
MARCH/APRIL 2005 1541-1672/05/$20.00 © 2005 IEEE 13
Published by the IEEE Computer Society

G u e s t E d i t o r s ’ I n t r o d u c t i o n

Planning with Templates
Doug Dyer, Active Computing

Steve Cross, Georgia Institute of Technology

Craig A. Knoblock, University of Southern California

Steven Minton, Fetch Technologies

Austin Tate, Artificial Intelligence Applications Institute

When we talk about planning with “templates,” we mean standard operating

procedures we’ve learned or been trained to use for solving typical problems

and as a starting point for solving novel problems. These structures contain variables rel-

evant to an activity and current variable values that affect a problem or have been chosen

in a problem-solving instance. With templates we can configure domain-independent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429733634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

planning algorithms, making them applicable
to many different problem domains. By mak-
ing the template explicit for the user in the form
of a GUI, we can facilitate mixed-initiative,
user-centric systems that help maintain aware-
ness of complex and dynamic situations, share
information across the network, and solve
problems incrementally and iteratively.

Template benefits
Templates have three key advantages.

First, they reduce complexity. Templates let
us exploit expertise and use default activities
rather than reason every time from first prin-
ciples. Because they include all the relevant
variables, templates make clear the require-
ments for solving a problem even when solu-
tion methods aren’t known. In addition, when
we encounter novel problems, templates let
us differentiate the familiar parts from the
new parts. This makes it possible to have the
machine handle routine details while humans
focus on the novel parts.

Second, they reduce uncertainty. As stan-
dard operating procedures, templates provide
some enumeration of the probable actions of
agents that, for whatever reason, are out of
communication and can’t be observed. For dis-
tributed, coordinated planning and execution
control under these circumstances, knowing
what collaborating agents will likely do in a
given situation is a significant advantage.

Finally, they facilitate process improvement.
Successful templates can be learned and reused
for problem solving and for other purposes such
as learning better strategies, training, and select-
ing more appropriate activities in real situations.

Mixed-initiative systems
Fully autonomous planning is a worthy

goal, but the complexity of many real-world
problems favors mixed-initiative systems,
which combine human judgment with the
machine’s ability to remember, serve infor-
mation, calculate, and handle the details.
Despite great advances and continuing
research, machines usually have less knowl-
edge and poorer situational context than
humans. So, fully autonomous planners are
applicable to a more limited set of problems
than mixed-initiative systems. Furthermore,
successful mixed-initiative systems’ behav-
ior is easier to understand and more readily
adopted by end users. For both practical and
technical reasons, mixed-initiative systems
are the logical bridge to greater autonomy,
given our starting point: today, almost all
problem solving is manual.

Mixed-initiative systems imply a require-
ment for a kind of human-machine dialogue,
and successful systems also provide deci-
sion-making information for incremental
problem solving. The simplest form of dia-
logue is a GUI, and the simplest GUI is a
form listing variables and values. During prob-
lem solving, these interfaces present infor-
mation from external sources and record
choices the user makes, ideally showing impli-
cations of choices in addition. Because the
problems are complex, they must be decom-
posed so that choices are simple enough to
make. Choices made constrain future choices,
leading to an iterative search that eventually
discovers a solution. During problem solving,
successful systems alert their users to state
changes that affect the problem, including
other players’ decisions.

User-centric development
The software development process’s impor-

tance is often underestimated. The traditional
approach is to contract the entire project with
a software developer, who then must become
a domain expert. User-centric approaches can
improve this inefficient process. Users, who
generally have much more domain knowledge
than a developer, can specify and group key
variables and describe functions and interfaces
that are meaningful to them. We deem impor-
tant any technology that lets users contribute
their knowledge and even build part of the sys-
tem for themselves.

Vertical, knowledge-based software appli-
cations are often extremely important for
organizations. However, their limited markets
aren’t attractive to major software manufac-
turers, and traditional development makes
these systems prohibitively expensive. To
make progress, users will have to provide part
of the solution so that developers can focus
their efforts on programming rather than
domain expertise. Adopting user-centric de-
velopment also gives users more control and
facilitates incremental development with
incremental payoff, making software projects
easier to manage. We’re beginning to see
user-centric applications with tailorable user
interfaces such as smart forms.

Active Templates
Beginning in 1998, DARPA sponsored the

Active Templates R&D program. Active Tem-
plates aimed to create prototypes integrating sit-
uational awareness, experience and standard
operating procedures, and planning to achieve
goals amid uncertainty and constant dynamics

while keeping all players coordinated. The pro-
gram chose to apply the technology to military
mission planning and execution control, partic-
ularly in the special-operations domain.

The Active Templates research agenda was
guided by real problems addressed by real peo-
ple who had real reactions when the prototypes
didn’t meet their expectations. DARPA also
required that the project advance the state of the
art, not just engineer point solutions. The domain
experts and researchers who participated in the
program experienced many failures and re-
worked their systems constantly to move the
technology forward. You can measure the pro-
gram’s success by technology transition: nearly
every prototype has been picked up for further
development, and some are operationally used.

In this issue
The four articles in this issue are exem-

plars of the advances that came out of the
Active Templates program and are relevant
to related technology development efforts.

In “Conditional Constraint Networks for
Interleaved Planning and Information Gath-
ering,” José Luis Ambite and his colleagues
describe a system for creating planning tem-
plates that exploit a hierarchical, conditional
constraint network. Heracles II incorporates
a constraint propagation algorithm that sup-
ports incremental problem solving without
imposing any order on user decisions. The
system templates present key information to
users at the point of decision making, reduc-
ing human effort through automated discov-
ery and information management. As the user
makes planning choices, Heracles II uses the
choices’ implications to update only the
affected information, greatly improving scal-
ability. Constraints are propagated asyn-
chronously, because of either a user decision
or dynamic external information, and cycles
are handled appropriately. Heracles II has
been applied to travel planning and geospa-
tial-data integration.

In “Comirem: An Intelligent Form for Re-
source Management,” Stephen Smith, David
Hildum, and David Crimm describe a user-
centric, mixed-initiative scheduling and
resource allocation system that meets real-
world needs of both planners and those exe-
cuting a plan. Astute observation of human
planners has resulted in key insights:

• Users want to solve problems at different
abstraction levels and different degrees of
automation for different circumstances.

• Tailored graphical interfaces are effective

G u e s t E d i t o r s ’ I n t r o d u c t i o n

14 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

for supporting mixed-initiative dialogue.
• Executers can’t easily tolerate huge plan

changes, so localized plan changes, ap-
plied incrementally, are more appropriate
than reoptimization.

Comirem epitomizes excellence in mixed-
initiative scheduling systems: the machine
handles details such as feasibility checking,
resource tracking, conflict identification, and,
if the user prefers, conflict resolution. Graph-
ics communicate different decisions’ impact.
The user is free to plan manually, specify key
constraints, select from a set of suggested
solutions, or let the machine select a solu-
tion. Comirem is a full-featured tool that
supports military logistics in the air-ship-
ping domain.

In “Applications of SHOP and SHOP2,”
Dana Nau and his colleagues describe
SHOP2, an efficient hierarchical-task-net-
work (HTN) planner based on ordered task
decomposition that allows interleaving of sub-
tasks. This decomposition lets the planning
focus on the tasks that will execute first, an
important idea for integrating planning and
execution in dynamic domains where state
changes might invalidate a plan. Standard
operating procedures relevant to a particular
domain are used to configure the planner.
SHOP2 and its predecessor, SHOP, have been
used to create planning systems for augment-
ing an evacuation planner, evaluating terrorist
threats, controlling unmanned aerial vehicles,
and other applications. Nau and his colleagues
have graciously made SHOP and SHOP2
available as open-source software. SHOP-
based research continues in automated learn-
ing, compiled domains, information-dynamic
planning, and planning under uncertainty.

In “Authoring Templates with Tracker,”
Alice Mulvehill describes a forms-based
application that takes user centricity to the
next level by enabling ordinary users to par-
ticipate in application development. Like a
spreadsheet, Tracker is a tool for both build-
ing and using applications. During develop-
ment, the developers tightly link variables to
form elements and use a dialog box to spec-
ify properties, constraints, and formulas. This
results in a hierarchically oriented form dis-
play made persistent with an XML file. Dur-
ing use, forms store information in XML files,
facilitating information sharing. Throughout
use, many insights occur as users discover the
actual process, and they can refine the domain
ontology and the application. New applica-
tions can incorporate templated parts of pre-

vious applications. All these features combine
to facilitate rapid forms-based application
development useful for planning, coordination,
and workflow. Tracker has been used to
develop an automated clearance tool and sev-
eral other applications.

DARPA and other research organizations
continue to see potential in intelligent

systems for military command and control and
many other areas. Spin-off projects outside
DARPA include Advanced Concept Technology

Demonstrations (www.acq.osd.mil/actd/index.
htm) and an ongoing series of joint experi-
ments, and system development by the US
Department of Defense. Despite current pro-
totypes’ success, much work remains, partic-
ularly to reduce tailored systems’development
cost. With more experience in developing,
deploying, and using mixed-initiative, user-
centric systems, we can accelerate the evo-
lution of our machines from networked, cal-
culating terminals to intelligent planning
assistants able to handle details and even major
problems. That’s a vision worth pursuing.

MARCH/APRIL 2005 www.computer.org/intelligent 15

T h e A u t h o r s
Doug Dyer is a computer engineer and the president of Active Computing,
a small company supporting the US Departments of Defense, State, and
Homeland Security. His research interests include decision aids, automated
planning and coordination technology, and intelligent simulation. He’s a
retired Air Force officer and former program manager for the DARPA Active
Templates program. He received his PhD in computer engineering from the
Air Force Institute of Technology. Contact him at Active Computing Inc.,
12712 Nathan Ln., Herndon VA 20170; doug.dyer@activecomputing.org;
www.activecomputing.org.

Steve Cross is a vice president of the Georgia Institute of Technology and
the director of the Georgia Tech Research Institute, the nonprofit, applied-
research arm of Georgia Tech. His research interests include industrial and
systems engineering, knowledge-based planning and scheduling, and soft-
ware engineering. He was previously the director and CEO of the Software
Engineering Institute and a DARPA office deputy director. He received his
PhD from the University of Illinois at Urbana-Champaign. Contact him at the
Georgia Tech Research Inst., Georgia Inst. of Technology,Atlanta, GA 30332;
steve.cross@gtri.gatech.edu; www.gtri.gatech.edu.

Craig A. Knoblock is a senior project leader at the University of Southern
California’s Information Sciences Institute and a research associate profes-
sor in computer science. He’s also the chief scientist for Fetch Technologies,
a company commercializing some work developed at USC. His research
interests include information agents, information integration, automated plan-
ning, machine learning, and constraint reasoning. He received his PhD in
computer science from Carnegie Mellon University. Contact him at the USC
Information Sciences Inst., 4676 Admiralty Way, Marina del Rey, CA 90292;
knoblock@isi.edu; www.isi.edu/~knoblock.

Steven Minton is the chief technology officer of Fetch Technologies. His
research interests include machine learning, planning, and constraint satis-
faction. He received his PhD in computer science from Carnegie Mellon Uni-
versity. He founded the Journal of Artificial Intelligence Research and served
as its first executive editor. He has also served as an editor of Machine Learn-
ing. He’s a fellow of the AAAI. Contact him at Fetch Technologies, 2041
Rosecrans Ave., Ste. 245, El Segundo, CA 90245; minton@fetch.com;
www.fetch.com.

Austin Tate is the technical director of the Artificial Intelligence Applica-
tions Institute and holds the Personal Chair of Knowledge-Based Systems
at the University of Edinburgh. His research area includes knowledge systems
and workflow process standards activities, and DARPA supports his O-Plan
and I-X planning research. He’s a fellow of the Royal Society of Edinburgh.
Contact him at the Artificial Intelligence Applications Institute, Univ. of Edin-
burgh, Appleton Tower, Crichton St., Edinburgh EH8 9LE, UK; a.tate@
ed.ac.uk.

