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ABSTRACT 

The natural frequencies of piano strings depart somewhat from the 

harmonic series and the degree of inharmonicity has important implications for 

tone quality, tuning and the electronic synthesis of piano sounds. Apart from 

effects due to the finite compliance of the supports, the stiffness of the steel 

wire from which piano strings are made accounts almost entirely for the 

inharmonicity of the plain wire strings. It has been shown, however that the 

string stiffness is not the only source of inharmonicity of the overwound piano 
strings. Not only the effects of wave-reflection at the terminations of the 

various copper covering layers of overwound strings, but also the effects of 

nonuniformity may contribute weak partials that cannot be explained by string 

stiffness alone. 
Some discussions on the stepped string have appeared over the last few 

years by Levinson, Sakata and Sakata, and Gottlieb, but their analyses have 

not incorporated the stiffness of the stepped string. In this thesis, an 

expression for the frequencies of vibration of a stepped overwound string was 

described, and numerical calculations have been undertaken to compute 

theoretical mode frequencies for strings with varying degrees of overwinding. 

The numerical results of the frequency equation were compared with data from 

experimental measurements of the inharmonicities of overwound strings on a 

rigid monochord. The rigid monochord has been designed in order to control 

the parameters and to reduce external effects disturbing the vibration of the 

strings. It is evident from the comparison that the theory presented here gives 

a better fit to measured inharmonicities than Fletcher's analysis for a uniform 

string. 
The original motivation for this study was to determine the extent to 

which the non-uniformity of the overwinding on a bass piano string affected 

the inharinonicity of its mode frequencies. To examine the extent to which this 

work was relevant to the behaviour of overwound piano strings with the end 

support conditions typical of normal use, a series of measurements was 

performed on the bass strings of a Broadwood grand piano. It is evident from 

the results that the major cause of the discrepancy between the Fletcher 

prediction and the measurement is indeed the non-uniformity of the winding. 
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CHAPTER 1 

INTRODUCTION 

1.1 Outline of research programme. 

The problem of the vibration of flexible strings with uniform 

characteristics has been treated by many investigators and the results are well 

established. The natural frequencies of piano strings depart somewhat from the 

harmonic series and the degree of inharmonicity has important implications for 

tone quality, tuning and the electronic synthesis of piano sounds. Apart from 

effects due to the finite compliance of the supports, the stiffness of the steel 

wire from which piano strings are made accounts almost entirely for the 

inharmonicity of the plain wire string. Vibration characteristics of uniform stiff 

strings are also quite well understood and the predicted mode frequencies are in 

close agreement with observation 22 

For bass piano strings, the observed inharmonicity is higher than that 

predicted by considering them as uniform stiff strings, up to some 20% for the 

most heavily overwound A0 of a Broadwood grand piano in the Acoustics 

Laboratory of the Department of Physics at the University of Edinburgh. 

Actually all piano bass strings are characterised by a steel wire core wrapped 

with copper, or sometimes iron, to increase the string's linear mass density. 

While the tight coiling of the copper wire ensures close coupling to the core, 

the windings contribute considerably more to the increase in the string's linear 

mass density than to its 	bending stiffness. Most bass strings have a single 
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winding of copper wire, and it is usually only within the lowest octave that 

the double winding is used. A double-wound string consists of a bare steel 

core wrapped with a small diameter copper wire, which is then overspun with 

a second winding of larger diameter. A small part of the steel core is left 

exposed near the end of the string. Thus only the outer winding is visible and 

the existence of the inner winding is evident only from the small change in the 

diameter of the overall covering near the ends. 

Some discussions on the stepped string have appeared over the last few 

years 71,77,40, but their analyses have not incorporated the stiffness of the 

stepped string. In this thesis, an expression for the frequencies of vibration of 

a stepped overwound string is described, and numerical calculations have been 

undertaken to compute theoretical mode frequencies for strings with varying 

degrees of overwinding. The experimental inharmonicities of overwound strings 

on a rigid monochord have been measured, and compared with theoretical 

results. The rigid monochord has been designed in order to control the 

parameters and to reduce external effects disturbing the vibration of the strings. 

The original motivation for this study was to determine the extent to 

which the nonuniformity of the overwinding on a bass piano string affected the 

inharmonicity of its mode frequencies. To examine the extent to which this 

work was relevant to the behaviour of overwound piano strings with the end 

support conditions typical of normal use, a series of measurements was 

performed on the bass strings of a Broadwood grand piano. 

We begin the next section with the history of the piano, since the 

physics of the piano can best be understood by first reviewing the evolution of 

the modern piano and its principal components. Section 1.3 is a survey of the 

literature pertaining to the theory of inharmonicity and experimental methods of 

inharmonicity measurement. 

In Chapter 2, the theory of strings in the case of a flexible string, a 
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uniform stiff string, and a nonuniform stiff string are described. In the first 

place, it is assumed that the string is perfectly flexible, the only restoring force 

being due to the tension. Secondly, it is necessary to study the effect of 

stiffness on the string's motion. A discussion of the transverse vibration of a 

rigid bar leads to a study of the vibration of a uniform stiff string. Finally, 

the vibration of a nonuniform stiff string is considered. A derivation of the 

mode frequencies of a stepped string is presented, taking into account the 

stiffness of the stepped string. 

In Chapter 3, numerical calculations have been undertaken to compute 

theoretical mode frequencies from the frequency equation in the Chapter 2 for 

strings with varying degrees of overwinding. Strings with three different core 

and overwinding dimensions were calculated. Each string with the same core 

and overwinding dimensions is considered for six uniformly overwound strings 

and six stepped overwound strings. The Inharmonicity of the departure of the 

allowed frequencies from the harmonic series are considered. 

In order to validate the theory developed in Chapter 2, experiments were 

carried out to measure the inharmonicity of the overwound strings on a 

purposed-designed monochord; these are described in Chapter 4. The strings 

were plucked and the sound was recorded using a microphone mounted a short 

distance above. The acoustic signal was captured digitally using an AID 

converter and was analysed using a Fast Fourier Transform. A program developed 

in Edinburgh 84  locates the peaks in the spectrum with high accuracy. Also in 

this chapter, the experimental results of inharmonicity for the uniformly 

overwound strings on the monochord are first presented. These are followed by 

the results of inharmonicity for the stepped overwound strings on the 

monochord. 

In Chapter 5 the experimental inharmonicity for the uniformly overwound 

strings and for stepped overwound strings as shown in Chapter 4 are compared 
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with the theoretical inharmonicity as shown in Chapter 3. In order to probe in 

more detail the correspondence between calculated and measured frequencies, and 

to obtain a direct comparison with the predictions of the theory of Fletcher 40 it 

is useful to plot the parameter B = (1/n 2  )[(f/nfo )2  —1] as a function of mode 

number. 

The original motivation for this study was to determine the extent to 

which the non-uniformity of the overwinding on a bass piano string affected 

the inharmonicity of its mode frequencies. The theoretical treatment described in 

Chapter 2 and 3 assumed that the end supports of the string were completely 

rigid, and the experimental results given in Chapter 4 and 5 were obtained on 

a monochord which attempted to reproduce this ideal case. To examine the 

extent to which this work was relevant to the behaviour of overwound piano 

strings with the end support conditions typical of normal use, a series of 

measurements was performed on the bass strings of a Broadwood grand piano 

in the Acoustics Laboratory of the Department of Physics at the University of 

Edinburgh. This piano was built in 1871, and was renovated and restrung in 

1992. These will be described in Chapter 6. 

Finally, the work is summarised in Chapter 7, the important findings are 

restated and future work is discussed. 

Appendix A shows two examples of numerical solutions of the frequency 

equation. Appendix B tabulates the results for the theoretical mode frequencies 

of the 36 different strings studied, and Appendix C gives the corresponding 

inhannonicities. The results for the experimental mode frequencies of the 

uniformly and stepped overwound strings and the corresponding experimental 

inharmonicities comprise Appendices D and E. Appendix F tabulates theoretical 

and experimental mode frequencies for 8 strings on the Broadwood grand 

piano; Appendix G shows the results for the piano strings' theoretical and 

experimental inharmonicities. 
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1.2 The history and physics of the piano. 

Almost every musical tone, whether it is produced by a vibrating string, 

a vibrating column of air or any other vibrating system, consists of a 

fundamental tone and a number of the partial tones or overtones. The complex 

sound produced by this combination of separate tones has a timbre, or 

characteristic quality, that is determined mainly by the number of partial tones 

and their relative loudness. It is timbre that enables one to distinguish between 

two musical tones that have the same pitch and the same loudness but 

produced by two different musical instruments. A pure tone - one that consists 

solely of the fundamental tone - is rarely heard in music. 

It is commonly believed that the partial tones produced by all musical 

instrument are harmonic - that their frequencies are exact whole - number 

multiples of the frequency of a fundamental tone. This is true for all the 

woodwinds and under certain conditions for many of the stringed instruments, 

including the violin. It is only approximately true in the piano. The higher the 

frequency of the partial tones of any note on the piano, the more they depart 

from a simple harmonic series. 

The physics of the piano can best be understood by first reviewing the 

evolution of the modern piano and its principal components. Archaeological 

evidence shows that primitive stringed instruments existed before the beginning 

of recorded history. An instrument called the psaltery that was played by 

plucking strings stretched across a box or gourd is referred to several times in 

the Bible. A similar instrument existed in China some thousand years before 

the Christian era. In the sixth century B.C. Pythagoras used a simple stringed 

instrument called the monochord in his investigation of the mathematical 

relations of musical tones. His monochord consisted of a single string stretched 
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tightly across a wooden box. It was fitted with a movable bridge that could 

divide the string into various lengths, each of which could vibrate freely at a 

different fundamental frequency. 

The keyboard is another important component of the modern piano. It 

did not originate in conjunction with a stringed instrument but with a pipe 

organ. The organ of Ctesibus, perfected at Alexandria in the second century 

B.C., had some kind of keyboard. The Roman architect Vitruvius, writing 

during the reign of Augustus Caesar, describes pivoted keys used in the organs 

of his day. In the second century A.D. Hero of Alexandria built an organ in 

which the valves admitting air to the pipes were controlled by pivoted keys 

that were returned to their original position by springs. 

As early as the tenth century the application of a keyboard to a stringed 

instrument was described by St Odo who wrote of the organistrum, a 

remarkably ingenious instrument in which several strings rest against a resined 

wheel. The wheel is turned by a crank setting the strings in vibration, much 

as does the bow on the strings of a violin. Some of the organistrum's strings 

are unstopped, providing a drone accompaniment to press against other strings. 

The tangent mechanism is similar to the simple mechanism of the clavichord. 

In the 15th century, on the early clavichords, a piece of metal mounted 

vertically at the end of the key acted both as a bridge for determining the pitch 

of the string and as a percussive device for producing the tone. Since one 

string could be used to produce more than one tone, then were usually more 

keys than strings. In order to damp the unwanted tone from the shorter part of 

the string, a strip of cloth was interlaced among the strings at one end. 

Several essential characteristics of the modern piano are obtained from 

the clavichord. The clavichord had metal strings, a percussive device for setting 

the strings in vibration, a damping mechanism and also an independent 

soundboard: the board at the bottom of the case did not also serve as the 
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frame for mounting the strings. Moreover, although the tone of the clavichord 

was weak, the instrument allowed for the execution of dynamics, that is, for 

playing either loudly or softly. 

At about the same time another forerunner of the modem piano was in 

process of development. Longer strings were introduced to produce a louder 

tone in the spinet, or virginal. Now the metal percussive device of the 

clavichord was no longer adequate to produce vibration in the strings. Instead 

the strings were set in motion by the plucking action of a quill mounted at 

right angles on a "jack" at the end of the key. When the key was depressed, 

the jack moved upward and the quill plucked the string. When the jack 

dropped back, a piece of cloth attached to it damped the vibration of the 

string. 

Around the beginning of the 16th century experiments with still longer 

strings and larger soundboards led to the development of the harpsichord. It 

incorporated several important innovations that have carried over to the modem 

piano although this instrument was essentially nothing more than an enlarged 

spinet. The wing-shaped case of the harpsichord is imitated by that of the 

grand piano. The stratagem of using more than one string per note was 

adopted for the harpsichord by the middle of the 17th century. The harpsichord 

also had a "forte stop," which lifted the dampers from the strings to permit 

sustained tones, and a device for shifting the keyboard, both of which are 

preserved in the modem piano. 

The invention of the piano was forecast by inherent defects in both the 

clavichord and the harpsichord. The clavichord, on the other hand, allowed a 

modest range of dynamics but could not generate a tone nearly as loud as that 

of the harpsichord. Attempts to install heavier strings in order to increase the 

volume of either instrument were futile; neither the metal percussive device of 

the clavichord nor the quill of the harpsichord could excite a heavy string. 
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Moreover, the cases of these early instruments were not strong enough to 

sustain the increased tension of heavier strings. 

A remedy for these defects was provided by the Italian harpsichord-

maker Bartolommeo Christofori, who built the first hammer-action keyboard 

instrument in 1709. Christofori called his original instrument the "piano-forte," 

meaning that it could be played both loudly and softly. The idea of having the 

string struck by hammers was probably suggested to him by the dulcimer, a 

stringed instrument played by hammers held in the hands of the performer. 

Christofori recognised that his new instrument would need a stronger case to 

withstand the increased tension of the heavier strings. By 1720 an improved 

model of the pianoforte included an escapement device that "threw" the 

freeswinging hammer upward at the string and also a back-check that regulated 

the hammer's downward return. An individual damper connected to the action 

of the hammer was provided for each note. 

For a century and a half after Christofori's first piano appeared 

inventors worked to improve the new instrument, particularly its novel hammer 

action. Several other types of action were developed, some new and others 

modelled closely on Christofori's original. Pianos were built in a variety of 

forms: traditional wing-shaped pianos, square pianos, upright pianos and even a 

piano-organ combination. 

Among the major innovations toward the end of this period was the full 

cast-iron frame. Constant striving for greater sonority had led to the use of 

very heavy strings, and the point was reached where the wooden frames of the 

earlier pianos could no longer withstand the tension. A grand piano with a 

cast-iron frame that has served as a model for all subsequent piano frames was 

brought out by the German-born American piano manufacturer Henry Steinway 

in 1855. Although minor refinements are constantly being introduced, there 

have been no fundamental changes in the design or construction of pianos 



since 1855. 

A part of the piano that has received a great deal of attention from 

acoustical physicists is the soundboard. Some early investigators believed the 

sound of the piano originated entirely in the soundboard and not in the strings. 

We now know that the sound originates in the strings; after the very short 

interval, called the attack time, it is translated by means of a wooden bridge to 

the soundboard, from which it is radiated into the air. During the attack time 

sound is also radiated to a lesser degree from both the strings and the bridge. 

The development of the full cast-iron frame gave the sound of the piano 

much greater brilliance and power. The modern frame is cast in one piece and 

carries the entire tension of the strings; in a large concert-grand piano the 

frame mass is 180 kilogram and is subjected to an average tension of 270,000 

newtons. In order to maintain the tension of the strings each string is attached 

at the keyboard end to a separate tuning pin, which passes down through a 

hole in the frame and is anchored in a strong wooden pin block. Since the 

piano would go out of tune immediately if the tuning pins were to yield to the 

tremendous tension of the strings, the pin block is built up of as many as 41 

cross-grained layers of hardwood. 

The standard modern keyboard has 88 keys divided into seven and a 

third octaves, the first note in each octave having twice the frequency of the 

first note in the octave below it. Each octave has eight white keys for playing 

the diatonic scale (whole notes) and five raised black keys for playing the 

chromatic scale (whole notes plus sharps and flats). In all modern pianos the 

white keys are not tuned exactly to the diatonic scale but rather to the equally 

tempered scale, in which the octave is simply divided into 12 equal intervals. 

The moving parts of the piano that are involved in the actual striking of 

the string are collectively called the action. Early in the history of piano-

building the hammers were small blocks of wood covered with soft leather. 



The inability of leather to maintain its resiliency after many successive strikings 

led eventually to the use of felt-covered hammers. It can be pricked with a 

needle to loosen its fibers, and will then produce a mellower tone; if the felt 

is too hard it produces a harsh tone. The felt can be filed and made harder if 

the tone is too mellow and lacks brilliance. 

A standard piano has three pedals that serve to control the dampers. 

The forte, or sustaining, pedal on the right disengages all the dampers so that 

the strings are free to vibrate until the pedal is released or the tones die away. 

The sostenuto pedal in the middle sustains only the tones that are played at the 

time the pedal is depressed; all the other tones are damped normally when their 

respective keys are released. The "soft' pedal on the left shifts the entire action 

so that the hammers strike fewer than the usual number of strings, decreasing 

the loudness of the instrument. 

Physically, the string motion can be described in the following way. As 

the hammer strikes the string, the string is deformed at the point of collision. 

The result is two waves on the string, travelling out in both directions from 

the striking point. The wavefronts enclose a pulse, or hump, which gradually 

gets broader. 

However, as the string is struck close to its termination at the agraffe, 

one of the wavefronts soons reaches this end and is reflected. The reflection at 

a rigid support makes the wave turn upside down. This inverted wave starts 

out to the right and restores the string displacement to its equilibrium level. 

The situation has developed that the wavefront initially travelling to the 

left, has turned into the trailing end of a pulse of fixed width, propagating to 

the right towards the bridge. At the bridge, the entire pulse is reflected, the 

effect being that the pulse starts Out in the opposite direction upside down. A 

new reflection at the agraffe turns it right side up again, and soon the pulse 

has completed one round trip and continues out on the next lap. 

10 



The propagation velocity of the pulse on the string is determined by the 

tension and mass per unit length of the string, a higher velocity the tauter and 

lighter the string. The number of round trips per second, the fundamental 

frequency (closely related to the perceived pitch), also depends on the distance 

to be covered - the longer the string the longer the round trip time 

(fundamental period), and hence, the lower the pitch. The pitch of a string is 

thus determined by a combination of its length, tension, and mass per unit 

length. In particular, string length can be traded off against mass per unit 

length in order to reduce the size of the instrument. This can be seen in the 

bass section, where the strings are wrapped with one or two layers of copper 

in order to make them heavy and thus relatively short. The advantage of a 

wrapped string over a plain string is that the mass can be increased without 

reducing the flexibility drastically. A piano string need not be perfectly flexible, 

but a too stiff a string would have a detrimental influence on the tone quality 

as will explained below. 

A piano string, like all other strings, has a set of preferred states of 

vibration, the resonances, or modes of vibration. When a string is vibrating at 

one of its resonances, a condition which usually only can be reached in the 

laboratory, the motion of the string is of a type called sinusoidal. The 

corresponding sound is a musically uninteresting sine wave. In normal use, 

however, where the string is either struck, plucked or bowed, all resonances 

are excited, and the result is a set of simultaneously sounding sine waves, 

partials, forming a complex tone. 

Such a tone is conveniently described by its spectrum, which shows the 

frequencies and strengths (amplitudes) of the partials. As mentioned, the pitch 

of the tone is related to the frequency of the lowest member in the spectrum, 

the fundamental. The relations between the amplitudes, of the partials and their 

evolution in time contribute to our perception of tone quality. 
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The pulse running back and forth on the piano string has a most 

surprising connection to the string modes (resonances). It can be shown 

mathematically that the travelling pulse is made up of a sum of all the string 

modes. The shuttling pulse and an (infinite) sum of string modes of 

appropriate amplitudes are equivalent; they are just two ways of representing 

the same phenomena. So while our eyes will detect the pulse motion (if 

slowed down enough by the use of a stroboscope) our ears prefer to analyse 

the string motion in terms of its partial or Fourier components, so named after 

the French mathematician who first described this equivalence. 

FUNDAMENTAL F1----- 

2nd PARTIAL 

3rd PARTIAL 

4th PARTIAL 

5th PARTIAL 'VIANVVAW. 
Composite Waveform 

FIGURE 1: Complex periodic waveform and the five harmonic partials of 
which it is comprised. 
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Fourier also stated that if the motion is periodic, that is, the same 

events will repeat indefinitely with regular intervals, the frequencies of the 

corresponding partials will be harmonic. This means that the frequency ratios 

between the partials will be exactly 1: 2: 3: 4....., which will be perceived as 

a sound with a clearly defined pitch and steady tone quality. The statement can 

also be turned the other way around; if the resonance frequencies of a string 

are strictly harmonic, the resulting motion of the string will always be periodic. 

As an example, figure 1 shows a diagram of a complex periodic tone 

comprised of five harmonic partials. The fundamental frequency is 100 Hz, the 

second harmonic is at 200 Hz, the third harmonic is at 300 Hz, and so on up 

to the fifth harmonic at 500 Hz. (For convenience, the fundamental may also 

be referred to as the first harmonic.) The Figure shows how the harmonics 

add together to form the complex waveform. 

In real pianos, the resonance frequencies of the strings are not exactly 

harmonic. The frequency ratios are slightly larger than 1: 2: 3: 4..., more like 1: 

2.001, 3.005, 4.012..., which is referred to as "Inharmonicity". According to 

Fourier, the string motion will now not repeat exactly periodically as the note 

decays, but change slowly which gives a "live" quality to the note. 

1.3 Literature Review. 

Brook Taylor, an English mathematician, is credited as being the first to 

develop the correct formula for the frequency of a flexible vibrating string in 

term of length, tension, and mass. His treatment of the vibratory motion of a 

stretched string 100  was translated by Lindsay 73. 

The problem of the vibrating string was solved analytical by J.L. 

Lagrange. 69•  He supposed the string made up of a finite number of equally 
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spaced identical mass particles and studied the motion of this system, 

establishing the existence of a number of independent frequencies equal to the 

number of particles. When he passed to the limit and allowed the number of 

particles to become infinitely great and the mass of each correspondingly small, 

these frequencies were found to be precisely the harmonic frequencies of the 

stretched string. The method of Lagrange was adopted by Rayleigh in his 

"Theory of Sound" 88 and is indeed standard practice to-day, though most 

elementary books now develop the differential equation of motion of the string 

treated as a continuous medium by the method by Jean le Rond, called 

d'Alembert. It is believed that D'Alembert , was the first to derive and 

publish the differential equation of wave propagation called the wave equation. 

Kock 68 refers to the work of others who contributed to the 

understanding of the struck stretched string. Still another prior contributor was 

R. N. Ghosh 44. Considering the vibrating string as an electrical transmission 

line permits the knowledge gained regarding the characteristics of electrical 

circuits to be used in determining the characteristics of the piano string. 

Kock mentions that the partials of piano tones are inharmonic and states 

that this is undesirable as it impairs the tone quality. "A proposed Loading of 

Piano Strings for Improved Tone" 79  has been devised by Franklin Miller, Jr. 

His analysis indicates that by applying a small amount of mechanical loading 

near one end of a piano string, inharmonicity might possibly be materially 

reduced, if not completely eliminated, thus improving the tone of the individual 

strings. Actually, we should keep in mind that the proper amount of 

inharmonicity in piano tone partials uniformly distributed in the frequency range 

of the piano enhances the tones and is not undesirable. 

Philip M. Morse 81  develops the mathematics related to the vibrations of 

a stiff string. He also deals with the behaviour of a flexible string. His work 

serves as a useful background in the theoretical behaviour of the piano string. 
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Shankland and Coltman 94 presents a study of stretched vibrating strings 

on a monochord. The experimental apparatus used in their paper takes into 

account variations in tension produced by the string's vibration. The 

fundamental frequency of the piano string varies during the decay of the tone 

and the change contributes to the "life" in the tone. The frequency of vibration 

decreases slightly immediately after the tone is initiated. 

"Observations on the Vibrations of Piano Strings" by Schuck and Young 

92, covers a study of the partial frequencies and the decay characteristics of 

piano tone partials. Careful recording of the variation of amplitudes of partials 

in tones from single strings as they decayed was done. The decay graphs 

differ greatly throughout a given piano and from one piano to another. The 

complex relationship of the relative magnitudes of partials as they decay 

contributes to the "life" and uniqueness in a piano tone. 

Fluctuations in the amplitude of the decay curve of a given partial can 

be due to one or more of several causes. Schuck and Young mention the 

rotation of the plane of vibration and the possible transfer of energy from one 

mode to another. Other possible causes include nonuniformity in stiffness, or 

mass, of a strings or portion of the piano; conditions at the terminals of the 

speaking length of the string; inadequate damping, or muting, of other strings 

in the unison group being checked. 

Martin 74  deals with the decay characteristics of tones produced by 

conventional pianos and introduces some matters to consider when electronic 

amplification is used with piano tones. 

The decay characteristics of piano tones depend upon the energy in the string, 

how efficiently the energy is utilised to produce sound, and how rapidly the energy is 

dissipated. In order for a conventional piano to be able to produce the sound power 

meeting modern requirements in music, the mecahanical impedance of the string 

must be as large as practicable. Plain strings in the treble portion of the piano 
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are stiff and rod-like. This results in large inharmonicity values in the strings 

for the top treble tones. Space limits the string length in the bass portion of 

the piano and wound string are used to obtain string mass and keep stiffness 

as low as practicable. The piano is an inefficient radiator of low frequencies 

and this adds to the problem of low-sound power at the lower frequencies. If 

required sound power can be obtained by electronic amplification, that burden 

on the string can be relieved. 

Maximum transfer of string energy to radiated sound will occur when 

the impedance match between string and air is maximum. If a perfect match 

could be attained, the piano would not produce a musical sound; the energy 

would be radiated as a step function of short duration. 

Martin points out cases in which two different decay times exist in a 

sustained tone. In these cases, the initial part of the decay characteristic decays 

at a faster rate than that of the latter part. It appears, however, that Martin did 

not at that time suggest any mechanism for the double decay, but in later work 

found that the phenomenon is connected with the presence of more than one 

string per note, and that the amount of aftersound is affected by the exact 

manner in which the unisons are tuned 67 

The suggestion that the phase relations among the strings play an 

important role appears to have been made by Hundley, Martin, and Benioff 
58 

and in more explicit form by Benade 13 Benade points out that when three 

strings vibrate in phase, the motion of the bridge is three times what it would 

be if one string were vibrating alone; hence, the rate of energy loss of each 

string is triple. He suggests that, after some time, the strings lose their phase 

relationship, so that the decay rate becomes equal to that of a single string - 

hence the break in the decay curve. In fact, these relationships can have effects 

even more drastic than that: Not only can the decay rate be increased, but it 

can be decreased if the strings vibrate in exactly opposing phases. 
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Weinreich 108 showed that the admittance of the piano bridge has a 

crucial effect on piano tone, and that in the range of ordinary "good" tuning 

the individual strings cannot be viewed as independent dynamical systems. He 

developed theoretical expressions that showed how the rate of energy 

transmission to the bridge as a function of time (including the phenomena of 

beats and "aftersound") depends on bridge admittance, hammer irregularities, 

and the exact state in which the piano is tuned. He presented experimental data 

showing the effects of mutual string coupling on beats and aftersound, as well 

as the great importance of the two possible directions of the string motion 

(polarisation); "vertical" and "horizontal". 

He concluded that the behaviour of the decaying curve was explained by 

noting that even a single string vibrating at its fundamental frequency has two 

distinct modes of vibration corresponding to the two polarisation. The vertical 

polarisation is the primary one excited by the hammer, and so begins its life at 

a much higher amplitude than the horizontal one. However, since the bridge, 

which is attached to the soundboard, "gives" much more easily in the vertical 

than in the horizontal direction, the decay of the vertical mode is also much 

more rapid. The relatively slight amount of horizontal vibration becomes, after a 

while, dominant. He also informed that the fine tuning of the unisons is not 

so much a matter of regulating the beat rate as of regulating the amount of 

aftersound. The aftersound is also be affected by irregularities of the hammer, 

which cause one string to be hit harder than another, and which may cause a 

greater or lesser excitation of the horizontal vibration. 

A computer program that implements a discrete model of a plucked 

string was extensively modified to allow the modelling of a struck string by R. 

A. Bacon and J. M. Bowsher 8 Their model allowed the hammer to strike the 

string at any one of ninety nine possible positions along the string with a 

given initial velocity and mass. They showed that output information included 
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the displacement against time waveforms for the hammer and the string at the 

struck point, and the times at which the hammer and string made and broke 

contact. Agreement of their model output with experimental results appeared to 

vary with the method of the experimenter. 

The process of string excitation by striking with hammer lies at the 

heart of the more general problem of determining the sound produced by a 

piano. Prediction of the piano string motion presented a challenging problem to 

the theorist because of the finite time interval during which the string and 

hammer interact. Even in the limiting case of very small hammer mass, the 

approximation of a single delta-function impulse is inadequate, as discussed by 

Hall in Part 1 50 of his series work on "Piano string excitation". His Part11 51  

and Part 52 in this series have shown how the spectrum of the piano string 

motion might be predicted with models that treat the hammer and string as a 

linear system. A combination of analytic and computer techniques to solve the 

general case of a hard point hammer with any finite mass was presented in 

Part 11. It was argued that there is no good way to predicted any details of the 

string energy spectrum without allowing for additional physical processes such 

as damping. The combined analytic and computer techniques of Part II is 

extended to solve the general case of a soft point hammer with finite mass in 

Part Ill. In Part IV, "Piano string excitation IV: The question of missing modes" 5, 

it was showed that the piano hammers positioned to strike the strings at certain 

fractions of their length should produce spectra with "missing modes". The 

comparisons of the theory on string-hammer interaction with laboratory 

measurements in Part V 5'  showed definite limitations due to: nonlinear mode 

coupling for finite amplitude, string stiffness and the resulting dispersion, 

soundboard admittance, finite hammer width, and nonlinearity in the hammer. 

With these limitations, an examination is made of how well the theory can 

explain the measured string vibration spectra. He showed that the agreement is 
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moderately good in the bass and midrange while, at the treble end, the 

measured spectra fall off significantly faster than the predictions. Accurate 

modelling of the piano string-hammer interaction requires that the nonlinearity of 

the force-displacement relation for the hammer be recognised and included, as 

is shown in "Piano string excitation. VI: Nonlinear modelling" 55. He found that 

predictions with these models give significantly better agreement with data than 

did calculation in his previous part in this series with completely linear models. 

Actually, before Hall published "Piano string excitation V: Spectra for real 

hammers and strings" and "Piano string excitation. VI: Nonlinear modelling", the 

nonlinear compliance properties of real hammers have been measured and 

discussed by Suzuki 99  and Boutillon 18• Suzuki worked on a simulation of 

the nonlinearity of hammer-string interaction, but he did not compare that with 

experimental results. Boutillon treated the problem of the nonlinear character of 

the interaction between the hammer and string based on experimental work in 

his paper, "Model for piano hammers: Experimental determination and digital 

simulation" 18  The hammer was considered as a point mass. He found that 

numerical simulations of the hammer and string motions based on a two-

element model for the hammer were in good agreement with experimental 

measurements. 

In the series of three articles by Askenfelt and Jansson they described 

an experimental investigation of the tone production in the grand piano. The 

investigation covered the initial stages, starting with the motion of the key and 

ending with the string vibrations. Their study is divided into three sections, 

each section described in a separate article: (1) the timing in the grand piano 

action 3,  (2) the motion of the key and hammer , and (3) the interaction 

between hammer-string and the string vibrations 5.  In the first article the timing 

in the piano action was found to be dependent on both regulation and dynamic 

level. They also found that changing the hammer-string distance affected mainly 
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the timing relation between the key bottom contact and the hammer-string 

contact. Their second article deals with the typical key and hammer motions at 

different dynamic levels and for different types of "touch". A legato touch with 

the finger initially resting on the key gave a smooth motion with continuously 

increasing key velocity. In a staccato touch with the finger striking the key 

from above, an oscillating component at a low frequency (approximately 50 Hz) 

was observed in the key motion. In the last article they measured the string 

motion and spectra using an electrodynamic method for sample notes in three 

ranges of the piano keyboard (bass-mid-treble). In the bass, with a short 

hammer-string contact relative to the fundamental period, the individual waves 

were clearly separated. In the midrange, with a contact duration of 

approximately half a fundamental period, the initial outgoing and reflected 

waves partly merged, while in the treble, where the contact duration lasts a full 

period or more, a separation of the string motion into travelling waves was no 

longer possible. 

Chaigne and Askenfelt worked on "Numerical simulations of piano 

strings. I: A physical model for a struck string using finite difference methods" 

24 and "Numerical simulations of piano strings. II. Comparisons with 

measurements and systematic exploration of some hammer-string parameters" 25• 

They developed a physical model of the piano string using finite difference 

methods. They show in their paper how this numerical approach and the 

underlying physical model can be improved in order to simulate the motion of 

the piano string with a high degree of realism. Starting from the fundamental 

equations of a damped, stiff string interacting with a nonlinear hammer, a 

numerical finite difference scheme is derived, from which the time histories of 

string displacement and velocity for each point of the string are computed in 

the time domain. The interacting force between hammer and string, as well as 

the force acting on the bridge, are given by the same scheme. 
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R.W. Young 115 studies the inharmonicity measured for both bass and 

treble strings in three sizes of Steinway piano. It is found that the bass strings 

of the usually preferred grand piano have less inharmonicity than have the 

corresponding strings of a small upright piano. 

Harvey Fletcher carried on the study with "Normal Vibration Frequencies 

of a Stiff Piano String" 40 including consideration of the uniform wrapped 

string presented for the bass strings of a piano. Fletcher's work is going to be 

considered in detail in Chapter 2. 

Blackham, a research assistant to Harvey Fletcher at the time Fletcher's 

paper was written, presents some historical background of the piano and a 

general overview of its construction and its functioning 15• These are brought 

out more fully in a paper of Harvey Fletcher, E.Donnell Blackham and Richard 

Stratton 39. Pianos vary considerably in size from a small spinet to a large 

concert piano. They also vary in the quality of design and construction. One 

should use caution in arriving at broad conclusions based upon a study of 

small samples. Pianos that are well designed, constructed, and maintained can 

produce tones that vary greatly in maximum intensity, in decay characteristics, 

and in the relative magnitudes of the partials in tones. Constructional variations 

within a given piano and in different pianos include: the hardness, speaking 

length, diameter, and tension of strings; the stiffness, tightness, uniformity, and 

length of windings on wound strings; the tuning of strings in unison groups; 

the hardness, shape, and weight of hammers; the strike line of hammers; the 

dwell time of hammers on strings; the shape and impedance of the boundaries 

of string speaking lengths; the length and damping of nonspeaking string 

portions; the effectiveness of the dampers; the acoustic response of the bridge-

soundboard combination; and the efficiency and recovery characteristics of the 

key-action combination. The piano string serves as the primary element in piano 

tone production. 
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A few years after Fletcher's paper, Dietrich Wolf and Helmut MUller 

worked on "Normal Vibration Modes of Stiff Strings" 113. They compare the 

theoretical and experimental behaviour of a stiff steel string vibrating under 

clamped boundary conditions. They developed apparatus to make it 

experimentally possible, attaining clamped boundary conditions by attaching one 

end of a string to a rigid support and passing another end over a balanced 

wheel maintained under constant tension by a weight acting on the free end. 

The string was set in forced vibration by an electromagnet, which was driven 

by an amplifier connected to a quartz-controlled standard frequency generator. 

In order to observe the string vibrations, a magnetic receiver system was 

placed near the string, transforming by induction the string's motion into an 

electric signal. The receiver was shielded carefully against interfering voltages. 

The signal was fed into a voltmeter and an oscilloscope. As this signal is 

directly proportional to the velocity of the string, resonance occurs exactly at 

the natural frequencies. They said in their paper that the experimental results 

observed with this arrangement agree with the calculated data at an accuracy of 

about 0.1%. 

More recently, many other investigators have studied the piano string 

inharmonicity problem with plain steel strings and overwound bass strings. 

Boutillon, Radier, Valette and Castellengo 17 studied three different 

effects for a vibrating piano stiff string: the eigenfrequencies as a function of 

time, the evolution of frequency and the longitudinal force. They calculated the 

natural frequencies and the inharmonicity coefficient of the string using 

Fletcher's equation. They carried out a comprehensive study of inharmonicity 

on a piano using analogue and FF1' techniques, only one of the two or three 

strings associated with a note being allowed to vibrate. The results obtained 

confirmed the calculated results. Differential spectral analysis (ASD) was used 

to permit the determination of precise frequencies in a brief signal, offering 
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considerable simplification of the methods used for such calculations both in 

time and in equipment. They showed the results of the analysis of the G2 

string, agreeing with the results obtained previously by the analogue method 

and by FFT. In earlier mearsurements, the thirteenth partial did not appear to 

follow the law of inharmonicity; ASD allowed the detection of two components 

in it. They found that the more intense component was a harmonic of the 

fundamental; the frequency of the weaker component (impossible to measure by 

FF1) agreed with the law of inharmonicity. The evolution of the fundamental 

frequency of the sound emitted by a bench on which was mounted a piano 

string, not too taut and strongly excited was shown. They found that as the 

amplitude decayed, the natural frequencies decreased in time. They also found 

that the measurement of the longitudinal force on the support gives direct 

evidence of the physical nature of the octave vibration. 

Alexander J. Bell and Raymond Parks 12  showed that Fletcher's formula 

f = nf0 (1+Bn2 ) 
is not completely adequate in predicting the modal 

frequencies of a piano string. Although a complete solution depends on the 

solution of a transcendental equation, they showed that, by recourse to 

Rayleigh, a similar equation of the form f = nf0 (1 + Bn2  - Cn4 )1  can be 

derived. They still considered that the bass piano string was uniformly 

overwound. 

Actually all piano bass strings are not uniformly overwound. A small 

part of the steel core is left exposed near the end of the strings. 

Some discussions about this problem have appeared by Levinson 71, 

Sakata and Sakata 91  and Gottlieb 46• Levinson studied the free vibration of a 

string with stepped mass density and derived an exact equation for calculating 

the natural frequency, but did not obtain any numerical solutions. 

Sakata and Sakata derived an exact frequency equation for a string with 

stepped mass density and proposed an approximate formula for estimating the 

23 



fundamental natural frequency of the string. 

In Gottlieb's work, the three-part string, with two step discontinuities in 

density, was investigated in some detail for both fixed and free end conditions. 

Aspects of the "four-part' and "m-part" string problems were also discussed. 

However, these derivations have not taken into account the stiffness of the 

stepped string. 

Michael Podlesak and Anthony R. Lee worked on "Dispersion of waves 

in piano strings" 85 It was shown how the group velocity of transverse waves 

in piano strings can be measured as a function of frequency with the aid of a 

short-time spectral analysis method. Examples of group velocity measurements 

appeared. The relationship between the group and phase velocity, as a function 

of frequency, was also illustrated in their work. "Effect of Inharmonicity on 

the Aural Perception of initial Transients in Low Bass Tones" 86  showed 

numerical modelling of low bass tones based on the string displacement 

waveform of a piano, revealing a marked correlation between a perceived pitch 

glide in the initial transient of the tone and the inharmonic relationship between 

the tone's partials. 

Musical timbre is the characteristic tone quality of a particular class of 

sounds. Musical timbre is much more difficult to characterise than either 

loudness or pitch because it is such a diverse phenomenon. No one-

dimensional scale - such as the loud/soft of intensity or the high/low of pitch - 

has been postulated for timbre, because there exists no simple pair of opposites 

between which a scale can be made. Because timbre has so many facets, 

computer techniques for multidimensional scaling have constituted the first major 

progress in quantitative description of timbre since the work of Hermann von 

Helmholtz in the nineteenth century. 

Fourier transform spectroscopy enables researchers to obtain the spectrum 

of a sound from its waveform. A computer technique which performs a 
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Fourier transform on a digital signal is the Discrete Fourier Transform (DFT). 

The DFT is computationally intensive, but through a clever ordering of the 

computer operations involved in performing a DVF, Cooley and Tukey were 

able to reduce the number of computer operations significantly. Their algorithm 

is known as the Fast Fourier Transform (Fr) 28 

The techniques that have been exploited to describe transient musical 

signals have relied on the determination of the amplitude of the various Fourier 

Coefficients as a function of time. Thus the transient signal has been regarded 

as piecewise continuous and both analogue and digital methods have been 

applied to obtain the coefficients 1. Analogue methods are satisfactory for 

slowly varying signals but digital methods generally appear more appropriate for 

rapidly varying sounds. 

An alternative approach was that of using the Fourier Transform of the 

complete note. It had been used for a simple decaying sine wave 78,  but had 

been considered as too "obscure" for application to music 65• 

Aifredson and Steinke 2  discussed the application of the Fourier 

Transform to a piano note and compared it with the more familiar Fourier 

coefficients. It was concluded that the Fourier transform had an advantage in 

terms of frequency resolution but that the two methods were to some extent 

complementary. 

The Fourier Transform is an alternative method of viewing musical 

sounds. The time history of the sound is not so obvious as in the method of 

plotting the Fourier coefficients as a function of time. However, greater detail 

in resolving the frequency components appeared to be possible. Both methods 

commenced with the same basic information -the time history of the note. This 

time history of course could be reconstituted with either approach. 

For many applications in musical acoustics, the power spectrum is a 

most effective way of describing the component frequencies present in a sound, 
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together with their relative amplitudes. 

The Fourier Transform processes a number of samples, n, taken at 

regular intervals over a total time, T, and determines the amplitude and phase 

for n/2 calculation frequencies, each being an integral multiple of the frequency 

interval liT. The output from the DFT can be considered as n/2 frequency bins 

at intervals of lIT, each containing a calculated sum of the total amplitude of 

components lying within a band around its centre frequency. 

In the ideal case of a periodic signal where the portion of signal 

analysed spans an exact number of cycles of the fundamental, each component 

of the signal corresponds to one of the lines of the FFT. If this ideal 

condition is not present, the signal frequencies lie between the calculation 

frequencies, causing the analysis to attribute them in a widespread pattern 

which varies according to the frequency mismatch, an effect termed "leakage". 

The ideal situation is often unattainable, as the signal frequency may not be 

known in advance, or the sample rate may not be adjustable to the precise 

value. More importantly, analysis should cope with several signals combined, at 

unknown frequencies. 

The remedy is to multiply the data time-series by a "window function" 

56 which is unity in the middle and tapers towards zero at each end. The 

effect is to give a rounded peak spanning several frequency intervals, with 

fairly uniform shape regardless of where the signal frequency lies within the 

frequency 'interval, and with a substantial reduction in the leakage to distant 

bins. Peak shape depends on the window function, but for a given function 

the peak always spans the same number of frequency bins even when their 

width is altered by other factors such as transform size. 

The result of the DFT performed on windowed data is the convolution 

of the DFT of the window function and the DFT of the raw data. This 

mathematical statement unfortunately does not offer a simple way of recovering 
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the frequency information. In the present work, an empirical approach has been 

developed from careful study of the characteristics of the output for calibration 

signals by Raymond Parks 84 
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CHAPTER 2 

THEORETICAL CONSIDERATION 

In this chapter, the theory of strings in the case of a flexible string, a 

uniform stiff string, and a nonuniform stiff string are described. In the first 

place, it is assumed that the string is perfectly flexible, the only restoring force 

being due to the tension. Secondly, it is necessary to study the effect of 

stiffness on the string's motion. A discussion of the transverse vibration of a 

rigid bar leads to a study of the vibration of a uniform stiff string. Finally, 

the vibration of a nonuniform stiff string is considered. A derivation of the 

mode frequencies of a stepped string is presented, taking in to account the 

stiffness of the stepped string. 

2.1 Transverse wave equation for a string. 

The study of vibrating strings has a long history. Pythagoras is said to 

have observed how the division of a stretched string into two segments gave 

pleasing sounds when the lengths of these two segments had a simple ratio 

(2:1, 3:1, 3:2, etc.). These are examples of normal modes of a string fixed at 

its ends. Closer examination of the motion of a string reveals that the normal 

modes depend upon the mass of the string, its length, the tension applied, and 

the end conditions. 

Consider a uniform string (Fig. 2.1) with linear density a (kg/rn) 



stretched to a tension T (newtons). The net force dF, restoring segment ds to 

its equilibrium position, is the difference between the y components of T at the 

two ends of the segment: 

dE, =(T sin 9)X+A —(T sin O) X . 	
(2.1) 

Applying the Taylor's series expansion f(x + dx) = f(x) + 	dx+.... to 

T sin O and keeping first-order terms gives 

dF, =[(T sin  8) + d(T sin  O)dx]_(T sin  e) = a(T sin o)dx (2.2) 

T 
ds 	 ra, 

Fig. 2.1 Forces on an elementary length of flexible string. 

For small displacement y, sin 0 can be replaced by tan 0, which is also 

dy/dx, and the tension T can be taken as constant (independent of x). The net 

transverse force on the element becomes 

dF, = a(T / ) dx=Tdx. 	 (2.3) 
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The mass of the segment ds is ads, so Newton's second law of motion 

becomes 

T4x=(adJ. 	 (2.4) 

	

Since dy is small, ds dt Also, we write c2  = 	and obtain 
a 

..(2.5) 
at2  ax2 	dx2  

This is the well-known equation for transverse waves in a vibrating flexible 

string. 

The general solution of Eq.(2.5) can be written 

y=Asin(x)cos(2ift—) 	 (2.6) 

when the boundary condition that y =0 when x = 0 is required. 

Consider a perfectly flexible round string of length 1, which is stretched 

between rigid supports under a tension T. When the secondary condition y = 0 

at x = 1 is added, all the possible standing waves indicated in Eq.(2.6) can be 

used only if they have nodal points at x = 1. Since the distance between nodal 

points depends on the frequency, the string fixed at both ends cannot vibrate 

with simple harmonic motion of any frequency; only a discrete set of 

frequencies is allowed, the set that makes sin(2 ifl/c) zero. The distance 

between nodal points must be 1, or it must be (1/2), or (113) . . . etc. The 

allowed frequencies are therefore (ci 21), (2c / 21), (3c I 21) . . . etc., and the 

different allowed simple harmonic motions are all given by the expression 

I 1flcxib1estring.. n(-L)
Zai

. 	 (2.7) 
nkundertensionj 	2! 
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For such a string we see that f = nf1  ; i.e., the natural frequencies form an 

exact harmonic series. Eq.(2.7) states that the frequencies of all the overtones 

of such a string are integral multiples of fundamental frequency f1. Overtones 

bearing this simple relation to the fundamental are called harmonics, the 

fundamental frequency being called the first harmonic, the first overtone (twice 

the fundamental) being the second harmonic, and so on. 

2.2 Bending waves in a bar. 

In the previous section, the motion of a somewhat idealised string was 

analysed. We assumed that the string was perfectly flexible, and that the only 

restoring force was due to the tension. However, we cannot put off studying 

the effect of stiffness on the string's motion, and we shall begin the study by 

discussing the transverse vibrations of bars. 

There is no sharp distinction between what we mean by a bar and what 

we mean by a string. In general, tension is more important as a restoring 

force than stiffness for a string, and stiffness is more important for a bar; but 

there is a complete sequence of intermediate cases from stiff strings to bars 

under tension. The perfectly flexible string is one limiting case, where the 

restoring force due to stiffness is negligible compared with that due to the 

tension. The rod or bar under no tension is the other limiting case, the 

restoring force being entirely due to stiffness. 

The first limiting case was studied in the previous section. The second 

case, the bar under no tension, will be studied in this section, and the 

intermediate cases will be dealt with in a later section. 

A bar or rod is capable of transverse vibrations in somewhat the same 

manner as a string. The dependence of the frequency on tension is more 

complicated than it is in a string, however. In fact, a bar vibrates quite nicely 
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under zero tension, the elastic forces within the bar supplying the necessary 

restoring force in this case. 

When a bar is bent, the outer part is stretched and the inner part is 

compressed. Somewhere in between is a neutral axis whose length remains 

unchanged, as shown in Fig. 2.2. A filament located at a distance z below the 

neutral axis is compressed by an amount zdçb. The strain is z dØ/dx, and the 

amount of force required to produce the strain is QdS(zdçb/dx) where dS is 

the cross sectional area of the filament and Q is Young's modulus. 

do 
neuuul 

axis 

dx 

Fig. 2.2 (a) Bending strains in a bars. 

dx 

:- 

+dM 

F4 	,. F+dF 

(b) Bending moments and shear forces in a bar. 

The moment of this force about the neutral axis is (QdØ I dx)z 2dS, and 

so the total moment required to compress all the filaments is 
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M=( b)f z 2dS .  
dx 

(2.8) 

It is customary to define a constant K called the radius of gyration of the 

cross section such that 

,c2 =!fz2cig, 
S 

where S = jdS is the total cross section. The bending moment is thus 

(2.9) 

M= 	—  QSK. 	 (2.10) 
dx 	a2 

since dØ —()dx for small dØ. 

The bending moment is not the same for every part of the bar; it is a 

function of x, the distance from one end of the bar. In order to keep the 

element of bar in balance, there must be the difference in the moments acting 

on the two ends of the element balanced by a shearing force represented by 

F. The moment of the shearing force is Fdx and this must equal dtvl for 

equilibrium, which means that. 

dM F= = —QSK 2  
dx 	IV 

(2.11) 

The shearing force F is also a function of x and may be different for 

different ends of the element of bar. This leaves a net force dF = (dF/dx)dx 

acting on the element, perpendicular to the bar's axis; and this force must 

equal the element's acceleration times its mass adx where a is the linear 

mass density of the material of the bar. Therefore the equation of motion of 

the bar is 
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(

	

dF
)=(ad- 	 . (2.12) 

	

_QS,c2=aV 	 .(2.13) 

	

d2y_QSic2d4y 	 . (2.14) 
dt2 	adx 4  

If y = Y(x)e 2 ' is set in Eq.(2.14), Y must satisfy the equation 

(2.15) 
cfr4  

	

______ 	 (2.16) where 	
_ 

4,r2QSic2 

The general solution of this is 

Y = a cosh (2nux)+ bsinh(2irLx)+ ccos(2ir4ux)+ d sin (2irpx) 	....(2.17) 

Consider a bar of length 1, fastened by hinges 	at its two ends to a 

solid anchorage so that Y and d2Y/cfr 2  are both zero at x = 0 and x = 1; the 

stiffness properties of the material 	of this are expressed in 	terms 	of 	its 

"modulus of elasticity" Q, and a once more stands for the bar's linear mass 

density. The nth characteristic frequency of the bar is given by the following 

formula: 

f(hinged bar) = 
( nr ) [ 
	

(2.18) 

Here we notice that f = n2f1, so that a bar whose first mode 

frequency f1 is 100 Hz will produce components at 22 x 100 = 400 Hz, 

32  x100=900  Hz, etc., instead of the 100-, 200-, 300-,... Hz sequence of the 

flexible string. That is the natural frequencies for a bar are much more widely 

spaced than they are for a string. We also notice that the frequency varies 
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inversely as the square of the bar's length, so that doubling the length moves 

the sound down two octaves in pitch. Observe that the bar's radius appears in 

the numerator, instead of in the denominator, so that an increase in the 

thickness of the bar raises its frequency instead of lowering it as is the case 

for a flexible string under tension. 

2.3 Vibrations of a stiff string. 

When a string is under a tension of T newton, and also has stiffness, 

its equation of motion is 

T.4_QSK2' =ad 2Y 	 (2.19) 
ax  

This equation can be obtained by combining the derivations in the two previous 

sections. The constant S is the area of cross section of the string, ic 	its radius 

of gyration, o its linear mass density and Q the modulus of elasticity of the 

material. 

If y = Y(x)e -2"ft is set in Eq.(2. 19), Y must satisfy the equation 

_8,r2I3 2 4_16,r4 y4 YO, where $2  =(T/8ir2QSic2), 	
....(2.20) 

	

&4 	dX2 

y2 = (f127r)Ja1QS1c 2 . 

	

Setting Y = 	 irlix we obtain an equation for the allowed values of 

X 9 - 2132/1 2  - = 0. This equation has two roots for /22  and therefore 

four roots for ji: 

	

? = Jj3+y4 + p2 	(2.21) 

	

14 =.Jj+y' _p2 	 (2.22) 
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(2.23) 

The general solution of Eq.(2.19) can then be written 

Y = acosh(22r/2 1x)+ bsinh(27qi1x) + ccos(21q12x) + dsin(21rjt2x) .....(2.24) 

The boundary conditions. 

Boundary conditions are important in determining the general behaviour 

of the string, its allowed frequencies, etc. The fact that a string is fastened to 

supports is an example of a boundary condition. It is a requirement on the 

string at a given point in space which must be true for all time, as opposed to 

initial conditions, which fix the dependence of y and v on x at a given time. 

If the string is fastened to rigid supports a distance 1 cm apart, the 

boundary condition is that y must be zero at each end, for all values of the 

time. For the case when the two ends of the string are clamped, the boundary 

condition at these ends are that both y and its slope (y/dx) must be zero at 

each end. The other important case is when the string is hinged at both ends, 

making y = 0 and also (d2y/dx 2 ) = 0 at each end. 

If the boundary conditions are symmetrical, it will be useful to place the 

point x = 0 midway between the supports. The normal functions will then be 

even functions, F'(—x)=—W(x); or they will be odd ones, 'I'(—x)=—'I'(x). 

In either case, if the boundary conditions at one end, x= (1 /2)  are fitted, they 

will also fit at the other end, x= —(1 /2).  The even functions from the general 

equation Eq.(2.24) are built up out of the combination 

Y = acosh(21rt 1x)+ccos(27rj.t2x) 	 (2.25) 

and the odd functions from the combination 

Y = b sinh(2 ir/i 1x) + dsin(2iri2x) 	 (2.26) 
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The hinged boundary conditions Y = 0 and also (d2Y/dx 2 ) =0 at x=±1/2  are 

considered. Then the even functions Eq.(2.25) will fit if a = 0 and 

cos(7r921) =0; that is, 

	

2 21 
	 (2.27) 

where n can be 1, 3, 5, 7, or any odd integer. 

If the odd functions are used, then b are zero and sin(4120 =0, or 

	

n 	 (2.28) 
21 

where n =2, 4, 6, 8, or any even integer. 

For each values of P2'  there is a corresponding frequency f of the 

odd and even partials obtained from Eq.(2.22) as 

f=nf0 (1+Bn2 )"2 	 (2.29) 

where 	 B=(,r2 QSic 2 /4l4 af) 	 (2.30) 

Eq.(2.29) and (2.30) are derived in Fletcher's paper 40 "Normal 

Vibration Frequencies of a Stiff Piano String". The parameter f0 is the first 

mode frequency of an ideal flexible string, which has the same length, tension 

and mass density as the real string, but with no bending stiffness. The 

parameter 	B , 	the inharmonicity coefficient, can 	be 	written 	as 	B = 

(r2R1414 OfO2 ),  where 1 is the length and 	or the linear mass density of the 

string; R = QS r2 , where Q is the Young's modulus of elasticity, S is the 

cross-sectional area, and K is the radius of gyration of the cross-section about 

an axis through the centre of the string and perpendicular to its length. For a 

uniform string of circular cross-section and diameter d, K = d14. 

Fletcher proposed that a similar treatment could be applied to an 

overwound string by making the assumption that the overwinding increased the 
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linear mass density of the string without increasing its bending stiffness. The 

relationship between mode frequency and mode number has again the form of 

Eq.(2.29); in the evaluation of the inharmonicity coefficient B, R is calculated 

using the dimensions and elasticity of the solid core, while the calculation of 

a includes the additional mass and volume of the overwinding. For a string 

consisting of a steel core of density p3  and diameter d, with a single 

overwound layer of copper of density p, and maximum diameter D, 

r 	.!L)d 2 . 	 (2.31) 
16 

a=pC  D +(pS4pC 16 

A comparable formula gives the linear mass density of a doubly overwound 

40 string 

2.4 Vibrations of a nonuniform stiff string. 

In this section we derive an expression for the frequencies of vibration 

of a stepped stiff string. Consider the vibration of an M-part string fixed at its 

ends. The (displacement) finite element formulation of the one-dimensional 

fourth-order differential equation Eq.(2.19) is 

T.4—R 1 .-4=a1 4- 	i = 1,2,3......, m 	.....(2.32) 
dx 	dx 	dt 

where yj  is the (small) transverse displacement of the string originally lying 

on the x-axis, t is the time, T is the tension, and R and a are as defined 

in 	Section 1.3. The right hand end of the ith  segment, of length 1., 	is 	at 

x = x1 ; the ends of the complete string, taken to be hinged, are at x=O and x=l. 

If y, = Yj  (x)e -2 ft is set in Eq.(2.32), }' must satisfy the equation 
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T' —R1 "2 =—o(4ir2f 2 )Y 	i = 1,2,3 ...... m 	.(2.33) 
dx2 

The boundary conditions are 

Y1 (0)= Ym(0= 0 	
(2.34) 

Y'(0) = Y(l) =0 

and the junction conditions 

Y(x) = Y 1  (x) 

Y 11(x)=Y'1+1 (x1 ) 

I., 	I, RY[(x1) = , c+i V 

TY[(x 1 ) - RYXx 1 ) = TY' f1  (x1) - R 1Y (x e ). (2.35) 

The boundary conditions are those for simple hinged supports and the junction 

conditions express the continuity of the displacement, slope, moment, and 

shear at the junctions of the M segments of the stiff string. 

In the case of a two segment stiff string the general solutions of 

Eq.(2.33) with m=2, can then be written, from Eq.(2.24), as 

Y = a cosh(2irjz 1 1x) + b sinh(2 irjz 1 1x) + c cos(2iru12x) + d sin(21r/.L 12x) ..(2.36) 

= ecosh(2irji21 (l— x))+ fsinh(2irj.t 21 (l— x)) 

+ g cos(2iqt(l - x)) + hsin(2irjt(l - x)) 
(2.37) 

The boundary conditions are 

Y 1 (0)=Y2 (l)=O 

Y'(0) = Y 2 (1) =0 
	

(2.38) 



The junction conditions are 

Y1(a1)=Y2(a1) 	 (2.39) 

Y(a1)=Y(a1) 	 (2.40) 

R1Y11(a1)=R2Y'(a1) 	 (2.41) 

TY'(a 1 )— R1Y1'(a1) = TYa 1 )—R 2Y"(a 1 ) 	 (2.42) 

By applying these junction and boundary conditions to the general solution 

Eq.(2.36) and (2.37), we can then get Eq.(2.43), from which the normal mode 

frequencies can be found. Afterwards, this equation will be called the frequency 

equation: 

R1  
+1)(y11  tanh(J221 a2 )+/221  tanh(p 11a1 )} 

22 

R2  u22 
 + 1)(p12  tan(p2 a2 )+P22 tan(4u12a1 )} 

21 
R1 Thi_l}(p =(u22a2 ) + P22 tanh(/.t11a1)) 

21 

x(1 - — 1){p1  tanh(jz 21a2 )+ /221 tan(u 12a1 )} =0 	(2.43) 
22 

Equation (2.43) contains four parameters /1j11 /212 /221 /222 which are functions 

of the frequency, f,. 

Ujk = 
J(F2 

	(2JrfR)2 .L + (_ 1)k 	: j,k = 1,2. 	....(2.44) 

In the case of the overwound string, R is constant if it is considered that its 

stiffness is constant along its length being due only to the core. The frequency 
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equation then simplifies to 

(AL+ 1)(+ l)(L tanh(U21a2) + lHthi tan(u22a2) + 

1422 	A21 	/121 tanh(p 11a) 	JU22 tan(p12a) 
.(2.45) 

1)(- - 1)(11 
tan(J122a2) + i)(thi tanh(u21a2) + = 0 

/121 	IL22 	922 tanh(p11a) 	/121 tan(912a) 

where 

Pik = ( 1(2L)2 + (2if )2 !L 
R1 	

+ (_1)k 	j,k = 1,2. 	(2.46) 
J 

	

R1 	2R1  

The allowed frequencies, f, 	(n = 1, 2, 3, 4.....) can be found numerically 

from equation (2.45) & (2.46) and will be considered in the next Chapter. 
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CHAPTER 3 

NUMERICAL ANALYSIS 

In this chapter, numerical calculations have been undertaken to compute 

theoretical mode frequencies from the frequency equation in the previous chapter 

for strings with varying degrees of overwinding. Strings with three different 

core and overwinding dimensions have been calculated. For each set of core 

and overwinding dimensions, six uniformly overwound strings and six stepped 

overwound strings of varying length have been studied. The inharmonicity of 

each string has been evaluated. 

3.1 Numerical Root Finding. 

Refer to the frequency equation for the overwound string, eq. (2.41) & 

(2.42), in the previous chapter. The allowed frequencies, f: (n=1,2,3,...), can 

be calculated numerically by applying Newton's method. 

The Mathematica package programmed on an Apple Macintosh computer 

was used for this method of calculation. FindRoot is a command to search for 

a numerical solution. In trying to find a solution, FindRoot starts at a specific 

point, and then progressively tries to get closer and closer to a solution. An 

example of command FindRoot is 

FindRoot[lhs == rhs,{x,x0 }] 
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for searching for a numerical solution to the equation lhs == rhs, starting with 

X = x0 . 

Picking good starting points is crucial in getting useful answers from 

FindRoot. To know how to pick good starting points, we need to understand 

a little about how FindRoot actually works. 

In the simplest case, FindRoot uses the Newton-Raphson method, also 

called Newton's method. Newton's method for finding the zeros of f(x) is 

the most commonly used of all one-dimensional root-finding routines. This 

method requires the evaluation of both the function f(x), and the derivative 

f'(x), at an arbitraiy point x. The Newton formula consists geometrically of 

extending the tangent line at a current point x, until it crosses zero, then 

setting the next guess x 14. 1 
 to the abscissa of that zero-crossing (see Fig.3.1). 

Fig.3. 1 Newton's method extrapolates the local derivative to find the next 

estimate of the root. In this example it works well and converges quadratically. 

Algebraically, the method derives from the familiar Taylor series expansion of a 

function in the neighbourhood of a point, 

f(x) = f(x)+f'(X)(XXo)+ f"(x0) (x—x 0 )2 +.... 	....(3.1) 
2 
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For small enough values of (x-x 0 ), and for well-behaved functions, the terms 

beyond linear are unimportant, hence f(x) =0 implies 

(x—x0)=—, 	 (3.2) 

Within a small distance e of x the function and its derivative are 

approximately: 

f(x + e) = f(x) + f'(x) + 
2f(x) 

~ 

2 

f'(x+ e) = f'(x)+ f"(x)+... 	 (3.3) 

By the Newton formula, 

x = i 

_.f(xi) 	 (3.4) 
i+1  	f'(x1)' 

so that 

e. 	 (3.5) 
' f'(x1 ) 

When a trial solution x differs from the true root by e j, we can use eq.(3.3) 

to express f(x), f'(x) in eq.(3.4) in terms of e and derivatives at the root 

itself. The result is a recurrence relation for the deviations of the trial solutions 

C =-C2 
f"(x) 	 (3.6) 

' 2f'(x) 

Equation (3.6) says that Newton's method converges quadratically. Near 

a root, the number of significant digits approximately doubles with each step. 

This very strong convergence property makes Newton the method of choice for 



any function whose derivative can be evaluated efficiently, and whose derivative 

is continuous and nonzero in the neighbourhood of a root. 

In general, Mathematica distinguishes two kinds of approximate real 

numbers: arbitrary-precision ones, and machine-precision ones. The precision of 

the approximate real number is the number of decimal digits in it which are 

treated as significant for computation. Arbitrary-precision numbers can contain 

any number of digits, and their precision is adjusted during computations. 

Machine-precision numbers, on the other hand, contain a fixed number of 

digits, and their precision remains unchanged throughout computations. On the 

computer system used to generate these results, the machine precision is 16 

decimal digits. 

Examples of FindRoot applied to the frequency equation will be shown 

in Appendix A , but before we consider an example for finding the numerical 

mode frequency, parameters in the frequency equation have to be defined. 

3.2 Numerical parameters. 

Theoretical mode frequencies from the frequency equation for the 

overwound strings have been computed by using numerical root finding. 

Fig.3.2 shows the notation used for defining the parameters of the overwound 

string. 

al 	 22 

dl [d2 

Fig.3.2 The single overwound string. 
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The 1-st segment of length al is the bare string and the 2-nd segment 

of length a2 has both the steel core and the wrapped copper wire. 

Consider again the frequency equation in the case of the overwound string 

(/111 + 1)(- + i){th.1 
tanh(1u21a2) + 1}{..!2. tan(/.122a2)  +1) 

922 	P21 	#21 tanh(p11a1 ) 	p22  t(,412a1) 

 1)( pJ2 
 - i){&L_tan(p22a2)  + 1}(/i2 tanh(p21a2) 

+ = 
1121 	P22 	p22 tanh(p 11a1 ) 	#21 tan(p12a1) 

where 

T 
Pu 	JFT)2 + (2, f) 2 .L 

T 
+- 

= 	+ (2,r #12 	 f)2 	
2R 

T 	
(2xf _ Y 2 

 T #21 = 	- 	-E - ~Rj  F(F(~ R, Y  + 	R 
T 

+- #22 F(F(Z
)2 +(2 	

2R1 
(2.48) 

Their parameters can then be described 

Q1 =2.000xlO": 

A =7.85x103: 

a1  

S=ird/4 

P2 =8.93x103: 

a2  

Young's modulus (steel) (N / m2 ). 

Volume mass density (steel: kg / m). 

Steel core length (the 1st segment string). 

Diameter of the steel core string. 

Cross section area of the steel core string. 

Volume mass density (copper: kg I m). 

Length of the overwound string. 

Diameter of the overwound string. 

M. 



S2  = ,rd /4 : 	Cross section area of the overwound string. 

IC=  d1  /4 	: 	Radius of gyration of the cross-section of the core about 

an axis through the centre of the string and perpendicular 

to its length. 

a1  = irdp1  / 4 	: 	Linear mass density of the core string. 

a2 = a1  + - (d —d 12)p2 : 	Linear mass density of the overwound string. 
16 

T 	: 	Tension 

1 )Y2 
 Jo = 	- : 	First mode frequency of an ideal flexible string. 

2(a1  +a2)a2  

R1  = Q1 S1  ic2  : 	Core stiffness factor. 

As shown above, the tension is related to J, the first mode frequency 

of an ideal flexible string, which is a very important factor in defining the 

inharmonicity of the strings. For the numerical calculation, the tension has been 

set to be constant for each of six uniformly overwound strings and six stepped 

overwound strings with the same core and overwinding dimensions. The 

constant tension has been derived from an experimental measurement of the 

first mode frequency for a specific length of the string, supposing that this is 

the first mode frequency of the ideal flexible string. More details of the 

experiment to measure the first mode frequency will be given in chapter 5. 

The dimensions for the 18 uniform overwound strings and for the 18 

2-segment overwound strings are shown in Table 3.1 and 3.2, respectively. 
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Table 3.1 The dimensions of the uniform overwound strings. 

Core diameter Overall diameter Length 
String names 

dl (mm.) d2 (mm.) a(mm.) 

U1(1) 800 

U1(2) 1050 

U1(3) 1300 

U1(4) 1.35 4.20 1550 

U1(5) 1800 

U1(6) 2050 

U2(1) 800 

U2(2) 1050 

U2(3) 1300 

U2(4) 1.40 4.41 1550 

U2(5) 1800 

U2(6) 2050 

U3(1) 800 

U3(2) 1050 

U3(3) 1300 

U3(4) 1.45 4.68 1550 

U3(5) 1800 

U3(6) 2050 
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Table 3.2 The dimensions of the 2-segment overwound strings. 

Core Overall Unwound Wound Total Unwound 

String diameter diameter length length length fraction 

names dl (mm.) d2 (mm.) al (mm.) a2 (mm.) a(mm-) al:a2 

Si(l) 750 800 1:15 

S1(2) 1000 1050 1:20 

S1(3) 1.35 4.20 50 1250 1300 1:25 

S1(4) 1500 1550 1:30 

SI(S) 1750 1800 1:35 

S1(6) 2000 2050 1:40 

S2(1) 750 800 1:15 

S2(2) 1000 1050 1:20 

S2(3) 1.40 4.41 50 1250 1300 1:25 

S2(4) 1500 1550 1:30 

S2(5) 1750 1800 1:35 

S2(6) 2000 2050 1:40 

S3(1) 750 800 1:15 

S3(2) 1000 1050 1:20 

S3(3) 1.45 4.68 50 1250 1300 1:25 

S3(4) 1500 1550 1:30 

S3(5) 1750 1800 1:35 

S3(6) 2000 2050 1:40 
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3.3 Numerical results. 

The mode frequencies that we have obtained by numerically solving the 

frequency equation are tabulated in Appendix B. 

As a basis for discussion of inharmonicity it is sometimes convenient to 

divide each mode frequency f by the corresponding mode frequency of the 

equivalent ideal (completely flexible) string nf0 , giving a fractional inharmonicity 

I. = fjnf. This inharmonicity can also be expressed as a pitch interval: 

Inhannonicity (cents) = 3986 log(I) 

A cent is a unit that divides each of the twelve semitone intervals of the 

equally tempered scale into 100 equal parts. 

The inharmonicity in cents from the numerical results for the 18 uniform 

overwound strings and the 18 2-segment overwound strings are shown in 

Appendix C. 

The relation between the theoretical inharmonicity and the mode number 

(n), is presented in Graph 3.1 for the six uniformly overwound strings, Ul(1), 

Ul(2), Ul(3), U1(4), U1(5) and Ul(6). These six uniformly overwound 

strings are the same in both core and overall diameters (dl=1.35 mm. and 

d2=4.20 mm.), but they have different lengths. U1(1) is the shortest string, 

with the length a = 800 mm. and U 1(6). is the longest one, with a = 2050 mm. 

The theoretical results for the inharmonicity in Graph 3.1 show clearly that the 

shorter the uniformly overwound strings with the same diameter, the higher the 

inharmonicity. The inharmonicity at the 30th mode of the U1(1) string is 355 

cents, but that of the U1(6) string is only 75 cents. 

Graph 3.2 presents results for the six uniformly overwound strings, 

U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6), and Graph 3.3 presents results 
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for U3(1), U3(2), U3(3), U3(4), U3(5) and U3(6). The results of 

inharmomcity in Graphs 3.2 and 3.3 confirm that the shorter the strings with 

the same diameter, the higher the inharmonicity. 

The strings of the same length from these three groups, for instance 

U1(1), U2(1) and U3(1), are different in both core and overall diameters. The 

theoretical results for the inharmonicity in Graphs 3.1, 3.2 and 3.3 show that 

the larger the diameter of the strings with the same length, the higher the 

inharmonicity. The inharmonicity at the 30th mode of the U2(1) string (overall 

diameter d2=4.41 mm.) is 399 cents, but that of the U3(1) string (overall 

diameter d2-4.68 mm.) is 446 cents. 

Graph 3.4 displays the relation between the theoretical inharmonicity and 

the mode number (n) for the six 2-segment overwound strings, S1(1), Sl(2), 

S1(3), S1(4), S1(5) and S1(6). The six 2-segment overwound strings, S2(1), 

S2(2), S2(3), S2(4), S2(5) and S2(6) are displayed in Graph 3.5, and the six 

2-segment overwound strings, S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6) are 

displayed in Graph 3.6. 

The theoretical results for the inharmonicity of the stepped overwound 

strings in Graph 3.4, 3.5. and 3.6 again show that the shorter the strings with 

the same diameter and the larger the diameter of strings with the same length, 

the higher the inharmonicity. 

The strings in Graph 3.1 and 3.4 are the same in both core and overall 

diameters. Moreover, U1(1) in Graph 3.1 and S1(1) in Graph 3.4 are the same 

total length a = 800 mm., but S1(l) is the stepped overwound string with 

unwound length al = 50 mm. and wound length a2 = 750 mm. The 

inharmonicity at the 30th mode of the S1(l) string is 453 cents, substantially 

higher than corresponding inharmonicity of 355 cents for the U1(l) string. 

The comparisons of the inharmonicity between the uniformly overwound 

strings and the corresponding stepped overwound strings in Graph 3.1 to 3.6 

/<t .  r 
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leads to the conclusion that in the case of the stepped overwound strings, the 

inharmonicity is indeed significantly higher. 
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Graph 3.1 The relation between the theoretical inharmonicity and the 

mode number (n) for the six uniformly overwound strings, U1(1), U1(2), 

U1(3), Ui(4), U1(5) and U1(6). 
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Graph 3.2 The relation between the theoretical inharmonicity and the 

mode number (n) for the six uniformly overwound strings, U2(1), U2(2),. 

U2(3), U2(4), U2(5) and U2(6). 
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Graph 3.3 The relation between the theoretical inharmonicity and the 

mode number (n) for the six uniformly overwound strings, U3(1), U3(2), 

U3(3), U3(4), U3(5) and U3(6). 
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Graph 3.4 The relation between the theoretical inharmonicity and the 

mode number (n) for the six 2-segment overwound strings, S1(i), S1(2), 

Si(3), Si(4), S1(5) and Si(6). 
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Graph 3.5 The relation between the theoretical inharmonicity and the 

mode number (n) for the six 2-segment overwound strings, S2(1), S2(2), 

S2(3), S2(4), S2(5) and S2(6). 
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Graph 3.6 The relation between the theoretical inharmonicity and the 

mode number (n) for the six 2-segment overwound strings, S3(1), S3(2), 

S3(3), S3(4), S3(5) and S3(6). 
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CHAPTER 4 

EXPERIMENTAL TECHNIQUES AND 
RESULTS 

In order to validate the theory developed in Chapter 2, experiments were 

conducted to measure the inharmonicity of the overwound strings on a 

purposed-designed monochord. The strings were plucked and the sound was 

recorded using a microphone mounted a short distance above. The acoustic 

signal was captured digitally using an A/D converter and was analysed using 

anFVF. 

The experimental results of inharmonicity for the uniformly overwound 

strings on the monochord are firstly presented. These are followed by the 

results of inharmonicity of the stepped overwound strings on the monochord. 

Data of their experimental mode frequencies and the inharmonicity are shown in 

Appendix D and E. 

4.1 Experimental apparatus. 

For the purposes of this experiment the strings were plucked. It was 

found that plucking the string at a position close to the end with the flesh and 

nail of the finger or thumb excited the greatest number of modes. It was this 

method that was mainly used to sound notes from the strings on the 

monochord. 
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The monochord as shown in Fig.4.1 is composed of a rigid steel bar, 

2 specially designed bridges, a tuner support and a tuner. The rigid steel bar 

was used to eliminate both the static and acoustic functions performed by a 

piano soundboard. Statically, it opposes the vertical components of string 

tension that act on the bridges. Acoustically, the soundboard is the main 

radiating member in the instrument, transforming some of the mechanical energy 

of the strings and bridges into acoustic energy. 

Fig.4.2 The monochord. 

The frequency-dependent motion of the bridges and soundboard on a 

piano is coupled to the string motion, and modifies the natural mode 

frequencies of the strings. The much greater impedance of the rigid monochord 

supports is designed to reduce this effect. Each bridge, consisting of a pair of 
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clamps, stops the end of the string at 3 points in a plane perpendicular to the 

string length. Initial experiments on a prototype monochord with conventional 

horizontal bridges showed that the resulting curvature of the string in the 

vertical plane significantly affected the natural mode frequencies. In fact, two 

families of modes were identified corresponding to horizontal and vertical 

motion respectively. To avoid this, the clamps were designed to stop the string 

without forcing a change of angle. 

The sound was recorded using a SHURE SM94 condenser microphone 

mounted a short distance above the middle point on a string. The acoustic 

signal was captured digitally using an 8 bit analogue-to-digital converter (ADC) 

22 after suitable filtering and amplification. The digital signal was stored on 

disc for subsequent frequency analysis. 

A frequency spectrum for a recorded note was obtained by performing a 

fourier transform on the recorded digital signal. The fourier transform was 

performed using the techniques of fast fourier transform (FF17) programmed 

into a second computer. The frequency interval of the discrete FF1' was given 

by Af = fe/n, where  f was the sampling rate and n was the corresponding 

number of points or transform size. In these experiments, the frequency interval 

was = 4 Hz with f, = 8000 Hz and n = 2048. 

A programme ("ASFIQR") developed in Edinburgh 84 locates the peaks 

in the spectrum with high accuracy by an interpolation technique. It has been 

shown that in the case of a strictly periodic test signal with a signal-to-noise 

ratio better than 60 dB, it can be estimated to an accuracy better than 1% of a 

FF1' frequency interval. 

More details for the analogue-to-digital converter, the fourier analysis, 

the spectrum analysis and the experimental uncertainty will be shown in the 

following sections. 
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4.2 Analogue-to-digital converter and sampling process. 

Most of the signals encountered in science and engineering are analogue 

in nature. That is, the signals are functions of a continuous variable, such as 

time or space and usually take on values in a continuous range. In this case 

of study, the signal is musical sound. 

Sound is produced by a vibrating source. The vibrations disturb the air 

molecules that are adjacent to the source by alternately pulling apart and 

pushing together the molecules in synchronism with the vibrations. Thus, the 

energy in a sound produces small regions in which the air pressure is lower 

than average (rarefactions) and small regions in which it is higher 

(compressions). These regions of alternately rarified and compressed air 

propagate in the form of a sound wave much in the same manner as the 

troughs and crests of an ocean wave. When a sound wave impinges on a 

surface (e.g., an eardrum or a microphone), it causes that surface to vibrate in 

sympathy with the wave. In this way acoustic energy is transferred from a 

source to a receptor while retaining the characteristic vibration pattern of the 

source. 

Acoustic energy in the form of pressure waves can be converted into an 

analogous electrical signal by an appropriate transducer such as a microphone. 

The transducer produces a voltage that changes constantly in sympathy with the 

vibrations of the sound wave. To demonstrate that the voltage describes the 

sound received by the microphone, it can be converted back into sound and 

compared with the original. Because the change in voltage occurs analogously 

to the vibrations of the sound, the electrical signal is called an analogue signal. 

To change an analogue signal into a suitable form for use by a digital 

computer, the signal must be converted into numbers. Two types of I/O 
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devices link the digital computer with the analogue world. These types are 

distinguished by the direction of transformation. Analogue-to-digital (A/D) 

converters transform voltages into numbers, and digital-to-analogue (D/A) 

converters transform numbers into voltages. Data converters are characterised by 

their precision and speed of conversion. The conversion process relies on the 

principle that at any point in time, an analogue electrical signal can be assigned 

an instantaneous value by measuring its voltage. For example, it is possible to 

state that exactly 2.01 seconds after a certain sound began, the corresponding 

electrical signal had a value of 0.89 volts. 

AMPLITUDE 

+ 

TIME 

(0, 0.5, 1, 0.77, 0.60, 0.65, 0, -0.59, -0.49, 0.57, -0.67, 0) 

DIGITAL SIGNAL 

Fig. 4.2 Signal represented in both analogue and digital forms. The dots on the 

analogue waveform indicate the sampling points. 

The analogue voltage that corresponds to an acoustic signal changes 

continuously, so that at each instant in time it has a different value. It is not 

possible for the computer to receive the value of the voltage for every instant, 

because of the physical limitations of both the computer and the data 
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converters. (And, of course, there are an infinite number of instants in any 

finite time interval.) Instead, the analogue voltage is measured (sampled) at 

intervals of equal duration. The output of the sampling process is a discrete or 

digital signal: a sequence of numbers corresponding to the voltage at each 

successive sampling time. Fig. 4.2 shows a signal in both digital and analogue 

form. Observe that the analogue signal is continuous; that is, every point on 

the waveform is smoothly connected to the rest of the signal. The digital signal 

is not continuous because it consists of specific samples at discrete times. 

The duration of time between samples is known as the sampling interval 

or sampling period. The inverse, the number of times the signal is sampled in 

each second, is called the sampling rate or sampling frequency (fe)  and is 

measured in hertz (samples per second). 

One might assume that the more samples taken of a phenomenon, the 

more accurately it could be represented -which suggests that anything less than 

an infinite sampling rate would cause some error in the digital signal. 

Fortunately, a mathematical analysis of the sampling process reveals that no 

error will be introduced by a finite sampling rate that is more than twice the 

fastest rate of change of the signal being sampled. That is, the chosen 

sampling rate must be faster than twice the highest frequency contained in the 

analogue signal. Conversely, the highest frequency contained in the analogue 

signal must be less than half the sampling rate. This maximum, fd2,  is called 

the Nyquist frequency and is the theoretical limit on the highest frequency that 

can be represented in a digital audio system. 

To ensure that the frequencies in the analogue signal are below the 

Nyquist frequency, an analogue or digital low-pass filter is placed before the 

AID converter (so that too high frequencies are filtered out). A filter separates 

signals on the basis of their frequencies, passing signals of certain frequencies 

while significantly reducing the amplitudes of other frequencies. An ideal low- 
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pass filter would permit frequencies below the Nyquist frequency to pass 

unchanged, but would completely block higher frequencies. Real low-pass 

filters, however, are not perfect, with the result that, in practice, the usable 

frequency range is limited to a little more than 40% of the sampling rate 

instead of the full 50%. Thus, a sampling rate of 40 kHz provides for a 

maximum audio frequency of slightly above 16 kHz. 

AMPLITUDE 

+1 

TIME 
(ms) 

Fig. 4.3 Sampling a 30 kHz sinusoidal tone at a 40 kHz rate. The samples also 

describe a 10 kHz sinusoidal as shown in the dotted line. 

The faster the sampling rate, the higher the frequency that can be 

represented, but the greater the demands on the speed and the power 

consumption of the hardware. 

What would happen if there were no low-pass filter on the analogue 

input and a signal were sampled that contained a frequency above the Nyquist 

frequency? Consider a 30 kHz sinusoidal tone 	sampled at a 40 kHz rate as 

in Fig. 4.3. 

The resulting digital signal of (1, 0, -1, 0, 1, 0, -1, 0) is the same as 

the 10 kHz tone. Thus, when the digital signal is converted back to analogue 
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form, the output of the low-pass filter will be a 10 kHz sinusoidal tone. The 

30 kHz tone has the same sample values as a 10 kHz tone, and so it is said 

to assume an "alias" at 10 kHz. Once a signal appears in a digital system 

under an alias, there is no way that the computer can determine whether a 

particular frequency is an alias or not. In a digital system, the alteration caused 

by the sampling process of frequencies higher than the Nyquist frequency is 

known as aliasing or foldover. 

A low-pass filter at the input to an A/D converter effectively prevents 

aliasing in a digital signal simply by limiting the range of frequencies going 

into the converter. Suppose that, on a system with a 40 kHz sampling rate, a 

user writes a program with the intention of producing a 30 kHz sinusoidal 

tone. The digital signal that the' program would generate is identical to the 

sequence in the example above, 1 1, 0, -1, 0, 1, 0, -1, 0..... },  and therefore 

would be converted into a 10 kHz sinusoidal tone. 

Let fin  be either a frequency applied to the input of an A/D converter 

or a frequency intended to be contained in a synthesised sound. For values of 

fin  between fJ2 and f,  the relationship between fin  and the actual frequency 

output (f0)  from the low-pass filter is 

foul = fa _f. 

In this region of f, observe that f out  and fin  move in opposite directions. If a 

system with a 40 kHz sampling rate were programmed with the objective of 

producing an ascending glissando from 22 kHz to 39 kHz, the sound 

synthesised would actually descend from 18 kHz to 1 kHz. 

Foldover occurs on every multiple of the sampling rate, and so 

frequencies higher than the sampling frequency will also cause unwanted 

responses. The general relationship is 

fo =kif3-fI 



where n is an integer chosen for each value of fin  such that f0  is less than 

the Nyquist frequency. Thus, at a 40-kHz sampling rate, an output of 10 kHz 

would result from inputs of 10 kHz, 30 kHz, 50 kHz, and so on. 

The A/D converter transforms the incoming analogue signal into digital 

form, and the sound recording computer stores this digital signal on an external 

memory device such as a disk or tape. Digital recordings have several 

advantages over analogue ones. The recording medium stores numbers rather 

than an analogue signal, and so offers superior noise performance and protects 

the sound more effectively against degradation during long-term storage. In 

addition, regardless of the number of generations removed, a copy of a digital 

recording maintains complete fidelity to the original. 

4.3 Fourier Analysis. 

A Fourier transform enables researchers to obtain the spectrum of a 

sound from its waveform. A computer technique which performs the Fourier 

transform on a digital signal is the Discrete Fourier Transform (DFT). The 

DFT is computationally intensive, but through a clever ordering of the computer 

operations involved in performing a DFT, Cooley and Tukey 28  were able to 

reduce the number of computer operations significantly. Their algorithm is 

known as the Fast Fourier Transform (FF1'). 

Results of the FFF are a set of discrete lines at frequency intervals of 

the size of which represent the amount of sound present, at that particular 

frequency, in the original sound signal. 

The frequency interval of the discrete FFT is given by zf = fe /n, 

where f, is the sampling rate and n is the corresponding number of points or 

transform size. In general the FF1' size is restricted to be a power of two. For 

sounds where the frequency is constant as in a sound from a musical 

67 



instrument, then the higher the number (n) the more accurate the frequency 

measurement is. However, for speech where the frequency may change within 

the measurement, increasing the numbers of points may merely broaden and 

obscure the peaks. 

When recording, the first computer samples the sound at regular 

intervals and converts each sample to a number in the range O...255. These 

numbers are stored in a buffer in RAM . The number of points in the 

transform is limited by the buffer length - for example if the buffer start is 

&3800 the buffer end is &5800 then the buffer size is 8K, and so the number 

of points must be 8192 or less. If the buffer start is set to &3800 and the 

number of points is 1024 (&400) then only the portion of sound between 

&3800 and &3C00 (&400 = &3C00 - &3800 = 1024) is analysed. Furthermore, 

if the sampling rate is 8 kHz, then only the first eighth of a second of the 

recorded sound has been used for the analysis and thus a linewidth of about 8 

Hz should be expected in frequency analysis even for a pure sound. The 

reasons for this limit have been presented by Brigham 19,  but with f3 = 8 kHz 

and n = 2048 a resolution limit that is twice as sharp (= 4 Hz) if the frequency 

remains constant over the part of the sound being analysed was obtained. 

However with few detectable harmonics above 2000 Hz the sample rate was 

increased to 4 kHz for certain recordings. The resolution then obtained was 

Hz and the maximum detectable frequency (the Nyquist limit) was 2000 Hz. 

4.4 Spectrum analysis. 

For many applications in musical acoustics, the power spectrum is a 

most effective way of describing the component frequencies present in a sound, 

together with their relative amplitudes. 

In the ideal case of a periodic signal where the portion of signal 
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analysed spans an exact number of cycles of the fundamental, then the 

fundamental and its harmonics each correspond to one of the lines of the FFT 

spectrum (nAf). If this ideal condition is not present, the signal frequencies lie 

between the calculation frequencies, causing the analysis to attribute them in a 

widespread pattern which varies according to the frequency mismatch, an effect 

termed "leakage". The ideal situation is often unattainable, as the signal 

frequency may not be known in advance, or the sample rate may not be 

adjustable to the precise value. More importantly, analysis should cope with 

several signals combined, at unknown frequencies. 

The remedy is to multiply the data time-series by a "window function" 

which is unity in the middle and tapers towards zero at each end. The effect 

is to give a rounded peak spanning several frequency intervals, with fairly 

uniform shape regardless of where the signal frequency lies within the 

frequency interval, and with a substantial reduction in the leakage to distant 

bins. Peak shape depends on the window function, but for a given function 

the peak always spans the same number of frequency bins even when their 

width is altered by other factors such as transform size. 

Window functions are weighting functions applied to data to reduce the 

spectral leakage associated with finite observation intervals. From one 

viewpoint, the window is applied to data (as a multiplicative weighting) to 

reduce the order of the discontinuity at the boundary of the periodic extension. 

This is accomplished by matching as many orders of derivative (of the 

weighted data) as possible at the boundary. The easiest way to achieve this 

matching is by setting the value of these derivatives to zero at the boundaries 

so that the periodic extension of the data is continuous in many orders of 

derivative. 

During the course of this experiment a Gaussian windowing function 

was used. 



,.,/\ e  
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Fig. 4.4 The convolution of these two Fourier transforms with a Gaussian like 

form at each of the spectral peaks. 

When the FF1' of the windowed sound signal is performed, one is 

performing a Fourier transform of a product of two functions equal to 

G(t) x R(t), where R(t) is the original recorded sound signal. The Fourier 

transform of a product is simply the convolution of the separate Fourier 

transforms of R(t) and G(t). The convolution of these two Fourier transforms 

then appeared as shown in Fig. 4.4, with a Gaussian like form at each of the 

spectral peaks. 

Windows can be used in estimating power spectra. In the direct method, 

the power spectrum is estimated by computing the square of the absolute value 

of the DFT of the windowed sequence. The DFT of the windowed sequence is 

the convolution of the DFF's of the window and the original sequence. This 

convolution smoothes the input power spectrum; consequently values of the 

power spectrum at frequencies separated by less than the width of the main 

lobe of the spectral window cannot be resolved. In addition to this limit on 

resolution, the estimate of the power spectrum may contain significant leakage, 

i.e., erroneous contributions from components of the power spectrum at 

frequencies possibly distant from the frequency of interest because of the 

nonzero energy in the spectral window side lobes. 

The result of the DFT performed on windowed data is the convolution 
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of the DFT of the window function and the DFT of the raw data. This 

mathematical statement unfortunately does not offer a simple way of recovering 

the frequency information. Instead an empirical approach has been developed 

from careful study of the characteristics of the output for calibration signals by 

Raymond Parks 84• The term "interpolation interval" is convenient to describe 

the difference between the true signal frequency and the FF1' line immediately 

below it, as a fraction of DFT frequency interval. 

I )' 	0.3 	0.5  

Fig. 4.6 Variation of cluster shape with interpolation interval. 

Fig. 4.6 is a montage comparing the DFT line clusters for five 

interpolation intervals. The pattern for an interpolation interval of 0.0 is 

identical to that for 1.0. The pattern for 0.0 is symmetrical about a single line, 

while that for 0.5 is symmetrical about a pair of lines; the skewed patterns for 

interpolation intervals below 0.5 are mirror images of those above 0.5, with 

the relative line heights changing smoothly. While an interpolation would be 

possible using only the relative heights of the two highest lines, the risk of 

degradation by spurious signals is reduced by using differences between the 

four highest lines. The three separate estimates are combined with subjectively 

assigned weights, w = 10h120 where h is the height difference between two lines, 

to allow for the greater risk of contamination for lower lines. With the 

preferred window, straight-line interpolation is adequate for differences 1-2 and 
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2-3, while a second-order polynomial is used for difference 3-4. 

The program "ASFIQR" operates on a power spectrum in dB from a 

disk file in two passes, the first identifying lines which stand out from the 

background level and the second grouping these lines in clusters and 

interpolating a centre frequency for each cluster. 

Recognition of prominent lines is based on comparison of the running 

mean of three lines with that of the two before and two after them. If a 

specified threshold is exceeded, the central line has a flag set for its 

subsequent treatment. 

In the second pass, a cluster is defined as starting where the line flags 

change from zero to one, and finishing where they return to zero. Within each 

cluster the highest line is identified, and the lines before and after it compared 

to establish the polarity of interpolation, i.e. whether the centre frequency is 

above or below that of the highest line. This result also defines which line is 

to be used as the fourth highest. 

Three separate interpolations are then performed, on the basis of height 

differences from first-to-second, second-to-third and third-to-fourth lines 

respectively, and a weighted mean is derived. As a rudimentary indication of 

the degree of agreement between the three interpolated estimates in each case, 

an unweighted standard deviation of the three is provided (expressed as a 

fraction of frequency interval), and the user is left to decide whether to accept 

or reject the value. 

4.5 The experimental uncertainty. 

As an indication of the accuracy obtainable, the procedure was applied 

to a computer-generated complex periodic wave consisting of the first 15 

harmonics of fundamental frequency 200 Hz as shown in Fig. 4.7. In this case, 
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each of the components analysed was represented in the FF1' by a cluster 

of lines whose highest member was at least 50 dB above the noise floor of 

the spectrum. Graph 4.1 (white blocks) shows the differences between the 

component frequencies estimated by the ASFIQR program and the true values 

(200n, n = 1, 2,..., 15). Error frequencies are the order of 0.01 Hz, which is 

about 0.25% of the FF1' frequency interval. 
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Graph 4.1 shows the difference between the component frequencies estimated by 

the ASFIQR program and the true values (200n, n = 1, 2,..., 15). a: Steady 

state signal (white block). b: Decay rate at 20 dB/sec (diamond). 
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Fig.4.7 an artificial complex sinusoidal wave composed of exact harmonics. 
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Fig. 4.8 show the artificial complex sinusoidal wave composed of exact 

harmonics at 20 dB/sec. 
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In the recorded sound of a plucked string, the decay characteristics of 

the signal have to be considered. The ability to estimate the frequency of a 

component to within a small fraction of an FF1' interval relies on the 

assumption that the component is an isolated sinusoidal signal of constant 

amplitude. This condition is clearly violated by the components of a decaying 

string. In order to examine the error in frequency estimation caused by the 

variation in amplitude over the sample time, a program was writen which 

applied an amplitude envelope with variable decay rate to the signal shown in 

Figure 4.7. An example is shown in Figure 4.8. The analysis of frequency 

component error for this signal is shown in Graph 4.1 (diamonds); it is clear 

that the decay has not significantly increased the error. 
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Graph 4.2 Amplitude change in 250 ms time duration of the stepped 

overwound string, S1(3), on the monochord. a: White circles are the amplitude 

values at &3800 buffer start (initial time at 0 ms.) b: Black circles are at 

&4000 buffer start (the initial time at 250 ms.). 
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Graph 4.2 shows the amplitude change in 250 ms time duration of the 

stepped overwound string (S 1(3) as named in: Chapter 3) on the monochord. 

White circles in Graph 4.2 are the amplitude values of each mode frequency of 

the recorded signal at &3800 buffer start (initial time at 0 ms.), and black 

circles are that of the recorded signal at &4000 buffer start (the initial time at 

250 ms.). They were analysed with the same sampling rate (8000 Hz) and 

transform size (2048). Their mode frequencies change at different decay rates 

but they are not larger than 20 dB/sec: the largest decay rate, that of the 16th 

mode, is only 16 dB/sec. This behaviour is typical of the strings studied 

experimentally. It can therefore be concluded that the decay is not likely to 

have significantly affected the estimates of inharmonicity. With the same method 

of examining the error in frequency estimation caused by the variation in 

amplitude, it was found that a decay rate as fast as 40 dB/sec still has not 

significantly increased the error. This is relevant to the recorded signal of the 

strings on the piano, whose decay rates are faster than 20 dB/sec because of 

the effect of the soundboard. 

In the recorded digital signal, noise is a very important part to consider. 

Noise of the same frequency as the signal being measured will obviously affect 

the result, and there are many possible sources, including analogue noise, the 

effect of digitisation and the internal rounding noise in the FFT itself. In 

practice, it is most unlikely that the rounding noise in the FFT will be 

significant. 

To explain how systematic and random errors affect the overall noise 

level, two closely related concepts, dynamic range and signal-to-noise ratio, will 

be introduced. A characteristic that is a good indicator of the quality of any 

system that processes sound is dynamic range: the ratio of the strongest to the 

weakest signal that can exist in the system. Dynamic range is expressed in dB. 

The dynamic range of an electronic sound system is limited at the lower end by the 

76 



Signal amplitude V3  volts. 
Noise amplitude V volts. 

Signal power V,2  

Noise power V 
or 
Signal waveform V,sin(2iif 1t+b,). 
Noise waveform V sin(2,t + j. 

Max signal (Ø,=rfr) is V,+V. 
Min signal (0, =&+,r) is V,—V. 

The maximum decibel increase is

V.  20 
log  

(Vs+Vii 
] = 2O lo( 1 

 +.-) 

2 

= 	
I
V: = 1O120 

	

. 	

Ca LV,) 
0 

dB difference in signal is 20log(1+1O 0
). 

 

0 	 0 
Cm N 	 CO 

I 
0 

V 

0 

Hz 	 500 

Fig.4.9 shows spectrum analysis of the 2-segment overwound string on the 

monochord, S 1(3), illustrating both signal and noise. 
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background noise contributed by the electronic components and at the higher 

end by the level at which the greatest signal can be represented without 

distortion. 

A characteristic associated with dynamic range is signal-to-noise (SIN) 

ratio which compares the level of a given signal with that of the noise in the 

system. The term noise can take on a variety of meanings depending on the 

environment. In electronic sound systems, noise generally takes the form of a 

hissing sound. A S/N ratio is expressed in dB: LISA = 20logVS /V, where V3  

is signal voltage and VA  is the equivalent noise voltage. The dynamic range of 

an electronic system predicts the maximum SIN ratio possible; that is, under 

ideal conditions, the signal-to-noise ratio equals the dynamic range when a 

signal of the greatest possible amplitude is present. The ratio will be 

somewhat smaller on quiet sounds. As an example, consider a digital sound 

system with a constant noise level and a dynamic range of 50 dB. The largest 

signal possible would have an amplitude 50 dB above the noise level, but a 

signal with a level 10 dB below the maximum would exhibit a SIN ratio of 

only 40 dB. 

The performance of such a system is ordinarily determined by the 

resolution with which the data converters transform analogue into digital signals 

and vice versa. When a conversion takes place, the analogue signal is said to 

be quantized because in digital form it can be represented only to a certain 

resolution. The net effect of this type of error, called a quantisation error, is 

the addition of some form of noise to the sound. The amount and audible 

effect of the quatisation noise depends on the resolution of the converter and 

the type of signal being converted. 

The resolution of converters is measured in bits, corresponding to the 

size of the datum used to represent each sample of the digital signal. In the 

case where the audio signal is constantly changing (as in most music), the 
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dynamic range and hence the best signal-to-noise ratio that can be achieved is 

approximately 6 dB/bit. For example, a system with 8-bit data converters has a 

dynamic range of around 50 dB. This means that the noise in the system will 

be 50 dB below a signal with the largest amplitude possible in the system. The 

noise level does not change with signal level, so that signals with amplitudes 

lower than the maximum value will exhibit less than the maximum SIN ratio. 

The amplitude of a signal can be either increased or decreased by the 

addition of noise. Fig.4.9 shows a spectrum analysis of the 2-segment 

overwound string on the monochord, S1(3), including both signal and noise. If 

V1  is the amplitude of the component in one bin of the FFT spectrum, and 

V is the amplitude of the noise signal which would be recorded in that bin in 

the absence of a signal, then the signal amplitude in dB can be changed by 

V 
20log(1+10 20) where .-=10 	. 

1 

Table 4.1 The effect of noise on the estimation of signal frequency. 

AS" (j signal changed by noise maximum changed 

(dB) frequency (Hz) 

20 0.83 0.40 

30 0.27 0.20 

40 0.086 0.10 

50 0.027 0.05 

The effect of noise 20 dB below the wanted signal is to give a 

systematic and random error of 0.83 dB in the amplitude measurement. The 

effect of this on the estimation of signal frequency was considered by going 

back to the programme ASFIQR operating on clusters of lines in the power 
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spectrum. Each line in clusters could be affected by noise of arbitrary phase. 

By considering the effect of raising or lowering the amplitude of each line by 

the noise amplitude, it was established that the corresponding variation of 

estimated frequency was of the order of ±10% of the FVI' frequency interval. 

In the case of a signal with isolated spectral lines, visual inspection of 

the plot will allow the noise floor to be estimated. In the experimental work 

described here only peaks whose largest component was at least 40 dB above 

the noise were accepted for analysis. In this case the interpolation technique in 

the ASFIQR programme gives an accuracy of about 2.5% of the FFT 

frequency interval 

By musical sounds we mean signals which are essentially evolutive. 

They are characterised by a large bandwidth-observation time product. The 

physical description of such signals needs the simultaneous determination of 

three parameters: frequency, amplitude and time. The effect of amplitude 

evolution on the determination of frequency has already been considered. It is 

possible, however, that the mode frequencies of the measured string are not 

constant with time. In Bariáux's work 10  on "A Method for Spectral Analysis 

of Musical Sounds, Description and Performances", he considered the mode 

frequencies with the time function f(t) = f + A sin(2irvt + ) with modulation 

period P =11(2. 5)1f where Ltf is the frequency interval of FFT. In this work 

in order to investigate possible time evolution of the frequency of the signal, 

the recorded signal from a single pluck of the strings was analysed by moving 

initial time (buffer start) with the same sampling rate (800011z) and transform 

size (2048). In section 4.3 we described how the sound converts each sample 

to a number in the range 0...255. These numbers are stored in a buffer in 

RAM of the first computer. If the buffer start is &3800 and the buffer end is 

&5800 then the buffer size is 8K. With the transform size at 2048 (&800) 

then only the portion Of sound between &3800 and &4000 (&800 = &4000 - 

RX 



&3800) is analysed. If we now move the start of the transform sample to 

&383C, the end of the sampled section is &403C, and the initial time of the 

analysed signal is delayed by 7.5 ms. For these tests, twenty overlapping slices 

of the signal were analysed, the start of successive slices being delayed by 7.5 

ms. The time evolution of frequency of 4th mode, 12th mode, 26th mode, 

30th mode and 33rd mode frequencies of the stepped overwound string (S 1(3)) 

on the monochord are shown in Graph 4.3 to Graph 4.7, respectively. It is 

evident that some frequency modulation is indeed present in the signals. In 

Bachmann's work 3  on "High Resolution Frequency Analysis of the Onset of a 

Piano Sound", he suggested that autoregressive spectrum analysis ("AR") is 

able to yield high resolution frequency spectra of very short segments of a 

signal record. On the other hand, the amplitude of frequency modulation of the 

very short segments of a recorded signal is greater than that shown in Graph 

4.3 to 4.7 because of the averaging over a 250 ms sample. However, the 

magnitude of the variations in measured frequency due to this effect are small 

in comparison to these introduced by noise fluctuation. 

Fortunately, the random error can be reduced by the (time consuming) 

method of averaging successive readings. In these experiments, each 

measurement was repeated 25 times by plucking the same string at the same 

position. To ensure that ambient temperature changes did not influence the 

results, each set of 25 measurements was completed within an hour. Each 

experimental point plotted in next section, Chapter 5 and Chapter 6 carries an 

error bar representing the standard error in the mean of 25 measurements, 

which was consistent with the calculated uncertainty due to noise corruption of 

the signal. 
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Graph 4.3 shows the time evolution of frequency of the 4th mode of the 

stepped overwound string on the monochord, S1(3). 

443.32 
DOD 

	

443.30 
	 UI 

UI 

443.28 
UI 

	

443.26 
	

UI 
	 UI mode 12th 

UI 
443.24 

UI 

	

443.22 
	

UI 	 UI UI 

UI 

443.20 -t 
0 
	

50 	100 	150 

Delay time (ms) 

Graph 4.4 shows the time evolution of frequency of the 12th mode of the 

stepped overwound string on the monochord, S1(3). 
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Graph 4.5 shows the time evolution of frequency of the 26th mode of tht 

stepped overwound string on the monochord, S 1(3). 
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Graph 4.6 shows the time evolution of frequency of the 30th mode of the 

stepped overwound string on the monochord, S 1(3). 
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Graph 4.7 shows the time evolution of frequency of the 33rd mode of the 

stepped overwound string on the monochord, S 1(3). 

4.6 Experimental results. 

In this section the measurements of the mode frequencies of overwound 

strings with and without step on the monochord are firstly presented. These are 

followed by the results of inharmonicity of the overwound strings on the 

monochord. Data of their experimental mode frequencies and the inharmonicity 

in cents are shown in Appendix D and E. 

In order to consider vibration of overwound strings with and without 

step while eliminating other parameters affecting the strings such as bridges, 

soundboard vertical vibration of the strings, etc., the overwound strings on the 

monochord are 	studied as shown in Fig.4.1. The dimensions for the 	18 

uniform overwound strings, and for 	18 2-segment overwound strings 	are 

shown in Table 3.1 and 3.2, respectively. The stepped overwound strings are 
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studied in order to provide a basis for the study of overwound piano strings 

that will be shown in Chapter 6. 

Graph 4.8 presents the relation between the experimental inharmonicity 

and the mode number (n) for the six uniformly overwound strings on the 

monochord, U1(1), U1(2), U1(3), U1(4), U1(5) and U1(6). The six uniformly 

overwound strings on the monochord, U2(1), U2(2), U2(3), U2(4), U2(5) and 

U2(6) are presented in Graph 4.9 and U3(1), U3(2), U3(3), U3(4), U3(5) and 

U3(6) are presented in Graph 4.10. 

In the case of the stepped overwound strings, the relation between 

inharmonicity and the mode number (n) for the six 2-segment overwound 

strings on the monochord, S1(1), S1(2), S1(3), Sl(4), S1(5) and S1(6) are 

displayed in Graph 4.11. Graph 4.12 and Graph 4.13 display the six 2-segment 

overwound strings, S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6) and the six 

2-segment overwound strings, S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6), 

respectively. 

Discussion of the experimental results will be shown in next chapter 

with the comparison with the theoretical results. 
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CHAPTER 5 

COMPARISON OF THEORY AND 
EXPERIMENT. 

In this chapter the experimental inharmonicity for the uniformly 

overwound strings and for the stepped overwound strings discussed in Chapter 

4 are compared with the theoretical inharmonicity calculated in Chapter 3. 

Experimental and theoretical values of the inharmonicity coefficient 

B = (1/n2  )[(f /nf )2  —1] of each mode frequency of each string are compared. 

In order to probe in more detail the correspondence between calculated and 

measured frequencies, and to obtain a direct comparison with the predictions of 

the theory of Fletcher, it is useful to plot the parameter B as a function of 

mode number. 

5.1 Comparison between the theoretical Inharmonicity and 

experimental Inharmonicity. 

The theoretical inharmonicity values were presented for the 18 uniformly 

overwound strings and the 18 stepped overwound strings in Chapter 3, and the 

experimental inharmonicity values for the same 18 uniformly overwound strings 

and the same 18 stepped overwound strings on the monochord were shown in 

Chapter 4. Here we compare experimental and theoretical values for a given 

string. 



Three representative pairs of strings, each pair having the same diameter 

and the same length as shown in Table 3.1 and Table 3.2 are chosen. The 

uniformly overwound string Ui (3) and the stepped overwound string Si (3) 

have the same diameter and the same length; so do the pairs U2(3), S2(3) and 

U3(3), S3(3). The difference between the two strings in each pair is that one 

is uniformly wound while the other is stepped. 

Graph 5.1 demonstrates a satisfactory level of agreement between theory 

and experiment for one uniformly wound string, U1(3) and one stepped 

overwound string, S 1(3). A similar level of agreement is found for the other 

four strings shown in Graph 5.2 and Graph 5.3, demonstrating the comparison 

between theoretical and experimental inharmonicity for U2(3) and S2(3) and for 

U3(3) and S3(3), respectively. Each experimental point plotted in Graphs 5.1, 

5.2 and 5.3 carries an error bar representing the standard error in the mean of 

25 measurements, which was consistent with the calculated uncertainty due to 

noise corruption of the signal as described in Chapter 4. The magnitude of the 

error bar is 1 cent, too small to show on the graphs. 

In Chapter 3 and Chapter 4 it was shown that the strings' inharmonicity 

decreases for the longer strings. The results presented in Graph 5.1 to 5.3 show 

that the inharmonicity for the stepped overwound strings is higher than the 

inharmonicity for the uniformly overwound string of the same length and 

diameter. 

We can see that the effect of non-uniformity in the case of the stepped 

overwound strings is to increase the inharmonicity. As shown in the Graph 5.1 

to Graph 5.3, experimental results agree very well with the theoretical results. 
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5.2 Comparison of the B-coefficient from the theoretical 

results, experimental results and Fletcher's results. 

In order to probe in more detail the correspondence between calculated 

and measured frequencies, and to obtain a direct comparison with the 

predictions of the theory of Fletcher, it is useful to plot the parameter 

B = (l/n2)[(fa/nfo)2 —1] as a function of mode number. This is done in Graph 

5.4 for the first six uniformly overwound strings, Ul(l), U1(2), U1(3), U1(4), 

U1(5) and U1(6), in Graph 5.5 for the second six uniformly overwound strings, 

U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6), and in Graph 5.6 for the third six 

uniformly overwound strings, U3(1), U3(2), U3(3), U3(4), U3(5) and U3(6) 

described in Table 3.1. According to Fletcher's theory, B is a constant 

determined by the dimensions, constitution and tension of the string; values of 

B predicted by the Fletcher formula for each of the 18 strings under discussion 

are shown on the right hand axis of Graph 5.4, Graph 5.5 and Graph 5.6. The 

lines are fits to the theoretical values calculated in the present theoretical study, 

while the discrete points show values derived from the measurements. 

It is clear from Graph 5.4, Graph 5.5 and Graph 5.6 that Fletcher's 

assumption that B is independent of mode number for a uniformly overwound 

string is consistent with the present calculations, although for the shorter strings 

our values of B are slightly higher than those of Fletcher. The experimental 

results agree well with our theoretical values. The inharmonicity coefficients B 

are lower when the strings are longer. 

Our theoretical and experimental values of B are illustrated in Graph 5.7 

for the first six partially overwound strings, S1(1), S1(2), S1(3), S1(4), Si(S) 

and S 1(6), in Graph 5.8 for the second partially overwound strings, S2(i), 

S2(2), S2(3), S2(4), S2(5) and S2(6) and in Graph 5.9 for the third six partially 
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overwound strings, S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6) described in Table 

3.2. The deviation of B from the constancy characteristic of uniformly wound 

strings increases as the fractional length of unwound string increases. For mode 

numbers greater than 10, theory and experiment are in good agreement; for 

lower mode numbers and relatively large unwound fractions, it appears that the 

measured inharmonicity coefficient is slightly higher than that predicted by 

theory. 

The error in the inharmonicity coefficient B, LIB, is given by 

(dB/df)Ltf, where 4f4, is the corresponding error in the mode frequency. 

With the expression of B-coefficient B = (11iz2)[(f1nf0)2 —1] then 

LIB = (2/n2  + 2B) LlfjfK . /if is evaluated at 2.5% of the frequency interval 

(0.111z) for single measurement and 0.02 Hz for 25 measurements, and B is 

very small (of the order of 10), so the error in the inharmonicity coefficient 

B mainly depends inversely on the square of mode number (n2 ) and the mode 

frequency (fm ). If we consider the experimental mode frequency from 25 

measurements of the stepped overwound string S1(1), for example, we can 

calculate the error in B-coefficient: on the second mode with 12 =119.35Hz, 

AB is ±8 x 10, but on the tenth mode with f lo  = 626.61 Hz, AB is 

±6 x 10 7 . Correspondingly, error bars are shown on the graphs only for the 

first two modes; they are too small to see on the higher modes. 

5.3 Uncertainty of experimental fundamental frequencies. 

In the experimental measurements of mode frequencies for sets of 

strings of different lengths, the approximate value of the string tension was 

first estimated by plucking the string and observing the microphone signal on a 

digital storage oscilloscope. A low-pass filter was used to eliminate mode 

frequencies higher than that of the first mode, fl , which was estimated to an 



accuracy of 2% by measuring the period using the numerical cursor of the 

oscilloscope. Neglecting the small degree of inharmonicity in the first mode, 11 

was taken to be equal to f0, and the string tension T derived from the 

equation T = 4(a1  + a2 )2 
f a2 . As the length of the string was varied by moving 

the clamps, it was assumed that T remained constant, permitting values of 10 

to be calculated for each string length. 

Although this relatively crude estimation of T was adequate for the 

evaluation of inharmonicities at the level of accuracy shown in Graphs 5.4 to 

5.6, the inharmonicity coefficient B is much more sensitive to small variations 

in T (and f0 ), especially at low mode numbers. In fact, the most sensible 

procedure is to fit the theoretically predicted values of B to those measured 

experimentally, using 

f 

as a fitting parameter. This was done by varying the 

value of T used in deriving f0. It should be noted that this altered not only 

the theoretical curve, but also the experimental values, since the latter depend 

on the value of 10  assumed. Since Equation 2.48 contains the ratio 

T/R 1  = T/QS1C 2 , it is possible that the fitting procedure also partially 

compensates for any error in the chosen value of the Young's modulus Q. The 

theoretical curves in Graph 5.7 to 5.9 were obtained in this way; in every case 

the value of T corresponding to the best fit was well within the experimental 

uncertainty in the measurement of T. 
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CHAPTER 6 

MEASUREMENT ON GRAND PIANO 
STRINGS. 

The original motivation for this study was to determine the extent to 

which the non-uniformity of the overwinding on a bass piano string affected 

the inharmonicity of its mode frequencies. The theoretical treatment described in 

Chapters 2 and 3 assumed that the end supports of the string were completely 

rigid, and the experimental results given in Chapter 4 and 5 were obtained on 

a monochord which attempted to reproduce this ideal case. To examine the 

extent to which this work was relevant to the behaviour of overwound piano 

strings with the end support conditions typical of normal use, a series of 

measurements was performed on the bass strings of a broadwood grand piano 

in the Acoustics Laboratory of the Department of Physics at the University of 

Edinburgh. This piano was built in 1871, and was renovated and restrung in 

1992. 

6.1 Experimental technique on the grand piano. 

The general arrangement of the experimental apparatus for the 2.5 m 

Broadwood grand piano is shown in Fig. 6.1. For the purposes of this 

experiment the piano strings were plucked rather than struck with the normal 

piano key and hammer mechanism. The position and material of a standard 
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piano hammer are such that certain modes of vibration are suppressed 5.  The 

use of the piano hammer would therefore have resulted in missing modes in 

the spectrum of modes of vibration of the string. It was found that plucking 

of the string at a position close to the end with the flesh and nail of the 

finger or thumb excited the greatest number of modes. The string damper was 

held far from the strings by putting a weight on the appropriate key. 

I Analogue to 
I Digital 

convertor 

Jr 

I sound recording I 
BBC computer 

I Fourier I 
I analysis I 

BBC2 

Fig. 6.1 The experimental apparatus for the 2.5 m Broadwood grand piano. 

The sound was recorded and analysed using a SHURE SM94 condenser 

microphone mounted a short distance above the string at middle point using the 

same experimental technique as shown in Chapter 4. 

The sound produced by a piano siring on the monochord decays more 

slowly than the sound produced by the same string on the piano. The 

omission of the sounding board by no means eliminates the acoustical output 

of a piano. However, if the efficiency of conversion of mechanical energy into 

acoustical energy were the same for the sounding board as for the rest of the 

structure, one could assume from a comparison of the decay rates, with and 

without sounding board, that removal of the sounding board approximately 
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halves the rate of decay of piano tones. The effect is somewhat greater on low 

tones than on high ones 74. The highest decay rate observed in the components 

studied here was 25 dB/sec. As shown in Chapter 4, the resulting uncertainty in 

the estimation of the frequency is still small in comparison with that arising 

from noise. 

6.2 The experimental and theoretical results for the grand 
piano strings. 

The dimensions for the 8 lowest bass strings on this piano are shown 

in Table 6.1. 

Table 6.1 The dimensions of the bass piano strings on the Broadwood grand 

piano. 

Piano 
strings 

Core 
diameter 

dl (mm.) 

Overall 
diameter 

d2 (mm.) 

Unwound 
length 

al (mm.) 

Wound 
length 

a2 (mm.) 

Total 
length 

a(mm-) 

Unwound 
fraction 

al:a2 

A0 1.45 4.68 25 1845 1870 1:73.8 

BbO 1.40 4.41 23 1837 1860 1:79.9 

BO 1.40 4.28 20 1818 1838 1:90.9 

Cl 1.30 3.98 22 1785 1807 1:81.1 

Dbl 1.30 3.77 18 1767 1785 1:98.2 

Dl 1.30 3.63 15 1755 1770 1:117 

Ebi 1.23 3.44 13 1747 1760 1:134.4 

El 1.23 3.35 8 1738 1746 1:217.3 

Typical sets of results are shown in Graph 6.1 to Graph 6.8. The 

dashed curves in Graph 6.1 to Graph 6.8 show the prediction of Fletcher's 
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theory on the assumption that the winding continued over the whole string 

length, while the solid lines take into account the effect of the short unwound 

section calculated from the frequency equation in Chapter 2 and Chapter 3. Each 

experimental point plotted in Graphs 6.1 to Graph 6.8 carries an error bar 

representing the standard error in the mean of 25 measurements, which was 

consistent with the calculated uncertainty due to noise corruption of the signal. 

It is evident from Graph 6.1 that the major cause of the discrepancy 

between the Fletcher prediction and the measurement for the AO string is 

indeed the non-uniformity of the winding. The present theory, which allows for 

the effect of non-uniformity, gives a much better agreement with the 

experimental results. 

Surveying the remaining graphs, we see that in each case the present 

theory is closer to experiment than Fletcher, although for the shortest string El 

the effect of non-uniformity is small. 

The reason for discrepancies between theory and experiment is possibly 

the increase in string stiffness due to the overwinding, which would have the 

effect of increasing the inharmonicity. It should be noted that a discrepancy of 

comparable magnitude (about 10 cents for n = 30) was found for the strings on 

the monochord. 
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Graph 6.1 shows the measurement of the A0 strings on the piano. The ratio of 

unwound to wound length is 1:73.8. The dashed curve shows the prediction of 

Fletcher's theory on the assumption that the winding continued over the whole 

string length, while the solid lines take into account the effect of the short 

unwound section calculated from the frequency equation. 
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Graph 6.2 shows the measurement of the BbO strings on the piano. The ratio 

of unwound to wound length is 1:79.9. The dashed curve shows the prediction 

of Fletcher's theory on the assumption that the winding continued over the 

whole string length, while the solid lines take into account the effect of the 

short unwound section calculated from the frequency equation. 
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Graph 6.3 shows the measurement of the BO strings on the piano. The ratio of 

unwound to wound length is 1:90.9. The dashed curve shows the prediction of 

Fletcher's theory on the assumption that the winding continued over the whole 

string length, while the solid lines take into account the effect of the short 

unwound section calculated from the frequency equation. 
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Graph 6.4 shows the measurement of the Cl strings on the piano. The ratio of 

unwound to wound length is 1:81.1. The dashed curve shows the prediction of 

Fletcher's theory on the assumption that the winding continued over the whole 

string length, while the solid lines take into account the effect of the short 

unwound section calculated from the frequency equation. 
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Graph 6.5 shows the measurement of the Dbl strings on the piano. The ratio 

of unwound to wound length is 1:98.2. The dashed curve shows the prediction 

of Fletcher's theory on the assumption that the winding continued over the 

whole string length, while the solid lines take into account the effect of the 

short unwound section calculated from the frequency equation. 
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Graph 6.6 shows the measurement of the Dl strings on the piano. The ratio of 

unwound to wound length is 1:117.0. The dashed curve shows the prediction 

of Fletcher's theory on the assumption that the winding continued over the 

whole string length, while the solid lines take into account the effect of the 

short unwound section calculated from the frequency equation. 
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Graph 6.7 shows the measurement of the Ebi strings on the piano. The ratio 

of unwound to wound length is 1:134.4. The dashed curve shows the 

prediction of Fletcher's theory on the assumption that the winding continued 

over the whole string length, while the solid lines take into account the effect 

of the short unwound section calculated from the frequency equation. 
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Graph 6.8 shows the measurement of the El strings on the piano. The ratio of 

unwound to wound length is 1:217.3. The dashed curve shows the prediction 

of Fletcher's theory on the assumption that the winding continued over the 

whole string length, while the solid lines take into account the effect of the 

short unwound section calculated from the frequency equation. 
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CHAPTER 7 
Li 

SUMMARY AND CONCLUSIONS. 

The work described in this thesis has been both theoretical and 

experimental. The objectives of the research programme have been achieved, 

with the development of an expression for the frequencies of vibration of a 

stepped overwound string and the confirmation of the theoretical results by 

experimental measurements of overwound strings with and without step on the 

monochord. 

7.1 Conclusions. 

The natural mode frequencies of piano strings are different from the 

harmonic series and the degree of inharmonicity has important relation for tone 

quality, tuning and the electronic synthesis of piano sounds. The stiffness of 

steel wire accounts almost entirely for the inharmonicity of the plain wire 

strings apart from effects due to the finite compliance of the supports. It has 

been shcwn, however that the string stiffness is not the only source of 

inharmonicity of the overwound piano strings. The effects of nonuniformity 

may contribute inharmonicity which cannot be explained by string stiffness 

alone. 

The problem of the vibration of the nonuniform overwound stiff string 

has been treated in this thesis in a way which has not been described in other 

work. Fletcher proposed that his treatment of the plain string could be applied 
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to the overwound string by making the assumption that the overwinding 

increased only the linear mass density of the string. Discussions of the stepped 

string by Levinson, Sakata and Sakata and Gottlieb have not incorporated the 

stiffness of the stepped string. 

In this thesis the derivation of the mode frequencies of the stepped 

string has been presented, taking into account the stiffness. We considered the 

vibration of the M-part string fixed at its ends and then applied this general 

theory to the specific case of the 2-segment string. The boundary conditions 

are for simple hinged supports. 

The numerical calculations were undertaken to compute theoretical mode 

frequencies from the frequency equation for strings with varying degrees of 

overwinding. The theoretical results show that the inharmonicities of strings 

with the same core and overwinding diameters are decreased as the string 

length increases, in agreement with the predictions of more simple models. The 

inharmonicities for the stepped overwound strings are significantly higher than 

the inharmonicities for the uniformly overwound strings of the same length and 

the same core and overwinding diameters. The increase in inharmonicity is 

greatest for the string with the highest fraction of unwound length. 

The experimental inharmonicities of overwound strings on the monochord 

have been measured, and compared with theoretical results. The rigid 

monochord has been designed in order to control the parameters and to reduce 

external effects disturbing the vibration of the strings. It is evident from the 

comparison that the theory presented here gives a better fit to measured 

inharmonicities than the analysis for the uniform overwound string by Fletcher. 

Apparently the stepped geometry of the overwound strings is significant. 

Experimental and theoretical values of the inharmonicity coefficient B for 

each mode frequency of the uniformly and stepped overwound strings were 

derived, and compared with the constant inharmonicity coefficient B of 
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Fletcher's equation. It is clear that Fletcher's assumption that the inharmonicity 

coefficient B is independent of mode number for a given string is consistent 

with the present calculations for the uniform overwound string, although for the 

shorter strings our values of B are slightly higher than those of Fletcher. The 

experimental results agree well with our theoretical values. For stepped string 

the deviation of inharmonicity coefficient B from the constancy characteristic of 

uniformly wound strings increases as the fractional length of unwound string 

increases. For mode numbers greater than 10, theory and experiment are in 

good agreement; for lower mode numbers and relatively large unwound 

fractions, the measured inharmonicity coefficient is slightly higher than that 

predicted by theory. 

The nonuniformity of the overwinding on the bass piano string, and the 

question of how it affects the inharmonicity of its mode frequencies, was the 

original motivation for this study. A series of measurements was performed on 

the bass strings of the Broadwood grand piano to examine the extent to which 

this work was relevant to the behaviour of overwound piano strings with the 

end support conditions typical of normal use. Our theory takes no account of 

any increase in inharmonicity due to the effect of the soundboard on the string. 

It is evident from the results that the major cause of the discrepancy between 

the Fletcher prediction and the measurement for the A0 string is indeed the 

non-uniformity of the winding. The present theory, which allows for the effect 

of non-uniformity, gives a much better agreement with the experimental results. 

The present theory is closer to experiment than Fletcher, although for 

shortest string El the effect of non-uniformity is small. 

The reason for discrepancies between theory and experiment is possibly 

the increase in string stiffness due to the overwinding, which would have the 

effect of increasing the inharmonicity. It should be noted that a discrepancy of 

comparable magnitude (about 10 cents for n=30)  was found for the strings on 
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the monochord. In addition, bass overwound piano strings often have more 

than 2 segments due to the double winding and the 2 cores left at the ends. 

The present theory can be readily extended to cover the case of the rn-segment 

overwound stiff string by following Eqs.(2.33), (2.34) and (2.35) in chapter 2. 

Actually, we should also keep in mind that the proper amount of 

inharmonicity in piano tone partials distributed in the frequency range of the 

piano enhances the tones and is not undesirable. However, The inharmonicity 

of the bass overwound strings on a grand piano is different from that on the 

small piano, upright piano. This study may suggest new manufacturing 

techniques for the bass overwound strings on the small piano in order to 

improve their tone quality. 

The pitch glide effect in the low bass piano tones relies on the ability 

of the human hearing mechanism to detect frequency glides of short duration 

and indicates the complex ability of the ear-brain channel to discriminate 

between a range of sound stimuli requiring fast temporal pitch discrimination 

86 However, in order to obtain an assessment of the phenomenon, 

psycoacoustic evaluation of the respective presence and absence of the pitch-

glide phenomenon would need to be observed during presentations of simulated 

inharmonic and harmonic tones to both musicians and non-musicians. 
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APPENDIX A 
EXAMPLES FOR NUMERICAL CALCULATION 

Examples of the application of the Mathematica FindRoot program to the 

frequency equation for the stepped overwound string, Si (1) and the uniformly 

overwound string, U1(1) are shown. 
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eqn = (ull[w]'2 + u22[W]'2)* 
(u12[w]"2 + u21[wJP'2)* 
(ull[w]*Tanh[u21EW]*a21 + 
u21[w]*Tanh[ull[WI*aI])* 
(u12[w]*Tan(u22tWl *a2] + 
u22[w]*Tan[u12[W]*al]) - 
(ull(w1"2 - u21[w]A2)* 
(u12[w]"2 - u22[w]"2)* 
(u11[w]*Tan[u22[W]*2] + 
u22[w]*Tanh[ull[w]*al])* 
(u12[w]*Tanh[u21[W]*a2] + 
u21[w] *Tan[u12[w] *al]); 

p1 = 7.85; 

al = 0; 

dl = 0.135; 

Si = pj*dl"214; 

Qi = 2.0*10'12; 

p2 = 8.93; 

a2 = 80.0; 

d2 = 0.42; 

S2 = pj*d2"2/4; 

k = dl/4; 

d = (d2 - dl)/2; 

dd = d + dl; 

massi = pj*d12*pl/4; 

mass2 = massi + Pi'2*d*dd*p2/4; 

fO = 59.5; 

T = 4*(a1+a2)2*fO'2*maSS2 

n=T; 

P1 = massi; 

m = Q1*S1*k2; 

P2 = mass2; 

ull[w] = Sqrt[Sqrt[n2/((2*m)"2) + 
4*pjA2*w '2*p1/m] + n/(2*m)]; 

u12[w] = Sqrt[Sqrt[n2/((2*m)'2) + 
4*pjA2 *WA 2*p1/m1 - nI(2*m)1; 

u21[w] = Sqrt[Sqrt[n2/((2*m)"2) + 
4*pjA2*w2*p2/m1 + n/(2*m)]; 



2 Step. .(80.Ocm) 

u22[w] = Sqrt(Sqrt[fl?2/((2*mY'2) + 
4*piA2*w#2*p2/m] - 

FindRoot[eqn == 0, 4w, 6011 

4w -> 59.51681 

FindRoot[èqn == 0, 4w, 120}] 

4w -> 119.1341 

FindRoot[eqn == 0, 4w, 18011 

4w -> 178.953} 

FindRoot[eqfl == 0, 4w, 24011 

4w -> 239.0721 

FindRoot[eqn == 0, 4w, 30211 

4w -> 299.591 

FindRoot[eqn == 0, 4w, 36211 

4w -> 360.606} 

FindRoot[eqn == 0, 4w, 4241] 

4w -> 422.2171 

FindRoot[eqn == 0, 4w, 48611 

4w -> 484.5161 

FindRoot(eqfl == 0, 4w, 55011 

4w -> 547.5971 

FindRoot[eqfl == 0, 4w, 61211 

4w -> 611.5511 

FindRoot[eqn == 0, 4w, 67511 

4w -> 676.4671 

FindRoot[eqn == 0, 4w, 74011 

4w -> 742.4321 

FindRoot[eqfl == 0, 4w, 808}] 

4w -> 809.5291 

FindRoot[eqfl == 0, 4w, 880}] 

4w -> 877.841 

FindRoot[eqn == 0, 4w, 945}] 

4w -> 947.4451 



-Step..(80.Ocm) 
	 3 

FindRoot[eqn == 0, 4w, 1015)] 

4w -> 1018.421 

FindRoot[eqn == 0, 4w, 108511 

4w -> 1090.831 

FindRoo[eqn == 0, 4w, 116011 

4w -> 1164.76) 

FindRoot[eqn == 0, 4w, 1240)] 

4w -> 1240.27) 

FindRoot[eqn == 0, 4w, 13201] 

4w -> 1317.43). 

FindRoot[eqn == 0, 4w, 1400).] 

4w -> 1396.291 

FindRoot[eqn == 0, 4w, 14821] 

4w -> 1476.921 

FindRoot[eqn == 0, 4w, 156511 

4w -> 1559.371 

FindRoot[eqn == 0, 4w, 165011 

4w -> 1643.691 

FindRoot[eqfl == 0, 4w, 1735)] 

4w -> 1729.95). 

FindRoot[eqn == 0, 4w, 182011 

4w -> 1818.181 

FindRooteqn == 0, 4w, 1900)] 

4w -> 1908.431 

FindRoot[eqn == 0, 4w, 199011 

4w -> 2000.75} 

FindRoot[eqn == 0, 4w, 208011 

4w -> 2095.171 

FindRoot[eqn == 0, 4w, 217311 

4w -> 2191.751 

FindRoot[eqn == 0, 4w, 2280)] 

4w -> 2290.51 



-Step. .(80.Ocm) 
	 4 

FindRoot[eqn == 0, 4w, 2380).] 

4w -> 2391.481 

FindRoot(eqn == 0, 4w, 2495)] 

4w -> 2494.711 

FindRoot[eqn == 0, 4w, 2600).] 

4w -> 2600.221 

FindRoot[eqn == 0, 4w, 271011 

4w -> 2708.041 

FiudRoot[eqfl == 0, 4w, 28101] 

4w -> 2818.21 

FindRoot(eqn == 0, 4w, 2915)] 

4w -> 2930.731 

FindRoot4eqn == 0, 1w, 3045)] 

4w -> 3045.661 

FindRoot[eqn == 0, 4w, 3165).] 

4w -> 3163. 

FindRoot[eqfl == 0, 4w, 3290).] 

4w -> 3282.77). 

FindRoot[eqn == 0, 4w, 3420)] 

4w -> 3405.1 

FindRoot[eqfl == 0, 4w, 355011 

4w -> 3529.72). 



eqn 	(ull(w]'2 + u22[w12)* 
(u12[w]2 + u21[w]P2)* 
(ui.1[w]*Taflh[U21(W]*a2] + 
u21[w]*TanhEull[W]*ai])* 

( u12[w]*Tau[u22[W]*a2] + 
u22 [w] *Tan[u12 [WI *al]) - 

(u11[w]'2 - u2i[wI2)* 
(u12[w]2 - u22[ w]A2)* 
(u].1[w]*Tan[U22[W]*a2] + 
u22[w]*Tanh[ull[WI*al])* 

(u12[w]*Tanh[u2i[W]*a2) + 
u21[w] *Tan[u12[w] *al]). 

p1 = 7.85; 

al = 5.0; 

di = 0.135; 

Si = pj*dl"2/4; 

Qi = 2.0*10"12; 

p2 = 8.93; 

a2 = 75.0; 

d2 = 0.42; 

S2 = pj*d2"2/4; 

k = dl/4; 

d = (d2 - dl) /2; 

dd = d + di; 

massi = pj*d1/'2*p1/4; 

mass2 = massi + PIA2*d*dd*p2/4; 

fO = 59.58; 

T = 4*(a1+a2)2*fOA2*flLaSS2 

nT; 

P2 = mass2; 

m = Q1*S1*kfr'2; 

P1 = massi; 

ull[w] = Sqrt[Sqrt[n2/((2*m)"2) + 
4*pjA2*wA2*p1/m] + n/(2*m)]; 

u12[w] = Sqrt[Sqrt[n2/((2*Ifl)2) + 
4*pjA2 *WA 2*p1/mI - n/(2*m)I; 

u21[w] = Sqrt(Sqrt[n#2/((2*1fl)"2) + 
4*pjA2*wft2*p2/mI + n/(2*m)]; 

u22[w] = Sqrt[Sqrt[n2/((2*1fl) , 2) + 
4*pj2 *WA 2*p2/m1 - 



2-Step. .75;5 

FindRoot[eqn == 0, (w, 6011 

-> 59.63841 

FindRoot[eqn 	== 0, 4w, 1201 1 

{w -> 	119.611. 

FindRootequ == 0, .(w, 1801.1 

{w -> 180.1771 

FindRoot[eqn == 0, {w, 2421.1 

{w -> 241.5081 

FindRoot[eqn == 0, fw, 3041.1 

{w -> 303.6981. 

FindRooteqn == 0, (w, 3671.1 

-> 366.8061 

FindRoot[eqn == 0, .(w, 4321.1 

{w -> 430.881 

FindRoot[eqn == 0, .w, 4981.] 

{w -> 495.971 

FindRoot[eqfl 	== 0, .(w, 5651.1 

{w -> 562.1351 

FiudRoot[eqn == 0, {w, 6321.1 

{w -> 629.4411 

FindRooteqn == 0, 4w, 7031.1 

{w -> 697.9571 

FindRoot[eqn == 0, {w, 7751.] 

{w -> 767.76} 

FindRoot[eqn == O r  .(w, 8351.1 

{w -> 838.9281 

FindRoot[eqn == 0, fw, 9101.1 

{w -> 911.5361 

FindRoot[eqn == 0, fw, 985}] 

{w -> 985.6641 

FindRoot[eqn == 0, {w, 10601.1 

{w -> 	1061.39} 

FindRoot[eqn == 0, 4w, 11381.1 

{w -> 1138.78} 



2-Step. .75;5 

FindRoot[eqn == 0, 4w, 12171 1 

4w -> 1217.911 

FindRoot[eqn == 0, 4w, 129711 

4w -> 1061.391 

FindRoot[eqn == 0, 4w, 138011 

4w -> 1381.641 

FindRoot[eqn == 0, 4w, 146511 

4w -> 1466.371 

FiudRoot[eqn == 0, 4w, 15511] 

4w -> 1553.071 

FindRoot(eqn == 0, 4w, 164111 

4w -> 	1641.811 

FindRoot[eqn == 0, 4w, 1731}] 

4w -> 	1732.61 

FindRoot[eqn == 0, 4w, 182411 

4w -> 1825.491 

FindRoot[eqn == 0, 4w, 192611 

4w -> 1920.51 

FindRoot[eqn == 0, 4w, 20161] 

4w -> 2017.631 

FindRoot[eqn == 0, 4w, 21161] 

4w -> 2116.871 

FindRoot[eqn == 0, 4w, 22161] 

4w -> 2218.191 

FindRoot[eqn 0, 4w, 231711 

4w -> 2321.541 

FiudRoot[eqn == 0, 4w, 24181] 

4w -> 2426.811 

FindRoot[eqn == 0, 4w, 253011 

4w -> 2533.851 

FindRoot[eqn == 0, 4w, 263711 

4w -> 2642.471 

FindRoot[eqn == 0, 4w, 275311 

4w -> 2752.461 



4 2-Step..75;5 

FindRoot[eqfl 	== 0, {w, 286511 

{w -> 2863.641 

FindRoot(eqfl 	== 0, (w, 298011 

{w -> 2976.071 

FindRoot[eqn == 0, (w, 30851] 

{w -> 3090.151 

FindRoot[eqn == 0, (w, 3198]] 

{w -> 3206.631 

FindRoot[eqn == 0, (w, 3313]] 

{w -> 3326.27] 

FindRoot[eqn == 0, {w, 3437]] 

{w -> 3449.571 

FindRoot[eqn == 0, {w, 3560]] 

{w -> 3576.691 



APPENDIX B 

THEORETICAL MODE FREQUENCIES 

In this Appendix the theoretical mode frequencies obtained by numerical 

solution of the frequency equation are tabulated. Table B-1 shows the theoretical 

mode frequencies of the uniformly overwound strings, U1(1), U1(2), U1(3), 

U1(4), Ul(5) and Ul(6). Table B-2 shows the theoretical mode frequencies of 

the uniformly overwound strings, U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6). 

Table B-3 shows the theoretical mode frequencies of the uniformly overwound 

strings, U3(l), U3(2), U3(3), U3(4), U3(5) and U3(6). Table B-4 shows the 

theoretical mode frequencies of the stepped overwound strings, Si (1), Si (2), 

S1(3), S1(4), Si(5) and S1(6). Table B-5 shows the theoretical mode frequencies 

of the stepped overwound strings, S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6). 

And Table B-6 shows the theoretical mode frequencies of the stepped 

overwound strings, S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6). Details of the 

string dimensions see Table 3.1 and 3.2 in chapter 3. 
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Table B-i The theoretical mode frequencies for the uniformly overwound strings, 

Ui(i), U1(2), Ui(3), U1(4), U1(5) and U1(6). 

Mode number   Mode 	frequencies  

(n) U1(i) U1(2) U1(3) U1(4) U1(5) U1(6) 

1 59.52 44.61 35.90 29.35 25.40 21.36 

2 119.13 89.26 71.83 58.72 50.81 42.73 

3 178.95 134.00 107.81 88.12 76.24 64.11 

4 239.07 178.88 143.86 117.55 101.70 85.51 

5 299.59 223.94 180.00 147.05 127.19 106.94 

6 360.61 269.23 216.26 176.62 152.73 128.39 

7 422.22 314.78 252.66 206.28 178.33 149.89 

8 484.52 360.64 289.24 236.03 203.98 171.43 

9 547.60 406.86 326.00 265.90 229.72 193.03 

10 611.55 453.48 362.97 295.90 255.53 214.68 

ii 676.47 500.54 400.17 326.05 281.43 236.40 

12 742.43 548.08 437.64 356.35 307.44 258.19 

13 809.53 596.14 475.38 386.82 333.55 280.05 

14 877.84 644.77 513.43 417.47 359.78 302.00 

15 947.45 693.99 551.80 448.33 386.14 324.04 

16 1018.42 743.86 590.51 479.39 412.64 346.17 

17 1090.83 794.40 629.59 510.67 439.27 368.41 

18 1164.76 845.65 669.06 542.20 466.06 390.75 

19 1240.27 897.66 708.93 574.00 493.01 413.21 

20 1317.43 950.44 749.23 606.01 520.13 435.79 

21 1396.29 1004.04 789.98 638.32 547.42 458.49 

22 1476.92 1058.49 831.19 670.91 574.90 481.33 

23 1559.37 1113.81 872.88 703.81 602.57 504.30 

24 1643.69 1170.05 915.08 737.08 630.45 527.41 

25 1729.95 1227.23 957.80 770.55 658.53 550.68 

26 1818.18 1285.37 1001.05 804.41 686.83 574.10 

27 1908.43 1344.51 1044.86 838.62 715.40 597.68 

28 2000.75 1404.68 1089.25 873.19 744.11 621.42 

29 2095.17 1465.89 1134.22 908.12 773.10 645.38 

30 1 	2191.75 1 	1528.17 1 	1179.79 1 	943.43 1 	802.36 1 	669.43 
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Table B-2 The theoretical mode frequencies for the uniformly overwound strings, 

U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6). 

Mode number   Mode frequencies  

(n) U2(1) U2(2) U2(3) U2(4) U2(5) U2(6) 

1 56.76 42.57 34.22 27.95 24.19 20.34 

2 113.63 85.19 68.48 55.92 48.39 40.69 

3 170.72 127.90 102.78 83.92 72.62 61.05 

4 228.14 170.77 137.16 111.97 96.87 81.44 

5 286.00 213.83 171.65 140.08 121.16 101.85 

6 344.41 257.15 206.27, 168.27 145.51 122.30 

7 403.46 300.75 241.04 196.56 169.91 142.79 

8 463.28 344.86 276.00 224.96 194.38 163.33 

9 523.95 389.04 311.17 253.48 218.94 183.93 

10 585.58 433.82 346.56 282.15 243.58 204.59 

11 648.25 479.08 382.22 310.97 268.33 225.33 

12 712.08 524.86 418.16 339.96 293.19 246.14 

13 777.13 571.22 454.41 369.15 318.16 267.03 

14 843.51 618.19 490.98 398.53 343.27 288.02 

15 911.30 665.81 527.91 428.13 368.51 309.11 

16 980.56 714.13 565.22 457.97 393.90 330.30 

17 1051.40 763.19 602.93 488.05 419.45 351.60 

18 1123.87 813.02 641.06 518.38 445.17 373.02 

19 1198.04 863.67 679.63 548.99 417.06 394.57 

20 1273.99 915.16 718.67 579.89 497.14 416.25 

21 1351.78 967.54 758.20 611.09 523.41 438.06 

22 1431.47 1020.84 798.23 642.60 549.88 460.03 

23 1513.11 1075.09 838.79 674.44 576.57 482.14 

24 1596.76 1130.32 879.89 706.62 603.47 504.41 

25 1682.47 1186.56 921.61 739.15 630.60 526.84 

26 1770.29 1243.85 963.81 772.04 657.97 549.44 

27 1860.27 1302.22 1006.67 805.31 685.61 572.21 

28 1952.45 1361.67 1050.14 838.95 713.46 595.17 

29 2046.87 1422.25 1094.25 873.02 741.58 618.33 

30 1 	2143.56 1 	1483.32 1 	1139.01 1 	907.49 1 	769.98 1 	641.65 
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Table B-3 The theoretical mode frequencies for the uniformly overwound strings, 

U3(1), U3(2), U3(3), U3(4), U3(5) and U3(6). 

Mode number   Mode 	frequencies  

• 	 (n) U3(1) U3(2) U3(3) U3(4) U3(5) U3(6) 

1 53.49 40.11 32.25 26.34 22.79 19.17 

2 107.10 80.27 64.54 52.70 45.59 38.35 

3 160.95 120.54 96.88 79.10 68.42 57.55 

4 215.16 160.98 129.30 105.55 91.28 76.76 

5 269.84 201.62 161.84 132.06 114.18 96.01 

6 325.12 242.54 194.53 158.66 137.14 115.30 

7 381.10 283.77 227.38 185.38 160.16 134.63 

8 437.90 325.38 260.43 212.19 183.26 154.02 

9 495.62 367.40 293.70 239.16 206.44 173.47 

10 554.37 409.90 327.23 266.27 229.73 192.99 

11 614.26 452.92 361.03 293.56 253.13 212.59 

12 675.37 496.51 395.15 321.03 276.63 232.27 

13 737.81 540.72 429.56 348.70 300.27 252.04 

14 801.67 585.62 464.39 376.60 324.05 271.91 

15 867.03 631.15 499.61 404.72 347.98 291.89 

16 934.00 677.47 535.16 433.10 372.08 311.98 

17 1002.59 724.59 571.17 461.74 396.34 332.20 

18 1072.95 772.52 607.65 490.66 420.78 352.54 

19 1145.12 821.32 644.61 519.88 445.41 373.01 

20 1219.18 871.04 682.04 549.66 470.24 393.63 

21 1295.18 921.70 720.01 579.25 495.28 414.40 

22 1373.18 973.34 758.53 609.43 520.54 435.32 

23 1453.25 1025.99 797.60 639.97 546.04 456.41 

24 1535.44 1079.69 837.26 670.87 571.75 477.66 

25 1619.80 1134.46 877.53 702.15 597.73 499.09 

26 1706.37 1190.34 918.41 733.81 623.94 520.70 

27 1795.20 1247.36 959.94 765.88 650.43 542.50 

28 1886.34 1305.53 1002.12 798.36 677.18 564.49 

29 1979.82 1364.89 1044.99 831.27 704.22 586.69 

30 2075.67 1 	1425.47 1088.54 1 	864.61 1 	731.54 1 	609.09 
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Table B-4 The theoretical mode frequencies for the stepped overwound strings, 

S1(1), S1(2), S1(3), S1(4), S1(5) and S1(6). 

Mode number Mode frequencies 

(n) S1(l)  Sl(3) S1(4) S1(5) Sl(6) 

1 59.64  F44.7 35.91 29.36 25.40 21.36 

2 119.61 89.55 71.88 58.74 50.82 42.74 

3 180.18 134.62 107.96 88.19 76.28 64.13 

4 241.51 180.01 144.20 117.72 101.79 85.56 

5 303.70 225.78 180.63 147.37 127.37 107.04 

6 36681 271.98 217.29 177.15 153.03 128.57 

7 430.88 318.63 254.19 207.07 178.79 150.16 

8 495.97 365.77 291.37 237.15 204.64 171.83 

9 562.14 413.43 328.82 267.41 230.61 193.56 

10 629.44 461.62 366.58 297.85 256.70 215.39 

11 697.96 510.38 404.65 328.49 282.91 237.30 

12 767.76 559.75 443.05 359.34 309.26 259.30 

13 838.93 609.75 481.81 390.40 335.75 281.41 

14 911.54 660.42 520.93 421.69 362.39 303.62 

15 985.66 711.80 560.44 453.21 389.19 325.94 

16 1061.39 763.91 600.35 484.99 416.15 348.38 

17 1138.78 816.81 640.68 517.03 443.27 370.94 

18 1217.91 870.51 681.45 549.34 470.58 393.63 

19 1298.94 925.06 722.69 581.93 498.07 416.45 

20 1381.64 980.48 764.40 614.78 525.75 439.40 

21 1466.37 1036.83 806.61 648.02 553.63 462.50 

22 1553.07 1094.11 849.34 681.53 581.72 485.74 

23 1641.81 1152.38 892.61 715.38 610.03 509.14 

24 1732.60 1211.65 936.43 749.57 638.55 532.69 

25 1825.49 1271.98 980.82 784.11 667.30 556.41 

26 1920.50 1333.68 1025.80 819.01 696.29 580.30 

27 2017.63 1395.81 1071.39 854.30 725.53 604.36 

28 2116.87 1459.39 1117.60 889.96 755.01 628.60 

29 2218.19 1524.12 1164.45 926.03 784.76 653.02 

30 1 	2321.54 1 	1590.00 1211.95 1 	962.50 814.77 1 	677.64 
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Table B-5 The theoretical mode frequencies for the stepped overwound strings, 

S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6). 

Mode number   Mode frequencies  

(n) S2(1) S2(2) S2(3) S2(4) S2(5) S2(6) 

1 56.80 42.58 34.23 27.96 24.19 20.34 

2 113.93 85.29 68.52 55.94 48.41 40.70 

3 171.66 128.23 102.92 83.99 72.66 61.07 

4 230.16 171.51 137.49 112.13 96.96 81.49 

5 289.55 215.17 172.25 140.39 121.33 101.95 

6 349.89 259.27 207.25 168.78 145.79 122.47 

7 411.25 303.85 242.51 197.32 170.35 143.05 

8 473.68 348.94 278.04 226.03 195.01 163.70 

9 537.26 394.57 313.87 254.92 219.79 184.44 

10 602.07 440.78 350.03 284.01 244.70 205.27 

11 668.19 487.61 386.52 313.31 269.74 226.21 

12 735.69 535.24 423.36 342.83 294.93 247.20 

13 804.67 585.24 460.58 372.58 320.27 268.33 

14 875.22 632.12 498.20 402.58 345.77 289.57 

15 947.40 681.77 536.24 432.83 371.43 310.93 

16 1021.31 732.21 574.71 463.36 397.27 332.42 

17 1097.03 783.50 613.64 494.16 423.30 354.03 

18 1174.62 835.67 653.04 525.26 449.51 375.79 

19 1254.16 888.76 692.95 556.67 475.93 397.68 

20 1335.71 942.79 733.37 588.40 502.55 419.72 

21 1419.33 997.82 774.34 620.47 529.39 441.92 

22 1505.07 1053.87 815.87 652.88 556.46 464.28 

23 1592.99 1110.97 857.98 685.64 583.76 486.80 

24 1683.11 1169.17 900.69 718.78 611.30 509.49 

25 1775.83 1228.48 944.01 752.31 639.09 532.37 

26 1870.10 1288.87 987.98 786.23 667.13 555.42 

27 1966.98 1350.57 1032.60 820.55 695.44 578.67 

28 2066.11 1413.40 1077.89 855.30 724.03 602.11 

29 2167.45 1477.46 1123.88 890.09 752.89 625.75 

30 2270.93 1 	1542.76 1 	1170.57 1 	926.09 1 	782.04 1 	649.69 
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Table B-6 The theoretical mode frequencies for the stepped overwound strings, 

S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6). 

Mode number   Mode frequencies  

(n) S3(1) S3(2) S3(3) S3(4) S3(5) S3(6) 

1 53.53 40.12 32.26 26.35 22.79 19.17 

2 107.39 80.37 6458 52.72 45.61 38.36 

3 161.84 120.86 97.02 79.17 68.46 57.57 

4 217.08 161.67 129.62 105.70 91.36 76.81 

5 273.22 202.89 162.42 132.35 114.34 96.11 

6 330.33 244.55 195.46 159.14 137.41 115.46 

7 388.51 286.71 228.77 186.09 160.58 134.88 

8 447.81 329.40 262.28 213.21 183.85 154.38 

9 508.33 372.67 296.28 240.52 207.25 173.96 

10 570.15 416.54 330.52 268.04 230.79 193.63 

11 633.36 461.06 365.12 295.78 254.46 213.40 

12 698.05 506.27 400.10 323.75 278.29 233.28 

13 764.32 552.21 435.48 351.97 302.27 253.28 

14 832.25 598.93 471.28 380.45 326.43 273.39 

15 901.93 646.46 507.52 409.20 350.76 293.63 

16 973.45 694.84 544.23 438.24 375.28 314.00 

17 1046.88 744.13 581.43 467.58 400.00 334.51 

18 1122.32 794.35 619.14 497.24 424.92 355.17 

19 1199.81 845.55 657.38 527.23 450.06 375.98 

20 1279.44 897.76 696.18 557.55 475.42 396.95 

21 1361.27 951.03 735.56 588.24 501.01 418.08 

22 1445.33 1005.39 775.53 619.30 526.83 439.38 

23 1531.69 1060.87 816.13 650.74 552.91 460.86 

24 1620.38 1117.51 857.36 682.57 579.25 482.53 

25 1711.43 1175.33 899.26 714.82 605.85 504.38 

26 1804.86 1234.39 941.83 747.49 632.73 526.43 

27 1900.67 1294.65 985.10 780.59 659.89 548.69 

28 1998.85 1356.65 1029.09 814.14 687.35 571.15 

29 2099.35 1419.04 1073.81 848.15 715.10 593.83 

30 2202.11 1 	1483.19 1 	1119.28 1 	882.64 1 	743.17 1 	616.73 
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APPENDIX C 

THEORETICAL INHARMONICITY 

In this Appendix, theoretical values of inharmonicity calculated from the 

mode frequencies in Appendix B are tabulated. Table C-i shows the theoretical 

inharmonicity for the uniformly overwound strings, U1(l), U1(2), U1(3), U1(4), 

U1(5) and U 1(6). Table C-2 shows the theoretical inharmonicity for the uniformly 

overwound strings, U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6). Table C-3 

shows the theoretical inharmonicity for the uniformly overwound strings, U3(1), 

U3(2), U3(3), U3(4), U3(5) and U3(6). Table C-4 shows the theoretical 

inharmonicity for the stepped overwound strings, S1(1), S1(2), S1(3), S1(4), 

Si (5) and Si (6). Table C-5 shows the theoretical inharmonicity for the stepped 

overwound strings, S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6). And Table C-6 

shows the theoretical inharmonicity for the stepped overwound strings, S3(l), 

S3(2), S3(3), S3(4), S3(5) and S3(6). For details of the string dimensions see 

Table 3.1 and 3.2 in chapter 3. 
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Table.C-1 The theoretical inharmonicity in cents for the six uniformly 

overwound strings, U1(1), U1(2), U1(3), U1(4), U1(5) and U1(6). 

Mode 

number UM) U1(2) 

inharmoicity 

U1(3) 

in ants 

U1(4) U1(5) U1(6) 

1 0 0 0 0 0 0 

2 2 1 1 1 0 0 

3 4 3 2 1 1 1 

4 8 5 3 2 2 1 

5 12 7 5 4 3 2 

6 17 10 7 5 4 3 

7 23 14 9 7 5 4 

8 31 19 12 9 7 6 

9 39 23 15 11 8 7 

10 48 29 19 14 10 9 

11 57 35 23 17 13 11 

12 68 41 27 20 15 13 

13 79 48 32 24 17 15 

14 91 56 37 27 20 17 

15 103 64 42 31 23 20 

16 117 72 48 36 26 22 

17 131 81 52 40 30 25 

18 145 90 60 45 33 28 

19 160 100 67 50 37 31 

20 176 110 74 55 41 34 

21 192 120 81 61 45 38 

22 209 131 88 66 49 42 

23 226 142 96 72 54 45 

24 244 154 104 79 58 49 

25 261 166 113 85 63 53 

26 280 178 121 91 68 57 

27 298 191 130 98 73 62 

28 317 204 139 105 78 66 

29 336 217 148 112 84 71 

30 1 	355 1 	230 158 120 1 	89 76 
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Table.C-2 The theoretical inharmonicity in cents for the six uniformly 

overwound strings, U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6). 

Mode 

number U2(1) U2(2) 

inharmoaicny 

U2(3) 

in cents 

U2(4) U2(5) U2(6) 

1 1 0 0 0 0 0 

2 2 1 1 1 0 0 

3 5 3 2 1 1 1 

4 9 5 4 3 2 2 

5 14 8 6 4 3 3 

6 20 12 8 6 4 4 

7 27 16 11 8 6 5 

8 35 22 14 10 8 6 

9 44 27 18 13 10 8 

10 55 33 22 16 12 10 

11 66 40 26 20 15 12 

12 78 47 31 23 17 15 

13 90 55 37 24 20 17 

14 104 64 42 32 23 20 

15 118 73 49 36 27 23 

16 133 82 55 41 30 26 

17 149 92 62 46 34 29 

18 166 103 69 52 38 32 

19 183 114 77 58 43 36 

20 200 125 85 64 47 40 

21 218 137 93 70 52 44 

22 237 150 101 76 57 48 

23 256 162 110 83 62 52 

24 276 175 119 90 67 57 

25 295 189 129 97 72 61 

26 316 202 138 105 78 66 

27 336 217 148 112 84 71 

28 357 231 159 120 90 76 

29 378 245 169 129 96 82 

30 1 	399 1 	260 180 137 1 	103 1 	87 
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Table.C-3 The theoretical inharmonicity in cents for the six uniformly 

overwound strings, U3(1), U3(2), U3(3), U3(4), U3(5) and U3(6). 

Mode 

number U3(1) U3(2) 

Inhamuxiicity 

U3(3) 

in mts 

U3(4) U3(5) U3(6) 

1 1 0 0 0 0 0. 

2 3 2 1 1 1 0 

3 6 3 2 2 1 1 

4 10 6 4 3 2 2 

5 16 10 6 5 3 3 

6 23 14 9 7 5 4 

7 31 19 12 9 7 6 

8 41 25 16 12 9 7 

9 51 31 20 15 11 9 

19 63 38 25 19 14 12 

11 75 46 30 23 17 14 

12 89 54 36 27 20 17 

13 103 63 42 31 23 20 

14 119 73 49 36 27 23 

15 135 83 56 42 31 26 

16 152 94 63 47 35 29 

17 170 106 71 53 39 33 

18 188 118 79 59 44 37 

19 207 130 88 66 49 41 

20 227 143 97 73 54 46 

21 247 156 106 80 59 50 

22 268 170 116 87 65 55 

23 289 184 126 95 71 60 

24 311 199 136 103 77 65 

25 332 214 147 111 83 70 

26 346 229 158 120 89 76 

27 377 245 169 128 96 81 

28 400 261 180 137 103 87 

29 423 277 192 146 110 93 

30 1 	446 1 	294 204 156 1 	117 1 	99 
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Table.C4 The theoretical inharmonicity in cents for the six stepped overwound 

strings, S1(l), S1(2), S1(3), S1(4), S1(5) and S1(6). 

Mode 

number S1(l) S1(2) 

Inhamionicity 

S1(3) 

in ants 

S1(4) S1(5) S1(6) 

1 2 1 1 0 0 0 

2 7 3 2 1 1 1 

3 14 7 4 3 2 1 

4 23 12 7 5 3 3 

5 33 18 11 7 5 4 

6 45 25 15 10 7 6 

7 56 32 20 14 10 7 

8 69 40 25 17 12 10 

9 82 48 30 21 15 12 

10 95 56 36 25 18 14 

11 109 65 42 30 22 17 

12 123 74 49 35 25 20 

13 138 84 55 40 29 23 

14 154 94 62 45 33 26 

15 170 104 69 50 37 30 

16 186 114 76 56 41 33 

17 202 125 84 62 45 37 

18 220 137 92 68 50 41 

19 238 148 100 74 55 45 

20 256 160 108 80 59 49 

21 275 173 117 87 64 53 

22 294 185 126 94 70 57 

23 313 198 135 100 75 62 

24 332 211 144 108 80 66 

25 352 225 154 115 86 71 

26 372 239 163 122 92 76 

27 392 252 173 130 97 81 

28 412 266 183 138 103 86 

29 432 281 194 146 110 91 

30 453 1 	295 1 	204 1 	154 1 	116 1 	97 
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Table.C-5 The theoretical inharmonicity in cents for the six stepped overwound 

strings, S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6). 

Mode 

number S2(1) S2(2) 

inhanncxiicity 

S2(3) 

in cmts 

S2(4) S2(5) S2(6) 

1 2 1 1 0 0 0 

2 7 3 3 1 1 1 

3 15 7 5 3 2 2 

4 24 13 9 5 4 3 

5 35 19 13 8 5 4 

6 47 26 17 11 8 6 

7 60 34 22 15 10 8 

8 74 42 28 19 13 10 

9 88 51 34 23 16 13 

10 103 61 40 28 20 16 

11 118 70 47 33 24 19 

12 134 81 54 38 28 22 

13 151 91 60 43 32 25 

14 168 102 69 49 36 29 

15 186 114 77 55 40 33 

16 204 126 85 61 45 37 

17 223 138 93 68 50 41 

18 242 151 102 75 55 45 

19 262 164 111 82 60 50 

20 282 177 121 89 66 54 

21 303 191 130 96 71 59 

22 324 205 140 104 77 64 

23 345 210 150 112 83 69 

24 367 234 161 120 89 74 

25 389 249 171 128 96 79 

26 411 264 182 136 102 85 

27 433 280 193 145 109 91 

28 455 295 205 154 115 96 

29 477 311 216 163 122 102 

30 1 	499 1 	328 228 172 1 	129 1 	109 

143 



Table.C-6 The theoretical inharmonicity in cents for the six stepped overwound 

strings, S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6). 

Mode 

number S3(1) S3(2) 

Iniwmcmicity 

S3(3) 

in cents 

S3(4) S3(5) S3(6) 

1 2 1 1 0 0 0 

2 7 4 2 1 1 1 

3 15 8 5 3 2 2 

4 26 14 8 6 4 3 

5 38 20 12 9 6 5 

6 51 28 17 12 8 7 

7 65 37 23 16 11 9 

8 79 46 29 20 14 11 

9 95 56 36 25 18 14 

10 111 66 43 30 22 17 

11 128 77 50 36 26 21 

12 146 88 58 42 30 24 

13 164 100 66 48 35 28 

14 183 112 74 54 40 32 

15 203 125 83 61 45 36 

16 224 138 92 68 50 41 

17 244 152 102 75 55 45 

18 266 166 112 82 61 50 

19 288 180 122 90 67 55 

20 310 195 132 98 73 60 

21 333 211 143 107 79 65 

22 356 226 154 115 86 71 

23 380 242 165 124 92 77 

24 404 259 177 133 99 82 

25 428 275 189 142 106 88 

26 452 292 201 152 114 95 

27 476 309 214 161 121 101 

28 500 328 226 171 129 108 

29 524 345 236 181 136 114 

30 1 	549 1 	362 252 192 1 	144 1 	121 
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APPENDIX D 

EXPERIMENTAL MODE FREQUENCIES 

Table D-1 shows the experimental mode frequencies of the uniformly 

overwound strings, U1(1), U1(2), U1(3), U1(4), U1(5) and U1(6). Table D-2 

shows the experimental mode frequencies of the uniformly overwound strings, 

U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6). Table D-3 shows the experimental 

mode frequencies of the uniformly overwound strings, U3(1), U3(2), U3(3), 

U3(4), U3(5) and U3(6). Table D-4 shows the experimental mode frequencies of 

the stepped overwound strings, S1(1), S1(2), S 1(3), S 1(4), S1(5) and S1(6). Table 

D-5 shows the experimental mode frequencies of the stepped overwound strings, 

S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6). And Table D-6 shows the 

experimental mode frequencies of the stepped overwound strings, S3(1), S3(2), 

S3(3), S3(4), S3(5) and S3(6). Details of the string dimensions see Table 3.1 

and 3.2 in chapter 3. 
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Table D-1 The experimental mode frequencies for the uniformly overwound 

strings, U1(1), U1(2), U1(3), U1(4), Ui(S) and U1(6). 

Mode number   Mode frequencies  

(n) U1(1) U1(2) U1(3) U1(4) U1(5) U1(6) 

1 59.52 44.61 35.90 29.35 25.40 21.36 

2 119.14 89.27 71.84 58.73 50.82 

3 178.99 134.03 107.82 88.12 64.11 

4 239.12 178.90 117.59 101.71 85.52 

5 224.02 180.08 127.23 

6 360.73 216.37 176.72 128.37 

7 422.38 314.93 206.23 178.37 149.89 

8 484.73 360.84 289.43 204.14 

9 547.87 326.24 266.13 229.86 193.10 

10 453.79 363.27 296.11 255.74 214.68 

11 676.87 500.91 326.22 

12 742.92 438.08 307.78 258.48 

13 596.66 475.90 387.33 334.07 280.40 

14 878.50 418.07 360.38 

15 694.68 552.49 449.02 386.83 324.50 

16 1019.28 744.64 346.70 

17 1091.80 795.29 630.48 511.56 440.16 

18 1165.85 670.05 543.19 467.05 391.42 

19 1241.49 898.76 710.04 494.11 413.95 

20 951.66 750.45 607.23 521.35 

21 1397.78 1005.39 639.67 459.40 

22 1478.55 832.67 672.39 576.38 482.32 

23 1561.15 1115.43 874.50 705.43 604.19 505.39 

24 1645.63 916.84 632.21 528.63 

25 1229.14 
1 772.46 660.44 

26 1820.46 1287.44 1003.12 806.48 575.49 

27 1910.88 1346.74 1047.09 599.18 

28 2003.39 1407.08 875.59 746.51 623.04 

29 2098.00 1468.46 1136.79 910.70 775..68 

30 1 	2194.78 1 	1530.93 1 	1182.55 1 	946.19  671.29 
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Table D-2 The experimental mode frequencies for the uniformly overwound 

strings, U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6). 

Mode number   Mode 	frequencies  

(n) U2(1) U2(2) U2(3) U2(4) U2(5) U2(6) 

1 56.76 42.57 34.23 27.96 24.20 20.35 

2 113.62 85.18 68.47 55.92 48.39 40.69 

3 170.71 127.90 83.92 61.05 

4 137.16 111.97 96.86 81.43 

5 285.98 213.82 171.64 121.15 

6 344.39 257.13 206.25 168.26 145.50 122.29 

7 

8 463.24 275.98 224.94 194.37 163.32 

9 523.90 389.01 311.14 253.46 218.92 183.91 

10 585.52 346.53 282.12 243.56 204.57 

11 479.02 382.18 310.94 

12 711.98 524.80 293.15 246.11 

13 777.04 571.14 454.35 369.10 318.12 266.99 

14 

15 911.18 665.72 527.84 428.07 368.46 309.06 

16 714.03 565.13 457.90 393.84 330.25 

17 1051.25 602.83 419.38 351.54 

18 1123.70 812.89 640.95 518.29 445.09 372.96 

19 1197.86 863.52 548.89 

20 1273.79 915.00 718.54 579.78 497.04 416.17 

21 

22 1431.23 1020.65 798.07 642.47 549.77 459.93 

23 1512.85 1074.88 674.30 576.44 482.03 

24 1596.48 879.71 504.29 

25 1186.32 738.98 630.46 

26 1769.97 1243.59 963.60 771.86 657.82 549.31 

27 1859.93 1006.44 805.12 572.07 

28 

29 2046.49 1421.94 1093.99 872.80 741.39 

30 1 	2143.15 1 	1482.99 1 	1138.73 1 	907.26 1 	769.77 1 	641.47 
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Table D-3 The experimental mode frequencies for the uniformly overwound 

strings, U3(1), U3(2), U3(3), U3(4), U3(5) and U3(6). 

Mode number   Mode frequencies  

(n) U3(1) U3(?) U3(3) U3(4) U3(5) U3(6) 

1 53.49 40.11 32.26 26.34 22.79 19.17 

2 107.11 64.54 52.72 45.60 38.35 

3 160.96 120.56 96.89 79.12 57.55 

4 215.18 161.00 91.29 76.76 

5 269.88 161.87 132.09 114.20 

6 242.58 194.56 158.70 137.17 115.30 

7 381.16 283.82 134.63 

8 437.96 325.45 260.49 212.26 183.32 154.02 

9 367.48 293.78 239.24 206.52 173.47 

10 554.47 229.83 

11 614.38 453.04 361.16 293.68 212.59 

12 496.66 321.17 276.78 

13 738.49 541.39 430.26 300.95 252.16 

14 802.45 465.17 377.38 272.08 

15 867.93 632.05 405.62 348.88 292.12 

16 678.49 536.18 434.12 373.10 

17 1003.75 572.33 332.55 

18 773.81 608.94 491.96 422.08 352.97 

19 1146.56 822.77 446.86 373.53 

20 1220.78 683.64 551.00 

21 923.47 721.78 497.05 415.09 

22 1375.12 975.28 611.37 522.48 436.11 

23 1455.37 1028.11 799.72 642.09 457.30 

24 1081.99 839.57 673.17 574.05 

25 1622.30 880.03 500.21 

26 1709.07 1193.04 921.12 736.52 626.65 521.95 

27 1798.12 1250.28 768.80 653.34 543.88 

28 1308.67 1005.26 680.32 

29 1983.18 1368.25 1048.35 834.63 707.58 588.34 

30 1 	2079.27 1 	1429.07 1092.14 1 	868.21 1 	735.14 1 	610.89 
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Table D-4 The experimental mode frequencies for the stepped overwound strings, 

S1(1), S1(2), S1(3), S1(4), S1(5) and S1(6). 

Mode number   Mode 	frequencies  

(n) Sl(1) S1(2) S1(3) S1(4) Si(S) S1(6) 

1 59.58 44.69 35.89 29.35 25.40 21.36 

2 119.35 72.05 58.74 50.82 42.73 

3 179.30 134.51 108.04 88.18 

4 240.96 179.44 144.08 117.71 101.78 85.56 

5 301.87 225.59 180.80 127.35 107.04 

6 271.00 217.28 177.11 153.00 128.58 

7 428.40 318.37 254.18 207.02 

8 492.93 291.57 204.59 171.87 

9 559.41 413.11 329.08 267.33 230.54 193.64 

10 626.61 366.99 297.75 256.61 

11 694.68 509.95 405.03 282.80 237.46 

12 765.07 443.34 359.19 259.52 

13 836.51 609.64 482.04 390.23 335.59 

14 909.01 661.05 521.66 422.51 363.23 303.87 

15 984.35 712.59 560.35 454.23 326.25 

16 1059.81 601.17 417.39 348.76 

17 1137.88 817.92 518.50 444.77 371.39 

18 682.45 551.09 472.35 394.16 

19 1299.83 926.75 583.99 500.15 

20 1383.24 766.08 440.15 

21 1469.72 1039.76 650.80 556.43 463.36 

22 1556.96 1096.82 852.46 684.73 584.94 486.74 

23 1646.37 1155.31 719.03 

24 1215.34 939.31 642.72 534.01 

25 1828.93 788.80 672.02 

26 1924.42 1338.94 1029.61 824.29 701.59 582.00 

27 1402.43 1075.84 860.20 731.46 606.28 

28 2121.89 1466.35 1122.35 630.75 

29 2223.83 1170.10 933.35 792.10 

30 1 	2327.84 1 	1599.78 1 	1218.56 1 	970.60 1 	822.90 1 	680.32 
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Table D-5 The experimental mode frequencies for the stepped overwound 

strings, S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6). 

Mode number   Mode frequencies  

(n) S2(l) S2(2) S2(3) S2(4) S2(5) S2(6) 

1 56.78 42.57 34.23 27.95 24.19 20.342 

2 113.79 85.22 68.52 55.92 48.39 40.696 

3 171.36 128.07 102.92 72.64 

4 229.54 171.28 111.98 96.89 81.448 

5 171.88 140.20 101.899 

6 348.98 258.69 207.05 168.55 145.69 122.405 

7 

8 472.27 348.17 277.77 225.73 194.88 163.623 

9 535.69 313.58 254.59 219.61 184.349 

10 600.05 439.42 349.70 283.64 205.164 

11 666.01 486.36 312.90 269.56 

12 533.70 422.96 294.73 247.084 

13 801.43 583.76 460.16 372.10 320.05 268.202 

14 

15 944.15 680.06 535.79 432.283 371.18 310.783 

16 1017.84 730.42 574.20 397.01 332.258 

17 1093.41 613.09 493.55 423.02 

18 833.71 652.49 524.61 375.607 

19 1250.16 886.75 555.99 475.62 397.491 

20 1331.15 940.793 732.79 587.68 502.23 419.525 

21 

22 1500.68 1050.78 815.29 652.09 556.104 464.059 

23 1587.80 1107.64 684.83 583.387 486.573 

24 1678.01 1165.70 900.05 717.94 610.911 509.259 

25 1225.04 943.23 638.684 

26 1866.22 987.22 785.32 555.169 

27 1960.62 1346.96 1031.81 819.61 695.011 578.405 

28 

29 2159.52 1473.20 1123.14 889.48 752.431 625.468 

30 1 	2263.16 1 	1538.42 1 	1169.96 1 	925.07 1 	781.571  
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Table D-6 The experimental mode frequencies for the stepped overwound strings, 

S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6). 

Mode number   Mode frequencies  

(n) S3(1) S3(2) S3(3) S3(4) S3(5) S3(6) 

1 53.53 40.13 32.27 26.35 22.80 19.19 

2 107.47 80.39 64.60 52.73 45.62 38.36 

3 161.994 120.93 97.08 79.20 68.45 57.58 

4 105.74 76.83 

5 273.90 202.85 162.39 114.38 96.14 

6 244.85 195.61 159.32 

7 389.14 287.12 186.31 160.73 134.88 

8 448.62 262.81 184.05 154.41 

9 509.33 373.34 296.84 240.90 207.50 

10 417.37 331.22 268.51 231.20 193.74 

11 634.82 296.34 

12 699.75 507.47 401.10 278.73 233.58 

13 766.29 553.62 436.65 352.75 253.63 

14 600.56 472.64 381.36 326.04 

15 904.53 509.08 351.46 294.09 

16 976.37 696.98 439.43 376.07 314.53 

17 1050.16 746.53 583.44 468.92 400.89 335.11 

18 797.05 621.39 425.92 

19 1203.87 848.55 659.89 528.90 376.72 

20 1283.92 698.957 559.41 476.65 397.77 

21 1366.19 954.71 590.28 502.37 418.98 

22 1450.71 1009.42 778.89 621.54 

23 1065.28 819.80 554.55 461.95 

24 1626.75 1122.31 685.24 581.03 483.71 

25 1718.32 903.60 717.71 505.67 

26 

27 1908.67 1300.73 990.16 783.97 662.14 550.19 

28 

29 2108.55 1426.05 1079.65 852.05 717.70 595.56 

30 2211.94 1 	1490.69 1 	1125.53 1 	886.80 1 	745.94 1 	618.58 
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APPENDIX E 

EXPERIMENTAL INHARMONICITY 

In this Appendix, experimental values of inharmonicity calculated from 

the mode frequencies in Appendix D are tabulated. Table E-1 shows the 

experimental inharmonicity for the uniformly overwound strings, U1(l), U1(2), 

U1(3), U1(4), U1(5) and U1(6). Table E-2 shows the experimental inharmonicity 

for the uniformly overwound strings, U2(1), U2(2), U2(3), U2(4), U2(5) and 

U2(6). Table E-3 shows the experimental inharmonicity for the uniformly 

overwound strings, U3(1), U3(2), U3(3), U3(4), U3(5) and U3(6). Table E-4 

shows the experimental inharmonicity for the stepped overwound strings, S1(1), 

S1(2), S1(3), S1(4), S1(5) and S1(6). Table E-5 shows the experimental 

inharmonicity for the stepped overwound strings, S2(1), S2(2), S2(3), S2(4), 

S2(5) and S2(6). And Table E-6 shows the experimental inharmonicity for the 

stepped overwound strings, S3(1), S3(2), S3(3), S3(4), S3(5) and S3(6). Details of 

the string dimensions see Table 3.1 and 3.2 in chapter 3. 
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Table.E- 1 The experimental inharmonicity in cents for the six uniformly 

overwound strings, U1(1), U1(2), U1(3), U1(4), U1(5) and U1(6). 

Mode 

number U1(1) U1(2) 

bihamonicity 

U1(3) 

in cents 

U1(4) U1(5) U1(6) 

1 1 0 0 0 0 0 

2 2 1 1 1 1 

3 5 3 2 1 1 

4 8 5 3 2 2 

5 8 6 3 

6 18 8 6 3 

7 24 15 7 6 4 

8 31 19 13 8 

9 40 17 13 10 8 

10 30 20 15 12 9 

11 58 36 18 

12 69 29 17 15 

13 50 34 26 20 17 

14 92 30 23 

15 65 44 34 26 22 

16 118 74 24 

17 132 83 56 43 33 

18 147 63 48 37 30 

19 162 102 69 41 34 

20 112 77 59 45 

21 194 123 64 41 

22 211 91 70 54 45 

23 228 145 99 76 58 49 

24 246 107 63 53 

25 169 89 68 

26 282 181 125 96 62 

27 300 194 134 66 

28 319 207 110 84 70 

29 338 220 152 117 89 

30 358 233 1 	162 125 1 80 
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Table.E-2 The experimental inharmonicity in cents for the six uniformly 

overwound strings, U2(1), U2(2), U2(3), U2(4), U2(5) and U2(6). 

Mode 

number U2(1) U2(2) 

Inhannonicity 

U2(3) 

in =ts 

U2(4) U2(5) U2(6) 

1 1 0 0 0 0 0 

2 2 1 1 0 0 0 

3 5 3 1 1 

4 4 3 2 1 

5 14 8 5 3 

6 20 12 8 6 4 4 

7 

8 35 14 10 8 6 

9 44 27 18 13 10 8 

10 54 22 16 12 10 

11 40 26 20 

12 77 47 17 14 

13 90 55 37 27 20 17 

14 

15 118 73 48 36 27 22 

16 82 55 30 25 

17 149 62 34 29 

18 165 103 69 51 38 32 

19 182 114 57 

20 200 125 84 63 47 39 

21 

22 237 149 101 76 56 48 

23 256 162 83 61 52 

24 275 119 56 

25 188 97 72 

26 315 202 138 104 78 66 

27 336 148 112 71 

28 

29 378 245 169 128 96 

30 399 1 	259 179 136 1 	102 1 	87 
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Table.E-3 The experimental inharmonicity in cents for the six uniformly 

overwound strings, U3(1), U3(2), U3(3), U3(4), U3(5) and U3(6). 

Mode 

number U3(1) U3(2) 

Inliarmonicity 

U3(3) 

in ants 

U3(4) U3(5) U3(6) 

1 1 0 0 0 0 0 

2 3 1 1 1 0 

3 6 4 2 2 1 

4 10 6 3 2 

5 16 7 5 4 

6 14 9 7 5 4 

7 31 19 6 

8 41 25 17 13 9 7 

9 31 21 16 12 9 

10 63 15 

11 75 46 31 23 14 

12 55 28 21 

13 105 65 45 27 20 

14 120 52 40 24 

15 137 86 46 35 27 

16 97 66 51 40 

17 172 74 35 

18 120 83 64 49 39 

19 209 133 54 44 

20 229 101 78 

21 160 110 66 53 

22 270 174 93 71 58 

23 292 188 130 101 63 

24 203 141 109 84 

25 335 152 74 

26 357 233 163 126 97 80 

27 380 249 135 104 86 

28 265 186 112 

29 426 282 198 153 118 98 

30 1 	449 1 	298 1 	210 163 1 	126 1 	105 
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Table.E-4 The experimental inharmonicity in cents for the six stepped 

overwound strings, S1(1), S1(2), S1(3), S1(4), S1(5) and S1(6). 

Mode 

number S1(1) S1(2) 

Iniiarmoiicixy 

S1(3) 

in =ts 

S1(4) S1(5) S1(6) 

1 0 0 0 0 0 

2 3 6 1 1 1 

3 5 6 5 3 

4 19 7 6 5 3 2 

5 23 16 12 5 4 

6 18 15 10 7 6 

7 46 30 20 13 

8 58 26 12 10 

9 73 46.31 32 21 15 13 

10 87 38 25 18 

11 101 63.49 44 21 18 

12 117 50 34 22 

13 133 83 56 39 28 

14 149 95 64 48 37 28 

15 167 106 69 54 31 

16 183 78 46 35 

17 201 128 67 51 39 

18 94 73 56 43 

19 239 151 80 62 

20 258 112 52 

21 279 177 94 73 56 

22 298 189 132 102 79 61 

23 318 202 109 

24 216 149 92 71 

25 355 125 98 

26 376 245 170 134 105 81 

27 260 181 142 112 87 

28 416 275 191 92 

29 437 202 160 126 

30 457 306 214 169 133 104 
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Table.E-5 The experimental inharmonicity in cents for the six stepped 

overwound strings, S2(1), S2(2), S2(3), S2(4), S2(5) and S2(6). 

Mode 

number S2(1) S2(2) 

!niarmonicity 

S2(3) 

in cents 

S2(4) S2(5) S2(6) 

1 1 0 0 0 0 0 

2 5 2 2 1 0 1 

3 12 5 4 2 

4 20 11 3 2 2 

5 8 6 3 

6 43 22 15 9 7 5 

7 

8 69 39 25 16 12 10 

9 83 31 21 15 12 

10 97 55 38 25 15 

11 112 66 30 22 

12 76 51 26 21 

13 144 93 59 41 30 25 

14 

15 180 109 74 53 39 32 

16 198 121 82 44 36 

17 217 91 66 49 

18 146 100 72 44 

19 256 160 79 59 49 

20 276 173 118 87 65 53 

21 

22 319 200 138 102 76 63 

23 340 214 110 82 68 

24 362 229 159 118 88 73 

25 244 169 95 

26 407 180 134 84 

27 427 275 191 143 108 90 

28 

29 471 306 214 161 121 101 

30 1 	493 1 	323 1 	226 170 128  
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Table.E-6 The experimental inharmonicity in cents for the six stepped 

overwound strings, S3(l), S3(2), S3(3), S3(4), S3(5) and S3(6). 

Mode 

number S3(1) S3(2) 

litharmonicity 

S3(3) 

in cents 

S3(4) S3(5) S3(6) 

1 2 1 1 1 1 0 

2 9 4 3 2 1 1 

3 17 9 6 4 2 2 

4 6 3 

5 42 20 12 6 5 

6 30 19 14 

7 67 39 18 13 9 

8 82 32 16 12 

9 98 59 39 28 20 

10 69 46 33 24 18 

11 132 39 

12 150 92 • 62 33 26 

13 169 104 70 51 30 

14 117 79 58 37 

15 208 88 48 39 

16 229 143 72 53 44 

17 250 157 108 80 59 48 

18 172 118 65 

19 294 186 128 96 58 

20 316 139 104 77 64 

21 340 217 113 84 69 

22 363 233 162 121 

23 249 173 98 81 

24 411 266 140 105 87 

25 435 197 149 93 

26 

27 483 318 222 169 127 106 

28 

29 532 353 249 189 143 119 

30 556 1 	371 1 	262 200 1 	151 1 	126 
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APPENDIX F 

PIANO STRINGS' THEORETICAL AND 
EXPERIMENTAL MODE FREQUENCIES 

Table F-i shows the theoretical mode frequencies of the piano strings, 

AO, BbO, BO and Cl. Table F-2 shows the theoretical mode frequencies of the 

piano strings, Dbl, Dl, Ebi and El. Table F-3 shows the experimental mode 

frequencies of the piano strings, AO, BbO, BO and Cl. Table F-4 shows the 

experimental mode frequencies of the piano strings, Db 1, Di, Eb 1 and El. For 

details of the string dimensions see Table 6.1 in chapter 6. 
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Table F-i The theoretical mode frequencies for the piano strings, AO, BbO, BO 

and Cl. 

Mode number 

(n) 

 Mode 	frequencies 

A0 BbO BO Cl 

1 25.86 28.50 29.40 31.80 

2 51.73 57.01 58.81 63.61 

3 77.62 85.54 88.24 95.44 

4 103.54 114.09 117.69 127.28 

5 129.50 142.68 147.18 159.17 

6 155.50 171.31 176.72 191.08 

7 181.56 199.98 206.30 223.05 

8 207.68 228.72 235.95 255.07 

9 233.87 257.52 265.67 287.16 

10 260.15 286.40 295.46 319.31 

ii 286.52 315.36 325.34 351.54 

12 312.99 344.42 355.32 383.85 

13 339.57 373.56 385.40 416.26 

14 366.26 402.82 415.59 448.76 

15 393.08 432.19 445.90 481.37 

16 420.02 461.67 476.34 514.09 

17 447.35 491.29 506.91 546.93 

18 474.35 521.04 537.63 579.89 

19 501.74 550.93 568.49 612.99 

20 580.98 599.52 646.23 

21 557.03 611.17 630.71 679.61 

22 584.93 641.54 662.62 713.14 

23 613.02 672.07 746.83 

24 641.31 702.77 725.35 780.69 

25 669.79 733.66 757.28 814.71 

26 698.48 764.74 789.41 848.91 

27 727.39 796.02 821.75 883.30 

28 827.499 854.31 917.87 

29 785.87 859.187 887.09 952.64 

30 815.45 891.09 920.104 987.61 



Table F-2 The theoretical mode frequencies for the piano strings, Dbl, Dl, Ebi 

and El. 

Mode number 

(n) 

Mode 	frequencies  

Dbl Dl Ebi El 

1 32.60 35.90 37.84 39.80 

2 65.21 71.81 75.69 79.61 

3 97.84 107.74 113.55 119.43 

4 130.49 143.69 151.44 159.28 

5 163.18 179.67 189.35 199.15 

6 195.90 215.70 227.29 239.06 

7 228.68 251.78 265.28 279.01 

8 261.52 287.91 303.32 319.01 

9 294.43 324.11 341.42 359.06 

10 327.41 360.39 379.58 399.18 

11 360.47 396.75 417.80 439.37 

12 393.62 433.20 456.11 479.64 

13 426.88 469.75 494.50 520.00 

14 460.24 506.40 532.98 560.44 

15 493.72 543.17 571.56 600.99 

16 527.32 580.07 610.24 641.63 

17 561.05 617.09 649.03 682.40 

18 594.92 654.25 687.94 723.28 

19 628.93 691.56 726.98 764.28 

20 663.10 729.02 766.15 805.42 

21 697.43 766.65 805.45 846.70 

22 731.93 804.44 844.90 888.13 

23 766.60 842.41 884.50 929.70 

24 801.46 880.56 924.25 971.44 

25 836.506 918.90 964.17 1013.34 

26 957.44 1004.26 1055.42 

27 907.197 996.19 1044.52 1097.67 

28 942.86 1035.15 1084.97 1140.11 

29 978.731 1074.33 1125.6 1182.74 

30 1113.73 1166.43 1225.57 
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Table F-3 The experimental mode frequencies for the piano strings, A0, BbO, 

BO and Cl. 

Mode number 

(n) 

 Mode 	frequencies  

A0 BbO BO Cl 

1 25.87 

2 51.78 63.62 

3 77.69 85.51 88.31 

4 103.60 114.09 127.31 

5 129.56 142.72 147.42 

6 155.65 171.36 177.17 191.29 

7 181.78 200.09 206.74 

8 207.88 228.93 235.91 255.33 

9 234.08 257.66 266.31 287.26 

10 260.45 286.67 295.35 319.64 

11 286.72 315.67 325.80 351.75 

12 313.36 345.10 355.47 384.40 

13 339.28 373.88 386.58 416.82 

14 366.79 403.80 417.30 448.96 

15 433.02 447.03 482.18 

16 420.69 462.93 478.50 515.14 

17 492.89 509.57 548.09 

18 475.28 522.42 540.05 581.17 

19 502.85 552.99 571.53 614.83 

20 530.28 583.09 602.58 647.83 

21 558.02 614.50 634.54 681.51 

22 586.22 644.81 715.27 

23 614.34 674.70 697.86 749.48 

24 642.80 705.72 729.85 783.41 

25 671.48 737.51 762.24 817.66 

26 700.43 768.64 794.93 852.13 

27 729.46 827.48 886.82 

28 832.59 860.45 992.48 

29 788.31 894.54 1028.10 

30 1100.10 
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Table F-4 The experimental mode frequencies for the piano strings, Dbl, Dl, 

Ebi and El. 

Mode number 

(n) 

 Mode 	frequencies  

Dbl Dl Ebi El 

1 35.96 37.85 

2 71.79 75.64 79.62 

3 101.12 108.33 113.90 

4 134.36 143.43 151.88 158.88 

5 167.78 179.18 189.91 198.75 

6 201.40 215.17 228.03 241.24 

7 235.29 251.08 266.56 278.78 

8 269.08 287.22 304.96 318.54 

9 302.56 323.31 358.62 

10 336.81 360.01 380.80 398.99 

11 370.58 395.87 419.76 439.42 

12 405.19 432.47 458.38 478.74 

13 439.88 468.34 496.91 517.85 

14 474.11 505.77 536.08 560.74 

15 542.21 601.73 

16 543.03 579.51 612.47 641.15 

17 616.25 682.52 

18 613.38 653.92 722.92 

19 690.75 764.00 

20 728.52 770.06 805.62 

21 718.68 766.13 846.70 

22 754.42 803.90 849.34 887.86 

23 841.75 929.83 

24 825.06 880.06 929.08 971.12 

25 918.32 

26 

27 995.94 1049.65 

28 1034.52 1090.87 1140.60 

29 1183.95 

30 1045.14 1114.37 

163 



APPENDIX G 

PIANO STRINGS' THEORETICAL 
AND EXPERIMENTAL INHARMONICITY 

Table 0-1 shows the theoretical inharmonicity for the piano strings, AO, 

BbO, BO and Cl. Table G-2 shows the theoretical inharmonicity for the piano 

strings, Dbl, Dl, Ebi and El. Table 0-3 shows the experimental inharmonicity 

for the piano strings, AO, BbO, BO and Cl. Table 0-4 shows the experimental 

inharmonicity in cents for the piano strings, Dbl, Dl, Ebi and El. For details 

of the string dimensions see Table 6.1 in chapter 6. 
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Table G-1 The theoretical inharmonicity in cents for the piano strings, A0, BbO, 

BO and Cl. 

Mode number 

(n) 

 Inharmonicity 	in cents  

A0 BbO BO Cl 

1 0 0 0 0 

2 0 0 0 0 

3 1 1 1 1 

4 2 1 1 1 

5 3 2 2 2 

6 4 3 3 3 

7 5 4 4 4 

8 7 5 6 5 

9 8 7 7 6 

10 10 9 9 7 

11 13 10 10 9 

12 15 12 12 10 

13 17 14 14 12 

14 20 16 17 14 

15 23 19 19 16 

16 26 21 22 18 

17 30 24 24 20 

18 33 27 27 23 

19 36 30 30 25 

20 33 34 28 

21 44 36 37 30 

22 48 40 42 33 

23 52 43 36 

24 57 47 48 39 

25 61 51 52 42 

26 66 55 56 46 

.27 71 59 60 49 

28 63 64 53 

29 81 67 69 56 

30 86 72 73 60 
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Table 0-2 The theoretical inharmonicity in cents for the piano strings, Dbl, Dl, 

Ebi and El. 

Mode number 

(n) 

 Inhamonicity 	in cents  

Dbl Dl Ebi El 

1 0 0 0 0 

2 0 0 0 0 

3 1 1 0 0 

4 1 1 1 1 

5 2 2 1 1 

6 3 2 2 2 

7 4 3 3 3 

8 5 4 3 3 

9 6 5 4 4 

10 7 7 5 5 

11 9 8 6 6 

12 11 10 8 7 

13 13 11 9 9 

14 15 13 10 10 

15 17 15 12 12 

16 19 17 14 13 

17 21 19 15 15 

18 24 21 17 17 

19 26 24 19 18 

20 29 26 21 20 

21 32 29 23 22 

22 35 32 26 25 

23 38 35 28 27 

24 42 38 30 30 

25 45 41 33 32 

26 44 36 34 

27 52 47 38 37 

28 56 51 41 39 

29 60 54 44 42 

30 58 47 45 
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Table G-3 The experimental inharmonicity in cents for the piano strings, A0, 

BbO, BO and Cl. 

Mode number 

(n) 

 Inharmonicity 	in cents  

A0 BbO BO Cl 

1 0 

2 2 0 

3 2 0 2 

4 3 1 1 

5 3 3 5 

6 5 4 8 4 

7 7 5 8 

8 8 7 5 6 

9 10 8 11 6 

10 12 10 8 9 

11 14 12 13 10 

12 17 16 13 13 

13 16 16 20 14 

14 23 21 24 15 

15 22 24 19 

16 29 26 30 21 

17 30 34 24 

18 36 31 35 26 

19 40 36 40 30 

20 45 39 42 32 

21 47 46 47 35 

22 52 48 38 

23 56 50 55 42 

24 61 54 59 45 

25 66 60 63 49 

26 71 63 68 52 

27 76 72 56 

28 73 77 

29 86 83 

30 68 
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Table G-4 The experimental inharmonicity in cents for the piano strings, Dbl, 

Dl, Ebi and El. 

Mode number 

(n) 

 Inharmonicity 	in cents  

Dbl Dl Ebi El 

1 

2 

3 0 

4 2 3 0 0 

5 0 2 1 1 

6 1 3 2 

7 3 3 5 5 ,  

8 4 5 7 4 

9 3 6 6 

10 7 10 5 8 

11 7 9 9 10 

12 11 12 10 

13 15 11 12 

14 16 16 15 14 

15 17 17 

16 20 20 14 15 

17 22 19 

18 27 25 19 

19 27 21 

20 30 24 24 

21 34 33 26 

22 38 35 29 28 

23 38 31 

24 42 42 33 32 

25 45 

26 

27 52 41 

28 55 45 44 

29 48 

30 65 64 

168 



BIBLIOGRAPHY 

Alembert, D. Hist. Acad. Sci. 3, 214-219 (1747). 

Alfredson, R.J. & Steinke, S. Acustica 39, 130-132 (1978). 

Askenfelt, A. & Jansson, E.V. Journal of Acoustical Society of America 88, 

52-63 (1990). 

Askenfelt, A. & Jansson, E.V. Journal of Acoustical Society of America 90, 

2383-2393 (1991). 

Askenfelt, A. & Jansson, E.V. Journal of Acoustical Society of America 93, 

2181-2196 (1991). 

Bachmann, W., Bucker, H. & Kohl, B. Acustica 68, 123-130 (1989). 

Backus, J. Journal of Acoustical Society of America 58, 1078-1081 (1975). 

Bacon, R.A. & Bowsher, J.M. Acustica 41, 21-27 (1978). 

Baker, C.G.B., Thair, C.M. & Gough, C.E. Acustica 44, 70-77 (1980). 

Bariaux, D., Cornelissen, G., Prins, J.D., Guisset, J.L. & Willems, J. 

Acustica 32, 307-313 (1975). 

Barrett, T.W. Journal of Sound and Vibration 20, 407-412 (1972). 

Bell, A.J. & Parks, R. Proc. of the Inst. of Acoustics. 12, 753-755 (1990). 

Benade, A.H. Fundamentals of Musical Acoustics. (McGraw-Hill., New 

York, 1968). 

Bilhuber, P.H. & Johnson, C.A. Journal of Acoustical Society of America 

11, 311-320 (1940). 

Blackham, E.D. Scientific American 24-33 (1965). 

Bokaian, A. Journal of Sound and Vibration 126,49-65 (1988). 

169 



Boutillon, X., Radier, J., Valette, C. & Castellengo, M. Compres Rendus 

Acad. Sci. Paris. 298, 815-820 (1984). 

Boutillon, X. Journal of Acoustical Society of America 83, 746-754 (1988). 

Brigham, E.O. The Fast Fourier Transform. (Prentice-Hall., 1974). 

Buchmann, W., Bucker, H. & Kohl, B. Acustica 68, 123-130 (1989). 

Calder, J. Journal of Catgut Acoustical Society. 1, 17-29 (1991). 

Campbell, D.M., Greated, C. & Parks, R. Physics Education. 25, 20-29 

(1990). 

Capron, M.D. & Williams, F.W. Journal of Sound and Vibration 124, 453- 

466 (1988). 

Chaigne, A. & Askenfelt, A. Journal ofAcoustical Society of America 95, 

1112-1118 (1994). 

Chaigne, A. & Askenfelt, A. Journal of Acoustical Society of America 95, 

1631-1640 (1994). 

Clarke, R.J. Acustica 40, 34-39 (1978). 

College, F.J. Journal of Acoustical Society of America 21, 318-322 (1946). 

Cooley, J.W. & Turkey, J.W. Math Computation. 19 (April), 297-381 

(1965). 

Cranch, E.T. & Adler, A.A. Journal of Applied Mechanics. March, 103-108 

(1956). 

Cuesta, C. & Valette, C. Acustica 66, 37-45 (1988). 

Cuesta, C. & Valette, C. Acustica 68, 112-122 (1989). 

Cuesta, C. & Valette, C. Acustica 71, 28-40 (1990). 

Dasarathy, B.V. & Srinivasan, P. Journal of Sound and Vibration 9,49-52 

(1969). 

Deb, K.K. Journal of Sound and Vibration 20,1-7 (1972). 

Exley, K.A. Journal of Sound and Vibration 9, 420-437 (1969). 

Filipich, C.P. & Laura, P.A.A. Journal of Sound and Vibration 125, 393-396 

170 



(1988). 

Filipich, C.P. & Laura, P.A.A. Journal of Sound and Vibration 126, 1-8 

(1988). 

Firth, I.M. Acustica 39, 252-263 (1978). 

Fletcher, H., Blackham, E., Donnell & R., S. Journal of Acoustical Society of 

America 34, 749-761 (1962). 

Fletcher, H. Journal of Acoustical Society of America 36, 203-209 (1964). 

Fletcher, N.H. Acusrica 37, 139-147 (1977). 

Fletcher, N.H. Journal of Acoustical Society of America 64, 1566-1569 

(1978). 

George, W.H. Acustica 4, 224-225 (1954). 

Ghosh, R.N. Journal of Acoustical Society of America 7, 254-260 (1936). 

Gottlieb, H.P.W. Journal of Sound and Vibration 108, 63-72 (1986). 

Gottlieb, H.P.W. Journal of Sound and Vibration 118, 283-290 (1987). 

Gough, C.E. Acustica 44, 113-123 (1980). 

Gough, C.E. Acustica 48, 124-141 (1981). 

Gutierrez, R.H., Laura, P.A.A. & Rossi, R.E. Journal of Sound and 

Vibration 145, 341-344 (1991). 

Hall, D.E. Journal of Acoustical Society of America 79, 141-147 (1986). 

Hall, D.E. Journal of Acoustical Society of America 81, 535-546 (1987). 

Hall, D.E. Journal of Acoustical Society of America 81, 547-555 (1987). 

Hall, D.E. Journal of Acoustical Society of America 82, 1913-1918 (1987). 

Hall, D.E. Journal of Acoustical Society of America 83, 1627-1638 (1988). 

Hall, D.E. Journal of Acoustical Society of America 92,95-105 (1992). 

Harris, F.J. Proceedings of the IEEE. 66, 51-83 (1978). 

Huang, C.L.D. & Walker, H.S.J. Journal of Sound and Vibration 126, 9-17 

(1988). 

Hundley, M. & Benioff. Proceedings of the Second International Congress on 

171 



Acoustics. 159 (1957). 

James, C.J. & Chivers, R.C. Acustica 69, 13-16 (1989). 

Jaroszewski, A. Acustica 77, 106-110 (1992). 

Jaroszewski, A. Acustica 76, 137 7 141 (1992). 

Kalotas, T.M. & Lee, A.R. Acusrica 76, 20-26 (1992). 

Karp, C. Acustica 54, 209-216 (1984). 

Karp, C. Acustica 60, 295-299 (1986). 

Keeler, J.S. IEEE Transaction on Audio and Electroacoustics. AU-20, 338- 

344 (1972). 

Kent, E.L. Dokwnentation Europiano Kongress Berlin. 58-68 (1965). 

Kirk, R.E. Journal of Acoustical Society of America 31, 1644-1648 (1959). 

Kock, W.E. Journal of Acoustical Society of America 8, 227-233 (1937). 

Lagrange, J.L. Oenvre de Lagrange. 1, 39 (1867). 

Laura, P.A.A. & Verniere de Irassar, P.L. Journal of Sound and Vibration 

124, 1-12 (1988). 

Levinson, M. Journal of Sound and Vibration 49, 287-291 (1976). 

Lieber, E. Acustica 33, 324-335 (1975). 

Linsay, R.B. Acoustics: Historical and Philosoplical Development. 96-102 

(1973). 

Martin, D.W. Journal of Acoustical Society of America 19, 535-541 (1947). 

Martin, D.W. & Ward, W.D. Journal of Acoustical Society of America 33, 

582-585 (1961). 

Maurizi, M.J. & Belles, P.M. Journal of Sound and Vibration 145, 345-347 

(1991). 

McIntyre, M.E. & Woodhouse, J. Acustica 43, 93-108 (1979). 

Metyger, E. Journal ofAcoustical Society of America 42, 896 (1967). 

Miller, F.J. Journal of Acoustical Society of America 21, 318-322 (1949). 

Moore, B.C.J., Peters, R.W. & Glasberg, B.R. Journal of Acoustical Society 

172 



of America 77, 1861-1867 (1985). 

Morse, M. Vibration and Sound. (McGraw-Hill., New York., 1936). 

Orduna-Bustamante, F. & Boullosa, R.R. Journal of Acoustical Society of 

America 93, 3265-3270 (1993). 

Palmer, C. & Brown, J.C. Journal of Acoustical Society of America 90, 60- 

66 (1991). 

Parks, R. Proceeding of the Institute of Acoustics. 15, 673-680 (1993). 

Podlesak, M. & Lee, A.R. Journal of Acoustical Society of America 83, 305- 

317 (1988). 

Podlesak, M. & Lee, A.R. Acustica 68, 61-66 (1989). 

Rabiner, L.R., et al. IEEE Transsacrions Audio and Electroacoustics. AU-20, 

322-337 (1972). 

Rayleigh, J.W.S.L. Theory of Sound. (Dover Publication, 1954). 

Ross, M.J. Acustica 24, 273-283 (1971). 

Rossi, R.E., Gutierrez, R.H. & Laura, P.A.A. Journal of Acoustical Society 

of America 89, 2456-2458 (1991). 

Sakata, T. & Sakata, Y. Journal of Sound and Vibration 71, 315-317 (1980). 

Schuck, O.H. & Young, R.W. Journal of Acoustical Society of America 15, 

1-11 (1943). 

Schumacher, R.T. Acustica 43, 109-120 (1979). 

Shankland, R.S. & Coltman, J.W. Journal of Acoustical Society of America 

10,161-166 (1939). 

Sloane, C. Journal of Sound and Vibration 125, 185-186 (1988). 

Spyridis, H., Roumeliotis, E. & Papadimitrald-Chlichlia, H. Acustica 51, 

180-182 (1982). 

Spyridis, H. & Roumeliotis, E. Acustica 52, 255-256 (1983). 

Stevens, K.K. Journal of Sound and Vibration 20, 257-268 (1972). 

Suzuki, H. Journal of Acoustical Society of America 82, 1145-1151 (1987). 

173 



Taylor, B. Phil. Trans. Roy. Soc. 28, 26-32 (1713). 

Terhardt, E. & Zick, M. Acustica 32, 268-274 (1975). 

Terhardt, E. Acusrica 64, 61-72 (1987). 

Terhardt, E. Acusrica 70, 179-188 (1990). 

Thwaites, S. & Fletcher, N.H. Journal of Acoustical Society of America 69, 

1476-1483 (1981). 

Tsay, H.S. & Kinsbury, H.B. Journal of Sound and Vibration 124, 539-554 

(1988). 

von Helmholtz, H. On the Sensations of Tone. (Dover, New York, 1954). 

Watkinson, P.S., Shepherd, R. & Bowsher, J.M. Acustica 51, 213-221 

(1982). 

Weinreich, G. Journal of Acoustical Society of America 62,1474-1484 

(1977). 

Weinreich, G. Journal of Acoustical Society of America 62,1474-1484 

(1977). 

Weyer, R.D. Acu.stica 35, 232-252 (1976). 

Weyer, R.D. Acusrica 36, 241-258 (1976). 

Winckel, F. Music, sound and sensation. (Dover Publications., New York., 

1967). 

Wolf, D. & Muller, H. Journal of Acoustical Society of America 44, 1093- 

1097 (1968). 

Young, R.W. Journal of Acoustical Society of America 24, 267-273 (1952). 

Young, R.W. Acustica 4, 259-262 (1954). 

Zhu, G.H., Crocker, M.J. & Roa, M.D. Journal of Acoustical Society of 

America 85, 171-177 (1989). 

174 



Proceedings of the Institute of Acoustics 

ki ; F4,11,313 (Ik$ (W W 	ii 1%1 	j I al =1 W 

P Chumnantas, C A Greated & D M Campbell. 

University of Edinburgh, Department of Physics, Edinburgh, UK. 

1. INTRODUCTION 

The problem of the vibration of flexible strings with uniform characteristics has been 
treated by many investigators and the results are well established. Vibration characteristics 
of stiff strings are also quite well understood and the predicted mode frequencies are in 
closed agreement with observations [1]. In this paper, the vibration of nonuniform stiff 
strings is considered. 

In the late 19th century, Lord Rayleigh [2] described a theory for the vibration of strings, 
showing that in the piano, the stiffness of the strings affects the restoring force to a 
significant degree. He derived a formula to predict how the stiffness of a piano string can 
cause it to vibrate at frequencies somewhat greater than those of the ideal string. 

The more general theory for the stiff string, often encountered in the literature, was 
developed by Morse [3],  and by Shanidand and Coltman [4]. They derived expressions for 
the frequencies of a string of uniform diameter and density in free transverse vibration 
between rigid supports. Shankland and Coltman predicted a progressive sharpening of the 
partials as the mode number increases, the extent of the sharpening being dependent on 
the ratio of the string diameter to its length; the greater this ratio, the greater will be the 
sharpening. Robert W. Young [5, 6, 7] and his colleagues found that the sharpening follows 
approximately a square law with respect to mode number. They observed that the 
departure from the harmonic series of the plain steel strings was about the same in all the 
pianos they tested and was consistently less in large pianos than in small ones. More 
recently, many other investigators have studied the piano string inharmonicity problem 
with plain steel strings and overwound bass strings [8]. 

All piano bass strings are characterised by a steel wire core wrapped with copper, or 
sometimes iron, used to increase the string's linear mass density. While the tight coiling 
of the copper wire ensures close coupling to the core, the windings contribute considerably 
more to the increase in the string's linear mass density than to its bending stiffness. Most 
bass strings have a single winding of copper wire, and it is usually only within the 
lowest octave that double winding is used.. A double-wound string consists of a bare steel 
core wrapped with a small diameter copper wire, which is then overspun with a second 
winding of larger diameter. A small part of the steel core is left exposed near the end of 
the string. Thus only the outer winding is visible and the existence of the inner winding 
is evident only from the small change in the diameter of the overall covering near the 
ends. 

A theoretical relationshiD for inharmonicity that can be applied to wrapped strings was 

derived by Harvey Fletcher [9].  He showed that the formula f = flj4i + Bn 2  gives values 
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of the partial frequencies of the solid piano strings close to his observed values, where n 
is the number of the partial. The constant 2, the inharmonicity coefficient calculated from 

the dimensions of the wire, is B = ( ir2QSic2/4120f02) , where fo is the fundamental 

frequency, Q the Young's modulus of elasticity, S the area of the cross section, 1 the 

length, a the linear density, and ic the radius of gyration of the string. Fletcher had the 
idea of applying this to overwound strings by taking or to be the linear density of the 
overwound siring (core and windings). He suggested that the value of linear density of 
the overwound string would be 

	

2 	 2  a=p,,,.D+(p,_  PC.  .)d 
16 	4 	16 

for a steel core of diamet'r d with volume mass density p, and copper winding with 

volume mass density p and wire diameter D. 

Fletcher's formula has previously been applied [1] to predict the inharmonicity of strings 
on a 2.5 m Broadwood grand piano (187 1) in the Physics Department at the University of 
Edinburgh. It was found that for the full range of plain solid strings the predicted and 
observed inharrnonicities were in close agreement. However for the overwound strings the 
observed inharmonicity was higher than predicted, taking the string as being uniform over 
its length. The deviation was up to some 30% for the most heavily overwound, A0 
string. This has led us to investigate the effect of suing nonuniformity, caused by the 
windings not continuing over the entire string length. 

Some discussions about this problem have appeared over the last few years by Levinson 
[ 1 0], Sakata and Sakata [11], and Gottlieb [12]. Levinson studied the free vibration of a 
string with stepped mass density and derived an exact equation for calculating the natural 
frequency, but did not obtain any numerical solutions. Sakata and Sakata derived an exact 
frequency equation for a string with stepped mass density and proposed an approximate 
formula for estimating the fundamental natural frequency of the string. In Gottlieb's work, 
the three-part string, with two step discontinuities in density, was investigated in some 
detail for both fixed and free end conditions. Aspects of the "four-part" and "m-part" 
string problems were also discussed. However, these derivations have not taken into 
account the stiffness of the stepped string. 

2. THEORETICAL CONSIDERATION 

In this section we derive an expression for the frequencies of vibration of a stepped stiff 
string. Consider the vibration of an M-part string fixed at its ends. The (displacement) 
finite element formulation of the one-dimensional fourth-order differential equation [2] is 

___ 	__ 2  

	

T d2w1 —(QSc2)1 2'_ 
=PiS 

a 
dt 	I = 1, 2, 3 ......, m 	(1) 

'dx 
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where w1  is the (small) transverse displacement of the string originally lying on the X-

axis, r is the time, T is the Tension, 5is the area of CrOSS-Section, K, its radius of 
gyration. p1 and Q1 are the density and modulus of elasticity of the material for 
(- :5 x :5 a, where xi  is the length of the i-th segment of the string, a0  =0 and 

am  = 	a1  = a , the total length of the string. 
1=1 

The ends of the siring are considered to be clamped. Then the boundary conditions are 

w1 (0)= wm (a)=0 

(2) 

and the junction conditions 

w1 (a1 )= w11  (a) 

w(a)= w,'(a1 ) 

(QSc2 ) 1 w'(a) = (QSic2 )11 w1  'I 1 a) 
'ft 

Tw11(a1 ) + (QSK 2  )w'a1 ) = 7 1 w[ 1  (a1 ) + (QSic2 )11  w11 (a1 ). 	(3) 

The boundary conditions are those for simple supports and the junction conditions express 
the continuity of the displacement, slope, moment, and shear at the junctions of the M 
segments of the stiff string. 

In the case of a two segment stiff string, the normal mode frequencies can be found from 
the equation (afterwards, called the frequency equation): 

((QS)C 2 )1 
11 + 1Xp1 tanh(u 21 a2 ) +921 tanh(p11a1)) 

(QSic2 ) 2  /222 

_+1){p12 tanp 22a2 )+/2 22 tafl(/1 12a1 )) X1 	tiL  
(QSC 2 ) 2  /4 
- (QS,c2)1 4 1)(p tan 	)+/L22  tanh(jia)} 

((QSIC2) jL21 

(QS 	/i 12  
X1 	E2 2 - 1)1)212  tanh(p21a2)+  p tan(j.ta)) = 0 	(4) 

Equation (4) contains four parameters /211,/212,/121,/ln which are functions of the 

frequency, f. 

Proc.l.O.A. Vol 15 Part 3(1993) 
	 667 



Proceedings of the Institute of Acoustics 

INHARMONICITY OF STEPPED STIFF STRINGS. 

1
T 
	 ____ 	_____QS)1 +(2,)2 Pi_(_1)k 

(QK 2 )1 	2(QSic2 )1  
(5) 

:j,k = 1,2. 

In the case of the stepped stiff string it is considered that its tension and stiffness are 
constant along its length due to the core. Its frequency equation is 

( /iH 	 L
,22 + 1)(thL tanh(t21a2) + 	tan (J.z22a2) + 

A1 22 	P21 	P21 tanh(jt11 a1 ) 	p tan(p 12aj) 

_(L._ 1)(--1)(- tanCu
22a2 ) 	tanh(p21a2) +1) = 

1421 	Y22 	p22  tanh(t11a1) 	1u21 tan(jz12a) 	 (6) 

The allowed frequencies, f, : (n = 1, 2, 3, 4..... ) can be found from equation (5) & (6). 

3. NUMERICAL RESULT 

Numerical calculations have been undertaken to compute theoretical mode frequencies for 
strings on the Edinburgh Broadwood grand piano. Only the single overwound strings in 
the lowest octave, sounding AO to Al were considered; results here are presented for two 
of the strings, BbO and Dbl. 

Fig I shows the notation used for defining the parameters of the overwound string. This 
was clamped at both ends and the linear density was calculated using the method of WT 
Goddard [13]. 

•k&&.• 
ITse 

al 	 a2 

Fig. I the single overwound string. 
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The 1-st segment is the bare string and the 2-nd segment has both the steel core and the 
wrapped copper wire. Table I shows the dimensions for the two strings BbO and Db 1. 

Table I The dimensions of the strings. BbO and Dt,1 

Strings' parameters BbO Dbl 

d(nm.) 0.140 0.130 
d2(mm.) 0.441 0.377 
aj(mm.) 23.00 18.00 
a2(mm-) 1837.00 1767.00 
a1(g/mm.) 0.0121 0.0104 

O2(g/mm.) 0.1084 0.0794 

The mode frequencies were found numerically from Equation 5 & 6 by applying Newtons 
method; this was programmed on an Apple Macintosh computer using the Mathematica 
package. The results of these computations are shown in Tables II and Ill. Figures H and 
HI present these results graphically. 

Table II The departure of the natural frequencies from the harmonic series for BbO swing with 
fletcher's formula, Observation and Theory (Eqs. 5 & 6). 

Mode number 
(n) 

 BbO  
fletcher's formula Observation Theory (Ens. 5 & 6) 

1 1.0000 1.0000 1.0000 
2 2.0003 2.0005 2.0004 
3 3.0011 3.0016 3.0015 
4 4.0026 4.0037 4.0035 
5 5.0052 5.0072 5.0069 
6 6.0089 6.0125 6.0119 
7 7.0142 7.0198 7.0190 
8 8.0212 8.0296 8.0283 
9 9.0301 9.0421 9.0403 
10 10.0413 10.0578 10.0552 
11 11.0549 11.0769 11.0734 
12 12.0713 12.0997 12.0953 
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Fig 11 

0.10 

0.08 

E 
0.06 0 

I- 

4 

0.04 

bE 	0.02 

0.00 

a Fletcher 

•Exp. 

• Theory 

1 2 3 4 5 6 7 8 9 10 11 12 

Mode number (n) 

Table Ill The departure of the natural frequencies from the harmonic series for Dbl string with 
Fletcher's formula, Observation and Theory (Eqs. 5 & 6). 

Mode number 
(n) 

 Dbl  
Fletcher's formula Observation Theory(Eqs. 5 & 6) 

1 1.0000 1.0000 1.0000 
2 2.0003 2.0004 2.0004 
3 3.0009 3.0012 3.0012 
4 4.0022 4.0028 4.0028 
5 5.0044 5.0055 5.0054 
6 6.0076 6.0095 6.0093 
7 7.0120 7.0151 7.0148 
8 8.0226 8.0226 8.0221 
9 9.0255 9.0321 9.0314 
10 10.0350 10.0441 10.0430 
11 11.0466 11.0586 11.0573 
12 12.0604 12.0761 12.0743 
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Fig III 
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4. INHARMONICITY MEASUREMENTS 

In order to validate the theory developed in section 2 of this paper, experiments were 
conducted to measure the inharmonicity of the single overwound strings on the Edinburgh 
Broadwood. The key of the note under study was held down with a weight in order to 
retract the damper and allow the string to vibrate freely; on this piano the dampers are 
below the strings. The string was then plucked with the finger at a position close to the 
end and the sound was recorded at a point near to the centre of the string using a 
microphone mounted a short distance above. The acoustic signal was captured digitally 
using a Barry Box (a unit specially designed for collecting sound samples) and was 
analysed on a BBC B computer using an FFT routine developed at Edinburgh [I]. This 
program generates a high resolution spectrum and accurately locates the peaks, from which 
the inharmonicity of any particular mode can be determined. 

The measured peak frequencies for the first twelve modes for siring BbO are shown in 
Table II and are displayed graphically in Figure II. These can be compared with the 
theoretical frequency values, together with the corresponding frequencies calculated from 
Fletcher's formula. Corresponding results for the note Dbl are given in Table HI and 
Figure III. It is seen that stepped stiff string theory gives a very good match, the error in 
the twelfth mode being only 5%. The error using Fletcher's theory is approximately six 
times as great. 

Similar results have been measured for the other single overwound strings and the results 
show generally the same trends. 
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S. CONCLUSIONS 

It is evident from the results that the theory presented here gives a better fit to measured 
inharmonicities than Fletcher's analysis 'or a "niform string. Apparently the stepped 
geometry of the overwound strings is significant. However, our predictions still 
underestimate the inharmonicity by about 5% in the twelfth mode. This could be due to a 
number of factors. The winding itself may tend to increase the stiffness of the string i.e. 
the stiffness of a length of overwound string is slightly greater than the stiffness of the 
core by itself. The flexibility of the supports may also be important. Neither of these 
factors are included in the analysis. 

In order to study the problem further, a purpose-designed monochord has now been 
constructed at Edinburgh. With this it will be possible to measure the tension piecisely 
and to vary the support rigidity. 
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In our previous paper 1101,  the transverse wave equation for the case of a 
stepped stiff string was described, and the numerical results of the frequency 
equation were compared with data from experiments on piano strings. It was 
evident from these results that the theory presented there gave a better fit to 
measured inharmonicities than Fletcher's analysis for a uniform overwound string. 
In this paper, we describe measurements of inharmonicity carried out on 
nonuniform overwound strings mounted on a rigid monochord. The measurements 
are in good agreement with the theoretical predictions taking account the 
nonuniformity of the winding. 

1. INTRODUCTION 

[ 1-81711e natural frequencies of a piano string depart somewhat from the harmonic series; 
the departure is called inharmonicity. In the late 19th century, Lord Rayleigh [2]  described a 
theory for the vibration of strings, showing that in the piano, the stiffness of the strings affects 
the restoring force to a significant degree. He derived a formula to predict how the stiffness of a 
piano string can cause it to vibrate at frequencies somewhat greater than those of the ideal string. 
In 1964, Fletcher [81  conducted a more accurate treatment of Rayleigh's method, considering both 
clamped and hinged boundary conditions. He found that the equation was of the form fn = nF(1+Bn2) 112, 

where F and B are constants. B is described as the inharmonicity coefficient Actually, all piano 
bass strings are characterised by a steel wire core wrapped with copper, or sometimes iron, used 
to increase the string's linear mass density. While the tight coiling of copper wire ensures close 
coupling to the core, the windings contribute considerably more to the increase in the string's 
linear mass density than to its bending stiffness. Most bass strings have a single winding of 
copper wire, and it is usually only within the lowest octave that double winding is used. A 
double-wound string consists of a bare steel core wrapped with a small diameter copper wire, 
which is then overspun with a second winding of larger diameter. A small part of the steel core 
is left exposed near the end of the string. The inharmonicity of the overwound piano strings does 
not only depend on the string stiffness; since the copper windings do not extend up to the 
string's supports, the resulting nonuniformity in the linear mass density must also be taken into 
account. 
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In a previous paper 1 10 1 ,  an expression for the frequencies of vibration of a stepped stiff 
string was described. In the present paper this expression is used to calculate the inharmonicity of 
piano string with nonuniform winding. The theoretical results are compared with measurements 
carried out on a rigid monochord. 

2. THEORETICAL CONSIDERATION AND NUMERICAL RESULTS 

000 did  
000 

Fig. I The 2-segment overwound string. 

Consider the frequency equation [10]  in the case of the 2 segment stiff string (see Fig. I). 

Its frequency equation is 
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where T is the tension, Si is the area of cross-section and X) the radius of gyration. p1  and Q1  
are the density and modulus of elasticity of the material for the section j of the string. 

The allowed frequencies, f: (n = 1, 2, 3, 4,...) can be found from equations (1) & (2). The 
values were found numerically by applying Newton's method; this was programmed on an Apple 
Macintosh computer using the Mathematica package. Numerical calculations have been undertaken 
to compute theoretical mode frequencies for several 2 segment overwound strings. Fig. I shows 
the notation used for defining the parameters of the overwound string. This was clamped at both 
ends and the linear density was calculated using the method of W T Goddard 191 •  The first segment 
is the bare string (al) and the second segment has both the steel core and the wrapped copper wire 
(a2). Graph I presents the relation between the square of the theoretical mode frequency per the 

square of mode number (fJn) 2  and the square of the mode number (0), for a uniform overwound 

string (length 1 = 80.0 cm.) and the 2 segment overwound string (al = 5.0 cm. and a2 = 75.0 cm.). 
It shows that the relation is linear in the case of the uniform overwound string. This is the case 
dealt with by Fletcher, and our results agree. In the case of the stepped overwound string, the 
inharmonicity is substantially increased, and the line is evidently curved. Graph II displays the 
residuals (the deviations from the best straight line fit to the data) for three 2-segment overwound 
strings. These have the same diameters (di = 1.35 mm. and d2 = 4.20 mm.), and the same lengths of 

bare steel string (al = 5.0 cm.), but their overwound lengths are a2 = 75.0, 100.0 and 125.0 cm., 

respectively. 
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Graph I: The relation between the square 
of theoretical mode frequencies per the square of 
mode number (f/n) 2  and the square of mode 
number (0) for a uniform overwound string with 
I= 80.0 cm. and a 2 segment overwound string 
with a1 = 5.0 cm. and a2 = 75.0 cm.  
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Graph II: The residuals from a straight 
line of the theoretical results for three 2-
segment overwound strings with the same 
diameters (di and d2), and the same length of 
bare string (al = 5.0 cm.), but with a2 = 75.0, 

100.0 and 125.0 cm. 
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Graph III: The relation between the square 
of experimental mode frequencies per the square of 
mode number (fIfl) 2  and the square of mode 
number (0) for a uniform overwound string with 
1 = 80.0 cm. and a 2 segment overwound string 
with a1 = 5.0 cm. and a2 = 75.0 cm.  
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Graph IV The residuals from a straight 
line of the experimental results for three 2-
segment overwound strings with the same 
diameters (d1 and d2), and the same length of 
bare string (ai = 5.0 cm.), but with a2 = 75.0, 
100.0 and 125.0 cm. 
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EXPERIMENTAL RESULTS 

The experiment studied the vibration of 2 segment overwound strings (see Fig. I) on a 
purposed-designed monochord. The monochord is composed of a rigid steel bar, 2 pairs of 
specially designed rigid clamps, 2 tuner supports, and 2 tuners. Each pair of clamps stops each 
end of the string at 3 points in a plane perpendicular to the string length. The strings were 
plucked at a position close to the end and the sound was recorded at a point near to the centre-

of 

 

 the string using a microphone mounted a short distance above. The acoustic  signal was 

captured digitally using an A/D converter and was analysed using an FFF. A program developed 

in Edinburgh [11) locates the peaks in the spectrum with high accuracy. 
The relation between the square of experimental mode frequencies per the square of mode 

number (fnln)2  and the square of mode number (0) for a uniform overwound string (length 1= 

80.0 cm.) and for a 2 segment overwound string (al = 5.0 cm. and a = 75.0 cm.) are shown in 

Graph III. The relation is not linear in the case of the nonuniform overwound string, in agreement 
with the theoretical result. Experimental results for three 2 segment overwound strings are shown 
in Graph IV as residuals from a straight line. It is seen that the greater the fraction (al/a2), the 
more curving is the trend. The theoretical result in Graph II gives a very good match. 

CONCLUSION 

The results from theory and experiment presented above show that the mode frequencies of 
nonuniform overwound strings depart from those predicted by Fletcher's equation. It is evident 
that this departure, graphed as the residual from a straight line fit to Fletcher's equation, gives a 
curving trend whose significance depends on the fraction al:a2. The greater the fraction al:a2, the 
more curving is the trend. For normal bass piano strings, the fraction of unwound string is 
usually considerably less than 1:25. Thus a straight line fit to Fletcher's equation is a resonable 
approximation. However, the inharmonicity coefficient will be considerably increased by the 
nonuniformity of the winding. 
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