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ABSTRACT

Compared to other solid organs following transplantation, the liver is unique as an

allograft, more resistant to rejection and accepted without immunosuppression in

many animal models. The aim of this thesis was to analyse the allogeneic immune

response within the graft following liver transplantation and to examine the role of

hepatic cells in graft rejection or acceptance. This might allow the better

understanding of the specific features of the immune response towards liver grafts
and open new therapeutic approaches to organ transplantation.

Firstly, the composition of the inflammatory infiltrate was analysed by

immunohistochemistry in biopsies of patients following liver transplantation

undergoing acute or chronic rejection in comparison with patients without rejection.

Significant changes in the proportion of infiltrating cells were found for CD4+ T

lymphocytes and NK cells. In contrast, the percentage of macrophages and CD8+ T

lymphocytes did not vary and B lymphocytes were rarely present. Double-staining

proved the CD4+ T cells to be naive (CD45RA+) and memory (CD45RO+) T

lymphocytes. Both subtypes were shown to proliferate within the graft irrespective of
the severity of rejection, indicating a primary immune response within the liver

allograft.

T lymphocyte-mediated cytotoxicity via perforin/granzyme B and Fas-Ligand/Fas
was also studied in these biopsies. Granzyme B expression by CD8+ T lymphocytes
was a prominent feature of rejection, implicating this pathway in the immune-
mediated graft destruction. In contrast, the receptor Fas (CD95), which has to be

present on the target cell for induction of the apoptotic signal, was differentially

expressed in the biopsies. In grafts of patients without rejection, Fas expression was

up-regulated by the inflammatory infiltrate, indicating a possible mechanism of

deleting donor-reactive immune cells. However, in rejecting grafts Fas expression
was increased in hepatocytes, which undergo apoptosis only during severe rejection.
This was also associated with increased hepatocellular expression of the pro-

apoptotic proteins bax, bcl-x and p53, intracellular signals of the apoptotic cascade
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acting via mitochondrial depolarisation. In contrast, expression of the anti-apoptotic

protein bcl-2 was restricted to the inflammatory infiltrate.

In vitro studies have demonstrated, that engagement of the Fas receptor alone is
insufficient to induce large scale apoptosis of hepatocytes due to the intracellular

regulation of the signal. Using murine hepatocytes, Fas-mediated cell death was

studied and found to be amplified by the cytokine IFN-y, an important mediator of

allograft rejection. This increased sensitivity of hepatocytes to Fas-signalling was

dependent on p53 activation as demonstrated in p53-/- hepatocytes, and blocked by

cyclosporin A, a common immunosuppressive agent which also inhibits
mitochondrial depolarisation. IFN-y appears therefore to augment Fas-mediated cell
death of hepatocytes by an intracellular amplification loop.

Dendritic cells (DC) are important regulators of immune responses including

allograft rejection and are in particular equipped in activating nai've T lymphocytes.

Using a mouse model, hepatic DC were isolated by adapting a novel method via

immuno-magnetic separation, and compared to isolated renal and splenic DC.

Although hepatic DC were found to have a unique composition with a high

percentage of lymphoid-derived DC, functional differences between DC

subpopulations in stimulating allogeneic T lymphocytes were not evident. The DC
function was rather dependent on the cytokine environment with induction of a Thl

response following activation with GM-CSF and abrogation of the Thl response

after pre-incubation with TGF-P or CTLA-4Ig, but not IL-10.

In conclusion, these studies provide evidence for a modification of the allogeneic
immune response within the liver allograft affecting the cell fate of the infiltrating
cells as well as of the target cells. Although hepatic donor cells might contribute to

this modification, their interaction with the infiltrating immune cells appears to be

strongly dependent on the cytokine environment. This however would implicate, that
the resistance of liver allografts to rejection and ultimately graft acceptance is open
to manipulation and could be achieved in other organs, too.
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ABBREVIATIONS

Abbreviation Full Form
-/- knock-out, e.g. p53-/-
AICD activation-induced cell death
ANOVA Analysis of variance
APC antigen-presenting cell
APT adenosine triphosphate
bax bcl-2-associated X protein
bcl-2 B cell lymphoma proto-oncogene 2
bcl-x B cell lymphoma proto-oncogene X

(long (L) and short (s) protein)
bp base pair
BSA bovine serum albumin (fraction V)
CD cluster of differentiation, CD nomenclature, e.g. CD4
cDNA complementary DNA
CMV cytomegalovirus
cpm counts per minute
CsA cyclosporin A
CTL cytotoxic lymphocyte
CTLA-4 cytotoxic T lymphocyte-associated molecule 4
CTLA-4Ig CTLA-4 fused to human IgG
DC dendritic cell
Dex dexamethasone
DNA deoxyribonucleic acid
dNTP deoxynucleoside triphosphate
dT deoxythymidine
DTT dithiothreitol

ED50 effective dose in 50% of a specific test assay by manufacturer
EDTA ethylene di-amino tetra-acetic acid
EGF epidermal growth factor
ELISA enzyme-linked immunosorbent assay
FACS fluorescence activated cell sorter/sorting
FADD Fas-associated death domain
Fc crystallisable fragment
FCS foetal calf serum
FITC fluorescein isothiocyanate conjugate
g acceleration due to gravity (~ 10 ms~2)
GM-CSF granulocyte-macrophage colony stimulating factor
3[H]thymidine tritiated thymidine
HLA human leukocyte antigen
ICAM intercellular adhesion molecule
ID inner diameter

IgG, IgM immunoglobulin class G, M
IFN interferon
IL interleukin
i.v. intravenous
K DC kidney-derived DC
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kg kilogramme
1 litres
L ligand, e.g. CD95L
L DC liver-derived DC
LFA lymphocyte functional antigen
LPS lipopolysaccharide
pCi microcurie

Pg microgram
Pi microlitres

pm micrometer

pM micromoles
M molar
mAb monoclonal antibody
MACS magnet activated cell sorter/sorting
MHC major histocompatibility complex
mg milligram
ml millilitre
ML mononuclear leukocytes
MLR mixed lymphocyte reaction
mm millimetre
mM millimolar
MMF mycophenolate mofetile
mmol millimol
MPT mitochondrial permeability transition
mRNA messenger RNA
MTT 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium

bromide
mU milli-units
N nucleotide / nucleoside/ base (e.g. in dNTP)
n/a not applicable
NFAT nuclear factor of activated T cells

ng nanogram
NK cells natural killer cells
nM nanomoles
NPC non-parenchymal cell fraction
NS normal serum
OD outer diameter
OKT3 monoclonal anti-CD3 antibody
pAb polyclonal antibody
PBS phosphate buffered saline
PCR polymerase chain reaction
PE R-phycoerythrin conjugate
pH -logio[H+]
r recombinant, e.g. rGM-CSF
R roentgen
RAI rejection activity index
RNA ribo(se)nucleic acid
RT-PCR reverse transcriptase PCR
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SCF stem cell factor
SDCi spleen-derived immature DC
SDCm spleen-derived mature DC
s.e.m. standard error of the mean

Taq Thermus aquaticus DNA polymerase
TBS Tris-buffered saline
TCR T cell receptor
TGF transforming growth factor
Th cell T helper cell
ThO T helper type 0
Thl T helper type 1
Th2 T helper type 2
TNF tumour necrosis factor
TNF-R TNF-receptor
Tr cell regulatory T cell
TRADD TNF-receptor associated death domain
Tris tris (hydroxymethyl) aminomethane
U units
UNG uracil-A-glycosylase
UNOS United Network for Organ Sharing
wt wild-type
yr year
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Chapter 1

1.1 History

Transplantation as a possible means to replace diseased organs with healthy ones

attracted doctors since the antiquity. The first reference to the concept organ

transplantation reaches back to ancient China where the surgeon Tsin Yue-Jen (407-
310 B.C.) performed an heart transplant between two soldiers (Kuess, 1991a). After
a series of experiments in animals in the 1900's, the first serious attempt of organ

transplantation in humans was made by the Russian Voronay in 1933. He performed
a homologous renal transplantation using a cadaver kidney and noted post-transplant

antibody-bound complement leading to his hypothesis that rejection is an

immunological event (Kuess, 1991b). The first successful transplantation in man

took place in 1954 in Boston between homozygous twins, however success in

homologous transplantation was only made possible by the development and
discoveries of transplantation immunology, most prominently by the group of Sir
Peter Medawar in Britain. In 1956, they reported the use of lymphoid cells to transfer

immunity to skin grafts and other tissues in the mouse (Billingham, 1956), while at

the same time the work of Dausset let to the discovery of tissue transplantation

antigens (Dausset, 1954). The first clinical successes followed in 1958-1960 in
France using immunosuppression by total body irradiation. This form of

immunosuppression was rapidly replaced by chemotherapy, i.e. methotrexate,

cyclophosphamide and finally 6-Mercaptopurin (Kiiss et al, 1991b).

The ability to suppress rejection in renal transplants led to attempts to transplant

technically more difficult organs. In 1963, Thomas Starzl carried out the first

orthotopic liver transplantation followed by reports of the first extended survival in
1968 with the emergence of the new immunosuppressive agents antilymphocyte

globulin, azathioprine and corticosteroids (Starzl, 1968). The improvement of organ

preservation and the introduction of cyclosporin in 1979 (Calne et al , 1979) finally
led to the breakthrough of organ transplantation, including liver transplantation, as an

non-experimental procedure as stated in 1983 by the National Institute of Health.

However, right from the beginning it was noted that liver transplants were less prone
to rejection with episodes of rejection resolving spontaneously without the need to
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increase immunosuppression. In animals, this phenomenon was even more

spectacular as shown by spontaneous acceptance of liver allografts in pigs without

immunosuppression (Calne, 1969). Finally, in 1993 Starzl's group reported the first

patients who had stopped their immunosuppression following liver transplantation
without loosing their graft to chronic rejection (Starzl, 1993).

Today, around 4000 liver transplants are performed each year in the United States
(UNOS data source) and around 3500 in Europe (European liver transplant registry).
The majority of transplants are in patients with end-stage liver disease, fulminant

hepatic failure or intra-hepatic malignancies with chronic Hepatitis C related
cirrhosis being the commonest indication worldwide (Terrault, 2000). A variety of
new immunosuppressive agents are currently tested, however the goal of

transplantation remains to induce tolerance to the graft without the need for toxic

long-term medication.

1.2. Rejection - clinical perspective

1.2.1 Definition

Rejection can be broadly defined as the immunological response of the host to the

presence of a foreign tissue or organ with the potential to result in graft dysfunction
and failure (Int. Working Party, 1995). It is caused by the genetic disparity between
donor and recipient, and viewed from the biological perspective, it occurs by default.
In clinical practice however, only some recipients manifest symptoms of allograft

recognition while on baseline immunosuppression. To facilitate diagnosis and

management, hepatic allograft rejection is therefore commonly divided into

hyperacute (humoral), acute (cellular) and chronic (ductopenic) rejection (Neuberger,

1995). These three forms of rejection have different clinical and histological patterns
and are thought to reflect different mechanisms of graft damage. Of fundamental

importance however is the observation that hepatic allograft survival, unlike the
survival of other solid organ transplants, is not adversely affected by early acute
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rejection (Neuberger, 1998). Moreover, animal models of spontaneous liver allograft

acceptance undergo an initial acute rejection crisis (Qian, 1994). Thus, immune
activation might be required for the induction of liver transplant tolerance, but could
be inhibited by excessive immunosuppressive therapy (Bishop, 2001).

1.2.2 Baseline immunosuppression

Immunosuppressive strategies in transplantation are typically classified into
induction regimens, maintenance immunosuppression and treatment of established

allograft rejection (Denton, 1999). However, immunosuppressive requirements

following hepatic transplantation are usually lower than for other solid organs and a

variety of regimens are therefore used and assessed throughout the world

(Neuberger, 2000). The risk of allograft rejection is highest immediately post-

transplant, and some centres use an induction regimen with high-dose intravenous
corticosteroids rapidly tapered to oral steroids by the end of the first week (Keefe,

2001). Corticosteroids have a range of immunosuppressive effects, and probably the
most important in transplantation are down-regulation of MHC antigen expression
and inhibition of inflammatory cytokine transcription (Denton, 1999). Other

strategies for immunosuppressive induction previously consisted of antibody

preparations such as antithymocyte globulin (ATG) or the anti-CD3 antibody OKT3,
however lack of superior outcome and serious complications with infection and post

transplant lymphoproliferative disorder (PTLD) have led to a decline in their use

(McDiarmid, 1991). Currently, two anti-IL-2 receptor antibodies are tested in clinical
trials and show no major side-effects and a low incidence of acute rejection, but as

yet no difference in graft survival (Langrehr, 1997; Nashan, 1996). Further

experimental strategies include the blockade of T cell co-stimulation with the fusion

protein CTLA-4Ig or of T cell adhesion molecules with antibodies to ICAM-1, LFA-
1 or CD45RB (Neuberger, 2000).

The calcineurin inhibitors cyclosporin and tacrolimus are the basis for the majority of
maintenance immunosuppression protocols and are usually initiated at the time of

transplantation. Both are derived from fungi and inhibit calcineurin thereby
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preventing the dephosphorylation of the nuclear factor of activated T cells (NFAT).
This nuclear factor is responsible for the transcription of several cytokines, in

particular interleukin-2, and its inhibition leads to a reduction in T cell activation and

expansion (Denton, 1999). Both agents have substantial side-effects such as

hypertension, nephrotoxicity, neurotoxicity and a higher risk of developing

malignancies. In 1994, two multicentre trials compared the Sandimmune preparation
of cyclosporin with tacrolimus and found a lower incidence of acute rejection,
steroid-resistant rejection and chronic rejection (The U.S. multicenter FK506 liver

study group, 1994; European FK506 multicentre liver study group, 1994). However,
the microemulsion preparation (Neoral) of cyclosporin has now replaced the older
version and new trials are currently undertaken. Most centres use one of the
calcineurin inhibitors in a triple therapy together with corticosteroids and

azathioprine (Neuberger, 2000). Corticosteroids are usually the first agents to be

withdrawn, often within the first 6-12 months, because of their major side-effects
with obesity, diabetes mellitus, osteoporosis and hypertension (Reding, 2000).

Azathioprine, a purine analogue inhibiting DNA synthesis and proliferation of T

lymphocytes, is also primarily effective during the first post-operative year and can

be withdrawn thereafter (Padbury, 1998). Its major adverse effects are bone marrow

suppression and pancreatitis.

Mycophenolate mofetile (MMF) belongs to the newer generation of

immunosuppressive drugs and like azathioprine inhibits T cell proliferation. MMF
blocks the de novo synthesis of purines by inhibiting the guanosine nucleotide

synthesis (Sievers, 1997). Since T and B lymphocytes, unlike other cell types, lack a

salvage pathway, MMF provides a more specific immunosuppression. It is used for
both maintenance and treatment of acute rejection with diarrhoea and leucopenia

being the major side-effects (Hebert, 1999). Sirolimus (rapamycin) finally is a

macrocyclic lactone inhibiting not the T cell production of cytokines like the
calcineurin inhibitors, but the intracellular signal transduction pathway distal to the
interleukin-2 receptor, thereby inhibiting T and B cell proliferation. Since sirolimus
also binds to the same immunophillins as tacrolimus, it is designed for combination
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with cyclosporin rather than tacrolimus. Its major adverse effects are bone marrow

suppression and hyperlipidaemia (Kelly, 1997).

1.2.3 Hyperacute (humoral) rejection

Hyperacute rejection is a rare, early event usually occurring within hours or days of

transplantation (Hubscher, 1989). The syndrome is more common in patients

transplanted across ABO barriers and is associated with complement activation and
detection of antibodies, e.g. anti-major histocompatibility complex or anti-ABO. The
antibodies are either preformed or develop post-transplant, and suggest a humoral
mechanism (Gugenheim, 1990). The histological findings are those of hepatocyte

necrosis, sinusoidal congestion and haemorrhagic necrosis with linear deposits of

IgG or IgM antibodies in arteries, veins and sinusoids. Clinically, the patient presents
in a similar manner to acute liver failure with encephalopathy and coagulopathy,
biochemical characteristics are great elevation of serum aminotransferases,

prolongation of prothrombin time and a decreased total serum complement activity.

Hyperacute rejection is unresponsive to all forms of immunosuppression and the only
effective form of treatment is urgent re-grafting (Adams, 1990).

1.2.4 Acute (cellular) rejection

Acute rejection occurs in between 24-80% of liver transplants depending on the
baseline immunosuppression used (Fisher, 1995). It usually becomes clinically

apparent between 4 and 14 days, but may recur or present for the first time several
months post-transplant in patients with inadequate immunosuppression (Adams,

1990). Acute cellular rejection is thought to be mediated predominantly by CD4+ and
CD8+ T lymphocytes. The primary target cells are endothelial and biliary epithelial
cells which express the highest levels of self-antigens, i.e. MHC class I and II

antigens (Vierling, 1992). Thus, the hallmark and histological pattern of acute

rejection is the triad portal inflammation with predominantly ML including

lymphoblasts and eosinophils, bile duct inflammation/damage and subendothelial
inflammation (Snover, 1984). Clinical findings may include malaise, fever and
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jaundice, but are usually unspecific. Laboratory investigations show increased liver

enzymes and a rise or cessation in the fall of bilirubin, but no correlation between
these tests and the histological severity of acute rejection have been found

(Neuberger, 1995). A number of studies have implicated various markers in serum

and bile to be associated with rejection including eosinophil count (Dollinger, 1996)
or IL-2 and ICAM-1 (Lalli, 1992). However, in view of the more accurate diagnosis

by histology with a higher specificity and sensitivity, most transplant centres rely on

liver biopsies as the "gold standard".

At least two features of the above triad are required for a histopathological diagnosis
of acute rejection (Int. Working Party, 1995). Additional features such as arteritis,

perivenular necrosis without inflammation, hepatocyte ballooning or interstitial
haemorrhage may be observed, but are less reproducible. The first attempt at

establishing a grading system to facilitate comparisons between centres was made by
Demetris and colleagues in 1995 using the National Institute of Diabetes and

Digestive and Kidney Diseases (NIDDK) national liver transplant data base

(Demetris, 1995). Several more grading systems followed, and in 1997 a consensus

document was published with a system thought to be simple, reproducible and
clinical relevant (Demetris, 1997a). The proposed system grades rejection according
to both, an overall impression and a semiquantitative rejection activity index (RAI)
intended to help in particular academic research. Thus, acute rejection can be either
indeterminate (portal infiltrate fails to meet criteria for acute rejection), mild (portal
infiltrate affects a minority of triads), moderate (portal infiltrate expands most or all

triads) or severe (as moderate with periportal spillover and perivenular inflammation
that extends into the hepatic parenchyma and is associated with perivenular

hepatocyte necrosis). Additionally, the inflammation or damage occurring within the

portal triad, the bile duct epithelium and the venous endothelium is scored each

according to its severity (0-3), giving a final RAI score of 0-9 with 0 indicating no

rejection and 9 the most severe rejection.

The treatment of established acute rejection is with high dose corticosteroids with

regimens varying between oral prednisolone (100-200 mg/day for 3 days),
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intravenous methylprednisolone (500-1000 mg/day for 3 days) or intravenous

hydrocortisone (up to lg/day for 3 days) (Neuberger, 2000). There is little evidence
to support any particular regimen and the majority of cases of acute rejection respond
to the treatment. The rate of reported steroid resistant rejection is between 7-18% and
can be treated by a switch of cyclosporin-based immunosuppression to tacrolimus

(Klintmalm, 1993), increase of the tacrolimus dose itself (Boillot, 1998) or in some

cases by the use of the monoclonal antibody OKT3 directed against T lymphocytes

(Keefe, 2001). Acute rejection is not associated with an increased mortality, however
a higher morbidity and significant cost increase as a result of hospitalisation have
been reported (Fisher, 1995; Martin, 1997). Recent surveys showed that a single

episode of rejection has no impact on or indeed might even improve long-term graft
outcome (Dousset, 1998; Wiesner, 1998; Avollo, 1998). Severe acute rejection or

acute rejection in patients with Hepatitis C-related liver disease however does

adversely affect graft outcome (Wiesner, 1998). There is some evidence, that late
acute rejection occurring after 30 days post-transplant is less responsive to steroids
and concomitant viral infection or low immunosupressant levels were identified as

risk factors for its development (Cakaloglu, 1995; Mor, 1992). Both, late acute

rejection and steroid resistant rejection also carry an increased risk of development of
chronic rejection, however the reasons remain unclear (Neuberger, 1998).

1.2.5 Chronic (ductopenic) rejection

The incidence of chronic rejection is diminishing worldwide with the newest surveys

showing graft loss in about 5% of cases (Wiesner, 1999). Improvements in

immunosuppressive therapy are the most likely cause for this. Chronic rejection

usually does not occur within 60 days of transplantation and risk factors in the

primary graft include a positive lymphotoxic cross-match, low immunosuppression
in the early post-operative days, the recipients age, the diagnosis of primary

sclerosing cholangitis or Hepatitis C, CMV infection and transplantation between
ethnic groups (Evans, 2000). Patients undergoing a re-graft for chronic rejection also

carry a higher risk of redeveloping chronic rejection (Wiesner, 1999). Chronic

rejection can develop following recurrent episodes of acute rejection or indolently

22



Chapter 1

over a period of months or years. It remains still unclear, if acute and chronic

rejection share the same pathogenesis, however T lymphocytes are again the

predominant infiltrating cell type (Int. Working Party, 1995). The two main

histopathological findings of chronic rejection are loss of small bile ducts (< 60 pm)

involving more than 50% of portal triads and obliterative arteriopathy with foam
cells. Other unspecific features include a chronic inflammatory infiltrate, cholestasis
and hepatocyte necrosis. Clinically, chronic rejection is characterised by increasing

jaundice with deteriorating cholestatic liver function tests until graft failure with loss
of the hepatic synthetic function. Although recent reports have suggested improving

graft function with the use of tacrolimus-based immunosuppression in the early

phase of chronic rejection (Sher, 1997), advanced chronic rejection is progressive
and the only therapy available is re-grafting.

1.2.6 Clinical Tolerance

Development of tolerance is the major goal in transplant immunology and in clinical

transplantation, several observations indicate, that liver allografts are more

"tolerogenic" than other solid organs. Liver transplants are less prone to rejection
with a lower rate of chronic rejection reflected in a greater half-life of the graft

(Opelz, 1992). A positive antibody cross-match does usually not affect graft survival

(Donaldson, 1995) and MHC matching of donor and recipient is not routinely

performed, since the adverse effect on outcome is only marginal (Doran, 2000). Even

transplantation in the presence of ABO incompatibility has a 40% probability of

long-term graft survival (Neuberger, 2000). Liver allografts have also been reported
to protect kidney transplants from the same donor from humoral or cellular rejection,
indication for a systemic rather than local effect (Rasmussen, 1995). However, the
most compelling observation for tolerance induction has been made in the recent

years following an initial report in 1993 about 6 noncompliant liver recipients who
discontinued all immunosuppressive medication without losing their graft to

rejection (Starzl, 1993). This report led to several formal studies, and it appears now
that in contrast to other solid organ transplants, about 20% of patients with long-term
liver grafts can be successfully weaned from their immunosuppression (Mazariegos,

23



Chapter 1

1997). Initially, the detection of systemic microchimerism was linked with a

successful drug withdrawal, but other studies found chimerism in only 40% of
tolerant patients, while a low incidence of acute rejection, transplantation for non-
immune-mediated liver disorders and fewer donor-recipient MHC mismatches were

positive indicators (Devlin, 1998).

1.3. Rejection - pathogenesis

1.3.1 Definition

Allograft rejection is the universal response of the immune system to the presence of

foreign tissue and is based on the body's ability to distinguish between self, i.e.

autologous cells, and non-self, i.e. allogeneic cells. This ability is based on the

genetic disparity between individuals of the same species, termed allogenicity, and
does not apply to syngeneic, i.e. genetically identical, individuals such as

monozygotic twins or animals of the same strain. Following the presentation and

recognition of the foreign antigen, the immune system mounts an alloresponse with a

number of effector cells which cause the eventual damage to the foreign target cells

(Hall, 2000).

1.3.2 Antigen-recognition

The ability of the immune system to recognise transplanted tissue as foreign is based
on a region of highly polymorphic genes, called the MHC complex (Wilson, 1967).
These genes encode cell surface glycoproteins, categorised into class I and class II
MHC antigens, which allow the immune system the distinction between autologous
and allogeneic cells (Halloran, 1993). MHC class I antigens are constitutively

expressed on virtually all nucleated cells and can bind to the T cell receptor (TCR)
on CD8+ T lymphocytes with the CD8 molecule acting as a co-receptor. MHC class
II antigens bind in a similar way to CD4+ T lymphocytes, but their constitutive

expression is usually limited to immune cells and endothelial cells. Inflammatory
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cytokines, and in particular interferons, can increase the expression of both MHC

antigens and induce MHC class II antigen expression on other cells, e.g. epithelial
cells (Wood, 1994). In the normal liver, MHC class I molecules are expressed on

biliary epithelium and vascular endothelium, but usually not on hepatocytes

(Fleming, 1981). MHC class II expression is confined to antigen-presenting cells

(APCs) such as macrophages and dendritic cells (DCs) or endothelial cells (Daar,

1984). During allograft rejection, MHC class I molecules are expressed by

hepatocytes, MHC class II antigens by the biliary epithelium and vascular
endothelium (Steinhoff, 1988). However, a direct correlation between the extent of
MHC antigen expression and the severity of rejection could not be substantiated

(Rouger, 1990).

In the 1980's, Lechler and Batchelor suggested two routes of allorecognition, the
direct and the indirect pathway. The initiation of allograft rejection is thought to be

by direct presentation of MHC antigens on APCs to recipient T lymphocytes, in

particular MHC class Il-reactive CD4+ T cells (Lechler, 2001). Experiments in
animals have shown, that the reduction of donor APCs within grafts, which prevents

direct presentation, leads to a marked reduction in acute rejection (Lechler, 1982).
The site of the initial stimulation appears to be the recipient's secondary lymphoid

tissue, since animals lacking organised lymphoid tissue are unable to reject
vascularised grafts (Lakkis, 2000). DCs, the predominant migrating APC population,
are most likely the initial APCs (Larsen, 1990; Steinman, 1991). In animal models of

spontaneous liver allograft acceptance, pre-treatment of the donor to increase the
number of DCs leads to graft rejection (Steptoe, 1997). The importance of direct

allorecognition is also supported by the fact, that the precursor frequency of T cells

recognising an allogeneic MHC molecule directly is 100 times higher than that of T
cells responding to the same MHC molecule indirectly (Liu, 1993). As many as 2%
of a host's T lymphocytes are capable of responding to a single allogeneic MHC
molecule. This antigenicity probably derives from various amino acid residues of the
MHC molecule as well as endogenous peptides bound in the antigen binding groove

of the MHC (Matzinger, 1977).
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Although direct allorecognition has historically been the focus of research in

transplant immunology, newer studies have underlined the importance of the indirect

pathway. Indirect allorecognition involves the processing of donor-derived MHC as

well as minor histocompatibility complexes by host APCs, which then present the

allopeptides in the context of self-MHC to host T lymphocytes (Rudensky, 1993).
There is evidence to implicate the indirect pathway already in the initial rejection

process following transplantation (Gould, 1999), however the most intriguing

hypothesis links indirect allorecognition to the development of recurrent acute

rejection and chronic rejection. While allopeptide-reactive T cells are undetectable in
the graft and circulation during stable graft function, they are a prominent feature

during chronic rejection (Hornick, 2000). Furthermore, initial rejection episodes are

associated with T cells against only one immunodominant alloantigen. In contrast,

during recurrent acute rejection or chronic rejection, T cells reactive to other

allopeptides can also be isolated. This process is called epitope spreading and is one

of the explanations for persistent alloreactivity (Suciu-Foca, 1998).

a) Direct allorecognition Donor

Donor APC Recinient T cell

b) Indirect allorecognition Recjpjent

Recipient APC Recipient T cell

Figure 1.1

Proposed pathways of allorecognition in transplant rejection.
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1.3.3 Antigen-presentation

Antigen-recognition via engagement ofMHC molecules and the TCR complex alone
is insufficient to fully activate nai've T lymphocytes, i.e. lymphocytes which never

encountered antigen before. A second, non-antigen specific, signal must be provided

by cognate ligands on the APC (Dai, 1999). This co-stimulation induces the T cell to

proliferate and differentiate into helper or effector lymphocytes. In the absence of co-
stimulation, T lymphocytes become anergic and may undergo apoptosis (Gimmi,

1993; Noel, 1996). Although a number of co-stimulatory proteins have been

characterised, three of them are generally believed to be essential for alloimmune

responses, B7-1 (CD80), B7-2 (CD86) and CD40 (Dai, 1999).

B7-1 and B7-2 are both ligands for the CD28 receptor on T lymphocytes (Samson,

2000). CD28 ligation facilitates T cell activation by reorganisation of the TCR
contact site, resulting in sustained TCR signalling with increased IL-2 production by
the T lymphocyte as an autocrine growth factor (Viola, 1999). A competitive

receptor for CD28 is CTLA-4, which mediates an inhibitory signal to the T

lymphocyte (Walunas, 1996). CTLA-4 has a higher affinity for the two ligands than

CD28, but is not expressed on resting T cells and up-regulated only after T cell
activation (Alegre, 1996). The expression of B7-1 and B7-2 is also differentially

regulated on APCs. In general, B7-2 is constitutively expressed and more rapidly up-

regulated, while B7-1 is usually not expressed on resting APCs but the more potent

signal (Larsen, 1994). There is speculation, that B7-1 can bias the T cell response
towards a Thl-response and B7-2 towards a Th2-response, however studies in
knock-out mice rule out an exclusive function for either of the ligands (Schweitzer,

1997).

The second signalling pathway, CD40/CD40L (CD 154) appears to have the most

pronounced immunostimulatory effect (Dai, 1999). CD40 is expressed on APCs, the

ligand CD40L on T lymphocytes. Engagement of CD40 induces a number of pro¬

inflammatory activities by the APCs including up-regulation of B7-1 and B7-2

expression or the release of IL-12 and adhesion molecules essential for leukocyte

27



Chapter 1

migration (Guo, 1996; Ridge, 1998). CD40 ligation on B cells is also important for
the generation of humoral responses with antibody release (Ranheim, 1993).

The central role of co-stimulation in allograft rejection has been demonstrated by

multiple animal experiments with blocking antibodies or proteins (Wekerle, 1998;

Azuma, 1996). Blockade of CD28 or CD40 signalling has therefore become a focus
for new immunosuppressive strategies (Denton, 2000). The discovery of co-

stimulatory signals has also shed light on the physiological role of APCs. DCs,

monocytes/macrophages and B lymphocytes are thought of as professional APCs

(Germain, 1993). However, DCs in particular are equipped to up-take and process

foreign antigen, migrate to secondary lymphoid tissue and stimulate primary immune

responses (Steinman, 1991). Endothelial cells have also been shown to express co-

stimulatory signals, however their exact role in antigen-presentation remains unclear

(Rose, 1998; Knolle, 2001).

Figure 1.2

Proposed mechanism of antigen-presentation during allograft rejection. The
interaction between APCs and T cells involves three signals (Signal 1: ligation
between MHC and TCR/CD4 or CD8; Signal 2: ligation between CD80/CD86 and
the T cell receptor CD28, ligation between CD40L and the APC receptor CD40;

Signal 3: release of cytokines resulting in distinct T cell responses). Engagement of
the T cell receptor CTLA-4 by CD80/CD86 leads to T cell inhibition.
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1.3.4 Cytokines

Cytokines are specialised proteins and the soluble mediators of immune responses.

Their role in allograft rejection has been largely inferred from their in vitro functions
and from in vivo experiments in which cytokine expression has been correlated with

rejection. However, due to the complexity of the cytokine cascades triggered after

transplantation, many studies have been contradictory and experiments with knock¬
out mice have indeed proven, that cytokine actions are highly redundant (Dai, 1999).
IL-2 for example is an important T cell mitogen, but IL-2-/- mice are still able to

reject allografts (Steiger, 1995).

Most of the cytokines, which are important for the development of the alloresponse,
are released by APCs and CD4+ Th cells (Hall, 2000; Mosmann, 1991). Th cell

responses are classically divided into Thl and Th2 responses dependent on their

cytokine release pattern. Thl cells release IL-2 and IFN-y promoting a cellular
immune response, while Th2 cells support humoral responses with antibody

production by releasing IL-4, IL-5 and IL-10 (Strom, 1996). APCs preferentially
induce a Thl response via secretion of IL-12 or a Th2-response via secretion of IL-
10 without IL-12 (Macatonia, 1995; Rissoan, 1996). The cytokine pattern of both Th

responses promotes the maturation and proliferation of T lymphocytes, however

IFN-y in particular has been shown to up-regulate the expression of MHC antigens
and co-stimulatory signals as well as induce CD8+ CTLs (Hall, 1985; Goes, 1995;

Sansom, 2000). In contrast, some of the cytokines released by Th2 cells have

immunoregulatory functions, e.g. IL-10, which can down-regulate the expression of
MHC antigens and co-stimulatory signals (De Waal Malefyt, 1991; Ding, 1993).
These findings have led to the proposal that Th2 responses might be beneficial in

achieving graft survival and acceptance. However, recent experiments with knock¬
out mice have again demonstrated that allograft rejection proceeds in the presence or

absence of any of these cytokines (Hall, 2000), and the adoptive transfer of Th2-type

lymphocytes induced allograft rejection rather than tolerance (Matesic, 1998). The

only exemption appears to be IFN-y, but only in the context ofMHC Il-incompatible

grafts, which are not rejected by IFN-y-/- recipient mice (Ring, 1999).
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In liver transplantation, several investigators have studied intra-graft cytokine levels

during rejection. Some have found an increase of the Thl cytokines IL-2 and IFN-y

(Bishop, 1990), while others found little IL-2, but an increase of the Th2 cytokines
IL-4 and IL-5 (Martinez, 1992). IL-10 was usually not detected during rejection

(Conti, 1998), but the pro-inflammatory cytokine TNF-a was shown to be up-

regulated within the graft (Teramoto, 1999). This corroborates the findings by

Bathgate and colleagues, who demonstrated a correlation between TNF-a but not IL-
10 gene polymorphisms with liver allograft rejection (Bathgate, 2000).

1.3.5 Cellular immune response

1.3.5.1 Reperfusion injury

The earliest immune response detectable in organ allografts following transplantation
involves the innate rather than adaptive immune system. The period of ischemia
necessitated by the explantation, transfer and implantation of the organ followed by
the reperfusion with blood results in complement activation, up-regulation of
adhesion molecules, inflammatory cell infiltration and cytokine release (Baldwin,

2001). Cells mostly implicated in this immune activation are neutrophils,

monocytes/macrophages and NK cells, which can often be found within the graft
before T lymphocyte infiltration (Petersson, 1997). Reperfusion injury is not

essential for allograft rejection as demonstrated by studies using T cell-deficient mice
that show prompt graft rejection after T cell reconstitution even when grafts had
recovered for more than 100 days within the recipient (Bingaman, 2000). However,

reperfusion injury is thought to augment the severity of rejection and influence graft
outcome by direct tissue damage as well as T cell recruitment (Baldwin, 2001).
Clinical evidence for this influence comes from transplants from living genetically
unrelated donors, which survive as well or better than transplants from genetically
matched cadaver donors (D'Alessandro, 1998).
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1.3.5.2 Afferent immune response

The earliest presentation of allogeneic antigens is mediated via the direct pathway by

haematolymphoid donor cells, as demonstrated by multiple rodent experiments in
which these so-called passenger leukocytes were eliminated by in vitro culturing or

"parking" in intermediate hosts, which allowed the repopulation of the graft with

haematolymphoid cells syngeneic to the recipient (Guttmann, 1969). Using the same

experimental model, Lechler and Batchelor showed that DCs were the most

immunogenic among the passenger leukocytes implicating them as key players in the
initiation of the immune response (Lechler, 1982). DCs are regarded as the sentinels
of the immune system and can be found in most tissues and organs, in the liver

usually within the portal tracts (Prickett, 1988). In peripheral organs such as the liver,
DCs are immature with a low expression of co-stimulatory signals and capable of

taking up antigen (Woo, 1994). Subsequently to antigen uptake or maturation signals
received during transplantation, DCs mature and migrate to secondary lymphatic
tissue where they encounter and stimulate T lymphocytes (Steinman, 1997).

Following liver transplantation, efferent lymphatic channels are disrupted for 2-3
weeks (Rabin, 1991), and APCs including DCs as well as other immune cells migrate

haematogenously or via intact regional donor lymphatic channels to the recipient

spleen or regional donor lymph nodes (Fung, 1989). Donor cells are found already
after one day post-transplant in the spleen and after two days in regional lymph

nodes, but not in other lymph nodes or the thymus (Demetris, 1991). This is called
central sensitisation, however peripheral sensitisation within the allograft might also

occur, since clustering between DCs and lymphoblasts can be observed within the

portal triads at day 3 post-transplant (Demetris, 1991).

Since donor APCs are short-lived, replacement with recipient cells occurs within the
first weeks following transplantation, both peripherally within the graft and centrally
in the spleen and lymph nodes (Gouw, 1987). This phenomenon is further
accelerated by the severity of rejection with release of immuno-active cytokines and
adhesion molecules (Demetris, 1997b). Migration of APCs from the blood to the
liver is facilitated by the hepatic sinusoids which form only a discontinuous barrier
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lacking tightly regulated junctions (Jaeschke, 1997). In particular DCs utilise this

system as their preferred route of translocation from the blood to the lymphatic

system (Kudo, 1997), however peripheral sensitisation might also be a significant
feature following transplantation. In chronic rejection, recipient APCs and in

particular recipient DCs are found within lymphoid aggregates inside the grafts

(Oguma, 1988) and the number of recipient DCs correlates directly with the severity
of the inflammation, supporting the role of indirect allopresentation in the

development of chronic rejection (Demetris, 1997b).

Peripheral sensitisation Central sensitisaliun

Immature APC Migration and Maturation

:zz:
Liver

Donor APC

TCR > rMHC
T cell

Miur#ion and Maturation

Recipient APC
Migration
Maturation Immature APC

Recipient APC

Figure 1.3

Proposed mechanism of central and peripheral sensitisation of recipient T cells

following liver transplantation. Donor APCs either mature within the liver or migrate
to the secondary lymphatic tissue. Recipient APCs infiltrate the liver transplant and
either mature locally or migrate back to the secondary lymphatic tissue.
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1.3.5.3 Efferent immune response

T lymphocytes are the essential alloreactive cells during rejection (Hall, 1978) and

following liver transplantation, T cell proliferation in the secondary lymphoid tissue
as well as T cell infiltration into the graft occurs within 2 days post-transplant

(Demetris, 1991). Although this suggests simultaneous sensitisation in the graft and
the secondary lymphoid tissue, nai've T lymphocytes are usually found only within

lymphatic tissue, since they lack the necessary levels of surface integrins for
transendothelial migration in peripheral organs (Brezinschek, 1995). This would

suggest, that the initial activation of T lymphocytes occurs within spleen and lymph

nodes, and recent experiments have demonstrated the crucial role of secondary

lymphoid tissue for the rejection of vascularised organs (Lakkis, 2000). The liver
however might be an exemption to this rule, since it allows as the only solid organ

direct contact between nai've T cells and parenchymal cells through fenestrated
endothelial cells (Bertolino, 2000).

Both, CD4+ and CD8+ T lymphocytes are activated in fully MHC-mismatched

transplants, and both T cells are found within the liver allograft following

transplantation (Wood, 1994). However, in most experimental models, CD8+ T cell
activation is dependent on concurrent activation of CD4+ T cells providing help in
the form of IL-2 and IFN-y (Hall, 1985; Mosmann, 1991). This is corroborated by
the fact that MHC class I mismatched grafts are more easily accepted than MHC
class II mismatched grafts (Gallico, 1979). CD4+ T lymphocytes are therefore

thought to be the dominant cell type mediating rejection, activating the cytotoxic
effector cells such as CD8+ T cells, B lymphocytes or macrophages (Hall, 1985;

Lanzavecchia, 1985; Hao, 1990). After the initiation of the immune response, both,
CD4+ and CD8+ T lymphocytes are predominantly directly stimulated memory

CD45RO+ cells, however their frequency diminishes over-time (Baker, 2001). In

contrast, during chronic rejection increased frequencies of indirectly stimulated T
cells can be observed (Hornick, 2000), implicating this pathway in the development
of recurrent acute or chronic allograft rejection.
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Figure 1.4
Efferent immune response during allograft rejection. CD4+ Th cells are the dominant
mediators of rejection, activating cytotoxic effector cells such as CD8+ Tc cells, B
cells and macrophages.

1.3.6 Cytotoxicity

1.3.6.1 Mode of cell death

Graft dysfunction and failure is ultimately a consequence of dying parenchymal
donor cells killed by alloreactive effector cells of the recipient. There are two distinct
modes of cell death, apoptosis and necrosis. Apoptosis describes a co-ordinated

sequence of signals leading to cell shrinkage and internal nuclear fragmentation
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without loss of the plasma membrane integrity (Wyllie, 1980). In contrast, necrosis
involves cell swelling and loss of the plasma membrane integrity leading to lysis

(Majno, 1995). Although specific signals are thought to induce predominantly one or

the other form of cell death, apoptosis and necrosis can co-exist in diseases

depending on factors such as the metabolic status of the target cell, the various
effector mechanisms acting on the target cell and external signals which render target
cells more susceptible to cell death (Kaplowitz, 2000). Recently, the mitochondrial
function has emerged as a key link for apoptosis and necrosis (Lemasters, 1999). As

part of the intracellular apoptotic programme, extracellular cytotoxic signals are

essentially propagated either mitochondria-independent via direct activation of
effector caspases, or mitochondria-dependent via activation of the mitochondrial

permeability transition (MPT), a protein megachannel, resulting in loss of the
mitochondrial membrane potential and release of cytochrome c (Bernardi, 1996).

Depending on the cell type and the external cytotoxic signal, the MPT activation may
not be essential for the induction of apoptosis, however the apoptotic signal cascade

subsequent to the MPT activation can only proceed in the presence of sufficient APT

production (Liu, 1996). In contrast, MPT activation with APT depletion as a result of
the rapid disruption of most of the cellular mitochondria will lead to necrosis with
cell lysis (Eguchi, 1997).

Apoptosis and necrosis are difficult to detect in vivo, since dead cells are rapidly
cleared by phagocytes (Wyllie, 1980). However, both necrosis and apoptosis have
been described in liver biopsies of patients with hepatic allograft rejection (Snover,

1984). Experimental data suggests that allogeneic tissue damage is predominantly
mediated by apoptosis as a consequence of the immune-mediated cytotoxicity. In
skin transplants from tetraparental mice only allogeneic, but not syngeneic target

cells are affected, indicating a contact-dependent cytotoxicity with selective death

signals (Rosenberg, 1988). Using an experimental rat model of liver transplantation
with a minimum of reperfusion injury, Krams and colleagues were able to show

equivalent numbers of apoptotic hepatocytes in allografts and isografts on day 1

post-transplant, followed by an increase of hepatocyte apoptosis over the next 7 days

only in allografts (Krams, 1995a). Other animal models of hepatic allograft rejection
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as well as studies in human biopsies post-transplant also found predominantly

apoptotic hepatocytes in rejecting grafts, their number usually correlating with the

severity of rejection (Afford 1995).

Although apoptotic hepatocytes can be more readily detected during acute and
chronic rejection (Krams, 1998a), bile duct epithelial cells and endothelial cells are

thought of as the primary targets of hepatic allograft rejection (Demetris, 1997a).

Several, but not all studies were able to demonstrate apoptotic biliary epithelial cells

during liver rejection, possibly due to the rapid disappearance of the cells (Nawaz

1994; Gapany, 1997). Apoptotic endothelial cells have not been described in

rejection of liver allografts, however apoptosis is thought to be the predominant
mode of cell death during rejection of allogeneic vessel grafts (Dong, 1996).

1.3.6.2 Cytotoxic mechanisms

CTLs induce target cell-specific cell death via two major mechanisms, the perforin-

dependent granule-exocytosis pathway and the CD95-Ligand/CD95 pathway (Kaegi,

1996). In the granule-mediated pathway, TCR engagement leads to the release of

lytic granules containing perforin and serine proteases known as granzymes.

Granzymes are found exclusively in CTLs, NK cells and lymphocyte activated killer

(LAK) cells, and the most important ones expressed by CTLs are Granzyme A and B

(Liu, 1996). Initially, perforin was thought to kill the target cells via lysis of the cell

membrane, however the perforation of the membrane is now believed to facilitate the
influx of granzymes into the target cell. Inside the cell, granzymes then induce cell

apoptosis by either cleaving effector caspases directly or by activating bid, a member
of the bcl-2 family, which acts on the MPT (Darmon, 1996; Yang, 1998). In

allogeneic responses, Granzyme B in particular has been shown to play a dominant
role. In vitro, Granzyme B is expressed by T cells in response to alloantigen, and
CTLs from Granzyme B-/- mice are unable to induce rapid DNA fragmentation of

allogeneic target cells (Prendergast, 1992; Heusel, 1994). Increased Granzyme B
mRNA expression has also been detected by PCR during acute rejection of human
liver, kidney and heart transplants (Krams, 1995b; Legors-Maida, 1994; Sharma,
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1996). However, in vivo experiments with perforin or granzyme B-/- mice have
shown, that solid organ allografts are still rejected, although more slowly than in

wild-type mice, indicating the presence of additional mechanisms (Schulz, 1995).

The second target cell-specific pathway of cell death utilised by CTLs is
CD95L/CD95. CD95 (Fas/APO-1), a type 1 transmembrane molecule, belongs to the
TNF receptor superfamily and is expressed by a variety of tissues including liver
heart, lung and kidney (Leithaeuser, 1993). CD95L on the other hand is the

physiological ligand of CD95, a type II transmembrane protein belonging to the TNF

superfamily (Suda, 1993). The expression of CD95L is constitutively more restricted

compared with CD95, however it can be induced on various immune cells such as

CD8+ and CD4+ T cells, NK cells, B cells and macrophages (Kaegi, 1996) as well as
on endothelial and epithelial cells including hepatocytes (Mueschen, 1998).

Apoptosis of the target cell is initiated upon engagement of the CD95 receptor by
CD95L expressed on the surface of the cytotoxic effector cell. These individual

receptor molecules trimerize and bind to a death domain called FADD (Fas-
associated death domain), which activates the caspase cascade, either directly or via
induction ofmembers of the bcl-2 family and activation of the MPT (Scaffidi, 1998).
CD95-mediated apoptosis has been implicated in several models of allograft

rejection (Larsen, 1995; Krams, 1998b) and elevated expression of CD95 and
CD95L mRNA has been found in rejecting human liver, kidney and cardiac

allografts (Seino, 1996; Krams, 1998a). However, allografts are still rejected in

experiments with CD95 or CD95L-deficient mice (Larsen, 1995), and a combined

experiment with perforin-deficient recipients and CD95-deficient grafts

demonstrated, that both pathways are not exclusively involved in the rejection of
solid organs and can be compensated by other mechanisms (Schulz, 1995).

The two cytokines TNF-a and IFN-y have both been implicated in allograft rejection
of solid organs and are known to induce cell death in a variety of cells. As cytokines,

they are soluble mediators and do not require contact between the cytotoxic cell and
the target cell. TNF-a is thought to be predominantly released by macrophages

during rejection (Teramoto, 1999) and engages its receptor TNF-R1 on the surface of
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the target cell (Bradham, 1998). Similar to CD95, a death domain called TRADD

(TNF-receptor associated death domain), is activated, which in turn binds to FADD,

thereby triggering apoptosis. IFN-y in contrast has been reported to induce both

caspases as well as pro-apoptotic members of the bcl-2 family (Pammer, 1999,
Takahashi 1999). In addition, it has recently be shown to activate the tumour-

suppressor gene p53, which acts via bax on the MPT (Kano, 1997). Flowever, most

importantly in the context of a complex inflammatory response, IFN-y has been
demonstrated in vitro to increase the susceptibility of target cells to other death

signals such as CD95 or TNF-a (Tillman, 1998). Other non-target cell-specific
mediators of cell death are reactive oxygen species (ROS), released by a variety of
immune cells during inflammation (Kaplowitz, 1996), and specifically during liver

allograft rejection bile acids, which act directly on the MPT as well as induce
trimerization of the CD95-receptor without prior stimulation by CD95L (Faubion,

1999).

1.4 Allograft acceptance and tolerance

1.4.1 Definition

Tolerance has been defined in clinical and experimental transplantation according to

a variety of criteria and is arguably often misused. Immunologically, tolerance
should not only be based on prolongation of allograft survival, but on indefinite graft

acceptance without immunosuppression, which should also extend to second grafts
from the same donor (Hall, 2001). Some authors further require the ability to transfer
tolerance with regulatory T cells to naive secondary recipients (Qin, 1993). However,

regulatory or suppressor T cells are usually only detected several weeks after

transplantation, in rodent models between 50 to 100 days post-transplant (Gassel,

1992). During this time, the graft has to be protected by other mechanisms such as

deletion of alloreactive T cells, inadequate T cell stimulation or the effect of

passenger leukocytes including microchimerism (Bishop, 2001). Liver allografts are

the most tolerogenic grafts among solid organs, spontaneously accepted without
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immunosuppression in all mice strains, many low-responder rat strains, out-bred pigs
and primates (Calne, 1969; Qian, 1997). Recipients accepting liver allografts also

accept second grafts from the same donor, however within days post-transplant
before the presumed establishment of Tr cells (Kamada, 1984). Liver allografts have
even be shown to rescue previously transplanted organ grafts from the same donor,
which are acutely rejected (Wang, 1997), and they are accepted in some models by

recipients, which had been sensitised to the donor antigen by skin grafts (Kamada,

1981). Despite this evidently systemic tolerance induction, Tr cells have only been
detected at late stages of liver transplant tolerance (Gassel, 1992). In the early stages,

liver allograft acceptance is rather characterised by the co-existence of alloreactive T
cells in the periphery with a stable graft function, which led to the term split
tolerance (Damen, 1994). Several mechanisms appear therefore to work together in
the establishment of tolerance, however observations in animal models and even

human transplantation have to be treated cautiously. Some results in rodent models,

e.g. cytokine production, depend strongly on the genetic background of the rodent
strain (Hall, 2000). Other observations might be rather the consequence than the
cause of tolerance induction, best illustrated by the debate about microchimerism

following transplantation (Starzl, 1996; Anderson, 2001).

1.4.2 T lymphocyte apoptosis

One of the long-standing explanations for tolerance induction in transplantation has
been immunological ignorance, i.e. the non-recognition of foreign antigen by the

recipient's immune system (Medawar, 1960). However, many models of transplant
tolerance, and in particular models of spontaneous allograft acceptance, are

characterised by an initial T cell expansion associated with infiltration of the graft

(Sharland, 1998). The difference between rejection and acceptance is the subsequent

apoptosis of either the graft cells or the donor-reactive T cells, respectively. Cell
death of infiltrating ML has also been described in human liver allografts (Afford,

1995), and a recent study demonstrated that intact T cell-apoptosis pathways are

required for tolerance induction across MHC barriers (Wells, 1999). Of particular

importance was however the finding, that both IL-2 and IFN-y were essential
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cytokines for tolerance induction (Li, 1999; Mele, 2000), indicating the death of
activated rather than resting T cells. Following TCR engagement, activated T cells
are liable to die by activation-induced cell death (AICD) through engagement of the
CD95 receptor (Alderson, 1995) or by passive cell death, when deprived of survival

signals, e.g. growth factors or CD28 signalling (Li, 2000). Interestingly, AICD can

be inhibited by glucocorticoids and cyclosporin A (Brunner, 1995), while naive or

resting T cells are resistant due to their inability to recruit caspase 8 (Peter, 1997). A
number of mechanisms have been made responsible in liver transplantation for the
induction of T cell apoptosis. Soluble MHC class I antigens released by the large

pool of donor cells has been detected in the serum of transplanted individuals and
induces apoptosis of alloreactive T cells in vitro (Davies, 1989; Zavazava, 1996).
Both sinusoidal endothelial cells and hepatocytes are able to express CD95L and
could kill T cells similar to other immuno-privileged sites such as testis or the eye

(Mueschen, 1998; Griffith, 1995). Additionally, both cell types have been proposed
to delete CD8+ T cells by inadequate stimulation resulting in passive cell death or

fracticide by neighbouring CD95L expressing T lymphocytes (Bertolino, 1999;

Limmer, 2000). Finally, Bishop and colleagues recently raised the possibility, that T
cell death in the allograft is a result of inappropriate and early over-stimulation of the
cells within the secondary lymphoid tissue, which then die by neglect due to

insufficient survival signals (Bishop, 2001).

1.4.3 Passenger leukocytes

Despite their role in direct allorecognition and initiation of rejection, donor

leukocytes have been found to be essential for spontaneous acceptance of liver

allografts. Depletion of passenger leukocytes by irradiation or "parking" experiments
in an intermediate host led to abolition of tolerance induction in several studies

(Sriwatanawongsa, 1995; Sun, 1995). However, the responsible mechanism for

mediating tolerance remains as yet unclear. In most models of spontaneous or drug-
induced allograft acceptance, selective reconstitution of irradiated allografts with T

lymphocytes restores tolerance induction (Sun 1996). The cells used are usually
mixed splenic T lymphocytes rather than hepatic T cells and appear to loose their
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tolerogenic effect if not applied at the time of transplantation (Shimizu, 1996). This

might indicate, that the effect of the T lymphocytes is based on presentation of donor

antigen without co-stimulatory signals similar to models of tolerance induction with

pre- or peri-operative transfusion of donor immune cells including erythrocytes,

platelets or T cells (El-Malik, 1984). However, the liver is also a site with a unique

composition of haematopoietic cells including stem cells, T lymphocyte precursors,

y8 T cells and DCs (Jonsson, 1997; Taniguchi, 1996). In particular the presence of
stem cells has led to the hypothesis of tolerance induction by chimerism of donor
cells into the recipient's bone marrow, which is most prominent in liver

transplantation (Starzl, 1996) and regarded by some authors as the cause of tolerance

induction, by others as the result (Bonham, 1997). Additionally, hepatic DCs might
have a tolerogenic effect, based on a number of mechanisms. Progenitor or immature
DCs have been shown to induce Tr cells (Jonuleit, 2000; Gorczynski, 1999) or

prolong allograft survival (Fu, 1996) and the liver has been demonstrated to release
the cytokines IL-10 and TGF-J3, which delay DC maturation (Yamaguchi, 1997; De

Smedt, 1997). In mice, the hepatic DC population is further composed not only of

myeloid-derived, but also of lymphoid-derived DCs, which might have a regulatory
function on immune responses and possibly even induce apoptosis of T lymphocytes
via CD95L (Suss, 1996; O'Connell, 2001). Finally, DCs could be tolerogenic after

phagocytosis of apoptotic rather than necrotic cells, a concept which has been

proposed for the maintenance of peripheral tolerance (Gallucci, 1999).

1.4.4 Regulatory T lymphocytes

Several models of allogeneic transplantation have recently demonstrated tolerance
induction by blocking the stimulatory signals for T cell activation, either by using
antibodies against CD4 and CD8 for inhibiting the TCR complex or anti-CD40L
antibodies and the fusion protein CTLA-4Ig to inhibit co-stimulatory signals (Hall,

2000). Some of these strategies have also been used in tolerance induction to liver

allografts (Fu, 1999), and the pathway via CTLA-4 might be of particular

physiological importance, since the receptor is up-regulated on activated T

lymphocytes and suppresses T cell proliferation following engagement (Linsley,

41



Chapter 1

1991). The most striking feature in these models is the development of Tr

lymphocytes, although only after a median time of 50 - 100 days (Qin, 1993). In
most models, these Tr cells are CD4+, while the existence of CD8+ Tr cells is

debated (Zhai, 1999). These Tr cells usually require the continued presence of

alloantigen to maintain their function (Hall, 1990). Spontaneous liver allograft

acceptance is also associated with a persistence of donor-reactive host CD4+ T cells

(Olver, 1998), while in models of tolerance induction via the portal vein, yd T cells
have been described as the Tr cell population (Gorczynski, 1994). However, Tr cells
are only detectable late after tolerance induction, which contrasts with the immediate
tolerogenic function of liver allografts for second grafts from the same donor (Wang,

1997). Recently, regulatory CD4+ CD25+ T cells have been described in models of
autoimmune diseases, which maintain tolerance to self-antigens by releasing IL-10

and TGF-P (Annacker, 2001). These Tr cells would be capable of suppressing
immune responses immediately post-transplant, but their presence in the setting of

transplantation remains speculative.

1.5 Conclusions and aims

The improvements in surgical technique and immunosuppressive treatment over the
last decades has transformed transplantation of solid organs from an experimental to
a routine clinical procedure. However, big discrepancies remain in the long-term
survival of the various organs, largely due to the differences in their immunogenicity
as a graft and the resulting ease of rejection by the host (Hall, 2000). Among solid

organs, liver allografts are the least prone to rejection and can even induce tolerance
in many animal models. Since hepatic grafts induce a systemic immune response by
the host with donor-reactive T lymphocytes detectable within the circulation similar
to other organ grafts (Dahmen, 1994), it could be hypothesised that the liver's
inherent tolerogenicity might be mediated within the graft itself.

The aim of this thesis was therefore to examine the intra-hepatic development of the

allogeneic immune response following liver transplantation and to analyse the role of
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hepatic donor cells in this process. Our initial investigations were based on two

observations. Firstly, acute cellular rejection does not appear to affect hepatic

allograft outcome adversely (Neuberger, 1998), possibly indicating a reduced

susceptibility of liver donor cells to the cytotoxicity of the infiltrating host effector
cells. Secondly, liver graft acceptance and tolerance induction requires activation
rather than anergy of the host's immune system (Bishop, 2001). The necessary

modulation of the immune response towards a tolerogenic response might be
mediated within the graft itself, or at least by hepatic donor cells.

Using biopsies of patients following liver transplantation, we first analysed
differences in the inflammatory infiltrate between patients with acute or chronic

rejection and patients without rejection by immunohistochemistry. Our aims were to:
1. analyse the composition of the infiltrate with respect to cell type
2. assess the proliferation index to examine local expansion of the infiltrate
3. analyse T lymphocytes for naive and memory phenotype to assess primary

and secondary antigen-presentation

The same biopsies were additionally investigated by immunohistochemistry for up-

regulation of pro-apoptotic signals in both, donor and recipient cells, in particular for
assessment of:

1. the mode of T cell-mediated cytotoxicity by staining for Granzyme B and
CD95 expression

2. the susceptibility of donor target cells to undergo apoptosis by staining for
intracellular signals of the apoptotic cascade

3. the susceptibility of infiltrating inflammatory cells to undergo apoptosis by

staining for the receptor CD95 and intracellular apoptotic signals

Our results indicated, that of the donor target cells, hepatocytes were particular
sensitive to CD95-mediated apoptosis. However, expression of the CD95 receptor on

hepatocytes was found in biopsies of patients with or without rejection, indicating
additional mechanisms of regulation. Previous publications demonstrated

amplification of CD95-induced hepatocyte cell death by the chemotherapeutic agent
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bleomycin mediated via the tumour-suppressor gene p53 (Mueller, 1998). We

hypothesised, that the pro-inflammatory cytokine IFN-y, which also induces p53

expression in hepatocytes (Kano, 1997), might have a similar effect. We therefore
used an in vitro model with murine hepatocytes to assess:

1. the effect of IFN-y on CD95-mediated apoptosis with bleomycin as control
2. the role of p53 in this process by using p53-/- hepatocytes
3. up-regulation of the extracellular apoptotic signals CD95 and CD95L
4. intracellular amplification of the apoptotic signal via mitochondrial

depolarisation using the specific inhibitor cyclosporin A

Another important observation during our initial investigations was the detection of

proliferating naive CD4+ T lymphocytes, indicating a primary immune response

within the hepatic allograft. The cycling naive T lymphocytes were found in biopsies
of patients with or without rejection within 7 days post-transplant implying donor
cells as APCs with a possible modulating function on the immune response. DCs are

particular equipped to stimulate naive T lymphocytes and many recent reports have

speculated on a tolerogenic function of hepatic DCs (Thompson, 1999). In the final

experiments, we therefore adapted a method of immuno-magnetic separation to

isolate DCs from liver, kidney and spleen in a murine model. Our specific aims were
to:

1. analyse the phenotype of each DC subpopulation
2. compare the stimulatory capacity of the DC subpopulations
3. assess the effect of the immunoregulatory cytokines IL-10 and TGF-p on the

DC function in comparison with the immunosuppressive peptide CTLA-4Ig
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2.1 Histopathological studies

2.1.1 Background

Specific cellular antigens or proteins can be detected in tissue sections by

immunocytochemistry (Leong, 1996). This method was employed in Chapters three
and four to assess the intra-hepatic immune response as well as pathways of

cytotoxicity during allograft rejection directly in biopsies of patients following liver
transplantation. The major advantage of immunocytochemistry lies in its suitability
for use in formalin-fixed, paraffin-embedded tissue, which allows good

cytomorphological analysis and antigen localisation within the tissue. All antibodies
used in the experiments described are commercially available with quality controls

performed by each respective company. Since most of the specific antibodies to the
relevant antigens in our studies were unconjugated, all antibodies were purchased in
this form and an indirect immunoenzyme technique was used. This indirect method
has the additional advantage of increasing the sensitivity of the immunoenzyme stain

by increasing the amount of reaction product deposited at the antigen-antibody
reaction sites.

2.1.2 Biopsies

The Scottish Liver Transplant Unit (SLTU) in the Royal Infirmary of Edinburgh is
the regional referral centre for acute and chronic liver failure and all biopsies post-

transplant were obtained from patients who underwent liver transplantation in

Edinburgh between 1994 and 1998. The biopsies were performed either according to

clinical indication or as part of a clinical protocol. Patients with acute or chronic

rejection were biopsied as part of the diagnostic procedures, patients without clinical
evidence of rejection as per management protocol of the Scottish Liver Transplant
Unit on day 7 post-transplant. Control tissue with normal liver histology was derived
from biopsies of patients undergoing routine staging for malignancy or before
treatment with hepatotoxic medication. All biopsies were reported in the Department
of Pathology of the University of Edinburgh and presented at clinico-pathological
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meetings. The final diagnosis was made after discussion of the histology and the
clinical features of the patient with the referring physician.

2.1.3 Patient characteristics and diagnostic criteria

2.1.3.1 Acute Rejection

Liver tissue was obtained from 10 patients (4 male/6 female; age range 25-60 yr)
with acute cellular rejection following orthotopic liver transplantation. The median
time post-transplant was 8 days with a range of 6-26 days. Indications for
transplantation were primary biliary cirrhosis (4 patients), primary sclerosing
cholangitis (2 patients) and chronic active hepatitis, alcoholic liver disease, fulminant

hepatic failure due to paracetamol overdose and graft failure due to chronic rejection

(one patient each). Post-transplant, patients received standard immunosuppressive

therapy with prednisolone (20 mg/day), azathioprine (2 mg/kg/day) and cyclosporin
A (10 mg/kg/day). The target trough levels for Cyclosporin A were 175-200 mmol/1.
Acute rejection was diagnosed using clinical (malaise, jaundice) and biochemical
criteria (abnormal liver function tests) in combination with histological evaluation of
the biopsies according to standard scoring systems (Demetris, 1997a). The main

histological features of rejection assessed were portal inflammation, bile duct

damage and subendothelial inflammation, each scored on a scale of 0 (none) to 3

(severe). The combined rejection scores of the biopsies used in this study were 6/9 or

above. All patients with acute rejection were treated with a daily regimen of lg of

methylprednisolone intravenously for three days. Following treatment, a second liver

biopsy was taken to confirm the resolution of the rejection episode. In all cases a

significant reduction of the total rejection scores was achieved with maximum scores

of 4/9. The histological changes were associated in all cases with improvement of the
clinical and biochemical parameters.

2.1.3.2 Chronic Rejection

Chronic Rejection. Liver tissue was obtained from 10 patients (1 male/9 female; age

range 20-58 yr) with chronic ductopenic rejection following orthotopic liver

47



Chapter 2

transplantation. The median time post-transplant was 6.5 months with a range of 3.5-
9.5 months. Indications for transplantation were primary biliary cirrhosis, fulminant

hepatic failure due to paracetamol overdose and chronic rejection of the first allograft
in 3 patients each and chronic hepatitis B in one patient. All patients received
standard immunosuppressive therapy as per management protocol for postoperative
care in the Scottish Liver Transplant Unit. Six of the patients were initially treated
with prednisolone (20 mg/day), azathioprine (2 mg/kg/day) and cyclosporin A (10

mg/kg/day, target trough levels 175-200 mmol/1). The other four patients received

prednisolone (20 mg/day) and tacrolimus (0.1 mg/kg/day, target trough levels 10-15

ng/1). In all patients, prednisolone was reduced and stopped within 6 months post-

transplant. The diagnosis of chronic rejection was based on a combination of
standard clinical (malaise, jaundice) and biochemical (abnormal liver function tests)
features together with histological criteria including bile duct loss and obliterative

arteriopathy (Demetris, 1997a). During follow-up 8 out of the 10 patients

consequently lost their graft due to chronic rejection, while the remaining two

patients recovered after their immunosuppressive regimen was changed from

cyclosporin A to tacrolimus.

2.1.3.3 No Rejection

Liver tissue was obtained from 10 patients (2 male/8 female; age range 20-64 yr)
with routine biopsies on day seven post-transplant as per management protocol for

postoperative care in the Scottish Liver Transplant Unit. Indications for

transplantation were primary biliary cirrhosis (4 patients), fulminant hepatic failure
due to paracetamol overdose (3 patients) and alcoholic liver disease, cryptogenic
cirrhosis and hepatocellular carcinoma (one patient each). The standard

immunosuppressive therapy post-transplant consisted of prednisolone (20 mg/day),

azathioprine (2 mg/kg/day) and cyclosporin A (10 mg/kg/day, target trough level
175-200 mmol/1) in all cases. None of the patients showed clinico-biochemical signs
of acute or chronic rejection and the histological evaluation of the liver biopsies
amounted only to mild inflammation with a score of 3/9 or less in each case. During
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follow-up none of the patients developed an episode of acute or chronic rejection and
no further biopsies were taken.

2.1.3.4 Normal Controls

Control liver tissue was obtained from 15 patients (8 male/7 female; age range 25-

67) without liver pathology. Indications for the liver biopsies were routine staging for

malignant lymphoma, staging of colon carcinoma at the time of the resection or

staging of the liver before therapy with methotrexate for psoriasis. All liver

specimens were histologically evaluated and reported as normal. Prior to the biopsy,
no clinical signs of liver disease were present and liver function tests were normal in
all 15 patients.

2.1.4 Tissue processing

All tissue samples were fixed in 10% buffered formalin (pH 7.4) immediately after
the percutaneous biopsy to improve conservation of the liver architecture. The

biopsies were then embedded in low-temperature paraffin wax and processed for
routine histology. The tissue blocks were stored in the archives of the Department of

Pathology.

2.1.5 Antigen-retrieval

Serial sections (3 pm in thickness) of the paraffin-embedded biopsies were mounted
on glass slides, air-dried at room temperature, dewaxed in xylene and rehydrated in a

graded ethanol series. Since cellular antigens are often masked by cross-linking
fixatives such as formaldehyde, all sections were pre-treated for antigen retrieval by
irradiation in a microwave oven in the presence of a 10 mM EDTA buffer (pH 7.4;

Sigma, UK). The sections were irradiated for 3^5 minutes, evaporated buffer

replaced before the second and third irradiation.

49



2.1.6 Inhibition of endogenous enzymes

Chapter 2

The active enzymes of the immunoenzyme technique used in the studies were

peroxidase and alkaline-phophatase. Both enzymes exist in the liver as endogenous
proteins, which can cause unspecific staining. Endogenous tissue peroxide was

therefore blocked by incubating the tissue sections in a hydrogen peroxide solution

(0.5% H2O2 in methanol, both Sigma, UK) for 10 minutes following antigen-
retrieval. Endogenous alkaline-phosphatase was inhibited at the end of the

immunoenzyme staining by adding a 1M levamisole solution (Sigma, UK) to the

chromogen.

2.1.7 Immunoenzyme staining

Tissue sections were washed twice for 10 minutes in Tris-buffered saline (TBS, pH

7.4; Sigma, UK) in between each step described below. To reduce background

staining, the sections were then incubated in a 3% solution of normal serum (NS)
derived from the same species as the secondary antibody (SAPU, UK) for 20
minutes. This was followed by incubation with the primary and biotinylated

secondary antibodies diluted in NS for 40 minutes each at room temperature. Details
on antibodies and dilutions are given in table 1. Finally, sections were incubated with

peroxidase-conjugated avidin (in single stains) or alkaline-phosphatase-conjugated

streptavidin (in double stains) diluted 1/1000 with NS for 30 minutes at room

temperature. The chromogen used with peroxidase was diaminobenzidine

tetrahydrochloride (Dako, UK), the chromogen for alkaline-phosphatase Vector Red

(Vector Lab., UK). Both solutions were used according to manufacturers
recommendations (staining for 10 minutes), however levamisole was added to Vector
Red to block endogenous alkaline-phosphatase.

For double-immunostaining, the sections were first stained by the avidin-biotin-

peroxidase complex method for the first antigen, followed immediately by incubation
with the second primary antibody to the second antigen and visualisation by the
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streptavidin-biotin-alkaline phosphatase complex method. At the end of the

procedure, all slides were counterstained with haematoxylin (Sigma, UK).

Antibody Species Dilution Source

anti-CD4 mAb mouse 1/20 Novocastra, UK

anti-CD8 mAb mouse 1/20 Dako, UK

anti-CD20 mAb mouse 1/50 Dako, UK

Anti-CD45RA mAb mouse 1/50 Dako, UK

Anti-CD45RO mAb mouse 1/50 Dako, UK

Anti-CD57 mAb mouse 1/50 Zymed, UK
Anti-CD68 mAb mouse 1/100 Dako, UK

Anti-Ki-67 mAb mouse 1/100 Dako, UK

Anti-granzyme B mAb mouse 1/50 Monosan, UK

Anti-CD95 mAb mouse 1/100 Immunotech, UK

Anti-bcl-2 mAb mouse 1/50 Dako, UK

Anti-bax pAb rabbit 1/200 Autogen Bioclear, UK
Anti-bcl-x pAb rabbit 1/200 Autogen Bioclear, UK

Biotinylated anti-mouse IgG pAb rabbit 1/2000 Dako, UK

Biotinylated anti-rabbit IgG pAb goat 1/2000 Dako, UK

Table 2.1

Primary and secondary antibodies used in immunohistochemistry. The antibodies are

monoclonal (mAb) or polyclonal (pAb).

2.1.8 Controls

Negative controls for each run were performed by omitting the primary antibody for
the single-stain procedures or both primary antibodies for the double-stain

procedures. Positive controls were obtained by using tissue from normal human

lymph nodes for all primary antibodies against immune cells, or by using carcinoma
tissue as recommended by the manufacturer for primary antibodies against apoptotic

signals.
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2.1.9 Histological analysis

The number of cells staining positively was enumerated by two independent
observers (MMD & DJH) using the Zeiss HOME microscope at x40 magnification.
This was done "blindly", i.e. without knowledge of the underlying patient's
characteristics. According to the liver's architecture, portal tracts and liver lobules
were assessed separately. Portal tracts were defined as connective tissue containing
branches of the hepatic artery and portal vein surrounded by hepatocytes. Liver
lobules were recognised by the central vein (terminal hepatic venule) surrounded by

parenchyma in a hexagonal shape with radial orientated hepatocytes. Because of the
size of the needle biopsies, five portal tracts and five liver lobules were studied per

section with the exception of specimens with chronic rejection, in which all visible

portal tracts were examined. Since the absolute cell numbers of the immune cells
varied not only with the diagnosis, but also within the diagnostic groups and within
the same biopsies, numbers of positive staining cells were expressed as the

percentage of all cells of this type. In contrast, staining in hepatocytes and biliary

epithelial cells changed both, in numbers of positive cells and in intensity of the

staining. Positive staining was therefore assessed semi-quantitatively as either high
or low. High was defined as clearly visible granular stain, low as definitive but weak

immunopositivity which was consistently greater than in negative control sections.
The analysis of each section was repeated twice with an error rate of less than 5%,
the degree of concordance between the two observers was greater than 95%.

2.1.10 Statistical analysis

The student's /-test for differences between two means was used to compare the
mean percentage (± s.e.m.) of the relative number of cells staining positively in

biopsies of each subgroup of patients. Results with a p-value less than 0.05 were

considered as significant.
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2.2 Cell cultures and experiments

2.2.1 Experiments with hepatocytes

2.2.1.1 Background

All cell cultures used in the studies were derived from murine cells. The isolation of

hepatocytes, which form the basis of the experiments in chapter 5, is facilitated by
the fact, that they make up 80% of the total liver cell mass (Blouin, 1977). In

addition, hepatocytes are significantly larger and more dense than other hepatic cells,
i.e. non-parenchymal cells (Zahlten, 1981). However, difficulties can arise from the

susceptibility of hepatocytes to oxidative stress and their requirement for specific

support media, which may affect viability of the cells. In this study, hepatocytes were
isolated by a two-step retrograde perfusion of the liver with a collagenase solution
for enzymatic digestion of the connective tissue, thereby releasing single cells from
the liver matrix (Berry, 1969). The cell suspension was then separated by density

centrifugation over percoll into parenchymal and non-parenchymal cell fractions

(Pertoft, 1977). Hepatocytes obtained by this protocol are viable and metabolically
active with intact membrane surface receptor expression (Steer, 1979).

2.2.1.2 Animals

Male C3H mice (10 weeks of age) were purchased from B&K Universal Ltd.

(Grimston Aldbrough Hull, UK) and maintained together with age-matched, male

p53-deficient mice which have been previously described (Clarke, 1993). Animals
were housed five per cage under appropriate conditions of temperature and humidity
and with a 12-hour artificial light cycle. Food and water were available ad libitum.
All experiments were conducted under local guidelines for the care of animals under
the Code of Practice for the Housing and Care of Animals used in Scientific
Procedures - HMSO 1989.
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2.2.1.3 Cell isolation

Hepatocytes were isolated as described previously (Bellamy, 1997) with minor
modifications. Mice were killed by cervical dislocation and dissected to open the
thoracic and abdominal cavity. A catheter (ID 0.5 mm, OD 1 mm; Falcon, UK) was

inserted via the right chamber of the heart into the thoracic vena cava inferior and the
liver perfused in situ with 5 ml of Liver Perfusion Medium (37°C, supplemented
with penicillin-streptomycin; both Gibco BRL, Life Technologies, UK) to

exsanguinate the liver and initiate the loosening of cell to cell contact. Excess

perfusion pressure was avoided by opening the portal vein. The perfusion was then
continued with 10 ml of Liver Digest Medium (37°C; Gibco BRL, Life

Technologies, UK) containing collagenase and dispase for the dissociation of the

hepatic cells.

The digested liver was excised, the gallbladder removed and a single cell suspension
established by filtration of the loosened cells through a 100 pm mesh (Falcon, UK).
The cell suspension was washed three times in ice-cold Williams E medium (Sigma,

UK) supplemented with 10% foetal calf serum (FCS; SAPU, UK) and 1 ng/ml

epidermal growth factor (EGF; Sigma, UK) by slow centrifugation (2 minutes at

50xg), then fractionated by Percoll density centrifugation (35% Percoll in phosphate-
buffered saline (PBS); both Sigma, UK) for 20 minutes at lOOOxg and 4°C. Non-

parenchymal cells and cell debris were discarded and the cell pellet containing the
viable hepatocytes washed and resuspended in Williams E medium supplemented as

previously with FCS and EGF. Viability of the hepatocytes was tested by the trypan

blue exclusion test using a Neubauer cytometer. Only hepatocyte suspensions with a

viability ofmore than 90% were used for subsequent experiments.

2.2.1.4 Cell culture

0.5 ml of the final hepatocyte suspension (density 106 cells per ml) was inoculated on

uncoated plastic dishes (30 mm in diameter; Life Technologies, UK) and cells

cultured at 37°C (5% CO2/30% O2). After 2 hours, the medium was changed to
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serum-free culture conditions with Williams E medium supplemented with 1 ng/ml
EGF alone. These conditions reduced interference by cytokines or growth factors
contained within the FCS on the subsequent experiments. Cultured hepatocytes were
then treated with the experimental reagents as outlined below. After 24 and 48 hours,

hepatocytes were harvested by incubation with a Cell Dissociation Buffer (Life

Technologies, UK). Elepatocytes cultured for the same length of time in medium
alone were used as negative control for all experiments.

2.2.1.5 Treatment with experimental reagents

Hcpatocyte cultures were treated with bleomycin (Sigma Chemicals, UK),

interferon-y (IFN-y; R&D Systems, UK) or cyclosporin A (CsA; Sandoz

Pharmaceuticals, Frimley Camberley, UK). Reagents were added at the following
concentrations: 15 mU/ml of bleomycin; 100 U/ml (ED50) of IFN-y; 0.15, 1 and 15

pg/ml of CsA. Concentrations for each reagent were chosen according to their

biological activity as previously described (Mueller, 1998; Kano, 1997; Yokoyama,

1997). CD95 receptor stimulation and CD95L inhibition were performed using
functional anti-CD95 (200 ng/ml, ED50; Jo-2, Pharmingen, USA) and anti-CD95L
antibodies (200 ng/ml, ED50; MFL-3, Pharmingen, USA). After 24 and 48 hours

hepatocytes were harvested by incubation with a Cell Dissociation Buffer.

2.2.1.6 Cytotoxicity assays

Cell death of hepatocytes as a result of the experimental treatments was assessed by

cytotoxicity assays. The MTT assay is a colorimetric assay based on the ability of
viable cells to reduce a soluble yellow tetrazolium salt to blue formazan (Green,

1984). 70 pi of cell suspension (10? hepatocytes/ml) were distributed into each well
of a 96-well microtiter plate (Nalge Nunc International, UK) and incubated for 24 or

48 hours with each combination of reagents. Four hours before the end of the
incubation time, plates were washed twice with PBS and 70 pi of Williams E

medium containing 0.5 mg/ml MTT dye (Sigma, UK) added into each well. The

optical density was determined by eluting the dye with dimethil sulphoxide (DMSO;
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Sigma, UK) and reading the absorbance values at 540 ran using an automatic
multiwell spectrophotometer (Dynatech MR5000, UK). Each measurement was

repeated on eight independent wells from at least three different mice and cell

viability calculated as percentage of untreated controls, set arbitrarily at 100%.
Results are expressed as mean ± s.e.m.

To distinguish between growth arrest and cell death, both causing a reduction of
absorbance in the MTT assay, all results were verified by morphological analysis

using acridine orange, a fluorescent dye which binds to DNA (Hayashi, 1990).

Apoptotic hepatocytes were recognised by nuclear condensation and fragmentation
as well as cell shrinkage and blebbing of the cytoplasm (Wyllie, 1980). 0.5 ml of cell

suspension (106 hepatocytes/ml) were inoculated on uncoated plastic dishes (30 mm

in diameter) and treated as described above. After 24 or 48 hours, the medium was

replaced with 1% acridine orange in PBS (both Sigma, UK) and visualised under a
fluorescence microscope. For each experiment, at least 200 cells were counted on a

standard morphometric grid. Results are expressed as the mean percentage ± s.e.m.

of apoptotic cells of all hepatocytes and represent data from three experiments on

hepatocytes from at least three different mice.

2.2.1.7 Flow cytometry

Cell surface antigen expression on isolated hepatocytes before and after the

experimental treatment was assessed using immunofluorescent staining and analysis

by flow cytometry. The hepatocytes (2 x 107sample) were washed twice in PBS (pH

7.4) containing 0.5% bovine serum albumin (BSA) and 2% sodium azide (NaNs; all

Sigma, UK). The cells were then incubated for 1 hour at 4° C with 0.3 mg/ml
hamster anti-mouse CD95L mAb (MFL3, PE conjugated; Pharmingen, UK) or 0.25

mg/ml hamster anti-mouse CD95 mAb (Jo-2, FITC-conjugated; Pharmingen, UK).
After the staining, the hepatocytes were again washed twice in PBS, fixed in 1%

paraformaldehyde and analysed using a COULTER®EPICS®XL Flow Cytometer

(Beckman-Coulter Electronics, Luton, UK). PE and FITC were both excited at

488nm, the red fluorescence emitted by PE was detected at 620nm and the green

56



Chapter 2

fluorescence emitted by FITC was detected at 525nm. Cells were gated according to

size and scatter to eliminate dead cells and debris. Unstained hepatocytes and PE- or

FITC-labelled, isotype-matched antibodies were used as negative control. Data from
at least 10000 events were acquired. For statistical analysis, results were calculated
as the ratio of the mean fluorescence intensity of the experimental samples to the

mean fluorescence intensity of the isotype controls and expressed ± s.e.m.

2.2.1.8 Statistical analysis

To test for synergism between the cytotoxic effects of anti-CD95 antibodies and the

experimental reagents a balanced two-way ANOVA (model with fixed effects) was

performed (Slinker, 1998). For all other experiments a Student's t-test was used to

define statistical differences, p values < 0.05 were regarded as significant.

2.2.2 Experiments with dendritic cells

2.2.2.1 Background

Isolation of DCs, which form the basis of the experiments in chapter six, is more

difficult, largely due to the fact, that they are a trace cell type making up less than 1%
of cells in most lymphoid and non-lymphoid organs (Schuler, 2000). Additionally,
DCs exist in a multitude of subsets with distinct developmental pathways, functional

properties and maturational stages. In peripheral tissues such as solid organs, DCs
are mostly myeloid-related and functionally immature, i.e. highly capable to process

new antigen, but unable to stimulate T cells due to low expression ofMHC antigens
and co-stimulatory signals (Steinman, 1997). Upon antigen-uptake, DCs migrate to

secondary lymphoid tissue and start to develop into mature stellate cells, i.e. lose the

capacity for up-take of new antigen, but up-regulate MHC antigens and co-

stimulatory signals, thereby becoming effective stimulators of T lymphocytes. Under

steady state conditions, most DCs in the marginal zones of the lymphatic tissue are

immature, myeloid-related DCs. In contrast, DCs in the T cell areas, so-called

57



Chapter 2

interdigitating DCs, are predominantly mature, however they include both, myeloid-
and lymphoid-related DCs.

In the mouse model, cell isolation is facilitated by the DC-specific expression of cell
surface markers. Most DCs in lymphoid tissue and peripheral organs express the

integrin CDllc (Metlay, 1990). Mature DCs in the T cell areas of the spleen also

express DEC-205, a member of the C-type lectin receptor family (Kraal, 1986).

Originally thought to be specific for interdigitating DCs, DEC-205 has also been
found on DCs within the liver, but no other solid organ (Woo, 1994). Lymphoid-
related murine DCs additionally express CD8a as a homodimer (Vremec, 2000).

Finally, contamination with other leukocyte-subsets is routinely excluded on the
basis of absent or low expression of specific markers such as CD3 for T

lymphocytes, IgG for B lymphocytes, CD56 for NK cells or F4/80 for

monocytes/macrophages (Schuler, 2000).

In this study, DCs were isolated from liver, kidney and spleen based on a positive
selection method utilising the MACS system (Miltenyi, 1990). Positive selection
methods by flow cytometry (FACS) or magnetic sorting (MACS) use monoclonal
antibodies to separate DCs from freshly isolated low-density fractions (Metlay, 1990;

Crowley, 1990). Splenic DCs isolated by this method are functionally immature with
the phenotype of marginal zone DCs. To include all splenic DCs, mature

interdigitating and immature marginal zone DCs, the method of positive selection
was further refined by using collagenase digestion and Ca2+- free conditions/EDTA
for the establishment of single cell suspension from the spleen (Vremec, 1992). This

improves the disintegration of the DC-T cell clusters in the T cell areas, which

previously prevented staining of interdigitating DCs with the monoclonal antibodies.
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Origin

Human blood DCs Lymphoid/

Myeloid Myeloid Plasmacytoid

Surface phenotype CDlc+ CDlc- CDlc-

CD4+/- CD4+/- CD4+

CDllc+ CD1 lc+/- CDllc-

CD33+ CD33+/- CD33-

CD45RA- CD45RA- CD45RA+

CD123- CD123- CD123+

BDCA2- BDCA2- BDCA2+

BDCA3- BDCA3+ BDCA3-

BDCA4- BDCA4- BDCA4+

CMRF58- CMRF58+ CMRF58-

Proposed/Reported / / \
DC function r I \

(T cell-response) Thl ThO Th2 ThO/Trl Th2

Origin

Murine DCs Lymphoid/

Myeloid Myeloid Plasmacytoid
Surface phenotype CD4- CD4+ CD4-

CD8a- CD8a- CD8a+

CD1 lb+ CD1 lb+ CD1 lb-

CDllc+ CD1 lc+/- CD 11c+/-

DEC-205+/- DEC-205- DEC-205+

Proposed/Reported
DC function

(T cell response)

/ \ 1
Thl Th2 Thl

Table 2.2

Surface phenotype and function of human and murine DC subsets. The most relevant
surface markers are highlighted. DC function is classified according to the DC-

induced Th cell response as reported in the literature (adapted from Grabbe, 2000).
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DC Immature Mature Activated

progenitor Signal DC Signal DC Signal DC

Surface MHC+/- GM-CSF MHC+ TNF MHC+ CD40L MHC+

phenotype CD40- SCF CD40+/- LPS CD40+ TRANCE CD40+

CD80- Flt-3L CD80+/- Apoptoic CD80+ CD80+

CD86- CD86+/- bodies CD86+ CD86+

Function Antigen- Antigen- Antigen-

processing presentation presentation

Location Bone Tissue Tissue/ Lymphoid
marrow circulation tissue

Table 2.3

Stages of DC maturation, each with discrete cellular function and location within the

body. Transition between the stages of maturation are mediated by specific signals as

listed (adapted from Stockwin, 2000).

2.2.2.2 Animals

Male Balb/c (H-2d) and C3H (H-2k) mice, 8-12 wk of age, were purchased from
B&K Universal Ltd. (Grimston Aldbrough Hull, UK). Animals were housed five per

cage under appropriate conditions of temperature and humidity and with a 12-hour
artificial light cycle. Food and water were available ad libitum. All experiments were
conducted under local guidelines for the care of animals under the Code of Practice
for the Housing and Care ofAnimals used in Scientific Procedures - HMSO 1989.

2.2.2.3 Cell isolation

DCs were isolated from liver, kidney and spleen of groups of 5 mice in parallel. Mice
were killed by cervical dislocation and dissected to open the abdominal cavity. A
catheter (ID 0.5 mm, OD 1 mm; Falcon, UK) was inserted into the vena cava inferior
and the liver and kidney perfused in situ with 5 ml of PBS containing 5 mM EDTA
followed by 5 ml of 0.4% collagenase (type IV; Sigma, UK) in medium (RPMI 1640,

37°C, supplemented with penicillin-streptomycin; Life Technologies, UK). The
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spleen was directly injected into the subcapsular space with 1 ml of PBS/EDTA and
then 1 ml of collagenase solution. The gallbladder was removed, the organs excised
and digested for a further 15 minutes in the collagenase solution at 37°C.

Single cell suspensions were established by passing the cells from liver and kidney

through a 100 pm cell strainer (Falcon, UK) followed by a 40 pm strainer, the

splenic cells through a 40 pm strainer only. The cells were washed in ice-cold

PBS/EDTA, centrifuged for 10 minutes at 300xg and resuspended in ice-cold RPMI
1640 medium. The non-parenchymal cell fraction (NPC) of liver and kidney was

purified by density centrifugation using 30% Percoll (Sigma, UK) at lOOOxg for 30
minutes at 4°C, which retained the epithelial cells in the top layer. The splenic cell

suspension was centrifuged at the same speed and length over Lympholyte M

(Cedarlane Lab., Canada) to enrich the mononuclear cell fraction. The separated cell
fractions were washed again in ice-cold medium to remove the Percoll solutions.

The recovered cell populations were resuspended in staining buffer (PBS with 2 mM
EDTA and 0.5% BSA (fraction V, Sigma, UK), pH 7.2) and incubated with either a
mAb against CDllc (N418), which was directly conjugated to magnetic beads

(Miltenyi Biotec, Germany), or an unconjugated rat mAb against DEC-205 (NLDC-

145; Serotec, UK). Both antibodies were used undiluted at 100 pl/108 cells for 30
minutes at 6-12°C. After washing in staining buffer, Dec-205-stained cells were

incubated with a secondary goat anti-rat IgG antibody conjugated to magnetic beads
• • • 8

(Miltenyi Biotec, Germany). The secondary antibody was used undiluted at 60 pl/10
cells for 15 min at 6-12°C. Positively stained cells were isolated on MACS

separation columns (Miltenyi Biotec, Germany), placed within the magnet. The cell

suspensions were passed through the columns, the effluent discarded, the magnet

removed and the cells retained within the column washed out with 1 ml of the final

culture medium (Iscove's Modified Dulbecco's Medium supplemented with

penicillin/streptomycin (both Life Technologies, UK) and 10% FCS (SAPU, UK)).
The isolated cells were tested for their viability by the trypan blue exclusion test and
counted using a Neubauer cytometer.
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2.2.2.4 Flow cytometry

The isolated DC populations were examined for cell surface antigen expression using
immunofluorescent staining suitable for analysis by flow cytometry. DCs (2 x

105/sample) were washed twice in PBS (pH 7.4) containing 5% BSA and 0.1% NaN3

(all Sigma, UK). The cells were then incubated for 30 minutes at 4° C with each

respective monoclonal antibody. The antibodies and their specific characteristics are

listed in table 2.2. After the staining, cells were again washed twice in PBS, fixed in
1% paraformaldehyde and analysed using a COULTER®EPICS®XL Flow Cytometer

(Beckman-Coulter Electronics, Luton, UK). PE and FITC were both excited at

488nm, the red fluorescence emitted by PE was detected at 620nm and the green

fluorescence emitted by FITC was detected at 525nm. Cells were gated according to

size and scatter to eliminate dead cells and debris. Unstained DCs and DCs incubated

with PE- or FITC-labelled, isotype-matched antibodies purchased from each

respective company were used as negative control. Data from at least 10000 events

were acquired. The selected cell populations were negative for CD3, CD19 or the
Pan-NK cell-marker and expressed low levels of F4/80 as assessed by flow

cytometry (data not shown).
mAb Species Fluorogen Source

anti-MHC II (I-Ad/I-Ed; 2G9) rat FITC Pharmingen, UK
anti-CD80 (B7-1; 16-10A1) hamster PE Pharmingen, UK
anti-CD86 (B7-2; GL1) rat FITC Pharmingen, UK
anti-CD40 (3/23) rat PE Serotec, UK

anti-CD8a (Ly-2) rat FITC Serotec, UK

anti-CD3s (145-2C11) hamster FITC Pharmingen, UK

anti-F4/80 (C1:A3-1) rat PE Serotec, UK

anti-CD 19 (1D3) rat FITC Serotec, UK

Anti-Pan-NK cells (DX5) rat FITC Pharmingen, UK
anti-CD95L (FasL; MFL3) hamster PE Pharmingen, UK
Table 2.4

Monoclonal antibodies used for analysis of cell surface antigen expression ofDCs by
flow cytometry.
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2.2.2.5 Mixed leukocyte reaction

Purified DC preparations were resuspended in Iscove's Modified Dulbecco's
Medium supplemented with penicillin/streptomycin (both Life Technologies, UK)
and 10% FCS (SAPU, UK). The DC subpopulations were then either used

immediately or cultured for 48 hours in the presence of GM-CSF (100 U/ml, ED50)
with or without dexamethasone (10"6 M/ml; Matyszak, 2000), CTLA4-Ig (100 ng/ml;

ED50), IL-10 (100 U/ml; ED50) or TGF-P (100 U/ml; ED50). After culture, DCs were

rigorously washed in medium to remove surplus cytokines or immunosuppressive

reagents and gamma-irradiated (2000 R) to prevent further DNA synthesis. 2xl04
cells per well were plated in triplicates in 96-well, round-bottom plates (Falcon, UK).

T lymphocytes from C3H (H-2k) mice were used as responder cells following
enrichment by a single passage through nylon wool columns (Havenith, 1992). Mice
were killed by cervical dislocation and dissected to open the abdominal cavity. The

spleen was injected into the subcapsular space with 1 ml of PBS/EDTA and excised.
A single cell suspension was established by passing the splenic cells through a 40 pm

strainer (Falcon, UK). The cells were washed in ice-cold PBS/EDTA, centrifiiged for
10 minutes at 300xg and resuspended in RPMI 1640 medium (37°C, supplemented
with penicillin-streptomycin; Life Technologies, UK). The cell suspensions were

then layered onto nylon wool columns (Polysciences, USA), which had been pre-

coated by incubation for one hour at 37°C with RPMI 1640 medium supplemented
with 10% FCS. After incubation for another hour at 37°C, the non-adherent cells, i.e.

the enriched T lymphocytes, were washed out with medium, tested for their viability

by the trypan blue exclusion test and counted using a Neubauer cytometer. 2x10s
cells were added as responder cells to each well of the 96-well plates.

The mixed leukocyte cultures were incubated for a maximum of 120 hours in
Iscove's Modified Dulbecco's Medium supplemented with penicillin/streptomycin
and 10% FCS (37°C, 5% CO2 in air). [3H]thymidine (1 pCi in 10 pi medium) was
added to each well for the final 18 hours of each culture. Cells were harvested after

-3

72, 96 and 120 hours and [ HJthymidine incorporation measured in a liquid
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scintillation counter. Each experiment was repeated at least three times. Negative
controls were performed by using responder cells alone, positive controls by using
concanavalin A (Sigma, UK) as mitogen. Results are expressed as the mean counts

per minute ± s.e.m. Supernatants of each culture were harvested at 72, 96 and 120
hours for analysis of the cytokine release.

Reagent Species Source

rGM-CSF mouse R&D Systems, UK
rIL-10 mouse R&D Systems, UK

rTGF-p human R&D Systems, UK

CTLA-4/Fc chimera mouse R&D Systems, UK

dexamethasone n/a Sigma, UK
Table 2.5

Reagents used as treatment of the DC populations in the MLR or before RT-
PCR/Real-time PCR.

2.2.2.6 ELISA

The differentiation of the T lymphocytes in response to the antigen-presentation by
the isolated DCs was assessed by measuring IFN-y and IL-10 in the supernatant of
the MLR by ELISA technique. The cytokines were measured using the appropriate
murine ELISA kits purchased from R&D Systems (UK) and used according to

manufacturer's instructions. 96-well microplates (Falcon, UK) were coated with the

capture antibody (R&D Systems, UK) and incubated overnight at room temperature.

The plates were then washed with PBS containing 0.05% Tween 20 (Sigma, UK),
and this was repeated in between each step described below. The plates were blocked
for 1 hour with PBS containing 1% BSA, 5% sucrose and 0.05% NaN3 (all Sigma,

UK), followed by incubation for 2 hours at room temperature with either the
undiluted samples or the standard samples (R&D Systems, UK) at 2-fold serial
dilutions giving a seven point standard curve. The plates were then incubated with
the biotinylated detection antibody (R&D Systems, UK) for 2 hours, streptavidin

conjugated to horseradish-peroxidase (R&D Systems, UK) for 20 minutes, and

64



Chapter 2

finally with the substrate solution containing a 1:1 mixture of H2O2 and

tetramethylbenzidine (R&D Systems, UK) for 20 minutes, all at room temperature.

The reaction was stopped by adding a 2 N H2SO4 solution (Sigma, UK) to each well.
The optical density of each well was determined by reading the absorbance values at

450 nm (wavelength correction set to 540 nm) using an automatic multiwell

spectrophotometer (Dynatech MR5000, UK). Each measurement was repeated on

three independent wells from at least three different experiments. Results are

expressed as pg/ml ± s.e.m.

2.2.2.7 RT-PCR

Induction of IL-10 and IL-12 p40 mRNA expression by the DC subpopulations in

response to the experimental treatments were analysed qualitatively by RT-PCR.
Total cellular RNA was extracted from isolated DC populations (5x 105 cells) before
and after stimulation with GM-CSF alone or in combination with dexamethasone,

CTLA4-Ig, IL-10 or TGF-fT DCs were analysed after 4, 6 and 24 hours of
stimulation. Each experiment was repeated three times. The cells were homogenised
with 1 ml of total RNA isolation reagent (TRIR; Life Biotechnologies, UK),
followed by RNA extraction using 0.2 ml of chloroform (Sigma, UK) for 5 minutes
on ice. The homogenate was centrifuged at 12000xg for 15 minutes and the RNA

precipitated using isopropanol (Sigma, UK) and centrifugation at 12000xg for 10
minutes. The RNA pellet was washed twice in 75% ethanol (Sigma, UK) and
dissolved in DEPC-treated water.

First-strand cDNA was synthesised from 1 pg RNA samples using SuperScript™II
RNase H Reverse Transcriptase (Life Biotechnologies, UK). The RNA was mixed
with a 10 mM dNTP Mix (10 mM each dATP, dGTP, dCTP and dTTP at neutral

pH), the specific primers for mouse IL-10 (Cat. No. 1101/1102) and IL-12 p40 (Cat.
No. ILE-1039/1040; both Maxim Biotech, USA) and sterile, distilled water. The
mixture was heated to 65°C for 5 minutes, then chilled on ice. After brief

centrifugation, 5X First-strand buffer, 0.1 M DTT and RNaseOUT recombinant
ribonuclease inhibitor were added together with the reverse transcriptase and
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incubated at 42°C for 50 minutes. The reaction was inactivated by heating to 70°C
for 15 minutes.

50 to 100 ng of cDNA were amplified by PCR reaction according to manufacture's

specifications (Maxim Biotech). The cDNA was mixed with 10X PCR buffer, 10
mM dNTP Mix, 5U/pl Taq DNA polymerase (all Life Biotechnologies, UK), the

gene specific primers (Maxim Biotech, USA), 50 mM MgCL (Sigma, UK) and
autoclaved, distilled water. After initial denaturation at 94°C for 2 minutes, 30 cycles
of PCR were performed using a PTC-100 thermal cycler (Genetic Research
Instrumentation, UK). Each cycle consisted of 60 seconds at 94°C and 120 seconds
at 60°C with a final extension time of 10 minutes at 70°C. After the PCR reaction,

amplified products were separated on 2% agarose gels by electrophoresis and
visualised with ethidium bromide (both Sigma, UK). Negative controls were

performed for each PCR reaction by omitting the reverse transcriptase, positive
controls were provided by the manufacturer (Maxim Biotech, USA) in the from of

cytokine cDNA for IL-10 (IL-10 cDNA, 107copies/pl) and IL-12 p40 (IL-12 cDNA,

107copies/pl).

2.2.2.8 Real Time PCR

The Real Time assay (Heid, 1996) using the ABI PRISM™ 7700 Sequence
Detection System (PE Applied Biosystems, USA) is based on the 5'nuclease activity
of the Taq DNA polymerase to cleave a TaqMan probe containing reporter and

quencher dye during PCR. Amplification in the presence of the target-specific double
fluorescent-labeled probe allows increasing numbers of unquenched reporter

molecules to be detected, indicating directly the accumulation of the PCR product.
IL-10 mRNA expression in DCs stimulated with GM-CSF alone (experimental

control) was compared with the expression in DCs stimulated with GM-CSF and IL-
10 or TGF-p (target samples). cDNA was synthesised from RNA (200 ng) as

described above for RT-PCR. The primer sequences of the forward and reverse

primers as well as for the double-labelled fluorogenic probe specific for IL-10
mRNA (kindly donated by Professor Jonathan Lamb, University of Edinburgh) are
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given in table 2.3. The PCR reaction contained 300 nM of forward and reverse

primers, 200 nM of fluorogenic probes, 3.5 mM MgCl, 200 Um dATP, dCATP,

dGTP, 400 Um dUTP, 0.025 U/pl AmpliTaq Gold, 0.01 U/p.1 AmplErase uracil-A-

glycosylase (UNG) and lx PCR buffer A (50 mM KCL, 10 mM Tris-HCl, 0.01 M
EDTA and 60 nM dye that serves as an internal control called Passive Reference 1).
All reagents were obtained from the TaqMan PCR reagent kit (PE Applied

Biosystems). Each PCR reaction was performed in triplicates in 96-well plates. The
conditions were: 2 minutes of incubation at 50°C to allow the UNG cleavage, 10

minutes at 95°C to activate the Ampli-Taq Gold, followed by 40 cycles of 15
seconds at 95°C and 1 minute at 60°C. An endogenous control (18s RNA) was used
to compensate for different levels of PCR inhibition, bulk splenocytes as positive
control for the PCR reaction. The relative gene expression in the samples was

calculated by comparing the relative threshold cycles (Ct value; comparative

method). All experiments were repeated at least three times and the results expressed
as fold-increase ± s.e.m. of the mRNA expression in the target samples compared
with the expression in the experimental control.

IL-10 sequence

Forward primer 5' -CCACAAAGCAGCCTTGCA-3'

Reverse primer 5' -GTAAGAGCAGGCAGCATAGCA-3'

Fluorogenic probe 5'-FAM-AGAGCTCCATCATGCCTGGCTCAGC-TAMRA-3'

Table 2.6

Sequences of primers and the double-labelled fluorogenic probe specific for mouse
IL-10 mRNA as used for Real-time PCR.

2.2.2.9 Statistical analysis

The student's /-test for differences between two means was used to compare the
mean percentage (± s.e.m.) of normally distributed results obtained by [3H]thymidine
incorporation, ELISA and Real-time PCR. Results with a p-value less than 0.05
were considered as significant.
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3.1 Summary

Background: Liver allograft acceptance appears to be dependent on initial immune
activation rather than anergy and is associated with continuous detection of systemic
donor-reactive T lymphocytes. Since the liver is the only solid organ to allow
transendothelial migration of naive T lymphocytes, hepatic allograft rejection might
be modulated within the liver by peripheral sensitisation.

Aims: The inflammatory infiltrate within the liver post-transplant was examined to:
1. analyse the composition of the infiltrate with respect to cell type
2. assess the proliferation index to examine local expansion of the infiltrate
3. analyse T lymphocytes for naive and memory phenotype to assess

primary and secondary antigen-presentation

Methods: Liver biopsies of patients with acute and chronic rejection or without
clinical rejection post-transplant were assessed by single and double label

immunocytochemistry. T cells were identified by CD4 and CD8, B cells by CD20,
NK cells by CD57 and macrophages by CD68. Naive and memory T lymphocytes
were distinguished by their expression of CD45RA or CD45RO, respectively.

Proliferating cells were recognised by the expression of the nuclear antigen Ki-67.

Results: Graft rejection was predominantly characterised by an increase of CD4+ T

lymphocytes. This was in part due to local expansion as assessed by their

proliferation index. However, proliferation of naive CD4+ T lymphocytes was a

prominent feature of both, rejecting and non-rejecting grafts, indicating primary

antigen-presentation within the liver post-transplant.

Conclusions: These findings suggest that there may be a primary immune response

generated within the allograft as well as in draining lymphatic tissue. This implicates
not only intra-hepatic proliferation of T lymphocytes as a prominent feature of

rejection, but would also allow local modulation of the donor-reactive immune

response independent of lymphatic tissue.
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3.2 Introduction

Allograft rejection of solid organs including the liver is thought to be initiated by

recipient T lymphocytes in response to alloantigens (Hall, 1978). The primary
immune response is dependent on donor APCs activating naive T lymphocytes which

subsequently start to proliferate and differentiate (Lechler, 1982). This primary
activation is believed to occur exclusively within secondary lymphatic tissue as

central sensitisation, since naive T cells lack the necessary levels of surface integrins
for transendothelial migration outside of the lymphatic tissue (Brezinschek, 1995). In
accordance with this hypothesis, donor cells as well as proliferating T cells are found
in spleen and regional lymph nodes within 2 days of liver transplantation (Demetris,

1991). Recent experiments in animals lacking secondary lymphatic tissue have

additionally demonstrated an inability of these animals to reject allogeneic

transplants (Lakkis, 2000). Only after the primary activation of nai've T lymphocytes,

grafts are thought to be infdtrated by donor-reactive CD4+ and CD8+ T

lymphocytes, the predominant effector cells of allogeneic rejection (Hall 1985,
Mosmann 1991). NK cells, macrophages and neutrophils either from the donor or the

recipient are also found within the liver, but do not appear to be essential for the

development of allograft rejection (Bingamann, 2000).

However, despite the common pathways of rejection in response to solid organs,

liver allografts seem to be less immunogenic than other organs after transplantation.
In clinical practice, liver grafts are more resistant to rejection than other organs

despite lower levels of immunosuppression, and HLA matching between donor and

recipient is not required (Opelz, 1992; Doran, 2000). In animal models,

transplantation is possible without immunosuppressive agents and tolerance
induction is described in both patients and animals (Starzl, 1993; Calne 1969). This
tolerance induction is alloantigen-specific for other organs of the same donor and can

over-ride priming (Kamada, 1981). Many authors argue that the tolerance is
mediated within the recipient's lymphatic tissue in response to migration of donor

passenger leukocytes (Bishop, 2001). However, systemic donor-reactive T

lymphocytes are detectable even in the circulation of tolerant hosts (Kamada, 1985),
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and liver allograft acceptance appears to be dependent upon a minimum amount of

rejection and intra-hepatic lymphocyte turn-over (Qian 1997; Zavazava, 2000). Since

intra-hepatic clustering between APCs and lymphoblasts can be observed within 2-3

days post-transplant (Demetris, 1991), intra-hepatic immune activation might be an

important factor in mediating the host's immune response. Moreover, the liver has
been recently shown to be the only solid organ allowing direct contact between

parenchymal cells and naive T lymphocytes through fenestrated endothelial cells

(Bertolino, 2000), raising the possibility of peripheral sensitisation and even

regulation of the host's immune system.

The aim of this part of the study was to analyse the intra-hepatic immune response

following transplantation. Using liver biopsies of patients post-transplant as a model,
the phenotype of potentially donor-reactive immune cells was assessed by their

expression of the subset specific antigens CD4 and CD8 for T lymphocytes, CD20
for B lymphocytes, CD57 for NK cells and CD68 for macrophages (Abbas, 1994).

Comparisons were made between biopsies of patients with acute and chronic

rejection or without clinical rejection after transplantation to examine the relevance
of the composition of the infiltrate for graft outcome. Local expansion of each cell
subset was assessed using the proliferation marker Ki-67, a nuclear antigen specific
for the late Gl, S, G2 and M phases of the cell cycle (Gerdes, 1984). Finally, cycling
T lymphocytes were investigated for their expression of the two isoforms CD45RA
and CD45RO of the leukocyte common antigen family (LCA, CD45), which allow
the distinction of naive and memory cells and thereby between centrally or

peripherally sensitised T lymphocytes (Mackay, 1993).
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3.3 Results

3.3.1 Phenotype of infiltrating mononuclear leukocytes post-transplant

Following liver transplantation, inflammatory cells were found in the allograft both
within the portal tracts close to the vascular endothelium and biliary epithelium and
within the liver parenchyma close to hepatocytes. The absolute cell numbers of the

inflammatory infiltrate varied with the diagnosis and were significantly higher in

biopsies during acute rejection compared with biopsies during chronic rejection or

without rejection (Fig. 3.1). They also varied both within the diagnostic groups and
within the same biopsies; to account for these variations, numbers of positive

staining cells were expressed as the percentage of all cells of this type.

ML were phenotyped by their expression of subset specific antigens. T lymphocytes
were identified by CD4 and CD8, B lymphocytes by CD20, NK cells by CD57 and

macrophages by CD68. In all biopsies post-transplant, CD4+ T lymphocytes were

predominantly located within the portal tracts, while CD8+ T lymphocytes and NK
cells were found both within the portal tracts and the liver parenchyma. Macrophages
were mainly situated within the liver parenchyma during all stages of rejection, but
in biopsies of patients without rejection they were a prominent feature inside the

portal tracts.

Assessment of the percentage ofmononuclear cell subsets according to the diagnosis
showed significant changes only for CD4+ T lymphocytes and NK cells (Fig. 3.2).

During acute rejection, 43.8±2.5% of ML were positive for CD4 compared with
18.9±1.9% (p = 0.0015) in biopsies of patients without rejection, 26.8±3.1% (p =

0.013) following treatment of acute rejection and 22.9±6.0% (p = 0.033) during
chronic rejection. NK cells made up 6.7±0.6% of all ML during acute rejection,

significantly higher than in patients without rejection (2.1±0.3%, p = 0.018) or

patients with chronic rejection (2.7±0.4%, p = 0.011). B lymphocytes were

occasionally present within portal tracts of some but not all of the biopsies,

accounting for less than 1% of all ML.
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Figure 3.1:
Absolute cell number of ML within portal tracts in liver tissue following orthotopic

transplantation. The cell number is expressed as mean percentage ± s.e.m./high

power field (x40 magnification; n = 10).
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Figure 3.2

Expression of CD4, CD8, CD57 and CD68 in ML in liver tissue following

transplantation. The number of CD4+ T lymphocytes, CD8+ T lymphocytes, CD57+
NK cells and CD68+ macrophages is expressed as mean percentage ± s.e.m. of all
ML (n = 10).
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3.3.2 Proliferation ofmononuclear leukocytes post-transplant

Proliferation of intra-hepatic leukocytes was assessed by their expression of the
nuclear antigen Ki-67, which is closely associated with the cell cycle. Biopsies from

patients without liver disease were used to study the proliferation rate in normal liver
tissue. In these, Ki-67+ ML were rarely observed with a mean percentage of 1 ±

0.3% (Fig. 3.3) and were located throughout the liver parenchyma as well as inside
the portal tracts.

Biopsies taken on day 7 post-transplant from patients without clinical rejection
revealed increased numbers of ML expressing Ki-67 compared with normal liver
tissue (15.4±2.4% vs. 1±0.3%, p = 0.0038). These were located predominantly inside
the portal tracts (Fig. 3.4).

During acute rejection, the percentage of proliferating ML rose to 61.1±1.9%,

significantly higher than in patients without rejection (p < 0.0001). The distribution
of Ki-67+ cells was mainly inside the portal tracts with some present in the adjacent
liver parenchyma (Fig. 3.5). Following treatment with corticosteroids, the number of
ML expressing Ki-67 fell to 23.2±2.5%. This was significant compared with the

previous biopsies during acute rejection (p < 0.0001), but not with biopsies from
patients without rejection (p = 0.052).

During chronic rejection, the number of ML in cell cycle was 24.9±5.9%,

significantly different to biopsies from patients without liver disease (p = 0.004) or
with acute rejection (p = 0.0004), but not from patients without rejection (p = 0.17).
More of the Ki-67+ cells were present within the liver parenchyma, but again the

majority was situated inside the portal areas (Fig. 3.4).
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Ki-67+ cells

normal no acute post chronic
rejection rejection treatment rejection

Figure 3.3
Ki-67 expression of ML in normal liver tissue and following transplantation. The
number of Ki-67+ cells is expressed as mean percentage ± s.e.m. of all ML (normal
tissue: n = 15; all other tissue: n = 10).
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Figure 3.4
Ki-67 expression of ML following transplantation: a) moderate expression by

periportal ML in biopsies of patients without significant rejection: b) moderate

expression by periportal and intraparenchymal ML during chronic rejection.
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Figure 3.5
Ki-67 expression of ML following transplantation: a) high expression by periportal
ML during acute rejection; b) reduced expression following treatment for acute

rejection with corticosteroids.
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3.3.3 Proliferating leukocytes are predominantly CD4+ T lymphocytes

In order to study the phenotype ofML proliferating after transplantation, we used a

double-staining method to assess which subsets of cells were co-expressing the
nuclear antigen Ki-67. Positive double-staining of CD20, CD57 or CD68 on Ki-67+
cells was not observed. CD4+ and CD8+ T lymphocytes were therefore reassessed as

a percentage of all lymphocytes.

As previously described, CD4+ T lymphocytes were predominantly located inside
the portal tracts in all biopsies post-transplant. In biopsies of patients without

rejection, CD4+ lymphocytes represented 31.6±3.3% of all lymphocytes (Fig. 3.6).

During acute rejection, the number of CD4+ cells was significantly higher with
62.6±3.6% (p = 0.0031). Treatment of acute rejection with i.v. corticosteroids
resulted in a significant reduction of CD4+ cells to 38.3±4.4% (p = 0.013), similar to
chronic rejection with a percentage of 32.8±8.6% (62.6±3.6% vs. 32.8±8.6%, p =

0.033).

Like CD4+ T lymphocytes, proliferating cells were predominantly located inside the

portal tracts in biopsies of patients without rejection. Accordingly, the majority of
Ki-67+ cells were CD4+ on double-staining with a mean percentage of 90.0±3.0%

(Fig. 3.7 and 3.8). A similar distribution of CD4+ T lymphocytes was observed

during acute rejection with 96.0±1.3% of proliferating cells positive for CD4.
Treatment of acute rejection with corticosteroids did not change the distribution of

cells, but significantly reduced the percentage of CD4+ T lymphocytes in cell cycle
to 87.8±1.6% (p = 0.029). During chronic rejection, most of the CD4+ T

lymphocytes remained located inside the portal tracts, but the percentage of CD4+

proliferating cells (75.5±2.5%) was significantly lower compared with acute

rejection (p = 0.0054) or no rejection (p = 0.034).

In contrast to CD4+ T lymphocytes, CD8+ T cells were predominantly situated
within the liver parenchyma with only a minority inside the portal tracts in all tissues

post-transplant. In biopsies of patients without rejection, CD8+ lymphocytes

represented 50.5±10.4% of all lymphocytes with no significant changes to the
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percentage during acute or chronic rejection (Fig. 3.6). In addition to CD4+ T

lymphocytes, CD8+ T lymphocytes were only occasionally positive for the nuclear
antigen Ki-67 on double-staining (Fig. 3.7 and 3.8). No significant changes were

detected in the percentage of CD8+ proliferating lymphocytes between the four
groups of biopsies.

CD4+/CD8+ lymphocytes

no acute post chronic
rejection rejection treatment rejection

□ CD4+

□ CD8+

Figure 3.6

Expression ofCD4 and CD8 in lymphocytes in liver tissue following transplantation.
The number of CD4+ and CD8+ lymphocytes is expressed as mean percentage ±

s.e.m. of all lymphocytes (n = 10).
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CD4+ and CD8+/Ki-67+ lymphocytes
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Figure 3.7

Expression of CD4 and CD8 in proliferating lymphocytes in liver tissue following

transplantation. The number of CD4+ and CD8+ T lymphocytes is expressed as

mean percentage ± s.e.m. ofall Ki-67+ cells (n = 10).
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Figure 3.8

Double-staining of CD4+, Ki-67+ and CD8+, Ki-67+ T lymphocytes in liver tissue

following transplantation (brown staining: CD4, CD8; red staining: Ki-67; blue

staining: haematoxylin): a) predominance of proliferating CD4+ T lymphocytes in

portal tracts post-transplant; b) minority of proliferating CD8+ T lymphocytes in

portal tracts post-transplant.
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3.3.4 Proliferating T lymphocytes are both naive and memory cells

To establish whether the proliferating CD4+ T lymphocytes were of the naive or

memory phenotype, we used the double-staining method to examine proliferating

lymphocytes for their expression of the two isoforms CD45RA (naive lymphocytes)
and CD45RO (memory lymphocytes) of the leukocyte common antigen family

(LCA, CD45). The number of naive and memory T cells was expressed as the

percentage of all lymphocytes that were either CD45RA+ or CD45RO+.

In all biopsies, CD45RA+ lymphocytes were predominantly located inside the portal
tracts. During acute rejection, naive lymphocytes (Fig. 3.9) increased significantly

compared with patients without rejection (38.9±2.3% vs. 25.3±1.7%, p = 0.018).

However, treatment with corticosteroids significantly reduced this number

(38.9±2.3% vs. 29.8±0.3, p = 0.034). There was no significant difference in the

percentage of naive lymphocytes during acute compared with chronic rejection.

Of the proliferating lymphocytes (Fig. 3.10 and 3.11), CD45RA+ cells represented
40.9±3.3% and 47.3±3.3% in tissues of patients without rejection or with acute

rejection, respectively. Steroid treatment of acute rejection did not change this

percentage, but during chronic rejection (16.7±3.2%) it was significantly lower

compared with acute (p = 0.0069) and no rejection (p = 0.013).

In all biopsies post-transplant, CD45RO+ lymphocytes were present in the

parenchyma throughout the liver lobules, but the majority was situated inside the

portal areas. No significant difference was observed in the percentage of CD45RO+
cells (Fig. 3.9) between biopsies of patients without rejection and with acute

rejection, but the percentage increased significantly following treatment with i.v.
corticosteroids (52.3±1.4% vs. 40.7±0.9%, p = 0.0064). Additionally, the percentage

was significantly higher during chronic rejection compared with acute rejection

(55.7±2.7% vs. 40.7±0.9%, p = 0.034).
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CD45RO+ lymphocytes represented 53.8±0.2% of Ki-67+ proliferating cells (Fig.
3.10 and 3.11) in tissue from patients without rejection. There was no significant

change during acute rejection, but during chronic rejection the percentage ofmemory

lymphocytes was 80.3±4.4%, which was significantly higher than in biopsies from

patients with acute (55.7±1.5%, p = 0.033) and without rejection (53.8±0.2%, p =

0.026).

CD45RA+/CD45RO+ lymphocytes

no acute post chronic
rejection rejection treatment rejection

□ CD45RA+

SCD45RO+

Figure 3.9

Expression of CD45RA and CD45RO in lymphocytes in liver tissue following

transplantation. The number of CD45RA+ and CD45RO+ lymphocytes is expressed
as mean percentage ± s.e.m. of all lymphocytes (n = 10).

83



Chapter 3

CD45RA+ and CD45RO+/Ki-67+ lymphocytes

no rejection acute post chronic
rejection treatment rejection

Figure 3.10

Expression of CD45RA and CD45RO in proliferating lymphocytes in liver tissue

following transplantation. The number of CD45RA+ and CD45RO+ lymphocytes is

expressed as mean percentage ± s.e.m. of all Ki-67+ lymphocytes (n = 10).

84



Chapter 3

A

Figure 3.11

Double-staining of CD45RA+, Ki-67+ and CD45RO+, Ki-67+ lymphocytes in liver
tissue following transplantation (brown staining: CD45RA, CD45RO; red staining:

Ki-67; blue staining: haematoxylin): proliferation of a) naive (CD45RA+) and b)

memory (CD45RO+) lymphocytes post-transplant.
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3.4 Discussion

The results in this study indicate two major findings. Firstly, proliferation of ML
inside the human liver allograft was a prominent feature of rejection, suggesting that
a significant proportion of the "inflammatory infiltrate" is due to local expansion
rather than migration. Secondly, leukocytes in cell cycle were predominantly CD4+,
CD45RA+ and CD4+, CD45RO+ T lymphocytes, that is T lymphocytes of both,
naive and memory phenotype. This would implicate that the primary immune

response following liver transplantation with proliferation and differentiation of
naive T lymphocytes might not be restricted to secondary lymphatic tissue, but could

additionally occur within the allograft.

The current concept of homing and migration patterns of lymphocyte subsets (Pape,

1997) suggests that naive T lymphocytes recirculate preferentially through lymphoid
tissue which provides the necessary microenvironment for antigen stimulation. Naive

lymphocytes are able to enter lymph nodes through high endothelial venules, distinct
from other microvessel endothelia (Szekanecz, 1992). In contrast, T lymphocytes in

non-lymphatic tissue, e.g. during inflammation, are predominantly of the memory

and effector phenotype, due to their ability of transendothelial migration (Bianchi,

1997). Their rapid increase in numbers during inflammation has been accounted for

by migration rather than local expansion (Oppenheimer-Marks, 1997).

The observations in this study appear to contrast significantly with this concept. Not

only was a substantial number of naive T lymphocytes, expressing CD45RA,

residing in the peripheral tissue of the graft, but there were also sufficient signals to
activate these cells as demonstrated by their expression of the proliferation marker
Ki-67. There are however potential limitations for both markers, CD45RA and Ki-

67, relating to their specificity. CD45RA is an isoform of CD45, which is expressed

by all leukocytes including T and B lymphocytes as well as NK cells (Abbas, 1994).

Moreover, recent publications have shown some memory CD8+, CD45RO+ T cells
to revert back to a more stable, long-lived CD45RA+ phenotype without losing their

antigen-specificity (Appay, 2002). The same study defined naive CD8+ T cells by
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the absence of cytotoxic factors such as granzymes and by the expression of
CD45RA together with CD27, CD28 and the chemokine receptor CCR7, a secondary

lymphoid organ-homing marker (Campbell, 1998). A correlating CD45RA+ memory

phenotype has also been hypothesised for CD4+ T lymphocytes (Bell, 1998),

although CD4+ T cells might rather co-express CD45RA and RO than lose the
activation marker CD45RO altogether (Arlettaz, 1999). Ki-67 on the other hand is

specific for certain phases of the cell cycle (Gerdes, 1984), but does not ultimately

prove cell division. Another potential cell fate of cycling lymphocytes is cell death,
and hepatocytes were recently demonstrated to induce apoptosis in nai've CD8+ T
cells after their initial progression into the cell cycle (Bertolino, 1999).

In the current study, most of the CD45RA+, Ki-67+ cells co-expressed CD4,

indicating them to be CD4+ T lymphocytes. The highest number of CD45RA+,
Ki67+ T cells was found in biopsies of patients undergoing acute rejection one week

post-transplant, when recently activated memory T cells would still express CD45RO

(Appay, 2002). Although apoptosis rather than proliferation of the cells cannot be

excluded, other publications in kidney transplantation have also demonstrated

proliferation of lymphocytes within the allograft, linking it to rejection (Nemlander,

1982; Von Willebrand, 1983). Moreover, aggregates of DCs and lymphoblasts are a

common feature of acute and chronic rejection in heart and liver allografts, indicating
in situ stimulation of the lymphocytes (Forbes, 1986; Demetris, 1991 and 1997b).
This has led to the concept of peripheral sensitisation, but only newer studies in

kidney and heart allograft rejection were able to describe the ratio between naive and

memory T cells using CD45RA and RO as markers (Ibrahim, 1993b and 1995). In
both organs CD45RO+ memory T lymphocytes increased during rejection, while
data on proliferation was not provided. However, the existence of naive T cells
within the grafts could indicate, that allografts in general become accessible to

transendothelial migration of naive T cells, in contrast to organs during other forms
of inflammation.

Recent publications on the other hand have described intra-hepatic subpopulations of
naive T lymphocytes capable of proliferation and T cell receptor rearrangement
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leading to the hypothesis of extralymphatic T cell development in the liver (Makino,

1993; Sato, 1995; Collins, 1996). This hypothesis is now being supported by the new

finding, that the liver is the only peripheral organ to allow migration of naive T cells

through fenestrated endothelial cells (Bertolino, 2000). Additionally, both,

hepatocytes and sinusoidal endothelial cells appear to interact with naive T

lymphocytes, inducing either apoptosis or anergy (Bertolino, 1998; Knolle, 2001).

Following transplantation however, lymphoblasts are found in close contact with
DCs (Demetris, 1991 and 1997b), which are located within the portal tracts (Hart,

1981). In this study, naive T cells were also predominantly observed within the portal

tracts, implicating DCs as the likely APCs.

Hepatic DCs have recently been hypothesised to be tolerogenic (Thonpson, 1999),
but the association of T cell proliferation with acute rejection in this study rather

suggests a local expansion of the inflammatory infiltrate. The predominance of
CD4+ T lymphocytes is compatible with their role as the principle mediators of

rejection, which provide the signals for other lymphoid cells to become cytotoxic
effector cells (Mosmann, 1991; Hao, 1990). During chronic rejection, CD45RA can

not be used as a certain marker of naive T lymphocytes, but most of the proliferating
cells in the respective biopsies of this study expressed CD45RO rather than RA,

compatible with the function of CD45RO as an activation marker of memory cells

(Bell, 1998).

In contrast to rejection, the role of CD4+ T cells co-expressing CD45RA and Ki-67
in the biopsies of patients without rejection is less clear. Since the biopsies were

taken on day 7 post-transplant, CD45RA can be assumed to be a marker of naivety.
Ki-67 on the other hand might not necessarily indicate proliferation in the absence of
an expanding infiltrate. Indeed, CD8+ T lymphocytes appear to decline in stable

grafts (Wong, 1998) and the expression of Ki-67 might occur prior to cell death of
the CD4+ T cells in these grafts. Recently however, spontaneous liver allograft

acceptance has also been associated with persisting intra-hepatic CD4+ T cells

(Olver, 1998). It is therefore tempting to speculate, that some of these CD4+ T
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lymphocytes will become Tr cells or have a regulatory function similar to CD4+
CD25+ T cells in models of autoimmune disease (Annacker, 2001).

In conclusion, this study presents data which challenges the view that solid organs

and specifically the liver only represent a target for the immune system following

transplantation. Recent publications on transplantation in patients and animal models
have led to the hypothesis that the migration of donor passenger leukocytes into

recipient lymphoid tissue influences transplantation outcome (Starzl, 1996; Bishop,

2001). The present results suggest that the graft itself might be relevant for the

development of the immune response. Either all solid organs post-transplant provide
a location for allorecognition and the subsequent primary lymphocyte activation, or
the liver has specific immunological properties because of its unique vascular
architecture.
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Chapter Four - T cell-mediated cytotoxicity post-transplant
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4.1 Summary

Background: Cell death of donor target cells during liver allograft rejection is

thought to be predominantly by apoptosis and caused by cytotoxic T lymphocytes via

perforin/granzyme B and CD95L/CD95. However, liver grafts appear to be more

resistant to rejection than other solid organs and intra-hepatic depletion of donor-
reactive T cells might precede tolerance induction.

Aims: Immune and target cells within the liver post-transplant were assessed for:
1. T cell-mediated cytotoxicity by staining for Granzyme B and CD95

expression
2. the susceptibility of target cells to apoptosis by staining for intracellular

signals of the apoptotic cascade
3. the susceptibility of immune cells to apoptosis by staining for the receptor

CD95 and intracellular apoptotic signals

Methods: Liver biopsies of patients with acute and chronic rejection or without
clinical rejection post-transplant were assessed by single and double label

immunocytochemistry. T cells were identified by CD4 and CD8, B cells by CD20,
NK cells by CD57 and macrophages by CD68. Proteins related to cytotoxicity and

apoptosis were analysed by staining for granzyme B, CD95, bcl-2, bcl-x, bax and

p53.

Results: Granzyme B was highly expressed by CD8+ T cells and NK cells during

graft rejection, while CD95 expression was a prominent feature in the group without

rejection in the periportal infiltrate. CD95 was also constitutively expressed by

hepatocytes and up-regulated during rejection, but undetectable in the biliary

epithelium or vascular endothelium. The anti-apoptotic protein bcl-2 was expressed
in ML during all stages of rejection, while bcl-x and bax were constitutively

expressed in hepatocytes and biliary epithelial cells and up-regulated during

rejection. p53 was only expressed post-transplant correlating with the severity of

rejection.
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Conclusions: Both pathways, perforin/granzyme B and CD95L/CD95 appear to be

implicated in hepatic allograft rejection. However, CD95-mediated apoptosis seems

to be restricted to the secondary targets hepatocytes and might be, together with bcl-

2, important in the intra-hepatic regulation of the inflammatory infiltrate.
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4.2 Introduction

Included in the minimal histological criteria of acute and chronic rejection (Demetris,

1997a), cell death of biliary epithelial cells and vascular endothelial cells is the most

prominent feature of liver allograft rejection. Inflammatory cells are usually found in
close proximity to these cells making them the primary targets of the immune-
mediated injury. In contrast, hepatocellular damage appears to be rather indicative of
severe and prolonged rejection, associated with the spill-over of inflammatory cells
into the liver parenchyma (Int. Working Party, 1995).

Target cell death during liver allograft rejection appears to be predominantly by

apoptosis, first described in experimental porcine allograft rejection (Searle, 1977)
and during rejection of human liver transplants (Snover, 1984). Apoptosis of

hepatocytes and biliary epithelial cells correlates well with the degree of rejection

using a rat model (Krams, 1995a). However, detection of apoptosis, in particular of

biliary epithelial cells and vascular endothelial cells, has remained difficult possibly
due to the rapid clearance of the dead cells by phagocytosis (Wyllie, 1980). Other
studies have therefore used the detection of intracellular signals involved in the

apoptotic cascade to assess the susceptibility of target cells to undergo apoptosis.

Down-regulation of the anti-apoptotic protein bcl-2 has been recently associated with
loss of bile duct cells during acute rejection (Gapany, 1997).

In addition to cell death of donor cells, DNA fragmentation and apoptosis of

periportal ML has been described following liver transplantation (Afford, 1995).
This has led to the hypothesis that apoptosis of donor-reactive T cells precedes
tolerance induction and a recent study demonstrated that intact T cell-apoptosis

pathways are required for tolerance induction across MHC barriers (Wells, 1999).
Activated rather than resting T cells appear to be susceptible to cell death which is

thought to be mediated by activation-induced cell death following the engagement of
the apoptotic receptor CD95 (Alderson, 1995).
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In the previous chapter, we analysed the composition of the inflammatory infiltrate

post-transplant and found a disproportionate increase ofCD4+ T lymphocytes during
acute rejection. In contrast, the relative number of CD8+ T lymphocytes, the

presumed cytotoxic T cells, did not change significantly in the biopsies of patients
with or without rejection, although absolute numbers did increase during acute

rejection. CTLs may induce apoptosis and kill their target cells via two distinct

pathways (Liu, 1996). Firstly, they are able to secret the pore-forming protein

perforin and proteases such as granzyme A and B, which are specific for cleavage
and activation of DNA binding proteins and caspases of the apoptotic sequence.

Secondly, T cells may express the protein CD95L, which engages its receptor CD95
on the surface of the target cells and triggers the apoptotic sequence on receptor-

bearing cells. Both pathways have been implicated in allograft rejection of solid

organs using knock-out mice (Kaegi, 1996) or PCR for measurement of mRNA
levels (Sharma, 1996), but the distribution and regulation of the signals in situ
remains unclear.

Using liver biopsies of patients following transplantation, our aim was to examine
the two pathways of T cell-mediated cytotoxicity during rejection in situ to elucidate
their individual significance in the immune response. The expression of granzyme B
and the CD95 receptor was therefore assessed according to the cell type by

immunocytochemistry. Additionally, the expression of intra-cellular signals related
to apoptosis were investigated by staining for three members of the bcl-2 family and

p53. bcl-2, bax and bcl-x as well as p53 are able to modulate the initial apoptotic

signal (Hale, 1996), and their expression was examined to evaluate the susceptibility
of target cells to undergo cell death.
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4.3 Results

4.3.1 Increased granzyme B expression during acute and chronic rejection

ML expressing Granzyme B were assessed as the percentage of positive staining
cells of all visible ML. No staining was detected in biopsies from patients without
liver disease used as normal controls. ML in biopsies taken on day 7 post-transplant
from patients without clinical rejection expressed granzyme B occasionally with a

mean percentage of 4.6±0.9% (Fig. 4.1). Positive cells were located both in the portal
tracts and the liver parenchyma.

During acute rejection, the percentage of granzyme B positive ML was significantly

higher than in biopsies of patients without rejection (13.9±0.4% vs. 4.6±0.9%, p —

0.01), but with a similar distribution in both the portal tracts and the liver

parenchyma. Following treatment with corticosteroids, the percentage of positive

staining cells fell significantly to 5.9±1.2% (p=0.025). The highest percentage ofML

expressing granzyme B was found during chronic rejection (Fig. 4.1 and 4.2a) with

26.0±2.9%, significant compared with biopsies of patients without rejection

(p=0.019), but not compared with acute rejection (p=0.053). Positive cells were

predominantly located within the liver parenchyma rather than in the portal tracts.

Further investigation of the ML subsets expressing granzyme B by double-staining
with subset markers revealed, that granzyme B positive cells were mostly CD8+ T

lymphocytes (Fig. 4.2b) and occasionally CD57+ NK cells.
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Figure 4.1

Expression of granzyme B in ML in normal liver tissue and following

transplantation. The number of granzyme B+ leukocytes is expressed as mean

percentage ± s.e.m. of all ML (n = 10).
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Figure 4.2: Granzyme B expression post-transplant

Expression of granzyme B in liver tissue following transplantation: a) granzyme B

expression by intraparenchymal ML during chronic rejection (brown staining:

granzyme B; blue staining: haematoxylin); b) double-staining of CD8+ and

granzyme B+ T lymphocytes during chronic rejection in an ischaemic perivenular
area (brown staining: granzyme B; red staining: CD8; blue staining: haematoxylin).
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4.3.2 Cell type-dependent CD95 expression following transplantation

In all biopsies examined, CD95 was only detected in two cell types, ML and

hepatocytes. Expression of CD95 in ML was assessed as the percentage of positive

staining cells of all ML. In biopsies of patients without liver disease, a mean

percentage of 36.0±9.4% of ML expressed CD95 (Fig. 4.3). Positive cells were

located both in the portal tracts and within the liver parenchyma.

Following transplantation in biopsies of patients without rejection on day 7, the mean

percentage of CD95 positive ML was significantly higher (70.8±4.6% vs.

36.0±9.4%, p = 0.029). Positive cells were predominantly situated inside the portal
tracts and only occasionally within the liver parenchyma (Fig. 4.3 and 4.4a). In

contrast, during both acute and chronic rejection, the percentage of CD95 expressing
ML was significantly lower with 16.7±3.4% (p = 0.0025) and 9.5±5.1% (p = 0.003),

respectively. There was no significant difference to the normal controls. Positive
cells were again located predominantly within the portal tracts and treatment of acute

rejection with corticosteroids neither changed the percentage of positive cells nor

their distribution.

CD95 expression in hepatocytes was homogenous but varied in intensity. It was

assessed semi-quantitatively according to low or high expression. Hepatocytes in
normal control biopsies showed a low, constitutive expression of CD95 with a

uniform distribution in the liver parenchyma (Table 4.1). No change of intensity of

staining or distribution was detectable in biopsies of patients without rejection on day
7 post-transplant.

During acute and chronic rejection, predominantly perivenular hepatocytes stained

highly positive for CD95 (Fig. 4.4b and Table 4.1) compared with both periportal

hepatocytes in the same biopsies and all hepatocytes in biopsies of normal controls
and patients without rejection. Treatment of acute rejection with corticosteroids had
no effect on the CD95 expression of hepatocytes.
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Figure 4.3: CD95+ mononuclear cells

Expression of CD95 in ML in normal liver tissue and following transplantation. The
number ofCD95+ ML is expressed as mean percentage ± s.e.m. of all ML (n = 10).
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Figure 4.4: CD95 expression by ML post-transplant

Expression of CD95 by periportal ML following transplantation: a) up-regulated

expression in the group without rejection; b) low expression during acute rejection

(brown staining: CD95; blue staining: haematoxylin).
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CD95

Hepatocytes

low high

normal (n = 15) 15 0

no rejection (n = 10) 10 0

acute rejection (n = 10) 0 10

post treatment (n = 10) 1 9

chronic rejection (n = 10) 0 10

Table 4.1: Parenchymal cell expression of CD95 in biopsies post-transplant

Semi-quantitative assessment of the parenchymal cell expression of CD95 in

biopsies before and after orthotopic liver transplantation (normal controls: n=15; all
other tissues: n=10).
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Figure 4.5: CD95 expression by hepatocytes

Expression of CD95 by perivenular hepatocytes in normal liver tissue or following

transplantation: a) normal liver tissue; b) post-transplant without rejection; c) during
acute rejection; d) during chronic rejection (brown staining: CD95; blue staining:

haematoxylin).
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4.3.3 Cell type-dependent expression of apoptotic signals post-transplant

The expression of three members of the bcl-2 family, bcl-2, bcl-x and bax was

assessed together with the expression of p53. ML and biliary epithelial cells stained

positive for bcl-2, while bcl-x, bax and p53 were found in biliary epithelial cells and
hepatocytes.

Expression of bcl-2 in ML was assessed as previously as the percentage of positive

staining cells of all ML. 28.0±10.4% of ML expressed bcl-2 in biopsies of patients
without liver disease used as normal controls (Fig. 4.5). Positive cells were

predominantly located within the portal tracts and occasionally within the liver

parenchyma. Despite an increase in the absolute number of intra-hepatic ML

following transplantation, no significant change of the percentage of cells expressing
bcl-2 nor another distribution was detected in biopsies of patients with or without

rejection.

Only 3/15 biopsies of patients without liver disease used as normal controls had bile
ducts with epithelial cells expressing bcl-2. Following transplantation, bcl-2

expression was undetectable in bile ducts.

The expression of both, bcl-x and bax, was homogenous in biliary epithelial cells and

hepatocytes and was assessed semi-quantitatively as low or high expression. Both

antigens showed a low constitutive expression in hepatocytes and biliary epithelial
cells in the normal control biopsies and similar following transplantation in biopsies
of patients without rejection (Table 4.2). The staining was uniform with no dominant

pattern.

During both acute and chronic rejection, bcl-x and bax expression was up-regulated
in hepatocytes in most biopsies with a homogenous lobular distribution. Expression
of both antigens in biliary epithelial cells was very strong in all biopsies during acute

rejection and all biopsies with identifiable bile ducts during chronic rejection.
Treatment of acute rejection with corticosteroids did not alter the staining.
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The expression of p53 in hepatocytes and biliary epithelial cells was perinuclear and
varied in intensity between cells within the same biopsies. It was therefore assessed

semi-quantitatively as either positive or negative. In biopsies of patients without liver

disease, p53 expression was undetectable (Table 4.3).

Following transplantation, p53 expression was found in some, but not all biopsies of

patients without rejection (Fig. 4.9). However, all biopsies during acute and chronic

rejection had p53 positive hepatocytes or biliary epithelial cells. Treatment with
corticosteroids did not change the staining significantly.
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Figure 4.6: bcl-2+ mononuclear leukocytes

Expression of bcl-2 in ML in normal liver tissue and following transplantation. The
number of bcl-2+ ML is expressed as mean percentage ± s.e.m. of all ML (n = 10).

B

Figure 4.7: bcl-2 expression by ML post-transplant

Expression of bcl-2 by periportal ML following transplantation: a) during acute

rejection; b) in the group without acute rejection (brown staining: bcl-2; blue

staining: haematoxylin).
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bcl-x bax

Hepatocytes Bile ducts Hepatocytes Bile ducts

low high low high low high low high

normal (n = 15) 15 0 15 0 15 0 15 0

no rejection (n = 10) 10 0 10 0 10 0 10 0

acute rejection (n= 10) 3 7 1 9 1 9 0 10

post treatment (n = 10) 2 8 2 8 3 7 2 8

chronic rejection (n = 10) 3 7 0* 6* 2 8 0* 6*

Table 4.2: Parenchymal cell expression of bcl-x and bax in liver tissue

Semi-quantitative assessment of the parenchymal cell expression of bcl-x and bax in

biopsies in normal liver tissue or following transplantation (normal controls: n=15;
all other tissues: n=10).
* only 6/10 biopsies of patients with chronic rejection had identifiable bile ducts
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Figure 4.8: bcl-x and bax expression by hepatic parenchymal cells

Expression of bcl-x and bax by hepatocytes and biliary epithelial cells following

transplantation: a) and c) expression of bcl-x and bax post-transplant without

rejection; b) and d) expression of bcl-x and bax during acute rejection; (brown

staining: bcl-x or bax; blue staining: haematoxylin).
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P53

Hepatocytes Bile ducts

+ - + -

normal (n = 15) 0 15 0 15

no rejection (n = 10) 4 6 2 8

acute rejection (n = 10) 10 0 9 1

post treatment (n = 10) 10 0 8 2

chronic rejection (n = 10) 10 0 5* 1*

Table 4.3: Parenchymal cell expression of p53 in liver tissue

Semi-quantitative assessment of the parenchymal cell expression of p53 in biopsies
in normal liver tissue or following transplantation (normal controls: n=15; all other
tissues: n=10).
* only 6/10 biopsies of patients with chronic rejection had identifiable bile ducts
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Figure 4.9: p53 expression by hepatic parenchymal cells

Expression of p53 by hepatocytes and biliary epithelial cells following

transplantation: a) no expression of p53 post-transplant without significant rejection;

b) expression of p53 during chronic rejection; (brown staining: p53; blue staining:

haematoxylin).
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4.4 Discussion

T cell activation is the prominent feature of hepatic allograft rejection and the present

study implicates both major pathways of T cell-mediated cytotoxicity,

perforin/granzyme B and CD95L/CD95, in the execution of the immune response.

Similar to results obtained by measuring mRNA levels in a rat model (Krams,

1998a), granzyme B and CD95 expression was up-regulated during human allograft

rejection. However, of all the hepatic target cells, only hepatocytes expressed CD95,

indicating different susceptibilities of the hepatic target cells to the two pathways.

Granzyme B was predominantly expressed in this study by CD8+ T lymphocytes in
correlation with the degree of rejection. Granzyme B activates the caspase cascade
and triggers apoptosis following direct contact of immune and target cell (Liu, 1996),
in the case of CTLs following engagement of the TCR and MHC class I molecules.
Cells with high levels of MHC class I antigen expression such as biliary epithelial
cells and vascular endothelial cells are therefore the preferential targets for CTLs

(Steinhoff, 1988). However, the distribution of the granzyme B+ T cells within both,
the liver parenchyma and the portal tracts, suggests their ability to target all hepatic

target cells. In addition to cytotoxic T cells, NK cells are also able to kill via

perforin/granzyme B, but we only found a low percentage of intra-hepatic NK cells

(2-7% of ML) during allograft rejection compared with normal liver tissue (43-56%
of ML) or liver tissue following viral infection (39-58% of ML) (Jonsson, 1997;

Hata, 1990). NK cells have been implicated in particular in reperfusion injury

(Baldwin, 2001), however their role in allograft rejection is less clear, since they can

be inhibited by allogeneic MHC class I antigens via killer inhibitory receptors

(Manilay, 1998).

In contrast to granzyme B, CD95Ligand has to engage its receptor CD95 on the
surface of the target cell before activating caspases via its death domain
FADD/Mortl (Chinnaiyan, 1995). The present results show, that of the possible

parenchymal target cells, only hepatocytes expressed the receptor molecule CD95
and were therefore receptive to this mode of cell death. Hepatocytes express CD95
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constitutively (Leithaeuser, 1993), and the pattern of predominantly perivenular
distribution of hepatocellular CD95 expression in the biopsies post-transplant
matched recent reports on the main location of apoptotic hepatocytes during allograft

rejection (Afford, 1995). In contrast, biliary epithelial cells and vascular endothelial
cells did not bear detectable CD95 before or after transplantation and were therefore

unlikely to be affected by this cytotoxic pathway.

ML were also found to express the receptor CD95 in this study, both before and after

transplantation. CD95-mediated apoptosis is thought to play a major role in the self-

regulation of immune responses via activation-induced cell death (Alderson, 1995)
and apoptosis of donor-specific, graft-infiltrating T lymphocytes has been

hypothesised as a possible mechanism of liver allograft acceptance (Qian, 1997). The

present results suggest, that CD95-induced cell death might be responsible for the

apoptosis of donor-reactive ML following transplantation, in particular in patients
without rejection. The high level of CD95 expression in the periportal infiltrate in

biopsies of these patients could be an indication for down-regulation of at least the

early inflammatory infiltrate (Sharland, 1998). Since local expansion of the T

lymphocytes was the prominent feature of acute allograft rejection as described in

chapter three, it could be speculated, that alloreactive T cells without sufficient intra¬

hepatic activation become prone to CD95-mediated apoptosis. The cell death could
then be induced either by fratricide in response to CD95L-expressing, neighbouring
T cells (Piazza, 1997) or in response to CD95L-expressing sinusoidal endothelial
cells or hepatocytes (Mueschen, 1998).

One previous study suggested that the down-regulation of the anti-apoptotic protein
bcl-2 following transplantation might be implicated in the susceptibility of biliary

epithelial cells to apoptosis (Gapany, 1997). Indeed, low levels of bcl-2 expression
was found in bile ducts of normal controls in this study, but no expression post-

transplant. In contrast, many ML expressed bcl-2, which has been described to

prevent apoptosis induced by signals such as CD95L and glucocorticoids (Itoh, 1993;

Montague, 1995). Although this suggests a regulatory function of bcl-2 on the
survival of lymphocytes within the allograft, significant differences between the
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relative number of bcl-2 positive cells in rejecting or non-rejecting grafts were not

demonstrated.

In contrast to bcl-2, the other two members of the same family, bcl-x and bax, were
found to be constitutively expressed by hepatocytes and biliary epithelial cells

confirming previous studies (Krajewski, 1994 a and b). During allograft rejection,
both proteins were up-regulated comparable to other liver diseases with bile duct

damage such as primary biliary cirrhosis (Graham, 1998). While bax antagonises bcl-
2 and promotes apoptosis, the gene for bcl-x encodes two proteins with opposite

functions, bcl-XL preventing and bcl-xs favouring cell death (Hale, 1996). The

findings in this study implicate, that during rejection both proteins are part of the

triggered apoptotic sequence within hepatic parenchymal cells and that members of
the bcl-2 family might play an important role in the intracellular regulation of
external death signals to liver parenchymal cells. This appears also to be the function
of p53, which was expressed by hepatocytes and biliary epithelial cells only after

transplantation. p53 has been shown to induce CD95 as well as bax expression in

hepatocytes, and recently, p53 expression was demonstrated in inflammatory liver
diseases in correlation with hepatocyte destruction (Akyol, 1999).

In conclusion, the data in this study implicate both pathways of T cell-mediated

cytotoxicity into hepatic allograft rejection. Perforin/granzyme B appears to be
involved in killing the primary targets, biliary epithelial cells and vascular
endothelial cells. Hepatocytes in contrast could be susceptible to both cytotoxic

pathways, but seem particular sensitive to CD95L/CD95 during rejection with up-

regulation of the CD95 receptor expression. Together with intra-cellular signals such
as bcl-2, CD95-mediated apoptosis appears also to be important in the intra-hepatic

regulation of the immune response. Elimination of graft-infiltrating cells might be
the first step to acceptance of the liver allograft despite continuing generation of
donor-reactive T lymphocytes in the lymphatic tissue (Damen, 1994).
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Chapter Five - Amplification of CD95-mediated apoptosis

by interferon-y in primary murine hepatocvtes
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Chapter 5

5.1 Summary

Background: During liver allograft rejection, hepatocytes appear to be in particular

receptive to CD95-mediated apoptosis as indicated in chapter four. However, CD95

expression on hepatocytes was found in biopsies of patients with or without

rejection, indicating additional regulatory mechanisms. The chemotherapeutic agent

bleomycin amplifies CD95-induced hepatocyte cell death by induction of the

tumour-suppressor gene p53. The pro-inflammatory cytokine IFN-y, which also
induces p53 expression in hepatocytes, might therefore have a similar effect.

Aims: Murine hepatocytes were isolated to assess:

1. the effect of IFN-y on CD95-mediated apoptosis with bleomycin as control
2. the role of p53 in this process by using p53-/- hepatocytes
3. up-regulation of the extracellular apoptotic signals CD95 and CD95L
4. intracellular amplification of the apoptotic signal via mitochondrial

depolarisation using the specific inhibitor cyclosporin A (CsA)

Methods: Primary hepatocytes were isolated from wild-type and p53 -/- mice and
cultured under serum-free conditions. Apoptosis was induced using functional
antibodies against CD95 in the presence or absence of IFN-y, bleomycin and CsA.
Cell death was assessed by MTT-test and morphology, cell surface expression of
CD95 and CD95L by flow cytometry. The functional role of CD95L expression was

examined by blocking antibodies against CD95L.

Results: IFN-y amplified CD95-induced apoptosis by activation of p53, in contrast to

constitutive CD95 function and surface expression, which was p53-independent. This

amplification of CD95 function induced by IFN-y did not require increased CD95 or

CD95L surface expression, but was sensitive to CsA, an inhibitor of the

mitochondrial permeability transition.

Conclusions: In primary hepatocytes, p53 appears to play an active part in the

apoptotic cascade during inflammation by amplifying CD95-mediated cell death in
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response to interferon- y. This implicates the pro-inflammatory cytokine IFN-y as

one of the regulatory mechanisms which increases the susceptibility of hepatocytes
to apoptosis during liver allograft rejection. CsA in contrast might have a protective
effect on hepatocytes at low concentrations by inhibiting the mitochondrial branch of
the apoptotic cascade.
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5.2 Introduction

During liver allograft rejection, CD95-mediated apoptosis appears to be one of the
two major cytotoxic pathways of recipient T cells in damaging donor target cells

(Krams, 1998a). As shown in chapter four of this thesis, only hepatocytes expressed
detectable levels of the CD95 receptor following transplantation, indicating their

particular sensitivity to this mode of cell death. However, hepatocytes are known to

express CD95 constitutively (Leithaeuser, 1993), and positive CD95 staining of the

parenchymal cells was found in biopsies of patients with or without rejection. Since
CD8+ cytotoxic T lymphocytes were present under both conditions, additional

regulatory mechanisms might be required to increase the susceptibility of

hepatocytes to undergo CD95-triggered apoptosis.

One of the major changes in the hepatic microenvironment during allograft rejection
is the release of inflammatory cytokines such as IFN-y from infiltrating leukocytes

(Ring, 1999). Recently, IFN-y has been demonstrated to sensitise various epithelial
cells to CD95-mediated cytotoxicity (Tillman, 1998; Matsue, 1995) and might
therefore have the same effect on hepatocytes. Indeed, in animal models of IFN-y-
mediated hepatitis, apoptosis via activation ofCD95 is thought to be the predominant
mode of cell death (Okamoto, 1999). The mechanism, by which IFN-y amplifies
CD95-mediated signalling has not been clarified. In primary hepatocytes however,

IFN-y can induce the tumour-suppressor gene p53 (Kano, 1997), which is known to

enhance CD95-mediated apoptosis, either by increased cell surface trafficking of the

CD95-receptor as demonstrated in a transgenic model (Bennett, 1998) or activation
of the CD95 gene and de novo synthesis in response to chemotherapeutic drugs such
as bleomycin (Mueller, 1998).

However, the sensitivity of hepatocytes to CD95-mediated apoptosis post-transplant

might not only change as a result of the immune response, but also as a result of the

immunosuppressive treatment. Recently, CsA has been reported to up-regulate
surface CD95 expression in primary hepatocytes, implying increased susceptibility to
CD95-mediated cell death (Yokoyama, 1997). In contrast, CsA is also commonly
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used as an inhibitor of the mitochondrial branch of the apoptotic cascade due to its

blocking effect on calcineurin activation and Ca2+-dependent signalling (Bradham,

1998). In addition, CsA prevents CD95L up-regulation through transcriptional
inhibition of the CD95L promoter-enhancer region (Mittelstadt, 1998), and both
effects would rather reduce hepatocyte apoptosis post-transplant.

The purpose of this study was to investigate the potential of the pro-inflammatory

cytokine IFN-y and the immunosuppressive drug cyclosporin A to modulate CD95-
induced apoptosis in primary murine hepatocytes. In order to assess the role of p53 in

activating CD95, hepatocytes from wild-type and p53-deficient mice were used and
the results compared with the p53-dependent effect of the chemotherapeutic drug

bleomycin. Two time points were chosen for the analysis, 24 hours, when most of the

hepatocytes retain the original Go status, and 48 hours, when hepatocytes are released
from Go, p53 becomes functional and hepatocytes sensitive to regulatory cytokines

(Bellamy, 1997).

114



Chapter 5

5.3 Results

5.3.1 IFN-y amplifies CD95-mediated apoptosis in primary hepatocytes

The effect of IFN-y and CsA on CD95-mediated apoptosis was studied using serum-

free cultures of primary murine hepatocytes treated with anti-CD95 antibodies (200

ng/ml). Stimulation of the CD95 receptor with antibodies alone resulted in rapid

appearance of apoptotic hepatocytes within 4 to 6 hours. Quantification of viable
cells by MTT staining demonstrated a 20% reduction of staining after 24 hours and
of 30% after 48 hours compared with hepatocyte cultures without the antibody (Fig.

5.1). Combined treatment of hepatocytes with IFN-y (100 U/ml) and antibodies led to
a further reduction in staining to 40% after 24 hours and 55% after 48 hours (Fig.

5.2), although IFN-y alone caused only a minor reduction of the MTT staining

indicating a sensitising rather than additive effect of INF-y (p<0.01 and p<0.05, two-

way ANOVA model with fixed effects). A similar sensitising effect was observed in

hepatocytes treated with a combination of bleomycin (15 mU/ml) and anti-CD95
antibodies (Fig. 5.3) with a reduction of the MTT staining by 35% after 24 hours and
65% after 48 hours (p<0.01 and p<0.05, two-way ANOVA model with fixed effects).
CsA (0.015 pg/ml and 15 pg/ml) in contrast caused itself a dose-dependent reduction
of the staining, but did not sensitise hepatocytes to the CD95 antibodies as indicated

by an additive effect of the combined treatment with CsA and anti-CD95 antibodies

(Fig. 5.4).

To verify, that results obtained by the MTT assay were secondary to increased cell
death rather than growth arrest, all experiments were repeated with acridine orange

staining of cellular DNA for assessment of nuclear morphology. Although bleomycin
and IFN-y alone caused a reduction of positive staining in the MTT assay, this was

not reflected by an increased number of apoptotic cells implying growth arrest as

cause for the effect (Table 5.1). CsA had dose-dependently an even more pronounced
effect on the MTT staining, but again failed to up-regulate the apoptotic count

significantly (p<0.1). In contrast, combined treatment with anti-CD95 antibodies led
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in all experiments to a significant increase of apoptotic hepatocytes (Table 5.1) with
nuclear condensation and fragmentation as morphological signs.

5.3.2 p53 is required for amplification of CD95-mediated apoptosis by IFN-y

To test if the amplification of CD95-mediated cell death depended on functional p53
in primary hepatocytes, we repeated the MTT assay with anti-CD95 antibodies (200

ng/ml, ED50) in hepatocyte cultures obtained from p53-deficient mice (homozygous

p53-/-). Compared with untreated cultures of p53-deficient hepatocytes, CD95
stimulation alone resulted again in a 20% reduction of staining within the first 24

hours, equivalent to results obtained in wild-type hepatocytes and indicating the
constitutive CD95 function to be intact. In contrast, no further reduction of the

staining was observed after 48 hours (Fig. 5.1). Moreover, both IFN-y and bleomycin
lost the sensitising effect for anti-CD95 antibodies thereby indicating an abrogation
of the increased susceptibility of hepatocytes to CD95-mediated cell death (Fig 5.2
and 5.3). The dose-dependent reduction of the MTT staining by CsA was also

diminished, but showed no change in the additive effect with anti-CD95 antibodies

(Fig. 5.4).
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Figure 5.1
Reduction of MTT staining of viable cells over 48 hours induced by anti-CD95
antibodies in wt (♦) and p53-deficient (■) hepatocytes. Data (mean ± s.e.m.) are

expressed as fraction of viable cells in culture without treatment (normal control) set

arbitrarily at 100%, and represent 3 different experiments repeated on eight

independent wells from at least three different mice.
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Figure 5.2

IFN-y (100 U/ml) sensitises wt but not p53-/- hepatocytes to the effect of anti-CD95
antibodies (200 ng/ml) on the MTT staining of viable cells. Hepatocytes were treated
with anti-CD95 antibodies (♦), IFN-y (100 U/ml) (■) or a combination of both (A)

for 24 and 48 hours. Data (mean ± s.e.m.) are expressed as fraction of viable cells in
culture without treatment (normal control) set arbitrarily at 100%, and represent 3
different experiments repeated on eight independent wells from at least three
different mice. A balanced two-way ANOVA (model with fixed effects) was used to
test for an interaction between the two treatments comparing the combined effect to
an additive effect as the null-hypothesis (Altman, 1991). P < 0.05 was regarded as

statistically significant.

118



wt

Chapter 5

_ 140

-anti-CD95

bleomycin

- bleomycin + anti-
CD95

24h

time (hours)

p53 -/-

■ anti-CD95

bleomycin

- bleomycin + anti-
CD95

24h

time (hours)

Figure 5.3

Bleomycin (15 mU/ml) sensitises wt but not p53-/- hepatocytes to the effect of anti-
CD95 antibodies (200 ng/ml) on the MTT staining of viable cells. Hepatocytes were
treated with anti-CD95 antibodies (♦), each respective treatment (■) or a

combination of both (A) for 24 and 48 hours. Data (mean ± s.e.m.) are expressed as

fraction of viable cells in culture without treatment (normal control) set arbitrarily at

100%, and represent 3 different experiments repeated on eight independent wells
from at least three different mice. A balanced two-way ANOVA (model with fixed

effects) was used to test for an interaction between the two treatments comparing the
combined effect to an additive effect as the null-hypothesis (Altman, 1991). P < 0.05
was regarded as statistically significant.
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Figure 5.4

Additive effect of cyclosporin A (15 pg/ml) and anti-CD95 antibodies (200 ng/ml) in
wt and p53-/- hepatocytes as measured by MTT staining of viable cells. Hepatocytes
were treated with anti-CD95 antibodies (♦), each respective treatment (■) or a

combination of both (A) for 24 and 48 hours. Data (mean ± s.e.m.) are expressed as

fraction of viable cells in culture without treatment (normal control) set arbitrarily at

100%, and represent 3 different experiments repeated on eight independent wells
from at least three different mice. A balanced two-way ANOVA (model with fixed

effects) was used to test for an interaction between the two treatments comparing the
combined effect to an additive effect as the null-hypothesis (Altman, 1991). P < 0.05
was regarded as statistically significant.
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No treatment IFN-y Bleomycin CsA

(100 U/ml) (15 mU/ml) (15 fig/ml)

no treatment 5.5±0.5 7.6±1.1 5.6±0.5 12.8±3.75

anti-CD95 18.2±0.2 28.8±0.26 38.5±0.5 60.0±12.2

(200U/ml)

significance p < 0.05 p < 0.05 p < 0.05 p < 0.05

Table 5.1

Morphological analysis of apoptosis in hepatocyte cultures using nuclear staining
with acridine orange after 24 hours. For each experiment, at least 200 cells were

counted on a standard morphometric grid. Results are expressed as the mean

percentage ± s.e.m. of apoptotic cells of all hepatocytes and represent data from
three experiments on hepatocytes from at least three different mice. Statistical
differences were estimated using a Student's t-test.
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5.3.3 CD95 surface expression is up-regulated by CsA, but not IFN-y

One explanation for increased susceptibility of cells to CD95-mediated cell death is a

higher CD95 receptor surface expression allowing more antibodies to trigger the

apoptotic cascade. We therefore assessed the expression of CD95 on hepatocytes

following treatment with IFN-y, bleomycin and CsA using flow cytometry. For
statistical purposes, results were calculated as the ratio of the mean fluorescence

intensity of the experimental samples to the mean fluorescence intensity of the

isotype controls. Both, wild-type and p53-deficient hepatocytes, displayed

immediately post-isolation a weak constitutive CD95 expression (mean fluorescence

intensity ratio 1.8±0.06 and 1.7+0.1, respectively) (Fig 5.5a). However, after 24
hours of serum-free cell culture, wild-type, but not p53-deficient hepatocytes showed
a significantly increased receptor surface expression (mean fluorescence intensity
ratio 2.9±0.2 vs. 1.8±0.06, p<0.05). Treatment with bleomycin further enhanced this

expression in wild-type hepatocytes (mean fluorescence intensity ratio 3.7±0.1 vs.

2.9±0.2, p<0.01), but again had no significant effect in p53-deficient cells (Fig.

5.5b). A similar effect was seen following treatment with CsA (Fig 5.5c), although

significance was only reached with higher concentrations (CsA 15 pg/ml: mean

fluorescence intensity ratio 3.9±0.4 vs. 2.9±0.2, p<0.05). In contrast to the two drugs,

IFN-y had no influence on CD95 surface expression of the hepatocytes indicating
that its effect on cytotoxicity was not mediated through increased receptor expression

(Fig. 5.5d). The flow cytometry was again repeated at 48 hours but no further

changes in CD95 expression were noted for any of the different treatments.
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Figure 5.5
CD95 receptor surface expression of wt and p53-/- hepatocytes as analysed by flow

cytometry. (A) Constitutive CD95 expression post-isolation (black: CD95; grey:

isotype control). (B) CD95 expression after 24 hour treatment with IFN-y (100 U/ml)

(black: constitutive expression; grey: IFN-y). (C) CD95 expression after 24 hour
treatment with bleomycin (15 mU/ml) (black: constitutive expression; grey:

bleomycin). (D) CD95 expression after 24 hour treatment with CsA (15 pg/ml)

(black: constitutive expression; grey: CsA). Data were acquired from at least 10000
events and representative stainings from at least three different mice are shown.
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5.3.4 CD95L expression is delayed by CsA, but not induced by IFN-y

To exclude increased expression of CD95L on wild-type hepatocytes as a cause for
the amplification of CD95-mediated apoptosis, cell surface protein expression of
CD95L was assessed by flow cytometry. For statistical analysis, results were again
calculated as the ratio of the mean fluorescence intensity of the experimental samples
to the mean fluorescence intensity of the isotype controls. Immediately post-

isolation, hepatocytes did not express CD95L on their cell surface, but demonstrated
induction of CD95L expression after 24 and 48 hours of serum-free culture (mean

fluorescence intensity ratio 2.78±0.53 and 2.86±1.08 vs. 1.3±0.4, p<0.05) (Fig. 5.6a).

Although treatment with bleomycin tended to enhance CD95L expression further,
this failed to reach significance (p<0.2). In contrast, CsA delayed dose-dependently
the onset of CD95L up-regulation for the first 24 hours compared with serum-free
culture (mean fluorescence intensity ratio 1.22+0.07 vs. 2.78±0.53, p<0.05) (Fig.

5.6b), but this effect was only temporary with equivalent levels ofCD95L expression
at 48 hours. IFN-y did not affect the ligand surface expression (Fig. 5.6c), indicating
that the amplification of CD95-mediated apoptosis was not caused by increased
CD95L expression on hepatocytes. This was also corroborated by functional
assessment of CD95L in this model with a MTT-test, which proved that addition of
anti-CD95L antibodies in concentrations up to 1 pg/ml had no significant protective
effect on hepatocyte survival (data not shown).
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Figure 5.6
CD95 ligand surface expression of wt and p53-/- hepatocytes as analysed by flow

cytometry. (A) CD95L expression after 24 hour cell culture (no treatment) (black:
CD95L; grey: isotype control). (B) CD95L expression after 24 hour treatment with

IFN-y (100 U/ml) (black: no treatment; grey: IFN-y). (C) CD95L expression after 24
hour treatment with bleomycin (15 mU/ml) (black: no treatment; grey: bleomycin).

(D) CD95L expression after 24 hour treatment with CsA (15 pg/ml) (black: no

treatment; grey: CsA. Data were acquired from at least 10000 events and

representative stainings from at least three different mice are shown.
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5.3.5 Amplification of CD95-mediated apoptosis is sensitive to CsA

These results demonstrated that IFN-y amplified CD95-mediated hepatotoxicity via
induction of p53, but without increasing CD95 or CD95L surface expression,

indicating an intracellular mechanism. Recently, CD95 had been demonstrated to

signal through two pathways, one dependent, the other independent of mitochondrial

depolarisation (Scaffidi, 1998). CsA is a known inhibitor of the mitochondrial

permeability transition (Bradham, 1998) and in this study up-regulated CD95 surface

expression without amplifying CD95-mediated cell death. To assess, if the effect of

IFN-y on CD95 function was dependent on mitochondrial depolarisation, various

concentrations of CsA were tried, and 1 pg/ml was found to have the optimal hepato-

protective effect. As previously, hepatocytes were incubated for 48h with anti-CD95
antibodies (200 ng/ml) and IFN-y (100 U/ml), this time in the presence or absence of
CsA. Using the MTT-test, CsA (1 pg/ml) abrogated the reduction in staining caused

by anti-CD95 antibodies alone within the first 24 hours (Fig. 5.7a). However, this
effect lost its significance after 48 hours (Fig. 5.7b), demonstrating only a transient

blocking of CD95 signalling. In contrast, the amplification of CD95-mediated cell

death caused by IFN-y was abrogated both after 24 and 48 hours with no significant
difference between samples treated with or without IFN-y (Fig. 5.7a and b). This

complete block indicated that the p53-dependent effect of IFN-y on CD95 function
was dependent on mitochondrial depolarisation and cytochrome c release.
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24 hours

140

untreated anti-CD95 anti-CD95 + INF-g

B
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untreated anti-CD95 anti-CD95 + INF-g

Figure 5.7
Reduction of MTT staining of viable cells induced by anti-CD95 antibodies (200

ng/ml) alone or in combination with IFN-y (100 U/ml) in the presence or absence of

CsA (1 pg/ml). Data (mean ± s.e.m.) are expressed as fraction of viable cells in

culture without treatment (normal control) set arbitrarily at 100%, and represent 3
different experiments repeated on eight independent wells from at least three
different mice. A Student's t-test was used to define statistical differences and

p<0.05 was regarded as significant.
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5.4 Discussion

Although CD95-mediated apoptosis has been recognised as a key mechanism in

hepatocyte death (Krammer, 1999), studies in murine models with agonistic CD95-
antibodies revealed a discrepancy between the ready susceptibility of hepatocytes to

undergo apoptosis in vivo (Ogasawara, 1993) compared with the resistance of

hepatocytes in vitro requiring additional stimuli such as protein synthesis- or protein
kinase-inhibitors to amplify their sensitivity to CD95 (Ni, 1994; Rouquet, 1995).

Recently, p53-responsive elements within the CD95 gene were found during studies

demonstrating activation of CD95 by p53 in response to DNA damaging

chemotherapeutic drugs such as bleomycin (Mueller, 1998). The data in this study

provides evidence that p53 might also regulate the induction of CD95-mediated cell
death by the inflammatory cytokine IFN-y, however in contrast to chemotherapeutic

drugs without affecting CD95 surface expression.

Wild-type and p53-deficient murine hepatocytes were found to express CD95

constitutively, and in both, CD95 was functional with induction of apoptosis in about
20% of cells 24 hours after stimulation with agonistic CD95-antibodies. The results
are comparable with previous studies (Ni, 1994) and demonstrated constitutive CD95

expression and function to be p53-independent (Unger, 1998). In contrast, wild-type,
but not p53-deficient hepatocytes continued to undergo apoptosis for another 24

hours, when cultured in serum-free conditions, and this coincided with increased

CD95 surface expression. As described for hepatoma cell lines (Mueller, 1997),

bleomycin further amplified the CD95 function and expression in wild-type

hepatocytes, but failed to do so in p53-deficient hepatocytes. Both observations are

compatible with p53 activation in response to oxidative stress and DNA-damage
caused by hypoxia during cell isolation (Yu, 1999) or serum-deprivation (Hassan,

1999), which is enhanced by bleomycin. Subsequently, p53-dependent induction of
CD95 function might be mediated through receptor up-regulation secondary to

increased cell surface trafficking of pre-formed protein (Bennett, 1998) or gene

activation and de novo synthesis (Mueller, 1998).
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Interferon-y (IFN-y) however proved also to amplify the effect of CD95-antibodies

dependent on functional p53, although without up-regulation of the CD95 receptor

surface expression. Augmentation of CD95-dependent apoptosis by IFN-y has been

reported in several different cell types, either with (Matsue, 1995) or without (Owen-

Schaub, 1994) increase of receptor surface expression. In these studies, IFN-y was

further shown to cause induction of pro-apoptotic signals such as caspases 1, 3 and 8
or bak and bcl-xs and down-regulation of anti-apoptotic signals like bcl-2, all
intracellular components of the apoptotic cascade (Pammer, 1999; Takahashi, 1999;

Ugurel, 1999). p53 was not examined during these investigations, but IFN-y has been

reported to induce p53-expression in murine hepatocytes by signalling through the
tumour suppressor gene interferon regulatory factor-1 (IRF-1) (Kano, 1999), which
shares a transcriptional regulatory element with p53 (Lallemand, 1997). Moreover,
the transcriptional function of p53 can be further enhanced by the IFN-y-inducible

protein kinase PKR (Cuddihy, 1999).

Since the effect of IFN-y in this study appeared to be mediated through intracellular

amplification of CD95-mediated cell death, possible mechanisms were investigated.

p53 has been shown to regulate the expression of members of the bcl-2 family,

causing in particular down-regulation of bcl-2 and induction of bax (Miyashita 1994
and 1995). Both proteins affect the MPT (Krammer, 1999), and mitochondrial

depolarisation is an essential part of the signalling cascade during TNF-a-induced

hepatocyte apoptosis (Bradham, 1999). However, recent studies have demonstrated
two pathways for CD95-mediated cell death, one dependent, the other independent of
the MPT (Scaffidi, 1998). In primary hepatocytes, CD95 appears to signal through
both pathways, since inhibition of the MPT pore delays, but does not block the effect
of anti-CD95 antibodies (Hatano, 2000). A potential inhibitor of the MPT pore is

CsA, which had shown a dose-dependent cytotoxicity in this study (Wolf, 1997), but
no induction of CD95-mediated apoptosis despite causing p53-dependent up-

regulation of CD95 receptor surface expression similar to bleomycin. By using low-
dose CsA in conjunction with IFN-y and anti-CD95 antibodies, a complete

abrogation was demonstrated of the IFN-y-induced amplification of CD95-mediated
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cell death. IFN-y therefore appears to augment CD95 function by activation of p53
and induction of the signalling through mitochondrial depolarisation.

To exclude a significant contribution ofCD95L surface expression on hepatocytes to
the results, induction ofCD95L was also assessed under the experimental conditions.
Similar to CD95, CD95L expression increased over-time in serum-free culture in this

study. In hepatoma cells, this increase seems to be in response to oxidative stress

(Hug, 1997), which could explain this observation. In contrast to the results in
tumour cells however (Hug, 1997; Bernassola, 1999), bleomycin and IFN-y had no

significant additional effect on CD95L, possibly due to lower concentrations used in
the present experiments or because of the already existing induction secondary to

primary culture. CsA on the other hand prevented up-regulation of CD95L compared
with primary culture during the first 24 hours. This effect appears to be mediated

through transcriptional inhibition of the CD95L promoter-enhancer region regulated

by the CsA-sensitive NF-AT-protein family members (Mittelstadt, 1998).

Additionally, there was no protection of hepatocytes against apoptosis when using
functional anti-CD95L antibodies, indicating that in this experimental system

autocrine or paracrine CD95L-CD95 interactions played no role and confirming that

bleomycin and IFN-y alone had only an anti-proliferative effect.

In conclusion, the results in this study demonstrate for the first time that similar to

chemotherapeutic drugs, IFN-y amplifies CD95-mediated hepatotoxicity via
induction of p53. This amplification does not appear to require increased CD95
surface expression, but seems rather to be mediated through depolarisation of the
mitochondrial membrane. p53 expression has been described in liver biopsies of

patients with inflammatory liver diseases and was linked to the severity of
inflammation and hepatocyte destruction (Akyol, 1999). Since p53 expression by

hepatocytes was also a prominent feature of allograft rejection in chapter four of this

thesis, p53 appears to be an active part of the apoptotic signalling during
inflammation. The effect of CsA in contrast seems to be largely dose-dependent.

However, CsA has recently been shown to protect mice from fulminant liver
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destruction induced by anti-CD95 antibodies alone (Okamoto, 1999), and might have
a similar effect during allograft rejection.
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Chapter Six - Phenotype and allostimulatory function of

murine hepatic, renal and splenic dendritic cells
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6.1 Summary

Background: A primary immune response within the liver as indicated in chapter
three requires antigen-presentation by donor APCs. DCs are particular equipped to

prime naive T cells and hepatic DCs are thought to be tolerogenic based on their

immaturity. However, DCs from other solid organs are also immature, raising the

question if hepatic DCs are inherently tolerogenic or react to immunomodulatory

signals from their cytokine environment.

Aims: DCs were isolated from murine liver, kidney and spleen to:
1. analyse the phenotype of each DC subpopulation
2. compare the stimulatory capacity of the DC subpopulations
3. assess the effect of the immunoregulatory signals IL-10, TGF-P,

dexamethasone (Dex) or CTLA-4Ig on DC function

Methods: Using a mouse model, DCs were isolated by an immuno-magnetic method
with antibodies against CDllc and DEC-205. DC expression of MHC II, co-

stimulatory signals and the lymphoid marker CD8a was analysed by flow cytometry.

DC function, i.e. the ability to prime allogeneic nai've T cells, was assessed before
and after exposure to the maturation signal GM-CSF and IL-10, TGF-[L Dex or

CTLA-4Ig. Read-outs were T cell proliferation and release of IL-10 or IFN-y as well
as DC synthesis of IL-10 or IL-12 mRNA.

Results: Hepatic (60% CD8a+) and renal (<5% CD8a+) DCs differed in their

lineage-related phenotype, but were both functionally and phenotypically immature.
In the presence of GM-CSF, they up-regulated IL-10 and IL-12 mRNA synthesis and
became as efficient as splenic DCs in priming allogeneic Thl responses characterised

by IFN-y release. Dex, CTLA4-Ig or TGF-P inhibited the ability of all DCs to induce

a Thl response, IL-10 only the ability of mature splenic DCs. Dex, TGF-P or IL-10

abrogated DC synthesis of IL-12 mRNA, however TGF-P additionally up-regulated
DC synthesis of IL-10 mRNA.
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Conclusions: Functionally, murine hepatic DCs do not behave differently in

allogeneic DC-T cell interactions when compared with DCs from other solid organs

or lymphoid tissue. However, environmental signals can influence the DC function,

suggesting that their allostimulatory capability may be modulated following

transplantation, irrespective of their origin.

134



Chapter 6

6.2 Introduction

The results in chapter three, the intra-hepatic proliferation of nai've T lymphocytes in

patients following transplantation, indicated a primary immune response within the
liver. Activation of naive T cells requires the presence of APCs such as macrophages
or DCs (Germain, 1993). In chapter three, proliferating T cells were found

predominantly within the portal tracts of the liver. In contrast to macrophages, which
are scattered throughout the liver parenchyma, hepatic DCs are located close to these

portal tracts (Hart, 1981), leading to the hypothesis that they are involved in oral
tolerance induction for antigens transported from the gut to the liver via the portal
vein (Thomson, 1999). Indeed, tolerance induction by portal vein infusion of the

antigen is well described (Yang, 1994) and has been used in a variety of transplant
models (Kenick, 1987).

In mice, hepatic DCs display a different phenotype than DCs from other solid organs.

All DCs in the liver express the multi-lectin receptor DEC-205, and about half of
them CD8a, a marker of lymphoid-derived DCs (Woo, 1994; O'Connell, 2000).
Both surface antigens are usually expressed by mature, interdigitating DCs within T
cell areas of lymphatic tissue, which might have a regulatory function on T cell

responses (Steinman, 1997). In contrast, liver-derived DCs appear to be immature

following isolation, lacking co-stimulatory molecules such as CD80, CD86 and
CD40 and acquire a stimulatory capacity for T cells only after appropriate activation

by maturation signals such as GM-CSF (O'Connell, 2000). It has been therefore

hypothesised, that hepatic DCs are tolerogenic as a result of their immaturity and

inadequate stimulation of T lymphocytes (Thomson, 1999). Immaturity, however, is
also characteristic for DCs from organs such as the kidney, which do not have the

tolerogenic properties of the liver (Austyn, 1994). This raises the question whether
each respective microenvironment determines the way DCs activate T cells or if

hepatic DCs are inherently more tolerogenic or more susceptible to tolerogenic

signals.
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To assess this question, a method of immuno-magnetic DC separation was adapted to
isolate organ-specific DCs from liver and kidney (Miltenyi, 1990). Immature,

predominantly CD8a" and mature, predominantly CD8a+ DCs from the spleen were

also isolated as control populations from a lymphatic organ. The DC populations
were activated with GM-CSF and exposed to different stimuli before assessing their

ability to prime nai've allogeneic T cells. The tolerogenic stimuli tested were

dexamethasone and CTLA4-Ig, both used as immunosuppressive agents in clinical
and experimental transplantation (Denton, 1999), and the cytokines IL-10 and TGF-

P, which have been found within the hepatic microenvironment (Ishizaka, 1996; Tox,

2001; Narumoto, 2000).
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6.3 Results

6.3.1 Heterogeneity of hepatic and renal DCs

As a consequence of the low tissue numbers of DCs in organs, a positive selection
method via immuno-magnetic cell sorting was used to freshly isolate DCs from the

non-parenchymal cell fraction (NPC) of each organ. Hepatic DCs were isolated using
the rat antibody NLDC-145 against DEC-205, which returned reliable yields of 1.1 x

106 ± 0.1 cells per liver (n = 15). Phenotypic analysis by flow cytometry showed an

intermediate cell surface expression of MHC class II and CD86 with a low

expression of CD80 and CD40. Around 60% of cells were positive for CD8a (Fig.

1). Renal DCs in contrast were sorted using the N418 antibody against CDllc

resulting in yields of 0.4 x 106 ± 0.1 cells per kidney (n = 15). Selection with the anti-
DEC-205 antibody returned only yields of < 0.5 x 103, below the sensitivity of the
method. Similar to hepatic DCs, renal DCs expressed intermediate levels of MHC
class II and CD86 and low levels of CD80 or CD40. However, they lacked

expression of CD8a with a percentage of< 5% (Fig. 6.1).

To obtain positive controls for our experiments, the same method and antibodies
were used to isolate DCs from the spleen. Sorting with the anti-CDllc antibody
returned an average number of 2.1 x 106 ± 0.3 cells per spleen (n = 15). On

phenotypic analysis, these cells expressed intermediate levels of MHC class II and
CD86 with a low expression ofCD80 and CD40, comparable with the expression by

hepatic and renal DCs. About 20% of the DCs were positive for CD8a (Fig. 6.1). In

contrast, selection using the anti-DEC-205 antibody resulted in yields of 1.3 x 106 ±
0.2 cells per spleen (n = 15). Flow cytometry demonstrated the cells to be highly

positive for MHC class II and CD86 with an intermediate expression of CD80 and

CD40. Around 70% of the DCs were positive for CD8a (Fig. 6.1).

All DC populations were also assessed for their surface expression of the death-

inducing ligand CD95L, however this was not detected on any of the DC populations

(data npt shown).
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L DC K DC S DCi S DCm

Figure 6.1
Flow cytometric analysis of freshly isolated DCs from liver (L DC), kidney (K DC)
and spleen. Splenic DCs were isolated with anti-CDllc mAb (immature phenotype:
S DCi) or anti-DEC-205 mAb (mature phenotype: S DCm). The surface expression
ofMHC class II and the co-stimulatory signals CD80, CD86 and CD40 indicates an

immature phenotype for L DC, K DC and S DCi. S DCm in contrast display a mature

phenotype. CD8a is highly expressed by L DC (60% positive cells) and S DCm

(70% positive cells). Grey profiles indicate the specific staining of DCs, black

profiles the isotype controls. The mean fluorescence intensity of the isotype control
is 0.3 - 0.5.
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The ability of hepatic and renal DCs (Balb/c (H-2d) mice) to stimulate primary T cell

responses in vitro was assessed by allogeneic MLR assays with naive T lymphocytes
isolated from C3H (H-2k) mice. When hepatic and renal DCs were used immediately

following isolation, they were found to be poor stimulators of T lymphocyte
o

... • .

proliferation as determined by [H]thymidine incorporation (Fig. 6.2). Both DC

populations required 48 hours of culture in the presence of GM-CSF for optimal
induction of T cell proliferation. Thereafter, they induced equal levels of T cell

proliferation (Fig. 6.3a), comparable with the proliferation induced by the two

splenic DC populations cultured under the same conditions. Splenic DCs however
were able to induce optimal T cell proliferation after only 72h, while both hepatic
and renal DCs required 24h longer.

To determine the type of T cell response induced by the DC populations, the

cytokine levels of IFN-y and IL-10 were measured in the supernatant of the MLR.

While IL-10 was not detected in any of the supernatants, IFN-y was up-regulated
over-time with the highest levels at day 5 of the MLR (Fig. 6.3b). Although this
indicated a Thl-response to all allogeneic DC populations, hepatic and in particular
renal DCs induced significantly higher levels of IFN-y. To exclude that the

allostimulatory capability of the hepatic and renal DCs was restricted to a particular
MHC background of the stimulating or responding populations, the MLR was

repeated with different mouse strain combinations. In all combinations tested to date

(C3H (H-2k) DCs + Balb/c (H-2d) T cells; Balb/c (H-2d) DCs + C57/6 (H-2b) T cells;
C57/6 (H-2b) DCs + C3H (H-2k) T cells), no change was found in the ability of DCs
to induce T cell proliferation nor in the type of the T cell response (data not shown).
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Proliferation

72h 96h 120h

Figure 6.2

Priming of naive T cells (C3H) as measured by their proliferation in a MLR with

allogeneic DCs (Balb/c) isolated from the liver (L DC) or kidney (K DC). DCs were

used freshly isolated or after 48 hours of culture with GM-CSF. DCs post-isolation
from both organs (L DC ♦; K DC ■) induced a weak T cell response as compared
with GM-CSF-treated DCs (L DC ▲; K DC *). T cell proliferation was assessed by

[3H]thymidine incorporation after 72, 96 and 120 hours (mean counts per minute ±

s.e.m.).
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72h 96h 120h

B)

IFN-y

72h 96h 120h

Figure 6.3

Priming of naive T cells (C3H) in a MLR with allogeneic DCs (Balb/c) isolated from
liver (L DC ♦), kidney (K DC ■) or spleen. Splenic DCs were selected with anti-
CDllc mAb (immature phenotype: S DCi ▲) or anti-DEC-205 mAb (mature

phenotype: S DCm *). Following isolation, all DCs were cultured for 48 hours in
the presence of GM-CSF. A) L DC and K DC require 24 hours longer than S DC to

induce similar levels of T cell proliferation ([3H]thymidine incorporation; mean

counts per minute ± s.e.m.). B) All DC populations induce high levels of IFN-y
release from T cells after 120h (ELISA; pg/ml ± s.e.m.).
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6.3.3 Modulation of Thl-response by DC exposure to environmental stimuli

Typical protocols to avoid rejection following transplantation employ

immunosuppressive agents such as corticosteroids or the blockade of co-stimulatory

signals. To assess the effect of immunosuppression on the allostimulatory capability
of the organ-specific DC populations, DCs post-isolation were incubated with GM-
CSF for 48h in the presence of dexamethasone or CTLA4-Ig. After rigorous washing
to prevent exposure of T cells to the immunosuppressive agents, DCs were used in
the allogeneic MLR. Following treatment, all four DC populations had a reduced

capability to induce T cell proliferation compared with GM-CSF-treated DC (p<0.05,

Fig. 6.4a/6.5a). Moreover, IFN-y production by the T cells was significantly impaired

(Fig. 6.4b/6.5b), while IL-10 was again not detectable in any of the supernatants.

In contrast to pharmacological immunosuppression, cytokines such as IL-10 and

TGF-P are thought to be involved in the physiological regulation of immune

responses. The different DC populations were therefore activated with GM-CSF in
the presence of the two cytokines. After washing, DCs were exposed to allogeneic T

lymphocytes as previously. Following treatment with the cytokines, all four DC

populations had a significantly reduced capability to induce T cell proliferation

compared with GM-CSF treatment alone (p<0.05, Fig. 6.4a/6.5a). However, the DCs
induced significantly higher levels of T cell proliferation than DCs treated with

dexamethasone or CTLA4-Ig (p<0.05). In contrast, the release of IFN-y by the T

cells was only consistently impaired by pre-treatment of DCs with TGF-P (p<0.05,

Fig. 6.4b/6.5b). Pre-treatment of immature DCs from liver, kidney and spleen with
IL-10 delayed the IFN-y release from the T cells, but by day 5, the levels failed to

show a significant difference (Fig. 6.4b/6.5b). Only treatment of the mature DEC-
205-selected DCs from the spleen with IL-10 resulted in a reduction of both, T cell

proliferation and IFN-y release (p<0.05, Fig. 6.4b/6.5b). IL-10 release in the

supernatant of the MLR was not detected.
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CTLA4lg b

Figure 6.4

Priming of na'ive T cells (C3H) in a MLR with allogeneic DCs (Balb/c) isolated from
the liver (L DC) or kidney (K DC). Following isolation, DCs were cultured for 48
hours in the presence of GM-CSF alone or in combination with Dex, CTLA-4Ig, IL-

10 or TGF-(3. A) DCs treated with GM-CSF and any of the four agents induce

significantly lower T cell proliferation than DCs treated with GM-CSF alone

([3H]thymidine incorporation after 120 hours; mean counts per minute ± s.e.m.). B)

DCs treated with GM-CSF and Dex, CTLA-4Ig or TGF-(3 induce a significantly

lower IFN-y release by T cells than DCs treated with GM-CSF alone. In contrast,

following treatment with GM-CSF and IL-10, LDC and KDC do not induce a

significantly lower IFN-y release. (ELISA after 120 hours; pg/ml ± s.e.m.).
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GM-CSF GM-CSF + Dex GM-CSF + GM-CSF + IL-10 GM-CSF + TGF-

CTLA4lg b

Figure 6.5

Priming of naive T cells (C3H) in a MLR with allogeneic DCs (Balb/c) isolated from
the spleen. Splenic DCs were selected with anti-CDllc mAb (immature phenotype:
S DCi) or anti-DEC-205 mAb (mature phenotype: S DCm). Following isolation, DCs
were cultured for 48 hours in the presence ofGM-CSF alone or in combination with

Dex, CTLA-4Ig, IL-10 or TGF-|3. A) DCs treated with GM-CSF and any of the four

agents induce significantly lower T cell proliferation than DCs treated with GM-CSF

alone ([3H]thymidine incorporation after 96 hours; mean counts per minute ± s.e.m.).

B) DCs treated with GM-CSF and Dex, CTLA-4Ig or TGF-P induce a significantly
lower IFN-y release by T cells than DCs treated with GM-CSF alone. In contrast,

following treatment with GM-CSF and IL-10, only mature splenic DCs (S DCm)
induce a significantly lower IFN-y release. (ELISA after 120 hours; pg/ml ± s.e.m.).
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6.3.4 Modulation of IL-10 and IL-12 mRNA synthesis in DCs

To determine the balance of IL-10 and IL-12 production by the DCs, the effect of
each pre-treatment on the IL-10 and IL-12 mRNA synthesis was tested in the four
DC populations. RNA was extracted from each population at 4, 6 and 24 hours of
culture with GM-CSF alone or in combination with the immunosuppressive agents

and cytokines. Freshly isolated DCs did not express detectable levels of either

mRNA, but treatment with GM-CSF alone induced the expression of both, IL-10 and
IL-12 mRNA within 6 hours, irrespective of the phenotype and stage of maturation
of the DCs (Fig. 6.6 and 6.7). While concomitant exposure to CTLA4-Ig had no

further effect, dexamethasone and the two cytokines IL-10 and TGF-P all abrogated
IL-12 mRNA expression by the DCs, which continued to express IL-10 mRNA (Fig.

6.7). However, since TGF-p, but not IL-10 affected the allostimulatory capacity of

both, immature and mature DCs, Real-time PCR was used to assess IL-10 mRNA

production quantitatively. Using this method, a significant increase of IL-10 mRNA
was detectable, with the highest levels at 6 hours post-stimulation, after treatment
with TGF-P but not IL-10 as compared with levels from GM-CSF-treated DCs

(p<0.05, Fig. 6.8). This effect was independent of the phenotype or stage of
maturation of the DCs.
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Figure 6.6
RT-PCR analysis of IL-12 mRNA expression in DCs isolated from the liver (L DC),

kidney (K DC) or spleen. Splenic DCs were selected with anti-CDllc mAb

(immature phenotype: S DCi) or anti-DEC-205 mAb (mature phenotype: S DCm).
All DC populations expressed IL-12 mRNA following stimulation with GM-CSF for
6 hours. The primers amplified a 375-bp segment of IL-12 mRNA, a positive control

(PC, IL-12 cDNA (107copies/pl)) was provided by the manufacturer. A template-free
PCR reaction was used as negative control (NC).
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Figure 6.7
RT-PCR analysis of IL-10 mRNA expression in DCs isolated from liver (L DC),

kidney (K DC) or spleen. Splenic DCs were selected with anti-CDllc mAb

(immature phenotype: S DCi) or anti-DEC-205 mAb (mature phenotype: S DCm).
All DC populations expressed IL-10 mRNA following stimulation for 6 hours with
GM-CSF alone or in combination with Dex, CTLA-4Ig, IL-10 and TGF-P (n = 3).
The primers amplified a 223-bp segment of IL-10 mRNA, a positive control was

provided by the manufacturer (IL-10 cDNA, 107copies/pl).
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IL-10 mRNA

ii

Figure 6.8

Quantitative Real-time PCR for the expression of IL-10 mRNA in DCs isolated from
liver (L DC), kidney (K DC) or spleen. Splenic DCs were selected with anti-CD 1 lc
mAb (immature phenotype: S DCi) or anti-DEC-205 mAb (mature phenotype: S

DCm). IL-10 mRNA expression was assessed after stimulation of the DCs for 6
hours with either GM-CSF alone or in combination with IL-10 and TGF-p. The

results are expressed as fold-increase ± s.e.m. of IL-10 mRNA expression relative to

the expression after stimulation with GM-CSF alone (= 1).

148



Chapter 6

6.4 Discussion

Although peripheral organs such as the liver or the kidney induce markedly different
immune responses following transplantation, few studies have investigated the
functional properties of the antigen-presenting DC populations from these organs.

This reflects the difficulties in isolating these cells which are only present in limited
numbers in peripheral tissue (Steptoe, 2000). In this study, an immuno-magnetic
method was used to isolate DCs from murine organs on the basis of their expression
of surface markers. Hepatic DCs have been reported to express DEC-205 (Woo,

1994), a multi-lectin receptor, and the antibody NLDC-145 against DEC-205 proved
to be particularly good in isolating the hepatic DC population. The purified DCs

displayed an immature phenotype as determined by their low to moderate expression
of co-stimulatory signals. 60% of the cells co-expressed CD8a suggesting that they
were predominantly lymphoid-related DCs. These observations correspond to a

recent report by O'Connell and colleagues on the phenotype of hepatic DCs

(O'Connell, 2000), and in both studies, hepatic DCs had a poor capacity to prime
nai've allogeneic T lymphocytes immediately post-isolation. However, DCs acquired
this capacity after culture in the presence of GM-CSF, which increases both viability
and maturation of the cells (Vremec, 1997). In the present experiments, DCs required
48 hours of culture rather than the previously described overnight period, which

might reflect differences in the isolation technique or DC maturation induced by the
Flt3L-treatment of mice used in O'Connell's study to increase DC numbers.

DCs in the kidney do not express DEC-205, but adequate cell numbers were obtained

by using the N418 antibody against the DC-associated surface marker CDllc for

immuno-magnetic isolation (Metlay, 1990). As previously described (Austyn, 1994),

freshly isolated renal DCs had an immature phenotype characterised by low

expression of co-stimulatory signals, and they were negative for CD8a. Similar to

hepatic DCs, renal DCs were poor stimulators of nai've allogeneic T lymphocytes

immediately post-isolation, but acquired a good stimulatory capacity after 48 hours
of culture in the presence of GM-CSF. The antibodies against CDllc and DEC-205
were also used to isolate DCs from the spleen as control populations of lymphatic
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origin. Since the two surface markers are expressed at different levels by most of the

splenic DCs, populations selected by this method were not pure lymphoid-derived

(CD8a+) or myeloid-derived DCs (CD8a~) as defined by Vremec et. al. using
extensive purification steps (Vremec, 2000). However, based on their expression of
MHC II antigen and co-stimulatory signals, DEC-205-selected cells displayed the
"mature" phenotype described for interdigitating DCs located within the T cell areas
of lymphoid tissue (Shortman, 1997) and were predominantly positive for CD8a.
CD1 lc-selected cells on the other hand showed the "immature" phenotype associated
with DCs located in the marginal zone of the spleen (Metlay, 1990) and were mostly

negative for CD8a. Both splenic populations primed allogeneic T lymphocytes more

quickly than hepatic or renal DCs when activated in the same way with GM-CSF.

However, this result differs from earlier reports demonstrating a reduced ability of
CD8a+ splenic DCs to induce proliferation of allogeneic T cells, partially as a

consequence of their expression of the death-inducing molecule CD95L (Suss,

1996). In the present study, surface expression of CD95L was not detected on any of
the DC populations.

As determined by the IFN-y-release of the allogeneic T lymphocytes, all activated
DC populations irrespective of their origin stimulated a Thl response which has been

implicated in allograft rejection (Wood, 1994). In this study, the T cell response was

associated with the induction of IL-10 and IL-12 mRNA expression by the DCs and

specifically IL-12 release by DCs has been demonstrated to regulate Thl responses

(Moser, 2000). One of the possible mechanisms suggested for the induction of

transplant tolerance by hepatic DCs has been based on their immature phenotype
with weak allostimulatory capacity and subsequent development of T cell anergy

(Thomson, 1999). However, when comparing the two immature DC populations
from the liver and kidney, obvious functional differences were not detected despite
their phenotypic variability with differential expression ofDEC-205 and CD8a. This

could suggest, that DCs either react differently to environmental signals or that DCs
receive different signals in each respective tissue following transplantation. To

investigate this further, DC populations were initially exposed during their activation
to the immunosuppressive agents dexamethasone and CTLA-4Ig, both used in
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clinical and experimental transplantation to prevent allograft rejection (Hall, 2000).
The two agents profoundly reduced the capability of the DCs to stimulate allogeneic
T cell proliferation or IFN-y-release, although complete anergy was not observed. In
bone marrow-derived DCs, dexamethasone has been previously reported to inhibit
DC function by arresting their maturation, while mature DCs remained unaffected

(Matyszak, 2000). However, in this study, dexamethasone had an inhibitory effect on
all DC populations including mature splenic DCs, and the DCs were therefore tested
for IL-10 and IL-12 mRNA synthesis. Similar to recent studies in human monocyte-

derived DCs (Rea, 2000), an abrogation of the GM-CSF-induced expression of IL-12
mRNA was found in all DC populations, which might be the explanation for the

glucocorticoid-induced suppression of the DC function independently of the stage of
maturation. In contrast, CTLA-4Ig is known to block the co-stimulatory signals
CD80 and CD86 on DCs thereby interfering with T cell activation (Denton, 1999).

Although there was no effect on the synthesis of IL-10 or IL-12 mRNA, incubation
of the DCs with CTLA-4Ig during their activation with GM-CSF was sufficient to
inhibit their capacity for T cell stimulation. However, significant differences between
the DC populations could not be observed, either with respect to their stage of
maturation or their phenotype.

In contrast to the pharmacological agents dexamethasone and CTLA4-Ig, IL-10 and

TGF-P are thought to be physiological mediators of tolerance induction (Hall, 2000).
Both cytokines are synthesised by hepatic parenchymal or stromal cells (Tox, 2001;

Narumoto, 2000), and in particular the release of IL-10 has been associated with
stable graft function following liver transplantation (Cosenza, 1995). In this study

however, pre-treatment of the immature DCs from liver, kidney and spleen with IL-
10 only delayed the development of a Thl response as characterised by IFN-y

production. Only the mature splenic Dec-205-selected DCs were incapable of

inducing a significant IFN-y release by the allogeneic T cells. Similar to

dexamethasone, IL-10 is thought to affect DCs by inhibiting both maturation and IL-
12 synthesis (De Smedt, 1997). Since IL-10 was also found to inhibit IL-12 mRNA

production in all DC populations, the results suggest, that this effect is sufficient to
interfere with the allostimulatory capacity of resident mature DCs. However in
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immature DCs, counter-regulatory signals for maturation and activation provided by
T lymphocytes, e.g. through CD40 ligation (Cella, 1996), appear to restore their

stimulatory function, indicating that IL-10 has to be present during the process of

antigen-presentation to prevent the development of a Thl response. In contrast, all
DC populations in the present study were unable to prime a Thl response when pre-

treated with TGF-p. Previous reports already implicated TGF-p as a key
environmental factor in sites of immunological privilege such as the anterior
chamber of the eye (Streilein, 1992). The tolerogenic effect of TGF-P is thought to
be mediated through inhibition of DC maturation (Yamaguchi, 1997). However,

similar to dexamethasone, TGF-P affected mature and immature DCs and the cells
were therefore tested for synthesis of IL-10 and IL-12 mRNA following GM-CSF

activation in the presence of TGF-p. The results indicate, that TGF-p not only
inhibits the production of IL-12 mRNA, but also induces a significant up-regulation
of IL-10 mRNA synthesis as measured by Real-time PCR, an effect which has also
been described in other cell types, notably hepatocytes (Ishizaka, 1996).

In conclusion, the present study demonstrates, that in the murine model freshly
isolated DCs from liver and kidney do not exhibit significant functional differences
in priming nai've allogeneic T lymphocytes in vitro, despite the variation in their

lineage-related phenotype. This functional equivalence extends to their response to

tolerogenic stimuli which might be present before or during transplantation. A

potential tolerogenic role of hepatic DCs would therefore rely on environmental

signals from the hepatic tissue. According to this study, TGF-P might be in particular
suited to induce this effect, since it sufficiently inhibits the immunostimulatory
function of DCs with respect to a Thl response even when removed during the actual
DC-T cell interaction. In the liver, TGF-P has indeed be shown to be released by a

variety of cells including hepatocytes and stellate cells, in particular in response to

tissue damage (Nakatasukasa, 1990). However, this hypothesis would also suggest,

that the immune response following transplantation of other solid organs than the
liver could be manipulated by environmental signals to the resident DCs.
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Chapter Seven - Discussion
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7.1 Intra-hepatic expansion versus depletion of infiltrating T lymphocytes

This thesis examined the hypothesis that the allogeneic immune response following

hepatic transplantation is modified within the liver affecting the cell fate of donor and
recipient cells, and thereby transplant outcome. The first important observation was that

intra-hepatic proliferation of T lymphocytes, and in particular of CD4+ T cells, was a

prominent feature of allograft rejection. Since the relative increase of CD4+ T cells was

also the predominant difference between the cellular infiltrate during acute rejection

compared with non-rejecting liver tissue, it is tempting to speculate, that acute rejection

following liver transplantation is a result of local expansion of CD4+ T lymphocytes.
As the principle source of cytokines such as IFN-y and IL-2 (Mosmann, 1991), the cells
would then be responsible for activating effector cells such as CD8+ T lymphocytes.

However, other groups have found significant changes in the number of CD8+ T cells
or no changes for both, CD4+ and CD8+ T cells, between rejecting and non-rejecting
liver grafts (Ibrahim, 1993a; Wong 1998). Care has therefore to be taken with the

interpretation of descriptive studies such as these. While the criteria for acute and
chronic rejection are at least defined (Demetris, 1997a), "no rejection" is rather a

diagnosis of exclusion. In this study, all non-rejecting tissue samples were taken shortly
after transplant as protocol biopsies without any clinical indication such as rising liver
function tests. Additionally, all patients with this diagnosis never developed any

episodes of rejection during their follow-up. However, it might be possible, that CD8+
T cells diminish over time in stable grafts (Wong, 1998; Baker, 2001), which could

explain the different observations and might be associated with the low proliferation
index of intra-hepatic CD8+ T lymphocytes described in this study. In contrast, during
chronic rejection, both CD4+ and CD8+ T lymphocytes appear to receive enough

signals to sustain proliferation within the graft (Hornick, 2000).

Proliferating CD4+ T lymphocytes were however also found in non-rejecting grafts,

raising the question of the lymphocyte function. It could be argued, that these grafts
were rather mildly rejected than truly not rejected, thereby giving an explanation for the
low level of T cell proliferation. Another observation in this study was however, that
most of the intra-hepatic ML additionally expressed the death receptor CD95 in non-
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rejecting grafts, but not in rejecting livers. Although CD95 expression in itself does not

prove, that the cells actually undergo apoptosis, it is an indication for their susceptibility
to CD95 ligation. In both, humans and animal models, acceptance of the liver allograft
is usually associated with apoptosis of the infiltrating leukocytes (Sharland, 1998),

leading to the hypothesis of tolerance induction by lymphocyte depletion (Wells, 1999).
Due to technical difficulties with the staining pattern of the antibody used in this study,
it was not possible to assess the phenotype of leukocytes expressing CD95. However,
activated T lymphocytes in particular are liable to die by CD95 ligation (Alderson,

1995), and apoptosis of donor-reactive T lymphocytes is the predominant feature in
models of allograft acceptance (Bishop, 2001). Several mechanisms for the deletion of
alloreactive T lymphocytes have been proposed, and hepatocytes in particular have been
described to induce T cell proliferation prior to T cell death (Bertolino, 1999). This
could also apply to the cells in cycle found in this study, however most mechanisms

including depletion by hepatocytes appear to affect CD8+ T lymphocytes. In contrast,

persistence of intra-hepatic CD4+ T cells has been associated with liver allograft

acceptance (Olver, 1998) and might be secondary to continuous intra-hepatic

proliferation. It remains however unclear, if these CD4+ T cells play an active role in
the process of allograft acceptance.

7.2 Peripheral sensitisation within the liver allograft

Further assessment of the proliferating T lymphocytes revealed, that they were of both,
naive and memory phenotype. Clusters of lymphoblasts in rejecting liver allografts have
been previously described and hypothesised to reflect sites of peripheral sensitisation of
T lymphocytes (Demetris, 1991). However, naive T lymphocytes preferentially
recirculate through lymphoid tissue and lack the necessary adhesion molecules to home
to peripheral organs (Brezinschek, 1995). The results presented confirm for the first
time that naive T lymphocytes proliferate within the liver allograft, indicating an intra¬

hepatic primary immune response. This could simply reflect, that solid organs following

transplantation become accessible for nai've T cells and low numbers ofCD45RA+ cells

have been described in heart and kidney allografts, but appeared not to expand locally

(Ibrahim, 1993b and 1995). In contrast, the normal liver has very recently been
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recognised to allow as the only solid organ homing of naive T cells, which enter the

organ through fenestrated endothelial cells and the space of Disse (Bertolino, 2000). It
remains therefore to be seen, if the primary immune response with proliferation of naive
T lymphocytes within the allograft is unique to the liver.

Stimulation of naive T cells requires the presence of professional APCs, in particular
DCs (Steinman, 1991). While proliferating naive T cells were more prominent in acute

rejection and non-rejecting grafts, chronic rejection was characterised by proliferation
of memory T lymphocytes. Since DCs of recipient origin have been found within

lymphoid aggregates during chronic rejection (Oguma, 1988), it is likely, that the T cell
activation is mediated by indirect antigen-presentation (Demetris, 1997b). In contrast,

acute rejection in the early stages appears to be initiated by donor DCs via direct

antigen-presentation (Lechler, 1982). Donor DCs are also the most likely APCs in non-

rejecting grafts in this study, as all the protocol biopsies were taken at day seven, prior
to the replacement of donor leukocytes by recipient cells (Gouw, 1987). Since hepatic
DCs have been hypothesised to be tolerogenic rather than immunogenic (Thomson,

1999), the potential role of liver-derived DCs in the stimulation of naive T lymphocytes
was examined in vitro as described in chapter six. Because of ease of access and the
better characterisation of murine DCs (Schuler, 2000), a mouse model was used for
these investigations. To address the problem, that murine DCs might have different

allostimulatory capabilities than human DCs, control DC populations were also isolated
from kidney and spleen, validating the conclusions at least within the species.

In correlation with previous reports (O'Connell, 2000), freshly isolated hepatic DCs
were immature and poor stimulators of naive T cells. These qualities of liver-derived
DCs have been used to explain their tolerogenic function, and recently, immature DCs
have indeed been shown to induce non-proliferating CD4+ Tr lymphocytes after

repetitive stimulation (Jonuleit, 2000). However, T cell proliferation was a prominent
feature in this study, and renal DCs, which derive from an immunogenic organ, were

equally poor in activating naive T cells. Since the immune response following

transplantation is associated with the release of a variety of cytokines, it was

hypothesised, that external stimuli might play a role. The DC subpopulations were
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therefore exposed to the maturation factor GM-CSF (Vremec, 1997) and the tolerogenic

cytokines IL-10 and TGF-P, which have both been found within the hepatic
microenvironment following transplantation (Ishizaka, 1996; Tox, 2001). The results

presented indicate, that following maturation, hepatic DCs become as efficient as renal
and splenic DCs in priming an allogeneic Thl-response characterised by the release of

IFN-y. However, priming of the DCs with GM-CSF and in particular TGF-P inhibited
the induction of a Thl-response without prohibiting T cell proliferation. This was

associated with an abrogation of the DC synthesis of IL-12 mRNA, and an up-

regulation of IL-10 mRNA synthesis. Although the preferential release of IL-10 by DCs
would favour the induction of either a Th2-response or even of regulatory T

lymphocytes, this was not verified in this study, since the T cells did not produce IL-10
as previously described (Jonuleit, 2000). The function of these T lymphocytes remains
therefore speculative, however, DCs propagated from murine bone marrow in the

presence of GM-CSF and TGF-P have been shown to prolong the survival of heart

allografts (Lu, 1997). As an environmental factor, TGF-P is additionally thought to act

on APCs in the anterior chamber of the eye, which is characterised by immune
deviation and privilege (Streilein, 1992). Since TGF-P is also produced within the liver,
in particular by stellate cells in response to tissue damage, it could be hypothesised, that
it might be able to render hepatic DCs tolerogenic. However, the results in this thesis

indicate, that hepatic donor DCs can be equally immunogenic, probably depending on

the balance of stimuli from the microenvironment.

7.3 T cell-mediated cytotoxicity in liver allografts

The results in chapter four of this thesis implicate both major pathways of T cell-
mediated cytotoxicity, perforin/granzyme B and CD95L/CD95, as effector mechanisms

during liver allograft rejection. However, of all donor target cells, only hepatocytes
were receptive to CD95 ligation. A dominant role for both pathways in allograft

rejection had already been established in mouse models deficient of one or both

mechanisms (Schulz, 1995), although the existence of compensatory modes of

cytotoxicity was also evident. In this study using immunohistochemistry, it was
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therefore rather intended to investigate the specific contribution of perforin/granzyme B
and CD95L/CD95 to the target cell damage during liver allograft rejection.

Granzyme B was found within the cytoplasm of CD8+ T lymphocytes and NK cells,

underlining their significance as effector cells, but not within donor target cells. A

cytotoxic effect of granzyme B can therefore only be assumed, however the correlation
between the number of positively staining cells and the severity of rejection would

support a mechanistic role for perforin/granzyme B in graft damage. The distribution of
Granzyme B expressing cells, both within the parenchyma and the portal tracts,

suggests their ability to target all hepatic donor cells. Since Granzyme B induces

apoptosis via both, direct cleavage of effector caspases and activation of the bcl-2

family member bid (Darmon, 1996; Yang, 1998), a conclusion about an increased

susceptibility of the target cells specifically to perforin/granzyme B could not be drawn
from this study. It is however of note, that only effector cells recognising MHC I

antigens expressed granzyme B, which correlates with the observation that only MHC I-
mismatched grafts are significantly later rejected in perforin-deficient mice (Schulz,

1995). The role of this pathway appears therefore predominantly limited by the

expression ofMHC I antigens on donor cells, which is constitutive on biliary epithelial
cells and vascular endothelial cells (Fleming, 1981), the primary target cells of liver

allograft rejection, but has to be induced on hepatocytes by pro-inflammatory cytokines
such as IFN-y (Steinhoff, 1988).

In contrast to granzyme B, the susceptibility of donor cells to CD95-mediated apoptosis
could be examined by staining for the receptor on the target cells. Only hepatocytes

expressed CD95, in normal liver tissue as constitutive expression (Leithaeuser, 1993)
and up-regulated during rejection. Hepatocytes are not regarded as the primary target

cells during liver allograft rejection and their death is recognised as a sign of severe

rejection (Demetris, 1997a). Since IFN-y has been reported to sensitise epithelial cells to
CD95 ligation, its effect on primary hepatocytes was examined using a mouse model
which allowed the use of p53-deficient hepatocytes. The results as described in chapter
five indicate that IFN-y indeed amplifies CD95-mediated apoptosis of hepatocytes.

However, this effect is dependent on functional p53 and can be blocked by cyclosporin
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A, which inhibits the MPT, one of the intracellular pathways of CD95-induced

apoptosis (Scaffidi, 1998).

7.4 Clinical perspective

Orthotopic liver transplantation has established itself as the treatment of choice for end-

stage liver disease, mainly because of its success rates with 1-year patient survival

reaching 85-90% (Keefe, 2001). However, as a consequence of this success, indications
for transplantation have increased at the same time as the cadaveric donor pool is

falling, resulting in a rising length of wait and mortality on the waiting list world-wide

(Gilbert, 1999). This has led to a change of focus to the causes of late loss of grafts or

patients. Although the incidence of chronic rejection, 5% graft loss after 5 years

(Wiesner, 1999), is low compared to other solid organs, it still indicates that some

patients are treated inadequately with current immunosuppressive regimens. In contrast,

other causes of late graft loss are rather associated with adverse effects of the

immunosuppressive therapy. Infections and new malignancies as a possible

consequence of the impaired immune system account each for 19% of late deaths after 5

years (Neuberger, 2000). Cardiovascular complications cause 23% of deaths in this

study and can be in part related to the development of diabetes mellitus and

hyperlipidaemia, known side-effects of the immunosuppressive drugs (Denton, 1999).
The drugs are also responsible for renal impairment, which affects up to 80% of liver

transplant patients after 5 years (Fisher, 1998). Finally, recurrence of the original liver
disease in the graft has now emerged as a further long-term problem and in viral
diseases such as Hepatitis B and C, now the major indication for transplantation world¬
wide (Terrault, 2000), immunosuppression might have a significant impact on rate and

severity or at least complicate anti-viral treatment.

Tolerance induction remains therefore a major goal in clinical transplantation of the
liver and the ease of acceptance of liver allografts by recipients infers, that tolerance

might be a realistic goal even in the clinical setting (Neuberger, 2000). Several recent
studies have now focused on the local interaction of the liver with the immune system,

and these findings might not only be relevant to transplantation, but also to the
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phenomenon of oral and peripheral tolerance induction. Hepatocytes in vitro appear to

be able to induce proliferation in naive CD8+ T lymphocytes, which die rapidly
thereafter (Bertolino, 1999). Hepatic endothelial cells can present antigen to both, naive
CD4+ and CD8+ T lymphocytes, resulting in anergy or deletion of the CD8+ T cells
and a Th2-type response of the CD4+ T cells (Knolle, 2001). Finally, hepatic DCs in
their immature state or DC progenitors from haematopoietic stem cells in the liver
induce T cell anergy or significantly prolong allograft survival of other tissues (Jonuleit,

2000; Fu, 1996). However, all of these observations only become clinically relevant,
since naive T cells are able to enter the organ and interact directly with the hepatic cells

(Bertolino, 2000).

A tolerogenic effect of the hepatic cells is easy to conceptualise under the non¬

inflammatory conditions of oral tolerance induction. In contrast, following

transplantation the liver is exposed to a significant immune response initiated in the

secondary lymphoid tissue (Lakkis, 2000). During allograft rejection, naive T

lymphocytes are probably rather immunised within the liver, most likely by donor or

recipient DCs (Demetris, 1991 and 1997b). If however the graft is only mildly rejected,
donor-reactive T cells might be deleted and regulatory T lymphocytes induced

(Sharland, 1998; Gassel, 1992). The ability of the liver to protect other organs

alloantigen-specifically (Kamada, 1984) would certainly support the existence of Tr

cells, although they remain elusive. Since this tolerance induction represents an active
immune response, too much immunosuppression might be contra-productive (Bishop,

2001). This however requires the liver cells to be resistant to the first immune attack
and at least the largest subpopulation, hepatocytes, appear to require significant

inflammatory stimulation to become susceptible to T cell-mediated cytotoxicity.

7.5 Future Studies

The role of persisting CD4+ T lymphocytes in patients with stable graft function

requires further study. Although their functional assessment is difficult in human

biopsies, in situ hybridisation or new technologies such as laser-guided microdissection

might allow the identification of specific mRNA products, in particular of inflammatory
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or tolerogenic cytokines. Additionally, CD8+ T lymphocytes were recently
demonstrated to revert from a CD45RO+ state to more stable CD45RA+ cells, which

have a distinct cytokine release pattern to nai've CD8+ T lymphocytes (Faint, 2001). It

might therefore be conceivable, that CD4+ T cells could also revert to a CD45RA+ state

after priming, accounting in part for the persistent finding ofCD45RA+ cells in the liver

post-transplant. Assessment in particular of biopsies from patients with stable graft
function might therefore allow the characterisation of T lymphocytes associated with
the development of clinical tolerance.

Further study is also required to assess the role of DCs, both in biopsies of patients post-

transplant and in vitro. The present study did not include the specific differentiation
between lymphoid-related and myeloid-related DCs. Recently, both subsets were

isolated from the liver in a mouse model and differentially regulated organ allograft
survival (O'Connell, 2001). In humans, specific markers for the two subsets have now

been described and it might be possible to characterise the phenotype in situ (Pulendran,

2001). Additionally, the investigation of hepatic DC function following co-culture with
other hepatic cells merits further consideration. In particular hepatocytes and stellate
cells might have a tolerogenic influence via cytokines such as IL-10 or TGF-p. This
would help to understand, if hepatic DCs are indeed exposed to different stimuli within
the liver, resulting in a tolerogenic function. Finally, results from this unit have recently

demonstrated, that the immune competence of each individual patient pre-transplant can

predict the occurrence of allograft rejection following liver transplantation (Bathgate,

2001). This might indicate differences in DC function between patients, and is currently
assessed by isolating DCs from the peripheral blood and correlating their function in

vitro with transplantation outcome.
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Intrahepatic proliferation of 'naive' and 'memory'
T cells during liver allograft rejection: primary immune

response within the allograft
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ABSTRACT Liver allograft rejection is mediated
by a primary response of T lymphocytes, followed by
infiltration of the graft with a mixed inflammatory
reaction. Using single and double label immunocy-
tochemistry, we examined the proliferation index
and the phenotype of leukocytes on liver biopsies
from 10 patientswith acute rejection before and after
treatment with i.v. steroids, 10 patients with chronic
rejection, 10 patients without rejection posttrans-
plant, and 15 nongrafted, nonimmunosuppressed pa¬
tients. Proliferation of mononuclear leukocytes (as¬
sessed by expression of Ki-67, a nuclear antigen
associated with the cell cycle) inside the allograft was
a prominent feature of acute and chronic rejection
and was down-regulated by steroid treatment. Leu¬
kocytes in cell cycle were located predominantly in
the portal tracts at the site of the inflammatory infil¬
trate. The majority of 'naive' (CD45RA+) and 'mem¬
ory' (CD45RO+ ) CD4+ T lymphocytes were also
periportally distributed. In contrast, CD8+ T lym¬
phocytes, CD57+ natural killer cells, and CD68+
macrophages were located intraparenchymally
throughout the liver lobules, whereas CD20+ B lym¬
phocytes were only present in some of the portal
tracts. Predominantly CD4+ and occasionally CD8+
lymphocytes were proliferating (assessed by double
staining). The proliferating CD4+ cells were of both
naive (CD4+, CD45RA+) and memory (CD4+,
CD45RO+ ) phenotypes. To our knowledge, this is
the first description of proliferating naive T lympho¬
cytes in situ in liver allografts. These findings suggest
that there may be a primary immune response gen¬
erated within the allograft as well as in draining lym¬
phatic tissue. This implicates not only intrahepatic
proliferation of T lymphocytes as a prominent fea¬
ture of rejection, but also suggests that the liver has
a special immunological status comparable to that of
lymphatic tissue.—Dollinger, M. M., Howie, S. E. M.,
Plevris, J. N., Graham, A. M., Hayes, P. C., Harrison,
D. J. Intrahepatic proliferation of naive and memory
T cells during liver allograft rejection: primary im¬

mune response within the allograft. FASEB J. 12, 939-
947 (1998)

Key Words: T lymphocytes ■ liver allograft rejection • trans¬
plantation • leukocyte

Despite improvements in immunosuppressive ther¬
apy, allograft rejection after organ transplantation re¬
mains a major clinical challenge. In liver transplant
recipients, acute cellular rejection occurs in up to
80% of patients and is associated with increased mor¬
bidity and length of hospitalization (1). Chronic re¬
jection is commonly resistant to therapy and leads to
the loss of up to 15% of grafts (2). In common with
the concept of allograft rejection of other solid or¬
gans, rejection of.the liver seems to be mediated by
T lymphocytes in response to alloantigens (3). The
primary immune response involves antigen-present¬
ing cells activating 'naive' T lymphocytes, which sub¬
sequently start to proliferate and differentiate. Ac¬
cording to new research into T cell migration, this
primary activation should evolve within lymphatic tis¬
sue, since naive T cells appear to recirculate only
through lymphatic tissue (4) and lack sufficient levels
of surface integrins for transendothelial migration
(5). In contrast, the effector mechanism of the re¬

sponse consists of infiltration of the graft, with a
mixed inflammatory reaction including predomi¬
nantly CD4+ and CD8+ lymphocytes together with
NK (natural killer)2 cells, macrophages, and neutro¬
phils (6).
Compared with other solid organs, however, the

liver appears to be immunologically privileged after
transplantation. In clinical practice, liver allografts
are more resistant to rejection than other organs de-

1 Correspondence: Department of Pathology, University
Medical School, University of Edinburgh, Teviot Place. Edin¬
burgh EH8 9AG, Scotland, U.K. E-mail: M.Dollinger@ed.ac.uk
'Abbreviations: i.v., intravenous; NK cells, natural killer

cells.
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spite lower levels of immunosuppression, and human
leukocyte antigen matching between donor and re¬
cipient is not required (7). In animal models, trans¬
plantation is possible without immunosuppressive
agents and tolerance induction is described in both
patients and animals (6, 8). This tolerance induction
is alloantigen-specific for other organs of the same
donor and can even override priming (9, 10). Many
authors argue that this is dependent on a minimum
amount of rejection and intrahepatic lymphocyte
turnover (6, 11). Possible explanations for the toler¬
ance induction include apoptosis of the reactive lym¬
phocytes (12) or migration of donor passenger leu¬
kocytes into recipient lymphoid tissue (8). On the
other hand, the fact that the fetal liver is a site of
hematopoiesis, together with the immature pheno-
typic characteristics of many intrahepatic lympho¬
cytes, has led to the hypothesis that the liver is an
extralymphatic site of T cell development (11).
The apparent difference of liver allografts to other

solid organs despite similarities in the immune re¬
sponse led us to focus our study on the graft itself.
Using the actual clinical situation with liver biopsies
of patients after transplantation as a model, we in¬
tended to examine the proliferation rate and corre¬
sponding phenotype ofmononuclear leukocytes dur¬
ing allograft rejection and the relevance for
transplantation outcome. The percentage of prolif¬
erating cells was assessed by their expression of the
nuclear antigen Ki-67, which is specific for the late
Gl, S, G2, and M phases of the cell cycle (13). Ki-67+
cells were then further characterized for their ex¬

pression of the subset specific antigens (14) CD4 and
CD8 (T lymphocytes), CD20 (B lymphocytes), CD57
(NK cells), and CD68 (macrophages). Naive and
'memory' T lymphocytes were distinguished by the
two isoforms CD45RA and CD45RO of the leukocyte
common antigen family (LGA, CD45).

EXPERIMENTAL PROCEDURES

Subjects

Acute rejection

Liver specimens, obtained by percutaneous needle biopsy
from 10 patients (4 male/6 female; age range 25-60 years)
with acute cellular rejection after orthotopic liver transplan¬
tation, were studied (median time posttransplant 8 days; range
6-26 days). All biopsies were placed into 10% buffered for¬
malin (pH 7.4), embedded in low-temperature paraffin wax,
and stored until use. Indications for transplantation were pri¬
mary biliary cirrhosis (four patients), primary sclerosing chol¬
angitis (four patients), and chronic active hepatitis, alcoholic
liver disease, fulminant hepatic failure due to acetaminophen
overdose, and graft failure due to chronic rejection (one pa¬
tient each). After the transplantation, patients received stan¬
dard immunosuppressive therapy with prednisolone, azathio-

prine, and cyclosporin A. Acute rejection was diagnosed using
clinical and biochemical criteria in combination with histo¬

logical evaluation of the biopsies according to standard scor¬
ing systems (6). The main histological features of rejection
assessed were portal inflammation, bile duct damage, and sub-
endothelial inflammation, each scored on a scale of 0 (none)
to 3 (severe). The combined rejection scores of the biopsies
used in this study were 6/9 or above. All patients with acute
rejection were treated with a daily regimen of 1 g of methyl-
prednisolone intravenously (i.v.) for 3 days. After treatment,
a second liver biopsy was taken to confirm the resolution of
the rejection episode. In all cases, a significant reduction of
the total rejection scores was achieved, with maximum scores
of 4/9.

Chronic rejection

Liver biopsies from 10 patients (1 male/9 female; age range
20-58 years) with chronic ductopenic rejection after trans¬
plantation were studied (median time posttransplant 6.5
months; range 3.5-9.5 months). The specimens were ob¬
tained and processed as described above. Indications for trans¬
plantation were primary biliary cirrhosis, fulminant hepatic
failure due to acetaminophen overdose, and chronic rejection
of the first allograft in three patients each and chronic hepa¬
titis B in one patient. The immunosuppressive treatment of
patients before the biopsy included either prednisolone, aza-
thioprine, and cyclosporin A (six patients) or prednisolone
and tacrolimus (four patients). The diagnosis of chronic re¬
jection was based on a combination of standard clinico-bio-
chemical features and histological criteria (6), including bile
duct loss and obliterative arteriopathy. During follow-up, 8 of
the 10 patients consequently lost their graft due to chronic
rejection, whereas the other two patients recovered after their
immunosuppressive regimen was changed from cyclosporin A
to tacrolimus.

No rejection

Specimens of liver tissue were obtained from 10 patients (2
male/8 female; age range 20-64 years) and processed as de¬
scribed above, with routine biopsies on day 7 posttransplant,
as per management protocol for postoperative care in the
Scottish Liver Transplant Unit. Indications for transplantation
were primary biliary cirrhosis (four patients), fulminant he¬
patic failure due to acetaminophen overdose (three patients),
and alcoholic liver disease, cryptogenic cirrhosis, and hepa¬
tocellular carcinoma (one patient each). The standard im¬
munosuppressive posttransplant therapy consisted of predni¬
solone, azathioprine, and cyclosporin A in all cases. None of
the patients showed clinico-biochemical signs of acute or
chronic rejection; histological evaluation of the liver biopsies
amounted only to mild inflammation, with a score of 3/9 or
less in each case. During follow-up, none of the patients de¬
veloped an episode of acute or chronic rejection and no fur¬
ther biopsies were taken.

Controls

Control liver tissue was obtained from biopsies of 15 patients
(8 male/7 female; age range 25-67) undergoing routine stag¬
ing for malignant lymphoma and staging of colon carcinoma
at the time of the resection or were taken before therapywith
methotrexate for psoriasis. All liver specimens were histolog¬
ically evaluated and reported as normal. Prior to biopsy, no
clinical signs of liver disease were present, and liver function
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tests were normal in all 15 patients. The biopsies were pro¬
cessed as described above.

RESULTS

Immunocytochemistry

Serial sections (3 pm in thickness) of the paraffin-embedded
biopsies were mounted on glass slides, air-dried at room tem¬
perature, dewaxed in xylene, and rehydrated in a graded eth-
anol series. They were pretreated for antigen retrieval by mi-
crowaving in 10 mM EDTA buffer (Sigma, St. Louis, Mo.) for
3X5 min (mAb CD4) or in 10 mM citrate buffer for 2X5
min (all other antibodies), washed, and incubated for 40 min
at room temperature with the monoclonal antibodies anti-Ki-
67 (MIB-1, Coulter-Immunotech, U.K., Ltd.); anti-CD4 (Novo-
castra Lab., U.K., Ltd.); anti-CD8, anti-CD20, anti-CD45RA,
anti-CD45RO, anti-CD68 (Dako, U.K., Ltd.); and anti-CD57
(Zymed Lab. Inc., U.K., Ltd.). Positive staining was visualized
by the standard avidin-biotin-peroxidase complex method,
with diaminobenzidine as chromogen. For double immuno-
staining, the sections were then incubated with the second
primary antibody, followed by streptavidin-biotin-alkaline
phosphatase with Vector Red (Vector Lab., U.K.) as chromo¬
gen. All slides were counterstained with hematoxylin. Negative
controls for each run were performed without primary anti¬
body. The number of cells staining positively was counted
'blindly' by two independent observers (M.M.D. and D.J.H.)
by using the Zeiss HOME microscope at X40 magnification.
At least five portal tracts were studied per section with the
exception of specimens with chronic rejection, in which all
visible portal tracts were examined. The degree of concor¬
dance between the two observers was >95%.

Statistical analysis

Student's t test was used to compare the mean percentage (±
sf.m) of cells staining positively in the biopsies of each sub¬
group of patients. Results with a P value of less than 0.05 were
considered significant.

Intrahepatic proliferation of mononuclear
leukocytes after liver transplantation

Proliferation of intrahepatic leukocytes was assessed
by their expression of the nuclear antigen Ki-67,
which is closely associated with the cell cycle (13).
Biopsies from patients without liver disease were used
to study the proliferation rate in normal liver tissue.
In these, Ki-67+ mononuclear leukocytes were rarely
observed, with a mean percentage of 1 ± 0.3% (Fig.
1), and were located throughout the liver paren¬
chyma and inside the portal tracts (Fig. 2).
Biopsies taken on day 7 posttransplant from pa¬

tients without clinical rejection revealed increased
numbers of mononuclear leukocytes expressing Ki-
67 compared with normal liver tissue (15.4±2.4% vs.
1±0.3%, P=0.0038). These were located predomi¬
nantly inside the portal tracts.
During acute rejection, the percentage of prolifer¬

ating mononuclear leukocytes rose to 61.1 ± 1.9%, sig¬
nificantly higher than in patients without rejection
(PcO.0001). The distribution of K1-67+ cells was
mainly inside the portal tr acts, with some present in tire
adjacent liver parenchyma. After treatment with corti¬
costeroids, the number ofmononuclear leukocytes ex¬
pressing Ki-67 fell to 23.2 ± 2.5%. This was significant
compared with the previous biopsies during acute re¬
jection (PcO.0001), but not when compared with bi¬
opsies from patients without rejection (P=0.052).
During chronic rejection, the number of mononu¬

clear leukocytes in cell cycle was 24.9 ± 5.9%, signifi-

Ki-67+ mononuclear leukocytes
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Figure 1. Ki-67 expression of mononuclear leukocytes in normal liver tissue and after transplantation. The number of Ki-67+
cells is expressed as mean percentage ± sem of all mononuclear leukocytes (normal tissue: ?z=15; all other tissue: ?z=10).
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Figure 2. Ki-67 expression ofmononuclear leukocytes in normal liver tissue and after transplantation. A) Occasional expression
in mononuclear leukocytes in normal tissue; B) increased expression in periportal mononuclear leukocytes posttransplantwith¬
out rejection; C) highly increased expression in periportal mononuclear leukocytes during acute rejection; D) reduced expression
after steroid treatment for acute rejection; E) increased expression in periportal and intraparenchymal mononuclear leukocytes
during chronic rejection; F) negative control (no primary antibody) during acute rejection.

cantly different from biopsies from padentswithout liver
disease (/-"=().004) or with acute rejection (/J=0.0004),
but not significantly different from the biopsies of pa¬
tients without rejection (P=0.17). More of the Ki-67+
cells were present within the liver parenchyma, but,
again, the majority were situated inside the portal areas.

Proliferating leukocytes are predominantly CD4+
T lymphocytes

To smdy the phenotype ofmononuclear leukocytes pro¬
liferating after transplantation, we used a double stain¬
ing method to assess which subsets of cells were also ex-
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Figure 3. Expression of CD4 and CD8 in lymphocytes in liver tissue after transplantation. The number of CD4+ and CD8+
lymphocytes is expressed as mean percentage ± sem of all lymphocytes (ra=10).

pressing the nuclear antigen Ki-67. T lymphocytes were
identified by CD4 and CD8, B lymphocytes by CD20, NK
cells by CD57, and macrophages by CD68 (14).
CD4+ T lymphocytes were located predominantly

inside the portal tracts in all biopsies posttransplant.
In biopsies of patients without rejection, CD4+ lym¬
phocytes represented 31.6 + 3.3% of all lymphocytes
(Fig. 3). During acute rejection, the number of
CD4+ cells was significantly higher with 62.6 ± 3.6%
(P=0.0031). Treatment of acute rejection with i.v.
corticosteroids resulted in a significant reduction of
CD4+ cells to 38.3 ± 4.4% (P=0.013), similar to
chronic rejection with a percentage of 32.8 ± 8.6%
(62.6±3.6% vs. 32.8+8.6%, P=0.033).
Like CD4+ T lymphocytes, proliferating cells were

located predominantly inside the portal tracts in bi¬
opsies of patients without rejection. Accordingly, the

majority of Ki-67+ cells were CD4+ on double stain¬
ing, with a mean percentage of 90.0 ± 3.0% (Fig. 4).
A similar distribution of CD4+ T lymphocytes was
observed during acute rejection, with 96.0 + 1.3% of
proliferating cells positive for CD4 (Fig. 5). Treat¬
ment of acute rejection with corticosteroids did not
change the distribution of cells, but significantly re¬
duced the percentage of CD4+ T lymphocytes in cell
cycle to 87.8 ± 1.6% (P=0.029). During chronic re¬
jection, most of the CD4+ T lymphocytes remained
located inside the portal tracts, but the percentage
of CD4+ prolife.rating cells (75.5+2.5%) was sig¬
nificantly lower compared with acute rejection
(P=0.0054) or no rejection (P=0.034).
In contrast to CD4+ T lymphocytes, CD8+ T cells

were situated predominantly within the liver paren¬
chyma, with only a minority inside the portal tracts

CD4+ and CD8+/Ki-67+ lymphocytes
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Figure 4. Expression of CD4 and CD8 in proliferating lymphocytes in liver tissue after transplantation. The number of CD4+
and CD8+ T lymphocytes is expressed as mean percentage ± sem of all Ki-67+ cells (re=10).
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Figure 5. Double staining of CD4+, Ki-67+ and CD8+, Ki-67+
T lymphocytes in liver tissue after transplantation (brown stain¬
ing: CD4, CD8; red staining: Ki-67; blue staining: hematoxylin).
A) Predominance of proliferating CD4+ T lymphocytes in por¬
tal uacts posttransplant; B) minority of proliferating CD8+ T
lymphocytes in portal tracts posttransplant.

in all tissues posttransplant. In biopsies of patients
without rejection, CD8+ lymphocytes represented
50.5 ± 10.4% of all lymphocytes, with no significant

changes to the percentage during acute or chronic
rejection (Fig. 3). In addition to CD4+ T lympho¬
cytes, only CD8+ T lymphocytes were occasionally
positive for the nuclear antigen Ki-67 on double stain¬
ing (Fig. 4 and Fig. 5). No significant changes were
detected in the percentage of CD8+ proliferating
lymphocytes between the four groups of biopsies.
CD20+ B lymphocytes were occasionally present

within some but not all of the portal tracts, account¬
ing for less than 5% of all lymphocytes. Positive dou¬
ble staining of CD20, CD57, or CD68 on Ki-67+ cells
was not observed.

Proliferating T lymphocytes are both naive and
memory cells

To establish whether the proliferating CD4+ T lym¬
phocytes were of the naive or memory phenotype, we
used the double staining method to examine prolif¬
erating lymphocytes for their expression of the two
isoforms, CD45RA (naive lymphocytes) andCD45RO
(memory lymphocytes), of the leukocyte common
antigen family (LCA, CD45). The number of naive
and memory T cells was expressed as the percentage
of all lymphocytes that were either CD45RA+ or
CD45RO + .

In all biopsies, CD45RA+ lymphocytes were pre¬
dominantly located inside the portal tracts. During
acute rejection, naive lymphocytes (Fig. 6) increased
significantly compared with patients without rejec¬
tion (38.9±2.3% vs. 25.3+1.7%, P=0.018). However,
treatment with corticosteroids significantly reduced
this number (38.9±2.3% vs. 29.8±0.3, P=0.034).
There was no significant difference in the percentage
of naive lymphocytes during acute compared with
chronic rejection.
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Figure 6. Expression of CD45RA and CD45RO in lymphocytes in liver tissue after transplantation. The number of CD45RA+
and CD45RO+ lymphocytes is expressed as mean percentage ± sem of all lymphocytes (w=10).
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Of the proliferating lymphocytes (Fig. 7 and Fig.
8), CD45RA+ cells represented 40.9 ± 3.3% and 47.3
± 3.3% in tissues of patientswithout rejection orwith
acute rejection, respectively. Steroid treatment of
acute rejection did not change this percentage, but
during chronic rejection (16.7±3.2%) it was signifi¬
cantly lower compared with acute (P= 0.0069) and no
rejection (P=0.013).
In all biopsies posttransplant, CD45RO+ lympho¬

cytes were present in the parenchyma throughout the
liver lobules, but the majority were situated inside the
portal areas. No significant difference was observed
in the percentage of CD45RO+ cells (Fig. 6) from
biopsies of patients without rejection and those with
acute rejection, but the percentage increased signif¬
icantly after i.v. treatment with corticosteroids
(52.3±1.4% vs. 40.7±0.9%, P=0.0064). The percent¬
age was significantly higher during chronic rejection
compared with acute rejection (55.7±2.7% vs.
40.7±0.9%, P=0.034).
CD45RO+ lymphocytes represented 53.8 ± 0.2%

of Ki-67+ proliferating cells (Fig. 7 and Fig. 8) in
tissue from patients without rejection. There was no
significant change during acute rejection; during
chronic rejection, the percentage of memory lym¬
phocytes were 80.3 ± 4.4%, which was significantly
higher than in biopsies from patients with acute re¬
jection (55.7±1.5%, P=0.033) and without rejection
(53.8±0.2%, P=0.026).

DISCUSSION

Our results indicate two findings that might be im¬
portant for the current view of the mechanism of al¬
lograft rejection. First, we were able to show that

..

' " IA

"

. ' - 3

Figure 8. Double staining of CD45RA+, K1-67+ and CD45RO+,
Ki-67+ lymphocytes in liver tissue after transplantation (brown
staining: CD45RA, CD45RO; red staining: Ki-67; blue staining:
hematoxylin): proliferation ofA) naive (CD45RA+) and B) mem¬
ory (CD45RO+) lymphocytes posttransplanl.

proliferation (assessed by Ki-67) of mononuclear leu¬
kocytes inside the human liver allograft was a promi¬
nent feature of rejection, suggesting that a significant
proportion of the 'inflammatory infiltrate' is due to

CD45RA+ and CD45RO+/Ki-67+ lymphocytes

V.l :\'t

\ □ CD45RA+ |
■ CD45RO+

no rejection acute rejection post treatment chronic rejection

Figure 7. Expression of CD45RA and CD45RO in proliferating lymphocytes in liver tissue after transplantation. The number of
CD45RA+ and CD45RO+ lymphocytes is expressed as mean percentage ± SEM of all Ki-67+ lymphocytes (w=10).
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local expansion rather than migration. Second, leu¬
kocytes in cell cycle (as assessed by double staining)
were predominandy CD4+, CD45RA+, and CD4+,
CD45RO+ T lymphocytes—both naive and memory
T lymphocytes. This would implicate that the primary
immune response with proliferation and differentia-
tion of naive T lymphocytes might not be restricted to
lymphatic Ussue, but could also occur within the allo¬
graft, at least during liver graft rejecdon.
The current concept of homing and migration pat¬

terns of lymphocyte subsets (4,15) suggests that naive
T lymphocytes recirculate preferentially through lym¬
phoid tissue, which provides the necessary microen-
vironment for antigen stimulation. Naive lympho¬
cytes are able to enter lymph nodes through high
endothelial venules, distinct from other microvessel
endothelia (16). In contrast, T lymphocytes in non-
lymphatic tissue, e.g., during inflammation, are pre¬
dominantly of the memory and 'effector' phenotype,
due to their ability of transendothelial migration (5,
17). Their rapid increase in number during inflam¬
mation has been accounted for by migration rather
than local expansion.
Our findings indicate exactly the opposite occur¬

rence during hepatic allograft rejection, with a sub¬
stantial number of naive lymphocytes residing in the
graft after transplantation and proliferation of both
naive and memory T lymphocytes within the graft
during the immune response. This could suggest a
general difference in allograft rejection from other
forms of inflammation, because naive T lymphocytes
are able to migrate into the graft and there are suf¬
ficient signals to activate them. Indeed, results of our
own group show proliferation of less than 10% of
mononuclear leukocytes in liver biopsies of patients
with primary biliary cirrhosis (unpublished data).
Moreover, early reports in kidney transplantation
have already demonstrated proliferation of lympho¬
cytes and, occasionally, other lymphoid cells such as
monocytes within the allograft (18-20), linking spe¬
cifically the lymphocyte proliferation to rejection. In
other models of heart and liver rejection, aggregates
of dendritic cells and lymphoblasts were shown
within the graft (21, 22), indicating in situ stimula¬
tion of the lymphocytes. In contrast, only newer stud¬
ies in kidney and heart allograft rejection were able
to describe the ratio between naive and memory T
cells. In both organs, memory T lymphocytes in¬
creased during rejection and data on proliferation
were not provided (23, 24).
On the other hand, recent publications have de¬

scribed intrahepatic subpopulations of naive T lym¬
phocytes capable of proliferation and T cell receptor
rearrangement (25-27) leading to the hypothesis of
extralymphatic T cell development in the liver. Naive
T cells seem to be able to migrate into the liver, prob¬
ably through sinusoidal fenestrations comparable to

splenic sinusoidal pores (28). Additional support for
intrahepatic T cell development comes from reports
linking the liver to oral tolerance, e.g., tolerance in¬
duction by injecting antigen-presenting cells into the
portal vein in contrast to systemic veins or abrogation
of oral tolerance induction by short circuiting the
liver (11). These observations attribute properties to
the liver usually associated with lymphatic tissue. In¬
trahepatic T cell depletion might be mediated by
apoptosis induced by Fas (CD95, APO-1) (11, 29) or
galactin-1, which preferentially causes cell death in
CD45RO+ T lymphocytes (30). In contrast, prolif¬
eration, which is closely linked to apoptosis in early
stageswith occasional expression of similar signals in¬
cluding Ki-67 (31), could be stimulated by intrahe¬
patic dendritic cells (32) or endothelial cells (33).
The final decision to undergo apoptosis or prolifer¬
ation would be influenced by additional signals such
as the anti-apoptotic protein bcl-2 (34). We recently
found high levels of bcl-2 in intrahepatic lymphocytes
of patients with liver allograft rejection (35), whereas
lymphocytes in liver biopsies of patients without re¬
jection expressed high levels of Fas (36). Intrahepatic
T cell development might explain the unique im¬
munological properties of the liver as an allograft,
such as inducing tolerance for other subsequently
and previously transplanted solid organs comparable
to the thymus (37), as well as transferring specific
immune memories such as allergies and autoimmune
disorders of the donor to the recipient comparable
to bone marrow transplantation (38).
We present data that challenge the view that solid

organs, and specifically the liver, only represent a tar¬
get for the immune system after transplantation. Re¬
cent publications on transplantation in patients and
animal models (including after thymectomy) have
led to the hypothesis that the migration of donor pas¬
senger leukocytes into recipient lymphoid tissue in¬
fluences transplantation outcome (8). Our results
suggest that the graft itself might be relevant for the
development of the immune response. Either all
solid organs are partly involved in the immune reac¬
tion, providing a location for allorecognition and the
subsequent primary lymphocyte activation, or the
liver specifically has immunological properties com¬
parable to lymphatic tissue. These hypotheses would
add to the current perspective not only on transplan¬
tation, but of basic immunologywith respect to T lym¬
phocyte-mediated immune responses and tolerance
induction. jjjj
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