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Abstract

Nitrogen (N) fertilization due to atmospheric deposition (NDEP ) may explain some

of the net carbon (C) sink (0.6-0.7 Pg y-1) in temperate forests, but estimates of

the additional C uptake due to atmospheric N additions (∆C/∆N) can vary by

over an order of magnitude (5 to 200 ∆C/∆N). High estimates from several recent

studies [e.g. Magnani (2007), Nature 447 848-850], deriving ∆C/∆N from regional

correlations between NDEP and measures of C uptake (such as eddy covariance

-derived net ecosystem production, or forest inventory data) contradict estimates

from other studies, particularly those involving 15N tracer applications added

as fertilizer to the forest floor. A strong ∆C/∆N effect requires nitrogen to be

efficiently acquired by trees and allocated to high C:N, long-lived woody tissues,

but these isotope experiments typically report relatively little (∼ 20 %) of 15N

added is found above-ground, with less than 5 % of the total 15N applied found

in wood. Consequently the high correlation-derived ∆C/∆N estimates are often

attributed to co-variation with other factors across the range of sites investigated.

However, 15N-fertilization treatments often impose considerably higher total N

loads than ambient NDEP , while almost all exclusively only apply mineral 15N

treatments to the soil, often in a limited number of treatment events over relatively

short periods of time. Excessive N deposition loads can induce negative physiolog-

ical effects and limit the resulting ∆C/∆N observed, and applying treatments to

the soil ignores canopy nitrogen uptake, which has been demonstrated in numerous
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studies. As canopies can directly take up nitrogen, the chronic, (relatively) low

levels of ambient NDEP inputs from pollution may be acquired without some of

the effects of heavy N loads, with trees obtaining this N before it reaches the

soil, allowing canopies to substitute for, or supplement, edaphic N nutrition. The

strength of this effect depends on how much N uptake can occur across the canopy

under field conditions, and if this extra N supplies growth in woody tissues such

as the stem, as well as the canopy. Similarly, such mineral fertilizer isotope trace

experiments are also unable to trace N in the decomposing litter and humus

layers of the soil, which even under heavy NDEP loading contribute most of the

N utilised for forest growth. Recent literature suggests that some organic (early

decomposition) forms of N may be taken up by roots. If this litter N is not retained

or distributed in the same way as mineral fertilizers, its contribution to plant

nutrition and ∆C/∆N may need to be reassessed under nitrogen deposition.

We tested some of these assumptions in the nursery and the field. In order to

facilitate litter 15N tracing, we conducted an experiment injecting large trees with
15N-NH4NO3 to create 15N-labelled litter, tracing the applied isotope into a full

harvest of the canopy. Such labelled litter substitute was used to replace the litter

layer in a Sitka Spruce plantation (Picea sitchensis L. (Bong.)), where the fate

of this 15N from litter decomposition in the soil system was compared against

the fate of 15N in deposition. Similarly, in potted Sitka Spruce saplings, we used

combination treatments of 15N-labelled litter, soil-targeted 15N-deposition, and

canopy targeted 15N-deposition, investigating 15N return in different age classes of

above and below ground biomass.

We found that i) 15N recovery in canopies (needles and branches) in our injected

trees was almost all of the injected 15N five months after injection, ii) canopy

application of NDEP led to 60 % 15N return in above-ground parts of saplings

compared to 21 % in soil applications and iii) a litter-derived 15N source was

vi



retained 55 % more in topsoil, and 36 % more in roots, than a similar deposition
15N source applied as mineral fertilizer.

We discuss the implications of such findings in the context of 15N return in different

plant organs and ecosystem pools, seasonal variation in N content, and overall

inferences of a forest ∆C/∆N effect. Our results suggest that the total ∆C/∆N

effect driven by a high N sequestration from canopy uptake in wood is ∼ 114:1,

more than double that of 15N tracer experiments but not as high as upper estimates

from correlative studies, and that litter-derived organic N is better retained in trees

and soils in excess of similar amounts of mineral 15N from deposition. Existing

forest 15N-fertilization experiments could under-estimate the overall ∆C/∆N effect

of atmospheric N deposition.
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Chapter 1

Introduction

1.1 Uncertainties in Forest Responses to Global

Change

The biggest uncertainties in future earth system models are derived from the

biosphere, and how the 2000 gigatonne (gt) terrestrial carbon sink in plants and

soil will respond in the future to anthropogenic global change (Friedlingstein et al.,

2006; Schaphoff et al., 2006; IPCC AR4 WG1, 2007). Most of the variation in

interannual atmospheric CO2 concentrations are driven by changes in the amount

of carbon (C) held in this pool, as CO2 is taken up by green plants in photosynthesis

and released in aerobic respiration, with the factors driving these two opposing

fluxes varying in strength with the seasons. As well as these interannual changes in

CO2 uptake and release, the terrestrial biosphere is a net sink for CO2, as more C

is annually fixed than respired ((1.4 Pg C y−1 in 1990-1999, Prentice et al., 2001)).

This uptake is not the equilibrium (no net exchange of C with atmospheric CO2 in

either direction) which would be expected if, at a global scale, forest ecosystems are

not changing in function or scale. As increasing atmospheric CO2 concentrations
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2 1.1 Uncertainties in Forest Responses to Global Change

are expected to cause major perturbations to the earth’s climate (Solomon et al.,

2009), understanding the causes for this increasing sink are important to assess

the future strength and longevity of this sink for some of the increasing amounts

of atmospheric CO2

Temperate and boreal forests make up a particularly large fraction of the overall

terrestrial CO2 sink, taking up 0.6-0.7 Pg C y−1 (Goodale et al., 2002), holding

large C stocks in high C/N woody biomass and slow-decomposing soil pools, with

a large potential to gain or lose C due to relatively small changes in the factors

which govern CO2 uptake and release (Reay et al., 2008). The overall driver for

this sink in these regions is human activity, but disentangling numerous effects

is difficult (Law et al., 2002); the net uptake may include the effects of rising

concentrations of CO2 on photosynthesis rates (‘CO2 fertilization’, Norby, 1999),

a feedback from temperature changes (Saxe et al., 2002), ongoing changes in land

use and management such as forest regrowth (Sedjo, 1992), as well as the effects

of nitrogen deposition from the atmosphere (NDEP , Prentice et al., 2001; Ciais

et al., 2008).

The nitrogen cycle is not as well understood as the C cycle, and until recently,

NDEP was thought to be settled as a fairly minor driver of this C sink (Nadelhoffer

et al., 1999c; de Vries et al., 2006), taking up around 50 kg C kg N −1. Trees

are relatively poor competitors for N additions (Nadelhoffer et al., 1999c) when

compared to other ecosystem sinks, and a higher proportion of N than observed

in field manipulative studies (for a recent summary, Templer et al., 2012) needs to

be acquired by high C/N wood for a strong overall effect of NDEP on C uptake

(∆C/∆N; the change in C due to a change in N inputs).

Observations indicating a low ∆C/∆N effect were primarily drawn from experi-

mental studies where fertilizers were applied to forest soils, but subsequent work

which correlated wet NDEP against forest NEP (net ecosystem production) across

multiple sites in Europe (Magnani et al., 2007) found an apparent NDEP effect of



CHAPTER 1. Introduction 3

several hundred kg C kg N −1. While this finding was controversial (de Vries et al.,

2008; De Schrijver et al., 2008; Magnani et al., 2008), it spurred continued interest

in the effects of NDEP in forests, including a questioning of the assumptions of

previous ecosystem N budgets and N fertilization . These past manipulations

were suggested to poorly represent canopy (Sievering et al., 2007) N retention,

and longer term edaphic (Jenkinson et al., 1999; Högberg, 2012) interactions with

NDEP , which could lead to underestimations of the overall forest carbon response.

1.2 Nitrogen Limitation Across the Globe

In order to discuss nitrogen effects on forests, it is first necessary to briefly discuss

the nitrogen cycle.

Nitrogen is one of the most important plant nutrients, as it is a constituent of

amino acids (and thus proteins), and DNA, and is a critical control for primary

production of the biosphere (Gruber and Galloway, 2008). However, while N2

gas is very abundant, making up 78 % of the atmosphere, only a few families of

microorganisms can fix (reduce) N2 into ammonium (NH4
+), making it available for

biological utilisation as NH4
+, or, following nitrification, nitrate (NO3

−). Various

constraints prevent N fixing organisms from proliferating (Vitousek and Howarth,

1991) in many ecosystems, in particular a positive feedback of increasing ecosystem

N availability which excludes N fixers due to fitness costs of fixation in late-

successional, relatively N-abundant ecosystems (Vitousek et al., 2002; Menge et al.,

2010), so ‘fresh’ fixed atmospheric N in reactive forms is often in short supply. Most

plant-acquired N is therefore acquired by recycling of dead organic matter from

the soil (Figure 1.1) having been released from decomposing biomass by chemical

and microbial processes (Marschner and Rengel, 2007). In terrestrial ecosystems

where rates of litter recycling (N mineralization and nitrification, usually by soil

microbes) are low, N availability usually limits growth and productivity (C uptake)
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(Vitousek and Howarth, 1991). Although overall nitrogen stocks can be high in

many regions (the majority of N in the global biological system is held in upper

100 cm of soils (Batjes, 1996) and only small amounts are typically found in

plants ( > 10 %) and microbes (1.5 %)), low rates of remobilisation of N from

soil stocks mean little is available for plant uptake. In some forests with large

amounts of standing biomass, this difference may be smaller (c. 30-50 % in plants

Butterbach-Bahl et al., 2011), but decomposition rates still typically limit the

availability of new N for growth.

Decomposition rates increase with temperature (Moore, 1986) and soil water

content (Stark and Firestone, 1995), as long as the soils do not become aerobic,

so high latitude ecosystems, such as such as temperate and boreal forests, are

particularly likely to be N limited (Vitousek and Howarth, 1991), with N availability

(Hobbie et al., 2002; Seitzinger et al., 2006) the major restriction on growth

(Vitousek and Howarth, 1991; LeBauer and Treseder, 2008; Reich et al., 2006;

Butterbach-Bahl et al., 2011) as it occurs before other factors (e.g. phosphorus

(P), light intensity, water) become limiting. Even when temperature or water

constraints on decomposition rate are not present in warmer ecosystems, slow N

cycling and subsequent N limitation can also occur due to soil properties such as

pH, soil texture and ion exchange capacity (Reich et al., 1997; Côté et al., 2000),

SOC content (Côté et al., 2000), organic matter inputs and soil C:N ratios (Côté

et al., 2000; Adams et al., 2004). Controls on N uptake therefore differ considerably

to those controlling C, where availability is largely uniform around the globe and

uptake is driven by capacity for primary production, or potassium (K), which

is derived from weathering of rocks, independent of limits on biological activity

(Butterbach-Bahl et al., 2011).
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Figure 1.1: The soil nitrogen cycle (Jackson et al., 2008), adapted from Schimel

and Bennett (2004). N uptake of mineral N depends on mineralization of organic

matter by microbes (Section 1.2), although there is also evidence that plants may be

able to acquire organic N (Section 1.6).

1.3 Anthropogenic Modification of the N cycle

An industrial method to fix N into reactive, plant-available forms (NH3 from N2

and H2 in the Haber-Bosch processes) was developed in the early 20th century

to meet N demand for weapons manufacture, but also allowed much greater

application of fertilizers for N-limited agricultural production which had previously

been limited to guano and evaporite N deposits. These pre-industrial inputs were

only capable of mobilising around 0.2 Tg N y−1 (Smil, 2001), and at this time were

the main anthropogeneic peturbation of the N cycle alongside limited cultivation

of leguminous species (e.g. rice, alfalfa, clover) either for their own purpose or

to increase background soil fertility for other crops (Galloway et al., 2004). The

Haber-Bosch process enabled huge increases in food production, quadrupling the

output of agricultural lands (Smil, 2001), and feeding the huge increases in human

population in the 20th century (Smil, 1999; Butterbach-Bahl et al., 2011).
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As an N source, this new Haber-Bosch derived N was substantially different than

previous fertilizer (manure and crop residue) as it represented a new source of

N fixation, rather than recycling of already-fixed nitrogen. It also soon provided

orders of magnitude more reactive N than background N fixation; while the total

N fixation by terrestrial ecosystems is 110 Tg N y−1 (Gruber and Galloway, 2008),

in 1860, around 10 Tg reactive N y−1 was derived from anthropogenic activity, but

this fraction had increased to 187 Tg N y−1 by 2005 (Galloway et al., 2008). In

the modern world, human activity is the major form of N fixation on Earth.

1.4 Nitrogen Deposition

Unsurprisingly, the huge increases in availability of use of reactive N resulted in

emissions of both oxidised (NOx) and reduced (NHy) forms of nitrogen to the

environment (Galloway et al., 2004), affecting ecosystems aside from the intended

recipients of N fertilizers, and far from the sites of industrial activity. Reactive

N emissions are also derived from cultivation of species with N-fixing symbioses,

transport and industrial processes, which burn fossil fuels and produce reactive

N by oxidizing N2 or releasing sequestered N in fuels (Galloway et al., 2004). Of

these activities, agriculture is the largest total source of N (Galloway et al., 2008),

as only around 10 % of applied N is retained in food (Galloway and Cowling, 2002)

but NOx emissions to the atmosphere are greatest from industrial sources (van

Aardenne et al., 2001).

Rising levels of reactive N via nitrogen pollution has obvious influences on N-limited

ecosystems as they are released from growth constraints, resulting in changes to

ecosystem structure, function, and composition (Vitousek et al., 1997; Bobbink

et al., 2010), while trophic changes occur as more N-limited species are able to

proliferate and N-sensitive species decline (Fenn et al., 2003). Many studies have

been performed on the effects of N pollution, particularly the toxic and succession
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effects of high N runoff from agricultural fields (Butterbach-Bahl et al., 2011),

and the phytotoxic effects of high NOx in combination with the heavy sulphur

deposition in North America and Europe prior to emissions control legislation in the

1980s. While many ecosystems now have recovered from high acid loads following

these political changes (e.g. Likens et al., 1996), and eutrophication effects, while

strong, are local and well-studied (Smith and Schindler, 2009)), emissions of NH3,

NOx, and various organic forms of N continue to enter the atmosphere unabated

and are transported great distances (Schlesinger, 2009), readily redepositing as

wet (in rain) or dry (directly from the atmosphere) deposition, in timescales of

minutes to days (Aneja et al., 2008). This results in chronic N inputs to many

ecosystems with total N magnitudes much smaller than the local N inputs from

eutrophication, but spread over a much larger area (Figure 1.2). Currently, NDEP

in Europe may be declining slightly (Waldner et al., 2014) although this effect

is frequently masked by high variability across sites. Even with a longer term

decreasing trend, NDEP will remain a major component of many ecosystem total

available N into the future.

Figure 1.2: Global patterns of nitrogen deposition in pre-industrial (1850,left panel),

and present day (2006, right panel). Adapted from Bala et al. (2013).

In general, NDEP is greatest in regions of high fertilizer use and industrial activity

(compare in Figure 1.2, North America, Europe, India, China) but it is not
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deposited uniformly across ecosystems in these regions. Of the total ∼ 46 Tg N

y−1 deposited on land (Galloway et al., 2004), around 1/3 is deposited onto forests

(Schlesinger, 2009) as their high canopy surface area and elevation of biomass

increase overall N interception (Houle et al., 1999). Forests are 2-3 times more

susceptible to NDEP than open land (Fowler et al., 2004).

As temperate and boreal forests are N-limited (Vitousek and Howarth, 1991),

susceptible to high N inputs (Fowler et al., 2004), and are also very C efficient

(having high C/N ratios due to large amounts of woody biomass Reay et al., 2008),

such ecosystems are good candidates for an increase in C uptake by nitrogen

deposition. The scale of this uptake has been examined in depth in the literature

on both a local and regional scale and is summarised in the next section to explain

why estimates of the total effect of N on C uptake (∆C/∆N) can differ so greatly.

1.5 Uncertainty in Changes in Forest C Uptake

due to N deposition

The first suggestions of an anthropogenic nitrogen effect on C uptake were from

models in the 1980s, and predicted relatively small C uptakes (0.2 Pg globally) as a

consequence of N and P pollution combined (Peterson and Melillo, 1985). As more

global data became available, modelled estimates gradually increased to 1.0 - 2.3

Pg y−1 (Schindler and Bayley, 1993), or a terrestrial 0.3 to 1.3 Pg y−1 (Townsend

et al., 1996), while at the same time as these models were developed, N deposition

effects were also being studied on smaller scale in N budget manipulations such

as the European NITREX project (Wright et al., 1995). Modelled nitrogen effect

on C uptake largely depended on the C/N (Carbon to Nitrogen) ratios of the N

sinks (Levy et al., 2005; de Vries et al., 2008), the C effect maximised if N within

plants was allocated to woody biomass with high C/N ratios and long lifetimes,
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and lowered if the main plant sink was low C/N tissues such as leaves, twigs, or

fine roots. Globally, this means that responses are strongest in forests, as they

contain far more woody biomass than other ecosystems (Townsend et al., 1996).

Many experimental studies (for a summary up to 1993 see Schindler and Bayley

(1993)) showed that even at high extra inputs, most additional N could be retained

within ecosystems (Goodale et al., 2002). However, the potential C response was

constrained by results from 15N-isotope tracer fertilizer experiments (summarized

in a meta-analysis of NITREX and North American nitrogen addition experiments

using isotope tracers by Nadelhoffer et al. (1999c)), which found that from a

synthesis of experiments, the major forest sink for N from NDEP is the soil, with

soil microbes (SMB), and aggregations with mineral and organic soil accounting

for around 70 % of isotope tracers added to these systems. Trees obtained only

about 20 % of the N applied in these experiments and only 5% of the total (1/4

of N acquired by trees) was found in woody biomass.

As the C/N ratio of the soil sink (30C:1N) and non-woody tree sink (25C:1N)

are much lower than wood (500C:1N), the potential gain in carbon uptake as a

result of NDEP was limited to about 20 % of terrestrial carbon uptake, or 0.30

- 0.38 Pg y−1, at the lower end of modelled scale estimates of carbon uptake

enhancements (Högberg, 2007) and corresponding to a ∆C/∆N effect of 50 kg C

kg N−1. Other methodologies estimating an N effect also tended to be low and

agree with previous predictions; using calculations based on ecosystem N budgets,

de Vries et al. (2006) also found 46 kg C kg N−1 (or 10 % of C sequestration) in

Europe could be attributed to N deposition, while field manipulations also found

low effects, while only 5 kg C kg N−1 was calculated from results of a 15N-tracer

experiment at Harvard Forest, USA (Currie et al., 2004), where most of the added

N was retained in mineral soil. N saturation also limited an N effect in many

systems - at very high levels of NDEP , other factors become limiting (Aber et al.,
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1989, 1998, 2003; Fenn et al., 1998), leading to high N losses from these systems

so all excess N would not apply to a total ∆C/∆N effect.

This low response to N due to low competitiveness of trees for soil N from NDEP

seemed settled, until Magnani et al. (2007) found a strong correlation of wet

NDEP with net ecosystem productivity (NEP). This implied a fertilization effect

of NDEP of several hundred kg C kg N −1 (Magnani et al., 2008), several orders

of magnitude greater than was expected based on previous work. Unsurprisingly,

these findings generated considerable debate (Högberg, 2007; de Vries et al., 2008;

De Schrijver et al., 2008; Sutton et al., 2008; Magnani et al., 2008), with the

Magnani et al. (2007) approach criticised for ignoring differences in local climate

(Sutton et al., 2008), GPP, or soil N mineralization capacity (de Vries et al., 2008),

but even under subsequent revision to 175-225 kg C kg N −1 (Magnani et al., 2008),

this estimate was still considerably in excess of the apparent strength NDEP on

C sequestration in other studies. Later, Högberg (2012) also suggested that high

rates of N deposition may also correlate with high edaphic (internal) N , which

may be caused with historical NDEP and eutrophication, or underlying ecosystem

fertility and explain much of the correlation in Magnani et al. (2007). Across a

range of European forest sites, NDEP only contributed an average of 13.5 % of

total N supply (Högberg, 2012).

Despite these criticisms, there are several reasons why Magnani et al. (2007)

could have had such different results compared to other studies. As this was a

correlative study, it is possible that the manipulative experiments from which

other conclusions of ∆C/∆N and N partitioning were drawn did not sufficiently

represent the real world. In particular, N-budget based calculations typically

calculate NDEP as throughfall plus stemflow, leaving nitrogen retained in the

bark and canopy unaccounted for (Lovett, 1994; Kreutzer et al., 2009), while
15N-fertilizer traces (c.f. Nadelhoffer et al., 1999b) typically apply ‘atmospheric’ N

deposition directly to the soil, rather than to the canopy. A substantial retention
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of N in the canopy or direct foliar uptake of nitrogen (Sievering et al., 2007), could

both reduce total amounts and change the fashion by which NDEP reaches the

soil system, and even allow some N to bypass soil sinks if taken up directly by the

canopy (Sievering, 1999).

The methodology of experiments summarised in Nadelhoffer et al. (1999b) was

also not suited to trace changes in the forest floor N supply under N deposition

treatments (Jenkinson et al., 1999). The majority of N for plant growth is supplied

from litter mineralization, being N previously held in biomass and recycled through

the soil, even under heavy NDEP (Högberg, 2012). A longer term response of

forests to NDEP may therefore also occur via changes in specific leaf area and

litterfall rates (Reich et al., 1999), belowground C (Burton et al., 2000), and C

allocation patterns (Palmroth et al., 2006) as a response to tissue N concentrations

and N availability. In general, the fate of litter N is difficult to trace experimentally

and conclusions about an overall ∆C/∆N effect hinge on this N mineralised from

litter being partitioned between pools of variable C/N ratios in the same manner

as labelled NDEP treatments. While C/N ratios of litter pools are often related to

N losses, this may be driven more by tree species than nitrogen deposition (Cools

et al., 2014), and total N budget estimates relying on unlabelled methods may

conflate C/N ratio differences with a NDEP effect.

Incorporating canopy uptake and changes in C allocation due to increasing N into

a model (Dezi et al., 2010) which had produced a ∆C/∆N of 27.8 (McMurtrie

et al., 2001), alongside forest management practices common in North America

and Europe found a relatively strong response (up to 121 kg C kg N−1), although

improving estimates of N losses in soil water in the model and changes in litter N

only had small effects. While forest management was the most important factor in

increasing this estimate, this study suggested that with model modifications the

full range of low responses, e.g. Nadelhoffer et al. (1999c); de Vries et al. (2006),or

high responses e.g. Magnani et al. (2008), could be represented using reasonable
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assumptions and that low estimates of an NDEP effect on forest C could also be

questioned regarding their validity in describing the forest nitrogen cycle under

NDEP .

Subsequent work using a similar methodology to Magnani et al. (2007) in North

America (Thomas et al., 2009) also found a relatively greater effect on above-

ground C (73 kg C kg N −1), which, while not as strong as Magnani et al. (2008),

supports the argument that lower estimates from other methods may be considered

to be overly conservative. Similarly, more localised studies across Switzerland

and Italy using correlative methods Ferretti et al. (2014) suggest that ∆C/∆N

response in these regions could be in the higher range of estimates. A summary of

major studies with comparisons of ∆C/∆N is presented in Table 1.1.

1.6 Root Uptake of Nitrogen

The most basic understanding of plant nutrition is that all nutrients aside from

CO2 and oxygen are acquired from the soil by roots. Plants acquire can also

acquire N by exchanging C with mycorrhizal fungi symbioses (which increase

the available surface area for nutrient acquisition (Simard et al., 2003), while

beneficial symbioses can also occur with rhizosphere micro-organisms (Walker

et al., 2003). From the plant’s perspective, this interface with the soil biota is

adapted to maximise potential nutrient acquisition from the soil, exploring the

belowground environment to exploit patches of high resource availability (Hodge,

2004). For reviews of methods of nutrient acquisition by roots, see Maathuis

(2009); Jackson et al. (2008).

Because concentrations of NH4
+ and NO3

− (the predominant mineral N forms in

the soil) are higher inside than outside plant cells, plants must actively pump these

by expending energy from photosynthesis. Transport is performed by specialised
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enzymes, divided into High and Low-Affinity Transport Systems (HATS and

LATS), the activity of which are affected by factors such as pH, temperature, and

soil nitrogen ion concentrations, and depend on maintenance of a proton gradient

(Jackson et al., 2008). Plants both impact the N cycle by taking up this nitrogen

and by supplying carbon belowground which is utilised by microbes which are often

the dominant sink for mineral N (Knops et al., 2002). Between species, uptake

in roots is adapted to suit soil properties (Falkengren-Grerup, 1995), species in

reduced and low pH soils tending to prefer reduced NH4
+, and those in high pH,

oxidised soils NO3
− (Maathuis, 2009). This difference allows plants to extract

as much N as possible from their environment, and likely reflecting the typical

availability of ions rather than a physiological preference for one form over another

as, once acquired by the cell, plants must reduce NO3
− to NH4

+ to incorporate it

into organic compounds, another step which requires energy expenditure.

Until the 1990s, it was widely perceived that this model of mineral N uptake

was universal and as roots could only take up mineral N forms (Pate, 1973) and

competed so poorly against soil microbes, plant N uptake in most soils was from N

remaining in the NO3
− pool after microbial utilization (Schimel and Bennett, 2004)

(due to the typical negative charge in many soils, most NH4
+ is often immobilised

in cation exchange leaving NO3
− the dominant available pool).

This ‘microbial bottleneck’ of competition (Knops et al., 2002) was once thought

to limit plant responses to N, but since this time, considerable evidence has built

up (Chapin et al., 1993; Lipson and Näsholm, 2001; Näsholm et al., 1998, 2009;

Rennenberg et al., 2009) that although mineral uptake usually predominates

(Harrison et al., 2007; Jackson et al., 2008), the root system and its symbioses

can access organic N (such as amino acids) in the soil which are released from

the decomposition of N-containing polymers during the decomposition process.

Plants may also be able to actively control the N cycle (Chapman et al., 2006)

through feedbacks in mycorrizal symbioses (both in competition with saprotrophs
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(Leake et al., 2003), and via mycorrizal uptake of organic N (Hodge et al., 2001;

Hodge and Storer, in press)) allowing direct access to organic N without having

to directly compete against soil microbes. Traditionally such associations were

thought to have no N benefit (Read and Perez-Moreno, 2003), and globally, there

are still questions about how important mycorrizal fungi are for N uptake on the

ecosystem scale (Meyer et al., 2009). While obtaining organic N from the soil

is more energetically costly than ion uptake (Jackson et al., 2008), this process

may be especially prevalent in heavily N limited ecosystems (Rennenberg et al.,

2009), where a greater carbon investment in this process may allow plants to

bypass limits in growth imposed by their poor ability to compete directly with

soil microbes (Schimel and Bennett, 2004). This may offer a net energy benefit as

organic N does not need to be reduced to usable NH4
+ like NO3

−. A lab study

has also suggested that organic N sources may be partitioned differently within

plants to mineral N (Cambui et al., 2011), which may lead to differences in overall

∆C/∆N, even if similar amounts of mineral and organic N were obtained.

Either way, plants allocate large amounts of fixed C belowground (Högberg et al.,

2001; Warren et al., 2012) for building and maintaining the root architecture

for nutrient uptake as well as the active transport of N compounds themselves

(Cannell and Thornley, 2000). C assignment to different organs and processes may

change under NDEP if N is more abundant or differently available to the established

soil sink. In particular, if substantial amounts of N can also be accessed by the

canopy under N deposition (Sievering, 1999), both the C cost of N acquisition

and the total magnitude of N fluxes into the plant may be reduced allowing an

increased ∆C/∆N effect.
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1.7 Canopy Uptake of Nitrogen

A high retention of NDEP by the canopy has been suggested by numerous studies

(e.g. 40-65 % (Schulze, 2000), 70 % (Gaige et al., 2007), 80 % (Sievering et al.,

2007)). If N remains on the branches and foliage before being washed off by

subsequent rain events, this both changes the rate and magnitude of NDEP

reaching the soil, and potentially makes this N directly available for nutrition by

processes occurring across the canopy (Sievering, 1999). Canopy uptake of N is

widely acknowledge in the literature, but estimates of its importance vary. As

aside from human activity, sources of atmospheric deposition of N are minimal,

there may seem to be few ecological reasons why trees have evolved to acquire N

across the canopy, and as this canopy-acquired N can be assumed to be largely

acquired by foliage, a strong ∆C/∆N effect depends on this N being assigned to

higher C/N pools within the tree. Without stable isotopes and rigorous separation

of biomass between different pools, it is also difficult to distinguish between actual

uptake in canopies and retention by epiphytes, ion exchange in the canopy, or

adsorption to bark surfaces (Dail et al., 2009). Where 15N isotope tracer tracers

have been used to try and account for this uptake rather than using estimates

based on throughfall and stemflow N concentrations, uptake by the canopy is

5-30 % (Friedland et al., 1991; Wilson and Tiley, 1998; Ammann et al., 1999)

of total N inputs. However these experiments are rare and expensive, and other

estimates of total nutritional value of canopy interactions can be higher, varying

from very little importance (1.7 % total nutrition, (Schulze, 1989)), to 15-30 %

(Tomaszewski, 2003), or 50 % of total nutrition (Sievering et al., 2007). Even

with these unlabelled N calculations, canopy uptake information at an ecologically

relevant scale is still rather sparse and there is likely to be a strong effect of

methodology, site and species (Templer et al., 2005) which makes it difficult to

interpret the overall importance of canopy uptake.

The mechanism of nitrogen uptake by the canopy is complicated and poorly
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understood, and possibly involves multiple processes. A review of nitrogen uptake

mechanisms in foliage is given in Sparks (2009) and will only be discussed briefly

here. In summary, NO, NO2, or NH3 dissolve as nitrous and nitric acid into the

apoplast, and dissociate, into NH4
+, NO2

− and NO3
−, and are taken up into the

cytoplasm and assimilated as NH4
+ (Sparks, 2009). NH4

+ and NO3
−, deposited

directly onto the leaf surface (primarily by dry deposition) may be taken up by

another pathway which is not as well understood but may involve cation exchange

(Sparks, 2009) and thus favour NH4
+, or diffuse through the stomata before

subsequent cuticular transport (Bowden et al., 1989; Boyce et al., 1996). Uptake

could also occur across twigs by simple diffusion (Klemm et al., 1989), which may

cause high observed bark 15N Wilson and Tiley (1998), while under very high N

loads nitrifying chemolithoautotrophs may colonise the stomatal cavity (Papen

et al., 2002), and affect the potential for foliar nitrogen utilization by converting

NHx to NOx, which may affect N uptake if the capacity for acquisition of cations

and anions by the foliage differs.

1.8 Effect of Canopy Uptake On Plant Structure

and Growth

Information on whole-tree exposure to reactive nitrogen has been available since

the 1980s, when high levels of acid rain and artificial misting experiments allowed

researches to examine the effects of high S (sulphur) and N loads from pollution.

Physical damage to foliar tissues were commonly observed (Wellburn, 1990; Maurice

and Crang, 1986) due to high N loads and ammonia concentrations (Krupa, 2003)

although this may have been due to excessively high N concentrations, and high

occurrences of S and ozone pollutants in tandem with N inputs (Harisson et al.,

2000). From more recent experiments using lower NDEP magnitudes, usually using

wet NDEP , observational estimates of canopy uptake of nitrogen are around 2-10
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kg N ha−1 y−1 (Kreutzer et al., 2009; Kristensen et al., 2004), and changes in

canopy functioning such as photosynthetic efficiency and carboxylation rates have

been observed (Sievering et al., 2007; Tomaszewski and Sievering, 2007; Wortman

et al., 2012) when leaves are exposed to excess N.

As well as a canopy response, a change in whole-tree C uptake and growth can

also depend on how N is assigned within the tree, as retention in the needles or

the canopy would not have as large C effect as assignment to stemwood due to

twentyfold differences in C/N ratios (Nadelhoffer et al., 1999c). Movement of

canopy-acquired N in trees is particularly important, as trees do not have the same

seasonal growth constraints as annual plants, can store nitrogen between growing

seasons and utilise it in periods of high C and N demand where N requirements

can be met by remobilisation, and alleviate the carbon cost and rate limitations

of root N uptake.

The location of this storage differs between species (Millard and Grelet, 2010), and

many evergreen species are able to exploit their long-lasting foliage in a manner

that deciduous species cannot, mobilising N from these foliar storage in the next

growing season (Millard and Proe, 1992). A similar mechanism operates during

leaf senescence (Näsholm, 1994; Norby et al., 2000; Hörtensteiner and Feller, 2002)

which may also allow deciduous species to make use of this uptake (Tagliavini

et al., 1998) and mobilise excess N from the leaves. However, in the only field-scale

canopy-application of 15N tracers in the literature, Dail et al. (2009) found a

low 1-3 % N retention in high C/N bolewood from the experiment at Harvard

Forest where 70 % of N amendments were retained in the canopy (Gaige et al.,

2007). Large amounts of extra retention being in bark, the measurement of which

included epiphytic mosses, lichens, and cyanobacteria with low C/N ratios, and

little capacity for a large ∆C/∆N response.

Larger trees may also take long periods to respond to moderate increases in

NDEP due to additional nitrogen first saturating storage compartments before
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it is assigned elsewhere in tree (Sheppard et al., 2004), while trees also have

relatively plastic nitrogen pools and do not sequester N in the same way as carbon

(Millard and Grelet, 2010), so even if N is initially assigned to storage pools it may

subsequently be translocated to other organs with a different C/N ratio. When

seasonal changes or age cause senescence, limiting nutrients such as N are usually

translocated to other parts of the tree and even in living foliage (Nussbaum et al.,

1993), some N from foliage is incorporated into amino acids and moved elsewhere

in the plant via the vascular system. Schulze (1989) estimated that only 1.7 % of

plant total N nutrition is likely to come from re-use of N from the foliage, but if N

uptake potential of the canopy is high, under N deposition, these mechanisms may

be able to operate on far larger amounts of ‘excess’ canopy N. Nitrogen additions

are commonly used to encourage forest growth (often in mixed NPK fertilizers),

establishing a competitive advantage for young trees over heather and bracken.

However, overall growth responses tend to be lower under N deposition than a

combination of all three macronutrients (Hyvönen et al., 2008), especially on more

fertile soils as P and K become limiting.

The effects of N on trees can involve numerous physiological differences as additive

nitrogen manipulations are well documented to have effects on foliar structure, size,

and nutrient contents (e.g. (Schaberg et al., 1997; Elvir et al., 2006), increasing

foliar N, decreasing other foliar nutrient concentrations, and increasing needle size,

while similar effects can be seen across natural nitrogen deposition gradients (e.g.

Rueth and Baron, 2002). Reductions in overall root system size may also occur

under N deposition (although these experiments tend to be direct applications

to the soil), as N becomes more abundant belowground (Nadelhoffer, 2000), but

higher turnover and reduced mycorrhizal symbioses (Egerton-Warburton and Allen,

2000; Lee and Jose, 2003) may also be a consequence. Overall, growth responses

to N appear to be highly dependent on methodologies used (Nadelhoffer, 2000)

and far more studies may be required for improved elucidation of such processes

and their outcomes.
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Under canopy nitrogen uptake there may be additional pathways to affect the

roots and soil, as glutamine is synthesised in leaves taking up nitrogen (Nussbaum

et al., 1993; Sparks, 2009). This amino acid may play a role in downregulating

belowground N acquisition as it is both rapidly transported by the phloem (Högberg

et al., 2008; Nussbaum et al., 1993), and high concentrations in roots correlate with

reduced N uptake (Geßler et al., 1998) under both nitrate (Nussbaum et al., 1993)

and ammonium (Geßler et al., 1998) deposition manipulations. Reductions in root

exudates (Yano et al., 2000) in response to NDEP may also occur as less C is invested

belowground, affecting the abundance and community structure of associated

microorganisms, although in ectomycorrhizal species, this suppression may be

relatively weak (Wallenda and Kottke, 1998) and it may be difficult to disentangle

a specific canopy uptake effect from an overall higher soil N concentration. The

degree to which belowground C-assignment is reduced may also depend on the

availability of other nutrients (phosphorus or trace nutrients such as potassium or

magnesium) or water for uptake, which may be under heavier demand due to N

fertilization, but if less C is assigned to roots and spent to acquire nitrogen from

the soil, more should be available to sequester elsewhere.

1.9 Effect of Nitrogen Deposition on the Soil

System

While more studied, the effects of nitrogen deposition on the soil system are also

relatively poorly understood, but are examined thoroughly in a meta-analysis

by Knorr et al. (2005).These are complicated and depend on magnitudes of

inputs, ambient N regimes, litter quality, and may change over time as litter

decomposes. In an unperturbed system, roots and mycorrhizal fungi are responsible

for decomposition, reduction, and assimilation of N from dead organic matter, the

effect of NDEP on decay rates being just as important as direct growth responses
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and responses to available N as, even under high rates of NDEP , the majority

of ecosystem N is still derived from edaphic sources (Schulze, 2000; Högberg,

2012). Nonetheless, there are several potential effects of NDEP on this process:

direct effects of nitrogen availability on litter decomposition (Knorr et al., 2005),

reductions of C inputs to the soil due to higher N availability (Burton et al.,

2000) (either in the soil or by the canopy), and changes in litter input quality or

magnitude under nitrogen deposition (Reich et al., 1999), as well as interactions

between all these effects.

1.9.1 Direct Effects on Decomposition Rates

Early in the decomposition process, N inputs to the soil may enhance litter

decomposition as decomposers such as saprotrophic fungi must gain N to colonise

decomposing litter (Swift et al., 1979; Parton et al., 2007). However, sustained low

levels of N deposition may also have a direct effect on soil community structure

(Lilleskov et al., 2001; Frey et al., 2004) and promote overall reduced decomposition

(Janssens et al., 2010) as increased soil N availability may cause shifts in microbial

populations towards more N limited, C efficient species (Ågren et al., 2001),

reducing overall rates of decomposition. This relationship follows the dynamics of

decomposing litter and changes in internal quality; initial positive responses to N

are due to release of water soluble, non-lignified carbohydrates and protein being

decomposed (Melillo et al., 1982; Berg et al., 1993; Zeller et al., 2000), while older

litter fractions are made up of high C/N, recalcitrant lignin, which decomposes

slowly and is inhibited by excess N content (Berg and Matzner, 1997; Carreiro

et al., 2000). Overall, Knorr et al. (2005) found no effect of the amount of N

additions averaged over 500 studies, but strong interactive effects; high quality

litters decomposing faster at sites with low ambient N deposition, presumably

because these sites were highly N limited. In none of the 500 studies in Knorr
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et al. (2005) was NDEP less than twice the ambient level and the authors identified

a need for more studies at lower, more realistic levels.

1.9.2 Changes in C Assignment

As previously discussed, N availability, either purely in the soil or from the canopy,

may reduce C inputs by trees to the soil if less energy is required to acquire

sufficient N for growth (Nadelhoffer, 2000; Egerton-Warburton and Allen, 2000;

Lee and Jose, 2003). This C may be used for other purposes above-ground,

resulting in changes in the overall ∆C/∆N effect. Below-ground, plant-derived C

is important in determining C losses from soil respiration (Högberg et al., 2008),

as well as below-ground community structure (Högberg, 2007; Yarwood et al.,

2009), which may affect rates of decomposition and N recycling as, like N, different

C availability may drive changes in the viability of different ecological strategies.

1.9.3 Changes in Litter Quality

Finally, an important and long-term effect on soil N cycling is changes in litter

inputs both in terms of tissue C/N concentrations, and leaf size and lifetimes (and

thus total litter inputs to the soil). Reich et al. (1999) found these traits tended

to increase with leaf N across different biomes, and changes in these trends have

been confirmed multiple times under chronic N deposition experiments (e.g Magill

and Aber, 1997; Schaberg et al., 1997; Schoettle, 1999; Bauer et al., 2004). As

litter quality is an important determinant of decomposition rates on its own and

with NDEP (Knorr et al., 2005), changes in this due to nitrogen deposition may

also be important over the long term, and particularly absent in short-term N

fertilization studies.
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1.10 Stable Isotopes in Ecology

Isotopes of an element such as carbon (12C and 13C), nitrogen (14N and 15N) or

oxygen (16O, 17O, and 18O) have different quantities of neutrons in the atomic

nucleus but otherwise undergo near-identical chemical reactions. Minor differences

in preference for one form of an isotope occur in chemical reactions (a process

known as fractionation). This means that the ratio of heavier (HX) and common

(LX) forms of biologically common isotopes (e.g. HX/LX) can be used by ecologists

to distinguish between i) changes in processes at natural abundance where rates of

a fractionating reaction my change and thus differences in the measured ratio of

isotopes can infer changes in the rates of different reactions and ii) introductions

of highly enriched or depleted HX where the isotope abundance of a source pool is

so distinct from natural variation that subsequent changes in other pools can be

attributed to this source, allowing the tracking of this tracer through a system of

interest. In particular, the stable forms of these isotopes (e.g.13C, 15N, 17O, 18O)

do not undergo radioactive decay, are particularly well suited to use as tracers

where radioactive half-lives and/or safety concerns may limit application. The

heavier isotopes of elements are typically much rarer than their light counterparts,

and are commonly specifically named in scientific texts (e.g.13C, 15N, 17O, 18O),

while the common, lighter form (12C, 14N, 16O) is not always directly specified

and often depends on context.

As the heavier forms of the elements are comparatively rare, being able to

identify them using analytical techniques (Mass Spectrometry, Tunable Diode

Laser Spectroscopy, Nuclear Magnetic Resonance Spectroscopy) allows them to

be used as tracers in scientific studies. Applications of isotopes in ecology are as

diverse as tracking animal migrations (e.g Rubenstein and Hobson, 2004) and food

sources (e.g Szepanski et al., 1999) to measuring water use efficiency in trees (e.g

Guerrieri et al., 2010) and quantifying C movement between soil and plants (Ineson

et al., 1996). In the context of the N cycle, the 15N tracer is useful for measuring
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uptake and partitioning of 15N sources (e.g. Jackson et al., 1989; Nadelhoffer et al.,

1999c) and is a very useful tool for investigating changes in the 15N cycle. Unlike
13C, which is both more common (1.109 % of all carbon) and variable within and

between ecosystems (especially between C3 and C4 plants (Ineson et al., 1996)),
15N is both rarer (0.3663 % of all nitrogen) and shows sustained variation and

high heterogeneity at natural abundance (Figure 1.3) especially in soils (Högberg,

1997; Weber and Bol, 2008). Within the terrestrial biosphere, 15N has no major

natural differences to exploit, while a large number of different pools of variable

size mean it is difficult to use this natural abundance variation to trace N dynamics

(Robinson, 2001). In this case, highly 15N-enriched material must be introduced

and used to follow 15N enrichment in different pools from this artificial source.

Figure 1.3: 15N isotope natural abundance (δ15N h in different pools (Peterson

and Fry, 1987). δ15N is often near the 0 h of atmospheric N2 and does not vary

substantially, especially in terrestrial systems.
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1.11 Objectives of Thesis

The main objective of this thesis was to investigate some of the remaining questions

in the effect of NDEP on forests, particularly to investigate two potential ways in

which NDEP may not be fully represented in manipulative studies using 15N-isotope

tracers.

We aimed to conduct experiments using different sources of nitrogen which may

affect the assignment of N within the tree and soil pool, and compare these with

an experimental model of nitrogen deposition in a similar manner to 15N inputs

summarised in Nadelhoffer et al. (1999c).

Due to the relatively short duration of a PhD project compared to the typical

time which a large N dose may take to saturate storage compartments in trees

(Sheppard et al., 2004), or affect foliar N concentrations feeding back into litter

quality and N recycling (Magill and Aber, 1997), a series of experiments were

designed and implemented, which traced the relatively short-term fate of a 15N

label from fertilizer, applied to foliage or to soil, or released from decomposition

of 15N-enriched litter.

If N is acquired by the canopy it may reduce tree C assignment to below-ground

pools due to lower demand for N from this source, and subsequently change overall

∆C/∆N if C can be assigned to more C efficient biomass, or if more N in total

can be acquired by the plant, allowing it to overcome a N limited state.

Similarly, if N mobilised from litter decomposition is more available to trees due

to organic uptake, or differently partitioned (Cambui et al., 2011) within trees

than mineral N, the overall ∆C/∆N effect may be inferred to be greater than the

effect of N deposition to the soil plus N decomposition effects on litter, as this
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litter-derived organic N can be acquired before passing through heavy competition

with microbes in the NH4
+ and NO3

− pools.

Using the stable isotope 15N also allowed experiments at very low NDEP magnitude

close to ambient conditions. This methodology, used in the second and third

research chapters, allowed a focus on 15N partitioning effects, independent of

changes in soil and plant processes related to the magnitude effects of additional

N added (for example, changes in litter decomposition under different nitrogen

deposition magnitude (Knorr et al., 2005)). This low NDEP magnitude also meant

that the total N input to these experiments was close to real world deposition

and without the cumulative effect from adding a large N dose on top of a system

already receiving atmospheric deposition, thus measuring a response from total N

in excess of realistic NDEP to the system.

1.11.1 Hypotheses

In Chapters 4 and 5, the following broad hypotheses were tested to compare

the fate of ‘external’ mineral fertilizer additions of 15N when applied to the soil

surface, with similar treatments applied to the canopy, as a more realistic model of

deposition (Chapter 4), and with ‘internal’ 15N from decomposing litter (Chapter

5). The third hypothesis arises as a conseqeuence of the first two:

1. Recovery of N in fertilization treatments (used to simulate NDEP ) is greater

in canopy- than soil-targeted fertilization treatment over the same magnitude

due to exposure to, and uptake of, N by the canopy (Chapter 4).

2. Recovery of 15N in trees from ‘internal’ litter pools under N deposition

treatments is greater than the recovery of 15N added 15N-labelled mineral

fertilizer additions to the soil, due direct plant uptake of organic forms of N

which allows them to bypass microbial competition (Chapter 4, 5)
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3. Recovery of 15N in trees from ‘internal’ litter pools under N deposition

treatments is lower under canopy- than soil- targeted fertilization treatments

in biomass pools which receive proportionally more 15N from canopy-targeted

treatments (Chapter 4)

While similar treatments had been performed independently at different sites (c.f.

Nadelhoffer, 2000; Zeller and Colin-Belgrand, 2001; Dail et al., 2009), they had

never been directly compared against each other in a single study. As site-specific

responses are likely to be an important part of 15N retention (see comparisons

of multiple 15N tracer studies, (e.g. Templer et al., 2012)), understanding the

quantitative differences between such treatments has never been directly possible.

The major difference between these two studies was that Chapter 4 was a pot

study where canopy treatments could be applied, while Chapter 5 was a field study

where the soil system could be studied in depth. For the field experiment, I also

had to produce a large quantity of 15N-labelled litter, as at natural abundance,
15N content is highly conserved (Högberg, 1997; Callesen et al., 2012), and there

is no natural variation which can be used provide a source of 15N-labelled litter

without its artificial creation. This is described in a separate research chapter,

Chapter 3, where effects of tree size, canopy position, and phenology on canopy
15N return from a stem-injected treatment are also discussed.

1.12 Summary of Research Chapters

This thesis is written as a series of three research chapters which are intended

for publication independently as scientific papers. Each uses 15N-tracers in

experiments on Sitka Spruce (the most common forestry species in Britain).

A short supplementary description of stable isotope tracer theory is described in
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Chapter 2, which follows this introduction. The contents and purposes of each

research chapter (Chapters 3,4,5) are as follows:

3. Stem Injection of 15N-NH4NO3 into mature Sitka Spruce (Picea

sitchensis)

This chapter describes a field experiment where 98 % 15N-labelled ammonium

nitrate was introduced via stem injection to the vascular system of adult

Picea sichensis, where it was translocated into the canopy, and the relative

expression of the label in the canopy was assessed. Previously, stem injection

of 15N has primarily been performed on small trees or without replication,

and but here we were able to assess 15N return and recovery in adult Picea

sichensisis analysed statistically and discussed within the context of tree N

storage phenology.

4. Differences in 15N-Return in Sitka Spruce between Canopy and

Soil 15N Treatments

This chapter describes a pot-based experiment addressing all three main

hypotheses in a relatively controlled mesocosm experiment.

Six replicated treatments are described where 15N fate from litter and

deposition could be compared when N deposition treatments were applied to

the soil or to the canopy and an artificial litter source was available to 4-year

old trees. We recorded a time-series of needle 15N expression for 14 months

after treatments started, and an endpoint recovery of the 15N-label within

the stems, branches, and roots of the whole plants, in both the current year

cohort (which grew under the treatment regimes) and older biomass. From
15N expression in individuals with labelled litter, and individuals experiencing

labelled deposition, a synthesis of the fate of N from both of these pools was

obtained.

5. A Field Study Comparing the Fate of 15N from Sitka Spruce Litter

Mineralization with 15N from Nitrogen Deposition
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The third research chapter describes a field experiment similar to the soil
15N-deposition and labelled litter where a more realistic, field-scale soil profile

was available, but a canopy treatment was not possible. 15N was used as a

tracer both from direct soil deposition (which could be assumed to amend

throughfall and stemflow NDEP ) and from the 15N-labelled litter, to soil

pools (litter, roots and bulk soil) over a timeseries. After 16 months, at the

end of the experiment these pools were assessed in a mass balance, along

with K2SO4-extractable N and soil microbial biomass. 15N-recovery was

examined from deposition or litter sources of the 15N isotope between these

alternative pools.
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Chapter 2

Stable Isotopes

2.1 Stable Isotope Notation

We have used stable isotopes in all 3 chapters of this thesis so briefly describe isotope

notation in this section. Stable isotope abundance (how much of a particular

isotope is present) is typically recorded in one of two fashions, δ (delta), in units

of h (permille), or atom %, in percentage units, both of which have been used in

different contexts in the following research chapters.

2.1.1 δ 15N

The δ-abundance of a heavy isotope (expressed in units per mille, h) is calculated

in equation 2.1, Rsample and Rstandard being the ratio of the heavy (HX, e.g. 15N)

to light (LX, e.g. 14N) isotope (HX / LX) in the sample in question (Rsample), and

Rstandard that of a standard reference compound (which is N2 in air for nitrogen,

and Pee-Dee Belemnite, a fossil, for carbon).

31
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δHX = [Rsample/Rstandard − 1] ∗ 1000 (2.1)

As this expression of abundance includes two ratios, it can be a negative value,

( i.e. less HX relative to LX than in the standard). This is commonly the case for
13C in natural systems as the reference compound for 13C is unusually highly 13C

enriched.

2.1.2 Atom % 15N

The amount of isotope HX can also be expressed as atom percent (equation 2.2),

where the amount of HX is compared to the total amount of the element. This is

always positive and cannot exceed 100 %.

atom%HX =H X/X (2.2)

2.1.3 Conversion between δ 15N and Atom % 15N

δ X and atom % X are not linearly related to each other, but at natural abundance

values tend to be very close to this relationship. δ15N is commonly used to express
15N contents at close to natural abundance 15N and at this level atom % notation

will differ only in the third or fourth decimal place. Atom % is typically used for

artificially enriched material, although it is fairly trivial to convert between the

two (equation 2.3).

atom% = 100 ∗Rstandard ∗ (δ/1000 + 1)
1 +Rstandard ∗ (δ/1000 + 1) (2.3)
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In this thesis, atom % is used in Chapters 3 and 4, as 15N contents were high in

the artificial N injection and in some of the treatments in the potted experiment.

In the field experiment (Chapter 5), many of the differences were much closer to

natural abundance, so δ15N is used as the primary notation. Where comparisons

between the two are made, values from different experiments are always compared

in the same units.
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Chapter 3

Stem Injection of 15N-NH4NO3

into Mature Sitka Spruce

3.1 Introduction

Interest in the role of the nitrogen cycle in ongoing global change has driven a large

number of studies into the effects of N deposition and the dynamics of N pools

within ecosystems (e.g. Nadelhoffer et al. (1999c); Magill et al. (2004); Magnani

et al. (2007)). Nitrogen’s stable isotope, 15N, is often used as an enriched tracer in

spikes of mineral 15N additions (e.g, Högberg (1997); Nadelhoffer et al. (1999b);

Mulholland and Tank (2000); Templer et al. (2012)), or at natural abundance (e.g,

At the time of final submission, this chapter has been published as a jointly authored paper:
Richard Nair, Andrew Weatherall, Mike Perks,and Maurizio Mencuccini. Stem injection of
15NâĂŞNH4NO3 into mature Sitka spruce (Picea sitchensis) Tree Physiology (2014) 34 (10):
1130-1140 doi:10.1093/treephys/tpu084. Richard Nair was the primary author of the manuscript,
performed all fieldwork and statistical analyses. Manuscript feedback, logistical support, and
some field assistance were provided by all other authors.
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Högberg (1990); Dijkstra et al. (2008)), to investigate N dynamics beyond that

which can be measured in bulk changes in pools and fluxes. However, as ecosystem

δ 15N is typically highly conserved (Robinson, 2001), soil δ15N is spatially variable

(Högberg, 1997) and temperate decomposition rates are relatively slow (Vitousek

and Howarth, 1991), it is consequently very difficult to trace 15N from litter pools,

without a source of biomass with a δ15N high enough to allow detection. Labelled

biomass must be even more enriched if short-term recovery of the label is desired,

or if one intends to trace the label into relatively uncompetitive pools, with high

dilution, such as trees (Nadelhoffer et al., 1999c).

Biomass enriched in 15N can be produced by application of labelled fertilizer

(Weatherall et al., 2006b; Langenbruch et al., 2013), foliar sprays (Zeller and

Colin-Belgrand, 1998), or by direct injections into the plant vascular system

(Swanston and Myrold, 1998). This latter methodology is potentially most efficient

as valuable 15N-labelled material is not lost via misting (Bowden et al., 1989),

exposed to soil sinks (Nadelhoffer et al., 1999c), or exported from the immediate

area by soil hydrology. Injection techniques (Roach, 1939) were first utilised to

apply enriched 15N compounds by Horwath et al. (1992) and consist of a reservoir

of injection substrate introduced to the tree either passively (Proe et al., 2000;

Christenson et al., 2002; Garten and Brice, 2009; Churchland et al., 2012), or under

pressure (Horwath et al., 1992; Swanston and Myrold, 1998), via a purpose-drilled

hole accessing the cambium and plant vascular system where the solution is taken

up via a Venturi effect. This method can be used to trace the fate of injected

elements either within the trees (Horwath et al., 1992; Swanston and Myrold, 1998;

Augusto et al., 2011), or into the soil system (Garten and Brice, 2009; Churchland

et al., 2012) but it has rarely been used (Christenson et al., 2002; Weatherall,

2005) as a method with the primary purpose of creating labelled biomass, typically

targeting relatively young and small trees, where total biomass is low, and the

canopy both open and easily sampled.
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It is difficult to draw conclusions about the overall effectiveness of this method

because of the large variety in the species employed (Table 3.1), but generally,

it appears that in conifers, injected N is heterogenously distributed within tree

crowns both in the short term (Augusto et al., 2011), and even more so as N

is translocated throughout the canopy by the tree. These differences may be

caused by within canopy variation in N demand due to exposure and related

photosynthetic activity (Ellsworth and Reich, 1993), or variations in needle age

and N storage potential (Proe and Millard, 1994), which may vary in larger trees,

both due to allometric scaling of tree proportions (Niklas, 1995), and the effects

of canopy closure on crown size. Both of these changes also reduce the absolute

amounts of foliage to woody biomass within the tree (Ritson and Sochacki, 2003)

which may also affect the fate of injected 15N between foliar and woody pools.

Evergreen species also retain needles for several years (6-8 in Sitka spruce (Picea

sitchensis (Bong.) Carr.) (Norman and Jarvis, 1974)), so younger trees may not

represent the full range of needle age classes present in older individuals.

As well as tree biomass size and proportions, the size of N pools within the tree

and their sink strengths change over the growing season, both due to phenological

variation in nutrient assignment (Weinstein et al., 1991), and overwinter storage

of 15N in current year needles and roots (e.g. Millard and Proe (1992) for Sitka

spruce). In a study on 4-year Pinus radiata (D.Don), Proe et al. (2000) initially

recovered 45 % of the injected 15N in the canopy one week after injection, rising

to 83 % at the end of the growing season (eight months after injection), with a

bias in 15N recovery away from the upper canopy, while in Sitka spruce saplings,

the majority of an injected 15N-NH4NO3 solution was found in the above-ground

biomass of the harvested trees (Weatherall, 2005).

The aim of this study was to produce a quantity of 15N enriched Sitka spruce (Picea

sitchensis) biomass suitable for a subsequent field study, requiring hundreds of kgs

of dry, isotope-labelled foliage for replacement of litter layers. As the intention was
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to produce as much labelled foliar biomass as possible, it was planned to inject trees

on the edge of our target stand, because they were expected to have relatively more

foliage than inside the closed canopy (Zavitkovski, 1981). A potential consequence

of this approach is that edge trees may display spatial variability in 15N recovery

because of factors that affect intra-canopy 15N distribution. The trees ranged

in heights from 9 to 13 m, and we investigated differences in 15N recovery and

distribution in the canopy due to variations in tree and crown morphology.
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3.2 Methods

3.2.1 Site and Stand Characteristics

A 20-year old stand comprising 90 % Sitka spruce and 10% Larix decidua (European

larch) was selected in Cardrona Forest, a mixed conifer plantation forest in the

Scottish Borders (55◦61’50" N -3◦12’87" E) , about 38 km south of Edinburgh.

The site was a hillside with well draining, brown forest soil (annual rainfall of

887 mm, mean monthly temperatures between 0◦ C and 18◦ C). The stand was

selected as it fulfilled the criteria of having a long, accessible stand edge (0.6 km)

of (predicted by forest inventory GIS) 10-12 m tall Sitka spruce, close to a forest

road, while not being located on any major recreational routes through the forest.

3.2.2 Injection Method

Stem injections took place in July and August 2011 with the trees remaining in

the field until December 2011. Twenty-one trees with Diameter at Breast Height

(DBH ) between 12 and 25 cm and no visible wounds or deformities at breast

height (1.3 m) were prepared for the 15N injection along the stand edge.

Our injection apparatus (Figure 3.1) was based on a passive uptake design (Proe

et al., 2000). The apparatus consisted of a reservoir (an inverted 1L bottle with

two 10 mm holes in the raised base), affixed to the tree and connected by a 3

mm diameter tube to a 20 mm diameter, double-holed bung. A second 3 mm

tube from the bung was closed with an adjustable plastic tap. The trees were

prepared by removing an area of bark around 1 m from the ground on the inside

of the stand with sandpaper, and drilling a 35 (depth) x 20 (radius) mm hole

using a hand drill with a wood auger bit. Once drilled, the hole was immediately
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plugged with the bung and coated on its sides and surface with a commercially

available waterproof silicon sealant. For each tree, the reservoir was pre-filled with

DI (deionised) water and allowed to flow through the apparatus by operating the

tap, flooding the wound site and draining out, to refill the wound as quickly as

possible and limit cavitation. Once air bubbles had been flushed from the system,

the tap was closed, leaving 1 L empty volume in the reservoir, which was then

filled with dilute red Safranin dye, and the tap adjusted to bring the coloured

solution to the injection site. The next day, trees without obvious uptake or with

evidence of leaks (8 of the 21 trees prepared for 15N injections) were eliminated

from the experiment. For the remaining trees, the apparatus was partially drained

using the tap to leave 1 L of empty capacity, and filled with 1 L of the injection

solution.

The injection was 1 L of 21 g L−1 double labelled 98 atom % 15NH4
15NO3 (CK

Gas Products, Hampshire, UK), delivering approximately 7.53 g 15N or 0.3 to

0.8 % of the total tree N pool, depending on the size of the tree. NH4NO3 was

used for the injections as both of its constituent ions are transported in the xylem

stream (Marschner and Marschner, 2012), with a label equally distributed between

the anion and cation in case of differential assignment within the tree. After the

introduction of the solution, the uptake (in ml) from the bottles was recorded

from every reservoir every 1-2 days, and at each occasion the reservoir refilled

to 1 L by addition of further DI water to prevent the equipment running dry

between refills, while steadily diluting the solution. A linear rate of uptake from

the bottles was assumed and the bottles were topped up until the estimated

NH4NO3 concentration in each bottle was below 1 g L−1 in all bottles. The bottles

were then allowed to run dry and stand for several days before deconstruction.
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3.2.3 Sampling Strategy and Analysis

All 13 trees were felled in December 2011, 4.5 months after the injection, along

with an unlabelled tree as a control. All branches were immediately cut away from

the main stem and bundled into six categories per tree ((Figure 3.2), representing

the specific location of removal along the main stem, in combination of three

vertical sections: CanopyBOT (from the base of the tree to 3.5 m up the trunk),

CanopyMID (from 3.5 to 7.5 m up the trunk), and CanopyTOP (from 7.5 m to

the top of the tree), and two radial sections: CanopyIN (comprising 120◦ inside

the stand), and CanopyOUT (comprising 240◦ facing out of the stand), with each

of the six spatial positions having both a vertical (CanopyTOP , CanopyMID, or

CanopyBOT ) and radial (CanopyIN or CanopyOUT ) identifier. The bundles were

either removed from site immediately and transported to the location of further

processing, 28 km away, or, due to the large volume of biomass, left on site for

three weeks, until early January 2012. Both sets of branches were stored outside

away from sites where water would accumulate, under tarpaulin, until all had

been collected in early January. During this period most precipitation at both

sites was snow which had not substantially melted at the time of collection of the

remaining biomass.

Once all branches were collected, all the bundled sections were moved inside a dry

polytunnel and chopped into small sections using a chainsaw and manual loppers.

This material was then dried in batches in a timber kiln for up to two weeks at

70◦C, but, due to the time required per batch, around 3/4 of the material was

found to be sufficiently dry to cause needle shedding after temperatures in the

polytunnel reached 40◦C in spring 2012. Moisture content of these samples was

compared to the kiln-dried samples to make sure they were similarly dry.

For 15N analysis, three subsamples of 30 needles per section were drawn from the

total needle harvest, after the dried needles had been well mixed, resulting in
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a composite sample of the total needle pool of each section. These were gently

washed in distilled water to remove surface residues and any residual wood dust

from the processing, then redried in an 80◦C oven until mass loss had ceased

(usually 24h, although some samples remained in the oven for up to 48h) and milled

inside plastic micro test tubes in a Retsch MM400 ball mill (Retsch Ltd UK), for

20-30 minutes until the sample was homogenised into a fine powder. In addition

to the thirteen trees sampled for 15N recovery within the complete needle biomass,

sub-samples of three branches from each of the six vertical/horizontal combination

sections for five trees were taken to separate the 2011 cohort of needles from those

produced in previous years. These sections were identified by growth beyond the

most recent branch whorl, and separated from the main biomass of the branch

before drying. The whole yield of needles harvested from the branch for both the

current year biomass and the older biomass was weighed and dried independently

to allow a calculation of the proportion of current year needles in the section.

Sampling of the woody biomass component was performed on five trees after the

needles had been removed. Cuttings were taken from the branches in each section

and replicated by sampling from three entire harvested branches, distinct from the

tree stem at their base, in each section. The entire branches were not homogenised

for sampling but sections for analysis were taken from a range of distances along

the branch to attempt to sample a representative range of tissues, taking three

branch ‘cookies’ per branch per sample, containing the entire radial section 1 cm

in length. These samples were washed and redried like the needles, then milled in

large metal cups with two large ball bearings in the MM400 ball mill although

some larger sections were split and only a radial fraction of the disc analysed. Care

was taken to clean the cups thoroughly with distilled water and 100% ethanol

between successive measurements. For both the needles and the branches, 2.5 -

3.5 mg of the milled powder per sample was weighed into a 8.5 mm ultra-clean tin

capsule and analysed for [N] and δ 15 N on a SerCon Callisto CF-IRMS Isotope

Ratio Mass Spectrometer (School of Biological Sciences, University of Aberdeen,



44 3.2 Methods

UK), along with standards of known isotopic abundance every 10 samples to allow

the entire run to be corrected for drift. A small number (5%) of less enriched

samples were analysed at the School of Geosciences, University of Edinburgh on

a VG PrismIII dual inlet Isotope Ratio Mass Spectometer with CE Instruments

NA2500 Elemental Analyser, with some samples run on both devices to ensure

comparability. When analysing particularly highly enriched samples (with δ15N

in the 1000s), a minor enhancement of the 15N ratio of subsequent samples is

observed (A Midwood, pers. comm.). In order to reduce the effect of this artefact,

samples of suspected high enrichment were run on the mass spectrometer in order

of expected increasing enrichment.

3.2.4 Simple Predictive Model

A simple allometric model was used to calculate the expected 15N abundance based

on tree and canopy size if the 15N injected was evenly distributed throughout the

tree. We used measurements of total dry needle biomass made at felling, as well

as DBH and measured tree height (length of intact stem + stump after felling),

and used allometric equations to predict the 15N recovery within the tree. To

calculate the branch biomass of the trees we used equations for foliar and crown

biomass, but, as our trees had comparatively more lateral biomass than typical

due to their edge profile, we used the actual needle biomass to derive crown and

branch biomass by rearranging the standard equations:

DBH = p

√
logβ(1−NeedleBiomass/αneedles)−αbranches

γ
(3.1)

as given in McKay et al. (2003), where αneedles and β are constants for leaf biomass

models for spruces and firs, and αbranches, p and γ are species-specific constants

for a crown biomass model for Sitka spruce. Branch biomass was then calculated
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as the difference between the crown biomass model (α + γ.DBH.p (McKay et al.,

2003)) and the measured needle biomass.

Predicted N recovery was based on biomass and measured average N %, assuming

that all N in the canopy was a valid sink for the injected N, with no losses such

as gaseous N emissions or leakages from the apparatus. 15N was allocated evenly

based on the calculated size of N pool the canopy, divided into separate branch and

needle pools. No spatial variation in allocation due to radial or vertical components

was included in this null model, and no enrichment was allocated to the roots, but

this was assumed to be minimal ( < 5%) based on earlier work on Sitka spruce

saplings (Weatherall et al., 2006b), nor was any 15N allocated to stemwood, where

C/N ratios are higher (Gundersen, 1998), and a greater proportion of the total

biomass is not growing. This assumed no net growth over the injection period (i.e.,

that the size of the N pools within the tree were the same at the time injected as

when felled) and no losses of 15N due to senescence or shedding of needles from

the oldest age classes of needles. While both growth and litterfall would have

been ongoing in the trees, the end of the growing season is usually a period of fine

root growth and starch production, rather than stem elongation (Ford and Deans,

1977; Weinstein et al., 1991), and litterfall does not appear to have a seasonal

component in Sitka spruce (Hansen et al., 2009).

Predicted 15N recovery in each section was therefore calculated as follows:

15Npredicted =15 Ninitial +15 Ninjected.(
Nsection

Ncrown

) (3.2)

where 15Ninitial is the initial total 15N content of the section in question, Nsection

the total N of the section (determined post-harvest based on per-section average

[N]), Ncrown the total tree level N specific to each individual tree, and 15Ninjected

the (constant) total 15N of the injection.



46 3.2 Methods

3.2.5 Expressions of 15N recovery

The predicted and observed 15N atom % (referred to as 15N enrichment), were

expected to vary among trees because of variable dilution due to tree size. Therefore

we also calculated a percentage recovery (referred to as 15N recovery, equation

(3.3)), assuming an even distribution of all injected 15N throughout the canopy

(equation (3.2)) which allowed comparison of relative 15N recovery between different

sections of the canopy while accounting for an expected lower 15N enrichment in

larger trees due to dilution.

Recsection = Reccrown.
15Ninjected.

Nsection

Ncrown

(3.3)

Reccrown being the total recovery of the injection, in % units, specific to each tree.

3.2.6 Statistical Analyses

All statistical analyses were conducted in R (R Core Team, 2013) v3.1.0.

We used analysis of variance (ANOVA) to compare 15N recovery and amount

of label among the trees, and examine the relationships between both of these

measures of 15N distribution and tree-level variables such as uptake rate or tree

biomass.

Among canopy sections, we constructed linear mixed effect models to predict

needle 15N atom %, 15N recovery, distribution of needle biomass and proportion of

current year needles. The triplicate samples from each section were averaged to

give a single 15N value for each metric per section. The models all used tree as a

random (block) factor and vertical and horizontal section positions and average
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section-level needle biomass and N content and as fixed factors. We also included

two tree-level metrics as fixed factors; the ratio of canopy (needle and branch)

biomass to total biomass (referred to as canopy ratio), and the total biomass of the

tree. These were transformed for normal distribution if appropriate and spatial

autocorrelation of 15N recovery among sections based on proximity within the

canopy was accounted for by including a correlation matrix based on Manhattan

distance between the average modelled distal end position of all branches within

each section, using tree height, dbh, and standard geometry, assuming tree stems

were extended cones.

We compared models with up to five-way interactions using ∆AICc (small-sample

corrected Akaike Information Criterion) and dropped terms stepwise to minimise

AICc until the model with the lowest AICc was found. R2 values are reported

as marginal (R2
(m)), indicating the proportion of the variance accounted for by

the fixed factors using the methodology for pseudo-R2 for mixed effect models

detailed by Nakagawa and Schielzeth (2013). Models for tree-level responses were

linear regressions without the tree-level random effect, and presented as adjusted

R2. Branch 15N was compared in the same manner, but separately, due to the

limited number of replicated trees. Likewise, as we only measured the proportion

of current year cohorts across six of the 13 trees, these were not included in the

overall model and analysed separately. For each model, residuals were assessed

visually and also tested for conformity to expected (gaussian) distribution.

3.2.7 Error Propagation

When calculating 15N recovery in different tree pools a large number of different

parameters with associated uncertainty were included (e.g. biomass, N content,

atom % 15N). We propagated errors using standard methodologies (based on
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Pythagoras’ theorem) where two measured quantities with error, e.g. x ± ∆x and

y ± ∆y, have a sum z with error ∆z =
√

∆x2 + ∆y2.
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3 mm diameter 
tubing 

Stem 

Reservoir 
bottle (1 L) 

Adjustable tap 

20 mm diameter 
Double holed bung 

 35 mm 
(depth), 
 20 mm 
(diameter) 
hole drilled 
with hand drill 

Watertight 
silicon seal 
over removed 
area of bark 

Figure 3.1: Diagram of the stem injection apparatus. The reservoir bottle is filled

via two holes (not shown) in the top surface of the bottle and flow of labelling solution

proceeds down the 3 mm pile to the bung, into the small reservoir created by the

drilled hole in the stem. This flow is regulated via the outflow on the second 3 mm

tube controlled by the adjustable tap. Not shown are the securing of the reservoir to

the tree, nor the vascular tissues within the stem which transport the labelling solution

away from the injection site.
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7.5m 

3.5m 

CanopyTOP 

CanopyMID 

CanopyBOT 

CanopyOUT CanopyIN 

Inner 120° Outer 240° 

Injection 
apparatus 

Figure 3.2: Diagram of within-tree sampling strategy. Trees were harvested in six

sections per tree, split into three vertical (CanopyTOP , CanopyMID, CanopyBOT ) and

two lateral (CanopyIN , CanopyOUT ) classes.
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3.3 Results

3.3.1 Solution Uptake

No damage or phytotoxic foliar ‘burns’ were observed in preliminary unlabelled

tests. The 21 g L−1 solution took between 2 and 10 days to reach the endpoint

estimated concentration of 1 g L−1, and uptake times (mean 6.4 ± 2.3 (s.d.) days)

displayed by individual trees were not related to total tree mass (P > 0.05), needle

mass (P > 0.05), or canopy ratio (P > 0.05).

3.3.2 Biomass harvest

At harvest in December 2011, 22.6 ± 7.3 (s.d.) kg needle litter was rendered per

tree (293.6 kg in total). The harvested needle biomass decreased up the tree

as successive sections were smaller, and was broadly evenly distributed laterally

(67.3 % of the mass of harvested needles were from CanopyOUT , 2/3 of the total

circumference of the stem). When harvests were standardised using the total

circumference of the tree (Figure 3.3a) to compare yields from an equal area, the

significant variables affecting section level needle biomass were vertical position

(P < 0.0001), the interaction between vertical and horizontal positions and total

tree height (P < 0.0001, R2
(m) = 0.53) but not horizontal position (P > 0.05)

The fraction of needle biomass harvested in the current year cohort (Figure 3.3b,

Table 3.2) increased vertically (CanopyTOP 17.8 % (CV = 4.7 %); CanopyMID

7 % (CV = 7 %); CanopyBOT 2.9 % (CV = 0.03 %), P < 0.001, R2
(m) = 0.96)

across the subsample (n = 6 trees), but this did not change significantly between

horizontal sections (P > 0.05), nor was there an interaction (P > 0.05) between

the sections.
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Figure 3.3: Comparison across vertical canopy sections of standardised needle

biomass yield (a) and proportion of current cohort needles (b). Shading indicates

lateral sections; inside the stand (dark grey) and outside the stand (red). Error bars

show 95% CI for both figures.

3.3.3 15N abundance and label recovery

Average per-tree needle nitrogen content was 1.18 % (CV = 11 %), and the average

abundance of 15N was 1.89 atom % (CV = 30 %). Baseline values of atom %
15N in the control was about 0.38 atom % 15Nin all sections. 15N abundance

in the branches was 2.35 atom % (CV = 99 %), while N content of the branch

sections analysed was 0.6 % (CV = 44 %). The observed needle 15N atom % when

considered on the level of individual tree crowns, correlated with the prediction of

equation (3.2) (P < 0.001, R2
adj = 0.651, Figure 3.4a) and was not significantly

different than a 1:1 relationship (P = 0.161). This 15N expression decreased

with increasing canopy biomass ( P = 0.003, Figure 3.4b), and with canopy ratio

(P = 0.025) (R2
adj =0.571), but was not related to total biomass (P > 0.05), N

contents of needles (P > 0.05), or ranked uptake rate of solution (P > 0.05).

Branch 15N abundance also broadly correlated with predicted 15N recovery, based

on the estimated branch biomass (Equation (3.1), P = 0.039, R2
adj = 0.587).

This 15N abundance meant that an average of 53.1 % (CV = 29 %) of the total 15N
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Figure 3.4: Mean measured 15N abundance per-tree was closely correlated with

predicted values based on allometric biomass. Panel (a) shows linear relationship

between predicted, and observed mean per-tree needle atom % from data (points,

black line, adjusted R2 = 0.651), and statistically similar 1:1 relationship (red dashed

line). In (b), observed (black) and predicted (red) per-tree needle atom % show the

predicted dilution effect caused by increasing canopy biomass. Best fit lines indicate

linear relationships for observed atom % (solid) and predicted atom % (dashed), while

horizontal line indicates natural abundance.

injected into the stem was accountable in the needles, and an average of 68.5 %

(CV = 81 %) was accountable in the branches, totalling 118.4 % (CV = 43 %) of

the total 15N injected. In the needles, 112.9 % (CV = 20 %) of the predicted 15N

recovery was found, while 89 % (CV = 73.7 %) was found in the branches. There

was no effect of canopy (P > 0.05) or tree size, ranked uptake rate (P > 0.05),

or average needle % N content (P > 0.05) on the recovery of the total injection

in the needles (P > 0.05) or branches (P > 0.05) when totalled for the tree. 15N

recovery was highly variable among trees with a minimum of 33.5 % of the injection

returned in foliage, a maximum of 88.9 %, and a mean of 53.1 (CV = 28 %).

15N enrichment varied among the six canopy sections. Despite the lower average
15N abundance, the bottom sections of the canopy were very highly variable,

displaying both the highest individual needle enrichment (4.39 atom %), as well
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Figure 3.5: Relationship between atom % 15N measured in needle biomass of (a)

the entire trees and (b and c) of individual tree sections , compared with (a) the

ratio of whole canopy / tree biomass, (b) the harvested needle biomass, (c) canopy

section. In (b) and (c), lateral canopy sections are shaded grey (inside the stand) and

red (outside the stand), and in (b), canopy sections are divided into as CanopyBOT
(triangle), CanopyMID(diamond) and CanopyTOP (circle). Error bars show 95% CI.

as the lowest enrichments (0.399 atom %). 15N abundance in the needles was

driven by vertical position (P = 0.016), canopy ratio (P = 0.004), and needle

biomass (P = 0.0305), (Figure 3.5, Table 3.3), with a greater 15N enrichment

displayed in smaller sections, smaller canopies, and higher up the tree; CanopyTOP
(2.33 atom %, CV = 25 %) and CanopyMID (2.33 atom %, CV = 24 %), were

significantly (P < 0.05) greater than CanopyBOT (1.68 atom %, CV = 101 %),

but not significantly different from each other (Tukey HSD, P = 0.451). Neither

total biomass or any interaction terms remained in the most parsimonious (AICc)

model when reduced by stepwise regression, which had a R2
(m) of 0.28.

This difference led to CanopyBOT accounting for considerably less 15N (88.3 ±

61.8 %) than CanopyMID (163.8 ± 69.9 %) and CanopyTOP (158.4 ± 44.2 %).

The canopy 15N allocation (Table 3.3) was significantly related only with vertical

section (P = 0.0005, Figure 3.6), although normalised needle biomass remained

in the most parsimonious model (P = 0.0707). The R2
(m) for this model was 0.23.

Among the vertical sections of the canopy (Tukey HSD), there was a significant
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Table 3.2: Average biomass, 15N abundance, and proportion current year needles

among canopy sections. Shown as mean ± S.E.

Canopy Position
Outside Stand

(2π/3 rad)

Inside Stand

(4π/3 rad)

CanopyBOT ( < 3.5 m)

Needle Biomass (kg) 119.92 ± 4.85 30.40 ± 2.15

Atom % 15N 1.15 ± 1.24 1.42 ± 1.45

Current Year Needles (%) 2.59 ± 1.8 2.99 ± 1.1

CanopyMID (3.5 - 7.5m)

Needle Biomass (kg) 60.07 ± 2.94 51.53 ± 1.95

Atom % 15N 2.35 ± 0.70 2.23 ± 0.81

Current Year Needles (%) 7.04 ± 1.6 7.57 ± 1.6

CanopyTOP (> 7.5m)

Needle Biomass (kg) 17.71 ± 6.05 13.98 ± 5.69

Atom % 15N 2.29 ± 0.79 2.28 ± 0.74

Current Year Needles (%) 15.0 ± 0.01 15.2 ± 0.01
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Table 3.3: Summary of most parsimonious linear models for needle 15N atom % and

needle 15N recovery. numDF is the degrees of freedom in the numerator, denDF the

degrees of freedom in the denominator of the F-value.

15N atom percent model
Variable numDF denDF F-value P-value

Intercept 1 58 449.6300 < .0001

Vertical section 2 58 4.4740 0.0156

Ratio canopy / whole tree biomass 1 11 13.1145 0.0040

Needle biomass in section 1 58 4.9162 0.0305

15N recovery (as % predicted in section) model
Variable numDF denDF F-value P-value

Intercept 1 58 254.63674 < 0.001

Vertical section 2 58 8.74377 0.0005

Needle biomass in section 1 58 3.39084 0.0707
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Figure 3.6: Relationship between recovery of predicted 15N (%) with respect to (a)

vertical sections and (b) needle biomass. Lateral canopy sections are shaded dark grey

(inside the stand) and red (outside the stand), and in (b), sections are represented by

as CanopyBOT (triangle), CanopyMID (diamond) and CanopyTOP (circle). Bars in (a)

show are 95 % CI.

difference in 15N allocation between CanopyMID and CanopyBOT (P < 0.001),

but no significant differences in recovery in CanopyTOP against recovery to the

CanopyMID, or between CanopyTOP and CanopyBOT , were found.

Within individual trees, observed 15N abundance in branches was much more

variable than in needles (CanopyBOT 2.69 atom % (CV = 137 %); CanopyMID

3.45 atom % (CV = 89 %); CanopyTOP 2.11 atom % (CV = 69 %)), driven by an

apparent heterogeneity of recovery, particularly in CanopyBOT where some samples

displayed atom % at natural abundance while others were as high as 10.4 atom %

(the highest recorded). Average atom % varied among trees and with biomass

(Figure 3.7). When the observed atom percent was expressed as a recovery of the

expected label, this varied among sections but there was no significant statistical

relationship was found with the measured variables.
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Figure 3.7: Mean observed (atom %) 15N label in branch sections, compared to

total branch biomass for each tree. Red is predicted 15N abundance, black observed
15N abundance.

3.4 Discussion

The variability among species investigated, concentrations of solution, objectives,

and methods reported in the literature makes it difficult to compare results from

stem injection experiments. Given the presence of multiple age cohorts of needles

in evergreen conifers variation in the expression of an isotope label would also be

expected. We found a high variability in the atom % 15N abundance, and therefore

limit discussion as far as possible to injections of conifers where the intra-canopy

N dynamics are expected to be as comparable as possible to our trees.

3.4.1 Overall 15N Recovery

The harvested biomass of every injected tree was 15N enriched, in both the needles

and the branches, with an average recovery greater than 121 % of the applied

label when the measured 15N excess over the control was scaled to the entire

canopy. This was fairly variable (CV = 22.8 %), predominantly due to the high

and variable label recovery in the branches (CV = 99.7 %) which contributed
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46.9 % of the calculated total label recovery, with the average branch atom %

matching or exceeding the prediction in 4 of the 5 trees analysed despite the

prediction assuming all N was assigned to branches or needles. The predictive

model assumed a similar turnover rate (and therefore a similar proportion of N

replaced) between foliar and branch pools based on observed branch and needle N

content, but real differences in this rate may have driven the discrepancies from

predictions. As there are no alternative explanations for an additional enriched
15N source for the trees, the high total recovery for the 15N label in the canopy

from these measurements contrasts with Seiter and Horwath (1999) and Garten

and Brice (2009), who inferred a large allocation of injected N to belowground

processes from low accountancies in aboveground tissues. While the greatest foliar
15N recovery may be expected when injections are timed with periods of peak

foliar growth, refilling of N storage pools in conifer foliage may also account for a

strong 15N recovery in needles. This experiment took place late in the growing

season, when most growth is in roots and structural tissues (Weinstein et al., 1991),

and when root N uptake is greater than plant N demand (Millard and Grelet,

2010). The high canopy 15N content observed is consistent with sequestration of

this additional N in overwinter storage pools in the needles, while belowground

demand for N may be fully satisfied by ongoing root uptake.

3.4.2 Needle 15N Distribution

Overall, measured needle biomass for each section varied considerably beyond

the expected allometric distribution based on tree size, presumably because of

the edge nature of the trees. This accounted for 53.1 % of the overall canopy
15N in excess of the natural abundance control, considerably greater than other

studies using smaller trees (e.g. Horwath et al. (1992); Augusto et al. (2011)),

although Proe et al. (2000) found a similar recovery (45 %) in the foliage of 5-8 m

conifers, one week after injection. While it is difficult to compare label recovery
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between studies, our canopy estimates of 15N recovery are substantially greater

than Augusto et al. (2011) (42-62 %), which suggested that their recovery may be

due to lower canopy:biomass ratios (Ritson and Sochacki, 2003) in their larger trees

compared to Proe et al. (2000), while we used edge profile trees with relatively

large canopies which may have contributed to their relatively greater short-term

allocation to a relatively larger crown.

Our samples were all collected 4.5 months after the injection, in winter, and were

from the entire foliar biomass (including both the 2011 needle cohort and older

needles). At this time, needle 15N abundance was expected to be biased towards

current year needles (Augusto et al., 2011) as most conifers store nitrogen in roots

and one-year-old needles, in photosynthetic proteins such as RuBisCo (Millard

et al., 2007), remobilising this N in the next growing season (Millard and Proe,

1992). Foliar 15N abundance was biased towards the upper canopy, consistent

with Proe et al. (2000), where crown zones were assigned based on age of the

relevant stem section. Our results are however in contrast to Augusto et al. (2011)

who reported no difference between upper and lower canopies. Canopy nitrogen

storage is thought to be more important in larger trees (Miller, 1986), as they

have larger pools of current year needles available, and greater N requirements in

the spring. N storage pools can be rapidly mobilised to overcome limited uptake

from the soil, providing a resource ready for the development of new foliage the

next growing season (Augusto et al., 2011). Current year needles, expected to

be the store for this excess 15N, were approximately 2.8 %, 7.3 %, and 15.1 % of

the total foliar yield for CanopyBOT , CanopyMID, and CanopyTOP respectively,

significantly biased towards the upper canopy sections.

However, 15N atom % abundance and recovery did not exactly follow this

distribution, with equal apparent total allocation of injected 15N to the middle and

upper foliage regardless of the difference in the total mass of new cohort needles.
15N labels absorbed from the soil are typically found in regions of high metabolic
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rates (Mead and Pritchett, 1975), which are usually located within the canopy

in regions of greater exposure to sunlight and more photosynthetic potential

(Ellsworth and Reich, 1993; Hollinger, 1996), and the apparent inconsistency in N

allocation compared to new needles may be due to different spatial demands for

N for photosynthetic function.

Dilution (Swanston and Myrold (1998)) explained much of the variation in 15N

atom % in the most parsimonious model, both at the level of individual trees

(canopy ratio) and in individual sections within the trees (needle section biomass),

but when this effect was removed by the 15N recovery model, only vertical position

of the section remained significant, average recovery in the upper canopy being

greater than in the lower canopy. Respectively, the 15N atom % and recovery

models explained 28 % and 23 % of the variability in the amount of 15N label,

calculated from 30 needles per individual sample with considerable variation

typically found among replicates from the same section. The within-section

variability was not explainable by the measured variables as, aside from N content

of samples, no explanatory variables were measurable to the individual sample

level. Exposure (Kohyama, 1980; Zavitkovski, 1981) and competition (Vanninen

and Mäkelä, 2000) would have varied within each canopy section due to individual

needles positions, as well as variable amounts of different age classes (Norman

and Jarvis, 1974). Alternatively, uneven allocation may have been due to the

heterogeneous distribution of the label within the tree over the time period of the

study.

3.4.3 Branch 15N Distribution and contrast with foliar 15N

Branch atom % 15N was even more varied than in needles, with recorded atom %

as high as 10.66 % but often with measured 15N at natural abundance levels,

especially so in CanopyBOT , where the coefficient of variation was 137 %. This
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variance was mostly due to one of the five trees analysed for branch 15N having

a consistently very high 15N enrichment in the branches (resulting in an average

branch atom % in the whole tree of over 6 %), with it having the third highest

needle 15N content of the 13 trees, and highest from the five trees where branches

were also analysed.

Wood contained a much larger range of ages and potentially a greater range of

living tissues within individual branches, especially in larger trees where needle

lifespan is much shorter than the age of the tree. Depending on the position of

the branch, there was also potentially variability in growth and metabolic rate

among branches due to environmental factors. We also used the needle biomass to

predict branch biomass in the allometric model, rather than direct measurement,

expecting it to be more accurate than DBH for these trees where release from

competition would increase branchiness (Mäkinen and Colin, 1998; Ackerman

et al., 2013). If, in this case, we substantially overestimated the branch masses, this

would also have caused an overestimation in the label recovery in the branches.

Alternatively, this high variation in both 15N recovery and 15N atom % (which we

measured directly and is not dependant on branch biomass estimates) may also

have been due to variation in N allocation. Sap flow in many trees is sectorial

(Larson et al., 1994; Orians et al., 2004; Gloser et al., 2008), and the injection in

summer 2011 may have initially reached specific regions of the canopy in the same

sector as the injection site. As foliar N pools are dynamic and N is assigned both to

maximise photosynthetic capacity across the canopy and for storage (independent

of plant N (Fife et al., 2008; Millard and Grelet, 2010)), variation in needle and

branch 15N may have been due to a more gradual movement of 15N to some parts

of the canopy.

In the autumn, N-uptake is typically greater than total tree N demand, as shoot

extension and foliar production have ceased (Weinstein et al., 1991), but production

of storage proteins continues. In contrast, no major N storage in conifers occurs
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in bark and wood (Millard and Grelet, 2010) during this period, and radial wood

production in branches, stem and roots is ongoing in early autumn (Weinstein

et al., 1991). New wood laid down following the August injections may be a more

continuous structural sink for 15N while foliar sinks may be more transient as the

N moves around the canopy in order to maximise 15N storage in foliage at the

end of the year. The high branch 15N in some branches may reflect the branches

first reached by the 15N label and the highest 15N abundances in branches at the

base of the canopy may be structural sinks closest to the injection site where the

additional 15N is least diluted by N already in the sap, translocated from foliage

throughout the upper canopy.

Rates of uptake of the solution from the injection site varied among trees but did

not correlate with 15N abundance or recovery of the expected label, and there were

no relationships between the uptake rates and measured total biomass, canopy size

or ratio, needle biomass or total N % (all P > 0.05). In non-labelled experiments,

these rates are highly variable (Sanchez-Zamora and Fernandez-Escobar, 2004)

among tree species and seasons of injection. While we expected uptake to be rapid

due to movement of the xylem stream (Meinzer et al., 2001), this variation may

have been due to the difficulty of standardising stem wounding, accessing different

depths of the stem with different flow rates (Delzon et al., 2004). Variations

in canopy morphology (Fiora and Cescatti, 2008) within individual trees may

also have driven differences in relative flow rate experienced by a single location

radially, or around the circumference (Čermák et al., 2007) of the stem.

There was not a significant difference in total needle biomass between the inside

and outside of the stem, once this was adjusted to compare identical proportions

of the circumference despite expectations due to the trees’ position on the edge

of the stand and a well known release from competition on the exposed size. As

branch biomass was calculated using an assumed linear relationship with measured

needle biomass, the very high recovery in some sections may be a result of this

relationship varying throughout the canopy.
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3.5 Conclusion

We were able to successfully label the entire canopy with an apparent total recovery

of the label in both the needles and branches based on scaling the 15N recovery

through the canopy biomass. The entire needle biomass was the main sink for

the injected 15N, accounting for over 50 % of the total injection, allocation being

greatest towards the upper canopy, which contains a greater proportion of young

needles. 15N recovery in branch biomass was considerably more varied, particularly

at the bottom of the tree, likely due to the distribution of sap flow and demand

for N for growth in wood, but not foliage, during the autumn. The overall high

recovery can partly be attributed to the habit of the trees and the method of

injection, which is well established to allow higher recovery of applied 15N than

soil applications, but it is likely that the seasonality of the injection also played a

part in the variation observed as at other times of the year N may be assigned in

different proportions to above and below-ground pools due to phenological growth

patterns. These differences highlight the importance of considering seasonal N

dynamics and partitioning of the 15N label among biomass age classes in stem

injection studies, particularly in conifers, while overall it is clear that the technique

is a viable and efficient method for creating 15N biomass labelled in a cheaper,

and larger scale than using labelled fertilizer on saplings.



Chapter 4

Differences in 15N-Return in

Sitka Spruce between Canopy

and Soil 15N Treatments

4.1 Introduction

Forests in the northern hemisphere are carbon (C) sinks of a net 0.6-0.7 Pg C y−1

(Goodale et al., 2002) and are also typically nitrogen (N) limited (Vitousek et al.,

2002; LeBauer and Treseder, 2008) with intense competition for ecosystem N

among plant, soil microbial and mineral sinks (Kaye and Hart, 1997). As these

forests currently receive extra inputs of N transported by the atmosphere (Galloway

et al., 2004) from human activity (Vitousek et al., 1997; Holland et al., 1999),

nitrogen deposition (NDEP ) has been suggested as one potential driver for this net

forest growth.

Estimates of the effects of nitrogen deposition (NDEP ) on forest C uptake

(henceforth referred to as ∆C/∆N) can vary substantially with one estimate

65
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of C accumulation as great as 120-150 kg C kg N −1 (Magnani et al., 2008),

based on a comparison of European net ecosystem productivity (NEP) against

N deposition (Magnani et al., 2007). However, for a sink of this magnitude,

NDEP needs to be accumulated in trees and sequestered in high C/N, long-lived

bolewood (Townsend et al., 1996), which contradicts the results of manipulative

experiments and N budgets. Isotope tracer experiments where 15N-distinct N is

directly applied to the forest floor find that the forest floor (soils and microbial

biomass (SMB)) are the major sinks (70 %) for 15N tracers, while only around

20 % can be traced into trees and even less (5 %) into wood (Nadelhoffer et al.,

1999c). Estimates from studies based on N budgets also tend to be low (e.g.

46 kg C kg N −1 in Europe; (c.f de Vries et al., 2006)) and one particular 15N

amendment and modelling synthesis, from Harvard Forest (Currie et al., 2004),

found a ∆C/∆N effect as small as > 5 kg C kg N −1, with most N for forest

growth derived from mineral soil. Consequently, the high estimates from Magnani

et al. (2007) have been suggested to be due to covariance with factors such as

edaphic N and site history (de Vries et al., 2009; Högberg, 2012), climate, GPP,

and dry NDEP contributions (de Vries et al., 2008; Sutton et al., 2008).

However, 15N amendment experiments (e.g. Nadelhoffer et al., 1999c) typically

apply 15N directly to the soil and cannot include interactions and uptake across

the canopy (Sievering, 1999), nor interactions with unlabelled edaphic N pools

(Jenkinson et al., 1999). Estimates from these studies could therefore underestimate

the total ∆C/∆N effect. A recent modelling study (Dezi et al., 2010) suggested

a strong ∆C/∆N effect (up to 121 kg C kg N −1) when management, foliar

uptake, changes in litter quality, and soil processes were taken into account, and

canopy uptake of N may raise allocation to wood to 10 or 15 % of total NDEP

(Sievering, 1999), doubling the effect assumed from soil 15N traces, while a study

in North America from forest inventory data used in a similar manner to Magnani

et al. (2007) found a strong wood effect, which, if combined with estimates from
15N studies for soil ∆C/∆N, yields a total effect of around 100 kg C kg N −1.
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While more difficult to obtain a carbon effect from, estimates of ecosystem N

retention can also be obtained from N budgets, which incorporate canopy uptake

as a difference between the sum of measured throughfall and stemflow and total

NDEP inputs onto the forest (Friedland et al., 1991; Sievering et al., 2007). The

difference between these values can sometimes result in high estimates of canopy

N retention (e.g. Sievering et al., 2007, 80 % of NDEP ) and consequently correlate

with relatively small changes in measured C stocks from plant growth. However,

these methods typically do not include losses of N back to the atmosphere as trace

gases, which may occur alongside uptake and utilization of N via the canopy.

Nitrogen uptake can occur across both foliage and twigs, via mechanisms of ion

exchange (Bowden et al., 1989; Boyce et al., 1996; Sparks, 2009) and simple

diffusion (Klemm et al., 1989) across twig surfaces. These different methods may

vary in their ability to take up specific nitrogen species (Wilson and Tiley, 1998)

due to transport and reduction costs, as well as internal cell N concentrations.

Overall, estimates of the total canopy uptake effect vary considerably, from around

3/4 of NDEP retained or taken up (Gaige et al., 2007; Sievering et al., 2007), to

lower estimates when directly measured of between 25 % (Friedland et al., 1991)

and 30 % (Ammann et al., 1999) of dry 15N load, or as little as 5 % of 15N mists

recoverable in foliage and branches one day after application (Wilson and Tiley,

1998). These estimates are often difficult to interpret as varying methods, NDEP

magnitudes (Chiwa et al., 2004), and timescales interact with species and site

specific effects, as well as both positive (Sievering et al., 2007; Wortman et al., 2012)

and negative (Maurice and Crang, 1986; L’Hirondelle et al., 1992; Wellburn, 1990)

impacts on canopy physiology such as changes in photosynthetic performance or

N-related phytotoxic effects. Uptake estimates from individual branches and leaves

must also be carefully interpreted as NDEP interacts with multiple overlapping

branches and leaves as it passes through the canopy (Boyce et al., 1996). In the

only available 15N-tracer study carried out at the forest catchment scale, where
15N was applied to the canopy, twigs, branches, and bark were found to be a major

sink (25 - 50 % recovery) of helicopter-applied 15N three years after application of
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a 15N treatment (Dail et al., 2009), but it was unclear whether the bark retention

was due to uptake by trees or canopy mosses and lichens as this relatively high 15N

return was not in the bolewood, which is necessary for a strong ∆C/∆N effect.

Mineral fertilizer N applications onto the soil are also unable to directly trace the

fate of N from soil and litter pools, and litter recycling is usually the major source of

N nutrition (Schulze, 2000; Högberg, 2012), even under high NDEP regimes. NDEP

applications may release N mineralization from N limitations on decomposers (e.g.

Manning et al., 2008), but also may have toxic and suppressive effects on litter

decomposition. A meta-analysis (Knorr et al., 2005) of the effects of N addition

on litter decomposition revealed complex effects of N additions on mass loss of

litter quality, magnitude of NDEP relative to ambient deposition, and the length

of the study period. Rates of decomposition are also tied to litter decomposition

stage (Berg and Matzner, 1997; Carreiro et al., 2000), environmental conditions

(Manzoni et al., 2008), and background levels of N availability (Knorr et al., 2005).

In the 500 sites synthesised by Knorr et al. (2005), N additions generally had an

overall inhibitory effect on litter mass loss, but not at sites where N addition rates

were less than double the ambient N deposition level.

Changes in litter decomposition affect overall availability of N, and subsequent

changes in aboveground C if more is available to trees. Canopy uptake of N may

also affect decomposition as this may change demand for below-ground edaphic-

derived N and assignment of C to root systems and symbioses, in the same way as

increased N concentrations in the soil (c.f. Nadelhoffer, 2000). Finally, changes in

the soil system can occur concurrently with processes in the canopy and interactions

between plant C assignment and removal of N from throughfall by canopy retention

may impact soil processes in addition to the effects of nitrogen deposition to

soil processes alone. However, tracing the N released from decomposition is

difficult and requires 15N-enriched biomass to determine the magnitude of N

allocation to different ecosystem pools. These experiments are rare and expensive

as ecosystem N is spatially variable (especially in the soil) (Högberg, 1997), and
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litter decomposition is typically slow, necessitating high enrichment of 15N-labelled

biomass.

Up to now, there have been no published studies where the allocation of N from

canopy 15N deposition can be directly compared to the assignment of N within trees

under 15N deposition to the soil over sustained time periods. Canopy deposition

studies also typically do not address the potential for changes in a third factor,

i.e. soil N recycling via litter decomposition, and in general, knowledge of the

response of edaphic N to NDEP is sparse and difficult to predict. We designed an

experiment utilising saplings where N from these three sources could be traced

via combinations of treatments with a 15N label using one enriched 15N source

per treatment. Bulk NDEP was kept unaltered from ambient deposition and at

the same magnitude in all N-amendment treatments to allow a direct comparison

between the foliar-applied 15N label and the soil wet 15N deposition treatment

with minimal effect of total N abundance relative to controls. We also applied 15N-

labelled needle litter to investigate uptake and partitioning of available N coming

from litter recycling We aimed to trace the 15N label over time in the foliage, and

sample total 15N abundance in twigs, wood, roots, soil, and soil microbial biomass

extracts. By harvesting our saplings at the end of the experiment, we were able

to scale these 15N abundances to a mass balance 15N return, allowing comparison

of N partitioning between the treatments.
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4.2 Methods

4.2.1 Study Site

Our study consisted of 3-year old Picea sichensis (L. Bong.) saplings, located out-

doors at Forest Research Northern Research Station, Scotland (55◦86’N, 3◦20’W).

Thirty selected individuals from a cold-stored (4 ◦C, lifted January 2011) batch

of 2 year old saplings were potted in 60 L pots on a mix of 90% homogenised

stagnohumic gley topsoil (Clement, 2004), harvested from from Griffin Forest,

central Scotland (56◦37’N, 3◦47’W), and 10% low N/P/K compost. In June 2011,

the seedlings were randomly arranged in a 0.5 m spaced grid of 5 by 6 trees,

surrounded in an overall 9 by 6 grid by an additional 60 trees, potted on 100% low

N/P/K compost, and left to establish until summer 2012. Annual precipitation

at the research site was 704 mm, while annual temperatures varied between 1

- 19 ◦C. The trees remained in the initial configuration for the duration of the

experiment and remained healthy, with the exception of two individuals from the

treatment group suffering major needle discolouration and loss by the end of the

experiment. These were removed from the data collected once it became apparent

that these individuals were unhealthy, reducing the sample size of the two affected

treatments by one.

4.2.2 Experimental Treatments

Individual trees were assigned to six treatments based on current basal diameter

and height as well as a series of soil CO2 efflux measurements made over spring

and summer 2012 with a EGM-4 CO2 IRGA (PPsystems USA), as proxy for

differences in below-ground N cycling potential. Due to an aphid infestation in

spring 2012, six trees had lost some of the 2011 cohort of needles and were each
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Table 4.1: Treatment descriptions for the six experimental treatments. Total NDEP
for all deposition treatments was 54 g N ha−1 y−1 applied as NH4NO3and 15N-enriched

treatments were 98% double-labelled 15N-NH4NO3. Deposition target indicates the

method of application of the treatment, whether to the canopy or the soil.

Treatment ID Litter Deposition Target

NAlitter-Water (control) Natural abundance Water Soil
15Nlitter-Water 15N-enriched Water Soil

NAlitter-15Nsoil Natural abundance 15N-enriched NDEP Soil

NAlitter-15Ncanopy Natural abundance 15N-enriched NDEP Canopy
15Nlitter-NAsoil

15N-enriched Natural abundance NDEP Soil
15Nlitter-NAcanopy

15N-enriched Natural abundance NDEP Canopy

assigned to different treatments to avoid systematic biases

The six treatments (Table 4.1) were designed to test a unique combination 15N

source to the trees; a) litter type (either natural abundance NAlitter, or 15N-

enriched, 15Nlitter, b) deposition type, either , NDEP to the soil, (soil) or NDEP to

the canopy, (canopy), and c) 15N enrichment of the treatment; either water control

applied directly to the soil, (Water), natural abundance nitrogen, (NA), or 15N

nitrogen (15N). All treatments, except the water control on unlabelled litter, had

a single enriched 15N source (for example, the NAlitter litter treatment was paired

with a 15N-enriched NDEP treatment).

4.2.3 Artificial Litter Layer

Litter with a 15N-label was obtained from three 6 - 7 m tall Picea sichensis trees,

stem-injected with 13C and 15N double-labelled aspartic acid (see Churchland et al.,

2012) at Gisburn Forest, UK (54◦01’N, 2◦22’W). These were felled in November
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Figure 4.1: Experimental set up of the six treatments. Each treatment (Table 4.1)

received either a canopy or soil targeted deposition treatment (circles) and a litter

layer (rectangle in pot). In all treatments except the control there was a single source

of 15N enrichment, either in the deposition or the litter and a total N application of 54

g ha−1 y−1 N deposition. Colours correspond to treatments on later graphs (Figures

4.2, 4.3, 4.4).
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2010, and left on site until January 2011, when three additional trees were harvested

as a source for ‘control’ litter without 15N enrichment. The entire branch biomass

of each tree was dried in a 70 ◦C oven until needles were easily separated from

the branches, then stored in paper sacks in dry polytunnel until deployment. A

random sample of 100 needles from each of the trees was measured for N and C

isotope content 1 month before deployment, using the same methodology as later

samples. In the control trees, atom % 15N was at natural abundance (0.366 atom

%), while the labelled trees had a foliar 15N abundance of 0.629, 1.216, and 1.597

atom %. All trees had a foliar 13C content at natural abundance (despite the 13C

injection), and N content (1.118 % (s.d. = 0.06 )) of the needle harvest from each

tree was not significantly different (ANOVA, P > 0.05) between the sources.

Each of the 30 trees in the experiment received 0.8 kg of this litter in August 2012,

spread in an even layer (approximately 4-5 cm depth) across the soil surface, with

the three labelled and three unlabelled tree sources distributed at random between

the appropriate recipients. Each individual only received litter from a single tree,

to reduce the potential for interactive effects of litter mixing (e.g. Gartner and

Cardon, 2004; Smith and Bradford, 2003).

4.2.4 Deposition Treatments

The simulated nitrogen deposition applied to 4 of the 6 treatments was equivalent

to approximately 54 g ha−1 y−1 N in excess of background NDEP , as of either

98% 15N double labelled NH4NO3, or unlabelled NH4NO3. Ammonium nitrate was

chosen since it contains both mineral ions typically found in nitrogen deposition.

This treatment was applied in DI water solution every 3-6 weeks from February

2013 until March 2014 as either a 0.5 L (soil applications), or a solution of 10-15

ml (canopy applications), the canopy solution being increased in volume (but not

in N content) in summer 2013 to match increases in the canopy biomass of the
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trees. Soil treatments were sprayed onto the litter surface using a pressurised

hand sprayer, while foliar applications were applied directly onto needles and

twigs using a brush pre-soaked with treatment solution. A brush was used for

this application, rather than a spray (c.f Bowden et al., 1989; Boyce et al., 1996;

Dail et al., 2009) as we wanted to ensure that we knew how much N was available

for uptake by each tree without needing to measure and consistently recalibrate

models for canopy surface area with each successive treatment application over

the 13 months of the experiment. These treatments began at the top of the tree

and were continued on each branch and stem section in turn down through the

canopy until the solution was exhausted. The bottle was then washed out with an

additional 10 ml rainwater and poured directly down the stem of the tree. Control

water treatments were applied directly to the litter surface in the same manner as

the soil applications.

4.2.5 Routine Biomass Measurements and maintenance

Routine measurements of tree growth were made every two months during the

growing season and every three months outside the growing season. At each

occasion, tree height was measured with a plumbline marked in centimetres, and

basal diameter was measured as the mean of two calliper measurements at across

the stem at the litter surface. At each of these instances, leaf litter not derived

from the experiment was removed and weeds growing in the pot were uprooted,

manually shredded, and left on the soil surface, so none of the 15N label in their

foliage was removed from the potted system. The pots were free-draining and 15N

exported in flow through the pot was not retained.
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4.2.6 Time Series Measurements

Twenty-five needles per tree were collected from the entire canopy on 13 occa-

sions between August 2012 and May 2014, 10 of these being after the deposition

treatments began in February 2013. This number was chosen to obtain as repre-

sentative a sample as possible without detrimental effects of cumulative defoliation

on the trees. After bud burst in May 2013, a harvest of the 2013 needle cohort

was made alongside the general harvest, which was then specifically targeted

on the 2011-2012 cohorts of needles. In the first instance (May 2013), the 2013

cohort sample was a single, entire bud, but subsequent harvests were taken from

the entire current cohort of biomass in the same manner as the general needle

harvest. For the May 2014 measurement, this sample was taken from the entire

harvested needle biomass and contained more (∼ 100) needles. All samples were

collected immediately before application of the regular deposition treatments, to

allow as much time as possible for movement of the assimilation products within

the tree (in contrast to the short-term foliar 15N return, e.g. Wilson and Tiley

(1998)), and to allow as much retention of 15N remaining on leaf surfaces in the

soil as possible by natural washing by rain events. The harvested needles were

immediately transported to the lab and either immediately processed (see below),

or frozen at -4◦C until it was convenient to dry them (usually within 7 days).

To avoid extensive damage from repeat sampling of the same trees, branch and

twig samples were only collected in October 2013 and at the termination of the

experiment in March 2014. In October, one random branch per tree was removed

with secateurs from both the current year cohort and one from the oldest age class

of branches (which contained biomass from the 2011, 2012, 2013 and 2014 growing

seasons). Three ∼ 0. 75 cm ‘cookies’ containing the entire radial section (bark

included) were cut from the entire length of each branch and used for isotope

analysis, while the whole branch was dried to obtain dry weight. In March 2014,

a similar method was used, but radial cookies were collected from three different

branches. Likewise, litter samples were only collected every three months to avoid
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depleting the litter pools in the pots and were a small fraction (< 5 %) of the

total litter in the pots.

4.2.7 Destructive Measurements

The experiment was terminated in March 2014. After recording of basal diameter

and height, the stem was cut at the base to kill the tree and the branches

immediately removed with clippers at their junction with the stem, then separated

into the two age classes (2013 and older cohorts) used in the sequential needle

samples. The stem was also separated into these two sections by cutting at the

divide between annual growth stages. This resulted in sections which contained

the vertical growth achieved during each year but did not separate the radial

growth occurring across the whole stem length.

All biomass was dried in paper sacks inside a 80 ◦C timber oven until mass loss had

ceased (3 days). After drying, the needles were separated from the dry branches

and each section was weighed.

The litter layer on the surface of each pot was removed using a trowel and a 7 cm

diameter, 20 cm (to the base of the pot) soil core were taken from each pot at a

random location between the main stem and the edge of the pot. The soil cores

were separated into root and soil components while moist and the soil homogenised.

15 g of homogenised soil was dried in an 80 ◦C oven to prepare the soil for total
15N/N and 13C/C measurement as well as water content calculations based on

mass loss. A further 15 g dry weight equivalent subsample of field-moist soil was

fumigated for 3 days with chloroform in a vacuum oven, then extracted in 45 ml

0.05 M K2SO4 for 3 hours on a 220 rpm shaker along with an unfumigated control.

The extract solution was freeze-dried and subsamples of the salt were analysed

on a CN analyser for C and N content. The remaining salt was rehydrated,
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adjusted in volume to deliver an appropriate amount of N for mass spectrometry,

and concentrated via diffusion onto PTFE-enclosed acidified paper disks using

the method of Stark and Hart (1996). These discs were analysed on the mass

spectrometer for 15N content measurement only to improve the accuracy of the

result.

Soil microbial biomass N was calculated using N content and a KEN (conversion

factor to equate extractable N with actual soil microbial N) of 0.54 (Brookes and

Landman, 1985), where SMB N was (total N extracted from fumigated soil / total

N extracted)*KEN . Microbial 15N was calculated from these measurements along

with 15N abundance of the control and fumigated pools by equation 4.1:

δ15NSMB = δ15Nfumigated ∗Nfumigated − δ15Nunfumigated ∗Nunfumigated

Nfumigated −Nunfumigated

(4.1)

4.2.8 Sample Processing

All biomass samples were washed in distilled water to remove remaining surface

residues and dried in a 80 ◦C oven until mass loss had ceased (usually 1 - 2 days).

Needles on the branches and twigs were removed after drying and before milling.

The samples were milled on a Retch MM-200 ball mill, in metal capsules with

a single ball, until a fine powder was produced, except for the needle samples

between August 2012 and February 2014, which, due to their small volume, were

milled in plastic micro-test tubes with two small ball bearings. A subsample of

this powder (∼3 mg) was analysed for [N], 15N, [C] and 13C on a SerCon Callisto

CF-IRMS Isotope Ratio Spectrometer (School of Biological Sciences, University

of Aberdeen, UK), along with standards of known isotope abundance.
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4.2.9 Final Experiment Calculations and Statistical

Analyses

The dry masses of the whole tree sections from March 2014 were used to calculate

growth metrics to compare trees and to calculate an above-ground mass balance

at the termination of the experiment. Rather than compare raw mass of the tree

compartments we calculated three metrics, bulking the 15N/N deposition type

combinations together to produce three treatments for bulk nitrogen regime with

n = 10 (water control, foliar deposition, soil deposition) to test these growth

effects. The metrics calculated were Above Ground Biomass (AGB, the sum of

both the 2011-2012 and 2013 needle, branch, and stem cohorts), AGB % Canopy

(the percentage of the total biomass made up by the canopy), Canopy % Foliage

(the percentage of the canopy biomass that was foliage) and height increment

(length of leader at the end of the 2013 growing season as a percentage of height

of tree at the end of the 2012 growing season).

The isotope analyses used all treatments where the source of 15N enrichment

differed, giving six treatments with n=5 each. Time series data were analysed

as linear mixed effect models where the fixed effects were time and treatment

while individuals were random effects. In addition, we fitted an autoregressive

moving average correlation structure to account for autocorrelation of individuals

through time, using REML method due to small sample sizes. We also allowed for a

greater variation in 15N content later in the experiment by implementing a variance

structure, as later in the experiment there was greater potential for variation with

a greater cumulative application of N. Comparisons between treatments in these

models were performed by the Tukey HSD post-hoc test.

The mass balance was calculated using the March 2014 biomass, [N], and 15N

measurements, assuming that all enrichment above natural abundance was derived

from the experimental treatments. Below-ground compartments (soil, roots,
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microbial extracts) were included in the mass balance but as uncertainty in 15N-

label distribution was much greater between these treatments, the total recovery

is combined for a single below-ground 15N return.

The mass balance calculation was made by subtracting the atom % 15N in the

control NAlitter-water treatment from observed atom percent in the five 15N-

enriched treatments, to calculate 15Nexcess, using the total mass of 15N added in

the deposition treatments, or estimated to be released from the litter based on

a separate litterbag experiment (see Chapter 5), (15Nadded), and the average N

mass of the pool in question (N ), in equation 4.2 to work out the total 15N return,
15N return(%).

15N return(%) =
15Nexcess ∗N

15Nadded

∗ 100 (4.2)

Uncertainty in the mass balance calculations were propagated fully using standard

methodology (as described in Chapter 3.2.7) to take into account uncertainty in

original measurements and averages. All statistical analyses were performed in R

(R Core Team, 2013) v3.1.0, using the package ‘nlme’ (Pinheiro et al., 2013) and

the glht function in the ‘multcomp’ package (Hothorn et al., 2008).
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4.3 Results

4.3.1 Needle Time Series

Differences in 15N content of the 15N-labelled NDEP treatments (NAlitter-15Nsoil

and NAlitter-15Ncanopy ), and the water control were apparent within a month of

the deposition treatments beginning (Figure 4.2). The 15N content of needles in

cohorts older than the experiment (2011-2012) in the 15N deposition treatments

increased over time, to about 0.41 atom % (NAlitter-15Ncanopy) or 0.38 atom

% (NAlitter-15Nsoil) by April 2014, while the control NAlitter-water treatment

remained consistently at natural abundance (0.365 %). Over this period the

corresponding needles in 15N litter treatments (15Nlitter-Water,15Nlitter-NAcanopy,

and 15Nlitter-NAsoil) did not display a consistent trend in enrichment, although

variance was very high in these treatments, especially early in the growing season.

The explanatory factors of treatment, date, and the treatment:date interaction

were all significant (P < 0.001) in explaining changes in 15N abundance, but only

the NAlitter-15Ncanopy (post-hoc TukeyHSD, P < 0.001 with all other treatments)

and NAlitter-15Nsoil treatment (P = 0.03 against NAlitter-Water) were significantly

different from the unlabelled control, NAlitter-Water (Table 4.2). In the most

parsimonious model, the correlation structure did not improve parsimony due to

the high variance early in the growing season.

N content of the needles fluctuated with an overwinter peak in N content in both

2013 and 2014, although peak [N] was not as great in the second year. This

periodicity was not observed in the 2013 cohort of needles, which had a high N

(∼7.5 %) soon after budburst, but did not peak over the winter (Figure 4.3)

In the 2013 cohort of needles, the 15N enrichment was greater than the water

control in both the NAlitter-15Ncanopy and NAlitter-15Nsoil treatments (Figure 4.4,

top), and also in 15Nlitter-NAcanopy, although in this treatment, this was due to
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a single individual which consistently displayed a high needle 15N abundance on

all assessment dates for this cohort. While this difference between treatments

in the 2013 cohort of needles was significant (P < 0.0176) in determining the
15N abundance along with time (P < 0.0001), there was no interaction term

or correlation structure in the best AIC model, and the high variation in 15N

expression meant that only the NAlitter-15Nsoil — NAlitter-Water comparison

was significant (P = 0.008) in the TukeyHSD test, although the NAlitter-15Nsoil

comparison with the 15Nlitter-Water and 15Nlitter-NAsoil treatments also had

borderline P values (Table 4.3).

4.3.2 Destructive Harvest

The two trees which died were in the NAlitter-Water, and NAlitter-15Nsoil treatments

which reduced their sample size to 4 for the 15N-enriched treatment groupings at

the destructive harvest.

At this time, there were no significant differences among bulk N treatment groupings

in any of the biomass variables measured (all P > 0.05, Table 4.4) . Across the

whole experiment, above ground biomass was 370 ± 119 g per tree, 74 ± 5 % (s.d.)

of this being canopy, while canopy mass was 38 ± 2 % needles. The trees gained

on average 12.4 ± 5.8 % (s.d.) of their height over the 2013 growing season, whist

litter mass when removed from the pots at the end of the experiment averaged

65.5 ± 33.3 % (s.d.) of the original dry mass applied.

The 15N content of the major biomass components (Table 4.5 and Table 4.6) varied

among treatments. There were significant effects of the treatment in both 2013

(P = 0.003) and 2011-2012 (P < 0.001) needle cohorts, both stem cohorts (P <

0.001, P < 0.001), and the 2013 branch cohort (0.009), but not the 2011-2012

branch cohort (P = 0.39). Within the treatments , it was only NAlitter-15Ncanopy
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Figure 4.2: 15N content (atom %) of needles older than the 2013 cohort from
15N-labelled deposition treatments (above) and 15N-labelled litter treatments (below).

NAlitter-Water deposition is shown on both plots (white); on the upper plot treatments

are NAlitter-15Ncanopy (red), NAlitter-15Nsoil (orange), and on the lower plot treatments

are 15Nlitter-NAcanopy (dark blue) 15Nlitter-NAsoil (light blue) 15Nlitter-Water (grey).

Error bars show standard error of the mean.
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Figure 4.3: N content of needles in both measured cohorts, 2013 (top) and

2011-2012 (bottom). While a yearly cycle is observed this does not differ between

treatments NAlitter-15Ncanopy (red), NAlitter-15Nsoil (orange), 15Nlitter-NAcanopy (dark

blue) 15Nlitter-NAsoil (light blue) 15Nlitter-Water (grey), and NAlitter-Water (white).

Error bars show standard error of the mean.
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Figure 4.4: 15N content (atom %) of 2013 needle cohort from 15N-labelled

deposition treatments (above) and 15N-labelled litter treatments (below). NAlitter-

Water deposition is shown on both plots (white); on the upper plot treatments are

NAlitter-15Ncanopy (red), NAlitter-15Nsoil (orange), and on the lower plot treatments

are 15Nlitter-NAcanopy (dark blue) 15Nlitter-NAsoil (light blue) 15Nlitter-Water (grey).

Error bars show standard error of the mean.
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which significantly differed from the other treatments in the stem sections P <

0.001, P < 0.001), as well as the 2011-2012 needles (P < 0.001), while, in the 2013

needles, when considering the measurement for this time only, all five 15N labelled

treatments were significantly different from the NAlitter-Water control (p < 0.001).

Root atom % N was not statistically different between treatments, but the lowest

mean atom % was found in the NAlitter-Water treatment, and the highest 15N atom

% in the NAlitter-15Nsoil, NAlitter-15Ncanopy, 15Nlitter-NAsoil, and 15Nlitter-NAcanopy

treatments (Table 4.5). Soil 15N also did not differ between treatments. There were

no statistical differences in total N extractable from 0.05M K2SO4 unfumigated

extracts between pots (P > 0.05, mean = 0.010 mg g−1 dry soil), nor between

the N content of microbial biomass (P > 0.05), which was fairly variable and

estimated at 0.041 ± 0.03 mg g−1 soil. Microbial atom % calculated from the

fumigations was very variable and was not related to treatment, and there was

also no statistical difference in bulk soil 15N. As there was more uncertainty in the

soil system results as they were not measured over time, they were combined for

the mass balance.

4.3.3 Mass Balance Estimates of Above-Ground 15N Re-

turn

Using the mass balance approach detailed above, the total estimated 15N recovery

in the above-ground parts of the tree was calculated. The highest returns of

the 15N label were calculated as 63.67 ± 6.05 % (st.dev) in the NAlitter-15Ncanopy

treatment and 20.58 ± 6.31 % in the NAlitter-15Nsoil. These two treatments were

significantly (P < 0.001, P < 0.01) different than the NAlitter-Water control and

are shown in Table 4.7. 15N recovery was highest in the 2013 and 2011-2012

needles, and 2011-2012 stem in these treatments, while in the NAlitter-15Ncanopy

treatments there was also a high recovery in the 2013 branches. The labelled litter
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treatments displayed a low overall N return based on our initial field-based mass

loss estimate, which remained non-significant even when we revised these based

on conservative literature values (Titus and Malcolm, 1999; van Huysen et al.,

2013) which better fit the overall measured mass loss. These treatments displayed

a lower total 15N return and high standard deviation; 15Nlitter-Water 9.623 ± 6.54

(s.d.), 15Nlitter-NAsoil 12.59 ± 6.38, and 15Nlitter-NAcanopy 11.52 ± 6.05, and were

not significantly different than the water control (all P > 0.05).

4.4 Discussion

4.4.1 Overall 15N Return

Conventional forest nitrogen deposition experiments (e.g. Nadelhoffer et al., 1999c)

apply tracers directly to the soil in a similar manner to the NAlitter-15Nsoil treatment

in this study. Estimates of N recovery in plant biomass in such experiments is

around 20 %, partitioned between woody (5 %) and non-woody (15 %) biomass

(Nadelhoffer et al., 1999c) while in our NAlitter-15Nsoil treatment, total 15N recovery

was very similar to this, at 20.5 ± 5.5 %. In this treatment, total woody recovery

of the 15N label (in 2011-2012 branches, and both stem sections, and excluding

the 2013 branches, which were primarily non-woody twigs) was 3 %, although

standard deviation was high (4 %).

In contrast, the highest recovery of the 15N label above ground in all sections

except the 2013 needles (where NAlitter-15Nsoil had the highest return), was in

NAlitter-15Ncanopy treatment, with a total 15N return above ground of 64 % of that

applied. Total woody recovery in this treatment was primarily located in the

2011-2012 stem section (14.6 % ± 3). This was two to three times as much of the

total above-ground 15N return within the treatment than in the NAlitter-15Nsoil
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Needles Branches Stem

NAlitter-Water (control) 0.3680 ± 0.002 a 0.3678 ± 0.002 a 0.3673 ± 0.001 a

15Nlitter-Water 0.3698 ± 0.003 b 0.3838 ± 0.026 a 0.3735 ± 0.015 a

15Nlitter-NAsoil 0.3756 ± 0.003 b 0.3840 ± 0.021 a 0.4879 ± 0.032 a

15Nlitter-NAcanopy 0.3757 ± 0.013 b 0.3750 ± 0.008 a 0.3858 ± 0.008 a

NAlitter-15Nsoil 0.4019 ± 0.023 b 0.3811 ± 0.029 a 0.4097 ± 0.057 a

NAlitter-15Ncanopy 0.3936 ± 0.008 b 0.4469 ± 0.030 b 0.5734 ± 0.135 b

Table 4.6: Mean15N abundance in 2013 cohort tree compartments. Values shown ±

standard deviation. Lowercase letters indicate significant differences among treatments

for the same pool at the P < 0.05 level or higher.

treatment. As the method of 15N application was the only difference between these

two treatments, differences in 15N recovery can be attributed to N partitioning

differences due to the mode of 15N uptake, and while the overall treatment effects

of canopy versus soil labelling were clear, these differences must be considered in

the context of seasonality (N content in the needles varied throughout the year

(figure 4.3)), as the harvest in March was during the period when N is remobilised

from storage to satisfy the demands of the new growing season (Millard and Grelet,

2010).

In evergreen conifers such as Sitka Spruce, N is stored overwinter in the youngest

age class of needles (Millard and Proe, 1992), in contrast to deciduous species

which store N in stems and roots (Millard and Grelet, 2010). This N can contribute

9 - 46 % of N for new shoot growth (Millard and Proe, 1992), independent of soil

N supply (Millard and Proe, 1993; Weatherall et al., 2006b). Mobilization of these

reserves to new shoot growth can occur both by direct remobilization of needle

N (Millard, 1996), and xylem-phloem-xylem recyling via the roots (Marschnert

et al., 1997), although it is not known if the latter process operates in conifers

(Weatherall et al., 2006b). We did not find a clear pattern in atom % 15N of the

roots in our March 2014 sample which could confirm that recycling was occurring
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Canopy 15N Deposition Soil 15N Deposition

2013 Needles 7.17 ± 3.04 % 9.50 ± 3.40 %

2011-2012 Needles 13.41 ± 2.40 % 3.94 ± 2.66 %

2013 Branches 20.77 ± 2.86 % 4.82± 3.46 %

2011-2012 Branches 3.12 ± 0.14 % 0.02 ± 0.07 %

2013 Stem 1.04 ± 0.04 % 0.21 ± 0.02 %

2011-2012 Stem 14.64 ± 3.15 % 2,78 ± 4.04 %

Total Woody Biomass 18.80 ± 3.23 % 3.01 ± 4.04 %

Total Above Ground 60.14 ± 5.75 % 21.28 ± 6.85 %

Below-Ground1 7.28 ± 3.55 % 12.13 ± 3.57 %

Total 15N Recovery 67.42 ± 6.76 % 33.41 ± 7.72 %

Table 4.7: 15N Return as % of total applied 15N label in in the above- and below-

ground sections of the two labelled deposition treatments. Also presented are total

percentage accountancy in woody sections (stem and 2011-2012 branches), total 15N

return above-, and below-ground and in total. 1 indicates combined soil and root

recovery as total root mass was very variable. Errors terms are standard deviation

obtained by propagating the error in measurements of different pools while total

recovery and error are obtained by summing the recovery and propagating the error of

individual pools making up the total.
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via this pathway as no significant differences were found among the treatments in

this pool. A slightly elevated 15N content over the water control was evident from

all 15N-enriched treatments but the variation within these treatments was not

great enough for detection of a difference, nor were there detectable differences in

soil bulk 15N or K2SO4-extractable N at this time. Using Picea sichensis litter with

a greater N enrichment in this study, Weatherall et al. (2006a) in a similar potted

experiment on younger seedlings found only (> 2.5 %) of N released from litter was

retained in seedlings. The 15N enrichment of the biomass and potential N uptake

from the litter used in this study may have been too low for a detectable trace

to tree or microbial pools on the mass spectrometer. Zeller and Colin-Belgrand

(2001) found 0.2-0.7 % of litter 15N to be retained in roots after 3 years. While

such recoveries are likely to depend on species and nutrient supply, if similar levels

were found in this experiment this may have influenced the low return despite our

higher estimated 15N release.

4.4.2 15N Return in Needles Over Time

Over the the 2013-2014 winter season, the N content of all needle treatments in

the 2011-2012 cohort was relatively conserved (Figure 4.3) with only a relatively

small reduction in N content over this period early in the growing season. Since

most of the decline in needle N content over the previous year occurred after April,

the proportionately higher 15N return in wood in the NAlitter-15Ncanopy treatment

is unlikely to be explained by high concentrations of mobile labelled N in the

phloem derived from the needles as opposed to permanent pools within the stem.
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4.4.3 15N Return in Wood

In a canopy-level 15N-fertilization experiment, Dail et al. (2009) addressed the

stratification of the bole by separating tree cores into three stem sections (bark,

recent wood, sapwood) and did not sample the heartwood, and analysed branches

by homogenising wood ‘cookies’, bark included, a methodology we adopted for

both branch and stem measurements which meant stem sections comprised bark,

recent wood and sapwood (heartwood was not present due to the small size of the

saplings). This study found total separate recoveries of labelled 15NH+
4 and 15NO−

3

were 31.4 and 61.4 % respectively, with bark sections retaining 45 % amounts of
15NO−

3 and otherwise a low recovery of 15N in the bole (1.5 % of both ions) . In

our experiment, we observed a high recovery of N label in the stem (14.6 %) in the

canopy fertilization treatment (NAlitter-15Ncanopy), where direct bark adsorption or

uptake by lichens or cyanobacteria (c.f Reiners and Olson, 1984; Dail et al., 2009)

were unlikely as the stem bark surface was directly exposed to very little 15N in

the canopy treatment, as this was primarily applied to the branches. While we

did not separate this pool from the higher 15N stemwood, if the high stem 15N

recovery was within bark rather than stemwood as a whole (we were not able to

quantify this), then the high abundances we observed would have been due to

transport within the stem and preferential assignment rather than uptake due to

location of this organ.

4.4.4 Potential ∆C/∆N effect of Canopy Fertilization

Treatments

We deliberately used a low NDEP concentration, designed to avoid a treatment

effect of N deposition to allow the 15N effects of the isotope to be studied without

complications resulting from the physiological effects of large amounts of additional

N (e.g. Schaberg et al., 1997; Elvir et al., 2006). Our deposition treatment, 54 g
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N ha−1 y−1 was several orders of magnitude less than N amendments typically

used in experimental N addition experiments (e.g Wallenstein et al., 2006; Gaige

et al., 2007; Metcalfe et al., 2013) a small fraction of ambient nitrogen deposition

in southern Scotland (13-16 kg ha−1 y−1), which our plants could be expected to

be receiving. Total N deposition recieve by the pots was therefore in the range of

13-16 kg ha−1 y−1). While retention of the 15N-label in the soil may have meant

that the NAlitter-15Nsoil and NAlitter-15Ncanopy treatments were able to take up

slightly different total amounts of 15N (NAlitter-15Nsoil
15N having more exposure

to sinks within the soil), this difference was a minor proportion of the unlabelled

background N expected to be available from the soil due to the low dosage of our

amendments.

While we worked on saplings rather than mature forests where estimates of NDEP

(e.g. Nadelhoffer et al., 1999c) effects on forest C have been drawn, our high 15N

return in this section is likely to represent a stronger allocation to stemwood

under canopy nitrogen deposition, as well as overall differences partitioning of

applied 15N within the tree (e.g. 30 % of total 15N return was in needles in our

NAlitter-15Ncanopy treatment, compared to 60 % when equivalent 15N deposition

was applied to the soil) in the short timeframe of our study, as well as the overall

greater retention of NDEP by trees under this pathway. These differences may

have major effects on tree ∆C/∆N and contribute to an overall stronger effect

than calculated from traditional isotope studies. In this chapter we refrain from

making direct inferences to the scale of this difference from soil-targeted 15N-NDEP

studies, but overall estimates can be found in the discussion section of the thesis,

section 6.6.1.
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4.4.5 Litter-Derived 15N

As well as avoiding fertilization effects, the low NDEP magnitude used in this

study was also chosen to allow a reasonable comparison in return of this label with
15N release from the labelled litter in treatments 15Nlitter-Water, 15Nlitter-NAsoil,

and 15Nlitter-NAcanopy. Experiments using labelled litter are sparse (Hatton et al.,

2012) and have found only small returns of N aboveground following application

(2 % of litter 15N over 4 years (Zeller and Colin-Belgrand, 1998; Zeller et al., 2000;

Zeller and Colin-Belgrand, 2001)). In our experiment, 15N recovery from the litter

was limited, with these treatments indistinguishable from the natural abundance

control in the 15N timeseries for the 2011-2012 needles, and the 2013 needles (high

averages for 15Nlitter-NAcanopy being driven by a single enriched individual). When

the entire trees were sampled at the end of the experiment, total above-ground 15N

recovery was ∼ 10 % of estimated mineralized N in all three 15N-litter treatments,

and statistically indistinguishable from the NAlitter-Water treatments due to high

variances. This recovery was mainly due to the needles and branches, and may

have been detectable due to the larger sample size of this final sampling, against a

background of high 15N variation in the trees.

We initially estimated litter 15N release based on a separate experiment (Chapter 5)

but from litter mass remaining at the end of this nursery experiment thought that

using these litterbag-derived values was unrealistic. When this rate was revised to

literature values for early-stage decomposition of Sitka Spruce litter of around 5%

N, (Titus and Malcolm, 1999; van Huysen et al., 2013), measured mass loss and

estimated N release based on N content of the litter at the end of the experiment

fit these overall trends. While in the early stages of decomposition the colonisation

of litter by decomposers often raises internal N concentrations (Parton et al., 2007),

rapid mass loss early in decomposition counteracts the per-mass increase in [N]

and results in net N mineralization from the litter. Even after a decade large

amounts of 15N from labelled litter may remain associated with soil aggregates or



CHAPTER 4. Differences in 15N-Return in Sitka Spruce between Canopy and
Soil 15N Treatments 97

remain in undecomposed litter (Zeller and Colin-Belgrand, 1998; Zeller et al., 2000;

Zeller and Colin-Belgrand, 2001; Hatton et al., 2012) and our total N return and

inability to distinguish between these treatments and the NAlitter-Water control

over the needle time series is similar to the low short-term recovery of 15N from

Fagus sylvatica litter in above-ground biomass in these studies (e.g. Zeller and

Colin-Belgrand (2001)).

The high variance in these treatments early in the experiment (Figure 4.3) may

indicate acquisition of the litter-derived 15N by the trees but replication was

insufficient to explain this frequent high 15N content. Towards the end of the time

series, needle 15N may have also began to diverge from NAlitter-Water (Figure 4.2).

When we sampled from the entire needle biomass at the end of the experiment,

with the largest cumulative 15N release by this time, 15N abundance for the 2013

needles was significantly different than the NAlitter-Water control in all three 15N-

litter treatments as well as the 15N-NDEP treatments (although not significantly

different on the whole-tree level). While sample size was the same at this date

as previously (5 trees), the needle sample was from the harvest of the entire

canopy which could also indicate a heterogeneity in 15N partitioning from the

litter-derived 15N not accommodated by the sampling strategy. Similarly, the high
15N enrichment in 2013 needles from a single replicate of the 15Nlitter-NAcanopy

treatment was consistent throughout the time series. This individual received

the highest 15N litter of the labelled sources, although this was with three other

individuals which did not also display a high 15N atom %.

While we were unable to distinguish the fate of litter 15N under nitrogen deposition,

this is clearly an area where more research is required. This may be addressable

experimentally with 15N-labelled litter over longer timescales, greater enrichment,

and greater replication.
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4.5 Conclusion

Magnani et al. (2007) found from a correlation of NEP against NDEP , that nitrogen

deposition has a strong effect on forest C sequestration, but this contradicts by an

order of magnitude estimates by stable isotope traces (Nadelhoffer et al., 1999c)

where a 15N label has been largely retained in the soil, and not recovered in

trees (Högberg, 2007). While our experiment employed saplings, we were able to

demonstrate that both the magnitude and proportional recovery of canopy-applied
15N across different biomass classes uptake differed by a factor of three when

compared to soil-applied 15N deposition treatments, thereby going some way to

explain the discrepancies across different studies. Both an absolute and relative

greater recovery of applied 15N was observed in stems under canopy NDEP , which

may have major implications for the overall ∆C/∆N effect due to the high C/N of

this pool. This area remains largely unexplored, and appropriately designed stable

isotope experiments may provide a useful tool to resolving the still unanswered

questions regarding the N deposition effect on the forest carbon sink.



Chapter 5

A Field Study Comparing the

Fate of 15N from Sitka Spruce

Litter Mineralization with 15N

from Nitrogen Deposition

5.1 Introduction

Quantitative estimates of an effect of anthropogenic nitrogen (N) deposition

(NDEP ) on forest growth can vary by an order of magnitude (c.f. Nadelhoffer et al.

(1999c); Currie et al. (2004); de Vries et al. (2006); Magnani et al. (2008)), and

since N-limited (Vitousek and Howarth, 1991) northern and boreal forests are a

substantial C sink (0.6 - 0.7 Pg y−1, Goodale et al. (2002)), understanding why

estimates of the effect of N addition on C sequestration (∆C/∆N) vary so greatly is

important to separate NDEP from the many other anthropogenic factors (see Sedjo

(1992); Norby (1999); Prentice et al. (2001); Saxe et al. (2002)) which could be

99
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driving this change. As ecosystem N is derived from both N deposition and internal

N (from litter recycling), the ability for different studies to account for the fate of

internal recycled ecosystem N may have an effect on the magnitude of a ∆C/∆N

effect calculated. If this recycled N is partitioned differently, understanding overall

effects of NDEP on ecosystem ∆C/∆N from 15N-isotope studies would also require

understanding of movement of N from litter under the NDEP treatment and not a

simple partitioning of NDEP N plus litter-derived N between ecosystem pools of

different C/N ratios.

When calculated from N budgets and 15N labelled deposition experiments, ∆C/∆N

is usually low (e.g. 46-50 kg C kg N −1 (Nadelhoffer et al., 1999c; de Vries et al.,

2006), with the effect split evenly between soils (21 kg C kg N −1) and trees

(25-29 kg C kg N −1). Typically, the majority of 15N tracers added to forests are

retained in the forest floor and soil (Templer et al., 2012), and in an influential

meta-analysis, Nadelhoffer et al. (1999c) found that 70 % of 15N tracers added

in NDEP experiments are typically retained in soil mineral and microbial (SMB)

pools, while only about 5 % of tracers are found in high C/N woody biomass

necessary for a stronger C effect. However, a correlation across many locations of

NDEP with NEP (net ecosystem productivity) (Magnani et al., 2007, 2008) found a

very large effect of NDEP on the whole ecosystem C sink (trees and soil, 175 to 225

kg kg C kg N −1), which implies more N than indicated by deposition experiments

is sequestered in high C/N pools. Another study using similar method (Thomas

et al., 2009) also found a relatively high ∆C/∆N (73 kg C kg N −1) in trees alone,

which is likely to be around 100 kg C kg N −1 if similar, conservative effects on

soil ∆C/∆N as Nadelhoffer et al. (1999c) or de Vries et al. (2006) are assumed. It

has been suggested that the Magnani et al. (2007) findings may have confounded

variability in wet NDEP with several other factors (dry NDEP (de Vries et al.,

2008); climate (Sutton et al., 2008); edaphic N mineralization (de Vries et al.,

2008); anthropogenic N history (Högberg, 2012)), but 15N traces and ecosystem

N manipulations may also contain inaccuracies derived from a failure to account
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for interactive effects of NDEP on canopies (Sievering, 1999) and soils (Jenkinson

et al., 1999). When these factors were included in a model, along with common

forestry practice (Dezi et al., 2010; McMurtrie et al., 2001), they raised the C

effect to 121 kg C kg N −1 from 28 kg C kg N −1.

Net nitrogen mineralization in the soil is frequently in the range of 30-100 kg

ha−1y−1 (Persson and Wirén, 1995; Scott and Binkley, 1997; Reich et al., 1997)

in temperate regions, while atmospheric inputs without human inputs are < 0.5

kg ha−1y−1. Average anthropogenic deposition rates are 10 kg ha−1y−1 in some

regions (Galloway et al., 2008) and may reach ∼ 50 kg ha−1y−1 by 2050 (Galloway

et al., 2004). Therefore, even under relatively heavy NDEP regimes, the majority

of ecosystem N is still derived from edaphic sources (Schulze, 2000; Högberg, 2012)

and the forest response to N deposition could be as dependent on changes in

belowground N cycling under NDEP as it is on the long-term retention of N inputs

from deposition.

NH4
+ and NO3

− ions were once thought to be the sole source of N nutrition for

plants (e.g. Pate (1973)), and as plants are poor competitors for this mineral N in

soils, microbial utilization of this pool was understood to limit N supply (Schimel

and Bennett, 2004). Soil organic matter (SOM) and abiotic mineral fractions

in the soil also tend to be strong sinks for these forms of N, and frequently

account for > 50 % of mineral 15N additions (Templer et al., 2012). Under

this understanding, recovery of mineral NDEP would reasonably represent the

background plant-available N pool as all other N would pass through a bottleneck

of microbial decomposition (Knops et al., 2002) into NH4
+ and NO3

− pools before

acquisition. Changes in litter decomposition rates affecting overall differences in

total net N mineralization due to NDEP (see Knorr et al., 2005, for a review))

would therefore be the major controls on changes in plant N availability and

combine additively NDEP inputs to a total N availability under NDEP which could

ultimately affect ecosystem ∆C/∆N.
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However, it is now widely accepted that plants can acquire and utilize organic

N (Näsholm et al., 2009) as amino acids (Chapin et al., 1993; Näsholm et al.,

1998), peptides (Paungfoo-Lonhienne et al., 2008), and even proteins (Paungfoo-

Lonhienne et al., 2008) which may provide a pathway for extra N uptake in N-

limited (Rennenberg et al., 2009) ecosystems (e.g. Chapin et al. (1993); Näsholm

et al. (1998); Schiller et al. (1998)) as N can be acquired by plants as organic

products of depoloymerisation by extracelluar enzymes (Schimel and Bennett,

2004), before competition for mineral N. As well as increasing the available N pool

organic N uptake may offer energetic advantages to plants due to a lower C cost of

uptake (Zerihun et al., 1998; Gruffman et al., 2013), and a lack of a need to reduce

NO3
− to usable NH4

+, as amino acid N is already in this form (Zerihun et al.,

1998). While lab (Paungfoo-Lonhienne et al., 2008) and hydroponic (Gruffman

et al., 2013) experiments have measured uptake of amino acids and proteins, in

field studies, N is available to plants, microbes, and soil sinks simultaneously

from all states of decomposition from large organic molecules to mineral ions.

Experiments where 15N is traced from decomposing biomass in the field (e.g. Zeller

et al., 2000) are limited as labelled litter needs to be of the appropriate species

and provenance to provide useful ecological insight, as well as having sufficient
15N content to overcome low decomposition rates, high long-term retention of

tracers in undecomposed litter fractions (Hatton et al., 2012), and heterogeneous

background soil (Högberg, 1997) and litter (Weber and Bol, 2008; Callesen et al.,

2012) δ15N. In the short term, small amounts of 15N tracer can be recovered in

above- and below-ground biomass of trees growing on 15N-isotope distinct litter

(Zeller and Colin-Belgrand, 2001; Weatherall et al., 2006a).

As litter-derived N may be acquired by different mechanisms to the mineral N

from deposition, this study investigates if movement of 15N from litter sources,

which could contain a mix of organic and inorganic N available to soil sinks, is

comparable to fertilization treatments to the soil, which only apply mineral 15N

and are relatively well understood (see Nadelhoffer et al., 1999c). To do this, we
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combine a litter replacement experiment, where we removed and replaced the litter

layer with 15N-labelled litter, with a 15N fertilization experiment, where we applied

a solution of 15N-labelled NH4NO3 to the soil surface over the litter layer, in plots

in a Sitka Spruce (Picea sitchensis (L. Bong.)) plantation. We aimed to avoid

introducing an artificial treatment effect caused by large magnitude N additions

(which would increase soil fertility), but retain the ability to track similar amounts

of highly enriched 15N label from both sources. Over 15 months, we traced the

isotope from the two sources into roots and soil fractions from two soil layers, as

well as making measurements of soil microbial and soil extractable N isotope ratios

at the end of the experiment to quantify longer-term N retention in these pools.
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5.2 Methods

5.2.1 Study Site

Our study was located in an experimental plot at Cloich Forest, a managed Sitka

Spruce plantation 34 km outside of Edinburgh, UK (55◦42’ N, 03◦16’ W). The

plot is approximately 400m above sea level and was established in 1970, with

Sitka spruce (Picea sitchensis (Bong.) Carr), planted at 3000 stems per hectare

(2 m inter-tree spacing). The soil at the site is a shallow peat overlaying Silurian

Ordovacian greywacke (Sheppard et al., 1995). As there is no significant understory

and the litter at the site is entirely derived from the Sitka spruce canopy, the forest

floor is composed of slow-decomposing acidic needles with a relatively thick layer

of partially decomposed litter (Oh Layer) above a thicker, dark-coloured (Ah Layer)

of organic dominated peaty topsoil with a sharp divide before an orange-brown

B horizon. In this study we were only concerned with the organic horizons, the

depths of which varied over a scale of around 2 m due to the impact of a ploughing

regime at establishment. Soils were approximately 30 cm deep on furrows and 45

cm deep on ridges across the site. Layer depths varied with microsite topography;

litter layers were considerably deeper in furrows (max 7 cm) than on ridges (min 1

cm), while the Oh layer varied from 3 cm (ridges) to 11 cm (furrows). The Ah

horizon began by 16 cm deep at all sites we sampled across all plots. Local climate

is typical of southern Scotland with annual minimum temperatures of -0.2 ◦C

in December and maxima of 18.8 ◦C in July. Annual rainfall is 980 mm, which

frequently falls as snow in the winter. In 1986, sections of the site were selectively

thinned to 4 m and 6 m spacing (Greens et al., 1995). Our experiment took place

entirely in the unthinned 2 m spacing section, where average dbh was 21.5 ± 5.70

(s.d.) cm. Previous work at the site (Greens et al., 1995) had removed low level

branches from the trees to improve access, so we repeated this procedure where

necessary, removing all branches from trees up to 1.5 m.
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5.2.2 Artificial Litter Layer

In the selected area, we established 12 rectangular plots each containing a single

central tree and up to eight peripheral trees (a single tree was missing from the

corner of some plots), with an edge of c.4 m on each side. These were randomly

assigned to one of four treatments, in a crossed design of two factors (NDEP -
15N and litter decomposition 15N) . In three replicate plots (treatment for litter

decomposition 15N), the entire litter layer was removed with a shovel and replaced

with artificially produced Sitka Spruce litter with a distinct 15N signature. These

treatments received 15N labelled litter (at 1.53 ± 0.4 (s.e.) atom % 15N (3227 δ15N

h), 1.87 ± 0.1 atom % 15N (4184 δ15N h), and 2.09 ± 0.2 atom % 15N (4807 δ15N

h). A second treatment received unlabelled litter, at natural abundance(0.366 %

(1 δ15N h) for all plots). As the labelled litter was derived from multiple trees

(three per plot), injected with 15N (Chapter 3), we minimised the within-treatment

variance in the 15N content by mixing the litter for each plot well before application.

Mean N content by dry weight in artificial litter at application was 1.2 %, while C

% was 51.0 % (C/N ratio 34). The fresh litterfall at the site had an average N

content of 1.1 % and C content of 47.1 % (C/N ratio 47.5). Total dry masses of
15N-labelled litter deployed were 23.0 kg, 22.2 kg, and 21.7 kg, and unlabelled litter

29.81 kg 29.52 kg and 27.07 kg. The remaining six plots were left undisturbed as

controls against the litter replacement.

5.2.3 NDEP Regime and Experimental Treatments

On the three plots where litter had been removed and replaced with natural

abundance litter, and three replicate undisturbed plots, we applied the nitrogen

deposition treatments as a 1 L spray direct to the soil (litter) surface with

a pressurised hand sprayer, adding 98% 15N, double-labelled NH4NO3 in 4-

5 week intervals from February 2013 until April 2014 (in June/July 2013,
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November/December 2013 and January/February 2014 the treatment was applied

bimonthly with no reduction in the total application dose per month). In total, the

deposition treatments added 0.62 g of 15N to each plot over the whole experiment.

The three plots where the litter layer was removed and replaced with 15N-labelled

litter plots received unlabelled deposition (15N 0.367 atom %) as this deposition

treatment, and the remaining three non-litter swapped plots received DI water in

place of a nitrogen additions. This resulted in four treatments: two treatments of

swapped litter, 15NDeps and 15NLitters where the 15N-label was either available in

deposition (15NDeps) or the litter (15NLitters), and two treatments of unswapped

litter, 15NDepu, which received 15N deposition as a control against changes in

soil processes as a result of the litter swap, and Water Control, which received

de-ionised water without an enriched 15N source. The treatments are summarised

in Table 5.1.

Table 5.1: Summary of combination treatments for the field experiment.

Treatment ID Litter Layer Deposition
15NLitters Swapped, 15N-enriched natural abundance NH4NO3

15NDeps Swapped, natural abundance 98 %15N- NH4NO3

15NDepu Unswapped, natural abundance 98 %15N- NH4NO3

Water Control Unswapped, natural abundance Water

5.2.4 Litterbags

We estimated rates of 15N loss from the litter by use of a separate litterbag

experiment established in April 2013, three months after deposition treatments

started in the main experiment. These were not established with the main

experiment to avoid effects of disturbance caused by litterbag removal. 60 litterbags

(20 15N-labelled litter, 40 unlabelled litter) were constructed from 1.1 mm aperture

polypropylene mesh and were filled with 2 g of litter, either derived from labelled,
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or unlabelled trees. These were sealed with a hot glue gun and buried in the litter

layer on site in three additional plots which had been established at the same time

as the main experiment. These plots included labelled litter (1.23 atom %), where

we buried 20 natural abundance litterbags, unlabelled litter, where we buried 20
15N-labelled, 3.71 atom % 15N litterbags, and an unlabelled litter control, where

we buried natural abundance litterbags.

These treatments allowed us to quantify mass loss and changes in N content of

the litterbag, as well as to estimate the transfer of litter-derived 15N to other

litter within the litter pool, via the spatial separation of unlabelled litter within

a 15N-labelled plot). Three litterbags were retrieved per plot on nine occasions

between April 2013 and May 2014. The litter from these pots was processed in

the same way as sequential litter samples from the main experiment.

5.2.5 Sampling Strategy

We took soil samples from the plots using an 5.5 cm diameter, 20 cm deep soil auger

on 8 occasions over the 15 month period of the experiment, from January 2013

(immediately before the first deposition treatment), until May 2014 (one month

after the last deposition treatment). On three occasions, a larger corer (6.5 cm

diameter) was used and masses were adjusted appropriately when calculating total

N contents. At each sampling, cores were removed at three random locations per

plot (36 cores in total) by removing the surface litter layer, which was bagged and

removed separately, and driving the auger directly into the soil. The locations

were chosen randomly based a coordinate system within the plot and a random

number table, but reselected if the core location was within 5 cm of a previous

core, or if the auger encountered an irremovable stone or other obstacle. The soil

from the cores were separated on-site into the Oh (organic partially decomposed

humus) and Ah (organic-influenced topsoil) soil horizons and bulked together to

give one composite sample per plot per date for each of the two soil horizons,
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except for the first three dates when the Ah horizon was not sampled. If the B

horizon was encountered by the corer, this portion of the soil was discarded.

The soil samples were stored in a coolbox and transported back to the lab

(approximately 2 hours from sampling time) and either held overnight at 4◦C, or

processed immediately.

5.2.6 Processing and Measurement

We immediately weighed all soil cores to establish field wet weight and then allowed

the soil to equilibrate to ambient humidity at room temperature (rewetting if

necessary to prevent drying), before sieving it to pass through a 2 mm mesh. From

this < 2mm soil fraction, small needle and root debris was removed from this

subsample with tweezers, and subsamples (15- 20 g) were weighed into stainless

steel trays and dried in a 80◦C oven overnight, until a stable mass was reached.

After drying the soil was reweighed and used to calculate the dry mass of the

whole core, then milled in a stainless steel capsule on a Retsch MM400 ball mill

(Retsch Ltd UK), until a fine powder was achieved, suitable for mass spectrometry.

The material that did not pass through the sieve was washed in DI water and

then gently dried and sorted to separate larger roots from stones and other debris.

The total mass of dry roots from each set of 3 composite cores was recorded,

then washed again and redried at 80 ◦C, before milling on the ball mill in the

same manner as soil samples. Litter samples were washed in DI water to remove

surface residues and dried overnight in the 80 ◦C oven. These were then milled

on the ball-mill like all other samples. At the end of the experiment, we made a

single point assessement of soil microbial biomass N and 15N content. Samples for

fumigation were obtained from the < 2mm soil fraction with small debris removed,

and 10 g (dry weight) of wet soil was weighed into glass jars for fumigation,

and into identical jars as an unfumigated control. The fumigation samples were

exposed to chloroform in a dark vacuum oven for three days. Both fumigated and
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unfumigated samples were shaken for three hours with 50 ml 0.05M K2SO4 and

filtered through pre-leached Whatman no.1 filter paper to extract the available

N. The filtrate was freeze dried for two days to remove all water and a small

subsample (∼ 10 mg) was analysed for C and N content on a Carlo Erba NA

2500 Elemental Analyser. The remaining filtrate was re-hydrated with DI water

and prepared for 15N analysis by the N diffusion technique of Stark and Hart

(1996) by adjusting the pH of the solutions with conc. NaOH, adding 0.4 g of

Devarda’s alloy, and trapping the solution N on a pre-prepared PTFE-enclosed

KHSO4-infused paper disk.

All samples were analysed on a SerCon Callisto CF-IRMS Isotope Ratio Mass

Spectrometer at the University of Aberdeen, UK, along with samples of known

isotope abundance and method blanks for the N diffusion disks. To calculate N

and 15N in these samples, the method blank discs were subtracted from the sample

N contents so that N in the filters was not attributed to the extractable pool.

5.2.7 Statistical Analyses and Mass Balance

We modelled the change in δ15N content in Oh and Ah horizon roots and soil

separately, with linear mixed effects models and treatment and date as fixed

factors and plot as a random factor. A correlation structure was used to control

for the effect of psuedo-replication within successive measurements of the same

plots over time and a weighting structure to allow the residuals to increase later in

the experiment when measured 15N inputs and δ15N h were greater. All statistics

were performed in R v 3.01 (R Core Team, 2013), linear mixed effect models were

run with the nlme package (Pinheiro et al., 2013), and post-hoc TukeyHSD tests

were performed with the general linear hypothesis (glht) in the multcomp package

(Hothorn et al., 2008). We also calculated R2
m (Nakagawa and Schielzeth, 2013),
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in order to break down linear model R2 into a component relating to the fixed

effects we were interested in.

As dry masses of soil horizons and roots were highly variable and did not differ

statistically between treatment plots, we used their average masses and [N] contents

of these values to calculate N pool sizes in the bulk soil, roots, litter, and microbial

biomass as enrichment over the natural abundance, water control treatment. As

the experiment was designed to be maintained in the long term, plot litter masses

were intended to be based on the dry masses of litter removed at the start of

the experiment, and tracer return was expressed as a % of total applied NDEP

treatments (for the deposition treatments), or total N calculated to have been

released from the 15N-labelled litter. The net N loss calculated from the litterbags

was applied to the litter layer of the whole plots, based on a best fit model of

(exponential) mass loss fit to the litterbag data, where litter mass was measured

over time and all litter within the bags was known to be derived from the litter

replacement. Net N release was calculated based on changes in this mass and

N content over time, assumed to be equal to the decrease in this pool since the

beginning of the experiment.
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5.3 Results

5.3.1 N Content of Soil, Root and Litter

There were no differences over time in our soil system pools (Figure 5.1). In

most pools, N content remained constant except for the litter, where average N

content started below the control (15NDepu and Water Control) in the two swapped

treatments (15NLitters and 15NDeps) but increased over time until all treatments

were similar. There were no statistically significant differences between treatment

in N content in any of the five pools (soil in the Oh and Ah horizons, roots in the

Oh and Ah horizons, and litter) over the treatment period.

5.3.2 δ15N Changes Over Time in Soil and Litter

Changes in the δ15N of the Oh horizon were clearly detectable over the course of

the 1.5 year experiment (Figure 5.2), with a variable increase in 15N content from

the 15N-litter treatment (15NLitters) developing in late 2013, in contrast to the two
15N-deposition treatments (15NDeps and 15NDepu), which had mean δ15N slightly

above natural abundance but did not differ significantly from the water control

(Table 5.2).

By May 2014, the Oh soil had a δ15N of 65.9 ± 13.6 h (s.d.) in 15NLitters, 29.5

± 14.5 h in 15NDeps, 26.0 ± 6.9 h in the NDEP -control, and 2.2 ± 0.4 h in

the water control without an additional 15N source. Although in the 15NLitters

treatment, a higher mean δ15N was observed in March 2014 than May 2014, the

standard deviation on this was very large as our sample size was small.

We fit a linear relationship to these data, which had a significant effect of both

treatment (P = 0.002) and date (P < 0.001) on δ15N content in this horizon.
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Figure 5.1: N (% mass) of forest floor pools over time. Treatments are: Water

Control (White), 15NDepu (Grey), 15NDeps (Black) 15NLitters (Red). A slight jitter has

been applied to the x axis to distinguish treatments.
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Figure 5.2: 15N content (δ15N ± standard deviation) of soil layers over time.

Treatments are: Water Control (White), 15NDepu (Grey), 15NDeps (Black) 15NLitters

(Red). A slight jitter has been applied to the x axis to distinguish treatments.

The R2
m indicated that fixed effects (treatment and date) accounted for 49 % of

the variation. In contrast, there was no significant return between treatments

(P = 0.065) or over time (P = 0.758) of the 15N label in Ah horizon soil (Figure

5.2). δ15N measured in the water control, Ah horizon was 6.5 ± 0.8 h, similar

to unlabelled control treatments in other 15N-NDEP experiments (c.f. Nadelhoffer

et al., 1995), and slightly more enriched than Oh fractions (3.6 ± 1.0 h), at

natural abundance.
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Table 5.2: Tukey HSD comparisons for treatments in the Oh horizon soil most

parsimonious model. Asterisks indicate significance at the P < 0.05 (∗), P < 0.01 (∗∗)

and P < 0.001 (∗∗∗) level.

Oh HORIZON 15NDepu 15NDeps 15NLitters

Water Control 0.540 0.426 <0.001 ∗∗∗

15NDepu 0.997 0.004 ∗∗

15NDeps 0.027 ∗

Table 5.3: Tukey HSD comparisons for treatments in the litter layer most

parsimonious model. Asterisks indicate significance at the P < 0.05 (∗), P < 0.01 (∗∗)

and P < 0.001 (∗∗∗) level.

LITTER 15NDepu 15NDeps 15NLitters

Water Control 0.103 0.042 ∗ <0.001 ∗∗∗

15NDepu 0.996 0.001 ∗∗∗

15NDeps 0.001 ∗∗∗

This change in the Oh horizon in (15NLitters) was derived from the high δ15N of

the litter layer (around 2500 h), although measured δ15N fluctuated (Figure 5.3).

Variance was very high in this treatment, which was expected as the litter mixes

used for the swap were not completely homogeneous, being derived from several

trees.

Otherwise, a consistent increase was visible in δ15N in the two labelled NDEP

treatments over the experiment (Figure 5.3) reaching a δ15N in May 2014 of 670

± 70 h in the 15NDeps treatment, and 600 ± 90 h in the 15NDepu treatment.

When the high 15N labelled litter treatment was removed from the dataset to

facilitate comparisons between the other 3 treatments (which could be expected

to have the same mean δ15N if there was no effect of 15N treatments), TukeyHSD

comparisons (Table 5.3) indicated that the two 15N-NDEP treatments were signif-

icantly (P = 0.004) different from the control, but not from each other (P = 0.654).
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Figure 5.3: 15N content (δ15N ± standard deviation) of the litter layer over time.

Treatments are: Water Control (White), 15NDepu (Grey), 15NDeps (Black) 15NLitters

(Red).

5.3.3 δ15N Changes Over Time in Roots

δ15N also increased over natural abundance in the roots over time, beyond the

values measured in the control, although variance was fairly large, especially in
15NLitters (Figure 5.4). The treatments in the Oh horizon followed a broadly linear

increase, reaching maxima of 149.7 ± 29 (s.d.) (15NLitters), 79.7 ± 18 (15NDeps),

and 65.9 ± 26 h (15NDepu). The mixed effect model for this treatment had a

significant effect of date (P = 0.036), treatment (P < 0.001) and their interaction

(P < 0.001) which overall explained 69 % (R2
m) of the variation (Table 5.4).

In the Ah layer, all treatments were significantly different from the water control

but not each other (Table 5.4) over time (P < 0.001) and treatment (P < 0.01)

but there was no significant interaction between date and treatment in the most

parsimonious model. R2
m for this was lower, explaining only 25 % of the variation.
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Figure 5.4: 15N content (δ15N ± standard deviation) of roots over time. Treatments

are: Water Control (White), 15NDepu (Grey), 15NDeps (Black) 15NLitters (Red). A

slight jitter has been applied to the x axis to distinguish treatments.

5.3.4 K2SO4 extractable 15N and Microbial 15N Return

In May 2014, there were no significant differences in 0.05 M K2SO4 extractable

N between the four treatments and two soil layers (P > 0.05). The mean N

extractable was 0.024 ± 0.03 (s.d.) mg g−1 in the Oh horizon, and 0.010 ± 0.01

mg g−1 in the Ah. δ15N of the extract was significantly greater in all three NDEP

treatments (mean = 171.2 ± 40 h) than the water control in the Oh horizon

(mean 66.3 ± 8 h,P = 0.004)) but were not significantly different from each other.

There were no significant differences in the Ah layer extractable N δ15N.
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Table 5.4: Tukey HSD comparisons for treatments in the roots most parsimonious

models. Asterisks indicate significance at the P < 0.05 (∗), P < 0.01 (∗∗) and P <

0.001 (∗∗∗) level.

Oh HORIZON 15NDepu 15NDeps 15NLitters

Water Control < 0.001 ∗∗∗ < 0.001 ∗∗∗ <0.001 ∗∗∗

15NDepu 0.977 0.007 ∗∗

15NDeps 0.018 ∗

Ah HORIZON 15NDepu 15NDeps 15NLitters

Water Control 0.033 ∗ < 0.001 ∗∗∗ 0.015 ∗

15NDepu 0.581 0.998
15NDeps 0.756

We did not apply a correction factor for microbial nitrogen and the unaltered

difference in N extracted between fumigated and unfumigated samples was 0.092

± 0.06 (s.d.) mg g−1 in the Oh horizon and 0.043 ± 0.04 (s.d.) mg g−1 in the Ah.

δ15N of theOh microbial biomass was significantly higher in all 15N treatments

(mean δ15N= 171.8 ± 140 h) than the water control (δ15N= 29.2 ± 9, P = 0.02)

but were not different from each other. There were no significant differences in

δ15N of this pool in the Ah horizon, where the control δ15N was 47.4 ± 13 h.

5.3.5 Litterbag Mass Loss

Mass loss from our litterbags was almost 50 % of their mass over a year of

decomposition (Figure 5.5), which fit a logarithmic curve (R2 = 0.92) but it was

noticeable that the initial mass was above this best fit line, indicating a rapid

mass loss at the start of the experiment. Over this time, the N content rose from

1.5 to ∼ 2.25 % in all bags, although all measurements were fairly variable due to

the small sample size. 15N content (presented here as atom % rather than δ15N to

ease comparisons on a log scale) stayed relatively constant in the labelled litter
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treatment, while the unlabelled litter decomposing in the labelled litter displayed

some variance in δ15N over time but did not significantly differ from the control

unlabelled litter without a 15N source (P > 0.05).

5.3.6 Mass Balance Estimates of Soil System 15N Return

Based on change in litter mass and N content from the litterbags, our labelled

litter released 25.5 ± 4 (s.e.) kg N ha−1 y −1. At the 15N content of our litter, this

was equivalent to a mean N release of 0.604 ± 0.09 g per plot for the 15N-labelled

litter over the time of the whole experiment, and comparable to the 0.622 ± 0.03

g 15N added in deposition over the same time period.

The mass balance calculated using these rates of release is presented in Table 5.5.

Most of the soil 15N return was in the Oh horizon in which the highest recovery

was from the 15NLitters treatment (∼ 50 % of 15N release), compared to means of

25-30 % in the 15N-NDEP treatments 15NDeps and 15NDepu. 15N recovery in the

Ah horizon soil was low in all treatments, accounting for 1-3 % of 15N available.

Similarly root 15N return was higher in the Oh horizon and greater in the 15NLitters

treatment, although as this pool was relatively smaller, the high δ15N observed

accounted for only about 8 % of the 15N decomposed from litter, or 4-5 % of that

added in deposition. 15N return in roots in the Ah horizon was also small, but

proportionally larger when compared to Oh horizon at 1-2 %, between all three
15N-enriched treatments.

Only small proportions of the soil 15N return were derived from microbial biomass

which accounted for 0.59 ± 0.17 % (se) for 15NDepu, 0.96 ± 0.23 % for 15NDeps

and 1.48 ± 0.48 % for the 15NLitters treatment in the Oh horizon. Total microbial

expression of this label in the Ah horizon had a mean of 0, similar to the low return

in the soil in this horizon, so there was little movement of the 15N label applied
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this deep in the course of the experiment. As this total amount of extracted N

from the soils was low and already included in total soil 15N return, we did not

include extractable K2SO4 N in our mass balance calculations.

Litter was the biggest sink for 15N additions in the two NDEP treatments. When

we used the litter layer masses from litter removed at the start of the experiment

and assumed this whole pool was a 15N sink with the measured δ15N ( ∼ 600 h),

we calculated very high estimates of 15N recovery which in this pool alone was

almost 100 % of 15N additions. The litter mass (8000 kg ha−1) was considerably

higher than values from other studies in temperate conifer forests (e.g. 1210 kg

ha−1, Micks et al. (2004), 3800 kg ha−1, Morison et al. (2011)), which likely arose

from taking parts of the fermentation (Of ) layer along with the L horizon at the

start of the experiment. As this seemed unrealistic, we used GGBiosoil conifer

plot averages (Morison et al., 2011) and reduced litter mass to ∼ 3800 kg ha−1.

As a result of these calculations we present in Table 5.5 the litter 15N sink without

confidence intervals. From these revised values, we estimated litter assimilated

∼ 33 % of our 15N-NDEP treatments. Similar values for litter 15N recovery in litter

could not be calculated from the main experiment and we found no significant

differences in unlabelled litterbag treatment in labelled litter, indicating no litter-

litter transfer. As discussed later, we felt that no litter to litter transfer was

unlikely and have omitted this pool from Table 5.5.

In total, we could account for 29.96 ± 5.2 (s.e.) % of the applied 15N in the soil

and roots 15NDepu (62.72 % of the applied 15N when litter was included), 35.23 ±

6.9 % 15NDeps (78.57 % with litter), or 63.94 ± 14.0 % 15N in 15NLitters, where an

estimate of litter 15N retention was not available.
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Figure 5.5: Decomposition plots for the litterbag experiment. Figures show (top)

mass loss (middle) changes in 15N content, and (bottom) changes in N content over

time. Treatments are: Unlabelled litterbag in unlabelled litter (White), unlabelled

litterbag in 15N-litter (Black), and 15N-litterbag in unlabelled litter (Red). Error bars

show standard deviation.
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Table 5.5: 15N Mass balance for the 15N-enriched treatments (May 2014)

LITTER Oh HORIZON Ah HORIZON

Litter Roots Soil Microbes Roots Soil Microbes

Mass (kg ha−1) 3800a 8100 61600 5.70b 7800 174800 7.70b
(3000) (1400) (1.0) (2000) (31000) (1.1)

N (%) 1.58 0.89 1.35 0.66 0.81

(0.3) (0.1) 0.4 (0.1) (0.3)

A1) 15NDepu 32.76a 3.66 23.73 0.59 1.58 0.99 0.13c
(1.4) (5.7) (0.17) (0.5) (0.4) (0.11)

A2) 15NDeps 36.49a 5.25 32.83 0.96 1.60 2.40 -0.04c
(2.1) (8.5) (0.23) (0.6) (0.5) (0.07)

B) 15NLitters NAa 8.00 51.89 1.48 1.32 2.73 -0.10c
(3.4) (13.5) (0.48) (0.4) (0.9) (0.06)

Table shows mean percent recoveries of 15N tracer, applied either as deposition treatments

(A1,A2), or released from the 15N labelled litter (B) by May 2014. Values in parentheses

are standard error of the mean. Subscripted values indicate: (a) Estimates are obtained

using GGBiosol conifer plot estimates (Morison et al., 2011) rather than measured masses

and hence standard errors derived from masses are omitted for this pool. Litter-to-litter
15N retention in 15NLitters was not quantifiable. (b) Microbial N is a proportion of the

measured soil pool and should not be included as a separate component of the total. This

figure is not adjusted by a correction factor for total microbial biomass and thus N % is

also not presented. (c) In some cases the A layer microbial biomass was on average 15N

depleted relative to the control, hence a negative accountancy.
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5.4 Discussion

In this study, around 50 % of litter mass (from litterbags) was lost over the course

of the experiment. When changes in N concentration were taken into account,

this indicated a net loss of 20 % N and 15N. We did not use this decomposition

when calculating the final litter pools in the main experiment (as we replaced

our litter masses with literature estimates), but did assume our 15NLitters litter in

the treatment had released this amount of 15N over the whole experiment (0.604

± 0.09 g per plot), which was comparable to the total 15N added in deposition

treatments (0.607 ± 0.03 g). In this discussion we assume that a) 15N return

was not an effect of differing magnitudes of 15N availability and b) differences

between treatments were due to the different 15N sources rather than litter swap

effects. This latter assumption depended on 15N retention not being affected by

the different litter provenances in swapped (15NLitters and 15NDeps) and unswapped

(15NDepu and Water Control) treatments. We therefore address differences in litter

decomposition and 15N return before considering the results in detail.

5.4.1 Litter 15N release and retention

Rates of litter decomposition are related to many abiotic and biotic factors

(Berg and McClaugherty, 2008) and vary with soil depth (Wang et al., 2013), as

decomposer activity changes through the litter profile (Lindahl et al., 2007). The

mass loss from our litterbags was similar to the decomposition rate of 15N enriched

Picea sitchensis litter from a harvest of seedlings in van Huysen et al. (2013).

We applied these rates to the entire replaced litter pool, including the relatively

exposed surface where a great deal of needles were still relatively intact, and deeper

portions where litter was dark and humified by the end of the experiment, assuming

that this N release was representative of the average of the whole layer. However,

as litter quality is an important determinant of decomposition rates (Knorr et al.,
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2005; Ge et al., 2013), we were concerned that differences between our high-quality

swapped litter (which was harvested before senescence) and litter already at the

site, as well as effects on decomposition and 15N retention due to the removal

and replacement of the litter layer in 15NLitters and 15NDeps treatments, may have

affected 15N release and recovery, a potential effect of litter quality was particularly

evident as our litterbags rapidly lost mass during the first month of decomposition,

reflecting the early loss of nonstructural C and acid-hydrolisable materials (Berg,

2000; Hobbie et al., 2010). These fractions may have been more abundant in our

swapped litter as it was entirely derived from trees harvested before senescence

(Chapin, 1980; Chapin et al., 1993), but as we found no significant differences

in 15N recovery between the swapped (15NDeps) and unswapped (15NDepu) litter,
15N-deposition treatments in any of the pools measured, this initial difference

in litter quality and application disturbance between treatments did not appear

to have an effect on 15N return. By definition, it was not possible for a similar

unswapped control using labelled litter.

Our estimates of N release from litter also assumed that much of the 15N lost

in terms of mass was reincorporated into litter and expressed as the increasing

N content. Litter δ15N increased over time under the two 15N-NDEP treatments,

indicating a similar incorporation of mineral N from decomposition into the

litter as observed in many other studies (Nadelhoffer et al., 1995; Koopmans

et al., 1996; Downs et al., 1996). The increase was fairly variable which, as

spatial variation in δ15N due to inputs of 15N-depleted litter from the canopy

only amounted to a few permil (Weber and Bol, 2008), may have been due to

insufficiently even applications of the 15N-deposition treatments or differences

in rates of decomposition and colonisation on the microsite scale (Wang et al.,

2013) due to local litter layer depth and associated thermal (Ogée and Brunet,

2002) and water retention (Putuhena and Cordery, 1996) properties. Variation in

δ15N in the 15NLitters treatment was also large, and may have been derived from



124 5.4 Discussion

a heterogenous 15N signal within the canopies harvested (Chapter 3, Nair et al.

(2014)), despite our mixing of the litter.

There was also considerable heterogeneity in litter δ15N in the unlabelled litterbag

treatment decomposing within a 15N-labelled litter layer which we intended to

use to quantify litter to litter N transfer but overall, there were no statistical

differences in 15N between this and an unlabelled control. Leaf-to-leaf (Schimel and

Hättenschwiler, 2007) and litter-to-litter exchanges of N(Berglund et al., 2013) can

be demonstrated in 15N tracer studies, but this may require direct physical contact

(unlike our mesh litterbags) between different sources and is most easily performed

in litter mixes where distinct components can be identified (e.g. Berglund et al.,

2013). We have assumed this statistically indistinct 15N return in litter from

litter was an artefact of the experimental design and as δ15N in the labelled litter

treatments in both the litterbag experiment and from our main plots did not

decrease over time, a similar proportion of the N released from labelled litter was

reincorporated locally into the litter layer, resulting in the net 20 % N loss we

used to calculate 15N release.

5.4.2 Overall differences in 15N return in the Forest Floor

If there were differences in soil depths, we expected that these would be a higher
15N return in the Oh horizon as 15N could be assimilated in these sinks before

reaching the Ah horizon. While some 15N could move lower in the soil due to

progressive pool turnover and infiltration of this N lower into the soil horizons

(as observed in long-term trace experiments, such as Eickenscheidt and Brumme,

2012), we continued to add 15N over time to the forest floor, continually renewing

availability of 15N to the pools closest to the soil surface. In the Ah horizon,

microbial 15N return accounted for none of the applied 15N (return in this horizon

was often slightly negative and had a mean of 0 %), otherwise soil and root 15N
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return were low (1-3 %), and in terms of δ15N changes over time, no significant

changes in N content were observed between any treatments in the Ah soil. In

other studies small changes (a few h) in lower regions of organic-dominated soil

have been found over several years (e.g. Nadelhoffer et al., 1999a, 2.9 % of 15N

in 0-10 cm mineral soil, and 1.1 % in 10-20 cm depth), although some returns

in this layer can be higher (c.f. Tietema et al., 1998, 20-30 %), and may reflect

differential sink strength in the upper layers of the forest floor or differential rates

of turnover of N pools. Across the 15N-tracer studies used in Nadelhoffer et al.

(1999c)’s meta-analysis, taking in 18 sites over two years, only in two experiments

were higher 15N returns found in A rather than O soil layers.

Overall, our 15N recovered from the forest floor was concentrated in litter and Oh

soil; the ∼ 35 % of 15N additions found in litter were the largest overrall sink in the

soil system for 15N-NDEP treatments, and larger than 15N return found in studies

at low levels of NDEP for example, 9% (Micks et al., 2004), or 20% (Koopmans

et al., 1996), while comparable to 15N recovery at higher deposition magnitudes
15N (e.g. Downs et al., 1996, ∼ 50 %). The 15N return in the Oh horizon agreed

with the 20-50 % estimates in the literature for ’low deposition’ experiments (e.g.

Tietema and Emmett, 1998; Nadelhoffer et al., 1999b), while microbes contained

little of this Oh layer N in our study, some 2-3 % of Oh soil 15N in all 3 treatments.

When 15N is applied in an enriched pulse, microbes typically assimilate 30-50 % of
15N-NH4NO3 in the short term (Jackson et al., 1989; Zak et al., 1990; Zogg et al.,

2000; Morier et al., 2012) but this rapidly falls off over the longer term (Zogg

et al., 2000; Providoli et al., 2006; Templer et al., 2012) as these pools turn over

quickly, and N released can be re-immobilised, incorporated into other sinks, such

as organic matter (Hatton et al., 2012) or obtained by fungal hyphae and moved

into other decomposing biomass (Hart et al., 1993). Over time, the sinks with the

longest turnover time should incorporate more 15N at the expense of microbes,

even though the latter may be better short-term competitors. There were no

significant differences in the microbial biomass 15N content, but we did not apply a
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correction factor for extraction efficiency as there is little literature information for

appropriate values for forest soils at 0.05 M K2SO4. Applying a similar 0.54 KEN

as in Brookes and Landman (1985) would indicate microbial 15N return almost two

times larger and suggest a larger absolute difference between treatments. In the
15NLitters treatment, which had the highest 15N recovery, relatively more freshly

mineralised 15N may have been available shortly before sampling progressively

decomposing litter compared to infrequent 15N applications as litter decomposition

occurred continuously up to the point of final sampling while the last mineral

additions were more than a month prior.

Our root masses were larger than similar pools in other studies (c.f Nadelhoffer

et al., 1999b; Templer et al., 2005) as we included all coarse and fine roots in the

cores in our measurements, which may explain a slightly higher total 15N return in

this pool across all treatments of this study than found elsewhere. The differences

between Oh and Ah horizons were less pronounced than the soil, as roots returned

4 - 8 % 15N in the Oh horizon, and 1-2 % in the Ah. Root 15N return is not

always stratified between soil layers (e.g Zeller and Colin-Belgrand, 2001; Templer

et al., 2005), but is typically a fraction of soil 15N as other soil sinks are stronger

competitors for N (Nadelhoffer et al., 1999c) and much of the 15N acquired by roots

is incorporated into biomass in the above-ground portion of the tree. Movement of

root-acquired 15N within the tree may have been observed in our experiment, as

in the Oh horizon root 15N return was consistently ∼ 15 % of the soil 15N return,

while the relative fraction of 15N return was much greater (50-160 % of soil 15N

return) in the Ah horizon in all treatments. As apart from this root signal, Ah

horizon 15N return was very low, the relatively high root expression in the Ah

horizon may be the result of movement of N within the plant with N assimilated

in the 15N-abundant Oh horizon subsequently expressed elsewhere. However to

assess the potential for this overall effect on N nutrition, we also need to consider

potential losses of 15N to soil water and gaseous pools between the treatments.
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5.4.3 Possible 15N losses and Differences in 15N Retention

in the Soil

The results of this study suggest that over 15 months, a greater amount of litter

nitrogen than deposition nitrogen was retained in the upper portions of the soil

but the relative partitioning of this nitrogen only changed in roots between the

two soil horizons. Total 15N return (as a percentage of total N availability) was

60-80 % in the soil NDEP and was probably higher in the labelled litter, where we

were not able to successfully measure litter 15N retention but recovered 64 % even

without this pool. In the soils and roots, where we had measurements for 15N

recovery in all treatments, total 15N returns were in total 50 to 100 % greater in

the 15NLitters treatment than the labelled NDEP treatment (15NDeps and 15NDepu),

with this difference primarily located within the soil pools. These differences may

have been due to differences in 15N losses between the treatments resulting in an

overall greater 15N availability for soil sinks.

Studies which quantify 15N losses via leachate at ambient low deposition levels

find < 10 % loss in this pathway (Tietema and Emmett, 1998; Zak et al., 2004;

Providoli et al., 2005), and 15N losses as gases (such as NOx) from NDEP are rarely

quantified (Templer et al., 2012) but likely to be low (Tietema and Emmett, 1998;

Christenson et al., 2002). Assuming overall 10 % losses from leaching and gas (c.f.

Nadelhoffer et al., 1999c), the two NDEP treatments accounted for a total of ∼

70-80 % of 15N, without including the above-ground 15N sink in plant woody and

foliar tissues, consistent with meta-analyses of 15N tracer studies (Nadelhoffer et al.,

1999c; Templer et al., 2012) without an above-ground 15N recovery component.

However, if similar retentions in the labelled litter treatment are assumed to

have occurred in the litter as the other treatments, and similar proportions of N

obtained by trees as in the literature, this treatment accounts for most of the 15N

without losses. Eickenscheidt and Brumme (2012) found around 1 % of 15N from

labelled Beech litter to have been lost as N2O over 10 years, but leachate 15N
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has not been measured in other labelled litter studies (Zeller and Colin-Belgrand,

2001; Blumfield and Xu, 2004; Weatherall et al., 2006b).

N released from litter is available in multiple forms from proteins to mineral ions

unlike our applied 15N-NDEP , which was only NH4NO3. Larger N-containing

organic molecules may be not as vulnearable to gas loses via nitrification, nor as

mobile in soil as mineral ions, particularly NO−
3 (Butterbach-Bahl et al., 2011).

A wide variety of forms of organic N are detectable in the soil from 15N-NMR

spectroscopy, including c. 40 % of this N as proteins (Schulten and Schnitzer,

1997). Different forms of 15N retention from labelled litter is reported in other

studies (e.g. Hatton et al., 2012), while in this study we were only measuring bulk
15N recovery in homogenised soil and were not able to separate different forms of
15N retention and organic 15N availability. Comparisons of amino acid 15N recovery

in soils do not find a difference in soil 15N retention (unlike plant 15N uptake)

when compared to mineral 15N additions (Näsholm et al., 1998; McFarland et al.,

2010), but we could find no studies in the literature investigating direct retention

of additions of larger 15N-labelled polymers in the field, nor in other monomer

products litter-derived polymer cleavage, such as amino sugars or nucleic acids,

which are both obtainable by plants but may also be released from litter and

make up a large proportion of soil N (Schulten and Schnitzer, 1997). The monthly

incidence of excess NDEP events in our study may also have meant that more

of the NDEP -15N than decomposition-derived 15N was lost from the system due

the slow, constant release of N from mineralization being acquired by the most

competitive soil sinks. We could identify no studies where mineral NDEP addition

rates were explicitly compared to quantify whether differences between chronic

NDEP or spikes of application delivering similar magnitudes over time could effect
15N recovery as more competitive sinks become saturated, but as we applied 15N

in NDEP in a very dilute dose, consider effects of this type unlikely in our study.
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5.4.4 Inferences of Plant 15N Uptake from Differences in

Total 15N Return

15N tracer from polymers such as peptides and proteins are known to be taken up

by mycorrhizal plants (Bajwa and Read, 1985; Abuzinadah et al., 1986; Kerley

et al., 1995; Paungfoo-Lonhienne et al., 2008), but these studies are not performed

in the field, and it is difficult to separate the fate of these molecules using 15N

rather than products of breakdown of complex polymers under realistic field

conditions where an abundance of different forms of 15N are available. Tracer

techniques are not able to conclusively identify the form of uptake from a simple
15N pool mass balance, as 15N tracers cannot distinguish between 15N-labels from

organic forms, and their mineralization products. In this experiment, relatively

more total 15N (9.32 ± 3.4 (s.e.) %) was found overall in the roots under the
15NLitters treatment than under the labelled deposition treatments (5.24 ± 1.5

and 6.85 ± 2.2). It was unclear whether this difference was due to a preferential

uptake of litter-derived N by the roots, or a different total 15N availability in

root-available pools to 15N-NDEP additions as, while in absolute terms more 15N

was expressed in roots in the 15NLitters plots, 15N return in roots in the Oh horizon

in each treatment was a similar proportion of the total 15N recovery in the same

soil layer. As above-ground 15N return, 15N losses, and 15N content of roots leading

out of the plots were not measured in this study and the direct comparison of

absolute 15N content of the roots between treatments is difficult, we are cautious in

assigning the missing N from our overall mass balance to above-ground N uptake.

We note, however, that the previously mentioned differences in 15N return in roots

occupying different soil horizons (in section 5.4.2) may also reflect a difference in

whole-plant 15N acquisition. As the difference in total 15N return between roots

and soil was much smaller in the Ah horizon than the Oh, it appeared from our 15N

return that 15N from the Oh horizon was being assigned to roots deeper in the soil.

Where measured, root 15N from labelled litter is generally less than above-ground
15N recovery (Zeller and Colin-Belgrand, 2001; Weatherall, 2005). We suggest
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that this differential recovery between labelled litter and labelled deposition may

reflect similar differences between aerial biomass pools, a different effect of litter

and deposition-derived N on whole-tree nutrition and thus differences in total tree

∆C/∆N effect between these sources.

5.5 Conclusion

The fate of 15N from organic sources in the soil is poorly understood, but in this

study, with NDEP at close to ambient levels, it appeared that litter-derived 15N

was better retained in soil and roots than NDEP -15N of a similar magnitude. The

most important implication of this difference in contribution of total nitrogen to

plant nutrition between litter and NDEP sources is that mineral N availability from

NDEP and N release from litter as a result of associated changes in decomposer

community structure (Frey et al., 2004), litter C/N ratios (McNulty et al., 1991)

and ultimately, decomposition rates (Knorr et al., 2005)) are not simply additive

(NDEP plus recycled N), as different amounts of 15N released from litter may be

obtained by soils, roots and microbial biomass. As C/N ratio varies between these

pools, this differential partitioning of litter-derived nitrogen would affect overall

estimates of ∆C/∆N. From the higher root return in this study, high C/N trees

may be more responsive to increases in availability of litter-recycled N than low

C/N soils. However, our study was limited to a single site and small sample sizes,

and better estimates of the difference in 15N retention could be obtained with more

available 15N enriched material (allowing greater replication), a full destructive

removal of litter at the end of the experiment (allowing a more accurate 15N mass

budget to be produced), and measurement losses of 15N via trace gas emissions.

Currently, we refrain from making numerical estimates to an overall importance of

litter-derived 15N to an overall ∆C/∆N effect (this is covered further in the thesis

discussion, section 6.6.2), but 15N recoveries in this experiment suggest that the

fates of decomposition N and deposition N in ecosystems are not the same, and
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long-term changes in litter N release may explain some of the difference between

estimates of an overall ∆C/∆N effect between different studies.
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Chapter 6

Discussion

This thesis has described three field experiments which were designed to test some

commonly held assumptions in isotope tracer experiments simulating nitrogen

deposition in forests.

Chapter 3 did not address this problem directly but provided a large source

of 15N-distinct litter for use in later experiments, as well as providing insight

into distribution of N within the canopy in large trees. Chapter 4 was a small

model system experiment where we attempted to simulate in a controlled fashion

two different scenarios of nitrogen deposition - the common 15N-labelled NDEP

trace applied to soil (c.f. Nadelhoffer et al., 1999c), and an alternative where

the entire NDEP load was applied to the canopy. We used 15N-labelled litter in

this experiment to try and separate the fate of N from this natural recycling

from uptakes of mineral forms but found no significant differences in 15N return.

Chapter 5 continued the second thread of the potted, mesocosm experiment and

focused on the soil system, contrasting nitrogen deposition applied to the soil,

with nitrogen derived from the litter in a mature commercial conifer stand. In

contrast to Chapter 4, a strong and persistent 15N release was observed from the

133
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litter via a high 15N return in root and soil compartments which was not observed

in the nursery experiment.

In this chapter I discuss a synthesis of the main research output of this thesis, and

the implications of different methods of 15N traces and 15N sources to estimates of

forest ∆C/∆N in relation to the overall literature.

This concerns our inferences that i) a 2 to 3 times greater N assignment to wood

was made under canopy NDEP treatments compared to soil NDEP , and ii) a greater

return of 15N estimated to be released from litter was returned in soil horizons

than NDEP tracers. We observed both of these results using established methods,

but included a direct control in our experiment which allowed this comparison

previously not available in the literature. Both of these may feed back into the

overall forest ∆C/∆N effect of nitrogen deposition, if found on a larger scale,

but there are many potential conditions when inferring the relevance of this

result. Here, I will address these limitations and uncertainties, which I follow

with a consideration of the overall inferences of ∆C/∆N from the experiments

described in this thesis in Section 6.6, taking into account these concerns and

synthesising the overall output of the research chapters to explain their contribution

to understanding of the effects of anthropogenic nitrogen deposition on forest

growth.

6.1 Why was a Litter-derived 15N Signal so

Different Between Experiments?

Kawaletz et al. (2014) suggest linking pot and field studies as a method to improve

estimates gained from field studies. In the experiments in Chapters 4 and 5 we

attempted this by only performing the technically limiting canopy fertilization
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in the nursery but applying similar soil NDEP treatments in both studies. In

the latter chapter, while only the belowground system was available for study,

it remained in stratified soil horizons and under field conditions, offering greater

comparability to the real world than the nursery study. A comparison of matched

treatments is provided in Table 6.1.

Table 6.1: Comparison of treatments between Chapters 4 and 5.

Nursery Experiment (Chapter 4) Field Experiment (Chapter 5)

NAlitter-Water Water Control

NAlitter-15Nsoil
15NDeps

NAlitter-15Ncanopy -
15Nsoil-Water -
15Nsoil-NAsoil

15NLitters
15Nsoil-NAcanopy -

- 15NDepu

It is noticeable that while there was a strong recovery of the 15N-label in the soil

of the field experiment in Chapter 5 (exceeding return of 15N added in deposition

treatments), there was no corresponding evidence of a clear distinction between
15N-litter treatments and the water control in the nursery experiment of Chapter

4. In this first section I will discuss possible explanations for this discrepancy,

focusing on differences in decomposition rate, litter layer mass, soil types and

methodological differences in litter preparation.

6.1.1 Estimates of Decomposition Rates

Both the nursery and field experiment experienced problems relating to litter mass,

although these problems were not the same between the two experiments.
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Our estimated rates of decomposition in the nursery (based on the litter bag

mass loss in Section 5.3.5) were clearly overestimates when compared to the mass

remaining in this layer when separated and dried, while in the field experiment

basing the litter mass in the unswapped plots (which was not recovered) at the

end of the experiment on the mass of litter removed from the swapped plots at

the start of the experiment appeared unrealistic when compared to the literature

as this generated an implausibly strong litter sink (< 100 % of 15N when the δ15N

observed was applied across the entire expected mass.

In both cases we decided to make a conservative assumption in terms of a overall
15N release/retention and based litter N release in Chapter 4 on values which

fit the variable mass return from litter at the end of the experiment (a 5 % N

release Titus and Malcolm, 1999; van Huysen et al., 2013) and in Chapter 5 on a

reasonable UK average mass for similar plots (Morison et al., 2011). These had

opposite effects on the total 15N return calculated; adjusting the plot litter mass

reduced the total N pool which a measured δ15N expression was applied to in the

field, while the estimated total 15N available from the litter was decreased in the

nursery experiment by reducing the estimated rate of release, so deviations from

the control therefore produced a greater estimated 15N retention in the labelled

litter treatments (using this reduced rate N release did not affect the amount of 15N

applied in the deposition treatments). However, as litter 15N return was so low and

inconsistent this had no overall effect on the statistical significance of the return

observed. Using literature masses may have generated a source of bias in the field

experiment rather than relying on experimental measurements but as this brought

estimates of total 15N return from litter to within possible values given that there

were no additional 15N sources available it was considered preferable than the

impossible litter sink which would otherwise have been calculated. Despite these

amendments, a strong 15N return from litter was observed in the field study, while

no significant trend in 15N was found in the pots.
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Some technical constraints from conclusions drawn from pot studies are discussed

further in section 6.2.1, and the effects of sample sizes on possibilities of type I and

type II errors are further discussed in section 6.2.2. For now, it is assumed that

the different 15N responses were not due to inherent weaknesses of one method

of study over another, nor insufficient replication, and that explanations for this

difference can arise from inherent methodological differences despite the design

which aimed for comparability between both studies.

In the field experiment, net N release from litter was assumed to be equivalent to

litterbag N loss and have a similar 15N content to the decomposing litter, while in

the nursery experiment, this N loss was calculated using values derived from the

literature. Here, the litter had a significantly lower average 15N content, but due

to differences in masses of litter applied to each experiment, the total available 15N

was similar (Table 6.2). If litterbag values from Chapter 5 had been used in the

nursery experiment, total N release would have been calculated to be larger, but

as the litter 15N return was otherwise non-significant no changes would be made

to the conclusions. If literature values for decomposition rate had been applied to

the field experiment this would have reduced total N release predicted and raised

observed percentage 15N recovery based on observed 15N abundance.

The implications of the assumptions which governed these estimated N losses are

covered in the relevant chapters and are not discussed here beyond noting that

using measured values would increase the dissimilarity between observed 15N return.

While there is a difference of approximately 2:1 in total 15N availability in favour

of the field experiment this is both insufficient to explain the low and irregular
15N return in the nursery soil compartments (in the spring and summer 2013 a

degree of highly variable enrichment was seen among the 15N-litter treatments

in this experiment, suggesting some degree of uptake, albeit an unsustained and

heterogenous expression), and subject to a high degree of uncertainty. Therefore

we also consider three further important distinctions between the experiments:



138 6.1 Why was a Litter-derived 15N Signal so Different Between Experiments?

Table 6.2: Comparison of N availability between the two 15N-labelled litter

experiments. Litter was relatively more enriched in Chapter 5 but overall 15N availability

was similar between experiments when we applied the decomposition rates fitting

changes in litter mass observed at each site.

Experiment Nursery Experiment Field Experiment

Chapter 4 Chapter 5

Mass (kg m−2) 4.42 1.39

N % Litter 1.15 1.05

Atom % 15N 0.94 1.82

Relative Total 15N in Litter ∼ 2 ∼ 1

N release (% Total N) 5 ∼ 20

Relative Available 15N 1 2

differences in litter density and associated thermal and hydrological properties,

differences in litter type, and differences in litter provenance.

6.1.2 Litter Mass and Isotope Retention and Losses

The nursery experiment had over three times as much litter as the field experiment

per area (Table 6.2). In the former, all the available litter at the time was used,

as we recognised that we may have had differences in detecting the labelled 15N

release in some pools due to the lower than ideal mean 15N atom % of the litter.

In the latter experiment we spread the litter as broadly as possible between four

plots which were at the minimum size we were comfortable with in relation to the

structure of the plantation (a three by three tree grid with a single central tree).

As 15N abundance in the litter for this experiment was greater, the lower mass

applied per area was less of a concern, but this difference may have resulted in



CHAPTER 6. Discussion 139

differences in the thermal and hydrological properties of the litter layer as it was

considerably thicker in the nursery than at the field site.

Differences in litter depth and their impact on estimates of litter layer 15N release

were mentioned in section 5.4 in relation to possible variation in N incorporation

and decay rates within the litter layer. These same factors (Lindahl et al., 2007;

Wang et al., 2013) may have caused a difference in rates of decomposition and

N release between treatments, affecting the total amount of N decomposed in

the thicker litter layer in the nursery, or been compounded by the pot-bound

status of these individuals. Litter intercepts throughfall (Putuhena and Cordery,

1996), but retains heat and reduces evapotranspiration from the soil (Kelliher

et al., 1986; Schaap et al., 1997). Changes in litter thickness may also affect soil

temperatures (Ogée and Brunet, 2002), but despite the thermal properties of a

thicker litter layer, the soil system in the nursery experiment was much more

exposed than in the field. Pots in nursery experiments are sometimes buried,

which may reduce heat fluctuations in the soil system, while exposure and thermal

capacity of dark pots may caused differences in soil temperatures (Passioura,

2006). Soil microbes are known to respond to temperature (e.g. Zogg et al., 1997)

and numerous temperature effects are also observed in roots (Pregitzer et al.,

2000). These may affect overall 15N retention in roots and soil and by implication

also affect N losses such as losses from soil water and trace gas emissions if sink

strength into biotic pools differs. Emissions of N-containing trace gasses such

as N2O (Smith et al., 1998) are affected by soil water content and would have

changed if retention of water increased (Sato et al., 2004) in this layer, but overall

little information is available regarding the drainage and water storage capacity in

litters in general (Guevara-Escobar, 2007) and emissions as N2O were probably low

(from 15N-labelled beech litter, Eickenscheidt and Brumme (2012) calculated less

than 1 % total 15N loss as nitrous oxide over a decade). The potted experiment

may have generally been more open to 15N losses as it was homogenised, lacking

distinct soil layers at the start of the experiment and may also have experienced
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differences in soil N cycling due to the disruption to networks of mycorrhiza fungi

within the soil system; in the field experiment these were largely undisturbed but

the separation of small volumes of highly disturbed forest soil in the pots may

have meant that these species were not present or at low abundance. Thus, overall

it is possible that the lack of a 15N-return from the labelled litter in the nursery

was simply due to the substrate structure of this soil system, although Weatherall

et al. (2006a) observed a 15N return on similar Picea sitchensis seedlings grown on

sand.

In addition to the possible artefacts of soil and litter layer preparation in the pots,

it is also possible the thicker litter layer may have been more able to retain more
15N released from decomposition as much of this denser litter was more spatially

separate from pools within the soil and lower litter. We aimed to quantify this

in the litterbag experiment in chapter 5 but did not measure any notable 15N

return in the relevant treatment. The reasons for this are discussed in section 5.4

and may be an artefact of the experimental design. We were not able to directly

measure this in the nursery.

A final difference which may have affected 15N retention and losses in the soil

system was differences in C inputs from above ground. Soil respiration is driven

by C inputs from recent photosynthesis (Högberg et al., 2001) which may have

differed if the ratio of above-ground C fixation to soil volume differed between trees.

Differences in C inputs to the soil may have affected differences in rhizosphere

activity and thus overall rates of decomposition, which may have been higher at

the field site due the closed canopy of the forest being able to assimilate most of

the incoming solar radiation, compared to the sparser branches and lower Leaf

Area Index expected at the nursery site (Turner et al., 2000; Tobin et al., 2006).

As soil water and gaseous N losses, litter 15N retention and C inputs to the soil

were not measured in either experiment, and literature is limited on these subjects,

it is difficult to fully assess how important these factors may have been in reducing
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15N return in the potted treatment. While speculative, these potential impacts on

N release and return are summarised in table 6.3. As demonstrated, effects are

multidirectional and thus we can make no clear inference about how these effects

of litter decomposition may have affected 15N return.

Table 6.3: Summary of potential unmeasured effects on decomposition rate and
15N losses to unmeasured pools which may have affected availability for litter-derived
15N to root and soil pools in the nursery experiment. Directional arrows indicate

probable increase, or decrease of 15N availability. Arrows in the column titles indicate

expected increase or decrease in the Nursery Experiment (Chapter 4), relative to the

field (Chapter 5)

↑ Depth ↑ Exposure ↓ Rhizosphere Priming

Decomposition Rate ↑ ↓ ↓

Litter N incorporation ↑ ? ?

N losses (litter) ↑ ↑ ?

N losses (soil) ↓ ? ↑ ? ?

6.1.3 Soil Types

A difference between the experiments may also have occurred in soils used in the

pots when compared to the field site. As well as being homogenised and lacking

distinct soil layers at the start of the experiment, the potted soil was derived

from a different site (Griffin Forest) than the field experiment (Cloich Forest),

due to logistical problems within the project. This may have played a part in
15N retention (or indeed, other differences in treatment responses between the

experiments) as the soil from Cardrona is a mineral stagnohumic gley (Clement,

2004), while at the field site used for Chapter 5 the soil is of much more organic

shallow peat (Sheppard et al., 1995). While the Griffin Forest soil has an organic
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topsoil, which was likely homogenised with some mineral-derived soil from lower

horizons and was also diluted with a low N/P/K compost (10 %) when preparing

the soil for the pots. Various studies applying 15N labels have found differences in

retention in the soil system on different soil types (e.g. Müller, 1988; Clough et al.,

1998) and although soil type differences are most reported in direct comparisons

in agricultural systems, it seems reasonable to assume that this may have been a

factor affecting 15N return between the two experiments.

6.1.4 Labelled-Litter Preparation Effects

We replaced the litter in both of our soil system experiments with prepared artificial

litter, created by drying live leaves rather than harvested from litterfall, which

is made up largely of leaves which have undergone senescence. Amino acids and

other compounds are recycled from leaves during senescence, conserving N and

other sparse nutrients within the tree (Hörtensteiner and Feller, 2002), and may

have remained in our artificially created litter substitute. At the start of the field

experiment (Figure 5.1, top panel), N content of the 15N litter was 1-2 times higher

than N content of the litter layer, and, while this difference rapidly decreased,

this treatment remained most N enriched for the entire study. This higher N

content likely reflected N remaining in structures which would otherwise have

been digested and remobilised during senescence. If these differed in recalcitrance

compared to natural litter (more easily broken down compounds may be more

likely to be mobilised), this artificial litter may have released more 15N early

in decomposition compared to natural litters, and possibly contributed to short

term peaks in 15N contents (e.g. Figure 5.2, Oh horizon) early in the experiment.

Evidence for such an effect is, however, limited, and litter N content behaved

similarly in all treatments aside from this early difference (Figure 5.1). Other

differences between real and prepared artificial litter layers may have been related

to water content or colonisation by soil communities before the experiment started,
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which we controlled for in Chapter 5 by subjecting one of the unswapped litter

treatments (15NDeps) to oven drying treatments similar to the labelled litter to

reduce its water content and attempt to sterilise any pre-existing decomposer

communities.

It is also worth considering potential differences between the experiments due

to provenance of the litters used to supply the 15N label. Both of these were

derived from Sitka Spruce stem injection experiments in forests other than the

sites at which the litter was used (see Churchland et al. (2012) and Chapter 3),

and differed slightly in nutrient content (Table 6.2), but were processed in similar

manners and stored dry for a period before application. As well as this, neither

of the applicatons were of litter produced by senescence, rather harvests of live

leaves prepared to allow the 15N label trace.

We cannot make any reasonable inferences about differences in site of origin but did

not expect there to be any major differences in decomposability of needles between

the two sites as these were from similar stands, had fairly similar N content, and

were both from adult trees considerably older than the 6-8 year lifetime of Picea

sitchensis needles (Norman and Jarvis, 1974), thus with a reasonably comparable

range of needle ages available in a whole canopy harvest. However, as due to

differences in plot size, we applied mixes of litter to the field plots and split the

litter from a single tree between multiple pots in the nursery, it could be expected

that differences in decomposition rates or 15N retention in the litter could have

arisen due to differences in litter mixes; from species mixtures in the literature

it appears that a non-additive enhancement of total decomposition rates often

occurs (Gartner and Cardon, 2004). However this trend appears to be reversed in

single-species mixtures of different N content (Smith and Bradford, 2003) which

decompose slower than single-quality litters. As this is the only study addressing

variation in litter mixes within, rather than between species, and studies only

grasses, there is no information if variation between individuals, as is possible when
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litter is derived from whole trees, may affect rates of decomposition. Literature

rates between same-species litter are both only 10-30 % (Smith and Bradford, 2003)

and in the opposite direction to that which we would expect if mixed source litter

produced higher 15N release in the field. The potential difference between mixed

and unmixed litter is therefore unlikely to fully explain the lack of a discernible

difference in 15N-litter in the nursery.

Finally, it is also worth considering if injection experiments which produced

the litter itself could have influenced release of 15N between studies. Both

Churchland et al. (2012) and our Chapter 3 method injected trees with a 15N-

enriched compound, left them to stand for a similar period of time (5 months in

our study, 3 months in Churchland et al. (2012), A. Weatherall, pers. comm),

over autumn. After felling, trees in both studies were left outside overwinter, and

processed in spring. Due the the volume of biomass, much of our material was air,

rather than oven-dried (as in the case of the litter for the nursery experiment), but

we did not expect any differences in major losses of 15N to occur in the 80◦ oven

treatment to dry the litter. As we recovered ∼ 100 % of the injected N the Chapter

3 field experiment we expected there to have been virtually no losses of 15N over

the storage and processing period. Unless the injection substrate (aspartic acid

in Churchland et al. (2012) affected this, we expected this to also be the case in

the litter used in Chapter 4, and subsequent N losses during the our experiments

were based on a measured N pool at the start of our experiments rather than the

total injected N in previous experiments so it was unlikely that 15N losses over

the storage period could have affected results.

A greater total amount of 15N was delivered in our injection experiment, but total

injected 15N was a relatively small amount of the total tree N pool in both studies

(we estimated this at 0.3 to 0.8 % depending on tree size compared to 0.25 to 0.5

% total 15N in Churchland et al. (2012), and the the average litter enrichment

from our trees was only two times that of the litter derived from Churchland
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et al. (2012) (Table 6.2). In both of these injection experiments the majority of N

available to the canopy was therefore N from the background, unlabelled soil N

pool or existing N stores within the tree and we did not expect any differences

in assignment of the different isotopes of N, beyond minor differences due to

fractionation, which we did not expect to be large enough to cause such a major

difference in 15N return in the soil pools. Differences in the quantity of delivered
15N for enrichment and individual needle 15N abundance were therefore unlikely

to be a determinant on release of this 15N in decomposition in our studies.

A more major difference may be that aspartic acid was used as a 15N injection

carrier in Churchland et al. (2012), while we used ammonium nitrate. Organic

molecules such as amino acids are the main N transport molecules in the xylem

(Pate, 1973), and the aspartic acid is a common component of xylem sap (one

of the 5 most common amino acids in scots pine), and unlike other molecules, is

not expressed in a seasonal cycle (Näsholm and Ericsson, 1990). On the other

hand, our NH4NO3 is the main mineral forms of N uptake. Literature on stem

injection experiments is very sparse (we consider this further in Chapter 3.1) and

unfortunately it is difficult to assess the scope to which foliar 15N expression may

differ when these two different compounds are used for injection as comparison

experiments with different 15N-vectors have not been published. Certainly, the

NO3
− group must be reduced before it can be assimilated into biological compounds,

which occurs in leaves in some species, and in roots in others (Smirnoff et al.,

1984; Black et al., 2002). Once it is assimilated, this may be transported as a

different amino molecule than aspartic acid. The 15N label may therefore arrive in

the canopy in different forms between these two treatments, which may affect how

this 15N is assigned within the needles. If N in this form is incorporated in greater

amounts into more recalcitrant 15N components of foliage than mineral NH4NO3,

this may influence the rate of 15N release from these litters when considered over

only one stage of overall decomposition. Weatherall et al. (2006b), traced 15N

successfully from Sitka Spruce litter to Sitka Spruce trees, and used NH4NO3
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as the injection compound to prepare enriched litter, like our successful trace.

However without more evidence on differences in assignment of these compounds

it is difficult to determine whether this may have had an effect on 15N fate in our

experiments.

Overall, there is no single factor which alone explains the lack of a 15N return

from the litter in the nursery experiment in Chapter 4, when a substantial 15N

return was observed in Chapter 5. A combination of several of these may have

combined to reduce 15N availability in the Nursery study. Such limitations when

compared to field experiments are common in potted studies, and this approach,

along with other potentials, is discussed in the next section.

6.2 Upscaling Limitations

Based on the potted sapling experiment we were able to estimate that with the

allocation of canopy NDEP to wood we observed, ∆C/∆N estimates may more

than double. In Chapter 5, we also found a greater 15N return from a litter-derived
15N tracer than conventional 15N deposition. However, an important issue which

immediately arises from such results is how well such studies can scale to regional

and global ecosystem responses. Like our work, field 15Ndep studies are often

un-replicated among sites due to high financial and logistical costs, and meta-

analyses are particularly important to draw together the work of different authors

(e.g. Nadelhoffer et al., 1999c; Templer et al., 2012), whereas unlabelled NDEP

experiments are much more likely to be replicated between sites (e.g. Gentilesca

et al., 2013).

Approaches to experimental study of ecology can vary to anywhere between

ecosystem level manipulations of natural systems to microcosms in greenhouses

and growth chambers. Field experiments are most akin to the real world by
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taking a fraction of a natural ecosystem for manipulations, but generate financial,

logistical and analytical constraints due to the scale and complexity of systems

studied. On the other hand, while smaller scale nursery or glasshouse experiments

are poorer abstractions of the real world, they allow control of biotic and abiotic

variation in the field, an isolation of the variables of interest without confounding

effects of other heterogeneity, and for problems to be addressed on a manageable

scale.

In our two NDEP experiments we attempted to maximise generality, inter-

comparability between our studies and applicability of our experiments to wider

understanding, by maintaining the same study species and close to ambient levels

of N availability between treatments. The nursery experiment had a simpler soil

system and was able to receive canopy treatments, while the field experiment was

an established plantation with little disturbance. In some cases soil systems in

nursery experiments may be created to better mimic the natural environment (e.g.

pre-stratifying soil horizons in the pots), but as they are removed from the site of

interest these microcosms cannot perfectly model local environmental conditions.

Both of these studies were outside and open to local climate heterogeneity, while

experiments in Chapter 4 were constrained to pots and contained 3-4 year old

Picea sichensis, while Chapter 5 was established in a 42 year old Picea sichensis

plantation forest. While this was only on a single species, and our two experiments

were on soils from different sites, this allows our results to be compared and

combined with greater certainty, and was also appropriate as Picea sichensis is

the most important forestry species by area in the UK (∼ 29 % of all forestry, and

49 % of conifers (Smith and Gilbert, 2003)).

Differences in scale were constrained between a desire to work on adult trees

which make up the majority of a ∆C/∆N response, but also to be able to apply

treatments and representatively sample as required. This necessitated splitting

work between a nursery and field experiment, although the number of replicates
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in both experiments was limited by the availability of labelled litter. It is both

expensive and labour-intensive to produce labelled litter on a large scale which

both explains the relative paucity of studies using labelled litter in the literature

(most 15N-enriched field studies in the literature involve litter created in a single

fertilization (Zeller and Colin-Belgrand, 1998)) and the complete litter-swap of a

forest catchment or large scale plot is logistically implausible. Even with ∼ 100

dry kg of litter available from our 15N-injection experiments we were only able

to replace four 4 x 4 m−2 plots in Chapter 5. Similarly, we were constrained to a

mesocosm experiment to study foliar NDEP treatments as, as well as the high cost

of 15N-enriched material for isotope traces, canopy-fertilization treatments require

a method to apply 15N to the canopy. This is hugely logistically challenging, and

in the literature only a single canopy-level fertilization study has been performed

using a 15N-isotope tracer (Dail et al. (2009)) and others performed on trees are

from pots (e.g Wilson and Tiley, 1998; Ammann et al., 1999) or single branches

(Bowden et al., 1989).

In this section I will examine two of the major factors which limit comparability

both between our experiments and with the rest of the literature: i) that our

∆C/∆N estimates are obtained from potted studies, and ii) that our sample sizes

were fairly small within each experiment.

6.2.1 Limitations of Potted Nursery Studies

Our conclusions about a reasonable strong ∆C/∆N effect due to high wood return

of NDEP in our nursery experiment was limited as this was performed on young,

pot-bound trees. Pot studies can be useful for woody species, but experimental

design must be considered carefully as trees have longer lived tissue and can grow

to require larger volumes of soil than contained in pots, while they also often

require longer periods of study than herbaceous species due to their longevity
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and lower growth performance than non-woody species (Kawaletz et al., 2014).

Poorter et al. (2012) recommend a root size to pot size ratio of < 1 g L−1 to avoid

deleterious effects on both below- (available space) and above- (limitations imposed

by soil nutrients, water, and temperatures) -ground growth in longer experiments.

Pot-bound trees also face increased limitations as biomass accumulates, which

needs to be balanced with an adjustment period to pot conditions to ensure equal

starting conditions for all individuals, and accommodate the potential for mortality

during the experiment (Kawaletz et al., 2014). In our nursery experiment, we left

the trees for a year before treatments started, and at the end of our experiment,

the average root to volume ratio in our pots was ∼ 0.6 g L−1, well within the

recommended size to avoid effects of a pot-bound root system. Over this time we

also suffered a 6-7 % mortality (2 trees) from the entire cohort of 30 treatment trees,

which was probably due to aphid-induced defoliation before the experiment began.

While these trees appeared reasonably healthy at the start of the experiment and

remained in the treatments, studies in nursery environments may be particularly

vulnerable to such problems and compound the vulnerability of small trees to such

stochastic events.

Transferability in pot studies is also limited by ontagenic shifts between young

and old trees (e.g. Weih and Nordh, 2005), and conclusions drawn from young

individuals often poorly match with older ones. However, in the case of our nursery

experiment, a strong ∆C/∆N effect depends on the allocation of N to woody

biomass, and as trees age the proportion of high C/N (stem, old branches, coarse

roots) to low C/N biomass (foliage, twigs, fine roots) increases (Helmisaari and

Makkonen, 2002; Peichl and Arain, 2007) and annual growth tends to increase,

so the allocation to wood found in Chapter 4 cannot be due to relatively higher

growth rates of wood in seedlings than comparable older trees.

It is also worth noting that in older trees, despite annual greater mass accumulation,

the proportion of wood laid down in the annual increment is increasingly smaller
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due to accumulating size of older pools of biomass (Stephenson et al., 2014). If,

as expected, 15N assignment from canopy-level fertilization is primarily to the

currently growing pool in short-term 15N fertilization studies and the relative

proportion of this pool to the rest of the woody biomass in the tree declines over

time, the strong ∆C/∆N effect we saw would need to be maintained over the

entire lifetime of the tree for similarly strong effect on overall C uptake. While

this may seem a reasonable assumption, as these older trees make up the majority

of C uptake due to their size, confirmation of a high canopy uptake input to

NDEP both in the field and in large trees is critical to assessing if this uptake

occurs on the scale necessary for a major effect on CO2 uptake when applied to a

whole-ecosystem scale.

6.2.2 Small Sample Sizes

Another major limitation to our studies is the small sample size of our experiments

(n = 5 per treatment in the potted experiment, n = 3 in the field study). These

sample sizes reduced the degrees of freedom available for statistical analysis and

while this did not invalidate the statistical tests used, did increase the potential

for both Type I and Type II errors. Low sample sizes are often used due to

logistical limitations (for example, in Chapter 3, our assessment of 15N assignment

within 12 stem injected trees was the first time this has been attempted with

statistical replication in the literature) or required due to the cost (large-scale
15N-fertilization studies (e.g. Gaige et al., 2007) are often unreplicated on the plot

level). In our two 15N fertilization experiments, it was critical to have enough

treatments to compare the different sources of 15N we were interested, as well as

providing sufficient controls. In both of these we were limited in sample size due

to available 15N-enriched material and logistical capacity.

Sample size was less of a problem in Chapter 3 where we were able to inject 12
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trees, the limit on this being largely the effort required to maintain multiple stem

injections simultaneously and the cost of large amounts of 98 % 15N-enriched

ammonium nitrate to achieve our desired high enrichment, which we justified

as we needed a high enrichment for further experiments. We took the litter

produced in this experiment and applied ∼ 1/3 of the 300 kg to our field site (the

remaining litter was deployed at another site and is not covered in this thesis).

This only allowed us to replace four 4 x 4 m−2 plots for the 15N-labelled litter

swap treatment, and, as one of these plots was required for burying litter bags

(which would entail frequent disturbance), the number of plots for this treatment

was limited to three. Similarly, in the potted experiment we felt the logistical

challenges and analytical costs for 15N analysis of 30 trees was the limit to what

could be practically achieved, limiting sample size across six treatments to n = 5.

This problem of small sample sizes in the two NDEP chapters is apparent in the high

heterogeneity at a single time, but was relieved somewhat by the ability to measure

many of the pools of interest over a time series. This required incorporating a serial

correlation structure into statistical models to account for sequential measurements

pseudo-replicated over time. Despite this, we also observed high variation within

the sample trees in both experiments, which was often likely due to heterogeneity

within the pools of interest (soil (Högberg, 1997) and litter (Weber and Bol, 2008))

δ15N are known to be spatially heterogeneous. Within saplings in Chapter 4, 15N

partitioning may also have occurred on levels beyond the age classes measured,

such as spatially or laterally within the canopy as apparent in the large trees

in Chapter 3. This variation is evident in time series graphs for both of these

chapters, but we assumed overall trends to be linear (see section 6.3), and in both

experiments had reasonable R2
m when trends over time were apparent. Nonetheless,

a larger sample size would likely have reduced this variation.
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6.3 Timescale of NDEP Experiments

Ecological studies where processes can occur over long periods or with pronounced

seasonal and interannual variability are often difficult to study within the realities of

funding and field logistics (Callahan, 1984). These issues may have been especially

true in this project where the limits of a PhD timeframe imposed constraints

which meant that the pot system and field experiment were studied for periods of

14 months and 16 months respectively while the overall objectives of this thesis

concern issues that occur the entire management cycle of a forest stand. These

two traces provide different challenges to projecting the effect of an experiment

which has been measured in the short term to make long term predictions and

the effect of time can be split into individual, but interacting demands: long-term

responses and inter seasonal variability.

6.3.1 Seasonal Changes in N Pools

Seasonal cycles in tree growth (Weinstein et al., 1991) and nutrient translocation

between pools (Millard and Grelet, 2010) are well established and discussed in

Chapter 3. N content of tissues is constrained by biologically possible C/N ratios

but as N uptake and C fixation potential vary through the year, the C/N ratio

can change to optimise immediate photosynthesis (Hirose and Werger, 1987) and

maximise reserves of N for future growth (Millard and Grelet, 2010) and long-

term reproductive success. Plants respond to changing available N and C and

by remobilising N-containing compounds from storage pools (Millard and Grelet,

2010), while a similar process occurs to conserve limiting nutrients by withdrawing

nutrients from leaves prior to senescence (Chapin et al., 1990), although not all

N is removed before shedding and even mobile amino acids such as arginine may

remain in senescent foliage of a high N content, which may function as a defence,
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or removal mechanism under N saturation (Näsholm, 1994).

We discussed the implications of these seasonal patterns on NDEP return in canopy

pools earlier in the thesis (Chapter 3.4) and measured trends in N content over

more than a year in foliage (Chapter 4.3) and roots (Chapter 5.3). The resolution

at which we measured 15N return and needle N content is much higher than as is

previously reported, with many field studies looking at, at best, one or two time

points 6-21 months (e.g. Nadelhoffer et al., 1995, 1999a; Tietema and Emmett,

1998; Schleppi and Bucher-Wallin, 1999; Dail et al., 2009) after sampling. As

resolution in such studies is extremely limited, our high resolution 15N traces to

needles, roots, and soil across the two deposition experiments represent a useful

addition to scientific detail in this area, showing that 15N responses are rapid,

sustained, but also fairly variable at low 15N enrichment, which may necessitate

a high resolution sampling for accurate measurements of 15N return, especially

at relatively small variation in δ15N. In this study, a strong cyclical trend of N

appeared to be occurring in the foliage, consistent with filling and emptying of

needle N overwinter, while no overall trend (and high variability) was found in

roots. This was consistent with the N storage pool in the needles in Sitka Spruce

(Millard and Grelet, 2010). No seasonal trend was apparent in root N content

in chapter 5, consistent with the literature that roots are not a N store in this

species.

In Picea sitchensis, woody N pools are a sequestration, rather than storage pool

for nitrogen, while other species, particularly deciduous broadleaves, store N in the

bark (Millard and Grelet, 2010). Due to this particular facet of the species’ ecology

we felt that this single time-step, necessary due to the destructive harvest, was

sufficiently representative of long-term N assignment in the stem and branches. In

other species with different N storage habit a single measurement at an arbitrary

point in the growing season would not have been sufficient.
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Aside from total nitrogen content, seasonal changes in 15N content of the needles

may also have occurred in our resolution needle time-series (there seems to be a

peak of foliar 15N early in the year in the NAcanopy treatment (Figure 4.2), which

may have also occurred in other treatments but was not visible due to the high

variability compared to the magnitude of excess 15N expression.

For statistical analyses we treated the 15N time-series in both the respective

chapters as linear as the durations of these experiments were too short to tell if

these cycles were indeed varying throughout the year and using a mean trajectory

in a linear model would be enough to determine differences between treatments.

If this apparent seasonal trend in 15N-isotope content was genuine, this may also

have been due to seasonal variation in 15N storage and uptake as it occurred close

to peak [N] in this time-series. 15N obtained earlier in the year may have been

assigned to storage pools in the needles, where N is stored in metabolically active

proteins such as RuBiSCO (Millard et al., 2007), rather than contributing the

structural and long-term N, as N uptake may peak early in the growing season

(Jaeger et al., 1999). This N stored before periods of peak demand could be

mobilised when this N is needed, resulting in the peak of 15N at the same time as

N content was at its maximum. However, to confirm that this is the case a longer

time series would be needed at a similar resolution, where repeat instances of this

peak could be observed.

6.3.2 Long Term Responses to Nitrogen Deposition

Over the longer term, our study species, Sitka Spruce, is typically grown in

rotations of around 35-40 years in the United Kingdom (Moore, 2011), although

many stands are considerably older. Nitrogen deposition studies are typically

much shorter, while changes in background NDEP concentration may occur over

decades (Waldner et al., 2014).
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While estimates of the NDEP effect based on short-term studies (such as our work)

take part on only a fraction of the whole lifespan of the a tree, the duration of

our two studies were not particularly short when compared to other 15N-tracer

studies in the literature and we were particularly interested in not inducing a

long-term N fertilization effect, which may be dependant on first saturating storage

compartments in the tree (Sheppard et al., 2004). Plots summarised in Nadelhoffer

et al. (1999c) have an average duration of 14.5 months and several of these studies

only applied 15N fertilizers over a single growing season. With no 15N-labelled

tracer, longer term studies have been performed at natural abunadance, both

with traditional soil fertilizations (e.g. Magill et al., 2004; Hyvönen et al., 2008;

Gentilesca et al., 2013; Savage et al., 2013), as well as responses to slightly shorter

term canopy fertilization (e.g. Guerrieri et al., 2011).

As mentioned in Chapter 1, a shortcoming in understanding NDEP responses still

exists in reference to long-term feedbacks in litter quality and N recycling from

the soil. High 15N returns in needles may reflect short-term storage rather than

sequestration. Sitka Spruce stores N in needles overwinter (discussed in depth

in Chapter 3) so initially high foliar 15N returns do not necessarily mean that

this N remains in needles and i) changes litter quality or ii) is not eventually

relocated to woody sequestration. However, C/N ratios in foliage usually decrease

under chronic NDEP (McNulty et al., 1991; Magill et al., 2004) and following

senescence, low C/N foliage is still shed with a relatively high absolute nitrogen

content (Näsholm, 1994; Magill et al., 2004), which affects the C/N content of

the litter layer (McNulty et al., 1991) in addition to the effects of direct NDEP on

forest floor chemistry. Litter quality is well known to affect decomposition rates

(McNulty et al., 1991; Cotrufo et al., 1994; Coûteaux et al., 1995), and interacts

with N availability (Knorr et al., 2005), and little layer thickness, so changes in

foliar N under long-term NDEP may have impacts on N recycling from the soil

and long-term N assignment beyond that which was considered in this study. This

may interact with the differences observed between litter-derived and mineral N in
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our field study to change ∆C/∆N beyond the additive effect of 15N partitioning

following foliar and soil 15N uptake and changes in litter N release from a NDEP

effect on litter decomposition.

Decomposition is a complicated and sequential process (Berg and McClaugherty,

2008) and in both experiments with labelled litter we could only trace recently

decomposed fractions of litter. In a particularly extreme example, Wardle et al.

(1997) found almost 3000 year old mor humus layers in boreal regions which had

not burned during this time. It is impossible to introduce a 15N label to litter and

humus without labelling other pools, and the potential to test the effects of NDEP

on the fate of older fractions of litter is therefore limited as this must be introduced

as fresh litter and sinks for released 15N may already have obtained 15N from

quickly decomposing fractions before measurement. Similarly, a second long-term

effect of litter decomposition is that, in our litter swap experiment, the entire N

layer was the same age, and applied at the same time. This meant that all of the

N losses from decomposition were from fast-decomposing fractions of litter. More

recalcitrant, older fractions may decompose to different compounds, with different

fates, and N concentrations may have also different effects on litter decomposition

at different stages of decomposition (Berg and McClaugherty, 2008). As we aimed

to not manipulate NDEP significantly in all experiments these interactive effects

between magnitude and 15N source were not a major concern, and in a much

longer-term experiment, the former issue could be addressed by storing additional

labelled litter and sequentially adding it to the plots over time.
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6.4 Comparision to Other Studies

6.4.1 Diversity of Deposition Methods

This is not the only study where NDEP retention in the canopy nor litter 15N

return has been assessed in different ecosystem pools, but we believe that Chapters

4 and 5 display novel controlled comparisons against standard soil fertilization

experiments.

The diversity of methods in the limited number of foliar 15N-NDEP studies (c.f

Wilson and Tiley, 1998; Ammann et al., 1999; Boyce et al., 1996; Dail et al., 2009)

and elsewhere in the literature (c.f. Schulze, 2000; Sievering et al., 2007) makes it

very difficult to assess the total contribution to nutrition. This process has been

reported to vary from 5 % (Wilson and Tiley, 1998) to 50 % (Sievering et al.,

2007) of total N required by trees. We have added to this with our method of
15N-application in Chapter 4 and found a very strong (64 %) 15N return from
15N applied direct to the canopy canopy, although it was also possible for this
15N to have been taken up by the roots if washed out onto the soil. We chose a

direct application to the canopy in water and since making a comparison against

estimated litter NDEP was important in the experimental design, we wanted to be

as certain as possible about the amount of NDEP delivered to the canopy.

Other 15N-NDEP studies have measured immediate 15N return (Wilson and Tiley,

1998), estimated N uptake 15N-applications to a single canopy branch (Boyce et al.,

1996), or in relatively unrealistic conditions (Lumme, 1994), and it is difficult to

draw major conclusions about the importance of this process to ∆C/∆N from

such results if changes occur over a long term or at the whole canopy level. Only

Dail et al. (2009) has addressed this problem on the scale of an ecosystem and long

timespan but from a single study it is difficult to draw overall conclusions. Our

relatively strong 15N return in saplings does not match the low wood allocation in
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this study and foliar uptake of N remains an important subject to explore with

reference to ∆C/∆N. Greater numbers of studies at ecologically relevant scales,

closer attention to timing of measurements and longer term experiments (discussed

in section 6.3) may contribute greatly to our understanding of foliar effects on forest

∆C/∆N and confirm if the strong effect seen in our foliar experiment translates

to a strong effect on forest C uptake.

6.4.2 Diversity of Labelled Litter Methodology

There is more comparability among studies using 15N labelled litter, but only a

few experiments where this has been performed. 15N-labelled litter used in field

experiments has primarily been drawn from a single source (Zeller and Colin-

Belgrand, 1998) for almost every investigation on an field scale (e.g. Zeller and

Colin-Belgrand, 2001; Caner et al., 2004; Hatton et al., 2012; Eickenscheidt and

Brumme, 2012; Bimüller et al., 2013), notable exceptions being Blumfield and Xu

(2004); Fahey et al. (2011); Weatherall (2005). In these studies a rapid transfer of
15N to organic matter is observed as seen in our (Chapter 5) but we are one of the

few using more recalciatrant conifer litter (except Fahey et al., 2011; Weatherall,

2005), and first to attempt to compare this to NDEP . Litter quality varies between

species and understanding of 15N release from litter is vital on material aside from

the common Fagus sylvatica litter of Zeller and Colin-Belgrand (1998).

As our objectives were for a direct comparison we applied only a low magnitude

of highly enriched 15N, but litter decomposition is altered by nitrogen deposition

(Knorr et al., 2005) and ultimately the implications of a higher retention of organic-

derived 15N than mineral N is only of interest in the context of ∆C/∆N as a

difference in partitioning implies that the effects of NDEP on litter decomposition

are not simply an additional percentage of mineralised N available under changing

NDEP intensities. To test this similar experiments could be performed comparing
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NDEP against 15N-litter but also manipulating total N additions which affect the

rate of litter N release. Maintaining 15N content at similar magnitudes could be

obtained by using a relatively less enriched addition to match predicted litter

release in such experiments, ensuring comparable 15N amounts while NDEP is

raised.

6.5 Representativeness of Nitrogen Deposition

in Experiments

Aside from consideration of how our work relates to other studies, it is also

worth mentioning that uptake of wet, mineral NDEP is only a portion of nitrogen

deposition to forests as there are also sizeable dry deposited and organic fractions

in deposition which receive a great deal less research attention.

Inputs of inorganic N from deposition are predominately in the form of NH4
+ and

NO3
− (Galloway et al., 2004) and are deposited in both wet and dry forms. Many

field experiments deploy 15N traces in wet deposition as this is considerably easier

to retain expensive inputs on the ecosystem in question (e.g Nadelhoffer et al.,

1999c; Dail et al., 2009; Perakis et al., 2005). We followed a similar methodology in

both of our NDEP experiments , applying deposition inputs as dissolved NH4NO3.

Dry deposition, on the other hand, is more difficult to simulate and is most often

studied using budgets rather than manipulations (e.g Lovett and Lindberg, 1984).

Studies using automatic field fumigation systems as have been used in other

ecosystems (e.g. Leith et al., 1995; Sheppard et al., 2013), even before the cost of a
15N label is calculated are expensive to operate in forests with dense above-ground

biomass and the major surface areas for interception in the canopy, high above the
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ground. However as forest structure makes them particularly susceptible to NDEP ,

their interaction with dry NDEP , particularly canopy uptake, are very interesting.

Consequently much less information is known about dry nitrogen deposition and

its ∆C/∆N effect is usually assumed to be the same, despite constituting 40-50

% of total NDEP (Dentener et al., 2006). The lack of consideration of dry NDEP

was one of the criticisms levelled at Magnani et al. (2007) by Sutton et al. (2008)

and it is assumed that wet NDEP scales in the same way as dry NDEP in many

studies tracing 15N additions and inferring a carbon effect of nitrogen additions.

As N processes in the canopy may change NDEP uptake, some validation of this

assumption would be useful if the costs of full-scale ecosystem fumigation are

impractical. Studies such as Ammann et al. (1999) can demonstrate dry uptake of

NDEP from strong background sources which could provide a method with which

assessment of the relative importance of wet and dry NDEP could be compared.

There is also a portion of the literature which suggests that organic nitrogen

compounds compose ∼ 30 % of water-soluble N and also a possible fraction of

organic N in the atmosphere (Cape et al., 2011; Cornell, 2011), but there is still

considerable uncertainty in what exactly the organic fraction of NDEP consists

of. Typically, a ‘number of organic compounds’ consisting of a mix of urea,

amino acids, amines, peptides (Cape et al., 2011) are assumed to make up this

proportion of deposition, and there is very little information about the magnitude,

composition, and importance of this fraction of nitrogen deposition which can

relate to forest growth or biological effects of deposition of these compounds at all

(Jickells and Baker, 2013). Various forms of organic nitrogen may be transported

different distances in the atmosphere and may have differing effects on the forest

system, and at manipulation levels, organic applications are understudied apart

from various urea fertilization experiments (e.g. Zeller and Colin-Belgrand, 1998;

Mugasha and Pluth, 1994). As plants can acquire some organic N, if these organic

inputs are in an appropriate form for uptake then logically this proportion of NDEP
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may contribute to plant growth by bypassing the microbial bottleneck in a similar

manner as we have shown for organic N from decomposition and is observed in

numerous studies (e.g. Näsholm et al., 2009). This clearly poses many questions

that are yet to be answered.

6.6 Overall Estimates of ∆C/∆N

The objectives of this thesis were to investigate some of the assumptions in 15N-

NDEP experiments to understand how these may have an effect on differences

in ∆C/∆N estimates between these and other, correlative studies. In order to

compare the differences in 15N return in our two NDEP experiments to literature

estimates of ∆C/∆N (see Table 1.1), we have applied the calculations used to

assess the total NDEP effect to the simple ∆C/∆N calculation from Nadelhoffer

et al. (1999c), which synthesised 15N-tracer addition partitioning between several

studies and applied it to a mathematical model calculating ∆C/∆N effect from

the relative allocation of N to four pools (woody biomass, non-woody biomass, soil,

and N losses) with different C/N ratios. In Nadelhoffer et al. (1999c), an overall

∆C/∆N effect of 49.8 kg C kg N −1 (49.8:1) can be calculated by dividing the

total CO2-C uptake calculated by total applied NDEP . Similarly, we can calculate

individual ∆C/∆N of trees and wood of 28.8 kg C kg N −1 and 21 kg C kg N −1

by dividing the CO2-C assimilated by total NDEP to calculate individual ∆C/∆N

for trees and soil (Table 6.4). Nadelhoffer et al. (1999c) report that their values

represent < 20 % of a total 1.5 to 1.9 Pg terrestrial C uptake at the time of this

study but calculations of a total ∆C/∆N effect are independent of both total

NDEP and the global C sink strength which have been refined in subsequent studies

(e.g. Pan et al., 2011). For ease of comparison, we retained the C/N ratios used

in Nadelhoffer et al. (1999c) in the following estimates, and report only ∆C/∆N

changes from different N sources to assess relative importance in relation to this

study. The ∆C/∆N presented in separate pools in the following tables (6.4 and



162 6.6 Overall Estimates of ∆C/∆N

6.5) is also relative to total ecosystem inputs of N, rather than the fraction of this

acquired by the pool itself.

6.6.1 Nitrogen Uptake from Canopy Deposition

To calculate ∆C/∆N from our canopy NDEP treatments (Chapter 4), we modified

the calculations from Nadelhoffer et al. (1999c) by altering the tree pools to

the values we calculated in our nursery experiment mass balance (Table 4.7) for

Canopy (NAlitter-15Ncanopy) and soil treatments (NAlitter-15Nsoil). We assumed

that soil 15N partitioning of N applied to the canopy which reached the soil did

not change, and removed the extra N assigned to above-ground pools in equal

parts from N which would otherwise be assigned to soil, or lost via leaching.

Table 6.4: Comparison of ∆C/∆N effect between values calculated from (Nadelhoffer

et al., 1999c) and our experiment. Adjustments to overall budgets presented in

(Nadelhoffer et al., 1999c, Table 2) were made by altering the Woody and Non-Woody

pools to recovery calculated in our experiment (Table 4.7), with additional N drawn

proportionally from soil (forest floor + mineral) and leeching + gaseous losses. Our

woody pools were both stem pools, and 2011-2012 branches, while our non-woody

pools were the needle pools and 2013 branches. Errors are standard deviations from

our study propagated with CN ratios of Nadelhoffer et al. (1999c).

Nadelhoffer et al. (1999c) Soil Deposition Canopy Deposition

Tree 28.8 23.8 ± 18 104.6 ± 16

Soil 21 20.4 ± 2 9.4 ± 2

Total 49.8 44.2 ± 18 113.9 ± 16

Our soil NDEP treatment was similar to Nadelhoffer et al. (1999c), estimates drawn

from C and N budgets (de Vries et al., 2006) with a total C sink of 44.2 kg C

kg N −1 split fairly evenly between trees and soil. The error on this (which we
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present as standard deviation from our mass balance propagated to the overall

Tree and Soil pools we calculated, but without errors on data from Nadelhoffer

et al. (1999c), as these are not given in this theoretical calculation) were fairly

large (18 kg C kg N −1), which was mainly due to the very high uncertainty on

stem assignment (Table 5.5). Our estimates of ∆C/∆N from the canopy NDEP

treatment was 113.9 ± 16 kg C kg N −1, which was more than double the estimates

from Nadelhoffer et al. (1999c), and more than 2.5 times that drawn from our

soil treatment which was comparable to the methods used in these other isotope

studies. The majority of this ∆C/∆N effect was due to a high response from

the tree pool which, in total, returned 46 % of N in non-woody pools and 18 %

in woody pools. This reduced 15N assignment to the soil and ∆C/∆N resulting

in a slightly lower ∆C/∆N in this pool. The substantial return in wood, while

smaller than non-woody pools (Table 4.7), had a much greater ∆C/∆N effect due

to high C/N ratios, but the overall differences were both due to this and the effect

of a higher total 15N recovery in trees under the canopy treatment; if ∆C/∆N

is recalculated using the same total 15N return above-ground, but the 3:1 ratio

of assignment between woody and non-woody biomass used by Nadelhoffer et al.

(1999c) is maintained, a 20 % lower ∆C/∆N is calculated (101 kg C kg N −1, while

using the 9:2 ratio from our soil NDEP treatment the effect is 55 % lower (70 kg C

kg N −1). Similarly, our ∆C/∆N calculation assumes that the NDEP application

to the canopy was representative of both interception and uptake together. Dezi

et al. (2010) in their incorporation of canopy uptake into the G’DAY model used

literature values of 80 % uptake (Sievering et al., 2007) and 60 % N retention

by the canopy (Chopping et al., 2008). It was difficult to assess how well our

application made directly to the canopy related to these two factors as our N

return from canopy applications was from a 15N application which may have been

subject to some losses of N subsequently washed out of the canopy. To upscale

based on crown closure, Dezi et al. (2010) used a crude single value from a single

study. As these are difficult to reliably estimate we have assumed our 64 % return

is inclusive of both of these losses to the soil while these would need to be assessed
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more thoroughly in a canopy-level 15N-fertilization study to make a more thorough

upscaling of N return to ecosystem level. As crown cover is likely to be below

100 % in most forests, we may have overestimated the ∆C/∆N effect but view

the literature on this as too uncertain at the current time to reliably improve

estimates.

Overall, the difference in our treatments raised ∆C/∆N from values similar to

Nadelhoffer et al. (1999c) or de Vries et al. (2006) to, when using our observed N

partitioning as well as total N return, a similar magnitude as values from Dezi

et al. (2010), who used a model which incorporated foliar uptake., or Thomas et al.

(2009), which used a similar correlative approach to Magnani et al. (2007) on US

forest inventory data. While our 15N estimate is drawn from pot-based saplings

(which have already been discussed in section 6.2.1), and the ∆C/∆N effect

calculated using Nadelhoffer et al. (1999c) with conservative (high) C/N ratios

and N partitioning, our results suggest that overall ∆C/∆N may be substantially

underestimated when based on 15N traces direct to the forest floor and canopy

uptake of N may result in a much higher effect on woody C sequestration than is

seen from soil NDEP treatments in the soil.

6.6.2 Nitrogen Uptake from Litter

Our field experiment returned 36 % more 15N in roots (in combined Oh and Ah

horizons) when the 15N source was derived from litter, than when the 15N was

applied in deposition (Table 5.5). We calculated a potential ∆C/∆N effect of

litter-derived N by assuming that increase in plant N occurred similarly throughout

the plant (there is some evidence that organic N sources affect plant biomass

partitioning in favour of the roots in seedlings (Cambui et al., 2011; Gruffman

et al., 2012), which may affect later performance and morphology, but no current

evidence of longer term effects or N form effects on adult trees. We also felt that
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removing this additional N acquired by trees from soil pools was unrealistic as a

greater soil 15N return was also found from our labelled litter treatment (Table 5.5),

and assumed that this 15N was drawn mostly from the fraction otherwise leached

or lost as trace gases, leaving forest floor N return unchanged. The fraction of

NDEP lost is primarily made up of NO3
− in NDEP studies due to the much higher

cation retention capacity of soils), and precursors to these mineral N products

are better retained in soils than mineral N (see section 5.4.3). This method may

underestimate soil return if this follows the increases in soil 15N recovery under
15NLitters in chapter 5, but, as we were unable to assess litter to litter 15N transfer,

the the higher soil 15N recovery under the labelled litter treatments could be

balanced by a lower litter N retention in litter when N is derived from this source).

Using these assumptions, the overall N retained in the soil and trees is 97 % of

litter-derived N, producing an overall ∆C/∆N if 60.12 kg C kg N −1, ∼ 20 %

greater than NDEP -N based on Nadelhoffer et al. (1999c) (Table 6.5).

Table 6.5: Comparison of ∆C/∆N effect between values calculated from Nadelhoffer

et al. (1999c) and litter-derived decomposition. Adjustments to overall budgets

presented in (Nadelhoffer et al., 1999c, Table2) were made by altering the Woody

and Non-Woody pools by a proportion based on 15N recovery in our field experiment

(Table 5.5). Additional N assigned from this pool is drawn from estimated N losses

and does not influence forest floor 15N retention, which appeared higher in our study

although we were not able to quantify litter-litter transfer. Errors are not given due to

the high uncertainty in soil N return due to the missing litter-litter transfer from our

experiment.

15NDeps 15NLitters

(Nadelhoffer et al. (1999c)) (Litter-derived N) % increase

Tree 28.75 39.12 36 %

Soil 21 21 0 %

Total 49.75 60.12 20 %
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Overall ecosystem estimates are fairly uncertain both due to our limited sample

size and lack of a complete quantification of soil 15N return. It is also worth noting

that this overall increase in ∆C/∆N of 20 % is also not an additional effect of

NDEP on litter N retention under a litter addition to the soil, in the same manner

as our canopy and soil NDEP treatments, but rather a relative importance of N to

C uptake; as all biomass growth requires N the entire temperate 0.6-0.7 Pg C y−1

net uptake (Goodale et al., 2002) is ultimately dependent on N nutrition but the

calculations from Nadelhoffer et al. (1999c) examine the extent to which an excess C

sink can be attributed to a direct NDEP effect. Consequently,the relatively greater

accountancy of litter 15N than NDEP -15N in this study and 20 % higher ‘∆C/∆N’

represents a relative difference in the importance of nutrition of litter-derived N

with implications for the overall ∆C/∆N effect of decomposition-N dependent

on the changes in decomposition rate. As these are very complex (Knorr et al.,

2005), we have not made an direct inference of overall effects of nitrogen deposition

on litter pool N, and the contribution of the change in mobilised, internal N on

ecosystem ∆C/∆N in this thesis, but note that the fate of forest floor N under

NDEP may be an area where much more work is necessary to understand overall

ecosystem ∆C/∆N effects.
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Conclusions

The work in this thesis was designed to test some of the assumptions about N

assignment made by commonly cited 15N nitrogen fertilization experiments which

may explain some of the difference in estimates of C uptake based on isotope

tracer studies (Nadelhoffer et al., 1999c) and multi-site correlations of C uptake

from NEP against nitrogen deposition. Using the 15N return in wood we found

with a method applying NDEP to the canopy, rather than the soil, and pool C/N

ratios used in Nadelhoffer et al. (1999c), we can calculate an effect size of 114

∆C/∆N, more than twice that when applying the 15N partitioning found in our

soil trace.

We also estimated ∆C/∆N from the higher root retention of 15N from organic

sources in our field study as approximately 20 % higher than that of our NDEP

treatment. While this is not directly comparable against the effect of mineral

NDEP in terms of ∆C/∆N effect, as this N is already in the ecosystem and not

an additional surplus with a cumulative effect on tree ∆C/∆N, this difference

suggests that more N from litter decomposition is available to trees than mineral
15N applications and the effect of these sources of N on ∆C/∆N may not be

167
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additive if decomposition effects of NDEP on litter and associated changes in N

availability are taken into account.

Many questions remain about the effect of nitrogen deposition on forest ecosystems

and this studies was necessarily limited in scope, but we note that these results

suggest that a NDEP response may tend towards the higher estimates recently

published from larger scale correlative and modelling studies (e.g. Dezi et al., 2010;

Thomas et al., 2009), although not as high as revised estimates from Magnani

et al. (2008).
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