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Abstract 

The subthreshold region becomes increasingly important in small geometry cir- 

cuits as dimensions of MOSFETs continue to shrink in order to reduce cost and 

to obtain better performance. For short-channel or narrow-channel devices, their 

potential distribution becomes two-dimensional instead of one-dimensional as for 
th 

a large device. Thus one dimensional subthreshold model used for large devices 

is no longer accurate for small geometry devices. Two-dimensional models have 

to be developed. A two-dimensional analytical subthreshold and punchthrough 

model for short-channel MOSFETs with nonuniformly doped channel is presented. 

Analytical expressions for the subthreshold current and gate swing are given. Ion 

implantation has become a standard MOS process step to adjust threshold voltage 

and to prevent punchthrough. It has great impact on the subthreshold behaviour 

of MOSFETs. A detailed examination of how the channel profile affects the sub-

threshold behaviour has been carried out for large and small geometry devices. 

The effects of terminal voltages and geometry dependence of the subthreshold 

behaviour have been studied carefully. A semi-empirical subthreshold model suit-

able for circuit simulation is proposed based on the experimental observation and 

theoretical results. 
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Chapter 1 

Introduction 

1.1 History of MOS Technology 

The principle of MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) 

was first proposed by Lilienfeld in the 1920s and by Heil in the 1930s [1,2]. It was 

subsequently studied by Shockley and Pearson in the late 1940s [3]. The basic 

transistor physics was by then understood and although the new transistor struc-

ture that was proposed was very similar to today's devices it did not work because 

there was no technology to control surface states. In 1953, Brown [4] theoretically 

modelled the surface band bending of a semiconductor and gave experimental 

proofs of conduction in an n-type inversion channel across the surface of the p-

type base layer of a Ge n-p-n bipolar transistor. Ian Ross was the first to describe 

the modern enhancement-mode MOSFET structure in a 1957 patent disclosure 

using Brown's observations [2]. 

The transistor technology and new device structures developed quickly in the 

1960s. In 1960, Kahng and Atalla proposed and fabricated the first MOSFET using 

a thermally oxidized silicon surface[1]. Noyce invented the monolithic integrated 

circuit concept in 1960 and used the planar processing technique to fabricate the 

first monolithic silicon integrated circuits[2]. CMOS (Complementary MOS) was 

invented by Wanias s in 1963[5] and the first two commercial MOSFETs were 

announced in late 1964. Another important development was the silicon gate 

process reported by Kerwin, Klein and Sarace in 1963 [2]. This process provides 

self-alignment of the gate over the drain and source junctions. It is widely-used 

1 



Chapter 1. Introduction 	 2 

today to produce micron and submicron feature sizes in silicon MOSFETs and 

BJTs (Bipolar Junction Transistors). 

In the mid-60s, there were four important technology discoveries which still 

form the basis in today's silicon VLSI fabrication technology. In 1964, Snow et 

al. [6] identified sodium ion drift in thermally grown oxide as the principal cause of 

threshold voltage instability in the electrical characteristics of silicon MOSFETs. 

In the same year, Kerr and Young [2] discovered that the silicon dioxide film can 

be electrically stabilized to eliminate sodium ion drift by growing a phosphorus 

silicate glass (known as PSG) layer. In 1965, Pieter Balk suggested that hydrogen 

can anneal out surface states (interface traps at the oxide/silicon interface) by tying 

up the dangling silicon and oxygen bonds [2]. In the same year, Balk, Burkhardt 

and Gregor at IBM[7], Delord, Hoffman and Stringer at Reed College in Oregon[8], 

Miura at NEC Japan[9] independently discovered that the surface or interface state 

density is lower on the oxidized (100) silicon surface than on the (110) and 

(111) surfaces. In 1967, a one transistor dynamic memory cell for use in the random 

access memory (DRAM) was invented by Dennard [10]. The use of silicon nitride 

as a mask was reported by Sarace et al. in 1968 [11]. Although the ion implantation 

technique was proposed by Shockley in 1954[12] and the theoretical background 

for it, the LSS theory, was developed by Lindhard, Scharff and Schiôtt in 1963[13], 

it was not introduced into device manufacturing until late 60's. The first ion 

implanted self-aligned MOSFET was reported in 1966[14]. In 1969, Boron ions 

were implanted into the surface region of the channel thus providing a threshold 

voltage adjusting technique for MOSFETs[15]. In 1973, Dennard et al. developed 

the concept of scaling to achieve standard logic operations by using reduced-size 

transistors [16]. This led to increased packing density and reduced cost. 

Bipolar transistors dominated the IC market in the early years. However, 

CMOS has eroded this bipolar dominance since 1970. Although bipolar technology 

has the advantage of higher speed over MOS, the latter has fewer fabrication steps, 

higher packing density, higher yield and thus lower costs so MOS technology is very 

attractive for digital circuits. The very low static power requirement of CMOS also 

allow5 high packing density circuits to be produced. For example, a DRAM chip 



Chapter 1. Introduction 	 3 

using CMOS has a considerably lower standby power dissipation compared to a 

BJT memory chip. Recently, the combination of bipolar and CMOS, i.e. BiCMOS, 

has nearly eliminated the advantage of the larger output driving capability of an 

all-bipolar circuit over a MOS circuit. 

1.2 Small Geometry Effects in MOSFETs 

Since the beginning of the integrated-circuit era, to reduce cost, the transistor 

packing density of ICs (Integrated-Circuits) has been increased steadily from small-

scale integration (64-2K transistors) to today's VLSI (Very-Large-Scale Integra-

tion) (64K-4M active elements). The density of active devices on a chip has 

doubled about every two years for logic chips and quadrupled for memory chips. 

Meanwhile, the minimum feature length has been reduced by almost two orders 

of magnitude. The minimum dimension continues to shrink although recently the 

speed of decrease appears to have slowed down due to the difficulty of scaling at 

submicron levels. Fig. 1-1 summarises the development of IC technology [17]. Typ-

ical advanced IC products in 1987 had features in the 1.5-1.25m size range [18] 

while the 0.7-0.8pm 4M-bit DRAM was just starting volume production and the 

0.5-0.7m 16M-bit DRAM chips were in the laboratory [19]. Experimental single 

transistors with linewidths as narrow as O.1im have been made successfully [17]. 

This advancement has been supported by several technology developments such 

as accurate process control, fine pattern photolithography, improved short-channel 

MOSFET structures and low-power circuits. 

As channel length decreases, departures from ideal long-channel device be-

haviour, known as short-channel effects, may occur [20]. Those short-channel 

effects arise as a result of the two-dimensional potential distribution and high elec-

tric fields in the channel region. This two-dimensional potential results in lower 

punchthrough voltage, rising subthreshold current and higher subthreshold gate 

swing, reduction of the threshold voltage as channel length decreases and/or drain 

bias increases. As the electric field is high, the channel mobility becomes field- 
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Figure 1-1: Development of IC Technology 

dependent, and eventually velocity saturation occurs. When the field is increased 

further, carrier multiplication near the drain occurs, leading to substrate current 

and parasitic bipolar transistor action. High fields also cause hot-carrier injection 

into the oxide, leading to oxide charging and a subsequent threshold voltage shift 

and transconductance degradation. 

One approach to avoid short-channel effects is to maintain the long-channel 

behaviour by simply scaling down all dimensions and voltages of the long-channel 

MOSFET so that the internal electric fields remain unchanged. All dimensions, 

i.e. oxide thickness, channel length, channel width and junction depth, are shrunk 

by a 'scaling factor' ic. The doping level increases by and all voltages are 

reduced by ic, leading to a reduction of the depletion layer width by about ic. 

Threshold voltage is also reduced approximately by K. Therefore, the number of 

devices pci' unit area increases by a factor of ?C2 , the delay time due to transit 

across the channel decreases by #c, the power dissipated per cell is reduced by 

ic2 . However, the subthreshold current and the subthreshold gate swing remain 

essentially the same [16]. Due to the non-ideal properties of semiconductor devices, 



Chapter 1. Introduction 	 5 

such as the non-scalable built-in voltage at a junction, a more generalized scaling 

rule was proposed. All line dimensions are scaled by A, all voltages reduced by 

r. and impurity concentration is increased by A 2/,c [21], with the result that the 

electric field is )/ic of that before scaling, capacitances are reduced by .A, linear 

region current becomes power is A/ .r3,  power density is .\3 /ICI , gate delay is 

K/A 2  and current density is X 3/ic2  of the appropriate values before scaling. 

Unlike the short-channel effect which reduces the threshold voltage of MOS-

FETs and increases their subthreshold current, the narrow-channel effect is more 

complicated. For nonrecessed or semi-recessed (LOCOS) oxide isolation struc-

tures, the threshold voltage increases and the subthreshold current drops when 

the channel width decreases [22,23,24]. For a fully-recessed oxide isolation struc-

ture, the threshold voltage decreases and the subthreshold current increases with 

the channel width decreasing, called the inverse-narrow-channel effect[25]. 

1.3 Subthreshold Region 

There are three operation regions for a MOSFET: the subthreshold or weak inver-

sion region, the linear region and the saturation region. Before the gate voltage 

reaches the threshold voltage, the channel is weakly inverted and only a small 

diffusion current flows. This operation region is called the subthreshold or weak 

inversion region. In this region, the current flowing in the channel increases ex-

ponentially with the gate voltage. When the gate voltage increases above the 

threshold voltage, a strong inversion layer is formed beneath the gate oxide. The 

current in the channel increases linearly with the drain voltage and this is referred 

to as the linear region. As the drain voltage rises further the channel current sat-

urates instead of increasing linearly with drain voltage. Thus the device operates 

in the saturation region. 

The subthreshold region has not received as much attention as the other two 

regions due to its low current level. It was considered an 'OFF' region with zero 

drain current. But as feature. sizes shrink and the supply voltage tends to drop, 
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the subthreshold behaviour can no longer be ignored. It has been demonstrated 

that there is a direct relationship between the reduction in the refresh time for 

a DRAM cell with the rise in the subthreshold current as the device dimensions 
the 

are scaled down [26]. As mentioned inst section, the subthreshold current can 

not be scaled down. A higher subthreshold gate swing and higher subthresh-

old punchthrough current for shorter MOSFETs makes the subthreshold leakage 

current one of dominant scaling limitations for MOSFETs [27]. 

As minimum feature sizes shrink below ljtm, conditions increasingly favour 

a low supply voltage. Because a higher packing density also implies a higher 

internal electric field, lowering the supply voltage reduces internal electric fields. 

There are also other benefits: less power dissipation, less heating on the chip and 

thus more transistors in a given area. 4M-bit and 16M-bit DRAMs operating at 

3.3V have been announced [18]. In 1990, the first 64M-bit DRAM on a single 

chip was announced with a 1.5V supply voltage [19]. A major beneficiary of the 

rising integration performance is battery-powered portable electric equipment of 

all kinds, such as laptop, notebook and palmtop computers. Low-voltage ICs can 

run directly from 1 to 3 nickel-cadmium batteries which are much lighter than 

their higher voltage counter parts and with lower power consumption, battery life 

is prolonged. Workstations today use 50MHz processors; 	 100MHz 
the 

will be 'norm and 500MHz or higher will be common by the end of the decade [28]. 

Higher speeds follow from smaller device geometries. Lowering the supply voltage 

reduces the threshold voltage which puts a greater restriction on the range of the 

subthreshold gate swing because devices have to turn off more quickly. 

Although MOSFETs have dominated digital circuits, bipolar transistors still 

dominate analogue circuitry. However, the rapid increase in chip complexity has 

created a need to implement complete analogue-digital subsystems on the same 

integrated circuit using the same technology. For this reason, the implementation 

r  
w analogue iIui,iou  lu i

ro  technology tudb  become 1nIeL1u1y II11$J1 	LhJ 

Increasing interest has been shown in operating CMOS analogue circuits in the 

subthreshold region due to noise and gain improvement and the lower power con- 

sumption. For example, Vittoz and Fellrath designed a CMOS current reference 



Chapter 1. Introduction 	 7 

and an amplitude detector based on known bipolar circuits [30]. They believe that 

the well-controlled exponential transfer characteristics and excellent DC current 

source behaviour of both types of MOS transistors operating in weak inversion 

indicate that some circuit schemes used with bipolar technology can be imple-

mented in CMOS. In addition, CMOS offers the advantage of the truly negligible 

gate current and of wide range of transfer characteristic slope. Tsividis and Ulmer 

designed a voltage reference for analogue-digital LSI CMOS. Part of the circuit op-

erates in the weak inversion region for its low power consumption [31]. Degrauwe 

et al. designed two transconductance amplifiers for the better gain and noise per-

formance when operating in weak inversion region [32]. To simulate analogue MOS 

circuits which operate in the subthreshold region, an accurate subthreshold model 

is necessary. 

The one-dimensional model is no longer accurate since the potential distribu-

tion is two-dimensional for short-channel or narrow-channel MOSFETs and three 

dimensional for small geometry devices (short- and narrow-channel at the same 

time). Two- and three-dimensional numerical models have been developed. But 

numerical analysis is not a cost-effective method for circuit simulation and statis-

tical modelling in process diagnosis due to its time and memory-consuming nature 

and convergence problems. Analytical techniques to characterize small geometry 

MOSFETs have been developed recently by solving the two-dimensional Poisson's 

equation with approximate boundary conditions. The accuracy of the analytical 

solution of the Poisson equation is strongly dependent on the choice of boundary 

conditions. An analytical two-dimensional subthreshold model for short-channel 

MOSFETs with ion implanted channel is presented in this thesis. More accurate 

boundary conditions at the source and drain ends are used. An analytical expres-

sion of the subthreshold gate swing is given and the bulk punchthrough current is 

considered. Ion implantation has became the standard MOS process step to ad-

just threshold voltage and to prevent punchthrough. it has significant impact on 

the subthreshold behaviour. A detailed study of how ion implantation affeèts the 

subthreshold behaviour of large and small devices has been carried out. A simple 

closed formula or compact model is needed for using in a circuit simulator or for 
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statistical modelling in process control. A semi-empirical model which accounts 

for the influence of substrate and drain bias and geometry dependence is proposed 

after the dependence of the subthreshold gate swing on the terminal voltages and 

geometries has been examined carefully. 



Chapter 2 

Subthreshold Models of MOSFETs 

2.1 Introduction 

Before going into detail about subthreshold models of MOSFETs, a brief intro-

duction to the general electrical behaviour of MOSFETs and to their models is 

appropriate. 

The basic structure of an n-channel MOSFET 1  is illustrated in Fig. 2-1 [20]. 

There are three operation regions for a MOSFET: the subthreshold or weak 

inversion region, the linear region and the saturation region. Before the gate 

voltage reaches the threshold voltage, the channel is weakly inverted and only a 

small diffusion current flows. This operation region is called the subthreshold or 

weak inversion region. In this region, the current flowing in the channel increases 

exponentially with the gate voltage. When the gate voltage increases above the 

threshold voltage, a strong inversion layer is formed beneath the gate oxide. The 

current in the channel increases linearly with the drain voltage and this is referred 

to as the linear region. As the drain voltage rises further the channel current satu-

rates instead of increasing linearly with drain voltage. Thus the device operates in 
the saturation region. This is because when VD - reaches the Saturation Voltage 

VDsat, the surface potential at the drain end ceases to increase with VD and satu-

rates at a value bsaj. Fig. 2-2 illustrates the drain characteristic curve of a MOS-

FET, Fig. 2-3 shows the same characteristic on the semi-log scale to emphasize 

the subthreshold behaviour. Fig. 2-4 is the transfer or gate turn-on characteristic 

'Only n-channel MOSFETs with a grounded source are analyzed in this thesis, unless 

otherwise stated. 
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curve. Fig. 2-5 presents it in the semi-log form to show the subthreshold char-

acteristic more clearly. These figures show the three operation regions and their 

characteristics mentioned above. 

With the development of VLSI, circuits have become more complex and it is 

not only costly but also time-consuming to fabricate a circuit in order to test 

a design. Therefore, circuit simulation has become an essential tool for circuit 

design engineers because it can give an initial representation of circuit performance 

more quickly and at much lower cost than by a purely experimental approach. 

Circuit simulation is also very important for process engineers to connect process 

parameters with the circuit performance in order to control process parameters 

and to improve the process. 

MOSFETs are basic components of all MOS integrated citcuits. For the pur-

pose of circuit simulation, models which describe a single device are needed first. 

There are two levels of MOSFET model. One group consists of models which 

are suitable for circuit simulation, such as SPICE2 level 1 [33,34] and level 3 [35], 

those proposed by Wright [36] and by Oakley and .I-iocking(CASMOS) [37]. These 

models give a description of the relationship between the drain current and ter-

minal voltages in an explicit closed-form formula. They require as input, a set of 

model parameters to give a unique description of a particular device. Models in 
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this group have to be simple enough to enable their parameters to be extracted 

easily from characteristics of devices and to be easily modified to include second 

order effects. They will be discussed in more detail in Section 2.6. 

Another group of models are based on the solution of Poisson's equation and 

current-continuity equations. There are two approaches being used to develop 

these models, namely the numerical technique and the analytical technique. They 

will be discussed in detail in Section 2.3 and Section 2.4 . These models only 

need the device structure (doping profile, oxide, channel length, p, n region etc.) 

to be specified and will generate electrical characteristics of MOSFETs. From 

the output of these models, the input parameters for device models for circuit 

simulation can be extracted. 

Fig. 2-6 shows a flow chart of how the process, device and circuit simula-

tors may he used interactively for design and fabrication of MOS integrated cir-

cuits [38]. 
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2.2 Basic Physics 

2.2.1 Physics of Semiconductor Relevant to MOSFETs 

To understand the operation of MOSFETs more easily and clearly, it is necessary 

to use the energy band diagram. A simplified band diagram of a semiconductor is 

shown in Fig. 2-7 [20]. For a semiconductor, there is a forbidden energy region in 

which no states are allowed to exist. Above and below the forbidden region, there 

are conduction bands and valence bands. The separation between E, the energy 

of the lowest conduction band, and E, the energy of the highest valence band, is 

called the bandgap, E9 . Electron energy increases when measured upwards; hole 

energy increases when measured downwards. 

The Fermi level EF is a very important parameter in the physics of semicon-

ductors. ii is defined as the chemical potential of electrons in a solid. If the Fermi 

level is not constant throughout the semiconductor, then electrons and holes will 

redistribute themselves until the Fermi level is constant throughout the semicon-

ductor, i.e. thermal equilibrium is reached [39]. 
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The Fermi level can be derived from following formula: 

=  Ec 
N(E)f(E)dE 	 (2.1) 

where n is the electron density, N(E) is the electron density of states. 

f(E) = 	____ 	 (2.2) 
1+e kT 

f is the Fermi-Dirac distribution function and represents the probability of an 

electron state with energy E being occupied by an electron. k is Boltzmann's 

constant, T is the absolute temperature. The meaning of Eq. (2.1) is that the 

sum of all probabilities of all energy levels being occupied by electrons in the 

semiconductor should equal to the sum of all electrons in the semiconductor. From 

Eq. (2.2), one can notice that the Fermi level is the energy level at which the 

probability of occupation of an energy state by an electron is exactly one-half. 

The Fermi level of an intrinsic semiconductor, E, is very close to the middle 

of the bandgap. The conducting carriers of an intrinsic semiconductor can only be 

generated by exciting electrons from valence bands to conduction bands. When a 

semiconductor is doped with impurities, impurity energy levels are introduced into 

the forbidden region. For example, in phosphorus or arsenic doped silicon, a donor 

energy level is introduced into the forbidden region. Because the donor energy level 

is very near the bottom of the conduction band, the donor is almost totally ionized 

at room temperature. So, there are many more free electrons than free holes, hence 

the semiconductor is n-type. To preserve charge neutrality, the Fermi level has to 

adjust itself. In this example, the Fermi level, EF,  is moved above the intrinsic 

Fermi level, E. Schematic band diagrams for an intrinsic semiconductor, n-type 

and p-type semiconductors at thermal equilibrium are shown in Fig. 2-8 [201. 

2.2.2 Physics of MOSFETs 

Having discussed the energy band diagram of a semiconductor in Section 2.2.1, 

the energy band diagram of a MOSFET will be discussed in this section. 

Fig. 2-9 [20] shows the energy band diagram of an ideal MOS structure with 

p-type semiconductor substrate. An ideal MOS structure means that the work 
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ductors at thermal equilibrium 

function difference between the gate material and the semiconductor, q'3,  is zero 

and there are no charges existing in the oxide. For a real MOS structure, the work 

function difference, 0 3 , is not zero and there are charges present in the oxide but 

the difference does not affect the basic analysis of device operation. Since an n-

channel MOSFET has a p-type substrate, a p-type semiconductor MOS structure 

is discussed here. For a p-type semiconductor MOS structure, 

Oms = OM -  (x + 	-- + bB) 	 (2.3) 

where Om  is the work function of the gate material, x is the semiconductor electron 

affinity, ?I)B is the difference between the Fermi level EF and the intrinsic Fermi 

	

level E. q is the elementary charge. The flat 	band voltage VFB  is defined as

QOX  
VFB = q'ms - 	 (2.4) 

Cox 

where 

QOx  is the charge density in the gate oxide, including oxide fixed charges, mobile 

ions and oxide trapped charges; 

Cox  is the capacitance of the oxide layer, Co., = 
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is the permittivity of oxide; 

t is the thickness of oxide. 

Depending on the sign of VFB, the energy bands of the semiconductor at the surface 

will bend upwards (VFB > 0) or downwards (VF,B < 0). A p-type semiconductor 

with an 	polysilicon gate MOS structure may be used as an example. The 

work function difference, 	is about —1V. The exact value of cbms  depends 

on the acceptor doping level which decides the Fermi level in the semiconductor. 

Neglecting oxide charges, the fiat band voltage VFB  is equal to the work function 

difference cbms . Fig. 2-10 shows the energy band diagram of a p-type semiconductor 

with an n polysilicon gate MOS structure without applying gate bias. Tithe gate 

voltage VG = VFB applied, then the semiconductor energy band will be fiat as 

shown in Fig. 2-9. 

Fig. 2-11 [20] shows different energy band diagrams of a MOS structure under 

different gate bias conditions. Defining the surface potential 0. as surface band 

L ending, then it is clearly shown in Fig. 2-11 that when VG - VFB <0, <0, 

the semiconductor surface is in the condition of accumulation of holes. When 

VG - VFB > 0 but 0 <GB, the surface is in the depletion condition. When 

VG increases and IB :5 0.9  <2bB, the surface is weakly inverted, since the electron 
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density at the surface begins to exceed the intrinsic electron density but is less than 

the hole density in the bulk. When VG increases continually until ~! 20B, strong 

inversion occurs and at that point the electron density at the surface begins to 

exceed the hole density in the bulk. 

2.2.3 Basic Physics Equations 

To understand electrical characteristics of MOSFETs, two equations are essential. 

They are Poisson's equation and current-continuity equations [20]. 

A two-dimensional Poisson's equation has the form: 

82cl, 	82;1, 	p 	
(2.5) 

where &(x, y) is the electrostatic potential, p is the charge density per unit volume. 

Poisson's equation is derived from Gauss' Law and describes the relationship 

between the potential and the charge density. One can solve Poisson's equation 

with appropriate boundary conditions to obtain potential distributions for MOS-

FETs. 

Current-continuity equations have the form: 

ôn 
q 
	 (2.6) 

OP  —G — U— V•J 	 (2.7) 

where n and p are the electron and the hole density. G n  and C,, are the electron 

and the hole generation rate, caused by external influences. U, and U,, are the 

electron recombination rate in p-type semiconductors and the hole recombination 

rate in n-type semiconductors. Jn  and J,, are the electron and the hole current 

density, respectively. 

The electron and the hole current density can be expressed by current-density 

equations. 

Jo  = qnE + qD0Vn 	 (2.8) 
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Figure 2-10: Energy band diagram of a p-type semiconductor with an n polysil-

icon gate MOS structure 

EF
4"1k 

I I 
' 	E  

VGVJ 	

k_ I 	- 	 1 

EF 
VG - 

EF 

C 

i 

F 

 

C 

i 

F 

 

EF 
V 

a) 
	

b) 	 c) 

Figure 2-11: Energy band diagram for a p-type semiconductor MOS structure 

when V. - 	0. a) accumulation, b) depletion, c) inversion. 
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= qjt,,pE - qDVp 	 (2.9) 

The first terms in the right hand side of Eq. (2.8) and (2.9) are drift components 

caused by the electrical field. The second terms are diffusion components caused 

by the carrier concentration gradient. fn  and ji,,, are the electron and hole mobility 

terms. D and D are the electron and hole diffusion constants for nondegenerate 

semiconductors. E is the electric field. The Einstein relationship gives Dn  = 

and D = 
kT 
q Pp- 

Finally, the total current density is the sum of the electron and the hole current 

density, that is 

Jcond = Jn  + Jp 	 ( 2.10) 

2.3 Numerical Simulators 

As mentioned in Section 2.1 , it is necessary to have device simulators which are 

based on descriptions of device structure, eg. the substrate doping profile, the 

channel length, the source and drain junction depth etc., and can produce ac-

curate electrical characteristics of MOSFETs. There are a few numerical device 

simulators available, for example CANDE [40], PISCES [41], MINIMOS [42]. Al-

though details of solution techniques vary in different simulators, the basic idea is 

the same, i.e. solving Poisson's equation and current-continuity equations simul-

taneously and by discretization. Since the same physics equations are valid in all 

operation regions, there is no need to treat them differently in different regions for 

a numerical simulator. The different behaviour in different operation regions will 

come out naturally from the solution of Poisson's equation and current-continuity 

equations. For example, for a long-channel MOSFET in the subthreshold region, 
thy,  

the numerical solution will naturally reflect facts that the surface potential is con- 

stant in most parts of the channel and the lateral field is near zero under the 

subthreshold bias condition. So the drift current is very small compared to the 

diffusion current. The exponential dependence of the drain current on the gate 

voltage comes out naturally because 
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the diffusion component dominance of the drain current, 

the exponential dependence of the electron density on the surface potential, 

the nearly linear dependence of the surface potential on the gate voltage. 

In addition to the capability mentioned above, the simulator CANDE can 

calculate the drain current in the subthreshold region and the linear region an-

alytically using a numerical solution of Poisson's equation without solving the 

current-continuity equations. This concept enables the development of analyti-

cal subthreshold models of short-channel MOSFETs. This will be discussed in 

Section 2.4.3 

Since they are able to show distributions of the potential, electric field, carrier 

concentration and current density in the structure of a device, numerical device 

simulators can bring physical insight into device performance. They predict device 

performance reasonably accurately if one chooses carefully the coefficients of the 

solution technique, such as the size of the discretization mesh, etc. However, 

their disadvantages are that they are time-consuming and cannot connect process 

parameters with device's performance directly. As a compromise between time-

efficiency, simplicity and accuracy, people develop analytical models which can 

show the relationship between process parameters and the device's performance, 

such as the drain current, subthreshold gate swing, transconductance etc. directly. 

2.4 Analytical Models 

Unlike numerical models which solve the same equations for all operation regions, 

analytical models use different techniques for different operation regions according 

to the dominant conducting mechanism. For example, in a subthreshold model, 

the effect of minority carriers on the electric field is ignored and only the diffusion 

current of minority carriers is considered to contribute to the drain current. Exist-

ing models for the subthreshold region are reviewed in the following subsections. 
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2.4.1 Models for Long-Channel MOSFETs with Uniform 

Substrate Doping 

The drain current in the subthreshold region is first calculated by Guzev et al. [43] 

as a drift current due to the lateral field. Swanson and Meindi [44] treated the sub-

threshold drain current as a drift current, and applied it to a low voltage CMOS 

inverter. Although they had the right expression, the concept is wrong as pointed 

out by Overstraeten [45]. Stuart and Eccleston [46] noted that the subthreshold 

drain current is a diffusion current and that the drain current increases exponen-

tially with the gate voltage. Then Barron [47] gave the first complete theoretical 

analysis of the subthreshold behaviour of a p-channel MOSFET. Since Barron's 

and many other subthreshold models for long-channel MOSFETs are based on the 

double integral model developed by Pao and Sah in the mid-1966's[48], it will be 

described first. Unless otherwise stated, an n-channel MOSFET with grounded 

source is analyzed in this thesis. For a p-channel MOSFET, the procedure of the 

analysis is the same, only the signs need to be changed. Fig. 2-1 shows the coor-

dinate system used. The potential reference is chosen at the intrinsic Fermi level, 

see Fig. 2-12. 
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Figure 2-12: Energy band diagram of an inverted p region for a) the equilibrium 

case b) the nonequilibrium case at the channel. 
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The current density in the channel may be written as 

J=Jn+Jp 	 (2.11) 

Because an n-channel device is considered here, J,, may be neglected. Hence 

J 	= qp,nE + qDVn 	 (2.12) 

If the gradual channel approximation, i.e. E, 	, is assumed, the Eq. (2.12) 

may be reduced to one dimension, that is 

J(x,y) = q/A nn + qDn an 	 (2.13) 
ay  

where E,, is the transverse field, E is the longitudinal field. Making use of the 

Einstein relation Dn  = 	then 

J(x,y) = 	 (2.14) 
'9y 

where is the electron quasi-Fermi level measured from the bulk Fermi level and 

normalized to, i.e. 	= kT - 	is the electron quasi-Fermi level, 

defined as n = n2  exp[(1' - /)], ni  is the intrinsic carrier density. 

The drain current may be written as 

ID = f J(x, y)Wdx = - 1' qDn-Wdx 	 (2.15) 
 Jo Oy 

where x, denotes the point at which the intrinsic Fermi level intersects the electron 

quasi-Fermi level. W is the width of the channel. If an assumption 21 = 0 is made, 

i.e. no current flows in a direction normal to the interface, then 

ID = —DqW d— I n(x,y)dx 	 (2.16) 
dy Jo 

Integrating the drain current ID  from source to drain, since 'D  is the same all 

along the channel, it becomes 

1 ,L 	d fXi 

1D = jjJ DnqWJ n(x,y)dxdy 	 (2.17)
dy  

where L is the length of the channel. The electron density 

n = nie U—Un = 
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where 
U 1 UB,  u, are the electrostatic potential, the equilibrium Fermi potential in the 

bulk, and the electron quasi-Fermi level respectively, all normalized to 

Substituting -expression for  into Eq. (2.17), one has 

	

f
ID = -- 	D,,qWn1e'dxd 

Lo  
!Q. 

= _!qW njDn fo
hr  I 	 (2.18) 

	

L 	. 	dX 

where u3  is the surface potential, normalized to LT . The solution of Poisson's 

equation is presented in Appendix A. Substituting Eq. (A.9) into (2.18), assuming 

Dn  is constant along the channel, i.e. p, is constant along the channel, yields 

WD •L 	
JU. 	u—-.uBq 	nsci ,kT 	e

I 	 dude 	 (2.19) 
L 	.io 	F(u,,uB) 

To derive the relation between the gate voltage VG and the surface potential 2/'8, 

making use of Gauss' Law 

dO 	kT (du) 
= 	1 Q. = 	= 	

q 
—E3 

 

kT€8 
F(u3,,UB) = --- 

qL d  

where 

(2.20) 

Q3 is the total charges induced in the semiconductor per unit area; 

E3  is the surface transverse electrical field; 

8I is the permittivity of silicon; 

1 
L d  is the intrinsic Debye length, Ld = L..u1 2 where - [2qnij 	 - kT 

Since from the charge conservation law, Q3 = — 00(V - VFB - 03 ), then 

VG = ?b+VFB Qs 
C. 

kT A.i __ tj 
= —u8  + VFB + 	 F(u3 , 4, UB) 

q 	 qC0 Lci 
(2.21) 

The Pao-Sah double integral model agrees with experimental results very well. 

However, the calculation has to be done numerically. It is desirable to have a 
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simple closed-form current expression for the subthreshold region. Thus Bar-

ron [47] applied Pao-Sah theory to a p-type MOSFET in the subthreshold region. 

He assumed that there is no current component flow normal to the interface. This 

is true for channel areas which are far away from the drain depletion region. He 

considered that only ionized donors contribute to the electric field in the deple-

tion region. He found out that the surface potential is constant through most of 

the channel in the subthreshold region. After using the above assumptions and 

mathematical approximations, finally, he derived a source current expression, 

3UR 

Is— 
qWDn2Lde 2 

e _tLa (i - e V~T 	 (2.22) 
+ 1) 

and a gate voltage and surface potential relationship 

1\ 

I 	
q 	 2 (u, 	qQf 8  

kT C 0 	 kTCOZ + 
i)] 	(2.23) 

where Is is the source current. It should be equal to the drain current ID  if only 

the surface channel current has been considered. u'G =  -q-(VG - VFB), Qj3 is the 

charges in fast states, B = 	 The results from the model agree well with 
ox I 

the experimental data of his p-channel devices. 

the  
Troutman and Chakravarti [49] and Masuhara et al. [50] applied Pao-Sah dou-

ble integral model in the subthreshold region and included the effect of the sub-

strate bias. The latter demonstrated how important it is to consider the sub-

threshold current for a low supply voltage circuit by comparing the transfer char-

acteristics of a static inverter with and without considering the subthreshold 

current. 

Brews proposed a charge-sheet model for MOSFETs including the subthreshold 

region [51] based on previous work by Guerst [52], Loeb, Andrew and Love [53], 

Armstrong, Magowan and Ryan [54]. Those charge-sheet models treated the in-

version layer as a conducting plane of zero thickness, thus the effect of minority 

carriers in the inversion layer on potential distribution can be ignored. The sub-

threshold current expression in Brews' charge sheet model is essentially the same 

as that of Barron's except that it is for nMOS devices and Qf, is not considered. 
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Fichtner and Pötzl [55] considered a MOSFET operating in the subthreshold 

region as an npn bipolar transistor with homogeneous base doping because the 

drain current in the subthreshold region is dominated by the diffusion current. 

The drain current can be calculated in the same way as the collector current. i.e. 

ID = —qAD = 
	 - n(0) 

(2.24) 
dy 	 L 

where A is the cross section of the current flow. n(L) and n(0) are the electron 

density at the drain and the source ends, respectively. Since 

n(x) = n 1e'1' 	 (2.25) 

where 0 = . The electron quasi-Fermi level 
kT 

On(L) = bB + VD - VB 	 (2.26) 

= I'B - VB 	 (2.27) 

So, 

n(L) = neP(t,VlBB) 	 (2.28) 

n(0) = 	 ( 2.29) 

Then 
qWDthn [ e#(3—V) - 	 (2.30) 

L 

where tch is the effective channel thickness. 

Because of the exponential dependence of electron density on potential b, tch 

may be considered as the distance where & = 	- , i.e. n(th, y) = n(0, y)e 1 . 

Assuming that the transverse field E = - is constant along x, then the ax 

surface electrical field is 

(2.31) 
tch 	q tch 

Therefore, 

	

tch = kT l 
	1

-- 	 (2.32) 

	

qE3 	/3E3 
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In order to know E, Poisson's equation should be solved. Poisson's equation in 

the channel and the depletion region of an n-type device may be written as 

q 
—(n + NA) --NA 	 (2.33) 

9x 
- 	

8i 

In the subthreshold region, the semiconductor surface is weakly inverted. In com-

parison with ionized acceptors, electrons in the channel may be neglected. 

NA PpO = nieflOB 
I so

qnj 
= --e' 	 (2.34) 

dx 2 	€, 

Following the same procedure of solving the Poisson's equation as in the Pao-Sah 

model, one gets 

(db') 	()' 2qn1r
(u 3e) 	 (2.35) 

dx V 	/ x=O 	
€si 

Because I'B = in - so 	= 
q 	7l; 	 fl, 

	

(d,l ) x=0 	(2qnj NA  ) 2 

	

= - 
	

(2.36) 

I 

If it is defined that the extrinsic Debye length LB = [_I3 J qNÂ
I1_1 2 then Eq. (2.36) can 

' 

be rewritten as 
(dl))   

= - 
	=J3LB" 	

(2.37) 

Substituting Eq. (2.37) into (2.32) 

tch = 
LB 	

(2.38) 

Substituting Eq. (2.38) into (2.30), 

	

qpWLB; 2 	1 	
(i. - 	e'" 	 (2.39) ID 	

//3L NA )3 

To relate i/ to VG
, 

using Gauss' Law and the charge conservation law, one has 

I 	If 	 -. 
Q5 = — Co(V - /B "PB - 	= €si's 	 (2.40) 

Thus, 

COZ(VG-VB-VFB-S)= 	
€3j 	 (2.41) 

I3LB 
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Solving Eq. (2.41), one has 

	

a2f1 	
1 

a =VG_VB_VFB_[l+(VG_VB_VFB)]_lJ 	(2.42) 

where a -  
- C0Ld 

From all the models mentioned above, it can be seen that the subthreshold 

drain current, ID,  of a long-channel MOSFET depends exponentially upon the 

gate voltage, VG , but it is independent of the drain voltage, VD, when the drain 

voltage is more than several 

The subthreshold gate swing is an important parameter for device design con-

sideration. It estimates how much reduction of the gate voltage is needed to reduce 

the drain current by one decade, that is[56] 

dVG 	
= !(ln 10) 

d(/3V) 

= d(log1 ID) 	q 	d(ln ID) 

= 	(In 10) 
I 

 1 + CD(?,b3)] [i_ - 2 (CD 	
)2]1 	

(2.43) 

where the differential capacitance of the semiconductor depletion layer[20] 

CD = 	
= E8 1 - e'' + 	- 1) 

PpO 

O03 	\/LB 	F(/33, flpo/Ppo) 	
(2.4) 

LB is the extrinsic Debye length. LB "-i"--" B - qNA) 

For a long channel device operating in the subthreshold region 

CD = aQB 
(2.45) 

alks 	Wd 

where QB  is the charge per unit area within the depletion region. 

QB = qNA wd  = s/2E3j qNA b3 	 (2.46) 

wd is the depletion region depth. 

I2€3  /' 
Wd = 	 (2.47) 

V qNA 



Chapter 2. Subthreshold Models of MOSFETs 	 29 

2.4.2 Models for Long-Channel MOSFETs with Nonuniform 

Substrate Doping 

Subthreshold models for long-channel MOSFETs with uniform substrate doping 
th. 

have just been discussed in 
y
last subsection. However, in practice MOSFETs have 

usually been ion implanted. A shallow ion implantation is used to shift the thresh-

old voltage and a deeper one to prevent punchthrough in bulk. This results in a 

nonuniform distribution of the impurity in the substrate. Although the effect 

of the nonuniform doping profile on the threshold voltage has been discussed a 

lot [57,58,59,60], its effect on the subthreshold behaviour has not received as much 

attention as that on the threshold voltage. To present the subthreshold gate swing 

of a device with a nonuniformly doped substrate, Rideout et al. [61] used the ex-

pression of the subthreshold swing for a device with a uniform doping substrate 

and considered the effect of a step doping profile on the depletion depth in their 

formula. Brews [56] also developed a subthreshold model for nonuniform dop-

ing substrate MOSFETs in 1979. He derived an expression for subthreshold gate 

swing. 
kT 

S = (In 10) (i + -' 1 
2 (CD)2   1 1_i 

q 	',. 	o i 	- 	 1 + 	
(2.48) 

where a = '' and 
COXLB 

N/_2_  CD I 	d/3ib0 	1 
a = 	1m0  — LB 

a C. [ 	dx 	
(2.49) 

1 	twa 
MO = 	I [N(x) — NA]dx 	 (2.50) 

LBNA JO 

i10(x) is the built-in potential due to the doping profile gradient itself. 

We derived a subthreshold model for a MOSFET with nonuniformly doped 

substrate. It will be presented below. Two assumptions are used: 

1. The surface potential along the entire channel is the same. Simulation re-

sults from the two-dimensional device simulator CANDE confirms that this 

assumption is correct along most of the channel. The only exceptions are 

the depletion regions at the source and the drain ends, which can be ignored 

for long-channel MOSFETs. 
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2. The drain current in the subthreshold region is dominated by the diffusion 

current. To maintain a constant current in the channel, the gradient of the 

carrier density per unit area in the channel must be the same all along the 

channel. That is, if the carrier density per unit area at the source is N,, at 

the drain is Nd and the channel length is L, then the gradient is N_LNa  

By following the same idea as in Eq. (2.24), one has 

ID = WqD'' - Nd 	 (2.51) 

where W is the channel width. If one defines n(x, 0) as the electron density at the 

source end and n(x, L) at the drain end, then 

ID W P" 'd  

= --j-- 	
[n(x, 0) - n(x, L)]dx (2.52) 

where /,t,,= /3D is assumed constant in the channel. Appendix B shows how the 

depletion depth wd may be calculated under these conditions. If one defines n,(0) 

and n,(L) as the surface electron density at the source and the drain respectively, 

according to the Boltzmann relationship, one has 

n(x,0) = n,(0)exp{—/3[b, - (x)]} 	 (2.53) 

n(x,L) = n,(L)exp{—/3[t/', - &(x)]} 	 (2.54) 

So, Eq. (2.52) becomes 

= - —[n,(0) - n,(L)] 
j 
 exp{- 1i3[, - &(x)]}dx 	(2.55) 'D 

Wq/A 	 wd 

 

Now, we use an effective channel thickness tch  to replace the integral term in 

Eq. (2.55). As pointed out by Greenfield and Dutton [40], for a surface current 

path, the effective channel thickness is 

fWd 	 1 
tch = I exp[—/3(&, - )]dx 	 (2.56) 

Jo 	 /3e3  

Substituting ich into Eq. (2.55), one has 

ID 
Wq/1t 

=[n,(0) - n,(L)] 	 (2.57) 
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where n 3 (0) = n o  exp[f3( 3  + VB)}, n 8 (L) = n,0  exp[3(03 - VD + VB)], the electron 

density in bulk n 0  = -. So the subthreshold drain current 
NA 

W q,un 
ID 

=
exp(f3&4[1 - exp(—/3VD)] exp(/3VB) 	(2.58) 

Now, the subthreshold gate swing S will be derived next. By definition, 

(In lO) _
dVG  = dVG - 
	 (2.59) 

- dlog 10 I - 	din ID 

and 
dlnlD - dlnlDdwd 

dVG - dwd ii7 	
(2.60) 

From Eq. (2.58), one has 

	

dlnlD 	db3 	1 dE'3  

	

dwd = 
	

- 	
(2.61) 

dWd 
the _ 

From elation C0 (V - VFB - VB - &) = 	one has 

(262) 
dwd C0  dwd dwd 

To obtain the expression for 	and d,,-,  we have to solve the one-dimensional 

Poisson's equation in the channel and the depletion region. 

	

= —N(x) 	 (2.63) 

	

dx 2 	f3  

Integrating Eq. (2.63) from x to Wd, 

dO 	d) 	- q ItLddN() 	 (2.64) 
dx 	\ 	x=wa 	Es1  

Integrating Eq. (2.64) from x to Wd, 

j.W
d  

	

(x) b(wd) - (w d  - x) 
(d,l ) 

	

q 
_ 	- - 	 dx i (x - x i )N(x i ) 	(2.65) 

	

S 	 E31 

	

From Eq. (2.64) using boundary condition "-' 	- 0 one has 
( dx) -  ' 	XW 

n rwd 
=2/ dxN(x) 

O )z= S 	 E5 JO 
(2.66) 

Therefore, 

dE5 - --N(wd) 
— 

(2.67) 
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From Eq. (2.65), using boundary condition b(wd) = 0 and () - = 0, one has 
Z—Wd 

0. b(0) = 
JWd

dx xN(x) 	 (2.68) 
E3i 

Thus, 

	

- —WdN(Wd) 	 (2.69) 
dwd 	E81  

Substituting Eq. (2.69) and (2.67) into Eq. (2.61) and (2.62), then latter two into 

Eq. (2.60), one has 

	

din ID - f3WdN(Wd) - j--N(wd) - fiwd - 
 

1AL 

El. 	(2.70) 

	

dVG - ---N(wd)+wd-N(wd) - 	+Wd 
Cox ,i Co5  

Thus, the subthreshold gate swing 

	

= 
(In 10) 1+ COX 	 (2.71) 

Wd  

where wd, tch and CD are all functions of the doping profile. 

Since channel implantation shifts the threshold voltage of a device, comparing 

the subthreshold gate swing of devices with different channel implants at fixed 

values of gate bias makes no sense; they have to be compared at the same current 

level instead. Fig. 2-13 and 2-14 shows how the subthreshold gate swing varies 

with the implant energy with implant dose and substrate bias as parameters, 

respectively. The following parameters are used in the calculation: t 0  = 350A, 

NA = 7.5e15cm 3 , W/L = 10, Vi = 0.1V, drain current ID = mA. For Fig. 2-13, 

VB = 0. For Fig. 2-14, the implantation dose was 8e11cm 2 . 

2.4.3 Models for Short-Channel MOSFETs 

So far, the subthreshold behaviour of long-channel MOSFETs with uniform and 
of th 

nonuniform doping substrate has been discussed. As VLSI technology develops, 

the dimensions of MOSFETs decrease continually. Some undesirable phenomena 

arise as a result of the short channel length of a MOSFET. For example, the 

shift of the threshold voltage and the rising of the subthreshold current and gate 

swing. The channel of a MOSFET is considered short when the channel length 

is comparable with the source and the drain depletion depth. Brews et aL[62] 

proposed an empirical formula, 

	

Lmin = 0.4 [nt Ws + WD)2] 	 (2.72) 

where r3  is the junction depth. Ws and WD are the source and drain depletion 

depth, respectively. Their expressions can be found in page 35. 
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Figure 2-13: Subthreshold gate swing vs. implant energy with implant dose as 

parameter 
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where Lmin  is the minimum channel length for which long-channel subthreshold 

behaviour can be observed. For short-channel MOSFETs, the subthreshold be-

haviour is quite different from that of their long-channel counterparts due to the 

two-dimensional potential distribution in the depletion region. So the one dimen-

sional equations used for long-channel devices no longer hold and two-dimensional 

equations have to be adopted. 

One of the early attempts to find a short-channel subthreshold model was made 

by Troutman and Fortino [63]. They gave a semi-empirical model based on the 

numerical result and concluded that the increase of the subthreshold drain current 

when the channel length decreases is due to drain-induced surface potential barrier 

lowering. That is 

ID 
= WLB[(l 	

- VB)] 
exp[/3(b - 1)][1 - exp( -J9 VD)] 	(2.73) 

where bB 08 , b is a band bending parameter. For a short-channel device, 

bbB  = bLC'cIB + Pr  + Pe VD 	 (2.74) 

This is an empirical formula, where bLc  is the band bending parameter for a 

long-channel MOSFET. Pr  and Fe  are fitting parameters. 

There are two groups of models of the threshold voltage and the subthreshold 

behaviour for short-channel MOSFETs, that is, charge sharing models and two-

dimensional analytical models. Charge sharing models will be discussed first. To 

distinguish from the narrow-channel effect, a wide channel width is assumed. 

Due to the two-dimensional potential distribution, the electric potential lines 

which terminate in charges in the depletion region not only originate from the 

gate, but also from the drain and the source. That is, the charges in the depletion 

region are controlled by the gate, the drain and the source in different degrees. 

See Fig. 2-15. Thus, the depletion region in a semiconductor can be divided into 

three areas [64,65]. 

(I) gate controlled region, 

(II) source depletion region, 
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Figure 2-15: Charge sharing model 

(III) drain depletion region. 

The gate voltage, VG,  can only control charges in area (I). Using the charge 

conservation concept, one has 

C0 (V - VFB - 	= QBI 	 (2.75) 

where QBI  is the charge density per unit area in area (I). 

That is 

 L WD —  W 
S )COX (VG - VFB b,) = qNw (i + 	 (2.76) 

where WD= 	(VD +Vb1—VB),Ws=jL(VbI—VB), 

LD = /(VD + VbI - ,b8 ), L5 = Jp-(Vb1 - V).)- Vb1 is the built-in voltage of 

the junction. 

The subthreshold current is given by [66] 

= __________________ 	
e'(i - e''1)e'8 	(2.77) D 

 \//3 L—LS—LDNA-/ 

From above expressions, one can find that when the channel length L decreases 

or the drain voltage VD increases, the surface potential 0, increases. Thus the 

subthreshold current 'D  increases as the channel length L decreases or the drain 

voltage VD increases for a short-channel MOSFET. 
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Because the boundaries between regions (I), (II) and (III) in Fig. 2-15 is some-

what arbitrary, the accuracy of models of this kind is limited. To be more accurate, 

it is necessary to have two-dimensional analytical models which solve the two-

dimensional Poisson's equation analytically to obtain the potential distribution in 

the depletion region, then use this distribution to calculate the drain current. 

In 1979, Toyabe and Asia solved a quasi-two-dimensional Poisson's equation 

analytically for the surface potential of a short-channel MOSFET based on the 

results of a numerical analysis [67]. They assumed that the potential distribution 

normal txide-semiconductor interface is 1,(x) = a0  + a1 x + a2 x 2  + a3x 3  and 

the depletion depth Wd is constant along the channel. The effect of the source 

and drain junctions was not considered. The result is that the surface potential 

03  has a minimum bsmjn at Ymin  (0 < Ymin :5 L/2). 0s - bsm in  is an exponential 

function of y (distance from source end) and the threshold voltage, VT,  also changes 

exponentially with the channel length L. That is 

VT = VFB + Osmin + 'Y/b srnin  + VB (i - 770e-  ~_ ) 	(2.78) 

where bsmtn  is the minimum surface potential when the gate voltage VG = VT. 

The body factor -Y = 
C" 

Cox  /(Vi + Vb 	I'smin)(Vbi - I'smin) Wd 	
(2.79) 

sj 	 smin + VB 	
+ 

OXJ 
770  = -_____________________________ 

and the characteristic length 

1 

lOWd 
(

Wd )

2 	
(2.80) 

Ratnakumar and Meindl [681, Poole and Kwong [69], Pfiester and Meindl [70] 

and Kendall and Boothroyd [71] solved the two dimensional Poisson's equation an-

alytically. They converted Poisson's equation into the Laplace equation, then used 

the variable separation technique to solve the Laplace equation. Thus they all had 

expressions which are the sum of an infinite series for the potential distribution. 

That is 

°° f('x) 

	

[C sinh(L - y) + Dn  sinhyy] + bL 	(2.81) 
sinh(ynL) 
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where 	is a set of eigenvalues which arises from solving the Laplace equation. 

The expressions of function f(-yx) and coefficients C, D depend on boundary 

conditions. ?,1L is the solution of Poisson's equation for long-channel devices. They 

predicted the exponential dependence of LVT, the shift of the threshold voltage, 
the. 

on the channel length L, instead of i/L dependence predicted by charge-sharing 

models [64,66,55]. 

Pimbley and Meindl [72] used the variational method to obtain an approximate 

solution of the two-dimensional Poisson's equation. Their potential distribution is 

an exponential function of y, that is 

(x, y) 	I)L(X) + [ h(x, Vb2) - bL(x)] exp[—F(Vb - VB)Y] 

+[h(x, Vb + VD) - I'L(X)] exp[-1'(Vb + VD - VB)(L - 

where h(x, Vi,,) = '5(x, 0), h(x, Vb + VD) = ( x, L). 

Among the above works, Ratnakumar and Meindi assumed infinite source and 

drain junction depth and a constant surface potential along the channel. Poole 

and Kwong used infinite source and drain junction depth as well, which over-

estimate the short-channel effect. Pfiester and Meindi and Pimbley and Meindi 

used a rectangular junction with finite depth, which still overestimates the short-

channel effect. Kendall and Boothroyd in [71] considered implanted MOSFETs 

with parabolic boundary conditions at the source and drain ends. 

Greenfield and Dutton [40] developed a technique to calculate the low-level 

drain current of a short-channel device as long as one knows the two-dimensional 

potential distribution in the depletion region. That is 

ID = —qD exp(/3& sm jn)[1 - exp(—f3Vjj )] 	(2.83) 
T 	TtT 
-'-'eff NA 

where the effective channel thickness 

tch 
= Jodexp[_I3((x,ymin) - bsmin)]th 	 (2.84) 

The effective channel length 

L 
Leif = j exp[-16(&5 - ibsmin )]dy 	 (2.85) 
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th 
From above, one can conclude that the short-channel effect is caused by the drain- 

induced field penetrating into the area underneath the gate (1) to reduce the 

effective channel length (2) to raise the surface potential and thus reduce the 

potential barrier in the channel. 

Poole and Kwong [73] used their solution [69] of Poisson's equation to calculate 

the subthreshold current in the same manner as mentioned above. They assumed 

infinite source and drain junction depths which overestimate the short-channel 

effect. Their model predicted that the subthreshold current ID increases when 

the channel length L reduces or the drain voltage rises. This is in agreement 

with experimental results. It also predicted that the subthreshold gate swing 
with 

S decreases when the channel length L reduces. This disagrees xperimental 

results. Lin and Wu [74] solved the two-dimensional Poisson's equation by using 

the Green's function method with a cylindrical source and drain junction. The 

subthreshold current is obtained using the same method as above. Although their 

model was supposed to include implanted devices, their boundary conditions at 

the source and drain ends were derived for uniformly doped devices only. Since 

the subthreshold gate swing is the most important parameter to describe the 

subthreshold behaviour, we derive it in Chapter 3 for short-channel MOSFETs. 

2.4.4 Models for Narrow-Channel MOSFETs 

Having discussed the subthreshold short-channel effect of MOSFETs, another 

small geometry effect, namely the narrow-channel effect, will be discussed in this 

subsection. The channel of a MOSFET is considered narrow if the channel width is 

comparable with the depletion depth. Unlike the short-channel effect, the narrow-

channel effect is more complicated. For non-recessed or semi-recessed (LOCOS) 

oxide isolation structures, the threshold voltage increases and the subthreshold 

current drops but the subthreshold gate swing rises when the channel width de-

creases. However, for a fully recessed oxide isolation structure, the threshold 

voltage decreases and the subthreshold current increases as the channel width 

decreases; this is called the inverse-narrow-channel effect. 
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c) 

Figure 2-16: Width cross-section of MOSFETs: a) non-recessed b) semi-recessed 

c) fully-recessed oxide isolation structure 

The narrow-channel effect of nonrecessed or semi-recessed oxide isolation struc-

ture will be discussed first. The narrow-channel threshold voltage increase has been 

analyzed by Jeppson for uniform oxide [75], Bandali and Lo for a semi-recessed ta-

pered oxide (bird's beak) [22], Kotecha and De La Moneda et al. for a non-recessed 

tapered oxide [23], Merckel [76] and Akers [24] for a non-recessed stepped oxide, 

etc. They all developed their models by using the concept that extra charges, zQ, 

are induced under the field oxide because the fringe field induced by the gate bias 

extends into the isolation region. Fig. 2-16 shows the width cross-section of a 

narrow-channel device. 

LWT=VT — VTO= 
 AQ 	

(2.86) 

It was predicted that the threshold voltage shift LVT o 	. VTO is the threshold 

voltage of a wide channel device. But the geometry division to calculate LQ is 

arbitrary, thus their accuracy is not very good. 

Kroell and Ackermann [77], Noble and Cottrell [78], Ji and Sah [79,80] and 

Chung and Sah [81,82] etc. solved the two-dimensional Poisson's equation numer-

ically. Numerical results show that potential is not constant along the channel 

width. The surface potential decreases towards the edge of the channel. 

Chung and Sah calculated the threshold voltage and the subthreshold current 

of a narrow-channel device numerically. They proposed an empirical model for the 
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subthreshold slope based on their numerical result, that is 

n=Ae — BW+C 	 (2.87) 

where the three constants A, B, C are to be determined from three n values at 

three channel widths of numerical results. Although numerical models provide 

physical insight into the narrow-channel effect, they are not suitable for circuit 

simulation purposes. 

Akers and Beguwala et al. developed an analytical expression of threshold volt-

age by geometry approximation for semi-recessed tapered oxide including effects 

of field oxide and field doping encroachment [83]. They have 

VT = VFB + 20B + QB+2Q1
C0 + 2C1 	

(2.88) 

where Q1 is the extra charge under one side of the field oxide, C1 is the field oxide 

capacitance of one side. In this section, QB  is the charge due to ionized impurity in 

the depletion region and C0  is the capacitance of the gate oxide, instead of charge 

per unit area and capacitance per unit area used elsewhere. Cheng and Lai [84] 

obtained the potential distribution for a non-recessed stepped oxide by solving the 

two-dimensional potential problem for the width cross section by means of Fourier 

transformation. VT is taken as the gate voltage at which the surface potential 
the 

under the middle of gate equals 20B - VB. Li and Hong et al. [85] obtained an 

expression for threshold voltage for a semi-recessed stepped oxide structure by 

geometry approximation to obtain Q j  and solving Laplace's equation in the field 

oxide using conformal transformation. They apply Gauss's law directly, i.e. 

QB + 2Qj = Wgai + 21P 8  (2.89) 

where the gate electric flux Wgai = -COX (VG - 03 )W, W.,,11  is the sidewall electric 

flux, which is determined from the potential distribution in the field oxide region. 

Their result predicts that the threshold voltage shift /.VT 
rr 

Now, the fully recessed oxide structure should be considered. Shigyo, Kon-

aka and Dang[86] used a three-dimensional numerical model to simulate the fully 

recessed oxide structure. Sugino and Akers [87] also used a numerical model to 
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obtain the subthreshold current for a fully-recessed oxide structure. They found 

that the surface potential goes up towards the channel edge. They compared the 

subthreshold current of non-recessed, semi-recessed and fully-recessed oxide struc-

tures. The result is that the non-recessed oxide has the smallest subthreshold 

current, the fully-recessed oxide has the worst subthreshold characterization and 

the semi-recessed oxide is in between. 

Akers [25], Hong and Cheng[88], Li and Hong[85] and Chung and Li[89} etc. 

used a geometric approximation and conformal mapping methods to obtain the 

threshold voltage for a fully-recessed narrow-channel MOSFET. They either use 

Eq. (2.88), where C1 is obtained by conformal mapping, or they use Eq. (2.89). 

Hsueh and Sanchez[90] solved the two-dimensional Poisson's equation on the width 

cross-section. They used 

VT = VFB + 2V-'B + Q 	 (2.90) 
Co2  

a,1,  
Q = f. ; E = — f3—(0, W) 	 (2.91) ox 	2 

Their result shows that the narrow-channel effect of threshold voltage depends 

exponentially on the channel width. 

It is obvious from above review that researchers are still concentrating on 

the narrow-channel effect of the threshold voltage. Except for their embodiment 

in numerical models, analytical subthreshold models have not been considered 

actively. 

2.5 Models for Small Geometry MOSFETs 

For a small geometry device with a short- and narrow-channel, consideration of ei-

ther short-channel or narrow-channel effect is not enough. An expression which in-

cludes both of these effects and also their interactive coupling is needed. Wang [91] 

proposed a small geometry model which ignores the coupling between the short-

channel and narrow-channel effect. He had 

VT = VTO - M/TL + LWTW 	 (2.92) 
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where VTO  is the threshold voltage of a large device, LWTL and AVTW are thresh-

old voltage shifts caused by short-channel effect and narrow-channel effect, respec-

tively. 

By using simple geometry approximation, Jeppson [75], Merckel [76] and Ak-

ers [92] etc. developed a small geometry model for threshold voltage. The models 

of Merckel and Akers have 

	

VT = VFB + 2 B + 7MK(VB + 20B) 	 (2.93) 

where YM  is a factor which takes into account the modification of the body effect, 

due to device dimensions. 

E 	( W  X 3 Wd' 

l 
7M = 1 + 	+1 + 	- 1 + 	

l 
	(2.94) 

rj )  

where c is a fitting parameter. 

Due to the arbitrary nature of the geometry approximation, those models above 

are not very accurate. However, because it is very difficult to solve the three-

dimensional poisson equation analytically, an analytical model for small geometry 

MOSFETs does not exist yet. 

2.6 Models for Circuit Simulation 

A simple and compact model is necessary for efficient calculation in circuit simula-

tions. As far as the subthreshold region is concerned, the SPICE2 level 1 model [33, 

341 and the CASMOS model [37] assume that the drain current is zero. SPICE2 

level 3 model [35] uses the parameter N31 , surface state density, to describe the 

subthreshold slope, i.e. 

ID = Io exp I(VG - V0 )' 	 (2.95) 
j 

n + 
CD  + qN31 

=1— 
coz 	cox 	

(2.96) 

where n is the slope parameter. N31 , 10  and V0  are to be extracted from experi- 

mental data or device simulator results. However, for a real device fabricated by 
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present semiconductor technology, the surface state density is too low to affect the 

subthreshold gate swing significantly. 

A subthreshold model proposed by Yang and Chatterjee [93] for SPICE has 

the following feature: 

and 

= I32LBL 
nEsiWe/3(vB+t,bs_21,bB)(l - e") 	 (2.97) 

b3=VG_VB_VFB+f{1_hl+(VG_VFB_VB)] j 
	

(2.98) 
L 	7T 

where -yT  is the effective body factor for a short-channel transistor. 

fT7_J2bB+VD_VB_\/) 	 (2.99) 

and 
where 5 is the drain effect term epresents the drain induced barrier lowering. It 

is clear from above equations that the effective body factor -t T  decreases as the 

drain voltage VD increases. Thus surface potential 08  decreases as VD increases. 
- this is 

The result of That the drain current ID  decreases as VD increases. This disagrees with 

experimental and theoretical results. 

To include the narrow-width effect, 

7w 	 (2.100) 

The subthreshold model of Grotjohn and Hoefifinger [94] for a long-channel 

MOSFET is 

WC 0  ui\ 
= LA () exp[A/3(Vc - VTO)][1 - exp(—flV jj )] 	(2.101) 

where 
1 COX+CD+CFS 

(2.102) 
Cox  

CFS is the fast surface state capacitance, 

	

CD 
2/b3 - VB 	

(2.103) 

The body factor 	 ________ 

I 
CO2. 	 (2.104) 

ox 
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where Neff is the effective doping concentration. For a short-channel device, 

10L 

	

ID = L - 1LD 	
(2.105) 

LLD = K/VD + V - K 	 (2.106) 

The channel length modulation coefficient 

I 2 
K = (2.107) 

W  
10 = IL LA C

ox (1)2

exP{fl[A(VG - VT0) + BVD]}[l - exp(—flVD)] 	(2.108) 

The drain voltage dependence parameter 

{

,itx(i 	i 
	for 

 = 	?1€oz ;.j; - 	 (2.109) 
0 	 for L>L* 

where L*  is the longest channel length with drain-induced barrier lowering present. 

In Wright's model [36] (including the short-channel effect), the subthreshold 

current 

ID 	
21tCO3, ( W' 	

2 

	

= (1 + FB) L) 	
exp I (Va - VT)] 	 (2.110) 

and the subthreshold slope coefficient 

	

= . (i + g;) 	 (2.111) 

where s is an adjustable coefficient used to fit the value of n to measured charac-

teristics. FB = Later Wright proposed a model for MOSFETs with 

an implanted channel [95], 

ID = 2it0C0' 	
2 
 m 2  exp [' (VG - VT)] [1 - exp(—/3VD)] 	(2.112) 

rn is a parameter used to adjust the magnitude of the subthreshold current. The 

subthreshold slope coefficient 

n + CO - cXG( VG - VT) - aDVD =1 (2.113) 
1 - cTVB 

This is an empirical expression to include the effect of the nonuniformly doped 

channel. where e, aG, aD and a are empirical fitting parameters. 
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the, 
Klaassen proposed'following subthreshold model for MOSFETs in [96]. 

W 	13 (VG — VT) 
ID = —Ioexp 	 (2.114) 

L 	 m 

where Io  is a current constant. The slope factor 

= mo + . - VB) 	 (2.115) 

7L Yw (2.116) 

If considering the effect of the substrate bias VB on the slope factor, one has [38] 

'0 	[fl(VG —  VT)  1 
ID=(lV/,)l,2exP[ 	M 	

(2.117) 

M 	
m 

1 + 	 (2.118) 
(1' - VB) 1 1 2  

Sheu et al. [97] proposed a semi-empirical model BSIM (Berkeley Short-channel 

IGFET Model for MOS transistor). They have 

ID = p0C0 w 
( 1 )2'J .8'#(VG_VT)1"(J 

- e—V) 	 (2.119) 

The subthreshold slope coefficient 

fl = no  + flAVB + flDVD 	 (2.120) 

P.  
and all size dependence parameters o , nA, D  here) subject to relationship 

(2.121) 

Poi  is P of a long- and wide- channel device. PLI  and Pwi  are fitting parameters. 

Chung et al. [98] proposed a subthreshold model for small geometry MOSFETs. 

For short-channel devices, 

ID = a,Ln 

w  
_LCoa 	

2 	
- e'D) 	 (2.122) 

where c is an empirical parameter. m is the subthreshold slope. For a narrow-gate 

device, 
2 

= !j-WECOV (
0) 

em(V_VT)(l - e 3 'D) 	 (2.123) 

where Wt,E  is the effective channel width. 
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Chung [99] proposed a model for narrow-channel devices. 

ID = 10 
w 

m (VG  Vo)(1 - e_PV) 	 (2.124) 

where 10  = pocrC0 -, m is subthreshold slope, a is a fitting parameter. )32 

= mo(AW + B)(1 + A/ — V) 	 (2.125) 

where m 0  is the subthreshold slope of a wide channel device at zero substrate bias. 

A, n and B are to be extracted from three in values at three channel width at zero 

substrate bias. A is to be extracted from m vs. relation for a wide-channel 

device. 

Several models above used the formula n = 1 +- = 1 + 1'S  - VB) for 

the subthreshold slope coefficient. The body factor y  decreases when the channel 

length L decreases or the drain voltage VD increases. If one us%'iove formula, 

one will find the subthreshold slope coefficient ii decreases when L decreases or 

VD increases. This is against experimental observation. 

A compact subthreshold model for circuit simulation will be proposed in Sec-

tion 7.3. It is based on the theoretical results in Chapter 3 and experimental 

observation in Chapter 6 and 7. 



Chapter 3 

Two-dimensional Analytical 

Subthreshold and Punchthrough 

Model for Short-Channel MOSFETs 

3.1 Introduction 

As geometry sizes of MOSFETs shrink, the so-called short-channel effects give 

more cause for concern. One of the more serious small-geometry effects is the 

increase of subthreshold current and the subthreshold gate swing. As the channel 

length is reduced, the influence of the drain and source-induced lateral field be-

comes more profound, which results in potential barrier lowering. Consequently, it 

leads to a significant rise in subthreshold leakage or may even prevent the turn-off 

of a MOSFET. Since this current does not obey the scaling rules, it is one of the 

major limitations to scaling of MOSFETs. 

In the literature about the subthreshold behaviour for short-channel MOS-

FETs, a satisfactory model does not yet exist. In Poole and Kwong's subthreshold 

current model [73] for short-channel MOSFETs with a. uniformly doped channel, 

they assumed infinite source and drain junction depth which overestimates the 

short-channel effect. Their model predicted that the subthreshold gate swing S 

decreases when the channel length L reduces. This is against experimental re- - 

47 
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sults. Lin and Wu [74] solved the two-dimensional Poisson's equation by using the 

Green's function method with a cylindrical source and drain junction. Although 

their model was supposed to include implanted devices, their boundary conditions 

at the source and drain ends were derived for uniformly doped devices only. The 

subthreshold gate swing is a very important parameter for device design consid-

eration. However, no analytical expression for the subthreshold gate swing 

for short-channel devices exists yet. 

In Section 3.2, we present a two-dimensional analytical subthreshold model 

based on the analytical solution of Poisson's equation. Cylindrical source and 

drain junctions are used to derive the boundary conditions at the source and drain 

ends and the effect of the non-uniform doping profile on the boundary conditions 
an 

has been taken into account. It gives 'analytical expression for the subthreshold 

current and gate swing for a short-channel MOS device with an arbitrary doping 

profile. 

Another short-channel effect is the higher punchthrough current for shorter-

channel devices. Short-channel MOSFETs are affected by the drain-induced lateral 

field which leads to lowering of the potential barrier height at the surface and in 

the bulk of the semiconductor. This effect causes the punchthrough current and 

reduction of the punchthough voltage. It leads to a significant rise in subthreshold 

leakage or even prevents the turn-off of a MOSFET. Since punchthrough current 

does not obey the scaling rules, it is another major limitation to scaling of MOS-

FETs. Although a lot of work has been reported on punchthrough, there is not 

yet a satisfactory model. 

There is some controversy about where punchthrough occurs first. In [100,101, 

102,103,104 7 1051, it was believed that punchthrough happened in the bulk. How-

ever, in [106,27], it was considered that punchthrough occurred at the surface. 

Based on a quasi-two-dimensional analysis and two-dimensional numerical simula-

tion, Fu in [1071  argued that the sign of the effective gate voltage, vG-VFB,  decides 

whether punchthrough occurs in the surface or in the bulk for a subthreshold-

biased MOS device. But her result was only obtained for a uniformly doped 

device. Due to the complexity of the problem, people rarely consider both the 
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surface and the bulk component of punchthrough together. They either only deal 

with surface punchthrough[73,72], or only consider bulk punchthrough[108]. Skot-

nicki et al. [109] gave an analytical model including both punchthrough components 

for a single-implanted device using a step profile approximation. An assumption 

of infinite depth of source and drain junctions was used. It also assumed that the 

saddle point (virtual cathode) in the bulk conducting path happens near y = L/2. 

This assumption indicates that this model is only valid under a small drain bias. 

A total of seven fitting parameters were needed. 

In Section 3.3, we present a two-dimensional analytical punchthrough current 

model based on the analytical solution of Poisson's equation. It includes both 

surface and bulk components of the punchthrough current for a non-uniformly 

doped MOS device with an arbitrary doping profile and no fitting parameters are 

needed. 

3.2 Subthreshold Model 

3.2.1 Theory and Results 

Solution of Two-Dimensional Poisson Equation 

The rectangular region in which Poisson's equation is solved is indicated by the 

shadowed region in Fig. 3-1. The various geometric parameters and operating 

voltages are defined in it. 

Solving the two-dimensional Poisson Equation with boundary conditions below 

 
ax ( 0 , Y) = --- [VG 

Es1 	
B - 0( 0 1 01 	 (3.1) 

o1,  
= 0 	 (3.2) ax 

(x,0) = v's(x,O) 	 (3.3) 

b(x,L) = ?jj(X,L) 	 (3.4) 

where 
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VG 

y 

VB 

Figure 3-1: Schematic cross section of an nMOSFET 

L' is the electrostatic potential; 

C0 is the capacitance per unit area of the gate oxide layer, C = o tox x 

€, and 	are the permittivity of silicon and oxide, respectively; 

VB = V - VB - VFB; 

wd is the depletion region depth; 

OS and OD  are source and drain cylindrical junction induced potential respec-

tively. 

The solution is 

'(x )  y) = ,bL (x) + V(x, y) 	 (3.5) 

where  

bL(x) = VB - --F(x) - - --x[G(wd) - G(x)] - —G(wd) 	(3.6) 
Esi 	 Esi 

V(x,y) = 
°° cos k(wd - x) [H 

sinhk(L - y) + Isinhky} 	(3.7) 
n=O usinhkL 
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I.'L(x) is a one-dimensional function, it has a similar form to the solution of Pois-

son's equation for a long-channel MOSFET. Actually, when the channel length 

L - 00, OL becomes the same as the long-channel solution. V(x, y) is the solu-

tion of Laplace equation, it represents the two-dimensional nature of the potential 

distribution. The detail of the solution is presented in Appendix C. 

N(x) is the doping profile; 

F(x) = fx i N(x i )dx i ; 

G(x) = fox N(x l )dx l . 

and 

Qjkn)
kwd = arctan 

cox 
+nir (n = 0,1,2,...) 	 (3.8)  

1 / 	sin 2kwd\ 
Ufl 

= 2 (1 + 2knWd ) 	
(3.9) 

 
Hn 	

J-d 
 V(x,0) cos k(wd-x)dx 	 (3.10) 

Wd 

I 	I'd 
V(x,L)cosk(wd-x)dx 	 (3.11) 

Wd  

where V(x, 0) = '(x, 0) - bL(x), V(L, x) = '(x, L) - 

2 
Vb - V - 	[fTxo N(x o)1ndxo  

(3.12) 

	

s(x,O) { 

	

x=0 

+ in f x oN(x o )dx o] 	 0 < x 

0 	 x>ws 

1' + VD - VB - g41fx xoN(xo)lndxo 
bD(x,L) 	

V+VD_VB 	

x0 

= 	
(3.13) 

+ in f x oN(x o)dx o] 	 0 <x < WD 

	

10 	 X>WD 

where x3  = xr3//x2 + (r3  + y) 2 , xS = xRs/Jx 2  + (r3  + y) 2 , 

XD = XRD1 \/x 2  + (r3  + y) 2 . See Fig. 3-2 for reference. 
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Figure 3-2: Schematic cross section of an nMOSFET 

R, RD satisfy 

qr 	xs 
Vbi_VB_ — - - J x oN(x o )ln—dxo =O 	 (3.14) 

xi 	xi 
r2  XD 

Vb+VD—VB— q --4 J 
x oN(x o)lndxo =O 	(3.15) 

fB i Xj  

respectively. More details can be found in Appendix E. 

The minimum potential along the surface, 'ibsm in  at y = Ym, is calculated 

using condition (O, y) = 0. The depletion depth, wd,  is calculated by using 

condition b(wd, y,,) = in N(wd)•  For a short-channel device with a uniformly 

doped channel, its depletion depth may be written as 

Wd 
 =VqNA [/'smin + V(wd )  yrn) _ V(0, yrn)] 	 (3.16) 

Refer to Appendix B for more details. Since V(Wd,y rn )V(O,yrn ) > 0, it is obvious 

that wd of a short-channel device is wider than that of a long-channel device with 

the same surface potential. 

The subthreshold current[40] 

ID = qD Wth 	
exp [/9(bsrn in  + VB)][1 - exp(—/VD)] 	(3.17) 

(NA) 
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The effective channel thickness [40] 

tch 	 (3.18) 

The effective channel length 

L 
Lejj = j exp[—/('3 - /'smin)]dx 	 (3.19) 

For a long-channel device, 0, is constant along the channel, thus Leff  = L. 

For a short-channel device, 0,, is not constant along the channel and it has a 

minimum lbsm in , thus L eff <L. 

Poole and Kwong[73] only used the first term of the series in their potential 

expression to evaluate the effective channel length, which we found is inaccurate. 

To calculate the effective channel length for a very short-channel MOSFET, use a 

Taylor's expansion to the surface potential around the minimum point (0, ym ): 

o1,  

	

b(0 ) y) = bsm in  + 	(O,yyn)(y - yrn) + 	0,ym)(y - yrn) 2  +... 

a2 

	

= Osmin + 	(O,yrn)(Y - ym) 2  +... 	 (3.20) 

and 

L 
Leff = J exp{—f3((0, y) - L'srnin)Jdy 

0 

I
L 

exp[—j3.-j-(0, yrn)(y - ym)2]dy 
o J 

1 

(

2ir 	2 

j(o Ym)) 	
(3.21) 

\ 8y2  

Eq. (3.21) is valid under condition that 

yrn)(L - ym)2> 1 	 (3.22) 
2 9y2 

tll 	 1 	• 	ir.,-1 tnerwise, iouowing approach is useclvlu]. 

Leff = Y2 - Yi 	 (3.23) 

where Yi, Y2 satisfy l'(O,y') = 0(0, Y2) = ial'srnin +ir/4/3 and Yi <Ym < !12• 
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The subthreshold gate swing S =
d(I-glo 	is a very important parameter in 

describing the subthreshold behaviour. It indicates h6w much gate bias lowering 

is; needed to reduce the current by one decade. 

S = 1000 (in 10) 
dV /dwd 

(mV/decade) 	 (3.24) 
d(ln ID)IdWd 

d(ln ID) 	db3m jn 	1 du e11 	1 dE3  
dwd 	 dwj — Leji dwd — E. dWd 

1 ' 	1 dLii 
--WdN(Wd)/3 (i_ 	- 	

dwj 

+'3[( 1 	
V(O,ym ) — 	V(WdY ni )] (3.25) 

+ /3E 	d wd 	 dwd 

dVG — d?,bsm in 	Esz  d 8  

dwd — dwd 	C.. d 

= — WdN(Wd) + —N(wd) — --V(wd, y) 	 (3.26) 
E31 	 I1OX 	 dw 

Therefore 
In 10 1+1--T1 	

(3.27) 
13 	1—----+T2—T3 

where 

Ti = 

T 	"1 	 d V(0,Ym)_"V(Wd,Ym)], 2 — T R ' 	c, ) dwd 	 dwd 

T3  — 1 1 dL ejj 
— Tf3Leff dwd 

T = WdN(Wd). 

Details about how to calculate S are presented in Appendix D. 

When L .' oo, jV(0,y m ) 	0, 	V(Wd,Y m ) — p 0 and _i..dLcIf —' 0 So S L eji dwd 

reduces to its long-channel formula. 

When the drain voltage VD is small, we can assume that the potential minimum 

is near the middle of the channel, then using only the first term in the series 

V(x, ym ) may be approximated as 

\ 
V(X,y m ) = 	

k0L 

	

cos ko(wd — x) (H
0  + I) 

exp (-----) 	
(3.28) 

U0 
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Thus, 
dWd(' 	

cx exp (_L).  Compared with T1 , effects of 1'2 and T3  are 

second order. Thus S - So cx exp (- ). So is the subthreshold gate swing for a 

long-channel device. 

3.2.2 Verification and Discussion 

the. 
A FORTRAN77 program has been written which is based on above theory to 

the, 
calculatethe subthreshold gate swing. Some of fesults from this program are 

presented below. 

When solving Poisson's equation, a constant depletion width wd = Wd(ym) is 

assumed, which means that the ionized impurity outside x = Wd(ym) is ignored. 

Fig. 3-3 shows the potential along x = Wd(/m) for devices of different channel 
tQ4 . 

length. One can see that the potential along this line is not equaYthe constant: 

In N(Wd)•  Fig. 3-4 shows the depletion width calculated at a normalized current 

level ID = 1n A by using condition (wd, y) = in N(y))'  for devices of different 
WIL

channel length. It is clearly shown that the depletion depth is not a constant 

throughout the channel. wd is wider at the source/drain end than ct the middle 
agreennt 

of the channel, inwith the results from a numerical simulator. Thus we conclude 

that the error caused by the constant depletion depth assumption is smaller than 

was originally expected. Fig. 3-4 also shows that the depletion depth for a shorter 

channel device is wider than that of a longer channel device. 

Fig. 3-5 shows the calculated surface potential of devices with different channel 

length at the normalized current level mA. The parameters used in the above 

calculations are = 250A, NA = 4e14cm 3 , r3  = 0.25pm, shallow implantation 

dose 7ellcm 3 , energy 50keV, deep implantation dose 7e11cm 3 , energy 140keV, 

VD = O.1V, VB = 0. It is shown that for a long channel device, a large portion of 

its surface potential is constant. However, this is not the case for a short-channel 

device. Instead, there is a minimum potential and this minimum point shifts 

towards the source end when the channel length reduces. It is also shown that to 

produce the same level of the normalized drain current, shorter device has a lower 
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Figure 3-3: Calculated potential along Wd(ym ) for different channel length 

The channel lengths L = 0.729im and 5.729itm correspond with the actual chan- 

nel lengths of my experimental devices. 

0.6 

0.55 

0.5 

0.45 

0.4 

0.35 
0. 

0.3 

0 

•Z 	0.25 

0.2 

0.15 

0.1 

0.05 

0. 3om 

0. 

L5. 729um 

0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1 

Figure 3-4: Calculated depletion width with different channel length 



Chapter 3. 2-D Analytical Subthreshold Model 
	

57 

1.4 
L5.72jm - 

0.72jm 
1.3 
	

0jm 

12 

1.1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 
0 	0.1 	0.2 	0.3 	0.4 	05 	0.6 	0.7 	0.8 	0.9 	1 

noimdzed diance (xli) 

Figure 3-5: Calculated potential along channel surface with different channel 

length 

surface potential. This can be attributed to the effect that Lff/L is smaller for a 

shorter device. Those results are in agreement with that of a numeric simulator. 

Fig. 3-6 compares the calculated surface potential by using cylindrical and 

rectangular source/drain junctions and the result of a numeric simulator PISCES. 

The channel length used is 0.729pm. ID/(W/L) = mA is used for the cylindrical 

junction. Then the value of VG which corresponds to this current level is calculated 

and used for the rectangular junction and in PISCES. The agreement between the 

results from the numeric simulator and our two-dimensional analytical model is 

satisfactory. It is obvious that using the rectangular source/drain junction results 

in a larger surface barrier lowering than using a cylindrical junction, thus results an 

overestimated short-channel effect. 

The analytical model is compared to numeric simulator PISCES in Figs. 3-7 

and 3-8. The parameters used in Fig. 3-7irethe same as in Figs. 3-3 to 3-6. In 

Fig. 3-8, the shallow implantation energy is 25keV and all other parameters are 

the same as previously used. It shows the subthreshold gate swing versus channel 
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Figure 3-6: Calculated surface potential along the channel by using different 

models 

length at substrate bias VB = 0 to -1V. It is clear in Figs. 3-7 and 3-8 that 

as the channel length decreases, the subthreshold gate swing increases. And the 

subthreshold gate swing reduces as the substrate bias increases. The agreement 

between results of the analytical model and the numeric model is satisfactory. 

In the analytical model, the doping profile described by a Gaussian distribution 

including annealing effect[110] is used. That is, 

N(x) = NA + [R(A, x) + R(A )  -x)} 	 (3.29) 

where 

A - 1 D1 1 	(x - A) 2 	2DtA + xLR1 (3. 
30 

	

x) - 	 exp - 
2zR;2, 

er c - 	) 

	

A = Rpi - 	 (3.31) 
AROxi 

Linpi = 	± 2Di and Dt = > j 1Jj1j. D1  is the implantation dose, R is 

therojectedrange, zR,0, is the standard deviation of the projected range, LR' is 

the effective standard deviation after annealing, Dt is the product of diffusion 

coefficient and the annealing time. 
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Figure 3-7: Subthreshold gate swing vs. channel length 
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Only the surface current path has been considered in this section so far. When 

the channel length of a device reduces or the drain bias rises, a bulk current path 

may arise. In this case, this bulk current component has to be included in the 

subthreshold current model. In the next section, this problem will be dealt with. 

3.3 Punchthrough Model 

3.3.1 Theory and Results 

Solving the two-dimensional Poisson's Equation as in Section 3.2, but taking into 

account c bulk current accurately, one has to consider the situation under which 
the,- 

drain and source induced field has reached to lother end of the channel. Thus 
the- 

boundary conditions &(x, 0) and 5(x, L) used in Section 3.2 are no longer valid. 
the- 

Instead, 'following i4'(x,O) and ib(x,L) are to be used. 

(x, 0) = 1's(x, 0) + f(x)D(x, 0) 	 (3.32) 

&(x, L) = D(x, L) + f(x)s(x, L) 	 (3.33) 

where f(x) has to satisfy f(0) = 0 and f(Ws, D ) = 1. 1(x) = sin(W -- ) is chosen 

here. The solution has the same form as in Section 3.2. That is 

&(x, y) = L(x) + V(x, y) 	 (3.34) 

bL(x) = VB - --F(x) - ---x[G(wd) - G(x)] - —G(wd ) 	(3.35) 
€3j 	 E3 2 	 '-'ox 

V(x,y) = 	
cos k(wd - X) [H,, sinh k(L - y) + I, sinh kay] (3.36) 

u,sinhk,L 

Surface Current 

The condition for a surface conducting path to exist is that the transverse electrical 

field at the surface should fulfill the condition 

ao 	=(O,ym) > 0 	 (3.37) 
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Using the boundary condition Eq. (3.1), one has 

cos kwd 
 - 	[Hsinh k(L - ym) + In slflhk n ym ] > 0 (3.38) 

E8t n0 u, sinh kL 

The surface current [40] 

Wth n 	
+ VB)][1 - exp(—/3V jj )] 	(3.39) 

L eii (NA) 
CXP 'DS = qD  

H and In  have the form of 

sin kwd 
H = 	[V1, - ( VG - VFB) - —G(wd)] + th 	(3.40) 

kwd 
sin kwd 

I = 	[VbI + VD - (VG - VFB) -—G(wd)] + L• 	(3.41) 
kwd 	 C. 

Substituting Eq. (3.40) and (3.41) into (3.38), it is clear that either the decrease 

of V - VFB or increase of VD may cause the surface conducting path shift into the 

bulk. The reduction of channel length L will cause the shift as well. The integral 

of the doping profile in the depletion region will also have an effect on the position 
the 

'
whether- 

of -conducting path. Thus the punchthrough path lies in the surface or in the bulk 

is decided by the value of VG - VFB, VD, the channel length L and the integral of 

the doping profile in the depletion region etc. all together, not only by the sign of 

V - VFB. 

Bulk Current 

For a MOSFET with a uniformly doped channel, when its drain bias rises or its 

gate bias drops until E. < 0, the conducting path shifts from the surface to the 

bulk. For a device with a nonuniformly doped channel, even if the surface path 

exists, there could be a bulk path existing at the same time, provided that there 

exists another potential peak in the bulk along the direction normal to the current 

path. 

We calculate this bulk current at the saddle point (x,y)[40]. Let Op,.,,= 
b(x, Yp),  Op,,, is the potential minimum in the direction along the current path 

and the potential maximum along direction normal to the current path. The point 
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Figure 3-9: Schematic cross section of an nMOSFET 

(xv)  yr,) can be found under conditions 	yr,) = 0 and 	y,) = 0. The bulkay  

current [40] 

'DB - 
L' Wtch (2i) exp[/3(&pm  + VB)][1 - exp(-/3VD)] 	(3.42) - L 4 ff NA 

where L e  jj = L2  + L1 , tch = Z2  + Z1  and b(x i ,y i ) = b(x2 ,y 2) = & + 4,6 7  

1(x3 , y) = iI'(x4, yi) = 	- . Refer to Fig. 3-9 for definitions of geometry 

terms. The total punchthrough current 

'D IDS +'DB 	 (3.43) 

3.3.2 Verification and Discussion 

A FORTRAN77 program' has been written based on the theory discussed above 

to calculate the punchthrough current under subthreshold bias condition, which 

includes both the surface and the bulk current. Some results from this programme 

are presented below. 

Potential distribution along y = Ym is compared between results of our ana- 

62 

_z. 

 

lytical model and those of PISCES in Figs. 3-10 to 3-15. Parameters used in our 
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calculations are t = 250t, NA = 4e14cm 3 , r, = 0.25/Lm, L = 1.272jtm. In 

Figs. 3-10 to 3-13, a single implantation with implantation energy 25IceV, dose 

7e11cm 2  is used. In Figs. 3-14 and 3-15, besides using above shallow implanta-

tion, a deep implantation of energy 140keV and dose 7e11cm 2  is used as well. 

It is clear for the single implantation case that as the drain bias increases, the 

potential barrier in the surface and in the bulk both are lowered, but comparing 

with the surface potential, the substantial barrier lowering happens in the bulk. 

The agreement between our analytical model and the numerical simulator is very 

good with zero substrate bias. There is discrepancy in the bulk when a negative 

substrate bias is applied. It is also clear comparing Figs. 3-10, 3-11 with Figs. 3-

14 and 3-15 that the second implantation suppressed the bulk current sufficiently, 

thus the change of drain bias does not have much effect on the surface potential. 

The subthreshold characteristics resulting from our analytical model and PISCES 

are compared in Figs. 3-16 to 3-21. In Figs. 3-16 and 3-17, the channel length 

of the MOSFET's is 0.7721im. In Figs. 3-18 and 3-19, the channel length of the 

MOSFET is 1.272jtm. Other parameters for above two devicesarethe same as 

those used in Fig. 3-10. Parameters used in Figs. 3-20 and 3-21 are the same as 

those used in Fig. 3-14. 

In Figs. 3-16, 3-18 and 3-20, the effect of drain bias VD on the subthreshold 
thy 

characteristics has been compared for calculated results of our model and those 

of PISCES. It is shown that the increase of VD raises both the surface and the 

bulk punchthrough current which indicates that increasing VD lowers the potential 

barrier at both surface and the bulk. As the channel length reduces, the influence 

of VD becomes more profound. But a second ion implantation suppresses the 

influence of VD successfully. 

In Figs. 3-17, 3-19 and 3-21, the effect of the substrate bias VB on the sub-

threshold characteristics has been compared between the calculated results of our 

model and those of PISCES. A strong suppression of the punchthrough current is 

observed when the substrate bias increases, especially that of a bulk component. 

For devices with second implantation, the influence of VB is more profound. 

From Figs. 3-16 to 3-21, it is observed that when gate bias VG is smaller than a 
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certain value VG, it loses its controls on the punchthrough current. This indicates 

that the bulk punchthrough current dominated at this state. It is clearly shown 

that the value of VGp  is dependent on drain bias VD,  substrate bias VB,  channel 

length L and substrate doping profile. 
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Chapter 4 

Experimental Devices and Test 

Systems 

the- 
Experimental devices have been made by usingEMF 1.5pm NMOS process. The 

main steps of the process are described below. 

4.1 EMF 1.5 4um nMOS Process 

Throughout the process, positive photoresist is used, i.e. the areas of resist exposed 

to UV light 	remain, I in the development process. 

The starting material is a 3-inch diameter wafer which is lightly doped p-

type silicon with a (100) crystal orientation. The (100) orientation offers the 

lowest surface state density at the Si - Si02 interface. The low impurity doping 
in. 

results"a high resistivity of 14 - 20cIcm to ensure low source and drain parasitic 

capacitances. 

The first step is the initial clean; that is, using acid to remove unwanted impu-

rities from the surface of the wafer, such as organic materials and a surface layer 

of silicon dioxide. 

A technique called LOCOS (LOCal Oxidation of Silicon) [111] is used to pro-

duce the field oxide to provide isolation between devices on the wafer. First, an 

initial oxide layer (thickness 350A) is grown over the entire wafer. Then, a layer 

71 
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of thick silicon nitride about 1000Athick is deposited. The first photomask defines 

the areas where devices will eventually be formed. All other areas of the silicon sur-

face are isolation regions. After exposure and developing, only the active regions 

are covered by silicon nitride and resist. Boron is implanted into the field region 

(Bj'1  at 70keV dose 8e12 atom/cm 2) to prevent any significant parasitic conduction 

path in the field region. The remaining photoresist can then be stripped away. A 

layer of field oxide about 6000A thick is then grown in the isolation region. The 

silicon nitride which covers the active regions prevents any oxide growth and only 

a very thin laye?c'xide grows on the nitride surface. Next, the silicon nitride and 

the initial oxide on the active region are all etched away. To ensure the quality of 

the silicon surface in the active region, a layer of sacrificial oxide is grown on it, 

then removed. The task of defining the active and the isolation regions has been 

done. Now, the wafer looks like in Fig. 4-1 and active devices can be made in the 

active region. 

field isolation 

field 	
+ 

implant (B ) 

p-type substrate 

Figure 4-1: Diagram of wafer after the isolation (field) region and active region 

defined 

A layer of thin (2501) and high quality oxide is grown as the gate oxide. 

Then on the active area, a shallow Boron implant (Bj)  is performed to obtain 

the desired threshold voltage, followed by a deep Boron implant to prevent any 

punchthrough which may arise due to the lightly-doped substrate. To investigate 
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the influence of ion implantation on device electrical characteristics, a total of 15 

different combinations of implant energy and dose is used. Their values are listed 

in Table 4.2.1. 

Next, a layer of polysilicon is deposited over the whole wafer and doped with 

phosphorus to increase its conductivity. During the phosphorus deposition, a layer 

of phosphosilicate glass is formed on the surface so that has to be etched away. 

The surface of the polysilicon is oxidised to form a thin polyoxide layer to allow 

good adhesion of the subsequent photoresist layer. See Fig. 4-2. 

poly-Si 

Figure 4-2: Diagram of wafer after gate formed 

The second photomask is used to define the drain and source regions and the 

oxide and polysilicon are etched away. A heavy arsenic dose is implanted into the 

wafer to form the drain and source regions. An annealing step follows to repair 

the damage to the crystal structure caused by implantation. See Fig. 4-3. 

A layer of pyrolytic oxide is deposited to insulate the polysilicon from metal 

interconnection layer. Next, a high temperature reflow step is employed to smooth 

the coverage of the pyro over the sharp edges of the polysilicon tracks. Then a wet 

oxidation step is used to leach phosphorus from the surface of the pyro to improve 

the adhesion of the photoresist in the next step. 
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poly-Si gate 

Figure 4-3: Diagram of wafer after source/drain formed 

The third photomask is used to define contact windows where aluminum will 

make contact to the polysilicon and diffusion areas below. The oxide is etched out 

of the areas defined for contact windows. 

Finally, a layer of aluminum is sputtered over the wafer and a fourth photomask 

is used to define the interconnection pattern. Unwanted aluminum is etched away 

and a low temperature anneal (sinter) is used to ensure a good ohmic contact 

between aluminum and silicon. See Fig. 4-4. 

4.2 Ion Implantation 

As mentioned in Chapter 2, ion implantation into the channel of a device is used 

to determine the threshold voltage of a MOSFET. To investigate how ion im-

plantation affects the subthreshold operation of MOSFETs, a group of 15 wafers 

with different ion implantation energies and doses has been manufactured using 

the EMF 1.5/1m nMOS process described above. The doses and energies used are 

listed in Table 4.2.1. 

Wafers 1-6 have only one ion implantation. Among them, Wafers 1, 2 and 4 

have the same implantation energy but different doses. Wafers 3-6 have the same 
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Figure 4-4: Diagram of wafer at the end of process 

Table 4.2.1 Boron Implantation in Channel 

Wafer No. Dosei (cm 2)  Energyi (keV) Dose2(cm 2 ) Energy2(keV) 

1 2e11 25 - - 

2 5e11 25 - - 

3 7e11 10 - - 

4 7e11 25 - - 

5 7e11 50 - - 

6 7e11 100 - - 

7 3e11 25 7e11 140 

8 5e11 25 7e11 140 

9 7e11 10 7e11 140 

10 7e11 15 7e11 140 

11 7e11 25 7e11 140 

12 7e11 50 7e11 140 

13 fell zo nell 14U 

14 7e11 25 7e11 100 

15 7e11 25 7e11 200 
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implantation dose but different energies. Wafers 7-15 are double-implanted. Wafer 

11 had the standard implants for the EMF 1.5pm nMOS process. Of four implant 

parameters: the shallow implantation dose and energy and the deep implantation 

dose and energy, only the shallow implantation doses were changed for Wafers 7, 

8 and 11. Wafers 9-12 have different shallow implantation energies. The deep 

implantation energy for Wafers 11, 14 and 15 vary. Wafers 11 and 13 also have 

different deep implantation doses. By changing the ion implantation parameters 

for each subgroup of wafers, the effect of implantation parameters on subthreshold 

behaviour of MOSFETs can be studied and the results can provide a quick guide 

for device and process designers. 

A two dimensional process simulator SUPRA (Stanford University PRocess 

Analysis program) [112] was used to predict the impurity profile at the end of the 

process in the channel of a MOSFET on each wafer. The SUPRA results for wafers 

1 to 15 are shown in Figs. 4-5 to 4-19. 

4.3 Geometry Arrangement 

To investigate the geometry effect on MOSFETs, four devices with the same width 

and different length and four devices with the same length and different width from 

each wafer were used in the experiments. The device dimensions are listed in Table 

4.3.1. 

Note that the channel width and length indicated in the table are the mask 

width Wm  and the mask length L m  of the channel. The effective width 

W = Wm - 2LW, and the effective length L = Lm  - 2Ld are smaller than the 

mask width and the mask length. See Section 4.5. 
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Figure 4-10: Boron profile in channel of MOSFET on wafer 6 
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Figure 4-13: Boron profile in channel of MOSFET on wafer 9 
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• --- oop.on 

5Ik7_lIc.. II.71C.c 1 t 

Cc 	74ll 

ésIE'IJ 1J 

Ptop uu./fo.-.. 

.,La 	'ii 

.O3 	0.50 	 .00 	 I.SO 	 2.00 	 2.50 	 7.00 	 5.90 	 4.03 	 4.50 	5.23 

Figure 4-19: Boron profile in channel of MOSFET on wafer 15 



Chapter 4. Experimental Devices and Test Systems 	 82 

Table 4.3.1 Geometry Arrangement 

Device Channel Width(m) Channel Length(pm) 

A 30 6 

B 30 1.5 

C 30 1.2 

D 30 1.0 

E 7 30 

F 1.5 30 

G 1.2 30 

H 1.0 30 

4.4 Measurement Instrumentation 

An HP 4145B Semiconductor Parameter Analyzer was used to measure the current 

and an HP310 computer was used as a controller. The diagram of the measurement 

system is illustrated in Fig. 4-20. The software which controls the measurement 

system was written using HP Basic 5.0. The system is capable of measuring 

currents down to ipA. 

To minimize the noise level when measuring the subthreshold drain current, 

packaged chips were used in the experiments. For each sample, the gate voltage 

VG was chosen so that its lower limit ensured the drain current was measured from 

ipA. The upper limit was just above the threshold voltage VT at 

5 values of substrate bias VB ranging from 0 to —2V with an interval of 

—0.5V and drain bias 11D = 0.1V. 

substrate bias VB = 0 and drain bias VD ranging from 0.1V to 2.6V with 

an interval of 0.25V. 

Figs. 4-21 to 4-24 show subthreshold characteristics of 4 devices from Wafer 

11 with VB as a parameter (Condition (a) above). Figs. 4-25 and 4-26 show 

subthreshold characteristics with VD as a parameter (Condition (b) above). 
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Controller 
HP 310 Computer 

Disk 1 	I 
	I I Driver 	Printer 	Plotter 	HP 4145 Semiconductor 

 Parameter Analyser 

Figure 4-20: Instrument set up for measurement 

4.5 Parameter Extraction 

One of the best known circuit simulators is SPICE. It has models for MOSFETs 

at three different levels. Level 1 uses a very simple first order model which gives 

correspondingly approximate results. Level 2 uses a more sophisticated model 

which is derived from the physics of the device. Level 3 is more accurate and uses 

empirical factors to describe small geometry effects. Since small geometry effects 

are one of the mainpoints of interestin our experiments, SPICE level 3 model was 

used. 

Parameters for the SPICE level 3 model, (i.e. threshold voltage VT,  body factor 

-
y, diffusion length Ld and width reduction LW) for each experimental device were 

extracted using a parameter extractor developed in the EMF, called PARAMEX. 

The threshold voltage, VT,  also determines the range of gate voltage values in 

which a MOS device operates in the subthreshold region. To a first order, the 

equation for current in the linear region of operation is 

VD 
ID=Beta[VG - VT ----]VD 	 (4.1) 
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Figure 4-21: Subthreshold characteristic of Wafer 11 Device A 

Figure 4-22: Subthreshold characteristic of Wafer 11 Device D 
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Figure 4-24: Subthreshold characteristic of Wafer 11 Device II 
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where Beta denotes the gain of a MOSFET. Then 

	

ID 	 VD 
Beta VD = 

VG - VT - 	 (4.2) 

On a VG vs. ID  graph, the intercept on the VG-axis i.e. when ID = 0 is VT + . 

VD is kept small at 0.1V. 

Since body factor -y = 2qEsiNeff1C ox1  it can be used to calculate the average 

substrate doping level and thus to obtain the minimum surface potential in the 

channel. It will be used in Section 6.2. 

	

VT = VTO - 	+ -yI20B - VBI 2 	 (4.3) 

Plot VG vs. 'D  at several different substrate biases. VT at each VB is found, then 

plot VT vs. I2B - VBI. The slope is 'y. 

The diffusion length Ld is caused by lateral diffusion of the n source and drain 

into areas under the gate. The actual channel L is given by 

LL m 2Ld 
	

(4.4) 

where L m  is the mask channel length. To find Ld, the gains of transistors of 

different channel length are found from their transfer characteristics. The drain 

voltage has to be kept low to ensure that the depletion region around the drain 

would not affect the measurement. The gate voltage should be large enough to 

bias the devices in the linear region but not higher. This enables the maximum 

Beta to be measured and so reduces the influence of parasitic source and drain 

contact resistances on the measurement. Biasing the devices in the linear region 

means that the Beta values can be found from 

ID  Beta - ________________ 

	

(VG — VT — )VD 	
(4.5) 

Beta can also be expressed as 

Wm 
Beta = 	 (4.6) 

Lm 2Ld 

That is 
1 	Lm 	2Ld 

(4.7) 
Beta = /2 effC ox Wm - fL ejj Cox  l'Vm 
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If 	is plotted against L m , then the intercept of the best fit straight line with Beta 

the L m  axis is 2Ld. 

The width reduction LW is due to the bird's beak formed in the LOCOS 

isolation process. It reduces the mask width Wm  to the actual width W. 

W = Wrn 2tW (4.8) 

The extraction of A W is similar to Ld,  so the Beta values for various width devices 

have to be found from their transfer characteristics. The bias condition is the same 

as that for Ld extraction. 

Beta = lie11 Cox 
Wm  2LW 	

(4.9) 
,.rn 	2Ld '-' - 

So, 

Beta = lLeff Cox L 
Wm 
- 2Ld - hleffCoxL 2LW - 2Ld 	

(4.10) 

This shows that 2L\W is the intercept on the Wrn  axis when plotting Beta against 

The procedure of extracting the subthreshold gate swing S from experimental 

data is as follows: 

Measure the ID - VG curve in the subthreshold region. 

Chose a certain normalized drain current Io  = ID/(W/L) from the sub-

threshold characteristic, such as Io  = 10 9A, that is ID = 10 9 (W/L)A. 

Then chose three points from the measured data (ID-1, VG-1), (1D0, Vo) 

and (ID1, VG1), which satisfy ID-1 < ID(= 10(W/L)) < 'Do < 'Di and 

VGo — VG_l =Val — VG0 . 

Let y=igIo ; 

= VG- 1 , Y-i = lg(ID _ l /(W/L)); 

xo = VGO, Yo = 

= Vci, Yi = lg(ID 1 1(W/L)). See Fig. 4-27. 
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4. Use inverse interpolation and differentiation of the three-point Stirling for-

mula [113] to find x corresponding to y, i.e. the gate voltage VG correspond-

ing to the chosen current ID  and to compute the subthreshold slope n = dID 
dVG 

(decade/V) = 	at this chosen point (ID, VG). So the subthreshold gate dx 

swing S = 1000. (mV/decade). 

The three-point Stirling formula is as follows: 

U 

	

Y = Yo+ (yi y_i)+ (yi - 2yo+y_1) 	 (4.11) 

where y = 1(x), yi = f(x_ i ), yo = f(x o ) and yi 	f(x i). f is a unknown 

function. y is known. (x_ 1 , yi),  (x0,  I/o)  and (x1, I/i)  are three known points with 

equal interval h = x,i - x. They satisfy yi  <y < I/o <I/i. x is to be found. 

x = xo  + uh (4.12) 

From Eq. (4.11), u can be easily found by solving a quadratic equation. So x is 

found from Eq. (4.12). 

The derivative 	can be derived as follows: dx 

dy - dy du 
(4.13) 

From Eq. (4.12), 

(4.14) 
dx - h du 

From Eq. (4.11), 

dy11 

	

= ;:[(Y1 - Y-i) + u(y1 - 2Yo + y-i)] 	 (4.15) 
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Figure 4-27: Diagram about extraction of S 

X 



Chapter 5 

Ion Implantation and Subthreshold 

Behaviour 

5.1 Ion Implantation and Subthreshold Behaviour 

of Long-Channel MOSFETs 

It has been discussed in Chapter 2 that the channel ion implantation will affect 

the subthreshold gate swing S greatly. We will analyze its impact on long-channel 

MOSFETs first. 

The values of the subthreshold gate swing S obtained from the subthreshold 

characteristics at normalized current level 1 ID/(W/L) = 10 9 A of Device A 

on each wafer are listed in Table 5.1.1. 

From Table 5.1.1, it is clear that wafer group 1 consists of 3 wafers which have 

a single implant and have the same shallow implantation energy of 25keV. The 

subthreshold gate swing S increases substantially from 68.82 to 91 .42m V/decade 

when the implantation dose increases from 2e11cm 2  to 7e11cm 2 . 

Wafer group 2 consists of 4 wafers which also have a single implant and have the 

same implantation dose of 7e1 lcrn 2 . When implantation energy increases from 

lOkeV to 25keV, S increases from 80.99 to 91.42mV/decade. Then S decreases 

while the energy increases. 

91 
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Table 5.1.1 S and Ion Implantation  

group wafer Dose, Energy, Dose2 Energy2 S 

of wafers No. (CM -2 ) (keV) (CM-2) (keV) (mV/decade) 

1 2e11 68.82 

1 2 5e11 25 - - 79.42 

4 7e11 91.42 

3 10 80.99 

2 4 7e11 25 - - 91.42 

5 50 85.39 

6 100 82.95 

7 3e11 83.82 

3 8 5e11 25 7e11 140 86.46 

11 7e11 89.76 

9 10 86.52 

4 10 7e11 15 7e11 140 88.39 

11 25 89.76 

12 50 88.36 

14 100 92.92 

5 11 7e11 25 7e11 140 89.76 

15 200 87.42 

6 13 7e11 25 Sell 140 89.60 

11 7e11 89.76 

This can be explained by our theory in Section 2.4.2 (Eq.(2.71)). From Eq. (B.10), 

when the implant is very shallow, the edge of the depletion layer lies in the uni-

formly doped substrate. wd thus S is determined by the implant dose, substrate 

doping and oxide thickness. Initially as the implant depth increases, wd decreases 

thus S increases. However, once wd is reduced to the point that it meets the edge 

of the implant depth, Wd reaches its minimum value thus S reaches its maximum. 

As the implant is made deeper, wd begins to increase thus S decreases. 
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Wafer group 3 has 4 wafers which are double-implanted and have the same 

deep implantation dose of 7e11cm 2 , energy of 140keV and shallow implantation 

energy of 25keV. When their shallow implantation dose increases from 3e11cm 2  

to 7e11cm 2 , S increases from 83.82 to 89.76mV/decade. Comparing with wafer 

group 1, one can conclude that deep implantation reduces the sensitivity of S to 

the shallow implantation dose but increases the value of S. 

Wafer group 4 includes 4 wafers which are double-implanted and have the 

same deep implantation as in group 3 and the same shallow implantation dose of 

7e11cm 2 . The dependency of S on the shallow implantation energy has the same 

tendency as in group 1 and comparing with group 2, the conclusion is f! similar 

to the comparison between group 3 and group 1. 

Wafer group 5 consists of 3 wafers which are double-implanted and have the 

same shallow implantation dose of 7e11cm 2 , energy of 25keV and deep implan-

tation dose of 7e11cm 2 . When their deep implantation energy increases from 

lOOkeV to 200keV, S drops from 92.92 to 87.42mV/decade. 

Wafer group 6 has 2 wafers which are double-implanted and they have the same 

shallow implantation as in group 5 and the deep implantation energy of 140keV. 

When their deep implantation dose increases from 5e11cm 2  to 7e11cm 2 , S only 

rises slightly from 89.60 to 89.76rnV/decade. 

From the above experimental results, one can conclude that shallow implan-

tation has a bigger influence on the subthreshold behaviour of a MOSFET than 

deep implantation. Shallow implantation dose has a bigger influence on the sub-

threshold behaviour of a MOSFET than shallow implantation energy. 

Now, we will compare the experimental results for subthreshold gate swing S 

with the theoretical results from the model presented in Section 2.4.2 For our 

theoretical calculation, we will use four different channel doping profile approxi-

mations and compare their results with the experimental results. The four doping 

profile approximations are: 

1. Step doping profile approximation [114]. That is, the doping profile in the 
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double implanted channel of a MOSFET is 

NAS+NA X<WS 

	

N(x) = NAB + NA WS < X W5 + WB 	 (5.1) 

	

NA 	 X>WS+WB 

where NA is the substrate concentration. x = 0 at the oxide-silicon interface. 

ws and WB are the width of the step doping profiles and have forms 

ws = 	- tox 
AR pi + 2R,1 	 (5.2) 

LR 0 1 

WS + WB = R 2  - t L12 + 2LR 2 	 (5.3) 
° LR 0 2 

where t is the thickness of gate oxide. R,,, and LR are the projected 

range and the projected standard deviation of Boron implanted into Silicon. 

are the projected standard deviation of Boron implanted into Oxide. 

Subscripts 1 and 2 refer to parameters of shallow and deep implantation 

respectively. NAS and NAB are the average shallow and deep implanted 

concentration. 

	

AR pi  
_____ 	 poxi 

1 1-s D11
exp 	

x - R 1  + 	
2

- ]}dx 
	(5.4) NAS = 

1 	 D12 	f Is - R, 2  + _ 

WB wS 	
exp 

1 	
AR0212l 

  dx (5.5) NAB = - J p2 

where D1 is the implantation dose. See Fig. 5-1. 

Gaussian distribution [115,110]. That is, 

2 D1, 
______ 	fx—R1+t___R . \21 

1=1 	
exp I - 	

, 	

(5.6) 
OX  

Gaussian distribution including the annealing effect [110]. This annealing 

effect expression comes from the analytical solution of the diffusion equation 

assuming an extension of the semiconductor from —oo to +oo. We only need 

replace LR,,, in Eq. (5.6) by the effective projected standard deviation 

= 	+ 2Dt 	 (5.7) 
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Figure 5-1: Step profile approximation 

where Di is the sum of the product of diffusion coefficient by diffusion time 

at all thermal diffusion steps, namely Di = 

4. Gaussian distribution after annealing. The distribution is the analytical 

solution of the diffusion equation considering the boundary condition as 

= 0 [115,110]. We have ex 

N(s) = NA + [R(A, x) + (A, —x)] 	 (5.8) 

where 

1 D1. 	I (x - A)21 	I 2DtA + 	1 
R,j(A,x)=— 	exp 

2 	 2zR 	
erfc 

L2R;v'] 
(5.9)  

A 
- 

- 	 OXRpi - I 	 (5.10) j.  

The results from the theory by using above four approximations of the channel 

doping profile are compared with experimental results in Fig. 5-2. 

The relative errors(%) between experimental and theoretical results are plotted 

in Fig. 5-3. 
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It is clear from Fig. 5-3 that the theoretical results using the 4th channel pro-

file approximation agree with the experimental results excellently. The average 

relative error by using approximations 1 to 4 is 6.8%, 8.0%, 5.1%, 2.5%, respec-

tively. The maximum relative error by using approximations 1 to 4 is 21.5%, 

21.6%, 15.1% and 8.6% respectively. Theoretical values of S using the step doping 

profile approximation for Wafers 4, 5, 6 are not available because difficulties in 

calculating depletion depth wd arise from the discontinuity of doping profile N(x) 

at ws caused by this approximation (See Appendix B). 

Since using the fourth channel profile approximation offers the best agreement 

with the experimental results, it has been used in our short-channel model in 

Chapter 3. 

5.2 Ion Implantation and Subthreshold Behaviour 

of Short-Channel MOSFETs 

Fig. 5-4 plots the subthreshold gate swing S for Devices A, B, C, D on each 

wafer. Changes of S against the implantation conditions for a short-channel tran-

sistor have the same trends as for a long-channel device. However, the implantation 

has the biggest impact on the subthreshold gate swing S of the shortest device, 

i.e. Device D. 

5.3 Ion Implantation and Subthreshold Behaviour 

of Narrow-Channel MOSFETs 

Fig. 5-5 plots the subthreshold gate swing S for Devices E, F, G, H on each wafer. 

Changes of S against the implantation for a narrow-channel transistor have the 

same trend as for a wide-channel device. The effect of implantation conditions on 

the subthreshold gate swing, 5, of a wide-channel device is not obviously different 

from that of a narrow-channel device. 
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5.4 Annealing Temperature, Time and Subthresh-

old Behaviour 

Theoretical results in Section 5.1 show that the thermal annealing steps do have 

an effect on the subthreshold gate swing S, since they change the profile of the 

channel doping, especially that of an implant with high dose and low energy. 

The biggest percentage difference of S between considering the annealing affect 

or ignoring it is 19.7%. In this section, we concentrate on the effect of annealing 

temperature and time on S. Fig. 5-6 shows how the subthreshold gate swing S 

changes with the annealing time. Basically, the effect of the annealing time on S is 

not substantial. The change of the annealing time has a stronger influence on an 

implantation with low energy and high dose than on an implantation with a high 

energy and low dose. For implantation with 1) energy 25keV, dose 7e11cm 2 , 

2) energy 50keV, dose 7e11cm 2 , 3) energy 50keV, dose 3e11cm 2 , 4) energy 

140keV, dose 7e11cm 2 , when the annealing time changes from 10min to 200mm, 

the changes in S are 3.7%, 2.9%, 3.3% and 0.4%, respectively. 

Fig. 5-7 shows that for a certain ion implantation, the higher the annealing 

temperature, the smaller is the value of S. Any change in annealing temperature 

has a stronger influence on an implantation with low energy and high dose than on 

an implantation with high energy and low dose. For implantation with 1) energy 

25keV, dose 7e11cm 2 5  2) energy 50keV, dose 7e11cm 2 , 3) energy 50keV, dose 

5e11cm 2 , 4) energy 140keV, dose 7e11cm 2 , 5) energy 140keV, dose 5e11cm 2 , 

when the annealing temperature changes from 600°C to 1400°C, the changes in S 

are 28.0%, 27.9%, 25.4%, 13.0% and 12.7%, respectively. 
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Chapter 6 

Terminal Voltage and Subthreshold 

Behaviour 

6.1 Gate Voltage VG 

Figs. 6-1 to 6_4
2 
 showthe semi-logarithm plot of subthreshold ID -  VG characteris-

tics with VB as a parameter for our experimental devices. We have measured eight 

devices on each of the fifteen wafers. Although the measured values for each device 

are all different, they do look similar as graphics. To save space, the subthreshold 

characteristics of only four devices on wafer 11 are shown here as examples. It 

is clear that the subthreshold drain current 'D  increases exponentially with gate 

voltage VG.  This agrees with the theoretical prediction (Eq. (2.58)). 

However, the subthreshold gate swing S dose not remain a constant while VG 

changes. Using the theory given in Section 2.4.2, we calculated the subthreshold 

gate swing S against the normalized drain current level Io  of the long-channel 

device A on each wafer at VB = 0 and VB = - 2V. It is clear that S decreases 

when VG  increases, i.e. 'o  increases. The change of S with VG is smaller at a 

higher value of VB than at a lower one. See Figs. 6-5 to 6-10. 

For single-implant wafers, the percentage difference between S at 10 = 
10'2 A and S at 10 10 6 A, A S, ranges from 6.7% to 24.3% when VB = 0. When 

Figs. 6-1 to 6-4 are identical with Figs.4-21 to 4-24 and are being repeated for 
convenience. 	

101 
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VB = -2V it varies from 0.2% to 2.0%. For double implanted wafers, AS ranges 

from 8.7% to 14.3% when VB = 0. When VB = -2V it varies from 0.7% to 1.8%. 

See Fig. 6-11. 
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Figure 6-11: Theoretical AS for device A on each wafer 

Fig. 6-12 shows experimental results of the relation between S and 1 0  (i.e. 

VG). Again, to save space, only results for wafer 11 are shown as an example. It 

is clear in Fig. 6-12 that for long-channel devices S decreases when VG increases 

at 10  < 10 9A. Then after 'o  reaches 10 9A, S increases with VG.  For short-

channel devices, the increase in S begins at a lower current level. This is because 

when VG approaches the threshold voltage VT,  the drain current 'D  is no longer 

dominated by diffusion current. The drift current is then comparable with the 

diffusion current. So the drain current no longer increases exponentially with gate 

voltage VG.  It changes to a linear dependency on VG gradually. Therefore AS is 

not as large as predicted in the subthreshold theory but it is within 10% for all our 

experiments. Thus, we can consider that S does not change with VG in a device 

model for circuit simulation. 
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6.2 Substrate Bias VB 

From Figs. 6-1 to 6-4, it is clear that the subthreshold drain current 'D  decreases 

while the value of the substrate bias IVBI increases. This agrees with the the-

ory(Eq. (2.58)). Furthermore, we also observe that the change in drain current 

(LID) for the same substrate bias change, LXVB, is smaller at a higher value of 

IVB I than at a lower one. LID at the same /VB is smaller at a higher gate voltage 

V than at a smaller one. When the channel length L decreases, the influence of 

VB on 'D  decreases as well. All those phenomena can be explained as follows: 

Using the same procedure of deriving S for long-channel device in Chapter 2, 

we have 

dlnID 	dlnDdwd 

dVB 	dwd dVB 

dVB 
=  

dwd 	
lnE3+f3VB)/-- 

dwd 	
(6.1) 

From relation C0(VG - VB - VFB - 	= 	one has 

dVB -  (d&3 	dE3  \ 
- - 	

+ 	
(6.2) 

Finally, 

dlnID -  wa 	Cox i 
dVB - (i + 	

(6.3) 

Usually, tch << Wd, thus 
dlnID 	/3 

dVB 	(i + 	
( 6.4) 

When the value of the substrate bias IVBI increases, the depletion width wd in- 

creases, thus the capacitance of the semiconductor depletion layer CD decreases. 

From above formula, dI  decreases. When the gate voltage VG increases, the dVB 

surface potential 0, increases, so wd increases, thus dIn  decreases. When the 

channel length L decreases, wd increases thus dIn  decreases. dVB 

We also notice that when the channel width, W, decreases, the influence of VB 

on ID  does not have a noticeable change. 
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Fig. 6-13 illustrates experimental results of S vs VB.  Again, to save space, 

only result for wafer 11 is shown here as an example. The change of S (LS) for 

a small fixed substrate bias change, LWB, is smaller at higher values of JVB J than 

at lower ones. When the channel length L decreases, the influence of VB on S 

decreases as well. When the channel width W decreases, the influence of VB on S 

does not have a noticeable change. The percentage changes of S between VB = 0 

and VB = - 2V at 10  = 10 9A for all experimental devices are plotted in Fig. 6-14. 

In the SPICE level 3 MOS model, the effect of the substrate bias VB on the 

subthreshold behaviour is not considered. If a MOSFET is always operated under 

the condition that the source is biased at the same potential as the substrate, then 

this assumption will not cause any problem. But in a VLSI circuit, the source of a 

MOSFET is not always at the same potential as the substrate. So the influence of 

the substrate bias VB on the subthreshold behaviour has to be taken into account 

For a long-channel MOSFET, from Eq. (2.71) 

	

S= (In 10)(1+ CD ) / (i -' 	 (6.5) 
CO3 	'. 	WdJ 

where CD = Esi/wd, Co., = 60/t0 and tch <<wd normally. Thus 

€i 1 \ 
S 	(ln 10) (1 + 
	

(6.6) 

To make things simple, let us use the depletion width of a device with uniformly 

doped long-channel as a first order approximation. That is 

/2€ /) 
Wdj/ 	 (6.7) 

V qNA 

For a device with uniformly doped channel, 

I 	' 

= VG — VF  — VB - {[i+ -1 (VG - VFB _VB)] — i} 	(6.8) 

The last term in curly braces is negligible compared with the first three terms. 

For a device with a nonuniformly doped channel, using the theory in Sec- 

tion 2.4.2, we calculated the surface potential 0, at different substrate bias VB for 
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a long-channel device with 15 different implantations, identical with our 15 wafers. 

They can all be described excellently by 

(6.9) 

where l' 	08(VB=0). So, 

\ COXc3O-VB) 	
(6.10) S = (1n 10) (1 + 	

qNA 	1 

Since the body factor 

So 

2qE81NA 	
(6.11) 1= 

C. 

S = (In 10) (i + 	1 /;s0__
vB) 	

(6.12) 

when VB = 0, let S0  = S(vB 0) 

Thus, 

So  = (1n10) 
1+ 2 1 	

(6.13)  
fl 	2 vli~To 

) 

S = So  + (In 10) (1 
VB - vflc;) 	

(6.14) 

But for a non-uniformly doped MOSFET, calculation of the depletion depth wd is 

much more complex and the coefficient ,!(In 10) 2  in Eq. (6.14) does not agree well 

with experimental results. Thus we propose a new parameter the subthreshold 

body factor. That is 

( VrO.0 

1 
S=So+7s v 

- ___ 

(6.15) 

Since S is not sensitive to VG in reality, it does not matter at which VG value 

we calculate 5, as long as it is in the subthreshold region. Therefore, we choose 

= 1 • 5 B in the middle of the subthreshold region. NA can be calculated from 

y because  'y = 2qE3 NA 1CO3;  and 013 = 	ln(NA /nI ). 

Fig. 6-15 plotted S vs 1/\/1.5bB - V3 - 1/\/1.5B. The slope is 'ye.  In Table 

6.2.1, the values of y for Device A, B, C, D, E, F, G, H on each wafer are listed. 

From Table 6.2.1, the changing trend of 'y8  against implantation is the same as 

that of the subthreshold gate swing S. That is the impact of VB on S increases with 
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Table 6.2.1 y  of Device A, B, C, D, E, F, G, H 

Wafer A B C D E F G H 

1 7.55 2.00 13.24 - 11.74 8.75 11.11 12.44 

2 26.24 8.44 1.05 2.34 25.56 22.09 23.61 22.94 

3 24.57 1.88 16.37 62.01 23.53 20.06 19.96 19.57 

4 47.28 24.69 9.91 0.03 46.80 38.48 39.15 36.61 

5 36.09 27.33 20.64 9.85 35.47 27.01 26.39 29.30 

6 20.66 20.26 12.80 10.19 21.00 19.31 19.64 18.68 

7 20.37 13.87 8.13 9.86 - 17.90 21.43 21.24 

8 24.81 19.96 11.43 7.73 26.21 25.16 27.48 27.47 

9 26.07 23.67 22.34 15.71 27.74 26.88 23.55 28.10 

10 28.23 27.17 18.13 4.42 32.64 28.65 30.29 30.90 

11 31.16 24.18 12.78 4.07 31.16 29.91 26.74 27.81 

12 27.08 23.39 15.56 6.84 28.00 25.09 26.47 27.07 

13 31.94 28.54 20.89 11.16 30.80 29.78 29.74 29.59 

14 35.21 34.40 30.57 20.77 34.46 32.32 33.68 34.90 

15 30.47 24.65 14.75 4.83 26.99 29.05 27.57 29.51 
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implantation dose, and it increases with implantation energy when energy is small 

(<25keV for our experimental devices). After it reaches its maximum, it declines 

when the energy increases. However, Wafers 1 and 3 are exceptions. Because 

they received the lightest implant dose and lowest implant energy respectively, 

they have the lowest average doping concentration in the depletion region. Thus 

punchthrough happens for their short-channel Devices C and D. 

6.3 Drain Voltage VD 

Experimental results show that the drain voltage VD does not affect the subthresh-

old drain current 'D  and thus does not affect the subthreshold gate swing S for a 

long-channel MOSFET. This agrees with theory. 

However, the picture is quite different for a short-channel device. It is clear 

from the experiment that the subthreshold current 'D  increases exponentially with 

VD because VD lowers the potential barrier in the channel. See Figs. 4-25 and 4-26. 

Experimental results suggest that for a short-channel device, the subthreshold 

gate swing S decreases slightly while VD increases when VD is small. When VD 

increases to a certain value VDD, S begins to increase with VD.  See Fig. 6-16. S 

does not vary linearly with VD as suggested by some models in Section 2.6. Instead, 
by 

we found that if AS denotes the change of S when VD changes 'a given amount, 

then when VD < VDD, S and AS decrease when VD increases. When VD > VDD, 

S and IS increase with VD.  The explanation. is that when VD < VDD surface 

current dominates subthreshold drain current. Wd increases when VD increases, 

thus S decreases from Eq.(3.27). However, when VD > VDD, bulk current begins 

to dominate subthreshold current. VG beginsto lose its control over drain current, 

thus S begins to increase. 
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Chapter 7 

Geometry Size and Subthreshold 

Behaviour 

7.1 Channel Length L 

From Figs. 6-1 to 6-4, one can see that the subthreshold drain current ID  rises 

when the channel length L decreases. This agrees with the theoretical work pre-

sented in Section 2.4.3. The influence of VB on 'D  decreases with L. It is clear 

from Figs. 7-1 to 7-6 that S increases while L decreases. 

Let us analyse the S-L relationship at VB = 0 first. Define So S(vB =o) and 

SLO S(vB o) of a long-channel MOSFET, assuming 

so =  SLO + Sc 

Lm 
(7.1) 

M 
Plotting ln(So - SLO) against in L, then rn = -slope. The values of are listed 

in Table 7.1.1. 

The values of m vary widely from 1.6 to 23.3. Thus we do not consider Eq. (7.1) 

with a fixed value of m to be a good description of the S-L relation. 

From the above result, one can see that the dependency of S on L is very 

strong. The exponential dependence of S on L is most likely and this confirms the 
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Figure 7-2: S vs. L at VB = 0 and VB = —2V for wafer group 2 
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Figure 7-6: S vs. L at VB = 0 and VB = —2V for wafer group 6 
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Table 7.1.1 m in So = SLo  

Wafer m Wafer in Wafer m 

1 5.5 6 3.9 11 5.7 

2 23.3 7 8.7 12 3.4 

3 13.5 8 6.0 13 4.0 

4 5.2 9 2.2 14 1.6 

5 2.7 10 2.2 15 4.7 

Table 7.1.2 s l  and d1 in So  = SLO + siexp(-L/d,) 

Wafer S1 d1  Wafer Si d, 

1 3.8e3 0.20 9 13.7 0.49 

2 1.1elO 0.04 10 35.3 0.45 

3 8.8e6 0.06 11 800.4 0.17 

4 282.5 0.19 12 86.9 0.29 

5 15.4 0.34 13 50.9 0.26 

6 80.3 0.27 14 7.48 0.65 

7 2.8e3 0.14 15 114.6 0.21 

8 1.1e3 0.16 

short-channel expression for S we derived in Section 3.2. We use 

S0  = SLO + s1e di 	 (7.2) 

to describe the S-L 'relation. - Plotting ln(So - SL O ) against L, we have d1  = 
-1/slope and .s -- econst Values of s  and d1  are listed in Table 7.1.2. d1  is a 

parameter which is an indicator of the depletion depth wd. A bigger value of d1  

indicates a bigger depletion depth Wd. Thus short-channel effects will happen at 

a longer channel length, i.e. the short-channel effect is more serious. The cor- 

relation coefficient between d1  and wd is Ø•443  which proves that the correlation 

between d1  and wd is strong but one might expects an even stronger correlation 

between them. This may be explained by the variation in parameters across the 

wafers and bulk current exists in some short-channel devices. 

From Table 6.2.1, it is obvious that 'y, decreases with L. Let -y3j 	y. for a 

long-channel device. Assuming 

7s = 'YsL -
LM 
	 (7.3) 

3A value of 1 indicates perfect correlation, 0 indicates that there is no correlation. 
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Table 7.1.3 m in 'y = 7sL + 9,/L m  

Wafer m Wafer m Wafer m 

1 - 6 7.1 11 2.5 

2 0.6 7 0.8 12 3.3 

3 - 8 2.4 13 3.7 

4 1.5 9 3.1 14 5.9 

5 2.4 10 6.0 15 2.9 

Table 7.1.4 g and d-, in 'y = 7SL - g, exp(-L/d -y ) 

Wafer 9C d..), Wafer gc  d 

1 - - 9 93.7 0.36 

2 41.4 1.58 10 2844.8 0.16 

3 - - 11 191.4 0.36 

4 153.1 0.67 12 259.3 0.29 

5 157.4 0.46 13 367.3 0.27 

6 4476.6 0.15 14 1398.7 0.17 

7 24.4 0.95 15 246.9 0.33 

8 122.7 0.39 

ln(y8L - y3) can be plotted against In L, then m = -slope. Values of m are 

listed in Table 7.1.3. 

in ranges from 0.6 to 7.1, so Eq. (7.3) with a fixed value of m is not a good 

description for 13-L relation. 

The strong dependency of -y,  on L is also obvious. So, we use following expres-

sion to describe -13-L relation. 

	

7s = 7.9L - gc e 
	

(7.4) 

	

Plotting in(73L - y) against L, we have d.. 	i/slope and g = CC0. Values 

of g and d,, are listed in Table 7.1.4. The trend in the variation of d7  against ion 

implantation is opposite to that of d1. 
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Table 7.2.1 m in So  = Swo +_sw/Wm 

Wafer m Wafer rn Wafer m 

1 1.27 6 1.52 11 1.33 

2 1.75 7 1.83 12 2.98 

3 1.01 8 1.59 13 1.27 

4 1.27 9 1.86 14 2.12 

5 2.47 10 4.03 15 1.31 

7.2 Channel Width W 

In Figs. 7-7 to 7-12, we can see that S increases when the channel width W 

decreases. If we define Swo So of a wide-channel transistor, assuming 

	

SoSwo+j- 
	

(7.5) 

Plotting ln(S 
- SWO) against in W gives rn = -slope. Values of m are listed 

in Table 7.2.1. 

in ranges from 1.01 to 4.03. Compared with the results in the last section, 

one concludes that the dependence of S on the channel width W is not as strong 

as the dependence of S on the channel length L. However, the expression So = 

5wo + s/W as suggested by some of the models described in Section 2.6 is not 

a good description of S-W relation. The dependence of S on W is stronger than 

1 1W. Thus we decided that the exponential dependence of S on W is a better 

description for S-W relation. That is 

W 

	

So  = Swo + se 	 (7.6) 

Values of s and d are listed in Table 7.2.2. The correlation coefficient between 

d and wd is 0.42, thus a similar conclusion is drawn as d1 . 

From Table 6.2.1, 'y, does not have an obvious dependence on W and the 

changes in its value are not big when W changes. Thus we believe that -f, is 

effectively independent of W. 
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Figure 7-9: S vs. W at VB = 0 and VB = — 2V for wafer group 3 
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Figure 7-12: S vs. W at VB = 0 and VB = —2V for wafer group 6 
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Table 7.2.2 s 	and d in So  = Swo + sexp(-W/d) 

Wafer s,, d Wafer s d 

1 35.40 0.83 9 20.18 0.51 

2 34.17 0.63 10 95.86 0.26 

3 15.29 1.02 11 14.26 0.75 

4 32.74 0.77 12 48.99 0.34 

5 44.49 0.43 13 12.63 0.85 

6 16.07 0.66 14 25.95 0.51 

7 26.66 0.54 15 17.53 0.79 

8 22.85 0.62 

7.3 A Model for Circuit Simulation 

Based on the theoretical and experimental results given in Chapter 3, 6 and 7, we 

propose a model which is suitable for circuit simulation. 

10 	 (VG - VT\ 
D 
- 
- /1 5B 	

eXPOD/3VDeXP 	
) 	

( 7.7) 
VB 

where 10  is the current constant, aD  is the drain barrier lowering coefficient and 

S is the subthreshold gate swing. They are to be extracted from the subthreshold 

characteristics. 

Z --L-) ( 	1 	 1 	\ 
= so  + sle + se 	+ ( sO - 9Ce 	

0-150B - VB - V1.5B) (7.8)07 

where S0  and 7s0  are the subthreshold gate swing S at zero substrate bias and the 

subthreshold body factor 'y3  for a long and wide channel MOSFET, respectively. 



Chapter 8 

Conclusion and Discussion 

A new two-dimensional analytical subthreshold model is derived. It gives analyt-

ical expressions for the subthreshold current and gate swing for a non-uniformly 

doped MOS device with an arbitary doping profile. It predicts that the subthresh-

old gate swing depends exponentially on the channel length. A two-dimensional 

analytical punchthrough model is also derived. It has included both the bulk 

and surface punchthrough current component. It shows that the position of the 

punchthrough current path is determined by the value of VG - VFB, VD, channel 

length L and the integral of the doping profile in the depletion region. 

Fifteen wafers with different ion implant dose and energy have been fabricated. 

Eight devices on each wafer with different geometry sizes have been measured for 

their subthreshold characteristics. The influence of ion implantation on subthresh-

old behaviour of MOSFETs has been examined. It is demonstrated that shallow 

implantation has a bigger influence on the subthreshold gate swing of a MOS-

FET than deep implantation. Shallow implant dose has a bigger influence on the 

subthreshold gate swing than shallow implant energy. 

An examination of how terminal voltages and geometry sizes affect subthresh-

old behaviour has been carried out. It verifies the theoretical model derived earlier. 

It confirms that the subthreshold gate swing depends exponentially on the channel 

length. It also shows that the subthreshold gate swing depends exponentially on 

the channel width as well, though the dependency is not as strong as that on the 
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Chapter 8. Conclusion and Discussion 	 127 

channel length. Based on above observation and theoretical model, a compact 

subthreshold model suitable for circuit simulation has been proposed. 



Appendix A 

Solution of One-Dimensional 

Poisson Equation 

The one-dimensional Poisson's equation in the channel and the depletion region 

of a MOSFET may be expressed as 

d2 b 	p 	q = --= 	+ ND - NA) 	 (A.1) 
dx Esi 

where ND and NA are the density of donor and acceptor respectively. The hole 

density p and the electron density n can be expressed as follows 

	

P = 	= n•e' 	 (A.2) 

n = nje_ h h1  = 	
(A.3) 

The charge neutral condition should be satisfied in the neutral bulk, so 

ppoflpo+NDNA=O 	 (A.4) 

Therefore 

NA — ND = PpOpO 

= ri (e - 	 (A.5) 

where u is the hole quasi-Fermi level, normalised to . ppo and npo are the equi-

librium density of holes and electrons in the bulk of semiconductor. Substituting 

Eq. (A.2), (A.3) and (A.5) into Eq. (A.1), one has 

d2u - q2  ni (e  u__ - CUU + e UB _e-UB 	 (A.6) 
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Integrating with respect to u at both sides of the Eq. (A.6), it can be written as 

j (2) d 
( du )  = 1 j

u 
(eu__uB 

- 
eU + e - e_UB) du 	(A.7) 

resulting 

2 ( dU \

) 	
1 

[eUt + euB_u  + (u - 1)e - (u + C)e} 	(A.8) 
j = i 

Idu
) 

= -----F(u,,uB) 	 (A.9) 
dx 	Ld 

where the intrinsic Debye length 

1 

Ld =  

( c~,j

kT ) \ 2q2nj 

	
(A. 10) 

and 

F(u,t,uB) = [&_uB + e_U  + (u - 1)& - (u + e ) e t] 	(A.11) 



Appendix B 

Depletion Depth wd 

From Eq. (2.71) and (3.27), it is clear that to obtain the subthreshold gate swing 

S, wd is needed to be calculated first. 

For a long-channel device, substituting Eq. (2.66) and (2.68) into relation 

COX(VG - VB - VFB - 	= €8 E8 , one finds that wd satisfy 

- I 
q rwd 	 q 	

dxN(x)
E3 

Jodx . xN(x) + 	
I'd 	

- 
V = 0 	 (B.1)

C. 

If the channel is uniformly doped, then it reduces to 

where 

/2E3e,3  
Wd = V qNA 

(B.2) 

qNE 3  I 	/ 	2C2  
S  

	

C2 	
ii- ti+ 	

° 	 (B.3) 

	

° 	L 	' 	qNA1)
' ]  

For a long-channel device, to calculate wd at a given current level, following 

approach is used. From Eq. (2.58), one has 

(_'D   In 	= ln{ 	'0  [1 - exP(_I3VD)I} +,80. + I3VB - In E., (B.4) WIL 	#2 

If we define. 
qllnlpO  [1 

- exp(-19VD)] 	 (B.5) 

where npo  = -. Then 
NA 

In 	 = f30 + /3VB - In e3 	 (B.6) 
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From Eq. (B.6) and (2.68), 

In 	 - 	 Wd 	 +—J dx.xN(x)+VB] +lnE3 =O 
ID/(W/L) 

/ [V)(Wd) - 	(do).=
q (W d

dx 	 0  Wd 

 

Using boundary conditions [116] 

b(wd) - in 
N(wd) 

 
- 	NA 

M  

	

=0 	 (B.9) 
X=Wd 

For a chosen ID/(W/L)  at a certain constant level, we can use a numerical method 

to obtain wd.  The basic idea is that let 

f(Wd) = in 
1D/ ,n/L) - 	

+ VB + J dx . xN(x)] + In E, = 0 (B.10) 
E31  0 

Choose Wdl and Wd2, let f(wdl) <0 and f(wa2) > 0. Because of the continuity of 

f (wd), a wd between Wdl and Wd2 can certainly be found to satisfy Eq. (B.10). 

For a short-channel device, from Eq. (3.5) and (3.6), Wd must satisfy 

	

F(wd) + 	G(wd) - V(Wd,Ym) - VB + b(Wd,Ym) = 0 	(B.11) 
3l 	 COX  

where ?I)(wd, ym) = in N(wd)  For a device with an uniformly doped channel, from 

	

0 	NA 

Eq. (D.7), one has 

VWd =qNA 
	

+ V(wd, y) - V(0, Y,.)] 	 (B.12) 

Since V(wd, y) - V(0, y) > 0, it is obvious that wd of a short-chanel device is 

wider than that of a long-channel device with the same surface potential. To calcu-

late wd at a given current level for a short-channel device, let us define normalised 

drain current 'Do = ID/(W/L), coefficient Io  = qDfl (n/NB )[1—exp(—f3V D )], from 

Eq. (3.17), we have 
'DO 	tch In 	= in 	+ 00smin  + /3VB 	 (B.13) 
I0 	L eif 

where tch, Leff and ?)srnjn are function of wd. So wd must satisfy 

f(wd) = in -1D0 
—j— 

- In 
tch 
i- + /3b,mjn  + /3V8 = 0 	(B.14) 

This can be solved by method of iteration. 
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Step 1 giving a initial guess of VG°  and choosing Wdl  and Wd2, 

Step 2 for a given VG and Wd, one can obtain Ym,  'bsmin , L eji and E  thus tch, 

Step 3 using iteration method on (B.14) to obtain w, 

Step 4 using w9  and V, then yo  and 'I'a°min can be obtained, 

Step 5 VG1  can be determined from 4 7  Y m  and th°  smrn 

Step 6 If IV - VG0 1 < clVG0 1, then the iteration is over, wo obtained in Step 3 is 

the depletion depth we are looking for. where e is a small number, say 0.001. 

Step 7 Otherwise, let VG°  = V, repeat Step 1-6. 



Appendix C 

Solution of Two-Dimensional 

Poisson Equation 

The two-dimensional Poisson's equation in the depletion region of a MOSFET 

may be expressed as 
a2& 	a2' 	

----N(x) 	 (C.1) ,9X 2 	qy2 	
63i 

Let '(x, y) = &L(x) + V(x, y), where t1l L(x) is a one-dimensional function; V(x, y) 

is the solution of Laplace equation, it represents the two-dimensional nature of the 

potential distribution. They satisfy following equations and boundary conditions. 

	

- LN(x) 	 82V 0 2 V 
dx2  - 	 + 	= 0i9x 	ay 

	

dx )= = - . 
IV/B -  I'L(0)] aV(0 ) - 	V(O,y) 

- 

(

±) 	= 0 	 (wd, y) = 0 	 (C.2) dx xWd 

V(x, 0) = (x, 0) - bL(x) 

V(x, L) = b(x, L) - bL(x) 

Solving one-dimensional Poisson's equation for ?I'L,  one has 

bL(x) = V— --- I xiN(xi)dxi— 	jd 
 N(xi)dxi— q j

d 

N(xi )dxi  (C.3) 
esi

It has a similar form to the solution of Poisson's equation for a long-channel 

MOSFET, thus the expression of bL.  Actually, when the channel length L - oo, 

thL becomes the same as the long-channel solution. 

Now we use variable separation technique to solve the two-dimensional Laplace 

equation. Let 

V(x,y) = X(x)Y(y) 	 (C.4) 
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substitute it into Laplace equation, one has 

X"Y+XY"=O 	 (C.5) 

rewritting it, one has 

Since 	is a function of x, - 	is a function of y, if these two term are equal, 

they have to equal a constant. This constant could be positive or negtive, for 

future convenience, a form of ±k2  is chosen. for +k2 , one has 

I x"  - k 2 = 0 

I. Y"+k2Y=O 	
(C.7) 

Its solution is 

Ix = ae' + be_Id2 
(C.8) 

I. Y = c cos ky + d sin Icy 

for —k 2 , one has 

X" + k 2 =0 	
(C.9) 

I. Y" - k 2y = 0 

Its solution is 

I X = A cos kx + B sin kx 
(C.10) 

Y = Ce ky + De'' 

Considering boundary conditions, one has 

X'(0) = 	X(0) 	 (C.11) 
esi 

X'(wd) = 0 	 (C.12) 

XY(0) = V(x,O) 	 (C.13) 

XY(L) = V(x,L) 	 (C.14) 

(I) cannot satisfy above boundary conditions. For (II), from boundary conditions 

(C.11) and (C.12), one has 

k = 	cot kw d 	 (C.15) 

that is 
I C0 \ 

kwd = arctan .k) + nir(n = 0, 1,2, ...) 	 (C.16) 
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since k is function of n, we redefind it as k,i.e. k k, and 

1 C0 
B = ----A s 	 (C.17) 

k f8  

Substituting Eq. (C.17) into (C.10), one has 

1 C. 	 A cosk(wd — x) 	
(C.18) X, = Acoskx + ---Asinkx — 

- " cos kwd 

Since whatever value we chosen for A, (C.18) will satisfy boundary conditions 

(C.11) and (C.12), for simplification sake, A n  = 1 is chosen. XY (n = 0,1,2,...) 

are all solutions of (C.2), their sum is the full solution to (C.2). Thus 

00  V(x,y) = 	 (c.19) 

using boundary conditions (C.13) and (C.14), one has 

00 

V(x,0)= 	cos kn(wd_x)(C+D) 	 (C.20) 

	

nrO 	cos kwd 

V(x,L) 
	
cos k(w - x) (Ce + De) 	(C.21) 

n0 coskwd 

since 

j0Wd 

	

coskm (w d  —x) cos k(w d —x)dx = 0 m 0 n 	 (C.22) 

j0
Wd /in2kwd 	

(C.23) 
 1 
cos2  k(w d  - x)dx = Wd (i 

+ 2kwd ) 

sin 2kflwd\ one has letu(1+ 
2kwa )' 

C + D,, 
=E 	 (C.24) 

cos kwd 

Ce" + De —kL= 
	 (C.25) 

cos kwd 

where 

jwdE= 
1

V(x,0)cosk fl (w d —x)dx 	 (C.26) 
UnWd  

I 

Fn  = ' f dV(XL) cos k(wdx)dx 	 (C.27) 
UnWd Jo 

Thus, one has 
F - Ene_kt 

	

Cn = 	 coskwd 	 (C.28) 
2sinhkL 
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- F 
D 

= 2sinhkL 
COSIC n Wd 	 (C.29) 

Therefore, 

00 

	

V(x, y) = 	
cos k,,  (Wd - x) (C

ne'' + 
cos kwd 

00 cosk(wd — x) 

	

= 	
u, sinh kL [H 

sinh k(L - i) + I, sinh kay] (C.30) 
n=O 

where 

	

J-d 
H = ---V(x, 0) cos k(wd -  x)dx 	 (C.31) 

Wd 

	

I1, = ----J-d V(x, L) cos k(wd -  x)dx 	 (C.32) 
Wd 



Appendix D 

Subthreshold Gate Swing for 

Short-Channel MOSFETs 

The subthreshold gate swing 

	

S = 1000 (in 10) 
dVG /dwd

d(ln ID)/dwd 
mV/decade 	 (D.1) 

From Eq. (3.17) 7  

d(ln ID) - d'cbsm jn 	1 dLf 1 	1 d18  

	

dwd - dwd - 	dwd 	
(D.2) 

Since E3 (y) = —(0,y), from Eq. (3. 1), 

VB - Osmin = 	Es(yrn) 	 (D.3) 
03 

So, one has 
dV - dbsm in 	f 3  dE5  

dwd - 	
+ 

dwd 	
(D.4) 

Now, let us derive the expression for dtmin  first. From Eq. (3.5) and (3.6) dwd 

bsmin = 0(0, ym) = VB - 	G(wd) + v(o, ym) 	 (115) 
coz 

1 	NA (fl\  
/)(Wd,Y m ) = VB - --- F(wi) - --G(wd' + V(Wd,y m  = — ln 

C. 
 ' / 	 / 	N(wd)" 

substrate Eq. (D.6) from (D.5), one has 

smin = --F(wd) + V(0, y) - V(Wd,Y m ) + b(Wd,Y m ) 	(D.7) 
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So, 

thbsmin = wdN(wd) + 	yin) - 	V(wd, ym) 	(D.8) 
dwd 	 dwd 	 dwd 

Next, we derive the expression for dta . Substituting Eq. (D.5) into (D.3), one has dwd 

C0 
' 1 = 	- 	= G(wd) - 	v(o, yrn) 	 (D.9) 

8i 

So, 

	

dE3 	
q N(wd) - 	Lv(o Y ) 	 (D.10) — 

	

dwd 	c3i 	 Esi dwd 

Substituting Eq. (D.8) and (D.10) into (D.4), one has 

dVQq 

	

dwd 
- WdN(Wd) + —N(wd) - 	V(Wd,y m ) 	(D.11) 

	

Si 	 CO. 	 dwd 

The expression of -V(O, ym)  and 	V(wd, ym) are to be derived next. Let 

A (x, y) 	
cos k(wd - x) 

[H sinh k,, (L - y) + I sinh kay] = 
u, sinh kL 

= a(x)[Hso (y) + InSL(Y)] 	 (D.12) 

where a(x) = cosk(w d  - x)/u, 80(y) = sinhk(L - y)/sinhkL, 

SL(Y) = sinh ky/ sinh kL. Then 

°°d 
---V(xo , Y" ') = 	—A,(x o , ym)  (x 0  = 0 or wd) 	 (D.13) 
dwd  

Let 

y) = DV1 (xo , ym) + DV2 (xo , ym) + DV3 (xo , ym) 	(D.14) 
dwd 

where 

DV1 (x o , yrn) 
- 

da(xo) [HnS0(ym) + mnSL(Y)1 	 (D.15) 
- dwd 

DV2 (x o , Ym) = an(xo)[ dHn 
	 dI

—s o (y m ) + 	SL(yrn)] 	(D.16) 
dwd 	dwd  

DV3 (x o , ym) = an(xo)[Hnd80m) + jdSL(ym)1 	(D.17) 
dwd 	dwd 

To find the expression of Dy2 , we have to find those for dHn and -- first. From dwd 	dwd 

Eq. (3.10), one has 

dH 

dWd 
 - 

Wd 
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j
Wd

V(x,O)sink(wd—x)( 
 I d(k,w4 dk ) dx 

 \ dWd 	dwd 
- JWd [dVc _. q

xN(w4 - 	 cos 	- x)dx} — 

	

Wd f,, 	 C0  

= ---{—H+V(wd,O) 
Wd 

d(knwd) fWd 

- d 	I V(x, 0) sin k,, (Wd - x)dx 
Wd .'O 

I V(x, 0)x sin k(wd - x)dx 
dwd JO 

	

[dVG 	q 1 sin 
kwd + ---N(wd)1_— cos 

knWd  
1 2 	} 

- 	
- —N(wd)I 

jk,, 	 ICfl  

= 1
4_Ha  + V(wd,0)1 + DH10  + DH20  + DH3 

Wd 

	

dVG  sin kwd 	
(D.18) 

dwd kwd 

where 

1 d(kwd) twa 
DH10=-- d 
	I V(x,0) sin kfl (w d —x)dx 	(D.19) 

Wd Wd JO 

DH20  = 	
j Wd

V(x, 0)x sin k(wd - x)dx 	 (D.20) 
Wddwd  
q N(Id) I c,, 	 1 - cos kw d  

DH3 = - 

	

f3i k 	
sin kwd + 	

k 	I  

Similarly, 

dI - 
	+ V(wd, L)] + DH1L  + DH2L + DH3 

dWd 	Wd 
dVG 511 knWd 

 

	

dWd - 	kwd 

Replacing V(x, 0) in DH1 0  and DH20  with V(x, L), one has DH1L and DH2L. 

Thus, 

	

Dy2  = --{— V(x o , y) + 	afl (xO)[V(wd, O)So(ym) + V(wd, L)SL(Y m )]} 
Wd 	 n=o 

00 

+E a(xo )[(DH10  + DH20  + DH3)S0 (ym ) 
n0 

±(DH1L + DH2L  + D113)SL(Y m )] 

1 dVG 	 SlflICnWd 

-- a-  -- E aa(xo)[so(yrn) + sL(yrn)] k 
Wd   n=O 

	

- DV' - 1 dVG f 	 sin kwd 
2 	 n(XO)[So(yrn) + SL(Y m )J 	, 	 (D.23) 

Icn 
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Next, we derive the expression for Dy3 , thus we deal with dso-  and '- first. dwd 	dwd 

ds0 	d (sinh k(L - Ym 
dwd 	dwd \ 	sinh kL 

- cosh kn(Ly m )1dk 	 dyml 
_Icn 	I sinhkL 	 dwdj 

coshkL 	 dk 
- 	sinhkn (L—y m )---L 

sinh2  IcL 	 dwd 
dk 	

k 	SO(Ym)COthknLL ( D.24) 
IdWd

I  

	

= o(Ym)(L_Ym)_n dwdj 	 dwd 

j  - dwj 	L) 

dsL - d 

( sinh k

sinhknm 
dw  

cosh 
knym(dWd

dk 	dym  \ cosh kL 	dk 
n 	I - 	2 	sinhknym—L 

= sinh kL 	Ym + k dwdj sinh kL 	dwd 

CL(Ym) (dWd dk ym + kn 	J dym\- (y m )coth1cnLL 	(D.25) 

	

 dwdj 	 dwd 

where co  (y) = coshk(L - y)/sinhkL, CL(Y) = cosh ky/sinhkL. Thus 

DV3 (x 0 ,ym ) = dk—an(xo)[Hn(L - ym)Co(y m ) + Inym CL(y m )} 
dwd 

d 
—L---

k 
 coth kLA 

dwd 

+-an kn {—H nco (y m ) + In CL(Y m )] 	 (D.26) 
dwd  

So, 

00 	 00 	 00 

	

V(xo , Ym) = 	DV1 (xo , Ym) + 	DV2 (xo , Ym) + E DV3 (xo , Ym) 
dwd 	 n=O 	 n=O 	 n=O 

00 	 00 	 00 

	

= 	DV, (X,Y m ) + 	DV'(X çj ,ym ) + 	DV3 (X 0 ,ym ) 
n=O 	 n=O 	 n=O 

	

1 dVG 00 	 sin  kwd 
a,(xo)(so  + SL) 	, 	 (D.27) 

Wd dwd 

One has 

00 	°°dk 

	

E DV = 

	

	
--an [Hn (L - ym )Co(y m ) + InYmCL(Ym)] 

n=O dW d 
00 	dk 

(j.. 	 \1 —L YT a,, - coth knL[Hn 0(y,n ) + InSLU/m)J 
n=O dwd 

dym 00  
+— an kn [—Hnco (ym ) + InCL(Ym)] 	 (D.28) 

dwd n=O 
00 	dymôV = 
n=Odwd ÔY 
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00 

> DV' 	 (D.29) 
n=O 

00 	00dk 
DV = 	--a[H(L - Y rn )Co(y rn ) + In Y m CL(Y m )] 

n=O 	n=O dwd 

00 

	dk 
—L E  a--- coth kL[Hs 0  + IsL] 	 (D.30) 

dw 

Since the third sum in Eq. (D.28) is 	(XO,Ym). By definition of y, 	(O,ym ) 

	

0. Although 8V (wd, y) is not zero, but it is negligible thus 	(wd, y) 	0. 

Instituting Eq .(D.27) into (D.11), one has 

dVG- 	— N(wd)(i + cWd) 

dwd - 1 - 	
sinknwa(5 + 

SL) Wa 	ku 

>DV, (Wd,Ym) - >JDV2'(Wd,ym) - >.DV3(Wd,ym) 
(D.31) 

1— iv sin  knwd(s+S L ) 
o  

Wa - ku 

e  Now, we going to derive dLff
dwd For very short-channel MOSFETs which satisfy 

ym)(L - y) 2  > 1, using Eq. (3.21) then 2 8y2 

dLeji  - 1 L eff 	d I Ô20 
dwd _

2(o,y)dWdy 0) 	 (D.32) 
ay 2 

d I a2 	00 
2 

( 0 , YM) = /_>. 1An(O,ym) 

00 
2 d 	 00 	dk = 	k—A,(0, y) + E 2k--A(0, y) (D.33) 

	

Wd 	 n=O dwd 

Otherwise, from Eq. (3.23) one has 

dwd - dwd dwd 	
(D.34) 

Since '(O, y) - ,min =, then 4)3 

di,&3(yi) - dibsmin 

dwd 	dwd = 0 
	 (D.35) 

i,L'L(0)+V(O,yl) 

= 
V , 	q 

GB _—  G(wd) + V(0,y i ) 	 (D.36) 

So,
dVG  d&3 	

- 

(y i ) - 	
- 	

dV 
---N(wd) + — (O,yi) 	 (D.37) 

dwd 	dwd CO2, 	dwd 
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Deriving -(0, yi) is similar as we deriving ff— (xo, ym ), except that -(O, Yl)  0. dwd 

That is 

00 	 00 d3(yi) - 
	---N(w4+ E DV, (0,y i )+ >DV2(O,yi) 

dwd - dwd Cox 	 n=O 	 n0 

+ 	DV(0, yi) + 	--(0, yl) 	 (D.38) 
n=O dwd '9Y 

Substitute Eq. (D.11) into (D.38), then with Eq. (D.8) into (D.35), one has 

dy1 	1

IdWd

dV 	 00 

(0, ym) ->1 Dv1 (0, yi) - 	Dv2(o,yi) -> DV(0,Yi)]
dwj 	 (O,yi) 	n=O 	 n=O 	 n0 

(D.39) 

	

- is obtained similarly. For a long-channel device, 	dL;j can be neglected. dwa 	 L ejj dwd 

Substituting Eq (D.8) and (D.10) into (D.2), then together with (D.11) into 

(D.1), one has 

11n10\ 	1+-1---T1 ______ S = 1000 	 Wd C0

fi )- --- + T2-T3    
mV/decade 	(D.40) 

166,1 Wd 

where 

T1  = 

T2  = ; [(i + 	V(O,ym) - 	V(wd,y m )]; 

T3 — 1 1 dL eii 
- T pLjj dwd 

T = WdN(Wd). 



Appendix E 

Boundary Conditions at Source 

and Drain End for 2-D Poisson's 

Equation 

Different boundary conditions at source and drain end for two-dimensional Pois-

son's equation have been used in literatures. 

A rectangular source/drain junction with indefinite junction depth was used 

first, which gave 

bs(x,O) = V1, - VB 	 (E.1) 

lbD(X,L) = V, - VB + VD 	 (E.2) 

Another assumption was a rectangular source/drain junction with junction depth 

r, which gave 

{ 14 — VB 	 O<x<r 

V1,, - VB +[rjfrN(x)dx 
(E.3) 

- f, x i N(x i )dx i  - x f4's N(x i )dx i] r3  <x < Ws 

o 	 x>W5 

I VbVB+VD+fN(x)dx 

O<x<r 

= 	 i  Ir ' 	 (E.4) 
—f,x 1 N(x 1 )dx 1  _xf"N(x i )dx i] r3  <x < WD 

o 	 X>WD 
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where Ws  and WD are depletion depth at source and drain end respectively, they 

satisfy 

V1,, - VB - --- 1 [ 	ws  
xN(x)dx - r 3  I N(x)dx] = 0 	(E.5) 

M 	 Jr 

[Jry  
V - V11

q  
+ VD - - 

WD 	
J 

WD 
xN(x)dx - r 	N(x)dx = 0 (E.6) 

E3   

Solutions of two-dimensional Poisson's equation using boundary conditions derived 

from above two assumptions tend to over-estimate the short-channel effect. More 

accurate boundary conditions are derived from the cylindric junction assumption. 

That is 

OS 	
VbI — VB 

{ Vb — VB 

0 

ai X LJX 

2 

xoN(x o)ln dx 0  + In 
- f x o N(x o)dx o ] 0 <x < W 

x>ws 

x=O 

 

Vb+VD — VB 	 x=0 

Vb+VD—VB 
4[fx x oN(x o ) In dx 0  + in - ) f xoN(x o )dx o] 0 <x <WD xi  si  

El 	 X>WD 

 

where x, = xr3/x2 + (r, + y)2 , xs = xRs/Jx 2  + (r, + y)2 , 

XD = xRD /Jx 2  + (r, + y)2 . See Fig. 3-2 for reference. R5 , RD satisfy 

Vj,,
-  VB - 	

xo 
J xoN(xo ) in —dx 0  = 0 	 (E.9)  

6 .1i X 	x X j  
q r2 XD a;0  

Vb1 +VD —VB _----4J x oN(x o )ln—dxo =0 	(E. 10) 
E31 X 2  x 	 Xj  

respectively. 

The detail of solving Poisson's equation for the cylindric junction is as follows: 

Poisson's equation in a polar coordinate is 

82 	1 Otb 	1 Ô2 ib 	p(r, 0) 
(E.11) 

If the device is uniformly doped, then = 1'(r), = 0. For a nonuniformly 

doped device, in most cases the impurity concentration dose not change dramati- 

cally along the direction normal to surface due to the annealing process following 
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the implantation. Thus we can neglect. As a result, one has 802 

1 d I 
d1 = --N(r sin 0) 	 (E.12) 

Integrating twice with respect to r at both sides of the equations using boundary 

conditions ()R = 0 and 1'(R3 ) = 0, resulting 

= - - --- [Inr 
1

r1 N(ri  sin 0)dri  - 	 lnri N(ri  sin 0)dri ] 	(E.13) 
E8 	 Jr 

For source end junction, substituting 

q = -- lnr3 J ri N(ri  sin 0)dri 
- J r lnri N(ri  sin 0)dr i  = V - VB 

esi r3  

 

from it, one has 

q 
= 	- VB - - 	r1  n - r1  sin 0)dri  + in - I ri N(ri  sin 0)dr i ] [Li 	rj 	 r Jr 

 

To express above formula in a x,y coordinate system, we change the integral along 

a line with given 0 in a polar coordinate system to an integral along a line with 

given y in a x, y coordinate system. since x = r sin 0, y = r cos 0, thus x = 

y = x cot 0. Therefore i = = 1, = = cot 0.dx 

1r2 

f(r, 0)dr = 	 + ?2dx 
= 

JX2 

f(x, y)1 + cot 2  Odx 

= 2f f(x,y)dx 
SIflv 

 

Thus, 

9  
q 1 1 X 	

o  

X0 	x 0 	 x 	s x 

	

In —N(xo)dx + in - 	----N(x o )dx o  5(x, O) = V - VB - 	LL sin 	x 	 x L sin 	
] 

qr2 1 	 x XS 

= Vb, - VB - -- 41 1 xo in_N(x o )dx o +in_j xoN(x o )dx o] (E7) 
E41i x 	X j  

where XS satisfy 

	

qr fS 	XO 
Vb1 — VB -----  / xo ln—N(xo)dxo =0 	 (E.18) 

	

esi  S 3  J 3 	Xj 



Glossary 

Beta the gain of a MOSFET A/V 2  

C0 capacitance of oxide layer per unit area F/cm 2  

CD capacitance of depletion layer per unit area F/cm2  

D electron diffusion constant cm 2/s 

DP  hole diffusion constant cm 2 /s 

E electric field V/cm 

surface transverse electrical field V/cm 

E. transverse field V/cm 

EY longitudinal field V/cm 

EF Fermi level eV 

E conducting band energy eV 

E9  bandgap eV 

Ej  intrinsic Fermi level eV 

E valence band energy eV 

ID drain to source current A 

'DS surface component of drain to source current A 

'DB bulk component of drain to source current A 

L actual length of the channel 

LB extrinsic Debye length LB = [ 	 - 

 

qNAP 
] 

2  A 

Ld(inChapter2) Intrinsic Debye length Ld= 	
2  A 

Ld (InChapter4) diffusion length ,am 

L ef I effective channel length PM 

Lm mask length of the channel 

NA substrate doping concentration CM -3  
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Neff effective substrate doping concentration cm 3  

QOX charge density in oxide Charges1cm2  

Q8 total charges induced in the semiconductor per unit area Charges/cm2  

QB charge density due to ionized impurity in the depletion region Charges/m2  

R projected range of ion implantation pm 

S subthreshold gate swing mV/decade 

T absolute temperature K 

VB substrate voltage V 

VD drain voltage V 

VFB flat band voltage V 

VG gate voltage V 

VT threshold voltage V 

Vbi  built-in voltage of the junction V 

W actual width of the channel pm 

Wm  mask width of the channel pm 

k Boltzmann constant J/K 

n electron density m 3  

n:  intrinsic carrier density m 3  

P hole density m 3  

q electronic charge C 

r3  source and drain junction depth pm 

tch effective channel thickness pm 

t0,, thickness of gate oxide A 
wd depletion region depth pm 

X distance from oxide-semiconductor interface normal to the interface pm 

Y distance from source end along channel direction pm 

Ym distance from source end at which surface potential is minimum pm 

zW width reduction pm 

LX, projected standard deviation of ion implantation pm 

13 
q  

kT 1/V 



Glossary 
	

148 

body factor 

Cox permittivity of oxide F/cm 

permittivity of silicon F/cm 

Yn electron mobility cm 2/V.s 

PP hole mobility crn2 /V.s 

electron quasi-Fermi level 

measured from the bulk Fermi level and 

normalized to kT  

P charge density per unit volume m 3  

Om  work function of gate material V 

ms metal-semiconductor work function difference V 

X semiconductor electron affinity V 

electrostatic potential V 

bB potential difference between EF and Ej  V 

surface potential V 

,min minimum surface potential along the channel V 
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