follows:
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This

Ti : len_len([] , [] ,0,0).
T2 : len_len([],[_H2|T2],0,Len2)

len(T2,Lenx2),
Len2 is Lenx2 + 1.

T3: len_len([_Hl|Tl],[],Lenl,0)
len(Tl,Lenxl) ,

Lenl is Lenxl + 1.

T4 : len_len([_Hi|T1],[_H2|T2],Lenl,Len2)
len_len(Tl,T2,Lenxl,Lenx2),
Lenl is Lenxl + 1,
Len2 is Lenx2 + 1.

The resulting combined program len_two/3 is shown as follows:

len_two(Listl,List2,Len)
len_len(List1,List2,Lenl,Len2),
Len is Lenl + Len2.

The utility of the general method can be shown with an example in which two operands
and two subgoals appear in the user specification. The example that we want to build is

the program average/2 using sum/2 and count/2 with a user specification that as defined
below.

average(L.Av) sum(L,Sum), count(L,Count), Count \+ 0, Av is Sum/Count.

The combined program that the system will produce is a program average/2 using

sum_count/3 which was described in section 6.6.2. The piece of code for the program

average/2 is shown as follows.

average(List.Av)
sum_count(List,Sum,Count),
Count \+ 0,
Av is Sum / Count.

sum_count( □ ,0,0).
sum_count([A IB],C,D)

sum_count(B,E,F),
C is E + A,
D is F + 1.
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General (M7)
P1/F2 t st s ctr meta

t <t>5,a <^5, P
st <t>5, P </>5, a Ps, P
s <t>5,P ^5,P <^5, OL
ctr

meta

Table 6.7: Table for the General Method

The performance of this method is shown in the table 6.7. (See section 6.3 for an expla¬
nation of the terms a and f3).

The condition <j)5 means that both programs (taken clause by clause) have zero or different
tests. Also this method does not restrict to combine programs with restrictions in the

subgoals Fi,..., Fn which appears in the user specification (like in the particular method).
In particular we can use it for combining programs in which only one program was con¬

structed either using the sum or count technique or none of them were constructed using
the sum or count technique.

This method can be used for the pairs of programs (t,t), (st,st) and (s,s) when only one of
the programs was constructed using the sum or count technique.



Methods for Different Flows of
Control

This chapter gives the set of methods for combining programs with slightly different flow
of control. In a similar fashion to Chapter 6, we also discuss the performance of each of

the combining methods by analysing their behaviour for each pair of programs from our

hierarchy.

7.1 Mutants

This method combines programs with different flows of control. However there is a restric¬

tion. The mutant method combines programs which are either in the same mutant class
or when one class is the mutant version of the other. This means that it is not possible to

combine a mutant of traverse with a mutant of meta-interpreters.

Assumptions

The following set of assumptions are required by the algorithm which tackles the mutants

problem.

158
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1. Program Pi and program P2 were created using the same skeleton but one or both
are mutants of this skeleton.

2. The control of the initial skeleton is a subset of the control of the new program. This
means that when we are applying techniques none of these techniques will delete any

subgoal that appears in the flow of control of the skeleton.

3. Both programs operate over the same type of data structure.

4. The mutant must have been constructed by using techniques (defined in our knowl¬

edge base of techniques defined in Appendix D) which do not modify the way in
which the two initial programs traverse the data structure. This means that we are

only including extra computations which may conditionally terminate a clause or

that add new clauses which process conditions not checked by the initial program.

7.1.1 Algorithm

The mutant method is based on our meta-composition method described above. Therefore

it imposes the needed synchronisation during the traversal of the data structure for the

corresponding clauses. This method handles the problem of extra clauses which do not have
a corresponding clause with the skeleton used in its construction. The solution for these
mutant clauses is described in the algorithm below. The algorithm creates an instance of
the join specification Tk and the values of variables are passed to this instance Tfc. As a

second stage one of the predicates is unfolded. The selection of which predicate is unfolded
is determined as follows: if the mutant clause belongs to program P then P is unfolded,
otherwise if the mutant clause belongs to program Q then Q is unfolded and then the

meta-folding operation is performed. This process is repeated while there are still mutant
clauses in each program. The unfolding operation is applied through the join specification,
and each proposed mutant combined clause is offered to the user. This offered clause can

be accepted or rejected.

User interaction is required at this stage in order to determine the behaviour of the com-
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bined mutant clause. The functionality for the combined clause should not be automated

by the system, since more than one option can be chosen according to the wishes of the
user. There are two ways to change the behaviour of the offered combined clause: one is

that the variables can be unified to specific values according with the wishes of the user

and, secondly, subgoals in the body of the clause can be changed if the user wants to

conditionally terminate a clause. For instance, the user could redefine the value of the

variable used to control the depth of the proof search space with the aim of reducing the
number of subgoals to be proved.

The mutant algorithm is as follows, assuming that program P contains the mutant clauses:

Mutant Algorithm

1. Create an instance of the join specification (T P, Q).
2. Unfold P in T; with respect to P{ a clause of predicate P.
If P and Pi}head unify with the substitution Op and P; is defined as follows:

Pi :— Ai ,..., An

Then replace P with Pi,Body under substitution dp to produce T,-:

T :— ((Ai,..., An),Q)9p with n> 0

3. Apply the meta-fold operation which use the key points information (obtained
from the program history) for performing the folding of subgoals.

4. Ask the user to approve the proposed combined clause.
5. Repeat the same process for each mutant clause that appears in program P.

This process can be described in the same way for Q in the case that Q is the mutant

clause. Note that we have two cases depending on which is the mutant clause: if the
mutant clause belongs to program P then the values of the variables in the head of the
clause Ti are passed to Q. In the second case, if the mutant clause belongs to program Q
then the values of the variables in the head of the clause T) are passed to P.

The mutant method requires extra knowledge about which are the mutant clauses. This
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information is provided by the program history.
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7.1.2 Example 1

This example shows a simple combination of two programs with slightly different flow of
control. They are combined using the mutant method which controls the unfold operation,
and so results in a more optimised combined program (see second stage in the combination

process for this example).

Our initial programs are the programs get_odd/2 and count/2. The program get_odd/2
is a mutant program based on the traverse skeleton which selects the odd numbers from

a list and the program count/2 is an extension of the traverse skeleton which counts

the length of the list. Note that this example corresponds to the (mut-t,t) entry in the
table 7.1.

1: get_odd([], CI).
2: get_odd([H|T], [H|0]) :

odd(H),
get_odd(T, 0).

3: get_odd([HIT], 0)
even(H),
get_odd(T, 0).

The program histories are provided using the relation his_prog/9 defined below.

his_prog(get_odd,type_rautant-travers e, 2,traverse,3,2, no
[[1,(traverse(T),get_odd(T,0))],[2,(traverse(T),get_odd(T,0))]],
[[3,(traverse(T),get_odd(T,0))]]).

his_prog(count,type_traverse,2.traverse,2,0,sum_technique,
CCl,(trav([]).count([],0))],[2,(trav(T),count(T,CI))]],nil).

A new program count_odd/2, which selects the odd numbers and computes the length of
the list at the same time, is generated using the following join specification:

6: count_odd(L, C) 4= get_odd(L, 0s), count(0s, C).

Note that this method synchronises the list search performed in get_odd/2 and count/2
i.e. enforces the same traversal of the data structure in the clauses.

4: count([],0)
5: count([HIT], Count) :-

count(T,CI),
Count is Cl+i.
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Firstly, by applying the unfold and fold operation to the definition of get_odd/2 and
count/2 using the join specification (count_odd/2) we obtain clauses 7 and 8 shown
below:

7: count_odd([], 0).
8: count_odd([H|T], C)

odd(H),
get_odd(T, Qs),
count(0s, COs),
C is C0s+1.

Secondly, the system realises that third clause does not have a corresponding clause in the
second program (count/2) by looking at the program histories, so the system unfolds the
first operand get_odd(L,0s) of the join specification (T 4= P, Q) and adds to this the
second operand of the join specification (count (Os,C)). This produces clause 9:

9: count_odd([HlT], C)
even(H),
get_odd(T, 0s),
count(0s, C).

This decision is taken by reading the program history which states in its ninth parameter

that clause 3 is the mutant clause (for further details see Chapter 5). In this way the

composition system avoids the generation of 2 clauses which are redundant in the combined

program. These redundant clauses could be obtained if the system unfolds the call count/2
in clause 9 using the procedural join method (which does not control which subgoals can

be unfolded).

count_odd([], 0).
count_odd([HIT], C)

odd(H),
get_odd(T, 0s),
count(0s, COs),
C is C0s+1.

count_odd([HIT], C)
even(H),
get_odd(T, 0s),
count(0s, C).

Finally, applying the fold operation (using the join specification) will obtain the following
clause:
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count_odd([], 0).
count_odd([H|T], C)

odd(H),
count_odd(T, COs),
C is C0s+1.

count_odd([H|T], C)
even(H),
count_odd(T, C).

The system should ask if the user accepts the combined clause number 9. Assuming that
the user accept it. Then the combined remains as shown above. This approach is possible
if technique descriptions of programs are conveniently available from the techniques editor.

7.1.3 Example 2

The following example shows the combination of two mutants belonging to the meta-

interpreters class. The example below shows how the program explain/4 is obtained

by performing the combination process twice: first we combine proof/2 and depth/2

obtaining proof_depth/3; then we combine a mutant of the program proof_depth/3 and

result/2 obtaining the program explain/4 defined on page 168. Note that this example

corresponds to the (mut-rneta,mut-meta) entry in the table 7.1.

The programs used in this example were taken from [Sterling & Shapiro 86]. The meta-

interpreter result/2 was built using the modulant skeleton solve/1 defined in Ap¬

pendix C. This meta-interpreter contains one (extra) clause more than the skeleton used
in its construction (P5) so is a mutant of that skeleton. The meta-interpreter result/2
always succeeds. The relation result (Goal,Res) is true if Goal succeeds and Res=yes

and also if there is a failure branch and Res=no.

Pi : result(true,yes).
P2 : result((A,B),0ut)

result(A,0utl),
result_conj(0utl,B,0ut) .

P3 : result(A,yes)
sys(A),
call(A).

P4 : result(A,Out)
clause(A.B),
result(B,Out).
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-P5 : result(Struct,no)
\+ processed_above(Struct).

P6 : result_conj(yes,Goals,Out)
result(Goals,Out).

Pi : result_conj(no.Goals.no).

Ps : processed_above(A)
A = true ;
A = (_,_);
sys(A);
clause(A,_).

The program proof_depth/3 is the result of combining two meta-interpreters proof/2

(which returns the proof tree associated with the proof of a goal) and depth/2 defined
below. The meta-interpreter depth/2 can be used only if the variable D is instantiated to

a number. This value gives the recursion depth limit up to which the program should try
to compute the proof tree for a query.

The program proof_depth/3 is combined using the join specification given as follows:

proof_depth(Goal.Proof.Depth) <=

proof(Goal.Proof),
depth(Goal.Depth).

The meta-interpreters proof/2 and depth/2 are given below:

proof(true,true).
proof((A,B),(PA,PB))

proof(A,PA),
proof(B,PB).

proof(A.sys)
sys(A),
call(A).

proof(A,(A PA))
clause(A.B),
proof(B,PA).
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depth(true,D).
depth((A,B),D)

depth(A.D),
depth(B.D).

depth(A.D)
sys(A),
call(A).

depth(A,D)
clause(A.C),
D > 0,
E is D - 1,
depth(C.E),

The stages of the composition process can be described as follows:

Firstly, we take the first clause of program proof /2 and the first clause of program depth/2
and create an instance of the join specification T\ P,Q. By unfolding P and Q using

Pi and Qi we get the first combined clause:

proof_depth(true,true,_D).

Secondly, using the second clause of program proof/2 and the second clause of program

depth to construct an instance of the join specification T<i :— P, Q. Unfolding P and Q

using P2 and Q2 we get the clause shown below.

proof_depth((A,B),(PA,PB),D)
proof(A,PA).proof(B,PB),
depth(A.D), depth(B,D).

Folding proof (A, PA) with depth (A, D) we find that the two previous goals can be sub¬
stituted by proof_depth(A,PA,D). In the same way, proof (B,PB) and depth(B,D) can

be replaced by proof_depth(B,PB,D). Therefore the resulting combined clause is show as

follows:

proof_depth((A,B),(PA.PB),D)
proof_depth(A,PA,D),
proof_depth(B,PB,D).

Thirdly, we take the third clause of each program and construct an instance of the join

specification Ts P, Q After unfolding P and Q using P3 and Q3 we obtain:
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proof_depth(A,sys,_D)
sys(A),
call(A),
sys(A),
call(A).

Applying a merge operation which removes all syntactically identical subgoals we get the
third combined clause.

proof_depth(A,sys,JD)
sys(A),
call(A).

Next, we take the fourth clause of each program and get an instance of the join specification

T4 P, Q. Unfolding P and Q with respect to P4 and Q4 we produce the following clause:

proof_depth(A,(A PA),D)
clause(A,B),
proof(B,PA),
clause(A,Bl) ,

D > 0,
E is D - 1,
depth(Bl.E).

We cannot fold any subgoals in the body of the previous clause using only the join spec¬

ification. One candidate for folding is proof(B,PA) and depth(Bl,E). At this stage we

need the knowledge about the initial skeleton and how the subgoals in the skeleton were

transformed during the construction of the program. This knowledge is kept in the eighth

argument of the program history.

his_prog(proof,2,...,[[1,(true,true),no_test],
[2,(solve(A).proof(A,PA)), (solve(B).proof(B,PB)),no_test]
[3,(sys(A),sys(A)),(call(A),call(A)),no_test],
[4,(solve(A).proof(B,PA)),no_test]].nil).

his_prog(depth,2,....CCl,(true,true),no_test] ,
[2, (solve(A),depth(A,D)),(solve(B),depth(B,D)),no_test],
[3,(sys(A),sys(A)),(call(A).call(A)),no_test],
[4,(solve(A),depth(C.E)),D>0]].nil).

Using this information we know that we can fold the subgoals proof (B.PB) and
depth (B1 ,E) because in this case both subgoals are enhancements of the subgoal solve (A)
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(see clause number 4) and the variables B and B1 are used with the same functionality (i.e.
deconstruct the data structure). If they are derived from the same subgoal in the skele¬
ton and both programs are traversing the same data structure then they have the same

functionality. The fourth combined clause is presented as follows:

proof_depth(A,(A PB),D)
clause(A.B),
clause(A,B),
D > 0,
E is D - 1,
proof_depth(B,PB,E) .

The second subgoal can be deleted using the operation merge producing the final fourth
combined clause.

proof_depth(A,(A PA),D)
clause(A,B),
D > 0,
E is D - 1,
proof_depth(B,PA,E).

The complete program proof_depth/3 which builds a proof tree and limits the depth at

the same time is shown as follows:

Qi : proof_depth(true,true,_D).
Q2 : proof_depth((A , B),(PA ,PB),D)

proof_depth(A,PA,D),
proof_depth(B,PB,D).

Q3 : proof_depth(A,sys,_D)
sys(A),
call(A).

Q4 : proof_depth(A,(A PA),D)
clause(A,B),
D > 0,
E is D - 1,
proof_depth(B,PA,E).

A mutant program is obtained by adding an extra clause Q2 to the combined program

proof_depth/3 listed above. This new program proof_depth/3 stops computing the
proof tree after the depth bound is met and it uses the atom overflow as the last goal in
the returned proof tree. So this program addresses the problem of goals which exceed the
depth bound in the proof.
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Qi : proof_depth(true,true,_D).
Q2 : proof_depth(_A,overflow,0).
Q3 : proof_depth((A,B),(PA,PB),D))

proof_depth(A,PA,D),
proof_depth(B,PB,D).

Q4 : proof_depth(A,sys,D)
sys(A),
call(A).

Q5 : proof_depth(A,(A :-PA),D)):-
clause(A.B),
D > 0,
E is D - 1,
proof_depth(B,PA,E).

If we want to run this program the variable D needs to be instantiated. For in¬

stance we can ask the query: proof_depth(Goal,Proof ,5), where Goal is some goal
which we expect to be able to prove within depth limit 5. Let consider us the query

proof .depth (son (X.haran),Proof ,5) using the following rules:

son(X,Y)
((father(Y,X)),
(male(X))).

father(abraham,isaac).
father(haran,lot).
father(haran,milcah).
father(haran.yiscah).
male(isaac).

male(lot).
female(milcah).
female(yiscah).

The answer to the query gives:

son(lot,haran):- (father(haran,lot):-true),(male(lot):-true).

Returning to the construction of the meta-interpreter explain/4, this will be constructed

using the two meta-interpreters result/2 and proof_depth/3 defined above and by using
the following join specification:

explain(Goal.Out.P.D) result(Goal.Out). proof depth(Goal.P.D).
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Note that the mutant method enforces the synchronization of the traversal of the data

structure for corresponding clauses, and hence the proof P is forced to correspond to the

output Out.

The process consists of taking clause 1 from program result/2 and clause 1 from program

proof_depth/2. By applying the unfolding operation we obtain the following clause:

explain(true,yes,true,_D) true, true.

which is equivalent to following clause:

explain(true,yes,true,_D).

Secondly, we have the mutant clause which we introduced into program proof_depth/3.
The way that we deal with this is to create an instance T2 :— P, Q. The clause Q2 is a mu¬

tant clause which does not have a corresponding clause with program P. Doing unfolding
of Q with respect to Q2, Q2 unifies with the substitution Oq = {overflow/P,0/D}. Then

by replacing P2,body — true in T2 we obtain following clause:

explain(Goal,Out.overflow,0).

This clause is proposed by the combination system and could be accepted or rejected by
the user. If the clause is rejected it must be redefined by the user in order to obtain the
most suitable clause for his purpose (ie. the final functionality depends of the application
that the user wants to build). For instance the previous clause can be redefined as follows:

explain(Goal,overflow,overflow,0).

By this redefinition the program is able to return the proof tree, until the bound is reached,

instantiating the result label to the atom overflow.
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Thirdly, taking clause 2 from program result/2 and clause 3 from program

proof .depth/3 we can create the instance of the join specification. By unfolding P and

Q with respect to P2 and Q3 in T3, we obtain the clause shown below.

explain((A,B),0ut,(PA.PB),D)
result(A,0utl),
result_conj(0utl,B,0ut),
proof_depth(A,PA,D),
proof_depth(B,PB,D).

Applying the folding operation the subgoals result (A,Out 1) and proof_depth(A,PA,D)
can be combining together obtaining explain(A,Outl ,PA,D)

explain((A,B),0ut,(PA,PB),D)
explain(A,Dutl,PA,D),
result_conj(Outl,B,Qut),
proof_depth(B,PB,D).

At this stage we need to handle the modulation of the skeleton solve/1. The subgoals

result_conj (Outl ,B,Out) and proof_depth(B,PB,D) are combined together using a sec¬

ond join specification defined below. This fact is deduced from the program history. In it
we have recorded that the program result/2 is created using the meta-interpreter modu-
lant skeleton (defined in Appendix C) and from knowing the skeleton we deduce that the
clause number 2 in program result/2 calls in its body an auxiliary predicate which can

be used for further optimisation using another join specification. This join specification is
defined by the user interactively.

explain_conj(Result1.Goal,Result,P,D)
result_conj(Resulti,Goal,Result),
proof_depth(Goal,P,D).

Applying the folding operation using the second join specification (explain.conj)the sub-
goals result_conj (0utl,B,0ut) and proof_depth(B,PB,D) can be combined together to
obtain explain.conj (Outl ,B,Out ,PB,D). So our third combined clause is as follows:

explain((A,B),0ut,(PA,PB),D)
explain(A,Out1,PA,D),
explain_conj(0uti,B,0ut,PB,D).
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Fourthly, taking clause 3 from program result/2 and clause 4 from program

proof_depth/3 we can create the instance from the join specification T4 P,Q. Un¬

folding in T4 P and Q with respect to P3 and Q4, we obtain the clause that is shown

below.

explain!A,yes,sys,_D)
sys(A),
call(A),
sys(A),
call(A).

Applying the merge operation, we obtain the following clause:

explain(A,yes,sys,_D)
sys(A) ,

call(A).

Fifthly, taking clause 4 from program result/2 and clause 5 from program proof_depth/3
we can create the instance from the join specification T5 P,Q. By unfolding P and Q

using P4 and Q5, we obtain the clause that is shown below.

explain!A,Out,(A PA),D)
clause(A,B),
result(B,Out),
clause(A,Bl),
D > 0,
E is D-l,
proof_depth(Bi,PA,E).

Applying the meta-folding operation using the join specification (explain) the sub-

goals result(B,Out) and proof_depth(Bl,PA,E) can be combined together to obtain

explain(B,Out,PA,E). This is again performed by using the fact that variable B and B1

have the same functionality i.e. both are used for traversing the same data structure. The
folded clause is shown as follows:

explain!A,Out,(A PA),D)
clause(A,B),
clause(A.B),
D > 0,
E is D-l,
explain(B,Out,PA,E).



7. METHODS FOR DIFFERENT FLOWS OF CONTROL 172

Applying the merge operation, the clause is transformed into the following clause:

explain(A,Out,(A PA),D)
clause(A.B),
D > 0,
E is D-l,
explain(B,Out,PA,E).

Next, we have the mutant clause P5 in our example. The way that we deal with this clause

is the same as described above. By performing unfolding of P with respect to P5, P5 unifies
with the substitution Op — {A /Goal ,no/Out). Then, by replacing

P$,body = V" processed.above (A) in T6 we get the following clause:

explain(A,no,P,D)
\+ processed(A).

This clause can be redefined by the user. Assuming that the user wants to redefine the

proposed combined clause, a plausible redefinition for the clause could be the clause shown

as follows:

explain(A,no,A,_D)
\+ processed(A).

This redefinition is required if we want the program to return the failing goal as a "proof"
tree for the clause that returns a no when a computation fails.

We now have a mutant clause P6 in our example. The way in which we deal with this
clause is the same as was described above: to create an instance of the join specifi¬

cation. By doing unfolding of P with respect to P&, P6 unifies with the substitution
Op = {yes/Resultl ,Goals/Goal,Out/Result). Then by replacing

Pe,body = result (Goals, Out) in TV = explain.conj (no,Goals,no,P,D) we have follow¬
ing clause:

explain_conj(yes,Goals,Out,P,D)
result(Goals.Out),
proof_depth(Goals,P,D).
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After applying the folding operation using the join specification (explain) the sub-

goals result (Goals, Out) and proof_depth(Goals,P,D) can be combined together to

get explain(Goals,Out,P,D). The folded clause is shown as follows:

explain_conj(yes.Goals.Out.P.D)
explain(Goals,Out,P,D).

This clause is the proposed combined clause but it can be redefined by the user.

Next, we have a mutant clause P7 in our working example and as before we create an

instance of the join specification T8 P,Q. By performing unfolding of P with respect to

Pr, P7 unifies with the substitution 6p = {no/Resultl,Goals/Goal,no/Result). Then by

replacing Pi,body = true in T7 = explain_conj (no,Goals,no,P,D) we have the following
clause:

explain_conj(no,_Goals,no,P,_D) : -
true.

This proposed combined clause can be redefined by the user. A plausible redefinition for
the clause is shown as follows:

explain_conj(no,_Goals,no,unsearched,_D).

The atom unsearched is used as the proof tree for the conjunction of goals that following
a failing goal or an aborted goal due an overflow in depth is reached.

The final combined program is as follows:
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T\ : explain(true,yes,true,_D).
T? : explain(Goal,overflow,overflow,0).
T3: explain((A,B),Out,(PA,PB),D)

explain(A,Outl,PA,D),
explain_conj(Outl,B,0ut,PB,D).

T4 : explain(A,yes,sys,_D)
sys(A),
call(A).

T$ : explain(A,0ut,(A PA),D)
clause(A.B),
D > 0,
E is D-l,
explain(B,Out,PA,E).

Tq : explain(A,no,A,_D)
\+ processed(A).

T7 : explain_conj(yes,Goals,Out,P,D)
explain(Goals,Out,P,D).

Tg : explain_conj(no,_Goals,no,unsearched,_D).

This program explain/4 returns overflow as the result when a computation terminates

by depth cut-off, and the failing goal itself as proof tree for the clause that returns a no

when a computation fails. The meta-interpreter explain/4 constructed above could be
used as a component of a tracer. The combination process can be applied several times

allowing construction of more complex programs.

The explain/4 meta-interpreter gives a better answer than the answer that can be obtained

by combining the pair of programs as a standard conjunction in Prolog. Let consider us
the query explain(son(X,haran),Out,Proof,1) using the following rules.

son(X,Y)
((father(Y.X)),
(male(X)).

father(abrahara,isaac).
father(haran.lot).
father(haran,milcah).
fath.er(haran,yiscah) .

male(isaac).

male(lot).
female(milcah).
female(yiscah).

The answer to the query gives:
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| Mutant (M8)
P1/P2 t st s ctr meta mut-t mut-st mut-s mut-ctr mut-meta

j t a

st a

s a

ctr a

meta a

mut-t a a

mut-st a a

mut-s a a

mut-ctr a a

mut-meta a a

Table 7.1: Table for the Mutant Method

Out=overflow and Proof =(son(X.haran) overflow)

which is correct because there is not a proof at depth 1.

If we run the pair of programs as a conjunction in Prolog:

result(son(X,haran),Out), proof_depth(son(X,haran),Proof,1) then Out=yes

which wrongly claims a proof and Proof=(son(lot,haran) :-overflow).

In summary, the combination of clauses which do not have a corresponding clause is per¬

formed by unfolding just one of the operands in the join specification because the program

does not have a corresponding clause with the other program. This is safe because we are

restricted to combining programs which are mutants belonging to the same class and for
which new clauses must not alter (only add to) the original flow of control. This means

the similarity between program and skeleton remains unchanged.

The restriction for the mutant method is as follows:

It requires user interaction because the combined mutant clause (which does not have a

corresponding clause in the other program) needs to be approved by the user.

The table 7.1 shows the performance of the mutant method. (See section 6.3 for an

explanation of the term a).
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7.2 Combining Programs in Traverse and
Short_Traverse Classes

Searching for another class of programs with different control flow that could be combined,
we found that programs built using the traverse skeleton and programs built using the
short_traverse skeleton can be combined using the method described as procedural join
in section 6.7. This was an interesting result in the composition process analysis because
the class of programs that can be built using traverse and short_traverse skeleton is quite

large. Examples of some programs which can be constructed using the traverse skeleton
are append/3, length/2, merge/3, or sum/2, etc. Examples of some programs which can

be developed using short_traverse are firid-nth-element, delete-nth-element, etc. These

predicates are defined in Appendix B.

Programs constructed using the traverse and the short_traverse skeletons can be com¬

bined using procedural join because the only difference between the skeletons traverse and

short_traverse is the base case. The base case for the traverse skeleton ensures that the

entire list will always be processed, while short_traverse will either traverse the entire list
or stop when a condition has been met.

Programs belonging to these classes cannot be combined in a single recursive program

because the combined program might call one of the original programs in some of its
clauses. This means that a full self-contained recursive program might not be generated.

Example

The program split/3 is built using the traverse skeleton and the program del/3 is con¬

structed using short_traverse. The program split/3 divides a list into two lists one con¬

taining the positive numbers, and the other the negative numbers. The program del/3
removes an element X from a list and gives back the remainder of the list. The definition
of these two programs is shown as follows:
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split( [],[],[]).
split([A|B],[A|C],D)

A > 0,
split(B,C,D).

split ( [A IB] , C, [A ID] ) : -
A =< 0,
split(B,C,D).

del(X, [],[]).
del(X,[X|T],T).
del(X,[_|T],R)

del(X,T,R).

This example corresponds to the (t,st) entry in the table shown on page 118.

The combined program split_del/5 which is obtained by using the procedural join
method is shown below. The combination process was performed using the following

join specification:

split_del(Ll,L2,L3,L4,Elem) <= split(Li,L2,L3), del(Elem,Ll,L4).

split_del( [] ,[],[],□ ,A) .

split_del([A|B],[AlC],D,B,A)
A > 0,
split(B,C,D).

split_del([AIB],[AIC],D,E,F)
A > 0,
split_del(B,C,D,E,F).

split_del([A|B],C,[AID],B,A)
A =< 0,
split(B,C,D).

split_del([A IB],C,[A|D],E,F)
A =< 0,
split_del(B,C,D,E,F).

The main properties in this combined program is that it generates all the set of solutions
hence is generated using the procedural join. The new type for this combined program is
traverse type.
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7.3 Combining Programs in Traverse and Search
classes

In this section we combine programs derived from the traverse skeleton with those derived

from the search skeleton. These are two different flows of control. However, the programs

created from these skeletons can be combined using the procedural join method. The

traverse skeleton ensures that the entire list will always be processed whilst the control
flow for the search skeleton will continue processing the list until a condition for terminating
search has been found. The traverse and search skeleton were defined in Appendix C. As
in the previous section ( 7.2) programs belonging to these classes cannot be combined in
a single recursive program. The combined program might call one of the initial programs
to be combined.

For instance, consider the problem of combining split/3 (defined in the previous section)
and member/2 using the join specification defined below. This example corresponds to the

(t,s) entry in the table shown on page 118.

split_mem(Ll ,L2,L3,Elem)
split(Ll,L2,L3),
member(Elem,Ll).

The program member checks if an element X is on a list.

member(X,[XI_]).
member(X,[_IY]) member(X.Y).

The combined program (generated using procedural join), which divides a list into two
lists (one containing the positive numbers and the other the negative numbers) and checks
if the element in the fourth argument is on the initial list, is defined below.
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split_mem([A IB],[A|C],D,A)
A>0,
split(B,C,D).

split_mem([A IB],[AIC],D,E)
A>0,
split_mem(B,C,D,E).

split_mem([A|B],C,[AID],A)
A<0,
split(B,C,D).

split_raem([AlB],C,[A|D],E)
A<0,
split_mem(B,C,D,E).

The combined program split_mem/3 generates all the solutions that can be generated

using a join specification written as a Prolog program. The type for the combined program
is search and this combined program uses the definition of the initial program split/3.

7.4 Combining Programs in Short .Traverse and
Search Classes

A similar problem to that of Section 7.3 arises when we want to combine programs in the
class short_traverse and class search.

For instance, consider the program translate/4 which was built using the short_traverse
skeleton. The program translate/4 translates a phrase from English (e) to Spanish (s) or
from English to Italian (i). Each phrase in the List of phrases is formed by two elements

f(L,P) where L is the language in our case English (e) and P the phrase expressed as list of
words that are forming the phrase. The first argument is the phrase to be found in the list,
the second is a list of several phrases, the third argument is the new language and the fourth
is the variable in which the translation of the required phrase is returned. This program

translate/4 is used as follows: by asking this query translate(f (e, [the,car] ) ,X,s,Tra)
and having instantiated X=[f (e, [the,car]) ,f (e, [the,plane] )], the program should
translate the phrase to Spanish (s), returning Tra = [el,coche].

Note that this example corresponds to the (st,s) entry in the table shown on page 118.
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translate(X, [] ,Lan, [] ) .

translate(X,[X|Xs],Lan,Tra)
aux_tra(X,Lan,Tra).

translate(X,[YiYs],Lan,Tra)
X \= Y,
translate(X,Ys,Lan,Tra).

aux_tra(l(L,P),Lan,Tra)
aux_tra2(P,Lan,Tra).

anx_tra2([X|Xs],LanY,[Y|Ys] )
dict(X,LanY,Y),
aux_tra2(Xs,LanY,Ys).

aux_tra2([],LanY,[]).

dict(the,s,el).
diet(car,s,coche).
diet(plane,s.avion).
diet(dog,s,perro).
diet(the,i,il).
diet(car,i,automobile).
diet(plane,i.aereo).
diet(dog,i,cane).

The second program is formed by the predicate del/3, which was constructed using the
search skeleton. The predicate del/3 removes an element from a list and returns the

remainder of the list when the element is found.

del(X,[X|T],T).
del(X,[_Y|T],R) del(X,T,R).

The join specification for combining the two programs defined above is shown below.

tra_del(Elem,List,La,Tra,Listl) <=
translate(Elem,List,La,Tra),
del(Elem,List,Listl).

The program tra_del/5 finds a phrase in a list, gives its translation to an specified lan¬

guage, deletes that phrase from a list of phrases and returns the reminder of the list.

A query for this program (tra_del/5) can be

tra_del(f(e,[the,car]),[f(e,[the,car]),f(e,[the,plane])],s,Tran,Ll).

By asking this query the program should translate the phrase [the,car] to Spanish,

returning Tra=[el,coche] and Ll=[f(e, [the,plane] )]
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The two programs translate/4 and del/3 can be combined by using the procedural join
method. The combined program using this method is as follows:

tra_del(A,[A|B],C,D,B)
aux_tra(A,C,D).

tra_del(A,[AlB],C,D,E)
aux_tra(A,C,D),
del(A,B,E).

tra_del(A,[A|B],C,D,B)
A \= A,
translate(A,B,C,D).

tra_del(A,[B|C],D,E,F)
A \= B,
tra_del(A,C,D,E,F).

This resulting combined program uses the translate/4 definition. So it is not a full

self-contained recursive program. The type for this combined program is search and it

generates all the solutions because it was generated performing the full cartesian product
of possibles combinations of pairs of clauses.

7.5 Summary Table

A summary table is shown below (see table 7.2). This table presents the set of methods
which can be applied to a pair of programs under different conditions (<f>i) obtaining differ¬
ent evaluation of the computational behaviour (a,/?,7). The notation used in the summary

table is as follows:

Method

Mi synchronisation
m2 join 1-1
m3 procedural join
M4 meta-composition
m5 DS
M6 particular
m7 general
Ms mutant

The conditions <f>{ are defined in previous sections.
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Methods

(A,ft) mi m2 m3 M4 Ms m6 Mr M8

(t,t) 7 0i,a 02 ,a 01, Ot 03, a 04, a 05, a
(t,st) 7 02, /? 03, /? 04,/? 05, /?

! (t,s) 7 02,/? 03,/? 04, /? 05,/?
(st,st) 7 <f>i,« 02, a 0i,a 03, a 04, a 05, a
(st,s) 7 02, /? 03, /? 04, /? 05, /?
(s,s) 7 0i,a 02, a 0i, a 03, a 04, a 05, a

(ctr,ctr) 7 01 ,/? 02, /?, a

(meta,meta) 7 01,/? 02, a

(mut-t,mut-t) 7 a

(mut-t,t) 7 a

(mut-st,muta-st) 7 a

(mut-st,st) 7 a

(mut-s,muta-s) 7 a

(mut-s,s) 7 a

(mut-ctr,mut-ctr) 7 a

(mut-ctr,ctr) 7 a

(mut-meta,mut-meta) 7 a

(mut-meta,meta) 7 a

Table 7.2: Summary Table

The condition 01 is defined on page 110.

The condition 02 is defined on page 118.

The condition 03 is defined on page 141.

The condition 04 is defined on page 153.

The condition 05 is defined on page 157.

Also the definition of each component in each pair of programs was defined on page 98.

In this summary table (table 7.2) the rows are the pairs of programs and the columns are

the methods. (See section 6.3 for an explanation of the terms a, /? and 7).

The Synchronization method (Ml) as we can see works for each pair defined in our table
but is very inefficient with a estimation of efficiency 7.
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Join 1-1 (M2) is efficient for pairs (t,t), (st,st) and (s,s) but not for programs constructed

using the meta-interpreter or counter skeleton.

Procedural join (M3) is efficient for the pairs (t,t), (st,st) and (s,s) but less efficient (es¬
timation of efficiency f3) for the pairs (t,st), (t,s) and (st,s). Furthermore, we still get
an estimation of efficiency (I for programs created using the meta-interpreter or counter
skeletons.

Meta-composition (M4) works efficiently for pairs (t,t), (st,st) and (s,s) and for programs
constructed using the meta-interpreters or counter skeleton.

The DS method(M5) combines efficiently pairs (t,t), (st,st) and (s,s) under restriction <f>3.
On the other hand the combination of pairs (t,st), (t,s) and (st,s) is less efficient so they

get /? as a estimation of efficiency. The reason for this f3 is that the combined program

still uses the initial programs that were to be combined.

Particular (M6) combines efficiently pairs (t,t), (st,st) and (s,s) under restriction <^4. How¬
ever the combination of pairs (t,st), (t,s) and (st,s) is less efficient (they get (1 in the
estimation of efficiency). Again, the reason for obtaining /3 is the dependence on the initial

programs.

The General (M7) combines efficiently pairs (t,t), (st,st) and (s,s) under restriction 4>5-
However the combination of pairs (t,st), (t,s) and (st,s) is less efficient (estimation of
efficiency (3). The (3 efficiency is again because of the need to keep the initial programs.

The Mutant (M8) works efficiently for all pairs of mutant programs.

7.6 Comparison of the Program History Approach
with the Alternatives

The transformation system developed by Burstall and Darlington (1977) requires knowl¬

edge about program transformation. User interaction is required to direct the transforma¬
tion of the program. This guidance is at a very low level; the user needs to define which
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equations need to be unfolded or folded. This approach relies largely on the participation
of the user and its efficiency depends on the decisions the user makes, ft is based in the

standard transformation unfold/fold and arithmetic laws. In our approach we rely less on
user interaction by using information about the flow of control and programming practices

(techniques) during the transformation the programs. Secondly our approach does not

require user interaction at key stages of the transformation for instance, in choosing which
clause needs to be unfolded or in deciding which arithmetic laws can be applied.

The main difference between Fuchs's approach [Fuchs &; Fromherz 91], based on trans¬

formation schemata, and our approach based on the program history, is that in Fuchs'

approach the user does not have to deal with the problems of the unfold/fold rules but he
needs to choose the output schema for the combined program. On the other hand, in our

approach the user does not need to worry about the form of the combined program, but

programs are required to be built in a techniques editor.

7.7 Conclusions

In this chapter and the two previous chapters, we describe our resulting set of methods, the

corresponding program classification system and how these elements can be put together
into an almost fully automatic program combination system. Our set of methods is not

complete but it does cover a wide range of combinations of programs with the same or

slightly different flow of control.
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System Description

This chapter concentrates on the more practical aspects of the system, showing how our

system can be used. The interface to our composition system is based on menus from

which the user can decide to use our system in non-automatic or automatic mode to select

the combining method. The first mode requires that the user decides which method can

be applied in the combination of a pair of programs. Also, the user needs to learn a non¬

standard classification by navigating through the classification hierarchy before combining
the programs. On the other hand the automatic-mode the system will decide the most

suitable method (performing the classification automatically based on the program histo¬

ries). We provide our composition system with these two options because we believe that
if the user wants to experiment with how the combination is performed the non-automatic

mode can be useful but, if not, the automatic mode can be selected.

8.1 Overview

The implemented composition system is a prototype designed with the purpose of showing
our approach to the combination problem. The system will be described with a sequence of
screens obtained during the construction of an example program. The system is provided
with a library of transformation rules, a knowledge base of skeletons, and a knowledge
base of techniques as described in Appendix C and Appendix D. The knowledge base of

185
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skeletons and techniques is not complete and might be extended in order to cover more

skeletons and techniques. Currently they contain the most representative skeletons and

techniques. The composition system was written in Arity Prolog at Edinburgh University,
and allows the composition of programs automatically using the following methods: pro¬

cedural join, join 1-1, the meta-composition method, the DS method, the particular, the

general method, and the method for combining programs in class traverse-short_traverse,
traverse-search and short_traverse-search. The mutant method is also implemented, but

requires user help as it cannot be completely automated, as was explained in Chapter 7.
Before describing the structure of the system and giving an example of it at work, we

highlight some of the important features of the system.

• Our system allows the user to build complex programs by combining them several
times. This tend to confirm our expectations about construction of more complex

Prolog programs. The nature of our approach is basically incremental, so a more

complex program is obtained by combining it several times.

• The user interaction is reduced enormously and simplified by using the program

history because important decisions are taken automatically rather than asking the
user. The sequence of transformation is chosen by the system automatically by using
the information recorded in the program history concerning the type of program.
User interaction is required only for supplying the name and arity of the top level

predicate and the definition of the join specification, plus confirmation of combined
mutant clauses in the mutant method.

• Our composition system does not require users to possess any specialist knowledge
about program transformation, unlike former transformation systems.

• Our classification of Prolog programs can be extended in order to allow combination
of more classes of program. This can be achieved by extending the knowledge base
of skeletons and techniques defined in Appendix C and Appendix D.



8. SYSTEM DESCRIPTION

8.2 Non Automatic Mode

187

Firstly our composition system will display a menu in which the user can choose to use our

system in an automatic or manual way. If the user takes the first option the user needs to
decide which method will be used by analysing the characteristics of the pair of programs
to be combined and by considering our classification of programs (defined in Chapter 5).
Otherwise the combined method will be selected directly by the system.

COMPOSITION SYSTEM

1. Non-automatic selection of the composition method
2. Automatic selection of the composition method
3. exit

Select an option from the menu: 1.

If the user chooses the non-automatic selection mode the composition system will display
a menu which is shown below. This menu represents the top level of our classification of

programs that can be combined using the composition system.

COMPOSITION SYSTEM

1. compose programs with same control flow (enhancements)
2. compose programs with different control flow
3. exit

Select an option from the menu: 1.

If we choose option 1 the system begins by offering two options for combining pro¬

grams: using a join specification formed by two operands or a join specification formed
by two operands plus extra subgoals which are computing values using the outputs of
each operand. In the latter join specification shown in the following menu (see Page 188),
extra computations are allowed using local variables (variables that do not appear in the
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definition of the join specification). Further explanation is given in Chapter 6.

COMPOSITION SYSTEM

1. compose with JS: T(IP,IQ,OP,OQ) P(IP,OP), Q(IQ,OQ)
2. compose with JS: T(IP,IQ,OT) P(IP,OP), Q(IQ,OQ), F(OP,OQ,OT)
3. exit

Select an option from the menu: 1.

In the menu above IP, IQ are input vectors of distinct variables. OP, OQ, OT are output

vectors of distinct variables. F is a predicate that produces as output the vector OT using
the obtained values in procedure P and in procedure Q.

The user chooses option 1 and the system then offers the following set of methods: the

'synchronization' method, join 1-1, procedural join, the meta-composition method, and a

method called DS for combining programs operating with different data structures.

In the menu, 0-0 tests means that none of the pair of programs to be combined have a

test.

COMPOSITION SYSTEM

1. SYNCHRONIZATION (JS the input for Q is the result of P
ie. T(IP,IQ,OP,OQ) 4= P(IP,OP), Q(OP,OQ))

2. JOIN 1-1 (same number of clauses & 0-0 or both have the
same test & same order of clauses)

3. PROCEDURAL.JOIN (same number of clauses and both
programs have different tests & no ordering of clauses is re¬
quired)

4. META-COMPOSITION METHOD (same number of clauses
k local var. in P or Q &: 0-0 or both programs have the same
test k same order of clauses)

5. programs operating over data structures in a different domain
6. exit

Select an option from the menu: 3.
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If the user chooses the non automatic mode, he has the following responsibilities: to select
the correct method according to the features of the two programs which will be combined,
to provide a user specification or redefinition of the user specification and finally to accept

or redefine combined clauses in some methods. For example we can take the program

sum_odds(List,SumOdds) which computes the sum of the odd numbers in a list and the

program sum_fives(List,SumFives) which computes the sum of all instances of the number

5 that appear in a list. The program sum_odds/2 and sura_f ives/2 is shown as follows:

sum_odds([],0).
sum_odds( [XIR],SO)

odd(X),
sum_odds(R,Si),
SO is Si + X.

sum_odds([XIR],S0)
\+ odd(X),
sum_odds(R,S0).

The main features of the two programs are: both programs were constructed by using the
same traverse skeleton consisting of three clauses, both have the same number of clauses
and each program has a different test in each recursive case. In the program sum_odds/2
the test is to check whether or not each element of the list is an odd number, whilst in

program sum_fives/2 the test is whether or not each element is the number five. This
information can be obtained from the program history.

The previous characteristics determine a combination method which can be used by the

system; for instance, in the combination of the programs sum_odds/2 and sum_f ives/2.

Figure 8.1 shows a set of conditions which are considerated in the selection of the combining
method.

The meta-composition or the join 1-1 method cannot be used because these methods are

suitable only when both programs have the same test.

Therefore at this selection stage in the composition process the user must choose the

procedural join method otherwise the resulting combined program might be wrong. After
this the system will ask for the following sequence of questions:

sum_lives([],0).
sura_fives([X|R],SF)

tfive(X),
sum_fives(R,S2),
SF is S2 + X.

sum_fives([X|R],SF)
\+ iive(X),
sura_fives(R.SF).
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Both programs are derived
from the same skeleton

yes. \ no

Both have the
same number

of clauses

Both are allowed to have
different tests

Both traverse same

data structure using
the same pattern

^ no
yes

There is dependence
between variables
(the input for program Q is the
output of program P)

Procedural join

Figure 8.1: A Decision Tree for Combining sum_odds/2 and sum_fives/2

COMPOSITION SYSTEM

The composition of two programs requires the provision of the names of
the top level predicates (i.e. predicatei and predicate2).
first predicate: sum_odds.
arity: 2.
second predicate: sum_f ives.
arity: 2.
File where the programs are defined: arch_l.
File name for the joined program: result_f ile.
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This information is used for searching if the system has a pre-stored join specification which
involves the top level predicates. So, the system will either provide a join specification (in
the case that the system has one pre-stored) or the user may supply one interactively. For
our example the system offers the following join specification:

COMPOSITION SYSTEM

• The system has this specification for combining the two predicates pro¬
vided:

sum_of(L,SumOdds,SumFives) •£=
svun_odds (L, SumOdds ) ,

sum_fives(L,SumFives).

• Do you want to redefine the join specification?
• answer: no.

• Note that your programs will be joined using the following user specifi¬
cation:

sum_o:f(L, SumOdds,SumFives) <=
sum_odds(L,SumOdds),
sum_fives(L,SumFives).

• answer: ok.

If the user accepts the join specification suggested by the system then the system will ask
for the user confirmation. If the user answers ok then the programs will be combined using
the join specification displayed on the screen. Otherwise the user can define his own join

specification interactively.

The combined program sum_of/3 was built using the procedural join method that we have
described earlier in Chapter 6. The resulting combined program is shown as follows:
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COMPOSITION SYSTEM

sum_of([] ,0,0).
sum_of([XIR] ,SO,SF)

odd(X),
five(X),
sum_of(R,S1,S2),
SO is Si + X,
SF is S2 + X.

sum_of([XIR],SO,SF)
odd(X),
\+ iive(X),
sum_oi(R,Si,SF),
SO is Si + X.

sum_oi( [XIR] ,SO,SF)
\+ odd(X) ,
iive(X),
sum_o:f (R,S0,S2) ,

SF is S2 + X.

sum_of([X IR],SO,SF)
\+ odd(X),
\+ five(X),
sum_of(R,S0,SF).

Another example of the use of the composition system is presented by choosing the second

option of the menu shown below.

COMPOSITION SYSTEM

1. compose with JS: T(IP,IQ,OP,OQ) <= P(IP,OQ), Q(IP,OQ)
2. compose with JS: T(IP,IQ,OT) P(IP,OQ), Q(IQ,OQ),F(OP,OQ,OT)
3. exit

Select an option from the menu: 2.

On choosing option 2, the system will present a choice between the general and particular
methods. The particular method requires that the arithmetic operators in the subgoals of

program P Q and F are the same.
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COMPOSITION SYSTEM

1. PARTICULAR (arithmetic operators in program P, Q and F
are the same)

2. GENERAL

3. exit

Select an option from the menu: 1.

In order to show how the particular method works we select the first option and reconsider
the definition of the program len/2 which computes the length of a list. The definition of

len/2 is shown as follows:

len([],0).
len([H|T],Len)

len(T,Lenx),
Len is Lenx + 1.

If at this selection stage of the composition process, the user chooses the particular method

by analysing the conditions shown in Figure 8.2.

Then the system will ask the user for the standard information about the top level predi¬
cates. This information is obtained in the following order.

COMPOSITION SYSTEM

• first predicate: len
• arity: 2
• second predicate: len
• arity: 2
• File where the programs are defined: arch_2
• File name for the joined program: result_file_2

Secondly the definition of the join specification is defined interactively as follows:
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Both programs are derived
from the same skeleton

Both have the
same number

of clauses

Both are allowed to have
zero or different tests

data structure using
the same pattern

There is dependence
between variables
(the input for program Q
is the output of program P)

Both programs were constructed
using the count or sum technique

j particular

Figure 8.2: A Decision Tree for Combining len_two/3

len_two(Ll,L2,Len) <=
len(Ll,Lenl),
len(L2,Len2),
Len is Lenl + Len2.

The particular method can be defined as follows: unfolding predicate P and predicate Q
and then rewriting the unfolded clause using transformation schemas with restrictions as

defined in Chapter 6. The resulting combined program len_two/3 is shown on Page 151.

We then return to the first menu of the composition system as shown below.
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COMPOSITION SYSTEM

1. compose programs with same control llow (enhancements)
2. compose programs with different control flow
3. exit

Select an option from the menu: 2.

If we choose option 2 the system begins by offering a set of methods for combining programs
with different flow of control.

COMPOSITION SYSTEM

1. MUTANTS (meta-interpreters)
2. trav-strav method (trav o short_trav)
3. trav-search method (trav o search)
4. strav-search method (short_trav o search)
5. exit

Select an option from the menu:l.

To show how option 1 works we take as an example the meta-interpreter result/2 and the

meta-interpreter proof_depth/3 developed in Chapter 7. A more complex program can

be produced by combining the meta-interpreter proof_depth/3 and the meta-interpreter
result/2 using the following join specification.

explain(Goal,Out,P,D) ■$= result(Goal,Out), proof_depth(Goal,P,D).

The user should choose the mutant method by considering the conditions given in Fig¬

ure 8.3. The main characteristic of the mutant method is that it is semi-automatic. It will

offer a combined clause for each mutant clause appearing in each program to be combined.
This can be accepted or rejected by the user. In the case that the user rejects the option,
the redefinition must be performed by the user.
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One of the programs is a
mutant (same class)

Both have the
same number

of clauses

the same test for corresponding
clauses

Both traverse same

data structure using
the same pattern

ye^
There is dependence
between variables

(the input for program Q
is the output of program P)

Mutant method

Figure 8.3: A Decision Tree for Combining result/2 and proof_depth/3

COMPOSITION SYSTEM

1: explain(true,yes,true,D).
2: explain(Goal,0ut,over:flow,0).
3: explain((A,B),0ut,(PA,PB),D)

explairt(A,Outl ,PA,D),
explain_conj(Outi,B,0ut,PB,D).

4: explain(A,yes,sys,D)
sys(A),
call(A).

5: explain(A,Out,(A PA),D)
clause(A,B),
D > 0,
D is D-l,
explain(B,Out,PB,Dl).

6 : explain(A,no,P,D)
\+ processed(A).
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The redefinition of the mutant clauses is offered to the user in the following dialogue:

COMPOSITION SYSTEM

• Do you want to redefine the mutant clause number 6 ?
• yes
• Give me the redefined clause:

explain(A,no,A,D)
\+ processed(A).

The resulting combined program after redefining the mutant clause is as follows:

COMPOSITION SYSTEM

1: explain(true,yes,true,D).
2 : explain(Goal,overflow,overflow,0).
3: explain((A,B),Out,(PA,PB),D)

explain(A,Out1,PA,D),
explain_conj(0utl,B,0ut,PB,D).

4: explain(A,yes,sys,D)
sys(A),
call(A).

5: explain(A,Out,(A PA),D)
clause(A.B),
D > 0,
D is D-l,
explain(B,0ut,PB,D1).

6 : explain(A,no,A,D)
\+ processed(A).

7: explain_conj(yes,Goals,Out,P,D)
explain(Goals,Out,P,D).

8: explain_conj(no,Goals,no,unsearched,D).

8.3 Automatic Mode

The automatic mode uses the program history in order to decide which method can be

applied at the selection stage. Consider again the pair of programs sum_odds/2 and
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sum_fives/2. Assuming that these two programs were constructed using a techniques
editor based on ideas of skeletons and techniques such as the described in [Robertson 91].
Their program history is shown below.

his_prog ( sum_odds, type_traverse, 2, traverse, 3,2, count_technique,
C...,[2,(trav(H),sum_odds(R,Sl))],[3,(trav(H),sum_odds(R,SO))]],nil).

his.prog(sum_fives,type_traverse,2,traverse,3,2,count_technique,
[...,[2,(trav(H),sum_fives(R,S2))],[3,(trav(H),sura_fives(R,SF))]],nil).

By using this information we know that the skeleton used by both programs was the
traverse skeleton. They have the same number of clauses (ie. three) and two different
tests (one for each recursive case). Also the eighth argument in the relation his_prog/9
states that the construction used the technique count. Therefore the system will choose
the procedural join method. Further details for combining these programs are described
in page 113. As a result, the composition system will return the combined program, and a

new relation will be added to the program history. Note that this program history is de¬
rived from information that the user answer about the combined program and information
recorded for each program to be combined.

his_prog(sum_oi,type_traverse,3,travers e,5,4,count_technique,
[...,[2,(trav(H),sum_of(R,Si,S2))],[3,(trav(H),sum_of(R,S1,F))],
[4,(trav(H),sum_of(R.SO.SF))]],nil).

8.4 Characteristics of the Composition System

Our composition system is not only a transformation system. It makes use of program
transformation operations and knowledge about the program in order to achieve efficient
combined programs. As a second result, user interaction is reduced by utilising knowledge
about the program. Finally, it provides a methodology for constructing programs. Our

composition system allows the program to be constructed in a modular way and also

encourages reuse of software. A more complex program is obtained after combining the
program several times.

The main characteristics of our combination system are as follows:
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• It does not requires knowledge about program transformation.

• It takes decisions such as the right sequence of transformation by analysing the pair
of programs to be combined.

• It takes decisions such as which clause or subgoal needs to be unfolded or folded.

• It chooses arithmetic rules which can be applied in order to get a more optimised
combined program.

• It allows the building of complex programs by combining the programs several times.

8.5 Conclusions

User interaction in the transformation system is clearly enhanced by reducing the number
of questions the user needs to answer to comparatively easy questions, such as the name

of the program, arity and the definition of the join specification. In addition, our system
does not requires the user to possess knowledge about program transformation.

Our approach is a dynamic process in which users do not (unless they so desire) need to

face any decisions about which transformations are applied to the initial pair of programs.
The system automatically chooses the sequence of transformations. However there is an

exception in our composition system; our mutant method requires more user interaction.
The user interaction is to accept or reject a proposed combined clause which does not

have any corresponding clause in the skeleton (in our terminology this clause is called a

mutant clause). Such clauses do not inherit properties of the skeleton, so they are treated
differently to the other clauses in the program.
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Properties of the Composition
System

We discuss properties which guarantee that the composition process is sound at three
different levels. The first group of properties shows characteristics of each of our combining
methods such as whether the method preserve equivalence or just gets a subset of answers.
The second group of properties guarantees that the type of the combined program is one

of the types in our classification (see Chapter 5). This information helps in the selection
of each method at different stages in the combination process and also in the definition of
the combined program. Finally, in the third group we define properties which help in the
definition of the join specification.

9.1 Terminology and notation

P\ C P2 should be read as P2 is an extension of Pi where Pi and P2 are programs

consisting of several predicates.

X € Vp should be read as X is member of the set of variables of program P.

X G Gp should be read as X is a member of the set of subgoals of program P.

An extension is a special type of enhancement restricted to add computations which do
not affect the control flow of the skeleton (i.e. assignments, subgoals used for constructing

200
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a data structure or arithmetic computations). Our definition of extension is given in terms
of the subset relation. The relation C (used in the following definition) is a special subset
operation differing from the standard definition of a subset. S C P states that all the

variables in S appear in program P and all the subgoals appearing in program S appear in

program P and P must contain some additional variable and/or subgoal than S. Formally:

Definition 9.1 5 C P —* V xV g (x E Vs and g E Gs —» x E Vp and g E GP)
and 3x\x' E Vp and x' Vs) V 3g'(g' E Gp and g' £ Gs).

Each subgoal g appearing in program S can be found in two ways in program P: as an

enhancement (i.e. more arguments and/or different name) or the same subgoal as appears

in program S (i.e. same name and same number of arguments).

Each program is constructed using techniques which do not change the flow of control
i.e. techniques only add new variables or add subgoals which perform extra computations
around the flow of control provided by the skeleton without altering its flow of control.
These subgoals can be assignments, subgoals which are constructing a data structure,

arithmetic computations but they cannot be tests. The tests change the flow of control. A
test is either: arithmetic comparison for instance, X=C where C is a constant; a system

single-argument test (e.g. atom(X), integer(X), etc.); or a trivial test (i.e. true). So
after applying a technique only two cases can occur: the first case is when the effect of
a technique is just addition of variables through the head of the clause and the recursive
calls. The second case is when the technique adds variables in the head of the clause, in
the recursive calls plus new subgoals which are added to the body of the clause.

The definition 9.1 of the extension states that the program P is an extension of the program
S if the differences between the program S and P are new variables included in the head
of the predicate and through the recursive calls plus new subgoals, which do not affect the
control flow of the program (i.e. the structure of the skeleton is preserved in the extension).
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Example
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The following example illustrates the definition of extension given above. In this example
the initial skeleton S is called transition and the program P is called trans_eval/2
which is an extension of S.

transition([A|As]):- trans_eval([A|As],Output)
update([A|As],Bs), update([A I As],Bs),
transition(Bs) . trans_eval(Bs,Outputl),

<eval>(Output1,As.Output).

transition([]). trans_eval([],0).

The extension called trans_eval/2 is obtained by applying a technique evaluate which can

be either count or sum technique. The structure of the skeleton transition/1 is preserved
into the program trans_eval/2. Each variable appearing in transit ion/1 appears in

trans_eval/2. In a similar fashion all the subgoals appearing in transition/1 appear in

trans_eval/2 in the same way or as enhancements. A possible instantiation of <eval>

for the sum technique is

sum(Sum,[A I As],Suml),
Svunl is Sum + A.

Note that in our example the head trans ([A I As] ) in clause number 1 is transformed
as trav_eval([A|As] .Output) and the body of this clause which is formed by the

subgoals: update( [A I As] ,Bs) .transition(Bs) is transformed in the following subgoals:

update([A I As],Bs), trans.eval(Bs,Output 1), <eval>(Output1,As,Output)

9.2 Method properties

Our composition system is formed by a set of methods which are defined in terms of a

sequence of transformation operations. This section presents a discussion of each method

showing under what conditions it guarantees the equivalence of programs. The equivalence
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of programs is proved for the synchronization, procedural join and DS, using the proofs

developed by Tamaki and Sato [Tamaki & Sato 84]. The join 1-1 and meta-composition
method do not preserve the equivalence hence these methods enforce the synchronisation
of the traversal of the data structure. Therefore only a subset of solutions are obtained.
The particular and general method preserve the equivalence (because the full cartesian

product is performed). Finally, the mutant method does not preserve the equivalence.

In what follows we assume that the join specification is always correctly defined (i.e. it
meets the property defined in Section 9.4).

Also for each of our methods we are assuming that the initial pair are well defined

[Bundy et al. 91]. This must be guaranteed by the techniques editor.

9.2.1 Synchronization

In this method the programs are combined in the simplest way, the join specification
defined as follows:

T(Ip, Op, Oq) 4= P{Ip, Op), Q(Iq, Oq).

this is transformed into a Prolog program directly. Then the combined program is:

T(fP,0P,0Q) :- P(fp,dp),Q(fQ,0Q).

Since P and Q are directly connected by this join specification, then, assuming it is well
defined, the combined program is also well defined.

9.2.2 Join 1-1

This method enforces the same traversal of the data structure for each clause and so

only gives a subset of answers that would be possible in general. The equivalence of the



9. properties of the composition system 204

programs is not preserved but the correctness of the combined program for that intended
behaviour of the program might be maintained. Note that the join specification for this
method is defined as

t(ip,iq,op,oq) 4= p(ip,op),q(iq,oq).

where this join specification enforces the same traversal of the data structure used by both

programs.

However we noticed that, if we restrict the set of programs which can be handled by the

join 1-1 to only programs with the characteristics defined below:

• All the clauses in each program are exclusively independent,

• if each pair of corresponding clauses (taken one from each program) has the trivial
condition (i.e. true) or the same test.

• The argument for the data structure (first argument) is instantiated (i.e. it is not a

variable) in the head of the clause.

then the equivalence is preserved as the program generated combining corresponding
clauses is the same as the program generated performing the full cartesian product us¬

ing normal fold-unfold (see example in page 107).

9.2.3 Procedural join

This method is an extension of the previous method. The equivalence of the combined

program is preserved by the fact that in the combination of pairs of clauses the full cartesian
product is performed. So, even unwanted solutions are preserved by using this method.
It is based entirely on unfolding and folding operations. Therefore the equivalence of

programs is preserved as proved by Tamaki and Sato in [Tamaki & Sato 84]. The final
remark for this method is that if would be very difficult (if not impossible) to exclude the
unwanted solutions from the combined program as we did in join 1-1.



9. PROPERTIES OF THE COMPOSITION SYSTEM

9.2.4 Meta-composition
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The meta-composition method is based on unfolding and meta-folding operations. The lat¬
ter is an extension to the standard definition of the folding operation, which uses knowledge
about the program's development to control how the fold operation is used. The meta-

folding operation verifies before folding that the subgoals that are candidates to be folded

into a single subgoal are enhancements of the same subgoal in the skeleton. Otherwise any

subgoal is folded.

The candidate subgoals, to be folded, in general are the recursive subgoals from each

program. These subgoals can have local variables in their arguments. Sometimes these

local variables are used for traversing the same data structure. Therefore these variables

can potentially be unified. The restriction on whether they can safely be unified is that

they must traverse the data structure in the same pattern (constructing or deconstructing
the data structure) or appear in exactly the same environment (see Section 6.8). This
information can be inferred from the program history which states how the data structure

is traversed in each program.

The knowledge of which variables can be unified, is provided in the program history as

relations (which were defined in Chapter 5). These allow us to infer the name of the local
variables which can be safely unified together because they have the same functionality

(they operate over the same data structure).

The equivalence between the initial pair of programs (if the join specification is regarded
as Prolog program) and the combined program using the meta-composition method is not
ensured. This method enforces the same traversal of the data structure as the join 1-1

method. If we restrict the set of programs which can be handled by the meta-composition
method to the programs with the characteristics defined in section 9.2.2. then the equiv¬
alence is preserved, as the program generated combining the corresponding clauses is the
same as the program generated performing the full cartesian product (see example on

page 107). In this case the extra condition which needs to be guaranteed is that the pro-
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gram history is correct. This depends on the correctness of the techniques used in the
editor which produced the programs and on the correctness of the technique applications
in the editor. For the purposes of this thesis we take this as given.

9.2.5 DS

This method uses the procedural join method. The equivalence of the combined program is

preserved by the fact that in the combination of pairs of clauses the full cartesian product
is performed. So, even unwanted solutions are preserved by using this method. It is based

entirely on unfolding and folding operations. Therefore the equivalence of programs is

preserved as proved by Tamaki and Sato in [Tamaki & Sato 84].

9.2.6 Particular

The particular method can be applied when both of the programs to be combined were

constructed by applying the technique sum or count. This method operates by performing

unfold, arithmetic laws and the folding operation. The laws are those which are valid for
a specific arithmetic domain such as integer or real numbers, for instance, commutativity
and associativity in the real or integer domain.

This method works by performing rewrite rules in order to increase the possibility of folding

subgoals. The arithmetic rewrites are always correct because these are based on properties
on real/integer numbers (see page 150 for a working example). Also, the particular method
preserves the equivalence of programs. It performs the combination of pairs of clauses

considering all the possible combinations. Therefore the equivalence is guaranteed.

9.2.7 General

The general method is an automatic way of building programs which have a user speci¬
fication formed by two operands plus extra subgoals, but without any restriction on the
form of extra subgoals (as in the particular method). This method is based only on the
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standard unfolding and folding operations. The equivalence between initial programs and
the combined program is thus guaranteed by the fact that the combination of the clauses is

not restricted as in the join 1-1 method. This method uses the following join specification:

T(fp,fQ,0T) <= P(fp, Op), Q{fq, Og), F(Op, 0Q, Ot).

where the restriction on F in the Particular method does not apply (see Section 6.10).
This method can be used when F is a subgoal performing a computation in a different
domain other than the computations in program P and Q.

This method works by applying a sequence of unfolding/folding operations. The equiv¬
alence of the combined program after applying this method is guaranteed by using the

proofs defined by Tamaki and Sato [Tamaki & Sato 84].

9.2.8 Mutant

The mutantmethod is based on the meta-composition method described above. The exten¬

sion for this method deals with mutant clauses. This is a hybrid method which combines

corresponding clauses using the meta-composition method and clauses which do not have

corresponding clauses by using the mutant method.

The problem of extra clauses which do not have a corresponding clause in program P
with respect to a second program Q is handled as follows: first create an instance of the

join specification Tk and then spread the values of the variables through the instance Tk by

unfolding either predicate P or predicate Q. The selection of which predicate is unfolded is
determined as follows: if the mutant clause belongs to program P then the unfold operation
is applied only in the first operand of the join specification (P), otherwise if the mutant
clause belongs to program Q then the second operand (Q) is unfolded and then the fold
operation is performed. This process is repeated while there are still mutant clauses in
each program. The unfolding operation is applied partially through the join specification
and the final mutant combined clause can be accepted or rejected by the user.



9. PROPERTIES OF THE COMPOSITION SYSTEM 208

This method controls which clauses have a corresponding clause between the pair of pro¬

grams to be combined by using the program history (which contains a list of non-mutant

clauses). Therefore all the clauses which have a corresponding clause can be combined as

usual. The second step is how to combine the clauses which do not have a corresponding
clause. For these clauses we are unfolding just one of the operands in the join specification
because the program does not have a corresponding clause with the other program. This
is safe because we are restricted to combining programs which are mutants belonging to
the same class and which extend, rather than replace, the original flow of control. This
means that the pair of programs to be combined has some structural similarity.

This method enforces the same traversal of the data structure for each clause (which has a

corresponding one in the other program). Therefore we are restricting the set of possible
answers. But if we only combine programs restricted to the kind of program as is defined
in section 9.2.2 the set of answers should be the same as the set of answers produced

performing the full cartesian product (see example on page 107).

The correctness of the combined program is also in danger if the user redefines the offered
mutant combined clauses. Then the responsibility for the correctness of the combined
mutant clauses lies with the user.

9.3 Extension properties

The set of properties defined in this section are useful for programs which are extensions
of a skeleton (defined in Section 9.1). These programs are obtained by applying techniques
to a skeleton.

Lemma 9.1 If Pi C P2 and P^ C P3 then Pi C P3.

Proof:

If Pi C P2 then by definition 9.1
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V xY g (x € Vp1 and g £ Gp1 => x £ Vp2 and g £ Gp2) and P2 must contain some

additional variable and/or subgoal than P\ (1)

and

If P2 C P3 then by definition 9.1

V xW g (x £ Vp2 and g £ Gp2 =>• x £ Vp3 and g £ Gp3) and P3 must contain some

additional variable and/or subgoal than P2 (2)

Therefore

V xYg (x £ Vp1 and g £ Gpx x £ Vp3 and g £ Gp3) and P3 must contain some

additional variable and/or subgoal than Pj.

Therefore by using (1) and (2)

Pi C P3

Theorem 9.1 The relation C is anti-reflexive, anti-symmetric and transitive.

Proof:

Anti-reflexivity : Pi ^ Pi

Pi (fi Pi by using definition 9.1

Anti-symmetry : Pi C P2 then P2 ^ Pi

Pi C P2 then by using definition 9.1 we have the case that P2 must contain new variables
or subgoals than Pi. These subgoals do not affect the flow of control of P2 with respect to

Pi then

Pi P\ because by construction each technique adds new variables or new subgoals to
the new program P2.

therefore C is anti-symmetric.
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Transitivity: Px C P2 and P2 C P3 then Px C P3.

Pi C P2

and

P2 C P3 then

Pi C P3 by using lemma 9.1.

Therefore the relation C is anti-reflexive, anti-symmetric and transitive. □

Theorem 9.2 If Px is an extension of skeleton S with type a and P2 is an extension of
skeleton S with type a then Px o P2 is an extension of S of type a where
a is one of types defined in our classification schema.

The previous theorem states that the composition (denoted by the symbol o) of two ex¬

tensions of the same skeleton and with the same type a is another extension of the same

skeleton with the same type a. This property is important for performing further compo¬
sition stages.

Proof:

If S C Pi and S C P2

then by definition 9.1

V xV g (x £ Vs and g £ Gs =£• x £ Vp1 and g £ Gp^) and P\ must contain new variable

and/or subgoals which do not affect the flow of control of Px with respect to S

Similarly V x\/ g (x £ Vs and g £ Gs => x £ Vp2 and g £ Gp2) and P2 must contain new

variable and/or subgoals which do not affect the flow of control of P2 with respect to S

By combining the program Px and P2 which are extensions of the skeleton S we obtain a

program which is formed by the extra arguments present in each program and by the extra

subgoals also present in both programs. The combined P\ o P2 contains the same flow of
control of the skeleton S because none of combining methods modifies the flow of control
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of the initial skeleton and P\ and P2 are extensions of S (e.g. none of the techniques used
in its construction modify their flow of control by definition of our techniques).

Therefore

S C PioP2

Then

Pi o P2 is an extension of S of type a.

9.4 Composition properties

These properties are useful when the user defines the join specification. The commutative

property states that the order of the operands of the join specification is irrelevant. The
one exception is our synchronization method. In this method the commutativity is not

valid because there is a dependence of variables between the two programs to be combined.

Theorem 9.3 The relation o is commutative.

Formally this theorem states:

Pi o P2 = P2 o Px

Proof:

P\ o P2 then P2 o Px

Let Ji, the join specification, be defined as:

P1-P2 :-Pi,P2

Pi o P2 was joined using join specification J\

If we change the join specification from J\ to J2 defined as:
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P2-P1 :~P2,Pi

Then the joined program using the join specification J2 has the following properties.

• No new variables are introduced by the composed program due to the join spec¬

ification restriction. The same variables that appear in Px o P2 also appear in

P2 o Pi

• Each subgoal appearing in program Pi o P2 is in P2 o Pi, but in a different order.

Gi,j,Pi (X) — Gijip2(Y)92 where X and Y are the variable vectors.

• The recursive calls appearing in the program Pi o P2 also are in the program P2 o Pi
as follows:

Gij,pl0p2(X) = Gijj^oPi (Y)02 where X and Y represent vector of variables,

therefore

Pi o P2 = P2 o Pi

If we assume that T <— P, Q is equivalent to T <— Q,P (assuming cut-free code), the
vector of variables of Pi and P2 are independent and that all transformations preserve

the meaning of the join specification then join specifications of the form given above are

commutative and so are the programs produced from them.

9.5 Conclusions

We have defined three groups of properties which are useful for the composition process.

These properties ensure that the composition process is sound. The first group of prop¬
erties relates to whether the method preserves the equivalence between programs or just
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gives a subset of results; the second group gives properties of program extensions (gener¬
ated by applying techniques to skeletons) and the third group are properties of the join

specification.
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Conclusions and Further Work

In this chapter firstly we summarise our work on the combination problem for Prolog

programs. Secondly we describe a set of restrictions in our composition system. Thirdly
we show a list of major improvements which can be done as future work and finally the
contributions of the thesis.

10.1 Summary

We found that simple information about the key stages in predicate definition could

markedly improve the efficiency of program transformation requiring little user interac¬
tion. This information which we call a program history can be viewed as a collection of
meta-information which is shown (through this thesis) to be very useful for the combination
of programs. This program history describes the program in a way an expert programmer

might describe it (in terms of flows of control and programming practices). The program

history might be obtained from a techniques editor. We have analysed two kinds of editors:
based on program schemata and skeleton and techniques notions and found that the sort

most suitable (for our purpose) is an editor based on skeletons and techniques as proposed

by Kirschenbaum et al. [Kirschenbaum et al. 89].

We produced a classification schema which groups Prolog programs according to their

patterns of flow of control either directly extended or mutated in a constrained way. Then

214



10. CONCLUSIONS AND FURTHER WORK 215

we implemented a set of combination methods which combine programs from these classes.
We found which methods gave better results on appropriate classes of programs and under
certain restrictions. The results are judged qualitatively according to the efficiency of
the resulting combined program. By using the program classification and methods, we

produced an algorithm which permits users either to combine programs automatically
or select a non-standard classification by navigating through the classification hierarchy
before the combination of the pair of programs can be performed.

In short we can say that our solution to the combination problem can be defined in two

stages. The first stage is the classification of the pair of programs using our hierarchy of
classes of program and the second stage is to apply a sequence of transformation operations

in order to obtain the combined program.

10.2 Current Restrictions

The assumptions on the implemented version of the composition system are as follows:

1. Our definition of skeleton is restricted to contain one argument which is used for

traversing the data structure in our skeleton knowledge base.

2. Our composition system is restricted to the knowledge base of skeletons and tech¬

niques defined in Appendix C and Appendix D.

3. The binding of variables performed for our meta-folding operation is restricted to
local variables which are used for traversing the same data structure (i.e. they have
the same functionality to construct/deconstruct the data structure) or variables X,
Y appearing in the same environment.

4. Our Particular method performs a transformation process before the fold operation
can be performed. The restriction is that both programs need to be constructed
either using the count or sum technique (for further details see Section 6.10).
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5. Program history needs to be available. This can be obtained by means of a specialised
editor. The current version of Robertson's editor does not record the program history
but might be extended in order to record the program history.

6. Cuts were left out of our system: no skeletons or techniques have yet been devised

making use of them and the composition system also falls short in combining pro¬

grams using cuts. Future extensions should offer means to devise skeletons and

techniques with sensible cuts and enable the combination of programs built using
them.

10.3 Further Work

In this section we propose further work that can be undertaken in this field.

• Our composition system assumes the existence of program history knowledge derived
from an editor which bases program construction on initial skeletons defining flows
of control. We believe that constructing a planning system might be useful in order
to get a program history more easily without a lot of overhead. Otherwise if the user

needs to redo the program because he chooses an inappropriate skeleton (which can

be used for his application) then the system needs to redo the program history as

well. This is not a desirable characteristic, so we consider two plausible solutions to

this problem.

A partial solution to solving this problem is to provide a catalogue of examples in
which the programmer can see some examples similar to the program that they want
to build with some sort of explanation of how these examples have been constructed.
A much more ambitious solution to this problem would be to implement a planning

system in which the users can describe key aspects of the type of problem that he
wants to solve. The output from this module would be a plan for the construction
of the program. Therefore this module would be of particular importance at the
user level. The specification of the problem requires a formal language in which
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the user can express the main features of the problem that he wants to solve. The
restriction is that this solution is not a general solution. It needs to be restricted
to a specific domain, for instance, list processing. The characteristics that the user

needs to describe are firstly the type of data structure, and with this information

the system will create the cases for the induction parameter. Secondly a description
of input and output modes is required at this stage and, finally, the user needs to

describe semantic aspects such as whether the program will stop when a condition
is met or whether it must recurse until the empty list is reached.

It is useful to allow techniques which change the flow of control of the program

rather than assuming that the flow of control will be determined at the start of
the program design. The program's behaviour can be changed by adding subgoals
which can conditionally terminate a clause or by adding new clauses in the program

(see example in Chapter 7). A technique which changes the flow of control of the

program is the collect technique. The collect technique is used with a skeleton whose
clauses are mutually exclusive, which implies that at least one of the input arguments

will be used for determining which clause to take and there is a special data item
that is to be collected. The item collected is the item which satisfies the test. In

Appendix D we have described a knowledge base of techniques which do not change
the flow of control. This knowledge base of techniques was obtained from several

sources [Kirschenbaum et al. 89]. However, more research needs to be carried out

concerning the definition of which techniques map skeletons into 'mutations' (a type

of enhancement where the control flow of a skeleton is slightly modified). Currently
our set of techniques is restricted to techniques which do not change the flow of
control.

We would like to produce a standard set of skeletons and techniques. This set

should be enough to allow the user to build a wide variety of Prolog programs.

However, there is a tension between having general techniques which give little help
in programming, versus specific techniques which are more useful but we need to
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provide lots of them [Vasconcelos 93]. Currently in our set of techniques we have

only specific techniques such sum, count, etc. (defined in Appendix D). Future
work could be to show that it is possible to make optimisation in the combination of

programs constructed using a larger variety of more general techniques.

Another area of research is to extend the range of Prolog programs that can be
combined by allowing the combination of programs which are written with special
kind of cuts (green cuts). A plausible solution to this problem is to extend the
standard unfolding operation allowing it to unfold clauses using cuts in their bodies.
There are several methods that can be used in order to propagate the cut safely. As
a first stage we present a program in which the cut is propagated incorrectly by using
the standard unfold operation. For instance consider the following program:

p(X) q(X).
p(2).
q(0) !.
q(l) ■

By unfolding q/1 we obtain the program shown below. This program is not equivalent
to the initial program. The incorrectness arises when the cut defined in program q/1
was propagated into program p/1.

p(0) !.
p(l).
p(2).

In order to avoid propagating the cut incorrectly, Venken [Venken & Demoen 88]

proposes annotating cuts during unfolding to make their scope explicit. The anno¬

tated cut is called the ancestral cut. This is expressed by two predicates: mark(v)

which succeeds on being called, binds v to a unique value and fails on backtracking;
! (v) succeeds on being called and removes all choice points back to mark(v). For

example, consider the following example:

p(X) q(X), r(X).
p(2) .

q(l) !.
q(3).
r(l) !.
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We transform cuts in the programs into ancestral cuts by applying the approach
described in [Prestwich 92], obtaining the following program:

1: p(X) mark(VI), q(X,Vl), mark(V2), r(X,V2).
2: p(2).
3: q(l,Vl) !(VI).
4: q(3,Vl).
5: r(l,V2) !(V2).

In order to unfold q we need to create an auxiliary predicate new/2 defined in clause

8 (which is obtained from clause 1 by copying the subgoals which come after the first

annotation).

6: p(X) mark(Vl), new(X,Vl).
T: p(2).

8: rtew(X,Vl) q(X,Vl), mark(V2), r(X,V2).

q is unfolded in the new clause obtaining the following program:

9: new(l.Vl) !(V1), mark(V2), r(l,V2).
10: iiew(3,VI) mark(V2), r(3,V2).

By unfolding r in both clauses above, the first clause becomes:

11: new(l.Vl) :- !(V1), mark(V2), !(V2).

The second clause is removed via failure propagation. Failure propagation can be
defined as follows:

Assuming C is a clause defined as p : —ai,...,an. If a; does not match with any

clause then C is replaced by a clause p : —cq,..., an, fail, and the fail is propagated
back through ... an.

Finally, new is unfolded in the clause 6.

p(X) :- mark(VI), !(V1), mark(V2), !(V2).
p(2).
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We propose to incorporate programs written using conventional editors (such as

emacs) into this environment by having their components (skeletons and techniques)
identified and their history extracted. One plausible approach is to analyse the

program and find out which class of our classification it belongs to. Bental's work

[Bental 94] appears to take a promising approach in recognising components of pro¬

grams using a clausal split.

We propose to find a formal proof for our observations described in Chapter 9 such
as the observation on the simplification process performed in the particular method.

We believe that implementing a single method which combines every pair of programs
is useful work which could be undertaken (see page 80). This single method must

handle all the conditions which are checked currently by each of our methods. So,
we propose to have a method which gives two options: either to enforce the same

traversal of the data structure or to do the full cartesian product. This method should

use unfolding, meta-folding, arithmetic rules and structural knowledge of each of the

programs to be combined (see section 5.3).

Our composition system was not intended to be a tutoring system but we believe it

might be used as component of such a system. We think it is feasible to build an

explanation mechanism on top of our system. This explanation mechanismmight give
an explanation why the composition system choses a particular combination method
and also, if the user is interested, it might explain each stage in the transformation
of the program. If carefully deployed, using well chosen examples, this could help
to make students more aware of the potential for reuse of existing programs (using

combination) rather than continually writing code from scratch.

We propose to improve the currently very limited interface. For example, in the non-

automatic mode we would like to provide the possibility of displaying the decision

tree, and so show the discriminating steps that the system took during the selection
of the combination method. Also, we would expect our system to cooperate with a



10. CONCLUSIONS AND FURTHER WORK 221

techniques editor under a uniform interface (which should be compatible with com¬

mercial Prolog systems whenever feasible), however none of the current techniques
editors have a significantly better interface. There is a potential here for cooperation
between the communities. Our work would help supply the foundation for a usable

system but the issue of interface design is outside the scope of this thesis: we would

expect the design of an industrial quality interface to require a separate research

project, as designing a good interface is a far from trivial task.

• We propose to use the meta-information (stored in the program history) in order
to aid a high-level dialogue with the user. The system could talk in the language
of control flows, and their associated functionalities, instead of in terms of low-level

guidance of the combination method.

10.4 Contribution of this Thesis

This thesis presents a combination system based on program history. The composition

system allows users to construct more complex programs by combining simpler Prolog

programs, which could be built by means of a techniques editor. This composition system
contains a set of methods for combining programs with either the same flow of control
or with different flows of control. We compared the performance of different combination
methods on pairs of programs noting which give better results on appropriate classes of

program and what the restrictions on each of them. A detailed descriptions of these
methods can be found in Chapter 6 and Chapter 7. We have implemented the selection

procedure which automatically selects a composition method according to the features of
the programs. The selection of the method which can be used is not an easy task, especially
for Prolog beginners. Currently our composition system is capable of assisting in making
these decisions by using the program history.

The composition system applies a suitable transformation rule automatically, obtained
from the library of transformational rules, in order to compose two given programs. In



10. CONCLUSIONS AND FURTHER WORK 222

our transformation rules library we have several kinds of rules such as: unfolding, folding,
meta-folding, goal merge and rules based on data domain knowledge (arithmetic rules)
such as: commutativity, associativity, etc. The commutativity and associativity rules can

be applied to relations such as addition over integer/real numbers.

The transformations necessary to produce efficient combined programs are complex, which
makes it difficult for users to apply them reliably by hand. Our approach reduces the
user interaction to answering simple questions in a high level language (of skeletons and

techniques) and also produces optimised programs. In automatic mode it needs almost no
user interaction, provided that it is given appropriate program history information for the

classes of program recognised by the system.

In Chapter 9 we discuss some general properties which we look for in this type of com¬

position system. These include: properties which hold after applying each combination

method; properties for the type of program which is obtained at each stage of the combining

process; and properties for the definition of the join specification.

The use of environments which provide help in the software development process are im¬

portant in many domains, for instance in teaching environments. Although we do not claim
to have produced such an environment, we believe that automated program composition

is an important part of its foundations. If the user is provided with this kind of system

then the following benefits can be obtained.

• Programmers can improve their performance by making use of methodologies and

systems which allow them to concentrate on the problem to be solved, without un¬

necessary "mechanical" details.

• Our environment provides help in the construction of programs by assisting in the
task of integrating several pieces of software, thus building more complex programs

from simpler ones.
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This may assist us reusing standard programs for building different pieces of software.

It may also assist in standardising programming by promoting a uniform coding style.
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Appendix A

Gegg-Harrison's schemata

Schema A processes all elements of a list. Programs included in this group are first_last/3

(which moves the first element to the end of the list) and last_first (which moves the
last element to the front of the list). Other programs included in this group are:

append/3, length/2 and reverse/2 defined in Appendix B.

schema_A(Q,<C&l •

schema_A([iy|T], <C &2 >>)
< pre_pred(< &3 », H, < &4 >), >
schema_A(T, <C &5 ;§>)
<, post_pred(<&6 >,//,< &7>) >.

An example of the use of the schema,A is the predicate append/3 which concate¬

nates two lists into a third list. This program is produced by making the substitutions

{append/schema_A, L,L/&1} and {L, [H|R]/&2, L,R/ &5} in schema,A and by in¬

stantiating pre_pred and post_pred to the null string. The program append/3 is
defined as follows:

append([],L,L).
append([H|T],L,[H|E]) append(T,L,R).

Schema B invokes itself twice (double recursion). One subschema of schema B calls it¬
self recursively for each element that is a list, e.g. flatten. The other subschema is

divide-and-conquer where the idea is to subdivide the list in two parts and process

each part by invoking the main predicate recursively. Examples are quicksort/2,

228
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mergesort/2, find_min/2 (finds the element having the lowest value in a list of inte¬

gers), find_max/2 (finds the maximum element of a list of integers), binary_tree/l
(recognises if the first parameter is a binary tree) and the predicate height/2 (which
computes the height of a binary tree assuming that the height of the empty tree is 0
and that of a one-element tree is 1). These examples are defined in Appendix B.

schema_B([], <C &1 »)•
schema_B([//|T], <C &2 ^>)

par_pred(< &3 >, H,< &4 »),
scheraa_B(&5, -C &6 ^>)
schema_B(&7, <C &8 ^>)
<,process(<C &9 ^>)>.

An example of schema_B is the find_max/2 predicate which finds the element having
the highest value in a list of integers. This program can be obtained by applying the
substitutions:

{find_max/schema_B, Max/&1, Max/&2, divide( [H IT] ,H, A,B)/part_pred(<C &3 ^>, H, <C &4 ^>)}

and {A/&5, M1/&6, B/&7, M2/&8 } and by instantiating process(<C &9 >•) to the
null string.

find_max([Max],Max).
find_max([HIT],Max) :-

divide([H|T],H,A,B),
find_max(A,Ml),
iind_max(B,M2),
iind_max_aux(Ml,M2,Max).

find_raax_aux(Ml,M2,Mi)
Ml > M2.

find_max_aux(Ml,M2,M2)
Ml >= M2.

Schema C processes the elements in a list until a specified element is reached. Exam¬
ples of programs in this group are member/2 and adjacent/3 (which succeeds if the
elements X and Y are consecutive elements of a list) defined in Appendix B.

schema_C([£'|T],i?,<C&l ]>).
schema.CCj/TjT], E, <C &2 >•)

<E \= H>,
< pre_pred(<C &3 ^>, H, <C &4 ^>), >
schema_C(T, E, <C &5 ^>)
<, post_pred(<C &6 H, <C &7 ;>) >.
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An example is member/2 which succeeds if an element X is in a list. The predicate is
defined in two clauses. X is an element of a list if it is the head of the list (first clause)
or if it is a member of the tail of the list (second clause). The program member/2 can

be obtained by making the substitutions {member/schema.C, null/&l, null/&2}
and by instantiating all the optional arguments and subgoals which are denoted

by angle brackets i.e. the data argument:<E\= H>, and subgoals: pre_pred and

post.pred to a null string.

member([XlXs] ,X).
member([YIYs],X) member(Ys,X).

Schema D processes all elements in the list after a specified element. An example of a

program which can be built with this schema is find_sum/3 (which succeeds if the
third argument is the summation of all the elements following the first occurrence of
the given element in the list). The definition of the schema D is as follows:

schema_D([£'|T], E, &1 !>)rec.predCX', < &2 »).
schema_D([i/|X'], E, <C &3

<E \ = H>,
< pre_pred(< &4 >, H, < &5 >), >
schema.DCT", E, <C &6 ^>)
<, post_pred(<C &7 >>, H, <C &8 ^») >.

The program find_sum/3 is obtained by making the following substitutions:

{find.sum/schema_D, Sum/&1, Sum/&2} and {Sum/&3, Sum/&6} and by instanti¬

ating all the optional arguments and subgoals such as: rec_pred(< &4 »,H,< kb >)

to sum(T,Sum) and subgoals pre.pred and pre.pred post.pred to null string.

find_sum([E|T],E,Sum)sum(T,Sum).
lind_sum([H|T],E,Sum)

lind_sum(T,E,Sum).

Schema E should be used if the goal is either to move an element in a specified position
to the front of the list or to move the first element in the list to a specified posi¬

tion. Examples of programs in this group are find_nth/3, del_nth/3, subs.nth (find,
delete and substitute the nth element of the list). These predicates are defined in

Appendix B.



A. GEGG-HARRISON'S SCHEMATA 231

schema_E(L, 1, <C k\ >).
scheraa_E([H|T],P,<&2 >)

< pre_pred(< &3 ~>,H, < &4 >), >
(Q is P-l),
schema_E(T, Q, <C &5 »)
<, post_pred(< &6 >,#,< &7 >) >.

An example is find_nth/3 which succeeds if the element appears in the nth

position in the List. This example can be produced by making the substitu¬
tions {find_nth/schema_E, H/&1, R/&2, R/&5} and by instantiating pre_pred

and post.pred to null string. The program f ind_nth/3 is defined as follows:

find_nth([H|T],1,H).
find_nth([H|T],Pos,R)

N1 is Pos - 1,
find_nth(T,N1,R).

Schema F should be used if the goal is either to move an element in a specified position

to the end of the list or to move the last element in the list to a specified position.

An example of a program constructed using schema F is pos_append/4 which inserts
the second list after the nth element in the first list. This predicate is defined in

Appendix B.

schema_F(L, 0, <C&1 rec_pred(Z«, -C &2 >•) .

schema_F([/l|T],P,<&3 »)
< pre_pred(<C&4 >,//,< &5 >), >
(Q is P -1),
schema_F(T, Q, <C &6 ^>)
<, post_pred(<C &7 >>, H, <C &8 ^>)>.

This program is obtained by making the substitutions:

{pos_append/schema_F, L2,L3/&1, L2.L3/&2, append(Li ,L2,L3)/rec_pred(L, <C&2^-)}
and {L2, [XI Zs] /&3, L2, Zs/&6} and by instantiating pred_pred and post_pred to
null string. This program pos_append/4 is defined as follows:

pos_append(Ll,0,L2,L3) append(L1,L2,L3).
pos_append([X|Xs],P,L2,[XlZs])

q is P -1,
pos_append(Xs,q,L2,Zs).

Gegg-Harrison also defines eight complex Prolog Schemata, from G to N, divided into two
groups.
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Schemata G-J correspond to schemata C-F respectively, except that the processing
the elements of the list is in reverse order.

Schemata K-N are a composition of schemata C-D and G-H with schema D. The

processing is before/after the nth occurrence of an element from the front/back of a
list.



Appendix B

Definitions of some Predicates

first_last moves the first element in a list to the end of that list.

f irst_last( [],[]).
first_last([H|T],L) append(T,[H],L).

last .first moves the last element in a list to the front of that list.

last_i irst ([],[]).
last_first([H|T],[L,H|R])

append(R,[L],T).

append/3 concatenates two lists into a third list. This can be defined by the relation

append(Xs,Ys,Zs) where Xs and Ys are the two lists that are to be joined and Zs is the
joined list.

append([],Y,Y).
append([H|T],Y,[H|Z]) append(T,Y,Z).

len/2 computes the length of a list.

len([] ,0).
len([H|T],Len) len(T,Laux), Len is Laux+i.

The program reverse/2 is defined as reverse(List,InList) where InList is the result of
reversing the list List.

233
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reverse( [] , [] ).
reverse([H|T],L) reversed",M), append(M,[H],L).

member/3 finds if an element is in a List. X is an element of a list if it is the head of the

list (first clause) or if it is a member of the tail of the list (second clause).

member(X,[X|Xs]).
member(X,[Y|Ys])

member(X.Ys).

quicksort/2 sorts a list by choosing an arbitrary element and splitting the list into elements
smaller than the chosen element and the elements larger than the chosen element. All
elements greater than the element at the split point are placed in one list, and the elements
less than the element at the split point are placed in another list. Then each of the resulted

lists are themselves quick sorted. The sorted lists are appended to create the final sorted
list.

quicksort([HiT].SortedList)
split(T,H,Smalls,Bigs),
quicksort(Smalls,Sm),
quicksort(Bigs,Bs),
append(Sm,[HIBs].SortedList).

quicksort ([],[]).

split([XIXs],Y,[XISm],Bs) X =< Y, split(Xs,Y,Sm,Bs).
split([Xl Xs],Y,Sm,[X IBs]) : X > Y, split(Xs,Y,Sm,Bs).
split ( [] ,Y,[],[]) .

mergesort (List,Sorted)

In this method of sorting a list is first divided into two lists where the first element of List
becomes part of Listl, the second element of list becomes part of List2, the third element
of List becomes part of Listl, and so on. The process continues with the new lists being
divided until single element lists are created. The single element lists are compared and
merged according to which element should come first.

mergesort( [] ,[]):- !.
mergesort([A],[A]) !.
mergesort(List,Sorted)

divide(List,L1,L2),
mergesort(LI,AL1),
mergesort(L2.AL2),
merge(AL1,AL2,Sorted).
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divide(List,Ll,L2)

This predicate divides a list into two halves. A list is divided by placing the first element
in LI, the second element in L2, the third element in LI and so on.

divide (□,[],[]) !.
divide([A],[A], □ ) :- !.
divide( [A,B|T] , [A|T1] , [B|T2] )

divide(T,T1.T2).

The merge predicatemerges two list together. The first element of List [A"s|Fs] is compared
with the first element in list and the larger element is added to the merged list.
Then the first elements of each list are compared until all the elements have been compared

and merged or until one list is empty, in which case all the elements in the remaining list
are appended to the merged list.

merge([],L,L) !.
merge(L,[],L) !.
merge( [XIXs] , [Y|Ys] , [XI Zs])

X < Y,
merge(Xs,[Y|Ys],Zs) .

merge([XIXs],[YlYs],[X,Y|Zs] )
X = Y,
merge(Xs,Ys,Zs).

merge([X|Xs],[Y|Ys],[Y|Zs])
X > Y,
merge([X|Xs],Ys,Zs).

find_max finds the maximum element of a list of integers.

find_max([X],X).
find_max([X,Y|T],Max)

X > Y,
find_max([XIT],Max)
I

find_max([Y|T],Max).

find_min finds the minimum element of a list of integers.

find_min([X],X).
find_min([X,YIT],Min)

X < Y,
1ind_min([X IT],Min)
»

iind_min([YIT],Min).
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binary_tree recognises if the first parameter is a binary tree.
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binary_tree(nil).
binary_tree(t(Left,X,Rigth))

binary_tree(Left).
binary_tree(Right).

The predicate height(Binarytree,Height) computes the height of a binary tree assuming
that the height of the empty tree is 0 and that of a one-element tree is 1.

height(nil,0).
height(t(Left,X,Right).Height)

height(Lelt.LH),
height(Right,RH),
max(LH,RH,MH),
Height is 1+MH.

flatten(+List,-FlatList) reorganises a list into a plain list (where the elements cannot be

lists).

flatten([H|T].FlatList)
flatten(H,Flathead),
flatten(T,Flattail),
append(Flathead,Flattail,FlatList).

flatten(X,[X])
constant(X),
X\== □.

flatten( [],[]).

constant(X)
integer(X) ;
atom(X).

adjacent/3 succeeds if the elements X and Y are consecutive elements of a List.

adjacent(+X,+Y,+List)

adj acent (X, Y, [X, YI _] ).
adjacent(X,Y,[_|Z]) adjacent(X,Y,Z).
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el_last/3 moves a specified element to the back of the list.
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al_last([HIT], 1, R) append(T,[H],R).
el_last( [HIT] ,N, [HIR] )

N > 1,
M is N - 1,
el_last(T,M,R).

last_el/3 moves the last element of the list to precede a specified element.

last_el([H |T] , 1,[Last,H|R])
append(R,[Last],T).

last_el([HIT],N,[HIR])
N > 1,
M is N - 1,
last_el(T,M,R).

find_nth/3 succeeds if the element appears in position Pos to the List.

find_nth(+List,-fPos,+Elem)

find_nth([H|T],0,H).
:find_nth([H|T] ,Pos,R) N1 is Pos-1, find_nth(T,Nl,R).

del_nth/3 removes the nth-element from a List. del_nth+(List,+Pos,Elem)

del_nth([H|T],l,T).
del_nth([HIT],Pos,[HiR]) Ni is Pos - 1, del_nth(T,Ni,R).

subs_nth/4 substitutes the nth element of the List.

subs_nth(+List,+Pos,+Value,+Elem)

subs_nth([HIT],1,V,[VIT]).
subs_nth([H|T],Pos,V,[HIR]) Nl is Pos-1, subs_nth(T,Nl,V,R).

find_sum/3 succeeds if the third argument is the summation of all the elements following
the first occurrence of the given element in the list.

find_sum([E|T] ,E,Sum) sum(T.Sum).
find_sum([H|T] ,E,Sum)

iind_suin(T,E,Sum) .



B. DEFINITIONS OF SOME PREDICATES

post_append inserts the second list after the nth-element in the first list,

directionality: post_append(-|-List_l,-|-Pos,-|-List_2,-Final-List)

post_append([X|Xs],1,L2,[X|Zs]) append(L2,Xs,Zs).
post_append([X|Xs],P,L2,[X|Zs])

P > 1.
q is P -1,
post_append(Xs,Q,L2,Zs).



Appendix C

Skeleton Knowledge Base

In this appendix a skeleton knowledge base is defined. This skeleton knowledge base
contains the definitions of skeletons which can be used by the techniques editor. This clas¬
sification was defined by Sterling and Kirschenbaum [Sterling &; Kirschenbaum 91]. They
divided skeletons into three categories. However our library only contains two categories

meta-interpreters and manipulation of recursive data structures. The parser category of
skeletons is not considered. This is not a fundamental limitation of our approach. We
decide to limit the scope of our system just for simplicity.

Meta-Interpreters

A meta-interpreter for a language is an interpreter for the language written in the language
itself. Prolog is a powerful language for meta-programming due to its symbol manipulation

capabilities. A Prolog meta-interpreter takes a Prolog program and a Prolog goal and
executes the goal with respect to the program. In others words, the meta-interpreter

attempts to prove that the goal logically follows from the program. An example of a

meta-interpreter is the well known basic meta-interpreter solve/1 defined below, where
solve (Goal) is true if Goal is true with respect to the program being interpreted. This

meta-interpreter interprets a subset of Prolog excluding cut. In our work the skeleton
solve/1 has been used for the construction of programs such as debuggers and expert
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systems (see Chapter 6).
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solve(true).
solve((A,B)) solve(A), solve(B).
solve(A) sys(A), call(A).
solve(A) clause(A.B), solve(B).

A modulant skeleton from the previous skeleton solve/1 is shown below. Here the

solve (B) goal in clause number two is replaced by a new predicate solve.conj (B). Un¬

folding the solve_conj (B) subgoal returns us to the first definition of solve/1.

solve(true).
solve((A,B)) solve(A), solve_conj(B).
solve(A) sys(A),call(A).
solve(A) clause(A,B), solve(B).

solve_conj(B) solve(B).

Manipulating Recursive Data Structures

In Prolog there are many skeletons concerned with list traversal. One of the skeletons that

belongs to this family is the skeleton traverse which fully traverses a list. In this skeleton
a list is deconstructed by removing head elements until the empty list is reached. The
definition of this skeleton in the more general form is shown on page 11.

The simplest case is when there is no test in the skeleton. This skeleton is shown as follows:

traverse([H|T]) traverse(T).
traverse( [] ).

The skeleton traverse (basic case) shown above is the skeleton for many programs such
as length/2, append/3, etc. This skeleton requires complete traversal of a list (until the
empty list is reached). In fact this skeleton itself defines a list. We can generalise this to
other structured terms. For instance, the following program defines a binary tree and also
forms the skeleton for programs operating on trees.

tree_LR(nil).
tree_LR(t(L,X,R))

tree_LR(L), tree_LR(R).
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The above skeleton performs a left to right depth-first traversal, if a different order (for
instance right to left depth-first traversal) is required, a different skeleton must be defined.

tree_RL(nil).
tree_RL(t(L,X,R))

tree_RL(R), tree_RL(L).

The skeleton short_traverse will either traverse the entire list or stop when a condition is
met. This skeleton allows for the general case when the elements of the list need to be

distinguished in 'n' different ways.

short_traverse_n([HlT]) cl(H), short_traverse_n(T).
short_traverse_n([H|T]) c2(H), short_traverse_n(T).

short_traverse_n([HIT]) cn(T).
short_traverse_n([]).

The simplest case is shown as follows:

short.traverse([H|T]) short_traverse(T).
short_traverse( [H|T]) cl(H).
short_traverse([]).

The skeleton search traverses the list until what is being searched for has been found, and
fails otherwise. This skeleton allows for the general case when the elements of the list need
to be distinguished in 'n' different ways.

search_n([HIT]) cl(H), search_n(T).
search_n([HIT]) c2(H), search_n(T).

search_n([H|T]) cn(H), search_n(T).

The simplest case is shown as follows:

search([HIT]) cl(H), search(T).
search([HIT]) c2(H).

The skeleton for Prolog terms such as list and trees can be defined in a similar form. An
example skeleton that can be used for traversing an arbitrary Prolog term is the skeleton
trav_term/l, shown below.
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trav_term(Var) var(Var).
trav_term(Term)

iunctor(Term.F.A),
term_aux(A,Term).

term_aux(0,_Term).
term_aux(Arg,Term)

Arg > 0,
arg(Arg,Term,A),
trav_term(A),
Ni is Arg - 1,
terra_aux(Nl.Term).

The double_recursion skeleton can be useful in the construction of programs such as

quicksort/2, mergesort/2, find_min/2 (find the minimum element of a list of integers),
find_max/2 (find the maximum element of a list of integers) , binary_tree/l (recognise
if the given first parameter is a binary tree) and the predicate height/2 (which computes
the height of a binary tree, assuming that the height of the empty tree is 0 and that of a
one-element tree is 1). All these examples are defined in Appendix B.

double_rec([H|T]) split([H|T],R,S), double_rec(R), double_rec(S).
double_rec([]).

Where split is a predicate which divides the initial list into two lists.

The count_down skeleton counts down a number. This skeleton is defined as follows:

count_down(N) N=0.
count_down(N) :-

N>0,
Nl is N - 1,
count_down(Nl).

In a similar fashion the count_ up skeleton, which counts up a number, is defined as follows:

count_up(N,C) N=C.
count_up(N,C) :-

Ml is N + 1,
count_up(Nl,C).

Currently our library has the of set of skeletons defined above, but more research is being
carried out on extending this set.
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Techniques Knowledge Base

Lakhotia classifies techniques into three types: propagate context down, propagate con¬

text up and the accumulator technique [Lakhotia 89]. The techniques corresponding to

propagate context down are used only in input mode. They propagate information down
in an execution tree. The techniques classified as propagate context up use context only
in output mode. They are used to propagate upwards in the proof tree information com¬

puted at deeper levels. Finally, the techniques belonging to the accumulator type use some

context variables for input and others for output. The results from partial computations
are propagated down the execution tree until the base condition is reached. At this stage

the incoming context is used to compute outgoing context and the result is propagated up.

Some examples of techniques are as follows. The notation nameJechnique(nameskeleton)
denotes the resulting schema after the technique is applied to the skeleton and traverse_n

denotes the traverse skeleton with n clauses.

The technique context or also called add_carrier can be classified as propagate context

down. It adds arguments with the purpose of providing input to each clause to be used
for case analysis or tests. This context argument, in our case Z), should be thought of as a

term that is passed unchanged through a recursion. The technique context applied to the
skeleton traverse can be defined as follows:
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context (traverse_n) =
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traverse_n_context([H|T],D) cl(H), traverse_n_context(T,D).
traverse_n_context([HlT],D) c2(H), traverse_n_context(T,D).

traverse_n_context([H|T],D) cn(H), traverse_n_context(T,D).
traverse_n_context([],D).

The technique calculate can be classified as "propagate context up". It adds an extra

argument in the skeleton and an extra arithmetic subgoal to the body of each recursive
clause in order to relate the calculation from the body to the final result in the head of
the clause. This technique can be thought of as family of techniques, one for each type

of skeleton. There are various arithmetic operations that could be added to the skeleton
as an extra goal. Each of these operations leads to a specific form of "calculate". The

following two techniques (count and sum) are special cases of the calculate technique.

The technique count adds one to the value returned from the recursive call. The technique
count applied to the skeleton traverse can be defined as shown below.

count (traverse_n) =

traverse_n_count([H|T],N) cl(H), traverse_n_count(T,Nl), N is Nl+1.
traverse_n_count([H|T],N) c2(H), traverse_n_count(T,Nl), N is Ni+1.

traverse_n_count([H|T],N) cn(A), traverse_n_count(T,Nl), N is Nl+1.
traverse_n_count( □ ,0).

The technique sum is similar to count, except that instead of always adding one to the

argument the value of some argument is added. The technique sum applied to the skeleton
traverse can be defined as shown below.

sum(traverse_n) =

traverse_n_sum([HIT],N) C1(H), traverse_n_sum(T,Nl), N is Nl+A.
traverse_n_sum([H|T],N) c2(H), traverse_n_sum(T,Nl), N is Nl+A.

traverse_n_sum([H|T],N) cn(H), traverse_n_sum(T,Nl), N is Nl+A.
traverse_n_sum([],0).
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The techniques two_accumulator and back_accumulate are examples of techniques belong¬

ing to the accumulator type.

The technique two_accumulator is used frequently in recursion. This technique allows

building up a structure in recursive subgoals. Two arguments are added, one is used as a

stack to push down data and the second argument returns the final object from the stack.
In the definition of two_accumulator/3, the second argument is called accumulator and
the third argument is called result (this output argument corresponds to the final state of
the variable). The two arguments S and F together are called an accumulator pair. The

technique two_accumulator applied to the skeleton traverse can be defined as follows:

two_accumulator([H|T],S,F)
two_accumulator(T,[HIS],F).

two_accumulator( □ ,F,F).

The technique back_accumulate (in Robertson's terminology) allows the addition of an
accumulator to a recursive program. The technique back_accumulate works by adding an

extra argument Result to the head of the clause; adding an extra Partial_Result to the
recursive subgoal; and finally adding an extra subgoal (represented by update_value/2)
for obtaining the value of Result from Partial_Result [Robertson 91]. The technique
back_accumulate applied to the skeleton traverse can be defined as shown below.

traverse([HIT].Result)
traversed,Partial_Result),
update_value(Partial_Result.Result).

traversed] .Result).

The technique max(X,Y,Z) succeeds if Z is the largest number of X and Y. This predicate
is defined as follows:

max(X,Y,Y) X <= Y.
max(X,Y,X) X > Y.

The technique which computes the certainty factor named compute_cf is defined as follows:

compute_cf(not(A)) 1 - compute_cf(A).
compute_cf(A & B) min(compute_cl(A),compute_cf(B)).
compute_cf(A or B) max(compute_cl(A),compute_cf(B)).
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The above list of techniques is not exhaustive. More research is required to determine a

broad coverage of techniques which will be enough for the construction of a large set of

Prolog programs.



Appendix E

Tamaki and Sato's Algorithm

Tamaki and Sato formulated an unfold/fold transformation method for logic programs in
such a way that the transformation always preserves the equivalence of programs in the
least Herbrand model [Tamaki & Sato 84]. They define a set of transformation operations
such as definition, unfolding, folding and goal merge. These operations are defined in a

restricted way in order to preserve total correctness of logic programs, i.e. to produce

equivalent programs.

The transformation process based in definition, unfold and fold rules can be described in

the algorithm which is shown below. For this algorithm a program is a set of definite
clauses as defined in Chapter 2.

The initial conditions for the algorithm are defined as follows:

1. All the clauses in the program are in a set P0 := {pi,... ,pn} where n is the number
of clauses in program P .

2. D0 := {) is the set of definitions of the new predicate.

Every clause in P0 is 'foldable'. A clause is 'foldable' if it can be used in the folding process.

1. For i 1 to arbitrary N apply any of the transformation rules to obtain Pi and D{
from Di-1.
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Definition rule:

Let C be a clause of the form p(Xi,..., Xn) Bi,..., Bm where

• p is an arbitrary predicate which does not appear in Pi-i or £),•_j.

• X\,..., Xn are distinct variables

• Pi,..., Bm are subgoals whose predicates all appears in P0. Therefore let P,- be

Pi-1 U {C} and Di be £),■_i U {C}. Note that C is not marked as 'foldable'.

The auxiliary predicates introduced by the definition rule are called new predicates.

Unfolding rule:

Let C be a clause in P,_i, A a subgoal in its body and C\,..., Cn all the clauses in

Pi-1 whose heads are unifiable with A. Let C- be the result of resolving C with C;
on A. Therefore let P, be (P;_i — {C}) U {C[,... ,C'n} and Di be P,_i and mark
each C- as foldable unless it is in P,_i.

Folding rule:

Let C be a clause in P,_i of the form A Ai,...,An and C\ be a clause in

Di-1 of the form B Bi,..., Bm. Assume there is a substitution 0 and subset

{An, ■ ■ • 5 Aim} of the body of C such that the following conditions hold.

(a) Aij = Bj6 for j — 1,...,m

(b) 0 substitutes distinct variables for the internal variables of C\, and these vari¬
ables do not occur in A .

(c) C is marked as foldable or m < n

Then let Pi be (P,_i — {C}) U {C}) and Di be A_i where C' is a clause with head
A and body {{Ai,...,An} - {An,..., Aim}) U {B0}.

For example, consider the program len/2 which computes the length of a list and the

program sum/2 which computes the sum of the elements of a list. For this example,
Po = {C1,C2,C3,CA} and D0 = {}.
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Ci : len([H|T],Len)
len(T.Lenl),
Len is Lenl + 1.

C2 : len([],0).

C3 : sum([H|T],Sum)
sum(T,Suml),
Sum is Suml + H.

C4 : sum([],0).

We define C5 as the following predicate:

C5 ■ sum_len(List,Sum,Len)
sum(List,Sum), len(List,Len).

Then Pi = {CI, C2. C3. C4, C5} and D\ — {Cb}, where underline indicates foldable
clauses.

The second stage is to unfold Cb at its first and second subgoal to obtain P2 such as

P2 = {CI. C2. C3. C4. C6. C7} and Z)2 = {C5} where the clauses C6 and C7 are shown
below.

C6: sum_len([HIT],Sum,Len)
sum(T,Suml),
Sum is Suml + H,
len(T,Lenl),
Len is Lenl * 1.

C7: sum_len([],0,0).

In Tamaki's work only clauses in Dt^\ are allowed to be used in folding. The previous

example can be continued by folding the body of clause C6 by using C5. We thus obtain

P3 = {C1,C2,C3,C4,C7,C8} and D3 = {Cb} where C8 is defined as follows:

C8: sum_len([HIT],Sum,Len)
sum_len(T,Suml,Lenl),
Sum is Suml + 1,
Len is Lenl + 1.

The complete example is formed by the set P3 which is equivalent (in the least Herbrand

model) to P0 U D3.
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As was described before, there are several systems (including the one in this thesis) which
make use of transformation rules. These transformation rules provide a way of achieving

program efficiency by applying well defined sequences of transformations such as folding
and unfolding. The key stage in the application of a correct sequence of transformations

normally relies on human interaction, or use of a heuristic. We have attempted to reduce
the need for interaction as far as possible.



Appendix F

Example new_fuzzydepth/4

In this appendix we take the meta-interpreters new_fuzzy/3 and fuzzydepth/3 from
section 6.8.1 and form the naive combination by use of the procedural join method. The

resulting combined program is inefficient and furthermore we shall see that it is probably
not the program that the user would want. For a better method to combine these meta-

interpreters see section 6.8.

Recall that the meta-interpreter new_fuzzy/3 returns the associated certainty factor and

explanation for a query and the meta-interpreter fuzzydepth/3 attempts to compute the

certainty factor for a query but is limited by the depth to which it can recurse. Additionally,
in order to test the program, we shall use hypothetical (unrealistic) data given by the

following set of definitions of the predicates rule/3 and fact/2.

rule(disease(tlu).Conditions,1.0)
Conditions = symptom(temperature.high).

rule(disease(flu).Conditions,1.0)
Conditions = not(symptom(temperature,high)).

rule(disease(flu).Conditions,1.0)
Conditions = symptom(not_dead) & symptom(temperature.high).

rule(symptom(not_dead).Conditions,1.0):-
Conditions = symptom(moves).

fact(symptom(discharge_from_eyes,present),1.0).
fact(symptom(discharge_from_nose,present),0.5).
fact(symptom(temperature,high),1.0).
fact(symptom(moves),1.0).
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Now suppose that the user wants to combine these two meta-interpreters. Most transfor¬
mation systems will take the join specification to be the Prolog program.

new_fuzzydepthl(Goal,Cf,Exp,Depth) : -
new_fuzzy(Goal,Cf,Exp),
luzzydepth(Goal,Depth,CI).

and then convert this to a logically equivalent program. We can do this conversion by

applying the procedural join method to the pair of meta-interpreters, and so obtain

new_fuzzydepthl(A,B,fact(A,B), _Depth )
fact(A,B).

new_fuzzydepthl(not(E),B,fact(not(E),B), Depth )
fact(not(E),B),
fuzzydepth(E,Depth,F),
B is 1-F.

new_fuzzydepthl(A,B,fact(A,B), Depth )
fact(A,B),
Depth >0,
D is Depth-1,
rule(A,E,F),
fuzzydepth(E,D,G),
B is F*G.

new_fuzzydepthl((D & E),B,fact((D & E),B), Depth )
fact((D & E),B),
fuzzydepth(D,Depth,F),
fuzzydepth(E,Depth,G),
min(F,G,B).

new_fuzzydepthl((D or E),B,fact((D or E),B), Depth )
fact((D or E),B),
fuzzydepth(D.Depth,F),
luzzydepth(E,Depth,G),
max(F,G,B).

new_iuzzydepthl(not(D),B,not(D,B,F),_Depth)
new_luzzy(D,E,F),
B is 1-E,
fact(not(D),B).

new_fuzzydepthl(not(E),B,not(E,B,F).Depth)
new_luzzy(D,E,F),
B is 1 - E,
iuzzydepth(D,Depth,G),
B is 1 - G.
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new_fuzzydepthl(not(D),B,not(D,B,F),Depth)
new_:fuzzy(D,E,F),
B is 1-E,
Depth >0,
H is Depth -1,
rule(not(D),1,J),
fuzzydepth(I,H,K),
B is J*K.

new_luzzydepthl(A,B,rule(A,B,G),_Depth)
rule(A.D.E),
new_fuzzy(D,F,G),
B is E*F,
fact(A,B).

new_fuzzydepthl(not(E),B,rule(not(E),B,G).Depth)
rule(not(E),D,H),
new_fuzzy(D,F,G),
B is H*F,
iuzzydepth(E,Depth,F),
B is 1-F.

new_fuzzydepthl(A,B,rule(A,B,H).Depth)
rule(A.D.E),
new_luzzy(D,F,H),
B is E*F,
Depth >0,
D1 is Depth -1,
rule(A,I,J) ,

iuzzydepth(I,D1,K),
B is J*K.

new_fuzzydepthl((D & E),B,rule((D & E),B,G).Depth) :
rule((D & E),J,K),
new_luzzy(J,F,G),
B is K*F,
iuzzydepth(D,Depth,H),
iuzzydepth(E.Depth.I),
min(H,I,B).

new_fuzzydepthl((D or E),B,rule((D or E),B,G).Depth)
rule((D or E),J.K),
new_luzzy(J,F,G),
B is K*F,
fuzzydeph(D,Depth,H),
fuzzydepth(E.Depth.I),
max(H,I,B).

new_luzzydepthl((D & E).B.conj(G,I,B),_Depth)
new_luzzy(D,F,G),
new_iuzzy(E,H,I) ,
min(F,H,B),
iact((D & E),B).
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new_fuzzydepthl((D & E),B,conj(G,I,B).Depth)
new_fuzzy(D,F,G),
new_fuzzy(E,H,I),
min(F.H.B),
Depth >0,
J is Depth - 1,
rule((D & E), K.L),
fuzzydepth(K,J,M),
B is L*M.

new_fuzzydepthl((D & E),B,conj(G,I,B), Depth)
new_fuzzy(D,F,G),
new_fuzzy(E,H,I),
min(F,H,B),
fuzzydepth(D,Depth,J),
fuzzydepth(E,Depth,K),
min(J,K,B).

new_fuzzydepthl((D or E),B,disj(G,I,B),_Depth)
new_fuzzy(D,F,G),
new_fuzzy(E,H,I),
max(F,H,B),
lact((D or E),B).

new_fuzzydepthl((D or E),B,disj(G,I,B).Depth)
new_fuzzy(D,F,G),
new_luzzy(E,H,I),
max(F,H,B),
Depth >0,
J is Depth-1,
rule((D or E),K,L),
iuzzydepth(K,J.M),
B is L*M.

new_fuzzydepthl((D or E),B,disj(G.I,B).Depth)
new_fuzzy(D,F,G),
new_fuzzy(E,H,I),
max(F,H,B),
fuzzydepth(D,Depth,J),
luzzydepth(E,Depth,K),
max(J,K,B).

In this case, if we give the query new_fuzzydepthl (disease (flu) ,Cf ,Exp, 1) then Prolog
will give three answers

CI = 1.0

Exp = rule(disease(flu),1.0,fact(symptom(temperature,high),1.0))

Cf = 0.0

Exp = rule(disease(ilu),0.0,not(symptom(temperature,high),0.0,
iact(syiuptora(temperature,high),1.0)))

Cf = 1.0

Exp = rule(disease(flu),1.0,conj(rule(symptom(not_Dead),1.0,
fact(symptom(moves),1.0)),fact(symptom(temperature,high),1.0),1.0))
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In our opinion, this would usually not correspond to the users intentions. Instead, it seems
more likely that the user would want to combine the functionalities of the programs to get

new_fuzzydepth2(Goal,Cf,Exp,Depth):
finds proof for a given Goal with certainty factor Cf, and
explanation Exp.

in which case the last solution would be unwanted, because it did not enforce the same

traversal in both clauses, and hence the Depth limit was not forced to correspond to the

explanation provided. Systems that rely only on the join specification written in the Prolog
form have no way to know that the user wanted exactly the same Goal. In other words,
we want to synchronise the tree traversal performed in new_fuzzy/3 and fuzzydepth/3,
but there is no way to express this requirement directly in Prolog using only the given

predicates.

However, our system does not rely on the Prolog form of the join specification, but effec¬

tively has an extended join specification which we can write as

new_fuzzydepth2 (Goal. Cf, Exp .Depth) -<=
new_fuzzy(Goal,Cf,Exp),
fuzzydepth(Goal,Depth,Cf).

where the underlined arguments provide flows of control which we want to synchronise.
Since we assume knowledge of the history of development of the program we can check
which arguments were intended to provide the flow of control and assess whether they
will be compatible in combination. In this case it will observe (from the program history)
that both programs have the same flow of control, called "meta-interpreter"1, and they
were constructed using the same techniques. We assume that the user would also like the
flow of control of the output to be "meta-interpreter" and would simply like to have the

compute_cf technique (which computes certainty factor) added. As described in Section 6.8
this gives the output program new_fuzzydepth/4 as defined on page 128 which will indeed
only return the first two (desired) solutions and not the last (undesired) solution.

1So-named because its function is to allow us to create meta-interpreters
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Combined Program
Meta-composition Procedural join

5 clauses 19 clauses

fully recursive program still uses the original programs
Efficiency = a Efficiency = (3

Table F.l: Comparison between Combined Program generated using Meta-composition
and Procedural Method

Finally, in table F.l, we give some other differences between the program generated using
the procedural join (presented in this appendix) and the program generated using the meta-

composition method (see page 128). We can see that the program from the procedural
join is much larger than the one from the meta-composition method, and this justifies the
lower efficiency ranking. It is for this reason that the (rneta,meta) entry in table 6.3 (for
the procedural join) only gets /3 in our estimation of efficiency.
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Example Using a Join Specification
Involving OR's

The aim of this appendix is to show how we might fail to achieve efficient programs if we
combine programs using a join specification which uses in its definition or instead of and.
For example, consider the programs new_fuzzy/3 and fuzzydepth/3 defined below. In
Section 6.8.1 we also use an enhanced program new_fuzzy/3 and fuzzydepth/3.

PI: new_fuzzy(A,B,fact(A,B)) Ql: fuzzydepth(A,B,C)
fact(A,B). fact(A.B).

P2: new_fuzzy(A,B,rule(A,B,D,G))q2: fuzzydepth(A.B.C)
rule(A,D,E), B > 0,
new_fuzzy(D,F,G), D is B - 1,
B is E * F. rule(A,E,F),

fuzzydepth(E.D.G),
C is F * G.

P3: new_fuzzy(D ft E,B,conj(G,I,B)):- Q3: fuzzydepth(D ft E,B,C)
new_fuzzy(D,F,G), fuzzydepth(D.B.F),
new_fuzzy(E,H,I), fuzzydepth(E,B,G),
min(F,H,B). min(F,G,C).

The two meta-interpreters new_fuzzy/3 and fuzzydepth/3 defined above will be combined
using the join specification shown below. Note that this join specification is defined using
or in its body instead that our standard definition which only use ands.

new_fuzzydepth(Goal,Cf,Exp.Depth) <=
new_iuzzy(Goal,Cf,Exp);
fuzzydepth(Goal,Depth,Cf).

Step 1: the first combined clause obtained by taking the first clause of program
new_fuzzy/3 and the first clause of program fuzzydepth/3 is as follows:
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T\ : new_fuzzydepth(A,B,fact(A,B).Depth)
fact(A,B);
iact(A.B).

We obtain the combined clause Tj by applying the merge operation which removes the
syntactically identical subgoals.

Ti : new_fuzzydepth(A,B,C,Depth)
iact(A.B).

Step 2: taking the second clause of program new_fuzzy/3 and the second clause of program
fuzzydepth/3 and applying the unfolding operation we obtain:

Tjj : new_fuzzydepth(A,B,rule(A,B,E,H).Depth)
rule(A,E,F),
new_fuzzy(E,G,H),
B is F * G;
Depth > 0,
Di is Depth - 1,
rule(A,El,Fi),
fuzzydepth(El,D1,G1),
B is F1 * Gl.

By applying the meta-folding operation the system infers that the variable E can be unified
to El, that the variable F can be unified to F1 and that the variable G can be unified to
Gl. So, the previous clause Ti is as follows:

T2 : new_:fuzzydepth(A,B,rule(A,B,E,H).Depth)
rule(A.E.F),
new_iuzzy(E,G,H),
B is F * G;
Depth > 0,
Dl is Depth - 1,
rule(A.E.F),
iuzzydepth(E,Dl,G),
B is F * G.

By transforming the clause T2 using De Morgan's laws in order to get the conditions for
the application of the folding operation (i.e. a conjunction or disjunctions), we obtain:

T-2 : new_fuzzydepth(A,B,rule(A,B,E,H) .Depth)
(rule(A.E.F) ; Depth > 0),
(rule(A.E.F) ; Dl is Depth-i),
(rule(A.E.F) ; fuzzydepth(E,Dl,G)),
(new_iuzzy(E,G,H).Depth > 0),
(new_fuzzy(E,G,H), Dl is Depth-1),
(new_iuzzy(E,G,H),iuzzydepth(E,Dl,G)),
(B is F * G ; Depth > 0),
(B is F * G ; Dl is Depth-1),
(B is F * G ; iuzzydepth(E,Dl,G)).
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The combined T2 clause is as follows:

T2 : new_fuzzydepth(A,B,rule(A,B,E,H).Depth) :-
(rule(A,E,F) ; Depth > 0),
(rule(A,E,F) ; D1 is Depth-1),
(rule(A,E,F) ; fuzzydepth(E,Dl,G)),
(new_fuzzy(E,G,H).Depth > 0),
(new_iuzzy(E,G,H), D1 is Depth-i),
(new_iuzzydepth(E,G,H,Dl)),
(B is F * G ; Depth > 0),
(B is F * G ; D1 is Depth-1)),
(B is F * G ; fuzzydepth(E,Dl,G)).

Finally this clause can be rewritten using associativity as follows:

I2 : ne»_fuzzydepth(A,B,rule(A,B,E,H).Depth) :-
rule(A.E.F) ; (Depth > 0, D1 is Depth-1, fuzzydepth(E,Dl,G)),
(ne»_fuzzy(E,G,H) ; (Depth > 0, D1 is Depth-1)),
new_fuzzydepth(E,G,H,Dl),
(B is F * G; (Depth > 0, D1 is Depth-1, fuzzydepth(E,Dl,G))).

Step 3: in a similar fashion the combined clause T3 is obtained. By taking the third clause
from each program and by unfolding.

T3 : new_iuzzydepth(D & E,B,conj(H,J,B).Depth) :-
new_fuzzy(D,G,H),
new_fuzzy(E,I,J),
min(G,I,B);
fuzzydepth(D,Depth,Fl),
fuzzydepth(E,Depth,G1),
min(Fl,Gl,B).

In this clause we need to infer that the variable G can be unified to Fl and that the variable
I can be unified to Gl.

T3 : new_iuzzydepth(D & E,B,conj(H,J,B).Depth) :-
new_fuzzy(D,G,H),
new_fuzzy(E,I,J),
min(G,I,B);
:fuzzydepth(D,Depth,G),
fuzzydepth(E.Depth.I),
min(G,I,B).

By applying the merge goal operation we obtain:
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Ta : new_fuzzydepth(D & E,B,conj(H,J,B).Depth)
new_fuzzy(D,G,H),
new_fuzzy(E,I,J),
min(G,I,B);
fuzzydepth(D,Depth,G),
fuzzydepth(E,Depth,I).

By transforming the previous clause using the associativity laws we obtain:

T3 : new_fuzzydepth(D & E.B.conj(H,J.B).Depth)
(new_fuzzy(D,G,H) ; fuzzydepth(D,Depth,G)),
(new_fuzzy(D,G,H) ; fuzzydepth(E,Depth,I)),
(new_fuzzy(E,I,J) ; fuzzydepth(D,Depth,G)),
(new_fuzzy(E,I,J) ; fuzzydepth(E,Depth,I)),
(miri(G,I,B) ; fuzzydepth(D.Depth,G)),
(min(G,I,B) ; fuzzydepth(E,Depth,I)).

Applying the folding operation we obtain:

T3 : new_fuzzydepth(D & E,B,conj(H,J,B).Depth)
new_luzzydepth(D,G,H,Depth),
(new_fuzzy(D,G,H) ; fuzzydepth(E,Depth,I)),
(new_fuzzy(E,I,J) ; duzzydepth(D,Depth,G)),
new_fuzzydepth(E,I,J,Depth),
(min(G,I,B) ; fuzzydepth(D,Depth,G)),
(min(G,I,B) ; fuzzydepth(E,Depth,I)).

By applying the associativity laws we get the following clause:

Ta : new_fuzzydepth(D & E,B,conj(H,J,B).Depth)
new_:fuzzydepth(D,G,H,Depth) ,
(new_fuzzy(D,G,H) ; fuzzydepth(E,Depth,I)),
(new_fuzzy(E,I,J) ; fuzzydepth(D,Depth,G)),
new_luzzydepth(E,I,J,Depth),
(min(G,I,B) ; (fuzzydepth(D,Depth,G), fuzzydepth(E,Depth,I))).

The final combined program is shown as follows:
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Ti: new_fuzzydepth(A,B,C,Depth) :-
fact(A,B).

T2 : new_fuzzydepth(A,B,rule(A,B,E,H),Depth)
rule(A,E,F) ; (Depth > 0, D1 is Depth-1, iuzzydepth(E,Di,G)),
(new_fuzzy(E,G,H); (Depth > 0, D1 is Depth-1)),
new_iuzzydepth(E,G,H,Dl),
(B is F * G ; (Depth > 0, Di is Depth-1, fuzzydepth(E,Dl,G))).

T3 : new_fuzzydepth(D ft E,B,conj(H,J,B).Depth) :-

new_fuzzydepth(D,G,H,Depth),
(new_fuzzy(D,G,H) ; fuzzydepth(E,Depth,I)),
(new_luzzy(E,I,J) ; luzzydepth(D,Depth,G)),
new_fuzzydepth(E,I,J.Depth),
(min(G,I,B) ; (fuzzydepth(D,Depth,G),iuzzydepth(E,Depth,I))).

In conclusion we can say that our transformation operation is still valid if we pre-process
each unfolded clause before the folding operation can be applied, but the combined program
is not efficient. Therefore for combining programs using or in its definition of join specifi¬
cation might be better to combine using the synchronization method (which is defined in
Section 6.5).



Appendix H

Burstall Terminology

The following set of definitions were taken from Burstall and Darlington

[Burstall & Darlington 77].

Primitive functions a set of primitive function symbols k, I,... and c,d,... with zero

or more arguments; the subset c, d,... of primitive symbols are the constructor function

symbols. Examples of constructor functions are cons and successor.

Parameters a set x,y,... of parameter variables.

Recursive functions a set /, g,... of recursive function symbols.

Expression is an expression built using function symbols, parameter variables and recur¬

sive function symbols. The where construction is permitted in the form
E where < u,...,w >— F or E where u — F. Here, E and F are expressions and

u,...,w are variables, for instance: u + u2 where u — a + b.

A left-hand expression is of the form /(ei,..., e„) where ei,..., en are expressions involving

parameter variables and constructor function symbols except where.

A right-hand expression is an expression as was defined above.

A recursion equation consist of a left-hand expression and a right-hand expression written
E <= F. The symbol 4= gives the direction in the evaluation of the expression. The right-
hand expression is the only part of the recursion equation that can be evaluated.
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The set of rules for transforming recursion equations is described below. The rules are

illustrated using the following example:

Given a scalar product function on vectors defined by

x-y = E"=i XiVi

We want to compute a.b + c.d. Rewriting this in recursive function form we have:

/(a, b, c, d, n) 4= dot(a, b, n) -f dot(c, d, n)

where

dot(x, y, n) 4= if n=0 then 0 else dot(x, y, n — 1) + x[?r]y[n] fi

where x[n] denotes a function which allows access to the components of the vector x and

similarly y[n] denotes a function which allows access to the components of the vector y.

Rule: definition introduces a new recursion equation whose left-hand expression is not

an instance of the left-hand expression of any previous equation. For example, we can add
the new definition shown as follows:

f(a,b,c,d,n)<=dot(a,b,n) + dot(c,d,n)

Rule: instantiation introduces a substitution instance of an existing equation. For example,

if f(a, b, c, d, n) <= dot(a, b, n) + dot(c, d, n) is an existing equation then an instance is:

/(a, 6, c, d, 0) <= dot(a, b, 0) + dot(c, d, 0)

Rule: unfolding if E <= E' and F 4= F' are equations and there is some occurrence in F'
of an instance of E, then replace it by the corresponding instance of E' to obtain F" and
then add the equation F <= F". For instance, unfolding with

dot(x, y, n + 1) dot(x, y, n) + x[n + l]y[n + 1] (E <= E')

and

f(a, b, c,d,n + I) <= dot(a, b,n + 1) + dot(c, d, n + 1) (F <= F')
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to

f(a,b,c,d,n +1) 4= dot(a,b,n) + a[n+ l]b[n+ l\ + dot(c,d,n) + c[n+ l\d[n+ l] (F 4= F")

Rule: folding if E 4= E' and F 4= F' are equations and there is some occurrence in F'
of an instance of E', then replace it by the corresponding instance of E, to obtain F" and

finally add the equation F 4= F". For example, if we have the following two recursion

equations:

/(a, 6, c, d, n) 4= dot{a, b, n) + dot(c, d, n) (E 4= E')

and

f(a,b,c,d,n+ l) 4= dot(a, 6, n) + dot(c, d, n) + ajn+ l]6[n+ l] + c[n+ l]d[n+ l] (F 4= F')

to

/(a, 6, c, d, n + 1) 4= f(a, 6, c, d, n) + a[n + l]6[n + 1] + c[n + l]d[n + 1] (F 4= F")

Rule: abstraction allows us to introduce a where clause derived from a previous equation

E 4= E'. The new equation looks like:

E 4= F'[«i/Fi,...,un/F„] where < ui,...,un >-< Fj,..., F„ >

An example of abstraction rule is shown in the example of trees defined below.

Laws are applied to transform the right-hand expression in an equation. The most

used laws are associativity and commutativity obtaining a new equation for example the

commutativity of the + operation allows us to rewrite the following equation

f(a,b, c, d, ra+ 1) 4= dot(a,b,n) + a[n+ l]6[u+ l] + dot(c,d,n) + c[n+ l]d[rc+ l] (F 4= F")

as

f(a,b,c,d,n +1) 4= dot(a,b,n) + dot(c,d,n) + a[n+ l]6[n + l] + c[n+ l]d[n + l] (F 4= F')
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Graph Terminology

The following set of definitions were taken from Horwitz [Horwitz et al. 88].

A slice G with respect to s written G/s is a graph containing all vertices on which s has a

transitive flow or control dependence (i.e. all vertices that can reach s via flow or control

edges) [Horwitz et al. 88]:

V(G/s) = {w\w e V(G)/\w —>cj s)

where V{G) is a set of vertices of a directed graph G (see definition later in this section).

The program dependence graph for a program P denoted Gp is a directed graph whose ver¬

tices are connected by several kinds of edges. The vertices of Gp represent the assignment
statements and control predicates that occur in program P. In addition, Gp includes three

categories of vertices that are defined below. The term vertex is used to refer to elements
of dependence graphs.

1. There is a distinguished vertex called the entry vertex.

2. For each variable used in program P there is a vertex called the initial definition of
x. The vertex is labelled as follows:

x := initialState(x) where is assignment in languages such as Pascal and Algol.

3. For each variable used in program P there is a vertex called the final use of x. The
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vertex is labelled finalUse(x).
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A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where
E(V) C V(G) x V(G). Each edge (b, c) £ E{G) is directed from b to c. The term vertex
is used to refer to elements of dependence graphs.

The edges of Gp represent dependencies between program components. An edge represents
either a control dependence or data dependence. Control dependencies are labelled either
true or false. A control dependence edge from vertex Vi to vertex v2 denoted by v\ —tc v2

means that, during execution, whenever the predicate represented by v\ is evaluated and
its value matches the label on the edge to v2, then the program component represented by

v2 will be executed (although maybe not immediately).

A program dependence graph contains a control dependence edge from vertex Vi to vertex

v2 of Gp if and only if one of the following conditions is satisfied:

1. t)\ is the entry vertex and v2 represents a component of P (program) that is not

subordinate to any control predicate. These edges are labelled true.

2. Vi represents a control predicate and v2 represents a component of P subordinate
to the control construct represented by ui. If v\ is the predicate of a while-loop the

edge v\ —>c v2 is labelled as true. If v\ is the predicate of a conditional statement
v\ —*c v2 is labelled true or false according to whether v2 occurs in the then branch
or the else branch.

Program dependence graphs contain two kinds of data dependence edges: flow dependen¬
cies and def-order dependencies. A flow dependence from vertex v\ to vertex v2 will be
denoted by v\ —»j v2. A program dependence graph contains a flow dependence edge
from vertex Vi to vertex v2 if and only if all the following conditions hold:

1. vi is a vertex that defines variable x.
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2. v2 is a vertex that uses x.

3. Control can reach v2 after v\ via an execution path along which there is no intervening
definition of x. This means that there is a path in the standard control flow graph
for the program.

Flow dependencies can be classified as loop independent or loop carried. A flow dependence

t>i —►/ v2 is carried by loop denoted by v\ —>ic(L) v2 if the three previous conditions
above are satisfied and the following conditions are also met:

4. There is an execution path that both satisfies the conditions in point 3 above and
includes a back edge to the predicate of loop L.

5. Both Ui and v2 are enclosed in loop L.

A flow dependence Vi —v2 is loop independent if in addition to 1,2 and 3 above, there
is an execution path that satisfies 3 and includes no back edge to the predicate of a loop
that encloses both Vi and v2.

A program dependence graph contains a def-order dependence edge from vertex v\ to vertex

v2 labelled by v\ —>d0(u3) v2 if only if the following conditions are satisfied:

1. v\ and v2 both define the same variable.

2. and v2 are in the same branch of any conditional statement that encloses both of
them.

3. There exists a program component v3 such that v\ —>/ v% and v2 —>/ V3.

4. i>i occurs to the left of v2 in the program's abstract syntax tree.


